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Abstract  
 

In recent years, the use of Reverse Engineering systems has got a 

considerable interest for a wide number of applications. Therefore, many 

research activities are focused on accuracy and precision of the acquired data 

and post processing phase improvements. In this context, this PhD Thesis 

deals with the definition of two novel methods for data post processing and 

data fusion between physical and geometrical information. 

In particular a technique has been defined for error definition in 3D 

points’ coordinates acquired by an optical triangulation laser scanner, with 

the aim to identify adequate correction arrays to apply under different 

acquisition parameters and operative conditions. Systematic error in data 

acquired is thus compensated, in order to increase accuracy value.  

Moreover, the definition of a 3D thermogram is examined. Object 

geometrical information and its thermal properties, coming from a 

thermographic inspection, are combined in order to have a temperature 

value for each recognizable point. Data acquired by an optical triangulation 

laser scanner are also used to normalize temperature values and make 

thermal data independent from thermal-camera point of view.  

 

Key words:  

Reverse Engineering; Surface Accuracy; Measuring Uncertainties; 

Performances Evaluation; Metrological Characterization; Data Fusion; 

Thermography; 3D Thermography; Data Normalization. 
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Sommario  
 

L’impiego di tecniche di Ingegneria Inversa si è ampiamente diffuso 

e consolidato negli ultimi anni, tanto che questi sistemi sono comunemente 

impiegati in numerose applicazioni. Pertanto, numerose attività di ricerca 

sono volte all’analisi del dato acquisito in termini di accuratezza e precisione 

ed alla definizione di tecniche innovative per il post processing. In questo 

panorama, l’attività di ricerca presentata in questa tesi di dottorato è rivolta 

alla definizione di due metodologie, l’una finalizzata a facilitare le operazioni 

di elaborazione del dato e l’altra a permettere un agevole data fusion tra 

informazioni fisiche e geometriche di uno stesso oggetto.  

In particolare, il primo approccio prevede l’individuazione della 

componente di errore nelle coordinate di punti acquisiti mediate un sistema 

di scansione a triangolazione ottica. Un’opportuna matrice di correzione 

della componente sistematica è stata individuata, a seconda delle condizioni 

operative e dei parametri di acquisizione del sistema. Pertanto, si è 

raggiunto un miglioramento delle performance del sistema in termini di 

incremento dell’accuratezza del dato acquisito.  

Il secondo tema di ricerca affrontato in questa tesi consiste 

nell’integrazione tra il dato geometrico proveniente da una scansione 3D e le 

informazioni sulla temperatura rilevata mediante un’indagine termografica. 

Si è così ottenuto un termogramma in 3D registrando opportunamente su 

ogni punto acquisito il relativo valore di temperatura. L’informazione 

geometrica, proveniente dalla scansione laser, è stata inoltre utilizzata per 

normalizzare il termogramma, rendendolo indipendente dal punto di vista 

della presa termografica.  
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Introduction 

 

 

 

Over recent years, Time Compression Technologies (TCT) are playing an ever 

increasing role and importance in the design processes and in project developments. 

Reverse Engineering (RE), Rapid Prototyping (RP), and Virtual Reality (VR) systems are 

currently widely used in industrial engineering fields as key tools to reduce product 

time to market and to improve product quality and performances, cutting down design 

costs and time. This is the reason why they play an important role in sustaining product 

innovation and industrial competitiveness. 

Particularly, the old and well known design process has drastically changed 

thanks to the Reverse Engineering systems: in the previous processes, a new idea was 

developed and implemented within CAD (Computer Aided Design) environment and 

then converted into the final product; after the RE introduction, a 3D digital object 

description has been obtained starting from a real object. Design processes can be thus 

transformed, by changing design workflows, making processes easier, increasing 

efficiency and decreasing time product development.  

These qualities imply that RE could be applied not only in industrial contexts, 

but also in many other different fields, making remarkable improvements. Biomedical, 
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cultural heritage, architecture and civil engineering are several of the most common RE 

application areas.  

Laser scanners are some of the most used Reverse Engineering systems, since 

they can offer a dense point cloud describing almost any object shape complexity in a 

rather easy and fast acquisition process. Object acquisition process is based on the 

optical scanning of the object surface from different views, so that more range maps are 

acquired to describe the whole surface. A post processing phase, which is generally 

rather elaborate, arranges, organizes and then combines different scans. During this 

phase, some sub-phases are performed, to reduce data noise, to register acquired frames 

combining them together. At the end, a refining and filling holes phase follows to show 

a unique 3D model.  

 

In this technical overview, this work shows two research focuses, which main 

purpose is to improve performances and application range of the scanning devices.  

The first research topic is related to the analysis of error in point coordinates 

definition, calculated by a laser scanner system. All measuring systems show 

uncertainty level in provided data and, in particular for these tools, some errors can be 

observed by a surface noise on acquired surface. Even if in calibration procedures some 

instruments parameters can be set in order that the acquired surface has high accuracy 

levels, uncertainties of measurement are present anyway. Within this context, no unified 
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standards on error definition and well defined procedures for data correction are clearly 

identified. Supported by these considerations, the aim of the first part of this work is to 

identify data error related to images acquired by an optical laser scanner, and to propose 

a method for identifying the systematic portion of the error and for specifying errors 

correction arrays to compensate for systematic measurements errors.  

 

The aim of this research activity involves the possibility to reduce errors in 

acquired data through a control and defined method. This feature seems to be promising 

and useful in many applications in which high accuracy level is strictly required, and 

when little details on object surface can be smooth in semiautomatic post processing 

procedures, together with errors. Cultural heritage and biomedical are some application 

fields in which the present methodology would lead to improve the acquisition process, 

along with the design and quality control phases of small components.  

 

Moreover, the second research topic, related to scanning devices and their 

application procedures has been investigated. Currently, one of the most interesting 

research topics related to acquiring tools consists of integration process of data coming 

from different sources and including different information. In particular, within this 

context, a method for data fusion has been proposed in order to integrate 3D geometrical 

data, with temperature information, obtained by a thermographic investigation process.  
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Non Destructive Testing (NDT) are widely used in quality control processes in 

order to detect product defects and imperfections since early stages, in order to avoid 

and prevent any damages, that, sometimes, can lead to dangerous events or onerous and 

costly effects. Within this context, Infrared Thermography offers the possibility of 

detecting subsurface imperfections and changes in material composition, identified as a 

temperature difference, represented by a color map. Thanks to its efficiency in detect 

changes, non visible to the naked eye in an extremely fast way, this approach is 

currently widely used not only in industrial control quality processes, but also in 

architectural field and civil engineering inspections: in cultural heritage it is used as 

important support device for restoration processes, and in biomedical field as a fast 

diagnosis tool. 

 

A method for data fusion has been developed, and shown in the present work, in 

order to integrate 3D geometrical data with surface temperature information. A 

temperature value is assigned to each acquired point, in order to provide geometry with 

more information and to read the infrared radiometric data according to the referenced 

geometry. In particular, in many cases, it can happened that the temperature 

information, that is generally provided by a color map image, are not easy to understand 

and to display their location in the visible image. This is the reason why a possible 

subsurface defect is not easy to detect. The integration between that kind of information 
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and a 3D shape information, acquired by a laser scanner tool, makes infrared 

thermography easier to understand.  

A further considered aspect implies that radiation transmission is affected by 

dispersions due to the camera views and distances. The association of the 3D object 

geometry information is used to correct the thermographic datum and make 

thermography outcome independent from the acquisition setting up. On one hand, 

temperature values are associated with the referenced 3D point, so that defect detection 

is easier; on the other hand the 3D surface is used to make infrared inspections 

quantitative and not only qualitative. 

The proposed data fusion process is expected to improve thermographic testing 

in many application cases , since a 3D thermography is analyzed in a multidimensional 

environment. Potential applications are identified both in civil engineering and in TNDT 

(Thermography Non Destructive Testing) processes. Moreover it should provide 

improvements in cultural heritage and biomedical inspections. 

 

In the first part of this thesis, a brief introduction on Reverse Engineering 

systems and methods is presented. In Chapter 2, the developed methodology for error 

analysis and correction is described in detail. 
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The following parts concerns a first thermographic introduction on inspection 

techniques and methods and Chapter 4 indicates the data-fusion procedure and 

workflow. 
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1. Reverse Engineering: systems and processes 

 

 

 

Reverse Engineering techniques are currently widely used, since they are able to 

define a 3D digitalized description, starting from a real physical object. The obtained 3D 

shape can be used in many different contexts and application: in particular, in new 

industrial product design process, these techniques, invert the traditional design process 

and workflows. In product design the CAD – CAM – RP loop often represents the 

starting point for a new product development or for a redesign and reinvent process. 

Moreover in many cases, such as car design, clay modeling is one of the most used 

techniques for new shapes definition and reverse engineering process is the only 

possibility to transform modeler idea into a 3D digitalized representation. Quality 

control process is another industrial field in which such technology is currently widely 

used, in order to compare the final product geometrical features with designed ones 

(Sansoni et al 2009).  

Reverse engineering systems are also commonly used to design customized 

product, with a user-oriented design method: sport helmets are an example. In 

biomedical field RE tools helps to design patient prosthesis or anatomical parts (Gibson 

2005; Fantini et al. 2012; Fantini et al. 2013).  
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Finally, in cultural heritage, Reverse engineering is a fast and efficient tool to 

analyze artworks, and it is widely used in restoration processes or to make copies, or to 

develop data information or to design the transportation process of an artwork (De 

Crescenzo et al 2008a; De Crescenzo et al 2008b; Persiani et al 2007; Curuni Santopuoli 

2007).  

During an acquisition process, 3D point’s coordinates are organized in point 

clouds that take into account point connections and neighborhood information 

(Beraldin, 2009). All these acquired data can be represented in many different ways and 

the simplest one consists in a uniform (u,v) parameterization of a depth map. It is 

arranged as a matrix whose row and column indexes are function of the two orthogonal 

scan parameters (X, Y). The matrix cells can contain some more information on 

continuity between points, point’s depth measurement (Z), calibration quantities and 

any other attribute, such as color data.  

 

 

 

Figure 1.1 Some representation of a 3D point cloud: a) gray scale image range map; b) 
3D point connected as a wire-mesh; c) a mesh artificially shaded; d) representation 

with returned laser intensity (Beraldin, 2009) 
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The simplest 3D representation depth information can be represented in a 

grayscale image; moreover a triangulation mesh can be used to display a range image, 

or using topology dependent slope angles to represent the local surface normal on a 

given triangle. Surface normal directions are generally used to artificially shade the 

acquired mesh, in order to highlight and reveal surface details (Figure 1.1).  

 

 
Figure 1.2 Reverse Engineering process and output 

Real Object 

Point Cloud 

VRML STL 

Rapid 
Prototyping 

NURBS 

CAD 

Mesh 

Virtual Reality 



 

10 

Object geometrical description is achieved by many different steps, starting from 

the acquisition of range maps that described the specimen surface as a discrete point 

cloud. Data acquired are elaborated and post processed in order to create a 3D surface 

composed by triangular elements (called mesh) that approach the real surface shape. 

Such polygonal triangular mesh can be stored in a stl (Solid To Layer) file format, which 

allows exchanges with CAM (Computed Aided Manufacturing) and RP (Rapid 

Prototyping) tools. Moreover 3D models can be used in Virtual Reality applications 

using VRML (Virtual Reality Modelling Language) as exchanging file format. A further 

development can be the realization of a NURBS surface that allows CAD modeling. The 

whole acquiring and elaboration process is presented in Figure 1.2.  
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1.1 Reverse Engineering tools 

 

 

Many methodologies and systems for a semi automatic 3D data acquisition are 

currently used (Figure 1.3): according to the specific case study a technique will be more 

promising than another one. The choice on what scanning technique to use is dependent 

on object surface features: its dimensions, its surface complexity, the presence of holes or 

undersurfaces, reflective or transparency properties, its transportability and accessibility 

and the potential necessity to acquire other information, such as surface color, required 

accuracy and performances, time and costs.  

Figure 1.3 Classification of 3D imaging techniques (Sansoni et al, 2009) 
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In general Reverse Engineering techniques can be classified into two main 

groups in relation to the request or not of a contact between the acquisition device and 

the object. In contact techniques, point coordinates are evaluated thanks to a contact 

between the specimen and a probe; used sensors are generally investigating probes that 

go through object’s surface into the 3D environment with a high precision level and with 

known trajectories. Coordinate Measuring Machines (CMM), articulated arms, and 

piezo sensors are some examples: they are characterized by high data precision and 

repeatability, even if they take a long time to scan a complex shape. Moreover, since a 

contact between object and probe is required and in many case studies it is not possible, 

they cannot be used in cultural heritage applications or for soft component scanning.  

Another group of scanning systems measure points coordinates without a direct 

instrument – object contact, but an energy flux is radiated on specimen itself and the 

transmitted or reflected energy is the measured.  

Computer Tomography is one of the most used transmission method: X-rays 

pass through analyzed object and their transmitted portion is measured. Different cross 

section planes are stored as DICOM images: data accuracy level depends on the slicing 

process. The different gray color level indicates object internal composition. A final 

object volumetric representation is obtained (Figure 1.4). This technique is not effected 

by specimen superficial and reflective properties, moreover it is able to detect object 
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internal holes and structures; on the other hand instruments used are particularly 

expensive and X-ray emission is required.  

 

 

Reflective scanning devices can be optical or non optical, like sonar or 

microwave radar that measure object distance evaluating the time that an emitted wave 

(or impulse) takes to come back after its reflection on object surface.  

Optical reflective systems are distinguished between active and passive tools: 

while the first ones are the most used acquiring devices, since they are able to detect in a 

fast and precise way a large data quantity, passive scanning systems used instead light 

naturally present in a scene. Photogrammetry, as example, is based on the acquisition of 

many photo images, with a calibrated camera, and taken from different points of view 

that are processed in order to define points coordinates. The elaboration pipeline 

consists basically in camera calibration and orientation, image point measurement, 3D 

point cloud generation, surface generation and texture mapping (Sansoni et al, 2009). 

Figure 1.4 Volumetric data: an example 
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Optical active scanning systems send an energy flow on object surface and its 

geometry is measured on the basis of the definition of an optical quantity of reflective 

energy portion (Scopigno, 2005; Scopigno, 2003). A laser or a board spectrum source is 

used to artificially illuminate a surface, in order to acquire a dense point cloud using 

triangulation, time-of-flight or interferometric methods.  

In time-of-flight laser scanner, points coordinates are measured on the basis of 

the time that emitter laser beam put to come back to the sensor after its reflection on 

object surface (Figure 1.5) according to Eq 1.1.  

 

 

ܦ = ܿ	 ∆௧
ଶ

  ;  c ≈ 3*108 m/s Eq 1.1 

Acquired data accuracy is related to time measurement precision and distances 

that these instruments are able to detect goes from some meters to some hundreds of 

meters, with a decreasing accuracy level.  

Figure 1.5 Time of flight laser scanner: the measuring principal 
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On the other hand, in optical triangulation laser scanner systems, object points 

are defined by a trigonometrical process, between the relative positions of the CCD 

sensor and laser source and measuring from time to time the reflection angle (Figure 

1.6), as indicated in Eq 1.2. Both single-point triangulators and laser stripes belong to this 

category.  

 

 

ܦ = 	
ܾ

tan(ߙ +  Eq 1.2 (ߚ

Laser triangulators accuracy and their relative insensitivity to illumination 

conditions are some of the main advantages related to this scanning principle. Single-

point laser scanner are widely used in industrial applications for distances, diameters or 

thickness measurements. On the other hand laser stripes are mostly used for quality 

control and reverse modeling of heritage.  

Figure 1.6 Triangulation laser scanner: the measuring principal 
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The triangulation approach is also used by structured light based 3D sensors. 

They project a bi-dimensional patterns of non-coherent light, which move in horizontal 

direction and scan the whole object surface (Figure 1.7). The surface shape distorts 

projected fringes that are acquired by a digital camera and elaborated in a range map 

(Guidi et al., 2010).  

 

 

Interferometric methods project a spatially or temporally varying pattern into a 

surface, followed by mixing the reflected light with a reference pattern. Since their 

resolution is a fraction of laser wavelength, acquired surface quality is very accurate and 

they are widely used in surface control, microprofilometry or in CMM calibration 

procedure.  

Figure 1.7 Example of a structured light scanning technique on an object surface: 
increasing fringe density is shown from image a) to image d) (Guidi et al, 2010) 



 

17 

 

 

A final scheme of optical scanning devices is shown in Figure 1.8: their strength 

and weakness are always take into exam when a method should be chosen in a defined 

application. 

 

Figure 1.8 Comparison between optical range imaging technique (Sansoni et al, 2009) 
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In this technical panorama, many research activities are focused on the 

integration of data coming from different sources, in order to provide more information 

in the same 3D model. Some examples regard the integration between volumetric and 

superficial data (Fantini et al., 2005), or data coming from instruments with different 

resolution level (De Crescenzio et al, 2010). Other works are related on instrument 

performances and error detection (Some detailed example will be presented in Section 

2.2) 

 

1.2 The acquisition pipeline 

The process from a real object to a 3D shapes is composed by different steps that 

can change in relation to the instrument and technology used in the reverse engineering 

process. Considering acquiring object surface with an optical laser scanner, the output of 

each scan is a range map, that is to say a 3D array of acquired points, which can be post 

processed as a point cloud or as a triangulated surface (mesh).  

The acquisition pipeline is composed by some consecutive following steps that 

are listed below. 

 

1.2.1  Scans planning and acquisition process 

Each scan output is a range map describing the object surface portion in the 

acquisition frame. A complete 3D description of the whole specimen is obtained from 
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many different range maps acquired from different points of view. In this context the 

first phase consists in a detained planning of how many scans are necessary to acquire 

the surface of interest and where such scans should be taken. This procedure should 

tend to reduce the number to necessary scans in order to reduce time and costs, and, at 

the same time, the final model would be without holes or not acquired parts.  

Since acquired range maps will be then register together in order to obtain an 

unique model, it is important to have about 30% of overlapping points between two 

subsequent point clouds. Moreover, in order to increase final mesh quality, it is 

important to perform the scanning process with the laser beam as perpendicular as 

possible to the object surface.  

 

1.2.2  The registration process 

The acquisition phase output consists in many different range maps, describing 

the correspondence portion of the object surface, and each of them has its own reference 

system. The following phase aims to register all acquired point clouds, saving them in a 

unique and common coordinate reference system.  

A first registration process is performed during the acquisition phase and 

consists in the identification of at list 3 homologous point belonging to two different 

scans (Figure 1.9): the software is then able to perform a point registration minimizing 

the gap between the two considered point clouds.  
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Once this first phase has been performed, all acquired scans are involved in a 

refinement registration process, whose aim is to improve the alignment between all 

range maps at the same time.  

 

1.2.3  Range map merge and refining phases 

After the registration process, all acquired frames are each other registered, but 

they are stored as different shells. A merge phase is then performed in order to obtain a 

unique mesh, in which the acquired range maps are mixed together. Redundant surface 

Figure 1.9 Two different range maps are first register by the identification of 3 pairs 
of homologous points 



 

21 

portions are removed and for each of them the elaboration software considers only the 

range map portion that best fit that surface patch.  

Before this phase some cleaning procedures are performed, in order to remove 

from each shell some triangles describing no object parts, but the surrounding 

environment. Moreover boundary points, containing more surface distortions or errors 

are similarly removed. Non manifold triangles, small clusters, redundant surfaces, long 

spikes are some of the most common error typologies.  

Some holes are then closed and a smooth procedure is performed, in order to 

remove noise (Figure 1.10).  

 

 

During the acquisition process many points are obtained to describe a surface 

portion. In many case studying they are too much and even if a point reduction is 

performed no surface details are lost and, on the other hand, file size can be much 

Figure 1.10 Filling holes on an acquired mesh 
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thinner. Point are remove on the basis of surface curvature, so that at the end of this 

process, their density is not uniform and more points are used to describe more complex 

and non uniform surface portions.  

The final 3D model is an exact copy of the real object as concerns its geometry, 

shape and dimensions. In many applications a photo is also acquired and then 

registered on the final mesh as a texture, so that is color appearance is represented as 

well.  
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2. Experimental Error Compensation Procedure 

 

 

 

Laser Scanner instruments are widely used in a widespread range of applications 

and cases, thanks to the possibility of acquiring a large number of points in very few 

seconds and are capable to describe surfaces of almost every kind of complexity and 

shape. This feature allows underlining a lot of case studies which use gives the 

possibility to reduce time in product design and improve quality processes and testing. 

In spite of these considerations, the employment of scanning instrument is connected to 

some preliminary considerations leading to a more aware use of those tools.  

First of all, some hundreds of thousands of points on object’s surface are 

acquired at the same time. However, it may occur that some useful points are not 

directly acquired (such as corners or borders), and it is possible to reconstruct them in 

post processing phase, identifying the other points in range map. A real surface, which 

is a continuous surface, is numerically changed into a discrete surface and not all surface 

points are thus acquired (only some of them) and the others are deducted by a software 

procedure. This has effects on the definition of surface edges. Conversely, it may happen 

that the same part is acquired many times in different scans, from a different view: so it 

is described by different point’s clouds and in each of them it is impossible to have 
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exactly the same point’s coordinates. During post processing procedure, and in 

particular during the merge one, only one patch of one range map is selected to describe 

such surface portion. 

Another interesting source of uncertainties in the acquiring procedure arise from 

the fact that laser scanners, like all measuring instruments, introduce some errors in 

determining points coordinates, so that if we acquire twice the same surface, under the 

same conditions, data obtained will never be exactly the same. This is caused by many 

factors, internal or external to the instrument itself, from the reflective properties of 

object’s surface and operative conditions, to laser scanner calibration and manufacturing 

features.  

All these uncertainty reasons can be grouped into two different classes: a random 

component and a systematic component. Whereas the random part of error, in each 

scan, changes in module and sign, so that it is not possible to pre-determine it, the 

systematic component of error, in principle, can be identified, due to its property to 

maintain a homogeneous trend. In operational cases, these errors are clearly visible in 

the acquired mesh as a superficial noise.  

Tools for noise reduction and smoothing procedure are present, in common 

commercial elaboration software, and they apply mathematical transformations which 

do not take into account errors nature and causes. For these reasons, it may happen that 
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some little details, present on object surface, are smoothed like a noise disturb, so that 

they are missing in the 3D representation.  

By these considerations, and to overcome the issue above mentioned, an 

experimental and repeatable methodology is proposed to identify and correct the 

systematic part of the error in data acquired by an optical triangulation laser scanner, in 

a well-controlled manner. 

Exploiting a reference surface, under well-defined operative conditions, 

systematic errors are determined in order to reduce their impact on further scans under 

similar conditions, improving scanning performances in terms of accuracy. A repeatable 

correction procedure is thus defined, in order to reduce shell noise, caused by the 

systematic portion of error and without any lost in detail due to an uncontrolled 

smoothing process. Finally, a parametric library of arrays for error reduction is created 

according to scanning operative conditions and surface orientation (Eq 2.1): a different 

array (ΔS) is defined according to acquisition distance d, laser scanner lens f used in the 

particular application and surface normal orientation (defined by angles α and β). Each 

point (i,j) of the acquired frame is corrected with its homologous value in the reference 

array.  

∆S = ݂	(	i, j, d, f, α, β) Eq 2.1 

In spite of an ever increasing use of RE technologies, unified standards and 

certifications for the evaluation of laser scanner’s performances and for determining 
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measurement’s repeatability, accuracy or precision are not yet defined. Moreover, no 

standards and unified procedures are certified in order to reduce instruments measuring 

errors.  

Nevertheless, instrument’s periodical calibration plays a fundamental role in 

verifying and setting many internal scanning parameters and reducing part of the 

acquiring error. 

In this chapter, a method for error correction is presented: first of all, scanning 

errors and performances are mathematically analyzed and then methodologies for error 

evaluation and accuracy increasing available in literature are taken into account. A 

correction procedure is then proposed and analyzed.  

 

2.1  Mathematical analysis of errors 

The evaluation of instrument performances and measurements accuracy are 

associated to theoretical definition of some basic concepts related to error 

characterization and uncertainties.  

The absolute error of a measurement is the difference between a measured value 

y* and the real one y (Eq 2.2): 

ݕ∆ = 	 ∗ݕ −  Eq 2.2 ݕ	

Measurement relative error is the ratio of the absolute error to the actual value 

(Eq 2.3):  
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ݕߜ = 	
ݕ∆
ݕ

= 	
∗ݕ − ݕ	
ݕ

 Eq 2.3 

In practical cases measurement real value is unknown and the measured value is 

the true conventional used one. For this reason it is important to evaluate a range which 

the actual value is located in: this lead to the definition of the limiting error, which is the 

smallest range around the measured value y*, containing the real value y (Eq 2.4): 

∗ݕ ݕ∆	− 	 ≥ 	ݕ ≥ ∗ݕ	 + 	  ௫ Eq 2.4ݕ∆

Considering measurement errors in repeatable experiments, two different types 

of error are analyzed: a division into random and systematic error is made. The 

Systematic error (also known as bias), is the difference between the mean value 

calculated from an infinite number of measurements of the same quantity, carried out 

under the same conditions, and its actual value. Investigating results of the same 

repeated measurement, this error quantity changes its sign or value according to a 

specific law or function.  

The error component is commonly called random error and it is defined as the 

difference between the result of an individual measurement and the mean value 

calculated from an infinite number of measurements of a quantity, carried out under the 

same conditions. 

Errors types above defined refer to the results of individual measurements. 

Indirect measurements are those measurements in which the model is provided in form 

of function of input quantities. In such cases, the error is defined according to the law of 
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error propagation: an output quantity error, inherent to known errors of input 

quantities, can be measured by the methods of increments or the methods of the total 

differential. The method of increment, the exact method, consist of determining the 

increment of a measurement model function for the known increment of input 

quantities. For complicate measurement models, error evaluation becomes a long 

process and therefore it’s evaluated by approximated methods, such as the total 

differential method. It is based on the expansion of the studying function as a Taylor 

series around the point defined by the actual (conventionally true) values in input 

(Minkina, 2009).  

Uncertainties in measuring processes generates doubts in results itself and they 

express the lack of accurate knowledge of the measured quantity. In detail, the standard 

uncertainty of a measurement is the uncertainty of measurement values, that specifies 

the dispersion of the values that could reasonably be attributed to the measured 

quantity that can be expresses in the form of the standard deviation (ISO ENV 13005).  

To estimate measurement quantitative accuracy, some model inputs are 

considered as random variables that are described by a probability distribution function. 

For estimating measurement accuracy, the most important statistics of random variables 

are the expected value and the standard deviation value. The expected value E(X) of a 

discrete random variable X, which values xi appear with probabilities pi is (Eq 2.5): 
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(ܺ)ܧ = 	ݔ


 Eq 2.5 

The set of measured values xi is a finite N-element set. The expected value is 

substituted by its estimator, that is the arithmetic mean from N independent 

observations (Eq 2.6): 

ݔ̅ = 	
1
ܰ
	 ݔ

ே

ୀଵ
 Eq 2.6 

A random variable standard deviation is the positive square root of the variance 

(Eq 2.7): 

(ܺ)ߪ = 	ඥܧ[ܺ  ଶ Eq 2.7[(ܺ)ܧ−

In practical problems an estimator of standard deviation, called experimental 

standard deviation (Eq 2.8) is used (Minkina, 2009, ISO ENV 13005): 

(ݔ)ߪ = 	ඨ
1

ܰ − 1
	(ݔ −  ଶ Eq 2.8(ݔ̅

 

2.1.1  Resolution, accuracy and precision 

Some more basis quantities are now introduced: resolution, precision and 

accuracy.  

Resolution is the smallest spatial step that the instrument is able to detect; it can 

be measured in X, Y and Z directions. 
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In determining point’s coordinates through a series of measures, precision (or 

uncertainty) is standard deviation of that measures: a high precision corresponds to a 

low standard deviation, and it represents random component of error. Instead, accuracy 

is instrument capability to give, at each measure, a data near to the real value (Azzoni, 

2006; Taylor, 2004; Webster, 1999). 

The degree of inaccuracy (or the total measurement error δ) is the difference 

between the measured value and the true value. The total error is the sum of the bias 

error (β), which is systematic, and the precision error (σ) that is the its random 

component (Coleman, Steele, 1989). A number of measurements, one after the other, of 

the same variable, whose real value is V, that is absolutely steady, is performed (Figure 

2.1). Since the bias (β) is a fixed error, it is the same for each measurement. The precision 

error is a random error (σ) and will have a different value for each measurement. Since 

the total error is the sum of the two components, it will be different for each point (Eq 

2.9): 

ߜ = ߚ	 +   Eq 2.9ߪ	
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Considering to acquire N measurements and N approaches to infinity, data 

would appear as Figure 2.2. The bias would be given by the difference between the 

mean value of the N readings (μ) and the true value of X, whereas the precision errors 

would cause the frequency of occurrence of the readings to be distributed about the 

mean value. 

Figure 2.1 The same quantity is measured many times: σ is the precision error and it is 
random; β is the bias error and it is systematic 



 

32 

 

 

 

2.2  Error analysis in scanning processes 

In spite of an increasing use of scanning devices, and in particular of laser 

scanner systems, a unified standard or a certified method for performances evaluation 

does not exist yet. Nevertheless, the necessity of increasing instrument accuracy and 

measurement repeatability is one of the most pursued research topic. Within this 

context, instrument calibration plays a fundamental role in defining some instrument 

internal parameters. Accuracy, repeatability measuring uncertainties can be defined, 

after a calibration procedure: conceptually, if the geometrical description of the object is 

defined, the deviation of each point on object’s surface can be considered as an accuracy 

indicator. From this concept, it is possible to find a lot of experimental techniques, with 

Figure 2.2 Error in measurement of a variable in infinite number of readings 
(Coleman, Steele, 1989) 
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the aim to define the level of reliability of acquired data, and with the aim to verify and 

compare different instrument’s performances.  

Within this context, many experimental techniques are available in literature, in 

order to define measure confidence level, according to data true value, and to compare 

performances of different scanning instrument. Boehler et al (2003) perform some tests 

on different scanning devices (triangulation and time of flight): plane surfaces of 

different reflectivity are scans from different distances and a best fitting plane is created 

in order to get indications of the range measurements noise. Moreover, several tests are 

set up scanning white sphere as targets, with the aim to get information on scanning 

accuracy. Results show that even if a laser scanner shows better results, this does not 

means that the instrument is better at all. Instrument reliability has dependences with 

the specific application and case study. Test performed concerns angular accuracy, 

which is evaluated scanning two equal spheres, posed at the same distance from the 

scanning device, but in different positions (Figure 2.3): their horizontal and vertical 

length is measured and compared. 



 

34 

 

 

As regards resolution analysis, some information is obtained by scanning a target 

with small slot on its front panel (Figure 2.4): high resolution scanning devices are able 

to detect the bottom panel too, when the laser beam get through the front panel.  

 

 

Some more information are available comparing instrument performances when 

edge effects and surface reflections occur. Within this context, the presence of corners 

lead to the identification of wrong points, due to laser beam deviation, in proximity of 

Figure 2.4 The target used for resolution investigation: an example of low (in the 
middle) and high (on the right) resolution instruments (Boehler et al, 2003) 

Figure 2.3 Sphere positions on a stairway (Boehler et al, 2003) 
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discontinuities: the acquisition of a sharp edge gives the possibility to test all the points 

that are located in a wrong position. Finally, surface reflective properties are due to 

some errors and uncertainties estimable by comparing plane of different material and 

color. 

Artenese et al 2003, has the aim to define instrument precision value in order to 

compare three different techniques: optical triangulation laser scanner system, digital 

photogrammetry and mechanical feeler. A vase has been tested, whose vertexes are 

determined analytically in a very precise way (Figure 2.5). After the acquisition process 

the three point clouds have been compared: results shows that points in the middle parts 

are affected by a less gap than boundary points. Moreover, acquired range maps have 

different density: photogrammetry and mechanical feeler meshes have lower resolution 

levels.  

 

 
Figure 2.5 The testing vase (Artenese et al, 2003) 
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In Guidi, Remondino et al, 2007 the evaluation and characterization of 3D 

scanning devices are performed, by means of a set of comparative tests. Instrument 

resolution, precision, and accuracy characteristics are calculated for different laser 

scanner tools: such information is generally provided by instrument’s datasheet even if 

its operative values are unknown quantities. A reference plane has been acquired and 

determined, elaboration software define instruments precision and resolution. Accuracy 

is defined after error decomposition in a random and a systematic component. Random 

noise effects are reduced defining an optimal number of scans, so that the systematic 

portion is definable. Finally, error random component is removed by a filtering process.  

 

 
Figure 2.6 Test object used in the experiments to evaluate point resolution in Z (a) 
direction and in x,y one (b). some solids (c) and planes (d) are evaluated to testing 

accuracy and uncertainty 

a 

b 

c 

d 
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Moreover, in Guidi et al, 2010, some experimental processes for evaluating 

triangulation based range sensors have been performed: in particular resolution, 

accuracy and uncertainty features are inspected scanning some reference tests objects, 

geometrically defined, as shown in Figure 2.6.  

Many other works are related to the evaluation and characterization of 3D 

imaging sensors, in order to identify their metrical properties: the importance of this 

aspect is related to the possibility to compare different scanning instruments and to 

evaluate data acquired reliability. In particular Beraldin, 2009 reviews the basic 

principles of 3D imaging systems, related to triangulation and time of flight based laser 

scanners, in order to evaluate data uncertainties, the parameterization of a 3D surface 

and systematic errors. More over some uncertainties sources are identified (Figure 2.7).  

 

 

In Beraldin et Gaiani, 2005, accuracy, measurement uncertainties and spatial 

resolution of 3D acquiring devices are taken into exam. They define a dependence of 

precision values on surface reflectance properties (marble surfaces, as example, induce 

more errors). Moreover, instrument accuracy is related to objects’ shapes: 

Figure 2.7 Origin of some typical uncertainties in 3D imaging systems (Beraldin, 2009) 
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discontinuities, acute angles and holes can be due to a loss in measurements’ accuracy. 

In optical triangulation scanning system, resolution is limited by laser beam diffraction 

(Figure 2.8): in fact a light beam, does not keep its beam parallel when it is far from its 

source and as less is its power, as the laser beam is divergent. This phenomenon can lead 

to some limitations in X and Y resolution and in Z direction an increase in laser beam 

power due to interferences (called speckle effect), that restricts resolution and measure 

accuracy.  

 

 

Another aspect is related to error systematic component, which originates 

oscillations in 3D acquired frames: this effect can be corrected by means of a right sensor 

design or by a filtering process. 

Many others works are more focused on error definition and correction than to 

systems classification and evaluation. As example, in Xi et al., 2001, an error 

Figure 2.8 Laser beam diffraction 
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characterization has been performed with the final aim to achieve a software 

compensation. An empirical formula has been identified, relating errors to their 

influencing factors, like projecting angles and scanning depth. An experimental set up 

was performed, composed by a reference plane with a reference sphere on it. Many 

scans are performed changing surface normal directions and scanning distances. The 

real configuration is also acquired by a CMM tool, so that the two different point clouds 

have been compared. An error empirical formula is thus defined as function of both the 

acquiring distance and the angular incidence of the laser beam.  

 
Figure 2.9 Noise standard deviation in relation to the variation of (on the top) scanner 

laser intensity and (on the bottom) of surface distance (Sun et al, 2009) 
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 A further analysis on noise in 3D scanning procedures has been performed by 

Sun et al, 2009. They defined as data noise factors the ambient light, the distance of the 

specimen to the camera, scanner laser intensity and specimen orientation, defined by the 

angle between the optical axis and the surface normal direction (Figure 2.9). 

Many of these analyzed works have inspired the present research activity, in a 

certain sense that it has been possible to identify scanned performances and errors: a 

reference specimen has been used and some factors have been considered as particularly 

influenced in error definition, as focus distance, object surface orientation in respect to 

laser beam and the optical lens used, during all tests performed. In the following parts, 

methodology will be presented in detail. 

 

2.3  Methodology guidelines 

The proposed methodology has the aim to define laser scanner performances 

and, in particular, accuracy, precision and resolution are determined for an optical active 

laser scanner. Moreover, in points’ coordinate definition, errors are evaluated, with the 

final objective to reduce their systematic portion.  

Theoretically, the idea inherent to this study considers the acquired data as the 

sum of three contributions: the real point coordinate value and the local values of the 

systematic and random errors. If a reference surface is acquired, since we assume that its 

geometry is known, it is possible to evaluate the error for each acquired point.  
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The proposed methodology can be divided into three main phases: acquisition 

phase, elaboration phase, and error correction and compensation procedure. During the 

acquisition phase, a referenced surface is acquired under different operating conditions, 

and for each of them, many scans are performed, with the same acquired frame. This 

dataset is then elaborated, with software for numerical calculus, during the elaboration 

phase: mesh data acquired under the same operating conditions are conveniently treated 

to perform a mean process. This process allows to reduce the random portion of error, so 

that the systematic part of error is the only one that is yet present. During the 

compensation phase, a comparison between the reference surface geometry and the 

acquired data is set up, in order to define the error in coordinates of each observed 

point. A correction array is thus defined, containing, for each acquired point its gap 

between the real and the measured value, which coincides with the systematic portion of 

error. 

 

2.3.1  Materials and instruments 

The experimental method has been performed with Konica Minolta Vivid-9i laser 

scanner, which is an optical active triangulation scanning device. The defined error 

correction arrays are efficient for only this particular instrument (serial number 

1501112), since the systematic component of error can be caused by laser scanner 
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internal parameters. In spite of this fact, the proposed methodology can be applied as 

presented, or adapted, also to others optical scanning instruments. 

 

Focal Distance 

(mm)  

Typical Scanning 

Distance (mm) 

TELE 25 600 – 700  

MIDDLE 14 700 – 800  

WIDE 8 800 – 900  

Table 2.1 Konica Minolta Vivid-9i: some instrument information 

Konica Minolta Vivid-9i is an optical triangulation laser scanner. It is provided 

with three lenses (Tele, Middle and Wide), with different focal distances (as described in 

Table 2.1), which are used in relation to scanning distance and to the expected size of the 

frame (in Table 2.2 acquired areas are presented). Moreover, some performance 

parameters are provided, such as accuracy, precision, and resolution at different 

distances according to the lens used (Table 2.3). More detailed data are shown in 

Appendix A. 

 



 

43 

 

Measurement Distance 

mm 
500 600 800 1000 2500 

Object 

Size mm 

Horizontal 93 111 148 185 463 

Vertical 69 83 111 139 347 

 

Measurement Distance 

mm 
500 600 800 1000 2500 

Object 

Size mm 

Horizontal 165 198 263 329 823 

Vertical 124 148 198 247 618 

 

Measurement Distance 

mm 
500 600 800 1000 2500 

Object 

Size mm 

Horizontal 299 359 478 598 1495 

Vertical 224 269 359 449 1121 

Table 2.2 Laser scanner optics: area acquirable from each lens. All values are in mm. 
Data are taken from Konica Minolta datasheet 

 

 TELE MIDDLE WIDE 

Accuracy 

Distance: 600m ±0.05 mm ±0.10 mm ±0.20 mm 

Distance: 1000 mm ±0.10 mm ±0.20 mm ±0.40 mm 

Precision 

Distance: 600m 0.008 mm 0.016 mm 0.032 mm 
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Distance: 1000 mm 0.024 mm 0.048 mm 0.096 mm 

Resolution 

Distance: 600m 111 x 83 x 40 mm 198 x 148 x 64 mm 359 x 269 x 108 mm 

Distance: 1000 mm 185 x 139 x 110 mm 329 x 247 x 176 mm 598 x 449 x 284 mm 

Conditions: Using Field Calibration System and Konica Minolta service software; 

Temperature: 20°C, Relative humidity: 65% or less 

Table 2.3 Performance parameters of Konica Minolta laser scanner. Data are taken 
from Konica Minolta datasheet 

The referenced surface, used in the acquisition process, consists of a painted and 

opaque glass sheet: the thin varnish film makes the transparent glass opaque (so that 

points on it can be acquired by an optical system), with low reflective properties and 

high level of plane finish having a roughness lower than instrument resolution (Figure 

2.10). So, the noise in acquired range map is mainly due to instrument and scanning 

conditions and not to object’s surface features. 

 

 
Figure 2.10 The reference surface used for the acquisition process 
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The glass is produced by Glaverbel (www.glaverbel.com) and its dimensions 

(1200 x 660 mm) are chosen in accordance with the maximum area that the instrument 

can acquire with the Wide lens at a distance of 1 meter. The glass sheet is 6 mm thick, in 

order to avoid any flexures and any lost in planarity, which would alter the acquisition 

procedure. 

A referenced surface is necessary to identify error systematic component, for this 

reason it is necessary to know not only its dimensions and position according to laser 

scanner location, but also its geometrical features. In particular, planarity attributes are 

tested by a CMM (Coordinate Measuring Machine) that measure points coordinates by 

means of a scanning probe. Since the CMM probe can test many points’ coordinates on 

the surface with a precision and repeatability 50% higher than the laser scanner, it is 

possible to verify that the actual surface flatness has discontinuities under the laser 

scanner resolution. 

 

2.3.2  Experimental set up 

2.3.2.1  Laser scanner calibration 

In order to test laser scanner accuracy and precision performances, a preliminary 

calibration procedure is necessary: simple calibration is performed at the measurement 

site to determine compensation parameters to balance changes in the instrument’s 

condition, such as changing lenses or modifications in the environment. This enables 
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standard performance to be maintained even in the user’s measuring environment. In 

particular, the shift from the standard values is determined, and compensation 

parameters to minimize this changes are calculated.  

Theoretically, being performed the same measurement, the measured values 

should be the same as the standard values which were measured at the time of shipment 

from the factory, but distortion of the measurement space occurs due to changes in the 

VIVID 9i/VI-9i condition, such as the tightness of the lens when the lens is changed, 

changes in the environment temperature, etc., and there is some shift between the 

output measured values and the standard values. When user calibration is performed, 

compensation parameters to minimize the amount of shift are calculated, and the 3D 

parameters set at the time of shipment from the factory are re-optimized. Then, when 

the actual measurement is performed, 3D generation parameters including the effect of 

this user calibration are used, so that the standard performance of the instrument is 

maintained. 

A Field Calibration System (Figure 2.11) is associated to each scanning device 

(Vivid manual). 



 

47 

 

 

A secure installation location that meets the dimensional requirements is 

necessary to install the Field Calibration System. Before using the Field Calibration 

System, a “Calibration Area” for stable and high quality calibration is required, in 

addition to the place that is necessary to position the Field (Figure 2.12).  

Figure 2.11 The Field Calibration System, parts nomenclature (Vivid manual) 
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Laser scanner is attached into the main unit and the calibration procedure is 

performed. Two different calibration charts are used, according to the lens used during 

the acquisition procedure: all lenses are tested. The calibration area has two different 

covers: the first one is for Wide lens and the second one, with a more little calibration 

profile, is for Tele and Middle lenses (Figure 2.13).  

Figure 2.12 The Field Calibration System: the installation space, the calibration area 
and laser scanner connection (Vivid manual) 
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Table 2.4 Stored Calibration Values and Design Dimensions (Units: mm) 

 

Lens used User calibration 
chart used Values stored Design dimension 

TELE For  
MIDDLE/TELE 

X1,X2 111.0 
Y1,Y2 78.1 

MIDDLE For  
MIDDLE/TELE 

X1,X2 111.0 
Y1,Y2 78.1 

Z 41.5 

WIDE For  
WIDE 

X1,X2 236.7 
Y1,Y2 116.3 

Z 75.0 

Figure 2.13 The calibration chart: on the top the calibration of the Wide lens and on 
the bottom Tele and Middle procedures are shown.  
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The calibration chart is mounted on the user calibration frame (Measuring 

distance: 1000mm), and the standard values for each lens (TELE, MIDDLE, and WIDE) 

are measured. Four standard values (X1, Y1, X2, and Y2) are stored for the TELE lens; for 

the MIDDLE and WIDE lens, the Z value is also added, so five values are stored (Table 

2.4). 

The user calibration chart is measured, the current 3D generation parameters are 

used to perform 3D calculations, and the measurement values are calculated. These 

measured values and the standard values stored at the time of factory shipment are 

compared, and the differences are calculated. Compensation parameters to minimize the 

differences calculated in the above step are computed, and the 3D generation parameters 

are re-optimized. When the compensation parameters calculated in the above step are 

used and the user calibration chart is measured again, the remaining error amount or 

residual difference (the remaining difference when the error could not be completely 

eliminated) is displayed. The residual differences are shown as the output results after 

determining whether or not user calibration was performed properly. 

 

2.3.2.2  Reference surface structure 

An experimental configuration has been set up to perform all necessary 

scanning. The main requirements imply the possibility to fix the glass sheet rigidly, so 

that it would be possible to control its movements in a precise way. Moreover, its 
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position should remain constant and fixed with respect to laser scanner position, during 

the whole acquisition phase. While at the very beginning of this experimentation the 

glass sheet was posed vertically and rigidly fixed, during the fine tuning of the 

methodology, a structure has been customized to this application, in order to achieve the 

described purposes.  

The structure is designed as a mechanical device, capable to give the glass sheet 

two degrees of freedom: two independent rotation angles (α, β) of the plane are defined 

according to the rotation around its symmetrical axis, which are indicated X and Y axis, 

as shown in Figure 2.14.  

 
Figure 2.14 Glass sheet degree of freedom 
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One degree (1°) is the minimum rotation angle expected, in order to have a 

suitable precision level. Moreover, as shown in Figure 2.14, the sheet focal point O, is 

expected to remain firm and constant during the whole acquisition, even if the structure 

is moved.  

A mechanical structure is thus been defined and designed. A CAD model was 

elaborated, in SolidWorks (Dassault Systèmes SolidWorks Corporation): a parametric 

software for CAD modeling. The structure consists of aluminum frame, supported by 

two pillars. Inside this frame, an aluminum structure supports the glass sheet. The two 

degrees of freedom are obtained as follows: the rotation angle α, around Y axis, is 

permitted through a couple of bearings, located as joints between the frame and two 

clamps structures which support top-down the plane. The second angle β, is defined by 

another couple of bearings located as joints between the frame and the two pillars; such 

bearings are located one on the left and one on the right of the reference plane. Two 

gears enable to manage all movements.  

In details: the glass sheet has been first of all fixed with two clamps, attached in 

the middle of its longer side (1.2 m one), one at the top and the other at the bottom. Such 

clamps are composed by an aluminum L sectioned bar, connected with a front plate (its 

dimensions are 500 x 40 x 5 mm) by 4 screws (ISO 7380 M5x20), as shown in Figure 2.15. 
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A pivot is fixed into each L sectioned bar, in order to fix the reference plane into 

the moving frame. Two bearings are thus used to allow free rotations around the Y fixed 

axis. 

 

 

The four shafts are made by a lathe, two for each rotation. The two shafts which 

refer to Y axis are fixed with two screws to the L section bar and inserted into the two 

bearings. Whereas the down shaft is the driving one, the upper one is guided. Shaft’s 

connection is shown in Figure 2.16. 

 

Figure 2.15 Glass sheet fixing: clamps connections 

Figure 2.16 Upper and lower shafts 
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A frame was thus designed to hold the glass sheet. An aluminum tubular system 

(50 x 50 x 4 mm of section), is chosen in order to keep weight under a high value. 

Moreover, metal inserts are put into bar extremities, to allow screws strong fixing. Final 

frame dimensions are 1330 x 813 mm, in order to contain the glass sheet easily.  

The sizing of all the other components is thus defined. Endless screw gears are 

selected, realized by Tramec S.r.l: the selected model is XA 30 100 B3. This choice is 

justified by dimensional parameters and by the necessity to move objects without the 

transmission of high powers. Their representation is shown in Figure 2.17. 

 

 

According to gears’ shaft diameter (14 mm), bearings are thus sized, considering 

the internal ring 15 mm wide. SKF 6002-2RSH bearings are chosen: two of them to move 

shafts directed as Y axis and the other two are for moving around X axis. Each bearing is 

contained into a box: four boxes are realized, with internal diameter of 32 mm, according 

to bearing external size, and the external diameter is 36 mm. A fixing flange (55 mm 

Figure 2.17 Gears: XA 30 100 B3 Tramec S.r.l. 
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diameter) is realized into boxes to allow their connections with the frame, by means of 4 

M4 screws. The assembly of bearings and boxes with the frame in SolidWorks is shown in 

Figure 2.18. 

 

 

 

The driving shaft is connected, by means of a key UNI 6607, to the gear. The 

guided one is instead fixed up to the bearing.  

Similar considerations are done for the shaft related to X axis: both of them are 

fixed to the external frame by means of screws, and they are inserted into two lateral 

pillars. Aluminum commercial pillars are used, size 100 x 50 x 4 mm. The final assembly 

between the frame and shafts and bearings is shown in Figure 2.19. 

Figure 2.18 Bearings and their boxes insert into the frame: on the left the boxes are 
designed in blue, in green the bearings are sketched. On the right, their position into 

the up and bottom part of the frame 
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Finally, two goniometers, and two pins, are positioned near the two gears, in 

order to measure movements of α and β angles (Figure 2.20).  

Figure 2.19 Shaft/frame connection 
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The final assembly and realized configuration is showed in Figure 2.21. 

 

 
Figure 2.21 The realized structure and its CAD definition 

Figure 2.20 Two goniometers are fixed to measure angular movements 
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Considering this structure, laser scanner is in front of the reference plane at a 

distance that changes from a scanning set to another one. During a first experimental 

phase laser scanner is posed with the laser beam oriented perpendicularly to the 

reference plane. This first choice is to reduce laser beam spread and considers a simple 

configuration. During the following phases the reference surface is moved (by means of 

gears in the realized structure) and different oblique configurations are considered. The 

influence of angle in the definition of correction array is thus considered.  

 

2.3.3  Acquisition phase 

During the acquisition phase, a large number of scans is acquired, maintaining 

operating conditions as constant as possible (such as scanning options and 

environmental conditions) and without change the scanning frame.  

At first, the reference plane is considered perpendicular to the laser beam. 20 

scans are collected for this step of the method. As output for each scan, a range map, 

containing points on the reference surface, is stored not only as RAW data, but also as 

structured ASCII array of 3D coordinates. All 20 range maps, and consequently all 20 

arrays, are different to each other: this is principally due to errors present in each range 

map. A large number of scans on the same frame and performed at the same operating 

condition due to a progressive reduction of the random component of the error. This 

part will be discussed in the following section.  



 

59 

All scans are realized maintaining, as much as possible, laser beam 

perpendicular to the scanning plane, in order to reduce its dispersion. With this 

purpose, laser scanner is posed, parallel to the glass, which is fixed to a bearing 

structure, as shown in Figure 2.22.  

 

 

The main requirement for this initial experimental phase is to get the laser beam 

perpendicular to the acquiring plane, to reduce any laser dispersions.  

A set of 20 scans is collected changing every time the lens and the distances from 

the instrument to the reference plane: all the three lenses are used and chosen distances 

are 600, 700, 800, 900 and 1000 mm. At the end of the acquisition process, a library of 20 

x 5 x 3 = 300 scans is collected for each combination between lenses and distances. 

The software used to manage the acquisition process is Polygon Editing Tool (PET 

2.0 ®, Konica Minolta Holdings Inc., Osaka, Japan), associated with this laser scanner, 

offering a good control of all acquisition parameters (such as focal distances, filtering 

Figure 2.22 The scanning process with laser beam perpendicular with the reference 
surface, a first set up, before the support structure development 
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processes or data reduction and store) and it can also be used during post processing. 

No automatic tools for point’s reduction or noise filtering are set up at this experimental 

level. 

All scans are presented as an array containing 3D points coordinates: this laser 

scanner model can acquire until 307200 points, arranged in 640 columns and 480 rows 

(Figure 2.23). Such arrays are then stored as another array with 307.200 rows and 3 

columns, containing respectively the X, Y and Z coordinates of each point. 

 

 

After the perpendicular configuration a different setting is performed and the 

reference surface is moved of α and β angles. At this condition 20 more scans are 

performed for each pair of angles, for each lens and at two reference distances (600 and 

870 mm). α and β are increased of 10° at each setting change, except for the first angular 

range, which is of 5°. This angular step was chosen considering that less than this value 

will not have a reliable influence on the correction array definition. No measurements 

Figure 2.23 On the left: representation of the acquisition process; on the right: 
example of real scan. 
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have been performed for tilt angle superior than 60°, since in practical cases the 

acquisition quality decay quickly with surface inclination increasing.  

β 
α 0° 5° 10° 20° 40° 60° 

0° Previous 
setting (0°,5°) (0°,10°) (0°,20°) (0°,40°) (0°,60°) 

5° (5°,0°) (5°,5°)     

10° (10°,0°)  (10°,10°) (10°,20°)   

20° (20°,0°)  (20°,10°) (20°,20°) (20°,40°) (20°,60°) 

40° (40°,0°)   (40°,20°) (40°,40°) (40°,60°) 

60° (60°,0°)   (60°,20°) (60°,40°) (60°,60°) 

Table 2.5 Angular acquired combinations  

According to the angular combinations shown in Table 2.5, for each angular pair 

20 scans are acquired for both distances and lenses. 20 scans x 23 angular pairs x 2 

distances x 3 lenses = 2760 scans are acquired in this phase. All angles are considered as 

positive. An acquisition setting is shown in Figure 2.24. 
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2.3.4  Elaboration phase 

The acquisition phase has as output a library of arrays, containing 3D 

coordinates of points acquired with all the scans configurations (gives by a combination 

of lenses, distances and angles). These arrays are firstly used to verify instrument 

resolution, precision and accuracy and, then, to analyze systematic component of the 

error, with the final aim to reduce its influence in further scans, optimizing their quality. 

Each set of scans is composed by 20 different arrays, and the following procedure is 

Figure 2.24 An acquisition setting 
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equally performed on all different sets. All this phase is performed through the creation 

of routines, in Matlab (Mathworks Inc.) for arrays elaboration.  

Acquired meshes are exported as an ASCII file and then saved in a txt file 

format, so that they can be easily loaded in Matlab environment. As already mentioned, 

from a 480 x 640 frame, they are now saved as an array containing 307200 rows (one row 

for each point) and 3 columns (one column for each 3D coordinate X, Y, Z). 

The first analysis consists in resolution determination and verification: the mean, 

minimum and maximum distances between two near points are evaluated in X and Y 

directions, verifying the least measure detected by the scanner. The laser beam is more 

scattering in the boundary part of each scan. Frames external parts are thus more 

affected by errors: for this reason, the further process consists in a point’s reduction for 

each scan, and consequently for each array. 

Verifying distances in both principal directions between two near points (dx and 

dy), their dispersions are visible numerically and graphically, so that it is possible to 

determine how many points must be removed from original arrays with a rigorous 

criterion. From a first analysis, looking at dx and dy, it is possible to identify, at a first 

sight, an approximate number of points to remove in each row and column. In order to 

verify if the chosen number of points gives a sufficient improve, a further routine is 

elaborated, computing the percentage decreasing of the standard deviations σdx (Eq 2.10) 

and σdy (Eq 2.11) of the arrays containing the values of the reduced arrays of dx and dy. 
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σୢ୶ = 	ඨ
∑ (dx୧ −	dxതതത)ଶ୬∆౮
୧ୀଵ
n୶	(n୷ − 	1)

 Eq 2.10 

σୢ୷ = 	 ඨ
∑ (dy୧−	dyതതത)ଶ୬∆౯
୧ୀଵ
n୷	(n୶ − 	1)

 Eq 2.11 

Where nx is the number of rows, ny is the number of columns and dxതതത	 and dyതതത	 are 

defined in Eq 2.12 and Eq 2.13: 

dxതതത = 	
1

n୶	(n୷ − 	1)
	 dx୧

୬∆౮

୧ୀଵ

 Eq 2.12 

dyതതത = 	
1

n୷	(n୶ − 	1)
	dy୧

୬∆౯

୧ୀଵ

 Eq 2.13 

The option runs between more precise data, but with a low number of points 

(and a loss in real object description) or less precise data, but with greater number of 

points. A reasonable compromise consists in a reduction of both the standard deviations 

σdx and σdy of 10%. All arrays in the same dataset have to be reduced of the same 

quantity. In following phases these reduced arrays will be elaborated (Figure 2.25).  
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The subsequent step considers error random component reduction. In 

acquisition phase, the same frame is acquired 20 times with the same operative 

conditions: in spite of this, the output consists in 20 scans, which are never exactly the 

same, due to the measurement errors in each of them. The reduction of the random part 

of errors is possible averaging out the point’s coordinates of the 20 reduced scans. 

Considering that the random part of error changes in every scans in module and sign, it 

tends progressively to reduce autonomously, with the average of the 3 points’ 

coordinates. In Matlab environment, arrays of the same data setting are loaded and a 

routine is performed to calculate the average value of each point. New arrays are in 

output, and their values are a media of input data. 

  5 % reduction 
10 % reduction 
15 % reduction 
20 % reduction 
25 % reduction 
30 % reduction 

Figure 2.25 An example of reduction process: on the left a visualization of the 
distances between two near points: it is possible to notice a wide dispersion in 

boundary parts.  
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Starting from the range map, and the corresponding array, obtained from the 

average of the single scans after their reduction, best fitting plane is determined 

identifying a plane that approximates the point’s coordinates of the reduced range 

maps. Indicating con n the number of acquired points that lie in a plane (x, y, z) and (xi, 

yi, zi) are their 3D coordinates, it is possible to define a function φ(x, y, z), which best fit 

acquired points, according to an identified criteria. From a mathematical point of view, 

the function φ(x, y, z), depends on some parameters to be defined in order to minimize 

errors.  

A Matlab routine is developed: acquired points are loaded and an approximation 

plane is defined through principal components technique. This method consider an 

array composed by n x p quantitative variables (which are points coordinates); an 

orthogonal transformation creates a number q (q < p) of artificial variables called 

principal components, that are linearly uncorrelated and with maximum of variance. In 

a geometrical approach, data array is a point cloud in the 3D environment: during the 

principal component analysis, an orthogonal projection from the initial reference system 

to principal component one, so that associated eigenvalues are the biggest ones (Figure 

2.26). 
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Another method to define the best fitting plane is the last squared method. This 

technique defines a function F, which seems a data interpolation. In particular, such 

function should minimize the square of the sum of all distances between each observed 

point (yi) (Eq 2.14) and its correspondent point (y*i) in the interpolated plane (Figure 

2.27). 

F(d) =  (y୧∗ − y୧)ଶ
୧

 Eq 2.14 

 

 
Figure 2.27 Last square method: example of application in the bidirectional space 

Figure 2.26 Principal components 3D space 
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Since in this study, the measurement errors in the three axes are of the same 

order, principal component approach is preferred to the last squared method. 

From a comparison between acquired data and best fitting plane coordinates it is 

possible to define an error value for each acquired point. Surface deviation is defined as 

the maximum distance, considered as absolute value, between each range map and the 

determined best fitting plane (Eq 2.15). Error’s standard deviation is also defined as the 

deviation between the acquired surface and the reference plane (Eq 2.16).  

Sd = หz୧୨ݔܽ݉ −	z୧୨
∗ ห	 Eq 2.15 

σ = 	ඨ
∑ ∑ (	z୧୨ −	 z୧୨

∗)ଶ୬౯
୨ୀଵ

୬౮
୧ୀଵ

n୶n୷
 Eq 2.16 

where nx and ny are respectively the numbers of rows and columns, and z*ij is the 

corresponding value on the best fitting plane of zij (z value of the point identified by (i,j) 

in the range map). 

Increasing at every step the number of range maps in the mean process, it is 

possible to visualize error’s standard deviation σz trend in function to the number of 

averaged scans: an initial fall is in correspondence to the first scans, due to a reduction of 

error’s random component. Increasing any time the number of scans, the trend goes on 

decreasing its value with a little variation. After the fourth average, standard deviation 

decreasing is not so relevant, so that the final choice is to stop mean process at the fourth 

array. In this way, the final best fitting plane is determined on the basis of the first fourth 

scans. 
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Finally, for each scan the error distribution is graphically represented as the 

absolute difference between zij of an acquired array (after the reduction phase) and the 

corresponding z*ij of the best fitting plane. At the end a complete work flow of this phase 

is presented in Figure 2.28.  

The presented workflow has been applied in both analyzed configuration: with 

laser beam perpendicular to the reference surface and with angles between them. Matlab 

routines has been adapted for both settings.  
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Figure 2.28 Elaboration phase workflow 
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2.3.5   Compensation phase 

The aim of the elaboration phase is to determine some data information on 

acquired point, in order to isolate error systematic component.  

The idea inherent to this correction process assumes that the z coordinates 

acquired in each scan, here generically identified as qo, are sum of three components (Eq 

2.17): the real value qi, the random error (Δa) and the systematic one (Δs) (Azzoni, 2006; 

Taylor, 2004; Webster, 1999). 

q୭ = 	q୧ + 	∆a + 	∆s Eq 2.17 

Averaging acquired range maps, data obtained (qom) correspond to the mean 

value of point’s coordinates, and the resulting real value (qim) is identified with the best 

fitting plane of the averaged range map (Eq 2.18): at this step the random component of 

error is noticeably reduced. Data is now precise, but not accurate. 

q୭୫ = 	q୧୫ + 	 ∆s Eq 2.18 

In each group of scans, acquired under the same conditions of distances between 

scanner and object, with the same lens and surface normal direction, is determined a 

different array (Δs) of data correction (Eq 2.19). Systematic error follows always the 

same rule and it is now possible to determine its trend: 

∆s = 	q୭୫ − q୧୫	 Eq 2.19 
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For the compensation phase (obtaining a data qo* without this type of error) it is 

sufficient to deduct from the acquired value (qo) the systematic component (s), as 

shown in Eq 2.20. 

q୭∗ = 	q୭ −	∆s Eq 2.20 

At the end of this phase, initial data are affected anymore by the systematic 

component of error, but only by the random one (Eq 2.21): 

q୭∗ = 	q୧ + 	∆a Eq 2.21 

By these considerations, systematic error values are calculated as the difference 

between scan’s points and best fitted points, and can be considered as an indication of 

accuracy level. 

A different correction array for systematic error Δs is defined for each operating 

condition: it can be used in practical cases, to subtract coordinates of an object acquired 

at under similar conditions.  

 

2.4  Results: Laser beam perpendicular to the reference 
surface 

The whole methodology (acquisition phase, elaboration phase and compensation 

phase) has been firstly applied with the laser beam perpendicular to the reference 

surface, in order to minimize laser beam dispersion effects.  



 

73 

Set of scans are performed changing operating conditions: 5 scanner/surface 

distances (600, 700, 800, 900 and 1000 mm) and three lenses are used (Figure 2.29, Figure 

2.30). An array library is thus created: all point clouds are stored firstly in an ASCII file 

format, and then in a txt file, in order to treat them as a tabulated array.  

 

 

 

Each array is related to a surface portion, which area depends on lens focal 

distance, scanning distance and a numerical constant (Eq 2.22): 

Figure 2.30 The acquisition process: two acquired frame as seen in PET. Scans are 
acquired with a Middle lens at a distance of 600 mm (on the left) and 900 (on the right) 

Figure 2.29 The acquisition process: two acquired frame as seen in PET. Scans are 
acquired with a Tele lens at a distance of 600 mm (on the left) and 900 (on the right) 
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w = d/f ∗ 4.8 Eq 2.22 

Where w is area width, d is the scanning distance, f is the focal distance and 4.8 is a 

numerical constant related to the CCD sensor that is 1/3” (Figure 2.31). Similarly, it is 

possible to define area high as (Eq 2.23): 

h = d/f ∗ 3.6 Eq 2.23 

 

 

For each acquired set of scan, it is possible to test area acquired in order to 

compare real values with computed ones (with formulas above described). Real 

acquired areas are determined evaluating point’s distances in Matlab environment; 

frame acquired have area values close to computed ones: some values are shown in 

Table 2.6. 

 

 

 

Figure 2.31 Area of the acquired frame in relation to scanning and focal distances 

w 

h 
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LENS DISTANCES 
THEORETICAL/ 

REAL AREA 
AREA VALUES 

TELE 

600 mm 
Theoretical Area 115.20 × 86.40 mm 

Real Area 112.06 × 84.01 mm 

900 mm 
Theoretical Area 172.80 × 129.60 mm 

Real Area 162.76 × 122.05 mm 

MIDDLE 

600 mm 
Theoretical Area 205.71 × 154.29 mm 

Real Area 199.79 × 149.77 mm 

900 mm 
Theoretical Area 308.57 × 231.43 mm 

Real Area 289.39 × 216.98 mm 

WIDE 

600 mm 
Theoretical Area 360 × 270 mm 

Real Area 350.80 × 263.12 mm 

900 mm 
Theoretical Area 540 × 405 mm 

Real Area 515.60 × 386.66 mm 

Table 2.6 Theoretical and real values of acquired area for the lenses and at 600 and 900 
mm of distance 

The presented analysis proceeds with the visualization of the acquired surface in 

Matlab, by means of a 3D representation of coordinates of acquired points: Z values are 

map as a grid in a 640 x 480 array, and presented in a color map (Figure 2.32). The 

described procedure is equally performed on all different sets, even if here is presented 

only for a single group (Tele lens and 600 mm of acquiring distance); the other results 

are shown as tables and figures in Appendix B. 
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The elaboration phase starts with a point reduction: in order to decrease errors 

and data dispersions, some boundary points are removed. To perform this task, points 

resolution is evaluated, computing point’s distances in x and y directions: dx and dy, 

vectors are defined for each scan Figure 2.33. Some graphs (Figure 2.34) and tables 

(Table 2.7) on resolution evaluation are created, in function of the number of arrays 

involved in the mean process. 

 

Figure 2.32 3D graph of an acquired surface portion. Point’s Z coordinates are view as 
a color map; coordinate values are in mm 

Figure 2.33 dx and dy distanced between two near points are evaluated, in order to 
define local points resolution 
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Moreover, in order to visualize how many points should be necessary to remove, 

dx and dy arrays, that represent points distances, are represented according to their 

location into the acquired frame: dx vector is thus graph for the first, the 240th and the 

last row, whereas dy vector is graph for the first, the 320th and the last column (Figure 

2.35, Figure 2.36).  

Figure 2.34 3D graph on points distances in x (on the top) and y (on the bottom) 
directions (all values are in mm) 
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N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.1754 0.1754 0.1647 0.1668 0.1863 0.1840 

2 0.1754 0.1754 0.1653 0.1673 0.1864 0.1839 

3 0.1754 0.1754 0.1651 0.1675 0.1858 0.1839 

4 0.1754 0.1754 0.1654 0.1666 0.1861 0.1843 

5 0.1754 0.1754 0.1647 0.1667 0.1866 0.1838 

6 0.1754 0.1754 0.1647 0.1665 0.1865 0.1835 

7 0.1754 0.1754 0.1661 0.1664 0.1861 0.1848 

8 0.1754 0.1754 0.1655 0.1669 0.1855 0.1848 

9 0.1754 0.1754 0.1664 0.1666 0.1863 0.1840 

10 0.1754 0.1754 0.1655 0.1669 0.1860 0.1844 

11 0.1754 0.1754 0.1642 0.1667 0.1862 0.1840 

12 0.1754 0.1754 0.1664 0.1665 0.1866 0.1836 

13 0.1754 0.1754 0.1664 0.1665 0.1859 0.1837 

14 0.1754 0.1754 0.1660 0.1669 0.1859 0.1838 

15 0.1754 0.1754 0.1660 0.1675 0.1854 0.1836 

16 0.1754 0.1754 0.1656 0.1664 0.1860 0.1838 

17 0.1754 0.1754 0.1658 0.1668 0.1857 0.1839 

18 0.1754 0.1754 0.1664 0.1668 0.1854 0.1834 

19 0.1754 0.1754 0.1667 0.1666 0.1856 0.1835 

20 0.1754 0.1754 0.1658 0.1666 0.1853 0.1836 

Table 2.7 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Tele lens, 600 mm distance. 
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Figure 2.35 Segment lengths in dependence on its position in the frame (column: 

segment position which runs from 1 to 640): the first image corresponds to the first 
row, the second one to the meddle row (240) and the last one to the last row (480) 
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Figure 2.36 Segment lengths in dependence on its position in the frame (row: segment 
position which runs from 1 to 480): the first image corresponds to the first column, the 

second one to the meddle column (320) and the last one to the last column (640).  
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Looking at segments length, it is thus possible to identify a number of points to 

remove in each column and row; the procedure continues with a Matlab routine, in 

which the resolution standard deviation is computed in order to verify how many points 

are necessary to remove in order to have a less dispersive datum. In Table 2.8 are shown 

how many points it is necessary to remove for each row and column symmetrically in 

order to reduce standard deviation of the distances vector of the indicated percentage.  

LENS DISTANCE 
ROW/ 

COLUMN 

Resolution Standard deviation reduction 

5% 10% 15% 20% 25% 30% 

TELE 

600 mm 
row 12 24 35 46 58 69 

column 15 30 45 61 76 92 

900 mm 
row 12 25 37 49 61 73 

column 17 34 50 66 82 98 

MIDDLE 

600 mm 
row 11 22 34 45 56 68 

column 14 28 42 56 70 85 

900 mm 
row 12 24 36 48 59 72 

column 15 28 43 58 73 89 

WIDE 

600 mm 
row 11 22 34 46 58 69 

column 12 25 39 53 68 83 

900 mm 
row 10 22 32 44 57 68 

column 11 23 35 49 63 78 

Table 2.8 Point to remove symmetrically for each row and column in order to have a 
reduction of point’s distances standard deviation 
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The selection is a compromise between an always more precise data, but with 

low points to describe the object, and with a consequent lost in information, and a less 

precise datum, but with a high number of points to describe the object surface. The final 

choice is to reduce points distances standard deviation of 10%.  

All arrays are reduced of the adequate number of points according to the lens 

used and to the acquiring distance. All arrays belonging to the same data set must have 

the same size.  

Then the media process is performed, in order to reduce error random 

component. Finally, for each data set, the best fitting plane is defined and thus the error 

array and points standard and surface deviation. For each acquired range map it is 

possible to graph error array, as the difference between the acquired array and the best 

fitting plane, with represent the real surface. In Figure 2.37 a pseudo color representation 

of point’s error is shown as an array of 480x640 points: it is possible to notice which 

areas are more affected by a larger difference between points and the best fitting plane. 

This aspect is not to be intended that clearer points are affected by a bigger error value: 

in fact the shift of many points from their real position, can cause a consequent change in 

the best fitting plane position, which is created are function of points coordinates.  
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A further interesting data analysis concerns point’s standard deviation: during 

the mean process, it is possible to evaluate its value in function of the number of arrays 

involved, so that it is possible to graph its tend. Averaging acquired and reduced arrays, 

computed points standard deviation has a sudden decrease in correspondence of error 

random component reduction. Increasing the number of averaged arrays, point’s 

Figure 2.37 3D graph of the shifting between acquired points and the best fitting 
plane. All values are in mm 
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standard deviation continues to decrease and turns nearby a range. A reasonable 

minimum point is located in proximity of the fourth averaged array: in fact till this 

value, point’s standard deviation decrease and then its curves is affected by some 

oscillations near a mean value. Following graphs (Figure 2.38) represents point’s 

standard deviation in relation of averaged scans, lens used and scanning distance. 

Finally, tables on standard and surface deviation is relation to averaged arrays 

are shown; different lenses and distances are evaluated (Table 2.9).  

 

 

 

 

 

 

Figure 2.38 Standard deviation trend in function of the number of averaged arrays: 
Tele lens and scanning distance of 600mm 
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AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.3194 0.0627 
2 0.3164 0.0614 
3 0.3152 0.0611 
4 0.3176 0.0611 
5 0.3178 0.0610 
6 0.3096 0.0611 
7 0.3110 0.0610 
8 0.3296 0.0610 
9 0.3406 0.0610 

10 0.3334 0.0610 
11 0.3243 0.0609 
12 0.3299 0.0609 
13 0.3294 0.0608 
14 0.3309 0.0608 
15 0.3257 0.0609 
16 0.3316 0.0609 
17 0.3378 0.0610 
18 0.3225 0.0608 
19 0.3157 0.0607 
20 0.3219 0.0606 

Table 2.9 Surface and standard deviation in relation to the number of averaged arrays. 
Tele lens and 600 mm distance. All values are in mm 

With the definition of an error punctual value, for each scanning set, it is possible 

to perform the correction phase as above described. Systematic error values are 

calculated as the difference between scan’s points and best fitted points, and can be 

considered as an indication of accuracy level. Acquired and corrected plane are 

compared and evaluated in a TELE lens and with 600 mm of acquiring distance (Figure 

2.39).  
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This procedure final output consists in a library of compensation arrays to be 

used for systematic error correction. From 3D scan’s representation without systematic 

error component, it is clearly possible to notice a significant noise reduction, also 

definable by the determination of the mean and maximum error. In Table 2.10 a 

comparison between Minolta data sheet, the directly acquired data and the processed 

ones is shown. It is important to notice that data processed have accuracy values 

significantly reduced compared to acquired ones (low values correspond to a high 

accuracy level), and they are close to Minolta data sheet, obtained in laboratory 

conditions, with a defined and meticulous procedure. 

Figure 2.39 Acquired and reduced plane: from the difference between the reduced 
plane and the best fitting plane errors in coordinates’ determination are evaluated.  
Averaged and corrected plane: from the difference between the corrected plane and 

the best fitting plane errors in coordinates’ determination are evaluated 

Acquired Plane Reduced Plane 

Error 

Averaged plane 

Corrected plane 

= 0.078 mm 
Mean value of   = 0.0061 mm 

Maximum value of  = 0.045 mm 

Acquired plane 

 = 0.0112 mm 
Mean value of  = 0.0151 mm 

Maximum value of   = 0.0975 mm 
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TELE 
600 mm 

Minolta 
Data sheet Experimental Data 

 Acquired Data Processed Data  

Accuracy 0.05 mm 

0.0975 mm 0.045 mm 
Maximum 

value of 
ݖ| − ݖ

∗ | 

0.0151 mm 0.0061 mm 
Mean Value 
of |ݖ − ∗ݖ | 

Precision 0.008 mm 0.0112 mm 0.0078 mm ߪ௭ 

Table 2.10 Comparison between Minolta Data Sheet and experimental data for a 
specific case with the Tele lens and at a scanning distance of 600mm 

A final note is related to define precision value and to test correction array 

reliability.  

40 scans are acquired at the same operative and environmental conditions, with a 

Tele lens and at distance of 600 mm. These scans are grouped in 10 clusters of four scans 

each. The number four is due to the fact that during the average process in proximity of 

the fourth scan the random component of error results compensate at most (this aspect 

has been discussed above). Each scan has been reduced at 250560 points, since 24 rows 

and 30 columns have been symmetrically removed. Then, 10 ΔS arrays for systematic 

error correction are been computed and compared. The correction mean value (Eq 2.24) 

and correction standard deviation (Eq 2.25) has been computed for corresponding points 

in different arrays. Such analysis has been firstly performed for some key points and 

then for the whole array (Table 2.11).  



 

88 

TELE 600 mm 
10 ΔS arrays First Point Middle Point 

(n° 124990) 
Last Point  
(n° 250560) 

Correction 
mean value 

(mm) 
0.0207 0.0044 0.0172 

Correction 
Standard 
Deviation  

(mm) 

0.0037 0.0045 0.0061 

Table 2.11 Correction arrays comparison: evaluation of the mean value and standard 
deviation of the correction related to some key points 

∆ܵ(݅, ݆) = 	
1

10
	 ∆ܵ(݅, ݆)

ଵ

ୀଵ
 Eq 2.24 

(,)	ௌ∆ߪ	 = 	ඨ
1
9
	 (∆ܵ	(݅, ݆) −	∆ܵ	(݅, ݆))ଶ

ଵ

ୀଵ
 Eq 2.25 

Considering all correction values, the mean standard deviation (݉݁ܽ݊	ߪ∆ௌ	(,)) is 

0.0046. Since for each point, correction standard deviation is at least an order of 

magnitude littler then the correction value itself, it is possible to underline the reliability 

of the defined correction arrays and thus of the whole methodology.  

Finally, considering all the 40 scans is determined the precision value of the 

acquired data, as reported in Table 2.10. Similarly to what just described, for some key 

points are respectively evaluated the mean acquired value (Eq 2.26) and data standard 

deviation (Eq 2.27): results are repot in Table 2.12. The same analysis is the performed on 

the whole acquired (and reduced) range map.  
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TELE 600 mm 
40 Acquired 

arrays 
First Point Middle Point 

(n° 124990) 
Last Point  
(n° 250560) 

Mean value 
(mm) -623.3559 -624.4978 -625.6147 

Correction 
Standard 
Deviation  

(mm) 

0.0129 0.0104 0.0132 

Table 2.12 Arrays comparison: evaluation of the mean value and standard deviation of 
the correction related to some key points 

ܼ	(݅, ݆) = 	
1

40
	 ܼ	(݅, ݆)

ସ

ୀଵ
 Eq 2.26 

(,)	ߪ = 	 ඨ
1

39
	 (ܼ	(݅, ݆) −	ܼ	(݅, ݆))ଶ

ସ

ୀଵ
 Eq 2.27 

Considering all acquired data, the mean standard deviation (݉݁ܽ݊	ߪ	(,)) is 

0.012. This value is defined as the precision of the acquired measure. 

 

2.5  Results: oblique angle between the laser beam and the 
reference surface 

The presented analysis has been equally performed in case the laser beam is not 

perpendicular with the reference surface. In the following part results are presented. 

The first step is the acquisition phase: changing the glass sheet tilt angles (α, β), 

20 scans are acquired for each configuration. In Figure 2.40 are shown such frame as 
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acquired by PET software. The rainbow color bar assigns a red color to near points and a 

blue one to farer ones.  

 

 
Figure 2.40 some acquisition frame: Tele lens, 600 mm of scanning distance and 

changing tilt angles.  

α = 0°; β = 0° 

α = 20°; β = 0° 

α = 0°; β = 20° α = 0°; β = 40° 

α = 20°; β = 20° 

α = 40°; β = 0° 

α = 40°; β = 40° 

α = 60°; β = 60° 
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All acquired range map are saved in a txt file format and then elaborated in 

Maltab. A first important consideration is that when the tilt angles pairs (α, β) are both 

less than 20°, the acquired range map are rectangular and composed by 307200 points 

(see tilt angle combinations green highlighted in Table 2.13).  

β 
α 0° 5° 10° 20° 40° 60° 

0° Previous 
setting (0°,5°) (0°,10°) (0°,20°) (0°,40°) (0°,60°) 

5° (5°,0°) (5°,5°) (5°,10°) (5°,20°) (5°,40°) (5°,60°) 

10° (10°,0°) (10°,5°) (10°,10°) (10°,20°) (10°,40°) (10°,60°) 

20° (20°,0°) (20°,5°) (20°,10°) (20°,20°) (20°,40°) (20°,60°) 

40° (40°,0°) (40°,5°) (40°,10°) (40°,20°) (40°,40°) (40°,60°) 

60° (60°,0°) (60°,5°) (60°,10°) (60°,20°) (60°,40°) (60°,60°) 

Table 2.13 Acquired range maps with different tilt angles combinations: in green are 
highlighted rectangular arrays, that is to say, arrays in which all points are acquired; 

instead in yellow are highlighted arrays where not all points are acquired 

 

As concerns all the others angular combinations (yellow highlighted in Table 

2.13), laser scanner is not able to acquire the whole frame, and this fact is mainly due to 

focus matters and lens properties. As it is possible to notice in Figure 2.41, in frame 

portions no points are acquired. These range maps have different points number that 

changes from a scan and the following one. It is no possible to know previously how 

many points the acquired frame will have.  
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The described methodology and analysis is thus performed only on rectangular 

arrays, since it is no possible to apply the same considerations as done before, on the 

other frames. This is due to the fact that in such points clouds it is no possible to identify 

the same number of points, so that acquired meshes cannot be elaborated in Matlab as 

the other ones. Moreover it is no possible to know points location easily and thus both 

point reduction and mean processes have no sense in this configuration. Potential 

solutions will be presented in the following section. 

Figure 2.41 Only with some angular combination, the whole frame is completely 
acquired; in all the other conditions only some central points are stored, and in many    

parts no points are present 
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In rectangular cases the area of the acquired frame is computed, since it was 

possible to define a rectangular shapes of area w x h, as done in the previous section 

(Table 2.14). 

LENS ANGLES 
THEORETICAL/ 

REAL AREA 
AREA VALUES 

TELE 

600 mm distance 

(0°, 0°) 
Theoretical Area 115.20 × 86.40 mm 

Real Area 112.06 × 84.01 mm 

(0°, 20°) Real Area 118.26 × 90.76 mm 

(20°, 0°) Real Area 125.62 × 88.04 mm 

(20°, 20°) Real Area 126.27 × 99.34 mm 

Table 2.14 Area acquired at 600 mm distance with a Tele lens, in dependence on 
different geometrical parameters 

All arrays are loaded in Matlab in order to perform the reduction, the mean and 

the best fitting processes. First of all 3D points are illustrated: Z coordinates are graph in 

function of i,j pixel coordinates in the CCD sensor (Figure 2.42). 

 

 
Figure 2.42 3D representation of points coordinates in Matlab environment. Tele lens 

600 mm of distance, α = 20°, β = 20° 
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In order to remove some boundary points, where the laser beam is more 

scattered, points resolution is analyzed and graph: in Figure 2.43 point resolution is 

visualized both in x and y directions. Moreover, two vectors containing points distances 

in x and y directions are created and are then graph for the first; in Figure 2.44 and 

Figure 2.45 the middle and the last rows and columns, considering the two tilt angle of 

20° each are shown.  

 
Figure 2.43 Points resolution in X and Y directions, in function of their location in the 

frame. Tele lens, 600 mm of acquiring distance and (20°, 20°) of tilt angles 
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Figure 2.44 Segment lengths in dependence on its position in the frame (column: 

segment position which runs from 1 to 640): the first image corresponds to the first 
row, the second one to the meddle row (240) and the last one to the last row (480). Tele 

lens, 600 mm of scanning distance and tilt angles of 20° each 
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Figure 2.45 Segment lengths in dependence on its position in the frame (row: segment 
position which runs from 1 to 480): the first image corresponds to the first column, the 
second one to the meddle column (320) and the last one to the last column (640). Tele 

lens, 600 mm of scanning distance and tilt angles of 20° each 
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Point reduction is performed on the basis of a percentage reduction of resolution 

standard deviation, evaluated as standard deviation of the vector containing distances 

between two near points (Table 2.15). a reasonable choice is to reduce resolution 

standard deviation of 10%. All acquired range maps are thus reduced of 29 rows and 32 

columns symmetrically. 

Lens Distance (mm) (α; β)  5% 10% 15% 20% 25% 30% 

TELE 623 mm 

(0°; 0°) 
row 12 24 35 46 58 69 

column 15 30 45 61 76 92 

(20°; 20°) 
row 17 29 39 51 61 73 

column 19 32 50 62 82 92 

Table 2.15 Points to remove symmetrically in each row and column in order to have a 
decrease of standard deviation of vectors of distances between two near points 

In the following steps, reduced arrays are averaged and then a best fitting plane 

is defined. By the difference between acquired points and best fitting plane it is possible 

to define a punctual error value on 3D points coordinates (Figure 2.46).  

Error standard deviation in function of the number of arrays involved in the 

meaning process is evaluated (Figure 2.47), in order to identify the optimal number of 

arrays to obtain a reduction of error random component, and thus the number to range 

maps to average in order to find the right best fitting plane. As defined in the 

perpendicular configuration, also in this case the fourth mean process is considered 

enough for random error compensation. 
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Figure 2.47 Error standard deviation in relation to the number of arrays involved in 

the mean process. Tele lens, 600 mm of acquiring distance and (20°, 20°) of inclination 

Figure 2.46 Error representation in pseudo color, in function of points position in the 
acquired frame. Case study with geometric parameters α and β of 20° each. 
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In surface and error standard deviation are presented, together with point’s 

resolution (mean, maximum and minimum values in both directions) in dependence to 

the number of averaged arrays (Table 2.16).  

MEAN 

ARRAYS 

SRF. 

DEV. 

STD. 

DEV. 

MEAN 

RESX 

MEAN 

RESY 

MIN 

RESX 

MIN 

RESY 

MAX 

RESX 

MAX 

RESY 

1 0.1923 0.0257 0.1843 0.1844 0.1555 0.1627 0.2044 0.2012 

2 0.1889 0.0249 0.1843 0.1844 0.1582 0.1617 0.2041 0.2009 

3 0.1835 0.0247 0.1843 0.1844 0.1588 0.1610 0.2041 0.2005 

4 0.1828 0.0245 0.1843 0.1844 0.1572 0.1604 0.2045 0.2010 

5 0.1889 0.0246 0.1843 0.1844 0.1566 0.1601 0.2042 0.2002 

6 0.1915 0.0245 0.1843 0.1844 0.1576 0.1605 0.2039 0.2005 

7 0.1935 0.0245 0.1843 0.1844 0.1568 0.1604 0.2040 0.2003 

8 0.2000 0.0244 0.1843 0.1844 0.1576 0.1604 0.2040 0.2009 

9 0.1937 0.0245 0.1843 0.1844 0.1586 0.1606 0.2037 0.2010 

10 0.1885 0.0247 0.1843 0.1844 0.1575 0.1607 0.2043 0.2009 

Table 2.16 Surface and standard deviation and points resolution in relation to the 
number of averaged arrays. Tele lens, 600 mm distance and (20°, 20°) of angles.  

Arrays for error compensation are thus defined for different tilt angles (as 

presented in Table 2.13) and for different lenses and distances and the correction 

procedure is applied. Such arrays are used to correct errors in an acquired frame and 

accuracy and precision values are compared in Table 2.17. Processed data have accuracy 
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value nearer to Minolta data sheet ones and they are more précised then data directly 

acquired.  

TELE 
600 mm 

α = 20°, β = 20° 

Minolta 
Data sheet Experimental Data 

 Acquired Data Processed Data  

Accuracy 0.05 mm 

0.1936 mm 0.0766 mm 
Maximum 

value of 
ݖ| − ∗ݖ | 

0.0187 mm 0.0066 mm 
Mean Value 
of |ݖ − ݖ

∗ | 

Precision 0.008 mm 0.0144 mm 0.0086 mm ߪ௭ 

Table 2.17 Comparison between Minolta Data Sheet and experimental data for a 
specific case with the Tele lens and at a scanning distance of 600mm, tilt angles of 20° 

 

A final comparison between correction arrays related to the laser beam 

perpendicular to the scanning surface and with different angles is finally performed. 

ΔS(0°,0°) and ΔS(20°,20°) were analyzed in order to see differences and to tests the 

necessity to have a different correction arrays in relation to different surface normal 

directions. The first considered feature is that both arrays and their difference are of the 

same order of magnitude: this means that there is a wide variation on data obtained 

with the first and the second case and this should justify the employment of a different 

correction array for each different set up. In order to picture what above discussed, first 

30 homologous points of ΔS(0°,0°) and ΔS(20°,20°) correction arrays are graph (Figure 
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2.48), moreover their differences (Figure 2.49) are presented. As it is possible to see, both 

values are of the same order of magnitude.  

 

 

 

 
Figure 2.49 Difference (mm) between ΔS(0,0) and ΔS(20,20) arrays in relation to point 

index 

Figure 2.48 Correction value (mm) in relation to point index. ΔS(0,0) values are 
indicated by a dot, while ΔS(20,20) values are represented by a cross 
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2.5.1  Non rectangular frames 

If at least one tilt angle is more than 20°, the acquired range map does not fill up 

the whole CCD sensor and some pixels do not register any point coordinates, so that 

acquired point clouds are not rectangular. This due to the fact that two consecutive 

acquired scans have different point number, and since 3D coordinates are not exactly the 

same it is no possible to identify the same point in both scans: there are not 

correspondences between two consecutive scans.  

Under these conditions the mean process is no more possible, so that the 

methodology cannot be applied as presented to such acquired arrays.  

In this context analysis on point resolution are performed: a Matlab routine was 

written to compute distances between two near points. In case the distance is more than 

5 mm, it automatically considers the point as in the following row. This script also offers 

the possibility to identify how many rows are acquired and how many points in each 

row. By these analysis some data are conceived (Table 2.18), regarding point resolution 

and point distances standard deviation. 
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Array 
Std. 

Dev. 

Mean 

Res 

Min 

Res 

Max 

Res 

Number 

of rows 

Max number 

of point in 

each row 

Min number 

of point in 

each row 

(0°,40°) 0.0140 0.1848 0.1655 2.8646 379 640 19 

(0°,60°) 0.0220 0.1832 0.1545 2.8703 265 640 15 

(20°,40°) 0.0072 0.1830 0.1505 0.3916 480 640 220 

(20°,60°) 0.0080 0.1828 0.1520 0.3952 436 565 29 

(40°,0°) 0.0092 0.1848 0.1600 0.2110 480 374 337 

(40°,20°) 0.0093 0.1843 0.1557 0.2130 480 367 330 

(40°,40°) 0.0101 0.1837 0.1475 0.3247 480 320 287 

(40°,60°) 0.0113 0.1827 0.1401 0.2262 480 297 149 

(60°,0°) 0.0092 0.1866 0.1663 0.2097 480 231 208 

(60°,20°) 0.0093 0.1861 0.1650 0.2121 480 226 203 

(60°,40°) 0.0101 0.1858 0.1555 0.2182 480 196 176 

(60°,60°) 0.0127 0.1860 0.1443 0.2286 480 149 133 

Table 2.18 Points distances standard deviation, mean, minimum and maximum 
resolution values for the first scan of all non rectangular frames.  

Such resolution data are visualized in relation of their location into the acquired 

frame. Graphs are presented for the first, the middle and the last acquired rows for 

different tilt angles pairs (Figure 2.50, Figure 2.51). By these representations it is also 

possible to analyze that in the first rows, the laser beam acquires more points than in the 

lower frame portion. 



 

104 

 
Figure 2.50 Resolution values in relation to row position in the acquired frame. On the 
top is presented the first row, then the middle row and finally the last row. Scans are 

performed with a Tele lens, at 600 mm of distance and tilt angles of (40°,40°) 
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2.5.1.1  Systematic error compensation arrays for non rectangular frames 

In case object surface normal has directions which forms with the laser beam an 

angle superior than 20°, no compensation arrays to reduce systematic error component 

Figure 2.51 Resolution values in relation to row position in the acquired frame. On the 
top is presented the first row, then the middle row and finally the last row. Scans are 

performed with a Tele lens, at 600 mm of distance and tilt angles of (60°,60°) 
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have been defined with the proposed methodology. Some guidelines are now defined in 

order to overcome this trouble.  

The first consideration concerns the acquiring system. Laser scanner is an optical 

instrument with a focus depth of about 15 cm: during the scanning process the wider 

and central frame portion is in focus and everything is into this depth of field is in focus 

at the same time, all other frame portions are not acquired. For this reason laser scanner 

is not able to gain the whole reference surface, when it is in a too inclined configuration. 

This means that this is not a methodological trouble but it is an instrument limitation 

that doesn’t allow performing the methodology in a severe set up. The employment of 

different lenses or of an instrument with a wider depth of field is expected to improve 

the acquisition process and thus to acquire rectangular range maps even if the reference 

surface is more inclined than 20°.  

Moreover, in practical cases, a mesh acquired from a perpendicular point of view 

is always more precise and more detailed than a mesh acquired diagonally. For this 

reason in case it would be necessary to use a correction array to compensate errors and 

noises and the normal direction is to inclined so that the correspondence correction 

array is not defined, the scanning process should be planned in order to move laser 

scanner and object respecting positions so that the laser beam is perpendicular to the 

surface to be acquired.  
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However, it would be possible to define an error compensation array, with some 

expedients. The first considers the employment or more reduced arrays: the reduction 

process is one of the first steps in the elaboration procedure. In this context the acquired 

mesh can be reduced of many points so that only a small rectangular area is defined in 

the middle of each frame (Figure 2.52). All scans acquired under the same operative 

conditions are reduced to the same number of points, arranged in the same way. This 

technique leads the methodology to the same workflow as before, so that the following 

phases can be performed in the same way.  

 

 

 

This method has the main advantage to lead the process back to the described 

methodology, without any changes in developed Matlab routines and a compensation 

array is defined. On the other hand, defined correction arrays are user to compensate 

systematic errors during real applications and case studies. For this reason the use of 

Figure 2.52 Only the central portion of each frame can be used to perform the 
methodology, so that all acquired scans with similar operative conditions can have 

the same rectangular structure 
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correction arrays only on a little central frame portion leads to delete all points which 

don’t belong to this area, so that much more scans are necessary to describe the whole 

object surface. In practical cases this solution is considered not convenient from an 

operative point of view. 

A second approach, has been deeply developed, considering the possibility to 

define unknown correction arrays (related non rectangular frames, since not all points 

have been acquired) starting from known arrays. For the same focusing distance, some 

linear dependences has been investigated between known arrays, in order to verify the 

existence of a low able to link together configurations acquired with different tilt angles. 

After many different relation exploited, any linear association has not been identified till 

now and other experimental techniques has been exploited, since the mathematical one 

provided non useful results.  

A third final approach considers that since the described limitations are related 

to focusing troubles, the same frame can be acquired twice, but with different focusing 

distances: the acquisition process is thus split into two parts. Considering, as example, to 

acquire the range map at 600 mm of scanning distance, the same frame its acquired 

twice: the first time with 580 mm of focusing, and the second one with 620 mm. The first 

range map contains all points of half frame, while the second one will acquire the other 

portion (Figure 2.53).  
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This technique suggests splitting the acquisition, elaboration and correction 

processes into two parts, so that, finally two ΔS arrays are relate to the same 

configuration, but refers to different points. These two arrays are then composed 

together so that it would be possible to compensate systematic component of errors in 

operative conditions, when surface normal direction is more than 20°.  

This approach has the main advantage to give an error compensation array in a 

rather simple way, and the described methodology can be implement under some little 

changes connected to points reduction. On the other hand such correction array are 

define acquiring distances that are no constant anymore. This feature can introduce 

some more uncertainties, which will be taken under examination.  

 

 

Figure 2.53 Composition of two different scans: the first one performed at a less 
scanning focusing and the second one at an high distance. The black portion 

represents no acquired areas. The third image is the composition f the first two 

Scan 1: 580mm focus Scan 2: 620mm focus Scan 1 plus Scan 2: 
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3. Infrared Thermography 

 

 

 

Infrared (IR) Thermographic Systems evaluate object’s surface temperatures by 

measuring the magnitude of emitted infrared radiation and provide images that 

represent surface temperature called thermograms.  

All objects at a temperature above absolute zero (-273.15°C) emit electromagnetic 

radiation in the form of rays: in particular, when the object is at ambient temperature, 

the emission falls into the infrared portion of the electromagnetic spectrum so that it 

cannot be seen by the unaided eye. A radiometer converts the radiated energy into an 

electronic signal and then into a visible image, in which each energy level may be 

represented by a color level. Considering that the energy emitted by a body is mainly 

function of its surface temperature value, knowing the material properties of the surface, 

it is possible to measure object temperature through thermography. 

Inspection for predictive maintenance, non-destructive evaluation of thermal and 

mechanical properties, building sciences, military reconnaissance and weapons 

guidance, medical imaging, and cultural heritage conservation are some fields in which 

IR thermography is commonly employed in order to reveal malfunction, leaks, material 

loss, delamination, etc. (Griffith B. et al., 2000).  
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There is a distinction between radiometric imaging for the determination of 

absolute temperature and thermal imaging for the achievement of relative temperature 

information, or thermal signature. Hence, infrared thermography can be used as 

qualitative or quantitative inspection: radiometry devices are used for precise 

temperature measurement whereas viewing devices are designed for qualitative 

comparisons. Anyway, also during a quantitative thermographic inspection, images are 

usually first evaluated for qualitative thermal signature to discern the presence and 

proximity of a feature of interest or defect.  

In the next paragraphs, thermographic applications with radiometric images are 

presented with the aim to understand the thermographic principal aspects. Moreover, 

the fundamentals at the basis of temperature measurements are analyzed.  

 

3.1  Fundamental Physical principles and theory of operation 

Technical instruments for thermographic inspection mainly include a camera 

equipped with an optical lens and an interface necessary to analyze the acquired data. 

An infrared detector is the core of the camera: it absorbs the IR energy emitted by the 

object, whose surface temperature is to be measured, and converts this electrical energy 

to electrical energy.  



 

113 

A cornerstone of the IR measurement is the electromagnetic field that transfers 

energy, which carried amount is dependent on its wavelength and on all carrying 

photons. In general, an electromagnetic radiation transfers a radiant energy Qe.  

The flux is the instantaneous measure of the quantity of radiation: it describes a 

source propagating in the form of a beam, or received by a detector, and it is the radiant 

energy per unit time. 

ୣࢶ = 	
dQୣ

dt
 W Eq 3.1 

All materials produce a thermal flux: material temperature causes particles 

oscillations which creates an energy flux. This energy flux of particles resulting by 

oscillations creates thermal emission. There are two different ways to understand 

thermal emission transport: the first one is to consider photon emission, the second one is 

to consider electromagnetic waves. Photons are energy particles with zero mass at rest, and 

with a discrete quantity of energy, called quantum. Electromagnetic have specific 

frequency and energy. The two concepts are linked together: in fact, for a given 

wavelength λ, the liberated photonic energy W, due to particles oscillations is: 

W = 	
hc
λ

 Eq 3.2 

where h = 6.63 x 10-34 Js is the Planck constant and c = 3.0 x 108 ms-1 is the speed of the 

light (Maldague, 2001). The wavelength of emitted radiation varies inversely with the 
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transition energy: this means that in the infrared region, the wavelength is long, whereas 

the radiation energy is low; this implies that it is not easy to detect infrared radiation.  

The definition of a radiant flux is inherent to the description of some more 

physical quantities, useful for the characterization of such radiant energy in time and 

space: they are also referred to as radiometric quantities.  

 

3.1.1  Emitted and incident radiations 

The radiant flux emitted by an extended source for surface units is called radiant 

exitance Me: 

Mୣ = 	
dୣ

dA
 Wm-2 Eq 3.3 

Similarly, the radiant flux, which is incident on a surface per unit area, is called 

radiant irradiance Ee: 

Eୣ = 	
dୣ

dA
 Wm-2 Eq 3.4 

Now, it is important to introduce some basic concepts and notations that will be 

used in the following paragraphs.  

A spherical system of coordinates (Figure 3.1) requires three variables to locate a 

point on a sphere surface, which coordinates are  

 the radius r, which is the distance from the sphere center, located at 

(0,0,0); 
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 the azimuthal angle ϑ; 

 the zenith angle ϕ. 

Point P is thus located in (r, ϑ, ϕ). 

 

Suppose we have two lines which point of interception is O: the angle dα 

corresponds to the fraction of the infinite plane defined by these two lines. dα is thus 

given by the ratio between the arc length given by the intersection of a circle radius r, 

centered at O and the two lines to this radius: ݀ߙ = 	 ݈ ⁄ݎ . By this preliminary 

consideration, a solid angle is the fraction of the space contained within an infinite cone, 

centered at O (Figure 3.2). Consider the intersection of a sphere, centered at O with 

radius r, and a cone of infinite extent, and observe that the ratio of the intercepted 

surface dAn on the sphere to the square of radius r is measured as the solid angle 

Figure 3.1 Spherical System coordinates 
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dω = 	 ܣ݀ rଶ⁄  (the subscript n indicates that the differential surface element is normal to 

the cone axis). The units for a solid angle are steradians (sr). 

 

Referring to the solid angle concept, the radiant intensity of a source in a given 

direction is the ration of the flux φ emitted by a source, in the direction defined by the 

parameters (ϑ,ϕ) and the solid angle dω within which the intensity is evaluated: 

Iୣ = 	
dୣࢶ

dω
	 Eq 3.5 

 
Figure 3.3 Definition of radiance 
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Figure 3.2 Definition of plane and solid angle 
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Radiance is one more basic concept: it is the radiant flux emitted by an extended 

source for solid angle units and from the surface, an area projected onto a plane, normal 

to the specific direction of propagation (Figure 3.3).  

Lୣ = 	
dଶϕୣ

dA୮dω
= 	

dଶ	ϕୣ

dA	cosθ	dω
 Eq 3.6 

 

 

 

With increasing wavelength, and according to their source of emission and 

employment, the spectrum of radiation is divided into specific bands (Errore. L'origine 

riferimento non è stata trovata.): γ-rays, χ-rays, ultraviolet (UV) rays, visible rays, 

infrared (IR), radio waves and microwaves. Moreover, the IR spectrum can be split into 

Figure 3.4 The electromagnetic spectrum 
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near IR (0.78 ÷1.5 μm wavelength), middle IR (1.5 ÷20 μm wavelength), and far IR (20 

÷1000 μm wavelength). The wavelength bands are related to the detector capabilities: 

near infrared is detected by special photographic emulsions, by photo emissive cells, 

and by photoconductive and photovoltaic detectors; middle infrared is detected by 

thermal, photoconductive, and photovoltaic detectors; radiation in the far infrared can 

be measured by thermal detectors (Gaussorgues, 1994). 

Many phenomena are strictly related to spectral bands: this is the reason why 

radiometric quantities have to be related to wavelength. In this context, the spectral 

radiant flux Φλ refers to an infinitesimal wavelength interval.  

ϕ = 	 න ϕୣ	dλ	
భ

బ
 Eq 3.7 

Similarly, the other radiometric quantities can be referred to wavelength. 

The spectral radiance L’(λ,ϑ’,ϕ’) is the rate at which energy (or an emitted flux φ′) 

is emitted, at a given wavelength λ, from a surface patch dA, in the specific direction 

(ϑ’,ϕ’), passing through dAn (Maldague, 2001).  

L′(λ,ϑ’,φ’) = 	
dଷϕ′

dA	cosϑᇱdωᇱdλ	
 Wm-2 sr-1 μm-1 Eq 3.8 

This equation describes the spectral radiance as the ratio of the emitted flux φ′ to 

the surface element subtended by the solid angle dω’ and immediately surrounding the 

flux direction (ϑ’,ϕ’) per unit of wavelength interval dλ. This projected surface element 

is, in fact, the surface element perpendicular to the emitted radiation (dA cos ϑ’).  
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The radiant power per unit area, for an emitting surface, can be computed by 

integrating L’(λ,ϑ’,ϕ’) over any finite angle and finite wavelength range, if the spectral 

and directional distribution of the spectral radiance is known. This quantity is known as 

the spectral exitance M(λ). For a Lambertian emitter (which is an isotropically diffuse 

emitter): 

M′	(λ) = 	π	L’(λ) W m-2 μm-1 Eq 3.9 

The total exitance is the radiant power per unit area emitted over all wavelength 

and all directions: 

M′ = 	π	L’ W m-2 Eq 3.10 

Either from reflection or emission at other surface, the radiation incident on a 

surface has also spectral and directional distributions: the concepts discussed above can 

be adapted, and the incident spectral radiance L(λ,ϑ,ϕ) can be introduced: 

L(λ,ϑ,φ) = 	
dଷ 	ϕ

dA	cosϑ	dω	dλ
 Wm-2sr-1μm-1 Eq 3.11 

This equation represents the incident spectral radiance as the ratio of the incident 

flux φ for the wavelength interval dλ from the direction (ϑ, ϕ) to the projected surface 

element (dA cosϑ), subtended to the solid angle dω and surrounding the flux. 

Finally, the spectral irradiance E(λ) is defined as the spectral radiant power at the 

wavelength λ incident per unit area upon a surface from all directions in the 

hemispheric space above the specified surface: 
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E(λ) = 	
dϕ(λ)

dA
 Eq 3.12 

The total irradiance is defined as the radiant power at all wavelengths incident 

per unit area upon a surface and from all directions: 

E = 	න E	(λ)	dλ
ஶ


 Eq 3.13 

If the incident radiation is isotropic, that is, independent of the direction (ϑ,ϕ), 

then E(λ) = πL. It is important to note that, as for the irradiance, the specified surface is 

the actual surface dA, whereas, as for the radiance, the specified surface is the projected 

surface dA cos ϑ’. 

The exposure is the time integral of radiance, that is to say, the energy received 

per unit surface area: 

ℒ = 	න L(t)dt
୲మ

୲భ
 Eq 3.14 

The Bouguer’s Law is the relation between the irradiance E of a receiving surface, 

due to a source S, and the intensity I of that source in the direction of the receiver lying 

at a distance d (Figure 3.5): 

E = 	
I	cosϑୖ

dଶ
	 Eq 3.15 

This inverse square dependence on the distance from the source is valid if the 

linear dimensions of the source are small compared with the distance d (Gaussourgues, 

1994). 
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Energy emitted from a surface has various features: many wavelengths are 

emitted in a non-uniform distribution of energy in all directions (Figure 3.6).  

 

3.1.2  Blackbody 

An instrument absorbing all radiated energy from any direction and at each 

wavelength is called blackbody. It is a perfect radiator, since it has the property of emitting 

Figure 3.6 Radiation emitted by a surface: spatial and directional distributions 
(Maldague, 2001) 

Figure 3.5 Bourguer’s Law 
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the received radiated energy until thermodynamic equilibrium with its surrounding 

environment has been reached. For a given temperature and wavelength, no other 

surfaces are able to emit more energy than a black body. Moreover, the emitted 

radiation is function of the blackbody temperature and it is independent from the 

emitting direction: for this reason, blackbody is also called isotropically diffuse emitter, or 

Lambertian emitter (Maldague, 2001). 

A cavity with a small aperture or a flat surface with a perfectly absorbing coating 

can be considered blackbodies, even if they are not perfect blackbodies: in such cases, 

the isotropic emission in not received by the whole surface (Figure 3.7). 

 
Figure 3.7 Models of black bodies 
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3.1.3 Planck’s Law 

The Planck’s Law describes the distribution of emitted energy as a function of 

wavelength based on a given temperature. The spectral radiance, the power radiated by 

a blackbody b per unit surface and per unit of solid angle: 

L	,ୠ(λ, T) = 	
2hcଶ

λହ[݁ݔ(hc λKT⁄ )− 1] 
W m2 μm-1 sr-1 Eq 3.16 

where h = 6.6256 x 10-34 Js is the Planck’s constant, k = 1.38054 x 10-23 JK-1 is Boltzmann’s 

constant, c = 2.998 x 108 ms-1 is the speed of the light and T is the absolute temperature of 

the blackbody in degrees Kelvin. 

The Planck’s Law is commonly represented by a curve family (Figure 3.8) 

showing that, for a given temperature, magnitude of the emitted radiation varies with 

wavelength.  
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3.1.4  Wien displacement Law 

Looking at Planck’s curves (Figure 3.8), the spectral radiance curve at a constant 

temperature passes through a maximum. The locus of the maximum spectral range for a 

given temperature corresponds to a line which is obtained by derivation of Planck’s law 

and it is known as the Wien’s Law: 

λ୫ୟ୶ =
2897.7	

T
 Eq 3.17 

Figure 3.8 Plank's Law: the spectral radiance of a blackbody (Maldague, 2001) 
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3.1.5  Stephan-Boltzmann Law 

Stephan-Boltzmann Law is obtained by integrating Planck’s Law over all 

wavelengths (0 ≤ ߣ ≤ ∞). It provides the total exitance Mb for a blackbody at 

temperature T: 

Mୠ = 	σ	Tସ Eq 3.18 

where σ is known as the Stephan-Boltzmann constant and 

ߪ = 	 ହ݇ସߨ 15ܿଶℎଷ = 5.67	x	10ି଼⁄  W m-2 K-4. 

 

3.1.6  Radiation emitted in a spectral band 

The fraction F(λ1, λ2) of the total emission in a spectral band (λ1 to λ2) is obtained 

by integration of Planck’s Law (Figure 3.9): 

F(λଵ,λଶ) = 	
∫ L,ୠ(λ)dλమ
భ

∫ L,ୠ(λ)dλஶ


= 	
L,ୠ(λ)dλ
σ	Tସ = 	F(0, λଶ)− 	F(0,λଵ)	. Eq 3.19 
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3.1.7  Reflection, Absorption and Transmission 

In real world, perfect blackbody does not exist and the above laws are not 

applied to normal objects, unless certain corrections are made. 

Non-blackbodies absorb only a fraction φA of incident radiation φi, reflect a 

fraction φR, and transmit a fraction φT (Figure 3.10). In general cases, these absorbed, 

reflected, transmitted fractions of the incident flux depend on wavelength, orientation, 

and temperature, and also on the surface quality. Whereas the reflected flux does not 

affect the object, the absorbed flux increases the internal thermal energy, the medium 

temperature: according to the energy conservation law, every energy exchange is 

mutually compensated. When this kind of system is in a state of thermodynamic 

Figure 3.9 Fraction of the blackbody emission in the wavelength band (0 to λ) 
(Maldague, 2001) 
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equilibrium, the energy released into the ambient medium, as radiation plus reflected 

and transmitted energy, must be equal to the energy introduced into the system by 

absorption. 

It is, thus, necessary to introduce the spectral emissivity ε(λ), which is to balance 

absorptance φA(λ), where  

(λ) = 	ε	(λ) Eq 3.20 

and 

ε	(λ)	+	ୖ(λ) + 	(λ) = 1	 Eq 3.21 

 

For an opaque medium, φT(λ) = 0, and reflection and absorption are surface 

phenomena; for perfect mirrors, ε(λ) and φT(λ)  are equal to zero; for a blackbody, every 

incident flux is absorbed and ε(λ) = 1 and φR(λ) = 0 , φT(λ) = 0.  

Figure 3.10 The incident flux is divided into reflected flux, absorbed flux and 
transmitted flux 
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In some situations, such as for isotropically diffuse emitter surfaces (i.e. 

Lambertian reflectors), the reflected radiance is uniform within the hemispherical space 

above the surface, being independent of the reflected direction.  

The following coefficients are introduced: absorbance coefficient α, reflectance 

coefficient ρ, and the transmission coefficient τ. They are defined as ratios: 

α = 	
dୟ

d୧
 Eq 3.22 

ρ = 	
d୰

d୧
 Eq 3.23 

τ = 	
d୲

d୧
 Eq 3.24 

Absorbance, reflectance, and transmittance are linked together, considering the 

flux exchange on a semitransparent object: 

ρ+ 	α+ 	τ = 1			 Eq 3.25 

For an opaque object, transmission does not occur: 

ρ + 	α = 1			 Eq 3.26 
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3.1.8  Emissivity 

In the case of real surfaces, the blackbody emission is corrected by a value of 

emissivity, namely ε. Emissivity is the ability of a surface to emit energy: for this reason, 

it is expressed as the ratio of the radiation emitted by a surface to the radiation emitted 

by the blackbody and it is a unit-less quantity ranging between 0 and 1. 

Emissivity is not a constant and depends on the wavelength, on the direction of 

observation relative to the radiating surface, and on the temperature of the surface. 

Moreover, the emissivity of a surface in the visible range often bares no relation to its 

infrared emissivity1. 

The spectral-directional emissivity of a surface at a temperature T emitting at a 

wavelength λ in the direction (ϑ’, φ’) is defined as:  

ε(λ, T,ϑ’,’) = 	
L
ᇱ (λ, T,ϑ’,’)

L,ୠ(λ, T)
	 Eq 3.27 

There are many methods to determine emissivity right value. A first 

experimental approach consists of sticking on the object’s surface a piece of material of 

accurately known emissivity and good thermal conductivity (or paint part of it using a 

special coating having the same features). Then, it is necessary to heat up the object to a 

                                                        

1 For example, snow has a very low emissivity in the visible portion of the spectrum, whereas it has 
blackbodies like proprieties in the infrared. This characteristic allows a fairly snow return to the liquid state, 
even under exposure to sunlight. In fact, most of the visible solar radiation is diffused and reflected; the 
higher infrared emissivity allows the re-emission of absorbed infrared energy (Gaussorgues, 1994). 
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temperature of at least 50°C higher than the ambient temperature and then set up the 

camera spot point on the part of the object with the sticker (or previously painted). Since 

the emissivity in this part is well known, it is possible to set up its value on the camera 

together with the values of atmospheric temperature, ambient temperature, camera-to-

object distance, and atmospheric humidity. After that, it is possible to read the spot point 

temperature of the area where emissivity is known and move the spot point outside that 

area. Finally, since the two read temperatures (emissivity known temperature and 

emissivity unknown temperature) should be the same, it is possible to change emissivity 

value in the camera setting until the read temperature is the same as for the “clean” area 

of unknown emissivity (Minkina and Dudzik, 2009). 

 

Material Temperature Emissivity 

Rubber 24 °C 0.86 

Wood 20 °C 0.90 

Paper 20 °C 0.93 

Gold 100 °C 0.02 

Shiny Aluminum 20 °C 0.04 

Common Paint 20 °C 0.90 

Table 3.1 Emissivity values for different materials 
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A variant of this method consists of determining the object temperature through 

a contact probe. Then, the emissivity parameter in the camera should be tuned until the 

same reading of temperature is obtained (Minkina and Dudzik, 2009). 

In practical cases, it is not always necessary to define all dependencies and some 

common situation can occur. In IR thermography temperature measures require 

knowledge of emissivity values: tabulated values are commonly provided for normal 

incidence and for a given temperature range. Table 3.1 lists emissivity values for various 

surfaces and temperatures.  

The Kirchhoff’s Law provides a link between the absorption and emission 

processes and, thus, between emissivity and absorbance, since: 

ε	(λ,ϑᇱ,φᇱ) = 	α	(λ,ϑ,φ)	 Eq 3.28 

This is demonstrated by considering a blackbody composed by a closed and 

opaque cavity and a small object within it. At thermal equilibrium, all involved fluxes 

are compensated since temperatures are equal, and, in particular, the absorbed flux is 

equal to the emitted one.  

A dissipative body is a body whose emissivity is independent of angle of 

observation ϑ: it is called Lambertian surface, since it satisfied the condition of Lambertian 

Law. 
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3.2  Thermographic inspection 

Infrared thermography is a widely used tools for NDT (nondestructive testing), 

thanks to its properties: it is a noncontact technique with a wide area detection of 

subsurface defects, and can be used to complement the other common inspection 

technologies.  

On one hand, there are key points in Infrared thermography assessment such as 

the fast inspection rate, the non-contact needed with the studying object, the provided 

results relatively easy to interpret, and the wide application range. On the other hand, 

some difficulties may occur during an IR examination: the first occurring thing is due to 

the fact that it is difficult to obtain quick thermal stimulation which is uniform on a wide 

area, apart from the fact that a thermal stimulation induces to other thermal effects 

(convective and radiative thermal losses) that can lead to misunderstandings. Other 

criticalities are related to the limited thickness that the instrument is able to inspect, and 

the emissivity troubles (Maldague, 2002).  

 

3.2.1  Thermography techniques 

3.2.1.1  Active and Passive Thermography 

There are two main approaches in a thermographic inspection. These approaches 

are passive and active: in the first approach, structures and materials are tested at their 
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natural temperature differences, and in the second approach, relevant thermal contrasts 

are induced by an external stimulus. 

Within the active approach domain, many different techniques have been 

developed, like Pulse Thermography (PT), Step Heating (SH), Lock-in Thermography 

(LT) and Vibro-Thermography (VT).  

 

3.2.1.1.1 Pulsed Thermography PT 

Pulsed thermography is a technique which consists of briefly heating, with a 

pulse source, the specimen and then recording its temperature decay curve. The heating 

energy propagates by diffusion under the surface and the presence of a subsurface 

defect appears as an area of higher temperature with respect to the surrounding areas. 

Such phenomenon occurs in different ways, depending on defect deepness: deeper 

defects are observed later and with a reduced thermal contrast. In particular, the 

observation delay time t is a function of the square of the subsurface defect depth z:  

t	~ 	z
ଶ
αൗ  Eq 3.29 

α is the material thermal diffusivity. This equation also indicates that the radius of the 

smallest detectable defect should be, at least, one to two times larger than its depth 

under the surface (Maldague, 2002).  
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PT is one of the most used thermal stimulation methods, thanks to its inspection 

quickness (from a few ms, for high thermal conductivity specimens, to a few seconds for 

low thermal conductivity materials). The shortness of the heating phase has also the 

advantage of preventing damages to the component, with respect to longer heating time.  

Different configurations are possible: point inspection (in which the heating 

source is a laser or a focused light beam), line inspection (in which the heating source is 

a line lamp or a scanning laser), and surface inspection (in which the heating source is a 

lamp or a flash lamp and there is a complete analysis of the phenomenon, even in case of 

non-uniformity of the heating source). 

Moreover, two different approaches are used: reflection and transmission. In 

reflected cases, the thermal source and the detector are located on the same side of the 

inspected component, whereas, in transmitted cases, they are located one on each side of 

the component. Generally, the reflection approach is used for detection of defects 

located close to the heated surface, and the transmission approach is used for detection 

of defects close to the rear surface.  

 

3.2.1.1.2 Lock-in Thermography 

In Lock-in thermography, a periodic thermal stimulation is submitted to the case 

study, and the generated thermal waves are detected and recorded. Lock-in terminology 

refers to the necessity to monitor the exact time dependence between the reference input 
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signal and the output signal. The resulting oscillating temperature field (which follows 

the oscillating thermal stimulus), in the stationary regime, is remotely recoded through 

its thermal IR emission, with the aim to observe its amplitude and phase.  

Resulting IR images are different from thermographic ones: both phase and 

amplitude images are available. The first ones are related to the propagation time, 

whereas amplitude images are related to the thermal diffusivity. The depth range of 

amplitude images is roughly given by thermal diffusion length μ: 

μ = 	ඥ2k ωρc⁄  Eq 3.30 

where k is the thermal conductivity, ρ is the mass density, c is the specific heat and ω is 

the modulation frequency. Eq 3.30 means that a low modulation frequency will probe 

deeper (Maldague, 2002).  

 

3.2.1.1.3 Pulsed Phase Thermography PPT  

In some way, this process combines advantages of both pulse thermography and 

LT. In fact, a specimen is pulse-heated, as in PT, and the mix of frequencies of the 

thermal waves are unscrambled by performing the Fourier transform of the temperature 

decay, on a pixel by pixel basis, thus enabling computation phase images, as in LT.  

These are the steps that follow: for each pixel (i, j), the temporary decay f(x) is 

extracted from the image sequence, and then the discrete Fourier transform F(u) is 
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computed (where u is the frequency variable). Finally, the phase is computed from the 

real R(u) and imaginary I(u) components of F(u). The main difference is that in PPT the 

analysis is performed during the transient and not during the stationary mode, as it 

happens in LT.  

 

3.2.1.1.4 Step Heating SH 

In this process, the increase of surface temperature is monitored during the 

application of a long heating pulse at low power. Temperature-time relations are 

connected to specimen feature and defects. Different information is possible to be 

analyzed, such as: the temperature line scan at a specific time after heating, the 

collection of temperature line scans as function of time, and the reconstructed image at a 

specific time.  

This technique is often applied to evaluate composite structures or to evaluate 

coating thickness.  

 

3.2.1.1.5 Vibrothermography VT 

In vibrothermography, a conversion from mechanical to thermal energy occurs: 

under the effect of mechanical vibrations, induced externally to the structure at a few 

fixed frequencies, heat is released by friction precisely at defect location. If there is a 
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change in the mechanical excitation frequency, the local thermal gradients may change 

accordingly. 

VT allows the detection of flaws hardly visible by other IR thermography 

techniques and the inspection of large structural areas. On the other hand, the required 

mechanical loading may be difficult to achieve (Maldague, 2002).  

 

3.2.2  Thermography instruments 

Many IR imagers are radiometers that, in such cases, are able to measure 

temperature values; on the contrary, a non-radiometric tool is used when a quantitative 

measurement of temperature is not required, but a qualitative image is necessary to be 

displayed. Non-radiometric imagers are used, for example, for night vision and 

surveillance applications.  

Infrared thermographic systems are composed, at a minimum, by a detector and 

an image formation component. More complete instruments also integrate an image 

processing tool and a display system. 

Many factors are involved in the choice of the IR detection system (like the 

temperature of the specimen and the amount of available money): one important aspect 

consists of the selection of the operating wavelength band (Maldague, 2002). Commonly, 

the useful portion of the IR spectrum ranges from 0.8 to 20 μm and some criteria in band 

selection are: operating distances, indoor-outdoor operations, and body’s temperature 
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and emissivity. As Planck’s law highlights, high temperature bodies emit most of their 

radiation in the short wavelengths, therefore, objects at ambient temperature (300 K) 

peaks in the long wavelengths range. Low wavelengths are preferred for outdoor 

operations.  

The two basic IR devices are focal plane arrays (FPA) and scanners.  

The most common infrared camera has a Focal Plane Array (FPA): in this 

technological tool, each pixel which makes up an IR image is measured with an 

individual detector. Detectors are arranged in a flat, two-dimensional array, which is 

placed in the focal plane of the optical system of the imager (Figure 3.11). 

 

 

FPA are based on two different detector types: Photon Absorbers and Photon 

Detectors. Micro-bolometer belongs to the first type: the absorber is made of a passive 

energy absorbing material that is warmed by the IR radiation. The increased 

temperature is proportional to the surface radiosity. The detector temperature is then 

Figure 3.11 Focal Plane Array Detectors configuration 
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Detector 

IR image 
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determined by measuring a temperature dependent material property such as electrical 

resistance. The pixels are typically 30 by 30 μm and are micro-machined in monolithic 

wafers that also incorporate signal acquisition and processing. On the contrary, photon 

detectors are active elements: a photon striking the detector triggers a free charge, which 

is collected and amplified by an electronic circuit. Detectors and read-out circuits are 

constructed on different substrates and are electrically connected into a hybrid assembly 

by Indium bump bonding. A variety of detector materials are used today, each with a 

specific spectral range and specialized application. Common detectors are summarized 

in Table 3.2. 

Detector 
Material 

Wavelength 
[μm] 

FPA Size Sensing Operability Cooling 

InGaAs 0.9-1.6 320 x 240 Detection > 99% Uncooled 
InSb 3.0 – 5.0 1024 x 1024 Detection > 99% Cooled 70K 

QWIP 
(GaAs/AlGaAs) 

8.0 – 9.0 512 x 512 Detection > 99% 
Cooled 

<70K 

Microbolometer 7.5-13.5 
(limited by 

optics) 
320 x 240 Absorption Typical of 

Si process Uncooled HgCdTe 1.0 – 20.0 
(Limited by 

optics) 
1024x1024 

Table 3.2 Focal Plane Arrays Devices 

 

In a scanning imaging system, one or more detectors are combined with a single or 

multiple-axis mirror system: images are thus acquired combining individual 

measurements (Figure 3.12). Single point measurement is combined into a line; many 

lines then compose the final image. These systems have the main advantage of being 



 

140 

able to acquire image arrays of any size, but the main limitation is that the frame rates 

are relatively low, if compared to FPAs. 

 

 

 

3.3  Thermography measurements 

Bodies’ thermal radiation is a theory strictly related to temperature 

measurements by infrared camera. Many different heat fluxes are to be taken into 

account: 

 the flux emitted by the investigating object ϕob 

 the flux emitted by the environment and reflected by the investigating 

object ϕrefl 

 the flux emitted by the atmosphere ϕatm 

Figure 3.12 Scanning System Configuration 
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Detector 
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 the flux emitted by camera optical components and filters (in many 

mathematical models, its influence is considered negligible on the 

measure) 

These fluxes are expressed as follows (Minkina, 2009): 

φ୭ୠ = 	 ε୭ୠ 	(T୭ୠ)TTୟ୲୫(Tୟ୲୫)M୭ୠ(T୭ୠ)	 Eq 3.31 

where εob is object surface emissivity; Mob is object’s radiant exitance (Wm-2); TTatm 

is the band transmittance of the atmosphere; Tatm and Tob are atmosphere’s and object’s 

temperature, respectively (K). 

φ୰ୣϐ୪ = [	1− ε୭ୠ	(Tୟ)	]	εୟ(Tୟ)	TTୟ୲୫(Tୟ୲୫)Mୟ(Tୟ) Eq 3.32 

where εa is ambient surface emissivity; Ma is ambient radiant exitance (Wm-2); Ta 

is ambient temperature (K). 

φୟ୲୫ = 	 [	1− Pୟ୲୫ 	(Tୟ୲୫)	]	Mୟ୲୫(Tୟ୲୫) Eq 3.33 

where Matm is atmosphere radiant exitance (Wm-2); Tamb is ambient temperature 

(K). Figure 3.13 shows a diagram illustrating environment – object interactions in 

temperature measurements. 
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The camera output signal s can be described as (Minkina, 2009):  

s	 ≈ C	(	φ୭ୠ 	+ φ୰ୣϐ୪ + 	φୟ୲୫) Eq 3.34 

where C is a parameter depending on atmospheric damping, camera’s optical 

components, and detector’s proprieties (Minkina, 2009).  

 

3.3.1  Measuring uncertainties 

Uncertainties are key notes in every measuring system and inherent to the 

assessment of measure accuracy. For this reason, it is important to evaluate error’s 

causes in order to reduce misunderstandings and data evaluations. In general, the 

absolute error of measurement is the difference between the real and the measured 

temperature values: depending on their nature, errors can be thus divided between 

Figure 3.13 Schematic depiction of an Infrared measure of related to an object (2) 
through an infrared camera (4). 3 is the atmosphere and 1 in is the surrounding 

environment 
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systematic errors and random ones. In particular, systematic errors can be grouped in 

errors of methods, calibration mistakes, and electronic path deficiencies.  

In practical operative conditions, methodology errors occur in case of incorrect 

and roughly evaluation of information provided as input to thermo camera, such as 

object emissivity, environment relative humidity, and environment temperature.  

Other inaccuracy on measuring values are related to the influence of the ambient 

radiation (direct or reflected from the object) arriving at the camera detector, detector 

noise, object’s shape influence (in particular, shape effects will be deeper analyzed in the 

following chapter), and incorrect evaluation of atmospheric transmission and radiance 

(Minkina, 2009).  

The atmosphere between the source of radiation and the detector is usually 

caused by measurement perturbations. This effect is due to many causes: first of all, the 

emitted infrared energy is attenuated by the atmosphere, whereas temperature gradient 

and turbulence create inhomogeneities in the air refractive index, all of which tend to 

degrade image quality. Finally, the atmosphere is itself a source of radiation; in 

particular, this effect is mainly due by two phenomena: the self-absorption by the 

atmospheric gases, and the absorption due to scattering by particles in the air, by 

molecules and by aerosols (Gaussorgues, 1994). As regards the first effect, the problem 

of the energy attenuation introduces a systematic error that depends on the working 

wavelength, the spectral band used, the distance and weather conditions.  
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3.4  Applications 

Infrared Thermography origins come from the early 1800s, when the English 

physicist William Herschel found out a thermal radiation outside the deep red in the 

visible spectrum: this invisible light was later called infrared. During next years, thanks 

to many other scientists’ studies, infrared thermography has become a useful technique 

to mapping object’s surface temperatures (Meola C., Carlomagno G. M., 2004). 

The military field was the first to develop infrared imaging systems and to use 

them since the Second World War. New applications have been developed during the 

ages, with technology advances, and thermography is currently used in many different 

fields, from medicine for diagnosis and treatment planning to agricultural applications, 

for example to detect ice propagation into cultures, with the aim to develop new frost 

protection technologies. Other applications involve environment (IR thermography can 

be used to monitor pollution propagation), building surveys, and cultural heritage. Most 

IR applications concerns industrial purposes, related to maintenance, non-destructive 

evaluations, technological fields and thermo-fluid dynamics (Meola C., Carlomagno G. 

M., 2004), which use of such technologies can help to improve products design and 

fabrication. 

In practice, observations of surface effects due to the propagation of heat in the 

material can be used to obtain information about the internal structure of the medium. 

Generally observations must be made during the transient regime, because they rely on 
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the relative heat transfer rates within the material. Radiation contrasts become 

undetectable as soon as the temperature equilibrium is reached (Gaussorgues, 1994). 

This method reveals very useful in non-destructive testing, as it is possible to detect 

inhomogeneities in thermal pulse propagation due to discontinuities in the structure of 

the component under examination.  

 

3.4.1  Thermography in industrial processes 

Since infrared thermography provides a real-time temperature mapping, it is an 

essential tool for observation, testing and control of industrial processes. Many 

applications can be counted in many different fields: product quality is often very 

dependent on the precision of thermal parameter control in the manufacturing process; 

the detection of air bubbles in float glass manufacturing process is an example. 

Moreover, infrared thermography is the only thermal test to detect rapidly moving 

objects: for example, in the nuclear industry, the temperature of encapsulation of 

radioactive waste is monitored by infrared imaging of the flow of molten bitumen.  

The testing of a process by infrared thermography can be performed either by a 

passive or an active method.  
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3.4.1.1  Active Pulsed thermography 

In pulsed thermography, the work piece being inspected is submitted to a 

thermal pulse and the subsequent temporal temperature response refers to the 

subsurface flaws, and the optimal time of observation is proportional to the square of 

the depth for the defect considered.  

Pulsed thermography with external stimulation is used for material properties 

studies, by means of lamps, thermal radiators, lasers or air/water jets. Some examples 

refer to graphite-epoxy composites and aluminum bonded laminates: this choice is due 

to that fact that these two materials have opposite thermal behaviors and properties 

(Maldague, 2001).  

TNDT techniques applied to composite material allow to evaluate impact damages: 

in aerospace industry, the service life of a graphite-epoxy component can be reduced 

drastically as a result of impact damage, such as bird strike, introducing fiber breakages 

or delaminations. In such cases, TNDT is well suited for damage detection in composite 

structures, since it is well suited to detect delaminations and can be deployed directly 

on-site, requiring only an external access (Maldague, 2001).  

Thermal methods are also used to characterize industrial materials: a typical 

problem consist of evaluating the fiber-resin ratio in a graphite-epoxy piece. 

Inappropriate temperature, pressure, or assembly conditions can cause epoxy resin 

evacuation: if this happens composite mechanical properties will be completely different 



 

147 

from the designed ones. Errore. L'origine riferimento non è stata trovata. shows a 

common configuration: since the material has an oriented structure with anisotropic 

properties, an elliptical pattern can be observed. The ratio between the two ellipse axes 

is related to the fiber orientation (Maldague 1993). 

 

Thermography in aluminum industry is considered as an important alternative to 

NDE technique. Bonded laminates, for example, are particularly investigated: 

aluminum-aluminum and aluminum-foam are increasingly used in many industrial 

fields (such as transports). Since unpainted aluminum has a low emissivity (ε ~ 0.05), 

thermal inspection is possible only if high-emissivity is applied to the object surface: 

static and mobile configurations are then studied, in order to detect defects (Maldague, 

2001).  

In Ghosh 2011, pulsed thermography is applied for quantitative non-destructive 

evaluation in Fiber Reinforced Polymer strengthened bridges. The use of externally-

bonded Fiber Reinforced Polymer composites is an efficient method for the 

strengthening of deficient concrete components in civil infrastructures. By this 

Figure 3.14 Thermal analisys of fiber orientation in composite materials and eliptical 
thermal obtained pattern (Maldague 1993) 
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consideration, monitoring and inspection are essential subjects to ensure public safety. A 

test program was performed with a cycling load applied on an examination specimen.  

Pulsed thermography is used in many quality control applications, in order to 

evaluate product conformity to the standards. In this context, an interesting application 

refers on the use of pulsed thermography for space launch vehicles inspection (Burleigh, 

1994). Components of space vehicles and aircraft are generally inspected completely, in all 

their parts, for safety reasons. Ultrasonic x-ray and “coin tapping” (a defect altering the 

noise frequency) are common NDT techniques used on these applications, along with 

the use of thermography that is now increasing. In Atlas space launch vehicles, for 

examples, the thrust structure at the aft end is a composite sandwich comprised of 

aluminum honeycomb core, with fiberglass sheets. TNDT were used to test on these 

parts during manufacture, assembly and on the launch pad at Cape Canaveral, 

providing improvements in inspection time and costs (Burleigh, 1994). 

In all these applications, the thermal contrasts obtained over defective areas are 

generally small (few degrees), whereas the thermal stimulation of the inspected surface 

causes an increase in temperature of up to 10°C: this aspect is related to the difficulty to 

obtain a wide surface including high energy deposit with uniform distribution.  

In some other applications, the structure itself can provide thermal stimulation 

originated from its interior: in such cases, the thermal perturbation consists of changing 

the temperature of a circulating fluid. Some examples include the evaluation of a 
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corrosion damages in pipes, due to the flow corrosive liquids, or the analysis of internal 

structure of jet turbine blades. In the case of pipes corrosion evaluation, the aim is to 

detect cavitation damages in pipes before catastrophic failure occurs without any 

defected components replacement (Figure 3.15). 

 

The assessment of jet turbines blades is another possible application for the 

inspection of inner surface with internal perturbations, through a gas or liquid rig as 

thermal stimulation (Figure 3.16). The failure of one blade can lead to dramatic 

consequences, considering blade’s high rotation speed during operations. To prevent 

these types of incidents occurring, blade temperature can be continuously monitored in 

order to detect earlier sudden abnormal blade temperature rise, before any potential 

failure. According to the basic principles for blades inspection through thermography, it 

can be considered that the flow circulation of a fluid, at various temperatures in 

transient thermal regime, allow to detect blocked passages through delayed arrival of 

Figure 3.15 A corroded bent pipe is inspected through a thermal-camera in order to 
detect the presence of defects: experimental set up (Maldague, 2001) 
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the thermal front. Supported by these considerations, if thickness of a blade’s portion is 

unexpectedly increased, any thermal disturbance will reach the outer surface of this 

portion after a time period longer than that required (Maldague 1993).  

 

 

3.4.1.2  Lock-in and pulsed phase thermography 

Lock-in thermography responds selectively to induced temperature oscillations 

and to their local delay time. Supported by these considerations, this method is well 

suited to investigate situations in which dynamic heat transport may be affected by 

inhomogeneities in material structure and subsurface.  

In many applications, wood is employed as an external layer with cheaper 

material insight. In these cases, it is important to assert proper bonding between the core 

and the wood skin, for both esthetical and structural reasons. Lock-in thermography 

thus offers interesting results, whereas ultrasonic and x-ray do not. Many tests 

Figure 3.16 Experimental apparatus for thermographic inspection on turbine blades 
using internal stimulation: experimental set up (Maldague, 2001) 
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demonstrated the capability to detect subsurface structure up to 2 mm in depth and as 

small as 4 mm in diameter.  

In case of pulse phase thermography, a long thermal pulse of 20 to 30 s is used 

with low-frequency content, suitable to detect deeper artifacts. In Figure 3.17, it is 

possible to see an example of wood inspection using both lock-in and pulsed phase 

thermography.  

 

Lock-in thermography can also be employed to determine defect detections and 

fatigue cracks (Izumi, 2010). For example, in Wu 1998, phase sensitive modulation 

thermography is combined with modulated ultrasound: in ultrasonic testing the defect 

detection is performed “selectively” without considering the intact structures around the 

defects, whereas in lock-in thermography, through optical excitation, the defect 

detection is performed considering all the other structural features.  

Figure 3.17 Sample geometries inspection through PPT and LT: stair veneered coating 
of variable thickness (Maldague, 2001) 
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3.4.1.3 Passive thermography 

An important field of inspection by TNDT is of considerable importance in the 

construction industry application. Many research studies are focused on the detection of 

thermal losses and building’s thermal insulation improvement, in order to save energy. 

The detection of trapped moisture in walls and roofs, the localization of buildings 

insulation defaults, the estimation of heat losses, and the historical building 

refurbishment are some of the problems commonly encountered in thermography 

practice.  

 

Buildings’ thermal diagnosis is evaluated also through active thermography: in 

Candoré 2008 is presented a study on the definition of a method for insulation defects 

detection by stimulated IR thermography (Figure 3.18). 

Green buildings and sustainable constructions have a wide interest in actual 

research: Kolokotsa et al. 2012 presents an analysis of mineral based coatings as a 

passive solar technique that contributes to buildings’ energy efficiency. The thermal 

Figure 3.18 Some examples of passive infrared thermography applied to buildings 
insulation defaults (Candoré, 2008) 
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performances of a series of mineral based samples are tested by infrared thermography 

(Figure 3.19): different samplers are exposed to the external environmental conditions 

and, through IR images analysis, a quantitative result on the energy efficiency is 

provided.  

 

The temperature distribution on surface buildings by thermography is one of the 

most useful applications: in Hoyano 1999, measurements on two different external 

surface buildings are presented with the aim of defining their heat characteristics by 

time-sequential thermography. Other interesting examples are in Sham 2012: a 

technique for continuous surface temperature monitoring is applied to investigate the 

nocturnal sensible heat release characteristics by buildings (Figure 3.20). 

Figure 3.19 Analysis of mineral based coating for buildings: experimental set up and 
thermal images acquired for different samples (Kolokotsa, 2012) 
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Other applications for TNDT are related to roads and bridges: in these cases, 

detection of delaminations and breakdown of cement matrix are possible, due to 

differences in thermal conductivities (Figure 3.21). In this context, a case study regards 

the structural health monitoring of bridge infrastructures by the development of a 

bridge condition decision support system to compare up-to-date bridge condition 

metrics from multi data inputs (Endsley, 2012).  

Figure 3.20 Some examples of thermography inspection on buildings surface: on the 
top the heat flux of the same building is presented (Hoyano, 1999) in summer (on the 

left) and in winter time (on the right). In the bottom part, a continuous surface 
monitoring is performed and the visible and infrared images are proposed (Sham, 

2012) 
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Predictive maintenance for electrical utilities is one of the most known 

application fields for passive thermography. In this context, an automated diagnosis 

system is developed in Chou 2009: experiments are performed on capacitors, 

transformers, and other power transmission equipment (Figure 3.22).  

 

Figure 3.22 Infrared and visible images on power transmission equipments: a 
transformer on the left and an electric cable on the right (Chou, 2009) 

Figure 3.21 Bridge deck delamination map created by thermal IR images (Endsley, 
2012) 
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An interesting case study (Botsaris, 2010) applies thermography as an estimator 

of photovoltaic module performances, in which a fast and accurate in situ temperature 

monitoring is really important. A comparison between the thermographically measured 

operating temperatures with the expected ones has been performed (Figure 3.23). 

 

 

3.4.2  Medical Imaging 

High body temperature has always been considered as proof of illness. Body 

temperature range between 36.6 and 37.5°C could be considered as normal, but if it 

range beyond that values, it could be considered as indicator of possible illness. As 

human body and skin produce infrared radiation naturally, since the 1960s infrared 

thermography has been considered as a diagnostic method in medical sciences (Lahiri, 

2012). Supported by these considerations, IRT has been extensively used in many 

Figure 3.23 Thermal image of an inspected photovoltaic panel module: the central cell 
presents an unexpected behavior (Botsaris, 2010) 
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different medical fields, like diabetic neuropathy, vascular disorder, breast cancer 

detection, thermoregulation study, fever screening, muscular or rheumatologic pain, 

and so on. An early diagnosis is possible from infrared images, since thermal patterns 

are easily recognizable and thermographic findings are generally easy to interpret in 

comparison with other clinical findings for potential associations.  

In human infrared thermography, some procedural notes should be pointed out: 

the temperature and humidity of the experiment-room is kept within comfortable limits, 

and the patient is kept in a comfortable environment, so that the mild thermal stress 

produces results in vasoconstriction aided cooling of skin. Moreover, the patient should 

be protected from exposure to direct sunlight until a “thermal acclimation time” is 

needed to achieve thermal equilibrium (Lahiri, 2012). 

Thermoregulation is a monitoring process in which heat is transferred from the 

core to the skin by blood passing through peripheral blood vessels, losing body heat 

faster. Thermography is a useful monitoring tool for thermoregulation process. As an 

example, in the majority of healthy people, temperature of hands, feet, and face 

increases after immobilization. This aspect is due to blood redistribution, which causes 

skin temperature to rise after immobilization and relaxation. An example of 

thermoregulation is presented in Lahiri, 2012, in which the local heating in ear-skull 

region has been monitored through IRT while talking with hand-held mobile phones: 

they observed temperature increasing with higher specific absorption rate mobile 
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phone. Figure 3.24 shows a facial thermal image after 1 minute and 15 minutes talking: 

temperature increases up to 4.59°C (Figure 3.24). 

 

 

Breast cancer is one of the most common cancers for women and early detection 

is a key factor for successful treatment and survival chances. In this context, infrared 

thermography is considered as an adjunctive diagnostic tool, since it provides additional 

and functional information under thermal and vascular tissues condition: tumors, 

generally, have an increased metabolic rate and blood supply leading to localized high 

temperature spots over such areas (Lahiri, 2012).  

IRT is also a support tool in diabetic neuropathy and vascular disorder 

diagnosis. The major part of diabetic patients is affected by foot complications, due to 

blood supply (vascular disorder) and loss of sensation (neuropathy): they both cause 

changes in skin surface temperature which are detectable by thermography. Many 

studies found relationship between diabetic patients and abnormal temperatures 

Figure 3.24 Thermal images of a subject talking on a hand-held mobile phone after 1 
minute (on the left) and after 15 minutes (on the right) of talking (Lahiri, 2012) 
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patterns of feet and hands: in particular, diabetes at-risk patients have significantly 

higher mean foot temperature (mean value of 30.2°C) compared to the normal patients 

(mean value of 26.8°C). A diabetic patient is also affected by vascular disorder (Figure 

3.25): feet distal portions are at a lower temperature due to slow blood circulation and 

varicosity induced inadequate venous drainage (Lahiri, 2012).  

 

 

 

Many studies on infrared thermography medical applications evaluate its 

effectiveness for mass screening of fever, recording IR images of neck and facial region. 

In fact, it was recently used successfully for mass screening of fever in patients 

contracted SARS, a highly infectious disease caused by corona virus. In this context, 

mass screening was the main program to be conducted for the detection of potential 

SARS infected persons to prevent the spread of this disease (Lahiri, 2012). The SARS case 

Figure 3.25 Thermal image of left lower limb of a 28 years old male diabetic patient 
suffering from vascular disorder (a). (b) Temperature profile along the red line 

indicated shown in (a). An arrow indicate shows the lowest temperature (Lahiri, 2012) 
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is an example of how IRT can be a powerful tool for initial mass screening of people 

during public health crisis.  

Many other useful IRT applications in medical field can be signed: dental 

diagnosis, dermatological applications, blood pressure monitoring, rheumatic disease 

diagnosis and eye syndrome and ocular diseases (Tan, 2009).  

 

3.4.3  Architectural and cultural heritage 

Cultural heritage conservation processes require continuous monitoring, in order 

to detect defects’ conditions at an incipient stage, so that any restoration treatments can 

be easily and efficiently planned. In such cases, thermography plays an important role in 

order to identify degradation causes and to define cause-effect relations.  

The exposure to adverse environmental conditions, thermal and mechanical 

stress, temperature and humidity excursions (which can cause material expansions and 

contractions with no control) are some of the artworks main degradation causes. In 

particular, some materials, such as wood or parchment, are significantly affected by 

thermo-hygrometric variations; others can be easily affected by corrosion, crack 

propagation or consistency loss. Frescos, mosaics, and paintings have some common 

degradation causes, such as pollution and vapor absorption.  

Some interesting case studies are presented in Bodnar 2012, in which stimulated 

infrared thermography is used as a support tool for mural paintings’ restoring. At the 



 

161 

abbey church of “Saint Savin sur Gartempe”, which is a UNESCO world heritage site, 

the nave’s continuous barrel vault is completely covered with mural paintings, which 

have been recently restored. During restoration works, the zone surrounding the back 

wheel of the painted wagon was studied through stimulated infrared thermography 

analysis (Figure 3.26) and some gradual detachments were observed. Moreover, in the 

same work, salt damages were detected by IRT. These studies show the importance that 

photo thermal methods have in helping mural paintings restoration, and it seems to be 

precise, fast, and objective. 

 

 

 

Thermography can be usefully employed as a diagnostic tool. In fact, it may help 

temperature variations monitoring in protected areas, and it represents also a valuable 

tool for non-destructive evaluation of artworks and buildings of historical or civil 

Figure 3.26 Murals paintings of the abbey of “Saint Savin sur Gartempe” and the 
thermographic inspection performed. The third image represents the IR image of the 

analyzed area: on the back wheel represented, some detachments are recognized 
(Bodnar, 2012) 
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interest, for being able to show the presence of humidity, separations, and, in some 

cases, stone compositions. For example, in Ludwig 2012, a methodology to assess the 

state of conservation of the facades, especially ceramic finishing, is developed and 

applied on historical buildings. 

Periodic inspection of architectural structures should be planned to evaluate 

existing conditions and discover buildings deficiencies at an incipient stage. In this 

context, in many cases, thermography is applied as a multi-methodological approach to 

non-destructive evaluation of architectural structures. In Meola 2005, a multi-

disciplinary and multi-methodological approach to NDE applied to architectural 

structures is proposed and IR thermography is meant to be used in addition to other 

techniques, such as ultrasonic and electric-type and micro-geophysical methods. Passive 

infrared thermography was applied to control the condition of mosaics covering some 

external walls of the case study building. Images were acquired by the transient cooling 

process, after several hours to sun exposure. It resulted that some parts of the mosaic 

were damaged and assessed to be in urgent need of repair and restoration, because of 

detached wall tiles and air bubbles (both are shown in Figure 3.27).  

 
Figure 3.27 Mosaic inspection by thermography: a) building facade; b) IR image of the 

squared area in a); c) enlargement of the sqared area (Meola, 2005) 



 

163 

 

 

The employment of IR images offers the possibility to create profile of 

temperature variations that provide information about thermal inertia. In Danese 2010, a 

visual analytical exploration of multi-temporal IRT images of a historic building has 

been performed with the aim to identify patterns of similarities and differences in the 

spatio-temporal variation in a wall temperature and to verify if such patterns could be 

attributed to material type and decay level. The presented case study involves the facade 

of the Cathedral in Matera (Italy), that is made up of local calcarenite entirely, and the 

performed work has the aim to identify degradation pathologies on that material (Figure 

3.28). Many IR images of the same referenced surface were acquired at 30 minutes 

distances from each other, and were combined together into a multi dimensional 

dataset. Different patterns are identified: some of them identify different levels of 

Figure 3.28 The main facade of the Cathedral of Matera and the location of the 
thermographic data collection (Danese, 2010) 
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surface alveolization and erosion, other patterns show material loss, and some others 

show humidity level and presence of water in calcarenite.  

Thermography can be used into a multidisciplinary approach for cultural 

heritage protection, based on the diagnostics of the environmental surroundings. In 

Ristić 2011, this protection approach is applied in a specific case study, in which an 

important accident situation occurred. Kraljievo earthquake occurred in November 2010, 

causing considerable damage in several buildings of heritage protection which needed 

to be checked and then restored. In such a case, IRT was used for an early damage 

detection of some buildings and for determining the impact of climate and moisture 

conditions.  
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4. IR thermography and RE: the data fusion process 

 

 

 

Reverse Engineering tools are widely used in many fields of science contributing 

considerably to quality control processes and product design, which technologies aim to 

reduce product time to market. Moreover, in cultural heritage branch, Reverse 

Engineering are useful tools for restoration support. In particular, optical tools can offer 

the surface description of the object of study, outputting a point cloud as a data file.  

However, infrared thermography systems are commonly used as non destructive 

testing tools, and presently wide used in many application fields. Infrared 

thermography systems are able to detect subsurface defects and material irregularities, 

according to surface temperature.  

The use of IR techniques is related to two basic needs of finding, in an easy and 

fast way, the physical location of the target object according to the acquired temperature 

values, and inspecting complex geometries and non planar surfaces. To overcome the 

trouble of conventional thermography visualization, many IR cameras superimpose the 

captured IR image on to the real image of the target object: this solution helps an 

observer to understand IR image’s location in the physical space, even if the 

superimposition corresponds to an image point matching and related points’ 
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temperature values. Moreover, there are some promising applications in which it is 

particularly difficult to find geometric correspondences between a real object and the 

displayed information on a screen, such as, for example, a scene, including no geometric 

or radiometric distinctive features, and a clutter scene (Iwai and Sato, 2012). 

The inspection of complex geometries and non planar surfaces is the other aspect 

related to an unsophisticated use of IR techniques. As outlined in Section 3.4, infrared 

inspection is affected by surfaces’ geometry and, if this aspect is not considered, some 

misunderstandings can occur.  

Supported by these considerations, the basic idea of the work described below is 

to overcome the noted difficulties that often make thermography an essential tool for 

qualitative researches. Advantages and opportunity of both Reverse Engineering and 

Infrared Thermography tools are integrated: if optical RE offers a superficial data, IR 

thermography is used to deduce the subsurface structure or the material analysis. In this 

context, the final aim is to define a common “virtual environment” in which it is possible 

to analyze temperature and superficial coordinates at the same time. Moreover, through 

Reverse Engineering, the real object shape is well defined and can be employed to 

determine geometric irregularities for temperature correction.  

During this activity, methodologies have been developed, and many 

improvements are expected in the future analysis of many case studies: as surface 

features are produced as a result of internal deformations, this aspect will bring 
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significant advantages to both industrial fields and quality control processes. Moreover, 

in civil engineering it is expected to be simpler to relate buildings external appearances 

or coatings to the buildings internal features.  

In this chapter, methodology guidelines are described at first, and then analyzed 

in detail, through the description of physics and conceptual principals inherent to the 

integration and to the temperature correction processes. A visualization environment 

has been prototyped and an example is finally shown.  

 

4.1 Data fusion between surface data and infrared data 

This research activity is focused on defining a method to integrate geometric –

surface data to temperature data: the main purpose is thus to develop a tool able to 

display both surface and temperature data within the same environment, in order to 

better understand temperature configurations with respect to the object’s shape and 

independently from the user’s point of view. This tool is expected to be integrated, in the 

near future, in post processing steps of Reverse Engineering processes, as well as in 

infrared thermography reports. Moreover, since thermal tomography techniques are 

widely used (Maldague, 2001), the developed process would like to create an 

environment in which it will be possible to analyze surface and volumetric data. The 

technological advantages and improvements in thermography interpretation and data 

evaluation are expected, and should reduce misunderstandings.  
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The integrating model should be in accordance with some basic features and 

requirements: first of all, points’ temperature values would have to be used in place of 

IR images and the integrating model should be independent from the specific 

instrumentation used. In addition to this, starting from two different data format and 

information, the method would integrate and combine data that should be merged into 

a common file format creating a unique 3D reference system. Other than that, at least 

another main feature is related to the object’s shape: once temperature points are 

associated to surface coordinates, the corrected temperature profile should be obtained 

in accordance with the thermal-camera point of view and be subsequently adapted to fit 

the available object’s shape.  

 

4.2 Data fusion: state of the art 

The integration of several data coming from different sources is an interesting 

research field, which aims to have a wide view of the case study, within its working 

context and according to its physical characteristics. In particular, many studies concern 

the integration between 3D surface data and thermal data, but they differ not only in the 

application field and in the used RE instrument, but also in the type of integration 

performed. Data fusion can be performed at different levels: in fact, texture mapping is 

performed by the image registration that is based on the identification of homologous 

points, for visible and infrared imagery. Similarly, texture mapping can be done through 
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specific visible markers, which are reported in terms of temperature and surface. Other 

integration processes, that can be carried out instead of texture representations, consider 

temperature values in accordance with geometric shapes., Furthermore, another data 

fusion procedure considers the projected temperature profiles, represented through a 

color map, as displayed on the object.  

The following section shows some integration examples related to the methods 

applied to the used process.  

 

4.2.1  Integration processes by texture mapping methods 

A texture file is an image file, with .jpg or .btm (bitmap) extension, which is used 

to add color to a 3D model. At the end of the color adding process, an RGB value is 

associated to the coordinates of each acquired point. Photographic textures are often 

used in 3D visualizations: a picture is taken either from the Reverse Engineering 

instrument or from a metric/non metric camera. In case of picture from the Reverse 

Engineering instrument, the photo results already registered on the point cloud, so that 

a color feature is already associated to each point of the final mesh in a semi-

automatically manner. This is due because the image acquisition is obtained from the 

same point of view of the instrument used for the definition of the range map. In case of 

picture from a metric/non metric camera, the image is not referenced yet. It is thus 

necessary to define some transformations, like scaling, rotations, and translations, and to 
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process and stretch it, in order to find out correspondences between the image’s pixels 

and the acquired point.  

InfraRed image can be used as texture for the mesh acquired through a RE 

instrument, and not through metric/non metric camera. Texture mapping application 

can also include a combination between an infrared image and the RE-instrument 

acquired shape. In Cabrelles 2009, it is shown a method to record accurately and 

exhaustively a heritage monument by means of Terrestrial Laser Scanning (TLS), related 

to close-range photogrammetry and thermal imaging. TLS system provides a 3D point 

cloud and the integration of photogrammetry provides a model-based photograph 

enhancement. The integration between TLS data and thermographic data provides 

further information about the current state of conservation of the historic monuments. 

The presented case study is a tomb, Djin Block No.9, in Petra (Jordan). All acquired 

images, captured by visible or infrared spectrum, are positioned and oriented in the 

object space for surface texture acquisition (Figure 4.1). A further example of IR 

information mapped to 3D geometry is presented in Voltolini 2007, in which 

quantitative analyses are then performed. 
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In case of old buildings, geometry and spatial associations are very important to 

locate the position with potential thermal defects; moreover, heat losses measurement is 

not possible if area is not included in the quantification method, and, especially in old 

buildings, it is not always possible to identify or update geometric representations. In 

such cases, the acquisition process is inherent to the most accurate thermographic 

inspection. In Langüela 2012, visible and IR images sequences are acquired from the 

same point of view and then registered through an image fusion process. An image 

matching technique is then applied for a 3D surface reconstruction based on a 

photogrammetry-based method. IR images result automatically registered on the final 

mesh (Figure 4.2).  

Figure 4.1 Djin Block No.9, in Petra (Jordan), a picture of the heritage monument (on 
the left), the acquired surface with a photographic texture (in the middle), and the 

surface with a thermographic texture (on the right) (Cabrelles, 2009) 
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4.2.2  Integration processes with marker registration 

Within this context, marker is a reference point commonly used for image 

matching or for registration in RE applications. In this type of applications, a marker is a 

represented object both in thermal images and in visible images that can be used to 

register infrared images in a more precise way, for range maps acquisition,  including 

limitation that come from potential uncertainties.  

As an example, in Satzger 2006, a specimen 3D surface is captured through a 

fringe projection system: the specimen is rigidly connected to a navigation cage, 

including some specific optical marks that the infrared camera can record making 

possible the registration process (Figure 4.3).  

Figure 4.2 Thermographic inspection and 3D reconstruction: a case study. On the left, 
an image fusion between IR a visible images is performed and an orto-thermogram is 

then obtained (in the middle). On the right, the final thermographic 3D 
representation is shown (Langüela, 2012) 
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4.2.3  Video projection as integration process 

In all application processes already mentioned, thermography image is mapped 

on a 2D screen: the real object space differs from the displayed object space. The aim of 

the Iwai and Sato (2010) contribution is to overcome this trouble. They presented a novel 

approach in which the captured thermal image is optically and simultaneously 

superimposed on the target object in the real space through a video projection-based 

method (Figure 4.4).  

Figure 4.3 The thermographic equipment including the specimen in the navigation 
cage. On the right, the thermogram used as a texture for the 3D acquired shape 

(Satzger, 2006) 
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The integration process consists of the geometric registration of the infrared 

image to the object. The final image is projected through radiometric compensation 

displaying the desired color to the object’s surface. An example is shown in Figure 4.5.  

 

 

 

Figure 4.5 Experimental result for a cluttered scene: on the left there are paint tubes 
under environmental light; in the middle the thermal image is shown; on the right the 

projection is applied (Iwai and Sato, 2010) 

Figure 4.4 Diagrams of thermography visualization: a conventional approach (on the 
left) and a video projection based approach (on the right) (Iwai and Sato, 2010) 
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4.2.4  Integration processes with volumetric RE systems 

Volumetric Reverse Engineering systems, such as Magnetic Resonance (MR) and 

Computer Tomography (CT), are widely used, especially in biomedical applications. 

Such technologies provide many images related to cross sectional features of the patient 

or of the specimen and through post-processing procedures and elaboration procedures, 

it is possible to obtain a 3D image.  

As discussed in Section 3.4.2, digital infrared thermal imaging is a valuable 

auxiliary tool for the early detection of many diseases in medicine; the relationship 

between thermal images and the 3D reconstructed volume can lead to a whole 

interpretation of medical data, overcoming thermography lacks of information 

regarding local anatomy. Such data combination enhances the clinical analysis of the 

patient by merging together the anatomical and physiological information into one-

image dataset. In Bichinho et al. 2009, it is proposed a tool, which combines MR images 

and IR images: a thresholding technique is used to define object’s external contour for a 

MR dataset. A 2D projection is then created: it is a representation of the external 

anatomical shape related to the real object and it is used for pixel matching with the 

equivalent IR image. The thermographic image is thus projected onto the related object 

contour (Figure 4.6). Some similar procedures are also applied in Brioschi et al. 2007.  
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4.2.4  Integration processes with calibration procedures 

The above described integration methods are related to image level: a 

registration process is performed between a 3D shape and an image (texture) which is 

projected on the 3D surface. Different and more promising methods carry out 

integration at a point level, in order to get point temperature values being involved.  

In Barone et al, 2006 and 2011, an integration procedure is proposed and 

biomedical applications are performed. A 3D optical digitizer is based on an active 

stereo vision approach; the 3D optical digitizer and the thermographic tool are fixed 

onto the same support. Thermal data are acquired after a calibration procedure. The 3D 

thermogram is achieved by a composition of the infrared image with the 3D geometry 

(Figure 4.7): since the two systems are calibrated together, it is possible a direct 

association of temperature values to point coordinates.  

Figure 4.6 Volume visualization at four different cutting levels. The MR information 
is clearly visible together with the surface temperature (Bichinho et al., 2009) 
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4.3  Methodology 

This research activity includes a procedure for the definition of a 3-Dimentional 

thermogram. The whole process can be divided into three main activities steps (Figure 

4.8): acquisition phase, data elaboration procedure, and definition of a visualization tool.  

Figure 4.7 3D thermography example. Images from the top-left: the real object, the IR 
image, the surface acquired, the surface with the visible texture and the thermogram 

on the surface acquired (Barone et. al, 2006) 
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The acquisition procedure is performed at three different levels: range map, 

texture, and point’s temperature values. The object shape is acquired by an optical laser 

scanner tool and, simultaneously, by texture of the specimen external appearance and 

then inspected by infrared system. Different acquiring tools provide data collection at 

different information levels. Data integration can be found in a wide knowledge of the 

case study sample, from a physical and geometrical point of view.  

Object’s 3D shape is obtained by an optical laser scanner: processed data can be 

created in point or mesh format suitable for visualization work which offers a detailed 

description of the specimen surface geometry. Moreover, texture can be captured and 

then applied to the geometrical model, in order to provide its external image features. 

Figure 4.8 Methodology for data fusion: workflow 

Laser scanner: 
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IR thermography: 
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The image can be acquired both from the laser scanner and from an external camera, 

with particular optical lenses and features. In the case of the external camera, the image 

is obtained from the same point of view than the laser scanner: thus, the texture can be 

applied to the 3D shape without further image transformations. Otherwise, if the texture 

is captured with a support system, that is external from the laser scanner, an image 

processing phase should be needed for the information extraction, in which geometrical 

transformations are applied to the acquired photo in order to define the same laser 

scanner view.  

The other acquisition phase is the thermographic one: the thermal-camera and 

the laser scanning are geo-referenced systems that can define their respective positions. 

The outcome of the acquisition phase is information collection which has to be 

connected and linked together in the following phases, for better reading the case study.  

The next phase is related to the definition of an integrating process method. 

During the registration phase, all collected data are transferred to the same reference 

system, so that it is possible to identify, for each acquired point, a temperature value 

coming from the infrared thermography. Texture images are registered as well.  

As outlined in Section 3.3.1, object’s geometry and surface’s shapes deeply 

influence temperature values determined by the infrared thermography inspection. The 

basic idea of this part of activity consists of the use of geometry related to the image 

acquired during the scanning process for defining a geometric factor necessary to correct 
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temperature values. The form factor of points’ temperatures is then corrected. The form 

factor includes, for each point, the direction of its normal vector and  the distance from 

the acquiring system. This procedure aims to define the real temperature values, 

independently from the camera view and distance.  

Finally, not only the 3D coordinates, but also corrected temperature values are 

associated to each surface point.  

The final phase includes the visualization tool requirements needed to get 

geometrical and temperature information within the same virtual and navigable 

environment. Moreover, time information can be added to the system, considering 

acquiring more IR images of the same scene at different time sequences. Time 

information can help understanding of the non-stationary phenomenon and can be 

useful in IR tomography applications.  

 

4.3.1  The acquisition process 

Different systems and tools are used in the acquisition procedure, with the aim to 

acquire different data from different sources. 

Reverse Engineering technologies are used to acquire 3D shape of the object of 

study. As highlighted in Chapter 1, many systems can be exploited to achieve surface 

geometrical information: in this application, as well as in the study presented in Section 

2.3.1, Konica Minolta Vivid-9i Laser Scanner has been used. It is an optical active system 
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which calculate points’ coordinates though triangulation principles (more detailed 

information is presented in Appendix A).  

Laser scanner offers a range map as outcome of each scanning procedure: a point 

cloud containing all points coordinates can be displayed as a mesh including 

information about points’ connections and surface’s normal vectors. Polygon Editing Tool 

(PET 2.0 ®, Konica Minolta Holdings Inc., Osaka, Japan) is the software which manages the 

whole scanning processes. Each acquired range map is saved as a .cdk file format and 

then processed in the RapidForm (3D Systems Inc, Korea) software. Elaboration phase can 

then be performed, if filling holes procedure or smoothing procedure should be 

necessary. The final mesh is then saved with a specific file extension that can be read in a 

numerical computing programming language. According to the saved file format, the 

same mesh is described with different highlighted information: some more detailed 

notes are shown in Appendix D. 
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Among all different file formats, the selected file is the one with point format 

(pts), which is suitable for arrays numerical computing. PTS is an open ASCII format 

used for exchanging point cloud data with other software. It is composed of formal 

header and coordinates of each vertex (Figure 4.9). The mesh, exported with pts 

extension, can be read as an array in which the number of rows is two times than the 

Figure 4.9 Example of Pts format files exporting 
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number of acquired points, and the number of columns is three: the first half of the array 

describes X, Y and Z coordinates for each point (one point for each row), as acquired in 

laser scanner reference system. In the second half of the array, for each acquired point, 

the normal vector is described through Nx, Ny and Nz coordinates (Table 4.1 shows an 

example). The point’s normal vector is the average, of the normal vector. The normal 

vector is related to every triangle mesh vertex, weighted according to the areas. Pts files 

are then changed in .txt files, in order to be imported for the following integration 

process.  

Laser Scanner CCD sensor can store an array of 480 x 640 points: the export 

process changes the array size in such a way that the array shows 3 columns (X, Y and Z 

coordinates) and the number of rows depends on the number of acquired points (it is 

doubled, as discussed above). Matrix store process consists of points’ index changing in 

the file format. The first point in the column array coincides with the point (1,1) in the 

CCD configuration, whereas the point 2 is the point (1,2) in the CCD sensor. The first 

row in the CCD is related to the first part of the column array, which is composed by 640 

points. Point indexed (2,1) correspond to the point described at row 641 of the stored 

array (Figure 4.10). 
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-189.3400268555 397.5000000000 -705.0200195313 
-189.3400268555 400.0000000000 -705.0200195313 
-189.3899383545 400.0000000000 -702.5097656250 
-189.3899383545 397.5000000000 -702.5097656250 
-189.3400268555 395.0000000000 -705.0200195313 
-189.3899383545 395.0000000000 -702.5097656250 
-189.3400268555 392.5000000000 -705.0200195313 
-189.3899383545 392.5000000000 -702.5097656250 
-189.3400268555 390.0000000000 -705.0200195313 
-189.3899383545 390.0000000000 -702.5097656250 
………………. ………………... ………………… 
0.9996467486 0.0000000000 0.0265777724 
0.9995848932 0.0000000000 0.0288104362 
0.9999122121 0.0000000000 0.0132502110 
0.9999122121 0.0000000000 0.0132502110 
0.9996467486 0.0000000000 0.0265777724 
0.9999122121 0.0000000000 0.0132502110 
0.9996467486 0.0000000000 0.0265777724 
0.9999122121 0.0000000000 0.0132502110 
0.9996467486 0.0000000000 0.0265777724 
0.9999122121 0.0000000000 0.0132502110 
……………… ………………. …………….. 

Table 4.1 Example of the first ten point of a mesh saved in a pts file format: the first 
part of the table correspond to point’s coordinates in mm, whereas the second part are 
the normal vector correspond to the respective acquired point. The three coordinates 

are shown in the column 
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It is possible to acquire the photographic image from the laser scanner by means 

of an available option and tool into the scanning instrument. It gives the possibility to 

register a texture on the acquired mesh in an easy and fast manner. The acquisition 

process is not possible for the temperature information. In order to link together infrared 

and geometrical information, it should be possible to define instrument positions and 

movements. To determine transformations between the thermal-camera reference 

system and the laser scanner system, it is necessary to use a connection device. The 

connection device will have the aim to reduce uncertainties in the instruments degree of 

freedom and to help define instruments respected movements.  

Figure 4.10 Points’ position in CCD Sensor and Array, in case of the whole frame 
acquiring 

c =(1,3) a= (1,1) b=(1,2) X Y Z 

point a – row 1 
point b – row 2 
point c – row 3 

d =(1,640) 

point d – row 640 

point e – row 641 

e =(2,1) 

f =(2,640) 

point f – row 1280 

g =(480,640)

point g – row 307200 
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Since laser scanner systems requires a tripod tool to acquire any surface image, 

and thermal-camera devices often use a tripod tool too, the same stand is used for both 

instruments to easy link their reference systems together. In particular, a C section bar 

has been customized for this particular application and fixed onto the laser scanner as a 

connection tool between the two instruments (Figure 4.11). That connection device was 

realized according to the optical center of both systems and to their cases.  

Moreover, the connection device gives the possibility to move both systems with 

the same tripod, at the same time, so that it is possible to measure in a quite precise way, 

how necessary thermal-camera movement is to have the same frame acquired with the 

laser scanning device. 

 
Figure 4.11 Acquisition set up 
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4.3.2  Infrared system devices 

During the whole activity, different infrared tools have been used. In particular, 

during the first part of this study, it has been used Flir ThermaCAM™ SC640, whereas, 

during the second part the study focused to the use of the Testo 882 (Figure 4.12).  

Both instruments are full real time radiometric thermal-cameras. The choice of 

using two different instruments is based on the fact that at a final stage of the 

experimentation an additional camera was purchased, the Testo Camera, to take the 

advantage of the used-method comparison in order to get empirical results irrespective 

of the instrument used. Neither instrument resolution, nor the working spectral range 

influenced the used method.  

Flir ThermaCAM™ SC640 detector has a Focal Plane Array (FPA) uncooled 

microbolometer with a resolution of 640 x 480 pixels. The lens has a focal distance of 8 

mm and a Field of View (FOV) of 32°. The working spectral range is from 7.5 to 13 µm.  

The main features related to Testo 882 are the available spectral range from 8 to 

14 μm with a detector of 320 x 240 pixels. A relevant option of this instrument is the 

Super Resolution tool: this technology improves the image quality, increasing the 

usable, geometric resolution of the thermal image by a factor of 1.6 and it provides four 

times more readings, comparable with a higher detector resolution (www.testo.com). The 

Super Resolution technology uses the natural hand movement to take multiple slightly 

offset photos in rapid succession: an algorithm can be used to convert these individual 
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thermal photos into a high resolution image. Real readings are taken, and no 

interpolation processes are performed.  

More detailed information on instruments features and performances are shown 

in Appendix E. 

 

 

Both cameras have their own software for image reading and report making: Flir 

Quick Report is the software used by Flir, whereas IR Soft is the software used by Testo. 

Generally, IR images are loaded and it is possible to modify some input parameters, 

such as environment humidity, atmospheric temperature or surface emissivity. 

Additionally, temperature analysis are performed, changing color pallet, referring 

visible to IR images, setting up isothermal areas, or defining temperature profile along 

arbitrary lines. 

In this work, the most interesting thing has been the possibility to be moved from 

acquired images to point temperature values: for this reason, that kind of softwares have 

Figure 4.12 The two thermographic devices used: the Flir ThermaCAM™ SC640 (on 
the left) and the Testo 882 (on the right) 
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been used to export an array containing acquired temperature values. Flir ThermaCAM, 

for example, acquires an array containing 640 x 480 points and 307200 temperature 

values have been collected at each acquired image. Those values, in Celsius degree, have 

been exported as a table and then saved in a txt file format.  

 

4.4 Data Registration 

During the registration phase, data coming from laser scanner and IR 

thermography had to be transformed in the same coordinates reference system. To 

easier perform this activity, the two instruments were linked together, during the 

acquisition process.  

Input and output of this phase have been both arrays: coordinates of acquired 

points have been presented in an array of size 2nx3, where n is the number of acquired 

points. As above discussed, the first part of this array is formed by point’s coordinates, 

whereas in the second part normal vectors are arranged. The number of acquired points 

depends on specimen size, scanner-object distances and lens used: the maximum 

number of acquired point is 307200 (according to the CCD sensor size, which is 640x480 

pixels).  

Point’s temperature values are the second input array: the size of this array 

depends on IR camera resolution and capability. Flir ThermaCAM SC640 has been 

noticed to be able to measure more temperature values points than the laser scanner 
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camera: since its detector size is 640x480 pixels, at each image it can evaluate 

temperature in 307200 different points, at the same time. Otherwise, Testo 882 has lower 

resolution capabilities and, at each measure, it acquires 76800 temperature values, which 

correspond to a detector size of 320x480.  

At the end of the process, a unique array was provided and the size of the final 

matrix was nx4: at each point, it was associated a temperature value in addition to its 

coordinates.  

The described procedure was entirely performed in Matlab: this software, 

necessary for numerical calculations, has been used to process routines and rules in 

order to associate its temperature value to each point.  

The defined registration method is outlined in Figure 4.13; in the next paragraph, 

all steps are described in detail.  
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4.4.1  The registration workflow 

All input arrays were loaded in Matlab environment. Point’s coordinates were 

acquired through a 640 x 480 CCD array; when they were saved in a points file format, 

they were stored as a list in which the first point coincided with the point in the first row 

Figure 4.13 Registration workflow 

Calibration 

Indexation 

INPUT: 
X,Y,Z coordiantes; 
Reference systems 
translations and 

rotations 

OUTPUT: 
x,y coordinates in 
camera reference 

system 

Thermo reading 

INPUT: 
Temperature 

array T 
(480 x 640) 

OUTPUT: 
Column array of 

temperatures 
(307200 x 1) Point-temperture 

INPUT: 
x, y, image 

coordinates; 
camera focal distance 

f; 
Temperature array T; 

Points coordinates 
X,Y,Z 

OUTPUT: 
Points / 

temperature 
association: 

Array X,Y,Z,T 
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and in the first column of the CCD sensor (Figure 4.10). Temperature values were saved 

in the same size of the infrared detector: the final format was thus different from the 

point coordinates array. The first step consisted of reducing temperature array to the 

size of the scanning array: the temperature array was thus transformed in a column 

vector, in which the first value coincided with the point (1,1) of the temperature array, 

whereas the last value was the pixel (m,n), where m = 480 (240 for Testo camera) and n = 

640 (320 for Testo camera). In Matlab environment, it has been also possible to display 

temperature values as a mesh, in which the X and Y coordinates coincided with the pixel 

position, and the Z coordinate was the temperature value. A color map was used to 

display temperature changes (Figure 4.14).  

 
Figure 4.14 Temperature array displayed in Matlab environment 

T1 (1,1) T2 (1,2) T640 (1,640) 

T641 (2,1) 

T307200 (480,640) 

T640 
T641 

T307200 

T2 
T1 
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Similarly, a visualization routine could be defined for surface’s depiction, 

through point’s visualization in Matlab. While performing this activity, it was important 

to notice that Konica Minolta Laser Scanner can acquire up to 307200 points, arranged as 

an array of 480 x 640 points. In practical operational activities, in very few cases, 

acquired points have been the whole acquirable points, and, in many parts of the frame, 

no points were present. Since, in those pixels, no points’ coordinates have been acquired, 

when acquired points were stored as an array, no correspondences have been present 

between acquired points and their position into the frame. Thus, an indexation process 

was necessary to identify points positions and then to identify correspondences between 

points and temperatures.  

To perform this activity, it has been created a routine, in which, for each acquired 

point, pixel coordinates (i,j) depended on lens focal distance, and pixel dimension 

depended on CCD sensor (for laser scanner Konica Minolta it is 0.0132mm). The 

indexation has been obtained through a linear interpolation of acquired points, in order 

to define correspondences with points that should be acquired when their X and Y 

coordinates were positioned in the center of every pixel. At the end of this process, it has 

been thus possible to display a 3D shape in Matlab environment, and, moreover, since 

point’s location is known, to register temperature values on the acquired shape.  

A calibration process was then performed, and the image orientation 

corresponded, at each pixel, to the 3D coordinates. This activity was divided into two 
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main parts: in the first one, thermal-camera reference system has been oriented as well 

as the laser scanner system; in the second one, correspondences between points and 

coordinates have been identified.  

The two reference systems were analyzed in detail: laser scanner system was 

centered into CCD sensor. The origin was posed in sensor center, the X-axis was positive 

for point on its right, the Y-axis was positive for those points which were greater than 

the center and the positive part of the Z-axis was turned into the laser scanner (Figure 

4.15). 

 

 

Similarly, thermal-camera reference system was into the detector, but the axis 

origin was the intersection of the optical axis with the image plane. In a pixel oriented 

view, the center was the upper-left corner of the image. Then, the y-axis was directed 

Figure 4.15 Laser Scanner Reference System. On the right in detail the CCD sensor: 
the acquiring object is considered as posed in front of it 
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Z Y 
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downwards (Figure 4.16). Since an output image was obtained, no Z-axis has been 

defined. 

 

 

This two reference systems had to be linked together: to perform this activity, it 

was necessary to define which kind of transformations the thermal-camera system had 

to perform, to overlap laser scanner system. Some movements could be constant for 

every acquisition: those transformations depended on the laser scanner and the thermal-

camera dimensions, and on the tripod and connection tool structures.  

Figure 4.16 Thermo Camera Reference System 
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Figure 4.17 Translations between the two reference systems: on the top the red point 
is laser scanner reference system origin; on the bottom thermal-camera dimensions. 

The total distance between the two reference systems origins is defined as sum of the 
two contributes 
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These transformations have been highlighted as translations and can be summarized in 

Figure 4.17. In Figure 4.18 the connecting device is shown: its dimensions have to be 

considered in the total translation movements. 

 

 

Other movements change during the acquisition process can be as follows: since 

laser scanner and camera lenses have different focal distances and they had been 

overlapped, they could not acquire the same frame. For this purpose, it would have been 

necessary to move the tripod in order to acquire the thermographic image, when laser 

scanner had already acquired object’s 3D shape. These movements were performed 

without moving the tripod, but only its head: this is a very important aspect to define 

clearly, and in a fast and an enough reliable way, which movements have been carried 

out. Such movements are translations or rotations.  

Figure 4.18 Constant movements (Translations) between the two reference systems 
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Both constants and variable movements have been noted and then applied in the 

simulation environment to define reference systems transformations. Then, co-linearity 

equations have been used to define for each acquired point its corresponding pixel in the 

thermographic image, and thus its related temperature value.  

 

4.4.2  World and camera coordinates systems 

 

 

Object’s position in a 3D space can be described in two different ways (Figure 

4.19). The first one is based on the use of a coordinate system, which is related to the 

observed scene. This are called world coordinates and indicated as column vectors (Eq 

4.1): 

ᇱ܆ = [	Xଵᇱ , Xଶᇱ , Xଷᇱ 	] Eq 4.1 

Figure 4.19 Camera and world coordinates systems 
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A second coordinate system, known as the camera coordinate, is fixed to the 

moving camera observing a static or dynamic scene (the X3 axis is aligned with the 

optical axis of the camera system) (Eq 4.2): 

܆ = [	Xଵ, Xଶ, Xଷ 	] Eq 4.2 
In this application, the world coordinate system coincided with the laser scanner 

system, whereas the thermal-camera reference system coincided with the camera 

system. Transition from world to camera coordinates required a translation and a 

rotation: a translation vector T has been necessary to shift the origins of the camera 

system to the origin of the laser scanner system. The orientation of the coordinates 

system has been then changed by a sequence of rotations around suitable axis, so that 

the two reference systems coincided to each other.  

Mathematically, translations have been described by vector subtractions, 

whereas rotations by multiplication of the coordinate vector coincided with a matrix (Eq 

4.3): 

܆ = ᇱ܆)	܀ −  Eq 4.3 (܂	

A common procedure to define the rotation transformation has been the three 

Eulerian rotation angles (φ, ϑ, ψ): the rotation from the shifted world coordinate system, 

into the camera coordinate system that is decomposed into three steps (Figure 4.20): 

1. Rotation about X3’ axis by φ (Eq 4.4, Eq 4.5): 

Xᇱᇱ = 	Rథ	X′ Eq 4.4 
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Rம = 		
cosϕ sinϕ 0
−	sinϕ cosϕ 0

0 0 1
 Eq 4.5 

2. Rotation about X1’’ axis by ϑ (Eq 4.6, Eq 4.7): 

X ᇱᇱᇱ = 	Rణ	X′′ Eq 4.6 

R = 		
1 0 0
0 cosϑ sinϑ
0 −	sinϑ cosϑ

 Eq 4.7 

3. Rotation about X3’’ axis by ψ (Eq 4.8, Eq 4.9): 

X = 	Rట	X′′′ Eq 4.8 

Rந = 		
cosψ sinψ 0
−	sinψ cosψ 0

0 0 1
 Eq 4.9 

In this standard mathematical approach, the right-hand coordinates system is 

used and rotation angle is counted in a positive direction going counter-clockwise. 

Cascading the three rotations Rφ Rϑ Rψ, the matrix is yielded: 


−cosϕ	ψݏܿ ݏܿ ϑ ϕ݊݅ݏ ψ݊݅ݏ ݏܿ ψ݊݅ݏ ϕ+ ݏܿ ϑ ϕݏܿ ݊݅ݏ ψ ݊݅ݏ ϑ ψ݊݅ݏ
݊݅ݏ− ψܿݏϕ − ݏܿ ϑ ϕ݊݅ݏ ψݏܿ ݊݅ݏ− ψ݊݅ݏ ϕ+ ݏܿ ϑ ϕݏܿ ψݏܿ ݊݅ݏ ϑ ψݏܿ

݊݅ݏ ϑ ϕ݊݅ݏ ݊݅ݏ− ϑ ϕݏܿ ݏܿ ϑ
൩ 

Eq 
4.10 

The inverse transformation, from camera to world coordinates, which is the 

transformation used in this process, is given by the transpose of the matrix Eq 4.10. 
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Once defined the transformation to change the thermal-camera reference system 

into the laser scanner system, correspondences between points and pixels have been 

defined. This process has been inspired by some principles which are strictly related to 

photogrammetric Reverse Engineering process: digital close range photogrammetry 

measures objects directly from photographs or digital images captured with a camera at 

close range. The mathematical model inherent to this process is the central perspective 

projection: the world coordinate system is positioned in object’s space, whereas the origin 

of the camera reference system is at the perspective camera center O, its z-axis coincides 

with the optical axis and it is directed away from the image plane.  

Figure 4.20 Rotation of world coordinates X’ and camera coordinate X, using the three 
Eulerian angles (φ, ϑ, ψ) with successive rotations about the X3’, X1’’ and X3’’’ axes 
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A point A in object’s space has coordinates (XA, YA, ZA); its projection, through O, 

in the image plane, expressed in the camera coordinate system, gives the coordinate 

points a (xa, ya, -c), where c is the camera focal length (Figure 4.21) (Eq 4.11). A and a are 

called homologous.  

X = 	X୭ + 	(−	μ)R	xୟ 
Eq 4.11 

where μ is a positive scalar quantity, proportional to the object distance from A to O 

(Yilmaz et al, 2008). The reverse transform is given as (Eq 4.12): 

ቈ
xୟ
yୟ
−c
 = 	 μିଵ 	

γଵଵ γଵଶ γଵଷ
γଶଵ γଶଶ γଶଷ
γଷଵ γଷଶ γଷଷ

൩	
X −	X
Y −	Y
Z −	Z

൩ Eq 4.12 

Figure 4.21 The central perspective projection (Yilmaz et al, 2008) 
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Vectors (XA – XO) and xa are collinear, but of opposite sense. The third equation of 

the reverse transform above can be written explicitly in term of the scaling factor μ, and 

substituted in the first two equations, leading to the collinearity equations (Eq 4.13, Eq 

4.14): 

xୟ = 	
−	c	[	γଵଵ	(	X −	X	) + 	γଵଶ	(	Y −	Y	) + 	 γଵଷ	(	Z −	Z	)]

[	γଷଵ	(	X −	X	) + 	γଷଶ	(	Y −	Y	) + 	 γଷଷ	(	Z −	Z	)]  
Eq 4.13 

xୟ = 	
−	c	[	γଵଵ	(	X −	X	) + 	γଵଶ	(	Y −	Y	) + 	 γଵଷ	(	Z −	Z	)]

[	γଷଵ	(	X −	X	) + 	γଷଶ	(	Y −	Y	) + 	 γଷଷ	(	Z −	Z	)]
 Eq 4.14 

At the end of this process, for each acquired point, a (x,y) coordinate has been 

associated. These correspondences are in mm: to find the correspondent pixel in the IR 

image it has been necessary to transform such mm values in pixels values, through an 

indexation process. To perform this calculus the thermal-camera pixel dimension has 

been defined as (Eq 4.15):  

pixeldim =
f ∗ ݊ܽݐ ቀ	fov

2 ∗	 π180	ቁ

320
 Eq 4.15 

where f is lens focal distance, fov is thermal-camera field of view and it is a data from 

datasheet2. Finally, univocal correspondence between (x,y) coordinates and pixels has 

been defined along with temperature vector, and it has been associated to laser scanner 

acquired points. To each point it has been associated different information, such as: the 

                                                        

2 A camera field of view (fov) is an optical feature depending on both lens focal distance and image plane 
dimensions. In particular the field of view is the angle of the shot, when the focal distance is at infinity. Since 
the image is generally rectangular and its dimensions are w x h, the fov can be horizontal or vertical: 
ுݒ݂ = 2 arctan ቀ௪

ଶ
ቁ and  ݂ݒ = 2 arctan ቀ 

ଶ
ቁ. 
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3D coordinates (X, Y, Z); the normal vector (Nx, Ny, Nz), showing directions of the 

acquired surface, and the temperature value (T). Moreover, a photographic data (R, G, B) 

could have been associated. 

 

4.5 Data correction 

Temperature values are affected by shapes and geometry properties; the use of 

the 3D system can be applied to define a correction factor for the thermographic data, in 

order to obtain point temperature values, independently from camera views.  

As anticipated in Section 3.3.1, “heat” measured by an infrared camera depends 

on the distance and the angle between the camera and the object of study. Therefore, 

when complex shapes are examined, the surface geometry produces a signal distortion 

that may lead to faulty defect detection. Heat emission and absorption is at maximum 

level when the normal to the surface is parallel to the direction of the flow of energy and 

the signal is weaker when the angle between the normal to the surface and the direction 

of the flow increases (Ibarra-Castanedo et al., 2003). Without object’s shape information, 

defects located under the surface just below point B in Figure 4.22 are difficult to detect 

by TNDT.  
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In Tkáčová et al 2010, some experimental data on distance and angle influence in 

temperature acquisition process by thermography are presented: in particular, 

biomedical application is analyzed. Various measurements are taken at 5 different 

subject distances and 8 different camera-subject angles, as shown in Figure 4.23.  

  
Figure 4.23 Angle and distances influence in thermography inspections: on the left   

an experimental set up, on the right some temperature maps at angles of 20°, 50° and 
80° (Tkáčová et al, 2010) 

20° 50° 

80° 

Figure 4.22 Complex shapes inspection: distance and angle effects (Ibarra-Castanedo 
et al., 2003) 
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Moreover, a blackbody plate had been analyzed at different distances and angles, 

showing an illusory decreasing in temperature profile: the main results are reported in 

Figure 4.24. 

 

 

The aim of this part of the work is to generate standardized thermograms, which 

could be used for quantitative studies. The idea inherent to this study is to define a 

correction factor for each acquired point which is function of point’s normal vector and 

of its distance from thermal-camera detector. The acquired 3D profile is thus a tool to 

define a new thermogram which is independent from camera position and object’s 

shape.  

 

Figure 4.24 Blackbody distances and angle dependence in temperature reading 
(Tkáčová et al, 2010) 
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4.5.1  Non planar geometry inspection 

In general, applications of Thermographic Non Destructive Testing (TNDT) to 

non planar surfaces produces distortions mainly due to two effects (Maldague, 2001): 

the first one considered the inspection of the heated surface and the area parallel to the 

heating device that would receive more energy with respect to the related perpendicular 

area. The second effect asserted that areas parallel to the IR camera emit more energy in 

its direction (Figure 4.25).  

 

 

Many methods for shape correction in TNDT have been identified. The idea 

related to such work is to use thermographic equipment to get information on object’s 

geometry. Once its shape is known, it is possible to correct thermograms for non-planar 

effects (Maldague, 2001).  

 

Figure 4.25 The problem of shape curvature in TNDT: an original and a rectified 
thermogram example (Ju et al, 2004) 
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4.5.1.1 Point – Source Heating Correction 

A high power bulb, on the top of the camera, is used as thermal stimulation 

devices. A calibration procedure is performed, to obtain the early recorded thermogram 

(ERT) in the 3D inspection volume, located in front of the IR camera. It is acquired just 

after the thermal stimulation. More ERTs are recorded at a range of distances in front of 

the IR camera, in order to obtain a complete databank of the expected temperature 

distribution within the inspection volume. After this calibration phase, the inspection is 

performed and the correction consists of matching specimen with the ERT of the 

database on a pixel-by-pixel basis. This matching produces a range image of the scene 

inspected, which can be used furtherly to correct subsequence thermograms from the 

specimen. 

The main disadvantages are related to the fact that this method is limited to 

objects of restricted curvature; moreover the correction technique is related to the point-

source-like heating device, providing non uniform heating patterns.  

 

4.5.1.2 Video Thermal Stereo Vision 

In these techniques, in addition to the standard TNDT apparatus, a video camera 

and an illumination device are required. The reflectance information of the scene into a 

visual image makes it possible to determine surface curvature (which is described by ϑ 
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angle). The hypothesis assumed is that the inspected surface is Lambertian and opaque. 

Under these conditions, the visible image obey to the following relation (Eq 4.16): 

L = 	Kୢ ݏܿ ϑ + 	Cୢ Eq 4.16 

where L is the digitized intensity value, Kd and Cd are the overall calibration constants of 

the visible imaging system and they are found experimentally. The orientation image ϑ 

can be computed. The thermogram correction is performed after an image registration 

procedure, in order to align visible and IR image formats with corresponding pixel-to-

pixel format, obtained between the two images,. Curvature correction of the 

thermogram is done by dividing temperature values by cos ϑ. 

However, the temperature correction procedures can also lead to some 

disadvantages: in fact, it is necessary to cover the specimen surface with a paint which 

has both pseudo-Lambertian properties in visible spectrum and acceptable emissivity 

values in the IR one.  

 

4.5.1.3 Direct Thermogram Correction 

In this correction procedure, no extra hardware (like video camera and 

illuminating source) is required. If cases in which the heating device provides little 

dependence on distance, Eq 4.16 can be adapted and L is the digitized value of the 

thermogram and Kd and Cd the overall calibration constant of the infrared imaging 

system and ϑ is the angle between the normal to the surface patch and the direction of 
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IR camera observation. This equation can thus provide an estimation of local surface 

orientation ϑ. The correction process is performed using an ERT image after a thermal 

pulse.  

The main disadvantage consists of the assumption that the distance is large 

enough so that local depth variations on the specimen do not affect the IR emission 

process. 

 

4.5.1.4 Shape from Heating 

As in the other correction methods, this method is based on two-dimensional 

analysis of the early thermogram in the recorded sequence, which is the first useful 

thermal image of the sequence, in which defect contrast have not yet developed. 

Intensity variations are thus exclusively related to the surface geometry and not to the 

presence of a flaw.  

The assumptions of this method consider the heating flux as orthogonal to the 

specimen (the heating flux is perpendicular to the specimen axis), when the heating has 

a little dependence on distances and the surface emissivity is high.  

Specimen early thermogram is analyzed row by row and each row is divided 

into segments. If a segment is linear, as in the case of flat surfaces, the orientation angle 

ϑ is computed (Eq 4.17), as it shown in Figure 4.26 
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ϑݏܿ = 	
Tଶ − Tଷ
Tଵ −	Tସ

 Eq 4.17 

In case of the distance R increasing and a the slope S consecutively increasing, 

some more relations can be taken into account (Eq 4.18): 

S = 	
∆T
∆R

= 	
Tଵ − Tସ
∆R

 Eq 4.18 

Substituting Eq 4.17 into Eq 4.18, it comes: 

∆R = 	
Tଶ − Tଷ
S ݏܿ ϑ

= 	
∆T

S ϑݏܿ
 Eq 4.19 

In case of non linear segments, variations of distance R are lower than variations 

due to orientation ϑ. It is then assumed that, for small segments, temperature variations 

are proportionally to orientation ϑ only (Eq 4.20) (Figure 4.27): 

Figure 4.26 Heating analysis of a flat surface specimen (Maldague, 2001) 
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T − T୧ = (T୫ୟ୶ − T୧) ݏܿ ϑ Eq 4.20 

where Tmax is the local maximum temperature close to the pixel of study, which is 

at temperature T. By knowing Ti (the before heating temperature), it is possible to 

calculate the local surface orientation.  

 

4.5.1.5 Experimental Correction Methods 

In many medical fields, thermography is widely used, such as in diagnosis of 

diabetes. In these applications, body temperature in flat parts (like the palm of the hand) 

is almost the same, whereas in curving surfaces, like fingers, great differences are 

shown, even if the temperature value should be almost the same.  

Figure 4.27 Heating analysis of a curved specimen (Maldague, 2001) 
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In Chen et al. 2005, an experimental methodology was pointed out. Body’s parts 

are assumed as a cylinder, and geometrical considerations are carried out in order to 

determine projecting angles. A Gaussian curve relationship is supposed to be between 

the real and the measured temperature, according to the projecting angle and to 

unknown parameters, mathematically defined. An experimental relation was thus 

determined in order to shift from measured temperature to real temperature in case the 

shape is close to the cylinder. 

 

4.5.2  Lambert’s Cosine Law 

The principle of the proposed thermogram correction methods consists of an 

analysis of Lambert’s Cosine Law. This law, also known as the cosine law, determines 

the relationship between the intensity of radiation emitted by a surface element of a 

black body and the distribution angle α (Eq 4.21). 

Iୠ = 	 Iୠୄ ݏܿ α W sr-1 Eq 4.21 

where ܫୄ is the radiant intensity emitted in a direction normal to the surface and ܫఈ  is 

the radiant intensity emitted at angle α to the normal to the surface. This equation states that 

the radiant emissivity from a Lambertian surface is directly proportional to the cosine of angle α 

between the observer’s line of sight and the normal to the surface (Minkina et al, 2009).  

Some more geometrical considerations are added to Lambert cosine law, in order 

to define a temperature correction factor.  
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It is now considered a source S and a detector R at a distance d from S; dS and dR 

are surface elements of the source and the detector respectively. dωS and dωR are the 

solid angles subtended by dR at dS and by dS at dR respectively (Eq 4.22, Eq 4.23): 

dωୗ = 	
dR ݏܿ ϑୖ

dଶ
 Eq 4.22 

dωୖ = 	
dS ݏܿ ϑୗ

dଶ
 Eq 4.23 

where ϑR and ϑS are the angles between the line joining dS and dR and the normal 

vectors NS and NR to dS and dR respectively (Figure 4.28).  

 

 

The geometrical spread of a thin beam subtended by dS and dR is defined by 

(Gaussorgues, 1994) (Eq 4.24): 

dଶG = dS	dωୗ ݏܿ ϑୗ = 	dR	dωୖ ϑୖݏܿ =	
dS	dR ϑୗݏܿ ݏܿ	 ϑୖ		

dଶ
 Eq 4.24 

This equation is related to the temperature correction procedure described 

below.  

Figure 4.28 Beam geometry (Gaussorgues, 1994) 
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4.5.3  Temperature correction procedure 

 

 

This task has been performed in Matlab environment (a representation of the 

whole workflow is shown in Figure 4.29): point’s coordinates and point’s normal vector 

are input values, used to define geometrical correction values (Figure 4.30).  

 

Figure 4.29 Correction workflow 

INPUT: 
X,Y,Z T array; 

Point correction 
factor 

Normalization 

Registration procedure 

INPUT: 
X,Y,Z point’s 
coordiantes; 

Nx,Ny,Nz  point’s 
normal vector 

OUTPUT: 
Point correction 

factor 

T Correction 

OUTPUT: 
X,Y,Z,T* array, 

with normalized 
temperature 

values 

Visualization toolbox 
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Point’s 3D coordinates are used to calculate the distances between the 

coordinates and the thermographic tool. A distance value is obtained, in meters, for each 

point and the related expression is described in Eq 4.25: S is an acquired point and Sx, Sy 

and Sz are the related 3D coordinates. R is the camera center, and since the camera 

reference system is moved into the laser scanner system, during the registration phase, R 

3D coordinates are (Rx, Ry, Rz) = (0, 0, 0).  

d = 	ට(S୶ − R୶)ଶ + (S୷ − R୷)ଶ + 	(S − R)ଶ Eq 4.25 

The other defined parameters are the angle between the association of the camera 

to each acquired point and the normal direction of the acquired point (φS), and the 

normal direction of the instrument (φR). These values are determined considering the 

dot product between normal vectors and vector ܴܵതതതത. NR coincides with (0, 0, 1) the vector, 

Figure 4.30 Geometrical quantities used for the definition of a correction factor 

d 
R 

(0,0,0) 

NR = (0,0,1) 
φR S = (Sx, Sy, Sz) 

NS (Nx, Ny, Nz) 

ΦS 
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whereas ܴܵതതതത coincides with the point coordinates and NS is the normal vector at each 

point and it is exported from the acquiring process. 

Nୖ ∗ RSതതതത = 	0 ∗ S୶ + 	0 ∗ S୷ + 	1 ∗ S = 	 ‖Nୖ‖ ∗ ‖RSതതതത‖  ϕୖ Eq 4.26ݏܿ

S = 	1 ∗ d ∗  ϕୖ Eq 4.27ݏܿ

ϕୖ = ݏܿܿݎܽ
S
d

 Eq 4.28 

Similarly: 

Nୗ ∗ RSതതതത = 		 ‖Nୗ‖ ∗ ‖RSതതതത‖ܿݏ 	(π− ϕୗ	) Eq 4.29 

ϕୗ = ݏܿܿݎܽ 	(−	
Nୗ ∗ RSതതതത

d
	) 

Eq 4.30 

For each acquired point these tree quantities are thus defined.  

From geometrical and physical quantities enounced in Section 4.5.2, the 

correction factor for the total exitance M is described as a function of those parameters 

and it is defined as follows: 

K′ = 	
dଶ

ݏܿ ϕୖ ∗ ϕୗݏܿ
 Eq 4.31 

This value is thus the applied radiation measured by the thermal-camera, M, as a 

multiplicative factor, in order to define a correct value of the emitted radiation M’.  

Mᇱ	 = Kᇱ ∗M Eq 4.32 

Since, the correction is performed on temperature values, the Stephan-Boltzmann 

law is applied to define the relation between the total exitance and the temperature 

value (for no black bodies ε is surface emissivity): 

M = ε	σ	Tସ Eq 4.33 
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T = 	 ඨ
M
ε	σ

ర
 Eq 4.34 

A correction factor K is thus defined for acquired temperature T, in order to 

define the correct value T’. 

Tᇱ = K ∗ T Eq 4.35 

Tᇱ = ඨMᇱ

ε	σ
ర

= 	 ඨ
KᇱM
ε	σ

ర
 Eq 4.36 

K = 	 ඥK′ర  Eq 4.37 

A different factor is defined for each points of the objects surface. Those values 

are collected in a final array, which is used as multiplicative factor for the acquired 

temperature. To each point is thus associated a temperature value which is independent 

from the camera views and from the object shape. 

 

4.6 Visualization environment 

For the purposes of this work, visualization environment has been a prototype 

used to display at the same time, both shapes and temperature data. Some main 

requirements are thus noted: first of all, the first request concerns the information to be 

shown in the environment. The 3D mesh, with the acquired photographic texture, and 

the temperature map have to be shown at the same time, with the possibility to 

investigate which information each data can provide. Since the texture is a color 
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information, and the mesh is a geometrical information, those data have to be 

represented as loaded, without changing the included information during the 

visualization analysis. Otherwise, thermal data have to be read and analyzed in order to 

understand defects location. For this reason it is always necessary to change the 

visualization color map, or to insert isothermal information. All these features are 

possible in common tools for thermography repot. 

Moreover, this environment is thought to be navigable both in terms of space 

and in time. Rotations, translations, and zoom option should be possible to be activated 

(by keyboard or mouse) and applied to the 3D surface for ensuring space navigability. 

As regards time, those phenomena, in which a thermal transient is expected, can change 

their temperature profile very quickly. For this reason, it is important to be able to notice 

temperature changes as time passes. A time label should thus be added, along with the 

possibility to switch from a time instant to another one, and under each condition the 

related temperature map is analyzed.  

Finally, the defined environment should be interactive: points’ information 

should be provided, if requested. Both points’ coordinate and temperature values are 

indicated and shown for each acquired point.  

Starting from this requirement list, a visualization environment prototype is 

performed. An Open GL (Open Graphics Library, Silicon Graphics Inc.) programming 

language is used: Open GL is an open source library and platform for 2D rendering and 
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3D computer graphics and it is widely used in the design of CAD or virtual reality 

applications, scientific visualization, information visualization, flight simulation and 

video games.  

Thus, a first level prototype is designed. The mesh is saved in a stl-ASCII file 

format: this format makes a list of all faces of the triangular mesh. Each face is related to 

its three points and their coordinates to the 3D coordinate system. The visualizing tool 

has a graphical structure, in which the .stl file manages the environment on the top. All 

faces are associated and listed to this file. For each face, three vertexes are noted. 

Physical adjectives are connected as attributes: to each vertex, its 3D coordinates (X, Y, 

Z) are related, together with its normal vector (Nx, Ny, Nz) and its temperature value Tc 

(Figure 4.31). Different thermograms are associated to different time instants t. 

 

 
Figure 4.31 Graphical structure representing at the basis of the visualization 

environment 
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Data to be displayed have to be loaded into this environment, as follows: the .stl 

file format is loaded, together with a txt file containing correct temperature values as a 

vector file and stored in the right order to be associated with points. The temperature file 

is named like the .stl file, but with different extension. A progressive name will be 

assigned for time sequences.  

The defined visual environment allows all space movements; moreover, 

temperature pallet changes are possible. Four interchangeable color maps are so far 

defined: three of them take inspiration from Matlab color maps and they are Grey, Iron 

(Matlab one is called Hot) and Rainbow. In Gray pallet RGB values are always the same 

to each other: this produces a color map allocating the black color (0, 0, 0) to the high 

temperature value and the white color (255,255,255) to the low temperature value. Iron 

color map goes from dark red, to white, and rainbow color map goes from blue to red. 

Another color map is created with linear increasing of red value in the RGB scale and a 

linear decreasing of the blue value. Green trend increases up to a medium temperature 

value and then it decreases up to the maximum temperature value in the analyzed 

range. In Figure 4.32, the used color maps are shown: on the left, the linear color scale is 

sketched and, on the right, Matlab color scale is shown.  
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4.7 Experimental case study 

Some experimental studies have been performed, in order to refine the proposed 

methodology and to test it.  

Two little cans were used: whereas the first can was kept at ambient 

temperature, the second can was cooled with a heating source, so that temperature 

differences were clearly visible through a thermographic inspection. Then, these two 

cans had been put one on the top of the other one. The same scene had been acquired 

both with the Konica Minolta Vivid-9i laser scanner and then with the thermal-camera 

(Figure 4.33).  

Figure 4.32 Color maps used in the visualization environment 
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During the acquisition phase, the thermal-camera was connected to the laser 

scanner through the connecting devices above mentioned. Thus, some translation 

parameters referred to instrument’s dimensions and device structure. A rotational 

movement was then necessary to focus the same frame: the tripod head was rotated, 

around its axis of 15° (π/12 rad). The used laser scanner lens were of middle type, with a 

Figure 4.33 Experimental acquisitions: at the top, the visible and IR images acquired 
with the thermal-camera; at the bottom, the 3D acquired shape 
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focal distance of 14 mm; 35426 points were acquired and the final mesh was formed by 

69358 triangles. 

 

 

The acquired thermogram and the 3D shape were first uploaded in Matlab 

environment (Figure 4.34) and then the registration procedure was performed using 

input translation and rotation parameters and instruments’ optical features. For each of 

35426 acquired points a temperature value is associated (Figure 4.35).  

Figure 4.34 Thermographic image in pixel coordinates, as viewed in Matab 
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The correction procedure was then performed: taking into account point’s 

coordinates and their normal vectors, a correction factor was determined for each point 

and then used as multiplicative factor to correct each temperature value. In Table 4.2, 

some values related the minimum value, the maximum value, and the mean value of the 

correction factor are noted. After the temperature correction procedure, the mean 

difference between temperature before and after the correction procedure was of 

0.7650°C.  

Minimum Correction Factor 1.0275 

Maximum Correction Factor 1.0292 

Mean Correction Factor 1.0286 

Mean Temperature Difference dt 0.7650 

Table 4.2 Thermography correction: some notable values  

Figure 4.35 3D thermogram as represented in Matlab environment: after the 
registration procedure, a temperature value is coupled with each acquired point 
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Data collected were thus represented in a suitable environment. A preliminary 

visualization was set up into the 3D software. A RGB value was assigned to each point, 

in correspondence to its temperature value: a linear dependence was considered and a 

gray color map was created, in which the high temperature value was related to a 

clearer color, and a higher temperature value was connected to a darker color in the 

color map scale. Figure 4.36 shows a screenshot in which the 3D surface is displayed 

with its corrected associated thermogram value. Even if the 3D shape quality offers a 

clear representation, this visualization environment does not offer the possibility to 

investigate interactively point’s temperature values. Points and temperature are thus 

displayed in a dedicated stand-alone application. 

 
Figure 4.36 Thermographic 3D representation into a 3D software 
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The final mesh, in a stl file format, and the associated temperature values were 

loaded into the prototyped visualization tool. It offered the possibility to change color 

pallets (Figure 4.37) and to consult each triangle of the loaded mesh, in order to know 

temperature values of each point (Figure 4.38). 

 

 

 

Figure 4.37 The prototyped visualization tool: more color maps are created 
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.

Figure 4.38 The prototyped visualization tool: each triangle of the mesh of study 
includes point’s temperature information 
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Conclusions 

 

 

 

During this research activity, two different advanced methods and techniques 

have been developed in order to increase measurement accuracy for laser scanner data , 

and to integrate thermographic data with geometrical information.  

The key point of proposed methodologies is the independency of both 

workflows to specific instrument used: both error correction process and data fusion 

procedure can be applied in the same way to different laser scanner and thermographic 

devices. They are independent from instruments features, like resolution, CCD sensor or 

detector sizes or lenses and their focus distances.  

Finally, both presented techniques can be applied to a lot of different scientific 

areas, in which both Reverse Engineering and thermography are currently widely used, 

such as, for example, non destructive testing, civil engineering, industrial processes, 

cultural heritage and biomedical context. 

 

As regards error analysis, the presented activity is focused on the identification 

of systematic error portion, with the aim to define different compensation arrays 

identified on the ground of some specific operative conditions: for example, a different 
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array is found in relation to scanning focus distance, used lens and specimen normal 

directions, in order to improve measurement accuracy. Finally, an array library has been 

defined.  

The proposed methodology will improve scanning quality, particularly useful in 

those case studies in which high data accuracy is strongly required: quality control and 

design processes of small components or of precision tools and systems are some 

potential “stakeholders” in industrial engineering. In cultural heritage, Reverse 

Engineering systems are widely used as restoring support tools for monitoring systems: 

within this context, little changes in an artwork surface, due to sediments or to usury, is 

extremely important to be visible and clearly identified. For this reason, little errors in 

points coordinates definition are an obstacle to shapes exploration and analysis.  

Even if the usability of defined correction arrays is strictly limited to the 

instrument used (they are related to laser scanner serial number, since error systematic 

portion is connected to instrument features), the whole process can be applied to other 

different laser scanner instruments, since a rigorous and repeatable methodology has 

been defined. Within this context, an interesting development is related to time-of-flight 

laser scanners: even if their physical process for point definition is quite different, the 

correction workflow could be adapted to such instruments.  

Moreover, even if a quite large error compensation library has been already 

defined, some more activities can be developed to improve the correction process. The 
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first aspect is related to the integration of the exploration of non rectangular arrays: the 

methodology to integrate two different arrays acquired with different focusing distances 

seems promising, but some uncertainties are induced and they have to be defined. In 

addition, in order to make methodology more appealing and faster, it should be useful 

to implement an automatic toolbox for 3D modeling software, which in this work is 

presented as a prototype.  

 

Data fusion process aims to realize a 3D thermogram, in which temperature 

values are related to the associated 3D points. Such procedure intends to represent both 

data, temperature values and 3D points, in the same environment, so that it will be 

possible to investigate physical properties together with geometrical features for each 

surface point. Moreover, this temperature – point association allows to make 

thermography inspection more quantitative reliable, since it is independent from the 

inspection point of view.  

These data fusion and correction processes give the possibility to improve the 

inspection practice, since data obtained are clearer and more easily interpretable; in 

addition, it must underlined that the methodology is independent from specific 

instruments used. These features make the proposed methodology appealing for all 

potential inspections and testing in which thermography employment is required. In 

particular, defect detection and location will be easier, even if particular morphological 
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elements are not present: this aspect is significant in civil engineering assessment, in 

which many case studies are connected to wide surfaces inspection and in situations in 

which the repeatability of the same element or geometrical feature will be creating 

cluttering effects. Moreover, temperature correction value is expected to offers many 

improvements in particular in active thermography inspection, in which a thermal 

transient is deeply examined. 

Moreover, systems improvements can be achieved: a GPS like system could be 

used in order to obtain a more precise detection of set up configuration with thermal-

camera and laser scanner . Furthermore, such system could allow to move both 

instruments into a large working area, without lose their reference systems connection. 

Moreover, an automatic application could be defined, implementing all phases of the 

presented workflow, in order to make the whole process more fast and user friendly. 

Finally, the use of time-of-flight systems in place of triangulation laser scanners 

can be an interesting upgrade of the presented system. This aspect could extend the 

applicability of the 3D thermography method to many architectural case studying, 

where such scanning devices are currently widely used.  

 

. 
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Appendix A 

Laser Scanner Konica Minolta Vivid-9i technical notes 

 

 

Specifications 

Model Name Non-contact 3D digitizer VIVID 9i/VI-9i 
Measurement Method Triangulation, light block method 
AF Image surface AF (contrast method), Active AF 

Light-Receiving lens 
(Interchangeable) 

TELE: Focal distance f=25 mm 
MIDDLE: Focal distance f=14 mm 
WIDE: Focal distance f=8 mm 

Object Distance Range 0.6 to 2.5 m 

Scan Range 0.6 to 1.0 m (In Standard mode), 0.5 to 2.5 m (In Extended 
mode) 

Laser Scan Method Galvano mirror 
Laser Class Class 2 (IEC60825-1), Class 1 (FDA), Max. 30 mW, 690 nm 

X Direction Input Range 
(In Extended mode) 

93 to 463 mm (TELE), 
165 to 823 mm (MIDDLE), 
299 to 1495 mm (WIDE) 

Y Direction Input Range 
(In Extended mode) 

69 to 347 mm (TELE), 
124 to 618 mm (MIDDLE), 

Figure 0.1 Dimension Diagram (unit mm) 
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224 to 1121 mm (WIDE) 

Z Direction Input Range 
(In Extended mode) 

26 to 680 mm (TELE), 
42 to 1100 mm (MIDDLE), 
66 to 1750 mm (WIDE mode) 

Accuracy 

TELE XYZ ±0.05 mm/ ±0.10 mm 
MIDDLE XYZ ±0.10 mm/ ±0.20 mm 
WIDE XYZ ±0.20 mm/ ±0.40 mm 
(Conditions: Distance 0.6 m/ 1.0 m, KONICA MINOLTA 
SENSING’s standard 3D chart, KONICA MINOLTA 
SENSING’s processing software, temperature 20ºC, 
relative humidity 65% or less) 

Precision (Z, σ) 

TELE 0.008 mm/ ±0.024 mm 
MIDDLE 0.016 mm/ ±0.048 mm 
WIDE 0.032 mm/ ±0.096 mm 
(Conditions: Distance 0.6 m/ 1.0 m, KONICA MINOLTA 
SENSING’s standard 2D chart, KONICA MINOLTA 
SENSING’s processing software, temperature 20°C, 
relative humidity 65% or less) 

Input Time (per scan) 2.5 sec. 
Transfer Time to Host 
Computer Approx. 1.5 sec. 

Ambient Lighting 
Condition Office environment, 500 lx or less 

Imaging Element 
3D data: 1/3-inch frame transfer CCD (340,000 pixels) 
Color data: Common with 3D data (color separation by 
rotary filter) 

Number of Output Pixels 3D data: 640 × 480 (640 x 460 in the HIGH QUALITY mode) 

Color data: 640 × 480 

Output Format 

3D data: Konica Minolta format, & (STL, DXF, OBJ, ASCII 
points, VRML) 
(Converted to 3D data by the Polygon Editing Tool 
Software / standard accessory) 
Color data: RGB 24-bit raster scan data 

Data File Size Total 3D and color data capacity: 3.6 MB per data 

Viewfinder 

5.7-inch LCD (320 × 240 picture elements) 
* There may be rare cases in which the point that is 
normally lit or unlit may break up (dot break up); 
however, this will not have any influence on the scanning 
data. 

Output Interface SCSI II (DMA synchronous transfer) 
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Power 
Commercial AC power, 100-240 V (50-60Hz), rated current 
0.6 A (at 100 VAC) 

Dimensions 221 (W) × 412 (H) × 282 (D) mm 
Mass Approx. 15 kg (with lens attached) 

Temperature / Humidity 
Operating environment: 10 to 40°C (50°F to 104°F); 65% 
RH or less/no condensation; Installation category: II; 
Pollution degree 2; Maximum altitude 2000 m 

Storage Temperature 
Range 0 to 40°C, 85% or less (at 35°C)/no condensation 
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Appendix B 

Results: Laser beam perpendicular to the reference surface 

In this section some more details are presented as support to the definition of the 

correction arrays for systematic component of error. Tables and figures are added in 

order to provide more information on data acquired and perform corrections. 

N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.2548 0.2548 0.2272 0.2356 0.2817 0.2805 

2 0.2548 0.2548 0.2267 0.2350 0.2811 0.2775 

3 0.2548 0.2548 0.2266 0.2348 0.2824 0.2770 

4 0.2548 0.2548 0.2266 0.2350 0.2806 0.2770 

5 0.2548 0.2548 0.2250 0.2351 0.2799 0.2761 

6 0.2548 0.2548 0.2270 0.2353 0.2793 0.2766 

7 0.2548 0.2548 0.2257 0.2352 0.2789 0.2757 

8 0.2548 0.2548 0.2264 0.2347 0.2785 0.2766 

9 0.2548 0.2548 0.2268 0.2359 0.2781 0.2761 

10 0.2548 0.2548 0.2264 0.2350 0.2790 0.2762 

11 0.2548 0.2548 0.2259 0.2362 0.2793 0.2762 

12 0.2548 0.2548 0.2271 0.2362 0.2783 0.2760 

13 0.2548 0.2548 0.2256 0.2359 0.2793 0.2764 

14 0.2548 0.2548 0.2256 0.2359 0.2799 0.2778 

15 0.2548 0.2548 0.2257 0.2358 0.2795 0.2774 

16 0.2548 0.2548 0.2242 0.2358 0.2786 0.2775 
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17 0.2548 0.2548 0.2240 0.2361 0.2781 0.2776 

18 0.2548 0.2548 0.2260 0.2356 0.2786 0.2775 

19 0.2548 0.2548 0.2261 0.2363 0.2785 0.2777 

20 0.2548 0.2548 0.2263 0.2358 0.2798 0.2776 

Table 0.1 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Tele lens, 900 mm distance. 

 

N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.3127 0.3127 0.2890 0.2888 0.3408 0.3349 

2 0.3127 0.3127 0.2897 0.2908 0.3366 0.3348 

3 0.3127 0.3127 0.2926 0.2920 0.3352 0.3330 

4 0.3127 0.3127 0.2921 0.2923 0.3352 0.3325 

5 0.3127 0.3127 0.2909 0.2898 0.3342 0.3338 

6 0.3127 0.3127 0.2921 0.2920 0.3293 0.3330 

7 0.3127 0.3127 0.2891 0.2929 0.3328 0.3334 

8 0.3127 0.3127 0.2908 0.2938 0.3330 0.3332 

9 0.3127 0.3127 0.2909 0.2935 0.3323 0.3332 

10 0.3127 0.3127 0.2893 0.2936 0.3336 0.3337 

11 0.3127 0.3127 0.2904 0.2928 0.3333 0.3328 

12 0.3127 0.3127 0.2898 0.2932 0.3328 0.3324 

13 0.3127 0.3127 0.2909 0.2939 0.3340 0.3339 

14 0.3127 0.3127 0.2866 0.2942 0.3325 0.3349 

15 0.3127 0.3127 0.2859 0.2938 0.3324 0.3344 
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16 0.3127 0.3127 0.2920 0.2929 0.3329 0.3339 

17 0.3127 0.3127 0.2892 0.2926 0.3354 0.3350 

18 0.3127 0.3127 0.2868 0.2935 0.3357 0.3338 

19 0.3127 0.3127 0.2869 0.2942 0.3330 0.3334 

20 0.3127 0.3127 0.2882 0.2930 0.3347 0.3349 

Table 0.2 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Middle lens, 600 mm distance. 

 

N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.4529 0.4530 0.3956 0.4035 0.5077 0.5007 

2 0.4529 0.4530 0.4014 0.4071 0.5027 0.5012 

3 0.4529 0.4530 0.4061 0.4096 0.5043 0.4992 

4 0.4529 0.4530 0.4020 0.4081 0.5031 0.5032 

5 0.4529 0.4530 0.4008 0.4079 0.5038 0.5028 

6 0.4529 0.4530 0.3978 0.4092 0.5078 0.4990 

7 0.4529 0.4530 0.3988 0.4105 0.5043 0.5007 

8 0.4529 0.4530 0.4025 0.4091 0.5058 0.5025 

9 0.4529 0.4530 0.4000 0.4084 0.5057 0.5025 

10 0.4529 0.4530 0.4021 0.4075 0.5082 0.5049 

11 0.4529 0.4530 0.4033 0.4057 0.5086 0.4999 

12 0.4529 0.4530 0.4025 0.4087 0.5085 0.5008 

13 0.4529 0.4530 0.4022 0.4070 0.5076 0.5024 

14 0.4529 0.4530 0.3983 0.4045 0.5024 0.5038 
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15 0.4529 0.4530 0.3937 0.4018 0.5040 0.5033 

16 0.4529 0.4530 0.3970 0.4018 0.5055 0.5033 

17 0.4529 0.4530 0.4011 0.4052 0.5034 0.5018 

18 0.4529 0.4530 0.4023 0.4051 0.5061 0.5004 

19 0.4529 0.4530 0.3946 0.4071 0.5060 0.5051 

20 0.4529 0.4530 0.3991 0.4072 0.5036 0.5014 

Table 0.3 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Middle lens, 900 mm distance. 

 

N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.5491 0.5494 0.4482 0.4732 0.6417 0.6289 

2 0.5491 0.5494 0.4383 0.4728 0.6414 0.6254 

3 0.5491 0.5494 0.4474 0.4778 0.6384 0.6239 

4 0.5491 0.5494 0.4471 0.4754 0.6400 0.6227 

5 0.5491 0.5494 0.4491 0.4773 0.6398 0.6221 

6 0.5491 0.5494 0.4483 0.4765 0.6451 0.6236 

7 0.5491 0.5494 0.4522 0.4729 0.6350 0.6254 

8 0.5491 0.5494 0.4493 0.4748 0.6416 0.6218 

9 0.5491 0.5494 0.4577 0.4728 0.6344 0.6245 

10 0.5491 0.5494 0.4506 0.4761 0.6425 0.6242 

11 0.5849 0.5494 0.4455 0.4810 0.6387 0.6226 

12 0.5491 0.5494 0.4573 0.4740 0.6319 0.6241 

13 0.5491 0.5494 0.4535 0.4727 0.6395 0.6238 
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14 0.5491 0.5494 0.4520 0.4729 0.6334 0.6230 

15 0.5491 0.5494 0.4601 0.4779 0.6376 0.6237 

16 0.5491 0.5494 0.4622 0.4702 0.6340 0.6240 

17 0.5491 0.5494 0.4560 0.4770 0.6415 0.6210 

18 0.5491 0.5494 0.4553 0.4772 0.6276 0.6222 

19 0.5491 0.5494 0.4566 0.4766 0.6386 0.6253 

20 0.5491 0.5494 0.4523 0.4780 0.6324 0.6252 

Table 0.4 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Wide lens, 600 mm distance. 

 

N° of mean 
arrays 

MEAN 
RESX 

MEAN 
RESY 

MIN 
RESX 

MIN 
RESY 

MAX 
RESX 

MAX 
RESY 

1 0.8070 0.8073 0.5066 0.5883 1.0707 0.9926 

2 0.8070 0.8073 0.5495 0.6020 1.0579 1.0049 

3 0.8070 0.8073 0.5324 0.6112 1.0500 0.9996 

4 0.8070 0.8073 0.5307 0.6331 1.0437 1.0070 

5 0.8070 0.8073 0.5702 0.6250 1.0666 0.9891 

6 0.8070 0.8073 0.5690 0.6285 1.0402 0.9976 

7 0.8070 0.8073 0.5583 0.6384 1.0667 1.0000 

8 0.8070 0.8073 0.5799 0.6280 1.0597 0.9979 

9 0.8070 0.8073 0.5833 0.6070 1.0486 0.9921 

10 0.8070 0.8073 0.5637 0.6400 1.0567 0.9918 

11 0.8070 0.8073 0.5722 0.6308 1.0410 0.9906 

12 0.8070 0.8073 0.5872 0.6306 1.0533 0.9757 
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13 0.8070 0.8073 0.5706 0.6373 1.0438 0.9855 

14 0.8070 0.8073 0.5777 0.6391 1.0483 0.9711 

15 0.8070 0.8073 0.5709 0.6335 1.0598 0.9753 

16 0.8070 0.8073 0.5988 0.6171 1.0635 0.9767 

17 0.8070 0.8073 0.5854 0.6369 1.0636 0.9747 

18 0.8070 0.8073 0.5782 0.6335 1.0642 0.9976 

19 0.8070 0.8073 0.5829 0.6369 1.0655 1.0012 

20 0.8070 0.8073 0.5652 0.6285 1.0528 0.9774 

Table 0.5 Mean, Min and max resolution values in X and Y directions, in function of 
the number of arrays involved in the mean process. Wide lens, 900 mm distance. 
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Figure 0.1 Standard deviation trend in function of the number of averaged arrays: 

Tele lens and scanning distance of 600mm (on the top) and 900 mm (on the bottom) 
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Figure 0.2 Standard deviation trend in function of the number of averaged arrays: 

Middle lens and scanning distance of 600mm (on the top) and 900 mm (on the bottom) 
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AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.1318 0.0242 
2 0.1249 0.0234 
3 0.1273 0.0233 
4 0.1268 0.0234 

Figure 0.3 Standard deviation trend in function of the number of averaged arrays: 
Wide lens and scanning distance of 600mm (on the top) and 900 mm (on the bottom) 
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5 0.127 0.0234 
6 0.1397 0.0236 
7 0.1366 0.023 
8 0.1296 0.0231 
9 0.138 0.0229 

10 0.1297 0.0231 
11 0.1268 0.0233 
12 0.1283 0.0229 
13 0.1242 0.0228 
14 0.1285 0.023 
15 0.1242 0.0231 
16 0.1223 0.0229 
17 0.1213 0.0228 
18 0.1239 0.0227 
19 0.1228 0.0229 
20 0.1229 0.0230 

Table 0.6 Surface and standard deviation in relation to the number of averaged arrays. 
Tele lens and 900 mm distance. All values are in mm 

 

AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.1643 0.0348 
2 0.1539 0.0326 
3 0.1470 0.0319 
4 0.1546 0.0318 
5 0.1521 0.0317 
6 0.1405 0.0300 
7 0.1432 0.0303 
8 0.1490 0.0311 
9 0.1504 0.0314 

10 0.1558 0.0315 
11 0.1534 0.0317 
12 0.1634 0.0315 
13 0.1630 0.0317 
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14 0.1476 0.0316 
15 0.1512 0.0317 
16 0.1570 0.0319 
17 0.1494 0.0318 
18 0.1549 0.0317 
19 0.1578 0.0319 
20 0.1491 0.0319 

Table 0.7 Surface and standard deviation in relation to the number of averaged arrays. 
Middle lens and 600 mm distance. All values are in mm 

 

AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.5253 0.0810 
2 0.5125 0.0779 
3 0.4935 0.0771 
4 0.4928 0.0767 
5 0.5100 0.0769 
6 0.5243 0.0767 
7 0.5235 0.0765 
8 0.5209 0.0765 
9 0.5133 0.0765 

10 0.5152 0.0765 
11 0.4978 0.0766 
12 0.5208 0.0767 
13 0.5267 0.0768 
14 0.5005 0.0766 
15 0.4993 0.0767 
16 0.4971 0.0767 
17 0.4843 0.0769 
18 0.4845 0.0770 
19 0.5182 0.0769 
20 0.5111 0.0769 

Table 0.8 Surface and standard deviation in relation to the number of averaged arrays. 
Middle lens and 900 mm distance. All values are in mm 
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AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.3210 0.0715 
2 0.3257 0.0685 
3 0.3326 0.0678 
4 0.3438 0.0677 
5 0.3389 0.0677 
6 0.3368 0.0679 
7 0.3545 0.0678 
8 0.3473 0.0680 
9 0.3320 0.0682 

10 0.3335 0.0675 
11 0.3407 0.0677 
12 0.3456 0.0679 
13 0.3522 0.0677 
14 0.3324 0.0680 
15 0.3386 0.0677 
16 0.3381 0.0680 
17 0.3259 0.0682 
18 0.3451 0.0679 
19 0.3372 0.0681 
20 0.3413 0.0681 

Table 0.9 Surface and standard deviation in relation to the number of averaged arrays. 
Wide lens and 600 mm distance. All values are in mm 

 

AVERAGED ARRAYS SRF.DEV. STD.DEV. 
1 0.8458 0.1676 
2 0.8020 0.1625 
3 0.7945 0.1614 
4 0.8235 0.1610 
5 0.7664 0.1611 
6 0.7514 0.1611 
7 0.7635 0.1613 
8 0.7838 0.1614 
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9 0.7676 0.1614 
10 0.7561 0.1614 
11 0.7910 0.1613 
12 0.8190 0.1612 
13 0.8361 0.1609 
14 0.7683 0.1610 
15 0.7747 0.1613 
16 0.7653 0.1614 
17 0.7696 0.1616 
18 0.8249 0.1614 
19 0.7610 0.1614 
20 0.7951 0.1614 

Table 0.10 Surface and standard deviation in relation to the number of averaged 
arrays. Wide lens and 900 mm distance. All values are in mm 
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Appendix C 

Different materials emissivity values 

This section provides a compilation of emissivity data from the infrared 

literature. These tables comes from Flir Manuals (www.flir.com) 

Abbreviations used in table below: 

 T: Total spectrum; 

 SW: 2 – 5 μm; 

 LW: 8 – 14 μm; 

 LLW: 6.5 – 20 μm; 

 
Material Specification Temperature °C Spectrum Emissivity 

3M type 35 
vinyl electrical 
tape (several 

colors) 
<80 LW Ca. 0.96 

3M type 88 
black vinyl 

electrical tape < 105 LW  Ca. 0.96 

3M type 88 black vinyl 
electrical tape < 105 MW < 0.96 

3M type Super 
33+ 

black vinyl 
electrical tape < 80 LW Ca. 0.96 

Aluminum 
anodized, black, 

dull 70 LW 0.95 

Aluminum anodized, black, 
dull 70 SW 0.67 

Aluminum anodized, light 
gray, dull 70 LW 0.97 

Aluminum 
anodized, light 

gray, dull 70 SW 0.61 

Aluminum anodized sheet 100 T 0.55 
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Aluminum 
as received, 

plate 100 T 0.09 

Aluminum as received, 
sheet 

100 T 0.09 

Aluminum cast, blast 
cleaned 70 LW 0.46 

Aluminum 
cast, blast 
cleaned 70 SW 0.47 

Aluminum dipped in HNO3 
plate 

100 T 0.05 

Aluminum foil 27 3μm 0.09 
Aluminum foil 27 10μm 0.04 

Aluminum 
oxidized, 
strongly 50-500 T 0.2-0.3 

Aluminum polished 50-100 T 0.04-0.06 
Aluminum polished, sheet 100 T 0.05 
Aluminum polished, plate 100 T 0.06 
Aluminum roughened 27 3μm 0.28 
Aluminum roughened 28 10μm 0.18 
Aluminum rough surface 20-50 T 0.06-0.07 

Aluminum 
sheet, 4 samples 

differently 
scratched 

70 LW 0.03-0.06 

Aluminum 
sheet, 4 samples 

differently 
scratched 

70 SW 0.05-0.08 

Aluminum vacuum 
deposited 

20 T 0.04 

Aluminum weathered, 
heavily 17 SW 0.83-0.94 

Aluminum 
bronze  20 T 0.60 

Aluminum 
hydroxide 

powder 
 

T 0.28 

Aluminum 
oxide 

activated, 
powder  T 0.46 

Aluminum 
oxide 

pure, powder 
(alumina)  T 0.16 

Asbestos board 20 T 0.96 
Asbestos fabric  T 0.78 
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Asbestos floor tile 35 SW 0.94 
Asbestos paper 40-400 T 0.93-0.95 
Asbestos powder  T 0.40-0.60 
Asbestos slate 20 T 0.96 

Asphalt paving  4 LLW 0.967 
Brass dull, tarnished 20-350 T 0.22 
Brass oxidized 70 SW 0.04-0.09 
Brass oxidized 70 LW 0.03-0.07 
Brass oxidized 100 T 0.61 

Brass 
oxidized at 

600°C 200-600 T 0.59-0.61 

Brass polished 200 T 0.03 
Brass polished, highly 100 T 0.03 

Brass 
rubber with 80 

grit emery 20 T 0.20 

Brass sheet, rolled 20 T 0.06 

Brass sheet, worked 
with emery 20 T 0.2 

Brick alumina 17 SW 0.68 
Brick common 17 SW 0.86-0.81 

Brick Dinas silica 
glazed, rough 

1100 T 0.85 

Brick Dinas silica, 
refractory 1000 T 0.66 

Brick 
Dinas silica 

unglazed, rough 1000 T 0.80 

Brick firebrick 17 SW 0.68 
Brick fireclay 20 T 0.85 
Brick fireclay 1000 T 0.75 
Brick fireclay 1200 T 0.59 
Brick masonry 35 SW 0.94 

Brick 
masonry, 
plastered 20 T 0.94 

Brick red common 20 T 0.93 
Brick red, rough 20 T 0.88-0.93 

Brick 
refractory, 
corundum 

1000 T 0.46 

Brick 
refractory, 
magnet site 1000-1300 T 0.38 
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Brick 
refractory, 
strongly 
radiating 

500-1000 T 0.8-0.9 

Brick 
refractory, 

weakly radiating 500-1000 T 0.65-0.75 

Brick silica, 95% SiO2 1230 T 0.66 

Brick 
Sillimanite, 33% 
SiO2, 64 Al2O3 1500 T 0.29 

Brick waterproof 17 SW 0.87 

Bronze phosphor bronze 70 LW 0.06 

Bronze phosphor bronze 70 SW 0.08 

Bronze polished 50 T 0.1 
Bronze porous, rough 50-150 T 0.55 
Bronze powder  T 0.76-0.80 
Carbon candle soot 20 T 0.95 
Carbon charcoal powder  T 0.96 

Carbon 
graphite, filed 

surface 20 T 0.98 

Carbon graphite powder  T 0.97 
Carbon lampblack 20-400 T 0.95-0.97 

Chipboard untreated 20 SW 0.9 
Chromium polished 50 T 0.1 
Chromium polished 500-1000 T 0.28-0.38 

Clay fired 70 T 0.91 
Cloth Black 20 T 0.98 

Concrete  20 T 0.92 
Concrete dry 36 SW 0.95 
Concrete rough 17 SW 0.97 
Concrete walkway 5 LLW 0.974 

Copper 
commercial, 
burnished 20 T 0.07 

Copper 
electrolytic, 

carefully 
polished 

80 T 0.018 

Copper 
electrolytic, 

polished -34 T 0.006 

Copper molten 1100-1300 T 0.13-0.15 
Copper oxidized 50 T 0.6-0.7 
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Copper oxidized, black 27 T 0.78 

Copper oxidized, 
heavily 20 T 0.78 

Copper oxidized to 
blackness  T 0.88 

Copper polished 50-100 T 0.02 
Copper polished 100 T 0.03 

Copper polished, 
commercial 

27 T 0.03 

Copper polished, 
mechanical 22 T 0.015 

Copper 
pure, carefully 

prepared surface 22 T 0.008 

Copper scraped 27 T 0.07 
Copper dioxide powder  T 0.84 
Copper oxide red, powder  T 0.70 

Ebonite   T 0.89 
Emery coarse 80 T 0.85 
Enamel  20 T 0.9 
Enamel lacquer 20 T 0.85-0.95 

Fiber board hard, untreated 20 SW 0.85 
Fiber board masonite 70 LW 0.88 
Fiber board masonite 70 SW 0.75 
Fiber board particle board 70 LW 0.89 
Fiber board particle board 70 SW 0.77 

Fiber board porous, 
untreated 

20 SW 0.85 

Gold polished 130 T 0.018 

Gold polished, 
carefully 

200-600 T 0.02-0.03 

Gold polished, highly 100 T 0.02 
Granite polished 20 LLW 0.849 
Granite rough 21 LLW 0.879 

Granite 
rough, 4 
different 
samples 

70 LW 0.77-0.87 

Granite 
rough, 4 
different 
samples 

70 SW 0.95-0.97 

Gypsum  20 T 0.8-0.9 
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Ice: see water 
    

Iron, cast casting 50 T 0.81 
Iron, cast ingots 1000 T 0.95 
Iron, cast liquid 1300 T 0.28 
Iron, cast machined 800-1000 T 0.60-0.70 
Iron, cast oxidized 38 T 0.63 
Iron, cast oxidized 100 T 0-64 
Iron, cast oxidized 260 T 0.66 
Iron, cast oxidized 538 T 0.76 

Iron, cast 
oxidized at 

600°C 200-600 T 0.64-0.78 

Iron, cast polished 40 T 0.21 
Iron, cast polished 200 T 0.21 
Iron, cast unworked 900-1100 T 0.87-0.95 

Iron and steel cold rolled 70 LW 0.09 
Iron and steel cold rolled 70 SW 0.20 

Iron and steel covered with red 
rust 20 T 0.61-0.85 

Iron and steel electrolytic 22 T 0.05 
Iron and steel electrolytic 100 T 0.05 
Iron and steel electrolytic 260 T 0.07 

Iron and steel 
electrolytic, 

carefully 
polished 

175-225 T 0.05-0.06 

Iron and steel 
freshly worked 

with emery 20 T 0.24 

Iron and steel ground sheet 950-1100 T 0.55-0.61 

Iron and steel 
heavily rusted 

sheet 20 T 0.69 

Iron and steel hot rolled 20 T 0.77 
Iron and steel hot rolled 130 T 0.60 
Iron and steel oxidized 100 T 0.74 
Iron and steel oxidized 125-525 T 0.78-0.82 
Iron and steel oxidized 1227 T 0.89 

Iron and steel oxidized 
strongly 50 T 0.88 

Iron and steel 
oxidized 
strongly 500 T 0.98 

Iron and steel polished 100 T 0.07 
Iron and steel polished 400-1000 T 0.14-0.38 
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Iron and steel polished sheet 750-1050 T 0.52-0.56 
Iron and steel rolled, freshly 20 T 0.24 
Iron and steel rolled, sheet 50 T 0.56 

Iron and steel 
rough, plane 

surface 50 T 0.95-0.98 

Iron and steel rusted, heavily 17 SW 0.96 
Iron and steel rusted red, sheet 22 T 0.69 
Iron and steel rusty, red 20 T 0.69 
Iron and steel shiny, etched 150 T 0.16 

Iron and steel 
shiny oxide 
layer, sheet 20 T 0.82 

Iron and steel 
wrought, 
carefully 
polished 

40-250 T 0.28 

Iron galvanized heavily oxidized 70 LW 0.85 
Iron galvanized heavily oxidized 70 SW 0.64 
Iron galvanized sheet 92 T 0.07 
Iron galvanized sheet, burnished 30 T 0.23 
Iron galvanized sheet, oxidized 20 T 0.28 

Iron tinned sheet 24 T 0.064 

Krylon Ultra-flat 
black 1602 flat black 

room 
temperature up 

to 175 
LW Ca. 0.96 

Krylon Ultra-flat 
black 1603 

flat black 
room 

temperature up 
to 176 

MW Ca. 0.97 

Lacquer 3 colors sprayed 
on Aluminum 

70 LW 0.92-0.94 

Lacquer 4 colors sprayed 
on Aluminum 70 SW 0.50-0.53 

Lacquer 
aluminum on 
rough surface 20 T 0.4 

Lacquer Bakelite 80 T 0.83 
Lacquer black, dull 40-100 T 0.96-0.98 
Lacquer black, matte 100 T 0.97 

Lacquer 
black, shiny, 

sprayed on iron 
20 T 0.87 

Lacquer heat-resistant 100 T 0.92 
Lacquer white 40-100 T 0.8-0.95 
Lacquer white 100 T 0.92 
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Lead oxidized, gray 20 T 0.28 

Lead 
oxidized at 

200°C 200 T 0.63 

Lead shiny 250 T 0.08 

Lead unoxidized, 
polished 100 T 0.05 

Lead red 
 

100 T 0.93 
Lead red, 
powder  100 T 0.93 

Leather tanned  T 0.75-0.80 
Lime   T 0.3-0.4 

Magnesium  22 T 0.07 
Magnesium 

 
260 T 0.13 

Magnesium  538 T 0.18 
Magnesium polished 20 T 0.07 
Magnesium 

powder   T 0.86 

Molybdenum  600-1000 T 0.08-0.13 
Molybdenum 

 
1500-2200 T 0.19-0.26 

Molybdenum filament 700-2500 T 0.1-0.3 
Mortar  17 SW 0.87 
Mortar dry 36 SW 0.94 

Nextel Velvet 
811-Black Flat black -60  - 150 LW > 0.97 

Nichrome rolled 700 T 0.25 
Nichrome sandblasted 700 T 0.70 
Nichrome wire, clean 50 T 0.65 
Nichrome wire, clean 500-1000 T 0.71-0.79 
Nichrome wire, oxidized 50-500 T 0.95-0.98 

Nickel bright matte 122 T 0.041 

Nickel 
commercially 
pure, polished 100 T 0.045 

Nickel commercially 
pure, polished 

200-400 T 0.07-0.09 

Nickel electrolytic 22 T 0.04 
Nickel electrolytic 38 T 0.06 
Nickel electrolytic 260 T 0.07 
Nickel electrolytic 538 T 0.10 

Nickel electroplated, 
polished 

20 T 0.05 
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Nickel 
electroplated on 

iron polished 22 T 0.045 

Nickel electroplated on 
iron unpolished 

20 T 0.11-0.40 

Nickel electroplated on 
iron unpolished 22 T 0.11 

Nickel oxidized 200 T 0.37 
Nickel oxidized 1227 T 0.85 

Nickel oxidized at 
600°C 

200-600 T 0.37-0.48 

Nickel polished 122 T 0.045 
Nickel wire 200-1000 T 0.1-0.2 

Nickel oxide 
 

500-650 T 0.52-0.59 
Nickel oxide  1000-1250 T 0.75-0.86 

Oil, lubrificating 0.025 mm film 20 T 0.27 
Oil, lubrificating 0.050 mm film 20 T 0.46 
Oil, lubrificating 0.125 mm film 20 T 0.72 
Oil, lubrificating film on Ni base 20 T 0.05 
Oil, lubrificating thick coating 20 T 0.82 

Paint   LW 0.92-0.94 

Paint 8 different colors 
and qualities 

70 SW 0.88-0.96 

Paint aluminum, 
various ages 50-100 T 0.27-0.67 

Paint cadmium yellow 
 

T 0.28-0.33 
Paint chrome green  T 0.65-0.70 
Paint cobalt blue  T 0.7-0.8 
Paint oil 17 SW 0.87 
Paint oil, black flat 20 SW 0.94 
Paint oil, black gloss 20 SW 0.92 
Paint oil, gray flat 20 SW 0.97 
Paint oil, gray gloss 20 SW 0.96 

Paint oil, various 
colors 

100 T 0.92-0.96 

Paint 
oil based, 

average of 16 
colors 

100 T 0.94 

Paint plastic, black 20 SW 0.95 
Paint plastic, white 20 SW 0.84 
Paper 4 different colors 70 LW 0.92-0.94 
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Paper 4 different colors 70 SW 0.68-0.74 
Paper black  T 0.90 
Paper black, dull  T 0.94 
Paper black, dull 70 LW 0.89 
Paper black, dull 70 SW 0.86 
Paper blue, dark  T 0.84 

Paper 
coated with 

black lacquer  T 0.93 

Paper green  T 0.85 
Paper red  T 0.76 
Paper white 20 T 0.7-0.9 

Paper 
white 3 different 

glosses 
70 LW 0.88-0-90 

Paper 
white 3 different 

glosses 70 SW 0.7-0.78 

Paper white bond 20 T 0.93 
Paper yellow  T 0.72 
Plaster  17 SW 0.86 

Plaster 
plasterboard, 

untreated 20 SW 0.90 

Plaster rough coat 20 T 0.91 

Plastic 

glass fiber 
laminate 

(printed circ. 
board) 

70 LW 0.91 

Plastic 

glass fiber 
laminate 

(printed circ. 
board) 

70 SW 0.94 

Plastic 
polyurethane 

isolation board 
70 LW 0.55 

Plastic 
polyurethane 

isolation board 70 SW 0.29 

Plastic 
PVC, plastic 
floor, dull, 
structured 

70 LW 0.93 

Plastic 
PVC, plastic 
floor, dull, 
structured 

70 SW 0.94 

Platinum  17 T 0.016 
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Platinum 
 

22 T 0.03 
Platinum  100 T 0.05 
Platinum  260 T 0.06 
Platinum  538 T 0.10 
Platinum  1000-1500 T 0.14-0.18 
Platinum pure, polished 200-600 T 0.05-0.10 
Platinum ribbon 900-1100 T 0.12-0-17 
Platinum wire 50-200 T 0.06-0.07 
Platinum wire 500-1000 T 0.10-0.16 
Platinum wire 1400 T 0.18 
Porcelain glazed 20 T 0.92 
Porcelain white, shiny  T 0.70-0.75 
Rubber hard 20 T 0.95 
Rubber soft, gray, rough 20 T 0.95 

Sand   T 0.60 
Sand  20 T 0.90 

Sandstone polished 19 LLW 0.909 
Sandstone rough 19 LLW 0.965 

Silver polished 100 T 0.03 
Silver pure, polished 200-600 T 0.02-0.03 
Skin human 32 T 0.98 
Slag boiler 0-100 T 0.97-0.93 
Slag boiler 200-500 T 0.89-0.78 
Slag boiler 600-1200 T 0.76-0.70 
Slag boiler 1400-1800 T 0.69-0.67 

Snow: see water     
Soil dry 20 T 0.92 

Soil 
saturated with 

water 20 T 0.95 

Stainless steel rolled 700 T 0.45 
Stainless steel sandblasted 700 T 0.70 
Stainless steel sheet, polished 70 LW 0.14 
Stainless steel sheet, polished 70 SW 0.18 

Stainless steel 
sheet, untreated, 

somewhat 
scratched 

70 LW 0.28 

Stainless steel 
sheet, untreated, 

somewhat 
scratched 

70 SW 0.30 

Stainless steel type 18-8 suffet 20 T  0.16 
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Stainless steel 
type 18-8, 

oxidized at 
800°C 

60 T 0.85 

Stucco rough, lime 10-90 T 0.91 
Styrofoam insulation 37 SW 0.60 

Tar   T 0.79-0.84 
Tar paper 20 T 0.91-0.93 
Tile glazed 17 SW 0.94 
Tin burnished 20-50 T 0.04-0.06 

Tin 
tin-plate sheet 

iron 100 T 0.07 

Titanium 
oxidized at 

540°C 
200 T 0.40 

Titanium 
oxidized at 

540°C 500 T 0.50 

Titanium 
oxidized at 

540°C 1000 T 0.60 

Titanium polished 200 T 0.15 
Titanium polished 500 T 0.20 
Titanium polished 1000 T 0.36 
Tungsten  200 T 0.05 
Tungsten  600-1000 T 0.1-0.16 
Tungsten  1500-2200 T 0.24-.31 
Tungsten filament 3300 T 0.39 
Varnish flat 20 SW 0.93 

Varnish 
on oak parquet 

floor 70 LW 0.90-0.93 

Varnish 
on oak parquet 

floor 70 SW 0.90 

Wallpaper 
slight pattern, 

light gray 
20 SW 0.85 

Wallpaper 
slight pattern, 

red 20 SW 0.90 

Water distilled 20 T 0.96 
Water frost crystals -10 T 0.98 

Water 
ice, covered with 

heavy frost 
0 T 0.98 

Water ice, smooth -10 T 0.96 
Water ice, smooth 0 T 0.97 
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Water 
layer > 0.1 mm 

thick 0-100 T 0.95-0.98 

Water snow  T 0.8 
Water snow -10 T 0.85 
Wood  17 SW 0.98 
Wood  19 LLW 0.962 
Wood ground 

 
T 0.5-0.7 

Wood 
pine, 4 different 

samples 70 LW 0.81-0.89 

Wood 
pine, 4 different 

samples 70 SW 0.67-0.75 

Wood planed 20 T 0.8-0.9 
Wood planed oak 20 T 0.90 
Wood planed oak 70 LW 0.88 
Wood planed oak 71 SW 0.77 

Wood 
plywood, 

smooth, dry 36 SW 0.82 

Wood 
plywood, 
untreated 

20 SW 0.83 

Wood white, damp 20 T 0.7-0.8 

Zinc oxidized at 
400°C 

400 T 0.11 

Zinc oxidized surface 1000-1200 T 0.50-0.60 
Zinc polished 200-300 T 0.04-0.05 
Zinc sheet 50 T 0.20 
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Appendix D 

File format supported by common 3D modeler tools 

In this section some exchanging file format are presented, in relation to the 

information they are able to import and export. These information are acquired from 

RapidForm (3D Systems Inc, Korea) manual. 

File Format 
Import Export 

Note 
Texture Material View Texture Material View 

MDL O O O O O O 

Rapidform's 

own model data 

format( Binary ) 

ICF O O X O O X 

INUS' 

Compression 

Format 

PTS X O X X O O 

FCS format has 

a normal 

information of 

vertex 

rapidform's 

own vertex data 

format( ASCII ) 

FCS X O X X O O 

FCS format has 

a normal 

information of 

vertex 

Rapidform's 

own face data 
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format( ASCII ) 

TPL X X X X X X 

Rapidform's 

own template 

data format 

ASC 

(Ascii Points 

/ Arius3D) 

X X X X X X 

RGB colored 

points are 

supported 

SURF 

(Binary Points) 
X X X Import only 

General point 

cloud exchange 

format 

3DS 

(3D Studio) 
O O X O O X 

A shell can have 

no more than 

65,535 faces 

DXF 
(AutoCAD) 

X X X X X X 

Import : 

PolyMesh, 

3Dface 

Export : Point, 

PolyMesh, 

3Dface, 

PolyLine 

(Curve) 

PLY 

(Cyberware) 
X X X X X X  

IV 

(Open Inventor) 
O O X O O X  

STL X X X X X X 

Import : Binary, 

ASCII 

Export : Binary, 

ASCII 
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WRL 

(VRML 1.0 / 97) 
O O X O O X 

RGB colored 

points are 

supported 

OBJ 

(Wavefront) 
X X X X X X 

Point Cloud and 

Polygonal Mesh 

ASE 

(ASCII Scene 

Export) 

O O X Import Only  

HYM 

(HyMarc) 
X X X Import Only  

VVD/CDM/ 
CAM/CDK 

(Minolta Vivid) 

O X X Import Only 

CDM:Vivid900, 

CAM:Vivid700, 

CDK: Vivid9i 

AC 

(Steinbichler) 
X X X Import Only  

VIEW/CLOUD 
(GOM) 

X X X Import Only  

CBK/GRK/CWK 

(Kreon) 
X X X Import Only  

PMJ/PMJX 

(RealScan) 
X X X Import Only  

BRE 

(Breuckmann) 
X X X Import Only 

RGB colored 

points are 

supported 

XYZ/TXT 

(EOIS) 
X X X Import Only  

SAB/SAB2 

(3D 

SCANNERS) 

X X X Import Only  

NRF O X X Import Only RGB colored 
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(NEC range 

finder) 

points are 

supported 

PTS 

(Cyra) 
X X X Import Only  

STB 

(Scantech) 
X X X Import Only 

Scantech Binary 

Exchange 

format v1.0 

PIX 

(Roland PICZA 

) 

X X X Import Only  

XYZ 

(Opton) 
X X X Import Only  

SWL/BIN/SWB 

(Perceptron ) 
X X X Import Only  

RTPI/XYZI 
/XYZRGB 

(DeltaSphere ) 
X X X Import Only  

IGS/IGES X X X X X X points 106, 116 

VDA (VDAFS) X X X Import Only curve / surface 

STP/STEP X X X X X X curve / surface 

IGS/IGES X X X X X X curve / surface 

3DM (Rhino) X X X X X X 
curve / surface 

(openNURBS) 

POV (PovRay ) Export only X X X  

MTS 

(MetaStream ) 
Export only O X X  

Soi (Mensi) X X X Import Only  

3PI 

(Shape Grabber) 
X X X Import Only  

ICV (Solutionix) X O X Import Only  
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TFM 

(Wicks and 

Wilsons) 

X O X Import Only  
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Appendix E 

Thermo camera datasheet 

Specifications Flir ThermaCAM™ SC640 

IMAGING PERFORMANCE 
Thermal:  

Field of view/min focus distance 24°x18° /0.3 m 
Spatial resolution (IFOV) 0.65 mrad 
Thermal sensitivity 60mK at 30°C 
Image frequency 30 Hz non-interlaced 
Focus Automatic or manual 
Electronic zoom / pan function 1 - 8 x continuous, including pan function 

Detector type Focal Plane Array (FPA), uncooled 
microbolometer 640 x 480 pixels 

Spectral range 7.5 to 13μm 
Digital image enhancement Normal and enhanced 

Visual:  

Built-in digital video 
1.3 Mpixel, full color / built-in Target 
Illuminator / exchangeble lens 

Standard lens performance f=8 mm / FOV 32° 
IMAGE PRESENTATION 

Video output RS170 EIA/NTSC or CCIR/PAL composite 
video, IEEE-1394 FireWire, USB 

Viewfinder Built-in, tiltable, high-resolution color 
viewfinder (800 x 480 pixels) 

External display Built-in 5.6” LCD (1024 x 600 pixels) 
MEASUREMENT 

Temperature range -40°C to +1,500°C, in 3 ranges; up to + 
2000°C, optional 

Accuracy ±2°C, ±2% of reading 

Measurement mode Spots/Areas (Boxes, Circles), Isotherms 
(above, below, interval), Delta T 

Menu controls Palettes , load custom palletes, auto adjust 
(manual/continuous/based on histogram 
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equilazation), on screen live  
and reference image (PoP), image gallery, 
sequence storage, programmable storage 

Alarm Functions 
Automatic alarm on any selected 
measurement function, audible/visible 
alarm above/below, 

Set-up controls Date/time, Temperature °C/°F, language 

Atmospheric transmission correction 
Automatic, based on inputs for distance, 
atmospheric temperature  
and relative humidity 

Optics transmission correction 
Automatic, based on signals from internal 
sensors 

Emissivity correction Variable from 0.01 to 1.0 or select from 
listings in pre-defined materials list 

Reflected ambient temperature  
correction 

Automatic, based on input of reflected 
temperature 

External optics/window correction 
Automatic, based on input of 
optics/window transmission and 
temperature 

IMAGE STORAGE 

Type 
Removable SD-card (1 GB)  
Built-in RAM memory for radiometric real-
time sequence storage 

File formats - Thermal 
Standard JPEG, 14 bit measurement data 
included 

File formats - Visual 
Standard JPEG, automaticly associated 
with corresponding thermal image / 
possibility for visual marker 

Voice annotation of images 30 sec. of digital voice “clip” stored 
together with the image wired headset 

Text annotation of images Predefined text selected and stored 
together with the image 

VIDEO STORAGE 

Type 

Recording of fully radiometric IR-video 
clips in camera, transferable to SD-card  
Recording of MPEG-4 non-radiometric 
video to SD-card 

VIDEO STREAMING 
Type Fully radiometric real-time 14-bit digital 



 

273 

IR-video using FireWire  
MPEG-4, IP-link using FireWire or USB 

LENSES (OPTIONAL) 

Field of view/min focus distance 
12° x 9° / 0.9m telelens  
45° x 34° / 0.1m wide angle lens  
Close-up 50μm 32 mm x 24 mm / 75 mm 

Lens identification Automatic 
LASER POINTER 
Classification Class 2 

Type Semiconductor AlGaInP Diode Laser: 
1mW/635 nm red 

BATTERY SYSTEM 
Type Li-Ion, rechargeable, field replaceable 
Operating time 3 hours continuous operation 

Charging system in camera (AC adapter or 12 V from car) or 
2 bay intelligent charger 

External power operation 
AC adapter 110/220 V AC, 50/60 Hz or 12 V 
from car  
(cable with Std plug: optional 

Power saving Automatic shutdown and sleep mode (user 
selectable) 

ENVIRONMENTAL SPECIFICATION 
Operating temperature range -15°C to +50°C 
Storage temperature range -40°C to +70°C 

Humidity Operating and storage 10% to 95%, non-
condensing 

Encapsulation IP 54 IEC 529 
Shock Operational: 25G, IEC 68-2-29 
Vibration Operational: 2G, IEC 68-2-6 
PHYSICAL CHARACTERISTICS 
Weight 1.7 kg incl. battery 
Size 120 mm x 145 mm x 220 mm 
Tripod mounting 1/4” - 20 
INTERFACES 

FireWire 
IEEE-1394 FireWire output (real-time 
radiometric or non-radiometric video / 
filetransfer to PC) 
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USB 
Image (thermal and visual), measurement, 
voice and text transfer to PC 

IrDA Wireless communication 
SD-card (2) I/O slot; storage slot 

 

Technical data Testo 882 

INFRARED IMAGE OUTPUT 
Detector type FPA 320 x 240 pixels, a.Si 
Thermal sensitivity (NETD) < 60 mK bei 30 °C 
Field of view/min. focus distance 32° x 23° / 0,2 m 
Geometric resolution (IFOV) 1,7 mrad 

SuperResolution (pixel / IFOV) - optional 640 x 480 pixels / 
1,1 mrad 

Image refresh rate 33 Hz* 
Focus manual and motor focus 
Spectral range 8 to 14 μm 
IMAGE OUTPUT VISUAL 
Image size / min. focus distance 640 x 480 pixels / 0.4 m 
IMAGE PRESENTATION 
Image display 3.5” LCD with 320 x 240 pixels 

Display options IR image only /real image only / 
IR and real image 

Video output USB 2.0 

Color palettes 
9 (iron, rainbow, cold-hot, blue-red, grey, 
inverted grey, sepia, 
Testo, iron HT 

MEASUREMENT 

Temperature range 
-20 °C to +100 °C / 0 °C to +350 °C 
(switchable) 

High temperature measurement - optional +350 °C to +550 °C 

Accuracy ±2 °C, ±2% of m.v. 
±3% of m. v. (+350 °C to +550 °C) 

Emissivity / reflected temperature 0.01 to 1 / manual 
MEASURING FUNCTIONS 



 

275 

Display of surface moisture distribution 
(using manual input X 

Humidity measurement with radio 
humidity probe** 
(automatic measurement value transfer in 
real time) 

X 

Solar mode X 

Analysis function 
Up to 2 measurement points, Hot/Cold 
Spot Recognition, 
Isotherms, Min-/Max on Area 

IMAGER EQUIPMENT 
Digital camera X 
Power LEDs X 
Motor focus X 
Standard lens 32° x 23° 
Laser*** (laser classification 635 nm, Class 
2 ) X 

Voice recording wired headset 
Video streaming (via USB) X 
IMAGE STORAGE  
File format .bmt; export options in .bmp, .jpg, .csv, .xls 
Storage device SD card 2 GB (approx. 1,000 images) 
POWER SUPPLY 

Battery type Fast-charging, Li-ion battery can be 
changed on-site 

Operating time 4 hours 
Charging options In instrument/in charging station (optional 
Mains operation Yes 
AMBIENT CONDITIONS 
Operating temperature range -15 °C to +40 °C 
Storage temperature range -30 °C to +60 °C 
Air humidity 20% to 80% non-condensing 
Housing protection class (IEC 60529) IP 54 
Vibration (IEC 60068-2-6) 2G 
PHYSICAL SPECIFICATIONS 
Weight approx. 900 g 
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Dimensions (L x W x H) in mm 152 x 108 x 262 
Tripod mounting M6 
Housing ABS 
PC SOFTWARE 

System requirements 
Windows XP (Service Pack 3), 
Windows Vista, Windows 7, Interface USB 
2.0 

STANDARDS, TESTS, WARRANTY 
EU Directive 2004 / 108 / EC 
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