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Abstract

In the last few years, the vision of our connected and intelligent information
society has evolved to embrace novel technological and research trends. The dif-
fusion of ubiquitous mobile connectivity and advanced handheld portable devices,
amplified the importance of the Internet as the communication backbone for the
fruition of services and data. The diffusion of mobile and pervasive comput-
ing devices, featuring advanced sensing technologies and processing capabilities,
triggered the adoption of innovative interaction paradigms: touch responsive sur-
faces, tangible interfaces and gesture or voice recognition are finally entering our
homes and workplaces. We are experiencing the proliferation of smart objects
and sensor networks, embedded in our daily living and interconnected through
the Internet. This ubiquitous network of always available interconnected devices
is enabling new applications and services, ranging from enhancements to home
and office environments, to remote healthcare assistance and the birth of a smart
environment.

This work will present some evolutions in the hardware and software devel-
opment of embedded systems and sensor networks. Different hardware solutions
will be introduced, ranging from smart objects for interaction to advanced iner-
tial sensor nodes for motion tracking, focusing on system-level design. They will
be accompanied by the study of innovative data processing algorithms developed
and optimized to run on-board of the embedded devices. Gesture recognition,
orientation estimation and data reconstruction techniques for sensor networks
will be introduced and implemented, with the goal to maximize the tradeoff be-
tween performance and energy efficiency. Experimental results will provide an
evaluation of the accuracy of the presented methods and validate the efficiency
of the proposed embedded systems.
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Chapter 1

Introduction

The term Ambient Intelligence (Aml) refers to a near future vision of the infor-
mation society where small, unobtrusive and ubiquitous electronic devices will
augment the environment, making it sensitive and responsive to the presence of
people and their activities. This form of context awareness of the environment will
be possible thanks to the pervasive presence of invisible technology, embedded in
the surroundings. People will seamlessly interact with such a smart environment,
without the need to be aware of its presence or composition.

The concept of ambient intelligence was been developed in the late 90s and

builds on three key technologies:

e Ubiquitous Computing: the integration of electronic systems and sensors
into everyday objects like furniture, clothing, white goods, toys and even

paint.

e Ubiquitous Communication: the ability of these objects to communi-
cate with each other and the user by means of ad-hoc and wireless network-

ing.

e Intelligent User Interfaces: which enable the inhabitants of the AmlI
environment to control and interact with it in a natural (voice, gestures)

and personalized way (preferences, context).



The objective of Aml is to broaden the interaction between human beings
and digital information through the usage of ubiquitous computing devices. Con-
ventional computing primarily involves user interfaces (Uls) such as keyboard,
mouse, and a visual display unit; while the large amount of ambient space that
encompasses the user is not utilized as it could be. Aml on the other hand
uses this space in the form of, for example, shape, movement, scent and sound
recognition or output. These information media become possible through new
types of interfaces and will allow for drastically simplified and more intuitive
use of computing devices. Examples of such devices range from common items
such as pens, watches, and household appliances to sophisticated computers and
production equipment.

The development of the AmI vision was consolidated in 2001, when the ISTAG
(Information Society Technology Advisory Group) defined four scenarios to offer
a provocative glimpse of the future that could be realized in the following 10
years [64]. Each scenario had a script that was used to work out the key develop-
ments in technologies, society, economy, and markets necessary to arrive at the
realization of the vision. In particular, a wide range of different technologies were
identified as key enablers for a pervasive ambient intelligence, such as: the devel-
opment of very unobtrusive and miniaturized computing and sensing hardware,
a seamless mobile/fixed communication infrastructure, dynamic and massively
distributed device networks, natural user interfaces, dependability and security.
In the following years, the efforts of the scientific community and the industry
contributed to a substantial technological advance in every one of these fields.

Sensors and sensing devices are one of the technologies enabling the Aml
vision, since they contribute to bridge the gap between the physical and the digital
worlds. From the user perspective, the development of innovative sensors, such
as miniaturized Micro Electro-Mechanical Systems (MEMS), wearable sensors or
depth cameras, enabled the adoption of natural interaction paradigms. Physical
objects, augmented with sensing and communication capabilities, became smart
objects, which integrate into the smart environment and give the user the ability
to exploit its physical and gestural abilities to interact with the digital world.
Sensors deployed in the environment, on the other hand, compose the sensing

interface towards the physical world of the ubiquitous digital ecosystem. With



the data gathered from the environment, intelligent and distributed systems can
monitor the ambient or the user activities and collect context information.

Large amounts of mobile and fixed sensors embedded into the environment
can be exploited when organized in Wireless Sensor Networks (WSNs), one of the
most relevant enabling technologies for AmI. The WSN design space is very wide
and spans from small, fixed Body Area Networks (BANs) for health or motion
analysis, composed of a handful of sensors nodes placed over the body; to large,
dynamic networks for environment monitoring consisting of thousand of nodes.

Despite the design of sensor nodes and networks being strongly influenced by
the application, an ubiquitous goal is the optimization of the tradeoff between
miniaturization and low-power consumptions on one side and advanced process-
ing and communication capabilities on the other. Each sensor node typically
includes one or more sensors, a wireless radio, an energy source and a low-power
microcontroller, usually with limited computational resources. The small size of
the devices, needed for an unobtrusive and effective embedding in the environ-
ment, limits the size of the batteries and components that can be used. This
gives a limit to the power consumption of the system, which can be improved
by employing energy harvesting techniques from available sources and carefully
optimizing the performed operations and data transfers, allowing the devices to
spend most of the time in low-power states. Power consumptions are also min-
imized by the adoption of ad-hoc wireless communication protocols, the radio
communications being the most power demanding task.

The advances in hardware design of embedded devices are accompanied by
advances in data processing algorithms and software development. In particular,
the availability of multiple sensor sources and large amounts of data triggered the
development of sensor fusion algorithms and artificial intelligence techniques to
extract useful information and accurate results from the gathered data. Even in
the presence of a small number of nodes, a centralized collection and processing
of sensor data is inefficient due to the high cost of radio communications and
the poor scalability of this approach. The implementation of distributed on-
board processing techniques for the sensor nodes improves the overall system
performance, while reducing the amount of data circulating within the network.

A variety of processing techniques, ranging from data filtering and compression



algorithms to advanced sensor fusion approaches, can be optimized to fully exploit
the limited resources available on small and low-power microcontrollers embedded
in smart objects or sensor nodes. In the case of networked devices, local processing
and the parallelization of the algorithms make it possible to accurately achieve
complex tasks relying on multiple resource-constrained devices.

A decade after its definition, the AmlI vision is still not as a widespread con-
cept as it was intended and has not penetrated our lives according to the expecta-
tions. The vision, instead, contributed to a decade of scientific and technological
progress, and to a wider debate on the present and future of our society. There
are still formidable challenges to be tackled by the scientific community and there
is no guarantee we will solve all of them, but the more progress we make on some,
the closer we will be to a stage where some of the initial aims are adopted.

In the last few years the vision of our connected and intelligent information
society has evolved to embrace novel technological and research trends. The dif-
fusion of ubiquitous mobile connectivity and advanced handheld portable devices,
such as smartphones and tablets, amplified the importance of the Internet as the
communication backbone for the fruition of services and data. This shift towards
mobile and pervasive computing devices triggered the adoption of innovative in-
teraction paradigms: touch responsive surfaces, tangible interfaces and gesture
or voice recognition are finally entering our homes and workplaces. We are expe-
riencing the proliferation of smart objects and sensor networks, embedded in our
daily living and interconnected through the Internet. This ubiquitous network of
interconnected devices, always available and often referred to as the Internet of
Things (IoT) is enabling new applications and services, ranging from enhance-
ments to home and office environments, to remote healthcare assistance and the
birth of smart cities.

In the context of the technological evolution introduced, the work presented in
this dissertation focuses on hardware and software co-design of embedded systems
and sensor networks.

From the hardware perspective, we aimed on system-level design: building
on top of the latest hardware advances and employing state-of-the-art integrated
technologies, such as MEMS sensors and power efficient microcontrollers, differ-
ent embedded devices were designed. Starting from the Smart Micrel Cube (SM-



Cube), a smart object equipped with an accelerometer for tangible and gestural
interaction, we designed the SmartPen, a wireless, pen-shaped, 3D interaction
device, which embeds a full Inertial Measurement Unit (IMU) composed of an
integrated digital accelerometer, gyroscope and magnetometer. In conjunction
with a low-cost video tracking system, we can accurately track the position and
orientation of the pen used for interactive sketching or editing of surfaces in a
CAD environment. The IMU design was then refined and miniaturized into a
wearable inertial sensor node, developing an unobtrusive device for motion anal-
ysis, the EXLsl sensor node. This node was used as the building block for the
development of a wireless body area network for motion analysis and posture
tracking, with applications in remote healthcare, support for motor rehabilita-
tion or human computer interaction. We can track an evolution path for the
proposed hardware: a smart object with a single sensor evolved in a multi-sensor
device, which then was enhanced with the use of video tracking and finally em-
bedded into a wearable device used to form a body area network of cooperating
nodes.

The development of the hardware devices introduced were accompanied by
the study and implementation of advanced processing techniques to analyze the
generated sensor data and obtain higher level information. In the case of the
SMCube, a gesture recognition algorithm was designed, to recognize meaningful
gestures performed with the device and employed as interaction primitives to con-
trol applications. For the IMU-equipped devices, optimized filtering and sensor
fusion techniques were adopted to convert raw sensor readings to orientation and
position information, used as features for further analysis of the motion or as an
input for interactive applications. Furthermore, advanced data compression and
reconstruction techniques were examined and developed in the more general con-
text of wireless sensor networks, to improve the accuracy of collected data while
reducing the energy consumptions. Here also, we can track an evolution in the
proposed algorithms, following the evolution of hardware solutions: from gesture
recognition applications based on a single sensor data stream, we went through
multi-sensor data fusion techniques to complex data reconstruction algorithms
for wide sensor networks.

For all the cases, the tradeoff between energy efficiency and system accuracy



was a key factor. All of the presented solutions and algorithms have optimized
embedded implementations for the proposed hardware, with the needed elabora-
tions taking place directly on board of the devices. This approach reduces energy
consumptions, removing the need to send the raw data stream from the nodes
to other host devices, while maintaining the desired accuracy and facilitating the

integration and scalability of networked solutions.

1.1 Thesis outline

Chapter 2 will provide a technological background for the work, giving an
overview of Ambient Intelligence and related projects, introducing the hardware
architecture of embedded systems and providing state of the art examples of sen-
sor nodes. Moreover it will provide an overview of the software layer and the
processing techniques used to elaborate data from the sensing devices.

The Chapter 3 introduces the SMCube, an interactive smart object equipped
with an accelerometric sensor. This device is used to enable natural interaction
modalities and a gesture recognition algorithm was developed and optimized for
the implementation on the embedded microcontroller integrated in the device.
The chapter will describe the device, the proposed algorithm and will present
experimental results validating its performance and the computational costs.

The following Chapter 4 describes the development of the SmartPen, a wire-
less pen-shaped device for 3D user interaction. It is equipped with an inertial
measurement unit and combined with a low-cost, infra-red, stereo vision system,
to allow its use as a free-hand sketching tool. In conjunction with a software
layer, it can be used to rapidly reconstruct or modify virtual 3D models of ob-
jects and surfaces. Details on the hardware setup and the developed tracking and
surface reconstruction algorithms will be provided, along with the results of some
validation experiments.

In Chapter 5, a wearable sensor node for the analysis of motion will be
presented. Here the hardware solutions of the SmartPen have been optimized to
produce the EXLs1 sensor node, a small and light wearable node. It embeds an

inertial measurement unit and Bluetooth communication capabilities for the use



in a body sensor network to capture complex human motions. A set of sensor
fusion techniques have been analyzed and implemented locally on the device, to
estimate its orientation in a distributed and energy efficient way.

Chapter 6, on the other hand, will study energy efficient data reconstruc-
tion techniques for wireless sensor networks. Evolving from limited body area
networks to wide area ones, we propose two techniques to reconstruct the orig-
inal captured signals from their undersampled versions. By applying extreme
duty-cycling policies on the sensor nodes, we obtain a reduction of the power
consumptions in the network. The missing data is reconstructed at the collection
center, exploiting redundancies and correlations present in the gathered data to
meet the required accuracy. Experimental validation of energy consumptions and
reconstruction performance is presented using different data sets and a real sensor
network deployment.

Finally, in Chapter 7, a summary and the conclusions of the work are pro-
vided.



Chapter 2

Background

This work is focused on system-level hardware and software co-design and pro-
totyping of embedded devices for various Aml applications, such as human com-
puter interaction (HCI), healthcare and rehabilitation therapy. In this chapter a
background overview on the subject will be introduced, to better understand the
technological perspective of the vision and the state of the art in the development

of embedded systems and algorithms for Aml.

2.1 Ambient Intelligence

Ambient intelligence is the vision of a future in which environments support the
people inhabiting them, providing seamless access to digital data and services in
an unobtrusive, dynamic and intelligent way. Traditional computational devices,
such as PCs, keyboards or mice, tend to disappear, while processors and sensors
are integrated into everyday objects, allowing us to manipulate digital content
in a natural and personalized way. In this scenario, clothes, household devices,
furniture or vehicles became smart agents in an interconnected digital ecosystem,
communicating between them to fulfill and even anticipate the needs of the users.
This smart environment is aware of the personal requirements and preferences of
its inhabitants and interacts with them in a user-friendly way, recognizing gestures

voice and even implicit actions or emotions.



Figure 2.1: Ubiquitous smart environment.!

The term ambient intelligence emerged from the work of the European Com-
munity’s Information Society Technologies Programme (ISTAG). The initial re-
port layed out the concept aimed to give a strategic orientation for the program-

ming of the annual research agendas of the IST [64]:

Start creating an ambient intelligence landscape (for seamless delivery
of services and applications) in Europe relying also upon test-beds
and open source software, develop user-friendliness, and develop and

converge the networking infrastructure in Europe to world-class.

The AmlI vision may be thought of as the convergence of several computing
areas: ubiquitous computing, ubiquitous communication, intelligent user-friendly
interfaces and artificial intelligence. Mark Weiser [171] describes ubiquitous com-
puting as the concept of computers weaving ”themselves into the fabric of every-

day life until they are undistinguishable from it”. He believes that ubiquity is the

!Source: http://www.tronshow.org/guidebook/2010/tron/e/u-05.html



key to providing effective, flexible, and context-aware environments, through the
combined efforts of a multitude of small devices embedded in the surroundings.

An ubiquitous and reliable communication infrastructure is a key component
of this vision, and it is necessary to achieve the needed cooperation of the many
computational or sensing devices deployed in the environment. Moreover, seam-
less interoperability of heterogeneous networks and protocols is fundamental, to
successfully integrate various devices and services, including wired or wireless
sensor nodes, mobile terminals, gateways and Internet connectivity. The variety
of Aml scenarios, ranging from the use of a single smart object, to wide net-
works of heterogeneous nodes, calls for the development of adaptive, multi-user,
multi-system, distributed wireless communication platforms (see Fig. 2.1).

The adoption of the AmI vision can be realized only through the development
and adoption of natural and user-friendly interfaces between the users and the
multitude of the digital devices surrounding them. Traditional user interfaces are
limited to a desktop environment and allow the user to type or point elements on
a screen, getting a visual feedback for their actions. This interaction paradigm
does not take advantage of the space surrounding the user or of the natural
capabilities of people to manipulate objects, speak or listen in order to interact
and accomplish complex tasks. The realization of the Aml vision pushes towards
novel input and output modalities, to allow the user to manipulate digital data
and services in mobility and when interacting with complex ensembles of devices
which are often hidden in the environment. Touch surfaces and screens, gesture
and voice recognition, tangible interfaces, recognition of implicit actions or user
emotions, accompanied by multimodal output methods in the form of visual,
auditory or haptic feedback, are key enablers for the adoption and a productive
utilization of the Aml vision.

The evolution of Artificial Intelligence (AI) and its ubiquitous adoption is a
common element for all the aspects and applications of the Aml vision. The pre-
sented computing areas rely on heterogeneous sensor and device networks and on
the extraction of useful information from huge and noisy data streams. A variety
of AI algorithms, deriving from different fields, need to be integrated and applied
in order to achieve the envisioned AmlI functionalities. Through the adoption

of Al techniques, Aml applications can accomplish complex tasks such as inter-
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preting the environment’s state or learning about it, modeling, representing and
simulation of entities or information, planning decisions or actions and interacting
with humans.

Inevitably the social impact and the acceptance of such potentially powerful
and intrusive technologies are topics of debate, and have been since their concep-
tion [34]. The success and acceptance of Aml by the public will depend on how
secure and reliable it is and to what extent it is perceived to allow the protection
of the rights and privacy of individuals.

Even if the vision emerged in Europe, in the past years this concept was
rapidly spread worldwide, with many related projects and research programs.
The academic interest in this area originated several international conferences,
collections of papers and special issue publications. Aml has potential applica-
tions in many areas of life, including in the home, office, transport, and industry;
entertainment, tourism, recommender systems, safety systems, e-health, and sup-
ported living of many different variations. In the next section some recent Aml

projects will be reviewed, while further examples can be found in [147, 148].

2.1.1 Ambient Intelligence projects

The Computer Science and Artificial Intelligence Laboratory (CSAIL) at the
Massachusetts Institute of Technology (MIT), together with several industrial
partners, developed the Oxygen project [127]. Its aim is to integrate device, net-
work and software technologies to enable pervasive, human-centered computing,
to support highly dynamic and varied human activities at home, at work or on
the go. In the project’s vision, computational devices embedded in homes, offices
and cars, sense and affect the environment, while handheld devices allow the user
to communicate and perform computational tasks anywhere they are. Ubiquitous
communications rely on dynamic, self-configuring networks, which help also the
localization of people, services or resources. This whole platform is supported by
a software layer that adapts to changes in the environment or in user requirements
and helps the user to complete the needed tasks. The project team showcased
several applications demonstrating the impact of the different aspects and its

usage in real life scenarios.
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One of the well explored areas of application of AmI projects is the home
environment [71]. The iRoom project, sponsored from the French national re-
search center (CNRS), built an experimental smart environment as a testbed for
researchers for intelligent buildings [84]. This environment features numerous
sensors and devices interconnected via a dedicated network infrastructure and
is the basis for technological and sociological research. From the technological
point of view, new devices and interaction modalities are studied, while sociology
researchers analyze the user behavior and interactions in such a smart environ-
ment. On the other hand, the Casattenta project, started by the Italian T3LAB
consortium in collaboration with the University of Bologna and several industrial
partners, focuses on the development of an interactive and smart home environ-
ment [68]. This project targets elderly people living alone in their house, provid-
ing interactive and non-intrusive monitoring aimed at improving their safety and
quality of life. The system is composed of fixed smart sensors in the environment
and wearable devices, monitoring the inhabitants’ health and activity to report
and avoid when possible dangerous events, such as falls or injuries.

The e-Sense project was started by a consortium of 23 industrial and academic
partners and supported by the European 6th Framework Programme (FP6) [65].
Its main contribution is the capture of ambient intelligence for mobile communi-
cations through very low power, highly efficient wireless sensors networks. The
project’s effort is to interface sensorized environments to a mobile wireless net-
work, providing seamless access to context information for mobile users. Tech-
nical objectives of the project include the design of energy-efficient sensor nodes
and networks, ranging from localized body area networks to vastly distributed
environment sensor networks; the study of the interactions between the different
networks; their integration with a mobile communication infrastructure and the
adoption of efficient protocols and distributed processing paradigms.

A different approach is at the basis of the PERSIST project, founded by the
European Union under the 7th Framework Programme (FP7) and carried out
by ten research partners [137]. Here the central component is a Personal Smart
Space which is associated with the portable devices carried by the user and which
moves around with him/her, providing context-aware pervasiveness at all times

and places. This personal smart space is tailored to the needs of its carrier and
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dynamically adapts to the surrounding environment, following and learning the
users’ preferences. The adopted approach has the goal to address the problem
of isolated smart spaces, created by the current trends in the design of pervasive
systems which lead to the formation of isolated and often non-interoperable smart
environments.

SOFIA (Smart Objects for Intelligent Applications) is a three-year ARTEMIS
project involving eighteen partners from four european countries, including our
research group at the University of Bologna [151]. This project aims at the cre-
ation of an open platform to promote cross-industry interoperability for smart
spaces and to facilitate the connection between the physical and the information
worlds. It promotes innovation, while maintaining the value of existing legacy,
and creates new user interaction paradigms tailored for the fruition of services of-
fered by smart environments. The key contribution of the project is the proposal
of a common interoperability platform (Smart M3) to facilitate the cooperation
and the use of heterogeneous devices and embedded systems. The project already
provided several large scale pilots around Europe and is building an online com-
munity to facilitate the developers to adopt innovative services and interaction
approaches for smart environments.

Beside examples of projects targeting enabling technologies and platforms for
Aml, there are also more specific ones, targeting the realization of particular
aspects of the vision. One example is the recent European FP7 project CuPiD,
powered by an eight member consortium led by the University of Bologna [57].
This on-going three-year project aims to provide technology-driven personalized
rehabilitation exercises for people with Parkinson’s disease at home. It is an
example of the application of Aml technologies in the home environment and
their use to provide tailored rehabilitation programs to support and enhance
the clinical therapy for patients with motor disabilities. The project is creating
a home-based rehabilitation system relying on wearable sensors and local real-
time processing of the data, interconnected with a telemedicine infrastructure for
remote supervision by expert clinicians. This platform will provide a personal
health system composed by versatile sensor nodes and a central home processing
unit, to enable multi-modal training and feedback for the patient, together with

an user-friendly interface and a secure connection for the interaction with the
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Figure 2.2: System architecture of a typical sensor node.

remote clinic center.

2.2 Hardware Architecture

This section will examine the system architecture of devices and embedded sys-
tems empowering the realization of the Aml vision, introducing the character-
ization of the main components and the analysis of some examples. The main
building blocks and components for the development of embedded systems will
be introduced, while low level analysis of integrated circuits and the optimization
of silicon-level hardware architecture is out of scope of this work.

The variety of the proposed applications rises the need for very different hard-
ware solutions, but we can outline the common characteristics and some guidelines
for the designer. A typical sensor node can be identified by five main building
blocks:

e Power unit

Computational unit

Sensing and actuation

Memory

e Communication
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A block diagram of such a system is shown in Figure 2.2. This is a very general
node architecture and can be applied to the vast majority of devices used for AmlI,
from interactive smart objects to network nodes deployed in the environment.
While the system architecture is shared, the different applications may require
very different specifications and constraints for the single components. In the rest
of this section we will examine the main characteristics of each of these building
blocks.

Power unit

Sensor nodes are usually powered by a battery and a power supply circuit
based on a DC-DC converter. The power needs of large wireless sensors
network (maybe deployed in a harsh environment) are the current biggest
impediment that keeps them from becoming completely autonomous, forc-
ing them to be either connected to an external power source or have life-
cycles that are curtailed by batteries. Furthermore, in applications where
sensors need to be enclosed in devices with limited size or in unobtrusive
wearable systems, battery size is also one of the relevant factors. For this
reasons, in the last years, energy harvesting has emerged as an alternative

to provide perpetual power solution for sensor networks.

Computational unit

The Central Processing Unit (CPU) is responsible of the management of all
the operations of the sensor node, including the sampling of the available
sensors, the processing of the data and the correct forwarding of the infor-
mation when needed. The CPU should be able to manage the sensor node
activity while meeting the energy consumption, size and cost constraints.
There are a large number of microcontrollers, microprocessors and FPGAs
suitable to be integrated in sensor nodes. Modern embedded microcon-
trollers, ranging from ultra low-power 8 bit solutions, to high performance
32 bit ones, are equipped with a vast range of on-board peripherals in-
cluding timers, ADCs, serial communication controllers. Considering the
computational and energy requirements, it is fundamental to chose the best

fit for the application.
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Sensing and actuation

Sensors are used to measure various physical properties such as tempera-
ture, force, pressure, flow, position, light intensity, acceleration, incident
infrared radiation, etc. Sensors may be classified in a number of ways. One
useful way is to classify them either as active or passive. The former require
an external source of power, thus they consume power even when nothing is
detected. The latter generate their electrical output signal without requir-
ing external voltage or current. Another way to classify sensors is based
on the nature of their output signal, which can be in the form of an analog
voltage or they can have digital outputs. Most sensors require an output
conditioning circuit to amplify and filter their output in order to be pro-
cessed by a microcontroller. Typical sensor conditioning circuits include
amplifier, filtering, level translation, impedance transformation for analog

ones and the use of proper communication interfaces for the digital ones.

Memory

Microcontrollers used for embedded sensor nodes usually have a limited
amount of on-board memory, in the range of 10-100 KByte of RAM and
up to 1 MByte of nonvolatile EEPROM memory. When additional storage
space is required, external modules have to be integrated in the system
to fill the needs of the application. This can be done using integrated
Flash modules or removable storage solutions, such as removable memory
cards. The availability of additional memory can be very important for
sensing devices, enabling the local log of the desired data, when real-time
information is not needed. In this way the power consumptions of the node
can be reduced, since the use of on-board memories is more energy efficient

when compared to a continuous wireless transmission of the data.

Communication

The wireless communication channel enables the device to communicate
with the external world, and to establish a WSN to cooperate with other
devices. This is one of the critical components of a sensor node, because

it regulates the modalities of the network communications and it usually

16



has the biggest impact on the power consumptions of the device. Several
hardware solutions and protocols have been developed to better address the
needs of various sensor networks (IEE 802.15.4, ZigBee, Bluetooth, ANT to
cite a few) and the optimization and development of new ones represents

an active research field.

2.2.1 State of the art

In this section some of the recent sensor nodes will be presented.

TelosB

Crossbow’s TelosB mote platform is an open source, low-power wireless sensor
module designed to enable cutting-edge experimentation for the research commu-
nity. The TelosB bundles all the essentials for lab studies into a single platform
including: USB programming capability, an IEEE 802.15.4 compliant, high data
rate radio with integrated antenna, a low-power MCU with extended memory

and an optional sensor suite.

Figure 2.3: TelosB sensor node.

Mica2

The Mica2 Mote platform is a third generation device used for enabling low-

power, wireless sensor networks available in 2.4GHz and 868/916 MHz. The
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MICAz Mote offers a 2.4 GHz, IEEE/ZigBee 802.15.4 board and the MICA2 is an
868/916 MHz Multi-channel radio transceiver used for low-power, wireless, sensor
networks. The MICA Mote platforms are fully compatible with the MoteWorks

Software Platform and enable users to set up ad-hoc wireless networks.

Figure 2.4: The Mica2 sensor node.

Shimmer

Shimmer, originally developed by Intel Research Labs in 2006, is a small
wireless sensor platform that can record and transmit physiological and kine-
matic data in real-time. Designed as a wearable sensor, Shimmer incorporates
wireless ECG, EMG, GSR, Accelerometer, Gyro, Mag, GPS, Tilt and Vibration
sensors. Shimmer is an extremely extensible platform that enables researchers

and industry to be at the leading edge of sensing technology.

Figure 2.5: The Shimmer sensor node.
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ETHOS

The ETH Onbody Sensor (ETHOS) implements a wearable sensor platform
that is optimized for long-term monitoring of human body-segment orientation.
It was developed in 2010 at the Wearable Computing Lab at ETH. The core com-
ponent is an inertial measurement system (tri-axial accelerometer, magnetometer
and gyroscope sensors). An internal temperature sensor, used for compensation
of sensor drifts, can be interfaced, too. Gathered data can be stored in a raw for-
mat, or fused by an on-board DSP to estimate the orientation in an Euler-angle
representation. In both cases, data can be transmitted via wired (USB) or wire-
less interface (ANT+) for real-time display, and stored on internal non-volatile

memory for offline analysis after the recording.

powering and
battery charger gyroscope

USB connector  microSD flash ANT module
memory and antenna

Figure 2.6: The ETHOS sensor node.

iNEMO v2

The iNemo is an inertial sensing platform from STMicroelettronics, now at its

second review. It combines accelerometers, gyroscopes and magnetometers with
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pressure and temperature sensors to provide 3-axis sensing of linear, angular
and magnetic motion, complemented with temperature and barometer/altitude
readings, representing the new ST 10-DOF (degrees of freedom) platform. This
10-DOF inertial system represents a complete hardware platform which can be
used in numerous applications such as virtual reality, augmented reality, image
stabilization, human machine interfaces and robotics. A complete set of commu-
nication interfaces with various power supply options in a small-size form factor

(4 x 4 cm) make the INEMO v2 a flexible and open demonstration platform.

Figure 2.7: The iNEMO sensor node.

2.3 Software Layer

This section will introduce a typical data processing chain used for the analysis of
sensor data. Depending on the system or the application needs, the components
of this software layer are implemented on board of the device, or can be optionally

left for the execution on a more capable host system.

2.3.1 Sensor data processing

Several techniques to fuse data or features captured by sensing devices take the
name of pattern recognition techniques. Pattern recognition can be defined as

the act of taking in raw data and taking an action based on the category of the
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pattern. In general a pattern recognition system establish a mapping between
the measurement space and the the space of potential meanings (classes). This

mapping is performed in six steps.

Sensing

Data is collected from the one or more sensors. Ususlly the microcontroller
coordinates this action and uses timers for the correct temporization of the

sampling process.

Pre-processing

Pre-processing include all the steps necessary to condition the signal for
further processing. Typically this steps includes a filter to reduce signal

noise or the conversion of sampled values in meaningful measurement units.

Segmentation

Sensors provide a continue stream of data, segmentation aim at extracting
only the data related to a single entity to classify. Segmentation is one
of the deepest problems in pattern recognition application on continuous
streams of data like speech or gesture recognition, hand written recognition

etc.

Feature extraction

This steps aim to reduce the data dimension. The objective here is to
extract quantities that are distinctive of a certain class. The task off feature
extraction is strictly problem and domain dependent. In general we can
place a conceptual boundary between feature extraction and classification
since an ideal feature extractor would yield a representation that makes
the job of the classifier trivial and vice versa, a perfect classifier would not
need the help of a feature extractor. Typically it is not possible to define
features that are good for all problems and the developer experience plays

an important role.
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Classification

Classification uses the information provided by the features to assign a
category to that data pattern. To perform the classification step we rely
on a set of tools called classifiers. A large number of classifiers have been
developed to address several problems in patter recognition. In general we

can sort them into two categories.

Supervised classifiers. In supervised learning, a teacher provides a cat-
egory label or cost for each pattern in a training set, and we seek to reduce
the sum of the costs for these patterns. The classifier is trained offline using
this set of samples. Typically training is a computational expensive opera-
tion while normal classification is much more lightweight and suited for real

time operation.

Unsupervised classifiers. In unsupervised learning or clustering there is
no explicit teacher, and the system forms clusters out of the input patterns.
Unsupervised classifiers are used when a training set is not available or too
expensive to be created. Typically they rely on a set of assumption on the
underlying probability densities and assume that the only thing that must
be learned is the value of an unknown parameter vector. The development
of pattern classification systems rises a number of issues, many are domain
or problem specific, and their solution will depend upon the knowledge and

insights of the designer.

Post processing.

Exploit further context information other than from the target pattern itself

to improve performance.

Other important characteristics of the sensor data processing chain include the

following.

Overfitting For supervised classifiers may sound obvious the idea that a larger
training set will result in a more complex, but more performing classifier. Ex-

perience showed that increasing the complexity of the classifiers may result in
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poorer performance during normal operation. In fact while an overly complex
model may allow perfect classification of the training samples, it is unlikely to
give good classification of novel patterns. This situation is known as overfitting.
One of the most important areas of research in statistical pattern classification is

determining how to adjust the complexity of the model.

Model Selection A huge amount of models have been developed for classifica-
tion. In general is hard to know when a hypothesized model differs significantly

from the true model underlying our patterns.

Prior Knowledge, Context awareness Incorporating prior knowledge and
context awareness to improve the classification accuracy. However context can
be highly complex and abstract and often came from different spaces than our

features vectors.

2.4 Key Aspects and Challenges

The introduced background puts the fundamental basis for the on-going devel-
opment of technologies and applications aiming at the realization of the Aml
vision. In the last years the hard work of the research community have brought
great innovation and a huge impact on our daily life, bringing us one step closer
towards the visionary future imagined a decade ago. Still, each new achievement
opens the way for new challenges and further studies.

Some of the technological challenges with a broad impact on the realization
of this vision include energy efficiency and advanced power management method-
ologies for all the involved devices; development of methodologies and techniques
to process and extract information from the growing amount of available data;
standardization and wider interoperability of the proposed platforms to facilitate
their adoption and the diffusion of applications and services targeting home and
professional environments and enabling the fruition of the results of the techno-
logical advances.

The realization of a pervasive and intelligent digital environment has sev-

eral key aspects which are addressed and continuously updated by the research
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community. They include:

Interactivity. The ultimate purpose of every digital system is to satisfy a need
of its user. No matter how complex the system is, the user wants to have fast
and intuitive access to the information or services needed and this should happen
in a simple and natural way. We are experiencing a continuous innovation in
terms of user interfaces and usability of the digital systems, and a key feature
for every future technology is an intuitive and simple to use interface. This
simplicity and the adoption of natural interaction paradigms is very challenging
from the technological point of view and opens research opportunities spanning

across every scientific community.

Networking and interoperability. The Aml vision builds upon the concept
of ubiquitous computing and communication, which can only be achieved through
the collaborative work of a multitude of networked devices. Information and
services has to be available from anywhere and the exchange of data between
heterogeneous systems and devices is a key enabler for future technologies. Inter-
operability between various systems, devices and services is one of the key issues
that has to be addressed in the always increasing world of research and industrial

solutions.

Data analysis. The increasing number of sensing devices, and their integration
with our environment and our daily life, creates huge amounts of data. This data
itself is usually too complex and has no direct meaning, until it is processed
and transformed in useful information. Data processing techniques are assuming
a growing role in our society and are becoming the enabling technology for a
multitude of services and applications. The mining of heterogeneous data sources
and their fusion to extract information is a key challenge affecting all the levels of
technological research, from small and constrained embedded systems, to world-

wide distributed data-centers.

Context awareness. A fundamental characteristics of intelligent systems is

the analysis and recognition of context. It enables the system to automatically
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adapt to the dynamically changing status of the surrounding environment and to
apply the most appropriate behavior. The context represents another layer of in-
formation, which can be used to better understand the available data. The future
digital ecosystem will need an always better capability of context recognition to

automatically fulfill the user’s needs and to satisfy his preferences.

Energy efficiency. Every aspect and device of the digital environment we are
creating today can not avoid the need for the energy to power its components.
Being it a small and unobtrusive device which can disappear into our clothes or
in the environment, or being it a server farm which needs to elaborate huge quan-
tities of information, they need to carefully optimize their power consumption.
Research perspectives and future challenges are more and more shifting towards
the optimization of tradeoffs between performance, consumption and costs, rather

than the search for ultimate results in only one of those aspects.
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Chapter 3

Smart Objects for Interaction

Smart objects are physical devices enhanced by the integration of embedded
electronics, which gives them sensing and communication capabilities. They can
be used to introduce new interaction paradigms between the user and the digital
world, allowing the user to exploit his/hers natural capabilities to manipulate
objects and to interact by means of spatial motion or gestures. This chapter will
introduce the development of the Smart Micrel Cube (SMCube), a cube-shaped
smart object with gesture recognition capabilities, used to interact with tabletop

surfaces and smart environments.

3.1 Overview

Traditional user interfaces define a set of graphical elements (e.g., windows, icons,
menus) that reside in a purely electronic or virtual form. Generic input devices
like mouse and keyboard are used to manipulate these virtual interface elements.
Although, these interaction devices are useful and even usable for certain types of
applications, such as office duties, a broad class of scenarios foresees more immer-
sive environments where the user interacts with the surroundings by manipulating
the objects around him/her.

Tangible User Interfaces (TUIs) introduce physical, tangible objects that aug-
ment the real physical world by coupling digital information to everyday objects.
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The system interprets these devices as part of the interaction language. TUIs
become the representatives of the user navigating in the environment and enable
the exploitation of digital information directly with his/her hands. People, ma-
nipulating those devices inspired by their physical affordance, can have a more
direct access to functions mapped to different objects.

The effectiveness of a TUI can be enhanced if we use sensor augmented de-
vices. Such smart objects may be able to track the user’s movements or recognize
gestures and improve human experience within interactive spaces. Furthermore,
the opportunity to execute a gesture recognition algorithm on-board of such de-

vices brings several advantages:

1. The stream of sensors readings is not sent over the wireless channel. This

reduces the radio use and extends the battery life.

2. The reduced wireless channel usage allows the coexistence of a larger num-

ber of objects in the same area.

3. Each object operates independently and in parallel with the others, improv-

ing the system scalability.

4. The handling of objects moving between different physical environments is
facilitated.

5. No other systems, such as video cameras, are required to detect and classify

user movements, thus the system cost is reduced.

The SMCube is a tangible interface developed as a building block of the T'AN-
GerINE framework, a tangible tabletop environment where users manipulate
smart objects in order to perform actions on the contents of a digital media table
[27]. The SMCube is a cube case with 6.5 cm edge. It is equipped with sensors
(a digital tri-axes accelerometer) and actuators (infrared LEDs, vibro-motors).
Data from the accelerometer is used to locally detect the active face (the one
directed upward) and a set of gesture performed by the user (cube placed on the
table, cube held, cube shaken and tap [40]). These information are wirelessly
sent to the base station that controls the appearance and the elements of the vir-

tual scenario projected on the digital media table for processing. Furthermore,
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through the LEDs, the node is tracked by a vision based system and can be used
as a pointing interface on top of the interactive table, in a multi modal activity
detection scenario.

The recognition algorithms developed in previous work rely on time invari-
ant features extracted from the acceleration stream [40]. In a more general case
the information used to recognize a gesture is contained in the sequence of ac-
celeration rather than in some particular features. For this class of problems a
different family of algorithms have been developed, relying on pattern recognition
techniques. In particular, Hidden Markov Models (HMMs) have been extensively
used for gesture recognition since they tend to perform well with a wide range of
input modalities and with temporal variations in gesture duration.

HMDMs belong to the class of supervised classifiers, thus they require an initial
training phase to tune their parameters prior to normal operation. Even if the
training of a HMM is a complex task, classification is performed using a recursive
algorithm called forward algorithm. Although this process is a lightweight task
compared to training, several issues must be considered in order to implement it
on a low-power, low-cost 8 bit microcontroller such as the one embedded on the
SMCube.

HMDMs have been broadly applied to gesture recognition [106, 129], but em-
bedded implementation on low performance interactive devices are limited to high
resource mobile-devices and 32 bit microcontrollers [21]. In this work we char-
acterize our fixed point implementation of the forward algorithm, highlighting
the issues related to the implementation of this algorithm on low-computational
power, low memory devices that can not rely on floating point arithmetic. Start-
ing form the analysis of the standard floating point implementation of the algo-
rithm, we propose a solution to these issues and compare the performance of our
embedded solution with a standard one [182].

The HMM classifier needs to segment the gesture from the continuous sen-
sor data steam: the start and stop of the performed gesture has to be provided
to the recognition algorithm in order to classify the executed gesture. Gesture
segmentation from the stream of sensor data often relies on user collaboration
(e.g. pushing a button wile executing a gesture [97]) or integrates information

from other types of sensors (e.g. ultrasonic [154], microphones [168]). To allow
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simple and natural interaction modalities, we present an algorithm for gesture
segmentation with minimal effort by the user. The algorithm detects the be-
ginning and the end of motion segments and then uses HMMs to recognize the
executed gesture [125].

We characterized our implementation by evaluating the recognition perfor-
mances on a set of seven gestures that a person can use to navigate into virtual
spaces. Furthermore we assess the performance of our algorithm on a multi user

scenario where up to four people share the same object.

3.2 Related Work

Almost two decades ago, research began to look beyond current paradigms of
Human Computer Interaction based on computers with a display, a mouse and
a keyboard, in the direction of more natural ways of interaction [171]. Since
then concepts as wearable computing [121] and tangible interfaces [86] have been
developed.

The use of TUIs has been proposed in many scenarios where users manipulate
virtual environments. This have been proved to be useful specially in applications
for entertainment and education [85]. An analysis of the impact of tangible
interaction within a school scenario is presented in [135]. According to this work,
research from psychology and education suggests that there can be real benefits
for learning from tangible interfaces. An early study on different interaction
technologies including TUIs has been presented in [143]. In this study the authors
highlight how graspable interfaces push for collaborative work and multiple hand
interaction. In [165] authors developed an educational puzzle game and compared
two interfaces: a physical one based on TUIs and a screen-based one. Results
show how TUIs are an easier mean to complete assigned task and have higher
acceptance among the 25 children between 5 and 7 years old involved in the test.

TUIs are also used to enhance the exploration of virtual environments. Virtual
Heritage (VH) applications aim at making cultural wealth accessible to the world-
wide public. Advanced VH applications exploit Virtual Reality (VR) technology

to give immersive experiences to the user, such as archaeological site naviga-
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Figure 3.1: Examples of tangible interfaces: (a) ReacTable, (b) Display Cube,
(¢) Music Cube.

tion, time and space travel, and ancient artifact reconstruction in 3D. Navigation
through such virtual environments can benefit from the presence of tangible ar-
tifacts like palmtop computers [67] or control objects [82]. In [136] the Tangible
Moyangsung, a tangible environment designed for a group of users that can play
fortification games, is presented. People, manipulating tangible blocks, can navi-
gate in the virtual environment, solve puzzles or repair damaged virtual walls in
an evocation of historical facts.

Interactive surfaces are a natural choice when developing applications that
deal with browsing and exploration of multimedia contents. On these surfaces
users can manipulate elements through direct and spontaneous actions. For ex-
ample in [26] multiple users can collaborate within an interactive workspace fea-
turing vision based gesture recognition to perform knowledge building activities
such as brainstorming. On the reacTable [90] several musicians can share the con-
trol of the instrument by caressing, rotating and moving physical artifacts with
dedicated functions on the table surface. The TViews is a LCD based frame-
work where users can interact with the displayed contents through a set of TUIs
(textslpucks) [124]. The puck is used to select and move virtual objects and its
position is tracked using acoustic and infrared technologies. Another example is
the Microsoft Surface Computing platform, now known also as PixelSense [55],
where multiple users can share and manipulate digital contents on a multitouch

surface.
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The expressiveness of TUIs can be enhanced by the use of on-board sensors.
The MusicCube is a tangible interface used to play digital music like on mp3
players [38]. The cube is able to understand the face pointing upwards and a set
of simple gestures. This ability, together with a set of controls and buttons, is
used to chose the desired playlist and to control music volume. The Display Cube
is a cube shaped TUI equipped with a three-axes accelerometer, 6 LCD displays
(one per face) and a speaker, used as a learning appliance [104]. SmartPuck is a
cylindrical shape multi-modal input-output device having an actuated wheel, a
4 way button, LEDs and speaker and it is used on a plasma display panel [99].
SmartPuck allows multiple user interaction with menus and application and has
been tested by using it to navigate within the Google Earth program in place of
a mouse.

Entertainment and gaming industry adopted recently tangible interfaces for
the interaction with applications and games. The Wiimote is a controller devel-
oped by Nintendo for its Wii console [56]. This controller embeds an accelerome-
ter, an infrared camera and a Bluetooth transceiver and is used to interact with a
large number of applications and videogames. Its success prompted the adoption
of similar solutions by other vendors, such as the Playstation Move by Sony [152].
It embeds a set of inertial sensors and is equipped with a colored light to integrate
sensor data with video tracking and enhance the interaction experience. The low
price and the huge diffusion of these devices triggered an active involvement of
the research community, leading to the reverse engineering of the products and

their use in several research projects [174, 175].

3.2.1 Gesture recognition

Gesture recognition algorithms typically are made up of four steps: data acquisi-
tion from the sensors, data preprocessing to reduce noise, extraction of relevant
features from the data stream and classification. Several design choices are avail-
able at each step, depending on the application scenario, the activities that have
to be recognized, and the available computational power.

When features are time invariant (e.g. zero crossing rate or frequency spec-

trum), simple time-independent classifiers can be used (e.g. Support Vector Ma-
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chines or decision trees). In a more general case features are time dependent, and
classifiers suited for temporal pattern recognition are used. Typical approaches
include Dynamic Time Warping [100], neural networks [24], and Hidden Markov
Models. HMMs are often used in activity recognition since they tend to perform
well with a wide range of sensor modalities [154] (they are also used successfully in
other problem domains, such as speech recognition, for which they were initially
developed [140]).

Even if several classification algorithms have been proposed for implemen-
tation on smart objects [88, 146], the solutions proposed to recognize gestures
performed with TUIs typically rely on vision systems [92, 156], or on the collec-
tion and processing of data from an external PC [133, 169], or on the recognition
of simple gestures through the analysis of time invariant features [38, 184].

Several variants of HMMs have been proposed to recognize inertial gestures:
in [97] 5-state ergodic discrete HMMs are evaluated with the Viterbi algorithm
to classify gestures performed with a handheld sensor device in several tasks
(interaction with a TV, a presentation or a CAD environment). The work of
Mantyla et al. [122] uses T-states Left-to-Right models and the forward algorithm
to classify actions performed with a mobile phone equipped with an accelerometer.
Both implementations have similar performance and rely on a PC to execute all
computations.

An exception to the previously cited papers is the work proposed by Ueda et
al. [160]. In this work the authors present the m-ActiveCube, a physical cube
equipped with sensors (ultrasonic, tactile and gyroscopes) and actuators (buzzer,
LEDs and motors) that acts as bidirectional user interface toward a 3D virtual
space. Multiple cubes can be connected and collaborate in achieving a defined
task. They evaluate a fixed point implementation for HMMs able to perform
speech recognition. Since the proposed algorithm can not be implemented on
a single cube, the basic idea here is to balance the computation among several
cubes. One of the main limits of this work is that the critical issue of data
synchronization among different cubes that participate to the computation is not
considered. Furthermore the authors assume that all the cubes always participate
to the speech recognition, so every node of the network is a point of failure for

the whole system. Finally the recognition ratio of the proposed algorithm is not
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evaluated, therefore it is not possible to evaluate the performance of this solution.
In contrast to the work presented in [160], here we present an algorithm able
to recognize complex gestures and that can be implemented on a single cube with
much lower computational power and memory than the ones available on the m-
ActiveCubes. As a consequence in our solution each cube is independent from
the others, hence (1) it does not need any synchronization, (2) it is not a point
of failure for the whole system, (3) multiple users can operate on the table top
at the same time, (4) wireless communication need is reduced (only indications
of gestures are sent) resulting in longer battery life and interference reduction.
Using HMMs to classify gestures from a continuous stream of data brings an-
other issue to solve: the recognition procedure needs to discriminate the actually
executed gestures from all the other arbitrary movements. Hoffman et al. [81] use
a sensorized glove to recognize hand gestures: to segment the data stream they
compute the velocity profile of the sampled accelerations and apply a threshold to
identify the motion segments. In [49] a Gaussian model of the stationary state is
used with a sliding window approach to find pauses in movements, which identify
the beginning and the end of a gesture. Amft et al. [20] presented an algorithm
to recognize arm activity during meal intake, with accelerometers placed on the
arm and the wrist of the user. To segment gestures they use the Sliding Win-
dow and Bottom-up (SWAB) algorithm [98] and the angle of the lower arm as
the segmentation feature. While those works have focused to develop recognition
solutions, none of them deals with computation or memory limited devices. We
found a similar solution implemented on a wristwatch device, using a 32 bit ARM
microcontroller [21], but there are no works targeting low-cost, low-power 8 bit

microcontrollers, such is the Atmel ATmegal68 used in this work.

3.3 Hidden Markov Models

The Hidden Markov Model (HMM) is a powerful statistical tool for modeling gen-
erative sequences that can be characterized by an underlying process generating
an observable sequence. HMMSs have found application in many areas interested

in signal processing.
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The HMMs belong to the class of Markov processes, which are models used to
describe the evolution of a system. A Markov process describes a system which
at any given time ¢ can be in one of N states Si,S5s, ..., Sny. At each time step,
the system changes its state according to a set of probabilities associated with
the actual state. The output of the process is the set of states at each instant
of time, where each state corresponds to a physical event, thus we refer to this
model also as observable Markov model [140].

In many cases of interest, the state of the system cannot be directly observed,
but inferred though measurements of other variables called observations. This
implies that the state of a system at any given time can be treated as a hidden
random variable that generates the observables that we measure. A HMM is a
probabilistic model used to describe sequences of observations O = {0y, 09, ..., o1}
and their corresponding hidden state Q = {q1, ¢2, ..., qr }.

Two fundamental hypotheses are given:
1. The state of the system at any given time ¢ depends only on the state at
time ¢t — 1.
(@l qe-1, 001, Qi—2, 042, .., q101) = (@] qe-1) (3.1)
2. The observable O at any given time ¢ depends only on the state at time ¢.

p(0t|Qt7 qi—1, 0t—1,qt—2, 0t—2, -+, Q101) - p(0t|Qt) (32)

A Discrete HMM is characterized by the following parameters:

o A set of N states S = {s1, s9, ..., sy }. Although they are hidden, often they

are related to some physical significance.

e A set of M discrete observables V' = {vy, vy, ...,ups} which represent the

physical values observed as the output of the system.

e The state transition probability matrix A = {a;;} = P(qi1 = sjlae = si).
Each element a;; of the matrix defines the probability of being in state s;

at time ¢ and in state s; at time ¢ + 1.
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e The observation probability matrix B = {b;(k)} = P(o; = vk|q = s;). Each
element b;(k) of the matrix defines the probability of observing the symbol

Vg in state s;.

e The initial state distribution vector IT = {m;} = P(¢; = s;). Each element
m; of the vector defines the probability of being in state s; at the beginning

of the sequence.

The compact notation of a HMM is A = (A, B, II).

Continuous HMMs differ from Discrete HMMs only because the observables
can assume continuous values. In this case B is typically represented through
a mixture of gaussian distributions, thus this matrix is replaced by a vector of
means and one covariance matrix for each state.

There are three main problems associated with HMMs:

1. Given a sequence of observation O = {01, 0, ..., o7} and a model A, find the
probability that the model generated that sequence P(O;|\). This is also
called the evaluation problem. The solution of this problem is equivalent

to perform the classification of data.

2. Given a sequence of observation O = {01, 09,...,0r} and a model A find
the probability of the most probable sequence of states that generated that
sequence. This is also called the decoding problem. Since a physical status
can be associated to each state of the model, the solution of this problem

is equivalent to filter out the noise on the observations.

3. Given a set of observations O1, O,, ..., O, find the model X that best describes
that observations. This is the estimation problem. The solution of this

problem optimizes, by training, a model for solving problems 1 and 2.

In the following section we present the solution to the evaluation problem for
discrete HMMs, which will be used and optimized to perform gesture classification

on our smart object.
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3.3.1 Evaluation problem and the forward algorithm

The most straightforward way of calculating the probability of a sequence O =
{01,049, ...,0r}, given a model A, is trough the enumeration of every possible state
sequence (Q of length 7. Assuming the statistical independence of observations,

the probability of each sequence @ is:

P(0[Q. ) = ZP@@, (3.3)

The final probability of the sequence can be obtained by summing the products
between the probability in 3.3 times the probability of the sequence @ over all

possible sequences:

P(OJX) =Y P(O4|Q. M P(Q|N)

all@
- Z Mgy bq1 (Ol)aql,qz bq2 (02) "‘CLQT717QT6QT (OT)

q1,925---5 qt

(3.4)

However the calculation presented in Eq. 3.4 involves the order of 2 - T - N7
calculations. This is computational unfeasible, since 7' in most cases is in the
order of hundreds or thousands of samples.

For this reason we rely on a more efficient, recursive, procedure called the
forward algorithm. It is a recursive algorithm that relies on a set of support
variables ay(i) = P(o1, 09, ..., 01, ¢t = 8;|\) and allows to find the probability that
a certain model generated an input sequence P(O|)). It is made up of three

steps.

1. Initialization: aq(i) = m;(01)bi(01), 1 <i < N

2. Induction: a;41(y Zat i)a;j|bj(0i41), 1 <j< Nand 1<t <T -1

3. Termination: P(O|\) = ZQT
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The «4(j) are sum of a large number of terms in the form

t—1 t

() = | | @ser)seran) H bs(ry(0r) (3.5)

1 r=1

T

Since both the a;; and the b;(k) are smaller than 1, as t becomes large, a(j)
tends to zero exponentially and soon it exceeds the precision of any machine.
In order to avoid underflow, the «y(j) are normalized at every step using the

scaling factor ¢; = ————. The scaled a,(j) = ot are used in place of the ay(j).

Z (i)

When using normalization we can not simply sum the (i) in the termination

step, since their sum is equal to 1. However we can notice the following [140]:

i@t@)_ﬁl@i%(i) = CTiaT(i)_l (3.6)
ﬁCtP(OM) = 1 (3.7)
B P(O[A) = Tl (3.8)
Ect
log[P(O|A)] = —ilog[ct] (3.9)

Where the use of the logarithm in the last step is necessary in order to avoid
underflow, since the ¢; are smaller than 1 and their product tend to zero expo-

nentially.

3.3.2 Fixed point solution

The low power microcontroller embedded on the SMCube includes a multiplier
but not a divider and does not have hardware support for floating point oper-

ations. Therefore it can efficiently compute the steps required for the forward
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algorithm for discrete HMM, but not the one of the standard normalization pro-
cedure. In fact, as shown in the previous section, this algorithm requires to
perform N divisions each time a new sample is processed.

To find a solution suitable for our MCU we must notice that the objective of

the normalization procedure is simply to keep the @;(j) within the range of the
N

machine. Thus it is not necessary that Z ay(i) = 1. We propose an alternative

scaling procedure [182]:
1. at each time step t, once computed the ay(i), check if the highest ay(i) is

smaller than %, otherwise scaling is not needed at this step;

2. calculate the number of shift to the left [, needed to render the highest ay (i)

1.

greater than 3;

3. shift all a4(i) to the left of I; bits.

If, at a certain time ¢, all the ay(i) are equal to zero they are all placed at %
and [; is equal to the number of bit with whom we represent our data (datasize).
This procedure requires only shifts and can be efficiently implemented on the low
power microcontroller embedded into the SMCube.

Another problem arises when we need to compute the logarithm of the ¢; (see
equation 3.9). However the proposed scaling procedure eases this task. In fact in

T
this case the final probability is given by log P(O|\) = log(r) — Z log 2, where
t=1

T

r = va ar(i) # 1. By using log, we already have the value of Zlog 2t by
t=1

keeping track of how many shifts we performed for scaling. Furthermore, we do

not need to compute log(r) since logarithm is a monotonically increasing function.
Thus, to compare 2 models, we simply check for the one that required less shifts

for scaling, in case of tie the one with higher r is the model with higher P(O|\).
3.3.3 Algorithm complexity

Classification of a new instance using HMMs is performed by computing, through

the forward algorithm, the probability that an input sequence is generated by each
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Table 3.1: Basic operations computational complexity

Operation Cost
Shift 1
Variable compare 1
Sum 8 bits 1
Sum 16 bits 4
Sum 32 bits 8
Multiplication 8 bits 4
Multiplication 16 bits | 15
Multiplication 32 bits | 35

Table 3.2: Algorithm complexity
Algorithm Cost
a1 Caleulation | (N%2+ N)mul +2 - (N? — 1) sum.
Normalization (N—1)+ (N+1)-(data size — 1)

Single step (8 bit) C - [6N% 1 12N 1 4]
Single step (16 bit) C-[23N* + 31N +7|
Stngle step (32 bit) C-[5IN? 1 67N 1 14]

model associated to a gesture. The instance is classified as belonging to the class
of the model that results in highest probability. Therefore, once we detected the
beginning of a new gesture, each time the MCU samples a new data from the
accelerometer it must preprocess the input data, execute one step of the forward
algorithm with all models and normalize the (i) of all the models.

According to the algorithm presented above, one step of forward algorithm

(i.e. calculate ay11(i), 1 <i < N) requires

1. the product between an N x N matrix (the transition probabilities matrix
A) and the old N x 1 vector of the ay;

2. execute an element by element product of the resulting vector with the

column of the observing probabilities matrix (B) associated to the output

O+1-

For a total of N? + N multiplication and 2 - (N — 1) sums.
The scaling algorithm proposed first finds the highest ay(i), than computes
the number of shifts needed and finally shifts the other «4(i). To execute this
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Figure 3.2: The SMCube. The cube edge is 6.5 cm long. On the top left the inner
surface of the master face that includes the microcontroller, the accelerometer and
the transceiver. On the top right the inner surface of the other five faces of the
cube

procedure, in the worse case, we need to make N — 1 variable comparisons to
find the highest one and datasize — 1 comparisons to find the number of shifts.
Finally we perform N - (datasize — 1) shifts.

In table 3.1 we present the computational cost of the basic operations used
to evaluate the complexity of our implementation. A summary of the complexity
of the steps outlined above is presented in table 3.2 (where C' is the number of
gestures we want to recognize).

The memory cost is given by w -C - (N?+ N -M + N). The models
can be stored either in the MCU RAM or EEPROM.

3.4 Smart Micrel Cube

The Smart Micrel Cube (SMCube) is a cube shaped artifact with a matrix of
infrared emitter LEDs on each face (see Fig. 3.2). It embeds a low-cost, low-power
8-bit microcontroller (Atmel ATmegal68 [1]), a Bluetooth transceiver (Bluegiga
WT12 Bluetooth module [5]) that supports Serial Port Profile (SPP) and a MEMS
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Figure 3.3: The SMCube LED patterns present on each face.

tri-axial accelerometer (STM LIS3LV02DQ [4]) with a programmable full scale
of 2g or 6g and digital output. The cube is powered through a 1000 mAh, 4.2 V
Li-ion battery. With this battery the cube reaches up to 10 hours of autonomy
during normal operation.

The ATMegal68 features a RISC architecture that can operate up to 20 MHz
and offers 16 KB of Flash memory, 1 KB of RAM and 512 Bytes of EEPROM.
The microcontroller includes a multiplier and several peripherals (ADC, timers,
SPI and UART serial interfaces, etc.) but no floating point unit. In our prototype
the CPU operates at 8 MHz. The firmware has been implemented in C using the
Atmel AVR Studio 4 IDE that, used in conjunction with avr-libc and the gce
compiler, provides all the APIs necessary to exploit the peripherals and perform
operations with 8, 16, and 32 bit variables. Being written in C, the code is
portable on other devices. A wireless bootloader is used to load a new firmware
on the cube without the need to use programmers or disassemble it. Each cube
is identified by an ID number stored on the cube flash memory, which helps
disambiguating when more than one cube is present on the scene at a certain
time.

The LEDs pattern on every face of the cube is composed of 8 points (see Fig.
3.3). In the basic configuration only points pl, p2, p3, p5 are switched on, the
remaining points are used as a binary encoding of the cube id (note that this
visual id is not related to the cube id stored on the MCU flash). In addition to
the LEDs, actuation can be provided through six vibromotors mounted on the

cube’s faces.
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Figure 3.4: TANGerINE platform setup.

The SMCube is the main interactive device for the TANGerINE platform, a
tangible tabletop environment in which users can interact with digital information
manipulating tangible smart objects in order to perform actions on the contents
of a digital media table [27]. The TANGerINE system layout consists of a ceiling
mounted case that embeds all of the required elements: computer, projector,
camera and illuminator, targeting the horizontal surface of a normal table that
is positioned under the case, where also the interface is visualized (see Fig. 3.4).

The tabletop scenario is characterized by different contexts according to the

area where the interaction occurs:

e Active Context (AC): it is the horizontal visualization surface, typically
the scene where users interact with tangibles (recognized by the system) as
well as digital elements. In this area there is a direct mapping between the

position and orientation of tangible objects and the digital ones.

e Nearby Context (NC): it is the area right around the tabletop where both
intentional and non intentional actions can be performed. The body of the
user can be tracked and this information can be used to study his behavior.
The position of the user can be useful also for attributing the ownership of
actions performed in the AC. In this context tangibles position could not be
precisely tracked, as a result of a less constrained user behavior in dealing
with physical objects (e.g. user could occlude the object), but can still be

manipulated and provide information about their orientation in space.

e External Context (EC): it is the outer area, unrelated with the first two
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contexts. In this area no position tracking occurs, but the user can still
interact with the tangible object and carry it with him across different
tabletops. The object therefore becomes a bridge between different interac-
tive artifacts. The user could perform some actions on a tabletop and use
the same tangible on other artifacts, in this case the physical object can
become a container of different kind of information (e.g. session data or

user profile).

A combination of computer vision tracking techniques and signal analysis of
the sensors embedded in the SMCube are employed to allow natural and effective
interaction modalities in each of the three contexts. Gesture recognition algo-
rithms allow the user to perform gestures with the cube in proximity of the table,
which are mapped to actions on the digital content represented on the table.
Computer vision techniques are applied to obtain LEDs detection and tracking
in order to understand the cube’s position on the tabletop surface. The analysis
of LEDs pattern gives us the absolute orientation of the SMCube. The matrix of
LEDs pictured in Fig. 3.3 has been designed to provide both the 2-dimensional
orientation of the cube and the identification of the cube. The orientation is
evaluated in relation to the absolute axis perpendicular to the table surface. The
cube form-factor and the border size of the face provide enough space to avoid

ambiguous detections, allowing cubes to be adjacent in every orientation.

3.5 Implementation of the Gesture Recognition

Algorithm

The goal of our work was to implement the whole gesture recognition algorithm
on board of the SMCube. Typical activity recognition systems are made up of
four steps: (1) data preprocessing, (2) segmentation, (3) features extraction, (4)
classification. At each step several design choices must be taken. Our approach
was the optimization of each step for the resource-constrained microcontroller
embedded in the SMCube.

In the pre-processing stage, sampled accelerometer data are filtered with a
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mean filter to eliminate high frequency noise. This filter computes the mean value
of the last 4 samples: this window length was chosen to use simple shift operations
instead of divisions. In addition an offset filter removes the stationary gravity
acceleration, measured during a calibration phase which consist in sampling data

when the device is placed still on a table or held still in the user’s hand.

3.5.1 Segmentation

The next stage of the recognition chain implements a motion detection algorithm,
used for segmentation. This step identifies the start and the end points of an
executed gesture, allowing the classifier to process only the selected portions of
the sampled signal in order to recognize the performed gesture.

The segmentation algorithm was implemented ad-hoc, and even if it was de-
veloped and optimized for this particular setup, it can be used in other similar
scenarios. Using only the data from one accelerometer, it is very difficult to rec-
ognize gestures performed with a device if they are part of a continuous stream
of unconstrained movements. To overcome this problem we added a limitation
in the gesture execution: users must hold still the device for few instants before
and after a gesture. In this way, it is fundamental for the algorithm to identify
when the device is still in user’s hand and when a movement starts and ends.
To evaluate the state of the device we compute the variance of the filtered signal
and use a Finite State Machine (FSM) to find out if the device is in one of the 4
possible states: still on a table, still in user’s hand, in movement or shaken. The
variance uses sliding windows of 4 samples, it is calculated for each axis and then
summed to have a total information of the intensity of the movement.

When the cube is placed still on a surface, the variance values observed are
near zero. If a user holds the device in a hand, we measure a low and uniform
variance, always within a limited interval, while movements bring higher and vari-
able variance values. The shake gesture, on the other hand, leads to extremely
high variance levels for prolonged intervals of time, while the gesture is executed.
An example of the sampled signals and the computed variance is shown in Figure
3.5. It is possible to classify those conditions with empirically determined thresh-

old values and model the transitions between them as the states of a FSM. We
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Figure 3.5: Accelerometer data (a) and total computed variance (b) during a
sample gesture: at the beginning and the end of the plot the device is still on the
table; in the highlighted sections it’s hold still in the user’s hand to segment the
executed gesture.

introduced a few sample of delay in the recognition of a state to avoid spurious
transitions.

In this way, we are able to segment every movement that is encapsulated
between two states when the device is still in user’s hand, which are the candidate
gestures. Since all the used gestures have limited duration, we added a condition
on the minimum and maximum time for the movements to be segmented as
gestures. This helps to avoid many unwanted movements being segmented as
gestures. Despite those conditions, this algorithm still identifies some of the
random movements as gestures, leading to false positive results from the classifier,
as shown later in the results section.

To improve the performance and the usability of the device, we introduced a
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new operation mode, called Assisted Segmentation. In this mode the user per-
forms a shake gesture to enable and disable the segmentation and the recognition
of all the other gestures. The shake gesture is recognized using the segmentation
FSM and has a high accuracy: during our tests we obtained a correct classifica-
tion ratio of 100% within 80 executions of the gesture and only one false positive.
By default, gesture recognition is disabled, and the user can move the device in
any way (e.g. walking with the device or using the device as a pointer on an in-
teractive table). When needed, the user performs a shake gesture, activating the
recognition algorithm and then executes the desired gestures to interact with the
system. During this time the user can pay attention to the movements performed,
to avoid the recognition of random movements as gestures. Another shake dis-
ables the interaction capabilities of the device, and the user can move it freely.
This user-assisted segmentation technique increased the overall performance of

the device, reducing drastically the number of false positive recognitions.

3.5.2 Feature extraction

To improve the performance of the classifier, we computed a quantized feature
from the accelerometer data stream. The main feature used for gesture recogni-
tion is the direction of the movement, represented by the direction of the acceler-
ation vector after the removal of the static gravity component. This information
is obtained converting the 3D acceleration vector Y, = {a,,a,,a.} in spherical
coordinates, and using only the two resulting angles {¢, 0}.

Each sampled acceleration vector Y, is converted to equivalent spherical coor-
dinates {¢, 0,7}, as represented in the left part of Fig. 3.6. From those vectors,
magnitude information r is discarded and the angles ¢ and 6 are used to identify
the direction of the movement performed, represented as a point on a unitary
sphere. In order to cluster this data for the discrete HMMs, a quantization algo-
rithm is applied, with & vectors or codes in the codebook. In this case, codebook
vectors are uniformly distributed points on the unitary sphere, as illustrated in
the right part of Fig. 3.6. Since & must be determined empirically we decided
to conduct tests to find a codebook size delivering a satisfying trade-off between

results and algorithm complexity.
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Figure 3.6: Spherical coordinates (left) and codebook vectors used for direction
quantization (right).

To efficiently compute the two angles of the acceleration vector we applied an
integer version of the CORDIC algorithm [167]. Using the notation in Fig. 3.6,
this algorithm first estimates the phase € and the magnitude ' of the complex
number (a, + ia,), then again estimates the angle ¢, using 7’ and a,. All com-
putations are done with integer values, giving us a resolution of 1 degree and a
maximum error of 2 degrees, which is acceptable since we are dealing with human

motions and don’t need higher accuracy.

3.5.3 Classification

Discrete HMMs are less computationally demanding than those operating on
continuous observations, so they are the best choice in our case, since we are
focusing on a limited resource implementation. As input to the discrete models
we need to use a discrete feature symbol to represent the directional information.
The two angles calculated, that identify the arbitrary 3D orientation of a unitary
vector, are quantized to the nearest vector of the codebook by a simple minimum
distance classifier. In this way, the stream of two angles is converted in a stream
of codebook indices, which is a suitable input to discrete HMMs. The number of
vectors in the codebook was empirically determined and a codebook with k& = 26
vectors uniformly distributed on the spherical surface resulted to be the best
trade-off between quantization accuracy and processing complexity.

The HMM training phase builds a model for each of the gestures to be recog-
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nized, using sample instances of the gestures. We used the standard Baum-Welch
algorithm for this purpose, and initialized the training models with several ran-
dom probability distributions. Among the resulting HMMs, those with the lowest
training error were chosen.

During the training phase we collected several gestures to build and validate
models for each gesture. The training was implemented on a PC in Matlab using
the HMMtoolbox [2], which implements the Baum-Welch algorithm. We chose to
use discrete HMMs, with 7-state Left-to-Right models for all gestures, according
to the results of a preliminary exploration. For the on-line recognition a modified
fixed-point version of the forward algorithm was implemented in Matlab to test
its performance and in C on the AVR platform for the SMCube.

To improve the model behavior, when dealing with input gestures that are
slightly different from those used during training, we modified the symbol ob-
servation probability distribution (i.e. the observation matrix B in the discrete
case). A model with a uniform observation matrix By recognizes every gesture
with a same low probability. We interpolated the trained models with the uni-
form one, by weighting the observation matrices with a factor ¢ as given by the
equation B’ = e¢B+ (1 —¢)By. The optimal e factor was empirically obtained and
is equal to 0.8.

The on-line recognition algorithm evaluates the executed gesture with all of
the trained models, and selects the model with the highest probability. For this
purpose we used a fixed point version of the forward algorithm, as introduced in
Section 3.3.2. This implementation deals with the lack of a division unit in the
low power microcontroller embedded in the device, and proposes a different scal-
ing procedure that uses shifts and a logarithmic representation of the computed

probabilities.
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Figure 3.7: Gestures performed to validate the algorithm. The dots indicate the
start and end position.

3.6 Experimental Setup and Results

3.6.1 Experimental setup

For the validation of our algorithm we used a set of 7 gestures, illustrated in Fig.
3.7. All gestures are formed by natural movements, start and end with the user
holding the cube in approximately the same position and are executed on the
vertical plane in front of the user, holding the device with the same orientation
trough the duration of the gesture.

We collected gestures executed by four people, working in our laboratory. To
build and validate the HMMSs each user executed 80 instances of every gesture,
during different session in different days. Even if all the performers are people in
the field of computing engineering, they have been asked to perform the gestures
without any particular training except a single initial visual demonstration.

To the purpose of evaluating the use of our fixed point implementation with
respect to the standard one, the set of chosen gestures is not crucial. Therefore, we
selected a set of movements that can be representative of the ones used to interact
with computing systems. For example the gestures Square and Circle could
represent actions like cut or copy on a set of selected items. On the other hand
the "X’ could mean to delete a set of items and the directional movements (Flip)
to navigate through the digital content or change the context of an application.

An analysis of the computational and memory cost as a function of the number
of gestures that have to be detected is presented in the following sections.

During our test the accelerometer on the SMCube has been sampled at 100

Hz. Raw data have been sent via Bluetooth to a base PC. This enables to use
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this data set as a reference data set, and to later assess the effect of various types
of data representation and processing through simulations.

Manual data segmentation and labeling was done by a test supervisor through
a simple acquisition application running on the PC. This allows to obtain reliable
ground truth, and to separate the problem of gesture classification from that of
data segmentation. From each user we also collected several continuous streams,
containing gestures and random movements, to simulate an actual usage of the
device and test the overall recognition algorithm. No feedback from the device
or the PC was given to the users during the execution of the gestures. To easily
test the performance, the algorithm was implemented in Matlab, taking care to
simulate the computational constrains of the 8 bit microcontroller, using only

integer computations with controlled variable size.

3.6.2 Tests and simulations

Our first objective was to understand how our implementation, that uses fixed
point data and the proposed scaling technique, performs with respect to a refer-
ence implementation that follows the standard algorithm and uses double preci-
sion for data representation. Therefore, we used the collected dataset to train a
set of HMMs for each tester using the floating point notation with double preci-
sion. Each model has been trained using 15 reference instances, 15 loops for the
Baum-Welch training algorithm, and 10 initial random models. We used twofold
cross-validation to use the whole available instances for validation. Thus, the in-
stances have been divided into two groups. Two models have been trained, each
one using a different group of instances and validated on the group of instances
not used for training. As a consequence we can draw our results on the whole
dataset. From now on we refer to these models as floating point models and we
use them in all tests to provide reference results.

The same models have been converted into fixed point notation using differ-
ent accuracies (8, 16, and 32 bits) and the accuracy of these models has been
compared to the one of the floating point models. Performance is evaluated using

the Correct Classification Ratio (CCR), expressed as:
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number of correctly classified instances

CCR = -
total number of instances

Table 3.3 summarizes the results obtained by our multi-user dataset for the
different data precisions analyzed. Here we compared the performance of the
standard floating point model with its fixed point implementations that use the
proposed scaling technique. In addition, we evaluated the algorithm in a multiuser
scenario where a single cube is shared among different users. Tables 3.3 present
the CCR when the models trained on a user are validated on the other users for
different implementations. This includes the single-user scenario, represented by
the values on the diagonal of the tables, where we used gestures from the same
user for both training and testing.

As can be seen from these results the 16 and 32 bits implementations show
performance comparable to the one of the floating point implementation, while
using only 8 bit for data representation results in more than 20% drop of CCR.
Fig. 3.8 compares the CCR of the fixed point implementations with the floating
point one. From this picture, it is clear that the 16 and 32 bit solutions show
accuracies comparable with the floating point one. We can use 16 bit for data
representation with minimum recognition accuracy reduction while decreasing
by 50% the memory cost and by 84% the computational cost. Tables 3.4 and
3.5 show respectively the best and the worst case we encountered for the 16 bit
implementation of our algorithm.

For some users we noticed that the performance of the 8 bit classifier was
higher than the other implementations. This behavior is tied to the fact that
HMNMs are a representative model of the gestures based on the training set. Fur-
thermore, the Baum-Welch training algorithm does not guarantee that we find
the global maximum of the likelihood, but only a local one. Therefore, the error
introduced by the not perfect data representation may affect the likelihood eval-
uation in a way that increases the recognition performance on the validation set.
Overall the results show how the selected gesture recognition algorithm presents
poor results when recognizing gestures from a different user than the one who
trained the algorithm. However this behavior is not related to data representation

but only on the classifier used in this study.
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Table 3.3: Multiuser scenario classification performances with different variable
sizes.
(a) Floating point implementation

Training Set Validation set
Usr. 1| Usr. 2 | Usr. 3 | Usr. 4
Usr. 1 0.842 | 0.496 | 0.475 | 0.388
Usr. 2 0.408 | 0.858 | 0.375 | 0.221
Usr. 3 0.438 | 0.308 | 0.704 | 0.358
Usr. 4 0.333 | 0.317 | 0.254 | 0.663

(b) 8-bit fixed point implementation

Training Set Validation set
Usr. 1| Usr. 2| Usr. 3| Usr. 4
Usr. 1 0.604 | 0.446 | 0.375 | 0.321
Usr. 2 0.446 | 0.825 | 0.354 | 0.208
Usr. 3 0.379 | 0.292 | 0.596 | 0.375
Usr. 4 0.333 | 0.321 | 0.263 | 0.642

(c) 16-bit fixed point implementation
Validation set

Training Set

Usr. 1| Usr. 2| Usr. 3| Usr. 4
Usr. 1 0.808 | 0.504 | 0.438 | 0.329
Usr. 2 0.396 | 0.804 | 0.358 | 0.192
Usr. 3 0.425 | 0.338 | 0.683 | 0.279
Usr. 4 0.329 | 0.235 | 0.254 | 0.604

(d) 32-bit fixed point implementation

Training Set Validation set
Usr. 1| Usr. 2 | Usr. 3 | Usr. 4
Usr. 1 0.808 | 0.504 | 0.438 | 0.379
Usr. 2 0.391 | 0.800 | 0.358 | 0.208
Usr. 3 0.425 | 0.338 | 0.683 | 0.346
Usr. 4 0.329 | 0.325 | 0.254 | 0.604
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Figure 3.8: Comparison of the correct classification ratio of the fixed point im-
plementation (continuous line) and the floating point one (dashed line) when
different variable sizes are used.

Table 3.4: Classification matrix for the best case

Classified as
Performed Gesture Up | Right | Down | Left | Circle | Square | X
Up 62 0 0 0 0 3 0
Right 0 65 0 0 0 0 0
Down 0 0 65 0 0 0 0
Left 0 0 0 65 0 0 0
Circle 0 0 0 0 65 0 0
Square 0 0 0 0 0 65 0
X 0 0 0 0 0 0 65

To overcome the limitations in the multi-user scenario, we put together all the
gesture instances, regardless to the user who executed them and build a global
model for each gesture. These models were trained using 15 randomly chosen
gestures and validated on 200 gestures from all the users. The results of this case
are presented in Table 3.6. In this case we have a notable improvement when the
deivce is shared among multiple users, having a global model which can suite all
of them.

With this global model we evaluated the overall algorithm performance when
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Table 3.5: Classification matrix for the worst case

Classified as

Performed Gesture Up | Right | Down | Left | Circle | Square | X
Up 33 0 0 0 1 28 3

Right 0 25 0 30 6 1 3

Down 12 1 43 1 0 7 1

Left 0 3 0 60 1 1 0

Circle 0 0 0 5 42 15 3

Square 0 0 0 0 13 50 2
X 3 0 15 3 2 3 39

Table 3.6: Classification matrix for the global model trained and tested using
gestures from all users

Classified as
Performed Gesture Up | Right | Down | Left | Circle | Square | X
Up 194 0 3 0 2 1 0
Right 0 187 1 11 0 1 0
Down 1 0 199 0 0 0 0
Left 0 1 0 199 0 0 0
Circle 0 0 0 4 177 19 0
Square 0 0 0 0 13 187 0
X 3 0 12 0 1 2 182

the device is used in a continuous way and the gestures are segmented from
random movements. For this purpose we used the collected continuous streams
of data which contain gestures and random movements. In this way we could
test the segmentation and recognition algorithms together. Table 3.7 presents
the results of this analysis.

The automatic segmentation algorithm has good performance in recognition

Table 3.7: Global model continuous recognition performance

Auto Segmentation

Assisted Segmentation

Executed Gestures 83 78

Correctly Classified 71 62
Insertions 45 2
Deletions 6 )
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executed gestures, but gives also several false positive results, identified by the
insertions. The performance depends on what the user is doing and how the
device is moved: long and continuous movements are easily rejected, but short
movements, similar to gestures, trigger the recognition algorithm leading to a false
positive. Deletions indicate how many times the algorithm misses a gesture, and
this happens only if the gesture is executed too quickly or too slowly. Minimum
and maximum duration times are derived from the collected dataset, and deletions
may happen only in extremely short or long gestures.

To improve the device usability we proposed the assisted segmentation algo-
rithm, which lets the user disable the recognition of gestures when not needed.
Classification rates for this algorithm are the same of the automatic one, since it
uses the same HMMs, but in this case we have a better segmentation performance,

with almost no insertions.

Processing Performance Results

All the tasks needed for the gesture recognition algorithm were implemented on
the ATmegal68 microcontroller, embedded in the SMCube. Table 3.8 presents
the computational costs needed to perform the main operations at each frame
with the 16 bit implementation, showing the CPU cycles and corresponding exe-
cution times when using a clock frequency of 8 MHz. Each gesture model requires
3 matrices of 16 bit variables and with the implementation choices (7-state mod-
els with a 26 vector codebook) we need 462 Bytes to store each model. The
microcontroller used has only 1 Kbyte of RAM, so we stored the models in the
16 KB of FLASH memory, used as program space. The entire application uses
up to 12480 bytes of FLASH and 360 bytes of RAM memory.

Table 3.8: Computational costs with 16 bit precision

CPU Cycles | Time (ms)
Preprocessing 254 0.034
Segmentation 1504 0.203
Feature extraction 1262 0.171
HMM (1 gesture) 5375 0.729
HMM (7 gestures) 36900 5.000
Total 45295 6.138
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3.7 Conclusions

The popularity of TUIs, physical objects used for human-computer interaction,
is growing together with the development of VR applications and smart spaces.
Effectiveness of TUIs can be enhanced by the use of smart objects able to sense
their status and the gestures that the user performs with them. The on-board
recognition of gestures therefore will play a central role in developing new TUIs
in order to improve object batteries lifetime, system scalability and handling of
moving TUlIs.

This work presented and characterized an implementation of the HMM for-
ward algorithm suitable for the class of low-power, low-cost MCU typically em-
bedded into TUIs. HMMs are state of the art algorithms for gesture and speech
recognition. The proposed solution was implemented on the SMCube, a tangi-
ble interface developed as a building block of the TANGerINE framework. The
characterization of our algorithm in both single and multiuser scenarios demon-
strates that the use of fixed point data representation results in recognition ratio
comparable to the floating point case when using more than 16 bits.

We evaluated the computational and memory cost of implementing a solution
able to recognize up to seven gestures with a set of HMMs. We show that the flash
memory available on the SMCube is enough to store all versions of the model,
and that if fast recognition capabilities are needed we can use HMMs with a lower
number of states without excessive recognition loss. The recognition algorithm
can be improved for a multi-user scenario employing a global model trained with
gestures from various users.

The automatic segmentation algorithm proposed effectively finds executed
gestures, but introduces also false positives. To address this issues, we introduced
an assisted segmentation mode, which disables the gesture spotting algorithm

when not needed, through the execution of a shake gesture.
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Chapter 4

Multi-sensor Tracking of

Interactive Devices

In the previous section we introduced the SMCube, a sensorized smart object
used for gestural interaction. Its main characteristic is the on-board processing
of the accelerometer data stream in order to recognize gestures executed by the
user. In this section we will present a new interactive device, the SmartPen, which
was developed to satisfy a different range of interactive possibilities. In this case
we are interested in accurate real-time tracking of the position and orientation
of the device, rather than in the recognition of single gestures. This information,
provided by the fusion of on-board inertial sensors and a computer vision system,
allows for the use of the pen as a free-hand interactive tool for input or editing in
3D applications. The SmartPen, supported by a reconstruction and visualization
layer based on subdivision surfaces, can be utilized for rapid prototyping of 3D
shapes and objects in CAD applications or for the editing of existing virtual
models. To achieve accurate tracking of the input device, state of the art data
fusion techniques were implemented, both on the device itself, to combine the
data from its multiple inertial sensors, and on the host PC to combine sensor

data with video tracking information.
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4.1 Overview

Innovative interaction paradigms are one of the main goals of the Aml vision.
While most of the efforts are oriented towards new scenarios and the interac-
tion between the user and an ubiquitous digital ecosystem embedded in the en-
vironment, interesting research is also targeting the more consolidated desktop
computing paradigm. Here the adoption of new technologies and advanced pro-
cessing techniques allows innovative interaction modalities, which can introduce
new functionalities or simplify the existing ones for specific applications. One no-
table example is the case of Computer Aided Design (CAD) applications, where
the user draws and edits complex 3D virtual models or animations on a PC. In
this case it is evident how traditional input methods, such as keyboard and mouse,
can limit the user experience. New technologies and interaction paradigms can
enable the user to exploit the physical space and his/hers manual abilities to ease
the process of the creation or editing of 3D virtual models.

In the field of CAD, reverse engineering has become an effective method to
create a 3D virtual model of a desired physical object. Reverse engineering has
many applications in different fields, ranging from medical imaging to web com-
merce and all these applications can take advantage in different ways from the
reconstructed 3D virtual model, e.g. for inspection, quality control, rapid proto-
typing or animation [163].

The traditional reverse engineering process is performed in two sequential
steps, the measurement of the physical object and its reconstruction as a 3D vir-
tual object. The physical object can be measured using 3D scanning technologies
such as coordinate measuring machines or computed tomography scanners, which
provide outputs in the form of an unstructured point cloud [105]. It forms a large
set of vertices in a three dimensional coordinate system, which lacks topological
information and therefore is generally not directly usable in most 3D applications.
The second step of the reconstruction of the 3D virtual object from the dense
point cloud is an inverse problem and generally does not admit a unique solu-
tion. The overwhelming number of points acquired and the lack of topological
information in this data, combined with the presence of noise and inaccuracies,

usually require complex and time-consuming solutions [158]. Moreover, the strict

58



separation of this two fundamental steps makes this process non-iterative and
non-interactive.

In this work, we introduce a wireless low-cost pen-like device, the SmartPen,
designed and produced to support a reverse engineering system, named FIRES
(Fast Interactive Reverse Engineering System) [33]. This solution enables the user
to naturally interact with a CAD application for a fast and simple reconstruction
and editing of virtual 3D models representing physical objects. The SmartPen
has been designed to produce a low cost, low power consumption, wireless pen-
like device, able to provide intuitive and easy 3D input/editing experience. The
system tracks the real-time position of the device, which is used as a 3D user
input and can be freely manipulated in the space in front of the user. It exploits
the user’s natural capabilities of interaction and its manipulative skills, by aug-
menting a familiar tool such as a pen, to bridge the gap between the physical
and digital worlds. It is used for drawing and selecting points and curves in the
virtual environment, introducing a natural way to draw and edit the style-lines
of a physical object. The style-lines define the most characteristic curves of the
shape to be modeled and they are traced by simply dragging the pen in space.
If a physical version of the object to model is available, the pen can be used to
trace its style-lines following the ones on the real object and thus to reconstruct
its shape in the digital world.

Although the 3D virtual model acquired with FIRES and the SmartPen does
not have the accuracy of more sophisticated reverse engineering systems, our
approach allows us to significantly shorten the acquisition time and the immediate
integration of an interactive model directly into the virtual environment. The
work presented in this dissertation is aimed at an in-depth description of the
acquisition and interaction steps in FIRES, using the novel SmartPen and the
Minoru 3D stereo video acquisition system [11], to document the integration of the
system. Details on the first developments of FIRES are documented in [33], and
the refinements of the geometric modeling techniques used in the reconstruction

of the virtual models are presented in [130].
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4.2 Related Work

Computer modeling of 3D geometries using alternative three-dimensional user
interfaces (3DUIs) and interaction techniques has received considerable attention
in recent years. While a number of techniques involving 3DUIs, haptic devices and
virtual or augmented reality (VR/AR) systems have been proposed, the usability
of 3DUIs in many real world CAD applications is still surprisingly low [157].

Pantographs are the most widely utilized 3DUlIs, with several commercial ex-
amples available: some examples are the Microscribe 3D digitalizer from Ghost3D
[10] or the Phantom haptic device from Sensable [13]. These solutions are lim-
ited by their form factor, have a fixed support which limits the movements and
the usability of the device. Research in 3DUIs has addressed the design of novel
3D input or display devices, new methodologies for the use of existing solutions
and the development of design and/or evaluation approaches specific to 3DUIs
[35, 72].

Much of the early work on 3DUlIs focused on systems for inferring plausible
3D free-form shapes from visible-contour sketches, which involves the difficulty of
interpreting 3D information from 2D input [83, 96]. The emphasis in such systems
is to quickly generate a reasonable 3D shape rather than a precise modeling of the
object. In gesture-based techniques designers’ strokes are used for editing exiting
primitive objects into the desired shape [183]. A number of template-based meth-
ods have also been proposed, where the desired 3D form is obtained by deforming
an underlying 3D template, such as for example a six-faced topological template
(94, 128] or a given network of curves [58]. Recently, a system for designing free
form surfaces from a collection of projected 3D curves inserted through a 2D
line drawing sketching system has been presented in [131]. This approach lacks
from a direct control on the object shape since a functional optimization is used
to construct the smoothed surface. In contrast to the presented solutions, our
approach has the advantage to use the same tool for real 3D sketching, editing
and interaction within a CAD environment. When coupled with the FIRES re-
construction engine it provides an intuitive and powerful interactive environment
for the designer.

Recent appearance of low-cost video cameras that include RGB and depth
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sensors, such as Microsoft’s Kinect [3], led to several works trying to reconstruct
virtual models of objects and environments from combined color and depth im-
ages. For example the work in [170] presents a system that allows users to scan
objects by simply turning them freely in front of a real-time 3D range scan-
ner. They address the well-known loop closure problem: when performing a full
scan around the object, the accumulation of registration errors leads to an off-
set at the scanning borders, resulting in visible artifacts. Instead of ignoring
loop closure cases, their approach explicitly detects and compensates for them
on-the-fly by deforming the on-line model appropriately. This leads to a robust
on-line algorithm which eliminates the need for post-processing and allows the
user to control the coverage and quality of the reconstruction, making the pro-
cess fast and intuitive. Building on this work, [87] implemented KinectFusion,
a GPU-accelerated algorithm to rapidly create detailed 3D reconstructions of an
indoor scene. They demonstrate core uses of KinectFusion as a low-cost handheld
scanner, and present novel interactive methods for segmenting physical objects of
interest from the reconstructed scene. The paper shows how a real-time 3D model
can be leveraged for geometry-aware augmented reality (AR) and physics-based
interactions.

Literature papers present also several applications based on pen-like hard-
ware, focused on different fields such as handwriting, gesture recognition and
HCI. Different products are already available on the market, with most of the
solutions for off-line handwriting recognition like in [6], where a tiny video sensor
is embedded inside the pen. Instead, the VPen from OTM [12] includes a laser
diode, detectors and optics to converts handwriting to ASCII text supporting
Latin and Asian characters.

An interesting work about a pen equipped with a three-axes digital accelerom-
eter for handwritten character recognition is presented in [52], where Hidden
Markov Models are used for classification. In [108] the recognition of pen gestures
on a paper is evaluated to create an interactive system and link specific content
on paper with digital operations or edits. In [80] an optical 6-DoF tracker is
designed using a few photo-sensors that can track the position and orientation
of a LED cluster positioned on top of a handheld device. It is based on a source

localization problem, where the source is a custom interactive device equipped
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with accurately oriented LEDs. They present some applications for the proposed
device, such as interactions with a TV viewing environment, a tabletop surface or
a smart space. In [144] a multi-sensor approach, based on electromagnetic track-
ing and inertial sensors, is used to improve the tracking of an endoscopic surgery
instrument. This is not a CAD application, but deals with a similar tracking
problem for HCI and has an interesting approach on sensor fusion to increase the
precision of the system. Our system employs a hybrid approach, fusing stereo-
vision tracking information with inertial sensors to increase the performance of
the tracking of the interactive device. One of the objectives of FIRES was to
pursue a low-cost technology strategy to achieve an optimal compromise between
accuracy and cost. Moreover, an active involvement of the user in the acquisition
process has different advantages. For example, it allows for a fast interaction by
adding, modifying or discarding measures right during the acquisition process,
and the detection of features of the objects like creases, corners and symmetries.
In addition, the interactive capabilities of the device allow the user to manip-
ulate the virtual model and to further edit it adding or changing some of its

components.

4.3 Sensor Data Fusion

A concise definition of Data Fusion have been proposed to highlight the fact that
similar problems of data association and combination occur in a wide range of
engineering, analysis, and cognitive situations. According to this definition data
fusion is the process of combining data or information to estimate or predict entity
states [153]. Often we refer to data fusion also as Sensor Fusion. In this case we
refer to the use of techniques that combine data from multiple sources (sensors
or high level inferences), and related information from associated databases, to
achieve improved accuracies and more specific inferences than could be achieved
by the use of a single sensor alone [76]. The concept of multi-sensor data fusion
is not a novel idea. Humans and animals use multiple senses to improve their
ability to survive. Nowadays the development of new sensors, hardware and

processing techniques make real-time fusion of data possible. The use of advanced
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embedded microcontrollers, in association of a variety of sensors, allows for on-
board processing of sampled data directly in the sensing devices. In this way
only the estimated high level information needs to be sent to the collected center,
aggregating the information from the single sensor data streams. Fusing data

from multiple sensors offers some advantages over standard algorithms [120]:

1. Improved confidence due to complementary and redundant information;
2. Robustness and reliability in adverse conditions;
3. Increased coverage in space and time;

4. Better discrimination between hypotheses due to more complete informa-

tion;
5. System being operational even if one or several sensors are malfunctioning;

6. Possible solution to the vast amount available information.

4.3.1 Direct fusion of sensor data

We can distinguish between two main cases in date fusion: Direct fusion of sensor
data and fusion of higher level features or information. Direct fusion of sensor
data refers to the combination of input signals from a (heterogeneous) group of
sensors in order to provide an output aggregated signal of greater quality. The
output of the system can be of the same form as the original signals or it can
consist in quantities derived from the sampled signals. The signals from sensors
can be modeled as random variables corrupted by uncorrelated noise, and the
fusion process can be considered as an estimation procedure. In the case of
feature or information fusion, sensor data from heterogeneous sources id first
processed to obtain meaningful features. Then a fusion technique is applied to
conveniently combine information from the several sources in order to obtain more
accurate global knowledge from the whole system. The two approaches can share
the same techniques, but the information processed and obtained have different

characteristics.
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Predictive filters are widespread tools in modern science. They perform state
prediction and parameter estimation in fields such as robotics, computer vision,
and computer graphics. They belong to the class of Bayesian filters, since they
apply the Bayesian rule of conditional probability to combine a predicted behavior
with some corrupted indirect observation [74]. As compared to the other types of
fusion, fusion of sensor data requires a higher degree of synchronization between
data streams from the sensors. The most common techniques for this kind of

fusion consist of weighted averaging and Kalman filtering.

4.3.2 Kalman filter

In 1960, R.E. Kalman published a paper describing a recursive solution to the
discrete data linear filtering problem [91]. Since that time, due in large part to
advances in digital computing, the Kalman filter has been the subject of exten-
sive research and application. The Kalman filter is the simplest example of a
predictive filter. It represents uncertainties as Gaussian random variables, fully
described by a mean and a covariance matrix, and models the system with linear
dynamics and observations. Since Gaussians are preserved under linear transfor-
mation, the Kalman filter’s implementation uses only linear algebra operations.
It can be shown that the Kalman filter is an optimal recursive data processing
algorithm. One aspect of this optimality is that it uses all information that can
be provided to it. It processes all available measurements, regardless of their
precision, to estimate the current value of the variables of interest. Furthermore
it uses the knowledge of the system and measurement device dynamics, the sta-
tistical description of the system noises, measurement errors, and uncertainty in
the dynamics models, and any available information about initial conditions of
the variables of interest.

The Kalman filter addresses the general problem of trying to estimate the
state of a discrete-time controlled process that is governed by the following set of

linear equations:
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Where 1z, is the state of the process and z; is the, noisy measurement observed
to estimate the state of the process, wy and v, represent, respectively, the process
noise and the measurement noise and are assumed to have a normal probability

distribution with the following parameters:

(4.2)

Where @ is the process noise covariance matrix and R is the measurement
noise covariance matrix. A, B and H are the equations that specifies how the state
of the process evolves and is related to the measurement. The filter estimates a
process by using a form of feedback control. The process evaluates the state at
some time and then obtains feedback in the form of (noisy) measurements. A set
of time update equations (or predictor equations) are responsible for projecting
forward the current state and error covariance estimates to obtain the a priori
estimates for the next time step. The measurement update equations (or corrector
equations) generate a feedback used to incorporate a new measurement into the
a priori estimate and obtain an improved a posteriori estimate.

Equations 4.3 and 4.4 present respectively the prediction and the correction

equations

.’IAL']: :Ai'k_l -+ Buk_l
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Where 7 is the estimated value of the state w, P = FEleg, el| is the error
covariance matrix where the error is calculated as e, = x, — Ty, and K}, is the
Kalman gain that decides how much the a priori estimates should be corrected by
the k-th observation (note how the large the measurement noise, R, the smaller
the correction).

The Kalman filter can be used to fuse multiple measurements to estimate the
desired state of the process. Every available measurement will be weighted by
its portion of the measurement noise covariance matrix R, leading to an optimal
fusion of the different sources. In the actual implementation of the filter, the
measure of the noise covariance matrix, R, is generally possible prior to the
operation of the filter, since we should be able to measure the process to estimate
its state. The determination of the process noise covariance, @), is generally more
difficult as often we do not have the ability to directly observe the process we are
estimating. For this reason we rely on an off line tuning of the parameter of the
filter. This tuning often take the name of system identification or training.

If the hypothesis on the linearity of the process and the probability distribu-
tions of the noise are respected, the Kalman filter can provide and exact solution
for the estimation of the process. However, one of the main criticism to the
Kalman filter is that the hypothesis on the linearity of process and on the noises
models are too restrictive. For this reason several variants of the filter have been

proposed:

e bExtended Kalman filters.
e Unscented Kalman filters.

e Particle filters.
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Figure 4.1: FIRES reconstruction pipeline.

The objective of this models is provide an approximate solution for an exact

model rather than an exact solution for an approximate model.

4.4 System Architecture

In this section we illustrate the technical characteristics of the SmartPen and how
the FIRES system takes advantage of its features in the reconstruction process.

The FIRES working pipeline (schematized in Figure 4.1), differently from
existing reverse engineering solutions, integrates the steps of measuring and re-
construction into an iterative and incremental process that allows the user to
have a real time visual feedback on the ongoing work. The measuring step is
achieved through an stereo vision system provided by the Minoru 3D webcam
and the SmartPen, equipped with 4 infrared light emitters and inertial measure-
ment sensors. The 3D position of the SmartPen is tracked by the fusion, on the
host PC, of video data from the stereo rig and the IMU data from the pen. The
raw IMU sensor data is first processed on board of the device, sending to the PC

only the needed features. To reconstruct a desired object the user can intuitively
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Figure 4.2: Hardware and software layers in FIRES

draw and refine the style lines of the object, i.e. the lines and curves that prin-
cipally characterize the object’s shape. This set of 3D curves is called the Curve
Network and the process of interactively and incrementally drawing the curve
network is called Interactive Surface Sketching (ISS). The ISS produces a curve
network which is internally represented as a polyline mesh, that is, a mesh with
faces, vertices and edges augmented with polylines associated to each edge. The
reconstruction of a smooth surface from the polyline mesh is achieved through a
multi-step process based on subdivision surfaces [33].

The active involvement of the user in the acquisition process has different
advantages. For example, it allows for a fast interaction by adding, modifying
or discarding measures right during the acquisition process, and the detection of
features of the objects like creases, corners and symmetries. Moreover, using a
specific set of tools, the user naturally provides topological information on the
object to be reconstructed. As a consequence of this, the reconstruction step is
simplified with respect to the classical reverse engineering approaches.

FIRES is able to work with different hardware configurations allowing a ver-
satile setup. The minimal required hardware devices could be any active stereo

vision system capable of real-time 3D tracking of the tip of a pen-like device.
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Thus, any commercial or ad-hoc technology can be used, as long as it provides
the right input to the ISS layer. The hardware and software layers involved in
the FIRES system, with the new configuration with the Minoru webcam and the

SmartPen are illustrated in Figure 4.2.

4.4.1 Hardware setup

The acquisition step in FIRES (see Figure 4.1) consists in a set of techniques that,
combining a custom designed smart-pen and a stereo optical tracking system
which exploits commercial infrared cameras, realize the 3D input system. The
system, is composed by a stereo webcam (Minoru 3D), the SmartPen and a PC
to run the tracking algorithm and the CAD application.

The SmartPen is the main interaction tool of the system and has been de-
signed for this purpose. It’s a pen-shaped tool meant to be freely used in
the space in front of the user, as a three-dimensional user interface. The de-
vice, pictured in Figure 4.3, is an enhanced wireless inertial measurement unit
(IMU) and is composed by a microcontroller (STM32F103, 32 bit ARM Core-
tex M3), inertial and magnetic sensors (ST L3G4200D digital gyroscope and ST
LSM303DLH integrated digital accelerometer and magnetometer), a Bluetooth
transceiver (Bluegiga WT12) and a set of Infra-Red LEDs on each side of the
device. The IR-LEDs are tracked by the stereo camera, as will be shown in
the following Section, and the inertial sensors are used to enhance the tracking
performance.

The SmartPen, beside its use for acquisition and reconstruction purposes, is
used as the main interaction tool with the proposed CAD application. That is,
the user can intuitively control the virtual camera of FIRES directly moving the
smart-pen around the scene pointing the pen tip towards the region of interest.
Automatically, the system takes the position and direction of the smart-pen as
respectively the origin and the virtual camera direction. In addition, it can be
used to perform selection commands on the displayed scene and to edit the desired
elements.

The Minoru 3D [11] is a low-cost stereo webcam with an USB connection. It’s

an unique device since it’s the only consumer low-cost integrated stereo webcam
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Figure 4.3: The SmartPen prototype with the distances between the four LEDs.

available on the market. The two video streams share the same USB connection
to the host PC, limiting the total available bandwidth. With this setup it is
possible to acquire the two images at a resolution of 320x240 pixels at 30 fps
or 640x480 at 15 fps. To better track the SmartPen and take advantage of the
IR-LEDs on the device, we modified the webcam and removed the IR-blocking
filters present between the sensors and the lens, and introduced a simple visible
light filter formed by a photographic film. An example of the raw output of
the camera can be seen in Figure 4.5(a). Opportunely adjusting brightness and
contrast settings of the acquired images, it is possible to obtain a video stream
of just the led sources visible in the camera field of view. With this approach
we obtain images with just the IR-LEDs visible and segmented from a black
background, as shown in Figure 4.5(b).

On the host PC running Linux Ubuntu, a OpenGL-based application collects
data from the cameras using the V2LCam library and from the pen Using the
standard Bluetooth APIs and a custom protocol developed to communicate with
the device. The position of the device is then computed and the 3D representation
of the visible scene is represented, along with the device’s position and some

tracking information.

4.5 Data processing: from image points to 3D

curves and surfaces

The raw data gathered from the cameras and the SmartPen are processed in the

acquisition pipeline schematized in Figure 4.4. The projected led image points of
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Figure 4.4: Block diagram of the Acquisition and processing system.

both cameras are first matched and then triangulated in order to produce the 3D
point representing the position in space of the LEDs mounted on the SmartPen.
After their identification and after discarding eventual noisy measures, the 3D
points are used to estimated the position of the pen-tip, used as the main reference
point. The sequence of the pen-tip’s 3D positions in time represents a curve and
is shown to the user after fusing the video estimate of the pen position and

orientation with the orientation of the device estimated from IMU data.
4.5.1 LED centroid extraction and triangualtion

Starting from the pair of images acquired by the Minoru webacm, which are

binarized with an opportune threshold to report just the visible IR sources, a
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(b)

Figure 4.5: Video acquisition steps: .

blob detection algorithm is applied to estimate the 2D image coordinates of the
LED centroids. This step is achieved with the openCV-based library CVblob [8].
The 2D coordinates of the leds in the two images are then triangualted using a
standard stereo vision approach, to estimate their distance from the camera and
to reconstruct their position in the three-dimensional space. To ensure an optimal
application of the stereo algorithm, the video system has to be calibrated using a
known pattern displaced in the space in front of the cameras. Both algorithms are
well known in literature and we used the open source openCV implementation.
Figure 4.5(c) shows the output of this step, with the image captured from one of
the cameras and the superimposed blob segmentation and centroid estimation as

computed by the algorithm.

4.5.2 Pen tip estimation

The triangulation step outputs the coordinates of the 3D points p;, i < 4 com-
puted from the ordered pairs of corresponding image points provided by the
cameras.

As regards the active-pen tip estimation, we will proceed as follows. The
redundancy of the number of LEDs on the active-pen has been designed in order
to guarantee that even in case of occlusion of the pen tip we are always able to
estimate its position. This estimate can be evaluated by knowing at least the
positions of two LEDs, which allows us to identify the direction of the pen. The
fourth LED has been included to handle the occlusion of at most two LEDs.

In particular, given the distances di, ds, d3 between the four LEDs and the
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distance between the pen tip and the tip LED (see Fig. 4.3), we call Iy, 15, 13,14
the cumulative distances between the LEDs starting at the tip LED, in other
words the coordinates of the LEDs in a mono-dimensional reference system with
center in /.

For every pair of captured images, the number of visible and identified LEDs
can vary. If we call §; the discrete value, which is 1 if the i-th LED is visible, and
0 otherwise; then, at each frame, we have a quadruplet (41, ds,03,0d4). For each
quadruplet with at least two 0; = 1, which represent a particular configuration
of at least two visible and identified LEDs, we preliminarily compute and store
the centroid C' € R of the LED positions /;, that is C' = 31, Lidi/ 31—, 0; and
its distance T from the pen tip.

At each frame, the position p of the pen tip is estimated as:
P=C"4v,e,(C+T), (4.5)

where v,., is the direction of the smart-pen, C' € R?® is the centroid of the
computed 3D points p;, C € R? is the centroid of the real led positions and T is
the distance of the real centroid from the pen tip. When more than two LEDs
are visible, v,., is given by the direction of the least-squares line estimated from
the visible LEDs.

4.5.3 SmartPen data processing

The IMU sensor data are first processed on the SmartPen to estimate the orienta-
tion of the device. For this purpose a complementary filter (CF) is applied, which
enables the reconstruction of the device’s orientation from the measured data. In
this CF approach, adapted from [114] for the embedded platform, two different
estimates of the orientation are fused together to obtain an elevate accuracy. The
first one is derived from the angular velocity measured from the gyroscope, which
is integrated in time to obtain the orientation of the device at each sampling
interval. The second one is derived from the data coming from the accelerom-
eter and magnetometer, forming together an eCompass: their combined output

gives the measure of two known vectors in the fixed earth reference frame (the
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gravity acceleration and the earth magnetic field) which can be used to estimate
the sensor’s orientation. The sensor orientation is represented as the rotation
between the pen reference frame and the fixed earth reference frame and can be
equally represented by Euler angles, a rotation matrix or a rotation quaternion.
In our case the quaternion representation is used for its lower computational
complexity and to avoid singularity problems present with the Euler angles. The
CF approach uses an opportunely tuned interpolating factor to combine the two
estimates, taking advantage of each one’s strengths: the gyroscope gives more
accurate results for higher dynamic frequencies, while the eCompass is accurate
in a static situation.

Several alternative filtering techniques exist to estimate the orientation of a
device from IMU sensor data, with Kalman Filters, non linear filters and alter-
native complementary filters as the most used ones. Our choice was based on a
comparison of the different algorithms and the evaluation of their computational
costs on the embedded platform. The CF approach resulted the one with the best
trade-off between accuracy and computational costs, being able to run at higher
frequencies on the embedded platform. A higher sampling frequency guarantees
a higher accuracy: the SmartPen runs the filter at 120Hz, even if the samples are
sent to the computer only at 30Hz, to match the video fps. This ensures a lower

integration error and a more accurate response.

4.5.4 Data fusion and filtering

Finally the two estimates from the video and the IMU sensors are fused together
using a Kalman Filter (KF) on the host PC. This filter has a standard KF ap-
proach: it estimates and updates the filter state, composed by pen’s position,
velocity and orientation, and uses position and orientation measurements from
video and IMU to correct the predicted state and obtain the final estimate.
Following the model in Equations 4.1 - 4.4 we have a state vector composed
by position, velocity and orientation x = {p, v, ¢}. The system prediction model
takes account of the cinematic equations, predicting at each step the state vec-
tor 2, and propagating the state covariance matrix P, . We then have two sets

of measurements to correct the system: the position estimated from the video
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Figure 4.6: The FIRES multistep reconstruction process.

system and the orientation estimated from the SmartPen, resulting in a measure-
ment vector zx = {py, ¢, v ). When more than one LED is visible and tracked
the full measurement vector is used to correct the estimated state of the system.
When the video tracking information is not available due to occlusion problems,
a reduced measurement vector consisting in only the ¢y is applied. This guar-
antees a better final estimation of the device’s position and orientation during
short periods of complete occlusion of the device, which could not be achieved

using only the video estimates.

4.5.5 Surface reconstruction

The FIRES framework combines an interactive 3D curve acquisition system with
geometry processing techniques, to provide intuitive design and editing of surface
meshes by means of 3D curve network sketching. The system provides fast editing
capabilities to support both the acquisition of physical objects and the editing
of non-existing parts of them, which can be easily integrated in a CAD working
session in real-time.

The ISS produces a curve network and, thanks to a set of editing rules, also an
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associated polyline mesh that is a mesh with faces, vertices and edges augmented
with polylines associated to each edge. Irregular curve networks can lead to
associated polyline meshes with n-sided, non-planar, and non-convex faces. The
polyline mesh is the geometrical representation of the model underlying the curve
network created by the user during the process of ISS. However, while the curve
network is only a visual representation of the object in terms of spline curves
in the 3D space, the polyline mesh contains also topological information. As
surfaces of different topology may be compatible with a given curve network the
ISS process naturally induces a unique topological structure on the polyline mesh
according to the user actions.

The surface construction step is a multi-step process illustrated in Fig. 4.6
for a curve network that can contain sharp and non-sharp curves. Our current
implementation allows the user to associate a sharpness value to each sketched
curve by simply switching a button on the SmartPen. The system first generates
a base mesh from the polyline mesh, then a surface mesh constructor transforms
the base mesh into a refined mesh taking into account also the user sharpness
constraints, which can eventually be represented as subdivision surface mesh.
Any of the different model representation forms (curve network, coarse or surface
mesh) can be integrated in a CAD system for further processing.

The basic refinement step tasselates each n-sided face in four-sided polygons
by following the same splitting rules as of a generalized Catmull-Clark subdivision
[48]. For each face a new vertex is placed at the face centroid and is connected
with the midpoint of each edge. The basic refinement can be repeated iteratively
as necessary.

After the basic refinement step, we obtained a mesh which is a good piece-
wise linear reconstruction of the shape defined by the curve network. The base
mesh consists of four-sided faces with eventually extraordinary vertices, i.e. with
more than four incident edges. Our next objective is to produce a smooth sur-
face exploiting a subdivision surface scheme which naturally provides a unique
representation of the arbitrary topology reconstructed object. For our recon-
struction purposes we experimented with both interpolatory and approximating
subdivision schemes.

In particular, we used the well-known approximating Catmull-Clark subdi-
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(a) (b)

Figure 4.7: Screenshots of the CAD application developed. (a) Tracking of the
LEDs (in purple) and reconstruction of the pen’s pose (green). (b) Tracking of
the pen while tracing a curve.

vision scheme and an adapted version of the NULISS interpolatory subdivision
scheme [32]. While the former takes into account only the vertices of the base
mesh, the latter also integrates its associated polylines drawn by the user. This
provides two different levels of control on the accuracy of the design process.
Control curves used as handles for deformation right after their definition are
approximated by the subdivision surface, while characteristic curves drawn to
define specific features of the object to be reconstructed are interpolated. More-
over, the subdivision rules have been enriched by special rules for reconstructing

sharp edges or corners.

4.6 Results

We used the acquisition system, as presented in sections 4.4 and 4.5 to acquire
some SmartPen traces and then to test the capabilities of the system to recon-

struct and edit virtual models of objects. Two sample screenshots of the appli-
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Figure 4.8: Example of a trace collected with the SmartPen

cation are shown in Figure 4.7, where we can see the result of the tracking of the
device and its use to trace a curve in the CAD application.

In Figures 4.8 and 4.9 we can see three dimensional plots of the tracking of the
device, when drawing a rectangle on the horizontal plane in front of the camera
(plane X7 in the global reference frame). Figure 4.9(b) shows a zoom of the
same trajectory. In the figures we have a comparison of three tracking methods:
the raw video tracking, the KF filtered video tracking and the KF filtered video
and IMU tracking. The first one is the raw output of the Pen Estimation block,
as described in Figure 4.4, while the other two are the outputs of the Kalman
filter, one with just the video data and the other using both video and IMU
data. From the figures we can see how the tracking from the raw video streams
suffers from problems and in particular has some points when the leds are not
seen where tracking information is lost. The KF approach can overcome this
problems, predicting the pen position in presence of small amounts of missing
video data. The advantage of the filter with the IMU is that is has a smoother
behavior when compared to the raw one and is more accurate when compared to

the video KF one. The reason of the two filters having a similar result is in the

78



.. 30 30 40
Time [s]

(a)

8 0

Time [s]

(b)

Figure 4.9: Example of a trace collected with the SmartPen.

nature of the movements performed. A precise interaction with a drawing tool
involves slow and accurate motions which apply small or null accelerations on the
device. In this case both KF approaches can model well the accelerations with
a null mean gaussian noise, while the IMU one takes advantage of the accurate
IMU estimations.

Next we will show some examples of the complete proposed reverse engineering
pipeline. In particular we used the system to reconstruct a 3D virtual model of
an old-style telephone pictured in 4.10(a). The SmartPen was used to acquire
the style-curves of the object pictured in 4.10(b), while in 4.10(c) we can see the

curves labeled as sharp during the acquisition (in red). The final model of the
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Figure 4.10: Reverse engineering of a telephone.

object, after the hybrid refinement process combining one step of the adapted
NULLIS algorithm and 2 steps of Catmull-Clark subdivision, is shown in 4.10(d).

In the second example FIRES is applied for the reconstruction of the vinegar
bottle shown in Figure 4.11(a). The skinning tool of the ISS is used to produce
the curve network of Figure 4.11(b) which results into the corresponding polyline
mesh of Figure 4.11(c). Finally the subdivision result obtained by 3 Catmull-
Clark subdivision steps is given in Figure 4.11(d).

In order to show the capability of FIRES to add virtual parts to an existing
object, in Figure 4.12 we designed a handle to add to the 3D model of Fig-
ure 4.11(d). At this aim, we first used the hole creation tool (curve network in
Figure 4.12(a) and the associated polyline mesh in Figure 4.12(b)) and then we
applied the border gluing to produce the handle (curve network in Figure 4.12(c)
and the associated polyline mesh in Figure 4.12(d)). The final result after 3 steps
of Catmull-Clark subdivision is shown in Figure 4.12(e).

4.7 Conclusions

This work has introduced a wireless low-cost pen-like device for a fast interactive
reverse engineering framework named FIRES. The system enables real-time ac-
quisition and manipulation of complex geometrical shapes through the SmartPen,
a wireless and interactive input device.

The FIRES framework utilizes the SmartPen as the primary interaction tool

to support the reconstruction and editing of virtual 3D models of objects in a
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Figure 4.11: Reverse engineering of a vinegar bottle.
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Figure 4.12: Adding a virtual handle to the geometric model illustrated in Fig-
ure 4.11.

CAD application. The SmartPen embeds inertial sensors and their data is fused
with the output of a stereo computer vision system in order to accurately track
the position and orientation of the device as it is moved in space by the user. The
device can be used to draw the style-lines of the object to be modeled, which are

then used to reconstruct its surface.
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Chapter 5

Wearable Sensor Network for

Motion Analysis

In the previous chapter we presented an interactive device equipped with an In-
ertial Measurement Unit (IMU) which was used as a 3D user interface. Starting
from the results of that experience, we improved the hardware design of the sens-
ing device to develop a network of miniaturized wearable IMUs for the analysis
of human motion.

Human body movement mechanics is a topic of interest for science since an-
cient years and today many different disciplines use motion analysis systems to
capture movement and posture of the human body. Thanks to the advances in
sensing and processing capabilities, the use of wearable sensors is one of the most
promising motion capture technologies. Its advantages include unobtrusiveness,
simplicity of use, no need for the installation of equipment in the environment
and extended spatial and temporal coverage. Active research is being carried out
in both hardware integration and processing techniques to extract the desired
features from the captured sensor data.

The work presented in this Chapter introduces a new hardware platform for
inertial motion sensing, which integrates state of the art sensing and processing
components into a small, light and accurate wearable sensor node. The device

is equipped with a wireless Bluetooth transceiver to enable the communication
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with a broad range of devices (PCs and smartphones) and to allow the forma-
tion of a body area sensor network where several nodes can monitor articulated
movements. Moreover, we studied advanced sensor fusion algorithms to process
the sampled data and estimate useful features such as the orientation of each
device. The algorithms were optimized and implemented on board of the devices,
to allow distributed processing of sensor data in the network and improve the

performance and energy efficiency of the system.

5.1 Overview

The study of human motion is an interesting and open field of research, with a
broad range of applications. An accurate tracking of parts of human body is an
enabling factor for several applications, such can be human-computer interaction
[175], visualization and navigation in virtual environments [173], computer an-
imation [145] and a wide range of health applications [134]. Depending on the
application, several tracking technologies can achieve the desired levels of accu-
racy for the racking of needed motions [172]. The main approaches can be divided
in video-based and sensor-based. Computer vision tracking systems have usually
a high accuracy, but suffer from limitations such as the need to install the cam-
eras in the environment, the limited range of operations and a high cost. Recent
advances in the manufacturing technology of Micro Electro-Mechanical Systems
(MEMS) have allowed to considerably decrease the prize and size of inertial sen-
sors, making them a preferred choice for motion tracking applications. Sensor
tracking solutions, based on wearable inertial sensing platforms, have the advan-
tage of being self-contained, unobtrusive and without strict range limitations.
However, these devices present some undesired characteristics that require metic-
ulous calibration and signal preprocessing procedures before using the gathered
data to compute position and extract information about movement with enough
degree of accuracy and reliability [134].

In this work we present a miniaturized inertial measurement unit (IMU) for
the analysis of human motion. The EXLsI device, developed in collaboration with

EXEL, is a compact wearable sensor node equipped with inertial (accelerometer
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and gyroscope) and magnetic sensors, along with a memory module and a Blue-
tooth wireless transceiver. We employed state of the art digital MEMS sensors,
achieving high accuracy with limited dimensions and power consumption. The
system embeds an ARM Coretex M-3 microcontroller, enabling advanced on-
board data processing with an optimized performance-power consumption trade-
off, tailored for battery-powered systems. Energy efficiency for the platform is
achieved through an optimal use of the hardware resources.

The sampled sensor data is locally processed on the device, in order to recon-
struct its relative orientation in space. This information is used for the analysis
of the position and motion of body segments to which the device is attached. We
compared and optimized several state of the art algorithms for the estimation
of orientation from IMU sensor data, including the Kalman Filter (KF), its Ex-
tended (EKF) variation and different versions of Complementary Filters (CF).
The different algorithms were optimized to run in real-time on the embedded
microcontroller and we compared their performance in terms of accuracy and
computational cost.

The use of a Bluetooth transceiver allows an immediate connection of the
device with a vast range of systems supporting this standard, including personal
computers and smatphones. This protocol was chosen for its wide adoption and
the simplicity of its use, along with its bandwidth availability that allows the
streaming of data from multiple devices simultaneously. With this choice we
could set up a Body Sensor Network (BSN) with up to 7 nodes. The network
of sensor nodes allows us to stream the desired information from multiple nodes
to one collection center, increasing the range of movements we can analyze. The
nodes can also store locally the data for a later offline elaboration. In this case
we use the Bluetooth network to synchronize the different nodes but we don’t

stream the data, saving energy and prolonging the battery life.

5.2 Related Work

In the recent years there has been increased interest in body sensor networks for

wearable applications, such as elder care [61], emergency response [110], studying
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athletic performance [19], gait analysis [185], and activity classification [126]. A
great deal of work has focused on sensor and hardware design [79, 89], MAC and
routing protocols [39] and algorithms for processing wearable sensor data [78,
159]. A comprehensive survey on sensor-based wearable systems for monitoring
of human movement can be found in [150].

One of the most used approaches to process sensor data from wearable IMUs
is to estimate the device’s orientation. When sensor nodes are attached to body
limbs (e.g. upper or lower arms), using the computed orientation and a kinematic
model of the human body we can reconstruct and track the pose of the user [31].
IMUs were first developed and used in navigation applications as attitude and
heading reference systems (AHRS), where several algorithms have been devel-
oped to track the orientation of a vehicle [69]. A standard approach is to use a
Kalman filter to optimally fuse data from the available sensors and estimate the
corresponding orientation [91]. Since its first adoption, several modifications of
the KF have been proposed to enhance its performance such as the EKF [75] or
the UKF [162]. Recently complementary filtering (CF) techniques based on non-
linear observers gained popularity [114, 116]. They present a reduced complexity
and need a simpler tuning phase, while maintaining the accuracy when compared
to the KF approach.

With the availability of miniaturized inertial sensors and the appearance of
wearable IMUs, the research community started to apply orientation estimation
algorithms to the analysis of human motion. One example is the work presented
in [112], where the proposed algorithm continuously corrects the orientation esti-
mates obtained by mathematical integration of the 3D angular velocity measured
using a gyroscope. The correction is performed using an inclination estimate ob-
tained using a 3D accelerometer. This reduces the integration drift that originates
from errors in the angular velocity signal. The method is realized using a KF
that takes into account the spectra of the signals involved as well as a fluctuating
gyroscope offset. A different approach is taken in [149], where an EKF is used
for the fusion of inertial and magnetic sensing to estimate relative positions and
orientations of a wearable device. The filter predicts the position and orientation
based on the signals measured by the accelerometer and gyroscope. The system

decides to perform a magnetic update only if the estimated uncertainty associ-
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ated with the relative position and orientation exceeds a predefined threshold. In
this case a magnetic coil is actuated to generate a known magnetic field, which
is measured by a magnetometer and used to correct the inertial estimate.

A more application-specific solution, tailored for healthcare is presented in
[111]. Here the authors present Mercury, a wearable, wireless sensor platform
for motion analysis of patients being treated for neuro-motor disorders, such
as Parkinson’s Disease, epilepsy, and stroke. Mercury is designed to support
long-term, longitudinal data collection on patients in hospital and home settings.
Patients wear up to 8 wireless nodes equipped with sensors for monitoring move-
ment and physiological conditions. Individual nodes compute high-level features
from the raw signals, and a base station performs data collection and tunes sensor
node parameters based on energy availability, radio link quality, and application
specific policies. The work in [134] presents the development of Wagyromag, a
wireless sensor network for monitoring and processing human body movements
in healthcare applications. Here the hardware platform is introduced and differ-
ent orientation estimation algorithms are evaluated, with the focus on healthcare
applications.

While several works address the theoretical approach and evaluate the per-
formance of orientation estimation algorithms, limited research has been carried
out on their implementation for embedded systems. A real-time posture tracking
system has been developed in [179] using a network of compact wireless sensor de-
vices worn by the user. Each device is a complete inertial/magnetic tracking unit
which performs in situ orientation estimation based on its own sensor readings,
using a complementary quaternion-based filter. The work in [77] presents the de-
sign and evaluation of a novel miniature AHRS unit, named ETHOS, specifically
designed for wearable use. It uses off-the-shelf sensor components integrated into
a system offering local processing resources to compute orientation online. The
system offers both, local data storage and ultra-low power wireless transmission
options, and scalable processing capacity which can be adapted to the applica-
tion’s demands, e.g. regarding orientation streaming bandwidth. The work in
[178] directly compares the most popular orientation estimation approaches and
evaluates their computational cost by simulating the different algorithms. In [123]

a CF-based nonlinear observer is optimized and implemented on an embedded
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8-bit microcontroller for a miniature unmanned aereal vehicle. In both works the
CF approach results several times less computationally demanding when com-
pared to the EKF solutions, without a loss in accuracy.

Some commercial human motion capture systems are also available: Xsens
offers the MVN, a full 6DoF Human motion tracking system using up to 17 wired
IMUs [145]. Another interesting solution is the iNemo platform from STMi-
croelectronics [37] which embeds a 32-bit RISC microcontroller (MCU) and 3D
miniaturized MEMS sensors, with the capability of on-board sensor fusion for ori-
entation estimation. In our work we optimized and implemented several state of
the art algorithms for orientation estimation, including KF, EKF, CF approaches.
We evaluated their performance on the microcontroller embedded in the EXLsl

sensor node by means of accuracy, computational times and power consumptions.

5.3 Orientation estimation using inertial and mag-

netic sensors

A rigid body is an idealization of a body with volume and mass which has a
shape that can not be changed. To describe the orientation of a rigid body in
three dimensional space, it is conventional to choose a global coordinate system
(G) attached to an appropriate inertial frame and a body fixed coordinate system
(B) which is attached to the rigid body. The global reference frame is commonly
defined as the local earth-fixed reference frame with the coordinate axes x, y and
z pointing in the local north, west and up directions respectively (see Fig. 5.1).
The position of a point in space can be described using a three dimensional
point vector. If a rigid body is described in terms of point vectors, it can be
rotated or oriented by rotating each vector individually. This may be completed
by multiplying each vector of the body by an appropriate rotation matrix, as
expressed by v¢ = REv? where v and v are the representations of the desired
vector in the global and body frames respectively and R is the rotation matrix to
perform the rotation from the body to the global frame. The notation employed
to reference the rotations uses a capital subscript to indicate the frame being

rotated and a capital superscript to refer the destination frame in which the
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yG

Figure 5.1: Global (G) and body (B) reference frames.

result is expressed. The inverse rotation, from the global frame to the body

frame is obtained transposing this rotation matrix: RZ = (R%)T.

A rotation matrix can represent an arbitrary rotation between the two ref-

erence frames, but it can always be divided into three separate rotations, each

around one of the three axes x, y, and z. For instance, a rotation of an angle ¢

around the z axes is described by:

1 0 0
v =10 cos¢p —sing ve = Rm(¢)"’B
0 sing coso

Likewise, rotations of 6 around y and v around z can be expressed as:

cos 0 sinf
v¢ = 0 1 0 |v9=R, (000"

—sinf 0 cost

38

(5.1)

(5.2)



cosy —siny 0
v = | siny cosy 0 | vY=R.(y)v" (5.3)

0 0 1

and the total rotation can be computed as: R% = R.(¢)R,(0)R.(7). The angles
{#,0,~7} compose the Euler angles representation of the performed rotation and
are often referred to as {roll, pitch, yaw}.

The use of Euler angles to represent rotations leads to the so called gimbal
lock problem. It arises when two of the elementary rotations end up on a collinear
axes (i.e. when the x unit vector points straight up the roll and yaw gimbal axes
are collinear) and leads to the loss of one degree of freedom in the orientation
representation. To avoid the gimbal lock the equivalent quaternion representation
can be used, which is not affected by this problem.

Quaternions are an extension of complex numbers defining a four-dimensional
volume using one real and three imaginary parts. A quaternion q is defined as
q = [w+ xi+ yj+ zk] = (w,v), where w is its scalar part and v = [z, y, z| is the
vector part. An arbitrary rotation of a rigid body can always be described as a
rotation (¢) around a single inclined axes (v = [v,, vy, v.]). This rotation can be

represented by the quaternion:

¢

q, = [0055, Uwsina, Uysing, vzsina] (5.4)

As with the rotation matrix, a three dimensional vector v can be rotated by a

quaternion q applying the following relationship:
ve =q5®v" ©(¢5) (5.5)

where g* is the conjugate of the quaternion q defined as ¢* = [w — xi — yj — zk]

and ® denotes the quaternion product, defined for two quaternions a and b as:
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a® b = [al a9 a3 (14] &® [bl bg bg b4]

a1by — agby — asbs — a4by
by + agby + asbs + asbs (5.6)
airbs — asby + asby + asby
ai1by + asbs — asby + asby

To correctly use the quaternion product, the vector v contains a 0 inserted as
the first element to make it a 4 element row vectors. A detailed background
on orientation representations and quaternion arithmetics can be found in [69].
An overview of orientation estimation techniques from inertial and magnetic sen-
sors will be presented in the reminder of this section, after the introduction of

appropriate models for the used sensors.

5.3.1 Sensor models and calibration

Sensor nodes used for motion capture and orientation estimation are usually
equipped with inertial (accelerometer and gyroscope) and magnetic (magnetome-
ter) sensors. The raw measurements Y, from the gyroscope, Y, from the ac-
celerometer and Y,, from the magnetometer, expressed in body frame, are mod-

eled as:

Yy =w! + by + v,
Y,=a? — g% + b, + 1, (5.7)

Y, = m® + v,
where v;, i € {g,a,m}, are uncorrelated Gaussian white noise with variance

denoted as o7, while b, and b, are time-varying biases modeled as a first-order

Gauss-Markov process

b= Bb+ v, (5.8)
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characterized by time constant 1/ and uncorrelated Gaussian white noise v,
with variance o7. The gyroscope reports the angular rates of the body frame

B

with respect to an inertial frame (wy

) expressed in the body frame, for each of
the three axes. The positive orientation of the rotations is defined by the right
hand rule (see Fig. 5.1). The accelerometer senses the accelerations to which
the device is subject, composed by the inertial acceleration applied to the device
(aP) and the fixed earth’s gravity acceleration (¢?), both expressed in the body
reference frame. The magnetometer measures the intensity of the magnetic field
surrounding the device. Without the disturbances of external sources, it reports
the local earth magnetic field, pointing to the magnetic north.

The MEMS sensors employed are factory calibrated, but for a correct use
they need to be calibrated when integrated in a device, with respect to the body
frame.

The gyroscope is affected by a constant bias by,, which can be easily estimated.
When still, the sensor should report a null angular velocity along all three axes,
but instead it has a constant bias. To compensate this unwanted effect, we put
the sensor still for some seconds and take the mean value of the readings along
each axis as the offset to be removed from future readings. The compensated

gyro readings ?g can be expressed as:
Vg = Yy + bog- (5.9)

The accelerometer measures are affected by scale and offset factors for each
axis and misalignment factors between the sensor’s axes and the body frame axes.
The relationship between the calibrated ffa and the raw measurements Y, can be

expressed as:

Y, = CY, + bog (5.10)

where C, € R**® summarizes misalignment and scale factors while by, € R? is an
offset vector. The goal of the accelerometer calibration is to determine C, and
boa, so that the calibrated values can be obtained with any new raw measurement.

To estimate the parameters the sensor is placed at 6 stationary positions with
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known desired output, i.e. with the gravity vector aligned with the positive and
negative directions of the three axes. At each position we compute the average of
10 seconds of accelerometer raw data and then we apply the least square method
to obtain the optimal calibration parameters.

The magnetometer measures the Earth’s magnetic field, which is weak and
can be corrupted by intrinsic sensor imperfections and external magnetic sources.
Intrinsic imperfections cause again scale, offset and misalignment factors between
the sensor’s axes. External magnetic distortions can be divided into Hard-iron
and Soft-iron distortion [70]. Hard-iron distortion is produced by materials that
exhibit a constant magnetic field, thereby generating a constant additive bias
to the output of each magnetometer axes. Soft-iron distortion is the result of a
material that influences, or distorts, a magnetic field, in a way that cannot only
be captured as the effect of an additive disturbance on the magnetic measures.
Only the effects of materials that have a constant position and orientation with
respect to the sensor can be compensated by the calibration procedure.

An extensive magnetometer calibration method is proposed in [70] and it is
here applied to correct raw sensor readings. In particular the magnetometer

measurement model adopted for the calibration is given by:

Ym - CmYm + bOm

€1 0 0
= €9 8in py €9 COS p1 0 Yo + bom (5.11)

€3SIN Py COS P3  €35IN P3 €3 COS Po COS P3

where Y, is the desired corrected value, coefficients ¢, represent the sensor scaling
errors and pj, the sensor misalignment angles. Equation (5.11) is solved for Y,,

and substituted into
o2 . - .
HYmH S AT I (5.12)

where H}meH is the (known) local magnetic field amplitude. This gives a quadratic

polynomial in Y., Yoy, Yoz, whose coefficients are nonlinear functions of ¢, py
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and byg,,. The numerical values of these coefficients are found from a least-squares
solution using Y,,,, namely the raw data. Thereafter, the system of nonlinear equa-
tions is solved numerically, and the magnetometer measurements are corrected
using:
Y = CoH (Yo, — bom). (5.13)
Magnetic measurement errors are more critical when compared to the other
two sensors and primarily affect the yaw angle estimation [69]. The eventual fer-
romagnetic components present on the device influence the magnetic field sensed,
but can be compensated because they have a fixed position in the body frame
(hard iron disturbance). On the other hand, magnetic or metal objects encoun-
tered in the environment introduce a soft iron disturbance that can’t be com-
pensated. Hence the magnetic calibration procedure should be available as an
on-line routine to re-calibrate the sensor when needed. Same results are shown
by [28], where the impact of magnetometer calibration is validated in a helicopter
navigation system.

To summarize, the calibration procedure is the following:

1. collection of static data with the device resting on the 6 different orienta-

tions;
2. computation of accelerometer and gyroscope offsets and scale factors;

3. three-dimensional rotations of the device, approximately around the three

axis;
4. computation of the magnetometer parameters;

5. storage of all computed parameters and compensation of future samples.

5.3.2 Orientation computation from sensor data

Inertial and magnetic sensors can be used to estimate the orientation of the device,
that is to estimate the rotation between the body frame attached to the device and

the global inertial frame. In this section we will examine the techniques that allow
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Figure 5.2: Earth’s gravity acceleration (g) and magnetic field (m) in the global
reference frame.

us to directly estimate the orientation from the available sensor readings. In this
category we have the algorithms that employ accelerometer and magnetometer
readings or alternatively the ones that integrate the gyroscope output to obtain

the deisred information.

Accelerometer and magnetometer
In static conditions and without the influence of external magnetic sources, the
accelerometer measures the earth’s gravity acceleration g, while the magnetome-
ter measures the earth’s magnetic field m®”. Both vectors are expressed in the
body frame and their representation in the global reference frame is known, which
enables the reconstruction of the relative orientation between the two frames.

The global reference frame is an inertial earth-fixed frame opportunely chosen
to have the z axis aligned with the gravity vector and the x axis aligned with the
projection of the local magnetic field on the horizontal plane, as shown in Fig.
5.2. The local magnetic field points towards the magnetic north and usually has
a declination angle with respect to the earth’s tangent plane, pointing towards
the ground. The declination angle varies with the geographical location of the
measurement, but it is known and can be retrieved from [9].

From the measurement of the gravity vector g* = [g;, g, 9.], roll and pitch
angles (¢, 0) defining the inclination of the body frame relative to the global

frame, can be estimated by applying basic trigonometric equations as:
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¢ =atan2(gy, g.)
0 =atan(—gz, \/ 92 + 9%)

Knowing the two angles ¢ and 0, the magnetic measurement m? = [m,, m,, m.|

(5.14)

is projected from the arbitrary rotated body frame to the horizontal plane to
estimate the remaining yaw angle (7). Indicating with m,, and m,, the magnetic

components in the horizontal plane, we have:

Mgh =My €Os ¢ + My, sinfsin ¢ — m, cos Osin ¢ (5.15)

Myp, =My, cos O + m sin 0

and finally

v = atan2(—myp, Mgp) (5.16)

From the computed Euler angles it is easy to obtain the rotation matrix or the
equivalent quaternion with conversion formulas [69]. This method has the ad-
vantage of having a limited computational complexity, but it suffers from both
the electronic random noise which affects the sensors and from external distur-
bances. In particular, if the device is subject to high dynamic accelerations, they
will become the principal component of the accelerometer’s output, which won’t
estimate the gravity vector needed to compute the orientation. In addition, the
proximity of ferromagnetic materials or of a source of magnetic field, will disturb

the magnetic sensor invalidating its measurement of the earth’s magnetic field.

Gyroscope

To compute the orientation of the device using the gyroscope, we need to inte-

B

grate the angular rates w; = [w,, wy,, w,| obtained from the sensor. This can be

achieved integrating the derivative of the chosen representation method. For ex-
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ample, the quaternion derivative describing the rate of change of the body frame

relative to the global frame (¢%) can be calculated as:

) 1

q5 = §qg ® w; (5.17)
where a leading zero has been added to w? to make it a four component vector.
The estimated orientation at time ¢, §%(t), can be computed by numerically inte-
grating the quaternion derivative, provided the initial conditions and the sampling

period At, as expressed in Eq. 5.18.

Q) = af( - 1) + SArlag( - 1) © wh(r) (518)

This method has some advantages over the one based on accelerometer and mag-
netometer: (1) it is computed only using matrix and vector multiplication oper-
ations, without the need for trigonometric functions, (2) it produces a smoother
signal, since the integrations steps filters out the electronic random noise with
zero mean, (3) the signal is not affected by the dynamic accelerations, so, even
under intense movements, a more accurate orientation can be estimated. On
the other hand, this approach suffers from a continuous drift of the estimation,
caused by the numerical integration and by the varying gyroscope bias. Recent
MEMS sensors have limited values of bias, reducing the estimation drift, but still

this method can’t be used alone for prolonged intervals.

5.3.3 Sensor fusion techniques for orientation estimation

Sensor fusion strategies aim to use the information captured by different sensors
to offer an accurate estimation of the desired quantities. This approach is based
on the assumption that some sensors provide useful information where other
sensors are not working properly, so the fused contribution will result in a better
performance when compared to the single ones. In the orientation estimation case

examined here, this results in a processing technique that filters the noise and
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dynamic disturbances from the accelerometer signal and removes the integration
drift present in the gyroscope estimation. Notable approaches to perform this

operation are the Kalman filter or the complementary filter.

Kalman filter
The KF is the simplest example of a predictive filter [91]. It represents uncertain-
ties as Gaussian random variables, fully described by a mean and a covariance
matrix, and models the system with linear dynamics and observations. Since
Gaussians are preserved under linear transformation, the Kalman filter’s imple-
mentation uses only linear algebra operations. The KF processes all the avail-
able measurements, regardless of their precision, to estimate the current value of
the variables of interest. Furthermore it uses the knowledge of the system and
measurement device dynamics, the statistical description of the system noises,
measurement errors, and uncertainty in the dynamics models, and any available
information about initial conditions of the variables of interest.

The KF addresses the general problem of trying to estimate the state of a
discrete-time controlled process that is governed by the following set of linear

equations:

T =ATp_1 + Wiy (5.19)
ZL :Ha:k + Vg .

where x;, is the state of the process and z; is the noisy measurement observed to
estimate the state of the process, w; and v, represent, respectively, the process
noise and the measurement noise and are assumed to have a zero-mean Gaussian
distribution. More detail on the KF can be found in Section 4.3.2 or in [69, 91]
In the case of interest, the state of the process represents the orientation
to be estimated: * = ¢%. The measurement used to update the process is
composed of two independent estimates of the orientation, the one obtained from
the accelerometer and the magnetometer (denoted with the subscript am), and
the one obtained integrating the gyroscope (denoted with the subscript w): z =

1(¢%)am, (@5)w]”. Hence the measurement noise will also be composed of two
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parts, the one relative to the accelerometer and magnetometer estimate and one
relative to the gyroscope estimate. By opportunely tuning the two components,
the KF framework fuses the two separate estimates to produce an accurate final
result.

This approach can be refined by using the sensor models introduced in Sec-
tion 5.3.1 and introducing the computations of the two orientation estimates
directly in the KF. In this case, the state dynamics is represented directly by the
derivative of the orientation introduced in Eq. 5.18 and the measurements are
the accelerometer and magnetometer outputs used to estimate the gravity and
earth’s magnetic fields respectively. Based on the sensor models and the attitude

dynamics, the complete system con be modeled as follows:

1
i3 = éqg ® wy
69 = ngg + ng <520)
b'a - Baba + Vpa

}7a=3390+ba+va (5.21)
Y, = RgmG + U,

The system model introduced in Eq. 5.20 - 5.21 is nonlinear, hence the KF
approach can not be applied directly. Instead the Extended KF (EKF) approach
is applied. The EKF approximates the non-linear equations 5.20 and 5.21 with
the Taylor series expanded around the estimated state vector & and then applies
the KF update-correction iteration to estimate the system state. To ensure a
better convergence of the linearized EKF, a complementary version of the filter
can be employed, which uses the errors 0x = x — & and 0y = y —y as system state

and measurements respectively. The system in the new form can be rewritten as:
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0p = _Rg(dbg o ’/g)
by = B,0b, + i, (5.22)
56a = ﬁaéba + Upg

09" = [—g"x|p + Rg(éba + V)

(5.23)
om" = [-m"x|p + R5v,
where for a vector v = [vy, ve, v3], [uX] is defined as:
0 —U3 (%)
[’UX] = U3 0 —U1
—U9 U1 0
This system can be expressed in the standard EKF form:
ox = F(z)ox + G(z)w
(#)02 + G() 5o
oy = H(z)ox +v
The orientation error dp = [d¢, 50, 6|7, is used instead of a quaternion based

error to avoid computational difficulties during the propagation step of the EKF,

and it is defined as:

R5 = (I +[px])RE. (5.25)

Using the same prediction and update frequency, at every sample the new ori-
entation is predicted integrating the gyro readings and then corrected with the
accelerometer and magnetometer readings. The predicted value 2~ is obtained

evaluating equation 5.20 and then the filter is linearized and discretized into the
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standard form:

ox = Pox, +w
‘ k+1 K+ Wi (5.26)
OYry1 = Hpowy + vy,

where @, is the transition matrix, Hj is the output matrix, wy and v, are white
noise sequences with covariance () and Ry. The system 5.26 is used to run an
EKF update and find the error dzj.1 used to correct the predicted state to x;,
and compute the covariance of updated estimate P,;l. Full details of the filter

implementation can be found in [69].

Complementary filter
Complementary filtering is based upon the use and availability of multiple in-
dependent noisy measurements of the same signal. If the measurements have
complementary spectral characteristics, transfer functions may be chosen to min-
imize the estimation error. The general requirement is that one of the transfer
functions complement the sum of others. In the case of sensor-based orienta-
tion estimation, we have a situation where complementary filters can be directly
applied. As was noted, we have two independent estimations of the orientation
with different characteristics: the accelerometer and magnetometer one is reliable
in static conditions and is affected by high frequency noise, while the gyroscope
one is reliable in dynamic conditions, but is affected by a slowly varying bias
and integration drift. Thus an appropriate CF for orientation estimation should
incorporate low-frequency information from the first one and high frequency in-
formation from the second one. A block diagram of such a filter is shown in
Fig. 5.3, where ¢, is the orientation estimation from accelerometer and magne-
tometer, ¢,, is the derivative of the one from the gyroscope and .4 is the final
estimate. A more detailed theoretical background on the CF can be found in
(22, 44].

Compared with the KF, the CF approach has the advantage of being simpler
from the computational point of view and having a smaller number of parameters,
allowing an easy tuning for the use in a wide range of situations. Considering

also the accurate orientation estimation provided, comparable or even better than
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Figure 5.3: Block diegram of a complementary filter for orientation estimation.

the KF one, the CF is an appealing solution and is subject of intense research
activity. Starting from the CF approach, several filter implementations have been
developed, especially for aerial vehicles navigation, where its use for orientation
estimation has first been adopted [116, 123]. There are also some examples of its
usage for body limbs orientation estimation, such as [22, 114].

Given the promising performance/computational cost tradeoff of this ap-
proach, we adapted two recent algorithms for our embedded platform and com-
pared them with the KF and EKF. In particular, we compared the nonlinear
observer for attitude estimation by Mahony et al. [116] and a quaternion-based
filter that incorporates magnetic distortion and gyroscope bias drift compensation
proposed by Madwick [114].

5.4 EXL-s1 Sensor Node

This section will describe the prototype of the EXLsl wireless sensor node em-
ployed to acquire information about the user’s movements and posture. The

description of the device is divided into hardware and software perspectives.

5.4.1 Hardware

The prototype of the sensor node is shown in Figure 5.4. As shown in the block di-

agram depicted in Figure 5.5, the wearable device is controlled and supervised by
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Figure 5.4: Hardware prototype of the EXLsl sensor node: (a) top side, (b)
bottom side, (c) assembly with the battery, (d) the final device with the enclosure.

a 32-bit microcontroller unit (MCU) which is surrounded by several peripherals
required to achieve the desired functionalities. The communication between the
MCU and the peripherals is performed using different technologies and commu-
nication channels. In the following paragraph more details about each functional

section are given.

Microcontroller unit

As MCU, the STM32F103VE from ST Microelectronics’ portfolio has been cho-
sen. It belongs to the STM32 family, powered by an ARM Cortex-M3 RISC core
and combines a high degree of integration and performances with a low price and
low power consumption. It runs at a clock frequency of 72 MHz and, besides the
presence of on-chip 512 KB flash memory for code storage and 64 KB of RAM, it
features the presence of a broad range of peripherals such as UART, SPI, USB,
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Figure 5.5: Block diegram of the EXLs1 sensor node.
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EMI, DMA, RTC, 12C, ADC, PWM, DAC, and timers that well fit our hardware

and software requirements, thus minimizing the external components count.

Motion Sensors

The wearable IMUs are usually physically attached to the body segments (trunk,
arms, legs) of the patient and their main task is to track the body segment
movements and orientation. This is accomplished by using a set of MEMS sensors
embedded on the device which acquire basic inertial measurements. Subsequently
such data is processed in order to extract movement parameters and orientation.
The sensor set is composed of a 3-axis accelerometer, a 3-axis gyroscope and a
3-axis magnetometer giving the raw measurements of linear acceleration, angular
rate, and terrestrial magnetic field. The communication between the sensors and
the MCU takes place by means of 12C shared bus, since all three sensors have a

digital interface.

User Interface
Due to the ergonomic requirements of the system, the interaction between the
wearable device and the user has been kept as simple as possible. There is only
one button (tactile switch) that can be used in different ways, depending on the
software implementation. It might be used, for instance, to control the activa-
tion/deactivation of the device or just to label specific situations that the patient
encounters. A multicolor LED can be used to signal specific operating conditions,
such as idle, operating or battery low, by changing the color (red/yellow/green)
and the blinking frequency. Furthermore the piezoelectric loudspeaker can be
used to give additional audio signaling.

In the current prototype a USB connector has been provided to allow for
a standard communication channel towards a controlling PC. This is especially
useful during the development process, since it allows fast firmware upgrading and
and an easy download of collected data (in addition to the wireless communication
channel). The USB port is also used for battery recharging with standard the 5V

voltage.
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Data Storage Memory

To enable the device to operate in a continuous data logging mode, a NAND
Flash Memory with adequate capacity has been included. A Micron MT29F8GO08
1GByte single-level NAND Flash memory, which includes an asynchronous data
interface for high-performance I/O operations, was chosen. This device uses a
highly multiplexed 8-bit bus (DQx) to transfer commands, addresses and data.
There are only five control signals used to implement the asynchronous data
interface with the MCU (CE, CLE, ALE, WE, RE). This hardware interface
creates a low pin-count device with a standard pin-out that remains the same
from one density to another, enabling future upgrades to higher densities with
no board redesign. The chosen capacity is sufficient to cover a broad range of
scenario requirements. For instance, using a sampling frequency of 100Hz for all

sensors, an overall storage capacity of approximately 130 hours is available.

Wireless module

The integration of communication capabilities between the sensor node and a
host node (PC or smartphone) is a key requirement for several user scenarios. It
enables collecting data generated by the end nodes worn by the patient in the
central processing unit for processing and storage. In our prototype we included
the Bluegiga WT12 module, a fully integrated Bluetooth 2.1+ EDR, class 2
module, combining antenna, Bluetooth radio and an on-board iWRAP Bluetooth
stack. It is connected to the MCU through a USART serial port and can be used
to stream sensor data to a host device or to download the data saved in the
node’s memory. In addition a wireless bootlaoder has been adopted to allow the

programming of the device without the need of particular connections.

5.4.2 Software

A sensor-based system for motion capture implies the use of one or more wearable
devices attached to the user’s body in order to accurately track and analyze
its movements. For this scope, each wearable device has to collect the data
from the different on-board sensors (accelerometer, gyroscope, magnetometer),

to optionally process the sampled data and to send them via Bluetooth to the
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Figure 5.6: Block diagram of the firmware flow on the EXLsl sensor node.

host node, which can further processes them and build a global model. In the
following sections we will illustrate the functionalities of the nodes and their

software.

General Firmware Architecture
Given the device hardware configuration illustrated in the previous section, the
basic operation modalities are the streaming of sensor data to a host device and
the logging of the sampled data on the integrated flash memory. Both operations
can be performed in a stand-alone scenario or using up to 7 devices connected in
a network. The shared flow of the executed operations is presented in Figure 5.6.
The sensor node, turned on by pressing its button, executes the initialization
routine (INIT) and goes to an IDLE state waiting for user input. Another button
press or a command received via Bluetooth can select one of the two available
applications: data logging or data streaming. The initialization routine ensures
to turn on and properly configure all the needed hardware components. At this
stage, the microcontroller configures its internal peripherals: the General Purpose
Input/Outputs (GPIO) used for the button and the LED, the 12C serial bus used
to communicate with the sensors and the USART serial port to communicate
with the Bluetooth module. The sensors are configured next, setting internal
parameters such as the desired full scale and sampling frequencies. Some oper-

ation parameters of the nodes can be updated by sending configuration strings
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Figure 5.7: Block diagram of the logging application.

via Bluetooth: for example, it is possible to update the nodes’ calendar clock or
the sensor’s sampling frequencies and full-scale values. For major changes to the
application it is possible to upload a new version of the firmware using a custom
bootloader. The bootloader can be accessed when turning on the device, by a
long press of the power button. It allows uploading a new firmware simply by
sending the desired binary file from a host device via the Bluetooth connection.

After the update, the device restarts and executes the new application.

Data Logging

In the data logging mode, the node samples the sensors, optionally pre-processes
the data and stores it in the on-board flash memory. In this modality the data
is not streamed via Bluetooth, therefore saving energy. The data logging mode
can be started both via Bluetooth, by sending the corresponding command (Start
LOG) or by pressing the button on the device while it is in the IDLE state. With
the latter method, the device does not need an active Bluetooth connection and
can operate independently. The operation is terminated when the corresponding
stop command is received or by another press of the button. Figure 5.7 summa-
rizes this operation mode. In this modality, the node waits for a timer interrupt
to signal the desired sampling period. After this, the current sensor data is read
by the microcontroller and the desired processing algorithm is applied if needed.
According to the application, the sensor data can be stored as sampled or after
the application of a processing step, chosen between several algorithms such as
low-pass filters, feature extraction or orientation estimation algorithms. The data
stored in memory can later be downloaded to a PC via the Bluetooth connection,

for offline processing and analysis.
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Figure 5.8: Block diagram of the streaming application.

Streaming

In the streaming mode, a node is connected via Bluetooth to a host device (PC
or smartphone), which sends commands to start/stop the streaming of the sensor
data. After a start command is received, the device samples the sensor data
and applies the desired processing algorithm if needed, exactly as in the logging
mode. What is different is that now the device streams the desired data to the
host device, which can be used in real-time for further processing or interactive

applications. This operation mode is illustrated in Figure 5.8.

Networked Operations

Combining more than one device, we can build a Bluetooth network and col-
lect/log data from up to 7 nodes at the same time. For the streaming application
there is no difference compared to the single-node case: a host PC connects to
the desired devices, sends them the command to start/stop streaming and then
handles the incoming data streams. The Bluetooth protocol implementation sets
a limit to the number of connectible nodes to 7. In practice, depending on the
desired sampling frequency, the communication may fail for that many sensors.
Our tests indicated that it is not possible to communicate with more than 5 nodes
sampling at 7T0Hz connected to a PC running a custom application on Windows
(see Fig. 5.9(a)). With an Android smartphone, it was possible to stream data
from 7 nodes sampling at 100Hz, using again a custom application shown in Fig.
5.9(b). These differences are due to different driver and Bluetooth implementa-
tions on the two tested platforms. Synchronization of the data gathered with a
PC is ensured by a timestamp recorded when receiving data packets. On a mobile

phone, the arriving data packets are buffered and processed in blocks, so further
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Figure 5.9: Screenshots of the developed applications for data collection and
logging: (a) for Windows PCs and (b) for Android smartphones.

processing is needed to ensure packet-level synchronization.

In the logging mode, one of the devices acts as the master and initiates the
synchronized recording session. It is possible to have one of the nodes with a
dedicated master firmware, a Personal Computer or an Android phone to initi-
ate the network, connect to the desired slave nodes and send the start/stop log
commands. In this case no data is streamed through the network: every node
stores the desired data in the internal memory, together with the shared network
clock counter, retrieved every 15 minutes for synchronization purposes. This op-
eration takes about 90 ms and no data is logged during its execution. It allows to
synchronize the logged data from the network of nodes with a precision that can
reach 25ms. If the node is controlled by a mobile phone or a computer, additional
data such as patient ID, recording session and trial date/time can be stored. In
the current implementation, with one gigabyte of memory, each node can store

up to 130 hours of sampled sensor data at 100Hz.

Data Processing

When employing more than one sensor with a central collecting node, the overall
performance of the system can be optimized by processing locally the sampled
data on each node. This solution avoids the creation of a communication and

computation bottleneck on the central node by exploiting the computational ca-
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pabilities of the embedded microcontroller available on each node and optimizing
the operations to achieve better energy efficiency.

Inertial sensor data can be used to estimate the orientation of the device,
providing implicit information on the posture of the user, given the location of
the sensors on the user’s body. With the available inertial sensors, each node
can compute its orientation using different methods, such as the integration of
the angular velocity provided by the gyroscope or the tilt-compensated electronic
compass which employs accelerometer and magnetometer data. Both solutions
have limitations and several sensor fusion algorithms have been developed to

combine their outputs.

5.5 Experimental Setup and Results

In this section we will introduce the experimental analysis performed with the
EXLs1 sensor node to evaluate its hardware characteristics and to test the dif-
ferent algorithms. The node was designed to study human movements, therefore
we evaluated its performance when subject to different types of motion.

To efficiently test and compare orientation estimation algorithms, sensor data
from the desired nodes was sent to a PC via the Bluetooth interface and logged for
offline analysis. We first implemented in Matlab all the different algorithms and
used the logged data to compare them in terms of orientation estimation accuracy.
For this purpose we created an application for the collection and log of data
from several nodes. In particular we created a Windows application to display
and log the data coming from up to five nodes simultaneously, and an Android
application, capable to collect data from up to seven nodes. Two screenshots of
the applications can be pictured in Fig. 5.9. The Android application was used to
test the sensors in a mobile scenario, where the user walked around wearing the
sensors and carrying the phone, thus not having range constraints. Before all the
operations, the sensor nodes used were calibrated using the procedure illustrated
in Section 5.3.1.
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Figure 5.10: Comparison of the two algorithms to compute orientation from
sensor data (a) and a zoom of the final part of the roll plot (b).

Orientation estimation
To test the different algorithms we collected several sessions of sensor data, while
a user was manipulating the device by hand. All the proposed algorithms use
quaternions to perform the needed computations. For an easy interpretation of
the results we converted the output of the algorithms to Euler angles roll, pitch
and yaw, corresponding respectively to rotations around x, y and z axes of the
device.

In Figure 5.10 we can see a comparison between the two approaches to com-
pute the orientation from sensor data. Here we compare the output of the trigono-

metric computation of orientation from accelerometer and magnetometer data
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Figure 5.11: Comparison of different orientation estimation algorithms (a) and a
zoom of the roll plot (b).

with the orientation computed integrating the angular rates from the gyroscope.
During the experiment, the sensor node was held in hand by the user who per-
formed small rotations around each axis, with different speeds. We can observe
how the inertial output suffers from a high frequency noise, while the gyroscope
integration leads to a drift of the estimated orientation. This result shows clearly
a need for a sensor fusion approach to optimally combine the two estimates for
a better final result. This can be better observed in Fig. 5.10(b), where the last
portion of the previous figure is shown. During the 4 minutes of the experiment
the gyroscope estimate accumulated and error of more than 15°.

To achieve a better estimation of the orientation from our device, we tested
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the sensor fusion algorithms introduced in Section 5.3.3. For this purpose we
first compared the algorithms in Matlab on a PC, using logged sensor data as
input, then we implemented the diferent algorithms on the device, to compare
their performance and computational costs. The result of this comparison can
be seen in Figure 5.11. In particular we compared the Kalman filter (labeled as
KF), the Extended KF (EKF), the complementary filter proposed by Mahony
(CF Mah) and the one proposed by Madgwick (CF Mad). The estimate from the
accelerometer and magnetometer was added to the plot for a direct comparison
(labeled as RAW). We can observe how all the algorithms overcome the problems
seen in the two individual estimations and achieve a comparable performance in
terms of accuracy of orientation estimation. This can be further observed from

the magnified portion of the plot shown in Fig. 5.11(b).

Embedded implementation
Next we implemented the sensor fusion algorithms for the ARM Coretex micro-
controller embedded in the sensor node. This MCU has 32-bit precision and has
no floating point unit. This means that all floating point operations are imple-
mented in software using integer values, thus leading to longer computational
times. On this platform we used the IEEE 754 standard to represent 32-bit sin-
gle precision floating point values and the ARM compiler to handle the software
implementation of the operations. We tested the precision achieved on the MCU
against the Matlab implementation, which uses 64-bit double precision and was
computed on the PC. For this purpose, both the sensor data and the computed
quaternions were sent from the device to the PC, to allow the elaboration of the
same stream of data on the two platforms. The results of this comparison are
shown in Fig. 5.12 for the KF algorithm and in Fig. 5.13 for the Madgwick CF.

From the figures we can see how the MCU implementation of the two algo-
rithms follows exactly the Matlab one. The two plots are bearly distinguishable
and from a quantitative evaluation of the two implementations we found a mean
deviation of less than 0.01°, with peak differences always below 1°. We observed
the same results also for the other two implemented algorithms.

The MCU implementation of the orientation estimation techniques were also

compared in terms of computational cost, measured as the number of CPU cycles
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Figure 5.12: (a) Comparison of orientation estimation as computed by MAT-
LAB (green) and by the microcontroller (red) for the KF. The raw MATLAB
estimation was plotted as reference (blue). (b) Zoom of the roll plot.

needed to compute one iteration of the algorithm. The results of this comparison
are shown in Table 5.1. We can see how the gyroscope integration is several times
faster than the accelerometer and magnetometer one. This is due to the nature of
the two algorithms, since the latter one needs the computation of trigonometric
function atan?2.

The different sensor fusion techniques showed almost identical performance in
terms of orientation estimation, but they have very different computational costs.
The EKF is the most computationally expensive technique, needing 72ms to per-
form every loop of the filter, while the two CF approaches have similar execution

times of about 0.22ms. The KF solution has an intermediate computational cost
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Figure 5.13: (a) Comparison of orientation estimation as computed by MATLAB
(green) and by the microcontroller (red) for the Madgwick CF. The raw MATLAB
estimation was plotted as reference (blue). (b) Zoom of the roll plot.

needing 2.5ms to perform one iteration. The relatively high execution times of
the Kalman filter approaches are due to the fact that they update the covariance
matrix and the Kalman gain at every iteration. This operation leads to multiple
matrix multiplications and to the inversion of a matrix, operating on matrices
with dimensions equal to the dimension of the state vector. Moreover, the EKF
solution dynamically estimates the bias of the inertial sensors, leading to a state
vector of 9 elements and thus to operations on 9 x 9 matrices. In our analysis this
increased computational cost is not justified by an effective increase in estimation

accuracy, making this algorithm a poor choice for embedded platforms.
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Table 5.1: Computational cost of the different algorithms (Times for MCU run-

ning at 72M H z).

Algorithm | CPU Cycles | Time [ms]
Acc+Mag 73393 1.019
Gyro Int. 5224 0.073
KF 179115 2.489
EKF 5184020 72.000
CF Mah 16196 0.225
CF Mad 16294 0.226

Motion analysis

To test the device in a real-use scenario we used it to analyze the gait of a user.
For this experiment two devices were secured on top of the shoes of the user, as
can be seen in Figure 5.14. The user, a male 28 years old student performed a
natural walk along a hallway, while a smartphone logged the data coming from
the two sensors. On the collected data we applied the proposed techniques to

estimate the orientation of the sensor during the motion.

Figure 5.14: EXLsl sensor nodes attached to the shoes. The body frames of the
two sensors are aligned with z pointing to the user’s right (in red in the figure),
y forward (blue) and z up (green).
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Figure 5.15: (a) Sampled sensor data and (b) roll angle as estimated by the KF
and the CF Mad algorithms while the user was walking.

The results for the sensor mounted on the right shoe of the user are shown
in Figure 5.15. Here we can observe (a) the log of the gathered data and (b) the
resulting orientation of the roll angle as computed by the KF and the Madgwick
CF'. The results show how both of the filters compute correctly the orientation of
the foot during the walk. This is a highly dynamic motion, during which the sen-
sor node is subject to high inertial accelerations. This leads to high disturbances
in the accelerometer-based orientation estimation, showed as a reference. Both
sensor fusion algorithms overcome this problem by the fusion of the information
provided by the gyroscope. We can further observe how the CF suffers from a
small lag when compared to the KF orientation. This lag can be compensated by

increasing the weighting coefficient of the filter, at the expense of the introduc-
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Figure 5.16: Power consumption breakdown associated with each task for the
default case (left) and the optimized one (right).

tion of a major amount of sensor noise from the accelerometer. For an accurate
evaluation of the two algorithms, an external independent estimation of the ori-
entation would be needed, which can be implemented through a high precision

vision system.

Power consumption

Sensor nodes rely on a battery for the power supply. In the current hardware
configuration a 180mAh LiPo battery is used and, according to the energy policy
used, it is possible to have different node lifetimes. If no policy is applied, a node
can run up to 2 hours using a single charge when in continuous streaming mode,
sampling the sensors at a 100H z rate. In this case the MCU is set to the highest
frequency available (72M Hz) and guarantees the maximum computing perfor-
mances. When it is not necessary to use the Bluetooth communication or when
there is no need to perform data analysis on the node (e.g. in data logging mode),
it is possible to put all the unused components in a sleep mode. When using ap-
propriate sleep modes for the available peripherals and reducing the MCU clock
frequency, the battery life increases up to 6 hours, reducing the average current
consumption from 75mA to 29.8mA. The figure 5.16 illustrates the breakdown
of the power consumption in the two cases, highlighting the percentage of the

power consumed for each task and for the sleep states.
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5.6 Conclusions

In this Chapter we presented the hardware and software development of a wear-
able sensor node for the tracking of human motion. The EXLsl sensor node
embeds state of the art integrated inertial (accelerometer and gyroscope) and
magnetic sensors, features an advanced ARM microcontroller and a Bluetooth
transceiver. The device was designed to be small and versatile for an easy use
in a broad range of applications, such can be human-computer interaction, mo-
tion capture or heathcare. The availability of the Bluetooth connection enables
the device to communicate with a wide range of systems and allows the use of
multiple nodes in a body sensor network.

To analyze the data from the on-board sensors, we compared several algo-
rithms for orientation estimation. For a better estimate, sensor fusion algorithms
such as the Kalman filter and the complementary filter are employed to opti-
mally integrate the information from the on-board sensors. The use of several
nodes to monitor articulated movements arises the issues of the simultaneous
processing of the data streams, favoring a distributed solution where every node
processes locally its sensor data. Thus, we implemented the proposed estimation
techniques on the microcontroller embedded in the device, and tested their per-
formance in terms of accuracy and orientation estimation. The results showed
how the different algorithms have very similar estimation accuracy, while the
Kalman filter-based solutions suffer from a considerably higher processing times.
To achieve an eflicient use of the limited energy provided by the battery integrated
into the device, we carefully optimized the use of the available peripherals, taking

advantage of power saving techniques.
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Chapter 6

Energy Efficient Data
Reconstruction for Wireless

Sensor Networks

Wireless sensor networks (WSNs) are commonly recognized as one of the techno-
logical cornerstones of Aml. Agile, low-cost, ultra-low power networks of sensors
can collect a huge amount of critical information from the environment. Using a
biological analogy, a sensor network can be seen as the sensory system of the in-
telligent environment ”organism”. Sensor networks are irregular aggregations of
communicating sensor-nodes, which collect and process information coming from
on-board sensors, and they exchange part of this information with neighboring
nodes or with nearby collection stations.

The exploration of WSNs and innovative technologies for their enhancement,
from the data accuracy and power consumption viewpoints, is a natural evolution
of the work presented in the first Chapters of this dissertation. Starting from
single smart objects we explored body area networks, with a limited number of
sensor nodes placed on the human body, and will now consider the case of WSNs
composed by tens or thousands of nodes that sense the surrounding environment.

The recent evolution of sensing devices and the availability of new technolo-

gies for WSNs have triggered new research activities in the field of data gathering
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and compression. The goal or our work is to improve the performance/power con-
sumption tradeoff: in a general WSN scenario this can be achieved by minimizing
storage and communication costs to extend as much as possible the lifetime of
the network, while maintaining the desired data accuracy. In this Chapter we
will present two techniques capable to successfully recover the signal from highly
incomplete sub-sampled versions: Compressive Sensing (CS) and a data-driven
statistical model based on latent variables (LV). In this work, we focus on the
comparison between these two approaches and their impact on the energy con-
sumption of the network nodes. In particular, we evaluate their performance and
power requirements and explore the impact of features such as the use of network

wide correlations to improve the reconstruction accuracy.

6.1 Overview

Modern applications of WSNs typically require measuring several variables (such
as temperature, humidity, light intensity, etc.) for extended periods of time over a
large area. Examples of WSN applications include environmental monitoring [30],
smart building [18], smart home solutions [66] or structural health monitoring
[36]. To meet the application requirements, the design and deployment of a WSN
has to carefully balance between two competing goals: (1) high spatio-temporal
resolution to ensure the accuracy of the collected data, and (2) minimal energy
consumption to maximize the network lifetime and limit node maintenance. The
amount of data that a node collects and processes directly affects both its power
consumption and the accuracy of the information obtained [53, 141].

Extending the uptime of a sensor node is an active topic of research in WSNs,
especially when the nodes are deployed in difficult to access or remote locations.
Common approaches try to enhance the battery life directly by harvesting energy
from the environment and employing low-power hardware architectures [43, 47],
or using improved wireless protocols and distributed computation for data pro-
cessing [181]. More recently, researchers are optimizing the battery life indirectly
by reducing the overall amount of sensed data [164]. Here, the data is selec-

tively sampled according to a predetermined protocol, reducing the total amount
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of samples collected by the individual sensor nodes, thus minimizing the energy
consumption. To maintain an acceptable amount of total measurements, the
missing data is inferred according to statistical models that capture how the data
evolves. In addition to enhancing the battery life, these approaches are also able
to estimate any lost or corrupted data, making them a popular choice [164].

One of the most promising techniques capable to successfully recover the signal
from highly incomplete sub-sampled versions is Compressive Sensing (CS) [25, 46,
63]. This technique is able to recover original signals from a smaller sub-sampled
version obtained by skipping samples during the acquisition phase.

CS theory claims that if a signal can be compressed using classical trans-
form coding techniques and its representation is sparse in some basis, then a
small number of projections on random vectors contains enough information for
approximate reconstruction [45]. Natural signals have usually a relatively low
information content as measured by the sparsity of their spectrum [42], therefore
the theory of CS suggests that randomized low-rate sampling may provide an
efficient alternative to high-rate uniform sampling. This peculiar form of CS is a
novel strategy to sample and process sparse signals at sub-Nyquist rate [119, 142].

In this work we propose a novel energy efficient, data-driven statistical model
based on latent variables (LV) to estimate original signals from sub-sampled ver-
sions within a heterogeneous sensor network. Our approach extends the standard
latent variable factorization model, which typically considers only dyadic inter-
actions in data, to multivariate spatio-temporal data, by applying tensor decom-
position techniques [101]. The key advantage of using a latent variable model is
that it provides a compact representation of the gathered data that can be used
to recover the missing samples. In order to perform well under extreme sampling
conditions, we extend the standard technique to explicitly incorporate the spatial,
temporal, and inter-sensor correlations.

To explore the efficiency of our approach, we analyzed two different scenarios.
The first one is a structural health application for an aging building, employing
low-power wireless sensor nodes. In this case the energy consumption of each
sensor node is dominated by the power spent for the radio transmission of the
gathered data. The second scenario is an environmental monitoring application,

characterized by an energy model where the power required for data sampling
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contributes significantly to the overall energy consumption. Therefore, not only
the amount of data sent through the wireless channel should be reduced, but also
the amount of samples that a node collects should be minimized. Moreover, the
two datasets exhibit completely different patterns and spatio-temporal resolutions
in the gathered data, validating the general applicability of the proposed method.

This study focuses on the trade-off between the accuracy in recovering the
missing data and the energy consumption when sensor nodes duty cycle to save
energy. The proposed technique drastically reduces the amount of sampled data
at each node, thus allowing the nodes to spend more time in a low-power sleep
mode and save energy. The lower amount of sampled data implies a lower amount
of data to transmit from the node to a central gathering station, reducing also
the power consumptions associated with the radio communications.

We compared our technique with the CS approach and evaluated their impact
on the energy consumption of the network nodes. The two techniques address
the same problem from different theoretical bases, and hence a straightforward
question is which one is most well suited as an energy-minimization technique
for WSN. To the best of our knowledge this is the first work in which the two
techniques are directly compared using the same dataset for evaluating the re-
construction quality.

For the tests and simulations presented we use real WSN deployments for
both the node hardware characteristics and the gathered data. We evaluate the
performance of the two techniques and explore the impact of features such as the
use of network wide correlations to improve the reconstruction accuracy or the
length of the data block to be reconstructed.

Our focus is on optimizing node sensing rates at different nodes to reduce the
overall energy consumption. The communication network implements state-of-
the-art low power architecture and routing protocols to get better energy effi-
ciency. The reconstruction task is performed at the data collection center, thus
reducing the complexity and energy consumption of the battery powered sensor
nodes. The central node is connected to a power source and thus does not have

energy constraints.
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6.2 Related Work

The problem of data gathering, compression and signal reconstruction in WSNs
is well explored in literature. Even though the majority of the works deal with
reconstruction algorithms and mathematical aspects, practical aspects and low

power implementation problems are lately gaining interest.

6.2.1 Theoretical approaches

As seen in the previous section, CS builds on several works like [45, 63] which show
that if a signal can be compressed using classical transform coding techniques and
its representation is sparse in some basis then a small number of projections on
random vectors contain enough information for approximate reconstruction.

When CS is used in a scenario where several sensors acquire data from the
same environment, we can think that the sensed data has a certain kind of shared
information that can be exploited to perform a better reconstruction.

The most known technique used for exploiting the inter and intra-correlation
among several nodes in a WSN is the Distributed CS (DCS) introduced in [29].
In these works authors analyze three different sparsity models (JSM-1, JSM-2,
JSM-3) to describe most of the signals ensemble; and for each sparsity model
they present a different reconstruction algorithm. Among other works dealing
with joint sparse recovery we can cite [107] or Kronecker CS introduced in [62].
Differently from these works, in this paper we want to focus on a special technique
for the reconstruction of jointly sparse solutions known as Multiple Measurement
Vector (MMV) based on /5 ;-regularization that is introduced in [59].

Latent variables and decomposition-based techniques have also been proposed
in literature, with their most notable applications in collaborative filtering and
recommender systems [155, 177]. A standard way to learn a set of latent variables
for a two dimensional dataset is to apply a matrix factorization technique. A re-
cent review of matrix factorization techniques with applications to recommender
systems can be found in [102]. To achieve a better latent variables model and to al-
low the prediction of the missing entries in the original data matrix, standard ma-

trix factorization techniques have been extended to incorporate temporal dynam-
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ics and thus better capture the temporal evolution of the data [103, 166]. When
dealing with multivariate datasets, which can be represented by n—dimensional
data arrays, tensor factorization techniques can be exploited to further improve
the performance of the models [95]. In our work, we applied a tensor factoriza-
tion approach to WSNs, taking advantage of the three-dimensional nature of the
data gathered from a heterogeneous sensor network. We further extended this
approach, incorporating for each data dimension a correlation model learned from

the data itself, to enhance the capabilities to reconstruct the missing data.

6.2.2 WSN-related practical implementations

The general problem of using CS in WSNs is investigated in several works like
[139], where the authors analyze synthetic and real signals against several com-
mon transformations to evaluate the reconstruction performance. In [113] the
measurement matrix is created jointly with data routing policies, trying to pre-
serve a good reconstruction quality. Also in [115] the authors try to improve the
reconstruction by reordering the input data to achieve a better compressibility.
The main focus of these works is to investigate the signal reconstruction problem
but what the authors think is missing is a consideration about how the usage
of CS impacts on the power consumption. While there is no doubt that CS is
a powerful technique for data size reduction and compression, its usage and im-
pact on network lifetime, when real hardware and COT'S nodes are used, are still
marginally addressed in literature.

The work in [118] is one of the first papers trying to address the issue of energy
consumption for data compression, dealing with the problem to generate a good
measurement matrix using as low energy as possible. In this work the research is
focused on Wireless Body Sensor Networks (WBAN) for real-time energy-efficient
ECG compression. This is a quite different research field with respect to WSNs
where the presence of several nodes sensing the same environment permits to
exploit the distributed nature of the signals to improve the quality of recovery.

Several works like [109] or [93] deal with the use of CS when the data is gath-
ered from different joint sources, using DCS to improve the recovery quality. In

[117] DCS and Principal Component Analysis are used to reconstruct spatially
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and temporally correlated signals in a sensor network but, once again, the con-
tribution of the power consumption for compression in the network lifetime is
neglected.

In this paper, we deal with CS when the signals are sampled at sub-Nyquist
frequency resembling a technique which is in literature referred to as analog CS.
The name derives from the fact that the subsampling is performed at ADC level,
dropping samples during the acquisition and analog-to-digital conversion stage.
One notable example of this technique is in [180] where the effects of circuit
imperfections in the analog compressive sensing architectures are discussed. In
the framework proposed in this work, samples are not discarded by analogue
circuits but are not sampled at all, saving the energy for waking up the node.

In literature, other works investigate the problem when the samples are dis-
carded by the device performing the sensing rather than the ADC. For example,
in [23] and [73] the analysis on energy consumption is totally neglected and the
recovery is strictly related to the specific applications described. Differently from
environmental signals, used in our work, the signals coming from the oximeter
present a much higher temporal correlation, presenting small variations in their
temporal evolution, facilitating their reconstruction.

Matrix factorization learning of latent variables has been used for recovering
missing data in sensor networks in [166], where temporal correlations found in the
dataset are used to infer the missing variables. Tensor decomposition techniques
have been applied on WSNs in [138], where the learned models are used to find the
damages in a structural health monitoring application. The previously presented
algorithms only consider homogeneous sensor streams, dealing with one sensor
at a time, and do not consider the energy costs across the network. Instead,
our approach, focuses on the multivariate nature of the collected data, and it
expands the tensor factorization techniques by employing spatio-temporal and
intra-sensor correlations for more robust and better results than the existing
methods. The energy consumption when sub-sampling is, instead, considered
in [50] in which authors use a sparse generated matrix adjusting the sampling
rate to maintain an acceptable reconstruction performance while minimizing the
energy consumption. Differently from our work they do not consider inter- and

intra-correlation among signals, and do not use any group-sparsity enhancing
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algorithm to perform a better recovery.

6.3 Compressive sampling and groups sparsity

Considered a continuous signal x(t) of duration T, z(n), 1 < n < N is its
discrete version. The Nyquist theorem states that in order to perfectly capture
the information of the signal x(¢), having a bandwidth of Byy,/2 Hz, we must

sample the signal at its Nyquist rate of By, samples per second. In formula:
x(n) = x(t)|1=n, (6.1)

where Ty < 1/Byyq and NT; < T. The sampled signal z(n) is represented by an
N-dimensional vector of real numbers x.

If the vector x is sparse then CS is able to recover this finite-dimensional
vector x € RY from a very limited number of measurements of the original signal
x(t). The sparsity of a signal a is usually indicated as the fo-norm of the signal

where the /,-norm || - ||, is defined as:

N-1 1/p
el = (Z |ai|p> (6.2)

with o € RV.

If the signal x is sparse then there exists some N x N basis or dictionary
W ¢ RY*N guch that there is an N-dimensional vector o implying x = o and
lle|lo < K with K < N.

CS theory demonstrates that it is possible to compress this kind of sparse
signals using a second different measurement matrix ® € RM*N with M <
N. The compression can be written as y = ®x where y is the M-dimensional
measurements vector. While ¥ is usually defined by the signals characteristics,
® has to be designed so that M is much smaller than N.

Having the measurements vector y, the recovery of the original signal x can
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be obtained by the inverse of the measurement problem
y =0a=?¥%a (6.3)

Even though the inversion is not an easy task since the matrix ® € RM*¥N
is rectangular with M < N, the fact that x is sparse can relax the problem
by opening the way to the use of optimization-based reconstruction or iterative
support-guessing reconstruction.

The most common optimization-based method here reported for the sake of
clarity is the basis pursuit (BP) [132] method that searches for the most sparse

solution for which the ||a|; is minimum:
& = argmin ||alj; s.t. y = Oa = PV a (6.4)

CS theory proves that if the two matrices ® and ¥ are incoherent (elements of
the matrix ® are not sparsely represented in the basis ¥) and the original signal
X is compressible or sparse we can recover a with high probability.

In order to further enhance the recoverability, recent studies propose to take
into account additional information about the underlying structure of the solu-
tions [51]. When the signals to compress and recover are obtained from sensors
deployed close to each other in the environment, we can expect that the ensem-
ble of these signals presents an underlying joint structure. This characteristic
can be exploited to further compress the data, without a loss in reconstruction
accuracy. In practice, this class of solutions are known to have certain ”group
sparsity” structure. This means that the solution has a natural grouping of its
components, and the components within a group are likely to be either all zeros
or all non-zeros. Encoding the group sparsity structure can reduce the degrees of
freedom in the solution, thereby leading to better recovery performance.

Having an ensemble of J signals we can denote each signal with x; € RY
with j € {1,2,...,J}. For each signal x; in the ensemble we have a sparsifying
basis ¥ € RV*N and a measurement matrix ®; € RM*N such that as before
y; = ®,;x; with M; < N and x; = Po;.

The reconstruction of jointly sparse solutions, also known as the multiple mea-
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surement vector (MMV) problem, has its origin in sensor array signal processing
and recently has received much interest as an extension of the single sparse so-
lution recovery in compressive sensing. The recovery problem can be formulated

as:

n

min - [|&lup = > willéil: (6.5)
i=1

st. Oa=Y

where Y = [yTyT...y7], & = [afa] ... a%], w; is the weight and © € R/M*/N

is a matrix having on the diagonal matrices ®; = ®;¥ for j € {1,2,...,J}.

6.3.1 CS and sub-Nyquist sampling

As discussed in the previous section, to successfully recover the original signal
from its sampled version, the samples are taken regularly on a time axis at a given
rate that is not less that the Nyquist one. With respect to CS this requirement
means that the measurement matrix ® is a dense matrix (usually ai.i.d. Gaussian
matrix).

A particular form of CS, usually referred as analog CS, relies on random
sampling and aims to produce a number of measurements fewer than with Nyquist
sampling, still enabling the reconstruction of the original signal.

While analog CS is usually performed by means of specialized hardware en-
coders, this is also a suitable technique to be performed on WSNs nodes, oppor-
tunely skipping samples during acquisition phase.

From a mathematical point of view the problem is still the same as the problem
in equation 6.3; what is different is the form of the measurement matrix ® that
is not a dense matrix but it is a sparse measurement matrix.

More precisely if B is an M-dimensional vector where each element is a unique
random entry between 1 and N then the matrix ® in the analog CS is a sparse
M x N measurement matrix which is composed by an all-zero vector on each row
and a 71”7 at the location given by the i-th element of B. This is a very simple

measurement matrix, energetically cheap to generate, store and it permits a huge
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reduction in the duty-cycling of the nodes.

6.4 Latent variables for data reconstruction

Latent variable based factorization is a simple yet powerful framework for model-
ing data, and has been successfully applied in several application domains [102].
The main idea behind this framework is to model the large number of observed
variables (the observed data) in terms of a much smaller number of unobserved
variables (the latent variables). The latent variables are learned from the ob-
served data and are used to estimate the missing samples, modeling complex
interactions between the observed variables through simple interactions between
the latent variables.

More specifically, given some multivariate data that is collected by a hetero-
geneous WSN in a large field over time, we can naturally organize it in a three
dimensional data array (or a 3-tensor, as shown in Figure 6.1 left). Each of the
three dimensions corresponds to a different variate of a particular measurement
(e.g. the time, the location and the sensor type associated with each reading).
Once the data is organized in this way, we can now associate a low-dimensional
latent variable with each unique location, time slice and sensor type. We can thus
model a particular observation (at a given location, time and type) as a noisy
combination of the associated latent variables. In many scenarios, a multiplica-
tive combination of these latent variables is able to capture intricate dependencies
in the data [17, 101]. The goal then is to learn a good set of latent variables (that

is, find a factorization) that can efficiently represent our observed data.

6.4.1 Modeling details

We now define our model more formally. For each unique time instance ¢, sensor
type s, and node location n, we associate a unique K-dimensional vector ay,
b, and c, respectively. These unobserved vectors are called the latent factors
or variables, and are assumed to control the location-, time- and sensor-specific

interactions present in the observed data.
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Figure 6.1: Tensor factorization model. Left: A [T x S x N] tensor representation
of WSN data from .S different sensor types collected at N different locations at
T different times. Each entry in the tensor is modeled as a combination the
associated latent (unobserved) variables (A, B and C') plus noise (¢).

Then, given a [T x S x N] tensor X of sensor readings from S different sensor
types collected at N different nodes and T' different time instances, with possible
missing entries, we model X as follows. We assume that each reading w5, (reading
at time ¢, for sensor type s, at node location n) is a noisy realization of the
underlying true reading that is obtained by the interaction of the time specific
latent variable a;, with the sensor specific latent variable b, and with the location

specific variable ¢,. That is,

K

Ttsn = Z atkbskcnk + g, (66)
k=1

where ¢ is modeled as independent zero-mean Gaussian noise (¢ ~ N(0,0?)).
Observe that under this model once all the latent variables are known, one can
recover the true readings of all sensors at all locations and times. Thus the goal
is to find the most predictive set of vectors a;, by and ¢, for all t = 1,...,T,
s=1,...,58 n=1,...,N. Such a representation models the entire data of size
[T- N -S| by just [K-(T+ N +.5)] modeling parameters. The choice of the free
parameter K provides a key trade-off: a large K increases the number of modeling
parameters and thus can help model the observed data exactly. But this lacks

the capability on predicting unobserved /missing data due to overfitting. A small
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K, on the other hand, escapes the overfitting problem, but the corresponding
model lacks sufficient richness to capture salient data trends. The exact choice

of a good K is typically application dependent and is derived empirically.

6.4.2 Learning the latent variables

Finding the optimal set of K-dimensional latent variables given the observations
is equivalent of factorizing the given tensor into three matrices each of rank at
most K [101]. Thus, assuming that all the data is known (that is, every en-
try in the tensor is observed), we can find the latent factors by employing the
CanDecomp/ParaFac (CP) tensor factorization. This is simply a higher-order
generalization of the matrix singular value decomposition (SVD) [101], and de-
composes a generic third order tensor in three matrix factors A, B, and C. By
restricting the ranks of each of the matrix factors to at most K, yields the best
rank K approximation. Algorithmically, the matrix factors are typically found
by an alternating least squares approach (ALS) [17], which iteratively optimizes
for one matrix factor at a time, while keeping the other two fixed.

This technique can be generalized to work with tensors that have missing
entries. Since sensor nodes can periodically go offline due to duty-cycling or run
out of energy (preventing all sensors on a node from collecting any data for an
extended period of time), we need to extend our basic model to deal with data
missing from multiple sensors or nodes, resulting in entries and rows of missing
data in the collected tensor. In order to do well in this regime we extend the
basic tensor factorization model to explicitly incorporate spatial, temporal and
sensor specific information from neighboring observations by explicitly learning

and enforcing the corresponding correlations.

6.4.3 Incorporating correlations

To successfully interpolate the sensor interactions to contiguously missing blocks
of data, we need to explicitly model spatial, temporal and sensor-specific trends
within each of our latent variables a;, b; and ¢,. Such trends ensure that the

latent variables a; and ay (respectively bs and by, and ¢, and c¢,/) take similar
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values when times ¢t and ¢’ are “similar” (respectively sensors types s and s,
and locations n and n’). Note that similarity can mean anything based on the
context. For locations, it can mean that variables associated two locations that
are close in distance should have similar characteristics, while for time, it can
mean that variables associated with times that are same hour of the day or same
day of the week should have similar characteristics. Here we will take a data
driven approach to infer the best notion of similarity using correlations directly
computed from the data.

The similarity constraints are modeled in the same way for all the three sets
of latent variables, and here we illustrate the case for the a;’s. Since each a; is a
K-dimensional variable, let af denote its k*" coordinate. We model af (indepen-

dently for each coordinate k) as

al = jig+af (6.7)
af ~ N(0,%,).
Here a* represents the collection of all a;’s (across t = 1,...,T) in the &' coordi-

k

nate and y, represents their mean value. The distributional constraint over o (as
N(0,%,)) enforces the similarity constraints via the T' x T covariance matrix ¥,,.
By changing the t, ¢’ entry of X, we can encourage/discourage the corresponding
a; and ay to take similar values — a high positive value at X,(¢,t’) encourages a
positive correlation, a high negative value encourages negative correlation, while
a value close to zero does not encourage any correlation.

To get the right similarity constraints 2,, ¥, and X, (for latent variables a;, b,
and ¢, ), we compute the empirical correlations from the data. That is, for spatial
similarity constraints we computed the averaged pairwise Pearson correlation co-
efficient between data from different pairs of locations (across sensors and times).

We do the same to approximate inter-sensor and temporal similarities.
6.4.4 Parameter learning

We can learn the underlying latent variables in a probabilistic framework using a

mazimum o posteriori (MAP) estimate. In particular, let 6 denote all the model
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parameters (i.e. § = {{a;},{bs}, {cn},o}), then the optimum choice of parameters

Orap given the data X is obtained by:

Orrap(X) = argmax p(X | 0) p(0)
0 S—— =~

likelihood  prior

= argmax Z log p(%sn | Gy, bs, Cny o) + (6.8)

0 t,s,nc€observed

K K K
D “logp(af) + ) "logp(bF) + > logp(ch).
k=1 k=1 k=1

The first term (the likelihood) takes the form of Eq. 6.6, and the other terms
represent the priors for each latent variable and each one of them takes the form
of Eq. 6.7. We take a uniform prior over o, the standard deviation of the residuals
in Eqn. 6.6 so it doesn’t explicitly show in the equation.

This optimization does not have a closed form solution and standard gradient
based techniques can be used to get a locally optimal solution. Here we can do
an alternating hill-climb approach by optimizing the value of one variable while

keeping all others fixed to get a good solution.

6.5 Hardware, network and power models

To evaluate the proposed techniques we use real-world data from two sensor
networks, with different hardware configurations and spatio-temporal resolutions.
The composition of the two networks is summarized in Table 6.1. The number
of physical sensors can be smaller than the number of reported variables because
some sensors record multiple variables of interest.

Our first data set comes from an environmental monitoring WSN from the
California Irrigation Management Information System (CIMIS) [54]. It is a pro-
gram of the California Department of Water Resources that manages a network
of 232 automated weather stations displace across the state of California. Each
station provides hourly readings of 12 different measurements from its embedded

SENnsors.
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Dataset Nodes | Sensors | Variables | Ts [min]
per node | Reported
CIMIS 128 7 10 60
3ENCULT 23 3 3 10

Table 6.1: Analyzed datasets.
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Figure 6.2: Comparison of the temperature signal collected from the CIMIS net-
work (above) and the 3ENCULT network (below).

The second data set comes from a case study of the 3ENCULT European
project [16]. This is a structural health monitoring application where a network
of 23 low-power sensor nodes is deployed across the three floors of the historic
building Palazzina della Viola at the University of Bologna.

The two data sets have different sampling periods (one hour for CIMIS and
ten minutes for SENCULT) and different spatial coverage and distribution (state-
wide coverage for CIMIS and indoor coverage of a 3-store building for SENCULT).
Table 6.2 summarizes the variables reported by each station for the two datasets.
Even if some variables are shared among the two datasets, the network char-
acteristics, the nature of the captured signals and the resulting correlations are
different because of the differences in the sensed environment. As an example, we
can observe the Figure 6.2 where a block of 512 samples of temperature readings

from the two data sets is reported.
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Variables CIMIS | BENCULT
Solar Radiation [W/m?] X

Net Radiation [W/m?]
Soil Temperature [°C]
Air Temperature [°C]|
Pressure [k Pal

Wind Speed [m/s]

Wind Direction [0 — 360°]
Precipitation [mm]

Ref. ETo [mm)|

Rel. Humidity %]

sikalkaikai il el ekt

X

Table 6.2: Sensor list for the different datasets.

6.5.1 Hardware

We used the hardware configuration of the nodes in the two data sets to estimate
each node’s power consumption. For the environmental monitoring stations in
the CIMIS dataset we used the Vaisala WHT250 sensor station [161] which has
detailed power consumption information available. This type of station is used
at several locations in the CIMIS network.

The node employed in the 3ENCULT network is a wireless node by ST Micro-
electronics (STM32W108) that is a System on Chip with a 24G H > TEEE802.15.4-
compliant transceiver integrated on die. The CPU is a 32-bit 24M Hz ARM
Cortex-M3 equipped with 128 KB of Flash memory and 8K'B of RAM. The set
of sensors considered is composed by a Sensirion SHT21 (temperature and humid-
ity sensors) and a BH1715 Light Sensor. Timing in performing the operations
used in the power model are obtained either using the values reported in the
datasheet or measured using a GPIO trigger connected to an oscilloscope. Data
on power consumption of the various subsystems are not reported for lack of space
but the reader can refer to the datasheets of the components for further reference
[7, 14, 15, 161].
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6.5.2 Network model

In a sensor network we can consider that each node samples the signals for a
period of time T, called acquisition period, ideally gathering N = T/ f; number of
samples at a f, sampling frequency, before sending the data towards the collecting
point. If each node adopts a sub-sampling policy with an under-sampling ratio p
then the number of samples actually gathered by the node is M = pN.

The under-sampling pattern is locally generated by each node using its own
id and the timestamp as seed for randomization. In the random sampling pattern
the inter-measurements intervals are always multiple of the minimum sampling
period T, = T'/N.

6.5.3 Power model

We introduce an architecture level power model to evaluate the energy consump-
tion of the node when the subsampling parameters are changed. Using this power
model with data from real hardware and measurements, we can easily evaluate
how changing the parameters influences the energy consumption and the lifetime
of the network.

Starting from the assumption reported in the previous section, the average
energy consumption in each period of duration T}, for a sub-sampling factor p,

is:

Ek :p (Esetup + Esampl + Estore) + Es]eep+ (69)
N_l (Env + Esend)

where Fgeep is the energy spent in sleep mode, Fgetyp is the energy used for
waking up and setting up the device, Egmple is the energy for sampling each
sensors, Fenq is the energy used to send the acquired data, Fgore is the energy
to store the acquired sample in non volatile memory and F,, is the energy spent

during the recovery of the data from non volatile memory.
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Expanding each term we have:

By, = p(Tsevup = (Prmcu + Peot + Pro) + (6.10)
Trample * (Pample + Practive + Proft)+
Titore * (Psoft + Proft + Patore) )+
Tueep * (Prieep + Proft + Proft)+
NN Ty - (Patore + Peoti + Progt)+
Tiend * (Peomm + Peot + Psend))

where Tieep; Tsetup, Lsamples Lsend, Lstore; Iny are the duration of each respective
phase. Pyeep is the power consumed in sleep mode, Pi.g is the power absorbed
from sensors when sleeping, P is the power consumption of the transceiver when
the node is in sleep mode. Py is the power consumed by the MCU, Pyumpie is the
power spent for data acquisition, P,ctive is the power consumed by sensors, Peomm
is the power consumption for filling the transceiver output buffer and finally Pieng
is the power for sending data.

For the CIMIS dataset the values for the power consumption and timings
were extracted from the datasheets, while for the 3ENCULT dataset they were

measured on real hardware and reported in Table 6.3.

6.6 Results

6.6.1 Sensor power consumption

We used the hardware configuration of the nodes in the two data sets to estimate
each node’s power consumption. For an environmental monitoring station we used
the Vaisala WHT250 sensor station [161] which has detailed power consumption
information available. Since the WHT250 does not embed any radio, we assume
that the radio communication is performed through a commercially available
Zigbee wireless transceiver (XBee PRO [60]).

The energy consumption of this type of sensor station is summarized in Ta-

ble 6.4. This data is obtained from the components’ data sheets, considering
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7—'sample
T‘setup

T:setupjadio
Bpkt

Bheader
Asactive,SHT21
Asoff,SHT21
T'sampl,SHT21
Asactive,BHl?lS
ASOH,BH1715
T‘sampl,BH1715

600 [3]
5e-4 [s]
5.25¢-5 [s/16bit]
3.3 [V]

5e-3 [
127 [byte]
10 [byte]
3e-4 [A]
1.5e-7 [A]
2e-5 [
150e-6 [A]
0.01e-6 [A]
le-5 [s]

Sampling Period

Setup time

Time to store data in NVM

Battery voltage

Sleep current

Current consumption in idle

Current consumption for ADCs
Current consumption when saving in NVM
Current for filling the transceiver buffer
Microcontroller frequency

Current consumption for transmission
Sleep current of the transceiver
Transmission throughput

Transceiver setup time

Packet size

Header size

(SHT21) Current consumption
(SHT21) Sleep current

(SHT21) Sampling time

(BH1715) Current consumption
(BH1715) Sleep current

(BH1715) Sampling time

Table 6.3: Characteristics of the device taken as reference in the power model.
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Sensor or State Power | Time | Energy
mW] | [s] | [mJ]
Sleep (all node) 1.2 - -
CPU Active 42.9 - -
Wind speed & direction 20 60 1200
Pressure 9.6 5 48
Temperature 9.6 5 48
Humidity 9.6 5 48
Rain 0.84 10 8.4
Xbee - Data transmission | 158.4 | 0.05 8

Table 6.4: Power consumption of the different components of an environmental
station. The energy consumption refers to a single sampling event or a single
packet transmission.

the average consumption for each operation, and using the World Meteorological
Organization (WMO) specifications for environmental data gathering [176]. The
wind measurements (speed and direction) need to be reported in 1 minute incre-
ments, thus costing a lot of energy. Pressure, temperature and humidity sensors
have the same power consumption (9.6mW) as they are part of the same module,
but each sensor has to be read individually. With an 1 hour sampling period, the
energy consumed at each interval (Esayprr) is 5.62J, 75% of which is spent in
the sleep mode. Of the active energy, 96% is consumed for the sampling of the
sensors, 3.5% for data transmission and 0.5% by the CPU. Our model considers
all the contributions even if the sampling energy is the dominating component in
this scenario.

For the 3SENCULT sensor network, the energy consumption results are sum-
marized in Table 6.5. In this case the radio transmission represents the main
source of energy consumption. There is 3.6m.J of energy per each 10 minutes
sampling period, of which almost 85% is for the sleep mode. Of the active power,
88% is consumed by the radio transmission of the acquired packets, 10% by the
CPU and 2% by the sensors.

In both cases the influence of the energy spent in the sleep mode increases
with an increase of the sampling period, since the node spends more time waiting

for the next interval. With longer periods, even aggressive duty cycling policies
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Sensor or State Power | Time | Energy
mW] | [ms] | [m]]
Sleep (all node) 0.578 - -
CPU Active 24.7 - -
Temperature 0.495 | 0.002 | 0.001
Humidity 0.495 | 0.002 | 0.001
Light 0.495 | 0.002 | 0.001
Data transmission | 102.3 | 0.05 5.115

Table 6.5: Power consumption of the different components of the W24TH sensor
node.

will have a smaller benefit in terms of energy saving, since they reduce only the

active energy spent for sampling and data transmission.

6.6.2 Data preprocessing

The proposed statistical model treats data from each heterogeneous sensor equally.
Since raw data from different sensor types are at widely different scales (e.g. the
temperature ranges from about 10 to 40°C, while relative humidity measure-
ments range from 0 to 100%), we preprocess all the variables to ensure they have
zero mean and unit variance. This normalization brings all measurements to the
same scale and allows us to apply our multivariate tensor factorization technique.
The normalized prediction can easily be translated back into the original scale
by rescaling and adding back the mean value. The reconstruction error is evalu-
ated in the original scale for each variable, adopting the Normalized Root Mean
Squared Error (NRMSFE) defined as:

El(@ —z)?]
Tmaz — Tmin ,

NRMSE =

where & and & are respectively the actual and predicted data for each variable,

Tmaz A T, are the maximum and minimum values for the same variable.
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6.6.3 Estimating spatial, temporal and inter-sensor cor-

relations

Here we present the results of the correlation analysis as discussed in Section
6.4.3. Figure 6.3 illustrates the case of the CIMIS dataset. Figure 6.3(a) shows
the spatial correlation between the readings from one sensor node (marked in red)
to all the other nodes, plotted over a map of the node locations. The thickness of
the line that connects two nodes in the plot shows the strength of the correlation.
For this analysis we averaged the readings between the different sensors at the
various locations. From this figure we can see how node correlations are not
strictly proportional to the physical distance between different nodes. This is
primarily because since the nodes are located several hundreds of miles away
from each other, the climatic similarity (mountainous regions vs. desserts) has a
greater influence on the node similarity, rather than the raw distance. A similar
correlation is computed for all the network nodes. We use these correlations to
seed our covariance matrix ¥, to enforce spatial similarities between the nodes
(cf. Section 6.4.3). Similar results are obtained for the 3ENCULT dataset, where
the indoor nature of the deployment emphasizes even more how node correlations
are not strictly proportional to the distance between nodes.

Figure 6.3(b) presents the temporal correlation between the samples in the
time series. The reported values are averaged among the different sensors and
node locations. Observe that most variables show a strong periodic behavior
with a 24 hour period. In the 3ENCULT case this periodic behavior is mitigated
by external factors such as room occupancy and human activity, resulting in
a rapidly decaying correlation curve. The computed correlation is used as the
covariance matrix Y, to enforce the observed temporal similarity on the latent
variables a;.

The inter-sensor correlations are presented in Figure 6.3(c) (the axises repre-
sent the variable ID as per Table 6.2). Note how values from different sensors
can be inversely correlated. Observe that variables such as solar radiation, net
radiation, air temperature and evapotranspiration (variable IDs 1, 2, 3, and 11
respectively) are directly correlated with each other, and are inversely correlated

with the atmospheric pressure (variable ID 12).
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Figure 6.3: The spatial, temporal and inter-sensor correlations for the CIMIS
dataset. (a) Spatial correlation of a fixed node with all the other nodes over
a state-wide map. Thick lines indicate strong correlation between the location
pairs, while thin lines indicate weak correlations. (b) Temporal correlations along
a week of sampled data. (c) Inter-sensor correlations. The axises represent the
sensor [Ds as ordered as in Table 6.2.
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Figure 6.4: Comparison of tensor factorization reconstruction of data for different
values of K: (a) CIMIS dataset and (b) 3ENCULT

6.6.4 Tensor factorization

Here we evaluate the effectiveness of our tensor-based latent variable factorization
technique to model our datasets. In our approach, the data collected from the
sensor network is organized in a [T x S x N] tensor X and is factored in three
matrix factors A, B and C of size [T x K|, [S x K| and [N x K]|. This leads to
a model with K(T + S + N) parameters for a dataset with T'- .S - N entries.

The latent variables dimensionality, K, regulates the complexity of the model.
To evaluate the impact of K, different models with increasing complexity (in-
creasing values of K') were learned from the data, using the standard CP tensor
factorization technique. The whole dataset is reconstructed using the learned
model and the N RM SE between the real data and the reconstructed one is eval-
uated. This operation is repeated for different fractions of sampled data p used
to learn the model. The N RMSFE shows how well the collected data can be sum-
marized by a few latent variables, thus exploring the compression capabilities of
our approach. The results for the two datasets are illustrated in Figure 6.4. In
both cases we used blocks of 512 samples for the temporal duration, which were
sub-sampled to test the algorithm. We can see a saturation effect on the quality
of the reconstruction, with the increase of K. The exact choice of this parameter
is application dependent and depends on the dimension of the network and the
number of sensors. In our case K was set to 24 in the CIMIS and 12 in the
3ENCULT case.
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Figure 6.5: Node duty cycling effects on the reconstruction error as computed
from the standard tensor factorization approach (CP) and our technique (MAP):
(a) CIMIS dataset and (b) 3BENCULT.

6.6.5 Data recovery

In order to save energy, sensor nodes can apply aggressive duty cycling strate-
gies, collecting just a portion of the original data. When applying a duty cycling
policy, a node avoids sampling its sensors, resulting in an entire rows of miss-
ing entries in the data tensor. To analyze the ability of the proposed method
to reconstruct the missing samples, we removed increasing percentages of rows
from the collected data. The remaining data (training data) was used to learn
our latent variable model, while the removed entries (testing data) were used to
evaluate the recovering capabilities of the algorithm.

Figure 6.5 shows the reconstruction error of the missing data (NRMSFE) as a
function of the fraction of the sampled data (p) for the two analyzed datasets. We
compare the two implementations of the tensor factorization algorithm: (1) the
standard factorization technique (CP) that does not include correlations from the
data, and (2) our approach that does incorporate the temporal, spatial, and inter-
sensor correlation, where the variables are learned using the MAP estimation. In
both cases we use a block of 512 samples from the whole network and set the
dimension of the latent variables as indicated in the previous section. The mean
NRMSLE across all the variables is reported on the testing data for the two
datasets. For the CIMIS case the results show that our approach achieves a

reconstruction error below 7%, with up to 80% of the missing samples. With the
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Figure 6.6: Example of reconstructed data with 80% of missing samples for tem-
perature (above) and wind direction (below) from the CIMIS dataset.

same sampling policy for the 3ENCULT dataset we achieve a mean reconstruction
accuracy of 2.5%. Our technique consistently outperforms the standard tensor
factorization approach.

The results outlined above are the average reconstruction errors among all
sensors. If we look at the individual sensors, we see that the single variables
exhibit different recovering proprieties. The ones characterized by strong correla-
tion proprieties and smooth temporal transitions, such as temperature and solar
radiation, are better reconstructed compared to the ones that have high variance
or little periodicity. For example, in Figure 6.6 we present an example of re-
constructed data for two variables of the CIMIS dataset: one with smooth and
periodical behavior (temperature, with a 2% error) and the other with high vari-
ance (wind direction, with a 23% error). For both examples we used 20% of the
original data to learn the latent variable models. This is the cause of the higher
mean error for the CIMIS dataset, since the 3ENCULT one does not incorporate

variables difficult to reconstruct as the wind ones.
6.6.6 Energy saving

Using the energy characterizations of the nodes from Tables 6.4 and 6.5, we can

estimate the average amount of energy savings associated with different sampling
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Figure 6.7: Energy saving (%) when applying a give sampling policy for different
sampling periods: (a) CIMIS dataset and (b) 3ENCULT.

policies. Figure 6.7 shows energy savings for different combinations of sampling
periods and duty cycling rates in the two case studies. Different sampling policies
are compared to the case when all the data is sampled. Even with the different
hardware characteristics and the energy consumption profiles of the two scenarios,
we have a similar result, showing that our algorithm can get large energy savings
in a wide range of applications. Aggressively duty cycling on a dataset that
samples the environment every minute yields significantly higher energy savings
(76%) than the one which only samples every hour (20%). This is expected
because with lower sampling frequencies, the sensor nodes spend most of the time
in a low power sleep state. Thus, the energy consumption within the sleep state
dominates and the overall power consumption is less influenced by the sampling

policy.

6.6.7 Comparison with compressive sensing

In this section we compare the reconstruction performance of CS and the latent
variable (LV) based statistical model against the 3ENCULT deployment, con-
sidering data coming from temperature, humidity and light sensors. We want
to investigate whether a better reconstruction technique does exist among those
here proposed and how the sub-sampling parameters affect such recovery quality.

The compression phase is the same for both frameworks: each node samples
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ficients for each signal. (N = 512)

the signals of interest gathering a sub-set M of the needed samples (M = pN),
with 0 < p < 1. After the acquisition period T' = N'T} the gathered data is sent to
the collecting sink through the network. The sampling time T}, in the following
simulations is set to 600s and the results are averaged over 100 trials. Each
trial is characterized by a different sampling pattern and a different considered
portion of the signal. The reconstruction phase is fairly different and determines
the recovery quality of the original signal. For CS the DCT matrix is used as
sparsifying matrix that is already been demonstrated being a good sparsifying
matrix for natural signals [41].

In the first simulation we reconstruct the original signals from a sub-sampled
version without exploiting any inter- or intra-correlation among them, just av-
eraging the reconstruction quality over all the signals, with a signal length of
N = 512. For the latent variables approach here we used the standard CP tensor
factorization technique, without the contribution of any correlations in the data.

The comparison is carried evaluating the signal to noise ratio (SNR) defined as:

1]l
[P
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Figure 6.9: Recovery comparison between CS and latent variable (LV) method
when reconstructing the original signals from sub-sampled version averaging the
reconstruction quality over all the nodes (N = 512)

where x is the original signal and X is its recovered version. We show the average
SNR across all the network nodes.

From the plot, shown in Fig. 6.9, we can infer how different the performance
is for the two techniques: while the reconstruction performance for LV is pretty
stable varying the sub-sampling factor p, CS is much more affected by the com-
pression factor. Recovery with CS achieves a better reconstruction almost for
every sub-sampling factor with respect to the latent variable based technique.

Both the frameworks seem to be greatly affected by the nature of the signal
to reconstruct. In particular from the plot we can infer how the recovery of light
signals is difficult for the two proposed techniques. This is due to the nature of
the light signal that is recorded inside the building. While for temperature and
humidity the gathered signals are continuous signals and smoothly affected by
the human presence, the light signal is highly irregular and highly influenced by
the artificial lighting in the single rooms. Moreover, some of the nodes are placed
in the basement where the light level is under the noise threshold of the light
sensors, providing extremely noisy data.

To evaluate whether it is possible to exploit the correlations existing among

sensors and nodes to improve the reconstruction, we performed the recovery
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against the same dataset using for CS the group sparse optimization (GS-CS)
exploiting the joint sparsity of the signals and for LV the maximum a posteriori
optimization (LV-MAP) introduced in Eq. 6.9. Results are reported in Fig. 6.10.
While the performance for CS remains almost the same, the LV-MAP method
guarantees a significant improvement in reconstruction resulting better than CS
for small values of p, especially in relation to humidity and temperature signals.

The behavior of CS could be explained looking at Fig. 6.8. Here we show how
the union over all signals of the K best DCT basis vectors per signal has a size
definitely greater than K. Practically this means that GS-CS is able to exploit
the inter-nodes correlation only at a small extent since the shared information
among different nodes is limited and the recovery algorithm is not able to exploit
this information to improve the recovery quality.

According to the model in Section 6.5.2 the simulations are performed with a
sampling frequency fs; = 1/600[Hz|, and since the length of the data is N = 512
this brings in a delay in the data delivery towards the data collector of 3.5 days.
Thus the size of the recovered signal spans across 3.5 days. In practice having
high values of N means that we have to wait a longer time to proceed with data
recovery. Therefore we want now to investigate how the length of the block of

data gathered by sensors affects the two frameworks and whether a correlation
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between recovery performance and the N parameter does exist for GS-CS and
LV-MAP.

In Fig. 6.11 the results for GS-CS when N is changed are presented. From
the plot we can infer how the length of the signal N does not greatly affect
the reconstruction quality for all the signals taken into consideration. Rather
we can see how the influence of the parameter N (and then of the delay in
the data collection) is only visible for small values of the sub-sampling factor p.
Differently from temperature and humidity, the light signal presents a peculiar
behavior showing an increased reconstruction quality with the increasing in the
number of acquired samples.

The same results for the LV-MAP approach are presented in Fig. 6.12. The
difference in the reconstruction error for the various values of N is more evident
than in the GS-CS case. With small values of N we registered difficulties to
reconstruct the desired signals. The best recovery performance is achieved when
considering 256-512 samples at a time, identifying the optimal trade-off between
delay and reconstruction accuracy, since larger blocks of data present again a loss
of accuracy.

For a delay smaller than N = 128 the reconstruction of the light signal is not
feasible in both cases, since the majority of the samples gathered are zeros due
to the lack of light at night.
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Figure 6.14: Ratio between the recovery quality and energy spent in compression
varying the sub-sampling factor p for the two approaches

Having evaluated the recovery performance and the influence of the gathering
delay on reconstruction, it is interesting to investigate the power consumption
involved with compression according to the power model in section 6.5.3. In Fig.
6.13 we report the reconstruction quality against the energy consumption for one
acquisition cycle. The plot clearly shows how a trade-off between energy con-
sumption and transmission delay does exist in GS-CS case (Fig.6.13(a)). Higher
values of N, thus higher delays in transmission, are able to guarantee a better
reconstruction quality with definitely less energy than the N = 16 case (all the
other cases are not considered in the plot since they are between these two bound-
aries). The light signal is a special case but we can draw the same conclusions
as before. The LV-MAP case (Fig.6.13(b)) presents a similar behavior, but with
a less accentuated increase in energy efficiency corresponding to the increase in
data size N. When comparing the two graphs, we can observe how the GS-CS
case exhibits a slightly higher energy efficiency, allowing a higher reconstruction
quality when considering the same energy consumptions as the LV-MAP case.
Only for extremely sub-sampled signals the LV-MAP approach results better,
having a major benefit from the explicit correlation models incorporated in the
data reconstruction. In both cases, we are able to obtain a better accuracy (or
the same reconstruction quality with less energy) if we are willing to wait for an

higher number of gathered samples before proceeding with the reconstruction.
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The same conclusions are explicated in Fig. 6.14 where the ratio between
the reconstruction quality and the consumed energy is plotted against the sub-
sampling factor p. Here we can see a direct comparison of the two techniques
for the case with the best reconstruction performance (N = 512). Again we can
see how the GS-CS case has a higher ratio when compared to the LV-MAP case,
for almost all the sub-sampling policies. Only when dealing with a really small
amount of sampled data (20%), the LV-MAP case shows a better performance.
This result can be a guide for WSN developers, suggesting the adoption of the
LV method only when a really aggressive power saving technique is needed. The
plots of the two techniques are combined in Fig. 6.15, where the best ratio
between the reconstruction accuracy and the consumed energy is plotted against
the sub-sampling factor. Here we have the combination of the two approaches
and show the best achievable results for every sub-sampling factor. This graph
can be used as a design specification to choose the best technique depending on

the application.

6.7 Conclusions

In this Chapter we presented and compared two promising techniques for energy
efficient data gathering and reconstruction in wireless sensor networks. We intro-

duced a latent variable model for energy efficient data collection and extended the
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approach of the well known compressive sensing framework. Both approaches try
to successfully recover the desired signal from a highly incomplete sub-sampled
version, obtained opportunely skipping samples during the acquisition phase. The
two techniques exploit redundancies and correlations present in the gathered data
to achieve a better reconstruction accuracy with a smaller number of collected
samples and thus with a lower energy consumption.

Our approach allows us to employ aggressive duty cycling strategies on the
sensor nodes for better energy conservation. Each node is able to save energy
by sampling just a portion of the desired data. The available data is then used
to reconstruct the missing samples. The proposed techniques do not require any
kind of data processing on the sensor node, which only adopts the desired duty
cycling policy and sends the collected samples.

We introduced an energy model for the sensor nodes and analyzed data from
a real sensor network deployment. Experimental results show that the proposed
latent variable statistical approach can maintain a low mean reconstruction error,
below 7%, with up to 80% of missing samples. This permits energy savings
ranging from 20% to 80%.

The comparison between the two techniques showed how the use of the data
from the whole network and its correlations improved the recovery performance
in both cases, when compared to the standard approaches where individual nodes
and signals are considered. The CS approach usually achieves better reconstruc-
tion accuracy, with the exception of cases when really aggressive sub-sampling

policies are used. This leads also to a better energy efficiency of the CS method.

155



Chapter 7

Conclusions

The vision of Ambient Intelligence, developed more than a decade ago, envisions
a future of the information society where small, unobtrusive and ubiquitous elec-
tronic devices will augment the environment, making it sensitive and responsive
to the presence of people and their activities. A decade after its definition, the
Aml vision is still not as a widespread concept as it was intended and has not pen-
etrated our lives according to the expectations. The vision, instead, contributed
to a decade of scientific and technological progress, and to a wider debate on the
present and the future of our society. There are still formidable challenges to be
tackled by the scientific community and there is no guarantee we will solve all of
them, but the more progress we make on some, the closer we will be to a stage
where some of the initial aims are adopted.

In this context, the work introduced in this dissertation focused on the hard-
ware and software design of embedded systems and sensor networks. Our ap-
proach has always the user as the main focus of the work: the digital ecosystem
pervading the environment should take advantage of the technological progress
to adapt to the needs and the desires of the user.

From the hardware perspective, we developed different embedded devices,
employing state of the art solutions with advanced sensing and processing ca-
pabilities. The hardware of the devices were accompanied by the development
of innovative algorithms to efficiently process the sensor data and extract useful

information. The goal of our approach was to optimize the tradeoff between the
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accuracy and the power consumptions, since energy efficiency is one of the key
features for embedded devices, especially when battery-powered.

The first device introduced was the SMCube, a smart object equipped with an
accelerometer and used as a tangible interface. The ability to process on-board
the sensor information and enable gestural recognition capabilities is an advan-
tage for the device, improving its battery lifetime, the overall system scalability
and the handling of multiple or moving devices. This dissertation presented and
characterized an implementation of the Hidden Markov Model (HMM) forward
algorithm suitable for the class of low-power, low-cost MCU embedded into the
SMCube. HMMs are state of the art algorithms for gesture and speech recogni-
tion, and enable the adoption of natural user interaction paradigms. The charac-
terization of our algorithm in both single and multiuser scenarios demonstrates
the effectiveness of the approach and that the use of fixed point data represen-
tation results in recognition ratios comparable to the floating point case when
using more than 16 bits.

Following the SMCube experience, we developed a wireless low-cost pen-like
device for a fast and interactive reverse engineering framework named FIRES.
The system enables real-time acquisition and manipulation of complex geomet-
rical shapes through the SmartPen, the interactive input device. The FIRES
framework utilizes the SmartPen as the primary interaction tool to support the
reconstruction and editing of virtual 3D models of objects in a CAD application.
The device embeds an Inertial Measurement Unit (IMU) and its sensor data is
fused with the output of a low-cost stereo computer vision system, in order to
accurately track the position and orientation of the device. Beside being a ver-
satile free-hand interaction tool, the device can be used to draw the style-lines of
the object to be modeled, which are then used to reconstruct its surface in the
virtual environment.

Continuing the evolution of hardware and software solutions, we improved the
design of the SmartPen to develop a network of miniaturized wearable IMUs for
the analysis of human motion. The EXLsl sensor node embeds state of the art
integrated inertial (accelerometer and gyroscope) and magnetic sensors, features
an advanced ARM microcontroller and a Bluetooth transceiver. It was designed

to be small and versatile for an easy use in a broad range of applications, such
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can be human-computer interaction, motion capture or heathcare. The availabil-
ity of the Bluetooth connection enables the device to communicate with a wide
range of systems and allows the use of multiple nodes in a body sensor network.
We analyzed several orientation estimation techniques, employing sensor fusion
algorithms to process the sampled sensor data and compute useful features. The
proposed estimation techniques were implemented on the microcontroller embed-
ded in the device, and tested comparing their performance in terms of accuracy
and orientation estimation. To achieve an efficient use of the limited energy pro-
vided by the battery integrated into the device, we carefully optimized the use of
the available peripherals, taking advantage of power saving techniques.

The exploration of Wireless Sensor Networks (WSNs) and innovative tech-
nologies for their enhancement, from the data accuracy and power consumption
viewpoints, is a natural evolution of the work presented in the first part of this
dissertation. Starting from single smart objects we explored body area networks,
with a limited number of sensor nodes placed on the human body, and finally
we considered the case of WSNs composed by tens or thousands of nodes that
sense the surrounding environment. The goal or our work was to improve the
performance/power consumption tradeoff: in a general WSN scenario this can be
achieved by minimizing storage and communication costs to extend as much as
possible the lifetime of the network, while maintaining the desired data accuracy.

In the last Chapter of this dissertation two promising techniques for energy
efficient data gathering and reconstruction in WSNs were presented. We intro-
duced a latent variable model for energy efficient data collection and extended the
approach of the well known compressive sensing framework. The two techniques
exploit redundancies and correlations present in the gathered data to achieve a
better reconstruction accuracy with a smaller number of collected samples and
thus with a lower energy consumption. The comparison between the two tech-
niques showed how the use of the data from the whole network and its correlations
improved the recovery performance in both cases, when compared to the standard
approaches where individual nodes and signals are considered. The proposed CS
approach usually achieves better reconstruction accuracy, with the exception of

cases when really aggressive sub-sampling policies are used.
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