
Alma Mater Studiorum – Università di Bologna 

 

 

 

 

 

 

DOTTORATO DI RICERCA IN 
 

Biologia Cellulare, Molecolare e Industriale 

Ciclo XXV 
 

Settore Concorsuale di afferenza: 05/E2- BIOLOGIA MOLECOLARE 

                       Settore Scientifico disciplinare: BIO/11- BIOLOGIA MOLECOLARE 

 

Characterization of the Staphylococcus aureus bone 

sialoprotein-binding protein SdrE and the serine protease 

EpiP 

 

Presentata da 

Prachi 
 

Coordinatore Dottorato   Relatore                           Co-Relatore 

Prof. Vincenzo Scarlato    Prof. Vincenzo Scarlato            Dr. Fabio Bagnoli 

 

 

Esame finale anno 2013 

 

 



Alma Mater Studiorum – University of Bologna 

 

 

 

 

 

 

DOCTOR OF PHILOSOPHY IN 
 

Cellular, molecular and industrial biology 

Cycle XXV 
 

Scientific Discipline: BIO/11- MOLECULAR BIOLOGY 

 

 Characterization of the Staphylococcus aureus bone 

sialoprotein-binding protein SdrE and the serine 

protease EpiP 

 

Submitted by 

Prachi 
 

 

Ph.D. Coordinator             Ph.D. supervisor 

Prof. Vincenzo Scarlato    Dr. Fabio Bagnoli 

 

 

Final examination year 2013 

 

 



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and presented 

in accordance with academic rules and ethical conduct. I also declare that, as required 

by these rules and conduct, I have fully cited and referenced all material and results that 

are not original to this work. 

 

 

                                                                                           Name: Prachi 

                                                                                           Signature: 

 

 

 

 

 

 

 

 



 

 



i 
 

ABSTRACT 

 

CHARACTERIZATION OF THE STAPHYLOCOCCUS AUREUS BONE 

SIALOPROTEIN-BINDING PROTEIN SdrE AND THE SERINE PROTEASE EpiP 

  

                                                                    Prachi 

 

                                             Supervisor: Dr. Fabio Bagnoli 

                                        Coordinator: Prof. Vincenzo Scarlato 

 

In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine 

discovery from conventional culture-based methods to high-throughput genome-based 

approaches for the development of recombinant protein-based vaccines against pathogenic 

bacteria. The concept of reverse vaccinology was applied for the first time to serogroup B 

Neisseria meningitidis (MenB). In an attempt to develop a Staphylococcus aureus vaccine, we 

have applied a similar approach, mainly based on in silico screening and proteomics to select 

surface-exposed proteins, and identified SdrE, as one of the potential vaccine antigen against 

S. aureus. We characterized SdrE, a protein belonging to the serine-aspartate repeat (Sdr) 

protein family. We have investigated the biochemical properties as well as the vaccine 

potential of SdrE and its highly conserved CnaBE3 domain. We found the protein SdrE to be 

resistant to trypsin at 37°C. Mass spectrometry and N-terminal sequencing by Edman 

degradation of the resistant fragment revealed that it comprises a CnaBE3 domain of the 

protein. rCnaBE3 also showed partial trypsin resistant behavior. Furthermore, intact mass 

spectrometry of rCnaBE3 showed mass difference of 17 Da between theoretical and observed 

mass, suggesting the presence of isopeptide bond or some other post-translational 

modification. However, this observation needs further investigation. Furthermore, we found 

the last CnaB domain of other Sdr proteins i.e. CnaBE3 of SdrE to be highly conserved 

together with high sequence similarity with the last CnaB domain i.e. SdrC2 of SdrC and 

SdrD5 of SdrD respectively, even in strains that are phylogenetically distant. We found SdrE 

immunogenic against a clinical strain of S. aureus in murine abscess model. Moreover, we 

found the highly conserved CnaBE3 domain to be cross-reactive to other Sdr proteins and 

more interestingly mice immunized with the domain were protected from infection with a S. 

aureus strains lacking sdrE. Overall, our data suggested a possible role of CnaBE3 domain as 

vaccine candidate supported by the high homology, conservation, immunogenicity and 
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stability. In addition, Differential Scanning Fluorimetry (DSF) study reveals the effect of 

calcium in folding of SdrE. Indeed, the melting temperature (Tm) of the recombinant protein 

is increased with the increasing concentration of calcium (Ca
+2

).  

We also identified and characterized a protein, annotated as epidermin leader peptide 

processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In collaboration 

with Northwestern University Chicago, USA, we determined the structure of the purified 

protein EpiP (rEpiP) at 2.05 Å (1 Å=0.1 nm) resolution by x-ray crystallography, revealing 

the fold of subtilisin-like protease in the protease domain. Moreover, we found the pro-

domain non-covalently linked to the protease domain by a polypeptide chain acting as rubber. 

The crystal structure also showed that rEpiP was cleaved somewhere between residues 95 and 

100 and we found that the cleavage occurs through an autocatalytic intra-molecular 

mechanism. In addition, the protein expressed by S. aureus cells also appeared to undergo a 

similar processing event. To determine if the protein acts as a serine protease, we mutated the 

hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal 

structure at a resolution of 1.95 Å of this mutant protein showed that the polypeptide chain 

was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was 

shown to be impaired in its protease activity. Mice vaccinated with EpiP were protected from 

S. aureus infection. In addition, protective efficacy generated by the rEpiP and the non-

cleaving mutant protein was comparable, implying that the two forms are interchangeable for 

vaccination purposes. This study revealed the first fundamental biochemical properties of this 

novel lantibiotic processing serine protease EpiP. 

 

Key words: Staphylococcus aureus, reverse vaccinology, proteomics, serine-aspartate repeat 

protein, Differential Scanning Fluorimetry , EpiP. 
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1.1:  Overview of S. aureus 

Staphylococcus aureus is an important opportunistic Gram-positive human pathogen that 

causes a considerable burden of disease characterized by a spectrum of illnesses from mild 

skin infections to life-threatening diseases such as sepsis, pneumonia, endocarditis, and 

osteomyelitis (Lowy 1998) (Figure 1.1). S. aureus is particularly notorious for causing 

hospital-associated infections, which are often, complicated by the fact that many hospital 

strains are resistant to antibiotics, most notably methicillin (Lowy 2003). The burden of 

staphylococcal disease is increasing due to the ability of S. aureus to acquire resistance to 

various antibiotics including methicillin and vancomycin (Miyafusa, Caaveiro et al. 2012). In 

fact, methicillin-resistant S. aureus (MRSA) has been recognized as a major cause of infection 

in healthcare settings and community environments (Brumfitt and Hamilton-Miller 1989). For 

example, in 2005 it was estimated that invasive MRSA infections occurred at a rate 

of >30/100,000 US subjects, and caused over 18,000 deaths in the USA alone (Klevens, 

Morrison et al. 2007; Mariotti, Malito et al. 2013). The alarming increase in multi-antibiotic 

resistance of S. aureus together with the wide variety and severity of staphylococcal 

infections pose a threat to public health and challenge our ability to control the disease, in 

particular due to the lack of medical treatments alternative to antibiotics (Maskalyk 2002; 

Shorr 2007). Indeed, although several vaccine candidates have been proposed and some of 

them have been tested in clinical trials using both active and passive immunization modalities 

(Patti 2011), an effective vaccine is still missing. 

Reasons behind the lack of efficacious vaccines include: 1) First and foremost, protective 

immunity against S. aureus is not completely understood, 2) S. aureus  has multiple virulence 

factors, including hemolysins, toxins, and superantigens (Lowy 1998), 3) S. aureus infected 

patients present with a very broad range of diseases, which means that vaccine development 

must focus on preventing a wide spectrum of disease presentations, 4) S. aureus has a much 

more extensive array of pathogenicity factors that neutralize the host immune responses than 

the other bacterial pathogens, probably because it lives with us as normal flora (Lowy 1998). 
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1.2:  S. aureus-associated diseases 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: S. aureus causes a large array of different diseases. S. aureus causes a variety 

of cutaneous infections most common are skin boils, impetigo and wound infections. 

Moreover, S. aureus also causes life threatening disease like bacteremia which may be 

complicated by disease like endocarditis and pneumonia. Comorbid conditions are frequently 

seen in association with S. aureus bacteremia and that increase the risk of complications with 

chronic and recurrent infections like osteomyelitis, septic arthritis etc. and also include co-

infections with diabetes, HIV infection, and cancer. 

 

1.3: S. aureus pathogenesis 

1.3.1: Cell-wall associated and secreted virulence factors 

The armamentarium of virulence factors of S. aureus is extensive, with both structural and 

secreted products (proteins) playing a role in the pathogenesis of infection. Surface proteins 

are predominantly synthesized during the exponential growth phase, and the secreted proteins 

are synthesized during the stationary phase (Figure 1.2). These components and products have 

overlapping roles and can act either in concert or alone. Moreover, S. aureus is able to 

produce a wide range of toxins showing a deleterious effect on cell integrity and functions. 

Most of these factors (e.g., toxic shock syndrome toxin-1, exfoliatin toxins A and B, Panton-

Valentine leukocidin, enterotoxins, and hemolysins) contribute to the virulence of clinical 

isolates in the context of acute infections (Francois, Scherl et al. 2007) (Figure 1.2). 
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Figure 1.2: Pathogenic factors of S. aureus with surface and secreted products (proteins) 

both playing roles as virulence factors. S. aureus surface and secreted proteins during 

different phases of bacterial growth. The synthesis of many of these proteins is dependent on 

the growth phase, as shown by the graph. In lag phase, bacteria initiate an infection, then enter 

exponential phase where they multiply and synthesize surface proteins and essential proteins 

for growth, cell division and adhesion. Several specific cell-wall associated surface adhesins 

i.e. MSCRAMMs are expressed during exponential phase on the surface of S. aureus, which 

interact with a number of host proteins such as fibronectin, fibrinogen, collagen, vitronectin 

and laminin. Moreover, group of cytotoxins, enzymes and superantigens are secreted in the 

stationary phase that are known to be involved in tissue damage or have potent effects on cells 

of the immune system and inhibit host immune responses to S. aureus. 

 

1.3.2: Microbial Surface Components Recognizing Adhesive Matrix Molecules 

(MSCRAMMs) protein family and serine-aspartate (Sdr) proteins  

In addition to these excreted compounds, like other Gram-positive bacteria, S. aureus also 

employ an array of MSCRAMMs that are used to attach to host cells and other surfaces, and 

mediate pathogenesis. Many of these adhesins are anchored covalently to the cell-wall by the 

action of cysteine transpeptidase enzymes known as sortases (Marraffini, DeDent et al. 2006).  

Moreover, the role of MSCRAMM family, e.g., clumping factor ClfA and ClfB, fibronectin-

binding protein protein A and B (FnBPA and B), and Sdr proteins, which allow S. aureus to 
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adhere to host tissue and thereby trigger colonization or infection has been reported 

(Rasmussen, Fowler et al. 2011). Furthermore, certain MSCRAMMs also mediate host cell 

internalization in order to escape host defense and antibacterial agents (Sinha, Francois et al. 

2000; Edwards, Potts et al. 2010). A total of 21 MSCRAMMs have been identified but many 

host protein(s) to which these MSCRAMMs bind remain unknown (Roche, Massey et al. 

2003). Importantly, Sdr group of virulence genes, in particular, SdrE have been shown to 

stimulate platelet activation and aggregation leading to thrombus formation (Miajlovic, 

Loughman et al. 2007). Moreover, it has been recently reported that S. aureus binds factor H 

(fH) via the surface protein SdrE and that fH remains functionally active when bound to 

recombinant SdrE (Sharp, Echague et al. 2012).  

 

1.4: Structural organization of Sdr protein family  

The Sdr proteins i.e. SdrC, SdrD and SdrE of S. aureus are members of the MSCRAMMs 

family that are encoded by the tandemly arrayed sdrC, sdrD, and sdrE genes, of 

approximately 2.8, 3.9, and 3.5 kbp, respectively, located in the sdr locus (Josefsson, 

O'Connell et al. 1998). These Sdr proteins are characterized by the presence of a R region 

containing various numbers of the serine-aspartate dipeptides encoded by DNA repeats in the 

3′ region of the sdr genes. These SD repeats had earlier been found in the S. aureus 

fibrinogen-binding clumping factors, ClfA and ClfB. The putative Sdr proteins have both 

organizational and sequence similarity to ClfA and ClfB (Figure 1.3), wherein a signal 

peptide (S) is followed by an A domain (CnaA), which is similar in size among the different 

members of the Sdr protein family. However, they are not closely related, and show only 20 

to 30% identical amino acid residues. The only conserved sequence in the A-region is the 

consensus motif TYTFTDYVD. The Sdr proteins differ from ClfA and ClfB by having two to 

five additional 110-113 residue repeated sequences (B-motifs in CnaB region) located 

between region A and the R-region. The Sdr proteins have two, three, or five additional 110- 

to 113 residue sequences (B repeat) that are tandemly repeated in SdrC, SdrE, and SdrD, 

respectively. Each B-repeat contains a consensus Ca
2+

-binding EF-hand loop normally found 

in eukaryotic proteins. Indeed, the structural integrity of recombinant SdrD protein 

comprising the five B-repeats (D1-D5) was shown to be calcium (Ca
2+

) dependent. The B-

motifs in all Sdr proteins are followed by segments composed of the dipeptide serine-aspartate 

repeats (R-region). Moreover, the C-terminal end (region M) of the proteins is involved in 

anchoring the proteins to the bacterial cell wall.  
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It has been reported that the first B motif (CnaBC1) of SdrC, three central B motifs (CnaBD2, 

CnaBD3, and CnaBD4) of SdrD and the middle B motif (CnaBE2) of SdrE shows 65-85% 

residue identity. However, the first B motifs of SdrD (CnaBD1) and SdrE (CnaBE1) were 

reported to be quite different from each other, with only 42% residue identity, but with their 

respective neighbors 48 and 52% residue identity reported. Moreover, the B motifs lying 

adjacent to region R, i.e. CnaBC2, CnaBD5, and CnaBE3 in each protein are highly related 

with 95-96 % residue identity (Josefsson, O'Connell et al. 1998). 

 

 

 

SdrE (H S Tung, 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Structural organization of proteins in the SD-repeat gene family of S. aureus 

Newman. In CnaA region the thick brown line represents the TYTFTDWD motif. In the 

CnaA region of ClfA, ClfB and CnaB region of Sdr proteins, the thin broken black lines 

represent an EF-hand loop. The abbreviations are as follows: S: signal sequence; CnaA: 

putative ligand-binding A region; CnaB: B repeats; R: serine aspartate dipeptide repeats; W: 

short wall-spanning region; M: membrane-spanning segment. The LPXTG-motif occurs 

between domains W and M. 

 

1.5: Reverse vaccinology and vaccine candidate identification 
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After the publication of the first bacterial genome in the year 1995 (Fleishmann, Mor et al. 

1995), it became clear that availability of the genomic sequence of pathogens was an 

invaluable source of information for vaccine research. In fact, only five years later, a new 

antigen identification approach, named reverse vaccinology, was applied to MenB (Pizza, 

Scarlato et al. 2000). The approach was termed reverse vaccinology because antigens were 

selected prior to experimental testing (Rappuoli 2000). The idea behind the method is to mine 

the pathogens genome with bioinformatic algorithms to identify Open Reading Frames (ORFs) 

coding for proteins predicted to be exposed on the surface of the pathogen or to be secreted in 

the extracellular milieu. The rationale of this selection relies on the assumption that surface 

and secreted factors are exposed to the host’s immune system and therefore they are potential 

vaccine targets (Figure 1.4). 
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Figure 1.4: Flow chart summarizing the pathway of vaccine development starting from 

reverse vaccinology. Starting from the genome sequence, computer analysis of the whole 

genome identifies the genes coding for predicted antigens and eliminates antigens with 

homologies to human proteins. Then the identified antigens are screened for expression by the 

pathogen and for immunogenicity during infection. The selected antigens are further used to 

immunize animals and test whether immunization induces a protective response. Protective 

antigens are tested for their presence and conservation in a collection of strains representative 

of the species (molecular epidemiology). Finally, selected antigens are manufactured in large 

scale for clinical trials. 

 

1.6: Proteomics approach of vaccine candidate identification  
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Furthermore, proteomics is added as further selection criteria for vaccine antigen. Proteomics 

is of critical importance for vaccine research because it investigates the actual protein 

expression in living cells and is not based on predictive assumptions as in silico analysis. New 

proteomics techniques can identify surface proteins and discriminate them from cytoplasmic 

ones. Such data play an essential role in vaccine candidate selection because they can indicate 

which antigens are more exposed on the bacterial surface and hence accessible to the immune 

system. An important point for the identification of vaccine candidates by proteomic 

techniques is the isolation of surface proteins without contamination from other cellular 

fractions. A new approach that allows fast and consistent identification of proteins that are 

expressed on the bacterial surface has been recently published (Rodriguez-Ortega, Norais et al. 

2006). The technique, consisting of the surface digestion of live bacteria with different 

proteases and analysis by mass spectrometry, identifies the so-called “Surfome” (Figure 1.5). 

In addition to surface exposed antigens, secreted proteins and toxins are also viable vaccine 

candidates and in order to identify secreted factors (the ‘‘secretome’’), the same techniques 

mentioned above are applied for the analysis of bacterial culture supernatants (Ravipaty and 

Reilly 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Representation of the proteomics strategy used to identify surface-exposed 

proteins. Peptides and polypeptides released into the supernatant by surface digestion are 

directly analyzed by LC-MS/MS. MS/MS spectra are then searched against a database 

containing protein sequence data against NCBInr database for protein identification. 
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In an attempt to develop an S. aureus vaccine, we have been applying a reverse vaccinology 

approach mainly based on in silico screening and proteomics to select surface-exposed 

proteins. The combination of these two different strategies led to the identification of several 

vaccine candidates. Among these antigens we found SdrE, a LPXTG-motif containing cell-

wall anchored protein. Interestingly, we detected the protein only using harsh conditions 

suggesting the presence of some stability features (e.g., isopeptide bond) in the protein.  

The presence of intermolecular isopeptide bond is well known fact in gram positive bacteria, 

which are formed between pilin subunits as covalently linked polymers through the action of 

cysteine transpeptidase enzymes called sortases. However, a new type of intramolecular 

crosslink has been recently discovered in gram positive bacteria (Kang, Coulibaly et al. 2007). 

These self-generated isopeptide bonds between side chains of lysine and asparagine/aspartic 

acid residues have emerged as a hallmark of surface proteins of Gram-positive bacteria after 

their discovery in the major pilin subunit RrgB of Streptococcus pyogenes (Kang, Coulibaly 

et al. 2007). Subsequently, these isopeptides were identified in proteins known to form, or 

associated with pili (Budzik, Marraffini et al. 2008; Kang and Baker 2009; Forsgren, Lamont 

et al. 2010; Izore, Contreras-Martel et al. 2010). All bacterial intramolecular isopeptides are 

found in β-sheet domains resembling the CnaA or CnaB folds of collagen binding protein Cna 

from S. aureus (Hagan, Bjornsson et al. 2010). Moreover, CnaA and CnaB domains are 

predicted to occur in thousands of bacterial surface proteins, and isopeptide bonds emerge as a 

very common post-translational modification underpinning Gram-positive pilus formation and 

protein stability. In bacterial pilus proteins, isopeptide bond formation depends on a catalytic 

glutamate or aspartate residue. It is thought to require location of the isopeptide triad [lysine 

(K), asparagine (N), catalytic carboxyl group] within the hydrophobic core (Kang, Coulibaly 

et al. 2007). Furthermore, since intramolecular isopeptide bonds have been found in most 

pilus subunits and surface proteins characterized to date (Budzik, Poor et al. 2009; Kang and 

Baker 2009; Izore, Contreras-Martel et al. 2010), these bonds may play a critical role in 

maintaining pilus and surface protein integrity in the face of severe mechanical and chemical 

stress while bound to host cells and thus may provide a functional mode of stabilization for 

cell surface proteins involved in host pathogenesis. 
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2: AIM OF THE STUDY 

 

 To investigate the presence of stability feature in SdrE of S. aureus 

 Determine the expression of SdrE in S. aureus clinical isolate 

 Investigate the vaccine potential of the SdrE and highly conserved CnaBE3 domain of 

SdrE against S. aureus challenges  

 Investigate the cross-reactive and cross-protective efficacy of CnaBE3 domain of SdrE 

 Biochemical characterization of SdrE protein 

 Investigate the structural organization of full-length SdrE protein 
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3: MATERIALS AND METHODS 
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3.1: Antigen identification by in silico analysis 

In silico antigen identification was performed analyzing the S. aureus NCTC8325 genome by 

several bioinformatic algorithms as previously described (Rappuoli 2001; Bagnoli, Baudner et 

al. 2011; Palumbo, Fiaschi et al. 2012). 

 

3.2: Surfome and secretome preparation of Staphylococcus aureus 

Surfome preparation of S. aureus live cells was performed as previously described 

(Rodriguez-Ortega, Norais et al. 2006; Doro, Liberatori et al. 2009) with minor modifications. 

Briefly, S. aureus Newman strain was plated on Tryptic Soya Agar (TSA) and grown 

overnight. Bacterial colonies were then grown in Tryptic Soya Broth (TSB) at 37°C under 

agitation (250 rpm) in the presence of 5% CO2 to optical density (λ=600 nm) of 0.4. Bacteria 

were harvested by centrifugation at 3,500 x g for 10 min, 4°C and washed twice with 

phosphate buffered saline (PBS). Bacterial pellets were re-suspended in 5 mM ammonium 

bicarbonate and incubated at 37°C with 20 μg of trypsin (Promega, Madison, USA). Bacterial 

cells were then spun down at 3,500 x g for 10 min at 4°C and the supernatant was analyzed by 

nanoLC-MS/MS followed by database search using Mascot (www.matrixscience.com).  

Moreover, bacterial secretome preparation was also done. Secretome preparation was 

performed on the S. aureus Newman strain. Bacteria were grown as described above. After 

PBS washes, bacterial pellets were re-suspended and diluted in chemically defined medium 

(CDM) (Mickelson 1964) to optical density (λ=600 nm) of 0.05 and grown until a final 

optical density (λ=600 nm) of 0.4 is reached. Bacteria were removed by centrifugation at 

3,500 x g for 10 min, 4°C and the supernatant was filtered through a 0.22 µm pore size filter 

(Millex, Millipore, Beford, U.S.A). Complete Protease Inhibitor Cocktail Tablets (Roche) was 

added. Proteins present in the supernatant were precipitated with 10% w/v trichloroacetic acid 

(TCA), 0.04% w/v sodium deoxycholate. Proteins were further re-suspended in PBS. 

Different aliquots were suspended on LDS buffer (Invitrogen), separated on 4-12% Bis-Tris 

(BT) polyacrylamide SDS-PAGE and stained with Coomassie Brilliant Blue. Protein bands of 

interest were subsequently analyzed after in-gel trypsin digestion by MALDI-TOF mass 

spectrometry, as previously described (Berlanda Scorza, Doro et al. 2008). 

 

3.3: Protein identification by nanoLC-MS/MS 

Peptides were separated by nanoLC on a NanoAcquity UPLC system (Waters) connected to a 

Q-ToF Premier Electro Spray Ionization (ESI) mass spectrometer equipped with a nanospray 

source (Waters). Samples were loaded onto a NanoAcquity 1.7 μm BEH130 C18 column (75 

Materials & Methods 

http://www.matrixscience.com/


15 
 

μm X 25 mm, Waters), through NanoAcquity 5 μm Symmetry® C18 trap column (180 μm X 

20 mm, Waters). Peptides were eluted with a 120-min gradient of 2–40% of 98% acetonitrile, 

0.1% formic acid solution at a flow rate of 250 nL/ min. The eluted peptides were subjected to 

an automated data-dependent acquisition, using the MassLynx software, version 4.1 (Waters), 

where a MS survey scan was used to automatically select multi-charged peptides over the m/z 

ratio range of 300–2,000 for further MS/MS fragmentation. Upto eight different components 

were subjected to MS/MS fragmentation at the same time. For all samples, a second nanoLC-

MS/MS analysis was carried out for the selective fragmentation of mono-charged peptide 

species. 

After data acquisition, individual MS/MS spectra were combined, smoothed and centroided 

using ProteinLynx, version 3.5 (Waters) to obtain the peak list file. The Mascot Daemon 

application (Matrixscience Ltd., London, UK) was used for the automatic submission of data 

files to an in-house licensed version of MASCOT, version 2.2.1, running on a local server. 

Protein identification was achieved by searching in a locally created database containing 

protein sequence data derived from the sequenced S .aureus strains. The MASCOT search 

parameters were set to (i) 1 as number of allowed missed cleavages, (ii) 0.3 Da as peptide 

tolerance, and (iii) 0.3 Da as MS/MS tolerance. Only significant hits were considered, as 

defined by the MASCOT scoring and probability system. The score thresholds for acceptance 

of peptide identification were ≥18 for trypsin digestion. 

 

3.4: Cloning, expression and purification of SdrE  

The sdrE gene was PCR amplified from S. aureus NCTC8325 strain and inserted into the 

pET-15b+ vector (Novagen). Gene coding for the protein was cloned as N-terminal 6X-

histidine-tag fusion protein, expressed and purified. PCR primers were designed to amplify 

gene without predicted signal peptide coding sequences and C-terminal cell-wall anchoring 

LPXTG-motif. PCR fragments were cloned by using the Polymerase Incomplete Primer 

Extension (PIPE) method, developed by GNF (Genomics Institute of the Novartis Research 

Foundation, San Diego, CA, USA) (Klock and Lesley 2009). SdrE cloning operations were 

achieved by transforming HK100 competent cells with PCR products (I-PCR) immediately 

following amplification mixed with the V-PCR of Speed ET vector (N-term 6X-His tag) 

(Klock and Lesley 2009). The transformants were selected on Luria-Bertani (LB) plates 

supplemented with ampicillin (100 µg/ml) (Sigma). The plasmid pET-15b+-SdrE screened, 

were further confirmed by sequencing. 
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The plasmids containing the SdrE full-length sequence, thereof were transformed into 

expressing strain of Escherichia coli BL21 DE3 (Novagen) cells. Protein expression was 

induced by adding IPTG (isopropyl-β-D-thiogalactopyranoside) (Sigma) 1 mM final 

concentration to a bacterial culture (Luria-Bertani broth medium supplemented with 100 

µg/ml ampicillin) at an optical density (λ=600 nm) of 0.4 to 0.5 and then growing the bacteria 

at 37°C for next 8 hours.  

Protein purification was performed as follows; bacterial cells were harvested by centrifugation 

for 10 min in a Beckmann JA 81000 rotor at 8,000 x g at 4°C. Pellets (8 g) were lysed with 

lysostaphin (0.25 mg/ml) in 40 ml Bug Buster Reagent (Novagen) supplemented with 

Benzonase Nuclease (Novagen; 2.5-U/ml final concentration) and Protease Inhibitor Cocktail 

III (Calbiochem; 2.5 μl/ml lysate). Cells were then harvested by centrifugation (45 min at 

30,000 x g, 4°C). The supernatants of these lysates were filtered through a 0.45 µm membrane. 

Soluble histidine fusion proteins present in the supernatants were initially purified by metal-

chelating chromatography. In brief, the supernatants were applied to a 5 ml Ni
2+

-charged His 

Trap chelating column (Armesham Biosciences) pre-equilibrated in 100 mM NaPPi, pH 8 

buffer containing 15 mM imidazole and bound proteins were eluted with linear gradients of 0-

250 mM imidazole in 100 mM NaPPi, pH 8, at a flow rate of 5 mL/min. Fractions were 

analyzed for protein content by determining their absorbance at 280 nm and those containing 

recombinant proteins were identified by SDS-PAGE, pooled and dialyzed overnight against 

50 mM Tris/HCl pH 7.6. Dialyzed proteins were concentrated and further purified by ion-

exchange chromatography by applying the samples to a 5 ml HiTrap Q column (Armesham 

Biosciences). The column was washed with 50 mM Tris-HCl, pH 7.6 buffer containing 50 

mM NaCl and bound proteins were eluted by applying a step gradient from 0.2 to 1 M NaCl 

in increaments of 0.1 M, at a flow rate of 3 mL/min. Fractions were analyzed for protein 

content as described above. The pooled fractions containing SdrE were further purified by 

preparative gel filtration chromatography (HiLoad 26/60 Superdex 75) (GE Healthcare) in 

buffer 50 mM Tris-HCl, pH 7.6, with a flow rate of 1 mL/min. Protein concentration was 

estimated using BCA assay (Pierce). Protein purity was determined by RP-HPLC on a Vydac 

C4 4.6x150 mm column using acetonitrile gradient. 

 

3.5: Preparation of S. aureus sub-cellular fractions  

In order to evaluate the expression of SdrE in S. aureus in vitro, immuno-blot assay was 

performed. S. aureus Newman strain deficient for protein A (SpA) was used. Lysate fractions 

were obtained as follows. Bacteria were grown to stationary phase (overnight culture) in TSB 
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at 250 rpm, 37°C using aerated Erlenmeyer flasks. Overnight cultures were centrifuged at 

4,000 rpm for 15 minute, 4°C. For preparing cell-wall fractions, pellets from 5 ml overnight 

culture was re-suspended in 500 µl TSM (50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 0.5 M 

sucrose) buffer. 50 µl of lysostaphin (5 µg/µl) was added to samples and incubated for 1 hour 

or until lysis at 37°C in a thermomix. DNase and protease inhibitors were then added. After 

lysis, sample was centrifuged at 4,000 rpm for 15 min, 4°C and supernatants containing the 

cell-wall fraction were used for immuno-blot. For protoplasts preparation, the pellet was re-

suspended in 100 µl of SDS, then 1 µl of benzonase was added and incubated at 37°C for 15 

min. Sample was boiled, the tube was centrifuged for 5 min at 3,500 x g and then the 

supernatant was collected and loaded on SDS-PAGE. 

 

3.6: SDS-PAGE and immuno-blot assay  

SDS-PAGE analysis was performed using Nu-Page 10% Tris-Acetate gradient gels 

(Invitrogen) according to the manufacturer’s instructions. A Hi-Mark pre-stained high-

molecular-weight protein standard (Invitrogen) was used. All protein samples were heat-

denatured under reducing conditions. rSdrE and 20 µl of S. aureus lysate fractions (cell-wall 

and protoplasts) was placed into the wells of acrylamide gels and were subjected to SDS-

PAGE. Gels were stained with colloidal Coomassie Brilliant Blue or processed for immuno-

blotting by using standard protocols. Briefly, separated proteins were subsequently transferred 

onto a nitrocellulose membrane using i-blot system (Invitrogen). Membranes with the 

transferred proteins were incubated in PBS containing 1% Tween 20 (PBS-T) and 5% non-fat 

dry milk for 1 hour at room temperature followed by incubation with anti-SdrE mouse serum 

at 1/25000 dilution (diluted in PBS-T containing 5% milk) at room temperature. Following 

antisera incubation, the membranes were washed four times with PBS-T, 15 min each wash 

and incubated with horseradish peroxidase-conjugated goat anti-mouse antibody (Sigma) at a 

1/30,000 dilution for 1 hour at room temperature. After being washed four times in PBS-T, 

the membrane was incubated with SuperSignal West Pico Chemiluminescent substrate (Pierce) 

for 3 min and exposed to X-ray film. 

 

3.7: Enzymatic digestion of rSdrE 

Protease resistant behavior of rSdrE was observed in two conditions i.e. in presence and in 

absence of calcium. In brief, rSdrE was dialyzed overnight against 50 mM Tris-HCl + 1 mM 

of CaCl2, pH 7.6 and the other with 50 mM Tris-HCl, pH 7.6, with one change of buffer in 

both the cases. rSdrE (+/- Ca
2+

) was further digested overnight at 37°C with sequencing grade 
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modified trypsin, using an enzyme/substrate ratio of 1/25 (wt/wt) in 50 mM ammonium 

bicarbonate, pH 8, containing 0.1% (wt/vol) rapigest (Waters). Overnight trypsin treated 

rSdrE (+/- Ca
2+

) samples were further separated on 12%  BT polyacrylamide SDS-PAGE and 

stained with coomassie brilliant blue. 

 

3.8: Mass Spectrometry analyses 

Coomassie Brilliant Blue stained overnight trypsin resistant bands of rSdrE were excised from 

the SDS-PAGE gel using a Pasteur pipette and destained overnight in 200 µl of 50% 

acetonitrile (J. T. Baker Inc.) and 50% of 50 mM ammonium bicarbonate (Fluka Chemie AG, 

Buchs, Switzerland) (50:50, v/v). The excised bands were then washed with 200 µl of 

acetonitrile. The acetonitrile was discarded, and the bands were allowed to air dry. Dried 

bands were digested overnight at 37°C in 12 µl of 0.012 µg/ml sequencing grade modified 

trypsin in 5 mM ammonium bicarbonate. After overnight digestion, 0.8 µl was directly 

spotted on a PAC (Prespotted AnchorChip 96, set for proteomics, Bruker Daltonics, Bremen, 

Germany) and air-dried. The air-dried spots were washed with 0.6 µl of a solution of 70% 

(vol/vol) ethanol, 0.1% (vol/vol) trifluoroacetic acid (TFA). Peptide mass spectra were 

recorded with a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF)/TOF 

mass spectrometer (UltraFlex; Bruker Daltonics, Bremen, Germany). Ions generated by laser 

desorption at 337 nm (N2 laser) were recorded at an acceleration of 25 kV in the reflector 

mode. About 200 single spectra were accumulated for improving the signal/noise ratio and 

analyzed by Flex Analysis (version 2.4; Bruker Daltonics). External calibration was 

performed using standard peptides pre-spotted on the target. Peptide identification was 

performed using BioTools and Sequence Editor 3.0 (Bruker Daltonics). Protein identification 

was carried from the generated peak list using the Mascot program (Mascot server version 

2.2.01, Matrix Science). Mascot was run on a public database (National Center for 

Biotechnology Information non-redundant (NCBInr). 

 

3.9: Size-Exclusion Ultra Performance Liquid Chromatography (SE-UPLC) for the 

purification of rSdrE major trypsin resistant fragment 

To investigate which peptide the overnight trypsin resistant fragment of rSdrE comprises of, 

the resistant fragment was purified using SE-UPLC. In brief, overnight trypsin digested SdrE 

sample were purified using Bridged Ethyl Hybrid 200 (BEH200) column in UPLC (Waters) at 

flow rate of 0.5 mL/min with 20 mM phosphate, pH 8.0 buffer. Sample (60 µl) of overnight 

trypsin digested rSdrE were loaded on to the column, and peaks were assigned at A280. 
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Apparent molecular masses were determined from a standard curve of thyroglobulin (670 

kDa), bovine-gamma-globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and 

cytochrome c (12.3 kDa). Based on the chromatogram different fractions were collected, 

subjected to 12% BT polyacrylamide SDS-PAGE and stained with coomassie brilliant blue 

and the fraction with the purified major resistant fragment were  retained and further used for 

N-terminal sequencing by Edman Degradation. 

 

3.10: Amino-terminal sequencing of SdrE trypsin resistant fragment by Edman 

degradation 

To confirm the identity of the resistant fragment of rSdrE, the SE-UPLC purified resistant 

fragment was subjected to amino-terminal sequence analyses by Edman degradation 

(Lindenthal and Elsinghorst 1999). Amino-terminal sequence analyses were performed on an 

Agilent G1000A series protein sequencer following manufacturer’s protocol. 

 

3.11: Cloning, expression and purification of CnaBE3 domain of SdrE 

Based on the MALDI-TOF mass spectrometry and N- terminal sequencing result of rSdrE 

resistant fragment, CnaBE3 domain of SdrE was cloned as C-terminal 6X-histidine tag using 

the Polymerase Incomplete Primer Extension (PIPE) method (Klock and Lesley 2009). The E. 

coli strain expressing recombinant CnaBE3 was propagated with the EnPresso Tablet 

Cultivation Set (BioSilta) (Panula-Perala, Siurkus et al. 2008; Zhou, Szeker et al. 2013). 

CnaBE3 was purified in single step using metal-chelating chromatography. In brief, the 

supernatants were applied to a 5 ml Ni
2+

-charged His Trap chelating column and bound 

proteins were eluted with 200 ml linear gradients of 0-250 mM imidazole in 300 mM 

NaH2PO4 + 50 mM NaCl, pH 8.0, at a flow rate of 5 mL/min.  Fractions were analyzed for 

protein content by determining their absorbance at 280 nm and those containing recombinant 

proteins were identified by SDS-PAGE. Protein concentration was estimated using BCA 

assay (Pierce).  

 

3.12: Enzymatic digestion of rCnaBE3 

rCnaBE3 was digested with sequencing grade modified trypsin, following the same protocol 

as used for rSdrE. rCnaBE3 samples overnight incubated with trypsin was further separated 

on 12% BT polyacrylamide SDS-PAGE and and stained with Coomassie Brilliant Blue. 
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3.13: Amino-terminal sequencing of rCnaBE3 trypsin resistant fragment by Edman 

degradation 

Trypsin digestion of rCnaBE3 resulted in the appearance of one major resistant fragment at 

molecular weight of 12 kDa. In order to further confirm the identity of the overnight trypsin 

resistant fragment of rCnaBE3, the resistant fragments of rCnaBE3 were subjected to amino-

terminal sequence analyses. Amino-terminal sequence analyses were performed on an Agilent 

G1000A series protein sequencer following manufacturer’s protocol as described for SdrE in 

3.10.  

 

3.14: Intact mass spectrometry of rCnaBE3 

To look for the mass difference between theoretical and experimental mass of rCnaBE3, 

intact mass spectrometry of rCnaB3 was done. rCnaBE3 were diluted in 0.1% formic acid. 

The acidified protein solutions were loaded onto a Protein Microtrap cartridge (from 60 to 

100 pmols), desalted for 2 min with 0.1% formic acid at a flow rate of 200 mL/min and eluted 

directly into the mass spectrometer using a step gradient of acetonitrile (55% acetonitrile, 0.1% 

formic acid). Spectra were acquired in positive mode on a SynaptG2 HDMS mass 

spectrometer equipped with a Z-spray ESI source. The quadrupole profile was optimized to 

ensure the best transmission of all ions generated during the ionization process. 

 

3.15: Cloning and site directed mutagenesis of five asparagines at different positions in 

CnaBE3 domain of SdrE 

We designed six point mutation construct in the CnaBE3 domain of SdrE, where asparagine 

present at six different position in the CnaBE3 domain of SdrE were substituted with alanine 

and are named as CnaBE3 mutant 1 (N23A), CnaBE3 mutant 2 (N49A), CnaBE3 mutant 3 

(N63A), CnaBE3 mutant 4 (N70A), CnaBE3 mutant 5 (N92A) and CnaBE3 mutant 6 

(N119A) (Figure 1.6) and all six asparagine point mutation construct with 6X- histidine tag at 

C-terminal. However, till date we are having only five CnaBE3 mutants (1 to 5) ready for 

further analysis. The primers used for five point mutation construct are listed in Table 1.1. 

The Stratagene QuikChange™ site- directed mutagenesis kit was used to construct all the five 

mutants according to the procedure outlined in the manufacture’s technical manual. 

Transformants were screened for recombinant plasmids, and then mutation constructs were 

identified and further confirmed by DNA sequencing. 
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Figure 1.6: Nucleotide sequence of CnaBE3 domain of SdrE with asparagine point 

mutation site. Nucleotide sequence of CnaBE3 domain of SdrE. Blue boxes in the sequence 

represent the different site of point mutation where asparagine is substituted with alanine (1-6). 

 

Table 1.1: PCR primers designed to amplify corresponding gene 

Gene Primer Nucleotide sequence 

sdrE sdrEF 

sdrER 

5’-CTGTACTTCCAGGGCGCTGAAAACACTAGTACAGAAAATGCAAAACAAG  

5’-AATTAAGTCGCGTTATGCTTTTGCTTTATTGTGATGGTCTTTAGTAG 

cnaBE3 cnaBE3F 

cnaBE3R 

5’-GAAGGAGATATACATATGGATGCAGATAATATGACATTAGAC 

5’-GTGGTGGTGGTGGTGTGTATCTTCTTCGAAGTATCCGTT 

cnaBE3 

mutant 1 

(N23A) 

cnaBE3 

(N23A)F 

cnaBE3 

(N23A)R 

 

5’-GACAGTGCTAAAGACGGCAAACAA 

 

5’-GTCTTTAGCACTGTCGTACCAAAC 

cnaBE3 

mutant 2 

(N49A) 

cnaBE3 

(N49A)F 

cnaBE3 

(N49A)R 

 

5’-TTGCAAGCGGAAAAAGGCGAAGTA 

 

5’-TTTTTCCGCTTGCAATGTAACTGT 

cnaBE3 

mutant 3 

(N63A) 

cnaBE3 

(N63A)F 

cnaBE3 

(N63A)R 

 

5’-GATGAAGCGGGTAAATATCGTTTC 

5’-TTTACCCGCTTCATCTGTTTTAGT 
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cnaBE3 

mutant 4 

(N70A) 

cnaBE3 

(N70A)F 

cnaBE3 

(N70A)R 

 

5’-TTCGATGCGTTAGATAGCGGTAAA 

 

5’-ATCTAACGCATCGAAACGATATTT 

cnaBE3 

mutant 5 

(N92A) 

cnaBE3 

(N92A)F 

cnaBE3 

(N92A)R 

 

5’-GTTACAGCGACAACTGAAGATGAT 

 

5’-AGTTGTCGCTGTAACTGTTTGTGT 

 

3.16: Expression and purification of five asparagine point mutation construct in 

CnaBE3 domain of SdrE (CnaBE3 mutant 1-5) 

All five CnaBE3 mutation construct were transformed into E. coli BL21 (DE3) expression 

cells. The E. coli strain expressing recombinant five CnaBE3 asparagine mutant construct 

were propagated with the EnPresso Tablet Cultivation Set (BioSilta) (Panula-Perala, Siurkus 

et al. 2008; Zhou, Szeker et al. 2013). Five (1-5) CnaBE3 point mutation constructs were 

purified using single step by metal-chelating chromatography according to procedures 

described above for the purification of wild type CnaBE3 protein.  

 

3.17: Enzymatic digestion of five point mutation CnaBE3 recombinant proteins 

All five point mutation purified recombinant proteins i.e. CnaBE3 mutant 1 (N23A), CnaBE3 

mutant 2 (N49A), CnaBE3 mutant 3 (N63A), CnaBE3 mutant 4 (N70A), CnaBE3 mutant 5 

(N92A) were digested with sequencing grade modified trypsin, using an enzyme/substrate 

ratio of 1/25 (wt/wt) in 50 mM ammonium bicarbonate,  pH 8, containing 0.1% (wt/vol) 

rapigest (Waters) overnight at 37°C.  

 

3.18: Active immunization of mice and generation of polyclonal antibodies 

Polyclonal mouse antibodies have been generated and used for western blot (WB) studies. 

Five-week-old CD1 mice were immunized intraperitoneally with a prime-booster injection of 

20 µg purified recombinant SdrE and CnaBE3 separately adsorbed to aluminum hydroxide 

adjuvant (alum, 2 mg/ml) in 14’ day interval (Mishra, Mariotti et al. 2012). Control mice 

received equal amounts of PBS and alum adjuvant. Animals were bled immediately prior to 

Materials & Methods 



23 
 

the first immunization and 23 days thereafter, and sera were examined for IgG antibodies 

directed against purified SdrE and CnaBE3 using the Luminex technology. 

 

3.19: Sub-cellular fraction preparation in ten different S. aureus strains and immuno-

blot assay using anti-CnaBE3 mouse sera 

Bacterial cell-wall were obtained as described previously (Sitkiewicz, Babiak et al. 2011). 

Ten S. aureus strains namely NCTC8325, Newman, MSSA476, MW2, N315, Mu50, Mu3, 

USA300-FPR3757, MRSA252 and TW20 were grown to mid-log phase in TSB 

supplemented with 5 mM CaCl2 to an optical density (λ=600 nm) of 0.6. Bacterial cell-wall 

were harvested by centrifugation at 4,000 rpm for 15 minute, 4°C. Cells were then washed in 

PBS once and resuspended in 100 μl lysis buffer (50 mM Tris-HCl, 20 mM MgCl2, pH 7.5) 

supplemented with 30% (w/v) raffinose and 40 μl/ml EDTA-free protease inhibitors cocktail. 

10 μl of lysostaphin (200 μg/ml) was added to samples and incubated at 37°C for 1 hour. 

After lysis, samples were boiled for 10 minute with LDS sample buffer and sample reducing 

agent (Life Technologies) and separated on 3-8% Tris-Acetate gel. Electrophoretically 

separated protein samples were transferred to nitrocellulose membranes with i-Blot transfer 

system. Membranes were blocked for 2 hours at room temperature in PBS-T with 10% 

skimmed milk (Bio-Rad), followed by incubation with anti-CnaBE3 mouse serum at 1/1,000 

dilution (diluted in PBS-T containing 5% milk) at room temperature. Following antisera 

incubation, the membranes were washed four times with PBS-T, 15 min each wash and then 

incubated with horseradish peroxidase-conjugated goat anti-mouse antibody at a 1/5,000 

dilution in 10% skimmed milk for 1 hour at room temperature. After being washed four times 

in PBS-T, the membrane was incubated with SuperSignal West Pico Chemiluminescent 

substrate for 3 min and exposed to X-ray film.  

 

3.20: Immunogenicity assay 

SdrE and CnaBE3 antibody titers present in sera of immunized mice were measured by 

Luminex technology (Luminex
®
 200 TM). The protein was covalently conjugated to the free 

carboxyl groups of microspheres using a N-hydroxysulfosuccinimide-enhanced carbodiimide-

mediated conjugation chemistry. Antigen specific antibodies were revealed by phycoerythrin-

labelled secondary antibodies. The assay read-out is a measure of fluorescence intensity 

expressed as arbitrary Relative Luminex Units (RLU/mL).  

 

3.21: Murine abscess model for protective efficacy of SdrE and CnaBE3 
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In order to look for the vaccine efficacy of SdrE and CnaBE3, immunization with proteins 

followed by S. aureus challenge was done. Immunized animals were challenged on day 24 by 

intravenous injection of a sub-lethal dose of S. aureus Newman strain. TSB cultures of S. 

aureus were centrifuged, washed twice and diluted in PBS before challenge. Further dilutions 

were needed for the desired inoculum, which was experimentally verified by agar plating and 

colony counting. Mice were infected with approximately 2 to 6 x10
7 

CFU of S. aureus 

Newman strain. On day 28, mice were euthanized and kidneys were removed and 

homogenized in 1% Triton X-100, aliquots diluted and plated on agar media for triplicate 

determination of colony forming units (CFU). Data were analyzed by Mann Whitney U test. 

 

3.22: Murine abscess model for cross-protective efficacy of CnaBE3 of SdrE 

In order to look for the cross-protective efficacy of the highly conserved CnaBE3 domain of 

SdrE, mouse were immunized with CnaBE3. CnaBE3 immunized animals were challenged on 

day 24 by intravenous injection of a sub-lethal dose (~ 2 to 6 x10
7
 CFU/ml) of S. aureus 

NCTC8325 strain, which is naturally devoid for sdrE gene. On day 28, mice were euthanized, 

kidneys were removed and bacterial load was measured. At least three independent 

experiments were carried out under the same conditions to assess reproducibility. Data were 

analyzed by the Mann-Whitney U-test. 

 

 3.23: Differential scanning fluorimetry (DSF) 

DSF experiments were performed using thin wall PCR plates (Axigen). rSdrE was used at a 

final concentration of 10 μM; both CaCl2 (dissolved in water) and EDTA were used up to 1 

mM. The SYPRO orange dye 5000X (Invitrogen) was used at the final concentration of 5X in 

each well. The reaction mixtures were 40 µl in 50 mM Tris-HCl buffer, pH 7.6. Fluorescence 

intensities were monitored using an Mx3005 RT-PCR instrument (Stratagene) using the FAM 

(492 nm) and ROX (610nm) filters for excitation and emission, respectively. Samples were 

heated from 25°C to 95°C at scan rate of 1°C/min. Tm values were extrapolated by fitting the 

raw data to a Boltzmann model using GraphPad Prism 5.0 software. Each experiment was 

performed atleast in triplicate. 

 

3.24: Design of SdrE construct for structural study 

The design of optimized protein expression construct is frequently a crucial point to increase 

the probability of success of crystallization. In order to do that, flexible parts of the protein 

like long loops or disordered regions are reduced or removed because they can interfere 
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negatively with crystal formation. More compact or stable domains, without flexible regions, 

are known to enhance the crystallization of “tricky proteins”.  

In addition, in the design of protein expression constructs suitable for crystallization, it is 

normal practice to study the related protein structures (if any) present in the Protein Data 

Bank (PDB), in order to understand which regions of homologous proteins have shown a 

propensity to crystallize and reveal well-ordered, folded structures. PDB search using full-

length SdrE sequence identified the structure 1R17 (SdrG bound to Fibrinogen), 331 residues 

with 50% SEQID from residue 227-553. An analysis of the SdrE protein sequence was 

performed using several publicly available software suites e.g., Medor: 

http://www.vazymolo.org/MeDor/index.html, which were developed in order to identify 

regions of secondary structure, order and disorder (Ward, McGuffin et al. 2004; Lieutaud, 

Canard et al. 2008). By Medor analysis of the full-length SdrE amino acid sequence, it is 

likely to be secondary structure and hydrophobic clusters up to residues Phenylalanine (F-935) 

to aspartic acid (D-941). The Disopred server ( http://bioinf.cs.ucl.ac.uk/disopred/) suggests 

that SdrE is disordered starting from the first residue until the residue valine (V-275), 

approximately 275 amino acid of the SdrE sequence. From the secondary structure analysis of 

SdrE, (performed using the bioinformatics servers available at http://toolkit.tuebingen.mpg.de 

and http://groups.csail.mit.edu/cb/paircoil2/paircoil2.html) no major COILS predicted. 

Phobius server predicted signal peptide from residue 1-52 (underlined) in SdrE sequence 

(Figure 1.7). The SDSD repeats in the sequence are highly likely to be unstructured. 

Based on the different online bioinformatic algorithms, two construct of SdrE named as long 

(T212NPK- DTSD942) and short version (T251APT- DTSD942) of SdrE were designed, cloned in 

pET-15b+ vector by PIPE cloning method and checked by sequencing. Both the plasmids are 

sent to Northwestern University, Chicago for crystallization.  
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Figure 1.7: Full-length SdrE amino acid sequence indicating the construct designed for 

structural study. Based on different bioinformatic algorithms two construct namely long and 

short version of SdrE were designed. Two construct designed for SdrE starts with different N-

terminal residues (green and blue),  but end to same C-terminal residue (in purple). In green, 

is the starting residues at N-terminal for the long version of SdrE and in blue is the starting 

residues at N-terminal for short verion of SdrE.  
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4.1: In silico prediction and mass spectrometry identification of SdrE 

SdrE was identified as a putative vaccine antigen during analysis of the S. aureus NCTC8325 

genome by several bioinformatic algorithms as described in material and method. The S. 

aureus SdrE protein was predicted as cell-wall anchored protein due to the presence of a 

leader peptide and cell wall anchoring LPXTG-motif (Figure 1.3). sdrE gene is approximately 

3.5 kbp and is close to sdrC and sdrD in sdr locus. Although sdrE is not highly conserved 

among different staphylococcal strains, is present in epidemiologically relevant strains of S. 

aureus (data not shown). In parallel with the in silico analysis, we performed a mass 

spectrometry (MS)-based study of the staphylococcal surface and secreted proteins. The 

surfome and secretome of S. aureus Newman were analyzed by nanoLC-MS/MS. SdrE was 

unexpectedly identified only in the secretome (data not shown).  We assume that this is due to 

the different sample treatment in analyzing the secretome as compared to the surfome. Indeed, 

the secretome is treated with harsher conditions. Therefore, this observation suggested that the 

protein is highly stable and protease resistant. On the other hand, by immuno-blot analysis we 

found the protein to be expressed in the cell-wall of the epidemiologically relevant S. aureus 

Newman strain (Figure 1.8).  

Moreover, it is known that in most cases the protein with the pilin subunits and LPXTG-type 

cell- wall sorting sequences are presumably targeted by sortases (Guttilla, Gaspar et al. 2009) 

and the sortase-mediated isopeptide bond cross-linking stabilizes and strengthens Gram-

positive bacterial pili, that are the unique examples of covalent biological polymers. Pili are 

long and thin, typically 1–5 µm in length but only ~30–60 nm in width (no more than one 

molecule wide), but their strength and integrity are maintained by a remarkable sequence of 

covalent cross-links, both between the individual pilin subunits and within them. In both cases, 

these cross-links take the form of isopeptide bond either intermolecular or intramolecular 

isopeptide bond. The intermolecular isopeptide bond, as mentioned earlier is catalyzed by the 

action of the sortase enzymes, which join the C-terminal carboxylate of one subunit to a 

specific lysine side chain on the next (Hendrickx, Budzik et al. 2011). The internal cross-links, 

however, arise through autocatalytic, intramolecular reactions that occur spontaneously in the 

pilin subunits (Kang and Baker 2009; Kang and Baker 2011). In order to see if rSdrE forms a 

high molecular mass ladder and are involved in formation of intemolecular isopeptide bond, 

like some of the surface proteins with CnaA and CnaB domain involved in the formation of 

intermolecular isopeptide bond, immuno-blot analysis using anti-SdrE mouse serum was 

performed. 
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4.2: Expression of SdrE in cell-wall fraction of S. aureus Δspa Newman strain by 

immuno-blot 

Immuno-blot assay confirms the expression of SdrE in the cell-wall fraction of S. aureus 

whereas no ladder-like polymeric high-molecular-weight (HMW) was observed under the 

condition tested (Figure 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: SdrE expression in S. aureus Δspa Newman strain. (A) SDS-PAGE of cell-

wall (Lane 1 to 4, with different loading volume), protoplasts fraction (Lane 5 to 8, with 

different loading volume) and rSdrE (Lane 9). The sizes of molecular mass standards (in 

kilodalton) are indicated on the left. Proteins from each fraction were separated on 10 % Tris-

Acetae SDS-PAGE. (B) Analysis of cell-wall fraction and protoplast of S. aureus strain Δspa 

Newman by immuno- blot using anti-SdrE mouse serum. Loading volume in each lane is 

similar to SDS-PAGE. In the cell-wall preparation, band with a MW compatible with the 

rSdrE protein were visible. No immunoreactivity was detected in the lane where the 

protoplasts preparation was loaded. However, no ladder-like polymeric high-molecular-

weight (HMW) seen, unlike some of the surface proteins with CnaA and CnaB domain and 

involved in the formation of intermolecular isopeptide bond in gram positive bacteria. 

 

4.3:  rSdrE shows resistance to proteolytic cleavage  
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The surface proteins with CnaA and CnaB domains in most of the Gram-positive bacteria 

have been shown to resist proteolytic cleavage, a feature associated with the presence of 

intramolecular isopeptide bonds (Kang and Baker 2009). We investigated whether SdrE, a 

surface protein containing CnaA and CnaB domains were also protease resistant and if this 

feature is associated with the presence of intramolecular isopeptide bond. It has been reported 

that because of the presence of EF-hand loop in SdrD protein, a protein belonging to Sdr 

protein family, shows high calcium affinity, which in turn helps in maintaining the structural 

stability of the protein (Josefsson, O'Connell et al. 1998). Therefore, trypsin proteolytic-

cleavage reactions were performed on the purified full-length SdrE in presence and absence of 

1 mM of calcium. We observed that under both the conditions rSdrE were significantly 

resistant to enzymatic digestion compared to other recombinant S. aureus proteins, which 

under the same reaction conditions, were completely digested. In fact, the SDS-PAGE pattern 

revealed one major polypeptide fragment with an apparent molecular mass of 37 kDa in both 

the cases (Figure 1.9). Furthermore, analysis of the overnight trypsin resistant fragment of 

rSdrE by PMF reveals the peptides coverage mainly from the CnaBE3 domain of the rSdrE 

protein (Figure 1.10). In order to further investigate what the major trypsin resistant fragment 

was comprised of, we performed N-terminal sequencing by Edman degradation. Moreover, 

N-terminal sequencing identified T793 of TPKYSLGDYV as an N-terminal start of resistant 

fragment (Figure 1.11), and all the subsequent released residues agreed with the downstream 

sequence located in the CnaBE3 domain of SdrE. 
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Figure 1.9: rSdrE shows resistance to proteolysis in absence and presence of calcium. 

SDS-PAGE analysis of overnight trypsin incubated rSdrE in absence and presence of 1 mM 

calcium. The molecular weight markers are shown on the left-hand side. In both the cases, the 

SDS-PAGE pattern revealed one major polypeptide fragment with an apparent molecular 

mass of approximately 37 kDa. 

 

 

 

 

 

 

 

 

 

Figure 1.10: rSdrE amino acid sequence with peptides identified in the major resistant 

fragment of SdrE by PMF and Edman degradation. Underlined sequences correspond to 

the peptides identified by PMF. Dark bold black sequence indicates amino acid residues 

identified by Edman degradation. The residues identified by Edman degradation lies in the 

CnaBE3 domain of SdrE. 
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Figure 1.11: Schematic representation of the SdrE structural organization with the 

peptides identified from the major resistant fragment of SdrE by Edman degradation. 

Peptide sequence identified by Edman degradation shown here in the box suggests the 

purified overnight trypsin resistant fragment starts from the CnaBE3 domain of SdrE. 

 

4.4: rCnaBE3 shows partial resistance to proteolytic cleavage  

Based on PMF and Edman degradation analysis of the SE-UPLC purified overnight trypsin 

resistant fragment of rSdrE, we asked whether CnaBE3 domain of SdrE also shows trypsin 

resistant behavior. In order to look for the CnaBE3 behavior toward trypsin incubation, 

CnaBE3 domain were cloned, expressed and purified. Furthermore, trypsin proteolytic 

cleavage reactions were performed on the purified recombinant CnaBE3 domain of SdrE, 

which resulted in appearance of one major fragment with an apparent molecular mass of 12 

kDa (Figure 1.12). 
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Figure 1.12: Proteolytic stability of rCnaBE3. Trypsin incubation of rCnaBE3 for different 

time interval (1hr, 4hr, and overnight), separated on 12% BT polyacrylamide. SDS-PAGE 

analaysis showed the partial resistance behavior of rCnaBE3 with the appearance of 12 kDa 

band after trypsin incubation. The molecular weight markers are shown on the left-hand side. 

 

4.5: Intact mass spectrometry of rCnaBE3 shows loss of 17 Da 

The result of rCnaBE3 trypsin incubation revealed that rCnaBE3 is partially resistant to 

trypsin. In order to investigate whether the resistance is due to the presence of intramolecular 

isopeptide bond, we did intact mass spectrometry of rCnaBE3. Indeed, the intact mass of 

rCnaBE3 domain revealed the loss of 17 Da which suggests the presence of an intramolecular 

isopeptide bond or some other post-translational modification (Figure 1.13). The theoretical 

(calculated) mass of rCnaBE3 is 15129.08 Da and interestingly we observed an average 

experimental (observed) mass of 14975.08 Da (Table 1.2), a measurement that is in 

agreement with the formation of one intramolecular isopeptide bond, resulting in the mass 

difference of 17 Da between the theoretical and experimental mass due to the loss of NH3 

group. Indeed, it is known from the literature that the NH3 is eliminated when ε group of 

lysine bonds to the carboxyamide group of asparagine and result in formation of 

intramolecular isopeptide bond in gram positive cell surface proteins with CnaA and CnaB 

domains (Kang, Middleditch et al. 2009). This data indicated that the CnaBE3 domain shows 

the loss of 17 Da suggesting the presence of an isopeptide bond. However, low intensity of 
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the peptide with 17 Da loss and scarce reproducibility of the data do not allow us to 

definitively conclude that CnaBE3 contains an isopeptide bond. In particular, this could also 

be due to some other post-translational modification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Exact mass determination of rCnaBE3 of SdrE. Two species of rCnaBE3 

were identified by intact mass spectrometry of rCnaBE3 indicated here A and B, with 

different CnaBE3 amino acid sequence coverage. And each of the two species showed a mass 

difference of 17 Da between the theoretical and experimental mass. 
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Protein 
M average (Da) 

Mcalculated - Mobserved 

(Da) 

Intramolecular 

isopeptide bond 

predicted 

Calculated Observed 

rCnaBE3 15129.08 14992.46 17 1 

 

Table 1.2:Intact mass measurement shows mMass difference of 17Da between 

theoretical and experimental mass of rCnaBE3 of SdrE. Experimental mass observed by 

intact mass measurement of the rCnaBE3 shows mass difference of 17 Da between theoretical 

and experimental mass of rCnaBE3, indicating the presence of one intramolecular isopeptide 

bond.   

 

4.6: Asparagine residue present in rCnaBE3 are not involved in isopeptide bond 

formation  

Based on the fact that most of the surface proteins containing CnaA and CnaB domains form 

intramolecular isopeptide bond and the bonds are formed between lysine-asparagine/ lysine-

aspartic acid residues in presence of glutamic acid, acting as a catalyst, we decided to further 

investigate if the loss is due to isopeptide bond and if so, explore the residues involved in the 

formation of intramolecular isopeptide bond in rCnaBE3. In order to do so, we designed six 

asparagine point mutation construct in the CnaBE3 domain of SdrE, where asparagines at 

different sites were substituted with alanine, but was able to generate only five construct till 

date. Therefore, trypsin proteolytic-cleavage reactions were performed for the five asparagine 

mutant of rCnaBE3, similar to that of the purified full-length rSdrE and wild-type rCnaBE3. 

We found that all the five mutants were partially resistant to enzymatic digestion similar to 

wild-type rCnaBE3. In fact, the SDS-PAGE pattern revealed one major polypeptide fragment 

with an apparent molecular mass of 12 kDa (Figure 1.14) in all the cases. This data indicates 

that the five asparagines mutated in CnaBE3 domain are not involved in the formation of 

intramolecular isopeptide bond. 
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Figure 1.14: Proteolytic stability of five different asparagine point mutation constructs 

of rCnaBE3. Trypsin incubation of all five rCnaBE3 point mutation constructs at various 

time points separated on 12% BT SDS-PAGE. The molecular weight markers are shown on 

the left-hand side. In all digestions, the SDS-PAGE pattern revealed one major polypeptide 

fragment with an apparent molecular mass of 12 kDa. 

 

4.7: CnaBE3 domain is highly conserved among epidemiologically relevant S. aureus 

strains 

Apart from the partial trypsin resistant behavior of CnaBE3 domain of SdrE, taking into 

account exclusively the amino acid sequence of the last CnaB domain lying adjacent to region 

R in each Sdr protein i.e C3, D5 and E3 repeats of SdrC, SdrD and SdrE respectively (Figure 

1.3) of the different S. aureus strains, which is reported to show 95-97% residue identity 

(Josefsson, McCrea et al. 1998), we compared the amino acid sequence of the three Sdr 

proteins and their respective CnaB domains of Newman strain to the amino acid sequences of 

Sdr proteins and CnaB domains of a representative panel of the NCBI published S. aureus 

strains. The comparison revealed that Sdr full-length proteins and their last CnaB domain 

shows a very high sequence homology and conservation to Newman Sdr proteins and last 

CnaB domain, even when belonging to phylogenetically distant strains (Figure 1.15). In 
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particular, considering exclusively the last CnaB domain of Sdr proteins in S. aureus, the 

residue identity percentage was never smaller than 97%, well above the percentages obtained 

comparing full-length proteins in phylogenetically distant S. aureus strains (Table 1.3). 

Remarkably even the strains lacking sdrD or sdrE gene, such as MRSA252 and NCTC8325 

appeared to have a very high sequence identity to the CnaBD5 and CnaBE3 sequence of SdrD 

and SdrE respectively in Newman strain due to the high sequence similarity of last CnaB 

domains i.e. C2, D5 and E3 among each other. This finding prompted us to investigate 

whether the antibody raised against the highly conserved domain CnaBE3 of SdrE recognizes 

other Sdr proteins because of high homology in clinically relevant strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: CnaBE3 domain is highly conserved among phylogenetically distant S.  

aureus strains. Phylogenetically distant S. aureus strains belonging to different clonal 

complexes (CC 1, CC 5, CC 8 and CC 30) with conserved CnaBE3 domain of SdrE. 
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Table 1.3:  Amino acid sequence homology and conservation of full-length Sdr proteins 

(SdrC, SdrD and SdrE) and last CnaB domain (i.e C2, D5 and E3) of Newman strain to 

Sdr proteins  and the last CnaB domain of nine clinically relevant S. aureus strains. In 

the left panel is the comparison of sequence homology and conservation of S. aureus Newman 

strain full-length Sdr proteins. In particular, for SdrC the sequence homology of SdrC of 

Newman strain to SdrC of Mu50, Mu3, N315, Col, MSSA476, USA300-FPR3757 and MW2 

strains shows high level (green) of sequence similarity (≥95%), whereas in strain MRSA-

emra16 the sequence identity is 89%. For SdrD, sequence homology of all the nine strains 

with respect to Newman strain SdrD are ≥95% (green) except for strain MRSA-emra16 strain 

which lacks sdrD gene (red). Similarly for SdrE, sequence identity is ≥95% (green) for all 

strains except NCTC8325, which lacks sdrE gene (red).   

In the right panel is the comparison of sequence homology and conservation of S. aureus 

Newman strain last CnaB domain of the three Sdr proteins to the last CnaB domain of the 

nine S. aureus strains. Table indicates >95%  sequence homology for each of the strains, even 

in the strain lacking sdrD and sdrE gene. 

 

4.8: Anti-CnaBE3 domain antibodies recognize all three Sdr full-length proteins in the 

analyzed panel of phylogenetically different S. aureus strains 

 
Strains Full-length Sdr proteins Last CnaB domain of each 

Sdr proteins 

 
Newman SdrC SdrD SdrE  CnaBC2 CnaBD5 CnaBE3 

Mu50 95 91 95 100 98 97 

Mu3 95 91 97 100 98 97 

N315 95 91 95 100 98 98 

MRSA252-erma 16 89  85 98 95 97 

Col 100 99 99 100 100 99 

MSSA476 96 95 97 100 98 99 

USA300-FPR3757 99 95 98 100 100 99 

MW2 96 96 97 100 97 99 

NCTC8325 95 97  100 98 97 

  

  

  Present ( ≥ 95% sequence identity) 

  Present but variable (˃ 75 < 95% sequence identity) 

 Absent (≤ 75% sequence identity) 
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Having described the high sequence homology and conservation of CnaBE3 domain 

throughout a panel representative of the phylogenetically distant S. aureus strains, we 

investigated whether polyclonal antibodies raised against the CnaBE3 domain were able to 

detect all three Sdr proteins in the same panel of S. aureus strains. The rCnaBE3 was injected 

in mice and anti-CnaBE3 polyclonal antibodies were recovered. Cell-wall protein from 

NCTC8325, Newman, MSSA476, MW2, N315, Mu50, Mu3, USA300-FPR3757, MRSA252, 

and TW20 strains were prepared and analyzed using anti-CnaBE3 mouse serum by immuno-

blot assay. As shown in Figure 1.16, the anti-CnaBE3 polyclonal antibodies recognized the 

three Sdr proteins in the cell-wall fraction from different strains at their respective apparent 

molecular weight. As expected, neither SdrD protein in the sdrD negative strain MRSA252, 

nor SdrE protein in the sdrE negative strain NCTC8325 was detected. These data 

demonstrated that anti-CnaBE3 domain antibodies cross-reacts with other Sdr proteins i.e. 

SdrC and SdrD, even when they belong to evolutionarily distant strains and therefore 

underline the cross-reactive potential of CnaBE3 domain of SdrE to other Sdr proteins. 

Furthermore, this result prompted us to consider CnaBE3 domain as a possible vaccine 

candidate. Therefore, we decided to analyze the immunogenicity and the protective efficacy 

of the CnaBE3 domain whether small highly conserved structural domain of SdrE is sufficient 

for providing protection against S. aureus infection. 

 

 

 

 

 

 

 

 

 

 

Figure 1.16: Immuno-blot assay showing anti-CnaBE3 antibodies recognize all three Sdr 

proteins in clinically relevant S. aureus strains. The cell-wall fraction of S. aureus strains 

NCTC8325, Newman, MSSA476, MW2, N315, Mu50, Mu3, USA300-FPR3757, MRSA252 

and TW20 showed the presence of an immunoreactive band at a molecular weight comparable 

with the three Sdr proteins i.e. SdrC, SdrD and SdrE respectively. Indeed, no immunoreactive 
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bands at a molecular weight compatabile with the SdrD and SdrE were detected in the strains 

lacking sdrD and sdrE gene shown here by red bar.  

 

4.9: SdrE vaccination protects mice against the challenge with S. aureus clinical isolates 

Having demonstrated that SdrE is surface exposed and are involved in S. aureus pathogenesis 

and also CnaBE3 of SdrE showing high sequence identity with CnaBC2 and CnaBD5 of SdrC 

and SdrD, we then asked whether SdrE and CnaBE3 immunization could confer protection in 

mouse model. Protective efficacy of SdrE and CnaBE3 were tested in murine abscess model. 

In the murine abscess model, CD1 mice immunized with alum (sham), SdrE, and CnaBE3 

separately, were infected intraperitonealy with sub-lethal inocula (approximately 2–6 × 10
7
 

CFU) of S. aureus Newman strain. Four days after infection, kidneys of sham, SdrE and 

CnaBE3 immunized were harvested and bacterial load was measured. SdrE vaccination 

induced 1.5 log10 CFU/ml reduction of bacterial burden in the kidneys of mice, whereas 

CnaBE3 vaccination reduced the bacterial burden in kidney by 1 log10 CFU/ml. Moreover, no 

significant difference in the reduction of bacterial count seen in the kidney when compared 

between the SdrE and CnaBE3 vaccinated mice (Figure 1.17). 

 

 

 

 

 

 

 

 

 

 

Figure 1.17: Protective efficacy of SdrE and CnaBE3 vaccination in murine abscess 

model. CD1 mice (N = 16 per group, 2-3 separate experiments) were immunized with alum 

alone (control) or full-length SdrE, CnaBE3 and then challenged with S. aureus Newman 

strain. The protection efficacy of full-length SdrE and CnaBE3 domain was assessed 
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evaluating bacteremia in the collected kidneys after an intravenous challenge. Mice were 

vaccinated intraperitoneally. SdrE vaccination induced 1.5 log10 CFU/ml reduction of 

bacterial burden in the kidneys of mice, whereas CnaBE3 vaccination reduced the bacterial 

burden in kidney by 1 log10 CFU/ml. Statistical analysis was performed by Mann-Whitney U-

test.  

 

4.10: CnaBE3 vaccination cross-protects against S. aureus NCTC8325 strain, a strain 

naturally devoid of sdrE gene 

The cross-protection efficacy of CnaBE3 domain was tested by challenging immunized mice 

using the S. aureus strain NCTC8325, which is naturally devoid of sdrE gene. Three groups 

of 16 mice were immunized twice with rCnaBE3 at 14 days interval in three different 

experiments using the same conditions and challenged by approximately 2–6 × 10
7
 CFU of S. 

aurues NCTC8325 strain for each mouse. Immunization with CnaBE3 domain caused a 

significant (p < 0.01) CFU reduction when compared with mice treated with alum alone 

(Figure 1.18).  

 

 

 

 

 

 

 

 

 

Figure 1.18: Cross-protective efficacy of CnaBE3 vaccination in murine abscess model. 

CD1 mice (N = 16 per group, 3 separate experiments) were immunized with alum alone 

(control) or CnaBE3 and then challenged with S. aureus NCTC8325 strain. The cross-

protective efficacy of CnaBE3 was assessed evaluating bacteremia in the collected kidneys 
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after an intravenous challenge. Mice were vaccinated intraperitoneally. Statistical analysis 

was performed by Mann-Whitney U-test.  

 

4.11: Calcium increases rSdrE stability 

In 1998 Josefsson and colleagues reported that the protein segment encompassing the five B 

repeats (D1-D5) of SdrD protein, is subjected to large conformational changes with the 

addition of micro molar amounts of Ca
+2

, suggesting the presence of high affinity Ca
+2

 

binding sites. Herein we used differential scanning fluorimetry (DSF) to demonstrate the 

effect of calcium on the stability of rSdrE. Thermal stability of rSdrE (Tm = 45.26 ± 0.6°C) 

increased by 9°C in the presence of 1 mM calcium. Conversely, SdrE in presence of 1 mM 

EDTA (bivalent ion chelator) shows decrease in melting temperature (Tm: 39.72°C) (Figure 

1.19). These data indicate that calcium binds to SdrE protein, favoring the structural stability 

of the protein. 

 

 

 

 

 

 

 

 

 

 

Figure 1.19: Thermal shift assay of SdrE by differential scanning fluorimetry (DSF). 

DSF experiments were performed on SdrE alone (line), and in the presence of 1 mM Ca
2+

 

(line with closed circle) and 1 mM EDTA (dotted line). Calcium induced a large thermal 

stabilization (ΔTm > 9°C) of SdrE, while EDTA resulted in decrease of ΔTm < 6°C of SdrE 

(The smaller peak height for SdrE in presence of Ca
2+

 was due to a lower protein 

concentration). 
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5: DISCUSSION 
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In the present study, we tried to answer this question: Is the presence of intramolecular 

isopeptide bond in rSdrE makes it resistant to protease digestion, which are predicted to be 

present in most of the gram positive bacterial surface proteins containing CnaB domain.  

If they are, could we use these signatures as predictive features to identify new vaccine 

candidates? There has been speculation in the past that such internal bonds could exist, but no 

mechanism has been put forward, and none has previously been proven to exist in S. aureus 

proteins. However, the presence of intramolecular isopeptide bond in Cna protein of S. aureus 

has been predicted (Deivanayagam, Rich et al. 2000; Kang, Coulibaly et al. 2007). According 

to our knowledge, this is for the first time that the loss of 17 Da is experimentally proven in 

one of the CnaB domain containing protein of S. aureus, which suggests the presence of 

intramolecular isopeptide bond or some other post-translational modification. 

As from the literature it is known that isopeptide bond formation is a general post-

translational protein modification in which an amide linkage occurs between an amino group 

of one amino acid and a carboxyl group of a different amino acid, with one or both of the 

functional groups provided by an amino acid side chain. In the examples of enzyme-catalyzed 

and spontaneous isopeptide bond formation described to date, the selection of the amino acids 

that participate in the formation of the covalent bond is typically highly specific (Osicka, 

Prochazkova et al. 2004; Kang, Coulibaly et al. 2007; Dierkes, Peebles et al. 2009). This is 

especially true in the case of the amino acid that donates the carboxyl group, where selection 

appears to be absolutely specific. This constraint presumably reflects the need to activate the 

carboxyl group as the first step in the formation of both enzyme-catalyzed (intermolecular) 

and spontaneous (intramolecular) isopeptide bonds (Marraffini, Dedent et al. 2006; Kang, 

Coulibaly et al. 2007; Dierkes, Peebles et al. 2009; Striebel, Imkamp et al. 2009). 

 

Isopeptide bonds have until now been recognized for their importance in the intermolecular 

cross-linking of a variety of proteins, such as in ubiquitination (Pickart 2001), 

transglutamination (Greenberg, Birckbichler et al. 1991), and sortase-mediated cell-wall 

anchoring of surface proteins (Ton-That, Marraffini et al. 2004), as well as pilus 

polymerization. Isopeptide bonds make proteins resistant to proteases (Kang and Baker 2009), 

stabilize protein structures (Alegre-Cebollada, Badilla et al. 2010), attach proteins to cell 

surface (Marraffini, Dedent et al. 2006), and cross-link proteins in complex structures such as 

bacteriophage capsids (Wikoff, Liljas et al. 2000), bacterial pili (Kang, Coulibaly et al. 2007), 

and blood clots in humans (Ariens, Lai et al. 2002).  
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As most of the surface protein in gram-positive bacteria harboring the intramolecular 

isopeptide bonds are found to be resistant to trypsin digestion. In our study, interestingly we 

found full-length SdrE recombinant protein resistant to trypsin. Overnight trypsin incubation 

of SdrE resulted in the appearance of one major resistant fragment at approximately 37 kDa, 

and this resistant fragment remains stable even after protein incubation with trypsin for longer 

duration. PMF and N-terminal sequncing of the resistant fragment indicated that the resistant 

fragment comprise in the CnaBE3 domain of SdrE. Moreover, our study also revealed 

CnaBE3 domain of SdrE partially resistant to trypsin, as trypsin incubation of rCnaBE3 

resulted in the appearance of one major resistant fragment at 12 kDa.  

Furthermore, mass spectrometry was utilized to measure the intact mass of recombinant 

CnaBE3 and check for the presence of internal isopeptide bonds. Each bond should result in a 

17 Da mass difference due to the loss of an NH3 group, eliminated when the lysine ε-amino 

group bonds to the asparagine carboxyamide group. Indeed, we found a mass difference of 17 

Da between theoretical and experimental mass of rCnaBE3, which is indicative for the 

formation of an intramolecular isopeptide bond due to loss of NH3 in CnaBE3 domain of SdrE 

or some other post-translational modifiacation. Moreover, these data is in support of the report 

from Kang et al., 2009 where they showed that the protein with CnaB domain is resistant to 

protease, and are predicted to contain intramolecular isopeptide bond. These data suggest that 

isopeptide bond cross-links could be important features in many surface proteins involved in 

adhesive functions, where stability against physical and chemical stresses is important.  In 

addition these results, together with previous studies, will contribute to the knowledge on 

intra-domain bond as a stabilizing factor in CnaB domain of gram positive bacteria. Moreover, 

from our study, the intramolecular isopeptide bond or some other modification is expected in 

the CnaBE3 domain. At present we do not know whether proteins with such bonds all share a 

common evolutionary ancestor and are present in other Sdr proteins of S. aureus, or are 

present in a similar fashion to disulfide bonds, which is a feature of a variety of proteins in 

gram-negative bacteria.  

For further investigation if the partial resistance and loss of 17 Da in rCnaBE3 is due to 

involvement of asparagine residue in CnaBE3 we designed, cloned, expressed and purified 

the point mutation constructs in CnaBE3, where asparagine is substituted with alanine based 

on literature. Asparagine is reported to be potential residues involved in the formation of 

intramolecular isopeptide bond (Kang, Coulibaly et al. 2007). Our study on protease resistant 

behavior of all the five asparagine point mutation constructs showed that none of the five 

asparagines are involved in the formation of intramolecular isopeptide bond, as neither of five 
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constructs is sensitive to protease treatment. This could be possible due to the reason that 

either the last asparagine to be checked, is involved or not asparagine but some other residue 

is involved in the formation of isopeptide bond. However, low intensity of the peptide with 17 

Da loss and scarce reproducibility of the data do not allow us to definitively conclude that 

CnaBE3 contains an isopeptide bond. In particular, this could also be due to some other post-

translational modification. 

Furthermore, we confirm the expression of SdrE on the cell-wall of S. aureus Newman strain 

which was evidenced studying growth in TSB media. Moreover under the conditions tested, 

no HMW multimeric organization of SdrE on the staphylococcal cell-wall was identified 

indicating the protein is not forming intermolecular isopeptide bond. 

Several types of insertion and deletion have been found in sdrC and sdrD genes of many 

bovine, ovine and human isolates due to horizontal gene transfer (Xue, Lu et al. 2011). This 

suggests that the sdr genes are variable. However, neither specific deletions of the region 

containing C2 or D5 domains nor any mutations in sdrE gene have been described so far, 

accounting for a strong specific stability of the region of Sdr proteins containing these CnaB 

domains. Moreover, the conservation analysis of Sdr proteins and their CnaB domains in our 

study showed that CnaBE3, CnaBD5 and CnaBC2 domains were highly conserved 

throughout the selected S. aureus strains, even compensating the absence of sdrE negative 

NCTC8325 and sdrD negative MRSA252 strains of S. aureus.  

In our study by western blot analysis of the epidemiologically relevant S. aureus strains 

analyzed for homology and conservation of the Sdr proteins and last CnaB domain sequences 

revealed that anti-CnaBE3 antibodies were capable to detect the three Sdr proteins in the cell-

wall fraction of each strain, even in the strain lacking sdrE and sdrD gene. This data shows 

cross-reactive behavior of CnaBE3 antibodies with the full-length Sdr proteins and therefore 

this study could be used to design a vaccine combination using this small highly conserved 

domain with more coverage.   

Furthermore, biochemical characterization of full-length SdrE by differential scanning 

calorimetry revealed that the calcium plays an important role in maintaining the structural 

stability of the recombinant SdrE protein which is supported by the fact for the presence of 

EF-hand loop in the CnaB domain, known to have high calcium affinity and role in protein 

stability.  

Apart from biochemical characterization of the protein we also looked for the vaccine 

potential of SdrE and highly conserved CnaBE3 domain. For many years, surface proteins of 

gram positive bacterial pathogens have been tested as antigens to generate immune responses 
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for the protection of human against infections. Surface protein SdrE vaccination was shown to 

generate protection against S. aureus infection in murine abscess model. These data indicate 

SdrE as a promising vaccine candidate to be tested in humans as reported by Stranger and 

Jones, 2006. Moreover, it has been previously shown by Stranger and Jones, 2006 that SdrE 

in combinations with other antigen can confer greater protection than single antigens. 

However, in our study we interestingly found that conserved CnaBE3 domain vaccination 

confers significant protection to S. aureus infection. Our data suggested a possible role of 

CnaBE3 domain as vaccine candidate supported by the high homology and conservation of 

the CnaBE3 domain, immunogenicity and stability.  

As binding or functional domains which interact with host ligands are generally considered as 

promising vaccine candidates, our study shows that the domain acting as a spacer could also 

serve as a vaccine candidate. More interestingly, we found that CnaBE3 protects against a 

strain lacking the sdrE gene. And therefore it is worth noting that this relatively short domain 

could be easily fused to other protein antigens in a vaccine combo, thus enhancing the rate of 

coverage and protection of the vaccine. The results of these studies are expected to shed light 

on functional mechanisms of Sdr-like proteins and potentially allow the design of novel 

vaccine candidates against S. aureus.  

In addition, from literature we know that the crystal structure of the B region of the S. aureus 

collagen binding (Cna) protein presents an inverse IgG like fold (Deivanayagam, Rich et al. 

2000). Interestingly, the B motifs of the Sdr proteins display some homology to the B repeats 

of the collagen binding protein Cna of S. aureus. So far a number of speculations have been 

arisen about the potential function of the B repeats of the Sdr proteins. Perhaps the number of 

the repeats is linked to the level of binding capacity or maybe it is responsible for displaying 

the A region away from the cell surface (Deivanayagam, Rich et al. 2000). Because not much 

is known about the structure of full-length SdrE, it would be necessary to obtain and study the 

crystal of the full-length and CnaB region of SdrE protein, to entirely understand the function 

of this structure. Detailed structural studies on full-length SdrE in collaboration with 

Northwestern University, Chicago, USA are in progress to solve some of the numerous 

questions remaining. 
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2.1.1: Overview of S. aureus proteases 

Proteases are essential for the expression of all proteins, controlling protein composition, size, 

shape, turnover and ultimate destruction. Their actions are often exquisitely selective, each 

protease being responsible for splitting a very specific sequence of amino acids under a given 

set of environmental conditions. There are over 500 human proteases and proteases also occur 

in other vertebrates, as well as in plants, insects, marine organisms and in all microbes. Genes 

coding for proteases account for about 2% of the human genome and 1-5% of genomes of 

bacteria and viruses. Proteases play a central role in conception and birth, life, ageing, and 

death. An over- or under- abundance of a particular protease or altered levels of natural 

inhibitors/activators of proteases can lead to pathological conditions. Proteases are also 

essential in viruses, bacteria and parasites since they participate in their replication, spread 

and maintenance of infectious diseases within the human or animal hosts. Due to all these 

pivotal biological roles, proteases represent important potential targets for medical 

intervention.  

The proteinases have so far been categorized into six catalytical classes according to the 

chemical group within the enzyme that participates in the cleavage of the substrate peptide 

bond. A peptide bond can be broken directly by amide hydrolysis in which a water molecule 

is added, as is the case with glutamic-, aspartic-, and metallo-proteases. In the case of serine-, 

cysteine-, and threonine-proteinases the polarized amino acid is made nucleophilic, attacks the 

peptide carbonyl group in the substrate and forms an intermediate before the final hydrolysis. 

The proteases are classified in to three different subfamilies: a) Cysteine proteases; b) Serine 

proteases and; c) Metalloproteases as described below:  

a) Cysteine proteases  

Papain originating from papaya is the best studied of all cysteine proteases. It has been used 

for degrading meat fibers for thousands of years. Papain is also capable to cleave the Fc 

(crystallisable) portion from the Fab (antigen-binding) portion of immunoglobulins. Several 

mammalian intracellular proteinases like cathepsins B, L, K, and S belong to this family, as 

do caspases and calpains. Some parasitic proteases and bacterial extracellular proteinases like 

the staphylococcal enzymes staphopain A (ScpA) and staphopain B (SspB) are also cysteine 

proteases.  

 

b) Serine proteases  
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This class comprises two distinct families. The chymotrypsin family includes the digestive 

pancreatic enzymes such as chymotrypsin, trypsin and elastase and also other mammalian 

enzymes like plasmin, furin, and cathepsin G. Subtilisin is a serine protease in prokaryotes. 

Subtilisin is evolutionary unrelated to the chymotrypsin-families, but shares the same catalytic 

mechanism utilizing a catalytic triad, to create a nucleophilic serine. This is the classic 

example used to illustrate convergent evolution, since the same mechanism evolved twice 

independently during evolution. The subtilisin family includes the bacterial enzymes such as 

subtilisin and staphylococcal serine protease (V8, SspA).  

 

c) Metalloproteases  

The metalloproteinases exert their effect mainly extracellularly and at neutral pH, as do most 

of the serine proteinases. The metalloproteinases may be one of the phylogenetically older 

classes of proteinases and are found in bacteria, fungi as well as in all higher organisms. They 

differ widely in their sequence and their structure but have some highly conserved domains. 

The great majority of enzymes contain a zinc atom that is catalytically active. In some cases, 

zinc may be replaced by another metal such as cobalt or nickel without loss of the enzymatic 

activity. The metal ion usually serves to coordinate two to four side chains and is 

indispensable for the activity of the enzyme. Many of these enzymes are calcium dependent in 

that calcium is required for maintaining the molecule's conformation. Both the staphylococcal 

aureolysin (Aur) and the large group of mammalian matrix metalloproteinases (MMPs) are 

referred to this class of proteases.  

 

2.1.2: Staphylococcal extracellular proteases  

Until today a handful of extracellular proteases from S. aureus have been described. The 

genes of extracellular proteases are organized on the bacterial chromosome into four distinct 

operons: staphylococcal serine protease (ssp) operon, serine protease like proteins (spl) 

operon, staphylococcal cysteine protease (scp) operon, and aureolysin (aur) operon. Thus the 

V8 protease (SspA) and staphopain B (SspB) both are named by their encoding ssp operon 

although only SspA is a serine protease whilst SspB is a cysteine protease (Shaw, Golonka et 

al. 2004).   

 

Serine protease V8 (SspA)  

V8 protease was first purified from culture filtrate of S. aureus, strain V8 by Drapeau et al in 

1972. Their studies revealed that V8 protease exclusively cleaves peptide bonds on the 
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carboxyl-terminal side of either aspartic acid or glutamic acid (Drapeau, Boily et al. 1972). 

Since then V8 protease has been widely used for determining the primary structures of 

proteins. The V8 protease does not have a high degree of sequence identity with other serine 

proteases and does not contain any disulphide bridges, but its tertiary structure was found to 

have significant structure homology with, for example the staphylococci epidermolytic toxins 

A and B (Prasad, Leduc et al. 2004).   

 

Metalloprotease aureolysin (Aur)  

The primary and tertiary structures of aureolysin have been determined revealing a 

polypeptide chain of 301 amino acids which is folded into a β-pleated N-terminal domain and 

an α-helical C-terminal domain, a typical fold for the thermolysin family of 

metalloproteinases [Banbula, A., 1998]. The diverse family of bacterial metalloproteinases 

encompasses several enzymes, which are acknowledged virulence factors, including 

Pseudomonas aeruginosa elastase, Legionella pneumophila and Listeria monocytogenes 

metalloproteinases, Vibrio cholerae hemagglutinin protease, Staphylococcus epidermidis 

elastase, and the lambda toxin of Clostridium perfringens. In contrast to these proteinases, 

however, little is known about the exact role of aureolysin in the pathogenicity of S. aureus. 

In vitro, aureolysin has been shown to cleave the plasma proteinase inhibitors, α1-antichymo-

trypsin and α1-proteinase inhibitor. Aureolysin cleaves the oxidized form of α1-proteinase 

inhibitor faster than it cleaves the native inhibitor, suggesting that bacteria which secrete these 

metalloproteinases may specifically take advantage of the host defense oxidative mechanism 

to accelerate elimination of α1- proteinase inhibitor and consequently increase tissue 

degradation by neutrophil elastase. The structure of the aureolysin gene is strongly conserved 

among S. aureus strains. This argues in favor of the likelihood that the enzyme may have an 

important housekeeping function (Sabat, Kosowska et al. 2000).  

 

Cysteine proteases Staphopain B (SspB) and Staphopain A (ScpA)  

The cysteine proteases exhibit, with their papain like features, potent elastinolytic activity 

which has been considered to be of importance for bacterial spread within tissues and also for 

the forming of abscesses (Potempa, Dubin et al. 1988). Kinin-releasing cysteine proteinases 

have been reported from various microbes. From  S. aureus a submicromolar concentration of 

ScpA generated large amounts of kinin from human plasma within 5 minutes from exposure 

and in a guinea pig experimental model, ScpA in concert with SspB induced vascular leakage 

and lowering of blood pressure. Thus staphopain mediated vascular leakage was proposed to 
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be involved in the oedema formation at the infected sites as well as in the induction of septic 

shock (Imamura, Tanase et al. 2005). 

 

2.1.3: Regulation of S. aureus extracellular proteases  

The transcription of most of the extracellular protease genes occurs maximally at 

postexponential-phase, being positively regulated by the accessory gene regulator (agr) and 

negatively regulated by the staphylococcal accessory regulator (sarA). The enzymes are 

excreted as zymogens. Using mutations in each protease gene, the proteolytic cascade of 

activation has been analyzed. 

 

2.1.4: Novel serine protease EpiP of S. aureus 

RiPPs (ribosomally-synthesized and post-translationally-modified peptides) are a class of 

natural products that exist in all forms of life (Arnison, Bibb et al. 2013). Many gram-positive 

bacteria produce RiPPs that have antimicrobial activity and are called lantibiotics. These 

lantibiotics are effective antibacterial agents against other gram-positive bacteria (Schnell, 

Entian et al. 1988; Willey and van der Donk 2007) and have been investigated as possible 

alternatives for the treatment of bacterial infections (Cotter, Hill et al. 2005; Smith and 

Hillman 2008). A cascade of proteins is required to both post-translationally modify the 

lantibiotic into its mature form and to protect the producing organism from the effects of the 

lantibiotic via immunity proteins (Schnell, Engelke et al. 1992). Generally, the genes coding 

for these proteins are found in clusters on either plasmids or chromosomes (Augustin, 

Rosenstein et al. 1992; Kuipers, Rollema et al. 1993), and have been identified in several 

bacteria such as Lactococcus, Bacillus, Staphylococcus, Streptococcus, and Enterococcus. 

Recently, in silico screenings have uncovered 49 unidentified clusters from bacteria not 

known to produce lantibiotics (Marsh, O'Sullivan et al. 2010), which indicates that these 

clusters are more common than previously thought. Not all genes in the clusters are conserved, 

nor are they arranged in the same order amongst strains and species (Siezen, Kuipers et al. 

1996). Moreover, not all bacteria that have these clusters can produce active lantibiotic, and if 

a lantibiotic is produced it does not always have antibacterial activity (Smith and Hillman 

2008; Bierbaum and Sahl 2009).   

Most lantibiotic gene clusters have a gene that codes for a lantibiotic leader peptide protease 

(Siezen, Kuipers et al. 1996). EpiP is a subtilisin-like extracellular epidermin leader peptidase 

and is required for proteolytic processing of the mature lantibiotic epidermin in 

Staphylococcus epidermidis (Schnell, Engelke et al. 1992; Geissler, Gotz et al. 1996); 
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however, its function in S. aureus remains unknown since there has been debate regarding if S. 

aureus produces epidermin (Otto and Gotz 2001; Daly, Upton et al. 2010; Joo, Cheung et al. 

2011) or just retains the lantibiotic immunity genes for self-protection against other 

lantibiotics or for increased virulence. It has been shown that bacteria that have these 

lantibiotic gene clusters, even if they do not produce the lantibiotic, have increased virulence 

and resistance. Many lantibiotic peptidases are cytoplasmic, but some like NisP, CylP and 

EpiP reside extracellularly (Siezen, Kuipers et al. 1996). The regulation of expression of 

exoproteins, surface proteins and virulence factors for S. epidermidis and S. aureus is 

controlled by the accessory gene regulator (agr) quorum sensing system (Kies, Vuong et al. 

2003). When agr was deleted in S. epidermidis a decrease in mature epidermin production 

was seen, which was due to the decreased ability of EpiP to process the pro-peptide of 

epidermin rather than a decrease in the transcription of genes in the lantibiotic cluster (Kies, 

Vuong et al. 2003). Therefore, agr quorum sensing does not interfere with the transcription of 

epidermin biosynthetic genes, but controls the extracellular processing of the N-terminal 

leader peptide by the EpiP protease. 

Herein we characterized a S. aureus protein annotated as epidermin leader peptide processing 

serine protease (EpiP). The epiP gene contains a peptidase_S8 domain present in subtilisin-

like serine proteases, and which is present in protective antigens of several other species. In 

addition, homologous proteins expressed by other bacterial species, have been shown to play 

important roles during pathogenesis. In particular, the Streptococcus pyogenes homologue, 

SpyCEP (also named ScpC), inactivates IL-8 by catalyzing its C-terminal cleavage (Edwards, 

Taylor et al. 2005). As a consequence, SpyCEP impairs the recruitment of neutrophils at the 

site of infection and subsequent bacterial clearance (Hidalgo-Grass, Dan-Goor et al. 2004; 

Zinkernagel, Timmer et al. 2008). Neutrophils are probably one of the most important 

elements of the host immune system against S. aureus infections. Indeed, defects in the 

number or function of neutrophils can result in an increased susceptibility to S. aureus 

infections in humans (Andrews and Sullivan 2003). However, despite the emerging relevance 

of proteolytic bacterial antigens, there are currently no reports describing characterization of 

the S. aureus EpiP protein. Herein, we present a study aimed at revealing the first 

fundamental biochemical and functional properties of this novel peptidase_S8 domain 

containing protein. 

 

 

 

Introduction 



55 
 

 

 

 

 

 

 

 

 

 

2.2: AIM OF THE STUDY 

 

 Characterization of auto-cleavage mechanism of serine protease EpiP 

 

 Identify the optimal growth conditions for epiP gene expression in S. aureus by qRT-PCR 

 

 Investigate expression and processing of the EpiP protein in S. aureus by western blot 

 

 Investigate the vaccine potential of S. aureus extracellular protease EpiP  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3: MATERIALS AND METHODS 
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2.3.1: Antigen identification by in silico analysis  

In silico antigen identification was performed analyzing the S. aureus NCTC8325 genome by 

several bioinformatic algorithms as described in material and method of Chapter 1.  

2.3.2: Cloning, expression and purification of wild type EpiP and EpiP-S393A  

epiP was amplified by PCR from the S. aureus NCTC8325 strain and was cloned in without 

its putative leader sequence (aa 1–27) as an N-terminal 6X-histidine-tag (His-tag) construct. 

The His-tagged construct was cloned using oligonucleotides EpiP-F/EpiP-R (Table 2.1). The 

PCR product was subcloned into the pET-15b+ vector using the Polymerase Incomplete 

Primer Extension (PIPE) technique (Klock and Lesley 2009). To determine if the EpiP protein 

acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, 

generating rEpiP-S393A (Figure 2.1). The Stratagene QuikChange™ site-directed 

mutagenesis kit was used to construct the S393A mutant according to the procedure outlined 

in the manufacture’s technical manual. The conditions for the PCR reaction were initial 

denaturation 95°C 5 min, followed by 18 cycles of denaturation 95°C 1 min, annealing 55°C 

1 min, extension 68°C 7 min, the final extension was 68°C for 10 min and then cooled to 4°C. 

A silent mutation for L394 (TTA to CTG) was added to improve the AT-rich region of this 

gene for PCR.   

The ampicillin resistant rEpiP and mutant His-tagged plasmids were transformed into 

kanamycin resistant BL21 (DE3) Magic cells, grown and expressed in terrific broth (TB) and 

harvested according to previously described procedures (Millard, Stols et al. 2003). Pelleted 

cells were resuspended in buffer, sonicated, and cleared lysates were loaded onto an IMAC 

Ni
2+

-affinity sepharose column (GE Healthcare His-trap HP) as described previously (Millard, 

Stols et al. 2003). Fractions of protein from IMAC were pooled and diluted with 10 mM Tris-

HCl pH 8.3 to reduce the salt concentration and then loaded onto a GE HiTrap SP-5 mL 

column for IEX chromatography. The loading buffer was composed of 10 mM Tris-HCl pH 

8.3 and 5 mM beta-mercaptoethanol and the protein was eluted over 30 CVs with a linear 

gradient from 0-1 M NaCl in loading buffer plus 1M NaCl. rEpiP or rEpiP-S393A eluted at 

approximately 0.27 M NaCl and was concentrated using Amicon protein concentrators 10,000 

MWCO (Millipore). Protein concentration was determined using the absorbance at 280 nm 

and the extinction coefficient 0.942 M
-1

 cm
-1

. Protein purity was determined using SDS-

PAGE and was purified to near homogeneity. 
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Figure 2.1: Amino acid sequence of EpiP. Residue in red is the hypothesized catalytic 

serine 393 residue, mutated for the generation of rEpiP-S393A mutant. 

 

Table 2.1: PCR primers designed to amplify corresponding gene 

 

Gene Primer Nucleotide sequence 

epiP 

wild-type 

EpiPF 

EpiPR 

5’-CTGTACTTCCAGGGCTCAGAAGAACTATATTACAGTGTTG 

5’-AATTAAGTCGCGTTAACTTGCTTTTTGATTTGCTACATTTAATGCT 

epiP-

S393A 

 

EpiPF 

EpiPR 

5’-GAAGATATATTTATCAAGCTGGAACTGCGCTGGCCACACCTAAAGTTTCG 

5’-CGAAACTTTAGGTGTGGCCAGCGCAGTTCCAGCTTGATAAATATATCTTC  

 

2.3.3: EpiP cleavage mechanism 

For the evaluation of the cleavage mechanism of EpiP (if it was intra- or inter-molecular), 

rEpiP-S393A was incubated with the rEpiP for 1, 4 and 24 hour in a 5:1 ratio at 37°C and the 

cleavage pattern was analyzed by SDS-PAGE.  

 

2.3.4: Intact mass spectrometry of rEpiP 

Intact mass measurement of rEpiP purified protein was done according to the procedure 

described for rCnaBE3 domain of SdrE in material and method section of Chapter 1. 

 

2.3.5: Peptide mass finger printing of auto-cleaved rEpiP  
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In order to investigate the peptide coverage of the auto-cleaved rEpiP, PMF was done. SDS-

PAGE analysis was performed using Nu-Page 12% BT polyacrylamide SDS-APGE according 

to the manufacturer’s instructions. Furthermore PMF of the auto-cleaved rEpiP bands were 

done following the protocol used for PMF of trypsin resistant fragment of SdrE in Chapter 1. 

 

2.3.6: EpiP expression analysis 

The expression of EpiP in S. aureus was evaluated in vitro by western blot and quantitative 

real-time PCR (qRT-PCR). S. aureus strains i.e Newman, LAC (USA300) and Mu50 

(USA100) were grown overnight in TSB at 250 rpm, 37
0
C using aerated Erlenmeyer flasks. 

Overnight cultures were centrifuged at 4,000 rpm, at 4°C for 15 minute. For preparing cell-

wall fractions, pellets from 5 ml overnight culture was suspended in 500 µl TSM (50 mM 

Tris-HCl, pH 7.5, 10 mM MgCl2, 0.5 M sucrose) buffer. 50 µl of lysostaphin (5 µg/µl) was 

added to samples and incubated for 1 hour or until lysis at 37°C at 400 rpm in a thermomix. 

After lysis, samples were centrifuged at 4000 rpm for 15 min at 4°C and supernatants 

containing the cell-wall fraction were used for western blot analysis using anti-EpiP mouse 

serum. The supernatant (extracellular) protein was prepared by concentrating 10 ml of 

overnight culture supernatant up to 100 X using 7,500 Da MWCO Vivapore 10/20 solvent 

absorption concentrator (Sigma-Aldrich). For western blot analysis, equal amounts of 

supernatant protein from each strains were separated on 12% BT SDS-PAGE and transferred 

to nitrocellulose membranes using similar protocol as mentioned in Chapter 1. The primary 

antibody anti-EpiP mouse serum used was with a dilution of 1/2000 and horseradish 

peroxidase-conjugated goat anti-mouse secondary antibody at 1/4000 dilution. 

 

2.3.7: RNA isolation and cDNA synthesis for qRT-PCR 

For in vitro RNA extraction, bacteria were grown in TSB till exponential phase (OD600  nm= 4) 

and stationary phase (OD600  nm=12, overnight). One ml culture from each growth time point 

was taken and immediately mixed with 2 volume of RNAprotect bacteria reagent (Qiagen) to 

stabilize the RNA and further incubated for 20 min at room temperature. Bacteria were 

harvested by centrifugation at 4,000 rpm for 5 min at 4°C. Pellet was stored at -80°C until use. 

The RNeasy Mini kit (Qiagen) was used for extraction of RNA according to manufacturer’s 

instruction. 

 

2.3.8: Quantitative real-time PCR  
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Quantitative real-time PCR was performed by using the RNA isolated from bacteria grown in 

TSB. Total RNA (1 µg) was reversed transcribed with 0.5 mM dNTP, 50 ng random 

hexamers and 200U of Invitrogen Superscript II Reverse Transcriptase, according to the 

manufacturer’s recommendations. RNA was denatured and the cDNAs were purified with a 

QIAquick PCR purification kit. One microliter of cDNA was amplified on the Stratagene 

MX3000P Real-Time PCR (Sratagene, LaJolla, CA USA) with SYBR GreenER™ qPCR 

universal kit (Invitrogen) and 10 µM of the EpiP forward and reverse primers listed in Table 

2.2. Reaction mixtures were denatured for 10 min at 94°C, followed by 40 cycles of 30 sec at 

60°C, 1 min at 72°C and finished with a dissociation ramp from 55°C to 95°C. The level of 

expression of each gene was calculated by using the cycle threshold (Ct) of the overnight 

grown bacteria as the calibrator. Expression fold of genes from each experiment was then 

normalized with their respective 16s-rRNA expression level.  

Table 2.2: PCR primers designed to amplify corresponding gene in qRT-PCR 

Gene Primer Nucleotide sequence 

epiP  

 

EpiPF 

EpiPR 

5’- CATAAAGCGCGCTATTATTAG 

5’- CTTTATACACATCAAGCTCAC 

 

2.3.9: Active immunization 

Five-week-old CD1 mice were immunized intraperitoneally with a prime-booster injection of 

20 µg purified recombinant EpiP adsorbed to aluminum hydroxide adjuvant (alum, 2 mg/ml) 

in 14’ day interval. Control mice received equal amounts of PBS and alum adjuvant. Animals 

were bled immediately prior to the first immunization and 23 days thereafter, and sera were 

examined for IgG antibodies directed against purified EpiP using the Luminex technology. 

 

2.3.10: Peritonitis model 

In order to look for the protection efficacy of rEpiP and rEpiP-S393A mutant, immunized 

mice were challenged on day 24 by intraperitoneal injection of a lethal dose 510
8
 CFU of S. 

aureus Newman strain. Mice were monitored daily for 7 days. Two independent experiments 

run under the same conditions, were performed to assess protective efficacy of rEpiP and 

rEpiP-S393A in the peritonitis model. Experiments were analyzed using one tailed Fisher’s 

exact test.  
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2.4.1: Antigen selection by in silico prediction  

The epidermin leader peptide processing serine protease (EpiP) was identified as a putative 

vaccine candidate by analyzing the S. aureus NCTC8325 genome through several 

bioinformatic algorithms as described in material and method of Chapter 1. epiP is part of an 

eight gene operon containing lantibiotic genes, epiABCDPFEG, which was previously 

identified in Staphylococcus epidermidis as epiABCD, epiPQ and epiFEG (ten Broeke-Smits, 

Pronk et al. 2010) (Figure 2.2). The S. aureus EpiP protein was predicted to have an 

extracellular localization due to the presence of a leader peptide and the lack of other known 

signals for membrane or cell-wall anchoring (Figure 2.3). Analysis of genomes available in 

public databases indicated that epiP is a dispensable gene and is either well conserved or 

absent (data not shown). By searching databases for sequence similarities and for the presence 

of conserved functional domains, we found that epiP contains a peptidase_S8 domain present 

in subtilisin-like serine proteases and has conserved residues (Asp140, His 187, and Ser393) 

corresponding to the canonical catalytic triad for serine proteases (Rawlings and Barrett 1994). 

This domain is present in vaccine candidates of other species including the Streptococcus 

agalactiae C5a peptidases, Streptococcus pyogenes SpyCEP, the Streptococcus pneumoniae 

PrtA, and the Neisseria meningitidis NMB1969 (AspA) (Hidalgo-Grass, Mishalian et al. 2006; 

Zinkernagel, Timmer et al. 2008; Zingaretti, Falugi et al. 2010). In addition, as mentioned 

above, proteins belonging to this family have been shown to play important roles during 

pathogenesis and impair the recruitment of neutrophils at the site of infection (Turner, 

Wooldridge et al. 2002; Hidalgo-Grass, Mishalian et al. 2006; Zinkernagel, Timmer et al. 

2008; Zingaretti, Falugi et al. 2010). Therefore, on the basis of all these observations, we 

hypothesized that EpiP could be a protective antigen against S. aureus infection.  

 

 

 

 

 

 

 

 

 

 

 

Results 



63 
 

 

 

 

 

 

 

 

 

Figure 2.2: Epidermin operon in S. aureus and S. epidermidis.  In S. aureus, all genes are 

located on the same strand, while in S. epidermidis, epiPQ are located on the other strand of 

epiABCD and epiFEG. 

 

 

 

 

 

 

 

 

Figure 2.3: EpiP protein organization. The layout of the EpiP protein including the leader 

peptide, pro-domain, cleavage site, and protease-domain is shown. The catalytic triad includes 

residues D140, H187, and S393 and the Peptidase_S8_Lantibiotic specific protease domain 

includes residues 133 to 426. In gray is the leader peptide and blue the pro-domain and the 

cleavage site of the protein between residues 98 and 99. There is not a cell-wall anchoring 

domain predicted in the sequence. 

2.4.2: Enzymatic activity of the recombinant EpiP  

EpiP deprived of its putative leader sequence (aa 1–27) with 6X- histidine tag on N-terminus 

was expressed in, and purified from E. coli-soluble extracts. rEpiP appeared as three bands 

migrating with apparent molecular weights of ~ 50, 39 and 8 kDa by SDS-PAGE (Figure 2.4 

A). Peptide mass fingerprinting of the three bands separated by SDS-PAGE identified 

peptides specific for the three fragments. More specifically, peptides covering both the N- and 

C-terminus of the protein were identified in the upper 50 kDa band, while coverage of the 39 
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kDa fragment spanned amino acids threonine-98, corresponding to threonine-88 in 

recombinant EpiP to lysine-446, and peptides in the 8 kDa fragment were found, mapping in 

the first 41 amino acid residues (Figure 2.4 B) corresponding to pro-domain of the protein.  

The theoretical mass of rEpiP is 49744.27 Da (1-446 AA), but by intact mass spectrometry we 

observed an experimental mass of 39694.48 Da (88-446 AA; 30 ppm) (Figure 2.4 C) for the 

most abundant species in the sample starting with amino acid threonine at position 88. This 

observation fits well with the pattern obtained by SDS-PAGE in which the first peptide 

identified by mass spectrometry in the band migrating at 39 kDa begins with threonine-88 

(Figure 2.4 B). Altogether, these data indicate that rEpiP is composed of three polypeptides 

resulting from the cleavage of the protein between amino acids lysine-98 and threonine-99 

corresponding to residue 87 and 88 in rEpiP. 
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Figure 2.4: Analysis of recombinant EpiP purified from E. coli extracts through SDS-

PAGE and mass spectrometry. A) In SDS-PAGE stained with coomassie the proteins 

migrated with three species (peak A, B and C). The MW of the bands from top to bottom is 

comparable with the size of the mature protein (≈ 50 kDa), with the protease domain (≈ 39 

kDa) and the pro-domain (≈8 kDa). B) Protein sequence of rEpiP with peptides identified in 

bands A, B and C shown in Fig. 2.4 A by peptide mass fingerprinting are indicated on the 

sequence of rEpiP: blue color corresponds to the peptides identified in band A, underlining 

indicates peptides from band B and gray corresponds to peptides from  band C. C) 
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Experimental mass observed by intact mass measurement of the rEpiP fits with band B 

present Fig. 2.4 A. The sequence starts with threonine-88 indicating that the cleavage site of 

the protein occurred between lysine-87 and threonine- 88 (as indicated by a red diagonal in 

Figure 2.4 B).   

 

2.4.3: rEpiP processing is due to autoproteolysis 

We next investigated whether cleavage of EpiP could be due to autoproteolysis, as reported 

for other extracellular bacterial proteases (Ikemura, Takagi et al. 1987; Anderson, Wetherell 

et al. 2002). To address this point, we generated rEpiP-S393A, in which the serine 393 residue 

of the predicted catalytic triad was substituted with an alanine. The purified mutant protein 

was then subjected to SDS-PAGE analysis to investigate whether the mutation impaired the 

cleavage pattern observed with rEpiP. As shown in Figure 2.5, the mutant protein appeared as 

a single band with an electrophoretic mobility comparable to that of the non-cleaved protein 

and comparable to the one of the upper band of rEpiP, indicating the absence of cleavage. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.5: rEpiP processing is due to autoproteolysis. In SDS-PAGE stained with 

coomassie the rEpiP-S393A protein migrated with one species with the size of the mature 

protein (≈ 50 kDa). This pattern is in clear contrast with the three protein species present in 

the rEpiP. 

 

2.4.4: EpiP cleavage occurs through an autocatalytic intra-molecular mechanism  
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In order to understand if the cleavage of EpiP occurs through an inter- or an intra-molecular 

mechanism, rEpiP-S393A and rEpiP were mixed in a 5:1 ratio and incubated for up to 24 

hours. During this experiment, we observed no increase in intensity of the protease-domain of 

the protein by SDS-PAGE (Figure 2.6). Given that rEpiP did not cleave the mutant, these data 

suggest that the cleavage event of EpiP occurs through an intra-molecular autocatalytic 

mechanism. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6:  EpiP cleavage occurs through an autocatalytic intra-molecular mechanism. 

Analysis of the auto-proteolytic activity of rEpiP-S393A and rEpiP derivative by a time-

course co-incubation of the two proteins in a 5:1 ratio; the two recombinant proteins (rEpiP 

and rEpiP-S393A) were used as molecular mass controls (lanes 1 and 2). No decrease of the 

non-cleaved rEpiP-S393A was observed through the 24 hr incubation time indicating that 

EpiP uses an intra-molecular autocleavage mechanism to remove the pro-domain.  

 

2.4.5: EpiP is expressed and processed in S. aureus cells 

In order to assess the expression of the epiP gene, qRT-PCR was performed on RNA isolated 

from exponential and stationary phase bacteria, grown in TSB, which is the same medium 

was used to prepare challenge inocula for infection experiments in the animal model. Under 

these conditions the gene was found to be expressed and increased gene expression was 

observed in exponential as compared to stationary growth phase (Figure 2.7). 
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Figure 2.7: epiP was found to be up-regulated in exponential phase. A and B) qRT-PCR 

of epiP gene on RNA extracted from S. aureus Newman grown in TSB showed ～16 fold 

increased expression at exponential phase (OD600 = 4) as compared to stationary (overnight 

culture) phase. C) epiP expression was normalized against 16s-rRNA for which expression 

was found to be constant throughout the S. aureus growth  phase. 
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Moreover, we also looked for the epiP gene expression in different S. aureus strains (i.e. 

Newman, LAC, and Mu50) by qRT-PCR with RNA isolated from bacteria grown to 

exponential phase in TSB. Under the condition tested, the epiP gene was expressed in 

Newman and LAC strains but not in Mu50. Furthermore, LAC showed ～2 fold increased 

gene expression as compared to Newman (Figure 2.8). 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Relative quantification of epiP gene using qRT-PCR in three different 

strains of S. aureus. qRT-PCR of epiP gene on RNA extracted from S. aureus Newman, 

LAC and Mu50 strain grown in TSB. epiP gene was found to be expressed in Newman and 

LAC strains, whereas no expression was detected in Mu50 strain, as expected. Furthermore, 

LAC showed ～2 fold increased gene expression as compared to Newman. 

 

The S. aureus EpiP lacks a known localization signal (Figure 2.3), and it may either be 

released in the extracellular milieu or be anchored to the cell-wall through an unknown 

mechanism as reported for EpiP of S. epidermidis (Augustin, Rosenstein et al. 1992; Schnell, 

Engelke et al. 1992; Engelke, Gutowski-Eckel et al. 1994). To experimentally verify its 

localization, we isolated the cell-wall fraction, the culture supernatant as well as protoplasts of 

S. aureus cells and we analyzed them by immunoblot using an anti-EpiP mouse serum. For 

this experiment we decided to use the S. aureus strain Newman deficient for SpA (SEJ2) 
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(DeDent, Bae et al. 2008; Frankel, Wojcik et al. 2010). This strain was selected to reduce as 

much as possible the non-specific staining in western blot analyses due to the binding of IgGs 

mediated by SpA (Zhang, Jacobsson et al. 1998). The anti-EpiP serum identified several 

immunoreactive bands, including one at approximately 50 kDa and another at 8 kDa. These 

bands appear to have a molecular weight comparable to the non-cleaved EpiP and the pro-

domain, respectively. Furthermore, this indicates that the serum mainly detects the pro-

domain of EpiP (Figure 2.9 A). At this point, the identity of the 17 kDa immunoreactive band 

is not clear.  No immunoreactive bands were detected in the cell-wall fraction suggesting that 

the protein was mainly released into the extracellular milieu.  

Interestingly, different patterns were observed in the supernatant and protoplast preparations. 

In particular, a band migrating at a molecular weight comparable to the non-cleaved form was 

more abundant in the cytoplasm while the pro-domain appeared more prevalent in the 

supernatant. This suggests that the protein was produced in its non-cleaved form and got 

processed during or after its release into the extracellular milieu. 

We then performed an expression analysis of the culture supernatants of S. aureus Newman 

(ST-254), a standard laboratory strain, and given its epidemiological relevance, the strain 

LAC, which belongs to the pandemic clone USA300. In addition, we used the Mu50 strain 

that belongs to the hospital acquired clone USA100 and, which lacks epiP. A specific band, 

corresponding to the full- length protein was detected in S. aureus Newman and the LAC 

strain (Figure 2.9 B). However, as expected, no specific reactive bands were observed in the 

hospital acquired strain Mu50. Overall, these results suggest that EpiP is released into the 

extracellular milieu and it undergoes a processing event similar to the one observed with the 

recombinant protein. 
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Figure 2.9: EpiP expression and processing in S. aureus. A) Analysis of culture 

supernatant, cell-wall fraction and protoplast of S. aureus strain Newman by western blot 

using anti-EpiP mouse antiserum. The three polypeptides (non-cleaved, protease domain and 

pro-domain) of the purified recombinant protein were recognized by the serum. In the 

supernatant preparation, a faint band with a MW compatible with the non-cleaved protein was 

visible as well an immunoreactive band with a size similar to the pro-domain. An additional 

band was visible which does not correspond to any of the three polypeptides of EpiP. No 

immunoreactivity was detected in the lane where the cell-wall preparation was loaded. A 

major immunoreactive band was present in the protoplast preparation comparable with the 

MW of the non-cleaved protein. Other minor protein species were also detected that appeared 

similar to the ones observed in the lower MW range of the culture supernatant preparation. B) 

Immunoblot analysis using anti-EpiP mouse serum of culture supernatants of S. aureus strains 

Newman, LAC showed the presence of an immunoreactive band at a MW compatible with the 

non-cleaved EpiP. As expected, no immunoreactive bands were detected in the culture 

supernatant of the S. aureus strain Mu50 which lacks epiP.  

 

2.4.6: EpiP vaccination protects mice against the challenge with S. aureus clinical 

isolates 

As predicted, mice vaccinated with EpiP were protected from staphylococcal lethal infection. 

Given that the protein was found to be released extracellularly, protection might be associated 

to EpiP antibodies blocking the function of the protein. Moreover, protective efficacy of rEpiP 

and rEpiP-S393A was found comparable (Figure 2.10).  
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Figure 2.10: Protective efficacy of EpiP vaccination in the peritonitis model. A lethal dose 

of S. aureus Newman strain was used to challenge CD1 mice (N = 32 per group, 2 separate 

experiments) and survival rates were followed for 1 week. Mice were vaccinated 

intraperitoneally and challenged with the S. aureus strain Newman. Statistical analysis was 

performed using one tailed Fisher’s exact test. 
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2.5: DISCUSSION 
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Based on bioinformatics antigen prediction (reverse vaccinology) and sequence homology we 

identified the S. aureus epidermin leader peptide processing serine protease (EpiP) as a novel 

vaccine candidate. Like other extracellular bacterial proteases, EpiP enzymes are known to be 

synthesized with an N-terminal leader peptide involved in translocation across the cell 

membrane, followed by a pro-peptide, which assists the folding of the mature enzyme. On 

protease secretion, the leader peptide is removed by a signal peptidase, and the pro-region is 

auto-catalytically cleaved and degraded, leading to enzyme switch from the zymogen to the 

active form, however it does not contain a known cell-wall anchoring motif. Indeed, our data 

indicate that the protein is released into the extracellular milieu. Furthermore, we found that 

the recombinant purified protein undergoes through an autocatalytic intra-molecular cleavage 

which separates an N-terminal pro-peptide from the protease domain. The protein expressed 

by staphylococcal cells appears to be similarly processed. Most likely this event occurs after 

its translocation beyond the cell membrane. Indeed, while most of it is present with a 

molecular weight comparable with the full length protein in the protoplast preparation, which 

contains cytoplasmic and membrane proteins, in the extracellular fraction the most abundant 

reactive band appears to be the pro-peptide. The biological meaning of these observations 

requires further investigation. 

To better characterize the protein we decided to perform a crystallographic study and solved 

the structure of rEpiP and rEpiP-S393A in collaboration with Northwestern University, 

Chicago, USA. We found rEpiP to be cleaved somewhere between residue 95 and 100. 

Moreover we also solved the structure of rEpiP-S393A and found no cleavage (data not 

shown). 

Indeed, by removing the predicted catalytic serine its protease activity was impaired. rEpiP-

S393A did not undergo through auto-cleavage confirmed by SDS-PAGE. This data confirms 

the role of serine 393 residue as catalytic residue. As predicted, mice vaccinated with EpiP 

were protected from staphylococcal lethal infection. Given that the protein was found to be 

released extracellularly, protection might be associated to EpiP antibodies blocking the 

function of the protein. This advocates in favor of a role of EpiP in invasive infection, as it 

has been shown for some of its homologs. The function of the Streptococcus pyogenes 

homolog SpyCEP in impairing the recruitment of neutrophils at the site of infection (Hidalgo-

Grass, Dan-Goor et al. 2004; Zinkernagel, Timmer et al. 2008), is particularly intriguing at 

this regard. Given the prominent role of neutrophils against S. aureus infections, we are now 

investigating if EpiP has a similar function.   
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Protective efficacy of rEpiP and rEpiP-S393A was found comparable. Comparison of the 

crystal structure of rEpiP and rEpiP-S393A protein showed that the mutation does not alter 

the protein conformation providing an explanation for the protective equivalence of the two 

proteins. rEpiP-S393A may be better suited for vaccine development because it consists of a 

single polypeptide, while the rEpiP may present some issues particularly in terms of product 

characterization. Therefore, these observations highlight the importance of structural biology 

in antigen design. 
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Mortality, morbidity, and cost from invasive S. aureus infections remain disturbingly high 

despite the introduction of several new antibiotics to treat methicillin-resistant S. aureus 

infections. Because of that designing a vaccine is a high research priority.  

In our study, the reactivity of sera raised against CnaBE3 domain of SdrE with all the three 

Sdr proteins of different S. aureus strains, even in strain lacking sdrE showed that in strains 

lacking the respective gene cross-reacts with the sera and hence showed the cross-reactive 

potential of the highly conserved domain. Interestingly, our study also showed the cross-

protective efficacy of the CnaBE3 domain of SdrE against the strain devoid of sdrE gene. 

This is encouraging as they represent conserved domain in immunogenic antigen SdrE, which 

may be suitable as vaccine candidate. And we know that the ideal candidate would be a 

conserved surface protein, stable, expressed across the different clinical strains, and evoke 

protective antibodies. Moreover, we also found the full-length SdrE protein to be resistant to 

trypsin incubation. Indeed, we found the highly conserved CnaBE3 domain partial resistant to 

trypsin which shows the stability characteristics of the domain. Additional testing would be 

required to determine if resistance is due to presence of intramolecular isopeptide bond or 

some other post-translational modifications. Once the structure of full-length SdrE is solved, 

which is in progress in collaboration with Northwestern University, Chicago, USA, an even 

better understanding of the stability feature of the SdrE and its spatial characteristics should 

emerge. 

In 2010 McCarthy and Lindsay studied the relationship between surface and immune evasion 

gene variation and genetic backgrounds in S. aureus. They demonstrated that variation in 

genes encoding surface proteins and genes encoding secreted proteins predicted to interact 

with host immune responses is lineage specific. Most of the variations occurred in predicted 

functional domains and some surface proteins were missing or truncated in some lineages. 

Some domains were found to be conserved across the lineages and they concluded that 

successful staphylococcal vaccines should contain cocktails of antigens representing all 

variants. Our work led to the identification of highly conserved small domain in different 

clinical strains of S. aureus, representative members of the predominant lineages and 

therefore our study provides information using this conserved, stable antigen to extend the 

concept for vaccine development to S. aureus. 

Furthermore, the second part of this thesis describes investigations on the novel serine 

protease EpiP of S. aureus. In this work, increased epiP gene expression was observed in 

exponential as compared to stationary growth phase. EpiP was shown to be released 

extracellularly and to undergo through a processing event similarly to what we observed in 
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vitro with recombinant EpiP. Moreover, EpiP vaccination protects mice against the challenge 

with S. aureus clinical isolates which might be associated with the fact that the protein is 

present extracellularly and protection is due to EpiP antibodies blocking the function of the 

protein. Based on protective efficacy of the wild-type EpiP and the mutant EpiP-S393A we 

suggest that EpiP-S393A may be better suited for vaccine development because it consists of 

a single polypeptide, while the wild-type may present some issues particularly in terms of 

product characterization. Therefore, these observations highlight the importance of  the novel 

serine protease EpiP in S. aureus infection. 
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