
 

	   	  
	  

	  

  
	  

Alma Mater Studiorum Alma Mater Studiorum ––   Università di BolognaUniversità di Bologna   
 
	  

DOTTORATO DI RICERCA IN 
 

Biologia Cellulare, Molecolare e Industriale 
"Biologia Funzionale e Molecolare" 

	  

Ciclo XXV 
	  
	  

Settore	  Concorsuale	  di	  afferenza:	  	  	  	  05/I1	  Genetica	  e	  Microbiologia	  
	  

Settore	  Scientifico	  disciplinare:	  	  	  	  Bio19/	  Microbiologia	  
	  
	  

Molecular	  and	  functional	  characterization	  of	  	  

the	  chemotactic	  genes	  in	  the	  PCBs-‐degrader	  

Pseudomonas	  pseudoalcaligenes	  KF707	  

	  
	  

PhD Student:  Dott.ssa Tania Triscari Barberi 
	  
	  

Tutor:	  

Chiar. mo Prof. Davide Zannoni 
 

PhD Coordinator: 

Chiar.	  mo	  Prof.	  Vincenzo	  Scarlato	  
 
	  

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Esame finale anno 2013



 

	   	  
	  

I	   	  

 

Table of Contents 

Preface                                                                                                                  1 

Chapter A - General introduction                                                                      4        

A-1 Motility systems                                                                                                         4 

A-2 The link between flagellar rotation and the bacterial swimming behaviour              6 

A-3 Chemotaxis network in Escherichia coli                                                                    8 

A-3.1 Signal transduction in response to a negative stimulus                                  9 

A-3.2 Signal transduction in response to a positive stimulus                                   9 

A-3.3 Signal transduction in response to multiple stimuli                                      10  

A-4 Components  of the “receptor-signalling complexes”                                               10 

A-4.1 Chemoreceptors: structure and classification                                                10 

A-4.2  The histidine kinase CheA and the adapter protein CheW                           12 

A-4.3 Organization of the receptors-signal complexes in clusters                           13 

A-5 Homologies among bacterial chemotactic pathways                                                  13 

A-6 Regulation of the signal termination                                                                           15 

A-7 Memory in the chemotactic response                                                                          16 

A-8 Role of motility and chemotaxis in biofilm formation                                                18 

 

Chapter B - General Materials and Methods common to Chapters D, E, F   20 

B-1 Bacterial strains, media and growth conditions                                                           20 

B-2 Extraction of genomic DNA from Pseudomonas pseudoalcaligenes KF707             23 

B-3 DNA manipulations and genetic techniques                                                               24 



 

	   	  
	  

II	   	  

B-4 DNA sequencing and sequence analysis                                                                    25 

B-5 Conjugation                                                                                                                25 

B-6 Electroporation of Pseudomonas pseudoalcaligenes KF707                                     27 

B-7 Construction of Pseudomonas pseudoalcaligenes KF707  

mini-Tn5 transposon mutant library                                                                                  28 

 

Chapter C - The Genome Project of the polychlorinated-biphenyl degrader 

Pseudomonas pseudoalcaligenes KF707                                                              29 

C-1 Introduction                                                                                                                    29 

C-1.1 Prokaryotic genome projects pipeline                                                                         30 

C-1.1.1 Second generation sequencing technologies                                                   30 

C-1.1.2 Overview of computational workflow for prokaryotic  

assembly and annotation of sequenced prokaryotic genomes                                      32 

C-1.1.2.1 Reads quality control                                                                     33 

C-1.1.2.2 Genome assembly                                                                          34 

C-1.1.2.3. Genome scaffolding                                                                      35 

C-2 Materials and Methods                                                                                                   37 

C-2.1 Pseudomonas pseudoalcaligenes KF707 genome sequencing  

and preliminar analyses                                                                                                         37 

C-2.2 Next generation sequencing data quality analysis                                                       37 

C-2.3 Genome assembly                                                                                                        37 

C-2.4 Optical map and contigs scaffolding                                                                           38 

C-2.5 Gene prediction                                                                                                            38 

C-3 Results                                                                                                                              39 



 

	   	  
	  

III	   	  

C-3.1 454 and Illumina reads datasets                                                                                  39 

C-3.2 Genome assembly                                                                                                       43 

C-3.2.1 Assembly using reference genomes                                                               43 

C-3.2.2 de-novo assembly strategies                                                                           43 

C-3.3 Contigs scaffolding                                                                                                     44 

C-3.4 Genes prediction and annotation                                                                                 46 

C-4 Discussion                                                                                                                      49 

 

Chapter D - Bioinformatics analysis of genes involved in motility and 

chemotaxis in Pseudomonas pseudoalcaligenes KF707 and contruction of 

chemotactic mutants                                                                                                             51 

D-1 Introduction                                                                                                                51 

D-2 Materials and Methods                                                                                              52 

D-2.1 Identification of genes involved in motility and chemotaxis                           52   

D-2.2 Bacterial strains and growth conditions                                                           53 

D-2.3 Amplifications of chemotactic target genes flanking regions                          

and subsequent molecular fusion by using “Gene SOEing” method                         53 

D-2.4 Construction of recombinat plasmids containing fragments   

with deleted chemotactic genes and conjugation into                                                 

Pseudomonas pseudolacaligenes KF707 wild type strain                                         56 

D-3 Results                                                                                                                         59 

D-3.1 Motility and chemotaxis genes clusters in                 

Pseudomonas pseudoalcaligenes KF707 genome                                                       59 

D-3.2 Amplification of cheA genes flanking regions and fusion  



 

	   	  
	  

IV	   	  

by Gene SOEing (splicing overlap extension)                                                             65 

D-3.3 Construction of recombinant conjugative plasmids carrying  

fragments with deleted target chemotactic genes and conjugation into  

Pseudomonas pseudolacaligenes KF707 wild type strain                                           67 

D-4 Discussion                                                                                                                    69 

 

Chapter E - Role of chemotactic genes in Pseudomonas pseudoalcaligenes 

KF707 motile behaviour and biofilm formation                                                73 

E-1 Introduction                                                                                                                73 

E-2 Materials and Methods                                                                                              74 

E-2.1 Bacterial strains and growth conditions                                                             74 

E-2.2 Motility assays                                                                                                    74 

E-2.2.1 Swimming                                                                                              75 

E-2.2.2 Swimming in presence of metals                                                           75 

E-2.2.3 Swimming chemotaxis assay                                                                 76 

E-2.2.4 Plugs chemotaxis assay                                                                          76 

E-2.2.5 Quantitative chemotaxis assays                                                             76 

E-2.2.6 Contrast phase microscopy                                                                    78 

E-2.2.7 Swarming                                                                                               78 

E-2.2.8 Twitching                                                                                               79 

E-2.3 Evaluation of biofilm growth                                                                             79 

E-2.3.1 Biofilm and planktonic growth curves                                                   81 

E-2.3.2 Confocal Laser Scanning microscopy (CLSM)                                     82 

E-3 Results                                                                                                                          84 

E-3.1 Motile behaviour in Pseudomonas pseudoalcaligenes KF707  



 

	   	  
	  

V	   	  

wild type and chemotactic mutant strains                                                                    84 

E-3.2 Role of cheA genes in Pseudomonas pseudoalcaligenes KF707  

biofilm formation and development                                                                             91 

E-4 Discussion                                                                                                                    95 

 

Chapter F - Searching for a Quorum Sensing (QS) system  

in Pseudomonas pseudoalcaligenes KF707                                                         98 

F-1 Introduction                                                                                                               98  

F-1.1 Bacterial Quorum Sensing: general features                                            98 

F-1.2 Bacterial QS systems                                                                                         99 

F-1.2.1 Vibrio fischeri luxI/luxR system: the QS paradigm  

in gram negative bacteria                                                                                 100 

F-1.2.2 lux-like QS systems in Gram- Bacteria                                                101 

F-1.2.3 Structure and function of the LuxR proteins family                            103 

F-1.3 Structural diversity in QS signal molecules                                                     104 

F-1.4 Synthesis and detection of AHLs signal molecules                                         105 

F-1.5 Role of QS in  swarming motility and biofilm development                           106 

F-2 Materials and Methods                                                                                            107 

F-2.1 Bacterial strains and growth conditions                                                            107 

F-2.2 T-streaks bioassays                                                                                           108 

F-2.3 Extraction of N-acyl-homoserine lactone                                                         108 

F-2.4 AHL reporter plate bioassays                                                                           109 

F-2.5 TLC and detection of AHLs                                                                             110 

F-2.6 KF707 growth as biofilm for AHLs extraction                                                111 



 

	   	  
	  

VI	   	  

F-2.7 Genome analysis for lux homologous searching                                              111 

F-3 Results                                                                                                                        112 

F-3.1 Agar-Bioassays  for the detection of  QS molecules                                        112 

F-3.2 TLC analyses on planktonic and biofilm organic extracts                               114 

F-3.3 Bioinformatics analysis on Pseudomonas pseudoalcaligenes KF707  

genome for luxI/luxR homologues systems searching                                               116 

F-4 Discussion                                                                                                                  118 

 

Conclusions                                                                                                           121 

Bibliography 126



Preface  

	   1	  

 

Preface 

Bacteria may encounter a large spectrum of different environments during their life 

cycles. Indeed, the capacity to adapt and survive in changing environments is a 

fundamental property of living cells and bacteria have developed effective mechanisms to 

regulate their behaviour accordingly. Chemotaxis, i.e. the migration of microorganisms 

under the influence of a chemical gradient, allows bacteria to approach chemically 

favorable niches for their growth and survival avoiding unfavourable ones. Since the 

most of microorganisms inhabiting heterogeneous environments are motile, the 

chemotactic behavior is achieved by integrating signals received from receptors that 

sense the environment. Apparently, the main reason for which environmental bacteria 

have retained during the “evolution” a large number of genes involved in motility and 

chemotaxis (Macnab, 1996), is because they provide a selective advantage and play a 

significant role in the dynamics of microbial populations (Pilgram and Williams, 1976; 

Freter et al., 1978; Kennedy and Lawless, 1985; Kennedy, 1987; Kelly et al., 1988; 

Lauffenburger, 1991).  

Bacterial chemotaxis can be therefore considered the prerequisite for population survival, 

metabolism and interactions within ecological niches (Chet and Mitchell, 1979). In line 

with this, it has been reported that chemotaxis has important roles in colonization of plant 

roots by plant growth-promoting Pseudomonas fluorescens  (De Weger et al.,1987; de 

Weer at al., 2002), infections of plants by Pseudomonas syringae  and Ralstonia 

solanacearum  (Yao and Allen, 2006), and animal infections by Pseudomonas 

aeruginosa  (Drake and Montie, 1998 ). Notably, chemotaxis is also a selective advantage 

to degradative bacteria which colonize contaminated sites as microorganisms, with a 
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chemotactic ability toward xenobiotic compounds in polluted niches, have been isolated 

and characterized (Harwood et al., 1990; Grimm and Harwood, 1997; Bhushan et al., 

2000a; Bhushan et al., 2000b; Parales and Harwood, 2002).  

The soil bacterium Pseudomonas pseudoalcaligenes KF707 is know for its 

ability to degrade biphenyl and polychlorinated biphenyls (PCBs) (Furukawa et al, 1986), 

to which the strain is chemically attracted. PCBs are toxic compounds of great concern 

since they have been recognized as important harmful environmental contaminants in the 

EPA (Environment Protection Agency) priority list of pollutants.  

The understanding of bacterial chemotaxis toward pollutants is a topic of particular 

interest, so that strategies for bioremediation by means of strains with degradative 

abilities, have been developed. However, the low bioavailability of organic contaminants 

is a limitation for the microbial remediation of contaminated sites, as toxic hydrophobic 

chemicals are often adsorbed to a non-aqueous-phase-liquid (NAPL) (Stelmack et al., 

1999). In bioremediation processes, target compounds can be easily accessible to bacteria 

by dissolution in the aqueous phase; alternatively microorganisms might have access to a 

polluted surface through biofilm formation. In this respect, chemotaxis is a key factor in 

biofilm formation (Pratt and Kolter, 1998; O’Toole and Kolter, 1998; , Prigent-Combaret 

et al, 1999; Watnick and Kolter, 1999) and flagella are required for attachment to solid 

surfaces and the initiation of biofilm formation (Pratt and Kolter, 1998; Stelmack et al., 

1999). In addition, motility and chemotaxis are required for biofilm growing bacteria to 

move along the surface, facilitating the spread of the biofilm (Stelmack et al., 1999).  

Recent findings have shown that a Pseudomonas pseudoalcaligenes KF707 

chemotactic mutant in a cheA gene (che stands for chemotaxis) is impaired in motility 

and chemotaxis as well as in biofilm development (Tremaroli et al, 2011). However, 
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recent studies on sequencing, assembly and annotation of Pseudomonas 

pseudoalcaligenes KF707 genome (Triscari et al., 2012; see also this Thesis work), have 

clearly demonstrated that the KF707 genome contains multiple putative operons encoding 

for different chemotaxis pathways and therefore multiple cheA genes are present. This 

finding was not surprising since genome analyses have revealed that a large number of 

environmental motile bacteria, such as Pseudomonas spp., Vibrio spp., Rhodobacter spp., 

own several gene clusters involved in chemosensing and chemotactic signal transduction, 

which may work in parallel or be expressed under different environmental conditions. 

The goals of this present study were to investigate the role in motility, chemotaxis 

as well as in biofilm formation, of the various cheA genes we found by sequencing 

analysis of KF707 genome and to compare their functions with those previously 

attributed to a cheA gene in a KF707 mutant strain constructed by a mini-Tn5 transposon 

insertion (Tremaroli et al., 2011). Further, since it has been reported that communication 

via quorum sensing (QS) is involved in organizing group motility and biofilm formation, 

the ability to produce signal molecules by KF707 was also investigated.
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CHAPTER A - General introduction 

 

Motility and chemotaxis are peculiar traits common to many bacterial species. In 

the microbial world different kinds of motility can be observed. In addition, 

microorganisms can be sensitive to different stimuli and responde to them with variable 

taxis strategies. 

 

A-1 Motility systems 

Swimming is the most common strategy for motility in fluid environments and 

is the outcome of the flagellar rotation, which exert a pushing force that drives  

bacteria at a speed up to 20–60 nm/sec. Several types of flagellar motility have 

been found and they depend on the number and the position of flagella and on the 

species. In Table A-1.1, various types of flagellar motility are listed. 

 

Table A-1.1: Variety of flagellar motility in bacteria. This table was taken and modified from 
Eisenbach (2001). 

Flagellation Examples  

of species 

Description of motility 

A single flagellum at one of the cell 
poles 
 

Pseudomonas spp  
 

The flagellum, depending on its 
direction of rotation, pushes or pulls the 
cell.  
 

A single flagellum in the middle 
between the poles 
 

Rhodobacter 
sphaeroides 

The flagellum either rotates clockwise 
or pauses. Consequently the cell swims 
in a rather straight line and occasionally 
stops for reorientation.  
 

A bundle of flagella at one of the 
poles 
 
 

Chromatium okenii,  
Halobacterium 
salinarium 

The bundle, depending on its direction 
of rotation, pushes or pulls the cell.  
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Table A-1.1 continued   
A bundle of flagella at each of the 
two poles 
 

Some cells of  
H. salinarium 

The bundles, depending on their 
direction of rotation, push or pull the 
cell. Consequently, the cell goes back 
and forth or stops 

5–10 flagella randomly distributed  
around the cell 
 
 
 

Escherichia coli, 
Salmonella 
typhimurium, 
Bacillus subtilis 

Most of the time the flagella rotate 
counterclockwise and the cell swims in 
a rather straight line (a run). 
Intermittently, the flagella rotate 
clockwise or pause, as a result of which 
the cell undergoes a vigorous angular 
motion (a tumble) 
 

A polar tuft of 2 flagella + 2–4  
lateral flagella 
 

Agrobacterium 
tumefaciens 
 

Flagella rotate clockwise or pause; 
consequently the cell swims in a rather 
straight line or turns 
 

One flagellum at one end, one or 
more Flagella subterminally at each 
end. All the 
flagella are contained within the 
periplasmic space 
 

Spirochaetes  
 

The cells exhibit smooth swimming, 
reversals, flexing and pausing. When 
the flagellar bundles at both cell poles 
rotate in opposite directions (one pulls 
and one pushes), the cell swims in a 
rather straight line. When both bundles 
switch synchronously, the cell reverses. 
When both bundles rotate in the same 
direction, the cell flexes 

 

Swarming is an organized translocation of differentiated cells on a solid 

surface generally due to type IV pili and cell-to-cell communication appears to be 

essential for this motile behaviour. Swarming bacteria located in the outer layer of a 

colony, expand outwardly and the evacuated space is filled with new growing cells. 

Irregular branches can appear at the periphery of the colony, forming a dendritic 

pattern on the surface. 

Gliding is a particular kind of movement characterized by bacterial migration 

on a solid surface covered with a liquid film, without the formation of external 

structures and no cellular differentation.  

Twitching motility is a form of translocation on solid surfaces which is 

dependent on pili-assisted motility (Henrichsen 1972;1983). 
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Propulsion by actin filaments is a peculiar mode of motility to pathogens such 

as Listeria, Shigella and Rickettsia in host eukaryotic cells. The bacteria assemble 

actin filaments for propulsion in the cytoplasm of the infected host cell.  

 

A-2 The link between flagellar rotation and the bacterial swimming behaviour 

Flagella are specialized structures (see Fig. A-2.1)  which enable bacteria to 

swim in an aqueous solution.  

 

 

Fig. A-2.1: Structural organization of  a bacterial flagellum. It consists of three major parts: 
a basal body, a hook and a filament. Bacterial flagella may vary between species and 
families, but the main structural aspects are common to all. This picture was taken and 
modified from Eisenbach (2001). 
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Bacteria such as E. coli have two main swimming patterns: smooth swimming in a 

straight direction (run) and an overturning motion (tumble). In absence of stimuli, 

when the concentration of  nutritional compounds in the enviroment is uniform, 

cells run for about a second, then tumble for about a tenth of a second, changing 

orientation and, as a consequence, running in a new direction. Consequently, the 

bacterial cells walk randomly, with no net vectorial movement (Fig. A-2.2a). 

Specifically, the run is the consequence of a counterclockwise rotation while the 

tumble is the consequence of a clockwise rotation of the flagella. 

When a cell detects increasing concentrations of attractants or decreasing 

concentrations of repellents, tumbles occur less frequently, and there is a net 

movement towards attractants and away from repellents (Fig. A-2.2b). Cells make 

temporal comparisons of chemo-effectors concentrations during a run and they 

decide, second by second, the movement direction, suppressing tumbles if the level 

of chemo-attractant increases. On the other hand, negative stimuli increase the 

probability of clockwise rotation (Tsang et al., 1973) and cells tumble more 

frequently. 

 

 

Fig. A-2.1.: Bacterial biased random walk in absence of stimuli (a) and movement under 
attractant gradient (b). This picture was taken and modified from Sourjik and Wingreen 
(2012). 
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A-3 Chemotaxis network in Escherichia coli 

Prokaryotic chemosensory pathways are depending on two-component signal 

transduction system with conserved components regulating flagellar activity (Stock 

et al., 2000; Wolanin et al., 2002). Generally, a two-component system includes a 

histidine protein kinase (HPK) that catalyzes the transfer of a phosphoryl group 

from ATP to an aspartate residue on the response regulator (Borkovich et al., 

1989).  

The E. coli chemosensory network is considered as the simplest model to 

describe bacterial chemotaxis although much more complex as compared to a basic 

two-components system. Indeed, the six Che proteins, CheA, CheW, CheY, CheZ, 

CheR and CheB and the five chemoreceptors, Tsr, Tar, Tap, Trg and Aer, constitute 

the E. coli chemotaxis system.  

The CheA protein, unlike orthodox membrane-bound histidine kinases,  does not 

interact directly with chemo-effectors, because it lacks of a sensory domain. It is in 

fact connected to the transmembrane receptor proteins (chemoreceptors) via the 

‘adapter’ protein CheW. Together, chemoreceptors - CheA - CheW, form large 

complexes that integrate enviromental informations to control CheA kinase activity 

in phosphorylating the response regulator CheY. CheR and CheB are, respectively, 

involved in methylation and demethylation of the chemoreceptors cytoplasmic 

domain (West et al., 1995; Djordjevic and Stock, 1997). CheR is an S-adenosyl-

methionine-dependent methyl-transferase that methylates specific glutamate 

residues ; CheB is an esterase with an opposite function as it hydrolyzes the methyl 

esters formed by CheR. These antagonist activities play a critical role in adaptation 

(Okumura et al., 1998; Levit and Stock 2002; Sourjik and Berg, 2002), conferring 
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also a memory mechanism. The stochastic nature of these modifying activities 

ensures a variety of receptor sensitivity and capacity of response in the different 

cells of a bacterial population.  

 

A-3.1 Signal transduction in response to a negative stimulus 

When chemo-repellents bind to the receptors, they switch to an active form 

and together with CheW, stimulate CheA autophosphorylation. The histidine 

kinase, in turn phosphorylates CheY. Phosphorylated CheY (CheY∼P) diffuses to 

flagellar motors (Li et al., 1995; Sourjik and Berg, 2002), where it acts as an 

allosteric regulator on the flagellar proteins FliM, changing the sense of rotation 

from counterclockwise to clockwise and, consequently, tumble occurs (Alon et al., 

1998). The response is termined by the CheZ phosphatase, by enhancing CheY~P 

dephosphorylation (Stock, A.M. and Stock, J.B., 1987; Wang and Matsumura, 

1996).  

 

A-3.2 Signal transduction in response to a positive stimulus 

When chemo-attractants bind to the receptors, they do not undergo to 

conformational changes, so CheA autophosphorylation is inhibited, causing 

reduced levels of CheY~P and promoting smooth swimming as the probability of 

clockwise rotation decreases. The results are prolonged runs alterned to rare 

tumbles.  
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A-3.3 Signal transduction in response to multiple stimuli 

Generally, cells are exposed to multiple positive and negative stimuli. 

Bacteria are able to integrate all these inputs and to show a unique behavioural 

response. Thus, movement towards attractants and away from repellents is 

determined by the efficiency of temporary response and the memory of past 

informations, properties that allow bacteria to make second-to-second decisions to 

continue swimming or tumbling and change direction (Berg, 2000; Bourret and 

Stock, 2002; Wadhams and Armitage, 2008).  

 

A-4 Components  of the “receptor-signalling complexes” 

Receptors-signalling complexes can be viewed as ternary complexes resulting 

from the interactions between the  membrane receptors and the chemotaxis proteins 

CheW and CheA. Receptors act anchoring the chemotactic proteins in the inner 

membrane and are necessary for signal transmission from the periplasmic domain 

(which binds the ligand), through the membrane, to the cytoplasmic complex.  

In the following paragraphs the single components of receptors-signalling 

complexes are described. 

 

A-4.1 Chemoreceptors: structure and classification 

Chemoreceptors are transmembrane proteins with variable periplasmic 

sensing domains – which are able to bind specific ligands - and a conserved 

cytoplasmic domain – which acts as a scaffold for the anchoring of the histidine 

kinase CheA and the adpter CheW (Le Moual and Koshland, 1996; Zhulin, 2001). 

Binding of a ligand to the sensing domain causes a conformational change, 
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inducing a “piston-like movement" which in turn causes the transmission of signals 

across the cell membrane for the control of CheA kinase activity in the cytoplasm 

(Mowbray and Sandgren, 1998), (Otteman et al., 1998; 1999). The function of the 

chemoreceptors is strictly related to their structure. The cytoplasmic part of 

chemoreceptors can be divided into four subdomains: (i) the histidine kinase, 

adenylyl cyclase, methyl-binding proteins and phosphatases domain (HAMP); (ii) 

methylated helix 1 (MH1); (iii) signaling domain; (iv) methylated helix 2 (MH2). 

Together the methylated helixes (MH1 and MH2) contain four or more glutamate 

residues that are substrates for CheR and CheB modification (Terwilliger et al., 

1983; 1984). Since chemoreceptors are substrates for methylation and 

demethylation, they are also known as methyl-accepting chemotaxis proteins 

(MCPs).  

MCPs are classified on the basis of different properties: cellular localization 

(membrane-bound or cytoplasmatic), abundance, size (cluster I receptors with a 

ligand-binding region between 120 and 210 amino acids whereas cluster II 

receptors have larger ligand-binding regions of 220–299 amino acids), the ligand-

binding region (extra-cellular space or cytosol). Notably, MCPs are different with 

respect to the sequence of their periplasmic part and the presence of the binding site 

for CheR in their cytoplasmic side. Thus, receptors possessing this CheR-binding 

site are known as “major receptors” and can function independently. The other 

MCPs, without this binding site, have an adaptation mechanism depending on the 

presence of the first type of receptors: this may explain a possible reason for 

receptors organization in clusters. Moreover, several MCPs are able to respond to 

different compounds at the same time: for example the E. coli Tar receptor, sense 
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aspartate and maltose. Aspartate binds directly to the periplasmic ligand binding 

domain (Yen et al., 1996) whereas maltose binds to the periplasmic maltose 

binding protein (MBP) associated to the MCP. 

 

A-4.2  The histidine kinase CheA and the adapter protein CheW 

CheA and CheW chemotactic proteins play an important role in the 

organization of clusters of receptors. On the other hand, MCPs represent anchors 

for the assembly of chemotactic proteins. Recent studies have shown that deleted 

mutants in cheA or cheW genes are impaired in receptor arrays formation. In order 

to understand the interaction between of both CheA and CheW, it is fundamental to 

know the tridimensional structures of these proteins and if particular conserved 

domains are involved in the interaction with the cytoplasmic receptor domain. 

CheA is divided into five domains with specific and distint structure and 

function: the histidine phosphotransfer domain (P1), the response regulator binding 

domain (P2), the dimerization domain (P3), the histidine protein kinase catalytic 

domain (P4), and the regulatory domain (P5). The P1 domain belongs to the 

histidine phosphotransfer (HPT) family of proteins that transfer the phosphoryl 

groups between ATP and the phospho-accepting aspartate of the response 

regulators. The response regulator binding domain, P2, is flanked by two flexible 

linker sequences connecting it to P1 and P3 (Zhou et al., 1996). When P2 is in 

complex with CheY, the CheY active site undergoes a conformational change that 

increases the accessibility of the phospho-acceptor aspartate, Asp57. More 

importantly, P2 binds CheY in close proximity to the phospho-P1 domain and 

increases its effective concentration (Stewart, 1997; 2000). P3 and P4 domains 
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constitute the histidine protein kinase (HPK) catalytic core. P5 is homologous to 

CheW (Bilwes et al., 1999) and mediates binding to the chemoreceptor signaling 

domains (Levit et al., 2002).  

CheW is a monomeric soluble protein, know as adpter and its role is 

anchoring the histidine Kinase CheA to the chemoreceptors arrays (Surette and 

Stock, 1996; Griswold and Dhalquist, 2002; Griswold et al., 2002). 

 

A-4.3 Organization of the receptors-signal complexes in clusters 

Generally, bacterial chemoreceptors are organized in clusters located at one 

or both the cell poles. The chemoreceptors are organized into units of ‘trimers of 

dimers’, which form ternary signalling complexes with the chemotaxis histidine 

protein kinase CheA and the linker protein CheW. In these clusters, receptors with 

different ligand specificities are uniformly mixed and arranged in hexagonal arrays. 

Receptor arrays are not perfectly regular structures: the hexagonal order appears to 

be distorted (Khursigara et al., 2008) with a variable stoichiometry of the receptors 

to CheW and CheA (Levit et al, 2002; Sourjik and Berg, 2004). All the other 

chemotaxis proteins localize to the clusters by interaction with either receptors or 

CheA and CheW. CheR and CheB both bind to the NWETF pentapeptide sequence 

at the C-terminus of the major receptors. 

A-5 Homologies among bacterial chemotactic pathways 

Unlike E. coli, the most of known bacterial species show more complex 

chemotactic pathways as they possess multiple chemotaxis proteins and 

cytoplasmic chemoreceptors, alternative adaptation and signal termination 

strategies (Rao et al., 2008; Schweinitzer and Josenhans, 2010; Silversmith, 2010) 
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(see Table A-5.1). Many species possess homologues of the CheA, CheB, CheR, 

CheW and CheY chemotaxis proteins. Studies on Rhodobacter sphaeroides (Porter 

et al., 2008) have provided proof for the existence of multiple signalling cascades. 

This bacterium has three major operons (cheOp1-3) encoding homologues of 

signalling proteins and two different flagellar systems, named fla1 and fla2 (del 

Campo et al., 2007). Experimental observations have shown that genes encoded by 

cheOp1 control the activity of the fla2 system whereas proteins of cheOp2 and 

cheOp3 regulate fla1 activity. The transmembrane chemoreceptors localized at the 

cell poles were found to interact with proteins encoded by cheOp2 whereas the 

cytoplasmic chemoreceptors cluster with proteins encoded by cheOp3 (Wadhams et 

al., 2003). Therefore, cytoplasmic and membrane chemoreceptors form two 

separate signalling complexes, enabling Rhodobacter sphaeroides to sense 

cytoplasmic and extracellular signals independently. However, it was observed that 

there are interactions between the two signalling pathways as the loss of either 

cheOp2 or cheOp3 signalling proteins causes lack of chemotaxis, hence both 

signalling pathways are necessary to generate a chemotactic response (Porter et al., 

2002). As annotation of putative chemotaxis genes is based on nucleotidic sequence 

similarity, there is evidence that not all annotated chemotaxis gene clusters are 

involved in taxis. For example, Myxococcus xanthus was found to have eight gene 

clusters containing proteins typically associated with taxis. Some of these clusters 

are involved in taxis whereas others can be associated with developmental 

processes leading to the formation of fruiting bodies (Zusman et al., 2007). 
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Table A-5.1: Some example of homologues and alternative chemosensory-like pathways in 
bacteria (reviewed in Porter et al., 2011). 

 E.coli R.sphaeroides P.aeruginosa M.xanthus 
Number of MCP 
 

5 13 26 21 

Chemoreceptor 
types 
 

Transmembrane 
 

Transmembrane 
Cytoplasmic 

Transmembrane 
Cytoplasmic 

Transmembrane 
Cytoplasmic 

Chemotaxis 
pathways 
 

1 3 4 8 

Gene sets 
encoding flagella 
 

1 2 1 0 

Signal 
termination  
 

cheZ cheA3 cheZ cheC 
homologue 

Role of che-like 
pathways 

chemotaxis chemotaxis  c-diGMP 
biofilm 

EPS production 

 

A-6. Regulation of the signal termination 

The chemotactic signalling cascade is characterized by a specific lifetime, 

which guarantees an effective response and allows to recover the pre-stimulus 

steady-state. The control of the lifetime of the cellular response has a crucial role in 

signal transduction systems and is depending on CheY∼P dephosphorylation. The 

response regulator can catalyze its self-dephosphorylation, but this occurs slowly. 

Generally, CheY∼P dephosphorylation is due to other phosphatases. Some kinases 

are able to dephosphorylate their response regulator (Zhu et al., 2000; Gao and 

Stock, 2009; Kenney, 2010), but the most of the times dephosphorylation is 

catalyzed by the phosphatase CheZ. This enzyme consists of two symmetric 

monomers, each containing a binding site for CheY~P. It has been reported that the 

binding between CheZ and CheY~P shows a positive cooperativity (Blat et al., 

1998; Silversmith et al., 2008). Therefore, CheZ activity is suppressed at low 

CheY~P concentration, thus ensuring that CheY~P levels do not get too low and 

maintaining a steady-state condition.  
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Many species have multiple homologues of the E. coli chemosensory system 

(Silversmith et al., 2005) and some of them are involved in CheY~P 

dephosphorylation mechanism. For example, Sinorhizobium melioti owns two 

CheY homologues (Guhaniyogi et al., 2008), one of which is able to interact with 

the flagellar motor and the other one is involved in signal termination as it acts as a 

phosphate sink (Lukat et al., 1991). Another example is that in B. subtilis, where in 

lack of CheZ, CheY~P dephosphorylation is due to FliY enzyme, homologue with 

the CheX-like phosphatase proteins found in other species (Park et al., 2004). 

 

A-7. Memory in the chemotactic response 

The chemosensory pathway in E. coli is maintained at a steady-state of the 

histidine kinase CheA activity and, as a consequence, of the CheY~P levels. The  

system is set up for an optimal response to both positive and negative stimuli. 

Adaptation, due to different mechanisms of feedback, works in order to guarantee 

this balanced state, enabling a bacterial population to sense a temporal gradient of 

attractant and/or repellent. One example of feedback mechanism is the 

modification, by methylation/demethylation, of the MCPs cytoplasmic signalling 

and adaptation domain, containing  the NWETF peptide and specific glutamate 

residues. The chemotactic protein CheR shows high affinity towards this 

pentapeptide  and, constitutively, adds methyl groups to glutamate. This works 

antagonistically to CheB, a methylesterase that - when phosphorylated by CheA - 

removes methyl groups from glutamate residues. The methylation/demethylation of 

MCPs is depending on their own state, associated to the binding of the ligand. 

Active MCPs (bound to the ligand)  are demethylated by CheB and inactive MCPs 
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(without ligand) are methylated by CheR (Alon et al., 1999; Boldog et al., 2006). 

Moreover, even though the CheB methylesterase and the response regulator CheY 

are both activated by the histidine kinase CheA, CheB is phosphorylated with a 

slight delay as compared to CheY: this mechanism ensures that the switch of the 

flagellar motor can occur before adaptation.  

This simple system is common to many bacterial species (Marchant et al., 

2002). Other species have CheV, CheC and CheD enzymes, as additional proteins 

involved in adaptation feedback loops (Szurmant and Ordal, 2004; Rao et al., 

2008). As it has been reported in Bacillus subtilis, CheV acts by modulating CheA 

activity, via a CheW-like domain. CheC acts as a CheY phosphatase. CheD is a 

MCPs deamidase, which converts glutamine residues in glutamate, which can be 

modified by CheB or CheR. All these mechanisms have the important role to reset 

the chemosensory system at the pre-stimuls steady-state condition.  

The time-lag between the chemotactic response and the adaptation is known 

as “memory” lenght (Macnab and Koshland, 1972), and it depends on the stimulus 

strength, the gradient stepness and also on the bacterial lifestyle. An optimal 

memory lenght must allow bacteria to “remember” still relevant past conditions in 

order to compare them to present ones and choose the swimming direction (Macnab 

and Koshland, 1972).  

It has been reported that bacteria in a population show variability in 

adaptation time, memory lenght (Vladimivor et al., 2008; Meir et al., 2010), 

number of CheR and CheB units (Li and Hazelbauer, 2004) and MCPs abundance 

and distribution in the membrane (Thiem and Sourjik, 2008; Greenfield et al., 

2009). The fact that all the cells in a population, do not have the same behaviour in 
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unpredictable and variable environmental conditions, can be seen as an 

evolutionary advantage which guarantees the survival of the polulation as a whole.  

 

A-8. Role of both motility and chemotaxis in biofilm formation 

Commonly, in natural environments, bacteria grow as biofilms, i.e. organized 

mixed cells communities adhering to biotic or abiotic surface and packaged in an 

extracellular polysaccharide matrix known as exopolysaccharide (EPS) (Costerton 

et al., 1995). Interestingly, bacteria can switch between the planktonic and the 

biofilm lifestyles in response to nutritional cues. 

Biofilm formation occurs accordingly to a gradual and well regulated process, 

namely: 

• the adhesion to a surface via the cells pole, this step being  known as “reversible 

attachment” (O’Toole and Kolter 1998a-b; Hinsa et al., 2003);  

• “irreversible attachment” via the long cell  axis (Marshall et al., 1971; Fletcher 

1996); 

• micro-colonies formation via the recruitment of planktonic cells from the 

medium or migration of attached cells on the surface by twitching motility 

(O’Toole et al., 2000a; O’Toole and Kolter, 1998b); 

• cells maturation with the formation of the EPS matrix (Danese et al., 2000; 

Hellmann et al., 1996; Watnick and Kolter 1999; Yildiz and Schoolnik, 1999); 

• dispersal of cells due to starvation (Gjermansen et al., 2005). 

 

Klausen et al., (2003), have reported that flagella and type IV pili  are 

important factor in P. aeruginosa biofilm development, as they mediate attachment 
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to solid surfaces. Other studies have suggested that swarming motility - depending 

on quorum sensing (QS, see § F), rhamnolipid production, type IV pili and the 

presence of flagellum - can  also contribute to early stages of P. aeruginosa biofilm 

formation (Köhler et al., 2000). Moreover, it is likely that motility and chemotaxis 

are required to swim towards nutrients associated with a surface.
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CHAPTER B - General Materials and Methods Common to Chapters 

D, E, F. 

 

B-1 Bacterial strains, media and growth conditions  

All strains and plasmids used in this study are listed in Table B-1.1. 

 

Table B-1.1: Bacterial strains and plasmids. 
Bacterial strains  Relevant genotype  Reference  
Pseudomonas pseudoalcaligenes KF707 
Wild type AmpR 

 
Furukawa et al., 1986 

cheA1::Km cheA::Km, KmR, AmpR 
 

Tremaroli et al., 2007 

ΔcheA2 ΔcheA2, AmpR 
 

This study 

ΔcheA3 ΔcheA3, AmpR 
  

This study 

ΔcheA2cheA1::Km ΔcheA2cheA1::Km 
KmR, AmpR 
 

This study 

ΔcheA3cheA1:: Km ΔcheA3cheA1::Km 
KmR, AmpR 
 

This study 

ΔcheY ΔcheY, AmpR 
 

This study 

ΔcheZ ΔcheZ, AmpR This study 
Escherichia coli   
S17λpir TpSm

 
recA thi pro hsdR RP4:2-

Tc:Mu:Km λpir 
 

Simon et al., 1983  

HB101 Sm, recA thi pro leu hsdR Boyer and Rolland-
Dussoix, 1969  

DH5α supE44hsdR17recA1endA1 
gyrA96thi1 relA1 
 
 
 

Hanahan, 1983  
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Table B-1.1: continued   
Top10F’ F´{lacIq, Tn10(TetR)} mcrA 

Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15ΔlacX74 recA1 
araD139 Δ(ara leu) 7697 galU 
galK rpsL (StrR) endA1 nupG 

InvitrogenTM 

pSB401 harbouring the luxCDABE plasmid 
construct 

Winson et al., 1998 

JM109 endA1,glnV44,thi-1,relA1 
gyrA96,recA1,mcrB+,Δ(lacproAB) 
e14-[F'traD36proAB+lacIq 
lacZΔM15] hsdR17(rK

-mK
+) 

Yanish-Perron et al., 1985 

Agrobacterium 
tumefaciens 

  

NTL4 / Farrand et al., 2002 
WCF47 / Zhu et al., 1998 
Chromobacterium 
violaceum 

/  

CV026 KmR McClean et al., 1997 
Plasmids Relevant genotype or 

characteristics  
Reference  

pUC19 
 

AmpR, cloning vector Sambrook et al., 1989 

pUT mini-Tn5 Km  
 

AmpR KmR, delivery plasmid for 
mini -Tn5 Km 
 

de Lorenzo et al., 1990 

pRK2013 
 

KmR ori ColE1  
RK2-Mob+ RK2-Tra+ 
 

Figursky et al., 1979 

pG19II 
 

GmR sacB lacZ, cloning vector 
conjugative plasmid 
 

Maseda et al., 2003 

pSB401 
 

luxCDABE reporter fusion Winson et al., 1998 

pZLR4 
 

lacZ reporter fusion Farrand et al., 2002 

pCF218 
 

codifing for traR Zhu et al., 1998 

pCF372 traI promoter-lacZ phusion Zhu et al., 1998 
 

 

Liquid cultures of all bacterial strains were grown in agitation at 150 rpm at the 

optimal temperature (Escherichia coli at 37°C; Pseudomonas pseudoalcaligenes, 
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Agrobacterium tumefaciens and Chromobacterium violaceum at 30°C). The 

compositions of the media used in this study are reported in Table B-1.2. 

 

Table B-1.2: Media composition. 

Rich media   

Luria-Bertani (LB) pH 7 Trypton 

Yeast extract 

NaCl 

10g/l 

5g/l 

10g/l 

Defined media   

Sucrose-Asparagine (SA) pH 7 Sucrose 

Asparagine 

K2HPO4 

MgSO4 10% (w/v)* 

20g/l 

2g/l 

1g/l 

5ml/l 

Minimal salt medium (MSM) pH 7 K2HPO4 

KH2PO4 

(NH4)2SO4 

MgSO4* 

CaSO4* 

MnSO4* 

FeSO4* 

4,4g/l 

1,7g/l 

2,6g/l 

0,4g/l 

0,0031g/l 

0,05g/l 

0,01g/l 

 Succinate*or byphenil crystals 5mM 

AB glucose pH 7 20X buffer solution*: 

K2HPO4 

NaH2PO4xH2O 

20X salts solution*: 

NH4Cl 

MgSO4 

KCl 

CaCl2 

FeSO4x7H2O 

Carbon source: glucose 

 

60g/l 

23g/l 

 

20g/l 

2,9g/l 

3g/l 

0,2g/l 

0,05g/l 

5g/l 
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The asterix (*) indicates  medium components which were prepared as concentrated 

stock solutions, autoclaved separately and added at the medium at the final 

concentration of 1X. 

For growth on solid media, agar was added at the final concentration of 15 g/l. X-

Gal stock solution was prepared at a concentration of 50 mg/ml and stored in 1 ml 

aliquotes, protected from light, at -20°C. Antibiotics stock solutions were prepared 

as reported in Table B-1.3 and stored at -20°C in 1 ml aliquotes until use. 

 

Table B-1.3: Antibiotics stock solutions and concentrations used for selective growth. 

Stock solution                Final Concentration in µg/ml 

P.ps.alcaligenes - E.coli - A.tumefaciens – CV026  

Ampicillin, 100 mg/ml, water solution 

Kanamycin, 100 mg/ml, water solution 

Gentamycin, 30 mg/ml, water solution 

Tetracycline, 20 mg/ml, 70% ethanol solution 

Spectinomycin, 50 mg/ml, water solution 

        100                 50                 /                     / 

          50                 50                 /                    50 

          20                 20                 30                  / 

          20                 20                 20                  / 

           /                     /                 50                   / 

 

B-2 Extraction of genomic DNA from Pseudomonas pseudoalcaligenes KF707 

Genomic DNA from Pseudomonas pseudoalcaligenes KF707 was extracted 

with the following protocol. A 10 ml of an over-night grown culture was 

centrifuged at 5000 rpm at 4°C for 15 minutes and washed with 10 ml of TES 

solution ( 50 mM TrisHCl, 20 mM EDTA, 50 mM NaCl pH 8.0). The cell pellet 

was resuspended in 5 ml of TE buffer (50 mM TrisHCl, 20 mM EDTA pH 8.0). 

Lysozyme solution, prepared in the same buffer, was added at the final 

concentration of  20 mg/ml; the solution was incubated at 37°C for 30 minutes and 

mixed by inversion every 10 minutes. At the end of incubation, 500 µl of a 10% 
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SDS solution and Proteinase K at the final concentration of 10 mg/ml were added, 

followed by 1 h incubation at 37°C; the reaction was stopped by adding a solution 

of 10 mM EDTA and 3 mM sodium acetate. The lysate was incubated with RNase 

at 37°C  for 1h after which an iso-volume of a phenol-chlorophorm-isoamyl alcohol 

25:24:1 v/v mixture was added and the sample was mixed by inversion at room 

temperature for 15 minutes. The water phase containing the genomic DNA was 

separeted from the organic phase and cell debris by centrifugation at 5000 rpm at 

4°C for 15 minutes. The extraction was repeated three times and phenol traces were 

removed by adding an iso-volume of a 24:1 v/v mixture of chlorophorm-isoamyl 

alcohol. The water phase was recovered after centrigugation at 5000 rpm at 4°C for 

15 minutes in a clean beacker. 1.5 volumes of cold absolute ethanol were added to 

the extracted water phase and the genomic DNA was collected using a clean glass 

stick. The DNA was washed by immersing the glass stick in a cold 70% ethanol 

solution and then air dried. After this, the stick with DNA was immersed in a small 

volume of sterile nuclease free water and left at 4°C over-night to allow the DNA to 

suspend. The resuspended genomic DNA preparation was stored  at the temperature 

of -20°C. 

 

B-3 DNA manipulations and genetic techniques 

All restriction digests, ligations, cloning and DNA electrophoresis, were 

performed using standard techniques (Sambrook et al, 1989). Taq polymerase, the 

Klenow fragment of DNA polymerase, alkaline phosphatase, restriction 

endonucleases and T4 DNA ligase were used as specified by the vendors (Roche, 

Fermentas, Invitrogen, Sigma-Aldrich, NEB Biolabs). The plasmid pUC19 was 
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routinely used as the cloning vector and recombinant plasmids were introduced into 

E. coli host by transformation of chemically competent cells, prepared according to 

the CaCl2 method (Sambrook et al, 1989). To detect the presence of insert DNA, 

X-Gal was added to agar media at a final concentration of 50 µg/ml. X-Gal stock 

solutions were prepared at a final concentration of 50mg/ml in N-N-

dimethylformamide and stored as 1 ml aliquots at - 20 °C protected from light. Kits 

for plasmid mini- midi- and maxi-preps, PCR purification and DNA gel extraction 

were obtained from QIAGEN (Milan, Italy) and used according to the 

manifacturer’s instructions. 

 

B-4 DNA sequencing and sequence analysis 

Genomic DNA fragments of interest were cloned in the pUC19 cloning 

vector and positive plasmids were sent for sequencing to the BMR-genomics 

service of the University of Padova (Padova, Italy). Samples were prepared 

according to the recommended procedures (www.bmr-genomics.it). M13 Forward 

and Reverse primers were used for sequencing the extremities of DNA fragments 

cloned into the pUC19 vector from the M13 promoter. Sequence identities were 

determined by DNA homology searches using the BLAST program to search both 

NCBI and TIGR databases. 

 

B-5 Conjugation 

Day I. Donor, receiver and helper strains were streaked out on LB agar plates 

with the appropriate antibiotics. LB plates were incubated over-night at 37°C and 

30°C for E. coli and P. pseudoalcaligenes KF707 optimal growth temperature 
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respectively. E. coli HB101 strain carrying the mobilization plasmid pRK2013 was 

commonly used as helper strain for tri-parental mating (see Table 1 for strain and 

plasmid features). 

Day II. Donor, receiver and helper strains were inoculated in LB broth from 

single colonies grown on the agar plates. The appropriate antibiotics were added to 

LB medium in order to maintain selection. LB liquid cultures were grown over-

night at the appropriate temperature under agitation at 150 rpm. 

Day III. Donor, receiver and helper strains were inoculated with a 1% 

inoculum in liquid LB medium without antibiotics from over-night grown liquid 

cultures. Cells were grown at the appropriate temperature and under shaking for 2 – 

3 h, in order to obtain early exponential phase cultures (OD660 ~ 0.2 – 0.3). 1 ml 

aliquot from each culture was collected in a sterile tube, spun down at room 

temperature and washed twice with 1 ml LB medium. Cells were suspended in 1 ml 

of fresh LB and then used for the preparation of conjugation mix by adding equal 

volumes (100 µl) of donor, receiver and helper suspensions to a sterile tube. The 

conjugation mix was incubated at 30 °C for 30 min and spots were plated onto well 

dry LB agar plates without selection. Controls for each conjugation were carried 

out with 100 µl of the receiver, donor or helper cell suspensions alone added to 

sterile tubes and processed in the same way as conjugation mix. LB plates were 

incubated for 24 h at 30°C.  

Day IV. The bacterial biomass was collected from each plate with a sterile 

loop and suspended in 1 ml of fresh LB with 20 % glycerol. 10 fold serial dilutions 

of cell suspensions of conjugation mix and controls were carried out in 0.9 % 

saline. The remaining part of the conjugation mix suspended in LB with 20 % 
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glycerol was stored at – 80 °C. Appropriate dilutions were plated on agar plates 

containing the antibiotics for transconjugants selection. For the selection of KF707 

transconjugants, cells were plated on  SA or AB glucose medium in the presence of 

appropriate antibiotics. The  two media were used to counter-select E. coli donor 

and helper strains, given that these medium do not support E. coli growth, thus 

resulting selective for P. pseudoalcaligenes KF707. Plates were incubated at the 

appropriate temperature until transconjugants growth was clearly visible (i.e. 24 h 

for E. coli transconjugants growing on LB and at least 36 h for KF707 growing on  

SA or AB glucose).  

Day V. Transconjugants were streaked out on the appropriate agar media in 

the presence of antibiotic selection and incubated at the optimal temperature until 

growth was clearly visible. The selection was repeated at least twice, in order to 

obtain a pure culture and remove both donor and helper strain backgrounds. 

 

B-6 Electroporation of Pseudomonas pseudoalcaligenes KF707 

Pseudomonas pseudoalcaligenes KF707 was inoculated over-night in 10 ml 

of Luria-Bertani broth without NaCl. 1 mL of the overnight culture was transferred 

to 100 ml of the same media in a 500 ml flask. Cells were grown at the appropriate 

temperature (30°C) and under shaking (150 rpm) until the culture reached the 

exponential phase (OD600 ∼ 0.5-0.6). Cells were collected by centrifugation at 

5000 rpm at 4°C for 15 minutes and then washed three times with ice-cold 300 mM 

sucrose solution (the first two times with 100 ml and the last one with 50 ml of the 

washing solution).  The cells were harvested by spin at 5000 rpm for 15 minutes at 

4ºC and after discarding the supernatant, they were resuspended in 1 ml of  sucrose 
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300mM. 100 µl aliquots from the suspension were transferred into microcentrifuge 

tubes on ice and immediately used for the electroporation. 1 µg of DNA of interest 

was added to the 100 µl aliquot to be electroporated. The mix was incubated on ice 

5-10 minutes before being transferred in 0.2 cm-cuvettes (Biorad) and being 

subjected to electroporation with the following parameters: 2.5 kV, 25 µF and 400 

Ω. After incubation on ice for 1 minute, 500 µl of SOC recovery medium was 

added to each electroporated suspension. The cells were then recovered for 2 hours 

under shaking at 150 rpm at 30ºC before being spread onto LB plates supplemented 

with the  appropriate antibiotic. 

 

 

 

B-7 Construction of Pseudomonas pseudoalcaligenes KF707 miniTn5 

transposon mutant library 

Random mutagenesis was performed by inserting miniTn5 Km transposon 

into the chromosome of P. pseudoalcaligenes KF707 using bi-parental conjugation 

with E. coli S17-λpir/mini-Tn5 Km (donor strain) and P. pseudoalcaligenes KF707 

(receiver strain) as previously described (de Lorenzo et al., 1990). Kanamycin 

resistant exconjugants were selected on SA plates supplemented with Km (50 

mg/ml.
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CHAPTER C 

The Genome Project of the polychlorinated-biphenyl degrader 

Pseudomonas pseudoalcaligenes KF707 

 

C-1 Introduction  

Pseudomonas pseudoalcaligenes KF707 is a soil biphenyl and PCBs 

(polychlorinated biphenyls) degrader (Furukawa et al., 1986), able to grow both 

planktonically as well as biofilm (Tremaroli et al., 2008) even in the presence of  

various toxic metals and metalloids (Di Tomaso et al., 2002; Zanaroli et al., 2002, 

Tremaroli et al., 2007). KF707 shows also chemotactic response towards biphenyl 

and PCBs (Tremaroli et al., 2010), physiolgical traits that enable KF707 to survive 

in hostile environments and also to be employed in bioremediation procedures in 

polluted sites.  

In order to obtain more information about the genetic bases of the peculiar 

physiological aspects and environmental behaviour of KF707 strain, such as 

chemotaxis, biofilm formation and metabolic degradation properties, we recently 

started the ”Genome project of Pseudomonas pseudoalcaligenes KF707” in 

collaboration with Prof. R.J.Turner (University of Calgary, Calgary, Ca) and Prof. 

M.Attimonelli (University of Bari, Bari I).  

Next - generation - sequencing (NGS) technologies as 454 Life Sciences 

pyrosequencing (Genome Sequencer FLX System, Roche Applied Science) and 

Illumina (HiSeq2000, Solexa), were performed. Output data were statistically 

analyzed, validated and subsequently assembled using the Newbler software based 
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on the OLC (overlap-layout-consensus) approach and the AbySS software based on 

the Brujin-graph approach (Pevzner et al., 2001). Optical Mapping technology 

(Samad et al., 1995) was also performed with the aim to complete the sequence 

assembly of the whole genome. The RAST (Rapid Annotations using Subsystems 

Technology)  Prokaryotic Genome Annotation server (Aziz RK et al., 2008) was 

used for  genes annotation. 

 

C-1.1 Prokaryotic genome projects pipeline 

C-1.1.1 Second generation sequencing technologies 

Next generation sequencing technologies had have a big impact on 

genomics. They are know as massively parallel systems, since they ground on 

the use of plataforms which deliver several Gbp (Giga base pair) of DNA 

sequences per week, with a dramatic drop in cost as compared to shotgun 

sequencing based on the Sanger method (www.genome.gov/sequencingcosts). 

Moreover, they allow to bypass library construction and to avoid bias generated 

during the sub-cloning process.  

Four second generation platforms are available (the Roche/454 FLX, the 

Illumina/Solexa Genome Analyzer, the Applied Biosystems (ABI) SOLiD 

Analyzer and the Polonator G.007), although, currently, they have already been 

supplanted by third generation sequencing technologies. P. pseudoalcaligenes 

KF707 genome sequencing have been performed by means of  454 FLX and 

Illumina platforms. 

The sequencing via the GS FLX (454 – pyrosequencing) involves four 

main steps, from purified DNA to analyzed results (Margulies et al., 2005).	  The 
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first step consists in the library preparation: a low amount of DNA (few µg) is 

fragmented by nebulization into 300-800 bp fragments, purified, blunted and 

phosphorylated. Adapters (A and B) are added to each end and used for both 

amplification and sequencing. The B adapters contain 5' biotin tags, which allow 

the fragments to remain	   immobilized on streptavidin-coated magnetic beads 

during the denaturation, whereas not-biotinylated strands are released.	   In the 

second step amplification starts after the beads are dropped off into independent 

microreactors and emulsified with a mixture containing PCR reaction 

components. In the third step pyrosequencing is performed: nucleotides are 

flowed across a Pico-Titer-Plate device in a fixed order. During the extension 

step by means of a DNA polymerase, released pyrophosphate (PPi) is converted 

by the sulfurylase enzyme in ATP, which is subsequently used by luciferase 

enzyme to emit photons (pyrosequencing). This chemioluminescent signal is 

recorded by a CCD camera. The combination of signal intensity and positional 

information generated across the Pico-Titer-Plate device, allows the software to 

determine the sequence of more than 1.000.000 individual reads of about 500 bp 

in length. The output is provided in a *.sff (standard flowgram format) file, 

which contains the sequences and the corresponding quality scores for all the 

high-quality reads (filtered reads). 

Illumina technology is a platform based on a sequencing-by-synthesis 

(SBS) approach and gives as output paired-end reads of about 150 bp in lenght. 

Genomic DNA is randomly fragmented, adapters are ligated to both ends of the 

fragments, which subsequently are immibilized on the surface of a flow ell 

channels. Unlabeled nucleotides and enzyme are added to initiate solid-phase 
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bridge amplification. The enzyme incorporates nucleotides to build double-

stranded bridges on the solid-phase substrate and million of clusters of double-

stranded DNA are generated: this represents the library used for the subsequent 

sequencing. The first sequencing cycle begins by adding a PCR reaction mixture 

with labeled dNTPs. Indeed, these modified dNTPs have their 3’-OH chemically 

inactivated, ensuring the incorporation of only one base per cycle. When the first 

dNTP is incorporated, emission of fluorescence occurs, the signal is captured 

and the first base is identified. The sequencing cycles are repeated to determine 

the sequence of all the fragments in the library, one base at a time (Mardis, 

2008). The standard sequencing output files of the HiSeq 2000 consist of  a 

∗.bcl (base call) files, containing the “bases calls” and quality scores relative to 

each cycle. Subsequently they can be converted into ∗qseq.txt files by BCL 

Converter (www.illumina.com). 

 

C-1.1.2 Overview of computational workflow for prokaryotic assembly 

and annotation of sequenced prokaryotic genomes  

C-1.1.2.1 Reads quality control 

Although new generation technologies have reduced the time and the cost of 

whole-genome sequencing, reads are more error-prone than those obtained by 

performing Sanger sequencing approach. Moreover, NGS data need to be 

clipped to remove low-quality regions and adapter sequences. Therefore, a 

quality check is necessary before starting the assembly. Several softwares have 

been developed to overcome these problems. In order to remove contaminations 

(low quality regions and adapters), all sequences must be collected and 
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processed by using open source softwares such as FastQC, FastX, Trimmomatic 

and HtSeq. FastQC is usually used for quality check; FastX and Trimmomatic 

are employed for Illumina paired-ends clipping. Furthermore, assembly 

softwares (Newbler and AbySS), provided by the sequencing companies, include 

alghorithms for quality assessment and clipping. 

 

C-1.1.2.2 Genome assembly  

Assembly is a hierarchical procedure which allows the contruction of the 

original DNA sequence by align and  joining groups of reads into contigs and 

contigs into scaffolds. The scaffolds, also called supercontigs or metacontigs, 

define the contig order and orientation and the sizes of the gaps between them 

(Miller et al., 2010). Two assembly strategies can be adopted: assembly using 

reference genomes or de novo assembly. Several softwares have been developed 

for both assembly approaches. 

The Newbler software (Margulies et al, 2005), based on an “overlap–layout–

consensus” (OLC) approach, allows to obtain a consensus alignment of all the 

reads, genereting step by step longer contigs (Pevzner et al., 2001; Miller et al., 

2010). 

The AbySS software (Simpson et al., 2009), is based on the “de Brujin graph 

approach” (DBG) and it works by breaking up the reads in oligomers of k length. 

The de Bruijn graph is constructed on the resulting k-mers groups. The graph 

contains nodes of (k−1) in length (Pop, 2009); two nodes are linked by an edge 

if the adjacent (k−1)-mers have an exact overlap of length (k−2). Euler, Velvet, 

AllPaths, SOAP-denovo are assembly softwares all based on the “de Brujin 
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graph” approach. (reviewed by Miller et al., 2010). MOSAIK assembler ( see 

McKernan et al., 2009) is suggested for short-reads data and for cross-species 

comparison and can be used in assemblies using reference genomes (§ C-2.3). 

 

C-1.1.2.3 Genome scaffolding  

Newbler and AbySS assembly algorithms, as well as others based on 

both OLC and DBG, increase reads length, however they do not give as outup 

the complete closed genome. Consequently, the assembled genome is only a 

draft version (Nielsen et al., 2009). Generally, the complete map of a genome, 

could be closed by re-sequencing the genome and with high probability the 

assembly of new data may give in output contigs that overlap with those of 

the previous assembly; eventually, gaps may be closed by performing 

chromososme walking by PCR. In addition, the latter strategy is quite 

expensive and represents also a waste of time. Therefore, other computational 

approaches for scaffolding are suggested.  

Physical and genetic maps may be helpful for scaffolding (Beyer et al., 

2007). Physical maps are obtained by means of genome restriction and 

electrophoretic separation of the fragments; moreover, the migration pattern 

is useful for clones overlapping (Nathans and Smith, 1975). Long Read DNA 

Extension Methods were developed on the basis of restriction mapping.   

Optical Mapping System (Samad et al., 1995) is the most common 

“Long Read DNA Extension Methods” technology  which gives whole 

genome analysis (Lin JY, 1999). Maps are constructed by restriction analysis 

(~ 500 Kb in size fragments are obtained) and directly visualized by 
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fluorescence microscopy. Resultig restriction maps are used as scaffolds to 

assemble contigs and orienting them in the right directions. Moreover, they 

give informations about the size of the gaps, the size of the genome and 

reveal assembly errors. OpGen (www.opgen.com) has developed an advanced 

technology to construct optical maps. The first step consists in the genome 

extraction by Adapted Agencourt Genfind V2 bead or agarose plug 

extractions, procedures that both allow to obtain an as much as possible intact 

genome. Sample is then electrostatically fixed on the surface of the MapCard 

and processed by adding a mixture containing restriction enzyme, reaction 

buffer, stain. After processing, the instrument scans the lanes of the MapCard 

surface, measuring each fragments and collecting data to assemble the 

genome. The MapSolver software has been developed to manipulate data 

from Optical Mapping: it is useful to perform comparison with other optical 

solved genomes; contigs can be aligned and correctly oriented on the Optical 

Map covering up to 80-90% of the genome (Nagarajan et al., 2008), allowing 

to validate assemblies and identify probes to close gaps for whole genome 

finishing. 

 

 

C-1.1.2.4 Genome annotation 

The genome annotation (structural and functional) consists on the 

identification of elements on the genome and assigning to them a biological 

information. Structural annotation identifies ORFs and their localization, gene 

structure, coding regions and location of regulatory motifs. Functional 
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annotation consists in the assignment of biological information to genomic 

elements such as biochemical and biological functions, regulation and 

expression. Several algorithms have been developed for gene prediction and 

annotation.  

GeneMark (http://exon.gatech.edu/)  supplies a group of gene prediction 

softwares GeneMark-P, GeneMark.hmm-P, GeneMarkS) for prokaryotic gene 

annotation (Borodovsky and McIninch, 1993). They allow online access and 

sequences in multiple formats (FASTA, EMBL, GenBank, PIR, or Phylip) 

can be processed. The sequences are analyzed by carrying on the genetic code 

in one of six possible frames (including three frames in complementary DNA 

strand). In addition to the basic GeneMark, the GeneMark.hmm algorithm  

allows to find exact gene starts. 

RAST (Rapid Annotations using Subsystems Technology) is an 

automated annotation service for gene prediction and metabolic 

reconstruction (Aziz RK et al., 2008). The prokaryotic genome of interest, in 

the form of a set of contigs in FASTA format, is uploaded to start the 

computational process. Contigs are scanned and genes are identified and 

assigned to subsystems of  FGIfam protein families collection. To identify the 

tRNA, tRNAscan-Se is used (Lowe and Eddy, 1997) while rRNA encoding 

genes are identified by  the "search-for-RNAs" (Overbeek et al., 2005) tool. 
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C-2 Materials and Methods 

C-2.1 Pseudomonas pseudoalcaligenes KF707 genome sequencing and 

preliminary analyses 

Next–generation sequencing technology 454 Life Sciences pyrosequencing (§ 

C-1.1.1) was performed at the NRC Plant Biotechnology Institute (Saskatoon, 

Canada), using the Genome Sequencer FLX System (Roche Applied Science), in a 

quarter of a PicoTiterPlate.  

Illumina (Solexa) sequencing (§ C-1.1.1) was performed at the IGA (Institute 

of Applied Genomics, Udine, Italy) on 1/3 of an Illumina HiSeq2000 platform.  

 

C-2.2 Next generation sequencing data quality analysis 

454 reads were filtered by the GS FLX platform and checked by the in-built 

tools of the Newbler assembly software (§ C-1.1.2.1). FASTQC software (§ C-

1.1.2.1) was used to perform quality control of the Illumina reads dataset, whereas 

Trimmomatic software (§ C-1.1.2.1) was employed for clipping. Bases at the 

extremities of each Illumina read -i.e. the adpter oligomers used during the 

sequencing run - were cut.  

 

C-2.3 Genome assembly 

Assembly was performed adopting two different approaches: use of reference 

genomes of two Pseudomonas strains (P. mendocina ymp and P. aeruginosa PAO1, 

phylogenetically related to KF707) and de-novo assembly (§ C-1.1.2.2).  

MosaikAssembler was employed for assembly with reference genomes. The 

software consists of four modular programs: Build, Aligner, Sort and Assembler. 
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Mosaik Build translates external read formats to a format that the aligner can use. 

In addition, to processing reads, the program also converts reference sequences 

from a FASTA file to an efficient binary format.  Mosaic Aligner performs pairwise 

alignment between reads of the read dataset and the set of reference sequences. The 

maximum mismatch percent threshold was set at a value of 0.2. In this way all 

sequences with a mismatch equal or bigger than 20% were excluded. MosaikSort 

takes the alignment output and prepares it for multiple sequence alignment. 

MosaikAssembler takes the sorted alignment file and produces a multiple sequence 

alignment which is saved in an assembly file format.  

With regard to the de novo assembly, 454 reads dataset was assembled with 

the Newbler software (v.2.3), with default parameters for single-end libraries. 

Illumina paired end reads were processed with the AbySS software, only after 

trimming was performed to improve the reads quality assessed by FastQC. 

 

C-2.4 Optical map and contigs scaffolding 

The P. pseudoalcaligenes KF707 optical map was constructed at the 

Canadian Food Inspection Agency, following the protocol supplied by OpGen 

(http://www.opgen.com). Genome was extracted following the Adapted Agencourt 

Genfind V2 bead or agarose plug extraction protocols and digested withBamHI. 

Optical map data were provided in a *.xml file, compatible with the MapSolver 

software (§ C-1.1.2.2). 

C-2.5 Gene prediction 

GeneMark software and Rast server were used for gene prediction and 

annotation (§ C-1.1.2.4). 
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C-3 Results  

C-3.1 454 and Illumina reads datasets 

454 pyrosequencing yielded 213.206 single-end reads (Fig. C-3.1.1).  

 

Fig. C-3.1.1: Statistical information about 454 reads quality observed during 
the sequencing run. Percentage of failed sequences (dot and mixed) is below 
20%, thus indicating a good quality of the sequencing run. Reads pre-
processing by Newbler retained all 213.206 reads for the assembly stage; 
0.16% of bases at 5’ and 3’ read ends were trimmed by the default settings. 

 
Reads length ranged from 60 bp to 540 bp, with a modal value of 370 bp (Fig C -

3.1.2). 

 

Fig. C-3.1.2: 454 reads length distribution. X axis: reads length in base pair; 
Y axis: number of reads. 
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Illumina sequencing, performed on a third of a HiSeq2000 plate, yielded 

~110.000.000 paired-end reads, each of 101 bp in lenght (Fig. C-3.1.3). 

 

 

Fig. C-3.1.3: Illumina reads length distribution. X axis: reads length in base 
pair; Y axis: number of reads. 

 

Quality check of Illumina paired-end datasets (both forward and reverse reads) was 

performed with the open-source software FastQC. 

Subsequently, paired-end reads were trimmed. Reads clipping was performed by 

using Trimmomatic software which gave as output a sequence dataset with high-

quality reads (Fig. C-3.1.4 a; C-3.1.4 b). 
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Fig. C-3.1.4 a: Quality scores of forward paired-end reads Illumina datasets before (top graph) 
and after trimming (bottom graph).	  
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Fig. C-3.1.4 b: Quality scores of reverse paired-end reads Illumina datasets before (top graph) 
and after trimming (bottom graph). 
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C-3.2. Genome assembly  

An assembly is a hierarchical procedure which allows the contruction of the 

original DNA sequence by align and  joining groups of reads into contigs and 

contigs into scaffolds. The scaffolds, sometimes called supercontigs or metacontigs, 

define the contig order and orientation and the sizes of the gaps between contigs 

(Miller et al., 2010). The quality of an assembly is expressed as N50, that is the 

contig lenght such that the 50% of assembled bases are in equal or longer contigs. 

High values of N50 indicate a good assembly as the lenght of assembled contigs 

increases. N50, the total assembly length, the maximum contig length and the mean 

contig length represent the parameters for the evaluation of an assembly. 

 

C-3.2.1 Assembly using reference genomes 

Before starting assembly, a Blast2seq analysis performed between the two 

reference genomes (P. aeruginosa PAO1 P. mendocina ymp) showed the 50% 

of similarity. A reads dataset of KF707 genome was generated and used as 

subject for BLASTn analysis. 51.92% of KF707 reads were mapped on the 

reference genomes. In this respect, the assembly method using reference 

genomes needed to be complemented with other analyses such as de-novo 

assembly methods and PCR procedures to close the gaps between contigs. 

C-3.2.2 de-novo assembly strategies 

The 454 read dataset was assembled by using the Newbler software (§ C-

1.1.2.2). 211.216 reads, corresponding to 77.029.069 bp (99.35% of genome 

coverage), were assembled. Assembly with default parameters returned 900 

contigs, of which the longest was of 51.361 bp. A subset of 729 contigs longer 
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than 500 bp, with a total amount of 6.053.515 bp, was used for further analyses 

(i.e., gene prediction). The N50 of the assembly was 14.148 bp (§ C-3.2). 

The Illumina dataset was assembled with the ABySS software (§ C-

1.1.2.2). The best k (hashing) value was empirically evaluated by performing 

assemblies with increasing hash values, ranging from 20 to 96. The best 

assembly was obtained with k = 53, since it yielded 255 contigs and N50 = 

81.842 bp; the longest contig was 367.837 bp. Illumina contigs dataset was 

aligned to the 454 contig dataset, in order to check whether datasets obtained 

from different sequencing technologies could complement each other. 

Reciprocal BLASTn of the two datasets reported that 93% of contigs from 454 

dataset had an overlap in the Illumina contigs dataset.  

 

C-3.3. Contigs scaffolding 

An optical map (§ C-1.1.2.3) of the P. pseudoalcaligenes KF707 genome was 

constructed at the Canadian Food Inspection Agency (Lethbridge, Canada) with the 

BamHI restriction enzyme (Fig. C-3.3.1), yielding 650 ordered restriction 

fragments (the average fragment size = 9.1 kb; maximum contig size = 64.8 kb).  

 

Fig. C-3.3.1: Optical map, obtained by perfroming BamHI restriction analysis. 
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The P. pseudoalcaligenes KF707 genome size was estimated to be approximately 

5.95 Mb, with a GC content of 64.24%. The assembly was partially finished by 

scaffolding the contigs on the optical map, using the MapSolver software (OpGen). 

All the contigs longer than 40 kb (a suggested threshold value for a reliable 

mapping) were placed on the map, thus confirming the consistency of the assembly. 

This scaffold, supported by the contig connectivity obtained with the ABySS 

assembler software, was used to chain 33 contigs shorter than 50 kb, thus 

increasing the N50 of the assembly from 81.842 to 97.881 bp.  

Contigs aligned on the optical map were used as guides to assemble other 

fragments. Concatenations of these fragments to the contigs already positioned on 

the Optical Map, increasing the map coverage up to 79.63%. 
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C-3.4 Genes prediction and annotation 

Genes prediction and annotation were performed as described above (§ C-

1.1.2.4). 

Preliminary analyses for CDSs searching were performed using the GeneMark 

software, a bioinformatics tool which works scanning sequences and trying to find 

codifying genes in all of the possible ORFs on both DNA strands. 

The actual gene prediction and annotation were performed via RAST system (Aziz 

et al., 2008). The bioinformatics analysis returned  as output 6.512 CDSs (coding 

sequences), 81 tRNAs (representing all 20 amino acids), and 27 rRNAs. The 

annotated genes were grouped by RAST softwares in subsystems (Fig C-3.4.1). 

 

 

Fig. C-3.4.1.: Pie-chart representig Pseudomonas pseudoalcaligenes KF707 genes 
grouped in subsystems according to the RAST system prediction and annotation. 
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Genes involved in multiple functions were identified. Several of these genes are 

responsible for aromatic compounds biodegradation (Fig. C-3.4.2A), others are 

responsible for oxydative stress response (Fig. C-3.4.2B). 

 

 

Fig. C-3.4.2 : Subsystems of genes codifying enzymes involved in the catabolism of 
aromatic compounds (A) and oxydative stress response (B). 

 

Pseudomonas pseudolacaligenes KF707 has always been known for its ability to 

degrade xenobiotic compounds such as biphenyl and polychlorinated biphenyls 

(PCBs) (Furukawa et al., 1986). In addition to the bph operon (Fig. C-3.4.3) cloned 

and characterized by Furukawa et al. (1986), genes involved in the degradation of 

aromatic compounds – including phenol, benzoate, p-hydroxybenzoate, cresol – were 

identified (Fig. C-3.4.2A). 

 

A
	   

B 
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Fig C-3.4.3 : Organization of bph operon in Pseudomonas pseudoalcaligenes KF707 (at the 
bottom of the figure). Genes are indicated with numbers. Number 1 is bphD gene; number 7 
represents bphB; 8, 9, 10, 11 represents bphA4, bphA3, bphA1, bphA2 genes. The organization 
of KF707 bph genes cluster is homologue to that of the well known degrader strain Burkholderia 
xenovorans LB400 (at the top of the figure). 

 
Interestingly, multiple cluster of putative genes involved in chemotaxis, were 

identified. In particular three cheA genes, organized in different clusters, were 

found (Fig. C-3.4.4). 

 

 

 

Fig. C-3.4.4: Multiple chemotactic genes clusters, containing three different cheA genes 
in Pseudomonas pseudoalcaligenes KF707. 
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C-4 Discussion 

In this chapter, the genome assembly and the genes prediction and annotation of 

Pseudomonas pseudoalcaligenes KF707 genome were described.  

Assembly was performed starting from two different datasets of reads (the 454 and 

Illumina reads datasets). Two types of sequencing technologies were used and they 

provided different genome coverage. The Newbler and AbySS assemblers were 

employed. The Optical Map was also constructed and it was used as scaffold for 

contings orientation and concatenation. The Optical Map represented a useful 

approach because allowed us to get information on the position of the contigs, the 

size of the left gaps and even the genome size, which was estimated to be, 

approximately 5.95 Mb. The assembled contigs covered the 79.63% of the Optical 

Map. In this respect, a possible way to get the genome map closure might be the use 

of a chromosome walking approach (by PCR) or, alternatively, the use of new third 

generation sequencing technologies.  

Genes prediction and annotation were also performed. RAST (Rapid Annotation 

based on Subsystem Technology) was the main bioinformatics tool for genes 

identification. Genes involved in interesting metabolic pathways were identified (§ 

C-3.4). Notably, multiple chemotactic pathways and two additional cheA gene 

clusters, codifying for putative histidine kinase, were predicted. Several genes 

involved in the degradation of aromatic and xenobiotics compounds were also 

found. Moreover, genes involved in the oxydative stress response were identified. 

In summary, it is evident that all these genetic features make KF707 an important 

strain for bioremediation procedures. Indeed, the sequencing, assembly and 

annotation of KF707 genome,  provided a huge amount of genetic insights on its 
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chemotactic and degradative abilities. Consequently, KF707 can be considered a 

strong candidate for future studies regarding PCBs-degradative pathways so to 

provide the molecular basis for the construction of bacterial strains with improved 

performances in bioremediation of PCBs polluted sites. 
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CHAPTER D 

Bioinformatics analysis of genes involved in motility and chemotaxis in 

Pseudomonas pseudoalcaligenes KF707 and contruction of chemotactic 

mutants  

 

D-1 Introduction 

The genome project of Pseudomonas pseudoalcaligenes KF707 provided a 

large set of data concerning the various physiological properties of this strain. 

Sequencing and annotation of KF707 genome were necessary since a wide range of 

phenotypic traits were poorly understood. One of the biggest issue was the 

understanding of the organization of the chemotactic pathway and the way it plays 

a crucial role in biofilm formation and development. Since the most of Gram 

negative bacteria possess more than one chemotactic pathway, not always involved 

in motility and chemotaxis but responsible of other physiological functions (§ A-5), 

we thought to look for homologous pathways in KF707 genome. In contrast to E. 

coli, which owns only one chemotactic pathway (Sourjik, 2004), other organisms 

have additional chemosensory operons and other chemotaxis-like pathways. For 

example, Pseudomonas aeruginosa PAO1 owns four operons named Che, Che2, 

Pil-Chp and Wsp  (Kato et al., 2008) and some components are involved in the 

control of cyclic-di-GMP production and biofilm formation (Hickman et al., 2005; 

Guvener and Harwood, 2007). The bacterium Myxococcus xanthus has even eight 

chemotaxis-like pathways and some of their components play an important role in 

controlling genes expression and production of extracellular polysaccharides 

(Zusman et al., 2007)). The Gram positive Bacillus subtilis has only one 
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chemotactic pathway, although more complex as compared to the E. coli one 

(Garrity and Ordal, 1997; Szurmant et al., 2003; 2004). In the Gram negative 

Rhodobacter sphaeroides three pathways were found and their components are 

codified by genes organized in three independent operons, CheOP1, CheOP2 and 

CheOP3. In this latter species, it was observed that the first two operons are both 

necessary for chemotaxis (Porter et al., 2002), while the third one is not expressed 

in laboratory conditions, therefore its function is still unknown (Poggio et al., 

2007). In the pathogen  Vibrio cholerae, three putative genes with strong 

homologies to the E. coli cheA gene have been identified (Gosink et al., 2002). 

Moreover, many bacterial species own a high number of chemoreceptors, various 

CheY∼P phosphatases and alternative adaptation systems (Porter et al., 2011). 

This chapter describes how the putative chemosensory clusters and probable genes 

involved in motility, chemotaxis signal trasduction and adaptation systems in 

Pseudomonas pseudoalcaligenes KF707, have been identified. In particular, it has 

been of some interest to look for cheA gene homologues as a histidine kinase 

CheA, previously identified by a mini-Tn5 transposon insertion, was shown to play 

an important role in motility, chemotaxis and biofilm formation (Tremaroli et al., 

2011). 

 

D-2 Materials and Methods 

D-2.1. Identification of genes involved in motility and chemotaxis  

RAST (Rapid Annotations based on Subsystem Technology) is a procaryotic 

genome annotation server, designed to find and annotate the genes of complete or 

almost complete bacterial genomes (§ C-1.1.2.4). KF707 assembled genome 
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sequence was uploaded in a FASTA and GenBank formats. Specific parameters 

were set up and the annotation process was launched. The resulting annotated genes 

were used for comparative studies. Homology searches were performed using 

BLASTn and BLASTp. The following parameters were used for nucleotide 

alignments: low complexity filter, word size of 28, match score of 1, mismatch 

score of -2 and gap penalty of 0.0. The parameters chosen for BLASTp were a 

word size of 3, gap penalty 11.1 and BLOSUM62 matrix. The amino acid 

alignment program Clustal W (http://www.ebi.ac.uk/clustalw/) was used for the 

amino acid comparative studies and putative conserved domains were detected by 

means of the Conserved Domain Database (CDD) available at the NCBI website. 

 

D-2.2. Bacterial strains and growth conditions 

Pseudomonas pseudoalcaligenes KF707, E. coli Top10 F’ - harbouring 

pUC19 cloning vector - and E. coli JM109 - harbouring pG19II plasmid - were 

used in this study. Bacterial strains were grown at the optimal temperature on LB 

medium containing the appropriate antibiotics. Media compositions, antibiotic 

concentrations, relevant genotype features of all the strains and plasmid 

characteristics are described in the “General Materials and Methods Common to 

Chapters D, E, F” (§ B-1). 

 

D-2.3. Amplifications of chemotactic target genes flanking regions and 

subsequent molecular fusion by using “Gene SOEing” method 

DNA fragments for the construction of recombinant sequences with deleted 

chemotactic target genes, were obtained by performing the Gene SOEing (splicing 
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overlap extension) method, a PCR based approach which allows site-specific 

mutagenesis. Amplifications of DNA fragments flanking the target chemotactic 

genes were performed from KF707 wild type strain genomic DNA, which was 

extracted according to the protocol described in “General Materials and Methods 

Common to Chapters D, E, F” (§ B-2). Here the approach is described as a general 

procedure in order to allow the reader to undertsand. This procedure was used to 

obtain the recombinant DNA fragments and to construct of all the mutants in the 

chemotactic genes cheA2, cheA3, double mutants (ΔcheA2cheA1::km, 

ΔcheA3cheA1::km), cheY and cheZ. It consists of three essential steps: primers 

design, PCR reactions to amplify regions flanking the target gene and, finally, a 

fusion PCR reaction to join the fragments. Fig. D-2.3.1 illustrates the principle 

steps of this method. 

 

    

Fig. D-2.3.1. : Illustration of Gene SOEing method. This picture was taken from Izumi et 
al. (2007). 
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Primers design. According to the Gene SOEing method, two pairs of primers were 

used to amplify the flanking regions of each target gene. The reverse primer for the 

upstream region flanking the target gene, owns an oligonucleotide linker (at the 5’-

OH extremity) which overlaps with that of the foward primer for the downstream 

flanking region. Moreover, the outer primers, specifically the forward for the 

upstream region and the reverse for the downstream one, own a sequence for 

restriction enzymes (in the present Thesis work, HindIII and BamH1, respectively). 

Extension PCR. Two separated PCR reactions were performed. Reaction mixtures 

(50 µl) contained 5 µl of 10X PCR buffer containing Mg2+, 0.5% (v/v) DMSO, 0.2 

mM of each dNTP, 0.3 pmol of each primer, 1U High Fidelity DNA polymerase 

and 50 ng of DNA template. Amplifications were performed in a Bio-Rad-C-1000 

T-gradient termocycler. Optimal conditions of denaturation, annealing and 

extension were used for each pair of primers. In general the following parameters 

were applied: initial denaturation at 96°C for 5 minutes followed by 30 cycles 

consisting of denaturation at 95°C for 1 minute, annealing at the the optimal 

temperature for each primers pair for 45 sec, elongation at 72°C for 1min/Kb and a 

final extension step at 72°C for 10 minutes. 

PCR products were separated by electrophoresis on 1% (w/v) agarose gel and after 

staining in Gel-Red solution they were visualized under UV-light: when clear and 

clean bands were observed, the PCR reactions were cleaned-up using QIAGEN 

PCR purification kit, otherwise, if no specic products were observed, the correct 

bands were cut from gel and cleaned-up using the QIAGEN gel extraction kit.  

Overlap PCR. Purified PCR products from the two separated reactions were 
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quantified and used as templates in the “overlap step”: for each target gene, only 

the two outer primers were used in the reaction, since the overlapping linkers own 

the 3’-OH extremity to allow extension by Taq polymerase; the fragments formed 

an eteroduplex intermediate as mediated by the overlapping linkers. Subsequent 

extension of the eteroduplex led to the formation of the recombinant molecules. 

Purification of joined amplicons. PCR products were separated by electrophoresis 

on 1% (w/v) agarose and after staining in Gel-Red solution they were visualized 

under UV-light; bands were cut from gel and cleaned-up using the QIAGEN gel 

extraction kit, according to the manifacturer’s guide. The purified joined amplicons 

were stored at -20°C until use for subsequent experiments. 

 

D-2.4. Construction of recombinat plasmids containing fragments with 

deleted chemotactic genes and conjugation into Pseudomonas 

pseudolacaligenes KF707 wild type strain. 

Cloning in pUC19. Joined fragments obtained from SOEing method, were 

double digested with HindIII and BamHI restriction enzymes and cloned in pUC19 

vector. Plasmids were introduced into E. coli Top 10 F’ host by transformation of 

chemically competent cells, prepared according to the CaCl2 method (Sambrook et 

al., 1989). Trasformants clones were selected via white/blue screening on LB 

ampicillin agar containing X-Gal at the final concentration of 50 µg/ml. In order to 

assess the presence of the insert, plasmid mini-preps were performed from white 

clones cultures and double digested with HindIII/BamHI restriction enzymes;  after 

electrophoresis on 0,8% (w/v) agarose gel and staining in Gel-Red solution, 

digestions were visualized under UV-light. For further validation, white clones 
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were selected for colony PCR reactions: inserts were amplified using universal 

primers M13 foward and reverse and purified PCR products were sequenced to 

confirm the insertion of the DNA fragments.  

Cloning in pG19II. Subsequently, each fragment was cloned into the 

conjugative plasmid pG19II double digested with HindIII/BamHI. pG19II is a 

pK19mobsacB derived conjugative plasmid, which carries its own origin of 

replication, the oriV, and an origin of transfer, named oriT. Moreover, this plasmid 

harbours two selection markers: GmR gene which confers resistance to the 

antibiotic gentamicin and sacB gene, codifying for the secreted enzyme 

levansucrase which causes sensitivity to sucrose (Maseda et al., 2004). 

Recombinant plasmids were introduced into E. coli Top 10 F’ host by 

transformation of chemically competent cells and transformant clones were selected 

for gentamicin resistance and via white/blue screening. Mini-preps were performed 

from cultures of positive clones and all the recombinant plasmids were sent for 

sequencing in order to verify the presence of the inserts. 

Conjugation. pG19II recombinant plasmids carrying  the constructs were 

transferred by conjugation to Pseudomonas pseudoalcaligenes KF707 wild type 

strain. Conjugation protocol is described in details in (§ B-5). Briefly, E. coli 

strains, each harbouring pG19II with one of the different contructs for each target 

gene, were used as donor strains, while E. coli HB101 pRK2013 was used as helper 

strain. Conjugation mixes were spotted on well dried LB agar plates; after 24 hours 

of incubation the biomass from each conjugation was collected and suspended in 

LB containing 10% (v/v) glycerol; the suspensions were serially 10-fold diluited 

and plated onto AB glucose medium containing gentamicin as selection marker. 
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Transconjugants were tooth-picked in fresh selective medium and the selection was 

repeated at least twice, in order to obtain pure cultures and remove both donor and 

helper strain backgrounds. KF707 transconjugant strains harboured a plasmid 

carrying the recombinat DNA fragment with the deleted copy of one of each target 

gene. In order to obtain deleted mutant strains, a double cross-over between the 

recombinat plasmid and the homologous genomic DNA sequence was stimulated. 

To force the double cross-over, strains were grown in medium containing a high 

concentration of sucrose. Since pG19II harbours the sacB gene which codifies for 

the levansucrase, an enzyme that doesn’t allow growth on sucrose, this carbon 

source was added at high concentration to stimulate the expulsion of the plasmid. 

Selection of mutant strains. Transconjugants were grown over-night in 10 ml 

of modified LB broth without NaCl. The next day, 1% inocula were grown in 4 ml 

of the same medium containing sucrose at the concentration of 10% (w/v), until 

they reached an OD600 nm of ∼0.4. 100 µl of each culture were spread onto modified 

LB agar (without NaCl). Plates were incubated until growth was visible. Grown 

clones were tooth-picked onto both LB agar 10% sucrose and LB agar 20 µg/ml 

gentamicin. After over-night incubation the growth of the selected clones in the two 

kinds of media was compared: double cross-over clones were those able to grow 

only on 10% sucrose plates and not on gentamicin plates. They were selected as 

probable double cross-over mutants and subsequently confirmed by performing 

colony PCR reaction using the outer primers for the flanking regions of each 

deleted gene. 
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D-3. Results 

D-3.1. Motility and chemotaxis genes clusters in Pseudomonas 

pseudoalcaligenes KF707 genome 

The bioinformatics analysis conducted on KF707 genome using the RAST 

tool for annotation (§ C-3.4), showed the presence of three putative clusters 

codifying for putative genes involved in chemotaxis (Fig. D-3.1.1); moreover, 

twenty-seven probable methyl accepting chemotaxis proteins (MCPs) (Table D-

3.1.1), four genes codifing for proteins involved in flagellum biosynthesis (Table 

D-3.1.2) and eleven genes for its assembly (Table D-3.1.3) were identified. 

 

 

 

 

Fig. D-3.1.1: Chemotactic gene clusters in Pseudomonas pseudoalcaligenes KF707 
containing  the cheA genes. 

 

In Fig. D-3.1.1, three of the multiple KF707 chemotaxis clusters are shown. The 

first one was identified and characterized after the isolation of a mutant impaired in 

motility due to the insertion of a Tn5 transposon in the cheA1 gene codifying for a 
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histidine kinase (Tremaroli et al., 2011). As reported in “Chapter C” (§ C-3.4), 

genome sequencing and annotation showed the presence of two additional putative 

cheA genes, named cheA2 and cheA3. BLAST similarity analyses of nucleotide 

sequences of the cheA genes were performed. KF707 cheA1 nucleotide sequence 

displayed high homology (from 81% to 95%) with Pseudomonas sp. chemotactic 

genes. The greatest Max Identity values were shown with Pseudomoas putida GB-1 

(95%), Pseudomonas putida HB3267 (90%) and Pseudomonas aeruginosa PA7 

(89%). The cheA2 nucleotide sequence showed  the maximum coverage (84%) 

with the nucleotide sequence of the cheA signal transduction histidine kinase of 

Pseumomonas mendocina NK-01. The cheA3 sequence showed a highest value of 

identity (83%) with the Pseudomonas aeruginosa UCBPP-PA14 gene codifying for 

a putative two-component sensor. However the three cheA genes in KF707 did not 

show similarity between each other. In order to understand why the three genes 

were annotated as chemotactic cheA genes, BLASTp analyses were performed to 

look for the presence of aminoacidic similarity and structural conserved domains. 

The CheA1 aminoacidic sequence displayed the maximum identity (81%) with the 

histidine kinase gene of Pseumomonas mendocina NK-01. The result was the same 

for the KF707 CheA2 protein. With regard to the CheA3 aminoacidic sequence, it 

showed the highest identity (72%) with the putative two-component sensor of 

Pseudomonas aeruginosa PA7. Moreover, the CheA1 and CheA3 proteins showed 

the same conserved domains (Fig. D-3.1.2): (i) the HTP (Histidine Phosphotransfer 

domain), involved in signalling through a two-part-component systems in which an 

autophosphorylating histidine protein kinase serves as a phosphoryl donor to a 

response regulator protein; (ii) the signal transduction histidine kinase 
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homodomeric domain which is a helical bundle domain at the interface of the signal 

transducing histidine kinase family; (iii) histidine kinase-like ATPases, which is 

part of a family including several ATP-binding proteins such as histidine kinase, 

DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like 

ATPases and DNA mismatch repair proteins; (iv) CheA regulatory domain which 

belongs to the family of CheW-like proteins and has been proposed to mediate 

interaction with the kinase regulator CheW. 

CheA2 protein showed also the HTP, the signal transduction histidine kinase, the 

histidine kinase-like ATPases and the CheA regulatory domains, but also additional 

HPT domains and one more signal receiver domain were found (Fig. D-3.1.3).  

 

 

Fig. D-3.1.2 : Conserved domains in Pseudomonas pseudoalcaligenes KF707 CheA1 and 
CheA3 proteins 

 

 

Fig. D-3.1.3 : Conserved domains in Pseudomonas pseudoalcaligenes KF707 CheA2 

protein. 
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In addition to the cheA genes, the presence of multiple copies of other genes 

involved in motility and chemotaxis was also investigated.  

CheW proteins, called also adapters, are important components for the 

assembly of chemoreceptors clusters at the membrane level since their function in 

anchoring CheA dimers to the MCPs and to transmit the effect of the “piston-like” 

movement to the histidine kinase CheA, when ligands bind the periplasmic domain 

of MCPs. KF707 showed the presence of two cheW genes (cheW1 and cheW3, 

codified at the cheA1 and cheA3 clusters repectively). With regard to the putative 

MCPs they are listed in Table D-3.1.1. 

 

Table D-3.1.1: List of putative genes codifying  for MCPs in KF707 
Feature ID Contig Start  Stop Lenght (bp) Function 

fig|1149133.5.peg.203    10002 77424 75850 1575 putative 
methyl-accepting 
chemotaxis 
protein 

fig|1149133.5.peg.387 10003 32481 30850 1632 serine 
chemoreceptor 
protein 

fig|1149133.5.peg.475 10003 116715 115573 1143 serine 
chemoreceptor 
protein 

fig|1149133.5.peg.518 10004 39402 41018 1617 Methyl-accepting 
chemotaxis 
protein 

fig|1149133.5.peg.805     
 

10006 22921 21221 1701  serine 
chemoreceptor 
protein 

fig|1149133.5.peg.1124 10006 343655 345241 1587 serine 
chemoreceptor 
protein 

fig|1149133.5.peg.1170 10006 401088 399454 1635 Methylaccepting 
chemotaxis 
protein I 
 

fig|1149133.5.peg.1216  
 

10006 456090 457481 1392 Serine 
chemoreceptor 
protein 

fig|1149133.5.peg.1317 10006 566605 568569 1965 Methylaccepting 
chemotaxis 
protein I 

fig|1149133.5.peg.1514 10008 30422 32362 1941 Methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.1531  
 

10008 48944 50569 1626 serine 
chemoreceptor 
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Chemotaxis pathways include also enzymes involved in response regulation 

(CheY), in signal termination (CheZ) and adptation mechanisms (CheR and CheB, 

a methyltransferase and methylesterase respectively). Two cheY genes (at the 

clusters 1 and 3, Fig. D-3.1.1) and only one cheZ gene (at the cluster 1, Fig. D-

protein 
fig|1149133.5.peg.2778  
 
  

1549 56243 54636 1608 Methylaccepting 
chemotaxis 
protein I 

fig|1149133.5.peg.2788  1549 66352 64346 2007 Serine 
chemoreceptor 
protein) 

fig|1149133.5.peg.2837  
 

1554 10271 8241 2031 Methylaccepting 
chemotaxis 
protein I 

fig|1149133.5.peg.3047  1555 209901 208219 1683 Methylaccepting 
chemotaxis 
protein I 

fig|1149133.5.peg.3436  
 

1589 13939 12008 1932 Methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.3448 1589 31823 33787 1965 serine 
chemoreceptor 
protein 

fig|1149133.5.peg.3531  
 

1589 117658 115724 1935 methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.3846  1602 80234 81820 1587 methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.3957  
 
 

1616 25063 23099 1965 Methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.4062 1621 43 1035 993 Methylaccepting 
chemotaxisprotein I 

fig|1149133.5.peg.4483  
 
 

1659 6958 5327 1632 Methylaccepting 
chemotaxis 
protein I 

fig|1149133.5.peg.4612 1672 12967 11978 990 methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.5231 1698 219583 219014 570 Methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.5837 1729 75529 74387 1143  
 
 

probable 
methylaccepting 
chemotaxis 
protein 

fig|1149133.5.peg.5873 1732 35521 37155 1635 serine 
chemoreceptor 
protein 

fig|1149133.5.peg.6130 1744 11755 10124 1632 Methylaccepting 
chemotaxis 
protein I 
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3.1.1) were found in KF707 genome. Furthermore, KF707 owns three cheB genes 

(Fig. D-3.1.1). Three cheR genes were found, two of which are part of the cluster 2 

and cluster 3 (Fig. D-3.1.1) while the third was found in a different cluster and 

associated to one cheV gene and other genes involved in flagellum assembly (Fig. 

D-3.1.4). Another cheV, one cheC and one cheD genes were also found in other 

additional clusters. 

 

  

Fig. D-3.1.4: Additional cheR gene in Pseudomonas pseudoalcaligenes KF707 genome.  

 

 

Genes codifying for proteins involved in the flagellar byosinthesis and 

assembly, are listed in Tables D-3.1.2 and D-3.1.3 , respectively. 

 

Table D-3.1.2: List of putative genes codifying  enzymes involved in flagellar biosynthesis 
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Table D-3.1.3: List of putative genes involved in flagellar assembly 
 

 

 

D-3.2. Amplification of cheA genes flanking regions and fusion by Gene 

SOEing (splicing overlap extension)  

In order to obtain fragments with deletions of cheA2, cheA3, cheY1 and cheZ 

genes, the Gene SOEing method was applied (§ D-2.3). The first step consisted in 

primers design. The upstream flanking regions of the target genes were amplified 

with the primers pairs FcheA2up/FcheA2dw-overlap and FcheA3up/FcheA3dw-

overlap for cheA2 and cheA3, respectively. The downstream flanking regions of 

both genes were amplified using the primers pairs FcheA2up-overlap/FcheA2dw 

and FcheA3up-overlap/FcheA3dw for cheA2 and cheA3 respectively. With regard 
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to the outer primers, they were designed with restriction sites, HindIII for the 

upstream outer primers and BamHI for the downstream ones. To construct  the 

cheY1 and cheZ mutant strains, the same approach was adopted (in Fig. D-3.2.1 is 

shown only the procedure for the cheA2 gene). 

The oligonucleotide linkers of the reverse primer for the upstream region and the 

forward primer for the downstream regions were designed with an overlapping 

sequence of 15 nucleotides (shown in Fig. D-3.2.1) for all the primers pairs.  

 

 

 
Fig. D-3.2.1.: Construction by SOEing of recombinant DNA fragments with cheA2 gene 
deletion  

 

For all the genes, the upstream and downstream flanking regions chosen for the 

amplification were about 500 bp in size. Two independent PCR reactions were set 

up for each gene in order to amplify the flanking regions. The PCR reactions using 

KF707 genomic DNA as template, resulted in the expected 500 bp products (Fig. 

D-3.2.2 A). Subsequently, purified PCR amplicons were quantified and used as 

templates in the “overlap step”: for each target gene, only the two outer primers 
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were used in this reactions, allowing the formation of recombinant joined fragments 

(Fig. D-3.2.2 B). 

 

Fig. D-3.2.2: (A) Amplification of the upstream and downstream flanking regions of 
cheA2 gene resulted in the production of 500 bp amplicons. (B) joined 1 Kb fragment 
obtained with the PCR fusion step. The results were similar for cheA3, cheY1 and cheZ 
(not shown). 
 
 
 

D-3.3. Construction of recombinant conjugative plasmids carrying 

fragments with deleted target chemotactic genes and conjugation into 

Pseudomonas pseudolacaligenes KF707 wild type strain 

The 1 Kb bands were cut from gel and cleaned-up using the QIAGEN gel 

extraction kit; subsequently, they were double digested with HindIII and BamHI 

and after purification and quantification, they were used as inserts for a middle 

cloning step in pUC19 vector and finally they were cloned in the conjugative 

plasmid pG19II. Recombinant plamids were transformed in E. coli chemically 

competent cells and clones were selected by performing white/blu screening and for 
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AmpR and GmR (for pUC19 and pG19II, respectively). The precence of the insert 

was tested by double digestions of plasmidic preps with HindIII/BamHI and 

visualization on agarose gel. 

Moreover, at each step the sequences of the inserts were amplified using the 

universal M13 primers and sent for sequencing.  

Specifically, the following recombinant plasmids were obtained: pG19IIΔcheA2, 

pG19IIΔcheA3 carrying the fragments with deleted cheA2 and cheA3 genes 

respectively. Moreover, the same procedure was used to contruct recombinant 

plasmids carrying fragments with deleted cheY1 (pG19IIΔcheY1) and cheZ 

(pG19IIΔcheZ) genes. Only transformant clones carrying the recombinant plasmids 

with correct sequences, were used as donor strains in the conjugation to KF707 

wild type strain. pG19IIΔcheA2 and pG19IIΔcheA3 were also conjugated to the 

KF707 cheA1::Km mutant (Tremaroli et al., 2011) for ΔcheA2cheA1::Km and 

ΔcheA3cheA1::Km double mutants construction.  

Independent conjugations, one per each donor strain, were performed as described 

in  “General Materials and Methods Common to Chapters D, E, F” (§ B-5). 

Transconjugants were selected in AB glucose medium containing gentamicin. The 

selection of mutant strains was based on the sacB system. pG19II harbours the 

sacB gene codifying for the secreted enzyme levansucrase, cause of sensivity to 

sucrose; normally KF707 strain is able to grow on sucrose. The reason for growing 

transconjugants on glucose was because they were not able to grow on sucrose 

since they harboured the recombinant pG19II plasmid. The procedure of mutants 

selection is illustrated in Fig. D-3.3.1. 
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Fig. D-3.3.1: To stimulate the double cross-over in the transconjugants (1), they were 
grown in modified LB without NaCl (2). At the early exponential phase, they were plated 
onto LB containing 10% sucrose and without NaCl (3) and incubated over-night at 30°C 
(4). The next day, they were tooth-picked onto both LB 10% sucrose and LB 20 µg/ml 
gentamicin (5).  Clones grown only on LB 10% sucrose and not on gentamicin were 
selected as probable double cross-over mutants. 

 

The hypothetical mutants were then confirmed by performing colony PCR and 

sequencing of the obtained amplicons. 

 

 

D-4. Discussion  

In this study, putative genes involved in motility and chemotaxis were 

identified in Pseudomonas pseudolacaligenes KF707 genome. RAST tool 

(http://rast.nmpdr.org/) for rapid gene annotation was used. The output data showed 

that KF707 strain owns several putative chemotaxis pathways. Interestingly three 
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cheA genes were found, each one organized in one independent cluster (Fig. D-

3.1.1). Bioinformatics analyses on the aminoacidic sequences of the putative 

histidine kinases, codified by these new cheA genes, were performed. The 

searching of conserved domains, revealed that both CheA2 and CheA3 possess the 

histidine kinase typical domains (Fig. D-3.1.2 and Fig. D-3.1.3), even though the 

nucleotide sequences did not show high similarity. Generally, CheA is divided into 

five structurally and functionally distinct domains (“General Introduction”, § A-

4.2): the histidine phosphotransfer domain (P1), the response regulator binding 

domain (P2), the dimerization domain (P3), the histidine protein kinase catalytic 

domain (P4), and the regulatory domain (P5). KF707 CheA1 and CheA3 proteins 

showed the same predicted conserved domains: the P1 domain belonging to the 

histidine phosphotransfer (HPT) family of proteins which transfer a phosphoryl 

groups between ATP and the phosphoaccepting aspartate side chains of response 

regulators; the response regulator binding domain, P2, which forms complex with 

CheY, allowing a conformational change in cheY active site that increases the 

accessibility of the phospho-acceptor aspartate, Asp57; the dimerization domain P3 

and the kinase (HPK) catalytic core domain (P4) are also present in KF707 CheA1 

and CheA3 proteins; the P5 was found too and it is homologous over its entire 

length to CheW: indeed it mediates binding to the chemoreceptor signaling 

domains. The  KF707 CheA2 protein showed the same conserved domains as the 

other two CheA proteins, but also one additional signal receiver domain.  

It has been reported that many environmental bacterial species have complex 

chemotaxis pathway: for example Rhodobacter sphaeroides has shown to have 

metabolic sensing, cytoplasmic chemoreceptors, alternative CheY∼P phosphatases 
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and multiple chemosensory operons (“General Introduction”, § A-5) . In addition to 

multiple cheA genes, P. pseudolacaligenes KF707, showed multiple cheW, cheY, 

cheB and cheR genes. Multiple CheW proteins could be involved in 

chemoreceptors arrays organization. The additional cheY gene, probably works as a 

phosphate sink in order to guarantee the signal termination; usually, multiple copies 

of cheY genes are present in bacteria lacking the cheZ gene and since KF707 owns 

a cheZ gene, the addictional CheY protein may act enhancing CheZ activity. KF707 

also showed multiple copies of cheB and cheR that may be involved in adaptation 

mechanisms. Other bacteria, for example B. subtilis, show the CheC–CheD and the 

CheV circuits involved in adaptation (“General Introduction”, § A-5). The CheC–

CheD circuit involves two proteins that are not found in E. coli but are found in 

about 40% of chemotactic bacteria and the putative genes for these proteins were 

also found in KF707. CheC is an alternative CheY~P phosphatase, whereas CheD 

is a chemoreceptor deamidase that converts glutamine residues to glutamic acid 

residues (Kristich and Ordal, 2002; Szurmant et al., 2004) In addition, CheD binds 

to the chemoreceptors to stimulate CheA autophosphorylation. The chemoreceptors 

and CheC– CheY~P compete with one another for binding of CheD, such that when 

CheY~P levels are low, most of the CheD binds to the chemoreceptors and 

stimulates CheA autophosphorylation. On the other side, when CheY~P levels are 

high, CheD dissociates from the chemoreceptors and forms the ternary complex 

with CheC and CheY~P (Rao et al., 2008). cheV gene is also present in KF707 and 

it codifies for a protein with a CheW domain and a receiver domain. CheV function 

was studied in Bacillus subtilis and it works coupling chemoreceptor signalling to 

CheA kinase activity, and when phosphorylated by CheA, CheV inhibits CheA 
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kinase activity. In this way, phosphorylation of CheV by CheA establishes a 

negative feedback and adaptation by reducing CheA activity (Rao et al., 2008). All 

these results show that KF707 owns quite complex chemosensory pathways, which 

are probably interconnected. Indeed, as described in Rhodobacter sphaeroides 

(Sourjik and Armitage, 2010), gene products of the three different chemotaxis 

operons are involved in the regulation of gene products codified by genes on the 

other operons (“General Introduction”, § A-5). It has been reported that, in addition 

to chemotactic pathways involved in motility under stimulating conditions, a 

number of bacterial species have pathways that are homologues to chemotaxis 

signalling pathways but which control other complex behaviours, such as 

developmental gene expression in M. xanthus (Zusman et al., 2007) and biofilm 

formation in P. aeruginosa (Hickman et al., 2005; Guvener and Harwood, 2007): 

hence it could be possible that in KF707, alternative chemotaxis pathways do not 

play a significant role in motility, but  they may have a role in different cellular 

functions. 

Since the genome annotation revealed all these informations regarding KF707 

putative chemosensory pathways (§ C-3.4) and since previous works showed that 

the KF707 cheA1 mutant strain is impaired in motility, chemotaxis and biofilm 

formation (Tremaroli et al., 2011), we thought to investigate the possible roles of 

the cheA2 and cheA3 genes. The procedure for the construction of deleted mutants 

in cheA2 and cheA3 genes and also of double mutants cheA1/cheA2 and 

cheA1/cheA3 is also described. These mutant strains, together with cheY and cheZ 

mutants, were used in subsequent experiments to test their motile behaviour in the 

absence or in the presence of stimuli as well as biofilm formation.
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CHAPTER E 

Role of chemotactic genes in Pseudomonas pseudoalcaligenes KF707 

motile behaviour and biofilm formation 

 

E-1 Introduction  

Bacteria may encounter variable conditions in sorrounding environments. In 

order to compete and survive in particular kinds of ecological niches they must be 

able to sense the environment, integrate external and internal stimuli and, 

accordingly, react with a behavioural response. The capacity to distinguish among 

the different stimuli and the ability to move towards to or away from chemical 

compounds is referred to as chemotaxis (§ Chapter A). Some so-called biodegrader 

bacteria, have the property to sense concentration of carbon sources (even toxic) 

and to move towards them. In this respect, Pseudomonas pseudoalcaligenes KF707 

is known for its ability to degrade compounds such as biphenyl, polychlorynated 

biphenyls (Furukawa et al., 1986), benzoic and naftenic acids. In the case of highly 

hydrophobic chemicals adsorbed in the non-aqueous-phase liquid (NAPL), bacteria 

have been shown to gain access to the target contaminants by adhering directly to 

the NAPL-water interface, possibly through biofilm formation. Indeed, in natural 

environments bacteria are commonly found in association with biotic surface and 

KF707 is able to grow as a biofilm, even in the presence of toxic metal oxyanions 

such as tellurite and selenite. Biofilm-mediated bioremediation is a proficient 

alternative to the environmental clean-up with planktonic microorganims because 
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of the increased capability of adaptation and survival of biofilm cells and the 

distinct physiological properties displayed by bacteria in a biofilm. 

This chapter describes in details the chemotaxis behavior of both Pseudomonas 

pseudoalcaligenes KF707 wyld type and chemotactic mutant strains. Biofilm 

formation, in relation with the possible role of CheA2 and CheA3 proteins similarly 

to previos data obtained with CheA1 mutants (Tremaroli et al., 2011), was also 

investigated. 

 

E-2 Materials and Methods 

E-2.1 Bacterial strains and growth conditions. 

Pseudomonas pseudoalcaligenes KF707 wild type and mutant strains in the 

chemotactic genes cheA1, cheA2, cheA3, cheY1, cheZ and the double mutants in 

cheA1/cheA2 and cheA1/cheA3 genes, were tested. Bacterial strains were grown at 

the optimal temperature on LB medium.  For motility assays they were grown in 

both rich and minimal media with defined agar concentration. Genotypic features of 

the strains and media compositions are described in the “General Materials and 

Methods common to Chapters D, E, F” (§ B-1).	   

 

E-2.2 Motility assays 

The swimming, swarming and twitching behaviour of Pseudomonas 

pseudolacaligenes KF707 wild type and mutant strains were analysed as described 

in the following protocols. 
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E-2.2.1 Swimming 

Tryptone swim plates (10 g/l tryptone, 5 g/l NaCl, 0.3% w/v Difco Bacto 

agar), were inoculated with a toothpick from over-night LB agar plates. Plates were 

wrapped in saran-wrap to prevent dehydration and incubated at 30°C for 24 h and 

then at room temperature for a week. 

The same kind of plates were used to inoculate exponentially growing bacteria. 1 

ml of exponentially growing culture in minimal medium (OD600nm ∼ 0.5) was 

centrifuged and resuspended at the same OD in 0,9% saline; 10 µl of this 

suspension were spotted in the middle of each plate. Plates were incubated for 24 h 

at 30°C and then for a week at room temperature. Motility was qualitatively 

assessed by examining the circular turbid zone formed by the bacterial cells 

migrating away from the point of inoculation. 

                    

                   E-2.2.2 Swimming in presence of metals 

In order to asses the effect of metals on swimming motility, different 

metals were added to the plates at the following concentrations: Al2(SO4)3 0.4 mM, 

NaAsO2 0.25 mM, CdCl2 0.05 mM, CuSO4 0.05 mM, K2Cr2O7 0.06 mM, NiCl2 

0.05 mM, Pb(NO3)2 0.4 mM, K2TeO3 0.01 mM and 0.1 mM, ZnCl2 0.05 mM. 

Succinate was used as carbon source at the concentration of 5 mM. The swimming 

ring was measured every 24 hours for 72 h of incubation. The same inoculum 

described above (§ E-2.2.1) was used for this experiment. 
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E-2.2.3 Swimming chemotaxis assay 

Swim plates for the qualitative analysis of chemotaxis were prepared in 

MSM containing 0.2% Difco Bacto Agar. Cells exponentially growing in 5mM 

succinate (OD600nm ∼  0.5) were washed and re-suspended in saline solution (NaCl 9 

g/l) at the same optycal density and a 10 µl drop of cellular suspension was spotted 

at the centre of the plate. Crystals of succinate, BA, 2-, 3- and 4-CBAs or biphenyl 

were added as chemoattractants on the right side of the plate while a saline solution 

(3x20 ul drops) was added on the left side of the plate as a negative control.  

 

E-2.2.4 Plugs chemotaxis assay 

Plugs contained 2% of low-melting-temperature agarose in chemotaxis 

buffer (40 mM potassium phosphate pH 7.0, 0.05 % glycerol, 10 mM EDTA) and 

the chemoactractant to be tested. 10 µl of the melted agarose mixture was placed on 

a microscope slide and a coverslip, supported by two plastic strips, was then placed 

on top to form a chamber. Cells were harvested in exponential phase (OD
600 

~ 0.7), 

resuspended in chemotaxis buffer to the same OD
600

, and flooded into the chamber 

to surround the agarose plug. Tryptone, succinate and glucose were assayed as 

chemoattractants and were provided at 1% (w/v) in plug assays. Control plugs 

contained 0.9 % saline instead of the attractant. 

 

E-2.2.5 Quantitative chemotaxis assays 

The quantitative analysis of chemotactic response was performed in 

modified capillary assays: cells exponentially growing in succinate were washed 

and resuspended in chemotaxis buffer (10mM Tris- HCl, pH 7.4). 100 µl aliquots 
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of a cellular suspension were placed in 200 µl pipette tips and a disposable 2-cm 

25-gauge needle was attached to a 1-ml tuberculin syringe and was subsequently 

used as the chemotaxis capillary. Capillaries held 200 µl of the compound to be 

tested (1 and 10mM succinate; 0.01 and 0.1mM biphenyl; 1mM BA and CBAs) 

dissolved in a chemotaxis buffer or, in the case of biphenyl, in a chemotaxis buffer 

with 1.4% hexane. Control assays contained buffer only or buffer and 1.4% hexane 

for assays in which chemotaxis to biphenyl was tested. Cells were incubated with 

the capillary at room temperature for 90 min and then the content of the syringe 

was serially diluted in saline solution. Aliquots of appropriate dilutions were spot 

plated onto Luria–Bertani (LB) agar plates. Counts were performed after 24 h of 

incubation at 30°C. 

To increase the riproducibility of this assay, a hot 25-gauge needle was used to 

make holes in two sealed lids for a 96-multiwells microtitre plate. 25-gauge needles 

attached to a 1-ml tuberculin syringe were used as capillary helding 200 µl of the 

compounds to be tested and were inserted through the holes of the two sealed lids. 

This platform was used to cover the bottom of the microtitre plate containing 100 

µl of culture of each strain in parallel and alternate rows. After 90 minutes of 

incubation the lid was lifted and capillaries were rinsend twice in mutiwells 

microtitre plates cointaining 200 µl of sterile water; the contents of the capillaries 

were expelled into 1.5 ml eppendorf tubes containing 800 µl of saline solution and 

serial 10-fold diluitions were plated onto LB agar containing 50 ug/ml of 

ampicillin. Plates were incubated at 30°C and counts were performed after 24 

hours. 
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E-2.2.6 Contrast phase microscopy  

All strains were grown in MSM succinate 5 mM. At OD600nm ∼ 0.5 they 

were washed and resuspended at the same OD in chemotaxis buffer. A 10 µl drop 

was placed on a microscopy glass and covered with a coverslip glass. Video were 

recorded with Motic 3.0 software at 40X magnification. 

 

E-2.2.7 Swarming 

Swarm plates consisted of : 

1) 0.5% (w/v) Difco Bacto agar with 8 g/l Difco nutrient broth (5 g /l bacto beef 

extract , 3 g/l bacto peptone extract) supplemented with 5 g/l dextrose. 

2) modified M9 medium [20 mM NH4Cl; 12 mM Na2HPO4; 22 mMKH2PO4; 8.6 

mM NaCl; 1 mM MgSO4; 1 mM CaCl2 2 H2O; 11 mM dextrose; 0.5% casamino 

acids (Difco) solidified with Bacto-agar (Difco). Swarm plates were allowed to dry 

at room temperature under laminar flow for different period of time (Tremblay  et 

al., 2008). 

These two kind of media were inoculated with a toothpick from both over-night LB 

agar plates and swim plates and incubated at 30°C for at least 24 h and then at room 

temperature for a week. The same plate were used to inoculate exponentially 

growing bacteria suspensions prepared as follow: 1 ml of exponentially growing 

culture in minimal medium (OD600nm ∼ 0.5) was centrifuged and resuspended at the 

same OD in 0,9% saline; 10 µl of this suspension were spotted on each plate. Plates 

were incubated for 48 h at 30°C and then for a week at room temperature. 

3) Since swarming motility could be influenced by sugar composition of the 

extracellular matrix, swarm plates with different kind of sugar as carbon source 
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were used in this study; they consisted of: 0.01% K2HPO4, 0.01% NaCl, 0.02% 

MgSO47H2O, 0.04% KH2PO4, 0.4% Yeast Extract, 0.7% Difco Bacto Agar; 

glycerol or glucose or sucrose were added at the concetrations of 0.1 and 0.5% 

(w/v). The plates were allowed to dry at room temperature  for 17-48 h. Bacterial 

strains were grown for 24 h in the same medium broth and with the different carbon 

sources and a spot of 2 µl was inoculated at the centre of each plate. They were 

wrapped in saran wrap to prevent dehydration and incubated at room temperature 

for 3-4 weeks.  

 

E-2.2.8 Twitching 

Twitch plates (10g/l tryptone, 5g/l yeast extract, 10g/l NaCl, 1% (w/v) 

Difco Bacto Agar) were stab inoculated with a sharp toothpick to the bottom of a 

petri dish form an over-night grown LB agar plate. After incubation for 48 h at 

30°C, if bacteria are able to performe twitching motility, a hazy zone of growth at 

the interface between the agar and the polystyrene surface can be observed. The 

ability of bacteria to adhere on the polystyrene surface was then examined by 

removing the agar, washing unattached cells with water stream and staining with 

1% (w/v) crystal violet solution prepared in 10% ethanol.	  

 

E-2.3. Evaluation of biofilm growth 

KF707 wild type and mutant strains biofilms were grown on the Calgary 

Biofilm Device (CBD), commercially available as MBECTM assay and produced by 

InnovotechTM, Edmonton, Canada), as described by Ceri et al. (1999) and by the 

manifacturer. The MBECTM high –throughput assay consists of two parts: the top 
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half of the device is a polystyrene lid with attached 96 identical pegs, which 

perfectly fit into a 96 well microtitre plate. CBD is a powerful method for biofilm 

growth and it can be used for multiple purposes. Here the use of the CBD for time 

course studies of biofilm formation is described. The procedure consists of 3 steps:  

(i) preparation of a standard inoculum of each bacterial strain; (ii) growth in the 

Calgary Biofilm device and (iii) determination of CFU/ml (counts of planktonic 

cells) and CFU/peg (counts of cells attached to each peg). The entire protocol is 

shown in Fig. E-2.3.1.  

 

 

 

Fig. E-2.3.1: Biofilm cultivation on the CBD. The picture has been adapted from 
Harrison et al. (2006). 
 

 
 
 
 

From the corresponding cryogenic glycerol stock, a first subculture of each 

bacterial strain was streaked out on LB ampicillin 50 µg/ml agar plates  and they 

were incubated at 30°C until growth was visible. From the first sub-culture, a 

second one, for each strain, was streaked out on LB agar plates without antibiotic 
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selection. Bacteria were grown over-night at the optimal temperature and these 

cultures were used to prepare the standard inoculm for the CBD. After growth, the 

biomass of all bacterial strains, was collected using a sterile cotton swab and 

resuspended into fresh LB medium to reach the optical density value matching with 

the 1.0 McFarland standard; 1:30 diluitions from each suspension was prepared in 

the same kind of medium. 150 µl of these standard inocula, each containing 

approximatively 1.0x107 CFU/ml, were added to each well and the peg lid was then 

fitted on the top of the microtitre plate to assemble the CBD, which was 

subsequently placed on a gyrorotatory shaker at 100 rpm at 30°C and 95% of 

relative humidity.  

 

E-2.3.1. Biofilm and planktonic growth curves 

For biofilm growth curve analysis, CFU/peg were determined by viable 

cells counts. Sterile microtiter plates were set up with 200 µl of physiologycal 

saline solution in every well. Since the pegs are designed to be easily removed from 

the peg lid, at each time point 4 pegs for each strain, were broken with a sterile pair 

of pliers and rinsed twice in the saline solution in order to remove loosely adherent 

planktonic cells from the biofilms. Subsequently, they were transferred into fresh 

saline solution to which 0.1% (v/v) Tween-20 was added and the biofilms attached 

to the pegs were removed by sonication using an Aquasonic 250 HT ultrasonic 

cleaner (VWR International, Mississauga, ON, Canada) set at 60 Hz for 10 minutes. 

20 µl of the resulting cellular suspensions were serially 10-fold diluited into 180 µl 

of fresh saline solution. Aliquotes of each diluition were plated onto well dry LB 

agar and the plates were incubated at 30°C for 24 hours. 
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As a control, viable cell counts of planktonic cells for each strain were performed: 

at each time point 20µl of bacterial suspension from  the 4 wells, corresponding to 

those of the broken pegs, were serially 10-fold diluited in 180 µl of saline solution. 

Diluition were spotted onto LB agar, the plates were incubated  at 30°C for 24 

hours. For both biofilm and planktonic cells, counts were carried out in order to 

determine the CFU/peg and CFU/ml, respectively. 

E-2.3.2 Confocal Laser Scanning microscopy (CLSM) 

	  
	  

 

Fig. E-2.3.2.1: visualization of biofilm by CLSM 

 

For microscopy techniques biofilms were fixed to the surface of the pegs of the 

MBEC™ Assay. The following protocol (Fig. E-2.3.2.1) was used to prepare 

samples for confocal laser scanning microscopy (CLSM). At each time point pegs 

were broken from the MBEC™-HTP device using a pair of flamed pliers, rinsed in 

0.9% saline for 1 min to eliminate loosely-adherent planktonic bacteria. Pegs were 

fixed in 5% glutaraldhyde in phosphate buffered saline (pH 7.2) at room 

temperature for 1 hour and then rinsed again in 0.9% saline for 1 min. Pegs were 

subsequently stained in the dark for 5 minutes in 0.1% (w/v) acridine orange and 

examined at the confocal laser scanning microscope. Acridine orange is a 

membrane permeant nucleic acid stain, emitting fluorescence at λ∼505-535 nm 
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when excited at λ = 488 nm. This fluorescent stain functions as a general indicator 

of the bacterial biomass attached to the solis durface of the pegs. Stained biofilms 

were placed on the top of a microscope glass and immersed in drops of water and 

visualized using a Leica IDR2 confocal microscope with a Leica TCS SP2 system. 

The excitation beam splitter was selected in order to detect acridine orange 

wavelenght range from the excitation light. 10X, 20X and a water immersion 63X 

magnifications objectives were used. The xyz mode scanning was chosen to record 

image stacks from the xy-sections in the z direction. Scans in series, 2D projections 

of z-stacks and 3D recontructions were performed using Leica Confocal Software 

(Leica Microsystem). 
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E-3 Results 

E-3.1 Motile behaviour in Pseudomonas pseudoalcaligenes KF707 wild 

type and chemotactic mutant strains 

Recent findings have shown that KF707 mutants in the cheA1 gene are 

impaired in swimming motility, chemotaxis and biofilm development (Tremaroli et 

al., 20011). Annotation of KF707 genome revealed the presence of additional cheA 

genes, both codifying for a histidine kinase. In order to assess the role of these 

genes in  KF707 cellular functions, deleted mutants in cheA2 and cheA3 genes and 

the double mutants ΔcheA2/cheA1::Km and ΔcheA3/cheA1::Km were constructed. 

Mutant strains in cheZ and cheY1 genes were also constructed and included in this 

study. 

 

Swimming. The swimming ability of P. pseudoalcaligenes KF707 wild type and 

mutant strains, was assessed on swimming plates containing a low percentage 

(0.3% w/v) of Difco Bacto agar. Single colonies or 10 µl of exponentially growing 

bacteria were inoculate on this semi-solid plates, wrapped and incubated at 30°C. 

Cells able to swim formed a ring starting from the inoculation point as a result of 

flagellum-driven motility. The swimming behaviours of KF707 wild type and 

mutant strains are shown in Fig E-3.1.1. 

Notably, a turbid ring zone was observed in KF707 wild type and all mutant strains, 

except in cheA1::Km, ΔcheA2/cheA1::Km, ΔcheA3/cheA1::Km and cheY mutants. 

This suggests that among the three cheA genes, only cheA1 is involved in 

swimming  motility since the cheA1::Km mutant does not show swimming 

behaviour. This conclusion is also supported by the absence of swimming motility 
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in the double mutants. As expected,  also the cheY mutant did not show swimming 

behaviour. 

 

 

Fig. E-3.1.1: Swimming behaviour of Pseudomonas pseudoalaligenes KF707 wild type 
and mutant strains in tryptone swim plates.  
 

 
 

Swimming in the presence of metals. P. pseudoalcaligenes KF707 strain is known 

for its ability to grow in the presence of toxic and heavy metals 

(Se<As<Ni<Cd<Al<Te) (Tremaroli et al., 2008). In order to asses the effect of 

metals on swimming motility, different metal cations and anions were added to the 

plates. By measuring the diameter of the turbid zone, it was observed that all the 

tested metals did not affect swimming motility; in addition wild type and mutants 

strains behaviours were similar to control plates with no metals added (Fig. E-

3.1.2).  
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Fig. E-3.1.2.: Swimming motility in presence of toxic metals in KF707 wild type and 
mutant strains. 

 

Qualitative and quantitative chemotaxis swimming assays  

Chemotactic swimming behaviour was tested in the presence of chemo-attractants. 

Since KF707 strain is able to degrade xenobiotic compounds such as 

polychlorinated biphenyls (PCBs), both wild type and mutant strains were tested for 

their motility and chemotactic response to biphenyl, its chloroderivatives and 

chlorobenzoates. Generally, chemotaxis towards these compounds correlates with 

their use as carbon and energy sources. Minimal salt medium containing 0,2% 

(w/v) pure Difco Bacto Agar, was prepared. Crystals of the compounds to be tested 

(succinate, byphenil, benzoic acid and 2-,3-,4- chlorobenzoic acid)  were added on 

the right side of the plate; saline solution was used as negative control and drops 

were added on the left, top and bottom side of the plate. 10 µl of exponentially 

growing cultures of the strains, all at the same value of optical density, were spotted 

onto the plates, which then were wrapped and left on the bench at room 

temperature. The chemotactic behaviours towards the different chemicals were 

observed daily for a period of seven days. 
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Fig E-3.1.3 shows that KF707 wild type and ΔcheA2, ΔcheA3 and cheZ mutants 

are motile and chemotactic towards succinate, byphenil and benzoic acid. With 

regard to cheA1::Km, double mutants ΔcheA2/cheA1::Km and ΔcheA3/cheA1::Km 

and cheY mutant strains, they were not motile being incapable to move towards the 

chemo-attractans.  

 

 

Fig. E-3.1.3.: Swimming motility in the presence chemo-attractants in KF707 wild 
type and mutant strains. 

 

The quantitative analysis of chemotactic response toward these compounds was 

also performed in modified capillary assays (§ E-2.2.5.), but with no clear results, 

since the method is known for its limitation for reproducibility.  

 

Contrast phase microscopy Chemotaxis towards tryptone, succinate and glucose 

was also investigated, using plugs containing 2% (w/v) of low-melting-temperature 

agarose in chemotaxis buffer. 10 µl of the melted agarose mixture were placed on a 

microscope slide and a coverslip, supported by two plastic strips, was then placed 
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on top to form	   a	   chamber.	   Exponentially	   growing	   cells	   were	   flooded	   in	   the	  

chamber	  and	  bacterial	  behaviour	  was	  observed	  at	  the	  contrast	  phase	  microscope.	  

It	  was	   observed	   that	  motile	   strains	   (KF707 wild type and ΔcheA2, ΔcheA3 and 

cheZ mutants) swam towards the agarose plugs, while non motile strains 

(cheA1::Km, double mutants ΔcheA2/cheA1::Km and ΔcheA3/cheA1::Km and 

cheY mutant) were simply transported by the fluid flow (data not shown).  

Further, KF707 wild type and mutant strains behaviours in the absence of stimuli 

were observed through the use of a contrast phase microscope. Interstingly, all 

motile strains swam more or less similarly, except the ΔcheA2 mutant which 

appeared to swim faster. It is noteworthy the difference between cheA1::Km and 

cheY mutant strains: they both are not motile, but while the first did not swim 

because it was not able to move, the latter did not swim in any direction because it 

was continuosly tumbling at a very high speed. The double mutants 

ΔcheA2/cheA1::Km and ΔcheA3/cheA1::Km showed the same behaviour of cheY 

and cheA1::Km, respectively (data not shown).  

 

Swarming In the presence of an agar concentration of 0.5-0.7 %  (w/v) swarming 

motility can be observed. This kind of motility is different from swimming, because 

of the irregular branching  that appears at the periphery of the colony. It has been 

reported that swarming motility and biofilm development in P. aeruginosa are not 

only nutritionally dependent, but they are also both affected by quorum sensing 

(QS) (Shrout et al. 2006). Previous results (Tremaroli et al., 2011) have shown that 

KF707 wild tipe and  cheA1::Km mutant strains did not show swarming motility in 

the tested conditions ( the number 1 medium was used, § E-2.2.7). In the present 
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study, swarming experiments were repeated and no swarming motility was shown 

in all the strains tested. Consequently, swarming motility was verified in various 

media and under different conditions such as variable agar concentration, 

temperature and humidity.  

Modified M9 medium (§ B-1) was used; swarm plates were allowed to dry at room 

temperature under  UV-light and  sterile laminar flow cabinet for different period of 

time. Single colonies were picked onto the plates, which were wrapped and 

incubated  over-night at 30°C and then at room temperature. All strains did not 

show swarming motility, even though the ΔcheA2 mutant showed an attempt of 

movement in 0.5 % (w/v) agar. 

As previosly reported (Tambalo et al., 2010) different factors are involved in 

swarming motility such as the carbon source, the growth phase of the cells, the 

production of biosurfactants.  Swarm plates with different kind of sugar as carbon 

source (glycerol or glucose or sucrose were added at the concetrations of 0.1 and 

0.5% (w/v)) were used in this study. Bacterial strains were grown for 24 h in the 

same medium broth along with different carbon sources and a spot of 2 µl was 

inoculated at the centre of each plate. They were wrapped in saran-wrap to prevent 

dehydration and incubated at room temperature for 3-4 weeks. 

The results indicated that KF707 wild type was not able to swarm as well as 

ΔcheA2 and the double mutant strains under all tested conditions. cheA1::Km 

showed the formation of pink/orange branches patterns, even though it did not 

expand on the plate. The ΔcheA3 mutant showed swarming motility with the 

formation of branches patterns and production of the pink/orange pigment in all the 

media containing the variable carbon source; interestingly, the shape of the 
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branches patterns was different depending on the carbon source (Fig. E-3.1.4) 

 

 

Fig. E-3.1.4: Swarming motility in KF707 wild type (A and D) and mutant strains 
cheA1::km (B and E) and  ΔcheA3 (C and F) in the presence of different carbon source 
(A-B-C, glucose; D-E-F, sucrose). 

 

Twitching Twitching motility is a form of translocation on solid surfaces which is 

dependent on pili-assisted motility (Henrichsen 1972; 1983) and it occurs at the 

interstitial surface between the agar and the polystyrene, when cells are inoculated 

through a thin 1 % agar layer to the bottom of a Petri dish. However, phenotype 

was not displayed by P. pseudoalcaligenes KF707 wild type and mutant strains 

under the conditions tested.  

 

 

 



Chapter E 

	   91	  

E-3.2. Role of cheA genes in Pseudomonas pseudoalcaligenes KF707 biofilm 

formation and development. 

The formation of biofilm in Pseudomonas pseudoalcaligenes KF707 wild type and 

mutant strains was investigated using the Calgary Biofilm device (CBD). The CBD 

is a batch system that allows the formation of 96 statistically equivalent biofilms 

(Ceri et al.,1999). This approach reproduces the bacterial lifestyle, in which free 

swimming (planktonic) bacteria attach to abiotic surface and produce an organized 

multicellular structure (biofilm) in response to environmental signals. Cells forming 

a biofilm on the CBD are probably released and colonize the surrounding medium, 

thus closing the planktonic-biofilm bacterial life cycle. Acridine orange (AO) 

staining and confocal laser scanning microscopy (CLSM) were used to visualize the 

evolution of biofilms organization.  

 Since it was reported that KF707 mutant in the cheA1 gene  is able to attach to the 

abiotic surface of the CBD but not able to form a mature biofilm (Tremaroli et al., 

2011), we thought to define the role of the other two addictional cheA genes (cheA2 

and cheA3) in P. pseudoalcaligenes KF707 biofilm formation. The time course of 

biofilm development in the wild type, cheA1::Km, ΔcheA2 and ΔcheA3 mutant 

strains were investigated, both at the confocal microscope (Fig. 7) and by the viable 

counts of cells attacched at the pegs of the CBD (Fig. 8 A). 
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Fig. E-3.2.1.: Time course of biofilm formation of P. pseudoalcaligenes KF707  and mutant 

strains in LB medium. Images display the 2D averages of z-stacks.  

 

Figure E-3.2.1. displays images of the time course of P. pseudoalcaligenes KF707, 

ΔcheA2 and ΔcheA3 mutant strains biofilms in LB medium at 8, 16 and 24 h of 

growth. At 8 h of biofilm development, the number of KF707 wild type cells 

attached to the surface was lower than the ΔcheA2 mutant strain. At 8 h of growth, 

the latter showed a number of attached cells similar to that showed by the wild type 

wt	  8	  h wt	  24	  h wt	  16	  h 

ΔcheA2	  16	  h ΔcheA2	  24	  h ΔcheA2	  8	  h 

ΔcheA3	  8h ΔcheA3	  16	  h ΔcheA3	  24	  h 
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strain at 16 h. At 16 h, wild type and ΔcheA3 strains showed a similar organization; 

notably, the ΔcheA2 reached the maximum of cells density at 16 h, which showed a 

strong decrement between 16 and 24 h of growth. Only the wild type strain, showed 

the formation of a mature biofilm after 24 h of growth. Indeed the Confocal-Laser-

Scanning-Microscopy (CLSM) image (Fig. E-3.2.1) shows a complex developed 

biofilm. The EPS matrix , composed of short oligonucleotides to which AO stain is 

bound, proteins and polysaccharides, can be observed as a diffuse fluorescence 

sheltering the biofilm cells and linking adjacent cell. 
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Fig. E-3.2.2.: Growth curves of biofilms in LB medium (8 A). Viable cell counts were 
carried out to determine CFU per peg during biofilm development. The curves show the 
CFU per peg as a function of time for KF707 wild type, ΔcheA2 and ΔcheA3 mutand 
strains The values presented and standard deviations are the means of at least three 
independent experiments, each performed in quadruplicate. Growth curves of 
planktonic cells in LB medium are reported as a control (8 B). 
	  
Figure E-3.2.2.A shows biofilm growth curves of the ΔcheA2 and ΔcheA3 mutant 

strains as compared to the wild type strain. In this experiment KF707 wild type 

strain showed a low attachment at 8 h and reached the maximum biofilm cell 

density at 24 h of growth. ΔcheA2 mutant strain showed a high attachment in the 

early stage, but the number of the cell attached at the pegs strongly decreased 

between 16 and 24 h of growth. ΔcheA3 mutant biofilm growth curve showed a 

dramatic decrease in biofilm cell density after the initial attachment, but also a 

consistent recovery between 24 and 48 hours. cheA1::Km, as reported by Tremaroli 

et al,  showed an initial attachment but no further development of the biofilm. 

CLSM visualizations showed that the cheA1::Km mutant was indeed capable of 

early attachment  

Planktonic growth of the wild type and mutants strains was also monitored, 

indicating that planktonic growth was similar in both wild type and mutant strains 

(Fig. E-3.2.2). 

From all these observations, we can conclude that KF707 wild type strain is able to 

grow as a biofilm, with the formation of a mature structure after 24 h by following 

a gradual increasing of the number of the cells attached to the abiotic surface of the 

CBD and a maintenance of the structure for a prolonged period (50 h). Conversely, 

the ΔcheA2 mutant strain, is able to attach to the pegs reaching the maximum of 

density within 16 h of growth; subsequently, it shows a decrement of biofilm 
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attached cell. ΔcheA3, was able to attach strongly during the first few hours of 

biofilm formation, maintaining the structure stable for a prolonged time period.  

 

E-4 Discussion 

KF707 is an environmental organism able to use xenobiotic and aromatic 

compounds, such as PCBs, as sole carbon source and it is also chemically attracted 

to them. Chemotaxis is considered an important and necessary trait for degrading 

bacteria, since it enhances the ability of motile bacteria to locate and degrade low 

concentrations of organic compounds; for this reason, it may also direct the 

movement of motile bacteria to toxic, but metabolizable, compounds present in 

contaminated environments. There is evidence that chemotaxis can not only 

enhance biodegradation but also promotes the formation of microbial consortia 

(Pedit et al., 2003; Wu et al., 2003), presumably by bringing cells into close contact 

with degradable substrates.  

In this chapter, KF707 wild type and mutant strains were tested for their 

capacity to sense and degrade compounds such as byphenil, PCBs, benzoic acid and 

chlorobenzoic acids. Wild type and mutant motile strains were able to move 

towards these compounds, while non motile mutants, even though they were not 

able to move, they  were able to grow. In addition KF707 motile and motile strains 

showed the ability to grow using xenobiotics as carbon source also in presence of 

toxic metal oxyanions and cations; moreover, regarding motile strains, they were 

not affected in swimming behaviour by the presence of metals. All these feature 

make KF707 an important strain for bioremedation application as t has been shown 

that the efficiency of microbial remediation procedures depens not only on the 
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metabolic abilities and chemotactic behaviour but also the capacity to tolerate the 

intermediates formed during the degradation process.  

The role of  chemotactic genes, with particular enphasis on cheA2 and cheA3, 

was invastigated. Motile and chemotactic behaviour of Pseudomonas 

pseudoalcalignes KF707 wild type and mutant strains cheA1::Km, ΔcheA2, 

ΔcheA3, ΔcheA2cheA1::Km, ΔcheA3cheA1::Km, cheY and cheZ were analyzed. 

Swimming motility assay results, showed that the mutans cheA1::Km, 

ΔcheA2cheA1::Km, ΔcheA3cheA1::Km, cheY are impaired in motility, remarking 

the fact that only the cheA1 gene is responsible for swimming of  KF707. Further 

support to this conclusion derives from the ΔcheA2, ΔcheA3 and double mutants 

phenotypes.  

The ability of KF707 and  chemotactic mutant strains in adhering to a solid surface 

and to form biofilm were also assessed. Interestingly the ΔcheA3 mutant indicated 

swarming motility only under specific nutrient conditions. It was also observed that 

the mutant was able to form a branches pattern and produce a pink/orange pigment. 

The present findings on swimming motility, chemotaxis, swarming and biofilm 

formation, taken together, tend to suggest that in Pseudomonas pseudoalcaligenes  

KF707 strain, multiple factors are involved in this network, as they might play 

different roles depending on the environmental conditions. Regarding to the 

hypothetical implication of KF707 cheA genes in swarming and biofilm  

formation,they could be involved in regulating the choice between a planktonic 

and/or sessil modes of growth. When  KF707 cheA1 gene is mutated the bacterium 

is not able to swim and form a mature biofilm; moreover it was observed the 

formation of branches patterns in swarm plates. On the other hand, the ΔcheA2 
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mutant is able to swim but doesn’t show swarming; in addition it is able to form a 

developed biofilm, but the density of sessile cells was observed to decrease after 16 

h of growth. With regard to the ΔcheA3 mutant it showed both swimming and  

swarming motility; it was able to grow as a biofilm, with a high attachment in the 

first stage of growth and without a further development. All these data can be 

interpreted  to show that: 

1. only the cheA1 gene is involved in swimming motility; 

2. both cheA1 and cheA2 are important for adhesion and biofilm 

development, since in their absence an early attachment without 

development is observed; notably, the attachement seems to be stronger 

and lasting for a longer time in ΔcheA2 mutant; 

3. cheA3 gene seems to inhibit swarming motility, as its deletion restore 

swarming behaviour.  

Depending on the above reported conclusions, it seems that cheA2 gene plays an 

important role on swarming motility; indeed, when it is deleted, cells do not show 

swarming; in addiction to this, the fact that the mutant in cheA1 gene showed 

branches patterns that do not expand, could be related to the positive regulation of 

CheA2 (which stimulates swarming in certain conditions) and the negative 

regulation by CheA3 that does not allow branches to expand. 

Finally, it can be assumed that KF707 wild type strain doesn’t show swarming 

motility because of the negative regulation exerted by CheA3 which is stronger 

than the positive regulation due to CheA2.  
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CHAPTER F 

Searching for a Quorum Sensing (QS) system in  

Pseudomonas pseudoalcaligenes KF707 

 

F-1 Introduction 

F-1.1 Bacterial Quorum Sensing: general features 

In natural habitats, bacteria exist as members of communities and 

communication whitin these communities modulates the activities of individual 

cells in the entire population, thus imparting a social behaviour. Bacteria 

synchronously control gene expression in response to changes in cell density, 

switching between two distinct programs: one that is favored at low-cell-density 

(LCD) for individual, asocial behaviors, and another that is favored at high-cell-

density (HCD) for social, group behaviours (Parsek and Greenberg, 2005; Waters 

and Bassler, 2005; Williams et al., 2007; Novick and Geisinger, 2008). This is 

viewed as an evolutionary adaptation to survive in changing environment and to 

benefit the population as a whole.  

Cell-to-cell communication is possible thanks to the production, release and 

detection of extracellular chemicals and is referred to as ‘quorum sensing’ (QS). 

The concentration of these signal molecules depends both on biotic and abiotic 

factors such as the amount of signal producers, diffusion and presence of 

inactivating factors. 

During bacterial growth, different molecules from the cellular metabolic turnover 

diffuse or are secreted in the culture media and any of these may be a potential QS 

signal. Hence it is important to define the features that distinguish a probable QS 
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signal molecule from other metabolites (Torres et al., 2007). To act as a QS signal a 

molecule requires: 

• accumulation of a critical threshold concentration in the extracellular milieu 

during a specific growth stage or under certain physiological conditions or in 

response to particular environmental changes; 

• recognition by a specific cell surface or cytoplasmic receptor; 

• ability to induce a concerted cellular response that extends beyond the 

physiological adaptations required to metabolize the molecule (Winzer et al., 

2002); 

• positive, autoinductive feedback loop to amplify QS signal molecule production, 

therefore the term “autoinducer” is sometimes used to describe the QS signal 

molecule. 

 

To date QS circuits have been found in many different bacterial species and shown 

to control the expression of a wide spectrum of functions, including 

bioluminescence, plasmid conjugative transfer, synthesis of antibiotics and 

extracellular hydrolytic enzymes, motility and production of virulence factors (Laue 

et al., 2000). 

 

F-1.2 Bacterial QS systems  

The principles of QS mediated gene expression is common among bacteria, 

even though the molecular mechanisms and signal molecules involved are different 

(Camara et al., 2002). 
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F-1.2.1 Vibrio fischeri luxI/luxR system: the QS paradigm in gram 

negative Bacteria 

The first observed QS system was that of the marine Vibrio fischeri and 

is considered a model of the basic mechanism of QS. This bacterium lives in 

symbiotic association with some eukaryotic hosts: they supply V. fischeri with a 

safe and nutrients rich environment while the bacterium provides the host with light 

(Ruby et al., 1992; Ruby, 1996; Visick and McFall-Ngai, 2000) which is used for 

specific purposes. For example, in the squid Euprymna scolopes–V. fischeri 

association, the squid has evolved an antipredation strategy; the fish, Monocentris 

japonicus uses the light produced by V. fischeri to attract a mate (Nelson and 

Hastings, 1979). Although the purposes are different, the regulation of light 

production by V. fischeri  in the specialized light organs is identical: as the V. 

fischeri culture grows, it produces via the LuxI synthase the autoinducer N-3-oxo-

hexanoyl-L-homoserine lactone (3-oxo-C6-HSL) which diffuses in the extracellular 

environment and trapped inside the light organ. At a critical threshold 

concentration, HSL signals form complexes more efficiently with LuxR. The latter 

functions both to bind the autoinducer (sensor) and to activate transcription 

(response regulator) of the luxICDABE operon (Engebrech, 1983; Hanzelka and 

Greenberg, 1995; Schaefer et al., 1996; Stevens et al., 1999), which encodes the 

luciferase enzymes required for light production. Interaction of LuxR with the 

autoinducer unmasks the LuxR DNA binding domain, allowing LuxR to bind the 

luxICDABE promoter (at the lux-box site) and activate transcription (Hanzelka and 

Greenberg, 1995). This action results in an exponential increase in both autoinducer 

production and light emission. The LuxR-AHL complex also acts as a negative 
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regulator on luxR expression, thus establishing a negative feedback loop, i. e. a 

compensatory mechanism that decreases luxICDABE  expression in response to the 

positive feedback circuit. 

 

 

    F-1.2.2 lux-like QS systems in Gram- Bacteria 

Members of the LuxI/LuxR-type proteins families are widely 

distributed among a large number of Gram negative bacteria (Manefield and 

Turner, 2002). Some examples, associated to their functions, are listed in the Table 

F-1.2.2.1.  

 

Table F-1.2.2.1: lux-like QS systems 
Organism  LuxI/LuxR 

homologues 
Signal molecules Phenotype  

 
Aeromonas hydrophila  
 

AhyI/AhyR C4-HSL, C6-HSL Biofilms, exoproteases, virulence 

Aeromonas salmonicida AsaI/AsaR C4-HSL, C6-HSL Exoproteases 
 

Agrobacterium tumefaciens TraI/TraR 3-Oxo-C8-HSL Plasmid conjugation 
 

Burkholderia cenocepacia  
 
 

CepI/CepR C6-HSL, C8-HSL Exoenzymes, biofilm formation, 
swarming 
motility, siderophore, virulence 
 

Chromobacterium violaceum  
 

CviI/CviR C6-HSL Exoenzymes, cyanide, pigment 

Erwinia carotovora ExpI/ExpR 
CarI/CarR 

3-Oxo-C6-HSL Carbapenem, exoenzymes, 
virulence 
 

Pantoea (Erwinia) stewartii EsaI/EsaR 3-Oxo-C6-HSL Exopolysaccharide 
 

Pseudomonas aeruginosa  
 
 

LasI/LasR 
RhlI/RhlR 

C4-HSL; C6-HSL, 3-oxo-C12-
HSL 

Exoenzymes, exotoxins, protein 
secretion, biofilms, 
swarming motility, secondary 
metabolites, 
4-quinolone signalling, virulence 
 

Pseudomonas aureofaciens PhzI/PhzR C6-HSL Phenazines, protease, colony 
morphology, 
aggregation, root colonization 
 

Pseudomonas chlororaphis PcoI/PcoR C6-HSL Phenazine-1-carboxamide 
 

Pseudomonas putida PpuI/PpuR 3-Oxo-C10-HSL, 3-oxo-C12-HSL Biofilm development 
 

Rhizobium leguminosarum 
bv. viciae 
 
 

RhiI/RhiR 
CinI/CinR 

C14 : 1-HSL, C6-HSL, C7-HSL, 
C8-HSL, 
3-oxo-C8-HSL, 3-hydroxy-C8-
HSL 

Root nodulation/symbiosis, 
plasmid transfer, 
growth inhibition; stationary 
phase adaptation 
 

Rhodobacter sphaeroides CerI/CerR 7-cis-C14-HSL  Aggregation 
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The figure F-1.2.2.1 shows Pseudomonas aeruginosa QS systems. 

 

 
Fig. F-1.2.2.1: QS system in Pseudomonas aeruginosa. Taken and adapted from Miller 
and Blasser, (2001). Pseudomonas aeruginosa owns two LuxI/LuxR-like QS systems. 
The LasI protein produces N-(3-oxo-dodecanoyl)-homoserine lactone (triangles), and 
the RhlI protein synthesizes N-(butryl)-homoserine lactone (pentagons). The LasR 
protein binds the N-(3-oxo-dodecanoyl)-homoserine lactone when this signal molecule 
reaches a critical threshold level. The LasR-autoinducer complex induces the 
transcription of several genes and also rhlR is expressed. RhlR binds the N-(butryl)-
homoserine lactone and activates the transcription of different subsets of genes. The 
LasI autoinducer interferes with binding of the RhlI-autoinducer to RhlR, guaranteing a 
hierarchic order of the QS systems. The Pseudomonas quinolone signal (PQS) is an 
additional regulatory link between the Las and Rhl quorum sensing circuits (not shown 
in the figure). The expression of PQS requires LasR, and PQS in turn induces 
transcription of rhlI. 

 

These systems are used for intraspecies communication as the structures of 

LuxR proteins suggest that they possess specific binding pockets that allow each 

LuxR to bind and be activated only by a cognate signal (Vannini et al., 2002; 

Zhang et al., 2002).  

Table F-1.2.2.1: continued 
Serratia liquefaciens MG1  SwrI/? C4-HSL, C6-HSL Swarming motility, exoprotease, 

biofilm 
development, biosurfactant 
 

Yersinia enterocolitica YenI/YenR C6-HSL, 3-oxo-C6-HSL, 3-oxo-
C10-HSL, 
3-oxo-C12-HSL, 3-oxo-C14-HSL 
 

Swimming and swarming motility 
 

Yersinia pseudotuberculosis YpsI/YpsR 
YtbI/YtbR 

C6-HSL, 3-oxo-C6-HSL, C8-HSL Motility, aggregation 
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F-1.2.3 Structure and function of the LuxR proteins family 

  The response regulators consist of two domains: the amino-terminal 

domain is involved in binding to the HSL autoinducer, and the carboxyl-terminal 

helix-turn-helix motif domain is required for DNA binding  and transcriptional 

activation (Shadel et al., 1990; Slock et al., 1990; Choi and Greenberg, 1991; 

1992). In each case, the LuxR type proteins bind a similar DNA promoter element 

termed “lux box.” The lux box consists of a 20-base-pair palindromic DNA 

sequence situated at approximately -40 from the start site of transcription of a given 

target gene (Fuqua et al., 1994). Moreover, the amino-terminal domain inhibits 

DNA binding by the carboxyl-terminal domain and this inhibitory function is 

eliminated when LuxR binds the autoinducer. Although the LuxIs produce a highly 

related family of molecules, in general, the HSL autoinducers are not capable of 

cross-stimulation of a noncognate system. 

However many response regulators can be activated by related compounds, 

which explains their utility as components of HSL biosensors based on LuxR 

protein and the promoter of a target gene fused to a reporter such as lacZ (Bainton 

et al., 1992; Winson et al., 1998). Furthermore, in several cases autoinducer 

analogues inhibit cognate autoinducer binding to LuxR and, therefore, inhibit target 

gene activation (Gray et al., 1994; Schaefer et al., 1996; Zhu et al., 1998). 

Not all the members of the LuxR family function as transcriptional activators 

but like repressors. As more bacterial genomes are sequenced, the presence of 

additional LuxR homologues has become evident. Many of these do not have an 

associated synthase on their genome and are therefore referred to as orphan LuxR 
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homologues (Fuqua, 2006). Their predicted protein sequences have the amino-

terminal-binding domain and carboxy-terminal domain, typical of the LuxR family 

of proteins. Unlike synthase-associated LuxR proteins, orphan LuxR homologues 

do not directly control the synthesis of autoinducers, but they can interact with non-

cognate ones to expand the existing regulatory network of the bacterium even 

responding to signals produced by nearby cells belonging to different species. 

 

F-1.3 Structural Diversity in QS Signal Molecules 

Several chemically distinct classes of QS signal molecules have been 

identified: (i) N-acyl homoserine lactones (AHLs) produced by many Gram-

negative proteobacteria and composed of a homoserine lactone ring carrying C4–

C18 acyl chains; (ii) g-butyro-lactones produced by streptomycetes (Yim et al., 

2006); (iii) 4,5-dihydroxy-2,3-pentandione (DPD) derivatives referred to as AI-2 

synthesized by different Gram-negative and Gram-positive bacteria and thought to 

function as interspecies signal molecule (Winzer et al., 2002; Winzer & Williams 

2003 ; Vendeville et al., 2005 ); (iv) linear, cyclic, or modified peptides 

(autoinducing peptides, AIPs) used by Gram-positives (Yim et al., 2006);  (v) 

diffusible signal factors (DSF) produced by pathogens such as Xanthomonas 

campestris (Torres et al, 2007), Xylella fastidiosa (Chatterjee et al., 2008), and 

members of the Burkholderia cepacia spp (Boon et al., 2008; Deng et al., 2010), 

and (vi) the Pseudomonas aeruginosa quinolone signal (PQS) 2-heptyl-3-hydroxy-

4-quinolone (Pesci et al., 1999).  
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F-1.4 Synthesis and detection of AHLs signal molecules 

Presently, the most studied QS molecules belong to the AHL family produced 

by various Gram-negative bacterial genera. All AHLs reported to-date are 

characterized by a homoserine lactone ring unsubstituted in the b- and g- positions 

which is N-acylated with a fatty acyl group at the a-position 1. The fatty acyl chain 

is linked to the lactonized homoserine ring via an amide bond. The compound is 

synthesized from two substrates, S -adenosyl-L–methionine (SAM), from amino 

acid biosynthesis, and an acylated-acyl carrier protein (acyl-ACP), from lipid 

metabolism (More et al., 1996; Schaefer et al., 1996).  LuxI and its homologous 

proteins synthesize AHL by catalyzing the transfer of the acyl group from the acyl-

ACP to the amine of SAM. This leads to the release of ACP, followed by 

homoserine lactone ring formation and dissociation of the AHL from the synthase 

(Pappas et al., 2004). 

The acyl chain has various lengths, saturation levels and oxidation states. In 

addition, some AHLs also have unsaturation with Z stereochemistry in the 7 

position in a chain of 14 carbons 4 (Pesci et al., 1999; Williams et al., 2007). 

Stereochemistry at the a-centre of the homoserine lactone (HSL) ring has been 

established to be L for the V. fischeri autoinducer and by analogy all other natural 

AHLs have the same configuration. In some cases D-isomers have been synthesised 

and shown to lack activity (Bainton et al., 1992; Ikeda et al., 2001).  

 

To date, the large number of AHL QS systems have been identified via the 

use of bacterial biosensors that are able to detect the presence of AHLs. These 

biosensors do not produce AHLs and contain a functional LuxR-family protein 
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cloned together with a cognate target promoter (usually the promoter of the cognate 

luxI synthase), which positively regulates the transcription of a reporter gene. As 

many biosensors detect a limited range of AHLs, it is crucial, when testing a 

bacterium for AHL production, to use several biosensors, each responding to AHLs 

with different structural features (McClean et al., 1997; Shaw et al., 1997; Camara 

et al., 1998; Ravn et al., 2001). Separation by TLC coupled with detection by AHL-

biosensors gives a rapid and direct visual index of the AHL(s) produced by the 

tester bacteria. AHLs cannot be clearly identified using TLC and their structures are 

unequivocally determined by mass spectrometry (MS) and nuclear magnetic 

resonance spectroscopy (NMR) (Schaefer et al., 2000). MS has been shown as the 

most valuable tool for the identification and characterisation of AHLs with 

detection levels in the picomole range. 

 

F-1.5 Role of QS in  swarming motility and biofilm development 

Biofilms represent the natural bacterial lifestyle and are thought to be 

ubiquitous in nature (Costerton et al., 2001). It has been reported that biofilm 

development proceeds through a temporal series of stages (Palmer and White, 

1997). In the initial phase, bacteria attach to a surface, aggregate and then 

proliferate to form microcolonies. These microcolonies are hydrated structures in 

which bacterial cells are enveloped in a matrix of selfproduced slime, referred to as 

exopolysaccharide (EPS). When the nutrients availability becomes limiting due to 

increased diffusion distances, growth will decrease and biofilm development will 

reach a steady-state. Mature biofilms typically consist of “mushrooms” of cells 

separated by channels which allow a convective flow to transport nutrients to 
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interior parts of the biofilm and remove waste products. The involvement of QS in 

the regulation of biofilm formation was originally reported in P. aeruginosa 

(Davies et al., 1998) architecture. A role for AHL-mediated quorum sensing in 

biofilm formation has also been demonstrated in B. cepacia (Huber et al., 2001; 

2002) Aeromonas hydrophila (Lynch et al., 2002) Pseudomonas putida (Steidle et 

al., 2001). Quorum sensing systems are usually involved in biosurfactant 

production and swarming motility, allowing bacteria to disseminate and colonize 

new solid surfaces. It was reported that swarming behavior requires the integration 

of chemical and physical signals, which leads to the physiological and 

morphological differentiation of the bacteria into swarmer cells. Moreover, it’s 

clear that many of these regulatory pathways that lead to swarming behavior also 

affect the formation of biofilms. Pseudomonas pseudoalcaligenes KF707 is able to 

grow in the form of a biofilm (Tremaroli et al., 2011); we have also observed (this 

Thesis work) that the cheA3 gene, codifying for a histidine kinase signal 

transduction, is possibly involved in a regulatory pathway which allows swarming 

motility (§ E). Owing to this, we thought necessary to search for the presence of a 

QS system in KF707 cells as QS could also be linked to chemosensory pathways 

driving KF707 cellular adhesion to solid surfaces. 

 

F-2 Materials and Methods 

F-2.1 Bacterial strains and growth conditions 

Pseudomonas pseudoalcaligenes KF707 was grown on either reach (LB, LB 

supplemented with Mops 50 mM and LB without NaCl) and minimal media (SA 

and MSM with biphenyl). Biosensor strains (E. coli pSB401, Agrobacterium 
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tumefaciens NTL4 pZLR4, Agrobacetrium tumefaciens WCF47 (pCF218)(pCF372) 

and Chromobacterium violaceum CV026), were grown on LB medium with the 

appropriate antibiotics. All the biosensor strains used in this study do not produce 

AHLs and contain a functional LuxR-family protein cloned together with a cognate 

target promoter which positively regulates the transcription of a reporter gene  

The composition of media and strains genetic features and resistance phenotypes 

are described in the “General Materials and Methods common to Chapters D, E, F”.  

 

F-2.2 T-streak bioassay 

Biosensor strains Chromobacterium violaceum CV026 and Agrobacterium 

tumefaciens NTL4 pZLR4 were used in T-streak bioassay. Pseudomonas 

pseudoalcaligenes KF707 was streaked and grown at the optimal temperature on 

LB agar close to the biosensors to form a ‘T’: if AHLs are produced a phenotypic 

change (violacein and 5,5'-dibromo-4,4'-dichloro-indigo, respectively) is observed 

as a gradient with most response observed at the meeting point of the two strains. 

 

F-2.3 Extraction of N-acyl-homoserine lactones 

The organic extraction of AHLs increases many-fold the probability of 

detection by the biosensors. Pseudomonas pseudoalcaligenes KF707 was streaked 

on LB plates; a single colony was inoculated in LB and grown o/n at 30°C at 150 

rpm. 1% v/v subcultures in 750 ml of both fresh rich (LB, LB supplemented with 

Mops 50mM and LB without NaCl)  and minimal (SA and MSM with biphenyl) 

media in a 3 L Erlenmeyer flasks, were grown until the exponential, late 

exponential and stationary phases. At each time point, 250 ml of each culture were 
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centrifuged at 4°C, 6000 rpm for 30 minutes. The supernatants were transferred in 1 

L Erlenmeyer flasks, 1 volume of  acidified ethyl acetate (0.1 ml glacial acetic acid 

in 1 L ethyl acetate) was added and the supernatans were extracted twice by mixing 

with a magnetic stirrer for 4 hours. Mixed solutions were allowed to separate by 

centrigugation at 4°C, at 6000 rpm for 30 minutes; the organic phases from each 

culture were collected in clean glass beckers and the combined extracts were dried 

down under N2 flow. Extracts were resuspended in 100 µl of acidified ethyl acetate 

and used for analytic TLC or stored in glass vials tightly capped and wrapped in 

parafilm at -80°C until use. 

 

F-2.4 AHL reporter plate bioassays 

Biosensor strains Chromobacterium violaceum CV026 and Agrobacterium 

tumefaciens NTL4 pZLR4 were used for this assay. 10 ml of molten semi-solid LB 

agar (1%) were seeded with 100 µl of an over-night LB culture of C. violaceum 

CV026 and Agrobacterium tumefaciens NTL4 pLZR4 and poured immediately 

over the surface of prewarmed LB agar plates prepared in Petri dishes. When the 

overlaid agar had solidified, wells were punched in the agar with a sterile borer 

(diameter 5 mm). The wells were filled with the preparation to be assayed (solvent 

extracts, synthetic AHLs). Positive (standard AHL molecules) and negative (sterile 

LB broth) controls were included in each assay plate. The Petri dishes were 

incubated in the upright position for 48 h at 30°C, then examined for the 

stimulation of violacein in the case of C. violaceum; when A. tumefaciens NTL4 

was used as the reporter strain, the eventual production of signal molecules was 

measured by monitoring the hydrolysis of the chromogenic substrate X-Gal 
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(previously added to the plates). 

 

F-2.5 TLC and detection of AHLs 

Each AHL migrates with a characteristic mobility and results in a spot shape. 

5 ul of synthetic AHLs (purchased from Sigma and made up as 1 mM solutions in 

acified ethyl acetate) and extracted samples, were applied to C18 reversed-phase 

TLC plates (200 mm layer, Merck) and dried in a stream of cold air (as described 

by Shaw et al., 1997). Samples were separated using methanol in water (60 %, v/v). 

Once the solvent front had migrated to within 2 cm of the top of the 

chromatograms, the plates were removed from the chromatography tank, dried in 

air and overlaid with a culture of the indicator bacterium prepared as follows. For 

20x20 cm  TLC plates, 100 µl of a 10 ml over-night cultures of all reporter strains 

were used to inoculate 10 ml of LB medium and the new cultures were grown to 

late exponential phase. 5 ml of each culture was added to 45 ml of the same melted 

medium containing 0,7% agar maintained at 45°C (50 µg/ml of X-Gal were added 

when Agrobacterium tumefaciens strains were used as biosensors since they have 

the lux-like promoter fused to lacZ reporter gene). The cultures were mixed 

thoroughly and immediately spread over the surface of the developed plates. After 

the agar solidified, the coated plates were incubated at 28°C in a closed plastic 

container until when blue and purple spots appeared (Agrobacterium tumefaciens 

strains and Chromobacterium violaceum strain respectevely); for  AHLs detection 

using E. coli pSB401 biosensor strain based on the lux reporter system, the TLC 

plate overlaied with the culture, was incubated over-night at 37°C and then exposed 

for 10 minutes to a chemiluminescence sensitive film (Biomax Light Film, Kodak, 
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Perkin Elmer); finally, the signals were detected by developing and fixing the film 

with Kodak developer and fixing liquids. 

 

F-2.6 KF707 growth as biofilm for AHLs extraction 

Biofilms were grown on the inside of silicone tubing in a method similar to 

that previously described (Booth et al., 2011). LB medium from a reservoir was 

pumped through 1 m long silicone tubing preceded by a bubble trap. After initial 

setup, the tubing was inoculated with 1 ml of over-night subculture using a 30 

gauge needle. This was allowed to sit for 2 h to allow the cells to attach to the 

tubing wall, then the flow was started at approximately 0.5 ml/min. Biofilms were 

grown for 48 h. This growth time was necessary in order to allow sufficient 

biomass to accumulate on the interior of the tubing. Medium  and loosely attached 

cells were allowed to drain from the tubing to a sterile Ermenleyer flask capped 

with a silicone lid. The cell mass was extruded from each tube section, using a 

metal clamp, into microfuge tubes. AHLs were extracted as described above (§ F-

2.3), from both cell mass and collected supernatant and used for TLC analyses (§ F-

2.5). 

 

F-2.7. Genome analysis for lux homologous searching 

KF707 genome data were used to search for luxI/luxR homologues. 

Nucleotide and protein BLAST were performed using a dataset of luxI homologue 

sequences to assess the percentage of similarity. Conserved domains were also 

identified and KF707 genome data were used to investigate the presence of these 

domains typical of LuxI/LuxR proteins. 



   Chapter F 

	   112	  

 

F-3. Results  

In this study, the ability of Pseudomonas pseudoalcaligenes KF707 to 

produce signal molecules involved in quorum sensing (QS) was assessed. Since 

KF707 strain belongs to Gram negative bacteria, having in general acyl-

homoserine-lactone (AHLs) as quorum sensing molecules,  the presence of these 

compounds was investigated. Based on the regulation of QS system in Gram 

negative bacteria, biosensors sensitive to a wide range of AHLs were developed 

(reviewed in Venturi et al., 2006). These biosensors usually carry a plasmid where 

a reporter gene transcription is regulated by the bound of the complex signal 

molecule/response regulator LuxR-like to the lux-box promoter region. Generally, 

LuxR-like response regulators are able to bind only the signal molecule produced 

by its cognate LuxI-like synthase. The specifity of LuxR-like proteins in binding 

cognate AHLs seems to depend on the presence of a box region in LuxR which can 

fit perfectly with a specific ligand, ensuring an intraspeciees communication. 

However, some LuxR were shown to be sensitive to similar compounds, while 

others can bind a wide range of AHLs. 

Here, reporter strains E. coli pSB401, Chromobacterium violaceum CV026, 

and Agrobacetrium tumefaciens WCF47 (pCF218)(pCF372) and NTL4 pZLR4 

were used. 

 

F-3.1. Agar-Bioassays  for the detection of  QS molecules 

Chromobacterium violaceum CV026 (violacein pigment based biosensor, 

sensitive to C6-3-oxo-AHL, C8-AHL, C8-3-oxo-AHL and C4-AHL) and 
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Agrobacterium tumefaciens NTL4 pZLR4 (a β-galactosidase based biosensor, 

sensitive to all 3-oxo-AHLs, C6-AHL, C8-AHL, C10-AHL, C12-AHL, C14-AHL, 

C6-3-hydroxy-AHL, C8-3-hydroxy-AHL and C10-3-hydroxy-AHL) were used for 

a preliminary investigation by T-streak assay. Pseudomonas pseudoalcaligenes 

KF707 was streaked and grown at the optimal temperature on LB agar close to the 

biosensors to form a ‘T’; as a positive control, drops of synthetic AHLs were 

spotted close to the biosensors. This test showed that KF707 was not able to trigger 

a response in both the biosensor strains.  

Usually, bacteria owning a QS system produce AHLs at a very low 

concentration, that is far below the threshold of sensitivity of the biosensor. In order 

to abtain concentrated signal molecules, the extraction in organic solvent was 

performed from KF707 cultures (§ F-2.3). Moreover, as the synthesis of 

hypothetical QS molecules depends on bacterial growth phase and nutrient 

conditions, the extractions were performed from cultures grown in different media 

and stopped at different growth phases (exponential, late exponential and stationary 

growth phases). Indeed, it has been reported (Yates et al., 2002) that the AHL 

lactone ring is readily hydrolysed under alkaline conditions to form the 

corresponding N-acyl-homoserine compound, which is inactive as a QS signal 

molecule. In this respect, we added buffer to culture media. Extractions were 

performed from planktonic cultures with acidified ethyl acetate (0.1 ml glacial 

acetic acid in 1 L ethyl acetate); the organic phases were collected and dried down 

under N2 flow. Extracts were resuspended in 100 µl of acidified ethyl acetate and 

used for analytic TLC or stored in glass vials tightly capped and wrapped in 

parafilm at -80°C until use. The extracts were at first used for the reporter plates 
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bioassay. As shown shown in Fig. F-3.1.1 KF707 is not able to producesignal 

molecules belonging to th AHLs class. 

 

 

Fig. F-3.1.1: Biosensor strains Chromobacterium violaceum CV026 and Agrobacterium 
tumefaciens NTL4 pZLR4 were used for this assay. The figure shows the results only for the 
reporter Agrobacterium tumefaciens NTL4 pZLR4. 10 ml of molten semi-solid LB agar (1%) 
were seeded with 100 µl of an overnight LB culture of C. violaceurn CV026 and Agrobacterium 
tumefaciens NTL4 pLZR4 (X-Gal was added to the agar since it is a lacZ based biosensor) and 
poured immediately over the surface of prewarmed LB agar plates prepared in Petri dishes. When 
the overlaid agar had solidified, wells were punched in the agar with a sterile borer (diameter 5 
mm). The wells were filled with the preparation to be assayed (solvent extracts, synthetic AHLs). 
Positive (synthetic AHLs) and negative (sterile LB broth) controls were included in each assay 
plate.  On the left is shown the plate with extracts from KF707 spent medium. On the right the 
positive control, which allowed the formation of a coloured ring around the well, is shown. 
 

       F-3.2. TLC analyses on planktonic and biofilm organic extracts 

Thin layer chromatography was also performed on extracts obtained from 

both planktonically and biofilm grown bacteria; samples, positive and negative 

controls, were applied to C18 reversed-phase TLC plates and where allowed to 

separate using methanol/water (60 % , v/v). After separation, the TLC plates were 

removed from the chromatography tank, dried in air and overlaid with a culture of 

the indicator bacterial strains in soft agar. Biosensor strains (E. coli pSB401, 

Chromobacterium violaceum CV026, Agrobacterium tumefaciens NTL4 pZLR4 

and Agrobacetrium tumefaciens WCF47 (pCF218)(pCF372) were all used in this 
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assay. X-Gal was added to the soft agar in which Agrobacetrium tumefaciens were 

suspended, since they own a reporter system based on the lacZ gene. All the TLC 

plates, each overlaied with one of the different reporter strains, were incubated at 

the optimal temperature, until when spot were visible. Only plates overlaided with 

E. coli pSB401 (based on lux operon reporter system and sensitive to C6-AHL, C8-

3-oxo-AHL and C8-AHL), after over-night incubation were exposed for 10 minutes 

to a chemiluminescence sensitive film (Biomax Light Film, Kodak, Perkin Elmer) 

and the signals were detected by developing and fixing the film with Kodak 

developer and fixing liquids (Fig. F-3.2.1 and Fig. F-3.2.2). TLC analysis and 

detection with all these resporter strains showed the lack of AHLs production by 

KF707 strain. 

 

 

Fig. F-3.2.1: AHLs detection using E. coli pSB401. C6 (lanes 1 and 2), 3-oxo-C6 (lanes 3 
and 4) and 3-hydroxy-C6 (lanes 5 and 6) were purchased from Sigma. This positive control 
experiment was performed to set the optimal condition for detection of AHLs. The same 
results were obtained when all the other reporter strains  (§ F-2.1) were used. 
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Fig. F-3.2.2: AHLs detection after TLC. Lane 1: standard 3-oxo-C6 AHL. Lane 2-9: 
KF707 extracts from culture grown in different nutritional conditions, pH value and 
stopped at different growth phases. The results here shown were obtained using E. coli 
pSB401 as reporter strains. The same results were obtained when all the other reporter 
strains  (§ F-2.1) were used. 
 
 
 

      F-3.3. Bioinformatics analysis on Pseudomonas pseudoalcaligenes KF707  

      genome for luxI/luxR homologues systems searching 

RAST tool was used for KF707 genome annotation. The presence in the 

genome of gene codifying for LuxI/LuxR proteins was invastigated. Twenty-one 

genes codifying for LuxR trancriptional regulator proteins were found. A BLASTp 

run was performed using aminoacidic sequence of known autoinducer binding 

proteins LuxR as queries against KF707 genome sequence. Results showed that all 

the 21 hypotetical LuxR response regulators in KF707 genome lack the autoinducer 

binding domain (Fig. F-3.3.1) which is typical of LuxR response regulator able to 

bind AHL molecules. Moreover they can not be even considered as LuxR orphan 

proteins (§ F-1.2.3). 
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KF707 putative transcription regulators LuxR showed the HTH (helix-turn-helix) 

superfamily domain which is the C-terminal DNA-binding domain of LuxR-like 

proteins. Proteins belonging to this group are response regulators; some act as 

transcriptional activators, others as transcriptional repressors. Many are active as 

homodimers. Many are two domain-proteins in which the DNA binding property of 

the C-terminal DNA binding domain is modulated by modifications of the N-

terminal domain. The group also includes small proteins which lack an N-terminal 

signaling domain, such as Bacillus subtilis GerE. These LuxR family regulators 

may share a similar organization of their target binding sites. For example the LuxR 

dimer binds the lux box, a 20 bp inverted repeat, GerE dimers bind two 12 bp 

consensus sequences in inverted orientation having the central four bases overlap, 

and the NarL dimer binds two 7 bp inverted repeats separated by 2 bp. 

 

 

Fig. F-3.3.1: LuxR transcripational regulator domains. LuxR homologues found in KF707 do not 
possess the Autoinducer Binding Domain (blue colour in the figure), typical of LuxR with the 
ability to bind QS signal molecules. 
 
 

The presence of LuxI-like proteins was also investigated. It has been reported 

that they don’t show a high degree of similarity at the aminoacidic sequence. All 

the LuxI synthase were found only after the isolation of mutants, by means of 

screening using biosensors, not able to produce AHLs molecules. 

Conserved domains analysis showed that the NAT  (N-acyl-transferase) domain 
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(Fig. F-3.3.2) is typical of all the known autoinducers synthases. Proteins with NAT 

superfamily domain were found in KF707 genome too, but none of them is 

associated to the production of signal molecule involved in QS circuit. 

 

 

Fig. F-3.3.2: Conserved domains of aiutoinducer synthases in Gram negative bacteria. 

 

F-4. Discussion 

In this study the ability of Pseudomonas pseudoalcaligenes KF707 to produce 

signal molecules belonging to the AHL (acyl-homoserine-lactone) class was 

investigated. Cell-to-cell communication is a necessary trait for bacterial 

populations inhabiting the soil or particular hostile environments. In general QS 

systems facilitate the coordination of population behaviour to enhance access to 

nutrients or specific environmental niches, collective defence against other 

competitor organisms or community escape where survival of the population is 

threatened (Williams, 2007). Bacteria belonging to genera which occupy a wide 

variety of environmental niches – from marine and freshwater environments to soil, 

plants and animals, including many pathogens, symbionts, extremophiles and plant-

growth-promoting bacteria – produce AHLs. Examples include species of 

Acidithiobacillus, Acinetobacter, Aeromonas, Agrobacterium, Brucella, 

Burkholderia, Erwinia, Enterobacter, Chromobacterium, Hafnia, Mesorhizobium, 

Methylobacter, Paracoccus, Pseudomonas, Ralstonia, Rhodobacter, Rhizobium, 
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Rhanella, Serratia, Sinorhizobium, Vibrio and Yersinia (Williams et al., 2007). 

Many of these bacteria produce multiple AHLs and possess more than one AHL 

synthase. So far, no AHL-producers have been found among strict anaerobes. A 

study using Pseudomonas strains revealed that, in contrast to soil isolates, all those 

isolated from plants produced AHLs. These signal molecules have been detected in 

natural habitats such as naturally occurring biofilms or bacterial aggregates.  

Since the most of environmental Gram-negative bacteria own a lux-like 

quorum sensing system, it was appealing look for a homologue system in P. 

pseudoalcaligenes KF707. Moreover, KF707 strain must own a cell-cell 

communication system, since it is able to grow as biofilm and this imply the need 

of exchanging informations in the bacterial population.  

Notably, this present study clearly shows the absence from KF707 cells of 

quorum sensing molecule belonging to the lux-like group.  

Our finding suggests that KF707 may produce either structurally novel AHLs 

that were not detected by the biosensors used here or AHLs molecules were present 

at a concentration far below the threshold of the biosensor sensivity. Indeed, it has 

been reported in the past, that long chain AHLs may exhibit low permeability 

through the cell membrane, which could affect purification and detection; in this 

latter case, AHL extraction using the whole culture would be compelling. An 

alternative explanation for the results reported here, is that even though KF707 cells 

do not produce AHLs like compunds, they may use other molecules such as 

aminoacids, small peptide or metabolic intermediates as QS signals. 

Future investigation focused on the isolation of possible QS signal molecules 

produced by KF707 might be based on metabolomics analysis of KF707 cells 
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grown under variable growth conditions, such as for example, plancktonic cultures 

versus biofilms. This approach will hopefully allow us to identify those metabolites 

and/or metabolic precursors forming the complex QS signal network of 

Pseudomonas pseudoalcaligenes KF707. 
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Conclusions  
 

Prokaryotes, generally known as microorganisms or bacteria, represent the 

most ancient and simplest form of life on our planet. They evolved and adapted to 

various and even harsh surrounding enviroments with a great impact on all living 

organisms. Although a large number of microorganisms are related with infectious 

diseases, “friendly bacteria” also do exist: they are naturally involved in 

biogeochemical cycles and they establish symbiotic associations with both plants 

and  animals. Furthermore, bacteria play a preminent role in numerous human 

activities such as for example agriculture, genetic engineering - for antibiotics and 

drugs production - and in environment cleaning up procedures. 

The degradation of toxic compounds through the use of microorganisms is 

referred to as bioremediation and it has been recognized as an important means for 

the recovery of polluted sites. The efficency of this approach depends non only on 

the ability of microorganisms to degrade pollutants, but also in their capacity to 

tolerate intermediate metabolites produced during degradation of these compounds. 

Owing to this, bacteria must be capable to sense the surrounding environment and 

performe a chemotactic response towards nutrients necesarry for survival.  

Moreover, in natural environments, bacteria are associated to a solid surface 

as biofilms, that consist of organized cellular communities where multiple bacterial 

species may coexist and form consortia. In bacterial biofilms, intra- and inter-

species cell-to-cell comunications are important traits which allow bacteria to 

modulate and synchronize their activities, thus imparting a social behaviour. 

Communication in the microbial world is referred to as quorum sensing  (QS), a 
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phenomenon dependent on production, release and perception of specific molecules 

known as autoinducers.  

 

Pseudomonas pseudoalcaligenes KF707 is a soil Gram negative bacterium 

isolated in the ’80 in Japan near a biphenyl manifacturing plant and able to grow 

using biphenyl as the sole carbon source (Furukawa et al., 1986), to which is 

chemically attracted. Moreover, KF707 strain tolerates the oxydative stress due to 

toxic metal oxyanions such as tellurite and selenite (Di Tomaso et al., 2002; 

Zanaroli et al., 2002; Tremaroli et al., 2007). Since many polluted sites are 

contaminated not only by biphenyl (BP), but also by BP-chloroderivatives known 

as PCBs - and metal oxyaniones, KF707 owns all the necessary features to be used 

in bioremediation procedures for the recovery of co-contaminated sites. 

 

Based on the above reported considerations underlining the peculiar 

phenotypic and physiological features of KF707, an important fraction of this 

Thesis work has been focused on determining the molecular nature of such a unique 

microorganism.  

The genome project (see Chapter C) provided a large set of data concerning 

the various physiological properties of this strain. Interestingly, multiple putative 

operons encoding for different chemotactic pathways and therefore multiple cheA 

genes (cheA1, cheA2, cheA3) were found (see Chapters C and D). Their functions 

were compared with those previously attributed to a cheA1 gene in a KF707 mutant 

strain constructed by a mini-Tn5 transposon insertion (Tremaroli et al., 2011), thus 

the role of cheA multiple genes in motility, chemotactic response and biofilm 
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formation were assessed (see Chapter E). Finally, the ability of KF707 strain to 

produce signal molecules possibly involved in cell-to-cell communication, was also 

investigated (see Chapter F). 

 

The findings described in this Thesis can be divided into three main sections: 

I. Genome assembly and annotation; 

II. Molecular and functional characterization of chemotactic genes, with particular 

interest on cheA genes codifying for histidine kinase involved in chemosensory 

signalling pathways; 

III. Investigation on a probable lux-like quorum sensing (QS) mechanism in KF707. 

 

“The genome project of Pseudomonas pseudoalcaligenes KF707”, started in 2010, 

has been performed in collaboration with Prof. R.J.Turner (University of Calgary, 

Calgary, Ca) and Prof. M.Attimonelli (University of Bari, Bari I). The genome 

analysis,  not only has provided insights on the numerous and unique physiological 

traits of KF707 strain, but it has also been useful for the acquisition of 

bioinformatics skills with regard to the assembly and the annotation of a microbial 

genome. 454-pyrosequencing and Illumina sequencing technologies were employed 

and the datasets obtained were assembled using the Newbler and AbySS softwares. 

Generally, the use of different sequencing and assembly approaches is highly 

recommended as they provide complementary data, thus allowing to obtain a high 

value of genome coverage. Moreover, the KF707 Optical Map was also constructed 

and provided information on the position of the contigs, the size of the left gaps and 

even the genome size, which was estimated to be approximately 5.95 Mb with a GC 
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content of 64.24%. Assembled genome was annotated using the RAST tool and 

6.512 CDSs were identified. Notably, biochemical pathways involved in the 

degradation of biphenyl, PCBs and other aromatic compounds such as phenol, 

benzoate and chlorobenzoic acids were identified. Additionally, genes involved in 

cobalt, zinc, cadmium, arsenic and tellurium tolerance were also found (Triscari et 

al., 2012). Genome annotation data showed that KF707 strain owns several putative 

chemotaxis pathway and in particular two additional cheA genes, named cheA2 and 

cheA3. Since previous works showed that the KF707 cheA1 mutant strain is 

impaired in motility, chemotaxis and biofilm formation (Tremaroli et al., 2011), we 

investigated the possible roles of the cheA2 and cheA3 genes. Deleted mutants in 

cheA2 and cheA3 genes and also double mutants cheA1/cheA2 and 

cheA1/cheA3were constructed. These mutant strains, together with cheY and cheZ 

mutants, were used to test their motile behaviour in the absence or in the presence 

of stimuli as well as biofilm formation. We found that the mutants cheA1::Km, 

ΔcheA2cheA1::Km, ΔcheA3cheA1::Km, cheY are impaired in motility and 

chemotaxis remarking the fact that only the cheA1 gene is responsible for 

swimming of  KF707. Further support to this conclusion derived from the ΔcheA2, 

ΔcheA3 and double mutants phenotypes. The ability of both KF707 and 

chemotactic mutant strains to form biofilm were also assessed. Interestingly, the 

ΔcheA3 mutant showed swarming motility only under specific nutrient conditions. 

The present findings on swimming motility, chemotaxis, swarming and biofilm 

formation, taken together, were interpreted to suggest that in Pseudomonas 

pseudoalcaligenes  KF707 strain, multiple factors are involved in these networks, 

as they might play different roles depending on the environmental conditions.  
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The possible presence in KF707 growing cultures of signal molecules belonging to 

the AHLs class, typical of Gram negative bacteria QS systems, was investigated. 

By means of reporter strains sensitive to a wide range of AHLs it was found that 

KF707, tested under different conditions of growth, was not able to produce these 

types of QS signal molecules. This finding tend to suggest that other classes of 

molecules might be involved in KF707 cell-to-cell communication. 

 

In conclusion, the present experimental work provides the bases for future 

investigation about the genetic and physiological features of Pseudomonas 

pseudoalcaligenes KF707. The genetic informations given by genome analysis 

represent a fundamental tool for the identification of enzymes involved in the 

degradation of toxic pollutants and it can be used to construct strains with improved 

catabolic skills. Moreover, the results obtained on the KF707 chemotactic attraction 

to aromatic compounds, its ability in swarming and in adhering to solid surfaces in 

the form of biofilms might support new strategies for the colonization of polluted 

sites. Notably, the data indicating the lack in KF707 cells of a lux-like QS system - 

which is conversely widely present in Gram negative bacteria – keeps open the 

question about the actual molecular nature of KF707 quorum sensing mechanism. 
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