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ABSTRACT 

Ngal (Neutrophil Gelatinase-associated Lipocalin ) è una proteina appartenente alla famiglia delle 

lipocaline verso cui la  recente letteratura ha mostrato  una notevole attenzione, soprattutto in 

quanto biomarcatore in alcune condizioni patologiche (danno renale acuto e cronico, patologie 

autoimmuni, neoplasie). Il ruolo biologico di NGAL non è però ancora del tutto compreso. 

Numerose sono le dimostrazioni della sua azione batteriostatica. Recenti lavori hanno inoltre 

evidenziato un ruolo di NGAL nella modulazione di NFkB. Nessun lavoro ha valutato il ruolo di 

NGAL nell’immunità umorale.  

Lo scopo dello studio è quello di capire se NGAL possa esercitare un ruolo di attivazione  

(modulazione)  della risposta T cellulare attraverso la regolazione del complesso HLA-G, un 

mediatore di tolleranza. 

Cellule mononucleate da sangue periferico (PBMCs) sono state ottenute da 8 donatori sani dopo 

consenso informato e isolate tramite centrifugazione (Ficoll). PBMC sono poi state trattate con 4 

concentrazioni crescenti di NGAL (da 40 a 320 ng/mL), associate o meno a ferro e analizzate con 

tecnica fluorimetrica ed elisa.Alle analisi eseguite NGAL stimola l’espressione di HLA-G sulle 

cellule T CD4+ con un andamento dose dipendente. L’effetto del ferro sull’espressione di HLA-G 

non è di univoca interpretazione.Inoltre L’aggiunta di NGAL in vitro modifica il pattern di 

espressione delle cellule T, aumentando la popolazione delle cellule CD4
+
 CD25

+
 FoxP3. L’utilizzo  

di anticorpi anti NGAL limita l’espressione di HLA-G e diminuisce significativamente la 

percentuale di CD4
+
 CD25

+
 FoxP3

+ 
. In conclusione abbiamo mostrato un coinvolgimento di 

NGAL nell’immunità cellulare. Valutando il ruolo di NGAL come molecola immunomodulatoria, 

abbiamo mostrato che NGAL gioca un ruolo chiave neell’immunotolleranza aumentando 

l’espressione di HLA-G e cellule T regolatorie nei donatori sani. Un possibilAs potential future 

scenario applicativo di tale studio riguarda l’utilizzo in vivo di NGAL nell’immunomodulazione dei 

pazienti sottoposti a trapianto o affetti da patologie autoimmuni.  
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ABSTRACT 

NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent 

literature focused on its biomarkers function in several pathological condition (acute and chronic 

kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. 

Several are the demonstration of its bacteriostatic role. Recent papers have indeed  highlight NGAL 

role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in 

the activation (modulation) of T cell response through the regulation of HLA-G complex, a 

mediator of tolerance. 

From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated 

by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL 

(40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. 

NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the 

dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing 

in vitro expansion of CD4
+
 CD25

+
 FoxP3

+ 
cells. Neutralizing antibody against NGAL decreased 

HLA-G expression and reduced significantly CD4
+
 CD25

+
 FoxP3

+ 
cells percentage.  

In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The 

potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown 

that NGAL plays a pivotal  role in the induction of immune tolerance up regulating HLA-G and T 

regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo 

role of NGAL in immunology and immunomodulation, and its possible relationship with 

immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other 

immunological disorders. 
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1. Introduction 

 

1.1 Neutrophil Gelatinase-associated Lipocalin (NGAL)  

Neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein of 25 kDa molecular weight 

consisting of 198 amino acids. It owes its name to the fact that it was isolated for the first time in 

association with a gelatinase obtained from the supernatant of activated human neutrophils. Only 

later its expression was found also in other epithelial tissues including kidney, stomach, colon, 

trachea bone marrow, prostate, uterus [1,2].  

NGAL belongs to the lipocalins superfamily, that comprises a class of proteins that are 

characterized by a common secondary and tertiary structural feature— called as the "lipocalin fold". 

It is characterized by height β-strands that form a β-barrel defining a calyx. The calyx binds and 

transports low molecular weight molecules, which define the biologic activity of the lipocalin. The 

beta sheets are connected to one another by seven short loops (L1–L7), of which the loop L1 forms 

a lid-like structure to close the ligand binding cavity. The difference in specific amino acids within 

the lipocalin fold gives rise to the wide diversity in ligands that can be bound by lipocalins (Figure 

1) [3,4].  

Few examples of lipocalins are retinol-binding protein that binds and transports vitamin A [5], the 

lipocalin α1-microglobulin that scavenges heme [6], and nitrophorin-type lipocalins that carry heme 

groups complexed with nitric oxide [7]. 

Biological fluids contain very low levels of NGAL protein at steady state level. Serum contains 

approximately 20 ng/ml NGAL which is probably derived from neutrophils and from limited 

expression in liver, spleen and kidney [8]. Renal clearance is a major regulator of this steady state 

level, because circulating NGAL undergoes glomerular filtration due to its low molecular weight  

and positive charge. Theoretically, the kidney processes 3.4–4 mg NGAL per day (20 ng/ml×120–

140 ml/min glomerular filtration rate, GFR) as a result of filtration [9] followed by capture by the 

proximal tubule, where it was degraded to a 14 kDa fragment in lysosomes. Endocytosis of NGAL 
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from the apical (luminal) membrane is the most likely pathway of NGAL traffic because it appeared 

in the urine when the apical megalin receptor was deleted. Biacore based binding studies confirmed 

a direct interaction between NGAL and megalin fragments [10], consistent with capture of NGAL 

from the glomerular filtrate rather than from the basolateral (blood) side. Similar to serum, urine 

contains approximately 20 ng/ml NGAL at steady state. The origin of this protein is not clear, but 

some of it may derive from serum NGAL that bypasses capture in the proximal tubule 

(approximately 1/200 molecules). Alternatively, NGAL might derive from neutrophils or even from 

bladder epithelia. However, it is most likely that urinary NGAL derives from a low level of 

expression in the native kidney at steady state. Indeed, weak in situ RNA reactivity can be seen in 

the collecting ducts of some kidneys [11]. 

 

1.1.2 NGAL, the iron binding and the bacteriostactic action 

 In the case of NGAL, the lipophilic compound that can be tied by the lipocalin fold is represented 

by the siderophores, as demonstrated for the first time by Strong et al studies [12]. 

The estimated concentration of free iron in the body is estimated to be as low as 10−24 M) [13]. 

The exceedingly low availability of free iron is attributable to iron-binding proteins like transferrin, 

ferritin and 

lactoferrin which form complexes with any available free iron molecules. Bacteria have developed 

special proteins called siderophores that have an affinity for iron (particularly ferric iron or Fe3+) 

several times higher than that of the endogenous iron chelators. This enables siderophores to not 

only bind available free iron, but also extract iron from iron-binding proteins of the host [14].  

Goetz et al. [15,16] cloned NGAL in Gram−bacteria and identified a bacterial compound called 

enterochelin bound within the protein's calyx. Enterochelin is an organic molecule that bacteria 

utilize to capture iron from the extracellular media.  
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Figure 1. Schematic representation of the lipocalin fold. The characteristic feature of lipocalins is the “lipocalin fold” 

which comprises of an N-terminal 3–10 helix followed by eight beta sheets. The beta sheets are connected by loops 

(L1–L7). The portion of the lipocalin fold that are structurally conserved between different lipocalins is indicated by the 

blue boxed regions while the region that shows significant conservation in amino acid sequence is indicated by the 

black boxed region [4].  

 

The interaction of enterocalin with NGAL directly blocked the capture of iron by bacteria: NGAL 

delayed bacterial growth.  Complexes of NGAL with enterocalin:Fe  could form in the bloodstream 

[17] followed by their rapid clearance by macrophages in liver and spleen and by filtration and 

tubular destruction in the kidney. Hence, the binding of enterocalin to NGAL not only sequestered 

the siderophore but resulted in its clearance in the kidney. Because NGAL levels can rise 100 fold 

to >2000 ng/ml, as much as 300–400 mg NGAL/24 h, containing nearly 1 mg of iron can 

theoretically traffic to the kidney for clearance and recycling, provided that enterocalin is fully 

saturated and glomerular filtration is maintained [11]. 

But an oversupply of iron or the expression of siderophores [18] which do not recognize NGAL, 

rescued bacterial growth. Consistently, the deletion of NGAL accelerated the growth of enterocalin 

dependent bacteria, resulting in sepsis and heightened mortality [19,20].  
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NGAL is therefore an important role in innate immune response and is expressed in particular 

tissues exposed to the external environment (and therefore susceptible to infection) as the urinary or 

the gastrointestinal tract (figure 2).  There are also many apparent differences between known 

urinary antimicrobial peptides and NGAL. For example, unlike other urinary antimicrobial proteins 

[21,22,23] the cathelicidins, the defensins [24,25], Tamm–Horsfall [26-28] and Lactoferrin [29], 

which are expressed constitutively, uNGAL  is not likely to play a large role at steady state because 

it is expressed only at very low levels (20 ng/ml). In addition, while many of these proteins are 

modulated only to a small degree by infections (cathelicidin by 3–8 fold; THP and lactoferrin are 

not stimulated by infections [30-34] and the AMPs and lactoferrin remain in the low ng/ml range 

even after stimulation), NGAL was intensively upregulated by significant infections  [35-39] as 

well as aseptic stimuli. Consequently the mechanisms of expression and induction apparently differ 

between NGAL and other antimicrobial peptides even though NGAL originates from the same cells 

as many of these proteins.  

 

1.1.3 NGAL, inflammation and oxidative stress 

The inflammatory response is a natural defense mechanisms used by the body to clear irritants and 

pathogens. NGAL has been shown to be a pro-inflammatory molecule causing some to call it a 

cytokine. [40]  Studies conducted in pulmonary inflammation (mouse models) for exemple have 

revealed that Lcn2 (the mouse equivalent of NGAL) mRNA and protein are strongly upregulated 

with the exposure to pro-inflammatory stimuli [41]. A similar upregulation was also seen in the  
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Figure 2 Exemple bacteriostatic action of NGAL. Gram negative bacteria (like Salmonella typhimurium) trigger an 

immune response characterized by the activation of antigen presenting cells (macrophages and dendritic cells) upon 

engulfing the bacteria. These activated cells then release cytokines like IL-18 and IL-23 that in turn activate T-

lymphocytes. These activated T-cell in turn release IL-17 and IL-22. These two cytokines act on the intestinal cells and 

stimulate the de novo synthesis of NGAL- lipocalin 2 (Lcn2). The NGAL-Lcn2 is secreted into the intestinal lumen and 

binds to bacterial iron-binding proteins (siderophores) like enterochalin. Since iron is essential for the growth of 

bacteria, the sequestration of bacterial siderophores by NGAL-Lcn2 has a bacteriostatic effect. [4]. 

 

lungs of patients with bronchial inflammation [42]. The pro-inflammatory cytokine IL-1β is able to 

induce a significant upregulation of NGAL in human lung epithelial cells [42]. This suggests a 

mechanism for upregulation of NGAL in pulmonary inflammation but its functional role in this 

process is still unclear. Several hypotheses have been proposed to explain it. One such hypothesis is 

that acute or chronic inflammation leads to the accumulation of granulocytes at the sites of 

inflammation. These granulocytes undergo apoptosis, release their granules (containing NGAL) and 
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thereby mediate local tissue injury. In support of its pro-inflammatory function, NGAL appears to 

be a chemoattractant for neutrophils [43]. 

 The importance of NGAL as an acute phase protein was demonstrated by the observation that 

following an intraperitoneal injection of E. coli, NGAL levels are elevated in the serum and in liver 

tissue within 4 h, and in the spleen within 6 h. The increase in serum levels of NGAL was preceded 

by an increase in mRNA synthesis in the peripheral blood cells. SerumNGAL levels rose by nearly 

22-fold (from 100 ng/ml to 2200 ng/ml) within 8 h following injection (of E. coli), reached a peak 

by 24 h and then gradually returned to baseline levels [44]. 

Oxidative stress can be defined as the imbalance between the prooxidant and antioxidantmachinery 

in the cell [45]. Aberrant expression of NGAL in Chinese hamster ovary (CHO) and human 

embryonic kidney (HEK293T0) cells resulted in an upregulation of the mRNA and protein levels of 

the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) and heme oxygenase (HO1 and 

HO2) together with decrease in expression of NF-κB. Silencing of NGAL in A549 lung cancer cells 

had the opposite effect on HO1 and NFκB expression but increased the expression of SOD1 and 

SOD2. Further, the cells ectopically expressing NGAL were more resistant to the cytotoxic effects 

of hydrogen peroxide in vitro [46]. These results suggest that 

NGAL by inducing the expression of antioxidant enzymes helps cells counteract oxidative damage. 

Other studies have also suggested that NGAL may have a protective effect against cellular injury 

mediated by reactive oxygen species (ROS) [47].  

 

1.1.4 NGAL in kidney formation 

The normal development of urinary system has three different stages: pronephros, mesonephros, 

and metanephros. The development of metanephros, the permanent kidney, is the result of the 

expression of many genes in the cells of bud ureter and the metanephric balstema that send each 

other  messages to induce organogenesis. [Nelson, trattato di pediatria]. 
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Already at the beginning of the last century Boyden in the 1927  and later Gruenwald and Grobstein 

in the 1943 demonstrated that the stimulus to the conversion from mesenchymal cells in epithelial 

cells was given by the presence of the ureteric bud. In fact, surgical ablation of the ureteric bud 

prevented the appearance of new epithelium from metanephric blastema. [48]. 

More recent studies have shown that the gene deletion of ureteric bud obtained the same results. 

[49]. So it appeared clear that the ureteric bud provided the signals necessary for conversion of 

mesenchymal cells in epithelial cells, but the signals wasn’t known. 

In the late 1990s the Barasch and Sakuri research groups,  to reveal the identity of these factors 

have developed a line of cells of the ureteric bud that served as surrogate of the embryos ureteric 

bud [50]. These cells expressed a number of typical  ureteral bud proteins including growth factors 

and mesenchymal survival factors and receptors for factors produced by mesenchymal cells. In this 

way were isolated numerous factors each of which can stimulate the growth of metanephric 

mesenchyme and prevent its apoptosis (FGF and tissue inhibitors of metallo-proteinase) and in 

1999 also the first factor able to convert mesenchymal cells in epithelial cells (LIF, leukemia 

inhibitory factor) [51].  

Recently several other factors belongings to the complex network of signals able to synergistically 

induce mesenchymal cells into epithelial cells differentiation have been identified: FGF2, TGFβ2, 

etc [52].. In 2002 Yang et al  purified and recognized between these proteins also NGAL. [53]. 

 

1.1.5 NGAL as a growth factor 

The differentiation-inducing properties of NGAL are not limited to the embryonic kidney. 

Mounting evidence points toward growth factor effects of NGAL that modulate various cellular 

responses, such as proliferation, apoptosis, and differentiation, but this is not well understood 

mechanistically. [54].  

In a 4T1-Ras–transformed mesenchymal tumor cell line, NGAL induces markers of epithelial cells 

[55] . Furthermore, in cultured collecting duct cells, NGAL is expressed downstream of hepatocyte 
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growth factor and promotes the organization of epithelial cells into tubular structures [56] 

Antagonization of NGAL induction by expression of NGAL shRNA induces cystic structures rather 

than properly assembled tubules. Therefore, in addition to inducing epithelial characteristics in non 

epithelial cells, NGAL seems to affect the structure of established epithelia. It is interesting that 

glycodelin, another protein of the lipocalin family, displays effects on epithelial differentiation very 

similar to NGAL [57]. In vivo, NGAL protein is expressed predominantly by stimulated, growing, 

dysplastic, or involuting epithelial cells, pointing to a relevance of the in vitro observations in 

pathologic states [58]. 

Some of these effects, however, are enhanced when NGAL is associated with siderophores and 

iron, raising the possibility that in the absence of bacterial infection, endogenous molecules 

associate with NGAL to mediate its iron-binding properties. The cellular events differ strikingly—

at least in some biologic systems depending on whether NGAL is associated with iron [59].  

Cellular uptake of NGAL is followed by distribution of the protein in endosomes [60]. Different 

trafficking routes of endosomal NGAL have been proposed depending on the cell type and the 

association of NGAL with its binding partners. In kidney-derived cell lines, siderophore:iron-

associated NGAL (holo-NGAL) traffics to endosomes and releases iron from the complex, which 

results in regulation of iron-responsive genes, such as ferritin and transferrin receptor [61].  

Similarly, in the adult mouse kidney in vivo, systemically applied holo-NGAL is taken up by 

proximal tubule cells, where it delivers 55Fe [62]. The endosomal NGAL protein core is either 

degraded in lysosomes [63] or recycled to the extracellular space [64]. On the basis of these 

observations, siderophore:iron-associated NGAL is predicted to facilitate cytoplasmic iron delivery 

into target cells. A recent report suggested that the situation may be different when NGAL is 

delivered into target cells in the absence of the siderophore:iron complex. In this setting, 

NGAL is proposed to scavenge intracellular iron and exit the cell via the endosomal recycling 

pathway [65]. Therefore, at least some of the biologic effects of NGAL may depend markedly on its 

association with the siderophore:iron complex. This notion is supported by different biologic 
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responses to NGAL depending on the ligand. For instance, siderophore: iron-associated NGAL is 

more effective than apo-NGAL in inducing epithelial characteristics in 4T1-Ras–transformed 

mesenchymal tumor cells [66]. 

 

1.1.6  NGAL and pathological kidney conditions 

There is an urgent need  in clinical medicine for early predictive biomarkers of both acute kidney 

injury (AKI) and chronic kidney disease (CKD). In both situations, early intervention can 

significantly improve the prognosis. However, currently available biomarkers (such as serum 

creatinine concentrations) are imprecise, and their delayed response has impaired our ability to 

institute potentially effective therapies promptly. In recent years a series of kidney disease  

biomarker candidates were proposed both for AKI and CKD. NGAL is widely considered one of 

the most promising novel biomarkers of acute and chronic kidney damage [67].  

Several investigators have used molecular techniques such as cDNA microarrays and subtractive 

hybridizations combined with downstream proteomic analysis to identify novel pathways, 

biomarkers and drug targets in AKI. Supavekin et al. identified NGAL as one of the most 

upregulated genes in the early post-ischaemic mouse kidney [68], a finding that has now been 

confirmed in several other transcriptome profiling studies following ischaemic and nephrotoxic 

kidney injuries. Downstream proteomic studies have also revealed NGAL to be one of the earliest 

and most robustly induced proteins in the kidney after ischaemic or nephrotoxic AKI in animal 

models [69]. Importantly, NGAL protein is easily detected in the blood and urine soon after AKI in 

pre-clinical studies [70]. These findings have initiated a number of translational studies to evaluate 

NGAL as a novel biomarker in human AKI. In a cross-sectional study, subjects in the intensive care 

unit with established acute renal failure displayed a greater than 10-fold increase in plasma NGAL 

concentration and more than a 100- fold increase in urine NGAL concentration by Western blotting 

when compared to normal controls [71]. Both plasma and urine NGAL concentrations correlated 

highly with serum creatinine concentrations. Kidney biopsies in these patients showed intense 
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accumulation of immunoreactive NGAL in 50 % of the cortical tubules. These results identified 

NGAL as a widespread and sensitive response to established AKI in humans.  

NGAL has also been evaluated as a biomarker of AKI in kidney transplantation. Biopsies of 

kidneys obtained 1 h after vascular anastomosis revealed a significant correlation between NGAL 

staining intensity and the subsequent development of delayed graft function [72]. In a prospective 

multicentre study of children and adults, urine NGAL concentrations in samples collected on the 

day of transplant clearly identified cadaveric kidney recipients who subsequently developed delayed 

graft function and dialysis requirement (which typically occurred 2-4 days later). The ROC curve 

for prediction of delayed graft function based on urine NGAL concentration at day 0 showed an 

AUC of 0.9, indicative of an excellent predictive biomarker [73]. In a retrospective study of kidney 

transplant patients undergoing either protocol biopsies or clinically indicated biopsies, urine NGAL 

concentrations were found to be significantly increased in subjects with tubulitis or other tubular 

pathologies [74]. Urine NGAL also tended to be increased in subjects with subclinical tubulitis 

(p=0.06), raising the possibility of NGAL representing a non-invasive screening tool for the 

detection of tubulointerstitial disease in the early months following kidney transplantation. 

Several investigators have examined the role of NGAL as a predictive biomarker of nephrotoxicity 

following contrast administration [75]. In a prospective study of children undergoing elective 

cardiac catheterization with contrast administration, both urine and plasma NGAL predicted 

contrast-induced nephropathy (defined as a 50 % increase in serum creatinine from baseline 

concentration) within 2 h after contrast administration [76]. Using a cut-off value of 100 μg/L, the 

AUC for prediction of contrast nephropathy was excellent for the 2-h urine NGAL (0.92) as well as 

the 2-h plasma NGAL (0.91). By multivariate analysis, the 2-h NGAL concentrations in the urine 

and plasma were found to be powerful independent predictors of contrast nephropathy [77]. 

As discussed above, NGAL is a promising biomarker of AKI. In CKD, there is a growing literature 

suggesting that NGAL is also a marker of kidney disease and severity. In 45 subjects with CKD 

secondary to renal dysplasia, obstructive uropathy and glomerular and cystic diseases, plasma 
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NGAL concentrations were inversely associated with GFR [78]. As kidney function declined to <30 

mL/min, NGAL outperformed cystatin C as a biomarker of kidney failure [79]. Another study [80]  

in subjects with CKD (due to chronic glomerulone-phritis) demonstrated that mean urinary NGAL 

concentrations were higher in CKD patients (378.28 ±111.13 μg/L vs. 7.38±3.26 μg/L in controls; 

p=0.01). Furthermore, urinary NGAL concentrations were significantly correlated with serum 

creatinine concentrations (r=0.588, p-value=0.02), GFR (r=-0.528, p-value=0.04) and proteinuria 

(r=0.294, p-value=0.01) [81]. Both urine and plasma NGAL represent biomarkers of CKD severity 

in patients with autosomal dominant polycystic kidney disease [82]. In these subjects, urine and 

plasma NGAL concentrations correlated with residual GFR, and those with greater severity of 

cystic disease (measured as number of cysts >10) displayed the highest NGAL values [83].  Urine 

NGAL has also been shown to represent an early biomarker for degree of chronic tubulointerstitial 

injury in patients with IgA nephropathy [84]. 

 

1.2  IMMUNE TOLERANCE 

Immune tolerance consists of two main processes, namely central and peripheral tolerance. Central 

tolerance takes place in the thymus where most of the self-reactive T cells are deleted at an 

immature stage of their development [85]. Despite negative selection, self-reactive T cells can 

escape thymic clonal deletion, and subsequently provoke autoimmune diseases such as type 1 

diabetes (T1D), multiple sclerosis (MS), and inflammatory bowel disease (IBD) unless they are 

controlled by one of many peripheral mechanisms [86]. 

However thymic selection has been considered as an effective tolerogenic mechanism only for 

widely expressed self molecules. This assumption is based on the consideration that proteins with 

tissue-restricted expression would not be available for presentation in the thymus. Thus , tolerance 

to such proteins could only be achieved through mechanisms of peripheral tolerance. Peripheral 

tolerance mechanisms are indeed operative in extrathymic lymphoid tissues and include deletion , 
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anergy, ignorance and regulatory cells, and contribute to maintaining aotoreactive lymphocyte 

under tight control.  

Immunologic tolerance was first introduced in 1945 when Ray Owen observed that placental 

interchange resulted in red cell chimerism between dizygotic bovine twins [87]. In the follow 

decade Medawar, McFarlane Burnet, and colleagues elaborated upon this phenomenon of acquired 

immunologic tolerance with experimental models of transplantation, which awarded them the 

Nobel Prize in Physiology or Medicine in 1960. 

Most of the work at the time involved non-self antigen exposure in immunologically immature 

hosts, until 1959 when Schwartz and Dameshek demonstrated a marked delay in the adult rabbit 

immune response to iodine-labeled injections of human serum albumin when treated with 6-

mercaptopurine [88]. Their descriptions of the inhibition of immune pathways in this “drug-induced 

immunological tolerance” notably foreshadowed the era of pharmacologic development for 

tolerance induction. 

The next 50 years heralded a boom in drug development and subsequent improvements in graft 

survival. In contrast to 1-year graft survival in 1977 of 53 and 78% for deceased and living-related 

donors, respectively [89],  modern immunosuppression has enabled transplant recipients to enjoy 

very favorable graft survival. One-year rates having asymptotically approached 93–96%; therefore, 

short-term graft survival alone can no longer be held as the metric of success for new 

immunosuppressants.  

Instead, as 10-year graft survival rates still trail at 47–61%, new agents must address factors leading 

to chronic rejection as well as the comorbidities associated with chronic immunosuppression. The 

decisive measure of success is for a therapy to demonstrate allospecific immunosuppression while 

minimizing side effects and preserving immune competence to infectious pathogens and cancer 

during drug administration, and permanent graft survival after its withdrawal. 

The understanding of the mechanisms underlying the immune tolerance of self and non self are 

essential not only for organ transplant but also in the autoimmune disease and neoplastic disease. 
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1.2.1  TOLERANCE INDUCTION 

Traditional and novel approaches to inducing tolerance in organ transplant are known:  

MOLECULE-BASED APPROACHES 

1) T CELL THERAPIES–DEPLETION 

Early attempts at transplantation in humans were fraught with early graft failure due to a robust 

alloimmuneresponse mediated by activated Tcells. We have since learned that the suppression of 

these alloreactive Tcells permits long-term graft survival and, at times, operational tolerance [90].  

Inthe1980s, [91] observed that some renal transplant patients undergoing total lymphoid irradiation 

acquired tolerance to their allografts after withdrawal of immunosuppression and demonstrated 

donor-specific unresponsiveness in vitro. Over 30years later, the concept of eliminating alloreactive 

Tcells upon induction continues to prevail, as Tcell depletion remains the most common induction 

therapy in the U.S [92] Steroids, calcineurininhibitors, rapamycin, and mycophenolatemofetil 

comprise essential components of most immunosuppressive manteinance regimens.  

Induction strategies are  instead represented by:  

- Anti-thymocyteglobulin(ATG), the oldest depleting agent dat- ing back to the late 1890s, has been 

a mainstay in induction therapy since the 1960s [93] (Due to its potency and markedly 

heterogeneous target antigen specificities, ATG is particularly useful in high-risk recipients as well 

as in preventing ischemia-reperfusion injury.  

- Alemtuzumab (Campath-1H,Genzyme),a humanized monoclonal Ab to CD52 found densely 

distributed on T and B lymphocytes  and natural killer cells [94].  

 

2) T CELLTHERAPIES–COSTIMULATIONBLOCKADE 

Alloreactive Tcell activation requires antigen-specific engagement of the Tcell receptor with major 

histocompatibility complex molecules (signal1), followed by antigen non-specific ligation of a 

variety of receptor–ligand combinations, or costimulation (signal2; JenkinsandSchwartz,1987). 

 Blockade of costimulation effectively prevents Tcell activation and allograft rejection [95].   
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While costimulation blockade renders the Tcell anergic [96], the seanergic Tcells may express 

inducible costimulator (ICOS) and play a regulatory role [97].  In addition, costimulation blockade 

does not require radical ablation of the immune system by lymphocyte depletion or irradiation, thus 

shifting the emphasis from induction to maintenance immunosuppression [98]. 

Costimulatory signals of the CD28:B7(CD80/86) immunoglobulin superfamily and 

CD40:CD154(CD40L) tumornecrosisfactor (TNF) family are the most studied and potentially most 

important activating costimulation pathways. Cytotoxiclympocyteantigen-4 (CTLA-4) shares about 

30% homology with CD28, and binds with 10–20-fold higher affinity than CD28 toB7 molecules 

on the antigen presentingcell(APC). Not only does this potently inhibit the Tcell, but also its 

ligation with APC B7 molecules induces indoleamine 2,3-dioxygenase expression, promoting the 

suppressive function sinCTLA4+ regulatoryCD4+ cells [99]. Abatacept(Orencia,Bristol-

MyersSquibb) and belatacept (Nulojix,Bristol-MyersSquibb), fusion proteins composed of CTLA-4 

and immoglobulinIgG1, have utilized this mechanism to confer potent inhibition of alloreactive 

Tcell responses.  

3) B CELLTHERAPIES  

The role of B cells in operational tolerance has yet to be defined. On one hand ,an ITN-sponsored 

collaboration identified a unique B cell signature associated with 25 operationally tolerant renal 

transplant recipients. Not only did tolerant patients exhibit an increase in total and naïve Bcells, but 

also the majority of genes that were increasingly expressed were Bcell-specific ,particularly of 

transitional Bcells [100]. While these transitional B cells could represent a regulatory B cell 

population based on their increased IL-10 production as discussed by Redfieldetal. [101]., no 

difference in B cell subsets (total, naïve, and transitional cells) or inhibitory cytokines (IL-10 and 

TGFβ) was detected when compared to healthy controls [102].  
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1.2.2  HLA-G 

 

While both HLA-A, -B, and -C class I molecules and class II molecules play an important role in 

the induction of a specific immune response by presenting peptide antigens to T cells [103] , the 

non-classical major histocompatibility complex (MHC) class I molecule HLA-G has been identified 

as a key mediator in immune tolerance [104].  It is characterized by :  

1) A tissue-restricted distribution. Whereas expression of classical HLA class I molecules is 

known to be ubiquitous, HLA-G was first described on extraembryonic trophoblast tissues 

that invade the maternal decidua during implantation of the embryo [105]. Recently, its 

expression was also reported in endothelial cells from first trimester placental chorionic 

blood vessel, in thymic epithelial cells and activated peripheral blood monocytes [106].   

2) A  limited polymorphism. Sixteen HLA-G alleles have been described to date, four of which 

may encode membrane-bound HLA-G proteins [107], plus one truncated soluble protein 

which bears the ‘delC130 mutation’ [108]; 

3) An alternative transcription of spliced messenger RNAs (mRNAs) that encode at least six 

different HLA-G isoforms, namely the HLA-G1, -G2, -G3 and -G4 membrane bound and 

HLA-G5 and -G6 soluble proteins [109].   

The “complete” HLA-G1 molecule and its soluble counterpart HLAG5 are those that have been 

studied the most. They have an identical extracellular structure, which is classic HLA class I-like: a 

heavy chain of 3 globular domains non-covalently bound to β2-microglobulin and a nonapeptide. 

The other isoforms are likely to be of simpler structure: lacking one or 2 globular domains, they are 

smaller, and should not bind β2-microglobulin and present peptides. [110]. 

Three HLA-G receptors have been described: ILT2/CD85j/LILRB1 (ILT2), ILT4/CD85d/LILRB2 

(ILT4), and KIR2DL4/CD158d (KIR2DL4) [111].   

ILT2 is expressed by B cells, some T cells, some NK cells, and all monocytes/dendritic cells, [112] 

but ILT4 is myeloid-specific and only expressed by monocytes/dendritic cells [113]. Concerning 
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KIR2DL4, its expression is mainly restricted to the CD56bright subsets of NK cells [114] which 

constitute a minority of peripheral NK cells, but a majority of uterine NK cells. [115]. Binding to 

CD8 has also been reported [116]. Through these differentially expressed receptors, HLA-G can 

interact with B cells, T cells, NK cells, and antigen-presenting cells (APC).  

Functionally, HLA-G1 inhibits the cytolytic function of uterine and peripheral blood NK cells [117] 

the antigen-specific cytolytic function of cytotoxic T lymphocytes [118] the alloproliferative 

response of CD4+ T cells [119] the proliferation of T cells and peripheral blood NK cells [120] and 

the maturation and function of dendritic cells [121].  

Soluble HLA-G5 or soluble HLA-G1, which is generated by proteasomal cleavage from the cell 

membrane, has similar functions. The other HLA-G isoforms have been less well studied, and little 

is known about their function except that membrane-bound HLA-G2, HLA-G3, and HLA-G4 can 

inhibit NK-cell and cytotoxic T lymphocyte cytolysis in vitro [122]. 

 

Table 1. HLA-G functions: Modified by Carosella Blood 2008. 
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Because of this broad inhibitory function, capable of targeting multiple immune cell subsets, much 

effort has been put into determining whether HLA-G is pathologically relevant and whether it can 

be used as a diagnostic tool or as a therapeutic tool and/or target. Transplantation and oncology are 

2 particularly clear situations. In the context of transplantation, HLA-G expression might be 

beneficial and promote tolerance to grafts. To date, the expression of HLA-G was studied in more 

than 1000 patients after heart [123]   kidney (54) liver (55) and liver-kidney(55-57) transplantation, 

with those expressing HLA-G in the graft and/or the plasma exhibiting significantly better graft 

acceptance. Thus, in transplanted patients, titration of HLA-G might be used as a monitoring tool to 

determine and follow tolerance status, which could then be used to adjust immunosuppressive 

therapies. In this context, patients with high HLA-G titers could be candidates for a reduction in 

immunosuppressive treatment, whereas HLA-G–negative patients would have a comparatively 

higher risk of rejection. Furthermore, HLA-G itself might be used as therapeutic tolerogenic agent, 

exogenously provided to HLA-G–negative patients as complementary and/or alternative therapy 

[124].  

In the context of oncology, studies on more than 1000 malignant lesions confirmed Carosellaet al 

first study on melanoma [125] which showed that HLA-G transcription and protein expression may 

be switched on in tumor lesions and protect them from NK cytolysis. It was later shown that HLA-

G expression by tumor lesions protected against cytolysis [126] correlated with malignancy in 

ovarian and breast carcinomas (61) as well as in melanocytic lesions [127] with unfavourable 

outcome in chronic lymphocytic leukemia,63 and gastric and colorectal cancers [128].  

High HLA-G plasma levels were also recently observed in patients with neuroblastoma and 

correlated with relapse[129]. Expression of HLA-G has been evidenced in several malignant 

hematopoietic diseases, particularly in acute myeloid leukemia (AML), acute lymphoblastic 

leukemia (ALL), and B-chronic lymphocytic leukemia (B-CLL). 

Thus, HLA-G expression would favor tumor development by impairing antitumor immunity. Here 

again, HLA-G titration in peripheral blood might be used for diagnosis and/or monitoring, but in 
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this context, high titers of HLA-G would represent a negative factor [130].  In HLA-G–positive 

patients, HLA-G itself might finally constitute a therapeutic target: if expressed as a membrane-

bound protein, as observed in some hematologic malignancies [131]  HLA-G could be used as a 

tumor marker to deliver therapy. Alternatively, HLA-G could be blocked or deleted as a contributor 

to tumor immunosuppression and/or tumoral escape [132]. Recently, new aspects of HLA-G 

biology have been reported that are critical to HLA-G pathologic relevance and should help design 

HLA-G–based diagnosis and therapeutic strategies. Second is the demonstration that HLA-G is not 

only a shield against immune aggression but can also have a long-term inhibitory function through 

regulatory cells [133]. 

 

 

 

1.2.3 HLA-G and Regulatory T cells  

Treg cellsconstitute1–10%ofthymicandperiph- eralCD4+ T cells in human sand mice, and arise 

during athymic selection. They are characterized by the constitutive expression of the IL-2Rα 

chain(CD25) and expression of the forkhead winged helix transcriptional regulator Foxp3The 

importance of Foxp3 has been demonstrated by natural mutations of the foxp3 gene that result in a 

loss of Treg cell function and the development of severe autoimmune diseases [134]. Treg cell 

population can be divided in to the naturally occurring Foxp3 Treg population, generated in the 

thymus and anyone of many inducible Treg cell populations that are derived in the periphery 

fromCD4+Foxp3− precursors upon activation in presence of differentiating signals like TGF-β and 

IL-10 [135].  

The functional hallmark of CD4+CD25+ Treg cells is their remarkable capacity to suppress T 

effector/memory (Teff/mem) cell activation both in vitro and in vivo. Recent reviews have updated 

the idea that Tregs can regulate self-reactive T cells to maintain peripheral tolerance (non-

autoimmune recognition of organ antigens) [136]. Impaired capacity or removal of Tregs allows 
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unrestrained proliferative responses of pathogenic, autoreactive T cells. Adoptive transfer of Treg 

cells reduces the pathology of experimentally induced autoimmune diseases such as gastritis, 

insulin-dependent diabetes mellitus, and colitis [137] whereas depletion of CD4+CD25+ Treg cells 

results in the development of systemic autoimmune diseases [138]. Both the suppressive capacity 

[139] as well as the frequency of Treg cells [140] are diminished in patients with autoimmune 

diseases such as psoriasis and pemphigus vulgaris.  

So it was immediately recognized the therapeutic potential of these cells, not only in autoimmune 

disease,  but also in certain infections and tumors. The peripheral blood of epithelial cancer patients 

has elevated circulating regulatory T cells, and numerous mouse models have shown that 

manipulation of this cell population can increase or decrease immune-mediated tumor rejection 

[141]. Their tolerogenic effect also has been hypothesized to underlie the persistence of certain viral 

infections such as hepatitis C [142].  

Particular interest in their ability to determine patient tolerance to non-self antigens was augmented 

by the discovery that antigen-specific CD4+ regulatory T cells were increased in mice, which 

tolerated allografted tissues long-term [143]. A number of human studies have since shown that a 

high number of circulating TRegs in kidney and liver transplant patients is correlated with the 

stability of graft acceptance [144]. As such, considerable excitement about the clinical usage of 

TRegs in organ transplantation has been drawn up in the past decade. 

Foxp3 is considered to be a “master regulator” of the Treg lineage, and mutations or absence of the 

gene lead to a fatal, autoimmune lymphoproliferative disease in both mice and humans. [145]. The 

activation of Foxp3 itself is mediated by both acetylation and phosphorylation events [146] and the 

protein acts in complex with other transcription factors, including the nuclear factor of activated T 

cells (NFAT), to control gene expression [147].  The interaction of Foxp3 with other transcription 

factors, such as NFAT, serves to sequester these factors and thereby down-modulate expression of 

genes involved in T-cell activation and effector functions [148]. Although Foxp3 is a unique marker 

of murine Treg cells, its expression in human CD4+ T cells is not restricted to Treg cells. [149].  
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Regulatory T cells employ a variety of effector mechanisms to suppress immune responses [150] 

through both contact dependent mechanisms as well as the secretion of soluble factors. Several 

specific mechanisms have been described, including the inhibition of IL-2 secretion; release of 

inhibitory cytokines; perforin- or granzyme- dependent cytolysis of APCs or responder T cells; 

synthesis of immunosuppressive adenosine; and down-regulation of APC function via co-

stimulation with cytotoxic T-lymphocyte antigen 4 (CTLA-4, Figure 1). 

 Several studies showed that HLA-G, which is expressed by target cells, engages inhibitory 

receptors on effector cells, resulting in a transient block in their functions, and so acts as a shield 

against immune aggression [151]. However, it is now clear that HLA-G–related regulatory cells 

exist and that some of these can have a long-lasting inhibitory effect on immune responses. HLA-

G–induced regulatory T cells were first observed after stimulation of T cells with HLA-G1–

expressing APCs [152]. These regulatory T cells arise during an antigenic stimulation, do not 

respond to stimulation, and can block the alloreactivity of autologous T cells in vitro. Such 

regulatory T cells can be generated by membrane-bound HLA-G [153] or soluble HLAG5 [154]. 

and were detected in vivo after transplantation [155].  
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2.OBJECTIVES: 

As we have seen NGAL is involved in many physiological and pathological process such as iron 

delivery, bacteriostatic action, inflammation, oxidative stress and the cells growth and 

differentiation in embrional period, after tissues damage and in malignancy. The physiopathological 

link between this different action is still not well elucidated. It is not well elucidated yet if it 

participate in to the establishment of processes useful to counterbalance a condition of “aggression” 

(bacterial attack, infection disease, ischemic injury, apoptosis and necrosis), or if it’s activation 

promote, in the same conditions, regeneration process that may conduce to tissue repair or to the 

restoring physiological conditions. 

To take a step forward in the knowledge of this complex question we purpose to investigate the role 

of NGAL in  immune response modulation. 

 

In particular, we evaluated: 

1) NGAL effect on membrane-bound (mHLA-G) and soluble (sHLA-G) forms of HLA-G 

expression of  PBMNCs (in vitro model of healthy subjects) 

2) Relevance of iron presence on NGAL effects on HLA-G expression of PBMNCs 

3) NGAL effect of on T regulatory cells expression. 



 

26 

 

3. MATERIALS AND METHODS 

 

3.1  PBMCs isolation and cell culture 

In order to obtain cells for cell cultures, peripheral blood mononuclear cells (PBMCs) were 

obtained from 8 healthy donors after informed consent. Blood samples of 30 ml were taken in 

EDTA anticoagulant tubes. PBMCs were isolated from whole blood by Ficoll gradient (GE 

Healthcare Bio-Sciences AB, Uppsala, Sweden). and resuspended in RPMI medium (Lonza, Basel, 

Switzerland) with 10% fetal bovine serum (FBS) (Lonza, Basel, Switzerland), 100 U/mL penicillin 

and 100 U/mL streptomycin (Sigma-Aldrich, St Louis, MO, USA). PBMCs activation was 

performed by the addition of phytohaemagglutinin, PHA (Sigma Aldrich, St. Louis, MO) 5 μg/ml 

in cell culture. 

 

3.2 NGAL in vitro effect on HLA-G expression in PBMCs 

In order to asses the in vitro effect of NGAL on HLA-G expression, PBMCs treatment was 

performed by the addition of NGAL (R&D Systems, Minneapolis, USA) conjugated with 

Enterobactin:Iron (ECM Microcollection, Tuebingen, Germany). Considering NGAL concentration  

used in Gwira’s study [156] we added to PBMC cell cultures 40 ng/ml of NGAL. Cells were 

incubated at 37° C and 5% CO2 for 72 hours. The intracytoplasmic expression of HLA-G was 

evaluated through the use of the monoclonal antibody MEMG/9-FITC (Abcam, Cambridge, UK) by 

cytometric analysis. 

To assess the expression of the following markers on PBMCs  flow cytometric analysis was made: 

CD3-PC5, CD4-PE and CD8-FITC (BD).  
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3.3 NGAL in vitro effect on HLA-G expression in PBMCs after treatment with scalar doses of 

NGAL:Enterobactin:Iron (40-320 ng/ml) 

In order to understand whether the effect of NGAL on expression of HLA-g in PBMNs was dose-

dependent, PBMCs were treated with increasing concentrations of NGAL:Enterobactin:Iron (40 

ng/ml, 80 ng/ml, 160 ng/ml and 320 ng/ml). Cells were incubated at 37° C and 5% CO2 for 72 

hours. 

The intracytoplasmic expression of mHLA-G was evaluated through the use of the monoclonal 

antibody MEMG/9-FITC (Abcam, Cambridge, UK). 

 

3.4 NGAL:Enterobactin Iron Free effect on HLA-G expression. 

In order to determinate if NGAL in vitro effect on HLA-G expression in PBMCs cultere was 

influenced by iron presence, we used NGAL  40 ng/ml conjugated with Enterobactin Iron free. 

Cells were incubated at 37° C and 5% CO2 for 72 hours. Intracytoplasmic expression of HLA-G 

was evaluated. 

 

3.5 NGAL:Enterobactin:Iron effect on HLA-G expression following anti-NGAL antibody in vitro 

administration. 

In order to evaluate if HLA-G expression depended directly by NGAL activity, Anti-NGAL 

Monoclonal Antibody (200 μg; 1 mg/ml) (Thermo Scientific, Waltham, MA, USA) was used . To 

evaluate NGAL activity inhibition we used 25 μl/ml of anti-NGAL (50 ng/ml) and 50 μl/ml of anti-

NGAL (100 ng/ml) to inhibit NGAL 40 ng/ml and 80 ng/ml respectively. 

 

3.6 Indirect evaluation of NGAL role on HLA-G expression after treatment with Enterobactin:Iron.  

PBMCs were treated only with Enterobactin:Iron (ECM Microcollection, Tuebingen, Germany)  

160 ng/ml to evaluate if HLA-G expression is directly modulated by NGAL. 
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3.7 Soluble HLA-G evaluation trough ELISA after NGAL:Enterobactin:Iron treatment. 

We evaluated sHLA-G after treatment of PBMCs with NGAL:Enterobactin:Iron 40-320 ng/ml and 

with NGAL:Enterobactin 40 ng/ml trough sHLA-G ELISA (BioVendor). 

 

3.8 NGAL effect on T regulatory cells.  

T reg Detection Kit, CD4/CD25/FoxP3-PE (Miltenyi Biotech) was used to evaluate T regulatory 

cells expression and to verify if NGAL is able to influence T regulatory cells expression after 

treatment with NGAL 40-320 ng/ml. In order to evaluate if CD4
+
 FoxP3

+
 and CD4

+
 CD25

+
 FoxP3

+
 

expression depended directly by NGAL activity, anti-NGAL Monoclonal Antibody (200 μg; 1 

mg/ml) (Thermo Scientific, Waltham, MA, USA). To evaluate NGAL activity inhibition we used 

25 μl/ml of anti-NGAL (50 ng/ml) and 50 μl/ml of anti-NGAL (100 ng/ml) to inhibit NGAL 40 

ng/ml and 80 ng/ml respectively. 

In order to understand whether the effect of NGAL on CD4
+
 FoxP3

+
 and CD4

+
 CD25

+
 FoxP3

+ 

expression was dose-dependent and influenced by iron presence, PBMCs were treated with 

increasing concentrations of NGAL:Enterobactin:Iron (40 ng/ml, 80 ng/ml, 160 ng/ml and 320 

ng/ml) and NGAL:Enterobactin (40 ng/ml). Cells were incubated at 37° C and 5% CO2 for 72 

hours. 

The intracytoplasmic expression of HLA-G was evaluated through the use of the monoclonal 

antibody MEMG/9-FITC (Abcam, Cambridge, UK) by flow cytometry. The expression of CD4 and 

FoxP3 were evaluated through the use of antibodies anti-CD4 and anti-FoxP3 respectevely.  

 

 

4. RESULTS 

4.1 NGAL in vitro effect on HLA-G expression in PBMCs  

We analyzed in our research intracytoplasmic HLA-G expression on healthy donors PBMCs 

cultures. We treated PBMCs from two healthy donors with  NGAL to consider HLA-G expression 
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in the cytoplasm. After 72 hours NGAL: enterocalin:iron incubation, We observed an increase in 

HLA-G expression on CD4+. This condition is not observed for CD8+. The detection of HLA-G 

exptression with flow cytometry, was observed in not activated cells and also in cells activated with 

phytohaemagglutinin (PHA).  

Analyzing withflow cytometry PBMC cells  from healthy donors, CD4+, we notice that after 

incubation with NGAL: enterocalin: iron, there is an increase in the cells expressing HLA-G 

percentage compared to control cells. (The data regarding two of the healthy donors are presented 

in figure 3. 

 

 4.2 NGAL in vitro effect on HLA-G expression in PBMCs after treatment with scalar doses of 

NGAL:Enterobactin:Iron 

In the light of the results so far exposed, we continued our research trying different NGAL 

concentrations to understand if CD4+ and CD8+ cells  HLAG expression was dose dependent.  

We then verified  that increasing dose of NGAL:Enterobactin:Iron (40 ng/ml, 80 ng/ml, 160 ng/ml 

and 320 ng/ml ) caused an increasing HLA-G expression on CD4+ T cells using as control  PBMCs  

and activated (PBMCs trated with PHA). Figure 4.  

 

Fig. 4 HLA-G expression on CD4+ T cell: a) control PBMCs; b) PBMCs activated with PHA; c) 

PBMCs activated with PHA, treated with NGAL 40 ng\ml; d) PBMCs activated with PHA, treated 

MNCs 

CD4+ 

MNCs+PHA MNCs+PHA+40ng  

NGAL 

MNCs+PHA+80ng 

NGAL 

MNCs+PHA+160ng 

NGAL 

MNCs+PHA+320ng 

NGAL 

CD8+ 
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with NGAL 80 ng\ml; e) PBMCs activated with PHA, treated with NGAL 160 ng\ml; f) PBMCs 

activated with PHA, treated with NGAL 320 ng\ml; isotype control in black, PBMCs at different 

conditions in white. 

 

The increase was proportional to NGAL increasing concentration: in fact for subject 4 we found a 

7.3% of cell expressing HLAG in PBMCs cells, 32.8% of cell expressing HLAG in PBMCs cells 

activated with PHA, 43.8% of cell expressing HLAG with NGAL 40 ng/mL, 45.8% of cell 

expressing HLAG with NGAL 80 ng/mL, 61.8% of cell expressing HLAG with NGAL 160 ng/mL, 

67.6% of cell expressing HLAG with NGAL 320 ng/mL; in subject 5 the trend was similar: 2.8% of 

cell expressing HLAG in CD4+, 34.5% of cell expressing HLAG in CD4+ cells activated with 

PHA, 44.1% of cell expressing HLAG with NGAL 40 ng/mL, 54.6% of cell expressing HLAG with 

NGAL 80 ng/mL, 63.8% of cell expressing HLAG with NGAL 160 ng/mL, 71.9% of cell 

expressing HLAG with NGAL 320 ng/mL (figure 4)..   

The situation is different when we go to analyze CD8 + cells : in fact these cells do not exhibit a 

significant increase of the expression of HLA-G if treated with increasing concentrations of NGAL. 

These data demonstrate that HLA-G expression mediated by NGAL  shows a different trend  

among activated CD4+ and activated CD8+ T cells. In fact we found 6.5% of cell expressing 

HLAG in CD8+ cells, 26.8% of cell expressing HLAG in CD8+ activated with PHA, 25% of cell 

expressing HLAG with NGAL 40 ng/mL, 32.6% of cell expressing HLAG with NGAL 80 ng/mL, 

33.3% of cell expressing HLAG with NGAL 160 ng/mL, 35% of cell expressing HLAG with 

NGAL 320 ng/mL in subject 4 and 3.7% of cell expressing HLAG in CD8+cells, 19.5% of cell 

expressing HLAG in CD8+ activated with PHA, 24.9% of cell expressing HLAG with NGAL 40 

ng/mL, 33.5% of cell expressing HLAG with NGAL 80 ng/mL, 34.2% of cell expressing HLAG 

with NGAL 160 ng/mL, 34.5% of cell expressing HLAG with NGAL 320 ng/mL in subject 5. 
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Fig. 4 HLA-G expression as fluorescence intensity percentage on CD4+ T cells in control and treated groups after 

treatment with NGAL (40-320 ng\ml). 

 

4.3 NGAL:Enterobactin Iron Free effect on HLA-G expression. 

We also used the complex NGAL:enterocalin iron free to verify if cells response to NGAL was iron 

dependent.  

In PBMCs activated with PHA and treated with NGAL:Enterobactin Iron-free 40 ng/ml (g) an 

increase in HLA-G expression was observed, also if not of the same concentration of 

NGAL:Enterobactin:Iron complex. (Fig.xx). This was true both for CD4+ and for CD8+:36.7% and 

31.3 % for subject 4 and 37.9% and 17.2 % for subject 5 respectively.  

4.4 NGAL:Enterobactin:Iron effect on HLA-G expression following anti-NGAL antibody in vitro 

administration. 

To asses NGAL action inhibition we used anti-NGAL Monoclonal Antibody (200 μg; 1 mg/ml) 

(Thermo Scientific). We found the following values of fluorescence positivity :: 1.7% in PBMCs, 

13.6% in PBMCs+PHA, 28.4 % in PBMCs+PHA+NGAL:Fe 40 ng/ml, 22.2% in 

PBMCs+PHA+NGAL:Fe 40 ng/ml + anti-NGAL, 39.9% in PBMCs+PHA+NGAL:Fe 80 ng/ml and 

18.5 % PBMCs+PHA+NGAL:Fe 80 ng/ml + anti-NGAL.  

We can also observe that the monoclonal antibody action was dose-dependent with an inhibitory 

response more accentuated for 100 ng/mL addiction that for 50 ng/mL addiction  (Figure 5 and 6). 
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Fig. 5 HLA-G expression on PHA activated PBMCs after treatment with NGAL 40 and 80 ng/ml (black 

histogram)  and incubation with an anti-Ngal antibody (white histogram). 

 

Fig. 6 HLA-G expression on PBMCs PHA activated after stimulation with NGAL 40 and 80 ng/ml and 

incubation with an anti-Ngal antibody. 

4.5 Indirect evaluation of NGAL role on HLA-G expression after treatment with Enterobactin:Iron.  

Evaluation of Enterobactin:Iron 160 ng/ml effect on HLA-G expression shows that 

Enterobactin:Iron without NGAL had none effect on HLA-G expression. (figure 7). 
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Figure 7: sHLAG values.  

 

4.6 Soluble HLA-G evaluation trough ELISA after NGAL:Enterobactin:Iron treatment.  

Soluble HLA-G evaluation trough ELISA after NGAL:Enterobactin:Iron treatment shows 

increasing HLA-G secretion dose dependent up to NGAL:Enterobactin:Iron 80 ng/ml. In samples 

treated with NGAL:Enterobactin:Iron 160 and 320 ng/ml secretion of soluble HLA-G decreases. 

Stimulation with NGAL:Enterobactin 40 ng/ml induces HLA-G secretion only higher than the 

control.   

 

4,7 NGAL effect on T regulatory cells 

We wanted also to evaluate NGAL action on CD4+ CD25+ Foxp3+ (regulatory t cells, Tregs) to 

evaluate another important aspect of immune tolerance induction.  

So we analyzed CD4+ FoxP3+ and CD4+ CD25+ FoxP3+ concentration before and after NGAL 

addiction atincreasing dose and with or without iron presence (40 ng/ml with or without iron, 80 

ng/ml, 160 ng/ml, 320 ng/ml). All data about Cd4+FoxP3+ cells and CD4+/CD25+/FoxP3+ cells 

are reported in (figure 8). 

We observed an increase in CD4+ FoxP3+ and CD4+ CD25+ FoxP3+ expression after NGAL 

addiction. This raise was dose and iron and dependent.  
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Indeed the percentage of Tregs increased with growing NGAL doses getting a plateau with 

NGAL:Enterochelin:Iron 320 ng/ml.  The lack of iron did not increased Tregs cells expression.  

Comparing CD4+ and CD25+ cells FoxP3 expression confirmed a dose-dependent raise for the 

treatment with NGAL (40-80-160-320ng/ml). The iron-free NGAL treatment presented less 

increased  expression of Tregs. 

We then verified NGAL direct activity in Tregs expression adding  NGAL antibody and we 

observed that the presence of increasing anti-NGAL antibody determinate a significant reduction of 

Tregs percentage (both CD4+/FoxP3+ and CD4+/CD25+/FoxP3+ .  

Finally we evaluated  NGAL effect on Tregs  expression after Enterobactin:Fe 160 ng/ml treatment 

and we found that Enterobactin:Fe had none effect on CD4+/FoxP3+ and CD4+/CD25+/FoxP3+ 

cells expression  
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Fig.8 Percentage CD4
+
/CD25

+
/FoxP3

+
 cells after treatment of PBMCs with NGAL (40 ng/ml with or without iron, 80 

ng/ml, 160 ng/ml, 320 ng/ml). 

  

5. Discussion and Conclusions 

Nowadays NGAL is emerging as a mediator of various physiological and pathological conditions. 

Indeed in literature is widely documented as NGAL is involved in the transport and metabolism of 

iron, as well as its bacteriostatic activity is well known. The presence of NGAL molecule is also 

important as growth factor and in the differentiation of immature kidney. In the last years 

researchers' attention was focused on the role of NGAL as a biomarker of many diseases including 

acute and chronic kidney damage, kidney transplantation, autoimmune and neoplastic disorders. 

(Chakraborty) 

Despite numerous studies that have investigated the physiological and pathophysiological role of 

NGAL, this is not entirely elucidated. The use as biomarkers in many pathological conditions 

shows that the molecule is characterized by a low specificity for pathology: this leads us to think 

that there is a biological effect of the molecule that is common to these differents pathological 

conditions [157].  

In the light of pathologies involved, the molecule seems to be a response to different pathological 

conditions that are united by inflammation and oxidative stress. [158].   

With regard to the involvement of NGAL in immunity, only one study in the literature verifies the 

involvement in cellular one [159],  while none analyzes the role of the molecule in the humoral one.  

In recent years, the interaction between NGAL and NF-kB (nuclear factor-κB) has been studied. 

The expression of NGAL mRNA and protein is up-regulated in an NF-kB dependent manner in rat 

and human vascular smooth muscle cells (SMCs) in response to IL-1β stimulation [160]. 

Recent evidence showed that there is also a possible interaction between NF-kB and NGAL gene 

requiring  IκB-ζ for its induction: the coexpression of IκB-ζ and the NF-κB subunits synergistically 

activates the transcription of  NGAL genes [161]. The transcription factor NF-κB plays a key role in 



 

36 

the innate and adaptive immune systems. The interaction between NGAL and NF-Κb and the 

involvement of NF-κB in innate and adaptative immune system suggest a possible role of NGAL in 

immune tolerance. 

Our study on healthy controls had the aim to individuate the possible involvement of NGAL in the 

processes of immune response, focusing on the hypothesis that NGAL could promote immune 

tolerannce.  

By flow cytometry analysis we demonstrated that NGAL can increase the expression of mHLA-G 

in PBMNCs cell cultures , particularly  for CD4+ T lymphocytes. It is known as the role of HLA-g 

is not only important for the maternal-fetal tolerance. He plays a significant role in adult life and 

especially in some pathological conditions of Autoimmunity, cancer and tolerance in organ 

transplantation [162].  As a factor able of activating the expression of HLA-G,  NGAL may play the 

role of mediator in acute and chronic processes with a similar anti-inflammatory meaning [163].   

We also have shown  that increasing NGAL concentration  raises in vitro level of  mHLA-G . So 

we can postulate that NGAL increasing is not a random process, but it may express a biological 

meaning in various pathological conditions and be modulated in favor of biological necessity. We 

can also indirectly hypnotize that a decreased capability of  NGAL production could be translated  

in a lower reaction to inflammation and aging conditions. 

 The iron absence seems to have a role in  NGAL action, leaving the expression of mHLA-G 

unaltered. The iron deficiency may be negative not only for characterizing systemic inflammation 

states by affecting the anemia conditions, but also inducing aging process and reducing tissue 

renewal [164].  

Use of NGAL:Ent:Fe in the presence anti-NGAL antibody is not able to modify the expression of 

mHLA-G, confirming the action of NGAL molecule on mHLA-G activation.  

Using of increasing concentration of NGAL conjugated with iron induces an activation of Tregs 

cells. The trend of activation seems to depend from NGAL dosing.  
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NGAL role in  FoxP3+ cells activation must be considered with extreme attention in the light of 

Tregs function in autoimmune and neoplastic  disease[165], and in the graft tolerance in solid organ 

transplantation. Several authors indeed proposed Tregs cell therapy for graft tolerance induction. 

In conclusion we believe NGAL is an extremely interesting molecule and its biological role is still 

far from being fully clarified. If clinically most study in recent literature have focused on its role of 

biomarker of kidney , neoplastic and inflammatory diseases we believe that other clinical interest 

scenarios are possible. 

These include the deep understanding of the role of NGAL in humoral immunity may lead not only 

to the understanding of concerning physiopathological mechanisms  but also a molecule used for 

therapeutic purposes in many conditions under which the regulation of immune processes can play 

a supportive role. 
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