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Abbreviations 

5-HT, serotonin;  

6MWD, 6 min-walk distance;  

AgNOR, silver-stained Nucleolar Organizer Regions;  

ALK1, activin-like kinase-type 1;  

bFGF, fibroblast growth factor beta;  

BMPR2, bone morphogenetic protein receptor type 2;  

COPD, chronic obstructive pulmonary disease;  

CTEPH, chronic thromboembolic pulmonary hypertension;  

EGF, epidermal growth factor;  

ERA, endothelin receptor antagonists;  

ET-1, endothelin-1;  

ETA, endothelin receptor A 

ETB, endothelin receptor B 

H&E, hematoxillin-eosin;  

HPAH, Heritable pulmonary arterial hypertension;  

IGF-1, insulin-like growth factor 1;  

LV, Left Ventricle;  

MCT, Monocrotaline;  

mPAP, mean pulmonary arterial pressure ();  

PAH, pulmonary arterial hypertension;  

PAP, pulmonary arterial pressure;  

PAR, pulmonary artery resistances;  

PBMCs, Peripheral blood mononuclear cells;  

PDE-5, phosphodyesterase type-5;  

PDGF, platelet derived growth factor;  
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PH, Pulmonary hypertension;  

PP, protein phosphatase;  

RHC, right heart catheterization;  

RV, right ventricle;  

S, septum;  

SAGE, Serial Analysis Gene Expression;  

SSc-PAH, Scleroderma-associated pulmonary arterial hypertension;  

TGF-beta or TGF-, transforming growth factor beta;  

TNF-α, tumor necrosis factor-α;  

VEGF, vascular endothelial growth factor. 
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1. Introduction 

1.1. Definition and hemodynamic classification of Pulmonary 

Hypertension 

Pulmonary hypertension (PH) is a pathophysiological condition characterized by an increase of 

pulmonary artery resistances (PAR) and consequent elevation of the right ventricular afterload lead to 

right ventricular failure. 

The definition of PH correspond to an elevation in pulmonary arterial pressure (PAP) mean ≥25 

mmHg at rest. This is an arbitrary definition based on the PAP mean value, which is the least varying 

parameter and it require a direct measurement trough right heart catheterization (RHC). 

Actually, an increase of PAP mean ≥25 mmHg it occur in numerous clinical conditions 

characterized by physiopathological and hemodynamic aspects, then it has been purposed an 

hemodynamic classification to discriminate PH (Table 1) 

Table 1. Haemodynamic Definitions of Pulmonary Hypertension
a
 

Definition Characteristics Clinical Groups 

Pulmonary 
hypertension (PH) 

Mean PAP ≥25 mmHg All 

Pre-capillary PH 
Mean PAP ≥25 mmHg; PWP ≤15 
mmHg; CO normal or reduced

b
 

Pulmonary arterial hypertension;  
PH due to lung diseases; Chronic thromboembolic PH; 
PH with unclear and/or multifactorial mechanisms 

Post-capillary PH 
Mean PAP ≥25 mmHg, PWP >15 
mmHg, CO normal or reduced

b
 

PH due to left heart disease: 
Passive TPG ≤12 mmHg 
Reactive (out of proportion) TPG >12 mmHg 

CO indicates cardiac output; PAP, pulmonary arterial pressure; PH, pulmonary hypertension; PWP, pulmonary wedge pressure; 

TPG, transpulmonary pressure gradient (mean PAP—mean PWP) 

a All values measured at rest. 

b According to Table 2. 

1.1. Clinical classification of PH 

The PH can be attributed to several clinical conditions, as well as in left heart diseases, in 

parenchymal pneumopathies, pulmonary vascular mechanical obstructions, but it can be caused by a 

pathological process of pulmonary circulation independently by any other reasons. 

Each of these conditions is characterized by peculiar physiopathological and clinical aspects 

then a classification based on hemodynamics parameters results limited for both diagnostic and 

therapeutic point of views. For this reason physicians expert in PH formulate a clinical classification 

forwarded to group conditions characterized by common histopathological and physiopathological 
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aspects in addition to similarities in clinical presentation, therapeutic strategy and prognostic evolution. 

The clinical classification of PH has gone through a series of changes since the first version was 

proposed in 1973 at the first international conference on primary PH endorsed by the World Health 

Organization. The current clinical classification, derived from the 4th World Symposium on PH held in 

2008 in Dana Point, California is shown in table 2. Very recently the 5th World Symposium is held in 

Nice 2013, then this classification will probably modified. 

The Dana Point classification aims to distinguish pulmonary arterial hypertension (PAH) 

conditions including all type of PH where the increase of PAP are related to micropulmonary circle 

disease (group I) from the other conditions where the increase of PAP is consequence of diseases as 

left ventricular systolic or diastolic failure and valves diseases (Group 2), pulmonary parenchyma 

disease and/ or hypoxemia (Group 3), chronic thromboembolic PH (CTEPH) (Group 4) and PH due to 

unclear and/or multifactorial mechanisms (Group 5). 

This clinical classification is essential also to guarantee a correct communication between 

clinicians, in order to standardize diagnosis and treatment, to perform controlled clinical trial, and 

finally to analyze novel pathobiological alterations in specific patient cohorts.  

This research is focused on aspects related to the first group of clinical classification. 

1.2. Group I: PAH 

PAH includes an heterogenic group of diseases characterized by a progressive increase of 

pulmonary vascular resistance leading to right ventricular failure and premature death [1]. The 

prognosis of PAH is severe, prior to the advent of modern therapies, life expectancy for adults with 

idiopathic PAH was 3 years from diagnosis; for children, it was 10 months [2]. 

PAH in adults includes at least nine clinical subgroups with virtually identical obstructive 

pathologic changes (table 2) in the distal pulmonary arteries: idiopathic, heritable, drug- and toxin-

induced, associated with connective tissue diseases, HIV infection, portal hypertension, congenital 

heart disease, schistosomiasis, and chronic hemolytic anemia [3]. 

All type of PAH are characterized by abnormalities in pulmonary vascular biology in each 

compartment of the blood vessel, defined pulmonary hypertensive arteriopathy. The lumen has a 

prothrombotic diathesis, the endothelium displays an excessive production of vasoconstrictors relative 

to vasodilators, as well as an increase of mitogenic mediators. Vascular cells increase their 

proliferation and migration leading to a progressive reduction of vascular lumen [4]. Despite PAH has 

origin at pulmonary vascular level, the clinical symptoms and severe prognosis are principally related 

to right ventricle failure. 
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Table 2. Updated Clinical Classification of Pulmonary Hypertension (Dana Point, 2008) 

1 - Pulmonary arterial hypertension (PAH) 

1.1 Idiopathic PAH 

1.2 Heritable 

1.2.1 BMPR2 

1.2.2 ALK1, endoglin (with or without hereditary haemorrhagic telangiectasia) 

1.2.3 Unknown 

1.3 Drugs and toxins induced 

1.4 Associated with (APAH): 

1.4.1 Connective tissue diseases 

1.4.2 HIV infection 

1.4.3 Portal hypertension 

1.4.4 Congenital heart disease 

1.4.5 Schistosomiasis 

1.4.6 Chronic haemolytic anaemia 

1.5 Persistent pulmonary hypertension of the newborn 

1’ Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis 

2 - Pulmonary hypertension due to left heart disease 

2.1 Systolic dysfunction 

2.2 Diastolic dysfunction 

2.3 Valvular disease 

3 - Pulmonary hypertension due to lung diseases and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

3.4 Sleep-disordered breathing 

3.5 Alveolar hypoventilation disorders 

3.6 Chronic exposure to high altitude 

3.7 Developmental abnormalities 

4 - Chronic thromboembolic pulmonary hypertension 

5 - PH with unclear and/or multifactorial mechanisms 

5.1 Haematological disorders: myeloproliferative disorders, splenectomy 

5.2 Systemic disorders, sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, 

neurofibromatosis, vasculitis 

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders  

5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis 

ALK-1 indicates activin receptor-like kinase 1 gene; APAH, associated pulmonary arterial hypertension; BMPR2, bone 

morphogenetic protein receptor, type 2; HIV, human immunodeficiency virus; PAH, pulmonary arterial hypertension. 
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1.2.1. Epidemiology of PAH 

The PAH disease is a rare clinical condition and represent only the 3.5% of all form of PH. The 

most frequently clinical conditions responsible for the elevation of PAP are left heart diseases (Group 

2) and diseases of pulmonary parenchyma (Group 3), corresponding to 78% and 10% of cases with 

PH respectively. 

The epidemiologic characteristics of Idiopathic-PAH (IPAH) are recently analyzed in some 

national registries. Data relatives to French Registry [5] documented that females are predominant 

within IPAH patients, with a ratio females/males of 1.9/1. PAH affects a relatively young patient 

population (average age of 50 years) when compared with the more common thoracic organ diseases 

such as coronary artery disease and chronic obstructive lung disease. Within PAH, idiopathic form is 

the most frequent (39.2%), instead of it is documented that the heritable form (HPAH) is only 3.9% of 

cases. Considering the PAH associated to secondary diseases the most frequent are connective 

tissue diseases (15.3%) expecially Sclerodermia (SSc-PAH), besides congenital heart diseases 

(11.3%), portal hypertension (10.4%), drug- and toxin-induced (9.5%) and HIV infection (6.2%). In this 

registry the minimum prevalence of PAH and IPAH are 15 and 5.9 cases/ per million of adult 

population/ year, respectively. 

The epidemiological data emerging from the Scottish Registry [6], the second European registry, 

and data from other studies confirmed that the prevalence of PAH, totally, ranges from ranges from 15 

to 50 patients per million population [7, 8]. 

1.2.2. Histopathology of PAH 

Albeit the clinical, hemodynamic, and prognostic aspects of different type of PAH belonging the 

Group I of PH are heterogeneous, the histopathological substrate is virtually indistinguishable and 

characterized by proliferative and obstructive lesions of pulmonary vascular structures defined as 

pulmonary hypertensive arteriopathy [9]. This is a pathological process that involves primarily the 

distal pulmonary arteries, in particular muscularized pre- and intra-acinar arteries (resistance vessels), 

but it can involve also venous and capillary vessels. 

The arteriopathy induces structural alterations including tunica media hypertrophy, tunica intima 

thickening, tunica adventitia thickening, complex obstructive endoluminal lesions with 

reparative/proliferative characteristic [10]. 

The tunica media hypertrophy is responsible for the increase in the transversal section wall area 

of pre-acinar muscularized pulmonary arteries. All type of PAH are characterized by this process, its 

extension and severity can change for each condition. Hypertrophy and hyperplasia of both smooth 
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muscle and fibroblast cells contribute to ‘neointima’ formation. Interestingly, even the partially- and 

non-muscularized arterioles can origin neo-muscularized layer. Rarely, this is the only vascular lesion 

present, and the histological condition is defined ‘isolated hypertrophy of tunica media’, however most 

frequently it is associated to thickening and fibrosis of tunica intima. 

In addition, all type of PAH are characterized by the thickening of tunica intima, due to an 

increase of proliferative capacities of cells that lead to a reduction of lumen until occlusion of vessel. 

The ultrastructural and immunohistochemical analyses in several reports have revealed that the 

intimal cells have typical characteristic of fibroblasts, myofibroblasts and smooth muscle cells. The 

increase in intima can be concentric laminar, eccentric of non-laminar concentric. All this type of 

thickening can be generate occlusion of the arteriole. 

The thickening of tunica adventitia is frequent in all types of PAH and contribute to a reduction in 

elasticity of vessel wall. This phenomenon is caused by the expansion of perivascular connective 

tissue and it stimulated by growth factors which are activated by serum elastases produced in smooth 

muscle cells (SMCs) of fibrocellular tissue.  

The complex endoluminal lesions are the structural alteration of vessels. They are distinguished 

in reparative and proliferative lesion and included the plexiform lesions, angiomatoid lesions, and 

necrotizing arteritis. 

The plexiform lesions are morphologically comparable to renal glomeruli, they are constituted by 

a plexus of capillaries and frequently they are associated to thrombi. They are characterized by highly 

proliferative endothelial cells (including monoclonal proliferation) [11] surrounded by myofibroblasts, 

SMCs and connective tissue. Although the plexiform lesion can occur at various sites within the lung 

one distinctive presentation is within an aneurysmal dilatation of a small arterial branch close to its 

origin from the parent vessel. The branch containing the plexiform lesion has been called a 

supernumerary artery and characteristically originates at right angles to the parent vessel. When 

plexiform lesions occur in a supernumerary artery, concentric laminar intimal fibrosis is consistently 

found close to its origin. Moreover, distal to the plexiform lesion is a constellation of thin vessels 

dilated and tortoises (varicose lesions) which make-up the so-called ‘dilatation’ or ‘angiomatoid’ 

lesions [12]. 

The necrotizing arteritis is generally associated to severe PAH. It is characterized by segmental 

fibrinoid necrosis of muscular pulmonary arterioles and inflammatory cells infiltration.  

The incidence of plexiform lesions varies from 20 to 90% of PAH patients. Although the lesion 

may be detected in low numbers (0.1 to 1 1 lesions/cm2 or 5% of the pulmonary arteries), the 

plexogenic form bears a poor prognosis. their presence denote a severe obstructive vasculopathy. 

The pathogenesis of this type of lesions in controversial, in fact it not clear if they represent a sort of 
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unspecific cellular proliferation or an attempt of compensatory neovascularization in response to an 

hypoxic condition or local ischemia. 

Thrombotic lesions in situ and parietal thrombosis are additional histological hallmarks of 

pulmonary hypertensive arteriopathy. The thrombotic lesions involve prevalently small arteries and 

pulmonary venules. The parietal thrombosis involve elastic type of pulmonary arteries, usually it is a 

secondary condition to several factors including vascular dilatation, presence of intimal atherosclerotic 

lesions, and plasmatic prothrombotic factors, as well as perivascular inflammatory infiltrate composed 

principally by macrophages and lymphocytes. 

1.2.3. Pathobiology of PAH 

The pathobiology of the distal pulmonary arteries in PAH patients is multifactorial and involves 

various biochemical pathways and cell types (Figure 1). 

Excessive vasoconstriction has been related to abnormal function or expression of potassium 

channels in the SMCs [13] and to endothelial dysfunction [14].  

Figure 1. Pathobiology of PAH. Cellular and molecular mechanism of disease induction. 
Image from Schermuly RT et al., Nat Rev Cardiol. 2011 
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Endothelial dysfunction leads to chronically impaired production of vasodilator and 

antiproliferative agents such as nitric oxide and prostacyclin, along with over-expression of 

vasoconstrictor and proliferative substances such as thromboxane A2 and endothelin [14]. Many of 

these abnormalities both elevate vascular tone and promote vascular remodeling by proliferative 

changes that involve several cell types, including endothelial and  as well as fibroblasts. In addition, in 

the adventitia, there is increased production of extracellular matrix including collagen, elastin, and 

fibronectin and of matrix-bound smooth muscle cell mitogens, such as basic fibroblast growth factor. 

Other matrix metalloproteases can stimulate the production of tenascin, a smooth muscle cell 

mitogenic cofactor. Several additional growth factors including vascular endothelial growth factor, 

platelet-derived growth factor, insulin-like growth factor-1, and epidermal growth factor have been 

implicated in the development of remodeling and all have been reported to be increased (the molecule 

and/or the specific receptors) in the lung and/or in the blood of PAH patients. Reduced plasma levels 

of other vasodilator and antiproliferative substances such as vasoactive intestinal peptide have also 

been demonstrated. Angiopoietin-1, an angiogenic factor essential for vascular lung development, 

seems to be up-regulated in cases of PAH correlating directly with the severity of the disease. 

Receptors of the bone morphogenetic protein pathway, involved in cellular proliferation and apoptosis, 

are down-regulated and/or malfunctioning in the lung vasculature of both heritable and acquired PAH. 

Inflammatory cells, cyto- and chemokines, and platelets (through the serotonin pathway) may also 

play a significant role in PAH. Prothrombotic abnormalities have been demonstrated in PAH patients 

and thrombi are present in both the small distal pulmonary arteries and in proximal elastic pulmonary 

arteries. 

K+ channels are important in modulating both vessel tone and smooth muscle cell proliferation. 

The reduced expression and the malfunction of voltage-dependent k+ channels in IPAH patients [13] 

lead to an inhibition of transmembrane currents of K+ and therefore the depolarization of cellular 

membrane; this induces the activation of contractile apparatus and pulmonary artery vasoconstriction 

through enabling the increase in cytoplasmic calcium (Ca2+). Moreover, the intracellular accumulation 

of Ca2+ in cytosol induces smooth muscle cell proliferation. Remain to discover if the changes in the 

expression of K+ channels are caused by a genetic modification at origin of the disease or if they 

occurred as a consequence of PAH. In this sense it has been demonstrated that some anorexiant 

drugs (dexfenfluramine and aminorex) are direct blockers of specific subtypes of K+ channels [15]. 

Endothelial dysfunction 

Several studies have characterized the histological changes occurring in the endothelial cells of 

both large and small vessels in response to chronic PH [16]. In chronic hypoxic PH, increases in 



16 
 

intimal thickness secondary to hypertrophy and hyperplasia is observed in both the endothelial and 

subendothelial layers. 

The structural changes in pulmonary endothelial cells and their plasma membranes observed in 

PH are accompanied by alterations in the physiological and metabolic function of the cell. For 

instance, hypoxic exposure decreases the antithrombotic potential, increases the permeability, impairs 

normal regulation of vascular tone, promotes release of cytokines and growth factors, and interferes 

with a variety of plasma membrane–dependent receptor, metabolic, and transport functions of the 

endothelial cell, leading to endothelial dysfunction. Most of these alterations are cause of both the 

increase of vascular tone and vessel wall remodeling. Chronic PH is associated with changes in the 

production and release of potent vasoactive substances by the endothelium. Several vasoactive 

agents possess growth-regulatory properties, and pulmonary vascular remodeling could result from an 

imbalance of growth-inhibitory vasodilators and growth-promoting vasoconstrictors. 

Changes in the local production of vasodilator substances in chronic pulmonary hypertensive 

states are well described. The prostacyclin is a potent pulmonary vasodilator, through cyclic AMP 

(cAMP) pathway activation it inhibits the smooth muscle cell proliferation and reduces the platelet 

aggregation. The nitric oxide is an additional potent pulmonary vasodilator, it exerts its action through 

cyclic GMP (cGMP) pathway. It well known that both prostacyclin and nitric oxide production is 

reduced in patient affected by PAH. Furthermore, recent studies have demonstrated little or no 

expression of nitric oxide (NO) synthase in the pulmonary vascular endothelium of patients with PH 

[17]. 

The endothelial cell is also capable of producing and releasing potent vasoconstrictors, such as 

endothelin-1 (ET-1) and thromboxane [18, 19]. 

ET is the most potent vasoconstrictor known [20]. Three isopeptides (ET-1, ET-2, and ET-3), 

encoded by different gene loci, act on two distinct G-protein-coupled receptors (ETA and ETB) with 

different affinities.  

ET-1 expression and release is found increase in blood and lungs of animal models and in 

patients affected by PH [21-24]. suggesting that ET-1 is a major isotype of ET involve in the disease. 

In addition to vasoconstrictive effects on vascular SMCs, ET stimulates proliferation of vascular 

SMCs [25, 26]. However, its potency as a smooth muscle mitogen is poor in the absence of other 

growth factors. ET-1 also stimulates pulmonary artery adventitial fibroblast proliferation and 

chemotaxis [27] and up-regulates fibroblast collagen synthesis [28] contributing to fibrosis. 

Besides, alterated concentrations of non-endothelial derived factors with vasoactive function 

have been identified in blood of PAH patients. In particular, it has been observed an increase in serum 

level of serotonin (5-HT), and a decrease in level of vasoactive intestinal polypeptide (VIP) [29]. 
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The 5-HT is produced by intestinal enterochromaffin cells and stored in platelets, it induces 

vasoconstriction and it stimulates pulmonary vascular smooth muscle cell proliferation, instead of the 

VIP is a neurotransmitter which induces systemic and pulmonary vasodilation through the activation of 

cGMP and cAMP systems; in addition, VIP inhibits SMC proliferation and platelet aggregation. 

Vascular remodeling 

Albeit the pulmonary vasoconstriction is a primary condition in pulmonary hypertensive 

vasculopathy development, the vascular remodeling is currently considered a key element in the 

pathogenesis of PAH. In fact, many factor related to vascular tone modulation are strictly involved in 

other processes, as well as proliferation, inflammation and thrombosis [30]. 

The vascular remodeling involves changes in all three levels of the vessel wall: the adventitia, 

media, and intima (luminal side). Thus, at the cellular level, the process involves all type of vessel cell: 

the fibroblasts, smooth muscle cells, and endothelial cells [4, 15]. The intermediate cell and the 

pericytes (present in the small, partially muscularized and unmuscularized vessels, respectively) are 

also prominent in the remodeling process; actually, they can be stimulated to differentiate and 

proliferate under various normal and abnormal conditions. The principal histopathological hallmarks of 

vascular remodeling are medial smooth muscle hypertrophy, distal smooth muscle proliferation with 

neomuscularization of small pulmonary vessels, and mild intimal changes. 

Longitudinal bundles of SMCs have been described in all three layers of the vessel [31]. 

Several studies in patient with severe PAH have also disclosed significant adventitial changes 

with deposition of collagen and extracellular matrix, marked intimal proliferation, unique endothelial 

cell changes, and plexogenic lesions [9, 11, 32]. 

At biomolecular level it is note that many growth factors are involved in vascular remodeling.  

An increased expression of vascular endothelial growth factor (VEGF), platelet derived growth 

factor (PDGF), fibroblast growth factor beta (bFGF), insulin-like growth factor 1 (IGF-1) and epidermal 

growth factor (EGF), angiopoietin-1, an angiogenic factor essential for the development of pulmonary 

vascular system, have been found in tissues of PAH patients [15, 33]. 

Inflammatory process 

The concept that immunological reactions in PH play a significant role in the development and 

worsening of the disease is now well accepted. Autoimmune infiltration of immune cells and 

inflammatory reactions have been shown to contribute to the pathogenesis of IPAH [34]. 

Inflammatory processes are prominent in IPAH, but also in PAH related to more classical forms 

of inflammatory syndromes, such as connective tissue diseases, HIV infection, or other viral etiologies 

[35]. Indeed, a clinical improvement after immunosuppressive therapy is obtained in patients with PAH 
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associated to systemic inflammatory diseases, as well as tissue connective diseases, in particular 

SSc-PAH and lupus erythematous [34]. Similarly, inflammation seems to play a significant role in 

experimental animal models of PH. 

Inflammation is an adaptive response that is triggered by deleterious stimuli and conditions, such 

as infection and tissue injury [36]. It is characterized by the sequential release of cytokines, 

chemokines and growth factors that regulate increased vascular permeability and recruitment of 

leukocytes. 

Increased vascular permeability also results in extravasation of plasma proteins, which further 

amplify the inflammatory reaction.  

Figure 2. Schematic illustration of infection-
mediated and inflammation-mediated 
vascular remodelling: In response to 
infection and inflammatory events, lung 
vascular cells produce inflammatory 
mediators (chemokines and cytokines), 
thereby recruiting the inflammatory 
cells (macrophages, dendritic cells, 
mast cells, B-cells, T-cells and 
regulatory T-cells). With the 
coordination of inflammatory 
mediators, inflammatory cells may 
perpetuate the release of cytokines, 
chemokines and growth factors. 
Finally, these processes lead to 
vascular remodeling though matrix 
remodelling, collagen deposition, 
vascular cell proliferation, migration, 
and in situ thrombosis. CCL2, 
chemokine (C-C motif) ligand 2; CCL5, 
chemokine (C-C motif) ligand 5 or 
RANTES (regulated upon activation, 
normal T-cell expressed and secreted); 
CX3CL1, chemokine (C-X3-C motif) 
ligand 1 (fractalkine); CX3CR1, 
chemokine (C-X3-C motif) receptor 1; 
EC, endothelial cells; FB, fibroblasts; 
FGF, fibroblast growth factor; IL-1, 
interleukin-1; IL-6, interleukin 6; MCP-1, 
monocyte chemotactic protein-1; 
PDGF, plateletderived growth factor; 
PAH, pulmonary arterial hypertension; 
SDF-1a, stromal cell-derived factor 1a; 
SMC, smooth muscle cells; TNF-a, 
tumour necrosis factor-a; Treg cell, 
regulatory T-cell; VEGF, vascular 
endothelial growth factor. Image from 
Pullamsetti SS et al. Clinical 
Microbiology and Infection, 2011. 
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Inflammation is an adaptive response for restoring homeostasis, however, when it persists 

(chronic inflammation), it can cause tissue damage and loss of function. Chronic inflammation may 

occur because of the persistence of infection or antigen, recurring tissue injury, or a failure of 

endogenous anti-inflammatory mechanisms [36]. 

In the PAH context (Figure 2), the inflammatory and immune components of structurally altered 

vessels includes circulating monocytes, neutrophils, dendritic cells, macrophages and lymphocytes, as 

well as fibroblasts, resident endothelial cells and smooth muscle cells. Presumably, circulating cells 

are directed to the sites of injury, adhere to or come close to endothelial cells, invade the internal 

elastic lamina, and release a variety of inflammatory mediators. 

These substances that act on the local environment and promote chemotaxis, can be derived 

also from plasma proteins or secreted by resident cells of the vasculature. They can be vasoactive 

amines, vasoactive peptides, fragments of complement components, lipid mediators, cytokines, 

chemokines or proteolytic enzymes [37, 38]. Chemotactic cytokines play a role in leukocyte 

recruitment and trafficking in PH, such as rolling, activation, adhesion and extravasation into the 

inflamed tissue along a chemoattractant gradient involving chemokines (soluble, secreted basic 

proteins). 

Released cytokines and growth factors produce the effects of inflammation by mediating 

communication between and among circulating and resident vascular cells. Finally, all of these 

interactions result in vascular remodelling through matrix remodelling, collagen deposition, 

proliferation and migration of all vascular cell types [38]. 

Patients with idiopathic or associated PAH exhibit higher circulating levels and pulmonary 

expression of IL-1b, IL-6 and tumor necrosis factor-α (TNF- α) than healthy controls [39]. 

Thrombosis and platelet dysfunction 

Two additional processes involved in the pathogenesis of pulmonary hypertensive vasculopahty 

are thrombosis and platelet dysfunction. Thrombolysis and thrombotic lesions in pulmonary 

microcirculation and in elastic pulmonary arteries have been found in PAH patients [4]. It is evident 

that the presence of alterated coagulation process, platelet and endothelial dysfunctions can favor the 

development and the progression of thrombosis in situ. 

High serum level of D-dimer (degradation product of fibrin), fibrinopeptide A (thrombin activity 

indicator) [40], and an increase in urinary excretion of thromboxane A2 metabolites (platelet activation 

index) [41] are altogether elements indicating thrombotic diathesis. 

The platelet dysfunction role in PAH is not limited to altered coagulation process. Actually, in 

response to specific stimuli platelet are able to produce prothrombotic, vasoactive and mitogen factors 

as thromboxane A2, PDGF, 5-HT, TGF- and VEGF, which contribute to vascular remodeling. 
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Furthermore, the presence of endothelial damage serum markers, as Von Willebrand factor and 

Plasminogen activator inhibitor-1 [42], leads to hypothesized that pulmonary endothelial damage 

induces thrombogenic surface and favors thrombotic lesion formation in situ. 

The mural thrombi in central elastic pulmonary arteries can be a consequence of several factors 

including thrombophilic state, intimal atherosclerotic lesions, vascular dilation and reduced cardiac 

output. In addition, the peripheral embolization of proximal thrombi can lead to a progression of 

obstructive lesions in small caliber vessels. 

1.2.4. Genetic 

Familial cases have long been recognized, and in 2000, bone morphogenetic protein receptor 

type 2 (BMPR2) was identified following linkage analysis [43-45] as the gene responsible for more 

than 70% of Heritable PAH (HPAH) and approximately 20% of IPAH cases [46-49]. Crude indirect 

estimates of the population carrier frequency for BMPR2 mutations lie in the frequency range of 

0.001% to 0.01% [50]. 

Two further receptor members of the TGF-beta cell signaling superfamily are also recognized as 

uncommon causes of HPAH. Heterozygous mutations in activin-like kinase-type 1 (ALK1) [51] and 

endoglin (ENG) [52] cause hereditary hemorrhagic telangiectasia (HHT) and may rarely lead directly 

to the development of PAH. 

HPAH is inherited as an autosomal dominant trait with incomplete penetrance and an estimated 

lifetime risk of 10% to 20% [53]. The disease is more frequent in women, with a ratio of at least 1.7:1 

women to men [5, 54, 55]. Both incomplete penetrance and the significantly skewed gender ratio 

suggest interactions between BMPR2 disease mutations and environmental exposures that may 

include hormones, together with a role for modifying genes. 

HPAH and IPAH have a similar clinical course. HPAH is associated with a slightly younger age 

of onset and a slightly more severe hemodynamic impairment at diagnosis, but with similar life 

expectancy [56]. Patients with PAH and disease-causing BMPR2 mutations are, however, less likely 

to respond to acute vasodilator testing during RHC and are unlikely to benefit from treatment with 

calcium channel blockade [56-58]. 

Families with BMPR2 mutations have been reported to have genetic anticipation, or earlier age 

of diagnosis in subsequent generations [55]. However, no systematic population-based study has 

been performed to avoid the ascertainment bias that could result in the recruitment and study of 

families associated with earlier-onset disease in more recent generations. Furthermore, the usual 

genetic mechanisms for anticipation, including trinucleotide repeat expansions, are not present in 

BMPR2. The question of genetic anticipation can be better addressed in future registries in which all 
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patients with HPAH and IPAH can be genetically characterized and unbiased family studies can be 

performed. 

1.2.5. Diagnosis and Clinical presentation of PAH 

The evaluation process of a patient with suspected PH requires a series of investigations 

intended to confirm the diagnosis, clarify the clinical group of PH and the specific etiology within the 

PAH group, and evaluate the functional and hemodynamic impairment. Since PAH, and particularly 

IPAH, is a diagnosis of exclusion, the experts created a diagnostic algorithm, in order to have an 

helpful starting point in any case of suspected PH [3]. Many techniques are available for physicians to 

assess PAH: Electrocardiogram, Chest radiograph, Pulmonary function tests and arterial blood gases, 

Echocardiography, Ventilation/perfusion lung scan, High-resolution computed tomography, contrast-

enhanced computed tomography, and pulmonary angiography, Cardiac magnetic resonance imaging, 

Blood tests and immunology, Abdominal ultrasound scan, RHC and vasoreactivity test. 

Above all, RHC is required to confirm the diagnosis of PAH, to assess the severity of the 

hemodynamic impairment, and to test the vasoreactivity of the pulmonary circulation. It is really 

important that it is performed in an experienced center, actually only in this case RHC procedures 

have low morbidity (1.1%) and mortality (0.055%) rates [59]. 

The clinical presentation is similar in idiopathic and associated type of PAH. Symptoms of PH do 

not usually occur until the condition has progressed.  

They are mild, nonspecific often associated to other comorbidities, or only present during 

demanding exercise. For these reasons, individuals with PAH may go years without a diagnosis. 

Actually, in the most of registers the delay of patient diagnosis is about 2 years [5, 54]. The first 

symptom of PH is usually shortness of breath (or dyspnea) with everyday activities, such as climbing 

stairs. Symptoms at rest are reported only in very advanced cases. The most likely cause for dyspnea 

in PH is the inadequacy of cardiac output compared to the metabolic requirements. Along with 

dyspnea, patients may have fatigue, weakness, syncope, and abdominal distention. In addition, due to 

pulmonary artery stretching or right ventricular ischemia patients could have angina despite normal 

coronary arteries. Besides, the rupture of distended pulmonary vessels can cause hemoptysis which is 

a rare but potentially devastating event. 

Abnormalities detected on physical examination tend to be localized in the cardiovascular 

system. A careful examination often allow to detect signs of PH and right ventricular hypertrophy. 

The findings on lung examination are nonspecific but may point to the underlying cause of PH. 

For instance, wheezing may lead to a diagnosis of chronic obstructive pulmonary disease (COPD), 

and basilar crackles may indicate the presence of interstitial lung disease.  
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1.2.6. Pathophysiology of PAH 

The increase of pulmonary vascular resistance in PAH patients is therefore related to different 

mechanisms, including vasoconstriction (functional alterations), proliferative and obstructive 

remodeling of the pulmonary vessel wall, inflammation, and thrombosis (overall fixed alterations). 

Vasoconstriction is likely prevalent in the small group of patients responding to the acute 

vasoreactivity test [3]. Only about 10% of patients with IPAH will meet these criteria. These patients, 

defined ‘responder’, are most likely to show a sustained response to long-term treatment with high 

doses of calcium channel blockers [60] and they are the only patients that can safely be treated with 

this type of therapy. 

The increase in pulmonary vascular resistance leads to right ventricular overload, hypertrophy, 

and dilatation and eventually to right ventricle failure and death. The importance of the progression of 

right ventricle failure on the symptoms, exercise limitation, and outcome of PAH patients is confirmed 

by the prognostic impact of right atrial pressure, cardiac index and PAP, the three main hemodynamic 

factors linked to right ventricle pump function. Echocardiography and cardiac magnetic resonance 

parameters and brain natriuretic peptide plasma levels can also identify non-invasively the presence 

and extent of right ventricular dysfunction. Afterload mismatch remains the leading determinant of right 

heart failure in patients with PAH because its removal, as follows lung transplantation, leads almost 

invariably to sustained recovery of right ventricle function. It is, therefore, conceivable that the drug 

therapies tested in PAH patients have included compounds which could potentially interfere with the 

pathobiological mechanisms of the disease trying to achieve a reverse remodeling of the obstructive 

lesions and a reduction of the right ventricular afterload. 

1.2.7. Current available therapies 

Two decades ago, patients with idiopathic PAH were defined as the ‘kingdom of the near-dead’ 

[61] to outline their dismal median survival rate that, at that time, was 2.8 years from the diagnosis 

[62], despite any available supportive treatment.  

Current specific drug therapies include those targeting the pathobiological abnormalities of PAH 

such as prostanoids, endothelin receptor antagonists (ERA) and phosphodyesterase type-5 (PDE-5) 

inhibitors (Figure 3). 
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Prostanoids 

Dysregulation of the prostacyclin metabolic pathways has been shown in patients with PAH as 

assessed by reduction of prostacyclin synthase expression in the pulmonary arteries and of 

prostacyclin urinary metabolites [63].  

Epoprostenol (synthetic prostacyclin) is available as a stable freeze-dried preparation that needs 

to be dissolved to allow intravenous infusion. It has a short half-life (3–5 min) and it is stable at room 

temperature for only 8 hours; then it must be administered continuously with infusion pumps and 

permanent tunnellized catheters. The efficacy of continuous intravenous administration of 

epoprostenol has been tested in three unblinded clinical trials in IPAH [64, 65] and in SSc-PAH 

patients [66]. Epoprostenol improves symptoms, exercise capacity and hemodynamics in both clinical 

conditions, and is the only treatment shown to improve survival in IPAH in a randomized study. 

Figure 3. Targeted medical therapy for pulmonary arterial hypertension based on the 
prostacyclin pathway, the nitric oxide pathway and the endothelin pathway. Image from 
Humbert M. et al., N Engl J Med 2004. 
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Optimal dose varies between individual patients, ranging from 20 to 40 ng/kg/min [67, 68]. Serious 

adverse events related to the delivery system include pump malfunction, local site infection, catheter 

obstruction and sepsis. Abrupt interruption of the epoprostenol infusion should be avoided because, 

as observed in some patients, it may induce a rebound worsening of their PH with symptomatic 

deterioration and even death. 

Treprostinil is a tricyclic benzidine analogue of epoprostenol, with sufficient chemical stability at 

room temperature, it can be administered intravenously or subcutaneously. The effects of treprostinil 

in PAH were studied in the largest worldwide randomized controlled trial in which it has been 

performed subcutaneous administration by micro-infusion pumps and small subcutaneous catheters. 

This trial showed improvements in exercise capacity, hemodynamics and symptoms [69]. The greatest 

exercise improvement was observed in patients who were more compromised at baseline and in 

subjects who could tolerate upper quartile doses (>13.8 ng/kg/min). Infusion site pain was the most 

common adverse effect of treprostinil, leading to discontinuation of the treatment in 8% of cases on 

active drug and limiting dose increase in an additional proportion of patients. Among the 15% of 

patients who continued to receive subcutaneous treprostinil alone, survival appears to be improved 

[69]. 

In another long-term, open-label study, sustained improvement in exercise capacity and 

symptoms with subcutaneous treprostinil was reported in patients with IPAH or CTEPH, with a mean 

follow-up of 26 months [70]. Treprostinil has been recently approved in the USA for intravenous use in 

patients with PAH: the effects appear to be comparable with those of epoprostenol but at a dose 2 to 3 

times higher. It is more convenient for the patient because the reservoir can be changed every 48 

hours as compared to 12 hours with epoprostenol. 

Iloprost is a chemically stable prostacyclin analogue available for intravenous, oral and aerosol 

administration. Inhaled therapy for PAH is an attractive concept that has the theoretical advantage of 

being selective for the pulmonary circulation. Iloprost has been evaluated in one research clinical trial 

in which daily repetitive drug inhalations (6 to 9 times, 2.5–5 μg/inhalation, median 30 μg daily) were 

compared with placebo inhalation in patients with PAH and CTEPH [71]. The study showed an 

increase in exercise capacity and improvement in symptoms, PVR and clinical events in enrolled 

patients. A second research clinical trial on 60 patients already treated with bosentan increased in 

exercise capacity in the subjects randomized to the addition of inhaled iloprost, compared with 

placebo. Overall, inhaled iloprost was well tolerated. Continuous intravenous administration of iloprost 

appears to be as effective as epoprostenol in a small series of patients with PAH and CTEPH [72]. 
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Endothelin Receptor Antagonists 

Activation of the ET-1 system has been demonstrated in both plasma and lung tissues of PAH 

patients [22] Although it is not clear if the increased ET-1 plasma levels are a cause or a consequence 

of PH [23], studies on tissue ET-1 expression confirm its prominent role in the pathogenesis of PAH 

[21].  

Bosentan is a first-in-class of oral active dual ETA and ETB receptor antagonists. It has been 

evaluated in PAH in five research clinical trials that have shown improvement in exercise capacity, 

functional class, hemodynamics, echocardiographic and Doppler variables, and time to clinical 

worsening [73-76]. 

Long-term observational studies have demonstrated the durability of the effect of bosentan over 

time. Increases in hepatic aminotransferases occurred in 10% of the subjects but were found to be 

dose dependent and reversible after dose reduction or discontinuation. For these reasons liver 

function tests should be performed at least monthly in patients receiving bosentan. Sitaxsentan, a 

selective orally active ETA receptor antagonist, has been assessed in two research clinical trials in 

patients with IPAH, SSc-PAH and congenital heart diseases [77]. The studies demonstrated 

improvements in exercise capacity and hemodynamics. A one-year, open-label observational study 

demonstrated the durability of the effects of sitaxsentan over time [78]. Incidence of abnormal liver 

function tests, which reversed in all cases, was 3%-5% for the approved dose of 100 mg (monthly 

monitoring is required). Interaction with warfarin requires the reduction of the anticoagulant dose by 

about 80% to stabilize the international normalized ratio. 

Ambrisentan, a non-sulfonamide, propanoic acid-class ERA selective for the ETA receptor, has 

been in evaluated in a pilot study [79] and in two large research clinical trials that demonstrated 

efficacy on symptoms, exercise capacity, hemodynamics and time to clinical worsening The openlabel 

continuation study has demonstrated the durability of the effects of ambrisentan for at least one year 

[80]. Ambrisentan has been approved for the treatment of WHO/NYHA functional class II patients. The 

current approved is 5 mg once daily (OD), which can be increased to 10 mg OD if the drug is tolerated 

with the initial dose. Incidence of abnormal liver function tests ranges from 0.8% to 3%. However even 

in patients treated with ambrisentan, liver function tests are required at least monthly. Caution is 

suggested for the co-administration of ambrisentan with ketoconazole and cyclosporine. 

Phosphodiesterase Type-5 Inhibitors 

Sildenafil is an orally active, potent and selective inhibitor of PDE-5 that exerts its 

pharmacological effect by increasing the intracellular concentration of cGMP. A number of 

uncontrolled studies have reported favorable effects of sildenafil in IPAH, PAH associated to 

connective tissue diseases and to congenital heart diseases, and in CTEPH [81, 82]. A pivotal 
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research clinical trial in 278 PAH patients treated with sildenafil 20, 40, or 80 mg 3 times daily (TID) 

has confirmed favorable results on exercise capacity, symptoms and hemodynamics [83]. Although 

the approved dose is 20 mg TID, the durability of effect up to one year has been demonstrated only 

with the dose of 80 mg TID. In clinical practice, up-titration beyond 20 mg TID. (mainly 40 to 80 mg 

TID) is frequently needed. Most side effects of sildenafil were mild to moderate and mainly related to 

vasodilation. Tadalafil is an OD dosing, selective PDE-5 inhibitor, currently approved for the treatment 

of erectile dysfunction. 

A pivotal research clinical trial on 406 PAH patients treated with tadalafil 5, 10, 20, or 40 mg OD 

has shown favorable results on exercise capacity, symptoms, hemodynamics and time to clinical 

worsening for the largest dose [84]. Side effects profile was similar to sildenafil. 

Combination Therapy 

Combination therapy is the simultaneous use of more than one PAH-targeted class of drugs, eg, 

ERA, PDE-5 inhibitors, prostanoids, and novel substances. Although long-term safety and efficacy 

have not yet been amply explored, numerous case series have suggested that various drug 

combinations appear to be safe and effective. Different randomized controlled studies have shown the 

efficacy of the combination of bosentan and epoprostenol [75], of the addition of inhaled iloprost to 

patients on background therapy with bosentan [85], of bosentan in patients on background therapy 

with sildenafil [74], of sildenafil in patients on background treatment with epoprostenol [86], of inhaled 

treprostinil in patients with background treatment with either bosentan or sildenafil and of tadalafil in 

patients on background treatment with bosentan [84]. Additional trials with novel compounds are on-

going. There are many open questions regarding combination therapy, including the optimal 

combination and timing. Candidates to combination therapy are patients whose status is defined as 

stable but unsatisfactory or unstable and deteriorating [3]. Given the complexities related to 

combination therapy, it is recommended that candidates be referred to expert centers. 

1.2.8. Lung transplantation 

Transplantation has been performed in patients with IPAH and is considered by some to be the 

final effective treatment for selected patients with IPAH 

Lung and heart–lung transplantation in PAH has been assessed only in prospective uncontrolled 

series, since formal research clinical trials are considered unethical in the absence of alternative 

treatment options [87]. The 3-year and 5-year survival after lung and heart–lung transplantation is 

approximately 55% and 45%, respectively [88]. Both single and bilateral lung transplantation have 
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been performed for IPAH and these operations have been combined with repair of cardiac defects in 

Eisenmenger’s syndrome. 

Recipient survival rates have been similar after single and bilateral lung transplantation and after 

heart–lung transplantation for PAH. However, many transplant centers currently prefer to perform 

bilateral lung transplantation. Lung and heart–lung transplantation are indicated in PAH patients with 

advanced WHO/NYHA class III and class IV symptoms that are refractory to available medical 

treatments. The appropriate timing of listing for transplantation is complicated by the unpredictable 

waiting period and the donor organ shortage. 

1.2.9. Animal models in PAH 

Several animal models are currently available to study PH. The most commonly used animal 

models of PH are the chronic hypoxic and the monocrotaline injury models. Although they don’t reflect 

completely the human disease, these animal models have been used for quite some time and have 

undoubtedly contributed to a better understanding of the pulmonary hypertensive process. The most 

commonly used animal models are rats and mice. 

Chronic hypoxia 

Normo- and hypobaric hypoxia are frequently utilized to induce PH in a wide variety of animal 

species. This model is very predictable and reproducible within a selected animal strain, however. 

responses are significantly affected by age, as younger individuals with rapidly maturing lungs are 

more susceptible to this trigger [89]. Structural changes in hypoxia-induced PH are very similar (albeit 

of differing magnitude) in almost all mammals investigated. An increase in cells expressing alpha-

smooth muscle actin (alpha-SMA) into previously nonmuscularized arterioles rapidly occurs. 

Many possibilities could account for these changes: the differentiation of pericytes, migration of 

smooth muscle cells (SMC), recruitment and differentiation of local fibroblasts, mononuclear 

cell/progenitor cell recruitment, and transdifferentiation of endothelial cells into mesenchymal-like cells 

through endothelial-mesenchymal transition process [89, 90]. Subsequently, due to medial SMC 

proliferation and hypertrophy there is increased thickening of the previously muscularized precapillary 

pulmonary arteries.  

Furthermore, inflammation appears to play a significant role in the hypoxia-induced remodeling 

process in at least some strains of rats. Recently, it was reported that hypoxia induced an early and 

persistent pulmonary artery-specific vascular inflammatory response [91]. The increased expression of 

chemokine/ chemokine receptors preceded the appearance of inflammatory cells, which, in the case 

of hypoxia, are primarily mononuclear. In addition, there is significant thickening and fibrosis of the 
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large proximal pulmonary arteries, and these vessels have been documented to have significant 

stiffening [92]. After 2 weeks of hypoxia, rats develop moderate PH with a doubling of mean 

pulmonary artery pressure that seems to correlate with the progression of structural changes. RV 

hypertrophy occurs, but there is little evidence of RV failure. It should be noted that fawn-hooded (FH) 

rats develop more severe PH and remodeling than other strains, as for example Sprague-Dawley rats, 

with exposure to hypoxia and represent the most severe spectrum of hypoxia induced PH in rodents 

[93, 94]. In addition, pulmonary artery SMC of these rats show increased ET production, which may 

account for their heightened pressure and remodeling responses to hypoxia .  

Even if causing an elevation in pulmonary artery pressure, chronic hypoxia in mice it seems to 

induce only minimal vascular remodeling, certainly less than the rat. The most common findings are 

muscularization of previously nonmuscularized vessels and a minimal medial thickening of muscular 

resistance vessels [92]. 

From a molecular point of view, definite differences between the response of the rat and mouse 

to hypoxia have also been shown. Microarray analysis of the lung tissue demonstrates distinct 

differences in gene expression induced by hypoxia between the species [95]. Chronic hypoxic 

exposure in the rat increased expression of genes involved in endothelial cell proliferation and 

decreased expression of those associated with apoptosis. 

However, it should be acknowledged that recent studies demonstrate that the responses in 

hypoxia in mice are strain-specific and that these intra-species comparisons could vary significantly 

depending on strains compared [96]. 

In contrast, neonatal calves exposed to chronic hypobaric hypoxia, even at less severe 

conditions of hypoxia (12.5 vs. 10%), develop severe PH with pulmonary artery pressures equal to or 

exceeding systemic pressures and vascular remodeling that is far more striking in both distal and 

proximal pulmonary arteries than that observed in the rat or mouse [89]. In some animals there is 

significant intimal thickening, especially in proximal vessels, and in distal vessels there is remarkable 

thickening of the media and adventitia. Excessive proliferation of the vasa vasorum occurs in the 

adventitia of these animals, to the extent that they may even be confused with the plexiform lesions. In 

addition, there is marked accumulation of mononuclear cell infiltrates and mesenchymal progenitors 

[97]. Despite these severe inflammatory and fibrotic lesions, and in distinct contrast to the PAH 

described in humans, the disease is reversible with return to normoxic conditions, a finding that is also 

true for the hypoxic rat and mouse models. It should also be noted that people who develop significant 

PH at altitude, so-called Monge’s disease, improve markedly when returned to sea level conditions 

[92]. 

The chronic hypoxic models of PH in rodents could be regarded as models for less severe PH 

(not PAH) and should be regarded as having relevance to human PH associated with hypoxia as it 
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occurs in pulmonary parenchymal disease, sleep disordered breathing, severe (COPD), and residence 

at high altitude. 

Monocrotaline injury 

Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid present in the plant Crotalaria spectabilis. 

More than 40 years ago PH was first described after repeated oral ingestion in laboratory rats [92]. It is 

known that MCT is metabolized in the liver to the MCT pyrrole (MCTP), which leads to vascular injury. 

MCT models, particularly in rats, can now be achieved by injection with a single subcutaneous or 

intraperitoneal injection of MCT, making this a very simple and thus technically appealing animal 

model available to a wide spectrum of investigators. Unfortunately, the response to MCT is variable 

among species, strains, and even animals because of differences in the hepatic metabolism by 

cytochrome P-450. The preferred species for the study of monocrotaline-induced PH is currently the 

rat. 

Although the exact mechanism through which MCT causes PH is not known, it is speculated by 

many that it causes direct endothelial damage that then triggers the inexorable development and 

progression of severe and eventually lethal PH [98]. This is based on observations showing that the 

onset of increased pulmonary arterial pressures and vascular remodeling is delayed until 1–2 weeks 

after the initiating dose [99]. Other investigators have suggested that the increases in pulmonary artery 

pressure and vascular remodeling are caused by early and often dramatic accumulation of 

mononuclear inflammatory cells in the adventitial sheath of the small intra-acinar vessels [100]. This 

change occurs in both the pulmonary arteries and veins and precedes the evidence of smooth muscle 

hypertrophy in the media. Thus adventitial inflammation, particularly macrophage accumulation, is 

suggested by some to have more important effects on the pathogenesis of PH than the endothelial cell 

[100, 101]. There is significant RV hypertrophy and RV dysfunction, which is important for study in PH 

models. Following high doses of MCT injection, RV systolic pressures reaching 80 mmHg after 5 

weeks have been reported, which was associated with a low survival rate of 35% [98, 99]. 

1.3. Smooth muscle cells 

Smooth muscle cells (SMCs) are essential for good performance of the vasculature. By 

contraction and relaxation, they modify the luminal diameter, which allows blood vessels to maintain 

an appropriate blood pressure. 

However, vascular SMCs also achieve other functions, which become progressively more 

important such as in pregnancy, during exercise, or after vascular injury [102]. In these cases, SMCs 
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synthesize large amounts of extracellular matrix (ECM) components and increase proliferation and 

migration. 

The functions that SMCs can exert reflect their different phenotypes, ranging from contractile to 

synthetic. These have clearly different morphologies. Contractile SMCs are elongated, spindle-shaped 

cells, whereas synthetic SMCs are less elongated and have a cobblestone morphology (Figure 4), 

which is referred to as epithelioid or rhomboid [103]. 

Synthetic SMCs contain a high number of organelles involved in protein synthesis, whereas 

these are largely replaced by contractile filaments in contractile SMCs. Moreover, synthetic and 

contractile SMCs have different proliferative and migratory characteristics. Generally, synthetic SMCs 

exhibit higher growth rates and higher migratory activity than contractile SMCs [103]. 

The variations between SMCs within a particular vessel, both in term of marker gene expression 

and functional and morphological characteristics, suggest that there may be a genetic basis for SMC 

diversity. After all, such SMCs share similar embryological origins and experience comparable local 

conditions. This concept is substantiated by several studies reporting the persistence of in vivo 

phenotypes in culture, despite changed conditions. For example, within the bovine pulmonary artery, 

four SMC phenotypes with distinct marker protein expression profiles and different morphologies have 

been described [104]. The existence of distinct SMC populations within the same artery has also been 

demonstrated in rat [105], pigs [106], and humans [107]. In all these studies, in vivo differences were 

maintained in vitro. Interestingly, the studies summarized that although SMC phenotype appears to be 

genetically programmed, local environmental cues can still modulate the characteristics of the SMCs. 

This raises the question of the relative importance of the local environment versus genetic 

programming, especially in pathobiological processes. SMCs isolated from the human internal thoracic 

artery form a particularly illustrative example [107]. 

Figure 4. Whereas the SMCs in a vessel can collectively cover the whole spectrum of phenotypes, a given 
population of SMCs (indicated by ‘a’ to ‘f’, respectively) can only cover a limited area of this spectrum. 
The boundaries of the spectrum for any given SMC population are defined by (epi)genetic programs. 
SMCs can modulate their phenotype within the boundaries, a process which is controlled by the 
integration of environmental factors. Image from Rensen SSM et al Netherlands Heart Journal, 2007.  
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These SMCs were cloned after enzymatic digestion, producing epithelioid as well as spindle-

shaped cell types. Both had a contractile gene expression profile, but only spindle-shaped cells 

expressed meta-vinculin. They also had higher SM-MHC and SM-calponin levels and a higher h-

caldesmon/l-caldesmon ratio. Apart from these differences, the two types of clones differed with 

respect to proliferation rate, ECM build-up and responses to various growth factors and hormones. 

One typical spindle-shaped clone, designated HITB5, was able to adopt either a synthetic or a 

contractile phenotype, depending on serum concentrations [108]. This shows that even though SMC 

phenotypes can be stable in culture, they can also be manipulated to adopt a certain phenotype, 

allowing the study of agents that modulate phenotypes. SMC clones that are capable of reversible 

modulation to both ends of the phenotype spectrum have also been derived from porcine coronary 

artery SMCs [109]. These cells displayed phenotypic modulation after fibroblast growth factor (FGF)-2 

or platelet-derived growth factor (PDGF)-BB treatment or withdrawal. PDGF-BB drove spindle-shaped 

SMC clones towards the rhomboid phenotype. Concomitantly, proliferation and migration increased 

and SM-MHC and smoothelin expression greatly diminished. 

Many biocompounds have been reported to affect expression of SMC phenotype markers, some 

of which even have phenotype-dependent effects. These factors include PDGF (see the next 

paragraph), TGF-β, activin A, retinoids, angiotensin II, and TNF-α. Besides these, compounds such as 

FGF, insulin-growth factor (IGF)-I and -II, endothelin-1, nitric oxide (NO), reactive oxygen species, 

peroxisome proliferator-activated receptor-gamma ligands and complement 3 protein have been 

shown to affect SMC phenotype. 

1.4. Platelet-derived growth factor pathway 

PDGF plays a critical role in cellular proliferation and development.  

The biologically active form of PDGF is a dimer formed from the A and B chains. Interestingly, it 

is active to a differing degree depending on which dimer is formed (AA, AB, or BB).  

The PDGF Receptor (PDGFR) is also a dimer and can form from the combination of the alpha 

and beta chains in any order (alpha-alpha, alpha-beta, beta-beta). The PDGFR dimer is only formed 

after ligand binding so the alpha/beta composition of the receptor can be influenced by the form of 

PDGF that is present. Upon binding of ligand the PDGFR is tyrosine phosphorylated 

(autophosphorylation) and leads to the phosphorylation of several other cellular proteins [110] 

including ras-dependent activation of p42/p44 mitogen–activated protein kinases (MAPKs) and 

activation of phosphoinositol 3 kinase (PI3 kinase). Both events are critical for the mitogenic effects of 

PDGF. It is well understood that sustained activation of signal transduction pathways, particularly 

p42/p44 MAPK and PI3 kinase is required for progression through G1 to S [90]. 
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PDGF, in particular PDGF-BB, is synthesized by many different cell types including SMCs, ECs, 

and macrophages. Worthy to note, its receptor, PDGFR-β, is mainly expressed in SMCs. It has been 

proposed as a key mediator in the progression of several fibroproliferative disorders such as 

atherosclerosis, lung fibrosis, and PH [111].  

In the context of PH it may contribute to pulmonary vascular remodeling via several 

mechanisms. At first, PDGF is a potent mitogen which induces the proliferation of PASMCs and 

fibroblasts. In addition, PDGF increases cell migration and extracellular matrix deposition by inducing 

the expression of metallomatrix proteases, particularly matrix metalloproteinase 1, 3, and 9. PDGF 

also potently inhibits apoptosis in vascular SMCs through the phosphatidylinositol 3 kinase (or 

PI3K)/Akt pathway [112]. 

Besides, hypoxia is known [113] to induce PDGF gene expression in cultured vascular 

endothelial cells derived from bovine pulmonary arteries and human umbilical vein. In accordance, 

rats that developed PH following long-term exposure to hypoxia demonstrate increased expression of 

PDGF-A and PDGF-B isoforms [114]. Moreover, increased expression of PDGF-A, PDGF-B, and 

PDGF receptors (PDGF-R α, and PDGF-R β) have been assessed by reverse transcription-

polymerase chain reaction (PCR), performed on laser-captured microdissected pulmonary arteries 

from native lungs of patients with severe IPAH who underwent lung transplantation [115] as compared 

with control subjects. 

Recently, novel therapeutic agents, such as tyrosine kinase inhibitors, have been tested in 

experimental models of PH [116] and in clinical trials. 

Within this class of drugs imatinib, a tyrosine kinase inhibitor licensed for the treatment of 

chronic myeloid leukemia, has been investigated [116-118] as a possible therapy for PAH. In fact, it 

showed a significant inhibition of PDGF-BB–induced proliferation and migration of PASMCs [51]. 

Imatinib acts by blocking the functioning of PDGF receptors as well as other kinases by targeting the 

adenosine triphosphate binding site of tyrosine kinases. Schermuly R.T. et al [116] used the MCT rat 

and a mouse hypoxic models to demonstrate that animals treated with imatinib had significantly 

reduced pulmonary artery pressures, higher cardiac index, increased arterial oxygenation, and 

improved survival when compared to sham-treated animals. The inhibition of PASMC proliferation was 

observed in the imatinib-treated groups. A single clinical case study [118] in a patient with familial PAH 

showed dramatic improvements after imatinib therapy in 6 min-walk distance (6MWD) as well as in a 

reduction in pulmonary vascular resistance. Two further successful cases [117] of longer term 

treatment have since been reported. 

A phase II proof-of-concept study found that once daily imatinib in patients on established 

therapies did not significantly improve 6MWD but did result in a significant reduction in PVR and an 

increase in CO; post-hoc analysis suggested a greater treatment effect in those patients with more 
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severe hemodynamic compromise [119]. Imatinib is not without potentially serious side effects, but 

these initial reports suggest that the drug may be beneficial for patients with advanced PAH who are 

not responding to established therapies. 

1.5. Histone deacetylase enzymes 

All reactions within the chromatin substrate including transcription, replication, recombination, 

and repair, must be initiated and regulated by DNA-binding factors. The interaction of these factors 

with their target DNA requires chromatin to be partially relaxed. Actually, the packaging of eukaryotic 

DNA into chromatin poses a fundamental accessibility problem. In this context, many studies have 

established that such chromatin flexibility is achieved by two principal molecular mechanisms. First, 

ATP-dependent chromatin remodeling factors alter histone–DNA interactions such that nucleosomal 

DNA becomes more accessible to interacting proteins [120, 121]. Second, the amino-terminal tails of 

the core histone proteins are subjected to a variety of covalent post-translational modifications 

including acetylation, phosphorylation, methylation, ubiquitination, and ADP-ribosylation [122-124]. 

These modifications play essential roles in generating the dynamic state of chromatin. 

Thus far, the most extensively studied post-translational histone modification is the Acetylation, a 

process linked mainly to transcriptional activation. It is catalyzed by a group of enzymes known as 

histone acetyltransferases, which transfer an acetyl group from the acetyl coenzyme A, metabolic 

intermediary, to the amino group of lysine residues in histone tails [125]. 

It is generally accepted that the primary effect of acetylation is to partially neutralize the positive 

charge of histones, resulting in a decrease in their affinity for negative charges of DNA and thereby 

generating a permissive structure for the binding of proteins to the nucleic acid. Additionally, 

acetylated histone tails can recruit other chromatin-associated proteins. 

The functional importance of acetylation lies in its highly reversible nature that depends on the 

accuracy and efficiency of the reverse reaction, histone deacetylation, which is catalyzed by a group of 

enzymes known as histone deacetylases (HDACs). 

HDAC family consists of at least 18 members which can be divided phylogenetically into four 

classes. 

Class I shows homology to the yeast protein reduced potassium deficiency 3, includes: HDAC1, 

2, 3 and 8. 

HDACs of Class II are homologous to the yeast enzyme HDA1, they are further grouped into two 

subclasses Class IIa and Class IIb according to their sequence homology and domain organization. 

Class IIa includes HDAC4, 5, 7, 9; and Class IIb includes HDAC6 and 10. 

Class III show distinct homology with the yeast enzyme Sir2, includes: sirtuin (SIRT) 1 to 7. 
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It was reported that SIRT1, 2, 3, 5 and 6 induce deacetylation of histones or non-histone 

proteins, whereas SIRT4 and 7 do not possess in vitro deacetylase activity [126]. 

Class IV: HDAC11 is the most recently identified member. 

Furthermore, they can be divided into two structural categories: zinc-dependent enzymes (Class 

I, Class II and Class IV) and nicotinamide adenine dinucleotide (NAD+)-dependent enzymes (Class 

III). 

These isoforms have generally distinct gene expression patterns and likely vary also in cellular 

localization and function, though these have been poorly characterized. In term of cellular localization, 

HDAC1, 2 and 3 are primarily nuclear, HDAC6 is primarily cytoplasmic and HDAC4, 5, 7 and 9 are 

believed to shuttle between the nucleus and cytoplasm [127, 128]. The cellular localization of HDAC8 

has not been resolved since it has been reported as being both nuclear and cytoplasmic [129, 130]. 

Most HDACs do not contain intrinsic DNA-binding activities; other cellular factors are required for 

their proper recruitment to specific locations in the genome. In addition to histones, many HDACs can 

deacetylate non-histone proteins in vitro and in vivo, this suggest a role of these enzymes not only in 

nucleus but also in the cytoplasm. 

Concerning the tissue distribution of HDACs, it is well known that Class I HDACs 1, 2 and 3 are 

ubiquitously expressed and are almost exclusively found in the nuclei of normal cells. Weak to 

moderate nuclear protein expressions has been reported in fibroblasts and myofibroblasts. SMCs of 

either organ or vessels walls express the proteins as well [131, 132]. In addition, endothelial cells were 

positive to a variable degree. Inflammatory cells, especially lymphocytes and macrophages, 

occasionally expressed HDAC1, 2 and 3 [131, 132]. In contrast, expression of class II HDAC8 was 

found to be restricted to cells with smooth muscle/myoepithelial differentiation [133] and consequently 

has been suggested as a diagnostic marker for uterine tumors with smooth muscle differentiation 

[129]. Expression of class II HDAC6 was not observed in lymphocytes, stromal cells and vascular 

endothelial cells [134, 135]. 

1.6. Histone deacetylase inhibitors 

As describe in the previous paragraph, the lysine acetylation is deeply implicated in the control 

of highly regulated biological functions (including cell cycle control, differentiation, and apoptosis), and 

its balance on histones and non-histone proteins is regulated by specific enzymes, histone acetyl 

transferases and HDACs. It is well-known that alteration of the acetylation status is involved in the 

development of various cancerous [136, 137] and non-cancerous diseases, including PAH [138]. 

Over the last 30 years, numerous synthetic and natural products, including a broad range of 

dietary compounds, have been identified as HDAC modulators. 
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These molecules, HDAC inhibitors (HDACi), have shown antineoplastic activity in vitro and in 

animal models in vivo [139]. Indeed, they have been tested as therapeutic agents for the treatment of 

certain forms of cancer [140-142] and a broad variety of these substances are currently tested in 

clinical trials of all phases [143]. Identification of cellular complexes containing protein phosphatases 

(PP) and HDACs suggested a potential new mechanism by which both enzymatic activities may be 

coordinated in the covalent modification of proteins that regulate cell growth and function . 

Brush et al. [144] demonstrated that the anti-neoplastic activity of HDACi may in part be 

associated with the disassembly of HDAC/phosphatase complexes and the resulting changes in 

protein acetylation and phosphorylation may inhibit cell growth and transformation. 

Most of these molecules have a binding site for catalytic zinc, a tail (linker) mimicking the side 

chain of lysine and a ‘‘cap’’ for obstructing the entrance to the active site. These inhibitors can be 

classified according to their structure into five categories: short-chain fatty acids, hydroxamates, cyclic 

peptides, benzamides and depsipeptide [145, 146]. Nevertheless, many molecules with a potential 

inhibitory activity against HDAC but with a chemical structure different than the first five have been 

identified. A significant number of these molecules were isolated from natural sources [147]. 

Within the chemical class of short-chain fatty acids, sodium butyrate is present in the 

gastrointestinal tract as a consequence of microbial fermentation of dietary fiber. It has been shown 

that butyrate inhibits HDAC classes I, IIa and IV [148]. This compound leads to growth arrest, 

differentiation of leukemic cells and induces apoptosis following the deterioration of the anti-apoptotic 

protein Bcl-2 [149, 150]. The apparent lack of clinical efficacy may be explained by the low plasma 

levels of sodium butyrate due to its short half-life in vivo [151]. 

1.7. Peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) consist of circulating mononuclear cells, including 

monocytes, lymphocytes and macrophages. The lymphocyte population consists of T cells (CD4 and 

CD8 positive ~75%), B cells and natural killer cells (~25% combined). These blood cells are a critical 

component in the immune system to fight infection and adapt to intruders. 

Besides, PMBCs play a critical role in inflammatory pathways leading to different pathological 

conditions and they have emerged in recent years as valuable tool to find markers of several 

diseases, including inflammatory (e.g. preeclampsia, rheumatoid arthritis, and chronic pancreatitis), 

malignant (chronic lymphocytic leukemia, renal cell carcinoma, pancreatic cancer) [152-156], and 

cardiovascular diseases [157]. 

The clinical accessibility of PBMCs is a very important aspect for PAH studies. Indeed, due to 

high risks lung biopsies are not routinely performed in PAH patients. Moreover, even if explanted 
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lungs are available, they don’t allow to study early development of the disease. In this context, this cell 

population could be an interesting surrogate tissue to find new molecular targets or markers involved 

in PAH. 
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2. Aim of the study 

2.1. In vitro animal studies 

Due to their antiproliferative and antimigratory effects, HDACi have also been largely studied in 

cancer and in atherosclerotic diseases, while their specific action in PAH has long remained 

unexplored. Among HDACi, sodium butyrate (BU) is widely reported to elicit many cytoprotective, 

chemopreventive and chemotherapeutic activities mainly through the arrest of cell proliferation, 

induction of apoptosis or stimulation of cell differentiation by selectively altering gene expression. In 

the meantime this research was ongoing, the application of HDACi in PH has been published for the 

first time by Cavasin et al. [166]. Very recently, Zhao et al reported that protein levels of HDAC1 and 5 

were elevated in patients with idiopathic PAH, and that HDACi were able to mitigate the development 

of hypoxia induced PH in rats and exerted anti-proliferative effects on human and animal vascular 

cells in culture [158]. Nevertheless, the intimate molecular mechanisms underlying the HDACi action 

on PAH-PASMCs proliferation and signaling remain to be largely unraveled. Based on this lack of 

knowledge, this study was designed to explore whether BU may modulate the proliferative action of 

PDGF-BB in PASMCs isolated from rats with monocrotaline (MCT)-induced PAH. 

2.2. In vivo animal studies 

In addition to studies in vitro prompting to highlight whether BU counteracted the stimulatory role 

of PDGF-BB on proliferation and migration of PASMCs, the aim of this research is to evaluate the 

effect of HDACi in vivo. To this end, a rat model of PAH induced by MCT has been optimized. 

The observation time for rat model of PAH is usually 4 or 5 weeks after induction of with MCT. In 

this study 2 weeks-treatment with BU was tested starting 3 weeks after MCT injection and the sacrifice 

have been performed at 5th week. 

2.3. Patients’ blood related studies 

Pulmonary hypertension (PH) is a common and severe pathophysiological condition 

characterized by inadequate pathobiological human data and limited treatment resources. 

Three type of patients affected by PH belonging group 1 have been included in the study, in 

particular subject with IPAH, further divided in responder to vasoreactivity test (resp IPAH) and non-



38 
 

responder (n-resp IPAH); subject with heritable PAH (HPAH) due to a mutation on BMPR2. All 

patients have been compared to healthy subjects (control group) age and sex-matched. 

The overall objective of this project is related to the identification of novel pathobiological 

pathways in PBMCs of patients, as compared with those of healthy subjects individuals, by using high-

throughput Super-SAGE (Serial Analysis Gene Expression). 

Specific study objectives: 

- Significant genes expression differences between normal individuals and three groups of PAH 

patients. 

- Significant genes expression differences among the three groups of PAH patients. 

- Multiple sorted genes entry analysis (Ingenuity Pathway Analysis) will be also performed to 

identify possible clustering of differentially expressed genes in specific pathways and biological 

processes. 
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3. Material and Methods 

3.1. In vitro animal studies 

3.1.1. Reagents and antibodies 

Monocrotaline (MCT), Sodium Butyrate, Calyculin A, LY294002, Cell Growth Determination Kit, 

MTT based, propidium iodide, protease and phosphatase inhibitors cocktail, BSA, trichloroacetic acid 

and PMSF (SIGMA-Aldrich); DMEM, fetal bovine serum (FBS), penicillin and streptomycin, and L-

Glutamine (Lonza); PDGF-BB (PeProtech); Liquid scintillation ULTIMA Gold uLLT (PerkinElmer), 

Cultrex BME (Tema Ricerca), annexin-V-Fluos staining kit (BD), protein A/G PLUS agarose 

immunoprecipitation reagent (Santa Cruz). Primary antibodies: ki67 (Novocast); c-myc, anti-Acetyl 

Lys, Akt and P-AktS473 (Cell Signaling); Actin and Cyclin D1 (BD); p27, p21, and PCNA (Santa Cruz). 

Secondary antibodies: goat anti-mouse AlexaFluor555 (Invitrogen), HRP goat anti-rabbit IgG (Cell 

Signaling), goat anti-mouse (BD), NovoLinkTM Polymer Detection System (Novocastra Laboratories 

Ltd). Qiagen quantitect primers: cdkn2b (p15), kdr, tgfbr1, actb, gapdh, pcna, ednra, pdgfrb, ednrb, 

myc, cdkn1a (p21), cdkn1b (p27). 

3.1.2. Cell isolation and culture conditions 

Rat PASMCs were isolated from pulmonary artery of animal receiving subcutaneously 60 mg/kg 

of MCT (see paragraph in vivo studies). After 28 days from the injection, all rats were anesthetized in 

a CO2/O2 mixture and subsequently killed by cervical dislocation to isolate pulmonary artery smooth 

muscle cells (PASMCs) using a modification of previously described method [116]. Intrapulmonary 

arteries were isolated and cleaned of connective tissue under a stereoscopic microscope. The tissue 

was digested at 37°C for 20 min in DMEM containing collagenase type I, 250 U/ml (SIGMA-Aldrich). 

FBS 10% was added to stop the reaction and the digested pieces were placed into petri dish 

containing fresh complete medium and allowed to rest for one week. Cells were cultured in complete 

medium consisting of high glucose DMEM supplemented with 10% FBS, 100 U/ml penicillin and 100 

μg/ml streptomycin, 4mM L-Glutamine at 37°C in a humidified atmosphere of 5% CO2. 
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3.1.3. In vitro model of hyper-proliferation: experimental plan 

For all experiments, PASMCs were starved the day after seeding with medium containing lower 

percentage of serum (0.5% FBS). After 24 hours, cells were induced to proliferate and migrate by 

replacing starvation medium with fresh medium containing 20 ng/ml PDGF-BB. BU was added 

concurrently with the growth factor, while the inhibitors used to study the mechanism, such as 1 M 

Calyculin A, and 25 M LY294002 (LY), were administered one hour before the treatment. PASMCs 

from the third to the fourth passages were used for all studies. All experiments were repeated at least 

three times, unless otherwise mentioned. 

3.1.4. Cell proliferation and viability 

Cell proliferation was evaluated using the MTT method, following the manufacturer’s instructions 

(SIGMA). Briefly, MTT solution (0.5 mg/ml, final concentration) was added to each well at the end of 

treatment and incubated for 2 hours at 37°C. The converted dye, insoluble purple formazan, was 

solubilized by adding 10% SDS in a 10 mM HCl solution directly into the well. Data were collected at 

570 nm with a multi-well plate reader (Dynex Technology). 

For cell death detection, double labeling with propidium iodide (PI) and annexin-V (AV) was 

carried out using an annexin-V-Fluos staining kit, according to the manufacturer’s instructions (BD). At 

least 10000 events were recorded by the aid of FACS Aria instrument (BD). After the appropriate 

markings for the negative and positive populations were set, the percentage of AV- /PI- (living cells), 

AV+/PI- (early apoptosis), AV+/PI+ (late apoptosis, necrosis) staining were determined. 

3.1.5. Immunofluorescence 

PASMCs were seeded (5000 cells/cm2), starved and treated with molecules in low serum media. 

After 24 hours, cells were washed with PBS and fixed in methanol for 10 min at room temperature 

(r.t.). Permeabilization and saturation were performed using 0.1% Triton for 15 min and 5% BSA in 

PBS for 1 hour at r.t., respectively. PBS added with 0.05% TWEEN 20 was used for washes. Primary 

antibody for ki67 and secondary antibody alexafluor555-conjugated were suspended in BSA 1% in 

PBS solution and incubated for 1 hour at 37°C. Nuclei were labeled using DAPI (10 ng/ml) for 15 min 

at r.t. Antifade Prolong (Invitrogen) has been used to mounting glasses. The images was captured 

using a microscope equipped with a digital sight camera (Nikon). 
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3.1.6. Cell cycle analysis 

Cell cycle distribution was determined after propidium iodide (PI) staining, as previously 

described Nusse’s method [159]. Trypsinized cells were centrifuged for 5 min at 800xg, and 2x106 

cells were resuspended in 1 ml solution I (584 mg/L NaCl, 1139 mg/L Nacitrate, 10 mg/L RNase and 

0.3 ml/L Nonidet P-40). After 1 hour on ice, 1 ml of solution II (15 g/L citric acid, 85 g/L sucrose and 50 

mg/L PI) was added and the samples were briefly vortexed. PI fluorescence forward scatter (FSC) and 

side scatter (SSC) of cell suspension were used to assess cell cycle distribution of cells (10000 

events) by flow cytometry. 

3.1.7. Gene expression 

Total RNA was isolated using RNeasy Micro Kit (Qiagen) following the manufacturer's 

instructions. For RT-PCR, cDNA was synthesized in a 20-μl reaction volume with 1 μg of total RNA 

and SuperScript III RT (Invitrogen). To assess indicated genes 0.2 μg of cDNA were used for real-time 

RT-PCR performed with a Lightcycler system (Roche Diagnostics) and with the SYBR Green fast start 

kit (Lightcycler® FastStart DNA MasterPLUS SYBR Green I). Qiagen quantitect primers were used in 

real-time RT-PCR: cdkn2b (p15), kdr, tgfbr1, actb, gapdh, pcna, ednra, pdgfrb, ednrb, myc, cdkn1a 

(p21), cdkn1b (p27). For each primer a melting curve analysis was performed and real-time PCR 

efficiency was calculated. Data were normalized using gapdh and actin b (actb) as an index of cDNA 

content after reverse transcription. Results were analyzed and related plots were created using 

Relative expression Software Tool (REST 2009 V2.0.13, Qiagen) [160]. 

3.1.8. SDS-PAGE and Western Blotting 

Proteins were obtained using M-PER (Pierce) mammalian protein extraction reagent, following 

manufacturer’s instructions. Cells were washed with PBS, trypsinized and lysed with M-PER extraction 

buffer additioned with 1 mM PMSF, protease and phosphatase inhibitor cocktail (SIGMA). Lysates 

were subjected to SDS-PAGE and transferred to PVDF membranes. After blocking, the membranes 

were probed overnight at +4°C with following primary antibodies: anti- cMyc, anti-Akt, anti-phospho 

(S473) Akt (P-Akt), and anti-Acetyl Lys antibody (all from Cell Signaling); anti- Actin and anti-Cyclin D1 

antibodies (all from BD); anti- p27, anti-p21, anti-PCNA, and anti-PP1 antibody (all from Santa Cruz). 

Afterwards, the membranes were incubated for 1 hour at room temperature with secondary antibodies 

conjugated to horseradish peroxidase (HRP): HRP goat anti-rabbit IgG (Cell Signaling) or goat anti-

mouse (BD). Bound antibodies were detected with the use of Immobilon Western HRP 
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Chemiluminescent Substrates (Millipore) and quantified by densitometry. The intensity of 

phosphoprotein or protein bands was normalized respectively to that of the corresponding total 

protein, or housekeeping protein, as indicated in the figures and legends.  

3.1.9. Electron microscopy 

The ultrastructural features of PASMCs were investigated by transmission electron microscope 

(TEM). To preserve the natural morphology, cells were immediately washed and fixed in Karnowsky 

fixative (2% glutaraldeyde, 4 % formaldeyde in 0.1 M phosphate buffer) directly in the culture plate for 

20 minutes at room temperature. After mechanical removal, the cells were pelleted, fixed further for 24 

hours with the same fixative at 4°C, and processed for TEM analysis. Samples were rinsed in PBS, 

post-fixed in 1% buffered osmium tetroxide for 1 hour at room temperature, dehydrated through 

graded ethanol and embedded in Araldite resin. Serial semi-thin sections were stained with Toluidine 

blue. Ultrathin sections were counterstained with uranyl acetate and lead citrate and observed in a 

Philips 400T (FEI Company, Milan, Italy) transmission electron microscope. 

3.1.10. Mitosis analysis 

For conventional histological analysis, pelleted cells were fixed in 10% buffered formalin and 

embedded in paraffin; 4 µm-thick sections were stained with hematoxylin & eosin (H&E) and viewed in 

a light microscope using the Image-Pro Plus® 6 software (Media Cybernetics, Silver Spring, MD). 

Images were digitalized through a video camera (JVC 3CCD video camera, KY-F55B, Yokohama, 

Japan) connected with a Leitz Diaplan light microscope (Wetzlar, Germany). Each sample was entirely 

digitized using a 40x objective (final magnification 400x = high power field, HPF). The mitotic index 

was calculated by counting the number of mitosis/ HPF. 

3.1.11. Nucleolar Organizer Regions Silver morphometric analysis 

The nucleolar organizer regions (NOR) are chromosomal landmarks consisting in tandemly 

repeated sequences of ribosomal genes (rRNA). These portions of chromosomes are associated with 

a nucleolus after the nucleus divides. NOR staining and quantification was carried out to evaluate 

proliferation state by assessing proteins associated to the nucleolar organizer. Cells seeded on glass 

slides were fixed in 2% paraformaldehyde in PBS supplemented with 1% Triton X-100. After washing 

in distilled water, samples were stained with silver (Ag) for 13 minutes at 37°C in the dark using a 

solution of one volume 2% gelatin in 1% aqueous formic acid, and two volumes of 50% silver nitrate. 
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After washing, cell seeded glasses were finally dehydrated and mounted in a synthetic medium with 

no counterstaining. Morphometric analysis of Ag-stained NORs (AgNOR) was carried out by using the 

Image-Pro Plus software, as previously reported [161]. For each experimental condition, AgNOR 

intensely stained nucleolar (na) and nuclear areas (Na) of at least 60 nuclei were measured, and 

results expressed as na/Na ratio x 100. 

3.1.12. Wound healing assay 

For scratch wound assays, confluent cells were starved and stimulated with PDGF in the 

absence or presence of BU. Untreated cells were used as a control. After 16 hours, cell layers were 

wounded using a 200 μl micropipette tip, the floating cells were washed away with starvation medium, 

and wound closure was monitored by phase microscopy until 24 hours. To exclude the proliferation 

effect the time point utilized for measurement of migration was 6 hours. At this time cells were fixed 

using methanol for 10 min and stained with 0.1% of crystal violet solution in 25% methanol for 30 

minutes. The migration area was determined for quantitative assessment using software NIS-

Elements D3.2 (NIKON), and compared to the wound area at time zero. 

3.1.13. Pulmonary artery ring assay 

Pulmonary arteries were removed from rats receiving MCT (60 mg/ Kg), and immediately 

transferred to a 50-ml tube containing 40 ml of ice-cold, serum-free DMEM. The fibro-adipose tissue 

was carefully removed and artery rings were sectioned (1 mm), and rinsed extensively in three 

consecutive washes of DMEM. The rings were embedded in 0.3 ml of Cultrex BME and the 48-well 

plates were incubated at 37°C for 30 min to harden the semi-solid medium. Then, 0.3 ml of treatment 

medium were added to each well, the cultures were kept at 37°C in a humidified environment, and fed 

every three days. Time zero, three-, six-, and ten-day cultures were photographed using a Nikon 

microscope equipped with a digital camera. 

3.1.14. Immunoprecipitation assay 

For the immunoprecipitation analysis, cells were dissolved in M-PER extraction buffer additioned 

with 1mM PMSF, protease and phosphatase inhibitors (SIGMA). Cell extracts were centrifuged at 

10,000g for 10 min at 4 °C, the obtained supernatants were incubated 1 hour with anti-Akt or anti-

Acetyl-Lysine antibody (Cell Signaling) and immunoprecipitated with Protein A/G–Agarose overnight at 

4°C. Subsequently the beads were isolated by centrifugation and washed five times with M-PER to 
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extraction of protein fraction. Samples were eluted in 2x loading buffer and boiled for 5 minutes to 

dissociate the immunocomplexes from the beads. Immunoprecipitates were separated by SDS PAGE, 

followed by immunoblotting. The blot was probed with antibodies against against total Akt, Phospho-

Akt and Acetyl-Lysine. 

3.1.15. Statistical analysis 

Significant differences were determined among various groups by ANOVA followed by 

appropriate post-test, or using a two-tailed, unpaired Student's t test. Values were expressed as 

mean±SEM from 3 to 9 independent experiments. Differences at P<0.05 and P<0.01 were considered 

statistically significant and extremely significant, respectively. 

3.2. In vivo animal studies 

3.2.1. Ethics Statement  

Animal use was approved by the Bioethics Committee of the University of Bologna, in 

compliance with Directive 2010/63/EU of the European Parliament.  

3.2.2. Monocrotaline model of PAH in rats 

Adult male Sprague-Dawley rats (200–250 g in body weight; Harlan Laboratories) were 

subjected to a single subcutaneous injection of 60 mg/kg of MCT (SIGMA-Aldrich), saline was used for 

untreated rats (sham) as described previously [116]. MCT (50mg/ml, final concentration) was 

dissolved in HCl 1 N and NaOH 1 N was added to neutralize the solution. One hundred twenty 

microliters of this solution have been injected for every 100 g of body weight. Animals received food 

and water ad libitum and were housed under controlled conditions of light and temperature (23–25°C). 

3.2.3. Study design 

On Day 0 all animals were randomly divided into four groups as following: 

1. Healthy group or sham: animals receiving saline solution (vehicle for MCT). 

2. MCT group or CTR group or untreated group: animals receiving MCT, but any treatment with 

BU. 
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3. BU 20 group: animal receiving MCT and treated with Sodium Butyrate at concentration 20 

mg/kg/day. 

 

On day 0 MCT rats received MCT (group 2 and 3) or saline (group 1) and three week after they 

have been treated with BU (group 3) or saline (group 1 and 2).  

The animals have been sacrificed by overdose of anesthesia at 5th week. Heart and lungs were 

collected for further analyses. 

3.2.4. BU administration 

Since BU has a short half-life, Alzet® osmotic pumps (Model# 2002) were used to allow a 

continuous administration (0.5 l/ hour). For sham and untreated animals the osmotic pumps have 

been filled with saline solution. 

The ALZET® osmotic pumps have been implanted subcutaneously on the back of rats, slightly 

posterior to the scapulae following manufacturer’s guidelines: 

 Animal under anesthesia has been shaved and the skin over the implantation site has 

been washed. 

 A mid-scapular incision has been performed. 

 An hemostat has been inserted into the incision, and, by opening and closing the jaws of 

the hemostat, a pocket for the pump has been created. 

 The filled pump has been inserted a into the pocket. 

 The wound has been closed with wound clips or sutures. 

3.2.5. Assessment of right ventricular hypertrophy 

To assess right ventricular hypertrophy, hearts were removed and kept in physiological salt 

solution. Subsequently, they were weighed and the atria were removed. Right ventricle (RV) was 

separated from left ventricle (LV) and septum (S). Each part was weighed and the ratios of right 

ventricle to left ventricle plus septum [RV/(LV+S)]. 

3.2.6. Histological analyses 

Heart and lung samples were fixed in buffered formalin 4% overnight, and after paraffin 

embedding the sections will be stained with hematoxilin-eosin (H&E). 



46 
 

To perform the histological analysis of right ventricle hypertrophy, the rat heart will be serially 

sectioned into 2mm–thick sections from the apex of the heart perpendicular to the base-to-apex axis. 

The third whole section from the apex will be processed for comparisons between the different groups. 

Samples were fixed in buffered formalin and embedded in paraffin, and 4-m-thick sections 

were used for histological and immunohistochemical analysis. 

For conventional histopathological analysis, sections were stained with H&E. 

The muscularization of arteries in lungs was investigated with an antibody directed against 

alpha-smooth muscle actin (-SMA). Specimens were deparaffinated with xylene, rehydrated through 

decreasing concentrations of ethanol, rinsed in distilled water, and subjected to an antigen retrieval 

treatment. Antigens were unmasked with citrate buffer, pH 6.0, at 120 °C, 1 atm. for 20 min. After 

cooling and washing, endogenous peroxidase activity was neutralized using a 3% H2O2 solution in 

methanol absolute for 10 min at room temperature in the dark; sections were then processed for 

immunohistochemistry with a non-biotin-amplified method (NovoLinkTM Polymer Detection System, 

Novocastra Laboratories Ltd.). After washing with TBS, the slides were incubated with NovocastraTM 

protein block for 5 min in a wet chamber to reduce the nonspecific binding of primary antibody and 

polymer reagent and rinsed twice with TBS. After washing, slides were incubated for 30 min at room 

temperature with NovocastraTM post-primary block to enhance penetration of the next polymer 

reagent, rinsed in TBS, and incubated with NovoLinkTM Polymer for 30 min at RT, and subsequently 

with 3,3’-diaminobenzidine, prepared from NovocastraTM 3,3'-diaminobenzidine chromogen and 

NovoLinkTM 3,3’-diaminobenzidine substrate buffer. Sections were rinsed in distilled water, 

counterstained with Gill’s hematoxylin. Negative control was obtained by omitting the primary 

antibody. 

Successively, samples were dehydrated, coverslipped, and viewed by light microscopy using the 

Image-Pro Plusprogram. Images were digitized through a video camera (JVC 3CCD video camera, 

KY-F55B) connected with a Leitz diaplan light microscope; original images were analyzed using 

Image- Pro Plus6 software (Media Cybernetics, Inc.). 

Myocytolysis has been assessed after H&E staining of RV sections. Lighter stained cytoplasm 

(with clear patches), due to the presence of glycogen in place of contractile elements in the cytoplasm 

is an hallmark of this damage. To evaluate the differences between different groups a score value 

from 0 to 5 has been attributed, meaning the absence and high presence of myocytolysis, 

respectively. The injury score is a ratio between the mean of each section score and the number of 

examined sections. 
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3.2.7. Statistical analysis 

Significant differences were determined among various groups by unpaired Student's t test. 

Values were expressed as mean±SEM. Differences at P<0.05 and P<0.01 were considered 

statistically significant and extremely significant, respectively. 

3.3. Patients’ blood related studies 

3.3.1. Study design 

Three type of patients affected by PH belonging group 1 have been included in the study, in 

particular subject with Idiopathic PAH (IPAH), further divided in responder to vasoreactivity test (resp 

IPAH) and non-responder (n-resp IPAH); subject with heritable PAH (HPAH) with BMPR2 mutation. All 

patients have been compared to healthy subjects (control group) age and sex-matched. 

PBMCs have been isolated from 20 ml of venous blood samples, and RNA extracted has been 

stored at 80°C until performing the analysis. Five microgram of total RNA was used for SAGE and 4 

g was retrotrascribed to cDNA for subsequent validation with real time PCR analysis. 

SAGE library construction has been carried out in 8 healthy subjects and 13 patients affected by 

PAH, including 4 n-resp IPAH, 3 resp IPAH and 6 HPAH. 

Libraries have been sequenced using SOliD technique by Genomnia srl (Milano). 

The identification of genes with significant differential expression between different groups have 

been performed by Genomnia srl (Milano) using Bioconductor software, in particular “edgeR” and 

DESeq. 

Then, each sorted gene will be individually analyzed for his potential interest in the pathobiology 

of PH, as a target for treatment and as a marker of severity. This assessment has been performed 

through “raw” molecular function, literature association, gene expression experiment’s data (GEO), 

mendelian inheritance peculiarity (OMIM) and oddities. A multiple genes entry analysis will be also 

performed to identify possible clustering of differentially expressed genes in specific pathways and 

biological processes. 

Further analyses are required to validate down- and up-regulated gene ensued by SAGE. To 

this end, real time RT-PCR on PBMC samples from the same subjects and additional samples will be 

performed in the future. 
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3.3.2. Patient and healthy volunteers enrolment 

This study has been carried out according to the principles of Declaration of Helsinski, and 

written informed consent was obtained from all patients and healthy volunteers. 

The enrolment has been performed by S.D.D. Center of PH at S. Orsola-Malpighi Hospital in 

Bologna, coordinated by Prof. Nazzareno Galiè. 

At baseline all patients referred to the Center were assessed by physical examination, 6MWD, 

RHC, and vasoreactivity test. 

Male and female subjects over 18 years of age with idiopathic PAH diagnosed according to 

current PAH guidelines [3] in WHO functional class II and III were included in this study. The presence 

of PAH has been defined by a mean pulmonary arterial pressure (mPAP) > 25 mmHg at rest, by 

pulmonary capillary wedge pressure (PCWP) ≤ 15 mmHg and pulmonary vascular resistance (PVR) > 

3 mmHg/ l/ min (Wood units). Patients were ‘naïve’, any specific therapy for PAH was a requisite to 

exclusion. 

Patients were excluded from the study if they had PH, belonging to the groups 2 to 5 of the Dana 

Point classification, PH owing to left heart disease (PCWP > 15mmHg, PH owing to lung diseases or 

hypoxia chronic thromboembolic PH, and PH with unclear multi-factorial mechanisms). 

3.3.3. Peripheral Blood Mononuclear Cells isolation 

Venous blood samples were collected in the morning and processed within 30 minutes. The 

blood was drawn from a peripheral venipuncture into vacutainer tubes (BD) containing 

ethylenediaminetetraacetic acid. PBMCs were isolated from 20 ml of whole blood with Lympholyte®-H 

(CEDARLANE) following the manufacturer’s instructions. Briefly, blood were diluted 1:2 with PBS and 

stratified onto the equal volume (20 ml) of Lympholyte. After centrifugation performed at room 

temperature 1500g for 30 minutes avoiding acceleration and deceleration steps, the ring related to 

PBMCs was collected and transferred in a new tube. Hemolysis and washes were performed to obtain 

a pure population of cells. 

RNA was isolated from PBMCs with RNeasy Micro kit (Qiagen) following the manufacturer’s 

instructions. The integrity of RNA was assessed using a microfluidics-based platform, Agilent 2100 

Bioanalyzer and NanoDrop. 
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3.3.4. Serial Analysis Gene Expression (SAGE) library construction 

High-throughput Super-SAGE™ combines Super-SAGE with SOLiD platform, a Next Generation 

Sequencing (NGS) technique. 

SOLiD™ SAGE™ is based on two major principles: 

• A sequence tag cleaved from the 3’-most Nla III restriction site in each transcript contains 

sufficient information to uniquely identify the transcript. 

• The expression level of the transcript can be quantified by the number of times a particular tag 

is observed (one tag = one transcript). 

The 3’ end SOLiD SAGE library construction was used to generate library of 27 bp ‘tags’ for all 

the transcripts in a cell, followed by Sequencing by Oligonucleotide Ligation and Detection (SOLID) 

sequencing of the tags and downstream mapping to RefSeq mRNA and genome databases. To this 

purpose SOLiD-SAGE kit (life technology) was used and all passages have been performed following 

manufacturer’s instructions.  

The SOLiD™ SAGE™ system employs a modified version of the original protocol (Velculescu) 

that generates a longer tag (27-bp) per transcript, using EcoP15I digestion. Briefly, polyA RNA is 

directly captured from cell lysates using oligo-dT coated beads and converted to cDNA. A frequently 

cutting anchoring enzyme, usually NlaIII, is used to cleave cDNA molecules, leaving the 3’ end of the 

cDNA attached to the beads. Linkers are ligated to the immobilized cDNA fragments. These contain a 

site for a type III restriction enzyme EcoP15I used as the tagging enzyme. EcoP15I binds to a 

recognition sequence in the adapter adjacent to the CATG site and cleaves the cDNA 27 bp 

downstream from the adapter. 

Description of the procedure: 

1. RNA Binding: Bind purified total RNA to Dynabeads® Oligo(dT) EcoP magnetic beads. The 

beads capture poly(A) RNA directly from total RNA. 

 

                                                   --------------AAAAAAAA(A) 

                                                                    TTTTTTTT-EcoP(dT) 

 

2. cDNA Synthesis: Synthesize double-stranded cDNA from the RNA on the beads using 

SuperScript® III Reverse Transcriptase and E. coli DNA polymerase. Performing all the 

enzymatic steps in one tube enhances the efficiency of cDNA synthesis. 
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                                                  --------------AAAAAAAA(A) 

                                                  --------------TTTTTTTT-EcoP(dT) 

 

3. Nla III Digestion: Digest the double-stranded cDNA with Nla III, a sequence-specific restriction 

endonuclease that cleaves ~99% of all human transcripts in RefSeq. Nla III is used as an 

anchoring enzyme, because Nla III sites are known to occur approximately every 250 bp. 

 

                                                  --------------AAAAAAAA(A) 

                                        GTAC--------------TTTTTTTT-EcoP(dT) 

 

4. Adapter A Ligation: Adapter A contains a cohesive 4-bp overhang complementary to the Nla 

III-digested cDNA, an EcoP15I restriction enzyme recognition site at the 3′ end, and a priming 

site for PCR amplification (P2). 

 

                                        CATG--------------AAAAAAAA(A) 

                                        GTAC--------------TTTTTTTT-EcoP(dT)  

 

5. EcoP15I Digestion: EcoP15I is a Type III restriction endonuclease used as the tagging 

enzyme. EcoP15I binds to a recognition sequence in the adapter adjacent to the CATG site 

and cleaves the cDNA ∼27 bp downstream from the adapter, releasing a tag with a 2-bp 

overhang. The tag consists of 33 bp of adapter sequence and 27 bp of unique sequence from 

a single transcript. 

 

                                        CATG--------------AAAAAAAA(A) 

                                        GTAC--------------TTTTTTTT-EcoP(dT)  

 

6. Adapter B Ligation: Adapter B contains the other PCR priming site (P2) and SOLiD™ 

sequencing initiation sites. 

 

 

                                                 CATG--------------AAAAAAAA(A) 

                                                 GTAC--------------TTTTTTTT-EcoP(dT)  

 

7. PCR Check: Purify and PCR amplify if necessary. Proceed to emulsion PCR and SOLiD™ 

sequencing, followed by analysis using SOLiD™ SAGE™ software. 

Adapter A-EcoP 

(P2 Seqs) 

Adapter A-EcoP 

(P2 Seqs) 

Adapter A-EcoP 

(P2 Seqs) 
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Adapter B 

(P1 Seqs) 

 

                                                 CATG--------------NNN 

                                                 GTAC-------------------- 

3.3.5. Quality and control of SAGE library 

The quality of the SAGE tags can be determined by PCR, followed by visualization of the 100-bp 

tags by gel electrophoresis. Table 3 showed the procedure of sample preparation.  

Experimental sample corresponds to ‘tag template from Adapter B Ligation’ (at the end of step 

7), the negative controls are represented by the no-ligase negative control from EcoP15I Digestion 

(steps 5 and 6, respectively).  

 

Table 3. Sample preparation 

Reagents Experimental No-template No-ligase 

 Template Control Control 

5´ Amp Primer 0.5 μl 0.5 μl 0.5 μl 

3´ Amp Primer 0.5 μl 0.5 μl 0.5 μl 

Platinum® PCR SuperMix High Fid. 48 μl 49 μl 48 μl 

SAGE tag template (20 μL total) 1 μl — — 

No-ligase negative control — — 1 μl 

Total volume 50 μl 50 μl 50 μl 

 

Amplification step of PCR has been performed using the cycling parameters showed in table 4. 

During the PCR reaction tagged template at 5, 10, 15, and 20 cycles have been collected to gel 

electrophoresis analysis. 

Table 4. Cycling parameters 

 

 

 

 

 

Temperature Time Cycles 

95°C 2 minutes 1 

95°C 
55°C 
72°C 

30 seconds 
1 minute 
1 minute 

20 total 
(collect template 

at 10, 15, and 20) 

72°C 5 minutes 1 

Adapter A-EcoP 

(P2 Seqs) 
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PCR products have been run on a 4% agarose gel in TAE buffer with a DNA mass ladder 100bp.  

The SAGE tagged template should appear as a clear 100-bp band. The manufacturer informed that 

the cycle number that provides the optimal amplification can vary from sample to sample. Bands of 

lower molecular weight may indicate adapter self-ligation products or primer dimers. 

The negative controls (No-template and No-ligase Controls) should not contain any contaminating 

amplified product of the size of the tags. 

After analyzing the quality of the SAGE tags, a bioanalyzer have been used for quantification. 

Purification of the tags has been performed using PureLink PCR Micro kit (Invitrogen) that can 

distinguish the 100-bp tags from spurious 70–80 bp artifacts, such as primer dimers or adapter self-

ligations. 

Samples have been sent on dry ice to Genomnia srl (Milano) for next steps: Emulsion PCR 

preparation and SOLiD™ Sequencing. 

3.3.6. Statistical analysis 

SAGE data analysis was performed by Genomnia srl (Milano) with “edgeR” (R 2.13.0 version 

for Windows 64 bit), an open-source-interpreted computer language for statistical computation and 

graphics, and tools from the Bioconductor project. 

Each library lead to about six million of sequenced tags, the computation analysis revealed 

about 14,000 corresponding transcritpts. Statistical analysis lead to define significant differential 

expressed genes within different comparisons. For each comparison a tagwise dispersion plot has 

been created. This is a dotplot, in which the y and x axis correspond to the Fold Change and the 

abundance of transcripts (expressed as concentration), respectively. Each dot correspond to a 

particular transcript. In red have been reported all transcripts with significant differential expression P 

value<0.005. The tagwise dispersion plot is useful to evaluate the existing variations (including 

biological and technical variations). 

Results, reported as Ref_seq, fold change significance and annotation, have been exported in 

an Excel file. 
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4. Results 

4.1. In vitro animal studies 

4.1.1. Proliferation and viability assays 

MTT viability assay revealed that a single pulse of PDGF-BB markedly increased PASMC 

proliferation up to 120 hours, as compared to the control group (Figure 5); BU dose-dependently 

reduced the growth factor effect after 24 hours of treatment, with cell proliferation remaining lower than 

that detected in cells cultured in presence of PDGF-BB alone throughout the overall observation 

period.  

However, since 25 and 50 mM BU depressed cell viability, all the experiments were performed in 

the presence of a lower physiological concentration of 5 mM [162]. At this concentration, Annexin V-

FITC and PI staining revealed that the percentage of cells in early apoptosis (AV+/PI-) was not 

affected compared to the control group or cells exposed to PDGF-BB alone (Figure 6). Furthermore, 

the percentage of cells in late apoptotic/ necrotic death (AV+/PI+) was not altered by BU compared to 

PDGF-BB stimulated cells (Figure 6). 

Figure 5. Proliferation in PASMCs isolated from PAH-rats. MTT assay at 24, 48, and 120 hours 
using a scale concentration of BU (n= 5). Significance versus stimulated cells (PDGF) 
was shown. Statistical analysis: ANOVA with Bonferroni post Test. Significance * p<0.05, 
** p<0.01, *** p<0.001. 
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4.1.2. Cell cycle analysis 

Immunofluorescence analysis showed that following 24 hours of PDGF-BB treatment 52±7.96 % 

of PASMCs expressed the proliferating marker ki67, while the presence of 5 mM BU remarkably 

counteracted the growth factor effect, decreasing the percentage of ki67 positive cells (24±3.84 %) to 

a value superimposable to that observed in the control group (17±5.72 %) (Figure 7, A and B).  

Figure 6 . Annexin V assayPI and annexin-V 
(AV) double labeling. Data were 
expressed as percentage of living cells 
(AV-/PI-), early apoptosis (AV+/PI-), and 
late apoptosis/ necrosis (AV+/PI+) (n=5). 
Significance versus stimulated cells 
(PDGF) was shown. Statistical analysis: 
ANOVA with Bonferroni post Test. 
Significance * p<0.05, ** p<0.01, *** 

p<0.001. 

Figure 7. (A) Immunofluorescence for 
ki67 and relative quantification 
(B). BU reduced PDGF-BB 
induced proliferation of PAH-
PASMCs. (A) 
Immunofluorescence of Ki67 
proliferation marker (red), nuclei 
were counterstained with DAPI 
(blue), merged images are 
reported in the lower panels. (B) 
Quantification of ki67 staining, 
results were expressed in % of 
positive cells normalized to the 
number of nuclei. Statistical 
analysis: ANOVA with 
Bonferroni post Test; 
significance versus stimulated 
cells (PDGF) * p<0.05, ** p<0.01, 
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Akin to this observation, cell cycle analysis (Figure 8) revealed that PDGF stimulation 

significantly decreased the percentage of quiescent cells (G1/G0 phases) and increased the number 

of cells in the proliferative state (S+G2/M), as compared to the control group. BU arrested PASMC cell 

cycle mainly by blocking the transition throughout G0/G1 and S phase, thus increasing the number of 

quiescent cells. 

 

Figure 8. Cell cycle analysis. The percentage of cells in G0/G1, S and G2/M phases of the cell cycle were determined 
by cytofluorimetric analysis after PI staining (n=3). Statistical analysis: ANOVA with Bonferroni post Test; 
significance versus stimulated cells (PDGF) * p<0.05, ** p<0.01, *** p<0.001. 

4.1.3. Ultrastructural and morphometric analyses 

TEM analysis showed that control PASMCs had the appearance of very thin, bipolar spindle-like 

elements, with extremely long cytoplasmic projections. Such ultrastructure remained unaltered when 

cells were treated with a combination of BU and PDGF-BB, whereas a plump spindle-like morphology 

Figure 9. Ultrastructural, histological analysis of PASMCs. (A) TEM analysis at 24 hours of treatment. Scale 
bars: 5μm. (B) Representative images of pelleted cells used to count mitosis after H&E staining. 
Original magnification 25x. Scale bars: 50 μm. (C) Quantitative analysis of the total number of 
mitosis for each condition. * p<0.05. 
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was observed in the presence of growth factor alone (Figure 1, A). Consistent with these 

morphological observations, the number of mitotic nuclei was similar between the control group and 

PASMCs concomitantly exposed to PDGF-BB and BU, despite a remarkable increase in the mitotic 

figures observed in cells exposed to the growth factor alone (Figure 9, B and C). 

The morphometric analysis of silver-stained Nucleolar Organizer Regions (AgNOR) has been 

used to evaluate the nucleolar/ nuclear areas (na/Na) ratio. Nucleoli within the PASMCs nuclei were 

intensely dark-stained without any counterstaining (Figure 10, A). Quantitative morphometric analysis 

reveals that the mean na/Na ratio normalized to control was increased after PDGF-BB treatment. On 

the contrary, in presence of BU, the mean na/Na ratio decreased compared to control quiescent cells 

(Figure 9, B). Similar results were yielded using electron microscopy where nucleoli were revealed 

trough their characteristic substructure (Figure 10, C). 

4.1.4. Gene and protein expression analyses 

Gene expression analysis showed that BU acted at the transcriptional level in PASMC 

proliferation, respectively decreasing or increasing the gene expression of important positive or 

negative cell cycle regulators. None of these genes was affected within the first 3 hours of treatment 

(data not shown). However, after 6 hours of BU exposure, pcna, c-myc, and cyclin D1 were 

significantly decreased, compared to PDGF alone (Figure 11). At the same time, the negative 

regulators p21 and p15 were significantly increased when compared to PDGF (Figure 11). After 24 

hours of treatment with BU, only the pcna gene expression was still decreased (data not shown).  

Figure 10. Ultrastructural, and morphometric analysis of PASMCs. (A) Morphometric analysis of 
silver-stained NORs proteins results were expressed as mean nucleolar/ nuclear areas (m na/ 
m Na) ratio normalized to control. * p< 0.05 (B) PASMCs selectively stained for the AgNOR 
proteins. Original magnification 25x. Scale bars: 50 μm. (C) Ultrastructural features of 
PASMCs nucleoli (indicated by arrows). Scale bars: Ctr=2 μm; PDGF and BU=5 μm 
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At protein expression level, the treatment with HDACi decreased c-myc, cyclin D1, and PCNA 

after 8 hours (Figure 12). At the same time, p27 expression was not affected, whereas p21 was 

increased (Figure 12). 

As early as 3 hours of treatment, BU significantly reduced the gene expression of PDGFRbeta, 

compared to PDGF-BB treatment (data not shown), reaching a maximal transcriptional decrease after 

6 hours (Figure 13). 

 

Figure 12. Protein expression analysis of cell 
cycle regulators. Immunoblotting 
analysis of positive (c-myc, cyclin D1, 
PCNA) and negative regulators of cell 
cycle (p21 and p27) after 8 hours of 
treatment. The images reported is 
representative of five independent 

experiments. 

Figure 13. Gene expression analysis of 
crucial signaling receptors 
PDGFRbeta1, TGFRbeta1, KDR, 
Ednra and Ednrb, after 6 hours of 
treatment. Realtime PCR data 
were normalized to gapdh and 
actin beta housekeeping genes 
and expressed as relative fold 
change of PDGF+BU compared to 
PDGF treatment (n=5). Statistical 
analysis, REST 2009 Qiagen: 
significance versus stimulated 
cells (PDGF) * p<0.05, ** p<0.01, 

*** p<0.001. 

Figure 11. Gene expression analysis of cell cycle 
regulators. Gene expression analysis of 
positive (c-myc, pcna, and cyclin D1) and 
negative regulators (p21 and p15) after 6 hours 
of treatment. Realtime PCR data were 
normalized to gapdh and actin beta 
housekeeping genes and expressed as 
relative fold change of PDGF+BU compared to 
PDGF treatment (n=5). Statistical analysis, 
REST 2009 Qiagen: significance versus 
stimulated cells (PDGF) * p<0.05, ** p<0.01, *** 

p<0.001. 
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At 24 hours of treatment, BU downregulated the transcription of genes encoding for Ednra (ETA 

gene) and Ednrb (ETB gene) (Figure 14), two G protein-coupled receptors of the ET-1 family that are 

deeply involved in PAH progression [163]. Conversely, BU did not affect TGFRbeta1 gene expression, 

while increasing the transcription of KDR, a major VEGF receptor (Figure 14). 

4.1.5. Migration assays 

Two different migration assays have been considered to evaluate the effect of BU on PDGF-BB 

induced migration of PASMCs. First, we examined the effect of 5 mM BU on cell migration using a 

Figure 14. Gene expression analysis 
of crucial signaling receptors 
PDGFRbeta1, TGFRbeta1, 
KDR, Ednra and Ednrb, after 
24 hours of treatment. 
Realtime PCR data were 
normalized to gapdh and 
actin beta housekeeping 
genes and expressed as 
relative fold change of 
PDGF+BU compared to 
PDGF treatment (n=5). 
Statistical analysis, REST 
2009 Qiagen: significance 
versus stimulated cells 
(PDGF) * p<0.05, ** p<0.01, *** 
p<0.001. 

Figure 15. Wound healing assay. (A) PASMCs have been stained with crystal violet at 6 hour of migration 
time. Interrupted line indicates time zero. (B) Quantitative results of wound healing assay (n=6); 
the measure was obtained by the difference between migration area after 6 hour and the initial 
area of the wound. Statistical analysis: ANOVA with Bonferroni post Test; ** p<0.01, *** p<0.001. 



59 
 

wound healing migration assay (Figure 15, A and B). Starved PASMCs were exposed for 16 hours to 

PDGF in absence or presence of BU. At the end of the incubation time, wound was performed and 

migration was monitored. At each investigated time, the presence of BU remarkably counteracted the 

migratory action of PDGF-BB, even at late times (16-24 hours), when cells solely exposed to the 

growth factor were induced to completely cover the wound area. The area of migration was calculated 

after 6 hours (Figure 15, B) in order to reduce any effect due to the proliferation process. 

To confirm the inhibitory effect of BU on PDGF-induced migration we performed pulmonary 

artery ring assays. In this model, starting from 6 days, PDGF-BB induced a progressive sprouting of 

the pulmonary artery that was completely arrested by BU throughout 12 days (Figure 16). 

4.1.6. Mechanism of action 

It is well known that PDGF-BB promotes cell proliferation activating the Akt pathway. 

Interestingly, Akt phosphorylation was induced by the growth factor after 1 hour of treatment even in 

the presence of BU (Figure 17, A). However, after 7 hours of treatment in the presence of the HDAC 

inhibitors the phosphorylation of Akt at Ser473 was strongly reduced, and this effect was maintained 

up to 24 hours (Figure 17, A). The PI3K inhibitor, LY294002, completely suppressed Akt activation 

and consequently counteracted the stimulatory effect of PDGF-BB on proliferation (Figure 17, B) and 

migration (Figure 17, C). Conversely, no additive effect of BU and LY294002 was observed. 

Figure 16. Pulmonary artery 
rings assay. Pulmonary 
artery isolated from MCT-
treated rats have been cut 
and included in semisolid 
medium.t The day after 
they have been treated as 
indicated. The sprounting 
has been followed 
throughout 12 days. 
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We investigated whether BU may have inhibited PDGFBB-induced Akt activation through a 

deacetylase inhibitory action. 

While basal acetylation was not affected by PDGF-BB, protein expression analysis revealed that 

after 7 hours, a time point at which BU elicited a significant downregulation in phosphorylated Akt, BU-

treated cells also exhibited a remarkable increase in the level of acetylated Akt (Figure 18, A). Time 

Figure 17. (A) Akt immunoprecipitation after 7 
hours of treatment with PDGF and BU; 
immunoblotting analysis of Ac-Lys (up) 
and Akt (down). (B) Comparison between 
the Phospho-AktS473 level before (Total 
lysate) and after immunoprecipitation 
with anti-Acetyl lysine antibody (IP anti 
Ac-Lys) in cells at 1 hour-treatment with 
PDGF and BU. These are representative 
blots of five independent experiments. 

Figure 18. (A) Time-course of phospho-AktS473, and total Akt, in PASMCs treated with PDGF in 
presence or absence of BU or TSA; untreated cells were used as control. These are 
representative blots of 9 independent experiments. (B) Quantification of Ki67. staining after 
24 hours in presence or absence of PI3K inhibitor, LY294002. Results were expressed in % of 
positive cells normalized to the number of nuclei. (C) Quantification of migrated cell surface 
area after 6 hour of migration time in presence or absence of PI3K inhibitor, LY294002. 
Statistical analysis for (B) and (C): ANOVA with Bonferroni post Test; * p<0.05, ** p<0.01, *** 
p<0.001. 
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course analysis also revealed that BU-mediated acetylation was already evident at 1 hour, a time point 

at which Akt was still phosphorylated (Figure 18, B). 

We next investigated whether the ability of BU to downregulate Akt phosphorylation may result 

from facilitation of Akt dephosphorylation by a mechanism involving protein phosphatases. To this 

end, we used two well-known inhibitors whit a distinct specificity towards phosphatases, okadaic acid 

which is selective for PP2A at low concentrations (≤ 100 nM) [164, 165], and calyculin A which doesn’t 

discriminate between PP1 and PP2A [166]. 

Calyculin A restored at 7 hours the Akt phosphorylation in BU treated cells (Figure 19), while 

okadaic acid was ineffective, suggesting a preferential involvement of PP1. 

4.2. In vivo animal studies: preliminary results 

At baseline Sprague-Dawley male rats were weighed and subjected to subcutaneous injection of 

MCT or saline solutions. Therefore, they have been divided randomly into three groups, as follow: 

- Sham 

- MCT group 

- MCT+BU group 

The treatment with BU (20mg/Kg/day) was applied from day 21 to 35 to MCT+BU group. 

Since this HDACi has a short half-life we used Alzet® osmotic pump to allow its continuous 

administration. To this end, ALZET® were filled with a solution of BU 500 mM; on the other hand, for 

untreated animals (sham and MCT groups) the osmotic pumps were filled with saline solution. 

Figure 19. Immunoblotting for phospho-AktS473 and total Akt 
after 7 hour of treatment. Calyculin A and Okadaic acid 
were added 1 hour before the treatment to inhibit the 
phosphatase activity. The blots are representative of six 
independent experiments. 
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Five weeks after, rats have been sacrificed by overdose of anesthesia, then hearts and lungs 

have been collected and processed for histological analyses. 

The animals receiving MCT developed increase in pulmonary arteriolar muscularization (Figure 

20) and right heart hypertrophy (Figures 21) compared to saline treated group. 

Interestingly, the treatment with BU significantly reduced the thickness of distal pulmonary 

arteries compared to MCT-group, as shown in figures 20. 

Figure 20. Thickness of distal pulmonary arteries. 

Five m sections were stained with alpha-

smooth muscle actin (-SMA) antibody (brown 
staining). (A) Sham, (B) MCT, (C) MCT+BU. 

Statistical analysis: t-Test; * p<0.05, ** p<0.01. 

Figure 21. H&E staining of RV sections. (A) sham, (B) 
MCT, (C) MCT+BU. (D) RV/LV+S ratio were 
calculated as index of Right heart 
hypertrophy. Statistical analysis: t-Test; *** 
p<0.001. 
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The ratio of RV weight to LV plus septum weight (RV/LV+S) increased from 0.19±0.03 (sham) to 

0.41±0.08 (P<0.01 versus sham). BU caused a reduction of this ratio to 0.31±0.05 (P<0.05 versus 

MCT; P<0.01 versus sham) (Figure 20, D). Consistent with RV/LV+S ratio, the thickness of RV was 

significantly reduced in BU group (Figure 21, A-C). 

Examination of right ventricular free wall, interventricular septum, and left ventricular posterior 

wall in the Control group revealed normal myocytes without evidence of inflammatory cells or collagen 

deposition. In contrast, in MCT-treated rats, a diffuse interstitial inflammatory infiltration was evident 

throughout the myocardium. Interestingly, the treatment with BU strongly reduced MCT-induced 

myocytolysis in cardiac cells (Figura 22). 

4.3. Patients’ blood related studies: preliminary results 

Patients have been assessed at baseline with 6 six minute walk test, vasoreactivity test, RHC 

and screened for BMPR2 mutation. 

SAGE evaluation has been performed in 8 healthy subjects (Table 6) and in 13 PAH patients 

(Table 5), including 3 responder PAH (res PAH), 4 non responder PAH (n-res PAH), and 6 heritable 

PAH (HPAH). All patients and healthy subject have been screened for BMPR2 mutation by TAO 

laboratory at Cardiovascular Department of S.Orsola Malpighi Bologna. 

Before sequencing step Quality & Control check of libraries have been performed using gel 

electrophoresis analysis and Bioanalyzer. 

 

Figure 22. Myocytolysis. H&E staining of RV. (A) sham, 
(B) MCT, (C) MCT+BU. Statistical analysis: t-Test; 
*** p<0.001. Myocytolysis has been measured on 
RV sections from each group. A score value from 0 
to 5 has been attributed, meaning the absence and 
high presence of myocytolysis, respectively. The 
injury score is a ratio between the mean of each 
section score and the number of examined 

sections. 
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Table 5. Enrolled patients (PAH) 

Sample Type of PAH age sex 
BMPR2 

mutation 

1-PAH n-resp IPAH 30 F WT 

2-PAH n-resp IPAH 41 M WT 

3-PAH n-resp IPAH 57 M WT 

4-PAH n-resp IPAH 59 M WT 

5-PAH resp IPAH 27 F WT 

6-PAH resp IPAH 29 F WT 

7-PAH resp IPAH 48 F WT 

8-PAH HPAH 28 F 
snp S775N Ex 12 

(C): 2324 G/A 

9-PAH HPAH 35 F intr10 1014-2A/G 

10-PAH HPAH 37 F V341L - K342X 

11-PAH HPAH 38 F S987F 

12-PAH HPAH 29 M R899X 

13-PAH HPAH 59 M R491W 

 

Table 6. Enrolled healthy subjects (H) 

Sample age sex 
BMPR2 

mutation 

1-H 27 F WT 

2-H 30 F WT 

3-H 40 F WT 

4-H 55 F WT 

5-H 28 M WT 

6-H 46 M WT 

7-H 55 M WT 

8-H 61 M WT 
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Amplification step of PCR has been performed and during the reaction tagged template at 5, 10, 

15, and 20 cycles have been collected. PCR products have been run on a 4% agarose gel in TAE 

buffer with a DNA mass ladder 100bp (Figure 23).  

For the quality control of libraries we used also bioanalyzer technology. In the electropherogram 

the peak at 135 bp is related to SAGE library (Figure 24). The absence of other significant peaks 

indicates a satisfactory grade of purity for sequencing analysis. Since, samples showed two bands at 

15 cycles of PCR, 10 cycles amplification reaction has been performed on libraries before sequencing, 

in order to reduce amplification of any unspecific products. In all samples negative controls did not 

showed any bands, indeed any contaminating amplified product of the size of the tags was present in 

libraries. 

Data analysis revealed 15000 entries (transcripts) from 6 million of tags. Generalized linear 

Figure 23. Quality&control of SAGE library. 
Gel Electrophoresis analysis. 
Negative controls (no-ligase and no-
template). Samples have been 
collected at 5, 10, 15, and 20 cycles of 

PCR. 

Figure 24. Quality&control of SAGE library Bioanalyzer Electropherogram: the 

peak at about 135 bp correspond to SAGE library. 
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model methods (GLMs) was used to detect differential expression in three comparisons: 

1. n-resp IPAH vs Healthy subjects 

2. res IPAH vs Healthy subjects 

3. HPAH vs Healthy subjects 

The comparison between n-resp IPAH patients and healthy subjects revealed 361 genes with 

significant differential expression (p<0.005). In particular 270 genes were up- and 91 were down-

regulated (Figure 25). Clusterization of biological functions is reported in table 7. 

Table 7. Comparison between n-resp IPAH patients’ and healthy subjects’ profiles: biological function clusterization 
within genes with significant differential expression 

n-resp IPAH 

within up regulated genes 
number of 

genes 

Cancer 20 

Cell-To-Cell Signaling and Interaction 16 

Cellular Growth and Proliferation 16 

Drug Metabolism, Molecular Transport, Cell Death 13 

Hematological Disease 7 

Cardiovascular System Development and Function 7 

Hereditary Disorder 5 

Skeletal and Muscular System Development and 
Function 

2 

Figure 25. Tag wise dispersion plot 
related to the comparison between 
n-resp IPAH patients and Healthy 
volunteers. Logaritm of Fold 
Change (Log FC), abundance of 
transcripts expressed as Logaritm 
of concentration (Log Conc). In red 
have been reported all transcripts 
with significant differential 

expression, P value<0.005. 
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The comparison between resp IPAH patients and healthy subjects revealed 395 genes with 

significant differential expression (p<0.005). In particular, 362 genes were up- and 33 were down-

regulated (Figure 26). 

Biological function clusterization is reported in table 8. 

Interestingly, the overlapping analysis of this two comparisons revealed 21 shared genes, 

biological function clusterization of which is reported in table 9. Within these 21 genes 7 are involved 

in cell-to-cell signaling and interaction, 3 in cellular movement, probably all of these are related to the 

inflammation process; besides, 5 are involved in cancer, increasing the hypothesis of parallelisms 

between tumor condition and PAH. 

Table 8. Comparison between resp IPAH patients’ and healthy subjects’ profiles: biological function clusterization 
within genes with significant differential expression 

resp IPAH 

within Up-regulated genes 
number of 

genes 

Cellular Development (smooth muscle cells) 5 

Cellular Growth and Proliferation (smooth muscle cells) 5 

Cell-To-Cell Signaling and Interaction 2 

Inflammatory Response 2 

Cell Death (repopulation of fibroblasts) 2 

Cancer 22 

Cancer /hematological disease (large-cell lymphoma) 2 

Cancer mammary tumor 11 

 

Figure 26. Tag wise dispersion plot 
related to the comparison 
between resp IPAH patients and 
Healthy volunteers. Logaritm of 
Fold Change (Log FC), 
abundance of transcripts 
expressed as Logaritm of 
concentration (Log Conc). In red 
have been reported all transcripts 
with significant differential 

expression, P value<0.005. 
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Table 9. Overlapping analysis between n-resp IPAH vs H and resp IPAH vs H 

Shared genes between resp IPAH and n-resp IPAH 

within shared genes (Total 21) 
number of 

genes 

Cell-To-Cell Signaling And Interaction 7 

Cancer  5 

Cellular Movement 3 

Drug Metabolism 3 

Hematopoiesis Abnormal Morphology Of pro-Erythroblasts 1 

 

The comparison between HPAH patients and healthy subjects revealed 2039 genes with 

significant differential expression (p<0.005). In particular, 1246 genes were up-regulated and 792 were 

down-regulated (Figure 27). 

Interestingly, the elevated number of genes with significant differential expression suggest an 

increased homogeneity within the group of HPAH with BMPR2 mutation compared to IPAH patients. 

In addition, differing from the two previous comparisons in HPAH vs Healthy subject comparison 

the number of down-regulated genes was higher rather than up-regulated genes, probably due to 

BMPR2 mutation. 

Biological function clusterization is reported in table 10. 

Worthy to note, according to BMPR2 mutation within down-regulated genes most are related to 

TGF-beta pathway. Besides, a high number of genes involved in immune system highlights the 

relevant role of inflammation in this disease. 

Figure 27. Tag wise dispersion plot 
related to the comparison 
between HPAH patients and 
Healthy volunteers. Logaritm of 
Fold Change (Log FC), 
abundance of transcripts 
expressed as Logaritm of 
concentration (Log Conc). In 
red have been reported all 
transcripts with significant 
differential expression; P value 

<0.005. 
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Table 10. Comparison between HPAH patients’ and healthy subjects’ profiles: biological function clusterization of 
genes with significant differential expression 

HPAH 

within Down-regulated genes 
number of 

genes 

TGF-beta receptor signaling activates SMADs 6 

Signaling by TGF-beta Receptor Complex 8 

Dephosphorylation of AKT by PP2A 3 

Hyaluronan metabolism 3 

within Up-regulated genes 
number of 

genes 

Immune System 78 

Cytokine Signaling in Immune system 31 

Toll Receptor Cascades 13 

Interferon alpha/beta signaling 12 

Growth hormone receptor signaling 7 

Signaling by constitutively active EGFR 3 

TNF signaling 2 
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5. Discussion 

5.1. In vitro animal studies 

HDACi are recognized as one of the promising target for handling cell growth and differentiation. 

Nevertheless, apart from their use in cancer patients with both solid and liquid tumors, the potential 

exploitation of HDACi in complex vascular diseases like PAH has long remained elusive, and 

prompted only very recently [158, 167]. 

Here, we provided evidence that BU was able to control, at both gene and protein expression 

level, multiple positive and negative regulators of proliferation in PASMCs isolated from PAH rats. 

Inhibition of PASMC proliferation in response of PDGF-BB could be achieved at physiological 

BU concentrations that did not impair cell viability. Noteworthy, BU was able to downregulate the gene 

expression of PDGFRbeta, and the transcription of Ednra (ETA) and Ednrb (ETB), as well as PASMC 

migration and PDGF-BB induced vessel sprouting from the pulmonary artery of PAH animals. These 

findings further support the hypothesis that the action of this HDACi is fashioned at multiple 

interconnected levels of the molecular plight that is impacting PASMC biology and PAH progression. 

BU mediated inhibition of PDGF induced proliferation and migration was associated with a 

remarkable reduction in Akt phosphorylation after 7 hours, an effect that was also achieved in the 

presence of TSA. These inhibitory effects were mimicked by the PI3K inhibitor LY294002, with no 

additive effect of BU, indicating that the anti-proliferative/-migratory action of BU was mediated by Akt 

dephosphorylation. The ability of the phosphatase inhibitor calyculin A to rescue Akt phosphorylation 

in the presence of BU and PDGF strongly suggests that phosphatase-mediated dephosphorylation of 

Akt may be a major underlying mechanism of the HDACi action. 

Failure to restore Akt phosphorylation by okadaic acid, which is selective for PP2A at low 

concentrations [164, 165], suggests a major involvement of PP1, compared to PP2A. 

Further insights within the mechanism(s) regulating BU-mediated phospho-Akt/phosphatase 

interplay can be inferred from the BU effect on Akt acetylation. Our data show that BU enhanced the 

level of acetylated Akt, concomitantly with a phosphatase inhibitor-relievable dephosphorylation of the 

kinase. These observations from one hand raise the issue of investigating which histone 

acetyltransferase(s), or HDAC/acetyltransferase interplay, may be responsible for the fine tuning of 

Akt acetylation. On the other hand, the BU effect suggests that HDAC inhibition may have blocked 

HDAC/phosphatase interaction(s), thus promoting the release of phosphatase and its subsequent 

association with Akt, its acetylated form being more prone to phosphatase binding. Such a hypothesis 

is consistent with previous observations showing that HDACi can disrupt HDAC 1 and 6 interaction 
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with PPI in human glioblastoma cells, resulting in the formation of a PP1/Akt complex and inhibition of 

kinase activity [168], and that Akt deacetylation promotes its phosphorylation and activation [169]. 

Although HDACi are well known to induce chromatin plasticity and remodeling [170], acetylation 

of nonhistone proteins has been demonstrated to modulate protein functions by altering their stability, 

cellular localization and protein–nucleotide/protein–protein interactions. Well-characterized targets of 

nonhistone acetylation include important cellular factors such as p53, nuclear factor-κB (NF-κB), p65, 

CBP, p300, STAT3, tubulin, PC4, GATA factors, nuclear receptors, c-Myc, hypoxia-inducible factor 

(HIF)-1α, FoxO1, heat-shock protein (Hsp)-90, HMG, E2F, MyoD, Bcr–Abl, the FLT3 kinase, c-Raf 

kinase and so on [171-173]. 

Our results indicate an intriguing interplay between HDACs, protein phosphatase(s), and Akt 

acetylation/deacetylation. To this end, acetylation and deacetylation of histones and nonhistone 

proteins increasingly appear to be regulated through multifaceted interrelated networks and epigenetic 

modification, the overall plan remaining mostly enigmatic [174], and still awaiting for further 

clarification. 

5.2. In vivo animal studies 

Our preliminary results suggested the in vivo efficacy of HDAC inhibition in a preclinical model of 

PH. Indeed, a continuous administration of BU reduced MCT-induced PAH in rats in a manner that 

correlated with suppression of medial thickening of distal pulmonary arteries and inhibition of smooth 

muscle cell proliferation in these vessels. 

Cho YK et al. [175], shown that valproic acid blocks RV cardiac hypertrophy in response to PA 

banding, as well as in the setting of PH caused by MCT-induced lung injury. Furthermore, Cavasin et 

al. [166] demonstrated that HDACi suppress hypoxia-induced cardiopulmonary remodeling through an 

antiproliferative mechanism. 

In agreement with previous published findings, we also demonstrated that RV hypertrophy 

induced by MCT was blunted by BU. In fact, RV/LV+S ratio and the thickness of RV were significantly 

reduced in MCT+BU group compared to MCT-group.  

Akhavein F. et al. demonstrated that MCT has effect on the myocardium or coronary vessels per 

se. Myocytes of MCT-treated animals showed degenerative changes, fragmentation, coagulative 

myocytolysis, and necrosis [176]. However, the presence of such myocardial changes in the right 

ventricle could be explained as a consequence of myocardial injury resulting from PH. Our preliminary 

results suggested that BU strongly reduced myocytolysis in RV. Further experiments are required to 

clarify whether these results of HDACi are due to a direct action on heart tissue or they are 

consequence of pulmonary pressure reduction. 
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Very recently, Zhao et al [157] reported that protein levels of HDAC1 and 5 were elevated in 

patients with idiopathic PAH, and that HDACi were able to mitigate the development of hypoxia 

induced PH in rats and exerted anti-proliferative effects on human and animal. However, the intimate 

molecular mechanisms underlying the HDACi action remain to be largely unraveled. 

It has been shown that BU inhibits HDAC classes I, IIa and IV [148]. This compound leads to 

growth arrest, differentiation of leukemic cells and induces apoptosis following the deterioration of the 

anti-apoptotic protein Bcl-2 [149, 150]. The apparent lack of clinical efficacy may be explained by the 

low plasma levels of sodium butyrate due to its short half-life in vivo [151]. 

Albeit Cavasin et al. supported the hypothesis that isoform-selective HDAC inhibition could be 

safer than general HDAC inhibition in the setting of RV pressure overload. BU is well tolerated by 

humans, thus highlighting the translational potential of the present findings. 

5.3. Patients’ blood related studies 

To date, PBMCs have been used to identify PH specific genes [95] as well as distinguishing 

between IPAH and SSc-PAH [177]. In general, however, these studies have shown considerable 

heterogeneity when examining directly the contrast in gene expression profiles in PBMC between 

SSc-PAH and SSc patients [178, 179]. 

Current ‘next-generation’ sequencing (NGS) technologies measure gene expression by 

generating short reads or sequence tags, that is, sequences of 35–300 base pairs that correspond to 

fragments of the original RNA.  

There are a number of technologies and many different protocols, in this study we used Super-

SAGE with SOLiDTM platform. This technique was found to be more quantitatively reproducible 

compare to microarray technique [180]. The sequencing requirement of SAGE gives it a unique 

advantage. Its digital database facilitates direct comparisons between SAGE libraries. In contrast, 

comparing microarray experiments may be more difficult due to a number of random and systematic 

errors between different investigators or laboratories [181]. In addition, it allow to valid results also 

starting from a small number of libraries. 

In this study, we demonstrate significant differences in gene expression of peripheral blood cells 

between PAH patients and Healthy subjects. 

In particular, we define a panel of genes with significant differential expression for each 

comparison, including n-resp IPAH vs Healthy, resp IPAH vs Healthy, and HPAH vs Healthy. 

The overlapping analysis allow to define shared and unique genes for different conditions. 

During the course of this study we developed an algorithms for a wide ranging analysis in 

patients. Statistical methods are developed by Genomnia srl. for estimating biological variation on a 
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genewise basis and separating it from technical variation. A limitation of this study include the small 

sample size of our patients groups, due to a restricted inclusion criteria as well as the absence of 

specific PAH therapy. Indeed, most frequently patients referred to SSD PH Center of S. Orsola-

Malpighi Hospital (Bologna, Italy) are not naïve for PAH therapy. On the other hand, this criteria is a 

strong point of the study, actually to date there are no studies considering this condition. 

An empirical approach has been developed for sharing information between genes, allowing for 

gene-specific variation even when only a few biological replicates are available. Furthermore, we will 

addressed this issue by confirming a number of identified genes in a separate, larger, and more 

diverse validation group of patients and healthy subjects. 

Future analysis are required to validate selected genes with significant differential expression, as 

well as real time PCR. If the changes found in PBMCs phenotype can be related back to the 

pathobiology of the disease, they may allow to find the future therapeutic targets. Furthermore, thanks 

to naïve condition differentially expressed genes could represent markers of prognosis during the 

therapy administration. 
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6. Conclusions 

Despite significant advances in the elucidation of genetic basis for some patients and despite 

progresses in PAH therapy, the prognosis remains poor. The current treatment strategy, optimized in 

recent guidelines [3], remains inadequate. In fact, the mortality rate continues to be high, and the 

functional and hemodynamic impairments are still extensive in many patients. Prior to the advent of 

modern therapies, life expectancy for adults with idiopathic PAH was 3 years from diagnosis; for 

children, it was 10 months [2]. The specific drugs approved for PAH are able to slow the progression 

of the disease, but cannot be considered a cure for the majority of patients [1]. 

Within this context, the development of treatments that may afford a reverse remodeling of 

vascular architecture and biology in PAH would have relevant biomedical implications. 

While additional studies are required to dissect the intimate mechanism(s) of the effects of 

HDAC inhibitors on Akt dynamics and the patterning of other nonhistone proteins, the present findings 

on the BU action highlight a new role for an old molecule. BU ability to behave as a fine tuner of a 

crucial protein kinase conveys features characteristic of cell survival, proliferation and memory. 

In vivo preliminary studies in rats suggested that BU has in vivo efficacy in reversing PAH 

induced by MCT treatment. From such a view angle, BU can also be conceived as a molecule with a 

“one component-multiple target logics”, paving the way to novel perspective(s) in the clinical use of 

HDACi in PAH. 

Besides, SAGE combined with a NGS technique revealed differences in PBMCs profiling of 

naïve patients and healthy subjects. This suggests that PBMCs could be an interesting surrogate of 

tissue useful to find new molecular targets and/or biomarkers involved in PAH. Unlike lung tissue 

obtained from explants, the high accessibility of this cell population allow to study disease even at 

early stages. 
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