
AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 

 

 

DDOOTTTTOORRAATTOO  DDII  RRIICCEERRCCAA  IINN  
  

TTEECCNNOOLLOOGGIIEE  DDEELLLL’’IINNFFOORRMMAAZZIIOONNEE  
 

CCiicclloo  XXXXVV  
 

 
Settore concorsuale di afferenza: 09/E3 - ELETTRONICA 
 
Settore scientifico-disciplinare: ING-INF/01 - ELETTRONICA 

 
 
 

TITOLO TESI 
 

HYBRID PORTABLE SYSTEMS 

 

FOR BIO-NANOSENSORS 

 
 
 

Presentata da: Michele Rossi 
 
 
 
 
Coordinatore Dottorato Relatore 
 
 
Prof. Claudio Fiegna Prof. Marco Tartagni 

 
 
 
 

Esame finale anno 2013 
 



 

 II 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid portable systems for bio-nanosensors 

 

Copyright by Michele Rossi, Bologna, March 2013 

Seconda Facoltà di Ingegneria – Cesena Campus – Italy  

ARCES – Advanced Research Center on Electronic Systems – Bologna – Italy 

mrossi@arces.unibo.it 

 





 

 I



 

 II 

Abstract 
 

The promising development in the routine nanofabrication and the increasing knowledge of 

the working principles of new classes of highly sensitive, label-free and possibly cost-effective 

bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the 

possibility to develop portable sensor devices that could have a great impact on many 

application fields, such as health-care, environment and food production, thanks to the intrinsic 

ability of these biosensors to detect, monitor and study events at the nanoscale. 

Moreover, there is a growing demand for low-cost, compact readout structures able to 

perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to 

experimental conditions avoiding skilled personnel and bulky laboratory instruments. 

This thesis focuses on analysing, designing and testing novel implementation of bio-

nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems 

are fused in compact printed circuit board (PCB) technology. In particular the manuscript 

presents hybrid systems in two validating cases using nanopore and nanowire technology, 

demonstrating new features not covered by state of the art technologies and based on the use 

of two custom integrated circuits (ICs). 

As far as the nanopores interface system is concerned, an automatic setup has been 

developed for the concurrent formation of bilayer lipid membranes combined with a custom 

parallel readout electronic system creating a complete portable platform for nanopores or ion 

channels studies. 

On the other hand, referring to the nanowire readout hybrid interface, two systems enabling 

to perform parallel, real-time, complex impedance measurements based on lock-in technique, 

as well as impedance spectroscopy measurements have been developed. This feature enable 

to experimentally investigate the possibility to enrich informations on the bio-nanosensors 

concurrently acquiring impedance magnitude and phase thus investigating capacitive 

contributions of bioanalytical interactions on biosensor surface. 
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Introduction 
 

In the last decade, the convergence of nanotechnology with biology and medicine and the 

ability to fabricate structures using standard wafer-scale semiconductor processing techniques 

has shown an emerging and evolving interest in the development of new classes of rapid, 

sensitive and reliable biosensors devices, such as nanopores, nanowires and carbon 

nanotubes. These devices could have a great impact on many application fields related to our 

life: from health-care and environment, to food production and bio-warfare thanks to their 

properties of electrical, label-free and real-time readout. Moreover, the possibility of integration 

of this class of sensors with the readout structure makes them even more interesting. However, 

the integration of sensors with integrated electronics interfaces demands a quick although 

accurate knowledge of electrical parameters depending upon the specific structure and 

fabrication process and their related behaviours to target stimulus. For the above reasons, there 

is a demand for low cost, portable readout structures able to perform accurate preliminary tests 

on biosensors and/or to perform routine tests with respect to experimental conditions avoiding 

skilled personnel and bulky laboratory instruments. 

In order to design specific systems, an accurate analysis of real-word experimental needs 

and the successive performances test is needed. This thesis focuses in analysing, designing 

and testing hybrid systems in which bio-nanosensors such as nanopores and nanowires are 

interfaced with advanced electronic circuits for signal acquisition. This leads to achieve very 

high sensitive and selective detection devices, using the great potentiality of microelectronics to 

develop miniaturized acquisition systems. 

The objective of this thesis is to: 

• Design novel implementation of nanosensors in layered hybrid systems where 

microfluidic devices and microelectronic systems are fused in compact printed circuit 

board (PCB) technology. 

• Validate the above approaches in two cases using nanopore and nanowire 

technology, demonstrating new features not covered by state of the art technologies. 

More specifically, after a brief introduction on biosensors and the benefits of the electronic 

readout, Chapter 1 reviews the two kinds of label-free bio-nanosensors considered and 

experimentally tested in this manuscript, the nanopores (in particular the biological ones) and 

the nanowires field effects devices.  

As far as the nanopores are concerned, Chapter 2 presents an automatic setup for the 

concurrent formation of bilayer lipid membranes combined with a custom parallel readout 

electronic system creating a complete portable platform for nanopores or ion channels study. 

The automatic system, combined with the dedicated low cost and disposable microfluidics, 

represents an important step to meet experimental real-world needs related to this field of 
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research, since in many cases the unavoidable physical support for biological nanopores or ion 

channels studies, the bilayer lipid membrane, is created by means of manual approaches, 

which are strictly related to the ability of the specific operator, resulting in lack of reproducibility 

and time consuming experiments. The fine-tuned formation protocol achieved with the 

automation of the process and the possibility to concurrently readout the very low currents 

coming from these bio-nanosensors, enabled to easily demonstrate the capabilities of the 

system performing parallel real time ion channel recordings on multiple sites, without the use of 

highly expensive laboratories instrumentations and the need of highly skilled personnel.  

Considering the nanowires biosensors, Chapter 3 presents a discrete component portable 

electronic readout board directly interfaced with the microfluidic system, able to host different 

nanowires-based sensor chips and controlled by a custom LabView based control interface also 

implementing the digital signal conditioning process. The system was designed to be as much 

versatile as possible, enabling to perform parallel, real-time, lock-in technique based complex 

impedance measurements, as well as impedance spectroscopy measurements and it was used 

to perform experiments on silicon nanowires. 

Furthermore, this chapter presents experimental studies on the possibility to acquire 

characteristic information on the functionalization layer on nanowires sensors, which would be 

very important to qualitatively control the created functional layer, as well as on the possibility to 

achieve information about the specific electrolytic solution involved, such as concentration and 

pH, concurrently acquiring impedance magnitude and phase. 

This could be performed by impedimetric analysis using the implemented AC lock-in 

detection at different frequencies, conversely to standard studies on nanowires, which normally 

involve conductance measurements. The lock-in technique, indeed, in addition to the well-

known noise reduction property generally used, enable to measure the complex impedance and 

thus to obtain resistive and capacitive information on nanowires impedance. 

Nanowires FET conductance variations are indeed based on a variation of the surface 

potential and thus either on variations of surface charges or of the total surface capacitance 

according to the well-known equation V=Q/C. In fact one could decouple these two contributions 

by measuring the resistance in DC and using impedimetric methods to measure the total 

surface capacitance, for instance to create miniaturized pHmeters able to concurrently read the 

ionic concentration (related to the surface capacitance) of the bulk solution and its pH (related to 

the surface charge).  

Chapter 4 presents a simplified nanowires semi-empirical model, developed starting from the 

physical and geometrical characteristics of the silicon nanowires chips considered and easily 

implemented using electronic analog circuit simulation program, with the aim to catch the overall 

response of nanowires based sensors under an alternate current regime, with particular interest 
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on the different contributions given by the surface capacitive effects affecting the nanowires, as 

a function of the different operating frequency. 

Finally, Chapter 5 presents a compact standalone hybrid system based on an Application 

Specific Integrated Circuit (ASIC) impedimetric interface (which integrates the lock-in detection 

architecture) developed by the research group and directly pluggable to the laptop (and power 

supplied by USB) for real time impedimetric studies on nanowires chips, which can be easily 

embedded in the platform thanks to the designed specific holder. The system is controlled by a 

custom software interface and an FPGA, which also executes the digital signal conditioning, 

and performs complex impedance measurements stimulating the nanowires with an AC current 

signal while reading the voltage signal response. 

Thanks to these two systems it is possible to perform impedimetric measurements either 

using current sensing or voltage sensing methods and investigate how the measurement 

technique is differently affected by parasitic effects. 

It must be pointed out that this work has been framed into a highly interdisciplinary 

teamwork, where the designed and tested hybrid platforms are the results of the combination of 

knowledge in bioengineering, silicon integrated technology, data processing and packaging 

design, unavoidable requisite to achieve the needed results.  
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Chapter 1 Electrochemical bio-
nanosensors 

 

 

1.1 Biosensor devices and benefits of electronic 
readout 

 

A biosensor is an integrated device providing quantitative or semi-quantitative analytical 

information using a biological recognition system usually composed by two basic components 

connected in series: a chemical/molecular sensing element (receptor) and a physico-chemical 

transducer [1–3]. 

 
A typical biosensor signal chain front-end is shown in Figure 1.1 

 

 

 

Figure 1.1 - Typical biosensor signal chain. The second block can be further divided in an analog 

frontend sensor circuit and an analog-to-digital conversion step. These, as well as the Digital Signal 

Processing (DSP), can be integrated thanks to the microelectronic approach. 

It must be considered that in the hybrid systems presented in this manuscript the whole signal chain 

has been developed. 
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In general the transducer is a device that converts energy from one form to another. The 

most common output energy in the electrical, but any other form of energy, mechanical, 

electromagnetic, chemical, acoustic or thermal, can be the outputs signals. In this thesis, 

sensors based on optical readout (e.g. fluorescence or surface plasmon resonance), 

mechanical motion (e.g. quartz crystal microbalance or resonant cantilever), or the use of 

magnetic particles, etc. will not be considered, while the focus is on electrochemical transducers 

which extract information from biological systems transforming them into electrical signals. 

Electrochemical transducers generally consist of electrodes where electrons are charge 

carriers and electrolyte where ions are charge carriers. This interaction alters the electrical 

characteristics of the electrode-electrolyte systems such as potential, current, impedance, and 

I–V curves [4].  

A slightly different and very interesting class of transducers, usually called field-effect devices 

(ISFETs and their relatives EnFET,BioFET, etc), has attracted the researcher’s attention in the 

last decade since they showed very promising performance. Such sensors rely on the field 

effect created by the interaction of external charges with carriers in a semiconductor structure, 

thus properly working at a low ionic strength, where counter-ion shielding is reduced [5], [6]. 

In general, there are some drawbacks of electroanalytic methods, such as the instability of 

the electrode-electrolyte interface, the high level of ionic background noise in the system, 

electrochemical interferers which can contribute to a not easily readable output signal. 

On the other hand the key advantages of the electro analytical detection methods compared 

to other detection methods are straightforward and can be summarized in: 

• the ability to monitor interactions in real-time, 

• at low-cost,  

• the possibility to miniaturize the transductor element and readout circuit,  

• no requirement for molecular labels (label-free devices). 

Besides these properties, combining the electrochemical transducer with the proper 

electronic readout allows creating real-time and label-free devices for inline production or rapid 

test diagnostic systems where the output of the sensor as to be as much immediate as possible. 

Moreover advantages of integrated electronics has started a revolution in this field allowing very 

complex electronic systems to be shrunk to millimetre square sizes enabling great 

improvements in terms of performances, reduction of parasitic effects and systems portability. 

From a system point of view (see Figure 1.1), indeed integrated electronic circuits enable to 

merge the analog frontend sensor circuit and an analog-to-digital conversion (ADC) step, which 

usually follows the first readout stage, as well as the Digital Signal Processing (DSP) in a tiny 

microchip allowing to develop miniaturized acquisition systems. These can be easily controlled 

by specific software interfaces, which also usually display data to the final users.  
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The whole signal chain must be carefully considered and optimized in designing 

electrochemical biosensors. In particular, it must be pointed out that in the three hybrid systems 

presented in this manuscript the whole signal chain has been designed and custom made, as 

well as calibrated and tested. 

 

1.2 Bio-nanosensor 
 

Shrinking the dimensions of the transducer element to the nanometer dimensions, thanks to 

new and promising technologies and nanofabrication processes, enables to achieve highly 

sensitive devices able to detect and transduce information about nanoparticles, such as 

biomolecules or chemical compounds. 

Besides the performances in terms of signal-to-noise ratio (SNR) due to increased signal 

variations vs. dimensions, the use of nanosensors gives advantages in terms of cost, and 

parallelization, since they require very low quantitative of reagents. 

For these reasons electrochemical bio-nanosensors find applications in many fields, from 

medicine to biology and environment, where minimizing size and cost is essential, such as 

point-of-care diagnostics and bio-warfare agent detection. Here are listed, as example, some 

interesting applications: 

• Biomarkers detection in diagnostic point-of-care applications. 

• DNA-based analysis for genetic and epigenetic studies. 

• Drug testing and discovering in pharmaceutical research. 

• Detection of toxins and other agents in bio-warfare applications. 

• Detection of pollutants nanoparticles in environmental monitoring. 

• Water screening applications and oceans monitoring. 

Although these tremendous possibilities, bio-nanosensor systems have not successfully 

made the transition to compact point-of-care devices yet, because their detection platforms still 

consist of fluidic systems and bulky detectors. Great efforts have been made recently by 

researchers to address these challenges of portable biosensor systems using semiconductor 

fabrication technologies and microfluidic chips (lab-on a-chip) to build high-performance 

systems [7]. 

An equally important, if often overlooked, factor is that research tools and instruments must 

be easy to use and cost-effective. The importance of these characteristics will grow as industry 

employment grows. Sometimes of the present commercial tools are unnecessarily complex, 

with too many unnecessarily functions [8].  

Moreover, a sensitive instrument has limited value if it can’t be connected to a device under 

test properly. In particular for bio-nanosensors, the electronic readout system must be 
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connected to the nanoscale device through a high quality signal path that allows rapid, low 

noise measurements. 

Therefore, many practical aspects must be considered in the design of an electrochemical 

bio-nanosensor-based system and alliances between instrumentation designers and users of 

nanodevices are essential in constructing a complete measurement solution [8]. For these 

reasons the testing of these devices has to be considered an integrating part of the design of 

such systems in order to successfully address the experimental needs, as done in this thesis 

work.  

Today, a multitude of instruments referred to as bio-nanosensors can be found in labs 

around the world and there is a growing number of bio-nanosensors being used as diagnostic 

tools in point-of-care testing. Also new commercial products based on bio-nanosensors are 

becoming available to the market, thanks to the rapid growing of new devices, such as these 

hand-held devices developed by QuantuMDX [9]. In many cases, however, these bio-

nanosensors have to be confined to expert users of high-cost equipment in a lab environment 

and cannot be used e.g. by patients themselves or doctors in the field [10].  

In this manuscript two kinds of bio-nanosensors are considered, the nanopores based and 

the field effects devices (FEDs) [11], in particular the nanowires. Both are label-free sensors but 

the working principle is very different: the formers are based on the creation of a hole in a 

septum or membrane that physically blocks the ion flux between two compartments filled with 

electrolytic solution and the readout is based on the real time monitoring of the current flowing 

through the pore either in response to a stimulus or as a result of the temporary clogging of the 

nanopore. The latters operate by field-effect modulation of carriers in a semiconductor by 

nearby charged target particles, thus the signal is given by the variation of the resistance of the 

device. To achieve the desired specificity, the surface of the device is functionalized by a layer 

of probe molecules usually antibody, nucleic acid sequence or biomimetic materials which are 

able to bind only the chosen target molecules. For this reason these nanosensors can be 

considered as a subgroup of affinity-based biosensors [2], [5]. Their inherent compatibility with 

advanced microfabrication technology makes them very attractive for the integration into the 

readout system [7] and, combined to microfluidic platforms, can lead to the creation of 

miniaturized analytical systems, like µTAS (micro total analysis system). This very tempting 

approach is however associated to many practical issues, such as the manufacturability of the 

transducer with the appropriate properties and, primarily, the lifetime when the aqueous 

biological solution is applied to the device, which make the whole system generally not reusable 

[12]. 
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1.3 Nanopores 
 

A nanopore is a nanoscale aperture formed in an insulating membrane separating two 

chambers filled with conductive electrolyte. It can be a hole in a synthetic material like silicon or 

the graphene, or a pore-forming protein in a high electrical resistance bilayer lipid membrane 

(BLM).  

The working principle of nanopores based sensors is analogous to that of the Coulter counter 

[13], [14], where charged molecules are driven through the pore under an applied electric 

potential, thereby modulating the ionic current through the nanopore. This current reveals useful 

information about the structure and dynamic motion of the molecule, as well as the 

concentration in solution. [15] For this reason membranes that contain nanopores are attracting 

a rapidly increasing interest from a broad community of scientists in nanotechnology, chemistry, 

physics, engineering, and the life sciences [16]. 

Even if the driving application for nanopores based sensor is undoubtedly the tempting 

opportunity to sequence a DNA in a rapid, label- and amplification-free fashion, combined to the 

possibility to scale the approach for high-throughput DNA analysis [15], [17], [18], the ability of 

these pores to act as a sensitive transducer that can detect nanoparticles, individual 

macromolecules, and even individual small molecules in solution is equally interesting [19–21]. 

From a readout system point of view, two parameters are of critical importance for pore-

based sensing [16], [22], [23]: 

Nanopore 

Ionic current 

Electrodes 

Septum/
BLM 

Figure 1.2 – Representation of the two different electrochemical bio-nanosensors considered and 

experimentally tested in this manuscript 

 

Readout 
System 
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• the acquisition bandwidth, that determines the temporal accuracy with which an 

instantaneous change in the current flowing through the pore is detected; the latter 

indeed is related, for instance, to the velocity of translocation of the target molecule 

through the pore.  

• the current noise, that directly influences the sensitivity of a given pore; for instance in 

the specific detection of DNA bases or in the limit of detection of the dimensions of 

particles in solution. 

 

1.3.1 Biological nanopores 
 

Ion channels are biological protein nanopores formed by transmembrane proteins that 

regulate the ions exchange from intra and extra-cellular solution in a cell. Ion channels play an 

essential role in many biological processes and their malfunctions are involved in several 

diseases or severe pathologies. As a result, ion channels are targets of numerous 

pharmaceutical compounds [24] and therefore there is the need to understand their functioning 

the response to these artificial stimuli. 

Moreover the capability of ion channels to respond to different chemical-physical stimuli has 

inspired the design of hybrid sensors where they are adopted as sensing units [25]. 

This can be achieved thanks to the possibility to artificially create the conditions present in 

natural cells environment by the formation of lipid bilayers on mechanical supports. Particular 

ion channels, or more specifically, some kinds of pore forming toxins [26], [27] can thus be 

embedded in biological membranes maintaining their natural behaviour and acting as sensor 

devices either responding to target stimuli (such as transmembrane voltage, pH variations and 

specific ligand binding) or acting as passive pore through which target molecules can pass. 

Even if pioneering work on recording of single-ion channels started decades ago with 

electrophysiology experiments measuring the behaviour of single pores in cell membranes [28], 

in the 1990s, it was proposed that it might be possible to use natural nanopores to sense 

translocations of single-stranded DNA fragments through some particular protein nanopores 

[18]. Later on the same heptameric protein, the α-hemolysin, was used by Bayley’s research 

group as single-molecule stochastic sensors, for identification and quantification of analytes, 

according to the conductance changes of the pore [19] and more recently as single-DNA base 

identification using an exonuclease enzyme coupled to it [17]. 

Integrating ion channels with electronic systems performing accurate ionic current readout it 

is possible to create molecular detection systems for specific targets in solution and for DNA 

sequencing [16], [20], [29–35]. 

One of the main issues of this approach is the unavoidable need to recreate the physiological 

condition and mechanical support to these kinds of bio-nanosensors; in particular one the most 
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challenging task is the creation of long term stable bilayer lipid membranes, eventually in a 

parallel and simultaneous fashion for the development of high throughput analysis [15], possibly 

in a rapid and cost-effective way [10], [36]. This is the main topic of the Chapter 2, in which an 

automatic setup for the concurrent formation of bilayer lipid membranes combined to the custom 

parallel readout electronic system is presented. 

 

1.3.2 Solid state nanopores 

 
Even if biological pores can be used fundamentally as transducers formed by biological 

matter and thus are intrinsically compatible with the target molecules of interest and have 

proven to be very useful for a wide range of interesting translocation experiments, they do 

exhibit a number of disadvantages. Some examples are the fixed size and physical properties 

given by nature and the limited stability [17]. 

Thanks to new and increasingly reliable nanofabrication processes a tempting alternative to 

biological nanopore is becoming the use of nanopores artificially formed in solid-state materials. 

This indeed presents many advantages over their biological counterpart such as very high 

stability, control of diameter and channel length, adjustable surface properties and higher 

potential for easy integration into devices, eventually in high-density arrays of nanopores [15]. 

On the other hand, they also exhibit higher noise level [23] and unwanted effects, such as the 

creation of nanobubbles [37] related to the strong dependence on the surface charges [38], [39] 

The first report of DNA sensing using solid-state nanopores was published in 2001 by 

Golovchenko’s group which was able to fabricate nanopores with well-defined sizes in thin 

silicon nitride membranes [40]. Then, the routinely creation of solid state nanopores and the 

demonstrated possibility investigate a wide range of phenomena involving DNA, RNA and 

protein have generated a dramatic increase in the number of applications [41]. More recently 

the growing studies on graphene and its fabrication make it to be considered the ultimate 

nanopore membrane, thanks to its thickness of only a single carbon atom [42–45] 

Finally, a hybrid approach is presented in some literature examples in which solid state 

nanopores are used as mechanical support for bilayer lipid membranes creation, merging the 

advantages of the both structures [32], [35], [46]. In particular this enables to increase the 

stability of the lipid membranes, to reduce the sensor device capacitance (and thus the noise 

[16], [47]) and opens the possibility to use genetically engineered biological pores for the 

specific detection of biomolecules or for studies on DNA translocations [35]. 
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1.4 Nanowires & Nanoribbons 
 

Nanowires (NWs) are nanodevices characterized by two dimensions in the nanometer scale 

(i.e. the height and the width), while the other one (i.e.the length) could be in the range of tens 

to hundreds of micrometers. This high aspect ratio (length to width ratio of 1000 or more) makes 

the NWs to be considered as a one-dimensional (1-D) device. For instance, ultra-thin NWs, with 

diameters as small as 2-3 nm and of different materials [48], can be actually fabricated. In these 

devices quantum effects are very important, leading to many properties that are not seen in 

standard three-dimensional devices. For instance, the electrons become laterally quantum 

confined, thus they occupy discrete energy levels, leading to discrete values of the electrical 

conductance [49]. However, NWs with such reduced dimensions are difficult to physically 

realize and are not usually used as nanosensors due to practical mechanical issues [50], [51]. 

The term nanoribbons (NRs) is usually related to devices with bigger dimensions, in the order of 

some hundreds of nanometers to micrometers in height and width which are directly formed on 

a silicon substrate using standard microfabrication techniques [52–55]. 

In this section we will limit the analysis on nanowires and nanoribbons made of silicon. These 

kind of biosensors demonstrated high potential in sensing and promise highly sensitive real-time 

and label-free electrical detection of biomolecules, even in complex physiological media [54], 

[56–58].  

Moreover in contrast to carbon nanotubes [59], [60], which are characterized by metallic or 

semiconducting properties and graphene [45], [61], which have no bandgap due to the fact that 

is composed of a single layer of carbon atom, silicon nanowires have the advantage of being 

only semiconducting and may be more easily integrated into CMOS industry fabrication and 

processing. 

The fundamental principle for detection with semiconductor nanowires is their configuration 

as field-effect transistors (FETs), which use electrostatic interaction between charged molecules 

at the surface and the conductive channel, leading to a depletion or accumulation of carriers in 

the ‘bulk’ of the device when a species binds to the surface [62], [63] or properties of the 

electrolytic solution change. The chemical interactions between the FET and the molecules in 

the solution are therefore converted into electrical signals by device conductivity changes. 

These devices are in principle MOSFETs where the gate metal of the MOSFET is replaced 

by an electrolyte solution and the gate oxide is in direct contact with the solution (which can be 

contacted by an electrode immersed into it). The main difference to the conventional MOSFET 

channel is due to the fact that the nanowire itself is a physically created conductive channel, 

connected by source and drain contacts. The substrate underneath the nanowire can be used 

as back gate, electrically isolated by an insulator. 
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A selective sensor can generally be achieved from silicon nanowire devices by linking 

recognition receptor groups to the surface of the nanowire. When the sensor device with 

surface receptors is exposed to a solution containing a macromolecule such as a protein, which 

has a net negative (or positive) charge in aqueous solution at a fixed pH, specific binding will 

lead to an increase (or decrease) in the surface negative charge and an increase (or decrease) 

in conductance for a p-type nanowire device [56], [64]. 

The first demonstration of the use of NW FET to sense analytes in solution occurred in 2001 

with the sensing of pH concentration [62]; then, thanks to the one-dimensional morphology and 

nanometre-scale cross-section yielding an extremely high surface-to-volume ratio, nanowires 

demonstrated sufficient sensitivity to detect single particles, such as viruses [65], [66]. 

In the past years, the use of NWs has been widespread in many other applications, from 

sensing applications in biological systems to environments and gas sensors, as explained in 

recent reviews [56], [67–69], however there are still many challenges related both to the device 

aspects such as fabrication and the creation of stable and reliable contacts to sensitivity and 

selectivity issues relate to the particular probe receptors and the particular buffer solution [51]. 

The main limitation in the use of these nanosensors, indeed, is undoubtedly the need to 

perform measurements in a low salt concentrations buffer and the need to develop desalting 

methods in close contact with the transducer device [54], [58] since it was demonstrated that 

binding event must occur within electrical double layer (EDL), where counter-ion shielding is 

reduced, in order to maximize sensitivity [6], [55]. However it is difficult to realize 

immunosensors with immobilized antibodies that can lie within the EDL in physiological buffers. 

Even if this strongly limited the possibility to have working products outside the research 

laboratories, new commercial products based on nanowires sensors are starting to come to the 

market of point-of care devices [9]. 

Moreover new readout methods where studied to overcome this practical issue [68], [70], 

[71] and, in particular, one of the focuses of this manuscript handles with this theme. 

Many NWs characteristics depend upon the fabrication process, which can be classified as 

either bottom-up or top-down. 

The former uses the vapour-liquid-solid (VLS) growing mechanism to realize in a cost-

effective way and with a relatively easy control of the diameter, high crystallinity and with 

designated dopant density nanowires. This approach provides high-quality nanocomponents; 

however without a deliberate alignment for the randomly orientated SiNWs on the silicon 

substrate, the device fabrication would suffer from inefficient fabrication yields, which could also 

limit their development in the industrial applications. Therefore, the success of producing high-

quality SiNW-FETs using this method calls for developing suitable techniques for accurate NWs 

alignment and electrical contact formation, in order to achieve mechanically and electrically 

robust contacts. 
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The latter, much more promising for commercial applications, starts from a silicon-on-

insulator (SOI) wafer and uses micro- and nanofabrication techniques, such as photolithography 

and etching, to obtain the designed NW structure which results intrinsically embedded in the 

device structure and thus easily contacted in a mechanically robust manner. This technique also 

enables to better integrate the nanosensors with other electronics components and is less 

affected by contacts issues thanks to the generally bigger and fine-tuneable contacts area [66], 

[72]. Moreover this approach has the great advantage of having the possibility to precisely 

design a desired device-array pattern without problems of positioning Si-NWs. 

Compared with the bottom-up method, the top-down approach itself is more complex 

because usually the process relies on high-resolution lithography instrumentations. Indeed, 

even if these technologies are currently the standard for semiconductor manufacturing, they are 

extremely expensive and accessible only to large-scale integrated circuit manufacturers.  

Recently however it was demonstrated that the top-down approach enable to fabricate low-

cost nanowires using simple and mature photolithography, thin film technology, and plasma 

etching, as the ones considered and tested in this manuscript [73]. 

Moreover one of the main challenges to the top-down method is that the physical limits of 

photolitography are beginning to be reached and minimum width of the produced Si-NWs is 

around 100 nm. To overcome this barrier, NWs of triangular cross-section can be fabricated to 

reach the transverse dimension of about 10nm [74]. A complete review of the two method is 

presented in [56]. In general it can be summed up that if ultra-high sensitivity is the main aim of 

the device, bottom-up approach can yield better results for applications tailored to laboratory 

research studies, however considering the desired main aim of achieving label free, low cost 

and portable devices, eventually for point of care applications and looking towards mass 

production the top-down approach is undoubtedly better.  

As a further confirmation, in order to better meet the many practical aspects related to the 

possibility to achieve industrial mass production devices working in real word experimental 

conditions with less issues, a general trend is to moving through nanoribbons devices which 

anyway demonstrated a sufficient sensitivity and limit of detection for the sensing of 

biomolecules [52] or biomarkers [54], [58].  
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Figure 1.4 shows the typical experimental setup used in experiments on nanowires sensors, 

where the sinusoidal or constant voltage stimulus is applied at the source contact and the 

resulting current is read by the transimpedance frontend at the drain contact, which is kept at 

virtual ground.  

Contemporarily, the electrolyte potential solution and/or the back-gate potential in order to 

modulate the nanowire current  [75–80].  

Considering this readout setup, when using the sinusoidal input, this measurement approach 

results in a mixed acquisition method in which impedentiometry can be performed through the 

nanowires length, instead of through solid liquid interface as is done in typically impedance 

spectroscopy setup [11]. For this reason the thesis also focuses on the study of the possibility to 

use the AC stimulus in order to study the behaviour of the capacitive effects at the nanowires-

electrolyte interface while measuring the sensors transconductance variations as usually done 

in field effect-based sensors. It must be noted that these investigations can be done exclusively 

Figure 1.3 – Comparison between the typical bottom-up and top-down approaches for silicon nanowires 

fabrication [56]. 
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if the readout is performed in AC, while the standard FET DC analysis [6], [58], [66], [81] are not 

able to directly catch the capacitive effects that can occur at nanowires surface, these indeed 

are normally observed indirectly as the result of the transduction of the variations of FET 

surface potential. 

Moreover it is well known that the 1/f noise main source in standard MOSFET devices is 

considered the conductivity fluctuations caused by charge traps at silicon/insulator interfaces. 

This phenomenon is highly dependent upon device fabrication process and it is even more 

critical considering nanowires devices, where the surface to volume ratio is usually very high 

[79], [82], [83].  

For these two reasons the lock-in detection technique [47], [84], [85] has been implemented 

in the developed hybrid systems presented in Chapter 3 and Chapter 5. 

 

  

 

 
 
 

Finally, Table 1.1 lists recent publications on nanowires sensors studies, highlighting the 

electrical readout method, the used readout system (where known) and, in case of AC 

detection, the used working frequency. As can be seen usually very low operating frequencies 

are used in order to reduce the 1/f noise. 

 

 

 

 

 

Figure 1.4 – Typical experimental setup used in experiments on nanowires sensors and implemented in 

the developed hybrid system presented in Chapter 3 
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Table 1.1: Key references of Si-NW devices highlighting measurement  
method and the readout system used. 

 
Measurement Method/ 

Operating  Frequency 
Readout system Reference 

DC 

Agilent 4156 

parameter analyser/ 

Custom ASIC 

[81] 

DC - [6] 

DC 

Agilent Systems 

4156B controlled by 

Lview 

[66] 

DC 
Custom –  

64 channels 
[58] 

DC / AC 79 Hz 

Keithley 2636A / 

National Instruments 

PXI-8810 - PXI-4461 

[86] 

AC 79 Hz - [63], [64] 

AC 30 Hz 
Stanford Research 

Systems SR830 
[74] 

AC 30 Hz 

Data acquisition 

board and LabView 

interface 

[75] 

AC 320 Hz - [77] 

EIS 0.01 Hz-100 kHz 
Gamry Instruments 

Reference 600 
[87] 
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Chapter 2 A fully automatic parallel 
ion channel recording system 

 

 

2.1 Introduction - A hybrid ion channel 
acquisition system 

 

Typically electrophysiological system setups for ion channels investigations are based on two 

methods: the patch clamp technique [22], [88], in wich the cell membrane and the ion channels 

embedded in it are directly studied, and bilayer lipid membranes (BLMs), in which an artificial 

membrane is formed by means of various techniques reported in the literature on systems that 

mechanically support the bilayer, usually composed of a thin septum containing a small hole 

ranging from tens to hundreds of µm. This septum is usually created in a hydrophobic material 

foil such as Teflon or Delrin [89]. 

As shown in Figure 2.1, in both cases a membrane containing ion channels separates two 

compartments which simulate the intra and extracellular environment and the ions flowing 

across the membrane, under an electrochemical gradient, can be detected and converted into a 

tiny electrical current by means of electrodes (usually made of silver/silver chloride, Ag/AgCl) 

and measured using appropriate amperometric readouts. 

 
 

 

 

 

 

BLMs are widely used artificial biological substrates composed of phospholipid mixtures 

suspended into different organic solvents that self-assemble to form bilayers under specific 

a) 

Cl- 

Cl- Ion channels 

Ionic current 

Cl- 

Cl- 
Cl- 

  Electrodes 

Extracellular 
solution 

 

b) 

Ion channel 

Ionic current 

Electrodes 

Cl- 

Cl- 

Cl- 

Cl- 

Cl- 
Cl- 

Cl- 

Cl- 

Cl- 

BLM 

Septum 

Figure 2.1 – Two typical electrophysiological setups: a) patch clamp technique, where the ionic current 

flows through ion channels embedded into the cell membrane; b) Bilayer lipid membrane technique, 

where a lipid membrane incorporating ion channels is artificially created over a thin septum, containing a 

microhole, that separates the two resevoirs which simulate the intra and extracellular compartments. 
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conditions and are used to host ion channel proteins since they well approximate the natural 

behaviour of cell membranes, with the advantage of a full control of the artificial physiological 

environment created, which contains exclusively the ion channels subject of studies under 

preset conditions and without spurious effect due to the cellular complex environment [89]. On 

the other hand, real cell physiological conditions cannot be achieved in such artificial systems. 

Ion channels are involved into a large amount of processes of the cell life, regulating ion 

exchange between intra and extra cellular environment and they are involved into all the cellular 

life process [90]. Because of their key role in the physiologic process, ion channels behaviour 

can be altered or compromised from several diseases [91]. Morever novel biosensors able to 

detect low concentrations of target molecules [19] or even identify differences between different 

DNA bases [15], [17], [42], can be developed by integrating ion channels with electronic 

systems performing accurate ionic current readout. 

For these reasons, simple and versatile systems that allow verifying and screening drugs 

interaction with ion channels are required to reduce time consuming in the drugs discovery and 

validation processes [24], as well as simply and quickly creating the physiological support for 

ion channel-based sensors. 

Currently, it is possible to monitor ionic current flowing through ion channels embedded into 

bilayer lipid membranes (BLMs), cells or giant lipid vesicles, by characterizing the electrical 

transmembrane protein behaviour using laboratory techniques and low noise equipment for 

signal acquisition. State-of-the-art equipments offer high precision recording amplifiers that are 

able to sense single ion channels currents [22], [92]. These can be easily interfaced to 

laboratory-scale “craft” setups which require trained and sophisticated manual skills. 

On the other hand, High Throughput Screening (HTS) systems require high data volumes 

implemented with automatic procedures and at the moment, they are available only for patch-

clamp techniques with several drawbacks, such as the high overall running costs of advanced 

automated operations [24], [93]. 

A multichannel electrophysiology system for single ion channel recording, based on a 

modular system embedded into a hybrid architecture that is able to record single ion channels 

currents on an arbitrary number of spots was previously presented [94]. The system is 

composed of: 

• an array of disposable microfluidic chambers [95] with embedded Silver/SilverChloride 

electrodes, for manual or automatic formation of BLMs to host single ion channel 

experiments, tightly interfaced with low noise electronics front-end; 

• an array of low noise integrated microelectronic interfaces for signal amplification and 

analog to digital conversion [96]; 

• digital data elaboration performed by an embedded FPGA and link to PC by means of a 

USB interface; 
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• a graphical user interface (GUI) for data display and storage. 

The flexibility of the proposed architecture allows different configurations, ranging from a limited 

number of data channels to be monitored, suitable for manual experiments, to thousands of 

data channels, coping with automatic HTS requirements [97].  

As an example, Figure 2.2 shows a parallel readout hybrid electronic system [16] arrangement 

with 8 channels; the PCB acquisition board is composed of the top “wet” side and the bottom 

“electronic” side connected only by the electrode sockets. Moreover each disposable and 

independent Delrin block is directly interfaced with a dedicated low noise ADC converter [96] for 

ion channel recordings. This design allows assembling the single Delrin blocks on the 

acquisition board to realize arrays of any size depending on the final user’s requirements. 

 

 
 

 

 

 

 

 

In any case, an open issue using the artificial BLMs method is given by the difficulty to obtain 

stable and long lasting membranes which are usually formed by means of standard techniques. 

Moreover the manual approach is strictly related to the ability of the specific operator resulting in 

lack of reproducibility and time consuming experiments. 

For these reasons in this chapter a low cost, fully automated system able to mimic bulky and 

expensive liquid handling robot is presented. The complete and accurate description of the 

readout system interface was already reported by the colleague Thei [16], however the system 

presented here is an important step to meet experimental real-world needs related to this field 

of research and to obtain a complete, compact automatic hybrid system for ion channels 

investigations in artificial bilayer lipid membranes without the use of highly expensive 

laboratories instrumentations and the need of highly skilled personnel. 

 

 

BOTTOM SIDE TOP SIDE 

Figure 2.2: Top and bottom views of the 8 channels hybrid platform developed. 

Black Delrin blocks are illustrated in section 2.3, while the white ones work as reservoirs for buffer and 

lipid solutions. 

The Drawing on the right shows the disposable and flexible characteristics of the approach. 
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2.2 Montal Mueller method 
 

As already mentioned, the most common and one of the first developed technique to create 

artificial bilayer is the painting method. It consists in manually applying a small quantity of lipid-

solution dissolved in an organic, heavy and non-volatile solvent, such as decane and squalene 

using a borosilicate rod or a paintbrush over the septum aperture immersed in 

electrophysiological solution. A lipid monolayer is then constituted on each side of the septum, 

thanks to the amphiphilic properties of lipids. The lipid-solvent solution wets the hydrophobic 

walls of the aperture, resulting in a thinning of the solvent solution in the center of the aperture, 

until a completely fusion of the two monolayers into a single bilayer. A small quantity of solvent 

remains at the aperture perimeter (the annulus), increasing the BLM stability and acting as 

connection between the hydrophobic septum and the nanometric thickness of the BLM [89]. On 

the other hand, these pockets of solvent can interact with the physiological ion channel function. 

To overcome these limitations, several other techniques were developed following different 

approaches: some are based on droplets of water inside lipid solution [34]; others use the 

solvent evaporation and resulting thinning of the bilayer [98], or are based on the liquid infusion 

through a microfluidic chip which spreads lipids over small Teflon apertures [99]. All these 

techniques aim to obtain a high yield and the possibility to be automated; however other issues 

such as the stability of electrochemical connection and the related electrodes positioning, the 

working temperature, the differential pressure between the two chambers and the 

transmembrane potential applied have to be considered in order to obtain a really operative and 

compact experimental setup. Moreover, despite the tremendous potentials of BLM techniques, 

one of the main drawbacks of these approaches is the difficulty in integrating biological systems 

into large-scale arrays [15]. 

In this studies the Montal-Mueller approach was selected by our group, since it presents 

some characteristics procedures that can be automated [100]. As illustrated in Figure 2.3, the 

Montal-Mueller technique consists of the formation of two lipid monolayers at the lipid-aqueous 

interface of two separated chambers by applying a lipid solution in a volatile solvent, such as 

hexane or chloroform eliminating the use of a heavy, non-volatile solvent. The microhole on the 

thin septum is kept out from the aqueous surface during the monolayer formation and, after 

waiting for solvent evaporation time, the microhole is lowered (or the buffer level raised) and the 

two monolayers formed into the chambers aqueous surfaces are folded against each other, 

forming a bilayer across the aperture [100]. 
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In order to real-time monitor membrane formation, a voltage triangular wave is usually 

applied across the membrane and the resulting current signal is visualized and recorded by the 

readout electronic system[94] and software interface. 

Indeed, if the lipid bilayer is not formed, the microhole, filled by a conductive buffer solution 

acts as an electrical resistor and the current wave has the same triangular shape as the voltage 

stimulus. On the contrary, when a BLM is formed, it acts as a capacitor and the current is given 

by the derivative of voltage stimulus resulting in a square current waveform proportional to the 

membrane capacitance, as illustrated in Figure 2.4. This method allows to known the 

dimensions of the bilayer, since different BLM have different square wave amplitudes. Typically 

the equivalent membrane capacitance is in the order of 100-200 pF; however this value is highly 

dependent both on the dimensions of the microhole in the septum of the supporting device and 

on the composition of the lipid solution used to create the BLM [89]. In any case, the membrane 

capacitance is much higher than the septum capacitance (in the ten pF range), which can be 

usually neglected. 

1) 2) 3) 

4) 6) 5) 

reservoirs pipettes 

lipids deposition 

buffer injection 

buffer rising BLM assembly 

Figure 2.3 - Montal Muller technique for BLM formation on a small hole on a Teflon or Delrin septum that 

separate two chambers. 1) device empty; 2) pipette positioning on the inlet channels; 3) injection of 

buffer solution; 4) deposition of lipids for monolayer assembly on the two solution surfaces; 5) rising 

solution level to 6) the final bilayer assembly. 
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2.3 Independent and disposable BLM support 
blocks 

 

Few examples of parallel ion channels, embedded in BLMs, recording platform are present in 

literature [33], [34], [46], [101]. All of them have some common problems given by the fact that 

the above approaches are based on monolithic microfluidic structures, this cause that the yield 

of the array is linked to that of single microfluidic device and the fact that the whole systems, 

frequently relying on microfluidic routing channels, do not scale efficiently with respect to the 

dimension of the array. In this paragraph is presented the versatile and low-cost BLM support 

structure designed and realized using a micromilling process fabrication of polyoxymethilene 

homopolymer (Delrin™) substrates. The devices are suitable to support bilayer lipid membranes 

for ion channel investigations and are designed to be easily interfaces to the fully automated 

system approach described in the next section. 

The section view of a single disposable monolithic block is shown in Figure 2.5 (left). The 

dimensions of the block are 9 mm x 18 mm x 10 mm (WxLxH), designed to meet the 96 well 

microplate standard ANSI/SLAS 2004 [102] allowing a limit-free scalable interface with multi-

pipette or liquid handling robot in both planar directions. The device is composed of two 

“operating chambers” (6 mm depth) separated by a thin (50 µm) septum containing a microhole 

(at 4 mm from the bottom) and two “inlet/outlet chambers” (at 9 mm of distance each other) for 

the infusion/withdrawal of buffer. The total volume of the chambers is 120 µl. 

The fabrication process is based on four steps and is accomplished by means of a computer 

numerical control (CNC) milling machine (Figure 2.5 right): 

Figure 2.4 - Equivalent electrical circuit of the septum. If BLM is not present, 

the microhole can be represented by a resistor. In the presence of a bilayer 

lipid membrane it can be modeled by a capacitor. 
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1. A Delrin™ block is initially milled on top and bottom surfaces for engraving the 

inlet/outlet and operating chambers on the top side and the electrode slots on the bottom 

one (Figure 2.5a); 

2. Then, the small side face is drilled using a drill bit of 2mm (Figure 2.5b), in order to 

realize the interconnecting fluidic channels and the access hole for the creation of the 

microhole. 

3. The latter is then drilled using a 200 µm diameter drill bit (Figure 2.5c). 

4. The fabrication process ends by sealing the constructions holes with Delrin cylinders, 

previously opportunely fabricated by micromilling (Figure 2.5d). 

 

Finally, two Ag/AgCl electrodes are stuck into the bottom slots as illustrated; the electrodes 

are fabricated by soldering a 0.5 mm diameter Ag wire into a female socket connector and by 

immersing the Ag wire into a fused AgCl solution (Sigma-Aldrich) to create a uniform coating. 

 

 
 
 

The main advantages of the proposed approach over the state-of-the-art systems can be 

summarized in the fact that:  

• the overall structure is selectively disposable at single spot level and faulty elements 

can be easily revealed and removed; 

• different array arrangements of the devices can be interfaced to any generic 

micropipetting machine and is fully scalable to any array size; 

• each spot is directly interfaced with a dedicated electronic ASIC for a truly parallel 

readout signal acquisition. 

 

 

 Ag/AgCl 
electrodes 

PCB 

Operating 
chambers

Buffer         
infusion/ 

withdrawal 
chambers 

Microhole b) a) 

d) c) 

∆Σ ASIC 

Figure 2.5 - Section view of the Delrin block assembled on the PCB (left) and the four fabrication 

process steps (right) 
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2.4 Automatic liquid handling system structure 
and calibration 

 
The presented automatic liquid handling system (Figure 2.6) is mainly composed of three 

parts:  

 
1. 3-axis micromanipulator for pipette automatic movements in the 3D space (Sutter 

Instrument MP-285);  

2. Single-axis micromanipulator for multipipette flux control (Newport NSA12);  

3. Channel Pipette (20-200 µL) (Anachem Ltd 8);  

 

The whole system is easily controlled by a user-friendly, custom interface developed in 

LabVIEW and described in the next section. 

 
Thanks to the MP-285 micromanipulator, the multipipette used to handle liquids and to create 

BLMs can operate in a range of movement of 25 mm in the three directions of the space, 

enough to span over the whole readout system developed by the research group [94]. 

The micromanipulator has two submicron movement resolutions of 0.2 mm (coarse range) 

and of 40 nm (fine range) selectable by means of the control software interface. 

Newport NSA12 provides a motorized, linear plunger, whose position can be controlled with 

sub-micron (0.1 µm - µSTEP) resolution, called over 11 mm of travel, with a minimum 

incremental motion of 0.3 µm (3 µSTEPs). Each µSTEP is 1/64 of the full-step (FS) of 6.4 µm.   

The NSA is mounted in a fixed aluminum bracket (screwed in the MP-285 vertical plate) that 

provides both a rigid coupling between NSA12 plunger and the pipette one along the vertical 

axis and the rigid coupling between the MP-285 and the multipipette. 
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In order to get the maximum pipette volume range, the NSA12 plunger is fully retracted when 

the pipette plunger is fully extended and vice-versa. The mechanical interface is compatible with 

any kind of pipettes.  

 

The calibration procedure is performed measuring a quantity of water using a precision scale 

(±0.1 mg resolution) on the basis of the following experimental relationships, which are 

dependent on the particular pipette tips used: 

 

 
L
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Figure 2.6 - Details of the the compact automatic liquid handling 

system composed of the two micromanipulators and the 8 tips 

multipipette. 



  
 
 

 27

Chapter 2 
 

 

Using the above experimental relationships and manufacturer’s specifications, the volume 

can be related to the linear movement of the NSA12 plunger as in equation (2.1) and its velocity 

to the infusion/withdrawal flow rate as in equation (2.2). The implementation of these 

relationships in the LabVIEW control interface allowed having a final accuracy of ±1µL. This 

allows an extreme repeatability of experimental conditions in contrast to standard hand-made 

procedures. 

 

Both the micromanipulators are connected to a PC using RS-232 interface and are 

simultaneously controlled by the LabVIEW control interface obtaining a extremely modular and 

versatile system for different applications. 

 
 

2.5 LabVIEW Control Interface 
 

The described system has been designed with the particular aim to create a compact 

automatic liquid handling robot for BLM formation able to be interfaced with a BLM array 

platform [95]. The system is controlled by a user-friendly LabVIEW control panel interface (see 

Figure 2.7), which has been designed following a modular and reusable approach starting from 

elementary operations, implemented in different subroutines and associated with single 

independent controls. 

 

 
 

Figure 2.7 - LabVIEW Control Panel interface for automatic liquid handling 
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The operations are referred to the reference system fixed to the array platform [95]. 

Several elementary operations are implemented and available to the user, more specifically: 

 

•••• move the multipipette to buffer reservoir;  

•••• move the multipipette to lipid reservoir;  

•••• shift left/right the multipipette on the bottom of left/right chamber; 

•••• move the multipipette on the bottom of left/right chamber at the air-buffer interface 

level where lipids are deposited; 

•••• return to origin: move the multipipette to the reference system origin;  

•••• withdraw a fixed amount of buffer selected by the user (µL); 

•••• inject a fixed amount of buffer selected by the user (µL). 

 

Furthermore, several important parameters for BLM formation can be set, in order to test 

different BLM protocols, in particular:  

 

• volume of buffer/lipids injected/withdrawal (µL); 

• infusion/withdrawal flow rate (µL/s); 

• number of lowering/raising buffer level cycles in both chambers; 

• waiting time for lipid solvent evaporation (minutes). 

 

Finally, stacking and synchronizing the different elementary operations, two automatic BLM 

formation protocols (both using the Montal-Müller method) have been implemented as 

described in the next section, in order to standardize the formation protocol and to achieve an 

high reproducibility of the BLMs. 

 
 

2.6 Standardization of the protocols for parallel 
BLM formation 

 

In order to demonstrate the versatility of the approach and to study the best experimental 

procedure in terms of yield and BLMs mechanical stability, aiming at obtaining a standardized 

BLM formation protocol, two protocols for automatic BLM formation have been implemented. 

Both are based on the Montal-Mueller technique [100], however, slightly different procedures 

are implemented.  

They were called “Automatic Raising” and “Automatic” and are described below. 
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1. Automatic raising: The system withdraws a quantity of buffer from the reservoir and then 

fills the two chambers beneath the microhole (buffer volume ≤ 70µl). Then, a selected 

quantity of lipids is injected in the two chambers and, after a selectable waiting time for 

solvent evaporation, the buffer level in the two chambers is raised by a fixed quantity at 

a fixed velocity. At the end the pipette is moved to the reference system origin.  

2. Automatic (the sequence is illustrated in Figure 2.8): The system withdraws a quantity of 

buffer (1) from the reservoirs and fills the two chambers above the microhole (2) (3) in 

order to allow using the offset correction (4) functionality implemented in the readout 

interface [103]. Then a selected quantity (5) of lipid is infused (6) (7) in both the 

chambers. After a selectable delay time for solvent evaporation, the buffer level in the 

two chambers is lowered and immediately raised (8) (9) by a selected quantity of buffer.  

 

Moreover, in order to better spread the lipid over the microhole, the “lowering/raising cycle” 

functionality has also been implemented. This procedure automatically moves alternatively the 

pipette to both the chambers, withdraws and then injects a selected quantity of buffer in the two 

chambers using a fixed pipette flow rate (selected in “raising/lowering level velocity” option). The 

user can set several automatic cycles, for a proper lipid spreading, as well. 
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Figure 2.8 – Steps involved in the “Automatic” BLM formation procedure. 

Steps4, 10 and 11 are screenshots taken from the GUI interface.  
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The six square-wave signals (orange, blue, red, cyan, yellow and white) in Figure 2.8 (step 

11) demonstrate the concurrent formation of six independent BLMs of different dimensions on 

different BLM support blocks. Conversely, the magenta signal is related to and early stage of 

the membrane formation where a lipid agglomerate is present and behaves as a very small 

capacitance between the two chambers; whilst the green signal is result of a leaking membrane 

during formation, causing a response current wave in between the triangular and square wave 

shapes. 

 
The result showed in Figure 2.8 (step 11) is achieved after several tests on the automatic 

BLM formation protocol, changing the main parameters affecting the BLM formation and 

stability, such as the lipid solution concentration, lipid solution solvent (hexane, heptane, octane, 

nonane were tested), lipid solution quantity injected in the chambers, infusion/withdrawal flow 

rate and waiting time for lipid solvent evaporation. In particular a trade-off between solvent 

volatility, BLM formation yield and solvent handling issues using standard pipette tips was found 

in the use of octane as lipid solution solvent. 

The final protocol used for bilayer formation is constituted by: 

• an initial pre-treatment of both sides of the microhole with a droplet (about 5 µl) of 

lipid solution composed of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC, 

Avanti Polar Lipids) in octane at a concentration of 1 mg/ml. 

• Both chambers are then filled with 90 µl of buffer solution, composed of 1M KCl, 

10mM HEPES, and 1mM ethylenediaminetetraacetic acid (EDTA) (Sigma–Aldrich) in 

ultrapure water, at pH 7  

• The electrodes offsets in the different devices are automatically and simultaneously 

corrected. 

• 10 µl of lipid solution are added to the chambers and two lowering/raising cycles are 

immediately performed using a raising flow rate of 13 µl/s corresponding to a buffer 

level raising velocity of about 1 mm/s.  

• Waiting for spontaneous membrane arrangement and a complete formation within 

few minutes. 

Bilayers lipid membranes in the range of 120-180pF and stable for 3-5 hours were achieved, 

with a yield of automatic BLM formation higher than 50%. This value is however strictly 

dependent on the quality of the Delrin support block used and, in particular, on the quality of the 

microhole and the thickness of the septum. Procedures to better control both these parameters 

have to be studied and improved in order to increase the BLM formation yield and make the 

automatic procedure yield independent of the particular BLM supporting device, however the 

modularity of the approach make the system fully operational by easily removing the unformed 

membranes spot, as described in section 2.3. 
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Finally, Figure 2.9 shows the overall system highlighting the three fundamental parts by 

which it is composed. 
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Figure 2.9 – Picture of the developed hybrid portable system for automatic and parallel recording of 

single ion channels inserted in bilayer lipid membranes. 
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2.7 Applications to biological nanopores and 
single channel recordings 

 
In order to effectively demonstrate the formations of bilayers structure using the proposed 

approach, protein ion channels were embedded into the membranes and signal were 

concurrently recorded by the developed system. As model systems for proof of concept 

experiments, α-hemolysin (αHL) protein and gramicidin (gA) were chosen, see Figure 2.10. 

 

 

 

 

 

αHL is a 33 kDa exotoxin secreted by the bacterium Staphylococcus aureus that 

spontaneously forms relatively large beta-barrel pores, with an heptameric or hexameric 

structure [104], allowing ions and molecules to pass through the membranes inducing osmotic 

lysis of the target cell membranes. Thanks to the highly studied and well known three-

dimensional structure at high resolution [26] and its large single channel conductance, it has a 

wide and common usage as base for stochastic sensors [19] and for DNA sequencing 

applications [18], [42]. 

 

Vc Readout 
interface 

gA 
monomers 

BLM 

Ag/AgCl 
Electrodes 

Vc 

αHL BLM 

Readout 
interface Ag/AgCl 

Electrodes 

i i 

Figure 2.10 – Representation (not to scale) of the two different protein channels used in the experiments 

and the resulting ionic current, measured by the readout interface, relative to pore formations into the 

BLMs at a fixed control signal (Vc).  
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Figure 2.11 shows a typical acquisition in which five membranes are formed in five different 

independent Delrin blocks. A relatively high quantity (50 ng/ml) of α-hemolysin monomers 

(Sigma-Aldrich) was added in the cis-chambers (the ones connected to the vitual ground of the 

readout system) in order to accelerate pore formations in membranes regardless the number of 

αHL channels inserted in each formed BLMs. As expected, after few minutes characteristic 

current steps related to αHL heptameric pores formations in membranes occurred. Indeed, 

applying a constant transmembrane potential of 80 mV in each spot, no current passage occurs 

if ion channels are not embedded into BLM due to the high electrical resistance (several 

Gigaohms) of the membrane with respect to ions, whilst a step of about 80 pA is observed 

every time a αHL pore forms, corresponding to the typical α-hemolysin heptameric channel ionic 

conductance of about 1nS for 1M KCl buffer solution [19]. If a more precise control of the 

number of αHL pores in membranes is required and only one or two channels have to be 

embedded in the BLMs (e.g. for translocations experiments [15], [18]), a much lower 

concentration (2-5 ng/ml) is usually used and an automatic flushing of the cis compartments is 

made after the first channel insertion in order to remove the monomers in solution with fresh 

buffer solution. 

As a further confirmation of the well-formed BLM-αHL assembly, we also added a high 

concentration (80 µM) of β-cyclodextrin (βCD, Sigma-Aldrich) in the trans-chamber. This cyclic 

oligosaccharide molecule is able to get into the lumen of the pore from the stem side and to 

Figure 2.11 – αHL pore insertions into five different and independent BLMs spots. Applying a 

transmembrane constant 

 voltage stimulus of 80mV results in a step of about 80pA for each ion channel inserted. 
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bind the α-hemolysin protein, partially blocking the channel and significantly reducing the ionic 

channel conductance and thus the measured current, causing stochastic current spikes, as 

reported in literature [105] and illustrated in Figure 2.12 

 

 

 

As previously mentioned, experiments using another commonly used model membrane 

protein, the gramicidin A (gA) [106–108], were performed to demonstrate the capabilities of the 

developed automatic multichannel portable system in common electrophysiological experiments 

or in sensoristic applications [20], [25], [29], [30]. 

The gA is a small (1.9 kDa) pore forming toxin, secreted by the bacterium Bacillus brevis, 

which spontaneously incorporates into bilayers and creates pores allowing a transmembrane 

flux of monovalent cations upon transient dimerization. Once in the membrane as 

nonconducting monomeric subunit, indeed, gA temporarily self-assembles into a functional 

dimeric structure with characteristic conductance of about 5.8 pS in 100 mM NaCl [109] and 

about 21 pS in 1 M KCl [110]. 

Thanks to its well-studied and deeply modelled ion channel conductance [111] and the 

possibility to directly dissolve it in buffer solutions for the spontaneous incorporation in BLMs 

(without the need of proteoliposome fusion required for most ion channel proteins embedding 

into artificial membranes), gA is well suited for biosensor applications comfortably performed by 

means of the presented automatic system. 

On the other hand, due to its low conductance (much lower than the αHL one), the readout of 

signals coming from this kind of channel is much more challenging, from the electronic interface 

point of view, since the typical current signal is in the few pA range and in the KHz range 

Figure 2.12 – Example of βCD single molecules binding activity in three different and independent 

BLMs. Each spike is caused by the interaction and the partial blockade of the αHL pore by a single βCD 

molecule lodged in the lumen of the pore. 



 
 

 36 

Chapter 2 

bandwidth. Ultra low-noise current amplifier architectures, such as the developed one [96], are 

strictly required. 

Figure 2.13 shows a representative acquisition (at 1KHz bandwidth) of performed 

experiments obtained automatically adding gA (Sigma-Aldrich) to both chambers at a final 

concentration of 50pM, demonstrating the possibly to concurrently and automatically create 

different, independent BLMs and acquire data coming from gA ion channels in a parallel fashion 

using the developed fully automatic ion channel recording system. 

Data were obtained setting a high transmembrane potential of 200 mV and using a relatively 

highly concentrated buffer solution of 1M KCl (which is usually used for bio-nanosensors 

applications, but not for studies of ion channels in electrophysiological conditions) in order to 

have current steps of about 4pA, easily detectable by the developed integrated readout 

interface. 

These results experimentally have shown that the developed unique readout system has 

edge performances, demonstrating on one hand the possibility to perform automatic and 

concurrent experiments on different biological nanopore-based biosensors, on the other that 

some improvements to the integrated readout interface had to be done in order to use the 

system for real electrophysiological studies on ion channels. It must be noted that the 

conductance of gA channel is similar to the conductance of the widely studied sodium channel 

in biological conditions, typically in the range of 4-18pS [90]. For these reasons great efforts 

have been made by the research group in order to overcome these limitations and to increase 

the system performances in terms of noise and signal bandwidth [47], allowing a step further 

towards the creation of a high performance fully automatic system that is currently under 

development. 
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Figure 2.13 - Example of gramicidin A single ion channels activity in three different and independent 

BLMs. Each time a gA dimer is temporarily formed a single current step of about 4 pA (resulting in a 

single channel conductance of about 21 pS) is recorded.  

Multichannel events cause a characteristic staircase-like current signal. 
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Chapter 3 Hybrid, low-cost, compact 
system for Impedance sensing of 
Nanowires  

 

 

3.1 Introduction 
 

Biosensors based on silicon nanowires (Si-NWs) demonstrated high potential in sensing and 

promise highly sensitive real-time and label-free electrical detection of biomolecules[56], [67], 

[68], [112], even in complex physiological media [54], [57], [113], [114].  

The electronic properties of nanowires (see section 1.4) offer high sensitivity and have the 

potential to revolutionize the field of Point-of-Care (POC) medical diagnosis since the fabrication 

can be performed using very low cost nanofabrication processes, based on simple and mature 

photolithography, thin film technology, and plasma etching [73], [74].  

This chapter focuses on the design and test of a portable and compact hybrid interface 

comprising the electronic readout and the microfluidic system for nanowire based sensors. 

Indeed, even if literature presents many works on nanowires based sensors, typically the 

readout apparatus for these sensors is bulky and expensive and require skilled personnel (see 

Figure 3.1). To enable the routine application of predictive, preventive and personalized 

healthcare, these biochemical test sensors will have to work at a much larger scale, at much 

lower cost, and preferably also in point-of-care locations rather than exclusively into clinical 

laboratories. 

 

 

 

 

Figure 3.1 – Example of a typical nanowires readout apparatus  



  
 
 

 39

Chapter 3 
 

 

With these purposes, integrated sensor systems are emerging as important candidates for 

the development of point of care devices because of their intensive use in portable applications 

and lower price compared to the commercial instruments [115–118]. Integration of the sensor 

chips with custom electronics into a user friendly package would provide a new approach to de-

centralised healthcare management. However fully integrated biosensing systems have the 

drawback of tremendously high testing costs, not compatible with preliminary tests on 

biosensors in experimental conditions. Moreover affinity based bionsensors, such as the 

nanowires, need a functionalization step which create the necessity to have a good knowledge 

of the optimized functionalization procedures, requiring maintaining a separation between the 

“wet” biosensor, which can be disposable, and the electronic readout. On the other hand the 

possibility to have the custom readout system as tight as possible reduces parasitic 

interconnection effects. 

For these reasons the integration of the nanowire sensors on a standard CMOS substrate 

has to be considered a long term goal, only after many tests on these kinds of sensors are 

performed and once many features are known on the exact response of nanowire sensors and 

on the best measurement technique to be used. 

The sensing mechanism typically used for detection suffers from the ionic screening due to 

mobile ions present in the solution [6]. The idea was to investigate if the fundamental ionic 

screening effect can be measured by operating Si-NWs as an amplitude and phase shift 

detector, eventually in order to achieve information on the specific electrolytic solution used, 

such as concentration and ph. 

Studies on nanowires that change conductivities involve normally resistance measurements, 

however since not much features are yet known on the exact response of the nanowire sensors, 

we believe the lock-in amplifier technique could be able to measure the complex impedances 

and possibly enrich information on the bio-analytical events occurring at the nanowires 

transducers surface, such as molecular interactions between the receptors layer and targets 

biomolecules. 

Moreover, there is a lack of instrumentation able to perform both impedance spectroscopy 

and real-time impedance measurements in order to identify the electrical parameters model and 

real time behaviours of the nanowires depending upon the specific structure and fabrication 

process. 

This would help the integration of the biosensor with the interface giving a quick thought 

accurate knowledge of electrical parameters (such as impedance, noise and bandwidth) [119] 

and their related behaviours to target stimulus, enabling an understanding of the design 

constraints for the next generation integrated readout systems. 
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In this chapter, the design and measurement of a low cost lock-in amplifier-based system, 

which realizes complex impedance measurements, is described. The implementation of the 

system was developed by three main steps: 

1. Designing a discrete component parallel electronic readout interface  

2. Interfacing the developed electronics with the nanowires sensors and designing 

appropriate microfluidics. 

3. Experimental testing and improvements of the designed readout system. 

 

Summing up, the characteristics needed by the readout system are: 

• to be compact (eventually for point-of-care applications); 

• to be flexible for different nanowires or nanoribbons based sensors, which can have 

different layouts and a wide range of transimpedances; 

• to be able to perform parallel acquisitions, in order to enable sensing by multiple NWs in 

the same device, for instance functionalized to sense different molecules; 

• to have the possibility to perform differential measurements in order to increased 

sensitivity and selectivity, eliminating all the “common mode” effects caused by the 

particular environment in which the sensors are immersed or by specific sensors 

parasitics; 

• to be able to measure sensors impedance magnitude and phase, since the latter could 

offer better understanding of the surface molecular interaction (e.g. NW functionalization 

control or analysis of device parasitics at different frequencies) 

 

3.2 The overall readout system 
 

Literature analysis  (see section 1.4) on nanowires based sensors resulted in observing quite 

relaxed requirements from the electronic interface point of view, since typical current signals 

responses are in the order of tens to hundreds of nA (Typical nanowire resistances are in the 

range of 100KΩ to 100MΩ [6], [58], [63], [64], [66], [74], [75], [77], [81], [120]), requiring current 

readout system with an input referred noise less than about 200fA/√Hz. However the great 

variance of nanowires impedance, strongly dependent on technology and realization process, 

requires a very flexible interface capable to span over a big range of full scale current values. 

For these reasons the aim was to create a simple, versatile, easy-to-use and low cost 

compact system that enables to perform tests on nanowires chips and to investigate if phase 

shift in current response can effectively enrich information on NWs-electrolyte interface. 

With this purposes, an analogue acquisition board able to perform real-time amperometric 

measurements both in AC and DC regimes, along with DC voltage sweeps (for voltammetric 

studies) and AC impedance spectroscopy, implementing a two electrode potentiostat, 
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conjugated with a lock-in technique, using commercially available integrated circuits, was 

developed. 

The system (represented in Figure 3.2) comprises a custom printed circuit board (PCB) 

called “Nanowires Acquisition Board” and powered at ±12 V DC (described in the next section) 

hosting both the NW chip array DUT and the readout interface. The latter performs the readout 

of the current signal coming out of the sensors in response to a sinusoidal or DC Vref signal 

generated by an external waveform generator (Tektronix AFG 3102). The amplified and 

demodulated analogue signals are then digitized by a National Instruments 6009 DAQ [121] 

whose output is sent to a laptop for storing and online (or post) processing using a custom 

implemented LabView interface. 

The above approach, based on performing the filtering and data manipulations in the digital 

domain, allows the system to be particularly flexible, maintaining a simple analog front-end for 

different applications with respect to the system required performances.  

 

 

 

 
 
 
 
 
 
 

3.3 Nanowires acquisition board design 
 

The designed “Nanowires Acquisition Board”, block diagram is shown in Figure 3.3, where 

two identical and independent readout branches enable differential measurements of different 

 

 

Signal 
Generator 

 

Nanowires Acquisition 
 Board 

Laptop 

 

 

NI USB-
6009 DAQ 

Figure 3.2 - Block diagram of the whole developed readout system 
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nanowires (or nanowires set) from an array (illustrated as Z-ref and Z-sens). These can be 

selected, independently on the two branches, by means of an an addressable switching system 

(see Figure 3.2). 

 

 

Each branch of the circuit can be roughly broken down into two parts: a transimpedance 

input amplifier that converts the current signal coming from nanowires based sensors to an 

amplified voltage signal prior to it being sent to the integrated circuit (the AD630) that performs 

the phase-sensitive detection. 

Figure 3.3 – Block diagram of the designed Nanowires Acquisition Board.  

The inset shows the working principle of the AD 630 demodulator. The switch is driven by a 

comparator that compares the reference signal (Vref and VrefQ) with its DC offset level, resulting in a 

square wave in-phase with the reference signal.  

   f 

   f 
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In accordance with the aim of simple and low cost approach, a simple classical resistive 

feedback operational amplifier was chosen as preamplification stage due to the relatively high 

currents involved and since the the typical literature frequency range of lock-in based 

measurements on nanowires sensors span from few Hz to few KHz (as reported in Table 1.1). 

On the other hand, the well-known gain-bandwidth trade-off must be considered if highly 

resistive nanowires (and thus as low currents as few nA) have to be studied; indeed in this case 

a high value discrete feedback resistors, strongly affected by stray capacitances, has to be used 

and a parasitics phase shift and magnitude compensation has to be done. This task is 

accomplished in the digital domain by the developed software interface (as reported below). 

As operational amplifier the AD822 was chosen in particular thanks to its low power rail to rail 

FET input op amp with low noise performances (13 nV/√Hz @ 10 KHz) and low input bias 

current [122]. Four different feedback resistors of 1 MΩ, 10 MΩ, 100 MΩ, 1 GΩ enable to select 

the four different current working ranges of ±7.85 µA, ±785 nA, ±78.5 nA, ±7.85 nA by means of 

mechanical switches. 

 

The demodulation is implemented by using an AD630, usually used in precision signal 

processing and instrumentation applications requiring wide dynamic range. It is working 

properly in the bandwidth of interest of this application [123]. 

 
The reference waveform sent to the nanowires chip DUT is: 

 )sin( tVV iiref ω⋅=  (3.1) 

and the AD630 demodulator is configured to have a gain of ±1 and, since the gain is 

controlled by a switch driven by a comparator (see inset of Figure 3.3), it fundamentally 

multiplies the input waveform for a unitary square wave whose Fourier series is given by: 
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the output of the in-phase branches of the circuit is then: 
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where Rf and Zsens are respectively the selected feedback resistance, which sets the range of 

measurements of the system, and the sensor impedance. Using Werner formulas we obtain: 
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As can be better seen in equation (3.4), the output signal presents a high harmonic content 

associated to the square wave components of the signal. 

The two “real part” branches of the PCB are then are externally digitized and low pass 

filtered (see below) to obtain only the DC component: 
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Similarly, the output of the quadrature branches, in which the comparator input is shifted of 

90° (V refQ in Figure 3.3), of the circuit is: 
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Again using Werner formulas we obtain: 
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That again digitized and filtered gives the output of the two “imaginary part” branches of the 

PCB: 
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The operating frequency is selectable within 0.1 Hz-2 KHz range in accordance with previous 

work frequency detection range (see Table 1.1) and the main limitations are given by the real 

time data conditioning performed by the LabView interface (see below). 

The implemented solution also enables to perform DC measurements by bypassing the 

demodulation stage (this possibility is represented with switches on each branch of Figure 3.2) 

and setting a constant Vref signal by means of the LabView interface; 

 

Moreover, an auxiliary potential (Vbulk) control circuit is designed to set the back-gate and/or 

liquid gate potential of nanowires. Indeed, as reported in several literature studies, the control of 

these potentials can affect the nanowires conductivity, enhancing or reducing the signal and 

thus the sensor sensitivity by modulating the current flowing through it [75–80]. 

 

Figure 3.4 shows a picture of the realized Nanowires Acquisition Board where that presents, 

on the same side of the PCB: 

• an input signal SMB connector for the Vref, 
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• the dual power supply connector, 

• 4 SMB connectors for the 4 board outputs (Re1, Im1, Re2, Im2). 

An industrial process was selected to produce this 10x10 cm Nanowires Acquisition Board 

and special attention was paid to the PCB layout , using a four metal layer PCB, especially to 

shield as much as possible the analog signals on the board from external noise sources. 

Finally, the board is designed following a modular approach in order to be as much versatile 

as possible and to have only one electronic readout interface for different NW bionanosensors. 

With this approach, indeed a custom “PCB plug interface” (4x4 cm), hosting the NWs chip 

with the specific microfluidics and pluggable in the proper designed socket (see Figure 3.4 top), 

can be designed separately and specifically for each individual NW chip layout and application. 

An implemented example for a specific nanowires array chip provided by University of 

Southampton is shown below in section 3.6. 

The socket connectors provide the power supply, Ground, Vref and Vbulk signals to the PCB 

plug interface for different (eventually based on active components) solutions and connects the 

selected NW to the selected branch of the circuit (see Figure 3.3) 

 
 

Summing up the designed Nanowires Acquisition Board has the following main properties: 

• Dimensions: 10 x 10 cm 4 layers PCB; 

Figure 3.4 - Pictures of the realized Nanowire Acquisition Board. 

The top figure shows the board without the 4x4 cm plug interface, the table lists the pinout of the two 

socket connectors and the two bottom pictures show two examples of realized “PCB plug interfaces”. 
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• Performs real time AC (in the range 0.1 Hz – 2 KHz) complex impedance 

measurements and amperometric DC measurements; 

• Differential/parallel measurements are accomplished by means of the two identical 

readout branches; 

• The addressable switching system enable to independently select single 

nanobiosensors from an array; 

• Four different current ranges selectable by mechanical switch, in particular ±7.85 µA, 

±785 nA, ±78.5 nA, ±7.85 nA,  

• Possibility to set the potential of nanowires chip substrate and/or of the electrolyte in 

which nanowires are immersed (liquid gate). 

• Modular and versatile design, which enables the board to be interfaced with different 

kinds of bionanosensors and applications by means of different specific “PCB plug 

interfaces” solutions. 

 
 

3.4 LabView software interface and filter design 
 

As already mentioned, the whole readout system is controlled by the implemented custom 

Labview interface. As represented in Figure 3.5, it enables to: 

• set Vref waveform properties (frequency, amplitude, DC offset) using the USB 

interface with the function generator; 

• set the proper (adapted to the Vref frequency) NI-DAQ sampling rate and acquisition 

voltage range; 

• simultaneously and real time perform the signal conditioning (see below) of the four 

outputs of the Nanowire Acquisition Board to finally obtain the filtered real and 

imaginary voltage values of the two channels;  

• display the real time Nyquist diagram of the bionanosensors admittance (or 

impedance), Magnitude and Phase values and calculate the equivalent values of 

simple RC circuit (as explained below). 

• save data in user-specified text files, compatible with ZView data format. 
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In order to optimize the computational resources for every working frequency selected, 

assuring a real time response of the system, an adaptive filter based on the (user selectable) 

Vref input frequency (fi) and the final signal band cut off frequency (fcfinal) was implemented in the 

software interface.  

The main signal conditioning process (represented in Figure 3.6) was segmented into 3 

stages: two stages implementing finite impulse response digital low-pass filters (FIR Kaiser 

window) and one devoted to decimation. The two stages FIR was designed and simulated in 

MATLAB before Labview implementation. Weight taps have been calculated with MATLAB to 

have the best configuration for all the frequencies in the functioning range. 
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Figure 3.6 - Representation of the adaptive two stages low pass FIR filter implemented in the 

LabView software interface. 

The NI-DAQ sampling rate fs is automatically set once working frequency is selected, as well as the 

decimation factor and the cutoff frequency of the first stage filter, which also depend on the final 

bandwidth of the system. 

Figure 3.5 - Block diagram of whole acquisition chain with the implemented LabView software interface 

tasks and the user-selectable parameters, highlighted in blue,. 
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The two stages are dimensioned to satisfy the condition of same ratio between cutoff 

frequencies and bandwidths: 
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whose expression, considering fdec=2* fc FIR1, allows calculating the first filter cutoff frequency 

(fcFIR1) and the decimation ratio as: 
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Since the number of taps is the same for the two stages but the sampling rate is much lower 

for the second one (fdec), the total delay can be written as: 

 nTAPs
f

Delay
dec

⋅= 1
 (3.12) 

where nTAPs is the number of FIR taps. 

In order to perform real time, 4-channel measurements with a final very narrow bandwidth (to 

obtain the final mean value, usually fcfinal =1 Hz or 0.1 Hz) and relatively limited computational 

resources (e.g., if using a laptop), a good trade-off between FIR performances, limited response 

delay and computational complexity has been found to be the cascade of two 100-taps adaptive 

filters. 

Equation (3.12) shows that the delay is dependent on the sampling frequency; as higher is 

the sampling frequency, as faster is the system response, on the other hand a high sampling 

frequency requires much more efforts in terms of computing resources. 

Moreover it must be noted that, since the needed final bandwidth is very narrow (usually fcfinal 

=0.1 Hz or 1Hz) and in order to maintain the system as simplest and cost effective as possible, 

analysis of the nature of the output signals, that have to be sampled, allowed to consider the 

possibility to not implement anti-aliansing filters at Nanowire Acquisition Board outputs. 

Indeed, selecting a proper sampling rate, it can be noted that the aliasing could be neglected, 

providing that the sampling frequency fs is far enough from the harmonics of the output signals 

(see equations (3.4) and (3.7) and Figure 3.7). 

Anti-aliasing filters implementations would have been possible either using passive RC filters 

or using active ones; however the latter would have complicated the system adding an opamp 

for every output channel (which would also have added noise to the whole acquisition chain), 
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while the RC solution, would have required the use of resistors in series to the outputs in the 

order of tens of KΩ (e.g. R=16 KΩ and C=1 µF to obtain a cutoff frequency fc=10Hz). These 

resistors would have been incompatible with the relatively low input impedance of the NI 6009 

DAQ (only 144 KΩ [121]) resulting in a significant loading error (of about 10%), much higher 

than the folded noise and aliases contribution if the sampling frequency is selected properly. 

For these reasons the interface also enables the selection of the highest harmonic of the 

signal to be considered following the Nyquist criterion, consequently changing the sampling rate 

(fs) of the NI-DAQ in order to obtain for every application the best trade-off between accuracy of 

the measurement, response delay and computational resources demands. 

As can be seen in Figure 3.7, as higher is the sampling frequency (fs), as far from the DC 

component are the resulting high-amplitude square-wave-components aliases and the best 

situation is sampling at a frequency in between the input frequency (fi) multiples. On the other 

hand, since the high sampling frequency requires more computing resources, it is possible to 

sample at a frequency as low as 2*fcfinal+ ɛ (where ɛ is a factor of safety for proper sampling 

rate) at the cost of an higher probability that a multiple of an harmonic of the signal is folded 

back in baseband. 

 

 

 

 

 

 

Figure 3.7 – Representation of the demodulated output signals and effect of the sampling which 

creates aliases of the harmonics at high frequency. However, since the final bandwidth (selectable by 

the second stage FIR implemented) is very narrow, aliases can be irrelevant if a proper sampling 

frequency is selected, as illustrated.  

The x-axis represents the frequency normalized by the working frequency fi  

FIR 



 
 

 50 

Chapter 3 

The obtained filtered voltage signals are then real time manipulated to evaluate magnitude 

and phase from each branch of the circuit: 
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In order to have a better representation of the acquired signals, voltage signals are 

manipulated to obtain, display and save directly the real and imaginary NW admittance values, 

properly dividing the voltage signal by the scale factor 
π

α 2⋅⋅= if VR (see equation (3.5) and 

(3.8)); 

 

Moreover, other data manipulation implemented in the LabView software interface allows to 

calculate in real-time the equivalent resistance and capacitance of the series and parallel RC 

models using the well-known relations [124]: 

For RC series model 
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For RC parallel model 
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Figure 3.8 shows the LabView interface which easily enable to perform real time AC 

measurements or automatic frequency sweeps for impedance spectroscopy characterization of 
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the bionanosensor hosted in the nanowires acquisition board, synchronously controlling the 

signal generator and the NI-DAQ card; as well as perform real time DC measurements and DC 

voltage (Vsd) sweeps for I/V bionanosensors characterizations. 

 

 

 

 

3.5 System characterization, Calibration and 
Testing 

 
Preliminary tests on simple DUT simulating nanowires behaviour, like resistors, capacitors 

and RC parallel circuit were performed to check the system performances, both in real time 

acquisitions and in frequency sweep mode, in terms of effective final resolution, accuracy and 

precision.  

Matlab scripts were also implemented in order to automatically analyze saved data; next 

section shows some results obtained by preliminary tests. 

 

3.5.1 Real-time preliminary tests on synthetic 

circuits 
 

Preliminary tests on synthetic DUT (R, C and R-C combinations) in different measurement 

ranges and at different frequencies were performed connecting the DUT between Vref and a 

selected NW socket (see Figure 3.4). In particular Vishay precision resistor of 1MΩ and 10MΩ, 

Figure 3.8 - Screenshot of the implemented LabView interface 

 

Function generator controls 

NI DAQ controls 

  Outputs 

Saving 
options 
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0.005% tolerance and Dale RNX-3/8 100MΩ resistor, 1% tolerance and capacitors of 100pF 

and 1nF were used. Those resistors and capacitors values were selected since are the typical 

ranges of measurements involved in nanowires sensing [58], [64], [65], [68], [120]. 

In particular H8 precision resistor of 1MΩ, 0.1% tolerance (with Rf =1MΩ and 10MΩ) and 

Dale RNX-3/8 100MΩ Resistor, 1% tolerance (with Rf =100MΩ and 1GΩ) and Capacitor of 1nF 

were used. 

For all the tests some systems parameter were fixed, in particular: 

• Vref sinusoidal input amplitude= 1 Vpp (Vi=0.5V). 

• Sampling frequency fixed at fs=2*(5+ɛ)*fi, in order to sample at a quite high frequency 

but however allowing the acquisition of two data channels (48 KHz maximum sample 

rate of the NI DAQ 6009 to be divided for the used channels [121]). 

• Digital filter final cutoff frequency fcfinal= 0.1 Hz. 

 

Table 3.1 sums up the different configurations for the four different selectable measurement 

ranges and shows the worst effective final resolution experimentally obtained for each 

configuration. 

 

Table 3.1: Experimental performances at different measurement ranges 
 

Selected Rfeedback [Ω] 

(Full Scale Current [A] ) 

1 M 

(±7.85 µ) 

10 M 

(±785 n) 

100 M 

(±78.5 n) 

1 G 

(±7.85 n) 

Full Scale (Y) [S] ±1.57x10-5 ±1.57x10-6 ±1.57x10-7 ±1.57x10-8 

Minimum detectable 
Impedance [Ω] 6.37x104 6.37x105 6.37x106 6.37x107 

Minimum experimental 
Dynamic Range - Worst 

case [dB]  
(ENOB) 

68.03 

(11.3) 

54.18 

(9) 

68.63 

(11.4) 

51.17 

(8.5) 

 

Where: 

• Full scale (Y) is the full scale in terms of admittance using a sinusoidal input amplitude 

fixed at 1Vpp 

• Minimum readable Impedance is the minimum impedance that can be read by the 

system, it is simply the reciprocal of the Full Scale (Y) ; 

• Minimum experimental Dynamic Range – worst case (ENOB) is the minimum effective 

final dynamic range experimentally obtained (considering all the experimental tests 

performed at different conditions) in terms of decibels and of Effective Numbers Of Bits 

(ENOB); 
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Hereafter are shown, as example, some of the results of tests done using resistors and RC 

parallel circuit. The first figure of each test shows a full scale view of performed real time AC 

measurements at different frequencies plotted in the same figure, while the zoomed version 

shows the details of the measurements. Each point is the result of 1 minute of acquisition at a 

fixed frequency. 

As can be seen in the zoom view, parasitics affect the measurements highlighting the 

dependence of the measured data on the working frequency and consequently on the different 

contributions of parasitics either in the DUT or in the system acquisition chain. For this reason a 

phase shift and magnitude compensation was implemented in the LabView interface as 

reported in section 3.5.2. 

Below each figure, tables show the obtained effective experimental resolutions (in terms of 

ENOB), as well as standard deviations (σnoise) for Real and Imaginary parts, which give a 

measurement of the precision of the system, for each working frequency. Moreover a 

measurement of the absolute accuracy, related to the values of RDUT (and CDUT) measured 

using Agilent 34401A digital multimeter, for each considered frequency was calculated, in terms 

of percent error, as: 

 100(%) ⋅
−

=
valueactual

valuemeasuredvalueactual
ErrorAccuracy  (3.19) 

 

where the value read by the Agilent 34401A was considered as actual value and the 

measured value was the mean of the acquired data at a certain fixed frequency. 
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Figure 3.9 - System performances tests at different frequencies using a 1 MΩ Resistor as DUT. 

Each point is the result of 1 minute of real- time acquisition at a fixed frequency. 

RDUT=999.4 KΩ  (Rf=10MΩ) 
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Table 3.2: Experimental results at different frequencies using 1 MΩ Resistor as DUT 
(Conductance actual value=1.0006 µS). 

 
Frequency 10Hz 50Hz 100Hz 200Hz 300Hz 400Hz 500Hz 

ENOB Re(Y)-
G 13.6 9.4 15.3 16.2 12.8 15.2 14.6 

ENOB Im(Y)-
B 8.7 14.5 10.4 10.8 10.8 10.7 9.6 

σRe (Y) [nS] 0.18 0.10 0.06 0.03 0.30 0.06 0.10 

σIm (Y) [nS] 5.5 3.30 1.62 1.23 1.23 1.37 2.9 

G Absolute 
Accuracy-

Percent 
error 

1.38% 1.3% 1.1% 0.76% 0.33% 0.25% 0.85% 
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R//C: RDUT=999.4 KΩ C=1nF (Rf=1MΩ) 

Figure 3.10 - System performances test at different frequencies using an R-C parallel circuit  

(1 MΩ Resistor - 1nF Capacitor) as DUT.  

Each point is the result of 1 minute of real- time acquisition at a fixed frequency. 
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Table 3.3: Experimental results at different frequencies using an R-C parallel circuit as DUT. 
 

Frequency 10Hz 50Hz 100Hz 200Hz 300Hz 400Hz 500Hz 

ENOB Re(Y) 15 14.5 14.3 14.3 12.9 13.1 12.7 

ENOB Im(Y) 11.4 12.7 13.5 13.9 14.4 13.8 13.2 

σRe (Y) [nS] 0.65 0.97 1.11 1.06 2.98 2.57 3.29 

σIm (Y) [nS] 8.17 3.34 1.93 1.41 1.05 1.5 2.35 

G Absolute 
Accuracy-

Percent 
error 

0.32% 0.18% 0.02% 0.34% 0.77% 1.24% 1.5% 

B Accuracy-
Percent 

error 
11% 10.9% 6.8% 4.1% 3.2% 2.4% 1.8% 

 
Susceptance (B) accuracy for each working frequency was calculated as: 

 100(%) ⋅
−

=
ltheoreticaB

valuemeasuredltheoreticaB
AccuracyB  (3.20) 

 

where { } fCltheoreticaYmltheoreticaB π2=ℑ= . 
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3.5.2 Parasitics Phase shift and Magnitude 

compensation 
 

As well known, the classical simple resistive feedback TIA front-end used has the drawback 

to be strongly affected by parasitics capacitances in parallel to the feedback resistor. In 

particular if the latter has high value as the one used for low current measurements ranges, a 

small parasitic capacitance as few pA can strongly affect the measurement. 

Indeed in the real experimental world the situation of the front-end transimpedance amplifier 

is the one represented in Figure 3.11, thus the feedback network is given by the RfCpar parallel 

circuit and the transimpedance is given by:  

 

parfi

f

in

out
f CRfj

R

I

V
Z

π21+
=−=  (3.21) 

Which substitutes the term Rf in the outputs of the nanowires acquisition board (see 

equations (3.5) and (3.8)). 

This means that the “gain” (given by: ( )221 parfi

f
f

CRf

R
Z

π+
= ) of the preamplifier stage 

depends on the working frequency fi and on the parf CR  product and that the outputs significantly 

decreases for frequencies higher than the cut-off frequency 
parf

c
CR

f
π2

1
=  (and by a factor of √2 

at fc). 

 

For instance, considering a parasitic capacitance of 1 pF in parallel to the feedback resistor, 

we obtain a bandwidth that depends upon the specific feedback resistance used in the 

measurement giving a cut-off frequency varying from 159 Hz, for Rf= 1GΩ, to 159KHz for 

Rf=1MΩ as reported in Table 3.4 and close to the values experimentally obtained, as can be 

seen in Figure 3.12 and Figure 3.13. 

 

Table 3.4: Estimated cut-off frequency for the different selectable feedback resistance considering a 
parasitic capacitance Cpar=1pF 

 
Selected Rfeedback [MΩ] 1 10 100 1000 

fC (KHz) 159.2 15.92 1.592 0.159 
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This decrease in the real transimpedance value (and then in the output voltages), given by 

parasitics in parallel to the feedback resistor, is not considered in the implemented Labview 

interface when online calculating the real and imaginary NW impedance (or admittance) values 

(see section 3.4) resulting in a final (frequency dependent, but constant at a certain fixed 

frequency) overestimation of the impedance magnitude and a parasitic phase shift. 

In particular for the highest values of Rf (100MΩ and 1GΩ) the cut-off frequency falls inside 

the measurement frequency range causing a high phase and impedance magnitude shifts as a 

function of frequency, as can be seen in Figure 3.12 where frequency sweeps are performed 

changing only the feedback resistors (respectively 10MΩ and 100MΩ) and measuring two 

different simple DUTs: a 10 MΩ resistor (blue and red lines) and an RC (10 MΩ-100pF) parallel 

circuit (green and magenta lines). Considering the simple resistor DUT case and using a 

feedback resistor up to 10 MΩ the system response is accurate, with a constant impedance 

magnitude over the whole frequency range and a maximum spurious phase shift of 4 degrees at 

2 KHz. Conversely, using a feedback resistor of 100 MΩ a significant parasitic phase shift of 43 

degrees at 2 KHz is obtained.  

The same behaviour is observed when the RC parallel circuit is used as DUT. These results 

clearly demonstrate that effectively the phase shift is dependent on the parasitics coupled to the 

feedback resistance, which is the only parameter changed in these tests.  

 

+ 

- 
Rf 

RDUT 

CDUT 

i IN 

Vout 

Cpar DUT simulating 
nanosensor 

+ - Vin 

Figure 3.11 – Transimpedance preamplifier front-end. Unavoidable parasitic effects are highlighted. 
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In particular, in order to quantify how much these shifts badly affect the accuracy of the 

system, the entire spectra were fitted with Zview software using the RC electrical circuit model 

to estimate the real components values. Results can be seen in Table 3.5, where the fitting 

error is directly calculated by ZView software, while accuracy error is calculated by: 

 100(%) ⋅
−

=
valueactual

valuefittedvalueactual
ErrorAccuracy  (3.22) 

 

 
Table 3.5: Fitting results of RC (10 MΩ-100 pF) parallel circuit DUT with different transimpedance values. 
 

 Rf=10 MΩ Rf=100 MΩ 

 RDUT CDUT RDUT CDUT 

Fitting Error 0.6% 0.6% 3.7% 4.6% 

Accuracy Error 1% 1.1% 17% 13.5% 

Figure 3.12 – Bode plots obtained using a 10 MΩ Resistor (blue and red lines) and an RC parallel 

circuit (green and magenta lines) DUT selecting two different measurements ranges, respectively using 

the 10 MΩ and 100 MΩ feedback resistors. 
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To eliminate this unwanted behaviour of the system in a low cost and simple way, from the 

hardware point of view, the idea was to compensate these shifts in the digital domain, first only 

in post-processing and then directly implementing the method in the Labview interface. 

The method consists in acquiring, for each preamplifier feedback resistor, the shifts given by 

parasitics using a calibration frequency sweep acquisiton of a precision resistor, which has a 

theoretical constant value of phase (φ=0) and a constant impedance magnitude (|Z|=Rcal, value 

of the calibration resistance used and before measured). 

Then the obtained values for all the considered frequencies are used to compensate both the 

impedance magnitude and phase spectra of DUTs by subtracting the phase shift to the 

experimental acquisitions and by considering that the magnitude error at every certain 

frequency increases proportionally, thus calculating for each frequency the “overestimation 

ratio”=
cal

cal

R

Z , where |Z|cal is the impedance magnitude obtained in the calibration frequency 

sweep. 

The method was first implemented in a Matlab function wich has as input the experimental 

acquisiton, the calibration acquisition and the specific calibration resistance used for the 

calibration and as output the compensated experimental acquisistion. 

This function calculates the compensated phase shift (φcomp) and magnitude (|Z|comp) 

respectively by subtracting the phase shift of the calibration acquisition from the input 

experimental acquisition and dividing, for each frequency, the experimental values by the 

“overestimation ratio”. 

Finally the values of { } ( )compcompcomp ZZe ϕcos⋅=ℜ  and { } ( )compcompcomp ZZm ϕsin⋅=ℑ  are 

calculated for every frequency and a file readable by ZView software is created as output. 

To prove its effectiveness, the implemented method is applied to the previously presented 

experimental acquisition, in which 100 MΩ feedback resistor and an RC (10 MΩ-100pF) parallel 

circuit were used (magenta line of Figure 3.12).  

As can be seen in Figure 3.13, a significant improvement is achieved and the values 

obtained after the compensation (blue line) are in well agreement with the values obtained using 

the lower feedback resistance of 10 MΩ (green line), which is much less affected by parasitic 

capacitances. 
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As done before, in order to quantify the improvements, the data were fitted to calculate the 

measurement accuracy after compensation. Data reported in Table 3.6 confirm the qualitative 

analysis demonstrating a good improvement in the accuracy of estimation of the real 

components values from the fitting of the spectrum.  

 
Table 3.6: Fitting results of RC (10 MΩ-100 pF) parallel circuit DUT, using 100 MΩ feedback resistor, 

before and after the compensation. 
 

Rf=100 MΩ BEFORE COMPENSATION AFTER COMPENSATION 

 RDUT CDUT RDUT CDUT 

Fitting Error 3.7% 4.6% 0.4% 0.4% 

Accuracy Error 17% 13.5% 2% 2% 

 
Similarly the method is applied to the most challenging transimpedance of 1 GΩ using once 

again an RC parallel circuit as DUT with R=100MΩ and C=100pF. 

Figure 3.13 – Bode plots demonstrating the effectiveness of the implemented compensation method. 

Green and magenta lines are respectively obtained using the 10 MΩ and 100 MΩ feedback resistors 

and the RC parallel circuit DUT, as in Figure 3.12, while the blue line is obtained by the magenta 

data after the compensation method. 



  
 
 

 63

Chapter 3 
 

Experimental acquisition and data fitting accuracy are shown below respectively in Figure 

3.14 and Table 3.7. 

 

 
 

Table 3.7: Fitting results of RC (100 MΩ-100 pF) parallel circuit DUT, using 1 GΩ feedback resistor, 
before and after the compensation. 

 
Rf=1 GΩ BEFORE COMPENSATION AFTER COMPENSATION 

 RDUT CDUT RDUT CDUT 

Fitting Error 10.7% 9.6% 0.9% 0.4% 

Accuracy Error 41% 32.3% 3.5% 4% 

 
 

As already mentioned the compensation method was then implemented in the Labview 

interface in order to have a real time phase and magnitude shift compensation for every single 

frequency. Calibration data were stored and loaded from the software interface upon request 

and the calibration procedure for the selected working frequency is automatically performed in 

real-time. 

Figure 3.14 – Bode plots demonstrating good improvements of results using the compensation method 

also for the most challenging feedback resistor of 1GΩ. The blue line is the final result, obtained from the 

acquired red line, using the black one as calibration curve. Green line is reported for comparison and is 

obtained using a different DUT and the 100 MΩ feedback resistors after compensation, as in Figure 3.13. 



 
 

 64 

Chapter 3 

3.5.1 Comparisons with commercial Impedance 

Analyzer 
As a final test, a comparison between the developed Nanowires Acquisition board interface 

and a specific commercial laboratory instrument such as Novocontrol Alpha-A Impedance 

analyser [125], using the “impedance spectroscopy mode” of the system and performing 50 

points frequency scans in the range 10 Hz-2 KHz on different parallel RC test circuits, was 

performed. 

Figure 3.15 shows the results obtained using two different RC parallel circuits, precisely 

using R=998 KΩ, C=1,022nF and R=10.19 MΩ, C=99pF (independently measured using Agilent 

34401A high precision digital multimeter), and analysed with ZView software. 

As can be seen the response of the commercial system seems noisier considering the higher 

impedance DUT; this can be explained considering that the Novocontrol impedance analyser is 

based on the frequency response analysis (FRA) method [125], [126], which ensure a very fast 

and broadband analysis at the cost of a limited noise removal as reported in [126], while in the 

developed system (based on the lock-in technique) each frequency point is obtained mediating 

(by the LabView software interface) the real time AC measurements of a selected number of 

acquired samples (usually 200 samples), thus reducing the final effective bandwidth of about 

ten times and thus strongly reducing the external noise at the cost of a slower acquisition. 

Data fitting (see Table 3.8 and equation (3.22)) shows that the system demonstrates a fair 

accuracy, which is sufficient for many impedance biosensors applications [5], [127], [128], 

considering the much lower price and smaller sizes of the developed system in comparison with 

commercial instruments currently used for impedance spectroscopy and considering the system 

capability to perform real time AC measurements, feature offered only by a few commercial 

apparatuses. 
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Table 3.8: Comparative fitting results of two different RC parallel circuits DUT, measured with the 
developed nanowires acquisition board and with a commercial impedance analyzer. 

 
 R=998 KΩ - C=1,022nF R=10.19 MΩ - C=99pF 

 
Nanowires 

Acquisition Board 

Alpha-A 

Impedance Analyzer 

Nanowires 

Acquisition Board 

Alpha-A 

Impedance Analyzer 

 R C R C R C R C 

Fitting 

error 
0.5% 0.5% 0.06% 0.06% 0.6% 0.6% 0.8% 0.8% 

Accuracy 

Error 
0.6% 0.5% 0.04% 0.1% 1% 1.1% 0.04% 4.3% 

 
 
 
 
 
 
 
 
 
 

Figure 3.15 - Bode plots comparison obtained using the developed system interface and the commercial 

Novocontrol Alpha-A Impedance analyzer with two different parallel RC test circuits. 
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3.6 Experiments on Si Nanowires sensors 
 

The system was then interfaced with different NW chips tests by means of the design of the 

specific PCB plug interfaces, hosting the NW chip and eventually the microfluidics for each 

particular experimental need, pluggable in the proper designed socket of 4x4 cm. 

In particular the interface for different NW chip provided by a partner research institute, the 

University of Southampton (UK), is presented below. It is a two layers PCB which has the aim to 

connect and physically hold the specific nanowires array chip to the readout system and was 

realized in an internal university facility, the LPKF Protomat micromilling machine, as well as the 

other plastic (delrin, polycarbonate) mechanical parts. 

 
 

3.6.1 University of Southampton Nanowires chip 
 

Nanowires (14.8 x 14.8 mm) chip provided by nano-research group of University of 

Southampton contains 8 different sets of p-type top-down fabricated nanowires (see Figure 

3.16). These devices were fabricated using a very low cost nano fabrication process based on 

simple photolithography, thin film technology and a dry spacer etch technique suitable for low 

cost mass production [73]. 

The four outer sets have the same dimensions (sensing window length 40 µm and 

rectangular cross section of nominal 100nm x 100nm) and have the same number of nanowires 

in parallel (30) in all chips, while the center sets are variable from chip to chip in length (10 µm 

to 50 µm long) and number of nanowires in parallel (10 to 320) in order to perform conductivity 

tests and evaluate the best nanowire configurations. 
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Figure 3.18a shows the cross section of the device that is composed of the silicon substrate 

on which it is deposited by plasma enhanced chemical vapour deposition (PECVD) a 750 nm 

oxide layer followed by a 300 nm silicon nitride layer. Then oxide pillars are created (again by 

PECVD) and patterned using 3 µm photolithography and anisotropic etching. On these pillars a 

100 nm amorphous silicon (α-Si) film is deposited by low pressure chemical vapor deposited 

(LPCVD) at 560°C and then doped by boron implantati on at a dose of 1 × 1018/cm2 and an 

energy of 25 keV. Rectangular-shaped nanowires are formed using a special anisotropic dry 

etch process performed using an Oxford Instruments Plasma Technology 80+ reactive ion 

etcher (RIE) system at 160 W input power, with a SF6 flow of 12 sccm, an O2 flow of 12 sccm 

and a pressure of 30 mT. A sketch of the main phases of the fabrication process is represented 

in Figure 3.17. 

Figure 3.16 - University of Southampton Nanowires chip layout. The green-edged zoom shows a cross 

sectional detailed SEM pictures of a single nanowire and the dark field picture highlight the sensing 

region and nanowires edges. 
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At the end of the process, to create a stable surface for nanowire sensing, to crystallize the 

amorphous silicon to polycrystalline silicon and to activate the implanted dopant, a nominally 10 

nm gate oxide was grown at 900 °C. Finally, alumini um contacts at both end of the polysilicon 

nanowire were made by the creation of a heavily doped (with a dose of 1 × 1021/cm2) 

source/drain pad region, highlighted in red in Figure 3.18b. The figure also shows (in green) the 

sensing window over the nanowire which is the only exposed region, while the rest of the all 

regions are covered with 1 µm thick layer of S1813 photoresist.  

Similarly, metal pads closed to the lower scribe lines (see Figure 3.16) also have exposed 

metal for measurements and are designed with a pitch of 1 mm to be compatible with standard 

commercial connectors (Samtec SEI series [129]). This feature allowed designing a PCB plug 

interface enabling the simple connection between the chip and the readout board, without the 

need of wire bonding and assuring the possibility to reuse the designed plug interface for 

different NW chips. 

Figure 3.17 – Sketch of the nanowires top-down fabrication process. 
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3.6.2 Design and realization of university of 

Southampton specific PCB plug interface 

 
According to the possibility to use the commercial Samtec connector, a “sandwich approach”, 

enabling the easy removal and connection of the NW chip, was used to design the plug 

interface (see Figure 3.19). It is composed mainly of four parts: 

• the base, which perfectly hosts the NW chip and, underneath it, a small piece of 

aluminium foil to create a constant potential plate and ensure the back-gate contact. 

The proper cavity dimensions allow an automatic alignment of the metal pads of the 

NW chips (see Figure 3.16) with the connector. 

• the windowed two-layers PCB, which hosts Samtec SEI connector [129], a Mill Max 

spring connector [130] and two 4-way SMD switches These three elements are used 

respectively to connect inbound and outbound signals from the NW chip to the 

dedicated socket connector pins (see Figure 3.4), to assure the bulk contact 

connecting the aluminium foil in the base to the and to address the Vref signal coming 

from the acquisition board to the selected Silicon NWs under test; 

• the rectangular PDMS microfluidics gasket (see below), which can be designed and 

moulded as required by the specific application or test (e.g. with or without 

microchannels for solution flow) and ensure a tight seal between the sensitive NW 

chip surface and the bottom layer of the PCB avoiding electrolyte leakage; 

• the lid, which is used to package the microfluidic gasket as well as the whole device 

by means of four screws, screwed in the threaded holes at the four corners. 

Figure 3.18 – Cross section and top view of the University of Southampton nanowires chip. 

N-Type Silicon 

 

Silicon Oxide 
Silicon Nitride 
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Figure 3.20 shows some pictures of the realized modular PCB plug interface; disassembled, 

after the clamping of the NWs chip and assembled in the nanowires acquisition board. 

 

 

 
 

As an example, in order to meet experimental needs, in particular to facilitate the 

repeatability of alignments between the microfluidic gaskets and the NW chip, a PDMS mould 

(Figure 3.21) was designed and realized using the Objet Connex350 3D Printer of University of 

Southampton. It presents an array of 4 x 4 identical (rectangular 15x10 mm) features each 

containing five pillars of 2.5 mm of diameter for the creation of five independents microfluidic 

Figure 3.20 - : Pictures of the realized plug interface specific for the university of Southampton 

nanowires chips. 

Figure 3.19 - : Design drawings of the Southampton chip specific plug interface highlighting the different 

components stacked in a “sandwich approach”. 
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chambers (each with a volume of ~10µl) aligned with the different NWs sets of the NW chip (see 

Figure 3.16), in which test solutions can be directly injected.  

To create the microfluidic PDMS gasket, the PDMS Sylgard 184 (Dow Corning, mixture 10:1 

[131]) was placed in a vacuum chamber to outgas for 15 minutes; then the mix was directly 

poured in the mould and baked for 2 hours at 75°C i n oven. Once removed the array of gaskets 

was peeled out from the mould and single gaskets are created by cutting using a scalpel along 

the moulded lines. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.21 - PDMS mould for microfluidic chambers design and pictures. 
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3.7 Preliminary tests on nanowire chips 
 

Once calibrated the system using tests on synthetic DUT, preliminary tests on nanowire 

chips were performed in order to characterize nanowires sensors using the developed system 

and to effectively prove the effective accuracy of the whole system with the PCB plug interface. 

In particular automatic Isd/Vsd (DC) at different back-gate potentials and Isd/Vg (DC) 

characterization in air and buffer were performed, as previously reported [73]. 

 

Indeed, even if the research group of university of Southampton had already characterized 

and studied the first batch fabrication in a previous work [73], using a standard bulky laboratory 

readout setup, a new devices batch was fabricated during the last year and it was characterized 

and studied using the developed nanowires acquisition board.  

In order to improve nanowires performance, this new nanowires batch was fabricated with 

the fabrication process and characteristics reported above in section 3.6.1. In particular some 

modifications were done to the first batch reported in [73]. These are an higher doping rate 

resulting in a higher conductivity and threshold voltage of the nanowires and a thicker insulating 

layer between the nanowires and the silicon substrate, in order to achieve a better temporal 

stability, since the experiments performed in previous work were affected by a systematic drift, 

as reported in supplementary information of [73], probably caused by the creation of pinholes in 

the insulating layer . 

 

3.7.1 Comparison with standard electrical 

characterization setup and nanowires characterization 
Figure 3.22 shows, as proof of concept, the Isd/Vsd characteristic of one chip sample for two 

different back-gate (Vg) potentials of 0 and -5 V measured in air using a standard probe station-

based setup (in particular the Cascade R32 REL3200 Probe Station associated with a Agilent 

4155C) and the developed Nanowires Acquisition Board. Consistent results and good accuracy 

of the developed system demonstrated the possibility to substitute the previously used bulky 

probe station with the presented developed compact system. 

The Isd/Vsd characteristics also show, as expected, a higher conductivity of the new batch 

nanowires chip and a very linear response even for low absolute values of back gate potential 

unlike Hakim’s first results, where Isd/Vsd characteristics presented a nonlinear response, 

probably given by Schottky barriers at the metal contacts-silicon NW junction [73]. 
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Nanowires DC characterizations were then performed using the developed nanowires 

acquisition board. In particular the transfer characteristic of Isd as a function of the back-gate 

potential Vg for different Vsd values.  

 

Figure 3.22 - Isd/Vsd output characteristic of a representative nanowires chip for two different back-gate 

voltages acquired using a standard probe station setup and the developed system.  
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The electrical characterization demonstrates that the provided nanowires have a positive 

backgate threshold voltage, as previously reported [73]. This means that the conduction (holes 

carriers) channel is conductive also for Vg=0V since it is physically implanted in the device.  

The higher doping dose used in this nanowires batch resulted in an shift of the threshold 

voltage towards more positive values (outside the range of measurements of Figure 3.23 and 

Figure 3.23 – a) Isd/Vg transfer characteristic of a representative nanowires chip for different source-drain 

potentials as a function of Vg. b) Magnification of the low Vsd voltage condition as the one usually used in 

the experiments and relative linear fitting, in this representative case the gm=∆Isd/∆Vg results 1.1nS. 

The inset shows a representative transfer characteristic of the first nanowires batch reported in [78]. 

b) 

a) 
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higher than the one reported in [73], which fell in the 0 - 5V range, as shown in the inset of 

Figure 3.23). 

Moreover, as expected, the higher doping dose used in this nanowires batch resulted in a quite 

high transconductance value, given by the slope of the linear transfer characteristic:  

 
dsVg

ds
m V

I
g

∆
∆=  (3.23) 

 

For instance, in the case reported in the figure (Vsd=0.1V, the typically used range of applied 

voltage) results in a transconductance value gm of 1.1nS 

 

Usually the experiments were performed setting the back gate voltage at ground, in order to 

work in the linear regime using a low Vsd, the while the effects of the liquid gating on nanowires 

response were studied and described below.  

 

The well-known general expressions for the MOSFET in linear accumulation regime for small 

Vds (for p-type devices the condition (3.24) is valid) can be also used for an ISFET and therefore 

for a nanowire. 

 thgsds VVV −>  (3.24) 

 

 ( ) dsthgsOXds VVV
L

W
CI −= µ  (3.25) 

with COX is the oxide capacity per unit area, W and L the width and the length of the channel, 

respectively, and µ is the holes mobility in the channel [132]. 
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3.7.2 Reproducibility after disassembling from plug 

interface 

 
In order to verify that the developed system contacts and the assembly of the chip into the 

designed plug interface do not affect the measurements, the reproducibility of the results was 

also tested. In particular real-time measurements on the same chip and at the same condition 

(Vsd=0.5V, Vg=0V), switching progressively between all nanowires sets present in the chip, were 

performed in different days and after removing the nanowire chip from the plug interface (see 

Figure 3.19). 

Figure 3.24 shows the measurements overlapped, demonstrating the same current levels for 

all the different nanowire sets, both considering the acquisition done after one day and after the 

disassembly of the plug interface.  

 
 
 

 

Figure 3.24 - Reproducibility test on the same nanowire chip in different measurement days and after 

disassembly from the holder. 

 As can be seen the same current levels, considering the same nanowires set in the chip, are obtained 

after one day (red) and after disassembling the chip from the plug interface (blue).  
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3.7.3 Stable measurements in liquid solutions 
 

Since stability in liquid solution is a known issue of NW based sensors [72], [75], temporal 

stability of new batch of nanowires was tested performing real time DC measurements in 

phosphate buffer solution 1mM, pH 7 and calculating the slope of the current during a period of 

some hours.  

 

 

 

Nanowires chips demonstrated a very good stability during the time of the experiment and for 

different back-gate voltages. It was noticed that higher Vsd potentials (and nanowire set 

conductivity) give a higher current drift, as shown in Figure 3.25; for this reason, during 

experiments for the detection of different pH solutions and specific target molecules, lower Vsd 

potentials (usually of 0.2 V) were used.  

 

 

 

 

 

Figure 3.25 - Temporal stability in liquid solution. The legend indicates the nanowire set used and the 

applied Vsd voltage. 
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3.8 pH measurements 
 
 

The concept of the measurement of the proton concentration (pH) of an electrolyte using the 

surface potential changes of an ISFET is not new and was demonstrated for the first time by 

Bergveld starting from 1970 [133]. 

Merging this idea with the fact that silicon nanowires FET can achieve a high sensitivity 

thanks to their large surface/volume ratio [134], Cui et al. reported for the first time the 

possibility to use a nanowire as a highly sensitive pH sensor [62]. 

After that, the measurement of the pH causing the gating of the nanowire FET device is one 

of the most common tests to prove the nanowire sensitivity [72], [75], [77], [79], [135]. 

It is based on the property of the modulation of the conductivity by means of different 

charged groups on nanowire surface. Indeed the Si-oxide layer created on the device acts as a 

surface site in which the amphoteric silanol groups (Si-OH) can be protonated or deprotonated 

resulting in a positively or negatively charged surface depending on the pH of the solution and 

on the isoelectric point (IEP) of the surface, either as: 

 

 
+−

++

+↔

+↔

HSiOSiOH

HSiOHSiOH 2
 (3.26) 

 
If the pH of the solution is higher than the IEP the surface results deprotonated and acts as 

adding negative surface charges, increasing the holes carrier concentration and thus increasing 

the nanowires conductance, while if the pH is lower the situation is the opposite, with an 

increase of positive surface charges and thus a depletion of carriers in the nanowires resulting 

in a lower device conductivity. 

In particular, covalently linking APTES (3-aminopropyltriethoxysilane) to Si-NW oxide surface 

results in a surface terminating in both amino (-NH2) and silanol (-SiOH) groups [136], [137], 

which have different dissociation constants, pKa (respectively of about 9 and 6.8).  

As represented in Figure 3.26, at low pH, both the -NH2 groups of the APTES molecules are 

protonated to -NH3
+ and silanols to -SiOH resulting in a positive gate, which depletes hole 

carriers in the p-type Si-NW and decreases the conductance. At neutral pH there is an 

intermediate situation with some protonated and some deprotonated groups resulting in a 

combined behaviour which results in a progressive linear conductance increase; while at high 

pH, both the amino and silanol groups are deprotonated, correspondingly causing an high 

conductivity of the nanowires [62]. 
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3.8.1 DC analysis 

 
To test the nanowires behaviour DC and AC real time measurements were performed using 

the developed system on bare (unmodified, only -SiOH functional groups) Si-NWs and on 

APTES treated ones. A representative result is shown in Figure 3.27, where a constant Vsd of 

500mV was applied and the back-gate and liquid gate contacts were fixed at ground. 

Different pH levels (pH 3-10) sodium phosphate buffer solutions at 10mM concentration were 

used as electrolyte solutions. 

 

 

Figure 3.26 - pH detection mechanism with APTES functionalized nanowires. 
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As expected and previously reported [62], current measurements on bare NWs show a 

nonlinear (polynomial) pH dependence; indeed the current change is small at low pH but large 

at high pH range, while APTES functionalized ones show a linear response. Moreover a good 

repeatability over time of current levels for different pH level variation cycles was achieved, as 

can be seen from the reported figures. 

Figure 3.27 - DC real-time current measurements of different pH level buffer solutions, using bare and 

APTES functionalized nanowires. Arrows show when the solution with the indicated pH level was 

changed. 
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Finally, linear fitting the data for APTES treated NWs resulted in a sensitivity (∆G/G)/(∆pH) of 

approximately 22%, with ∆pH=7, almost one order of magnitude better than other data reported 

for nanowires fabricated using top-down processes [72] (see Figure 3.28). 

 

 
 

Figure 3.28 – Conductance of bare and APTES functionalized NWs versus pH and relative fitting curves 

Absolute conductance values (above) shows the decreasing of NW conductance upon APTES 

functionalization, as explained below in section 3.9 

Polynomial (BARE) 
 

Linear (APTES) 
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3.8.2 AC analysis 

 
Using the other features of the developed readout system, it was also possible to analyse the 

response to pH level variations in AC. In particular AC real time measurements on APTES 

treated NWs using sinusoidal inputs at different frequencies were performed focusing the 

attention on phase shift data. 

Figure 3.29 shows acquired data (admittance magnitude and phase) for different pH level 

variation cycles using respectively sinusoidal inputs at 100 and 500Hz (Vi=100 mV).  

First of all, considering admittance magnitude compared to DC measurements, we can 

notice a lower noise thanks to the use of the lock-in technique. Data analysis yields a noise of 

about 400pS rms at a final bandwidth (given by the sampling frequency) of 10Hz considering 

the DC measurements and 70pS rms at a final bandwidth of 1Hz (given by the selectable FIR 

cut-off frequency) considering the AC measurements. 

 

Moreover, the data show that depending on the chosen frequency it is possible to detect a 

signal change related to different pH levels in the phase shift data. This, as reported for 

instance, can be detected at 500 Hz but not at 100 Hz due to the frequency dependence of the 

response of the device (see below). Anyway these results allow observing that a specific 

working frequency can be chosen to increase the sensitivity towards a particular detection 

range. 
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To analyze this phenomenon, AC frequency sweeps for impedance characterization in the 

range 10 Hz- 2 KHz, using the same nanowires set used before in pH 3-7-10 buffer solutions 

were performed. 

As can be seen in Figure 3.30, nanowires immersed in different pH level solutions have 

different impedance magnitude values (as expected and confirmed by DC measurements) and 

these differences can be seen in the whole range of frequencies considered; however these 

differences are reduced at higher frequencies, where the main pole dominates, see below in 

Chapter 4 for further details. On the contrary, differences on phase levels related to different pH 

level solutions increase at higher frequencies closer to dominant pole frequency. These 

Figure 3.29 - AC real-time measurements of different pH level buffer solutions at two different working 

frequencies, using APTES functionalized nanowires. Arrows show when the solution with the indicated 

pH level was inserted in the microfluidic chamber. 
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experimental data confirm the possibility to have different and more information on pH levels 

detection adding the phase shift data to the standardly used nanowires conductivity ones 

depending on the particular working frequency used and on the position of the dominant pole of 

the nanowires device. For these reasons an AC frequency sweep characterization can give 

important indication on the best working frequency in order to get real time phase information on 

NWs sensitivity and this can be easily performed with the developed system selecting the 

proper acquisition method from the implemented software interface. 

 
 

 
 
 

 

 

 

 

 

 

Figure 3.30 - AC frequency characterization of the previously used APTES treated nanowires set, for 

different pH buffer solutions. In particular, arrows indicate the two working frequencies of the 

acquisitions reported in Figure 3.29. 
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3.9 Nanowires functionalization 
 

By attaching antibodies to the nanowire surface, it is possible to properly use these devices 

as specific biosensors able to detect specific target molecules. In particular one of the aims of 

our studies was to convert the polysilicon nanowires into sensors for inflammatory biomarkers, 

such as IL-8 and TNF-α [73]. 

The functionalization of the nanowire surface was performed in three steps as represented in 

Figure 3.31: 

1. APTES treatment 

The surface was functionalised by a vapour deposition of 3-aminopropyltriethoxysilane 

(APTES), which is known to give smooth, reproducible films of a monolayer character [138]. 

Nanowires were cleaned and activated by oxygen plasma and then exposed overnight at 25 

°C to APTES vapour. To complete the silane cross-po lymerisation the wires were dried at 70°C 

for 2 hours. This process enables to create a layer (ideally a self-assembled monolayer, SAM) 

and to form siloxane bonds between the surface silanols and the APTES resulting in a 

substitution of some of the surface silanol groups (-OH) by amino groups (-NH2) [136–139]. 

PH sensing measurements described above where performed after this step. 

2. Succinic Acid treatment 

In order to create a linker terminating in a carboxyl group for the creation of peptide bonds 

with the specific selected antibodies, the nanowire surface was then functionalized with succinic 

acid. This was done by exposing the nanowires to a solution of N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride, (EDC-HCl, 100mM, Sigma-Aldrich), N-hydroxysulfosuccinimide 

sodium salt (Sulfo-NHS, 100mM, Sigma-Aldrich) and succinic acid (1M, Sigma-Aldrich) in 

phosphate buffer (PBS) with pH 8. After 2 hours at 25 °C the nanowires chip was washed with 

Milli-Q water and dried. 

3. Antibody coupling 

Finally the nanowires were functionalised with two different antibodies, anti-TNF-� (from 

ELISA kit human-TNF-�, Duoset R&D) or anti-IL-8 (ELISA kit human IL-8 CytoSet, Biosource 

Invitrogen). The antibodies were covalently bound to the nanowires by first activating the 

surface by exposure to EDC-HCl and Sulfo-NHS for 2 hours at 25 ºC in a phosphate buffer with 

pH 6. Coupling of the antibodies was achieved by overnight incubation at 4 ºC in a phosphate 

buffer pH 8.  

As experimentally tested and known from literature [64], one of the main problems in specific 

biosensing lies in excluding unspecific binding or spontaneous surface adsorption of molecules, 

which results in a change of surface potential and consequently in an undesired charge of 

nanowires conductance, since it is not related to the concentration of specific target. For this 

reason, at the end of the functionalization process and before using the device for biosensing, 

the nanowires were treated for 30 min with 200mM ethanolamine (Sigma-Aldrich) in PBS pH 8.  



 
 

 86 

Chapter 3 

 

 

3.9.1 Functionalization steps control 
Thanks to the different dissociation constants (pKa) of the different ending groups, the 

functionalization process could be controlled and confirmed by electrical DC measurements at a 

fixed pH 7 buffer solution by the developed board. In particular nanowires conductivity 

decreases after APTES functionalization due to the amino group (pKa~9) that protonates at pH 

7, reducing the local concentration of holes (carriers) in the p-type nanowire. Conversely it 

increases after succinic acid treatment, since the terminal carboxyl group (pKa~5) deprotonates 

at pH 7, resulting in a conductance similar to the bare nanowires one as recently reported by 

Hakim [73] (see Figure 3.32).  

 
 

Previously obtained DC results were confirmed performing AC frequency sweeps of 

nanowires immersed in a pH 7 buffer solutions at 1mM concentration using the developed 

readout system. Figure 3.33 shows admittance magnitude and phase. In particular the 

Figure 3.32 - Electrical functionalization steps control. a) Sketch of functionalization steps and relative 

charged ending groups (in pH 7 solution). b) Nanowire I/V characteristics after different functionalization 

steps. 

Figure 3.31 – Sketch of the three steps nanowires functionalization. APTES molecules create a layer 

terminating with amino groups by bonding to the silicon oxide surface. Succinic acid act as a linker 

terminating in a carboxyl group needed for the final antibody binding. 
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magnitude data are in well agreement with the DC measurements confirming the expected 

behaviour of the modulation of conductivity in response to changes of isoelectric points of 

nanowires surface typical of the in the whole range of frequencies considered.  

Conversely, phase plot shows unexpected and interesting results since APTES and succinic 

acid treated nanowires seem to behave in the same manner and differently to bare nanowires, 

in which no molecular layer is present, suggesting the possibility to have information on the 

position of different ending groups (that modulate the capacitance on the surface of nanowires) 

using nanowires impedance phase data. Indeed, considering only admittance magnitude data, 

bare and succinic acid treated nanowires behave in a very similar manner coherently with the 

standard nanowires FET principle [11], while, considering also the phase data, it is clearly 

possible to distinguish between the two different functionalization steps. This result 

demonstrates the effective possibility to also use phase shift data to obtain more details on the 

positions of charges compared to the ones obtained considering only DC conductance data. 

 

 

Figure 3.33 - Admittance magnitude and phase versus frequency after different functionalization steps, 

obtained performing AC frequency sweeps in 1mM, pH7 buffer solution using the developed system. 
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3.10 Cytokine detection with nanowires sensors 
 

Finally, tests on antibody functionalized new batch nanowires were performed using the 

developed system to experimentally verify the detection of specific target biomarker molecules. 

In particular interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) over a wide range of 

concentrations were used, as previously done by the research group of University of 

Southampton [73]. 

TNF-α is a cytokine involved in systemic inflammation. Relevant concentrations of TNF-α for 

clinical diagnostic in serum range from 0.004-0.5 mg/l [140] and thus in terms of molarity a 

range of 230 fM-29pM.  

Figure 3.34 shows, as proof of concept, DC real time current measurements of anti-TNF-α 

functionalized nanowires after the insertion of increasing quantities of target TNF-α protein, the 

subsequent washing using low pH phosphate buffer solution to unbind the target from the 

antibody and the insertion of IL-8 non-target protein at high concentration. 

 

 

Figure 3.34 - DC real time current measurements of increased quantity of specific TNF-α protein 

followed by negative control of unspecific IL-8 protein at high concentration performed using the 

developed nanowires acquisition board. Arrows show when solution with the indicated (on the right) 

concentration of protein was inserted in the microfluidic chamber. The inset shows the experimental 

readout setup with the gating electrode inserted in the buffer solution. 



  
 
 

 89

Chapter 3 
 

 

The results show a limit of detection (LOD) as low as 10fM and a good specificity 

demonstrated by the unchanged nanowire current level after the insertion (arrows 7 in Figure 

3.34) of the negative control IL-8 non-target proteins at high concentration (100000 fold higher 

the LOD), as previously reported [73]. Moreover it is reported (and repeated to confirm) that 

interestingly, inserting high concentration (1nM) of target protein, the current level decreases 

(instead of continue increasing) suggesting a change of the net charge seen by the nanowire 

surface after reaching a saturation limit of about 100pM. This phenomenon has to be better 

investigated in future experiments, but it is probably due to unspecific bindings between the 

target molecules and the silicon nanowires surfaces and relative possible charge inversion 

[141], [142]. 

The same experiment was also performed without the gating electrode inserted in the buffer 

solution in order to analyse its effect. As reported in Figure 3.35, the measurement setup is 

noisier and less sensitive to specific target biomarker molecules with a sensitivity that is halved 

compared to the liquid gated case. Moreover and interestingly, the protein concentration at 

which the current level starts decreasing is reached at a higher value (above 1nM), suggesting 

an influence of the forced external potential in the above reported behaviour. 

 

 
 

Figure 3.35 - DC real time current measurements of increased quantity of specific TNF-α protein. 

Measurements are performed without liquid gating electrode immersed in solution, as represented in the 

inset, to investigate the effect of liquid gating. Arrows show when solution with the indicated (on the 

right) concentration of protein was inserted in the microfluidic chamber. 
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These results, performed during the period spent at the centre for hybrid bio-devices of 

University of Southampton, demonstrated the possibility to perform specific biomolecules 

detection by the use of the developed hybrid system embedding the provided nanowires chip. 
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4.1 Introduction 
 

One of the main advantages of developing models of the devices under test is the possibility 

to infer the experimental results in an easy way achieving sufficiently accurate results which 

catch the overall behaviour of the system in the different possible experimental conditions. 

However, in order to achieve a reliable model, experimental results are useful to verify and 

validate the results of the simulations under particular conditions, these can be easily obtained 

by the use of versatile portable hybrid devices as the one developed and presented in this 

thesis. 

Many models on nanowires FET were developed [143–145] considering different level of 

approximation and implementation; from the modelling of the transport conditions inside the 

nanowires device [146], to the modelling of the sensitivity of the device upon molecular bindings 

of target charged molecules considering the charge distribution of the biomolecules and the 

effect of screening related to the Debye length of the electrolyte solution [142], [145], [147].  

Moreover the possibility to easily implement the model using a standard electronic simulation 

tool is a very tempting aspect. This was already considered by Martinoia [148] for the modelling 

of ISFET based sensors. However to our knowledge all the models on nanowires or ISFET 

sensors are aiming at precisely explain the DC response or FET transfer characteristics.  

Since in many cases it is useful to perform AC conductance measurements of the NWs (see 

Table 1.1), in particular using the liquid gating electrode [76], and given the experimental results 

obtained using the developed nanowires acquisition board, effectively demonstrating the 

possibility to achieve interesting information from phase shift data, a simplified electric 

equivalent model starting from physical considerations of the particular provided device would 

be very useful in order to try to understand how different capacitive effects affect the nanowires 

complex impedance response and to relate them to the detection of biomolecules at the 

nanowire interface or to the physical parts of the device.  

For these reasons, in this chapter a simplified semi-empirical model, easily implemented 

using a common electronic analog circuit simulation program, PSpice, is presented with the aim 

to catch the overall response of nanowires based sensors under an alternate current regime, 

with particular interest on the different contributions given by the capacitive effects affecting the 

nanowires, as a function of the different measurement frequencies used. Given the affinity 

based principle of the nanowires biosensors, finding a simple method to model the overall 

capacitive effects at the interface between the nanowires and the liquid solution while 
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measuring the conductance variations of the nanowire would be an important step to 

understand the nanowire sensors functioning and to analyse if phase shift data can give 

complementary information and at which particular frequencies. For instance try to understand 

how organic charged molecules inside the double layer affect the characteristics of the double 

layer modulating the resulting capacitance, which effects can be read by the phase shift 

changes. 

As a first step it was needed to determine the appropriate simplified equivalent circuit and to 

estimate parameter values, then, analysing the simulations responses and comparing them with 

experimental results we could understand which parameters are affecting more the nanowires 

based sensors AC response in order to also elucidate the critical points in the fabrication 

process, in the device geometric properties or in the functionalization steps. 

As stated above the model considers nanowire chip as a whole, trying to reproduce the 

experimental response of the system; however it must be noted that this type of representation 

and simulations do not consider other “physics based” transient effects (e.g. charge trapping / 

de-trapping at interfaces, ion drift in solution etc.) [141], [149], [150]  

 

4.2 Electrical Double Layer 
 

Usually bio-sensing experiment are performed in electrolytic solution in order to artificially 

create the proper wet environment and ensure the natural living and functioning properties of 

the biomolecules. For this reason the electrolyte solution is an unavoidable component of 

biosensors which has to be accurately taken into account, in particular for FET devices where 

the sensing principle is strictly based on the effect of charged molecules at device surface [11]. 

The processes taking place at the solid/liquid interface when a metal or semiconductor is 

immersed in an electrolytic solution are complex and some of them not yet fully understood; we 

remand to popular electrochemistry textbook, such as the one by Bockris and Reddy [151], by 

Bard and Faulkner [4] or by Morgan and Green [152] for a complete description. 

However, here we give few notions useful to understand the argumentations and 

observations discussed in the next sections as well as the functioning principles and challenges 

in the using of nanowires based biosensors. 

When a metal or a semiconductor, which in general has a surface that carries a net charge 

resulting either from an external potential applied or from the dissociation of chemical groups at 

the surface, is immersed in an electrolytic solution, ions of opposite charge (counter-ions) are 

attracted by the electrostatic potential while ions of like charge (co-ions) are repelled resulting in 

the creation of compact layers of ions that balance the excess charge of the surface. This 

region of counter charges from the solution that screens the surface charge to give an overall 

charge of zero is called electrical double layer (EDL). The double layer plays a fundamental role 
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in the behaviour of molecules and particles close the surface influencing electrical forces acting 

on them and also changing their effective charge. 

The structure of this region have been studied starting from the 1879 by Helmholtz [153], 

who was the first who modelled the electric double layer structure as a compact layer of 

counter-ions adsorbed at the electrode surface, resulting in a structure analogous to the 

conventional solid-state capacitor with two layers of charges of opposite signs separated by a 

dielectric material. Therefore in this model the potential drop across the interface is linear and 

the specific capacitance (per unit surface area) is simply given by the parallel plate capacitor 

formula: 

  

 
d

C H
dl

ε=  (4.1) 

 

where ε is the absolute permittivity of the electrolytic solution and d the thickness of the layer 

that can be approximated as the radius of solvated ions. 

Other models on the EDL were then developed in the following years [154], [155] to take into 

account that experimentally the differential capacitance varies with the potential as a function of 

distance from the surface and considering that the ions are able to move in the in the electric 

double layer and are subject to electrical and thermal forces according to the Maxwell-

Boltzmann distribution. However the resulting Gouy-Chapman double layer model could not 

fully describe the resulting experimental potential drop and in particular it overestimates the 

interface charge (and the capacitance) for high concentration electrolytes.  

The Gouy-Chapman diffuse layer model was then improved by Stern who realized that ions 

cannot approach the electrode surface closer than their ionic radius (known as outer Helmholtz 

plane, OHP) and also that a single layer of counter ions are not enough to screen all the 

charges of the surface. For these reasons the current thinking and most commonly used model 

is given by the combination of the above two models, with a compact first layer (Stern layer) in 

which counter-ions are bound to the surface and the potential falls linearly from the surface 

value ϕ0, and by the diffuse layer in which ions are free to move and the potential decays 

exponentially with a characteristic distance given by the Debye length λD. Moreover, to take into 

account the possibility of specific and non-specific absorption of ions at the surface, the model 

can be further refined in the Gouy–Chapman–Stern–Graham model where the Stern layer is 

subdivided into two regions adding a very compact layer, the inner Helmholtz plane (IHP), which 

comprises the adsorbed unsolvated ions. Figure 4.1 shows a sketch of the double layer 

composed of the above mentioned layers. 

Considering the diffuse layer, since the capacitance is potential dependent, it is possible to 

define the differential capacitance: 
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Where σd is the equivalent surface charge density of the diffuse layer, ϕd is the diffuse layer 

potential (see Figure 4.1), z is the charge of the ion in solution, e is the elementary charge, KB is 

the Boltzmann constant, T is the absolute temperature. For low surface potential the 

dependence of capacitance on the potential becomes negligible and the specific capacitance of 

the diffusive layer becomes: 
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that is also called the integral capacitance of the diffusive layer corresponding to that of a 

parallel plate capacitor of thickness λD. 

Considering the series combination of the Helmholz, CH and the diffuse layer capacitance 

(also known as Gouy-Chapman capacitance), CG it is possible to calculate the total double layer 

capacitance. In particular, considering the case of low surface potential and considering the 

integral capacitance of diffusive layer: 
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+=+= 111  (4.4) 

 
where dOHP is the thickness of the Stern layer (typically 0.5nm). 

Since the diffuse layer capacitance depends on the Debye length, it is most influential at low 

ionic concentrations, as the one typically used in nanowires based sensing, while for high ionic 

concentrations the diffuse layer collapses and its thickness approaches that of the Stern layer 

[152]. 
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As mentioned above, the Debye length is a measure of the thickness of the ionic solution 

region that screens the charge of the surface, is typically a few nm thick and it is possible to 

estimate its value by: 
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where ε0 is the vacuum permittivity, εrH2O is the relative permittivity of water, KB is the 

Boltzmann constant, T is the absolute temperature, NA is the Avogadro number, e is the 

elementary charge and I is the ionic strength of the solution, which depends on the molar 

concentration Ci and charge zi of all ionic species present in the buffer: 

 

 ∑
=

=
n

i
ii zCI

1

2

2

1
 (4.6) 

 

Figure 4.1 – Complete Gouy–Chapman–Stern–Graham model, adapted from [108]  
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Nanowires (and in general bio FED[11]) are strongly dependent on the Debye length of the 

solution used for sensing because only the charges within this distance from the nanosensor 

are not screened and can be sensed since affect the surface potential and modulates the 

current flowing in the device. [6], [55], [147] 

This is one of the main limitation of the nanowires based sensing; in general the sensing 

need a step of dilution of the electrolyte solution in which experiments are performed and much 

effort has been made in recent years to overcome these limitations [54], [58], [68], [70]. 

In our experiments low ionic strength sodium phosphate buffer solutions were used and 

Table 4.1 lists the calculated values of Debye length for the two different concentrations used, in 

particular these are selected in order to be as much constant in Debye length as possible upon 

pH variations. 

 

Table 4.1: Buffer solutions used for pH measurement experiments. 

Solution pH 1mM - λD 10mM - λD 

H3PO4 ~3 3.9nm 1.25nm 

Na2HPO4+H3PO4 ~5.5 4.6nm 1.3nm 

Na2HPO4 ~7 4.8nm 1.4nm 

Na2HPO4+K3PO4 ~8.5 4.6nm 1.3nm 

K3PO4 ~10 3.9nm 1.25nm 

 

 

4.3 Nanowires simplified semiempirical model 
 

In order to investigate if current phase information can enrich information from nanowires 

based sensors and, eventually, in which range of frequency, a nanowire (in buffer solution) 

model has been proposed considering the physical characteristic of the University of 

Southampton nanowires arrays and simulated using PSpice software, by performing AC 

sweeps from 1Hz to 1 MHz: 

 

In particular, for all the calculations the characteristics of the outer set of nanowires (see 

section 3.6.1 and Figure 3.16) were considered, since they are nominally identical in all different 

chips. 

The following table indicates the nominal dimensions and the number of parallel NWs in a 

set. 
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Table 4.2: Nominal characteristics of the nanowires set considered in the model. 
 

Name NW length (L) 
(seeFigure 3.18) 

SW length 
(seeFigure 3.18) 

N° of NWs in parallel 

Outer NW 48 µm 40 µm 30 

 
Considering the linear output and transfer characteristics of the provided nanowires and 

since our measurements are always performed in the linear accumulation regime (VDS>VGS-Vth), 

it is possible to model the nanowire device with a varying resistor which is modulated by 

nanowires surface charges and analyse the other capacitive contributions related to the device 

structure. Moreover the accumulation regime, in which measurements are performed, enable to 

neglect the semiconductor depletion capacitance, usually considered in modelling of FET 

devices [128], [143], thus enabling to consider variable only the capacitive contribution on the 

semiconductor interface [156], hereafter called surface capacitance (Cs). 

 

Lumped elements are used to model the electrodes parasitic capacitances shown in Figure 

4.2 

In particular, the values of those capacitances were directly measured on several different 

nanowires test chips using a probe station ( the Cascade Microtech prober, associated with 

Agilent 4279A 1MHz CV meter) both in air and in buffer conditions. Measured values are listed 

in the following table: 

 

Table 4.3: Measured values of lumped capacitances considered in the model. 
 
 In air In Buffer (10mM PH7) 
Track-Track(Cline) 2 - 4pF 2 - 5pF 
Track-Bulk (Cstray) 15-20pF 18- 25pF 
 

The nanowires set was modelled as a distributed network composed of a series of identical 

RCR T-network elements surrounded by lumped parasitic capacitances as shown in Figure 

4.2b. 
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In particular, given the non-faradaic conditions thanks to the insulating oxide layer created at 

the end of the fabrication process on top of nanowires surfaces (10 nm nominal thickness), we 

neglected the leakage resistance (Rleakage) contribution usually considered in electrode-

electrolyte interface model [4], [5], and only the total surface capacitive effect given by the 

series between the oxide capacitance, the double layer capacitance and eventually the 

capacitance given by the insulating molecular layer after the different nanowires 

functionalization steps [5], [77], [157] was considered.  

As a further confirmation of this hypothesis we measured the current flowing between the 

liquid gate electrode and the nanowires drain contact resulting in a very small leakage current 

(of about 10pA) with respect to the Ids current (of some tens of nA) setting the liquid gate 

potential at 100mV, thus resulting in a leakage resistance of about 10GΩ that we neglected in 

our model. 

Another contribution that was neglected is the one given by the device contact resistances, 

which are orders of magnitude lower than the NW set resistance. 

Finally it must be noted that also all the impedance contributions of the electrode/electrolyte 

interface [4], [5] at the liquid gate electrode were neglected due to its very large dimensions 

Figure 4.2 – a) Nanowire biosensor cross section and contacts parasitic capacitances.  

b) Proposed distributed nanowire model with lumped contact capacitances. 

a) 

b) 
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compared to the nanowires ones and it was considered as an ideal electrode used to set the 

potential of the buffer solution. 

 
 

4.4 PSpice Implementation 
 

The presented model can be implemented into commonly used circuit simulation software, 

such as PSpice, which allowed to easily investigate the impedance response of the three 

electrode setup, in which the impedance spectroscopy can be performed through the nanowires 

biosensors instead of performing the common EIS analysis through the liquid/solid interface, 

and focus the attention on the information that phase shift data can give. 

In order to have a better representation of the real physical system a distributed model was 

chosen to simulate the nanowire set behaviour in response to an applied AC voltage (or current) 

signal at the different frequencies. 

First of all, to determine the appropriate equivalent circuit, the contribution of the number of 

repeated elements of the RCR T-network on the system response was considered, 

implementing in PSpice different nanowires array models containing a different number of 

repeated elements, respectively a 3, 5 and 50. The impedance response was then compared to 

the lumped T network. 

 

 
 

Performed simulations (see Figure 4.4) have shown that the 5-elements distributed model 

well approaches the response of the 50-elements one, which is considered the best 

representation of the real physical device; for this reason the 5-elements model appeared to be 

a good trade-off between model response accuracy and device model simplicity.  

 

Figure 4.3 – Sketch of the proposed nanowires simplified model and readout setup. The Cstray 

capacitance is negligible in the represented measurement setup considering the fixed input node and 

the ideal virtual short circuit of the amplifier, as confirmed by performed simulations. 
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The selected 5-elements model was then considered for the simulations reported below, 

where parametric AC Sweeps in the range 10 Hz -1 MHz varying the different parameters one 

by one over a range of reasonable experimental values were performed, as illustrated in next 

sections. 

In must be noted that one of the main limitation of this approach is that every parameter is 

considered independent from the other, since only one parameter at a time can be varied 

performing parametric sweep simulations, whilst in the real experimental world the different 

model parameters are dependent each other; for instance the bulk liquid resistance with double 

layer capacitance, or the nanowires resistance which vary at a response of the different 

solutions (and thus of double layer capacitance) due to the FET principle. These effects have to 

be taken into account during simulation data analysis, however the main aim of the performed 

--- Lumped model 
--- 3-elements model 

--- 5-elements model 

--- 50-elements model 

10          30           100         300           1K           3K          10K         30K         100K       300K       1M 
Frequency (Hz) 

Figure 4.4 – Effects of number of elements in the considered distributed RCR T network compared to 

lumped model response. The following parameters were used in simulation: 

R=30MΩ Cs=15pF Cline=2.5pF Cstray=18pF Cbulk=100fF Rs=2MΩ 
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simulations is to understand how the modelled components, related to physical and geometrical 

considerations of the biosensor device under test comprising the predictable parasitic elements, 

affect the impedance response of the system, in order to predict the behaviour for different 

biosensor working environments (e.g. different nanowires functionalization treatments) or 

different physical device characteristics (e.g. different oxide passivation layer). 

 

4.5 Parameters values calculation and variations 
effect 

 
The values of the parameters other than the directly measurable NW resistance and lumped 

electrodes parasitic capacitances were estimated considering the physical structure of the NW 

arrays (see Figure 3.18). 

 

4.5.1 CBULK 
 

The specific capacitance between the set of nanowire and the bulk (called CBulk in the shown 

model) was estimated for the devices under study using a microstrip impedance calculator 

[158], which implements the following formula [159] : 
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The value of the specific capacitance per unit length C0 was obtained considering for 

simplicity the worst case of a single material substrate, composed unically by Si3N4 (which has 

the higher relative permittivity εr of 7.5 compared to SiO2 which has 3.9). For the parameters H 

and W were used both the nominal lateral dimensions of the nanowires of 100 nm (see Figure 

3.17). As value of T was considered the sum of the Si3N4 and SiO2 layers of about 1µm (see 

Figure 3.18) 
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The obtained value of 0.671 pF/cm was then multiplied by the NW length (L =48µm) 

obtaining the value of the capacitance for a single NW in the array (3.22fF). Finally, since 

capacitance between the single nanowire and the bulk is in parallel with the one of all the other 

NW of the array, this value was multiplied by the number of NW in the outer set of nanowires 

considered in this model (30), obtaining the value of the CBulkTOT=96.6fF used for the 

simulations. It must be noted that this value is constant during the experiments, since it depends 

on the fabrication process; however performed simulations show that it does not have a 

significant effect on the nanowires response, even for large variations (up to 2500%) from the 

estimated value. 

 

 

 

--- Cbulk=100fF 
--- Cbulk=600fF 

--- Cbulk=1.1pF 
--- Cbulk=1.6pF 
--- Cbulk=2.1pF 
--- Cbulk=2.6pF 
 

Figure 4.6 – Effect of bulk capacitance variations.  

The following parameters were used in simulation: 

R=30MΩ Cs=10pF Cline=2.5pF Cstray=18pF Rs=2MΩ 

Phase (deg) 
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Figure 4.5 – Sketch of the cross section (left) and SEM picture (right) of the provided nanowires  
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4.5.2 CDL & COX 

 
Contrary to CBulk, the double layer capacitance that arises at the nanowire-electrolyte 

interface could have a high impact on the phase of the acquired current. The possibility to 

acquire the phase angle between the modulated applied voltage and the resultant current could 

then enables the detection of the double layer capacitance variations, which are function of the 

concentration of the electrolytic solution and thus of surface charge density and potential 

difference across it. 

For simplicity, in the presented simulations, the double layer was treated in the Debye-

Hückel limit as simple parallel plate Helmholtz capacitor with a thickness equal to λD and the Cdl 

was calculated by the equation [152]: 

 

 
D

OrH

dl

A
C

λ
εε

20=  (4.8) 

 

where εrH2O=80 is the relative permittivity of the water, λD is the Debye length, A is the area of 

nanowires exposed to electrolyte solution (see Figure 4.5). For the calculations, 0.01X and 0.1X 

PBS solutions yielding Debye length values respectively of λD =7.3 nm and 2.3nm [6] were 

considered. 

The total wet area is obtained by simple geometric considerations and summing the two 

sides contributions. This yields a value of A=8µm2. The double layer capacitances for a single 

nanowire result respectively in 0.77 pF and 2.5pF. Multiplying these values for the number of 

nanowires in parallel in the set (30), it is possible to estimate the total double layer capacitance 

for the NWs set CdlTOT in the two cases related to the two different phosphate buffer solution 

concentrations, respectively 23 pF and 74pF. 

 

Performed simulations varying contribution of the total surface capacitance (Cs) show that 

increasing its value the phase plot becomes steeper; this also means that, by setting a single 

frequency comprised in the range of sensitive frequencies, important phase angle shifts could 

be recorded even for small changes in the double layer capacitance, as can be seen in Figure 

4.7. 

 
 



 
 

 104 

Chapter 4 

 
 
 

However, an important and critical aspect of the biosensor is related to the SiO2 layer at the 

nanowires surface, which gives rise to a small capacitance in series with the relatively large 

double layer capacitance. The thickness of the SiO2 layer (dox) influences the magnitude of the 

total surface capacitance (Cs), which can be calculated at a first approximation as series of Cdl 

and Cox as follows: 
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Where εrH20 and εrSi02 are respectively the dielectric permittivity of the electrolyte and the 

silicon dioxide, A is the exposed surface area to the electrolyte, nNW is the number of the 

nanowires in parallel and λD is the Debye length. 

As a proof of concept it is possible to estimate the sensitivity of the surface capacitance to 

double layer capacitance variations considering two experimental situations of thin native or 

created thermal oxide layer. 

 

A 10nm thick SiO2 layer (the nominal value of the thermal oxide on top of nanowires chip 

used for testing, see section 3.6.1 and [73]) yields a Cox of about 0.9 pF for the given nanowires 

set geometry. Since this value is significantly smaller than the typical Cdl values (order of tens to 

hundred pF), the relative changes of the Cdl could not significantly influence the changes of the 

--- Cs=5pF 
--- Cs=10pF 

--- Cs=15pF 
--- Cs=20pF 
--- Cs=25pF 
--- Cs=30pF 
--- Cs=35pF 
--- Cs=40pF 
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Figure 4.7 – Effect of surface capacitance variations. 
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total surface capacitance, resulting in an effect of screening of the double layer capacitance 

variations. Indeed in this case, if we consider for instance a ∆Cdl = 51pF, that is due to a change 

in the PBS solution concentration of one order of magnitude (from 0.01X PBS to 0.1X PBS), the 

final relative ∆Cs is only 0.02pF and consequently ∆Cs/∆Cdl=0.045%. On the contrary, 

considering a thinner oxide layer (for instance native oxide of 1nm thickness), the estimated Cox 

is about 9pF and sensitivity to the same ∆Cdl = 51pF would strongly increase, resulting in a 

relative ∆Cs=1.5pF and thus giving ∆Cs/∆Cdl=3%. Figure 4.8 shows the simulated results 

considering the two just mentioned situations. 

 

 

These observations can explain and confirm the experimental literature results [72], [75], 

[147] highlighting the trade-off between the nanowires FET sensitivity and the temporal stability 

in liquid environment; indeed as higher is the thickness of the oxide layer as more stable is the 

Figure 4.8 – Effects of silicon oxide layer capacitance. Simulations were performed considering 

estimated capacitance of (a) 10nm SiO2 layer, Cox~0.9pF (b) 1nm SiO2 layer, Cox~9pF using two 

different solution concentration, PBS 0.1X and PBS 0.01X. 

((CCDDLL==7744ppFF,,  00..11XX))  ((CCDDLL==2233ppFF,,  00..0011XX))  

((CCDDLL==2233ppFF,,  00..0011XX))  

((CCDDLL==7744ppFF,,  00..11XX))  

((CCDDLL==7744ppFF,,  00..11XX))  
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response over time, however this costs a lower sensitivity of the sensor to surface charge 

variations (which can be seen as changes of the surface capacitance considered in our model) 

and it is generally recognized that the passivation layer should be as thin as possible in order to 

not compromise the nanowire sensitivity [72], [75], [145], [160]. In simulations the lower and 

eventually imperfect insulation that arises from the thinning of the passivation layer can be 

modelled by inserting a leakage resistance (Rleakage) in parallel to the surface capacitance 

resulting in lower sensitivity in phase to changes of surface capacitance (see Figure 4.9) [5]. 

 

For these reasons instead of using a thinner silicon oxide passivation layer in order to have a 

higher Cox, some recent literature works use different insulator material with higher dielectric 

constant, such as Al2O3 (εr=9 compared to SiO2 εr=3.9) resulting both in a good stability of the 

response signal in liquid environment and a good sensor sensitivity [77], [135], [160]. 

 

 

Finally the simulations demonstrate that in principle surface capacitive effects can be directly 

analysed (instead of indirectly as a response of the well-known FET principle of modulation of 

the current in the nanowires biosensors device) considering the phase shift response of the 

nanowires in the proper range of frequencies, provided that the insulating passivation layer 

capacitance is not too small compared to the resulting double layer or molecular layer 

capacitance on the nanowire surface.  

--- Cs=5pF 
--- Cs=10pF 

--- Cs=15pF 
--- Cs=20pF 
--- Cs=25pF 
--- Cs=30pF 
--- Cs=35pF 
--- Cs=40pF 

Figure 4.9 – Effect of surface capacitance variations with a leakage current between the liquid solution 

and the nanowires. The following parameters were used in simulation: 

R=30MΩ Cline=2.5pF Cstray=18pF Cbulk=100fF Rs=2MΩ Rleakage=100MΩ 
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4.5.3 RS  
The solution resistance is dictated by the conductivity of the solution and this is expected to 

have a very high value given the low concentrations of the solutions considered in nanowires 

sensing and thus it can have important effect on the developed model.  

It has been shown that, in the case of microelectrodes, it becomes independent on the 

distance from the electrode and it depends only on the geometric area of the electrode [161]. 

Thus, under the assumption that the liquid gate electrode is infinitely large and the nanowires 

are surrounded by electrolyte and considering the nanowires as square electrodes with side 

equal to √ATOT, it is possible to estimate the value of Rs as: 

 

 
l

RS π
ρ 4ln=  (4.10) 

 
where ρ is the solution resistivity and l is the electrode side length [161]. 

 

Using equation (4.10) and considering the typical solution resistivity of PBS solution (~5 Ω*m 

for 0.1X and ~55 Ω*m for 0.01X [162] ) and considering the total nanowires wet area, obtained 

summing the equal contributions for all the nanowires in the set, that yields a value of 

A=240µm2 and thus a value of l=15.5µm, we estimated the Rs values for the two considered 

buffer solution concentrations respectively of 160KΩ and 1.6MΩ. 

For these reasons and for simplicity usually the simulations were performed considering a 

worst case value of 2MΩ. 

As higher is the solution resistance as lower is the sensitivity to surface capacitance as can 

be seen in Figure 4.10. Indeed, considering the series of the solution resistance Rs and the 

surface capacitance Cs, it must be noted that for low frequencies, smaller than f=1/(2πRsCs), the 

capacitive term dominates while for higher frequencies the impedance is purely resistive. 
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Figure 4.10 – Effects of surface capacitance variations for different solution resistances values:  

(a) Rs=200KΩ (b) Rs=2MΩ (c) Rs=20MΩ (d) Rs=200MΩ.  

The following other parameters were used in simulation: 

R=30MΩ Cline=2.5pF Cstray=18pF Cbulk=100fF 

a) 

b) 

d) 
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4.5.4 RNW  

 
Simulations performed varying the nanowires set resistance in the typical range of values 

measured (1MΩ -100MΩ) allows to visualize the position of the main pole given by the parallel 

of RNW and the measured parasitic pad-pad capacitance (Cline) that slightly vary from chip to chip 

in the range 2.5-5pF.  

Consequently, in order to study the phase shift response to buffer and functionalization layer 

formation, usually highly resistive nanowires set (RNW≥20MΩ) and the proper working frequency 

in the range of measurements of the developed system and possibly where the phase 

sensitivity is higher were selected. 

As a proof of concept Figure 4.11 shows the results of simulation performed setting a 

Cline=2.5pF and a constant surface capacitance of 10pF. As can be seen, phase shift data can 

also be used to detect changes of nanowires resistance increasing the range of frequency 

where the system is sensitive to RNW variations, in particular where the main pole (given by 

parasitic capacitances coupled to the nanowires resistance) dominates and the differences in 

magnitude are reduced. Indeed at some particular frequencies the changes in phase result 

higher in percentage with respect to the magnitude changes, as already reported with 

experimental results in section 3.8.2. 

 

However, it must be noted that variations of nanowires resistance RNW are given, for the FET 

working principle, as a consequence of variations of the nanowires surface potential upon 

variations of surface charges Q or of surface capacitance Cs according to the well-known 

equation Q=CsV [163], [164], resulting in a mixed behaviour between the simulations here 

reported and the aforementioned ones. In particular, the surface charge variation can be easily 

achieved by a change of the pH of the used solution, while the variation of the surface 

capacitance can be related to the variation of the electrolytic solution concentration. The 

creation of organic layers upon specific functionalization can give raise to both the effects 

depending on the pH of the liquid environment, since the molecules can have charged groups at 

a specific distance from the sensor device surface. 

Moreover, as known from literature, the impact of the surface charge is dependent on the 

surface-to-volume ratio of the device and the sensitivity to variations of surface charge 

decreases with the increase of nanowires dimensions [134]; this would also mean that, 

considering bigger devices, such as nanoribbons, the variation of nanowires resistance RNW 

would be more sensitive to surface capacitance variations (which are proportional to the 

exposed surface) than to the surface charge variations.  
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Figure 4.11 – Effects of nanowires resistance variations.The following parameters were used in 

simulation: 

Cline=2.5pF Cstray=18pF Cbulk=100fF Cs=10pFRs=2MΩ 
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4.6 Comparison with experimental results 
 

As stated above, in principle a 10 nm thick SiO2 resulting in a so small oxide capacitance 

should almost totally screen magnitude and phase shift variations of double layer capacitance 

as the ones estimated by the change of electrolytic solution concentration from 1mM to 10mM 

(variation of more than 200%). This predicted and simulated behaviour is confirmed by 

performing frequency sweeps, with the developed system, on bare nanowires devices 

immersed in phosphate buffer solution at the two different concentrations considered of 1mM 

and 10mM at the same pH7. Figure 4.12 shows representative results performed on a highly 

resistive nanowires set, selected in order to work in the range of sensitive frequencies 

compatible with the developed system measurement range, as mentioned before in section 

4.5.4. As can be seen the changes of double layer capacitances are almost totally screened by 

the SiO2 passivation layer and only a very slight sensitivity is achieved both in magnitude and 

phase shift data.  

The result is coherent with work of Nikolaides et al. [165], in which only a slight sensitivity to 

solution concentration is achieved between 1mM and 10mM, although in that specific case the 

passivation layer is composed of 2-3 nm native oxide, while raise abruptly after the 10mM 

concentration. Similar results are achieved by Park et al.[72] and Clement et al.[166] who claim 

a sensitivity of the nanowire to electrolyte concentration but, analysing the experimental results, 

the changes are clear only for electrolyte concentration higher than 10 mM. 

At such higher concentrations, indeed, our hypothesis is that other phenomenon (not directly 

considered in our capacitive model) occurs, such as the adsorption of ions to the nanowires 

surface, as discussed in a very recent work [150]. This would cause an accumulation of not 

screened charges at the nanowires interface resulting in a variation of the device resistance. 

This hypothesis is also in line with the ISFET working principle and the fact that probably at 

such high concentrations the capacity of amphoteric surface groups to buffer the proton 

concentration, property related to the particular oxide material and known in literature as surface 

buffer capacity [163], is overcome, resulting in the presence of a net charge affecting the 

nanowires device. 
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However, if we consider the situation where a molecular layer is formed on the nanowire, 

such as after the APTES and succinic acid functionalization steps (see section 3.9), surface 

capacitance variations can be quantitatively enough to be recognized by phase shift data. 

Indeed, it was previously demonstrated that the two aforementioned functionalization steps 

give significant changes due to different charge distributions at the surface. 

In this case the situation is given by the series of different capacitances given by the oxide 

insulator layer (Cox), the insulating molecular layer (Cins) and the double layer capacitance 

influenced by the molecular terminal charged groups (CDL) [143], [157]. The total value is given 

by 
1

1
−









= ∑

i i
s C

C and it is dominated by the smallest value, however it is not easy to understand 

how the charges of the adsorbed molecules affect the double layer structure and thus to 

estimate the value of the resulting equivalent surface capacitance [141], [151], [167]. 

The displacement of electrolytic solution from the surface upon functionalization layer 

assembling increases the thickness and also decreases the relative permittivity of the insulating 

layer on nanowires surface (considering the higher εr=80 of the water in comparison to the value 

of εr=2-5 typical for biomolecules) resulting in a significant variation of the surface capacitance 

[5]. Moreover the external potential applied by means of the liquid gate electrode can force the 

extra charges towards the nanowires surface and these non-screened charges, whose number 

is a function of the quantity of available counter-ions and thus on the buffer concentration, can 

affect the nanowires conductivity [77]. 

 

Figure 4.12 – Experimental bode plot demonstrating the effect of oxide passivation layer on bare 

nanowires. 
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This is confirmed by data acquired, as previously done, with the nanowires acquisition board 

using two different concentrations of buffer solution of 1mM and 10mM at the same pH=7. In 

this case, as can be seen in Figure 4.13, the changes of electrolytic solution concentration (and 

thus of double layer capacitance) can be detected both in magnitude and in phase data despite 

the presence of the 10 nm SiO2 layer, confirming the aforementioned observations. 

 

 

The same results were achieved performing real time AC measurements using a modulating 

frequency of 500Hz and confirming the slight sensitivity both in magnitude and in phase data to 

electrolyte solution concentration once the nanowires surface was treated by adding APTES 

molecules, as reported in Figure 4.14. 

Figure 4.13 – Experimental bode plot demonstrating the effect of APTES functionalization in the 

detection of double layer capacitance variations. It must be noted that the nanowires set used for these 

experiments was different and intrinsically less resistive compared to the one used for experiments 

reported in Figure 4.12. The arrows indicate the operating point frequency used for real time 

measurement reported in Figure 4.14. 
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Moreover, in order to confirm the possibility of the simplified developed model to catch the 

main characteristics of magnitude and phase response at the variations of the resulting 

equivalent surface capacitance, a comparison between the PSPICE simulations of the electrical 

model of the system and the experimental data was done. 

Two different surface treatments were considered: functionalization with 3-

aminopropyltriethoxysilane (APTES) and a following succinic acid treatment. For these test we 

used the Novocontrol Alpha-A Impedance analyser [125] (see also section 3.5.1) to measure 

the response of the NW biosensors, in 1mM buffer solutions at pH7, within a wide range of 

frequency (1 KHz up to 1 MHz) and record the phase shift due to the change in the surface 

capacitance in relation to charge changes at the surface. 

As clearly visible in Figure 4.15 the model well captures the experimental response in a 

qualitatively correct way; in particular the steeper slope of the phase shift response predicted by 

an increase of the equivalent surface capacitance experimentally achieved upon succinic acid 

treatment. 

 

Figure 4.14 – Real time AC acquisition performed at 500Hz demonstrating the effect of APTES 

functionalization in the detection of double layer capacitance variations. Arrows show when the solution 

concentration was changed from 10mM to 1mM. 
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Interestingly the resulted behaviour seems counterintuitive; indeed one could expect a 

decreasing of the surface capacitance after succinic acid treatment due to the higher distance of 

terminal charges of the succinic acid molecule from the nanowire surface with respect to the 

APTES treated surface. On the contrary and surprisingly the equivalent surface capacitance Cs 

results higher upon succinic acid linkage compared to the APTES treated case, giving the 

reported steeper slope of phase shift data. 

However the results can be explained considering the isoelectric point of the given molecules 

as explained before in section 3.9.1 and considering that the pKa of the succinic acid is lower 

(~5) compared to the APTES one (~9). This gives, at every pH, a less positively charged (or 

even negatively charged for pH>pKa) molecular layer after succinic acid treatment and thus the 

charges of the molecular layer will be less repulsed from the sensor surface compared to the 

case where APTES layer is present, resulting in a lower distance of the charges from the 

surface. This consequently causes an increase of the resulting equivalent surface capacitance 

Cs and thus the steeper phase shift response. 

Finally the tests were repeated using a different buffer solution concentration of 10mM (at 

ph7), in order to both confirm the experimental observations and analyse the effect of the 

double layer capacitance variations. 

Figure 4.16 confirms the repeatability of the aforementioned results and observations also 

using a more concentrated solution; moreover it highlights the slight sensitivity on double layer 

Figure 4.15 – Comparison between experimental bode plots of APTES and succinic acid treated 

nanowires (left) and PSpice simulations (right). 

PSPICE simulations Experimental results 
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capacitance variation upon the creation of the molecular layer on the nanowire surface both 

after APTES and succinic acid treatment as previously reported. 

 

 

 
 
 

Figure 4.16 – Experimental bode plot of APTES and succinic acid treated nanowires demonstrating the 

effect of different electrolyte solution concentrations and the repeatability of the results. 



 

 117

Chapter 5 Hybrid, portable, 
integrated lock-in-amplifier-based 
system for real-time impedimetric 
measurements 

 

 

5.1 Introduction 
 

In this chapter a portable standalone system directly pluggable to the laptop for real time 

impedimetric measurements on nanowires biosensors is presented and tested. 

The system is based on the low power fully integrated impedimetric system recently 

developed by the research group [47], [168], which integrates a band-pass delta-sigma and 

enables the real time complex nanowires impedance readout in the range 1 KHz -25KHz. 

The high dynamic range IC is designed to perform four terminal measurements (also known 

as Kelvin sensing) and it is particularly tailored for low resistive conductivity-temperature-depth 

sensors, however few implemented adaptations made the system very versatile and suited to 

study nanowires based sensors, performing user friendly measurements at different working 

frequency in order to investigate capacitive effects related to bio-nanodevices. 

As stated above, generally the voltage sensing methods yields the best results for low 

impedances devices since the low currents values needed to limit the voltage drop on the DUT 

are strongly affected by parasitic capacitances. However, considering the developed model, the 

small variations of surface capacitance on which we are interested can be considered as 

parasitic capacitances variations in parallel to the bulk capacitance, as represented in Figure 

5.1. For this reason investigations on this measurement setup, in which the current reference 

signal is imposed to the DUT while measuring the voltage output, were performed. 

In particular with this approach there is a different contribution of DUT capacitive effects as 

resulted from simulations using the previously presented model; this motivated the use of this 

sensing method on nanowires based sensors and in particular to investigate if the phase shift 

response can be more meaningful with respect to the standardly used magnitude impedance or 

simple DC conductance ones. 

Simulations indeed have shown that for frequencies above the dominant pole cut-off frequency 

the constant parasitic capacitances drain more current and the resistive effect is progressively 

less influent; however the small variations of surface capacitance should be visible in a wide 

range of frequencies, as can be seen from Figure 5.2. 
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Figure 5.1 – Proposed nanowires simplified small-signal model with AC voltage sensing readout setup 

and rearranged version highlighting the variable capacitive effects of interest. 
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Figure 5.2 – Simulation performed using the simplified model stimulated by a current signal and 

performing the voltage sensing. These results demonstrate that the effect of surface capacitance could 

be read by phase shift data in a fixed range of measurements, corresponding to the frequencies where 

the impedance magnitude is attenuated, in particular enlarging the useful operating frequency of almost  

two decades with respect to magnitude data . 
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Finally, some improvements were made from a system point of view, compared to the 

previously developed nanowires acquisition board; these are represented in Figure 5.3 and can 

be summarized in: 

• Internal input voltage provided by the Field Programmable Gate Array (FPGA) module. 

• A/D Conversion done by integrated BP∆Σ Analog-to-Digital Converters in the developed 

integrated impedimetric system. 

• USB power supply. 

• Only visualization and data storage done by the PC, digital filtering done by FPGA. 

• Working frequency selectable in the range 1 KHz- 25 KHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Improvements of the system compared to the previously developed and presented 

nanowires acquisition board. 
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5.2 Integrated impedimetric interface  
 

The integrated impedimetric interface used in the hybrid portable system have been 

designed and developed by the research group [47], [168]; it is specially tailored to high 

resolution impedance spectroscopy and it works by imposing a reference current at a certain 

frequency to the sensor under test and measuring the voltage response and then eventually 

sweeping the working frequency over a defined range of values. 

 

 

The IC (block diagram shown in Figure 5.4, designed in 0.35 µm CMOS technology and 

1.32mm2 of area) host four identical cores and implements the lock-in technique based on a 

band-pass delta-sigma approach. Each core comprises an integrated fully-differential low-noise 

amplifier (LNA) followed by an anti-aliasing switched-capacitor filter and a band-pass delta-

sigma (BPDS) analog-to-digital converter [169]; thus the demodulation is easily performed in 

digital domain by means of a couple of XOR gates, getting rid of the need of hard to design and 

sources of non-idealities and non-linearities analog multipliers, differently to other literature 

works where Gilbert cell mixers [170] or switched system [171] are used. 

The delta-sigma converters are oversampling converter working at a sampling frequency 

much higher than the signal bandwidth. A delta sigma converter is generally composed of an 

integrator (which acts as a low pass filter), a comparator and a 1-bit DAC in the feedback loop. 

The main advantage of this circuit is the straight reduction of the in-band quantization noise 

thanks to the feedback loop and the oversampling operation, yielding a very high resolution 

[169], provided that the high frequency quantization noise resulting from the noise shaping is 

digitally filtered, usually using a cascade of finite impulse response (FIR) filters. This is 

Figure 5.4 – Block diagram of the integrated impedimetric interface system developed by the research 

group [68]. 
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accomplished by the use of a field programmable gate array (FPGA) which digital filters and 

down-samples the 1-bit data streams to achieve the desired resolution. 

Substituting the integrator with a band pass filter it is possible to implement a band pass 

delta sigma converter able to digitize narrowband signal modulated at a selectable frequency 

providing the real and imaginary part of the input signal. The developed solution implements a 

BPDS in the pseudo two path switched-capacitor architecture [172], [173], where the sampled 

in-phase and quadrature components of the sinusoidal input wave are sent alternatingly to two 

symmetric paths performing the multiplication by ±1, as shown in the working principle sketch 

represented in Figure 5.5.  

In particular it must be noted that the sinusoidal input is sampled at a frequency fs=4·f0, thus 

the samples are exactly separated by a temporal shift of 1/4 of the sinusoidal input period, 

which is equivalent to 90° phase shift, between the  samples going to one branch with respect to 

the other. This yields a single bit digital output given by the combination of the two digital data 

streams containing the in-phase and quadrature component of the input signal at a scalable 

frequency and proportional to the selectable modulating frequency; for instance with a working 

frequency of 1KHz the two real and imaginary parts streams have a frequency of 2KHz and are 

serialized in a unique output data stream of 4KHz frequency, which is sent to the FPGA. 

The system can work using the scalability of the clock generated by a quartz oscillator 

embedded in the FPGA from 500 KHz to 12.5 MHz, enabling the possibility to select a 

modulating frequency in the range from 1 KHz to 25 KHz and thus resulting in output data 

streams in the range 4 KHz - 100 KHz.  

 

 
 

The input sinusoidal voltage signal is amplified by the frontend low noise amplifier (LNA) 

which uses a rather common capacitive fully differential architecture with the AC coupling at 

input pins that blocks the DC voltage and low voltage drift. 

The implemented solution enables to select the gain among eight different values, 

respectively of 0.5,1, 2, 5, 10, 20, 50, and 100, given by the ratio between the feedback and the 

±1 ±1 

±1 ±1 

Single bit 
digital 
output 

I(t) Q(t) 

Figure 5.5 – Working principle sketch of the pseudo two path BPDS converter. 

Input sinusoidal voltage 
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input capacitors, resulting in a high flexibility of the interface and enabling the use for different 

applications. 

The gain is selectable by means of external control inputs which can be easily set by the 

developed software interface (see below). Usually, given the high variability of nanowires 

sensor impedance during the experiments, a gain of 1 was selected in order to achieve a high 

range of measurement.  

 
Moreover as illustrated in Figure 5.4, in order to achieve a very high resolution of more than 

15 bits [168], the designed IC is able to internally generate four sinusoidal stimulating-current 

signals of amplitude 10µA-150µA–300µA-1mA starting from the ∆Σ modulated signal stored in 

the ROM and using four replicated H-bridge based architectures to ensure the different 

amplitude current signal flowing across the DUT in both directions.   

Given the high impedance values of the considered bio-nanosensor application this feature is 

not used in the developed portable system, which however uses the same basic principle of the 

generation of the current starting from the ∆Σ modulated signal, in order to maintain the 

synchronism with the readout architecture, as will be explained in next section.  

 
Summing up the main features of the integrated impedimetric interface are: 

• Internal generation of the input signal, in particular to achieve high resolution which is 

not strictly required for the considered application; 

• AC voltage readout designed for Kelvin sensing; 

• Integrated delta sigma modulation enabling the readout of sensor complex 

impedance; 

• Demodulation easily performed in digital domain; 

• Capability to operate in an array fashion thanks to the four cores layout; 

• Flexible range of measurements to cope with different kind of sensors  
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5.3 Portable acquisition system design 
 

As stated above, the minimum current amplitude internally generated by the developed 

integrated impedimetric interface is 10µA. Considering for instance a nanowire set with a 

resistance of 10 MΩ (typically the provided nanowires set resistance lie in the range 1 MΩ -100 

MΩ) a 10µA amplitude input signal current would yield a voltage drop over the nanowires under 

test of 100 VAC. In order to keep the voltage response low enough to be compatible to practical 

measurements, a discrete components-based off-chip current generator embedded in the PCB 

was thus needed to be implemented. 

Moreover the frontend LNA of the integrated impedimetric interface has a maximum 

amplitude range of 900mV (considering the total system gain of 0.5). This means that a current 

as low as 90nA should be generated considering the same representative 10MΩ nanowires set 

and even lower if more resistive nanowires are considered. Designing such a low current 

generation circuit using discrete components is very challenging since parasitic effects strongly 

affect the performances of the circuit. Indeed in general high resistances are needed to obtain 

such low current values, but as higher is the resistance as higher is the probability that 

parasitics coupled to that resistance affect the system in the working bandwidth in the tens of 

KHz range. 

Finally the signal at the input of the LNA has to be centered in the proper voltage bias 

(common mode voltage Vcm=1.65V)[168]. 

For these reasons the proposed trade off solution is based on the generation of a current in 

the order of some hundreds of nA to few µA (to ensure a limited voltage drop on the DUT) 

followed by a voltage level adapter stage which has the task to reduce the voltage signal 

coming from nanowires sensors and to adapt the signal to the proper DC voltage level 

compatible with the integrated impedimetric interface LNA input. 

 
The developed solution is shown in Figure 5.6, which shows the complete block diagram of 

the developed PCB comprising the integrated impedimetric interface, the FPGA, the electronic 

circuit for off-chip current generation and voltage level adaptations and the module used to host 

and address the selectable nanowires set in the chip and the proper microfluidics, as presented 

above in section 3.6.2. 

 
In particular the selected approach is based on the generation of the sinusoidal input signal 

starting from the ∆Σ modulated sine wave created using Matlab and memorized on a read only 

memory (ROM) in the FPGA. The squared wave voltage signal is then filtered, converted in the 

current signal and sent to the DUT. This ensures the perfect synchronization of the input signal 

frequency with the clock frequency that control the ∆Σ demodulation performed inside the 

microchip. This approach also enable to fine the initial phase shift during the calibration step, 
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which can be easily performed using a software interface controlling the FPGA, as explained 

below. The frequency synchronization indeed allows to be sure that the eventual initial phase 

shift between the input current and the output voltage is constant over the time and can be 

calibrated only once.  

Finally, the system offers the possibility to perform parallel single-ended or differential 

measurements thanks to the two illustrated identical branches. For each of them a single 

nanowires set can be selected from the chip array and independently addressed by means of 

the switching system. The output voltage signal coming from each branch of the circuit is then 

read from one of the two AC coupled inputs of the integrated impedimetric interface fully 

differential LNA.  

The developed measurement setup can be considered as a particular case of kelvin sensing 

in which one of the two terminals is kept at a fixed common voltage VH while the other is sensed 

by the system (see Figure 5.7). This uncommon readout setup enables to perform either single 

ended (short-circuiting one of the two branches) or differential measurements for every core of 

the integrated impedimetric interface; thus, using this approach, one single integrated 

impedimetric interface chip composed of 4 cores is able to read up to eight nanowires sets in a 

differential fashion, or up to four in a single-ended parallel fashion.  

 

Figure 5.6 – Block diagram of the hybrid standalone portable system. The off-chip generation of the 

sinusoidal input signal starting from the ∆Σ modulated sine wave ensures the perfect synchronization of 

the input signal frequency with the clock frequency that control the ∆Σ demodulation. 

Integrated impedimetric interface FPGA 
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The AC voltage-to-current converter enable to convert the input voltage signal to the selectable 

low current values to be send to the DUT. 

Starting from the filtered ∆Σ modulated sine wave it generates a biased AC current given by:  

 )sin( 0 ϕω ++= t
Z

V

R

V
I

I

ref

I

I
ref  (5.1) 

 

Where VI is a user selectable negative voltage and Vref is the amplitude of the filtered input 

sinusoidal wave, whose DC value is blocked by the coupling capacitor CC and whose amplitude 

is selectable by means of the voltage divider (see Figure 5.7). 

 
 

As shown in the figure above, a rather common circuit was used; however some critical 

points must be pointed out. 

Indeed, even if the simplest thing would be the use of a high RI in order to achieve the 

needed low currents, an important aspect related to this kind of circuit using discrete 

components is to keep the RI as lower as possible in order to reduce the effects given by 

parasitics in parallel to RI. These parasitic capacitances indeed would affect the impedance ZI, 

which sets the current amplitude value, resulting in a dependence of the amplitude on the 

frequency, with higher current flowing through the ZI impedance at high frequencies.  

On the other hand, in the implemented board, the negative voltage VI is set by means of a 

potentiometer and thus cannot be too small in order to ensure a sufficient accuracy in the 

voltage (and thus in current) tuning. 
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Figure 5.7 – Voltage to current converter and the related parasitics issues that have to be considered to 

maintain constant the low current amplitude value at the different frequencies.  
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For these reasons the value of RI had to be dimensioned considering the maximum working 

frequency of 25KHz and a good trade-off value was found in the use of a RI=100KΩ and setting 

a potential Vi=-100mV, thus resulting in a DC current of 1µA. Implementing, for instance, a 

voltage divider that yields a Vref of 45mV, the current amplitude can be easily set to a constant 

value of 450nA. 

The circuit was simulated using PSpice and experimentally tested with different transistors 

and the best trade-off was identified in the use of a JFET (in particular the BF245A [174]) thanks 

to its low gate-source and gate-drain capacitances, which can couple to the high values ZDUT, 

and the high isolation between input and output given by the high input resistance. 

 
Finally the voltage lever adapter stage attenuates the buffered output voltage signal Vout in 

order to maintain the signal inside the maximum allowed signal range of ±900mV and set the 

DC value at 1.65V as required by the LNA of the integrated impedimetric interface [168]. 

In particular, potentiometers in the two branches enable to accurately set the current levels 

and the gains of the voltage level adapters in order to achieve two perfectly identical branches 

during the calibration step. 

 
The whole signal adapter chain was simulated using PSpice and implemented in the 4 layer 

PCB that composes a standalone hybrid portable system directly pluggable to the laptop for real 

time impedimetric measurements on nanowires biosensors using a kelvin sensing technique. 

Figure 5.8 shows a picture of the developed system whose main properties can be summarized 

in: 

• Dimensions: 10 cm x 10 cm, 4 layers PCB; 

• USB power supply, the board power supply is then raised to ±15 VDC by means of a 

dual DC-DC converter [175] to ensure a high measurement range; 

• pairs of identical and independent channels which enable differential (or single-

ended) real time AC impedimetric measurements in the range 1 KHz- 25 KHz; 

• eight different sinusoidal amplitude voltage ranges selectable by means of the 

developed custom software: 5.04V, 2.52V, 1.26V, 504mV, 252mV, 126mV, 50mV, 

25mV; 

• switching system to select single bio-nanosensors in a sensor array chip; 

• modular approach with electronics separated by specific fluidics and enabling the 

easy interchangeability of different sensor chips; 

• possibility to set both the potential of nanowires chip substrate and/or of the liquid 

gate electrode setting the potential of the electrolyte in which nanowires are 

immersed. 
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Figure 5.8 – Picture of the realized portable standalone acquisition system comprising the integrated 

impedimetric interface developed by the research group, the FPGA module and the nanosensor array 

holder module which connect the selectable bio-nanosensor to the readout electronics. 
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5.4 FPGA and Software interface 
 

As explained above, to obtain the required resolution, the one bit data output of the BPDS 

converter has to be filtered and decimated by a digital elaboration system. 

Given the possibility to implement in the system in a parallel approach [36], [113] thanks to 

the 4-cores integrated impedimetric interface the FPGA was selected as digital architecture 

thanks to its versatility and is suitability in applications were a potential high number of channel 

have to be elaborated simultaneously and at high frequency. 

 
As illustrated in Figure 5.6 FPGA main tasks are: 

• Generate the system clock using the embedded quartz oscillator at a selectable 

frequency in the range 500 KHz -12.5 MHz, which consequently changes the BPDS 

sampling frequency and the sinusoidal current stimulus frequency. 

• Provide the 1 bit ∆Σ modulated sine wave generated using Matlab and memorized in 

the internal read only memory (ROM). This sine wave has a frequency that is 

proportional to the system clock, thus perfectly synchronized with the ∆Σ analog-to-

digital converter. 

• Real-time filter using an implemented Sinc3 Filter for each data channel [176]. 

The final bandwidth B of the output signal from the FPGA is given by: 

 
OSR

f
B s

⋅
=

2
 (5.2) 

where fs is the BPDS sampling frequency and the oversampling ration (OSR) is fixed 

at a value of 200 yielding a final signal bandwidth varying in the range 10 Hz – 250 

Hz. 

 

 

In particular, as stated above, the real and imaginary parts data streams are serialized by the 

BPDS and send as output in a unique data stream (OUT in Figure 5.9). In order to recover the 

two independent signal streams the FPGA read a synchronization signal (SYNC) provided by 

each core and samples the in-phase component during the rising edges of the SYNC signal and 

the quadrature component during the falling edges of SYNC signal, as represented in .  
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Moreover the integrated impedimetric interface is designed to be programmable using the 

SPI interface, which allows to enable and to program the four cores independently by means of 

control signals written by the FPGA to the selected core every time the user clicks on an option 

of the software interface, for instance to select the gain of the LNA. 

The DLP-FPGA module [177] was selected as compact and low-cost device based on the 

Xilinx Spartan 3E FPGA, with a USB interface and a 50 pin connector for signals input/output. 

Figure 5.10 shows the picture and the block diagram of the module and the main features are 

listed below: 

 

 

 

 

 

 

 

Figure 5.10 – Picture and block diagram of the DLP-FPGA module. 

out  

I[n] 
I[n] 

out 

Q[n] 
Q[n] 

out 

I[n] 
I[n] 

out 

Q[n] 
Q[n] 

out 

I[n] 
I[n] 

out 

Q[n] 
Q[n] 

out 

I[n] 
I[n] 

out 

Q[n] 
Q[n] 

 

OUT 

 

Figure 5.9 – Representation of the implemented protocol used by FPGA to recover the two serialized 

data streams coming from the BPDS and containing the in-phase (I) and quadrature (Q) components of 

the input signal, see Figure 5.5. 
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• FTDI FT2232D USB 2.0 full speed (12Mb/s) interface with 2 data ports; 

• 250 kgate FPGA, 216 Kbit RAM (12x18 Kbit), 12 multipliers (18x18 bits), 4 DCMs clock 

resource; 

• 40 I/O channels; 

• SPI Flash for code download to self-programming; 

• 128 KB SRAM; 

• fully USB powered. 

 

Moreover the manufacturer provides a configuration Loader which writes the .bit file directly to 

SPI Flash via full-speed USB interface for FPGA initialization, a screenshot of the interface is 

shown in Figure 5.11. 

 

 

The .bit file is created by means of development software tool ISE 10.1, provided by Xilinx, 

including all the simulation, mapping and routing tool to develop FPGA projects. 

 

The whole standalone hybrid portable system is controlled by means of the developed 

custom data acquisition software designed in Java. It has a user-friendly interface, shown in 

Figure 5.12, enabling to easily control all the selectable options of the 4-cores integrated 

impedimetric interface, for instance the gain and the working frequency. 

Figure 5.11 – Screenshot of the configuration loader software interface to program the SPI flash of the 

DLP-FPGA module. 
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The start button opens the connection with the developed portable acquisition system 

connected to the USB port.  

By means of dedicated buttons and scroll lists, each integrated impedimetric interface core 

can be configured and switched on independently by means of the configuration bytes sent via 

the USB connection to the FPGA, which writes them to the selected core by means of the SPI 

interface. 

The software interface also collects and rescales to the correct voltage range the data 

streams from the impedimetric interface in order to graphically display them in a Nyquist plot 

and to calculate the modulus and the phase for real time analysis. 

In particular, using an implemented feature, the initial phase shift can be calibrated to take 

into account the delays of the chip acquisition chain. This calibration is done practically by 

hardware by shifting the phase of the reference ∆Σ modulated sine wave bit stream generated 

by the FPGA, see Figure 5.6. 

 
 
 
 
 
 
 

Figure 5.12 – Screenshot of the developed data acquisition software interface. 
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5.5 Calibration and testing 
 

As first step, calibration of the system was performed using different values resistances, to 

test system performances and experimental ranges of measurements. 

The reference current was set and experimentally measured as: )sin(45.01 0 ϕωµµ +⋅+= tAAI ref  

and this value is the one used for all the experiments reported. 

Moreover the two branches have to be calibrated in order to be sure that the two acquisition 

chains gains are exactly the same (see Figure 5.6). This is done performing single ended 

measurements on a selected resistance of 10 MΩ and short-circuiting one of the two branches 

alternatingly while setting the potentiometers in order to obtain the same magnitude value in the 

two cases. 

In order to obtain a calibration curve, different resistances were connected to socket 

connector and measured by the system at a fixed frequency. Resistances values were 

previously measured using Keithley 6514 System Electrometer and the obtained values were 

considered as the actual ones.  

Figure 5.13 shows, as an example, the calibration curve obtained by single-ended 

acquisitions of different resistor values using a working frequency of 1 KHz and setting the gain 

of the IC interface to 1. As can be clearly noted the measurements have the typical RC 

behaviour caused by parasitic capacitances in parallel to the DUT resistors.  

 

 
 
 
 

Figure 5.13 – Single ended measurements calibration curve at 1 KHz working frequency. 
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Performing PSpice simulations using a simple RC parallel equivalent circuit stimulated by a 

sinusoidal current signal of 450 nA of amplitude it was possible to obtain the magenta curve of 

the figure above that fit very well the experimental data, allowing to estimate the parasitics 

capacitance value of 28pF in parallel to the resistors under test. 

By fitting the data with this method it was also possible to experimentally obtain the total 

acquisition chain attenuation of each branch, which resulted of 5.6 instead of the nominal value 

of 4.7.  

In particular it must be noted that the 9.27 MΩ resistor used for the calibration was obtained 

soldering two resistors in series, therefore this particular DUT was affected differently from other 

single DUT resistors from parasitic capacitances. Accordingly, the experimental results clearly 

demonstrate a slight deviation of this point value from the curve obtained considering a parasitic 

capacitance of 28pF, demonstrating a very high sensitivity of the system. 

Similarly, the calibration curve obtained performing differential measurements at 1 KHz, with 

an IC interface gain of 1 and using a 7.063 MΩ resistor as reference resistance while varying 

the other branch DUT is shown as example in Figure 5.14. 

 

 

 

 

The magenta curve of the figure above is obtained simply performing the differences 

between the simulation outputs of two RC parallel circuits maintaining fixed the resistance of 

one branch and sweeping the other and considering for both branches a parasitic capacitance 

Figure 5.14 – Differential measurements calibration curve using a reference resistor of 7.063MΩ 
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of 28pF. The slight deviation of the simulated results from the experimental ones for higher 

resistance values can be explained by a tiny parasitics effect differential value which is not 

considered in the simulations. 

 

Moreover, as previously done for the nanowires acquisition board (see section 3.5.1), in 

order evaluate the system performances in terms of effective experimental resolutions (in 

ENOB) differential measurements using two nominally identical resistors of 7 MΩ 

(measurements of the two resistances using Keithley 6514 System Electrometer yielded values 

of 7.063 MΩ and 7.081 MΩ) in the two branches were performed at different working 

frequencies setting the gain of the LNA of the integrated circuit to 1.  

Obtained values are reported in Table 5.1 and demonstrate, as expected, a lower accuracy 

compared to the very high one of 15-bits obtained in simulation [168] (and confirmed 

experimentally, data not yet published) considering the IC directly connected to low impedances 

and taking advantage of the capability of the internal generation of the reference current signal. 

This lower experimental resolution is attributed to the use of the off-chip signal adapter circuit, 

which however enable to use the integrated impedimetric interface to read high impedance 

values as the ones typical of nanowires biosensors maintaining a fair accuracy, sufficient for the 

purposes of the application. Moreover it must be noted that the experimentally considered case 

is the worst one, given to the fact that the noise of the two branches are summed in the 

differential measurement, while considering the single-ended measurement (short circuiting one 

of the two branches) the noise is lower, and thus an higher resolution is achieved. 

 

Table 5.1: Experimental performances at different working frequencies 
 

Frequency 1 KHz 2 KHz 4 KHz 8 KHz 16 KHz 

ENOB Re 13.2 12.7 12.8 11.9 12 

ENOB Im 13.3 12.6 12.7 11.8 11.6 

 
 

As a proof of concept, Figure 5.15 shows the acquisition performed at 1 KHz, thus with a 

final signal bandwidth of 10 Hz. 
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5.6 Testing with Silicon NWs 
 

After performing calibrations, it was possible to test the nanowires sensors with the 

developed portable system. First of all measurements in air were performed using the setup 

represented in Figure 5.16. The source was kept at a high constant voltage while the nanowire 

was stimulated by the reference AC current signal and the AC voltage at the drain contact was 

measured by the impedimetric interface. As stated above differential or single-ended 

measurements can be performed by the system, however in this thesis only the single ended 

case was considered.  

 

Figure 5.15 – Noise measurement performed in a differential fashion using two nominally identical 

resistors of 7 MΩ at 1 KHz working frequency and setting the LNA gain to 1. 
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In particular, considering the four central nanowires sets of the provided chips, an interesting 

result was noticed performing measurements at 1 KHz on the different nanowires set in air.  

Indeed results show (Table 5.2 reports measurements on a representative test chip, as an 

example) as expected, a decrease in the nanowires set impedance for higher number of 

nanowires in parallel (which however do not decrease linearly, probably due to a non-

homogeneous doping along the wafer or to a ), but also and more interestingly a different phase 

shift depending on the particular nanowires set considered. As reported in table, the phase 

shifts are all referred to the phase shift measured by the system considering the first nanowires 

set (NW3). 

 
 
 
 

Table 5.2: Experimental single-ended acquisitions of different central nanowires sets  
at 1 KHz working frequency 

 
 NW 3 NW 4 NW 5 NW 6 

Number of 
nanowires 
in parallel 

50 80 70 60 

Measured 
impedance 

(MΩ)  
1.87 1.24 1.31 1.74 

|∆ phase| 
(deg)  Reference 17 17 0 

 

Figure 5.16 – Measurement setup using the developed portable system which can be considered as a 

particular case of kelvin sensing, in which one of the two terminals is kept at a fixed common voltage VH 

while the other is sensed by the system and the nanowires are stimulated by an AC current signal. 
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Differences in phases can be easily explained considering the layout of the provided 

nanowires chip and the fact that the more internal nanowires (called NW4 and NW5) are 

affected by the track-bulk capacitance, previously modelled as Cstray, by the track-track 

capacitance (Cline), but also by the coupling capacitance to the adjacent nanowires sets on both 

sides (represented in red in Figure 5.17), while conversely the external nanowires sets (called 

NW3 and NW6) are affected by this parasitic capacitance only on one side. 

These results clearly demonstrate a high sensitivity of the system on parasitic capacitances, 

in particular since all result connected to bulk and, as noted, strongly affect the current 

source/voltage sensing measurements. 

This effect, indeed, was not obtained using the nanowires acquisition board presented above 

in this thesis and considering the current sensing setup. This experimentally demonstrates that 

different device parasitic effect contributions can be measured, in particular using the phase 

shift data, depending on the sensing setup. Moreover, stating this effect, differential 

measurements can be performed in order to eliminate constant device parasitic effects. 

 

 
 
 
 
 
 

Figure 5.17 – Provided nanowires chips layout and detailed dark field picture of the central nanowires 

sets with overlapped the representation of parasitic capacitive contributions. The outer nanowires are not 

affected by the parasitic capacitance with the adjacent nanowires set (in red) 
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5.6.1 pH sensing 
 

As previously done, pH measurements were performed on bare nanowires and real time AC 

measurements were performed using the developed portable standalone system, therefore 

stimulating the nanowires with a sinusoidal current and reading the output voltage. 

A pseudo reference electrode was inserted in solution and the back gate and liquid gate 

contacts were fixed at VH in order to maintain the same conditions (Vgs=0) of experiments 

performed using the previously described system based on current sensing. 

A picture and a schematic representation of the experimental setup are shown in Figure 

5.18. 

 

 

 
 

Different pH levels (pH 4-11) sodium phosphate solutions at 10mM concentration were used. 

The final pH was obtained adding small concentrations (0.5-1 mM) of H2SO4 and NaOH. 

In particular, these solutions were used in order to analyse if (and how) the Debye length 

affect the measurement of pH using the implemented AC kelvin sensing technique. 

 

Figure 5.18 – Picture and schematic of the measurement setup for pH sensing experiments with 

constant liquid gating voltage that can be imposed by the developed portable system, while the 

nanowires are stimulated by an AC current signal. 
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As can be seen from figure, data are coherent with others previously obtained using the 

current sensing implemented before in the nanowires acquisition board (see section 3.8.2) and 

confirm the possibility to sense pH variations using the phase shift data as well as the 

impedance magnitude, even if the working point is dependent on the modulating frequency 

used. 

The higher noise obtained setting the working frequency to 4 KHz is due to the fact that the 

final bandwidth at the output of the system is higher in this case compared to the 1 KHz case, 

respectively of 40 Hz and 10 Hz, as previously discussed. 

Figure 5.19 – AC real-time measurements of different pH level buffer solutions at two different working 

frequencies of 1 KHz and 4 KHz, using bare nanowires. Arrows show when the solution with the 

indicated pH level was changed.  
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Analysing the data and, in particular, referring the variations to the values obtained for the 

first pH value of 4 and normalizing the impedance magnitude and phase shift data for the 

respective full scale values (in order to calculate the comparable percentage variation), it was 

possible to obtain the values reported in Table 5.3. As observed qualitatively in section 3.8.2, 

considering the response at 1 KHz the percentage variations in magnitude results higher 

compared to the ones for phase shift; conversely, considering the data obtained using 4 KHz 

stimulating frequency, the behaviour is the opposite and the percentage variations, even if lower 

in absolute value due to attenuation given by the low pass filter behaviour, result higher for the 

phase shift data compared to the magnitude ones. This result indicates that the phase shift data 

can be effectively used to have similar information to the one obtained using the standard 

conductivity measurements; however there is a range of frequency in which the sensitivity is 

higher considering the phase shift data instead of the magnitude ones, as expected from 

simulations performed stimulating the developed equivalent model with an AC current signal. 

 

Table 5.3: Experimental percentage variations for different pH solution  
 

pH 
1 KHz 4 KHz 

(|Z|-|Z0|)/FS(Z) % (Ph-Ph0)/FS(Ph) % (|Z|-|Z0|)/FS(Z) % (Ph-Ph0)/FS(Ph) % 

4 0 0 0 0 

8 6.5 4.3 0.6 1.3 

10 7.1 4.6 0.7 1.8 

11 13.2 10.6 2.2 4.2 

 

Moreover, experimental data shown that only a slight variation is achieved between the pH 8 

and pH 10 solutions, on the contrary to the one obtained previously using the nanowires 

acquisition board (see Figure 3.29). However this result is explainable calculating the Debye 

length of the used solutions and analysing the data considering also these values. The obtained 

values are reported in Table 5.4.  

 

Table 5.4: Calculated Debye length for the different pH solutions 10mM used. 
 

Solution pH λD 

Na2HPO4+H2SO4 4.1 1.3 nm 

Na2HPO4 8.3 1.5 nm 

Na2HPO4+NaOH 10.3 1.6 nm 

NaOH 11.3 3 nm 
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Figure 5.20 clearly shows the dependence of both the magnitude and phase shift to the 

Debye length of the electrolyte solutions and can easily explain the very slight sensitivity of the 

sensor to the variation between the pH 8 and pH10 levels. 

 
 

Similar results, in terms of response to different pH and Debye lengths, were also obtained 

considering 1mM solutions with the pH adjusted by adding small concentrations of NaOH. Our 

hypothesis is that this stronger sensitivity to Debye length (and thus to the surface capacitance 

variations) than to the pH level, not shown using the current sensing method (as reported in 

section 4.6) can be attributed to the fact that in this case we stimulated the device with an AC 

current, while performing a voltage sensing. This measurement setup indeed is differently 

affected by capacitive contributions and thus, for instance, more sensitive to double layer 

b) a) 

c) 

Figure 5.20 – Experimental values of different pH level buffer solutions, obtained by the mean levels of 

real time AC measurements once stabilized, at two different working frequencies of 1 KHz and 4 KHz, 

using bare nanowires. a) Percentage variation of admittance magnitude referred to the pH 4 value.  

b) Phase shift variations referred to the pH 4 value. c) Debye lengths of the different 10mM solutions. 
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variations compared to the voltage applied/current sensing setup, as resulted from simulations 

performed using the simplified developed nanowires model. 

Additional supporting experiments are currently performed to better investigate if the effective 

dependency of these results to particular solutions and Debye length used has to be attributed 

to the measurement setup or to the particular strong base (NaOH) used and to the possible 

related anions adsorption mechanism, very recently addressed by Tarasov et al. [150]. 
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Conclusions and Future Perspectives 
 

 

This thesis has been aimed at demonstrating real implementation of three examples of 

compact hybrid readout systems designed and developed for rapid and low cost analysis of 

different kind of bio-nanosensors. These custom systems merge a dedicated microfluidic and a 

custom electronic readout setup in order to perform tests in the experimental liquid environment 

using both DC and AC regimes.  

The systems were calibrated and tested performing typical experimental studies to prove the 

effective response for the needs of new emerging and promising bio-nanosensor technologies.  

 

The first system is a complete, compact hybrid system which enabled the automatic and 

simultaneous formation of arrays of bilayer lipid membranes for biological nanopores 

investigations by means of the developed low-cost programmable liquid handling system and 

the fine-tuned protocol. This addresses the needs of parallel readout on ion channels for drug 

screening and DNA sequencing, without the use of highly expensive laboratories 

instrumentations and the need of highly skilled personnel. 

 

The two other compact and portable systems that have been presented are enable to 

perform tests on nanowires field effect devices in a user friendly and rapid fashion. In particular 

the two systems implementing the lock-in detection are based on complementary 

measurements techniques which enable to perform experiments stimulating the bio-

nanosensors using a DC or a AC voltage or AC current signal and to investigate if and how the 

measurement technique affects the system response. 

 

Experiments were performed to characterize the sensor response with respect to different 

environmental stimulus and for biosensing of specific detection of biomarkers molecules. 

 

In particular the AC stimulation was used to investigate if phase shift data can be useful and 

enrich informations with respect to standard DC measurements, basically performing 

impedance analysis (in real time and in frequency sweeps mode) to sense capacitance 

variations on the surface of nanowires biosensors with the final aim to better understand the 

behaviour at sensor-electrolyte interface.  

Experimental acquired data confirmed the effectiveness of phase shift data in the nanowire 

based sensing of different solution pH values and of specific molecular bindings depending on 

the particular input signal operating frequency used, adding information to the standardly used 

nanowires conductivity data. 
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In particular results have shown that phase shift data could be used to understand and 

characterize the structure of molecular functionalization layer on the surface of the nanosensor 

FET device which changes the resulting surface capacitance, suggesting that the method could 

be also used to directly probe biomolecular interaction, for instance the antigen-antibody binding 

or DNA hybridization close to the functionalized nanowires surface, giving informations on the 

distance of the charges from the surface. 

A semi-empirical equivalent simplified nanowires model based on physical devices 

characteristics has been developed and implemented in PSpice in order to quickly analyse how 

the changes of different parameters related to physical device properties affect the response of 

the sensor and explain the obtained experimental results.  

As demonstrated, it is able to qualitatively catch the overall behavioural response of the 

nanowires sensors and understand different contributions of the different physical parameters to 

phase shifts at the different frequencies  

However, since FET devices are fundamentally transducers of surface potential variations it 

is not easy to experimentally decouple surface capacitive effects by the ones related to the 

changes of conductivity of the device. As known from literature, the impact of the surface 

charge is dependent on the surface-to-volume ratio of the device and the sensitivity to variations 

of surface charge decreases with the increase of nanowires dimensions; this would also mean 

that, considering bigger devices, the variation of nanowires resistance would be more sensitive 

to surface capacitance variations (which are proportional to the exposed surface) than to the 

surface charge variations. For this reason the analysis done on the surface capacitance 

variations could be even more effective for devices in which the surface exposed to liquid 

environment is bigger such, as nanoribbons. 

The model also enabled to predict the response of the device at different working 

frequencies showing the strong dependence of the sensitivity to surface changes on the devices 

parasitics, and therefore on the particular measurement setup used, since parasitic 

capacitances affect the measurements in a different way thus moving the poles and zeros of the 

system. 

Future perspectives are aimed at using the developed systems to better understand the 

device complex impedance response at different kinds of bio-chemical stimuli and validate the 

model with further experimental results, eventually changing some geometric and physical 

characteristics of the nanodevices under test. 

 

Finally, further studies exploring the effectiveness of differential measurements on adjacent 

nanowires will be performed once nanowires sensors fabrication process yields less variability 

on nominally identical devices. All the presented bio-nanosensors indeed are very promising 

since can be easily investigated with the developed systems in an array fashion, however other 
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problem related to this kind of measurements arises such as the need of a strong uniformity 

over the biosensors, problem that increase as much as the sensor device becomes smaller and 

sensitive.  

Moreover, from a system point of view, it should be noted that by adding a different analog 

front-end amplifier to the impedimetric impedance interface and maintaining the same analog-

to-digital conversion architecture, for instance integrating a low noise current amplifier as the 

one previously developed by the research group, the same approach could be used to develop 

a complementary portable system able to stimulate the nanosensor device either with an AC 

voltage signal (and read the current signal) or with an AC current signal (and read the voltage 

signal), eventually switching between the current sensing and the voltage sensing method, in 

order to address a broader number of applications and nanosensor devices and better 

investigate how the particular readout technique can highlight devices response. 
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Index of abbreviations 
 

 

αHL   Alpha Hemolysin 

ADC  Analog to Digital Converter 

Ag/AgCl  Silver/Silver Chloride 

ASIC  Application Specific Integrated Circuit 

βCD  Beta Cyclodextrin 

BLMs  Bilayer Lipid Membranes 

CNC  Computer Numerical Control 

CE   Counter Electrode 

∆Σ   Delta Sigma 

DSP  Digital Signal Processing 

EIS   Electrochemical Impedance Spectroscopy 

FIR   Finite Impulse Response digital filter 

FPGA  Field Programmable Gate Array 

gA   Gramicidin A 

GUI   Graphical User Interface 

HTS  High Throughput Screening 

IC   Integrated Circuit 

ISFET  Ion-Sensitive Field-Effect-Transistor 

KCl   Potassium Chloride buffer solution 

LNA  Low Noise Amplifier 

LPF   Low Pass Filter 

NWs  Nanowires 

OSR  Oversampling Ratio 

PBS  Phosphate Buffered Saline 

PCB  Printed Circuit Board 

SNR  Signal to Noise Ratio 

USB  Universal Serial Bus 

WE   Working Electrode 
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