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Introduction 

At the most fundamental levels, both mechanical and thermodynamic properties 

of materials arise from the very same causes, since they are nothing more than 

a consequence of molecular and supramolecular level details, such as 

molecular size, shape, configuration and intramolecular and intermolecular 

attractions, repulsions and bonding. These details are neither mechanical, nor 

thermodynamic, at least in a classical sense, since they arise from phenomena 

that can be described by quantum mechanics and by statistical mechanics. 

These two disciplines provide the conceptual framework for describing 

molecules by themselves ( even if the jump that is required for connecting the 

simple, “closed form” , description of hydrogen atoms, to the description of a 

many atoms molecule is really huge!) and for explaining the macroscopic 

properties that arise when many molecules are set together. But for the 

common engineering perspective, mechanical properties and thermodynamic 

behavior of materials are not the two sides of the same coin: they are seen as 

two different kind of properties. Indeed, this view is somewhat supported by 

design experience: a structural designer need to know what is the strength of 

concrete, not its enthalpy, as well as computing the efficiency of a power steam 

cycle requires an accurate representation of enthalpy and entropy functions of 

the working fluid, not its modulus, if a modulus can be defined at all! Cleary the 

design process of the boiler and of the turbine will call for an evaluation of 

viscosity of the working fluid at its pressure and temperature, but again this will 

be considered independently from its enthalpy or from its entropy.  
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At the same time, it is a matter of fact that mechanics and thermodynamics are 

two disciplines strongly bonded together, also from the point of view of their 

historical development. Both disciplines were dealing with the concept of energy 

and work since their foundation and they were developed in such a way that 

those concepts share the same definitions and the same meaning. In the 

framework of continuum (field) theories the relationship between mechanics and 

thermodynamics is even stronger, since  they are both expressed in local terms 

and the set of conservation laws can be closed only providing constitutive laws, 

that should satisfy local thermodynamic constraints: It is not conceivable a 

theoretically sound theory of continuum mechanics that has not passed the 

scrutiny of thermodynamic. Many of the most powerful methods of mechanics, 

such as Hamiltonian formulation and the principle of virtual work, are inherently 

based on a view of the mechanics that begins with the concepts of energy and 

work. Finally the mechanics of materials and the thermodynamic of materials, 

that are the theories that most closely deal with the description, the modeling 

and the prediction of the properties of materials, should be able to be 

formulated using an unified view, because, as previously said, both mechanical 

and thermodynamic properties of materials should be considered to arise from 

the very same causes, since they are nothing more than a consequence of 

molecular and supramolecular level details. In fact many models that provide a 

physical picture of polymer – solvent systems, such as those based on the idea 

that molecules lay in a disordered lattice, in which the number of possible 

configuration can be estimated quite easily, can be used as a common starting 

point for thermodynamic models, as well as for mechanical models, such as 

those that deals with elasticity and viscoelasticity.  

 

Beside the relationships that can be recognized between part of the most 

common successful theories of mechanical and thermodynamic properties, 

there are several problems, that arise in polymer science and technology, in 

which the relationship between mechanical and thermodynamic properties can’t 

be neglected and should be properly addressed. First of all, it can be observed 

that in sorption and diffusion of low molecular weight species in polymers, 
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especially below the glass transition temperature, the system departs from the 

free stress state and a stress field is developed. This influence the sorption 

kinetic, that can be significantly different from the one predicted by constitutive 

laws that neglects such effects, such as Fick’s law. Moreover stresses will affect 

the processing of the polymer, its use and its final state. In same case this is 

even beneficial, but in other cases can be deeply detrimental and thus it is 

necessary to develop theoretical and experimental tools that can be used for 

characterization and modeling of those processes.  

 

A short and not exhaustive list of processes or applications in which stresses in 

polymer-solvent systems plays a role or need to be controlled can be the 

following: 

 

1. Controlled Drug Release 

2. Coating 

3. Permeation/Membrane Separation 

4. Sensing Devices 

5. Production of Polymeric Foams through Thermoplastic Expansion 

 

The case in which the stress state plays the most detrimental role is the case of 

coating: virtually all kinds of major coating defects can be related to the stresses 

that arise when the adhesion to substrate frustrates the shrinkage that the 

coating material will undergo upon drying or curing. On the other side, sensing 

devices based on micro-cantilever coated by polymer that swell upon contact 

with solvent species base their working principle in the mechanical answer of 

the material upon sorption.  

 

Between these extremes, there are many other cases in which the coupling 

between mechanical and thermodynamic properties still plays a role in the 

process.  
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In the present work theoretical and experimental methods have been applied to 

the characterization of phase equilibria and pseudoequilibria, mass transport 

properties and kinetic and mechanical properties of system made by one or 

more low molecular weight species and a polymer.  

 

Chapter number 1 and 2 deal with Equations of State. First of all, Equations of 

State have been applied to modeling mixture and pure substances volumetric 

properties and phase equilibria that were relevant to biomedical applications. It 

must be said that for systems in which the stress state is the hydrostatic one (in 

which all the three principal stress are equal to pressure), the thermodynamic 

description of the volumetric behavior of the fluid that is provided by the 

Equation of State is also the mechanical one! Since the system considered are 

made of species that will form hydrogen bonds, the modeling effort has been 

quite challenging and has prompted the choice of advanced models, like the 

Perturbed Chain Statistical Associating Fluid Theory. I was given the 

opportunity to learn the application of this model directly from the research 

group of Professor Gabriele Sadowski at the Technical University of Dortmund.  

 

Chapter 3 reports the results of the considerable amount of time that has been 

devoted to experimental measurement of vapor and liquid solubility and sorption 

kinetic in glassy and rubbery polymers, like Matrimid 5218 and PDMS. The 

sorption of one of the best solvent of Matrimid 5218 in the polymer itself was 

extensively characterized, with the aim of crossing the boundary between 

glassy and rubbery region not by acting on the thermal modes of the polymer 

chain segment, but through solvent induced plasticization. Intriguing kinetic data 

were obtained as well, for vapors and liquids. Pure and mixed liquid solubility in 

PDMS were characterized with aim of understanding if PDMS membrane could 

be used for separation process in the food and aroma industry and particularly 

to the deacidification of olive oils. 

 

Chapter 4 deals with modeling of the pseudo equilibrium sorption isotherms that 

had been collected for several vapors in the glassy Matrimid 5218. This task 
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has been achieved in the framework of the Non Equilibrium Thermodynamic of 

Glassy Phase theory of Professor Giulio Cesare Sarti and Professor Ferruccio 

Doghieri. Not only this theory is undoubtedly successful in providing a 

theoretically sound thermodynamic picture of the sorption of low molecular 

weight species in glassy polymer, but can be naturally conjugated with a simple 

rheological description of the swelling process that came along with sorption. 

Matrimid 5218, due to its really high glass transition temperature lacked the 

proper PVT data required for applying the above mentioned model and 

especially its rheological part, but with some engineering ingenuity, it was 

possible to overcame these obstacles.  

 

The kinetics of the sorption of some vapors and liquids in Matrimid 5218 were 

modeled too and the results are presented in Chapter 5. The phenomenological 

model of Berens and Hopfenberg was applied and it was defined a procedure to 

use some of the tools of the Non Equilibrium Thermodynamic of Glassy Phase 

to reduce the number of the adjustable parameters of the model. Then, after a 

brief review of the works of Long and Richman, the more recent and physically 

sound model of Carlà and Doghieri, was applied to model non Fickian sorption. 

It must be said that the model that has been applied is completely consistent 

with the Non Equilibrium Thermodynamic of Glassy Phase approach and relies 

on the very same rheological assumption. It is found that the viscosity of the 

glassy matrix deeply affect the sorption kinetic, controlling rate of the volume 

relaxation effects. Moreover, it was found out that in integral sorption steps with 

really high activity jumps, such as in liquid sorption, the plasticization effect of 

the low molecular weight penetrant has to be explicitly taken into account and 

viscosity should be allowed to depend on penetrant concentration.  

 

Chapter 6 present the results of the synthesis and characterization, in term of 

double bond conversion and gas permeability, of glassy crosslinked acrylate 

polymers that were prepared in collaboration with Dr. Ben Richter of the 3M 

corporate research laboratories of Saint. Paul and with Professor Alon 

McCormick of the University of Minnesota. The samples were cured by means 
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of exposition to an electron beam, in order to promote the formation of radical 

species without using any initiator. The effect of the radiation dose has been 

determined, especially for what concerns the relationship between radiation 

doses and gas permeability and ideal selectivity. 

 

Lastly Chapter 7 discusses some features of the manufacturing process of 

polymeric foams, especially for what concerns expanded polystyrenes. The 

results of some mechanical characterizations that were performed on pentane 

loaded polystyrenes are also presented. The experiments had been performed 

at the Technical University of Dortmund, under the supervision of Professor 

Gabriele Sadowski.  
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2. Modeling of Phase Equilibria With an 

Equation of State Approach 

2.1. Introduction 

Let us consider a closed system, spatially homogeneous, made by a single 

component and by a single phase. According to the classical theories of 

mechanics and electromagnetism, there are several kind of work that the 

system can exchange with the surrounding environment. All the kinds of work 

are means of exchanging energy and thus, from the point of view of energy 

balance, they can be even lumped into a single term, but listing each 

contribution separately can provide some insight on the physical processes 

behind them. Since the system is not considered to be isolated, it can exchange 

energy with the surrounding environment in the form of heat. Again this 

contribution is nothing but one more mean of exchanging energy, but 

consolidated experimental evidence, collected and analyzed starting from the 

very beginning of thermodynamic discipline, support the view that heat and 

work plays different roles1-5. It is a matter of fact that heat can’t be completely 

transformed into work and that it is not possible to create any kind of process 

that  brings heat from a cold source to a hot one, without supplying some kind of 

work to the system. The first statement is due to Lord Kelvin and Max Planck 

and is usually stated saying that it is not possible to build a device that have the 

only effect of producing work from heat supplied by a single source. The second 
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statement is due to Rudolf Clausius and is usually stated saying that it is not 

possible to build a device that has the only effect of transferring heat from a 

colder body to a hotter body. These two statements have been frequently 

adopted as the operational statement of the second law of thermodynamics and 

can be proven equivalent. Albeit their usefulness when dealing with power 

cycles and refrigeration, they are not well suitable for exploiting an analysis of 

the constitutive laws or of the models for mechanical and thermodynamic 

properties of materials. In the framework of rational thermodynamics, it is a well 

established practice to introduce an extensive variable, function of the state of 

the system, here yet to be defined, named Entropy, that obeys an additional 

balance equations that is very special: the change of entropy with time is always 

required to be greater or at least equal than the sole contribution from the 

Entropy flux that is exchanged with the surrounding environment.  This means 

that there is an entropy generation term that has to be always equal or greater 

than zero. Second Law can be obeyed only by those processes, that we will call 

thermodynamically admissible, in which the generation of Entropy is strictly non 

negative4, 5. 

 

2.1   Φ≥ &

dt

dS
 

 

If we restrict our analysis to a closed system of fixed volume that exchanges 

only heat, the energy balance, that in mathematical form is the statement of the 

First Law of thermodynamic, is strikingly simple: 

 

2.2   Q
dt

dU
&=  

 

Since both First and Second Laws have to be satisfied, one can think to write 

them together, by means of the introduction of a Lagrange multiplier, say β . 

Thus for every process: 
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2.3   Q
dt

dS

dt

dU
&& +Φ≤− ββ  

 

Entropy, as a function of state, can be thought to be function of the internal 

energy and of the volume of the system, at least for some kind of ideal material, 

thus we can expand the time derivative of entropy , taking into account that 

volume is fixed. 

 

2.4   Q
dt

dU

U

S

dt

dU
&& +Φ≤

∂
∂− ββ  

Since we have no experimental evidence that 
dt

dU
 is not free to have any value 

in the real set and neither we have theoretical arguments for the same request, 

we have to assume that 
dt

dU
can take any value. It is easy to recognize that if 

this is the case, it is straightforward to find cases in which the inequality can be 

violated, unless the Lagrange multipier is equal to the inverse of the derivative 

of entropy respect to internal energy 
1−










∂
∂=
U

Sβ .  

The residual inequality is then: Q&& +Φ≤ β0 . Again since we can think that heat 

flux can be somewhat controlled also by the environment that surrounds the 

system, it is possible that an action outside the system causes the failure to 

comply with the inequality inside the system. This again should be not possible 

if we want that the inequality of Second Law holds for every process that can 

take place in nature and thus we should have that β
Q&& =Φ .  

With the trick of considering a system that can exchange only heat, we have 

found a way to show that entropy flux is inded proportional to the heat flux. 

Moreover a system that exchange only heat with the surrounding environment 

is the homologous of many different kind of devices used in the empirical 

science of thermometry and by comparison with the several thermometric 

scales that have been defined, especially with those based on measuring the 
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properties of some gaseous species that fill ampoules of fixed volume and for 

which the relationship between pressure, empirical temperature and volume is 

known to be simple, i.e. the so called ideal gas, it is possible to recognize that  

the Lagrange multiplier is function of the empirical 

temperature ( )ϑβ f
U

S =








∂
∂=

−1

, for every empirical temperature scale. Since the 

Lagrange multipier β is equal to the inverse of the derivative of entropy respect 

to internal energy, it can be defined to be itself the measure of the absolute 

temperature of any body.  

 

2.5   
T

Q

dt

dS &

≥  

 

This formulation of Second Law that exploits the link between heat exchanges 

and entropy generation can be used to analyze the Clausius statement and the 

statement by Planck and Kelvin and their equivalency can be proven. As well, 

we have the conceptual instruments for analyzing systems that exchange heat 

and work of any kind. A comprehensive list of the kind of work that are 

recognizable from mechanic and electromagnetism theory will comprise for sure 

the work associated to change in volume, the work that has to be exerted for 

impressing a change in the shape of the system, the work required for changing 

the extension of the surface of the system, as well as the work required by an 

electric field for polarizing a polarizable medium and the work required by a 

magnetic field to magnetize a magnetic medium. All these kind of work are 

related to a specific property of the system that can be changed. Changing 

volume or shape means that the system will appear deformed respect to 

configuration that it had before, as well as creating new surface or changing the 

ordering of its polarizable constituent by means of application of an electric field. 

This strongly suggest that work and deformation are indeed correlated. 

 



 

 

 

11 

Let us consider a closed system, spatially homogenous and made by a single 

phase, that initially has volume 0V . The control volume of the system is 

bounded by a control surface on which can act the forces exerted by the 

surrounding environment. For example let us assume that in each point of the 

control surface is applied a force, which has a normal component that in every 

differential area element dA   is equal to PdAnFd S =ˆ* , where the scalar P  is the 

pressure or the normal stress acting on the boundary of the system. If this force 

has a non zero component in any direction that is not parallel to the vectors 

normal to the control surface, we will also have a tangential component, that for 

a given direction t̂  in the tangent plane is equal to dAtFd tnS ,ˆ
ˆ* τ= , where tn,ˆτ  is 

the shear stress acting on the boundary of the system, in the direction  t̂  , 

normal to the direction n̂ . Let us assume that on the system acts also a field of 

conservative forces per unit of volumes: dVfFd V ρ′′′= , such as gravity or an 

electric field. 

 

If the system is actually a rigid body the effect of the forces acting locally on the 

boundary of the control volume is to change the kinetic and potential energy of 

the rigid body that we are considering: ∫=Ψ+ SFdv
dt

d

dt

dK
* . In the case of a less 

ideal kind of body, one that will be deformed by the action of the external, 

surface forces, only a fraction of their power will be spent changing the potential 

and the kinetic energy of the system and the other fraction will have the only 

effect of changing the relative position of the material particles of the 

body_ ∫ −=Ψ+ DEFS WFdv
dt

d

dt

dK
&* . Subtracting this mechanical energy balance 

equation to the total energy balance equation ∫ +=Ψ++ QFdv
dt

d

dt

dK

dt

dU
S

&* , we 

obtain the so called thermal energy balance, that is the relevant one when 

looking for the most intimate and non trivial relationships between mechanics 

and thermodynamics. DEFWQ
dt

dU
&& += . In this discussion it will be proven useful 
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to introduce an extensive variable, function of the state of the system like 

internal energy and entropy, known as Helmolhtz Free Energy, defined as 

TSUA −= .  

It is easy to show that the work (actually the power) of a force field acting on the 

surface of the system with uniform normal stress and that change the volume of 

the system, is equal to 
dt

dV
P− . If this is the only work done on the system, the 

thermal energy balance and the entropy balance can be coupled to give a free 

energy balance: 

 

2.6   0≤++
dt

dV
P

dt

dT
S

dt

dA
 

 

The free energy should be a function of the state of the system, that we can 

guess to be identified by its temperature, its volume and the pressure. Applying 

the chain rule for the derivative  
dt

dA
, the inequality, that should hold for every 

admissible process, became: 

 

2.7   0
,,,

≤








∂
∂+












+









∂
∂+












+









∂
∂

dt

dP

P

A

dt

dV
P

V

A

dt

dT
S

T

A

TVPTPV

 

 

It is required that this inequality holds for every process. It is not possible to 

provide any reasonable theoretical bound for 
dt

dT
,

dt

dV
 and 

dt

dP
. Moreover, since 

the change on temperature, pressure or volume could be even separately 

controlled from the environment outside the body, the inequality 1.8 should be 

decomposed in three separate inequalities, one for each term, that should hold 

by themselves. Therefore the terms inside the brackets should be equated to 

zero and the following useful relationship can be proven4: 
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2.8   
PV

T

A
S

,










∂
∂−= ;

PT
V

A
P

,










∂
∂−= ; 0

,

=








∂
∂

VT
P

A
 

 

The latter one is especially important since it means that Helmholtz Free Energy 

is not a function of the pressure of the system. It is then possible to write simply 

( )TVAA ,=  and the thermodynamic derivatives can be written 

as
VT

A
S 









∂
∂−= and 

TV

A
P 









∂
∂−= . Moreover the second one say that the pressure 

is itself a function of the state of system, so we can say that: ( )VTfP ,= . Since 

it has been assumed that the state of the system is independent from  the rate 

of deformation 
dt

dV
, thus under isothermal conditions the pressure (and the free 

energy) depends only on the volume of the system and have the same value if 

the system is deformed slowly or really quickly or even if it is kept at rest. This is 

indeed the case of elastic materials.  

 

For the sake of generality, we could say that the pressure  ( )VTfPeq ,=  is the 

value that holds for 0=
dt

dV
, and that in general 







=
dt

dV
VTfP ,, , so that 

( )0,,VTfPeq = . Expanding 








dt

dV
VTf ,,  as a Taylor- series near 0=

dt

dV
, we can 

see that  eqPP ≈  provided that 
dt

dV
 is small enough. In fact near 0=

dt

dV
 we 

have that 
( )

...
0,, +

∂

∂+=
dt

dV

dt

dV
VTf

PP eq . 

On the base of this discussion about the value of pressure outside equilibrium, it 

is then necessary to check if the Helmholtz Free Energy also is a function of the 

rate of deformation 
dt

dV
. Applying again the chain rule for the derivative 

dt

dA
, the 

inequality, that should hold for every admissible process, became: 
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2.9   0

,

,,

≤
















∂

∂+













+









∂
∂+














+









∂
∂

dt

dV

dt

dV
A

dt

dV
P

V

A

dt

dT
S

T

A

VT
dt

dV
T

dt
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It is again straightforward to obtain the relationship between entropy and free 

energy and the indication that since 
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∂
should be always zero, the free 

energy is not a function of the deformation rate. But the residual inequality 
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 can’t be treated in the same way, since with the choice 
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VTfP ,,  the argument of the brackets is not independent from the time 
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.  From Second Law, we can say that if 
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positive, the process should be isochoric or compressive, while if 
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is negative, an expansion is allowed. Close to equilibrium, where  

dt

dV
 goes to zero, if 
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is a continuous function, as it should be 

granted without extraordinary wisdom, we recover the result that4:  

 

2.10   
T

eq V

A
P 









∂
∂−=  

 

Thus free energy is a potential for entropy even outside equilibrium and at 

equilibrium is a potential for pressure. The equilibrium 
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relationship ),( TVf
V

A
P

T

eq =








∂
∂−=  is known as the Volumetric Equation of 

State.  

A more extensive presentation of this approach and on how this procedure can 

be applied to more general systems can be found in the thermodynamic book 

written by Astarita4, in which it is possible to find some interesting observations 

on the thermodynamic description of relaxation phenomena in polymers. 

 

Since Helmholtz Free Energy is not a function of pressure, even outside 

equilibrium, if for a given Volume and Temperature the system is not in 

equilibrium, the pressure value that can be computed by ),( TVf
V

A
P

T

eq =








∂
∂−=  

will be the hypothetical pressure at which that Volume and Temperature will be 

those of equilibrium. This observation will be useful to properly identify and 

calculate the driving force of volume relaxation that takes place during the 

sorption of low molecular weight species in glassy polymers, as modeled in 

chapter 5. 

 

Let us consider now a system that acts like a spring, that under the influence of 

an external force applied at its ends it can be elongated without changing its 

volume (isochoric transformation), like happens in the case of a rubber band. 

The volume of the system will be changed only by the pressure and will not be 

affected by the force acting on the spring, but at the same time it is not possible 

to neglect that the free energy of the system is affected also by elongation.  

Thus we have to assume that the free energy depends on temperature, volume 

and elongation. The total deformation work (power) is lf
dt

dV
P *+− . Let us 

assume that the pressure is always the equilibrium value, so that we can 

neglect the effect of 
dt

dV
 on the value of the pressure itself.  

The free energy inequality, that must be obeyed in order to comply with the 

Second Law, can be exploited in the following form: 
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With the same derivation shown before, it is possible to prove that the inequality 

can be satisfied only if the free energy is assumed to be a potential for the force 

that acts on the spring: 
VT

l

A
f

,










∂
∂= . 

This force is indeed and equilibrium property, since it does not depend on 

elongation rate, but simply on the value of the elongation and we could even 

recognize that there should exist an Elongation Equation of State such that 

( )lVTgf ,,= .  

 

From the discussion of the conditions that must hold in order to guarantee that 

the inequality provided by Second Law is satisfied for every process, many 

interesting results can be obtained: 

 

• Entropy is the isochoric derivative of the Helmholtz Free Energy respect 

to temperature  

• Even in non equilibrium, Helmholtz Free Energy does not depend on 

Pressure, nor it depends on deformation rate 

• At equilibrium, Pressure is equal in moduls and opposite in sign to the 

isothermal derivative of Helmholtz Free Energy respect to volume 

• A similar result can be extended to all the elastic forces, even when the 

deformation is done under isochoric constraint, so that we can say that if 

there is a stress state under which the system can rest in equilibrium, the 

stress tensor must be equal in modulus and opposite in sign to the 

isothermal derivative of Helmholtz Free Energy respect to a measure of 

the strain: 
B

A

∂
∂−=σ 6 
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• At equilibrium, Pressure is function of Temperature and Volume alone. 

The function that represent this relationship is named Equation of State. 

If an expression for Helmholtz free energy is available from some 

molecular or mechanical statistical theory, then the equation of state can 

be explicitly derived as ),( TVf
V

A
P

T

eq =








∂
∂−= 4, 7. 

 

2.2. Constrained Systems and Single Component Phase  

Equilibria  

It is useful to exploit the consequence of Second Law on the evolution of 

systems that required to obey some constrains. The first example could be a 

closed homogeneous single component system, that is held a fixed volume V 

and that can exchange heat with the surrounding environment in such a way 

that its temperature T is fixed in time. The energy balance for this system 

is: Q
dt

dU
&= , while the Second Law is embodied by the usual inequality

T

Q

dt

dS &

≥ , 

so it is possible to eliminate the heat power from these two equations, to give: 

0≤
dt

dA
 

Since Helmholtz free energy is only allowed to decrease during the approach of 

the equilibrium condition, it should be minimum at equilibrium. Thus the 

equilibrium condition for a system held at fixed volume and temperature is that 

Helmholtz Free Energy is minimum minAA → 1. 

 

Repeating this reasoning for a closed system that is held at fixed temperature T 

and pressure P, it is possible to find out that under that constraints the function 

TSPVUG −+= , known as the Gibbs Free Energy, obeys the evolution 
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condition 0≤
dt

dG
and thus at equilibrium Gibbs Free Energy should be minimum 

minGG → 1. 

 

Finally it is useful to derive the criterion that rules the equilibrium between two 

phase of a single component closed system. Let us assume that pressure and 

temperature in the two phases are the same, so that thermal and mechanical 

equilibrium is granted. This system is constrained at fixed pressure and 

temperature, so its evolution should comply with the condition 0≤
dt

dG
, that 

descend directly from the Second Law of thermodyamics. At any time, the 

system will contain a given mass fraction of phase I, say Iω  , and a 

complementary fraction of phase II, say IIω , such that 1=+ III ωω . Each phase 

will have its own free energy content, say II Gm ˆ  and IIII Gm ˆ , so that 

IIIIII GmGmG ˆˆ += , thus ( ) 0ˆˆ
ˆ

≤−=
dt

d
GG

dt

Gd I
III ω

. The latter inequality means 

that if the Gibbs Free Energy of phase I is higher than the one of phase II, its 

mass fraction in the system will decrease. The opposite will happen if the Gibbs 

Free Energy of phase II would be higher. At equilibrium the Gibbs Free Energy 

of phase I should be equal to the Gibbs Free Energy of phase II: the phase 

equilibrium criterion is III GG ˆˆ = 1. 

2.3. Equations of State for a Single Component Syst em 

According to the arguments and the findings presented in the introduction, 

under equilibrium conditions the state of an homogenous, single phase and 

single component system shall be represented by its pressure, temperature and 

volume. But it is straightforward to list and count the number of the equations 

representing equilibrium conditions and the number of the variables for each 

phase and found out that the degrees of freedom are only two, not three. In fact, 
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for a system made by PN  phases, there are 1−PN relations like ji TT =  that 

represent the thermal equilibrium criterion, there are 1−PN relations like 

ji PP =  for mechanical equilibrium, as well as there are 1−PN relations like 

ji GG =  that represent the thermodynamic phase equilibrium criterion. Then 

equilibrium is attained if the system obeys to ( )13 −PN  constraints. Since Gibbs 

Free Energy is function of Pressure and Temperature in each phase, in general 

there are PN2 variables, thus the number of degrees of freedom is equal to 

PF NN −= 3 1. Thus for a single phase, single component system, there are two 

degrees of freedom, which means that the state of the system is specified only 

if pressure and temperature, or if volume and temperature, or if volume and 

pressure are specified. For a two phase system, there is only one degree of 

freedom: thus if two phase are coexisting the state of the system is univocally 

identified by its pressure, or by its temperature or by its volume. Finally in a 

single component, three phase system there are no degrees of freedom: this is 

the reason behind the fact that the triple point (coexistence of Solid, Liquid and 

Vapor phases) of a pure substance can be assumed as a reference point in 

thermometric scales.  

 

For a single component, single phase system, once that volume and 

temperature are specified, the Equation of State can be used for calculating the 

equilibrium pressure of the system. The equation of state can be applied for a 

gas or vapor phase or for a liquid phase as well, for representing its volumetric 

behavior. If the two phases are supposed to coexist, the equation of state 

should be applied to both phases simultaneously and the equality of Gibbs Free 

Energy will assure that the pressure that is being calculated is the equilibrium 

pressure of a system in which the coexistence of the two phases is allowed. If 

the system, at a given volume and temperature, could only be made by liquid, 

the Gibbs free energy of the vapor phase will be always greater than that of 

liquid. The opposite will happen if the system should be gaseous only. It is 

important to note that at fixed temperature and pressure, Equation of State can 
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have multiple roots, corresponding to different values of volume ( or density) of 

the system. For instance this happens when two (or more phases) coexists: for 

each phase there should be a root of the equation of state. In fact, in the region 

of pressure and temperature in which coexistence of vapor and liquid is 

possible, there should be a root for the specific volume of the liquid and a 

separate, different root for the specific volume of the vapor ( clearly at the 

critical point the two physical roots became one)1, 7. But beside these roots, 

there could be other roots that don’t represent stable phases and that in same 

case could even be only a consequence of the mathematical form of the 

specific Equation of State. 

 

Mathematical complexity is the price that has to be paid for obtaining a good 

representation of the properties of real substances. For example, the Ideal Gas 

Equation of State is the simplest and most empirical form of equation of state 

and has only one root, that represents the density of a gas, but its theoretical 

importance cannot be understated, since it can be made rigorous in terms of  

statistic theory of a gas made by hard particle, can be extended to quantum 

particles and is used as a reference term for many others advanced equation of 

state. Moreover from an engineering point of view is good enough for 

representing the volumetric properties of air and of many other simple gaseous 

species at ambient temperature and pressure.  

 

2.12   
P

MRT
V =ˆ  

 

The Van der Waals Equation of State, that has been proposed for the first time 

in 1873 and is an historical milestone in thermodynamic, can describe the 

volumetric behavior of liquid and vapors and can be written as a third order 

polynomial in term of compressibility. Actually the Van der Waals Equation of 

State does not works well in representing the specific volume of the liquid 

phase, but it was the first Equation of State that was able to predict the vapor 

liquid phase change. Many other Equations of State that have been 
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successfully applied to hydrocarbons systems, such as Peng Robinson EoS 

(1976)1, 7, 8 and Redlich Kwong Soave EoS (1972)1, 7, 9, share the same 

mathematical form: they can be written in the form of a third order polynomial of 

the compressibility and hence they are collectively known as Cubic Equation of 

State. It is straightforward to recognize that at fixed pressure and temperature, 

there could be up to three roots of the Cubic Equations of State. Two roots 

could even be complex, and it is clear that complex roots does not have a 

physical meaning in the representation of the volumetric property of fluid phase. 

With the values of the coefficients of the polynomial that are encountered when 

dealing with real substances, it is common to find three real roots. Checking the 

corresponding value of the Gibbs Free Energy provide a criteria for phase 

equilibria and phase stability. From such analysis it is clear that one root can 

describe a gaseous phase, one root represent a liquid phase, while the last root 

lies refers to an unstable condition, that is doubtfully accessible by a real 

system.  

 

The general form of the Cubic Equations of State is: 

 

2.13   023 =+++ γβα ZZZ  

 

where Z is the compressibility factor, defined as 
MRT

VP
Z

ˆ
= , and the coefficients 

α , β  and γ  are, for example,  defined according to the following matrix1: 
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the three coefficients α , β  and γ   are function of two parameters, namely a  

and b , that are characteristic of every real substance. The parameter a is 
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usually recognized to be related to the interactions between molecules and it is 

sometimes called the attraction parameter or even the force parameter, while 

parameter b is related to the volume occupied by the molecules. 

 

In 1976 Sanchez and Lacombe10 proposed an Equation of State based on a 

rigorous mechanical statistics approach based on the physical picture that the 

molecule of a fluid (liquid or vapor) can be regarded as lying randomly on the 

sites of a compressible lattice. The lattice fluid approach, albeit disregarding 

compressibility, has been previously proven successful in the theory of 

polymeric solutions, by Flory and Huggins11-13. The Sanchez Lacombe Equation 

of State successfully describe the volumetric properties of polymers (rubber and 

melts), as well as, the properties of low molecular weight substances, such as 

alkanes, aromatics, carbon dioxide and several oxygenated species. The 

representation of alcohols is hampered by the lack of a way to take into account 

hydrogen bonding effects and, for the same reason, modeling liquid water 

density is seriously flawed. Despite these drawbacks, the Sanchez Lacombe 

Equation of State can be applied to many system of industrial and scientific 

relevance, has been extended in order to provide a description of the 

thermodynamic of non equilibrium glassy phases14 and provide a good tradeoff 

between accuracy and complexity of the calculations. The Sanchez Lacombe 

Equation of State is written in term of reduced Pressure, Temperature and 

Density and albeit is not in the form of a third order polynomial, it can have three 

real roots, with the same physical meaning discussed in the case of the Cubic 

Equations of State.  

 

The Sanchez Lacombe Equation of State is usually written as: 

 

2.14   ( ) 0
1

1~~1ln
~~~2 =















 −+−++
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where  ρ~ , P
~

 and T
~

 are, respectively, the reduced density, pressure and 

temperature, while r is the number of segment (known as mers) connecting the 

sites of the lattice occupied by each molecule of the fluid. The reduced variable 

are defined according as: 
*

~
ρ
ρρ = , 

*
~

P

P
P =  and 

*
~

T

T
T = . In the theory of 

Sanchez Lacombe *ρ  is the characteristic density of the fluid, that correspond 

to its close packing limit. In the paper of Sanchez and Lacombe published in 

197610 it was stated that as a first approximation *ρ  is equal to the crystal 

density. In the subsequent paper from the same authors that was published in 

197815, specifically dealing with polymer solutions, a more careful analysis of 

this important point is provided and it is clearly stated that their theory is 

intended to describe a fluid, disordered state and not a crystalline, ordered 

state. In fact it is argued that the value of *ρ  of many common hydrocarbon is 

around 10 % lower that the density of their crystal state, in strong analogy with 

the fact that the packing fraction of hard spheres in an hexagonal or face 

centered cubic lattice is 0.74 and the random packing fraction is 0.637. From 

the mathematical point of view, it is straightforward to observe that if a fluid 

could be denser than its close packing limit, we should have *ρρ >  and thus 

1~ >ρ  and the Equation of State would be solved by evaluating the natural 

logarithm of a negative number: again we find a situation in which, even if an 

algebraic solution could be found in the field of complex numbers, there is no 

way to assign a physical meaning to that result. The characteristic temperature 

*T  can be promptly transformed in a characteristic energy 
R

T *
* =ε , that has 

been shown to be proportional to the depth of the effective potential energy well 

that acts between each mer pair15. In this picture *εr  is the total interaction 

energy of a single molecule and should be considered as the amount of energy 

required to bring one mole of the fluid, initially at equilibrium in the closed 

packed state, to the state of a vapor of negligible density. With similar reasoning 

it is possible to show that in the framework of Sanchez Lacombe Lattice Fluid 

Theory, the characteristic pressure *P  is equal to the density of cohesive 
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energy of the fluid in the close packed state, thus it is equal to the ratio between 

the vaporization energy *εr  and the volume occupied by the same chain in the 

close packed state *rv 15.  

 

A more recent equation of state that has gained a lot of popularity and that has 

been found to be able to deal with systems that usually pose a significant 

challenge to the above mentioned models, is the so called Statistical 

Associating Fluid Theory Equation of State16-19. Actually this name refers more 

to a class of models  that share the same underlying physical picture (the fluid is 

depicted as made by chains of spherical segments) and use the same 

perturbation approach, than to a single equation of state. The version 

developed by Huang and Radosz is the most commonly used. Complex fluids, 

hydrogen bonding species and the so called asymmetric mixtures, in which one 

component is much different from the other in term of size, shape, molecular 

interactions and critical point can be modeled with Statistical Associating Fluid 

Theory Equation of State with good to excellent results. Unlucky it has been 

shown that for certain substances and in certain temperature regions, there are 

multiple volume roots and that these roots can be more than three. One of 

these roots can be even beyond the theoretical close packing limit of the 

model20, 21. All these mathematical artifacts hamper the use of such Equation of 

State in a fully automated fashion, as it should be required for application in 

process simulators, where the benefit of a model that can deal so proficiently 

with complex mixtures would be very appreciated by the chemical plant 

designer community. It is interesting to note that the Perturbed Chain Statistical 

Associating Fluid Theory Equation of State, developed by Gross and Sadowsky 

from the original Statistical Associating Fluid Theory Equation of State, has 

been shown the be usually as good as the original model, and sometimes even 

better, in dealing with many complex systems and seems to be not affected by 

the abnormal multiplicity of the volume roots22-24. 
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Both Statistical Associating Fluid Theory and Perturbed Chain Statistical 

Associating Fluid Theory have been extended in order to provide a description 

of the thermodynamic of non equilibrium glassy phases25, 26. 

 

According to their perturbative approach, the equations of state of these kind 

can be formally written in term of compressibility factor expressed as a sum of 

contribution due to the various interaction mechanism between the single 

chains that represent the fluid. As said before, the fluid is assumed to be made 

by chains of sphere, permanently bonded together and each sphere can bear 

several kind of interaction sites, that can be used for describing association and 

hydrogen bonding phenomena. For instance, it is customary to write the 

Perturbed Chain Statistical Associating Fluid Theory Equation of State as22, 23: 

 

2.15   assocdisphc ZZZZ +++= 1  

 

where  1=Z would have been the expression for an ideal gas, hcZ  is the 

contribution of the hard chain,  dispZ  is the contribution of the dispersive 

interaction and assocZ  is the term that introduce the effect of association and 

hydrogen bonding. The molecular parameters, characteristic of each real 

substance, that are required for computing hcZ  and dispZ are function of three 

parameters, that are known as the  temperature-independent segment diameter 

σ , the depth of the potential ε , and the number of segments in a chain m . 

Beside these three parameters that are specific of each substance, the model 

requires 42 numerical constants, that should be universal and hold true for any 

chainlike molecule. The values of these constants were retrieved by Gross and 

Sadowski22 by means of an optimization procedure based on a Levenberg-

Marquardt algorithm, used to regress the vapor pressures and liquid, vapor, and 

supercritical volumes of a series of normal alkane. The normal alkane series 

started with methane, that was assumed to be a single segment spherical 

molecule ( 1=m ). The association contribution assocZ  requires the definition of an 

association scheme, that dictates how many interaction sites are present into 



 

 

 

26 

each molecules and how many different kind of association sites are available23. 

In fact the association phenomena are addressed assuming that associating 

molecule i  exhibit one or more association sites (i.e. ,...,BA ii
) giving rise to 

short-range attractions, that can be idealized by a square-well potential acting 

between the association sites. The depth of this square-well potential is ε BA ji  

and the temporary bonding can take place only if the sites get closer than the 

characteristic width r BA ji , that is assumed to correspond to an effective volume 

k BA ji . Thus, modelling of pure components that give raise to self association, 

such as water molecules, requires two more parameters namely the association 

energy ε BA ji  and the association volume k BA ji .  

 

All the equations of state, in order to describe the volumetric behavior of a 

specific substance, require that the values of some parameters specific of the 

given substance is provided. Some of these parameters are physical constants, 

such as the molecular weight or can be deduced by the application of the 

corresponding principle by means of the value of the coordinates of the critical 

point1. Sometimes the corresponding state principle can be adopted in a 

modified form, using also the acentric factor, proposed by Pitzer, for correlate 

the properties of non spherical molecules. The corresponding state approach is 

commonly used for Cubic Equations of State and their parameters are directly 

correlated to macroscopic property of the fluid. The more advanced theories, 

such as Sanchez Lacombe Equation of State and Statistical Associating Fluid 

Theory Equation of State are formulated in terms of parameters that have a 

clear meaning in term of microscopic or molecular property of the fluid. In both 

cases the parameters should be retrieved from the available experimental data.  

 

The critical point of a fluid can be defined, somewhat empirically, as the highest 

temperature at which a liquid can exist: this definition relies on the fact that in a 

Pressure Volume plot, the isotherm curves, in order to have more than one root 

for the volume, with increasing volume the pressure exhibit a local minimum 
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followed by a local maximum, that gives the characteristic region of 

coexistence. The isotherm of the critical temperature is the very last isotherm to 

exhibit such behavior, with maximum and minimum lumped together in a single 

extreme value. The pressure in that point is the critical pressure and specific 

volume is the critical volume. Mathematically the critical point is defined by the 

following requirements1: 
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For the Van der Waals Equation of State the applications of these two equalities  

gives the value of the critical pressure as 
227b

a
Pc = , the critical volume as 

bVc 3
~ =  and the critical temperature as 

c

c
VR

a
T ~

9

8= , thus the compressibility 

factor at the critical point is 375.0
8

3 ==cZ  for every fluid1. This suggest that the 

volumetric properties of the substances could be predicted by means of a 

universal correlation such as 







=

cc P

P

T

T
ZZ , , that embodies the principle of 

corresponding states. The value of the parameters a  and b  of the Van der 

Waals Equation of State can be calculated explicitly as 
c

c

P

TR
a

64

27 22

= and 

c

c

P

RT
b

64
= 1. 

For many fluid of industrial interest the experimental value of the compressibility 

at critical point is slightly lower, ranging from 0.23 to 0.31, although not perfect, 

the agreement seems to be really good, due to the simplicity of the van der 

waals Equation of State. An improvement of the principle of corresponding 

states can be made by using cZ  as a sort of parameters that give the departure 

from the idealized behavior predicted by the Van der Waals Equation of State: 
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parameters of the Cubic Equations of States can be directly calculated by 

means of this approach. For example, for the Peng Robinson Equation of State: 
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226992.05422137464.0 ωω +−+=k 1, 27.  Despite the length of the algebraic 

calculations, the parameters of the Cubic Equations of State can be retrieved by 

critical point data alone or at list adding the single vapor pressure data that is 

required for estimating the value of the acentric factor. Another approach that 

can be used for estimating the characteristic parameter of these Equation of 

State is the regression of a set of phase equilibria data, such as vapor pressure 

and saturated liquid and vapor densities. While seldom performed in the case of 

low molecular weight species, it could be possible to estimate the characteristic 

parameters from single phase volumetric data alone, usually in the form of the 

volume or the density of the system for a range of temperature measured at 

fixed pressure (PVT data).  

 

Applying the definition of the critical point to the Sanchez Lacombe Equation of 

State it is possible to calculate explicitly the critical density, temperature and 

pressure. The critical reduced density can be shown to be equal to 
r

c +
=

1

1~ρ  

and the critical reduced temperature is equal to ( )21

2~

r

r
Tc

+
= , thus by 

substitution in the Equation of State it is possible to find the reduced critical 

pressure ( ) 
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10. In the Sanchez Lacombe 

Equation of State the critical point is explicitly a function of the length of the 

chain of the molecule and critical temperature increases with r, while the critical 
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pressure decreases and goes to zero for a chain of infinite length. This behavior 

is qualitatively the same that is exhibited by the homologous series of normal 

alkanes. The critical compressibility factor is itself a function of r , and for 1=r is 

equal to 0.386, while goes to 1/3 for a chain of infinite length10. Thus the 

prediction of the critical conditions is even poorer than that of van der Waals 

Equation of State. Due to this features, the Sanchez Lacombe Equation of State 

does not, in general, obey a simple form of corresponding state principle, thus it 

is not possible to develop simple relationship, like those exploited for the Cubic 

Equations of State, for estimating the characteristic parameters. The approach 

that is usually followed, for low molecular weight species, is to regress a set of 

vapor pressure and saturated liquid densities data. According to Sanchez and 

Lacombe 197815, the characteristic parameters of low molecular weight 

substances could be estimated also by means of one value of the heat of 

vaporization, one value of the vapor pressure and the corresponding liquid 

specific volume, all at the same temperature. In the case of macromolecules, for 

which it is acceptable to put +∞→r , the equation of state is simplified a bit and 

the characteristic parameters can be retrieved by means of regression on PVT 

data15: 

 

2.17   ( )[ ] 0~~1ln
~~~2 =+−++ ρρρ TP  

 

More recently, in 2000 Gauter and Heidemann28 have proposed a 

parametrization of the parameters of the Sanchez Lacombe Equation of State 

that enables to directly retrieve them from the critical coordinates and from the 

acentric factor, but the critical compressibility factor remains still too high 

respect to the range of values of the real fluids. This will lead to a poor 

prediction of the liquid phase specific volumes, that is avoided when regressing 

the characteristic parameters directly on the saturated liquid data. 

 

Similar procedures applies to the equations of state that belongs to the class of 

the Statistical Associating Fluid Theory Equation of State, but some other 
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approach have been proposed. For instance Gross and Sadowski obtained the 

parameters of polyethylene by extrapolation from the low molecular weight 

alkane parameters22, while in later works24 it was suggested that the 

characteristic parameters of polymeric species could be obtained by fitting 

simultaneously PVT or liquid density data and binary phase equilibrium data. 

Even if it is then necessary to estimate a fourth parameter (the binary 

interaction parameter between the polymer and a low molecular weight 

substance), the procedure, albeit pragmatic, was found to be robust enough to 

provide parameters that performed well even for  mixtures different from the one 

used for optimization. The same authors suggested that when the paucity of the 

data set can hamper the effort of  regressing four free parameters, it seems 

reasonable to assume that the temperature independent segment diameter is 

equal to 4.1 Å24. 

 

Finally it is necessary to observe that since glassy polymers are outside 

equilibrium, it is not correct to regress PVT data obtained below the glass 

transition temperature. There are cases in which there are no available PVT 

data in the rubbery region, this is especially true for polymer that have really 

high glass transition. In some case this obstacle could be overcome by means 

of using some PVT data of a solution containing the polymer of interest, along 

with some binary equilibrium data, as done by Hesse and Sadowski for the 

polyimide Matrimid and P8429. Another type of approach that has been recently 

introduced in literature by Pricl30, 31 and Minelli et al.32 is to run Molecular 

Dynamics simulations of the polymer at high temperature and obtain synthetic 

PVT from which estimating the characteristic parameters for the equation of 

state. This multiscale approach is particularly ingenious, since the characteristic 

parameters of Equation of State are retrieved from the results of a calculations 

based on fundamental properties, such as the molecular structure and the 

interaction potential. It must be noted that Equation of State are always less 

computationally intensive than any kind of Molecular Dynamics, so they can be 

used for performing calculations that are still beyond the capability of Molecular 
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Dynamics, such as phase equilibria calculation. Therefore this approach takes 

the best from both methodologies. 

2.4. Fugacity and Gibbs Free Energy 

Models like Sanchez Lacombe Equations of State and Statistical Associating 

Fluid Theory Equation of State that are based on a well defined, yet somewhat 

idealized, description of the fluid at a molecular level, have been developed by 

their authors by means of the method of statistical mechanics. Therefore an 

expression for the Gibbs Free Energy or for the Helhlmoltz Free Energy of the 

system is directly available for calculations. Many other Equations of State are 

based on a more empirical approach and an explicit expression for the Gibbs or 

the Helmholtz Free Energy is lacking.  

 

Since 
V

A
P ~

~

∂
∂−= and 

T

A
S

∂
∂−=
~

~
, the differential form of ( )VTAA ,

~~ =  is 

dTSVPdAd
~~~ −−=  and since PVAG += , the differential form for ( )PTGG ,

~~ =  is 

dTSdPVGd
~~~ −= , under isotherm condition, the change in Gibbs Free Energy 

upon a pressure change 21 PP → is ( ) ( ) ∫=− 2

1

~
,

~
,

~
12

P

P
dPVPTGPTG . If the fluid is an 

ideal gas, the integral ∫
2

1

~P

P
dPV  becames ∫

2

1

P

P
dP

P

RT
 and since all fluid behave like 

ideal gases when 0→P , the value of the Gibbs Free Energy of a real gas can 

be evaluated starting from its ideal gas value, provided that their volumetric 

behavior is known, for instance by means of an Equation of State, using the 

formula: ( ) ( )PTGdP
P

RT
VPTG IGP

,
~~

,
~

0
+







 −= ∫  Helmholtz Free Energy can be 

calculated as ( ) ( )VTAVPdP
P

RT
VVTA IGP ~

,
~~~~

,
~

0
+−







 −= ∫ . These formulas can be 

used for calculating the Free Energies using an Equation of State that provide 

the description of the volumetric behavior of the fluid. Many calculations, such 
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as phase equilibria, can be performed without the need to evaluate the actual 

value of the free energy, but simply its departure from the ideal gas value. In 

that case it is commonly used the thermodynamic function known as the 

fugacity, defined as  
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or in term of compressibility factor  

 

2.19   ( )


















−+−







 −
=

∫ ∞+
1ln

~
~

exp ZZ
RT

VdP
V

RT

Pf

P

ZRT

 

 

When using an equation of state, the fugacity of a vapor can be calculate by 

using, in the evaluation of the above integral, the specific volume or 

compressibility root that correspond to a vapor state, while the fugacity of a 

liquid can be calculated by using the root that correspond to the liquid state1.  

 

With the van der Waals Equation of State the fugacity can be readily evaluated 

as: 
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and for Peng Robinson Equation of State: 
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2.5. System made by several chemical species: 

thermodynamic function and equations of state   

 

Many of the above mentioned considerations can be plainly extended to the 

case of homogenous single phase systems with more than one chemical 

species. In that case composition plays a major role as a descriptor of the state 

of the system itself and some kind of composition measure should be 

introduced in the set of variable that define the state of the system. Regarding 

to extensive properties, the most straightforward choice is to define the 

composition of the system in term of number of the moles of each species 

( )Nci nnn ......1  or as the amount in mass term of each species 

( )Nci mmm ......1 .  For intensive properties, such as specific enthalpy or 

specific entropy, when they are expressed on a mass basis, the composition of 

the system is completely specified once that the mass fraction of 1−Nc  species 

are given, like  ( )11 ...... −Nci ωωω , on the other hand, when the intensive 

properties are expressed on a molar basis, the molar fraction of 1−Nc  species 

should be provided, like ( )11 ...... −Nci xxx . In same cases it is useful to 

work on a volume base and the composition of the system can be specified by 

providing Nc  density of the single species, defined as 
V

mi
i =ρ , thus the state of 

the system will include the following array of densities: ( )Nci ρρρ ......1 . 

Any general rule for calculating the property of the mixture from the properties 

of the single constituents should encompass the mixing effects. This can be 

exploited by means of theory of the partial molar properties1, 7. Let us say that 

θ~  is a generic property, on a molar basis, of a multicomponent system, it 

follows that  ( )11 ......,,
~~

−= Nci xxxPTθθ , if the system contains globally 

N moles of molecules, then the total amount of θ  in the system is θθ ~
N= . The 

problem of writing explicitly θ~  as a sum of contribution from the single species 

can be overcome by introducing the partial molar thermodynamic property iθ , 
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defined as 
ijnPTi

i n
≠










∂
∂=

,,

θθ . The partial molar thermodynamic property iθ  is a 

function of Pressure, Temperature and composition of the system 

( )11 ......,, −= Nciii xxxPTθθ  and not equal to the corresponding pure 

component property. It can be proved by construction that  ∑
=

=
Nc

i
iix

1

~ θθ . The 

array of variables that define the state of the system for the Gibbs Free Energy 

and the Helmholtz Free Energy, as well as the other properties of the 

multicomponent system, should include the  above mentioned composition 

variables: 

 

2.22   ( )Nci nnnPTGG ......,, 1=   

2.23   ( )Nci nnnPTAA ......,, 1=  

 

 

The same happens for the corresponding specific free energies, in term of mole 

and mass basis: 

 

2.24 ( )11 ......,,
~~

−= Nci xxxPTGG  and ( )11 ......,,ˆˆ
−= NciPTGG ωωω  

 

2.25 ( )11 ......,,
~~

−= Nci xxxVTAA  and ( )11 ......,,ˆˆ
−= NciVTAA ωωω  

 

The Helmholtz Free Energy for unit of volume of the system is:  

2.26   ( )NciTAA ρρρ ......, 1

((
= .  

 

All this functional dependence can be shown to be compliant with the 

prescriptions that arise from the inspection of the Second Law Inequality, in a 

similar fashion to the procedure that was explicitly followed in the case of the 

single component system.  The partial molar Gibbs Free Energy  
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plays a prominent role in the following phase equilibria 

computations and is usually named as  the chemical potential of the component 

i  and historically has been indicated with the symbol iµ . Clearly 

( )11 ......,, −= Nciii xxxPTµµ . It can be shown that 
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,,,,

µ , but it should be noted that the last partial 

derivative is not the partial molar Helmholtz free energy. The chemical potential 

on a mass basis is readily calculated as 
ijTi

m
i

A

≠










∂
∂=

ρρ
µ

,

(

. It should be noted 

that, from the inspection of the Second Law inequality, the functional 

relationship between entropy and Helmholtz free energy can be explicity 

exploited as: 
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and on a volume basis  
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Finally it is possible to affirm that at equilibrium, Pressure is function of 

Temperature, Volume and composition. The function that represent this 

relationship is the Equation of State. And like the case of the pure component, if 

an expression for Helmholtz free energy is available from some molecular or 

mechanical statistical theory, then the equation of state can be explicitly derived 
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as )......,,( 1
,

Nci
nT

eq nnnTVf
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ij
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.or in term of intensive 

properties )......,,
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∂
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≠

.  When the Helmholtz 

free energy on a volume basis is used, the relationship between equilibrium 

pressure and Helmholtz free energy is6: 

 

2.29   A
A

P
Nc

i Ti
ieq

ij

(
(

−








∂
∂=∑

=
≠

1 ,ρ
ρ

ρ   

 

or in term of chemical potential on a mass basis:  
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It is straightforward to recognize that the Equation of State for a multicomponent 

system could be written explicitly in term of the densities of the single species of 

the system: 

 

2.31   ( )Ncieq TfP ρρρ ......, 1=  

2.6. Equations of State for Multicomponent Systems:  

Mixing Rules 

The Equations of State developed for providing a description of the volumetric 

behavior of pure fluids can be extended to the case of multicomponent 

mixtures. Generally speaking, the characteristic parameters of the mixture can 

be obtained in a purely predictive way by those of the pure fluids, by means of 

appropriate mixing rules. Frequently happens that the prediction of the Equation 
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of State for the mixture is not as good as was the prediction of the properties of 

the pure fluids and it is necessary to introduce a correction to the value of some 

of the characteristic parameters. This is usually done by means of the use of 

binary interaction parameters. The value of that parameters is generally 

obtained by means of regression of binary mixtures data, for each pair of 

components of the system, even if the mixture contains more than two 

substances. Sometimes, due to lack of pertinent binary data for one pair of 

substance, the competent binary interaction parameters can be found only by 

regression of the complete mixture data. Clearly if this is the case, the model 

acts only as a regression or correlation tool.  

 

It must be emphasized that in many cases in the literature it is possible to find 

several set of different mixing rules for the same equation of state and their 

choice retains a certain level of empiricism1, 7, 27. 

 

The first example of mixing rules that can be considered is that of the mixing 

rules commonly used for calculating the mixture characteristic coefficients 

mixa and mixb  for the Peng Robinson Equation of State: 
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jijimix axxa

1 1

 

 

2.33   ∑
=

=
Nc

i
iimix bxb

1

 

 

The coefficient ib  is the characteristic parameter of the pure substance i , while 

the coefficient jia  is calcolate for every pair of substance i and j  according to 

the combining rule ( )jijiji kaaa −= 1 , where ia  and ja  are the characteristic 

parameters of the pure substances and jik  are the above mentioned binary 



 

 

 

38 

interaction parameters. From the definition of the combining rule, since there is 

no physical reason to assume that jiji kk ≠ , the matrix of the  jia  is symmetrical. 

These mixing rules are known as the van der Waals one fluid mixing rules1, 27, 

due to the fact that the mixture is being described by the same equation of state 

of the pure fluids, but the characteristic parameters mixa and mixb  are effectively 

composition dependent. In particular mixa is a quadratic form in ix  and mixb  is a 

linear form in the same variable.  

 

The Sanchez Lacombe Equation of State provide another interesting example 

of mixing rules. In fact there are at least three different set of mixing rules that 

have been proposed for this equation of state33. The first set of mixing rules acts 

directly on the characteristic density and on the characteristic pressure of the 

system: 
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with the combining rule  

 

2.36   ( )jjiij kiPPP −=∆ 1*** .  

 

Another set of mixing rule for Sanchez Lacombe Equation of State acts directly 

on the characteristic volume of the lattice *v  and on the characteristic energy 

*ε : 
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2.38   ∑∑
= =

=
Nc

i
ijj

Nc

j
i

1 1

** εφφε  

 

with the combining rule ( )jjiij ki−= 1*** εεε . The variable iφ  represent the 

volume fraction of the component i  in the lattice. Finally more recently has been 

proposed that the following mixing rules set is the most versatile and accurate: 
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with the combining rule ( )jjiij ki−= 1*** εεε  and ( )( )jijiji vvv η−+= 1**5.0* , 

where jiη  is a binary interaction coefficient that acts directly on the specific 

volume of the site cells in the mixture lattice. This latter mixing rules are more 

flexible, but the price that has to be paid is increase of the number of the free 

parameters. While this could be a strength for a correlation tool, it is usually 

regarded as a shortcoming if the model is going to be used as a predictive or 

semi-predictive tool. It is interesting to point out that the mixing rule for the 

characteristic energy or for the characteristic pressure, that since its relationship 

with the cohesive energy density  it is still a measure of the energy of the 

intermolecular interactions, is a quadratic form in the composition variable in all 

the three cases, while the mixing rule for the characteristic density or for the 

characteristic site volume is a linear form in the first two sets, while it has 

quadratic order in the latter case.   

 

The Equations of State belonging to the class of the Statistical Associating Fluid 

Theory Equations of State require mixing rules for both the dispersion and the 

association contribution. The characteristic parameters for the dispersion 
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contribution for mixtures are calculated according to the so-called one fluid 

theory, parametrizing the dispersive Helmholtz energy of an hypothetical single-

component fluid with respect to the characteristic parameters of the pure 

components by means of the following mixing rules22: 
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In the case of mixtures of associating compounds, that give rise to self 

association as well as to cross association (temporary bonding between sites 

on molecules of different species)  it is necessary to adopt a set of mixing rules 

also for the characteristic parameters of the association contribution23:  
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According to these equations, the values of the characteristic parameters of the 

association term are completely defined by the values of the pure components, 

without using any correction parameters. 

 

It is possible to observe that in the case of the van der Waals one fluid mixing 

rules for Cubic Equations of State as well as in the case of the Sanchez 

Lacombe, the mixing rules for the characteristic parameters that are more 

closely related to the interaction energy between the molecules of the fluid are 

quadratic form in the composition variable and that their combining rule is based 

on the geometric average of the pure fluid characteristic parameter. On the 
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other hand, for the parameters that are related to the volume of the molecules ( 

or of the sites of the lattice) there is no combining or the combing rule is based 

on a simple average. This observations extends to the mixing rules that are 

commonly adopted in the equations of state that belongs to the class of 

Statistical Associating Fluid Theory.  

 

It is interesting to observe that from statistical mechanics it is known that the 

second virial coefficient B, that in the virial series expansion is the first 

correction term to the ideal gas equation of state, is a quadratic function of the 

composition variables1: 
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Therefore it is a reasonable to expect that also the mixing rules of more 

empirical models comply to such quadratic composition dependence, at least 

for the interaction characteristic parameter. This can be checked by expanding 

the compressibility calculated from the model in series respect to 
V
~
1

and 

comparing the second term of the series with those of the virial equation of 

state. For instance it can be shown that for Cubic Equations of State 

RT
abB −= .  

 

It is a matter of fact that quadratic mixing rules are quite always sufficient for the 

correlation of phase equilibria. On the other hand several authors have been felt 

compelled to introduce a composition dependent binary interaction parameter, 

in order to model more complex systems. Any choice like this will make the 
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mixing rule a non quadratic form. For example Panagiotopoulos and Reid in 

1986 proposed to use the following combining rule27, 34: 

 

2.46   ( ) ( )[ ] jiijijiijjijiji kkwithxkkkaaa ≠−+−= 1  

 

Similar combining rules have been proposed also by Adachi and Sugie27, 35 in 

1986 and also a general form of non quadratic mixing rule have been proposed, 

in the form jjiij xxki δδ += 27. These kind of mixing rules have been found 

appropriate for modeling several binary systems, including some system with 

supercritical components. In anyway, it must be observed that these kind of non 

quadratic mixing rules, due their asymmetrical mathematical form, suffer from 

the so called Michelsen-Kistenmacher syndrome27, 36-38. These pathological 

behavior arises when there is a lack of invariancy respect to the fictious 

subdivision of a component in two or more components with the same pure fluid 

parameters. In fact if a mixture is made by a fraction Aω  of component A and a 

fraction AB ωω −= 1  of component B, or if the mixture is made by a fraction 

AA ωω 3.01 =  of a fictious component with the same property of A, by a fraction 

AA ωω 7.02 =  of a fictious component again with the same property of A and by a 

fraction 211 AAB ωωω −−=  of component B, any physical property  like density or 

compressibility to be evaluated by means of an Equation of State should be the 

same in both cases. With a non quadratic mixing rule this is not going to happen 

and the calculated property of the system that contains the two fictious 

components, albeit the total fraction of species that behave like component A is 

the same, will be different from that of the original system. It has been argued 

that due to this pathological behavior the non quadratic mixing rules perform 

poorly when dealing with ternary systems in which there are two components 

with very similar characteristic parameters, for instance as could be the case for 

a ternary system containing cyclohexane and benzene.  
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A different approach to the problem of defining efficient mixing rules has been 

undertaken by Huron and Vidal36, 39 in 1979 and subsequently by Wong and 

Sandler1, 37, 40 in 1992 is the one of combining the Equation of State with a 

model for the Gibbs Free Energy or for the excess Gibbs Free Energy. In fact 

Equations of State are a really powerful tool for predicting volumetric properties 

on a wide range of pressure and temperature, especially for pure fluids, but 

have several shortcomings in taking into account the effect of mixture 

composition. This is particularly true in the case of those mixtures in which local 

composition effects and non randomness effects can be significant, such as 

when there is hydrogen bonding or any form of clustering. On the other hand, 

there are several semi empirical models, like UNIFAC, UNIQUAC, Wilson and 

so on,  that provide an accurate description of the Excess Gibbs Free Energy of 

those systems, but those models fail to take into account pressure effects and, 

to a less extent, even temperature effects. These shortcomings are due to the 

fact that these models does not provide a representation of the volumetric 

behavior of the fluid mixture. The main idea behind this approach is that since 

0=








∂
∂
P

A
, the Helmholtz Free Energy at low, ambient pressure, at which those 

Gibbs Free Energy Models are defined, is equal to the Helmholtz Free Energy 

at infinite pressure, provided that composition and temperature are held fixed. 

But at low pressure GA ≈  and at infinite pressure the excess Helmholtz free 

energy of many kind of Equations of State like the Cubic Equations of State 

reduces to a really simple form, explicit in term of the mixture characteristic 

parameters. Then these mixture characteristic parameters can be promptly 

calculated by equating the expression of the  infinite pressure excess  

Helmholtz free energy from the Equation of State to the excess Gibbs Free 

Energy from the Gibbs Free Energy Models that work well at low pressure. It 

should be noted that the Wong Sandler treatment provides a set of mixing rules 

that complies with the theoretical requirement, from statistical mechanics, that 

the second virial coefficient be a quadratic form of composition.   
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2.7. Phase Equilibria in multicomponent system 

Let us consider two separate phases, spatially homogenous and made of 

several chemical species, that are brought in contact together. For the sake of 

simplicity let us assume also that the two phases were already at the same 

temperature and pressure, thus thermal and mechanical equilibria will be 

immediately attained, with any further need to exploit the energy balance as 

well as the momentum balance. The substances in the two phases can be in 

different aggregation states, such as a liquid and vapor or solid and a liquid, but 

in the case of the condensed phases they could be both solid or both liquid and 

simply be immiscible (i.e. when brought to contact it will still be possible to 

recognize, on a macroscopic scale, two different kind of domains, separate by 

boundary surfaces). This for instance is what happens with water and oil, but it 

is the same that happens when a polymer sheet is exposed to a vapor or is 

immersed in a liquid that is not going to act as a solvent for it. This system is 

constrained at fixed pressure and temperature and the overall amount of each 

component is fixed, even if it could change the relative amount of each species 

in the two phases. Again from Second Law, we can say that its evolution should 

comply with the condition 0≤
dt

dG
, just as we said in the case of the single 

component system. At any time, the system will be contain a given mass 

fraction of component i in the phase I, say I
iω  , and a corresponding fraction of 

the same component i  in the phase II, say II
iω . Each phase will have its own 

free energy content, say ∑
=

=
Nc

i

Im
i

I
i

II mGm
1

,ˆ µ  and ∑
=

=
Nc

i

IIm
i

II
i

IIII mGm
1

,ˆ µ , so that 

IIIIII GmGmG ˆˆ += , thus ( ) 0
ˆ

1

,, ≤−=∑
=

Nc

i

I
iIIm

i
Im

i dt

dm

dt

Gd µµ . At equilibrium the 

chemical potential of the species in the phase I should be equal to the chemical 

potential  of the species in phase II: the phase equilibrium criterion is the well 

known criterion of the equality of the chemical potential1, 7: 
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2.47   iIIm
i

Im
i ∀= ,, µµ  

 

The equilibrium criterion give Nc equations that have to be solved 

simultaneously.  

 

When using Equations of State models like Sanchez Lacombe and Statistical 

Associating Fluid Theory, for which an explicit expression for the Gibbs or 

Helmholtz Free Energy is available, the chemical potential can be evaluated 

directly by analytical or numerical differentiation.  It should be noted that when 

the chemical potential is evaluated using an approach based on equations of 

state, for each phase the density roots of the equation of state should be find 

(and used in the calculation for providing the value of the density of the system) 

and when there are multiple roots, only the one corresponding to the 

aggregation state that is stable at the given pressure and temperature 

conditions should be used.   

 

It should be noted that the phase equilibrium criterion of the equality of chemical 

potentials, can be transformed in the criterion of the equality of the fugacity, that 

is more useful for Equations of State like the Cubic Equations of State, for which 

an expression for fugacity is promptly available, just like in the case of the pure 

substances 
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The fugacity if  for a multicomponent system is defined as:  
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Depending upon the aim of the calculation, there are several way to calculate 

the vapor liquid equilibria. For example for a binary system at fixed pressure 
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and temperature it is possible to solve the equality of the chemical potentials, 

that form a system of two equations in two variables, in order to obtain the 

composition of the vapor and of the liquid that are in equilibrium with each other. 

If the pressure is kept fixed it is possible to calculate the dew point temperature 

for each vapor composition or the bubble temperature for each liquid 

composition or If the temperature is kept fixed, analogous calculations can be 

performed looking for the dew point pressure and the bubble point pressure. In 

both cases there is always a system of two equations in two variables. Despite 

their direct application to process simulation and design, these three methods 

can also be used for drawing the vapor liquid equilibrium diagram for a binary 

mixture, either at fixed pressure or temperature. Another kind of vapor liquid 

equilibria calculation that is commonly used in process simulation is the so 

called flash calculation, in which the vapor liquid equilibrium is calculated when 

a liquid is partly vaporized or vapor is partly condensed. In this case, along with 

the criterion of the equality of the chemical potentials, it is necessary to solve 

simultaneously the CN equations of the mass (or mole) balances. The same 

kind of calculations can be run when dealing with liquid liquid equilibria and 

usually a great emphasis is placed on the calculation of the temperatures at 

which the liquid system starts to form two immiscible phases. These 

temperature are generally known as Lower and Upper Consolute Temperature7. 

Like in the case of vapor liquid equilibria there are several well known phase 

diagram morphology, that relates to specific kinds of phase behavior, also in the 

case of liquid liquid equilibria some classification scheme has been proposed in 

literature, especially regarding the shape and the extension of the region in 

which the liquids are immiscible. Sometimes the temperature at which phase 

separation starts to happen is named cloud point temperature, due to the 

change in bulk optical properties that usually accompanies liquid phase 

separation. In the case of binary liquid liquid equilibria, the above considerations 

about the number of variables and the number of the equations that have to be 

solved can be assumed to hold. In the case of ternary liquid liquid system, some 

more specific consideration can be required, especially noting that even at fixed 
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pressure and temperature, the system of the chemical potential equalities is 

undetermined, since it is made by three equations in four variables. When the 

final goal of the computations is simply to draw the liquid liquid isothermal and 

isobaric diagram and not to calculate an actual phase splitting (that will require 

the simultaneous solution of the mass balance equations, like in the case of the 

flash calculations), with a little empiricism it is possible to operate simply 

parametrizing the liquidus curves respect to the mass (or mole) fraction of one 

of the component in one of the phases. In this way the system is made by three 

equations in three unknowns and it is solvable. Varying the mass (or mole) 

fraction of the component selected as parameter it is then possible to draw the 

complete diagram41, 42. 

 

In vapor liquid equilibria or in liquid liquid equilibria it can happen that one of two 

phases is made predominantly by a single component that due to some internal 

constraint is not going to be present in the other phase, so that its mass or mole 

fraction (or its density) in the other phase will be always null or negligible. In this 

cases the phase equilibria computation can be called a solubility calculation. 

For instance this can be the case of a polymer, that have negligible vapor 

pressure and thus in vapor liquid equilibria it will never be found in the vapor 

phase, or it could be the case, in liquid liquid equilibria, of a crosslinked rubber, 

that due to its internal, mechanical constraint, it will never dissolve in the solvent 

that forms the second liquid phase.  

 

Solubility calculations are somewhat simple than the complete phase equilibria 

and will be addressed with dedicated algorithm.  

2.8. Concluding remarks 

The Equations of State are well defined thermodynamic tools that describe the 

equilibrium volumetric properties of mixtures and of pure substances. Moreover, 



 

 

 

48 

Equations of State can be used for calculating phase equilibria in single and 

multicomponent systems. A brief review of the most commonly used Equations 

of State have been performed, along with a discussion of the procedure 

commonly used for retrieving pure components characteristic parameters and of 

the mixing and combining rules that are used for estimating the characteristic 

parameters of mixtures.  
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3. Equation of State Models of Water-1,4-

Dioxane and Polylactides for TIPS 

Preparation of Scaffolds: Pure Component 

Properties, Binary VLE and Ternary LLE  

3.1. Introduction 

Tissue engineering approach is driving a change of perspective in modern 

medicine and surgery, providing a way to aid healing, biofactors (cells, genes 

and proteins) delivery and tissue regeneration and striving to reduce the need of 

tissue grafting, organ transplantation and use of synthetic implants. The concept 

behind this approach is to provide porous synthetic, yet degradable and fully 

biocompatible, scaffolds that can act as a extracellular matrix able to fill surgical 

resection cavities, support and coordinate three-dimensional cells growth and 

formation of desired tissue43. This can be achieved providing cells with 

appropriate spatial, mechanical and chemical stimuli, assuring enough 

mechanical strength to bear the loads, provide size and shape stability, transmit 

to the cells the mechanical input required to drive tissue formation, permit the 

necessary transport of gases, nutrients, proteins, cells and waste products. 

Moreover scaffold could be medicated or cells seeded, in order to deliver 

biofactors in a controlled way and should be biocompatible: they should 

promote adherence, cell proliferation and differentiation and should not trigger 
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acute and chronic inflammatory response.  Thus porous scaffolds should ideally 

have a controlled topology and pore size distribution, to achieve the proper 

trade-off between mass transport properties, mechanical properties and 

biological performance. It has been reported that large pore size, with a 

hierarchical pore size distribution and open cellular structure are the features 

needed for ensuring cell seeding, tissue growth and neovascularization in the in 

vivo applications. Clearly mass transport and mechanical strength are 

influenced in opposite way by porosity. Lastly scaffold should be biodegradable, 

ideally showing an in vivo degradation kinetic that mirrors the rate of tissue 

generation and /or biofactor delivery43, 44. Poly(L-Lactic Acid) or PLLA , Poly(D-

Lactic Acid) or PDLA and their copolymers are suitable for fabrication of porous 

scaffolds that exhibit outstanding biodegradability and biocompatibility 

properties45, 46. Among the several methods that are listed in literature to be 

suitable for porous scaffold preparation, phase separation methods such as 

Thermally Induced Phase Separation (TIPS) are reported to be suitable to 

produce scaffold with pore diameter compatible with tissue growth, tailored 

adjusting thermodynamic and kinetic parameters of the process. Moreover TIPS 

techniques have already been commercially used for microporous membrane 

preparation for filtration and for fabrication of PLA 3D scaffolds46, 47.  

 

In order to develop a physically sound model of the complete TIPS process, that 

is an effort that will remain outside the scope of this thesis, it is necessary to 

identify a thermodynamic model that can be used successfully in predicting the 

liquid-liquid phase equilibria of the actual  ternary system. Although there is a 

long lasting tradition of modelling ternary LLE of mixture containing 

macromolecular species by means of Gibbs Free Energy models like Flory 

Huggins and its extensions, the Equation of State models have been 

successfully applied to similar systems. In this chapter it will be shown the 

results of the calculations performed with the Sanchez Lacombe Equation of 

State and the Perturbed Chain Statistical Associating Fluid Theory Equation of 

State. Modelling of the ternary LLE requires, as a preliminary and necessary 

step, that the characteristic parameters of the pure components are retrieved by 
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fitting some pure substance properties or from the literature, as well as 

comparing the results of the model with the available data for at least one of the 

pair of substances. The characteristic parameters of the pure polymers will be 

retrieved by regression of the available PVT data, while the characteristic 

parameters for water and 1,4 dioxane can be found in the literature, with the 

relevant exception of the 1,4 dioxane PC-SAFT parameters, that had been 

retrieved in this work, by means of regression of vapour pressure and saturated 

liquid density data. Mixtures made by water and 1,4 dioxane are used in several 

analytical chemistry procedures, as well as in industrial processes, therefore 

this mixture have already received some attention in the past and several sets 

of binary thermodynamic data can be found in literature. For the purpose of this 

work, the relevant sets of data for the binary mixture water – 1,4 dioxane are the 

Gibbs Free Energy of mixing measured by Goates48 in 1958, the Vapor Liquid 

Equilibria that can be found in DECHEMA49, the 1,4 dioxane vapour pressure 

data reported by Vinson et al.50 in 1963 and the mixture density data reported 

by Nayak et al.51 in 2004 and by Papanastaslou et al.52 in 1992. It must be 

observed that mixture of water and dioxane does not show miscibility gap in 

liquid phase at ambient temperature and pressure, so it is possible to tune the 

model, retrieving the required binary interaction coefficient, by correlating the 

VLE of the mixture, that exhibit a pretty evident azeotrope. It is certainly 

remarkable to note that, as shown in Mannella et al.53 in 2010, many activity 

coefficients models wrongly predict a miscibility gap between water and dioxane 

at ambient temperature and pressure. De Witte47, 54, who modelled the ternary 

LLE of the Water – 1,4 Dioxane - PLA mixtures with the Flory Higgins model, 

addressed a similar issue by introducing composition dependence energetic 

interaction parameter. Actually water and 1,4-dioxane liquid mixtures have been 

shown to be characterized by formation of clusters with composition and 

structure that strongly depends on dioxane molar fraction. According to 

Takamuku et al.55 at 1.0<dioxanex  the network of hydrogen bonded water 

molecules is predominant, while at  the inherent structure of the 

pure 1,4.dioxane is predominant, with water taking part into the structure by 
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hydrogen bonding. Finally at  neither water and 1,4-dioxane 

structures are predominant and small clusters of one or two dioxane molecules 

with water molecules are formed. Some vapour liquid equilibria data and some 

liquid liquid equilibria, in the form of solubility isotherms, can be found for this 

pair of substance, but that data are mainly referred to conditions in which the 

polylactides are glassy and thus these data are intrinsically pseudo equilibrium 

data and cannot be directly used for validating the model for the liquid liquid 

equilibria, although they can still provide a useful estimate of the order if 

magnitude of the solubility of water in the polylactides, that is rather low. 1,4 

Dioxane is known to be a solvent for polylactides, but it was not possible to find 

any relevant thermodynamic data, that could be suitable for the purpose of 

retrieving the binary interaction parameter.  

3.2. The properties of polylactides 

As stated in the previous introduction, polylactides or poly lactic acid can be 

prepared by synthesis yielding two different chiral forms, named L and D, that 

exhibit different behaviour, especially concerning the possibility to form 

crystalline phases. 

 

 

Fig. 3.1    Molecular structures of PLA and of its precursors. 
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Polymer Commericial Name Mw Mn Mw/Mn Tg[K] Tm [K] 
Cristalline 

fraction % 
Ref. 

P-L-LA Resomer® R L206 120000 60000 2 324 442 70 46 

P-L-LA Resomer® R L210 380000 130000 2.77 338 444 70 46 

P-D-LA  Resomer® R 206 105000 50000 2.1 323 - - 46 

P-D-LA  Resomer® R 208 250000 136000 1.85 325 - - 46 

PLA NatureWorks® PLA3001D  660000 - - 444.6 - 5656 

PLA Lacea® H-100E 110000 39000 2.8 337 441 - 5757 

Tab. 3.1   Melting Temperature and Glass Transition  Temperature from several different 

sources. 

 

Generally speaking PLLA, or copolymer with an high fraction of L monomeric 

units can form crystalline phases and thus the polymer will be semicristalline, 

while PDLA or copolymers in which the D form is the most abundant will be 

amorphous. In the literature the amorphous PDLA is sometimes referred to as 

simply PLA. The current opinion in literature is that the semicristalline PLLA is 

best suited for the preparation of scaffolds, due to the fact that the crystallites 

dispersed in the amorphous matrix will improve its mechanical properties. 

Crystallization processes will also play a relevant role in the TIPS process, 

directing influencing the actual phase separation, that in reality would be 

dictated not only by the liquid liquid equilibria of the mixture, but also by the 

solid liquid equilibria. Moreover the formation and growth of the crystallites in 

the polymer rich phase will influence the kinetic of the TIPS process, as well as 

its final morphology. Also it must be considered, when regressing the PVT data 

with an Equation of State model, that  this model cannot provide an adequate 

representation of ordered phases and thus they should not be applied at 

temperature below the melting temperature. Even if the system is amorphous, 

as in the case of PDLA, a similar attention is to be paid at avoiding to use the 

Equation of State at temperatures below glass transition temperature, since 

Equation of State cannot represent the volumetric behavior of the glassy phase. 
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3.3. Pure Polymers Parameters for Sanchez Lacombe 

Equation of State 

The characteristic parameters of the polylactides PDLA and PLLA  have been 

retrieved by from linear least square regression of PVT data in a temperature 

range in which the polymer is rubbery and non crystalline. The PVT data are in 

the form of specific volume (or density) at fixed pressure and as a function of 

the temperature. Thus the data are represented in the form of isobaric curves, 

in the specific volume – temperature plane.  For retrieving the characteristic 

parameters of  the amorphous PLA was used a set of PVT kindly provided by 

Professor Mensitieri of the Università di Napoli Federico II, in the framework of 

an Italian national research project on the production of scaffolds, in which our 

research group was involved. The PVT data of PLLA were retrieved from Zoller 

et al. compilation58. The Sanchez Lacombe Equation of State was implemented 

in a Matlab® code and was solved, for each pressure and temperature for 

which an experimental point was available, looking for the density root that 

refers to the high density phase. Actually, since macromolecular species have a 

really high molecular mass M , it was assumed that +∞→r . A non linear least 

square optimization algorithm, from the function library of Matlab® was used for 

retrieving the polymer characteristic parameters,   by minimization of the 

following objective function: 
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The termination tolerances for the function value and for the argument array 

values were set equal to 1610− . The calculation was found to be pretty 

insensitive to the initial guess values. 
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Fig. 3.2    PVT data of amorphous PLA, courtesy of Prof. Mensitieri. Università di Napoli 

Federico II and the results of the Sanchez Lacombe Equation of State calculations. Isobars 

ranging from 0.1 to 100 MPa., in the temperature range 340 K – 450 K. 

 

In the case of the amorphous P-(D) LA the regression procedure gave good 

results, providing an adequate representation of the thermal expansion of the 

polymer and of its isothermal compressibility. There are some discrepancies 

between experimental and calculated densities in the 340 K – 360 K range for 

the highest pressures isobars, but that conditions are really close to glass 

transition temperature, where the validity of the assumptions on which the 

Equations of State are based, is more questionable. The characteristic 

parameters of P-(D) LA for the Sanchez Lacombe Equation of State that have 

been obtained through the above mentioned regression procedure are listed in 

the following Table: 

 

T* [K] P* [MPa] ρ* [kg/L] 

594.1 531.8 1.383 

Tab. 3.2   PDLA characteristic parameters for the Sanchez Lacombe Equation of State. 
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This values will be adopted for the liquid liquid equilibria calculations. At first it 

could be attempted to consider these parameters adequate for representing the 

volumetric behavior  also of the PLLA, in the temperature region in which there 

is no crystalline phase and then the polymer can be regarded as amorphous. In 

fact, at first it could be possible to think that the differences between the two 

chiral forms of the lactides are not enough, to produce a significant effect on the 

configurations of the polymeric chains and thus on their volumetric behavior. 

Although this approach may seem reasonable, several differences between the 

behavior of mixtures containing PDLA and PLLA have been reported and even 

concerning their pure substance volumetric behavior, some differences can be 

recognized. Therefore a separate set of characteristic parameters for PLLA was 

retrieved by means of the above mentioned procedure. 

 

 

Fig. 3.3    PVT data of  PLLA, from Zoller et al.58, in a temperature range above the melting 

temperature, and the results of the Sanchez Lacombe Equation of State calculations. Isobars 

ranging from 0.1 to 59 MPa., in the temperature range 465 K – 525 K. 

 

Also in this case the regression procedure gave really good results and no 

significant deviation between calculated and experimental values can be 
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detected. The characteristic parameters of PLLA for the Sanchez Lacombe 

Equation of State are listed in the following table: 

 

T* [K] P* [MPa] ρ* [kg/L] 

580.9 866.9 1.396 

Tab. 3.3   PLLA characteristic parameters for the Sanchez Lacombe Equation of State. 

 

While the characteristic pressure of PLLA is pretty different from the 

characteristic pressure of PDLA, the values of characteristic temperature and 

density of the two polymers are quite close each other.  

3.4. Water -1,4 Dioxane  and PLA mixture modeling w ith 

Sanchez Lacombe Equation of State 

 

The characteristic parameters of the Sanchez Lacombe Equation of State for 

water and 1,4 dioxane were available in the literature and are listed in the table 

below: 

 

Substance T* [K] P* [MPa] ρ* [kg/L] Ref. 

Water 670 2400 1.050 5859 

1,4 – Dioxane 518.4 535 1.162 5960 

Tab. 3.4   Water and 1,4 Dioxane characteristic parameters for the Sanchez Lacombe Equation 

of State 

 

In order to perform the phase equilibria calculations required for comparing the 

predictions of the Sanchez Lacombe Equation of State with the available Vapor 

Liquid Equilibria experimental data that can be found in DECHEMA, an 

algorithm for bubble pressure calculations was implanted in Matlab®. This code 
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was validated against several dataset of Vapor Liquid Equilibria of simpler 

mixtures, such as the pairs hexane - octane and the pentane – hydrogen 

sulphide and was found to perform correctly. This code provided the base for 

developing all the other codes that were used for phase equilibria. The equality 

of chemical potentials was obtained through minimization of their squared 

difference, through the already mentioned non linear least square algorithm. For 

the sake of generality (with the ultimate goal of being able to use other 

thermodynamic models or modified versions of the Sanchez Lacombe Equation 

of State, for which could be difficult to write an explicit form of the chemical 

potential) the chemical potentials were evaluated numerically as derivatives 

respect to density of the single component of the Helmholtz Free Energy for unit 

of volume. The subroutine that evaluates the chemical potential works in a fully 

vectorized way, such that the code can be used for system with more than two 

species, without any relevant modifications. At each iteration, before evaluating 

the chemical potentials, the volumetric Equation of State is solved by Newton’s 

method or by bisection algorithm ( the choice is made automatically by the code 

if the Newton’s method fails to find a suitable root with the internally provided 

guess). If multiple roots arises, only the one pertinent to the phase for which the 

evaluation is performed is retained. 

 

It was found out that the Sanchez Lacombe Equation of State was unable to 

represent correctly the Vapor Liquid Equilibria of the Water – 1,4 Dioxane 

system at fixed temperatures. Moreover for some liquid phase compositions the 

algorithm was not able to converge to any solution of the phase equilibria 

problem. This difficulties were not removed even if the value of the binary 

interaction parameter was systematically varied. Experimentally it is found that 

liquid dioxane and water are completely miscible, so no miscibility gap should 

be predicted. Therefore it was decided to inspect directly the shape of the Gibbs 

Free Energy of Mixing function of the liquid mixture, in order to ascertain if a 

change in concavity was taking place. In fact it is well known that phase stability 

criteria1 requires that a single phase is stable (and thus the species are 
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mixtures of composition comprised in the interval in which the curvature is 

negative are not stable and will form two separate liquid phases. Goates48 

reported a set of data of Excess Free Energy for the water – 1,4 dioxane 

mixture at 298 K, obtained through the experimental measurement of heats of 

mixing and freezing point. The heats of mixing were measured through a 

calorimetric device, while the freezing points determinations were made by 

cooling curves of mixtures of known composition. Partial molar enthalpy were 

calculated from the heat of mixing data, activity coefficients were obtained by 

the freezing data and reported to 298 K by means of the above mentioned 

partial molar enthalpy. In this way it was possible to estimate the Gibbs Free 

Energy of the mixture, that is found to have positive curvature, as it is expected 

for a system that does not exhibit miscibility gap. The Gibbs Free Energy of 

Mixing of the mixture, based on the experimental data of Goates is plotted in 

Fig. 3.4, along with the values calculated with the Sanchez Lacombe Equation 

of State model. It is easy to recognize  that even with pretty high ( or low) values 

of the binary interaction coefficient dioxwk . , there is a huge region in which the 

curvature is negative and thus the model will wrongly predict the coexistence of 

two liquid phases. Mannella et al.53 have shown that this very same incorrect 

behaviour is predicted by several sophisticate activity coefficient models. 
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Fig. 3.4  Gibbs Free Energy of Mixing for the Water 1,4 Dioxane liquid mixture at 298K and 1 

bar: comparison between the data reported by Goates48 on the basis of calorimetric and 

freezing point measures and the Sanchez Lacombe Equation of State predictions. 

 

For this multicomponent calculations, the mixing rules adopted for the Sanchez 

Lacombe Equation of State are those based on the characteristic pressure, with 

the combining rule ( )jjiij kiPPP −=∆ 1*** . Thus the binary interaction 

coefficient acts directly on the value of the mixture characteristic pressure, as a 

term that proportionally increases or decreases its value, independently from 

the actual composition of the mixture. In the present case, this is not enough to 

provide a correct representation of the Gibbs Free Energy of Mixing, at least 

with the available characteristic parameters of the pure substances, that their 

widespread use in the literature should qualify them as reliable. It was decided 

to try to adopt a Non Quadratic Mixing Rule27, modifying the combining rule in 

the following way: ( ) 2
,,,. 11 wdioxwwdioxwdioxwdioxw xxk γβα +++=−  were wx  is the 

water molar fraction. Through non linear least square regression, the best fit of 

the Gibbs Free Energy of Mixing was obtained with 

0456.0;1774.0;1026.0 ,,, −=== dioxwdioxwdioxw γβα . The result is shown in Fig. 

3.5. 
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Fig. 3.5    Gibbs Free Energy of Mixing for the Water 1,4 Dioxane liquid mixture at 298K and 1 

bar. 

 

The Vapor Liquid Equilibria produced results that compared favorably with the 

experimental data reported in DECHEMA49 for Vapor Liquid Equilibria at 308 K 

and 328 K. the azeotropic behavior and the proper number of phases seems to 

be predicted. A slight correction to the coefficient dioxw,α provided better results. 

The dioxw,α  was set to 1001.0, =dioxwα . Results are shown in Fig. 3.6. 
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Fig. 3.6    Experimental Vapor Liquid Equilibria49 for the water-1,4 dioxane system and their 

comparison with the results of the calculations done with the Sanchez Lacombe Equation of 

State with Non Quadratic Mixing Rules. 

 

Prediction of the Liquid Liquid Equilibria of the system water- 1,4 dioxane and 

PLA was then attempted, trying to fit a set of  cloud point data provided by 

Professor Brucato of the Università di Palermo, in the framework of an Italian 

national research project on the production of scaffolds, in which our research 

group was involved. The data are in the form of cloud point temperature as a 

function of the mass fraction of polymer in the liquid mixture, for a given ratio 

between water and 1,4 dioxane. Data for a water 1,4 dioxane ratio equal 13/87 

and for a water 1,4 dioxane ratio equal to 14.5/85.5 were made available to us. 

Only the data for a water 1,4 dioxane ratio equal to 14.5/85.5 were modelled, 

setting 069.0, −=PLAwk  and 07.0, −=PLAdioxk . It was not possible to fit the cloud 

point data for the water 1,4 dioxane ratio equal to 113/87, unless changing 

again the values of the binary interaction parameters. The results, in the form of 

the ternary Liquid Liquid Equilibria diagram at the temperature corresponding to 

cloud point data, are shown in Fig. 3.7. It is quite obvious that modelling this 

ternary equilibria with Sanchez Lacombe Equation of State can have only the 

limiting scope of correlating existing data and that due to the extensive tuning of 
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the model that has to be done, any extrapolation should be regarded as of 

dubious reliability.  

 

 

Fig. 3.7    Liquid Liquid Equilibria for the water- 1,4 dioxane and PLA system at 317.75 K, 

321.85 K, 325.75 K and 329.75 K, corresponding to the cloud point temperatures of liquid 

mixture with water 1,4 dioxane ratio equal to 14.5/85.5 and respectively, 4,6,8 and 10 % of PLA. 

 

These results seems to suggest that the physical picture of the intermolecular 

interactions provided by the Sanchez Lacombe Equation of State is plainly 

inadequate for representing the behavior of the present mixture. In fact it was 

already cited that exist physicochemical evidences that water promotes induced 

association in the mixture, while 1,4 dioxane itself will not self associate, if pure. 

The Sanchez Lacombe Equation of State is not able to deal with that, as well as 

with any association phenomena. Its quite successfully use for representing 

pure substance properties of species like water or methanol is due to the fact 

that a proper choice of the parameters will force the model to fit the data, not 

due to an actual capability of modeling association. In fact, the quality of the 

predictions of  the liquid water saturated density could be challenged. 
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3.5. Pure Polymers Parameters for Perturbed Chain 

Statistical Associating Fluid Theory Equation of St ate 

The Perturbed Chain Statistical Associating Fluid Theory Equation of State, 

developed by Gross and Sadowski22-24, is a model that have been successfully 

applied in modelling phase equilibria of system that usually deeply challenge 

the capability of simpler model, such as associating and polar fluids like water 

containing systems, polymer-solvent systems even with association, carboxylic 

acids, alcohols and ethers and biological solutions29, 61-63. The possibility to use 

this model was granted during a visit to the Chemical and Biochemical 

Engineering faculty of the Technical University of Dortmund, in collaboration 

with the research group of the Professor Sadowski.  

 

Parameters had been retrieved by means of an automatic regression 

procedure. Reasonably good agreement can be reached between PC-SAFT 

predictions and PDLA data, even if there is some shortcomings in the 

representation of the isothermal compressibility of the fluid. In the case of PLLA 

only the isobars at pressure lower than 200 atm  were fitted in an 

adequate way. At pressure higher that 200 atm the predicted isobars were 

substantially lower than the experimental data. In anyway since this 

shortcoming in description of compressibility effects at high pressure should not 

hinder the performance of the model in the TIPS applications, that are usually 

restricted to low temperature and atmospheric pressures.  

 

The results of the regression procedure are shown in Fig. 3.8 and Fig. 3.9 and 

Tab. 3.5 lists the parameters that have been obtained.  
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Fig. 3.8    PVT data of amorphous PLA, courtesy of Prof. Mensitieri. Università di Napoli 

Federico II and the results of the Perturbed Chain Statistical Association Fluid Theory Equation 

of State calculations. Isobars ranging from 0.1 to 100 MPa., in the temperature range 340 K – 

450 K. 

 

Fig. 3.9    PVT data of  PLLA, from Zoller et al.58, in a temperature range above the melting 

temperature, and the results of the Perturbed Chain Statistical Association Fluid Theory 

Equation of State calculations. Isobars ranging from 0.1 to 59 MPa., in the temperature range 

465 K – 525 K.   
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PDLA Parameters   Units 

Segment Number  0.0369972 [mol/g] 

Segment Diameter  3.0694 [ÅÅÅÅ] 

Dispersion Energy  222.6695 [K] 

 

PLLA Parameters   Units 

Segment Number  0.060134 [mol/g] 

Segment Diameter  2.5879 [ÅÅÅÅ] 

Dispersion Energy  192.879 [K] 

Tab. 3.5   PDLA and PLLA  characteristic parameters for the Perturbed Chain Statistical 

Association Fluid Theory Equation of State. 

3.6. Water -1,4 Dioxane  pure substance and mixture  

modelling with Perturbed Chain Statistical Associat ing 

Fluid Theory Equation of State 

Modeling the thermodynamic properties of the liquid water has been proven to 

be a hard challenge for many equation of state models, albeit successfully for 

others species, due to its peculiar hydrogen bonding. Gross and Sadowski have 

shown that PC-SAFT equation of state can accomplish this task with a 2 site 

association scheme, known as 2B scheme23. With the characteristic parameters 

of Gross and Sadowski the model is predicting very well both the vapour 

pressure of water and its condensed phase density, although with some 

deviation at low temperature, where the density anomaly of water takes place. 

Since biological applications are usually characterized by the need of an 

accurate representation of water properties and are restricted to the low 

temperature regime, Cameretti has later developed an approach to PC-SAFT 

modelling of water that overcomes the abovementioned low temperature 

difficulties in density modelling61, 62. According to Cameretti it is possible to 
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model the behaviour of liquid water at low temperature introducing a 

temperature dependent segment diameter:  

 

3.2   )exp()exp(* 4321 TttTtt ++= σσ  

 

Since TIPS processing of PLA – water-dioxane solutions take place at low 

temperature the set of characteristic parameters suggested by Cameretti will be 

used in this work and are listed in Tab. 3.6. 

 

Water Parameters Ref. 61, 62  Units 

Segment Number  0.06687 [mol/g] 

Segment Diameter  2.7927 [ÅÅÅÅ] 

  10.11 [ÅÅÅÅ] 

  -0.01775 [ ] 

  -1.417 [ÅÅÅÅ] 

  -0.01146 [ ] 

Dispersion Energy  353.9449 [K] 

Association Sites N 2 [-] 

Association Energy ε BA ji  2425.6714 [K] 

Association Volume k BA ji  0.45090 [-] 

Tab. 3.6   Water  characteristic parameters for the Perturbed Chain Statistical Association Fluid 

Theory Equation of State. 

 

Characteristic parameters of 1,4-dioxane have been obtained in this work by 

fitting simultaneously vapour pressure and density data several dataset 

available in literature50-52.It has been assumed that dioxane’s properties can be 

adequately modelled with PC-SAFT without association terms, taking into 

account only the dispersive perturbation to the plain hard chain term. 
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As shown in Fig. 3.10 and Fig. 3.11, the model performs adequately, predicting 

very well both density and vapour pressure, suggesting that the assumptions 

that had been done on the nature of the interaction between dioxane’s 

molecules is physically sound. The characteristic parameters are listed in Tab. 

3.7. 

 

 
Fig. 3.10   Liquid density of 1,4 dioxane: experimental data from Papanastaslou et al.52 (filled 

circles) and from Nayak et al.51 (hollow circles) and comparison with the predictions of the 

Perturbed Chain Statistical Association Fluid Theory Equation of State. 

 

1,4Dioxane Parameters   Units 

Segment Number  0.032953 [mol/g] 

Segment Diameter  3.4006 [ÅÅÅÅ] 

Dispersion Energy  279.5928 [K] 

Tab. 3.7   1,4 dioxane characteristic parameters for the Perturbed Chain Statistical Association 

Fluid Theory Equation of State. 
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Fig. 3.11   Vapor Pressure of 1,4 Dioxane: experimental data50 and comparison with the 

predictions of the Perturbed Chain Statistical Association Fluid Theory Equation of State. 

 

Before attempting to model Vapor Liquid Equilibria of the Water – 1,4 Dioxane 

mixture, it is necessary to draw some considerations about the above 

mentioned induced association phenomena in polar mixtures. Associating 

components show self association under pure conditions, such as hydrogen 

bonding in water, while polar components does not give rise to temporary 

bonding by themselves. A mixture of polar and associating components will be 

characterized by self association of the associating components and by cross 

association between them and the polar species. The polar components 

hitherto manifest a behaviour, the aforementioned cross association, that is 

induced by the presence of the associating species in the mixture and has no 

parallel in the behaviour that the polar species manifests under pure component 

conditions. This fact pose a serious challenge to the application of the mixing 

rules suggested by Wolbach and Sandler, since there are no association 

energies ε BA ji  and association volumes k BA ji that can be retrieved by 

analysis of the pure component behaviour. Guessing any value for those 

parameters will wrongly introduce self association, unless  0=ε BA ji . This 
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problem could be overcome treating the association characteristic parameters 

of the mixture as fitting parameters, but this choice, although feasible, will boost 

the number of the adjustable parameters, deeply hindering the predictive 

capabilities of the model. A different approach, proposed by Kleiner63, can be 

exploited assuming that the association energy parameter of the polar 

component is equally zero: 0=ε BA ji  and that the effective volume of bonding 

is equal to the one of the associating component, considering this parameter as 

independent from the nature of the interaction itself. With this choice it is 

possible to see that no self association is introduced in the description of the 

interaction of the polar component, while induced association in taken into 

account, mimicking a “donor-acceptor” scheme. This approach has been proven 

to be physically sound in the work of Kleiner63. It was previously mentioned that 

there are experimental molecular structure data that suggest that water induced 

association takes place in the water 1,4 dioxane mixture, such that the 

energetic interaction between the molecules promote, at least in a certain 

composition range, the formation of water 1,4 dioxane clusters55. Thus this 

molecular picture suggest that interaction between water and dioxane takes 

place in such a way that is beyond the descriptive capabilities of the dispersion 

term alone, substantiating the hypothesis of an induced association mechanism. 

This is coherent with the fact that pure dioxane is described very well with 

dispersive interaction alone.  

 

Adopting this induced association scheme, Perturbed Chain Associating Fluid 

Theory Equation of State can predict very well the Vapor Liquid Equilibria of the 

water – 1,4 dioxane mixtures, in the full range of compositions. The azeotropic 

behaviour, as well as the other features of the Vapor Liquid isothermal diagrams 

are well represented. Only a slight correction, that is obtained setting the binary 

interaction coefficient dioxwk .  equal to -0.061 is required. It must be observed that 

this slight correction affects only the dispersion term: the induced association 

scheme does not require any additional tuning. The results are shown in Fig. 

3.12. 



 

 

 

71 

 

Fig. 3.12   Experimental Vapor Liquid Equilibria49 for the Water-1,4 Dioxane system and their 

comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 

 

Comparison with liquid density data of the mixture51 is less favourable, as the 

model overestimates the density of the mixture, although the qualitative shape 

of the curves resemble those of the experimental data and the maximum seems 

to take place at a composition close to the experimental one. The results of the 

calculation, as well as the corresponding experimental data are shown in Fig. 

3.13. Adjusting the value of in order to fit the liquid mixture density data 

leads to a poor prediction of VLE, thus due to the higher confidence on the 

comparison with VLE, the value  061.0. −=dioxwk was retained. The 

overprediction of the liquid mixture density could be blamed to a tendency of the 

induced association scheme to overestimate the strength of the induced 

association bonding, since the association characteristic energy is estimated 

directly from the value of the water, in a asymmetric donor-acceptor scheme. 
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Fig. 3.13   Experimental Liquid Mixture Density51 for the Water-1,4 Dioxane system and their 

comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 

3.7. Modeling of water – 1,4 dioxane - PDLA and wat er – 

1,4 dioxane – PLLA ternary liquid liquid equilibria  with the 

Perturbed Chian Statistical Associating Fluid Theor y 

Equation of State 

Corroborated by the ability of the model to provide a suitable representation of 

the thermodynamic properties of the water – 1,4 dioxane mixture, it was 

possible to proceed with the modeling of liquid liquid equilibria of the ternary 

mixtures that containing the macromolecular component. In fact, since the 

polylactides are completely soluble in the 1,4 dioxane, the role of water, that 

acts as anti solvent, should be dictated not only by its direct interactions with the 

polymer, but also by its ability to form clusters with 1,4 dioxane and thus a 

proper representation of that phenomena is necessary. In fact it could be 

speculated that  the antisolvent effect takes place not only because water and 
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polylactides have poor compatibility, as shown by the pure water solubility in 

PDLA, that according to the data reported in the literature64 is in the range 0.005 

÷ 0.01 g/gpol, but also because the 1,4 dioxane molecules that are clustered with 

water molecules are not anymore available for solvating the polymer. The 

model was found able to reproduce successfully the above mentioned cloud 

point data made available to us by Professor Brucato, but was also able to 

reproduce others set of cloud point data available in the literature, such as 

those of those of Witte et al.54 and to model the ternary liquid liquid equilibria at 

fixed pressure and temperature diagram from Witte et al.54 and of Tanaka et 

al.65. The results of this calculations are shown in the following Fig. 3.14, Fig. 

3.15, Fig. 3.16 and Fig. 3.17. In the case PDLA it was required to set 

0935.0, −=PLAwk  and 029.0, −=PLAdioxk , while for the PLLA the binary interactions 

parameter were set equal to 078.0, −=PLLAwk  and 125.0, −=PLAdioxk . The 

calculations were found to be independent from the actual value of the polymer 

molecular mass. 

 

 

Fig. 3.14   Experimental Liquid Liquid equilibria54 of the water-1,4 dioxane - PDLA system and 

their comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 
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Fig. 3.15   Experimental Liquid Liquid equilibria54 of the water-1,4 dioxane - PLLA system and 

their comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 

 

 

Fig. 3.16   Experimental Liquid Liquid equilibria65 of the water-1,4 dioxane - PLLA system and 

their comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 
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Fig. 3.17   Experimental Liquid Liquid equilibria65 of the water-1,4 dioxane - PLLA system and 

their comparison with the results of the calculations done with the Perturbed Chain Statistical 

Association Fluid Theory Equation of State with the induced association scheme. 

 

The calculations are in really good agreement with the available experimental 

data of the ternary system. The only remark is that the prediction of the liquid 

water solubility in pure PLLA, that is the value that can be read on the PLLA 

axis of the ternary diagram, seems to be quite high respect to the values that 

can be found experimentally, even if they are measured on a glassy, 

semicrystalline polymer. In fact, liquid sorption experiments conducted on a 

sample of semicrystalline PLLA at 308K suggest that liquid water solubility in 

PLLA is around 0.011 g/gpol.  

3.8. Concluding Remarks 

The Sanchez Lacombe Equation of State has been found to be unable, per se, 

to provide an adequate representation of the binary system water- 1,4 dioxane, 

while application of a non standard, non quadratic mixing rule has made 
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possible to deal with this challenging system. Application to the ternary system 

is possible, but of doubtful efficacy and with a notable loss of extrapolation 

capability.  

 

Perturbed Chain Statistical Associating Fluid Theory Equation of State, albeit 

some lack of quality in the representation of the high pressure behavior of the 

pure polymers, have been shown to be a powerful and flexible thermodynamic 

tool, adequate for addressing the issue of challenging systems,  like those that 

exhibit solvent- antisolvent effects on the macromolecular component.  
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4. Experimental Characterization of Vapors 

and Liquids Sorption in Glassy and 

Rubbery Polymers 

4.1. Introduction 

 

The sorption and the desorption of low molecular weight species, in the liquid or 

in the vapor form, in a polymer, plays a major role in many industrial process 

and applications, as well as in the field of drug delivery, in the development of 

sensors and in the drying of paint and coatings. Actually this list is quite 

arbitrary and not exhaustive of all the possible situations that are encountered in 

practice. In the above mentioned examples, it is always required to know, or at 

least to estimate, how much of the penetrant species will get inside the polymer 

phase and how much time will be required before equilibrium (or pseudo 

equilibrium) conditions will be attained. For example, a membrane separation 

device can be used for recovering an high valued component from a stream in 

which the component is mixed with many others only if the permeability of the 

desired component in the polymer of the membrane is higher than the 

permeability of the other species66. Permeability of a low molecular weight 

component is given by its diffusivity and its solubility in the polymer that makes 

the membrane. In the case of drug delivery, the solubility of the molecule that 

exerts the pharmacological activity in the polymeric matrix that forms the pellet 
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that will be ingested by the patient, will dictate the maximum loading of the 

pellet itself. On the other hand, diffusivity will dictate the drug release rate and, 

ultimately, its concentration in blood and thus, along with its half life time, the 

effective pharmacological activity67. Finally, in the case of the drying of a 

polymeric coating, solubility and diffusivity of the solvent in the polymer will 

dictate the drying time, and will affect the appearance of coating defects. In fact, 

most of the defects arise due to the development of internal stresses, upon 

frustrated shrinkage, during the drying process68-71.  

 

In this chapter, data concerning vapor and liquid solubility in glassy and rubbery 

polymers will be presented and discussed. The polymer – penetrant pairs 

considered for sorption in glasses are of interest for applications like gas and 

vapor separation, organic solvent nanofiltration72, polymer processing and 

sensor development. The polymer – penetrant pairs considered for sorption in 

rubbers are relevant to membrane separation process for aroma and 

nutriceuticals recovery, as well as for food processing73-76. 

 

The question about how much of the penetrant component will be taken up by 

the polymer is answered by the thermodynamic. For the given activity value of 

the penetrant, its solubility in the polymer phase arise from the phase equilibria 

conditions or, if the polymer phase is glassy, from pseudo equilibrium 

considerations. The equilibrium is attained between the components of the 

liquid or of the vapor phase outside the polymer and the same low molecular 

weight species that in the polymer phase form a mixture with the polymer itself. 

Since polymers are commonly used and characterized in the form of dense 

phases, in which the low molecular weight species can diffuse, the question 

about how much time is required, is answered by the kinetic of the diffusion 

process itself.  

 

For pure vapor sorption, it is customary to represent the solubility as a function 

of the pressure of the penetrant, or as a function of its thermodynamic activity, 

that can be regarded as the ratio between the actual pressure and the vapor 
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pressure of the component, at the same temperature. The data measured at 

various pressures (or activities) and at fixed temperature will be collected in the 

same set, known as a sorption isotherm. The solubility of the pure liquid can 

complete that set, providing the value at unit activity. In the case in which the 

penetrant can actually behave like a solvent for the macromolecular component, 

the solubility of the liquid cannot be measured. For mixtures of liquids it is useful 

to represent the solubility data, at fixed temperature, as a function of the 

composition of the external liquid phase. 

 

It is useful to recall the fact that the kinetic of diffusion in simple systems can be 

modeled by means of the so called Fick’s law6, 77. This law provide a 

constitutive equation for the mass flux, that is regarded to be simply proportional 

to the concentration gradient of the diffusing component itself, in close analogy 

to Fourier’s law for heat flux. In terms of concentration, the mass conservation 

equation in local form, for a plane sheet of thickness δ2 , is a parabolic partial 

differential equation, that along with its initial and boundary conditions, can be 

written as:  
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The problem has been stated assuming that at 0<t  the concentration of the 

penetrant is equal to the initial value 0C , that at the beginning of the sorption 

experiment the concentration at the boundary is suddenly rose to the value iC  , 

that will then held constant, and that the middle plane of the slab is a symmetry 

plane and thus the mirror condition 
x

C

∂
∂

can be applied. It is useful to note that 

the very same formulation can be used to describe diffusion process in a 



 

 

 

80 

supported film of thickness δ , if the support is not permeable to the penetrant. 

The solution of this initial and boundary conditions problem is the function 

( )txC ,  that satisfy the partial differential equation of the local mass balance. The 

solution describe the evolution of the concentration profile inside a system that 

obeys the assumptions of the Fick’s law. Unfortunately, the actual concentration 

profile is not a property that can be directly characterized in the commonly 

performed sorption experiments, since rather complicate apparatus are required 

and suitable choices of the penetrant polymer pair need to be selected, as 

done, for example in the work published by Long and Richmann78, 79. The 

property that usually  is directly or indirectly measured is the mass uptake in the 

polymer sample. The sorption experiment is considered finished when the mass 

uptake ( )tM  is no longer changing with time. That steady state value is usually 

indicated as ∞M  and it is customary to express the mass uptake in a relative 

form, as 
( )
∞M

tM
. The mass uptake  ( )tM  can be readily obtained by integrating 

the concentration ( )txC ,  respect to the spatial variable: ( ) ( )∫=
δ

0
,2 dxtxCAtM . 

The solution ( )txC ,  is available in the literature and can be obtained through the 

standard methods of the variable separation and is in the form of a series of 

exponential and trigonometric terms. The integrated form of the series can be 

written as77: 
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The mass uptake that is calculated from this formula is proportional to t , for 

small value of t , then at larger value of the time variable a constant value is 

reached, as shown in the Fig. 4.1. Whenever the experimental mass uptake 

was found to follow the same behavior, the system was defined as Fickian and 

the diffusivity D  of the penetrant-polymer pair was retrieved by means of 

regression on the experimental data.  
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Fig. 4.1    Mass sorption kinetic as calculated by the Fickian Model. 

 

For both of the above mentioned factor, namely solubility and sorption kinetic, it 

is necessary to mention the differences that arise between the behavior that is 

commonly observed when the polymer is a rubber or a melt, and the peculiar 

behavior of polymeric glasses.  

 

In fact, rubbers or polymeric melts are condensed phases that behave, at least 

respect to their volumetric properties, just like a liquid. It is commonly accepted 

that, upon changes of pressure and temperature (and composition as well), 

rubbers or melts will experience a change in volume that can be described by a 

volumetric equation of state. That, as already noted, applies only to equilibrium 

states. Rubbers and melts can be regarded as equilibrium phases, even if the 

huge molecular weight of their chains could certainly slow the kinetic of the 

equilibration processes, respect to those observed in low molecular weight 

liquids80.   

 

The shape of sorption isotherms of low molecular weight penetrants in rubber is 

characterized by a positive curvature, with upward concavity, as shown in Fig. 
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4.2, while it is usually expected that the sorption kinetic is well represent by the 

Fickian kinetic, previously shown in Fig. 4.1. 

 

 
Fig. 4.2    Characteristic sorption isotherm of low molecular weight species in rubbers. 

 

Glassy polymers are non equilibrium phases in which the evolution toward the 

equilibrium condition is hampered by the really slow kinetic of the molecular 

motions. It is a matter of fact that a temperature exists, known as glass 

transition temperature, below which the departure from equilibrium begins and 

the glassy behavior start to be evident. Below glass transition temperature the 

polymer exhibit elastic behavior, with elastic modulus even some order of 

magnitude higher than that of rubbers, it is usually regarded as a tough material 

and can be brittle. The glassy phase is amorphous, not ordered and the above 

mentioned rise of high elastic modulus is to be regarded as the effect of the 

kinetic hindrance of the relative motions between chains. It is commonly stated 

that below glass transition temperature only local motions of the chains’ 

segments are allowed and no motion of the center of mass of the chain is 

allowed: self diffusivity of the macromolecular species is close to zero, under 

glassy conditions. One of the most relevant property of the glassy phases is that 
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their density is lower than the equilibrium value: there is an excess free volume, 

that is due to the fact that the chains are not able, due to the above mentioned 

kinetic constraints, to pack in the configurations that satisfy the minimum 

condition for the Gibbs Free Energy80. Since the glassy state in a non 

equilibrium state that is retained only due to the really slow kinetic of the 

equilibration process, the system could still evolve with time, even if it could not 

be able to reach, in a time compatible with experimental observation, the 

equilibrium itself. It is a matter of fact that the properties of some glassy 

polymers change along time in a measurable way: this phenomena are 

regarded as physical ageing and are commonly believed to affect directly the 

volumetric properties of the system. Thermal treatment, such as high 

temperature annealing, could accelerate that phenomena, eventually bringing 

the system toward a different non equilibrium conditions, that could be regarded 

as more prone to evolve. Similar results, obtained through prolonged storage of 

the sample under a controlled atmosphere (i.e. in CO2 at high pressure) or in 

liquids had been reported in literature81-87. Above glass transition temperature, 

the system behaves like a rubber or a melt. The glass transition temperature is 

affected by pressure, presence of other species (especially low molecular 

weight species that can act as plasticizer) and by the cooling rate at which the 

polymer is cooled from the temperature at which it was originally held as a 

rubber.  

 

The shape of the sorption isotherms of low molecular weight penetrants in 

glassy polymers is characterized by a downward concavity, as shown in Fig. 

4.3. It is commonly assumed that this behavior can be somewhat explained by 

the assumption that the total sorption is a sum of two different contribution: the 

first, known as Henry contribution, accounts for a solubility term proportional to 

the penetrant’s pressure, as it happens for many gases in liquid and solid 

equilibrium phases, while the second contribution, known as the Langmuir 

contribution, is thought to be related to the adsorption of the penetrant 

molecules inside the excess free volume, that is present in the glassy state. 

This empiric interpretation is at the base of the so called Dual Mode model88, 
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that albeit non predictive, has been shown to be a reliable correlation tool for 

sorption in polymeric glasses. Since glassy state is a non equilibrium state, 

solubility and sorption isotherms can be influenced also by the history of the 

sample and by the specific operating conditions. For instance it is well kwon that 

cycles of sorption and desorption could lead to isteresis effects and that 

annealing and other thermal pre-treatments can exert a deep influence as well. 

Regarding to the mass uptake kinetic, there are many possible behaviors that 

arise due to the specific pair of polymer and penetrant, as well as due to the 

characteristic of the sorption experiment. In fact, the behavior could be 

completely described by the Fickian kinetic, such as for many light gases in 

glassy polymers. But if the penetrant exerts a significant swelling or even 

plasticizing action on the glassy matrix, different behavior could arise and 

deviations to the Fickian kinetic could be observed. For example, after an initial 

Fickian sorption, in which the mass uptake is proportional to t , relaxation 

process could take place and the mass uptake could start to drift slowly toward 

an higher value. In other cases, a sigmoidal shape of the kinetic could be 

observed. In some case the mass uptake could be straight proportional with 

time. In fact, an empirical way to classify sorption kinetics is to look at the value 

of the exponent of the curve nt  to which the mass uptake is proportional. The 

actual sorption kinetic depends to a great extent on the ratio between the 

characteristic time of the relaxation processes (the time required for the local 

rearrangements of the chains) and the characteristic time of the diffusion 

process. When relaxation processes take much longer than diffusion, or when 

relaxation processes are much quicker than diffusion, the usual Fickian 

behavior could be observed, at least in the initial portion of the mass uptake 

curve. When the relaxation characteristic time and the diffusion characteristic 

time are quite similar or separated by only few orders of magnitude, both 

processes take place simultaneously and great deviation to the Fickian behavior 

could be observed at all the stages of the sorption process. It should be noted 

that the amplitude of the activity jump that is applied to the sample plays a 

relevant role in determining the kinetic of the sorption process. An extensive 
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introduction and to some extent classification of this phenomena could be found 

in the works by Sanopoulou89-91 and Petropoulos92. 

 

 
Fig. 4.3    Characteristic sorption isotherm of low molecular weight species in glasses, without 

plasticization effects. 

 

It is interesting to note that, when the penetrant is a solvent for the polymer 

itself, or at least has a large plasticizing effect, it is possible that, along with 

sorption process, the glass transition process takes place. If this is the case, it is 

possible to have sorption isotherms, known as sigmoidal isotherms, that exhibit 

a marked change in curvature, or that the increase in mobility of the polymer 

chains that is promoted by the solvent itself deeply affect the kinetic of the 

sorption process.  

4.2. Quartz Spring Apparatus 

The Quartz Spring Apparatus93 is a gravimetric device that can operate sorption 

measurements of vapors in dense polymer films, at pressure below the 
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atmospheric value. The sample is hanged to the quartz spring, along with a 

metallic reference and are kept inside a glass column that is connected to a 

system of pipes and vessels that can be used to vaporize the penetrant and to 

control its pressure, in order to expose the sample to the desired vapor activity. 

The glass column is surrounded by a water jacket that provide the necessary 

temperature control. The water is circulated by means of a magnetic pump and 

its temperature is adjusted by means of a thermostatic bath. With this setup the 

temperature can range from 5 °C to 50°C. The glass column and the ancillary 

vessels can be completely evacuated by means of a vacuum pump. Upon 

exposure of the sample to the vapor, its weight will start to increase, due to the 

sorption process that is taking place. The elongation of the spring is 

continuously monitored and registered in digital form by means of a CCD 

camera and the weight change of the sample is then collected for all the phases 

of the vapor sorption experiment. The metallic reference is of known size and it 

provides the conversion factor between pixels and millimeters, required for 

estimating the weight from the elongation, by means of the spring constant. 

Quite high activity values can be reached, but care must be taken to avoid 

condensation on cold spot and excessive weight gain, since it could happen 

that the weight of the sample exceeds the maximum load of the spring. The lay 

out of the apparatus is shown in Fig. 4.4. 
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Fig. 4.4    Layout of the Quartz Spring Apparatus 

 

The sorption experiments performed with the Quartz Spring Apparatus are 

usually differential sorption experiments, in which the vapor activity is raised, 

step by step, collecting the mass uptake and thus the solubility data at each of 

the activity value. Before increasing the vapor activity enough time is waited to 

ensure that equilibrium or pseudo equilibrium conditions have been reached.  

4.3. Quartz Crystal Microbalance 

The Quartz Crystal Microbalance94 is another kind of gravimetric vapor sorption 

measurement device in which the mass uptake during the sorption step is 

retrieved by means of the change in the natural frequency of oscillation of an 

electric resonator that is coated with the polymer. In fact, the change of the 

weight of the polymer will affect the oscillation properties of the resonator, 

according to the so called Sauerbrey law. The polymer is coated on the 

electrode of the quartz crystal, shown in Fig. 4.5, by means of a spin coater, in 

order to have a really thin and homogeneous film.  
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Electrode Quartz 

crystal 

 
Fig. 4.5    The resonator used in the Quartz Crystal Microbalance. 

 

The Quartz Crystal is hosted in a metallic vessel and is provided with piping and 

ancillary vessels similarly to those of the Quartz Spring Apparatus, in order to 

control the activity of the vapor to which the sample is exposed. Temperature 

control is achieved keeping the entire apparatus immersed in a thermostatic 

bath that allows to operate at temperature comprised between ambient 

temperature and 50°C. Also this apparatus is used f or running differential 

sorption experiments. 

4.4. Pressure Decay Apparatus 

The Pressure Decay Apparatus95 is used for performing gas and vapor sorption  

measurements on the base of the principle that the sample is kept in a 

calibrated volume comportment and exposed to an initially known vapor 

pressure. The compartment is sealed and the change in pressure that is 

measured in the compartment during the sorption step can be used to estimate 

the residual number of moles in the gas phase, by means of a suitable equation 

of state for the gas, and ultimately to evaluate the sample mass uptake. The 

scheme of the Pressure Decay Apparatus is shown in Fig. 4.6. The entire 

apparatus is hosted inside an incubator, that proved temperature control from 
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25°C to 65°. Again differential sorption experiment s are performed also in this 

apparatus. 

 

 
Fig. 4.6    The lay out of the Pressure Decay Apparatus. 

 

Measurement of vapor sorption isotherms perfomed with Quartz Spring, Quartz 

Crystal Microbalance and Pressure Decay apparatus proved to be in good 

agreement with each others and with the data available in literature for the 

same polymer penetrant pairs. It has been estimated that the maximum 

deviation between Quartz Spring and Pressure Decay measurements is well 

below 10%. 

4.5. Gravimetric Measurament of Pure and Mixed Liqu ids 

Sorption 

The measurement of liquid solubility in polymers was done gravimetrically, 

directly measuring the mass uptake with a Sartorious analytical balance model 

CPA225D-O-CE, that provides a precision of 10-5 g or with a Mettler Toled 
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analytical balance model MS105DU that operates with the same precision. The 

sorption experiments were performed according to a classical blot and weight 

method: samples were immersed in vials or flasks filled with liquid, placed in a 

thermostatic oven or in a thermostatic bath and weighted at regular intervals. In 

order to weight the samples and register the mass uptake, the samples were 

removed from the liquid, quickly dried with a paper towel, weighted on the 

analytical balance and then putted back in the liquid. In this way the mass 

uptake as a function of time was obtained. Trials in order to understand if 

cooling the sample with liquid nitrogen in order to reduce the evaporation could 

improve the measurement process were exploited, but no effective advantage 

was recognized. In the case of mixed liquids, only solutions into which one 

component was really volatile and the other one had negligible vapor pressure 

were used. After that the measurement of the total mass uptake was done 

according to the previously described procedure, the samples were left under 

hood to let evaporate the volatile component, till constant weight was obtained. 

In same case the samples were put in a vacuum chamber for a while and then 

weighted again, to check if the removal of the volatile component was complete. 

Mass balance calculations provided the separate mass uptake of the volatile 

and of the non volatile component.  

 

There are many source of experimental errors in the gravimetric measurement, 

for instance the viscosity of the liquid and its surface tension could affect the 

wiping procedure, while with species with really high vapor pressures could be 

difficult to measure the mass uptake before that desorption start to take place. 

Repetition of the measurements, on the same sample and on different samples, 

could provide a means to reduce the error. Generally speaking the error 

depends significantly on magnitude of the mass uptake. In all the measurement 

that were performed the dry mass of the sample was in the range 0.25 ÷ 1 g 

and it was found that for polymer penetrant systems in which the solubility of the 

liquid is in the 0.1 ÷ 6 g/gpol the relative error is always less then 5.5% and 

usually lower than 2.5%.  In the case of liquids with solubility lower than 0.1 

g/gpol, errors as high as 10% have been estimated.  
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4.6. An example of Glassy Polymer: Matrimid 5218 

Matrimid 521829, 72, 73, 87, 96 is a material that is gaining increasing attention for its 

properties and for applications in gas separation and organic solvent 

nanofiltration, moreover it is characterized by some peculiar properties, such as 

a really high glass transition temperature and was used here as an example of 

glassy polymer. Matrimid 5218 used in the sorption experiments was kindly 

provided by Huntsman Advanced Materials, has an average molecular weight of 

80000 g/mol and its polydisperisty index is 4.5. Matrimid 5218 is a polyimide 

based on 5(6)-amino-1-(4' aminophenyl)-1,3,-trimethylindane, fully imidized, and 

its molecular structure is shown in Fig. 4.7. Glass transition temperature is 

around 320°C and at ambient pressure present itself  as a tough yellow polymer. 

It is known to exhibit good resistance to many organic liquids and it is soluble 

only in a limited number of specialty solvents, such as THF, DMF, 

dichlorometane and cyclohexanone. For the sorption experiments dense films 

were prepared from solution casting, starting from 1% weight (for the samples 

used for vapor sorption) and 5% weight (for the samples used for liquid 

sorption) solutions in dichloromethane. After drying, the samples were removed 

from the Petri disks used for solution casting and were put under vacuum in a 

oven for a thermal annealing treatment. Generally speaking the samples were 

annealed at 200°C for 24h, but other temperatures w ere used for limited testing 

and the effect of the treatment temperature will be discussed in the following. 

 

 

N 

O 

O 

O 

N 

O 

O 

M e 

M e M e 
 

Fig. 4.7    Molecular structure of Matrimid 5218. 
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4.7. An example of Rubbery Polymer: PDMS 

Crosslinked Polydimethylsiloxane97-99 was used as an example of rubbery 

polymer and was selected for its wide use in applications, especially in 

membrane separation processes and for its resistance to solvents. The PDMS 

samples were prepared by means of reactive solution casting starting from a 

filler free commercial uncrosslinked PDMS, commercialized by Wacker 

Silicones Corp. under the name of Dehesive 944. The PDMS was crosslinked 

by means of a platinum based, proprietary catalyzer-crosslinker system, sold by 

the same Wacker Silicones Corp.. In order to promote the formation of the 

crosslinks, after drying of the solvents the films were placed into a oven, set at 

110°C, for 30 minutes. After that, a series of thre e extractions cycles with 

hexane or heptane were performed in order to remove the catalyst, the residual 

unreacted oligomers and any other species that could be still present inside the 

gelled network. It was found that after three extractions the weight of the 

samples was not anymore changing. Before starting actual sorption 

experiments, the samples were put for some hours under vacuum. The 

structure of PDMS and a possible crosslinking mechanism is depicted in Fig. 

4.8. 

 
Fig. 4.8    Molecular structure and crosslinking mechanism of PDMS. 
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4.8. Sorption in Matrimid 5218 

Vapor sorption in Matrimid 5218 was experimentally characterized for the 

following species: water, methanol and dichloromethane. The solubility of liquid 

water and liquid methanol has been characterized as well, while no attempt was 

made to measure liquid dichloromethane solubility since it is a very well known 

solvent of the polymer itself. The organic solvent were purchased by Aldrich and 

were all of reagent grade purity, while double distilled deionized water, with 

conductivity lower than 0.01 µS/cm was used for the vapor and liquid sorption 

experiments. Solubility isotherms were collected at 35°C with the Quartz Spring 

Apparatus, while in the case of  dichloromethane, solubility measurements were 

done also at 10°C, 18°C, 32°C and 35°C using both Q uartz Spring Apparatus 

and Quartz Crystal Microbalance. Among this three species water was found to 

be the less soluble, with mass uptakes less than 0.03 g/gpol, while solubility of 

methanol is up to an order of magnitude higher, reaching for unitary activity the 

value of 0.166 g/gpol. Solubility of dichloromethane exhibits quite the same 

values at 35°C, but it was found to be much higher at lower temperatures, 

reaching values as high as 0.6 g/gpol when measured at activities higher than 

0.9 at 10°C.  

 

The solubility isotherm of water in Matrimid 5218 is shown in Fig. 4.9. It is 

possible to note that for mass uptake higher than 0.01 g/gpol, the sorption 

isotherm seems to have a flex point and its curvature seems to indicate an 

upward concavity, like that discussed in the case of rubbers or in a sigmoidal 

shape like the one that is observed in the case of plasticizing penetrants. 

However, since the mass uptake is so little, there should be little chance that 

this effect can be related only to a penetrant induced swelling or glass transition 

effect. Instead it is reasonable to assume that this effect is due to water 

hydrogen bonding, as suggested by Chen et al.100 in their 2011 work about 

water vapor permeation in polyimides and with a mechanism analogous to that 

described by Davis et al.101 in their 2012 work on non equilibrium sorption of 

water in polylactide.  
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Fig. 4.9     Water sorption isotherm in Matrimid 5218 at 308 K. 

 

The sorption isotherm of methanol in Matrimid 5218 is shown in Fig. 4.10. The 

solubility follows a slightly depicted sigmoidal shape, but till activity high as 0.6 

the usual shape of solubility isotherms in glassy polymers is recognizable. In 

Fig. 4.11is shown the mass uptake kinetic of the first vapour sorption step, 

ranging from  activity equal to zero, to activity equal to 0.089: it is quite evident 

that the behaviour adhere to the Fickian’s one. It seems reasonable that in the 

first, low activity step, no swelling and relaxation effects are yet detectable. The 

third step, shown in Fig. 4.12, has been collected after an activity jump that 

ranges from activity 0.19 to activity 0.47 and it is easy to recognize that after 

and initial Fickian behaviour, in which the mass uptake is proportional to t , 

then relaxation phenomena starts to take place and the mass drifts slowly 

toward the pseudo equilibrium value. The fourth step, from activity 0.47 to 

activity 0.62 is shown in Fig. 4.13: in this case the kinetic deviates completely 

from the Fickan behavior and the mass uptake is proportional to nt  with the 

exponent n  that is definitely different from 0.5. Finally in Fig. 4.14 it is shown the 
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mass uptake kinetic of the liquid sorption experiment, that is an integral sorption 

experiment in which the activity of the penetrant jumps from 0 to 1.  

 

 
Fig. 4.10   Methanol sorption isotherm in Matrimid 5218 at 308 K. 

 

 
Fig. 4.11    Methanol sorption in Matrimid 5218 at 308 K: first step, from activity 0 to 

activity 0.089. 
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Fig. 4.12   Methanol sorption in Matrimid 5218 at 308 K: third step, from activity 0.19 to activity 

0.47. 

 

 
Fig. 4.13   Methanol sorption in Matrimid 5218 at 308 K: fourth step, from activity 0.47 to activity 

0.62. 
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Fig. 4.14   Liquid  Methanol sorption in Matrimid 5218 at 308 K. 

 

Also in this case, deviation from the Fickian behavior are recognizable, since 

there is a S shaped mass uptake curve and maybe a slight drift is recognizable, 

instead of the steady state plateau that would be expected in the case of 

Fickian sorption. 

 

The solubility isotherms of Dichloromethane in Matrimid 5218 collected with the 

Quartz Crystal Microbalance are depicted in Fig. 4.15, while in Fig. 4.16 can be 

found the ones measured with the Quartz Spring Apparatus. It can be 

recognized that solubility decreases with temperature, as it should happen if the 

sorption of Dichloromethane and Matrimid 5218 is exothermic. The enthalpy 

change upon sorption is made by the sum of the enthalpy of mixing and the 

enthalpy of condensation of the penetrant. It is relevant that while sorption 

isotherms collected at the experimentally realizable activities in this two 

apparatuses, the sorption isotherms collected at 18°C, 32°C and 35°C show the 

downward concavity that is expected for glasses. Only at 18°C a slight change 

of curvature could be detected in the last two experimental points, when mass 

uptake is higher than 0.3 g/gpol. On the contrary, at 10°C, the solubility at the 
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activities that were explored, is so high that swelling and plasticization effects 

takes place in such a relevant way that there is a marked and abrupt change in 

concavity and the portion of the solubility isotherm in which the mass uptake is 

higher than 0.2 ÷ 0.3 g/gpol is definitely like those of the rubbery systems. In the 

following chapter, in which a rigorous thermodynamic modeling of this sorption 

isotherms will be performed, it will be shown that equilibrium and not 

pseudoequilibrium conditions hold in that region and that actually 

dichloromethane depress the glass transition temperature of the system at a 

value that is below the temperature at which the experiment is performed. 

 

 
Fig. 4.15   Dichloromethane sorption isotherms in Matrimid 5218 at 291 K and 305 K, measured 

with the Quartz Crystal Microbalance. 
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Fig. 4.16   Dichloromethane sorption isotherms in Matrimid 5218 at 283 K and 308 K, measured 

with the Quartz Spring Apparatus. 

 

Beside this vapor and liquid complete characterization, the solubility of several 

others organic liquids was measured in Matrimid 5218, at 35°C. Solubility of an 

homologous series of alcohols was measured, namely methanol, ethanol , 1 

propanol, 2 propanol, 1 hexanol and 1 octanol. The results are shown in Fig. 

4.17. For comparison Hesse et al.29 published some liquid sorption data for the 

ethanol – Matrimid 5218 system, collected at 298.15 K, 313.15 K and 333.15 K. 

Ethanol solubilities were, respectively, 0.20, 0.22 and 0.21 g/gpol. The samples 

used by Hesse et al. were casted from DMF solutions and were annealed at 

200°C for 1 week. The measurements performed at 308  K in this work led to an 

ethanol solubility of 0.21 g/gpol, in really good agreement with the data 

published by Hesse et al.29 
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Fig. 4.17   Liquid alcohols sorption in Matrimid 5218 at 308 K. 

 

Liquid Sorption experiments were performed also with acetone, acetic acid and 

a series of alkyl acetates,  namely methyl acetate, ethyl acetate, butyl acetate 

and hexyl acetate. Results are represented in Fig. 4.18. In all cases  the mass 

uptake was pretty high and during the subsequent desorption crazes and cracks 

were frequently observed in the samples. The sorption kinetic of Acetone, 

shown in Fig. 4.18, seemed to be quite adherent to the Fickian one, while in the 

other cases the S shaped kinetic was frequently observed. For the system Ethyl 

acetate – Matrimid 5218 Hesse et al. published liquid sorption data collected at 

284.15 K, 298.15 K and 328.15 K. Solubility were respectively equal to 0.38, 

0.39 and 0.36 g/gpol. The value measured in the present work at 308 K is 0.38 

g/gpol, again in really good agreement with the published data. 
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Fig. 4.18   Liquid oxygenated solvents sorption in Matrimid 5218 at 308 K. 

 

 
Fig. 4.19   Liquid acetone mass uptake kinetic in Matrimid 5218 at 308 K. 

 

Finally some word has to be spent about the effect of the annealing treatment 

on the solubility values that were measured. The above mentioned data are all 

referred to samples that were annealed for 24 h at 200°C, but some testing was 

performed also on samples annealed,  for 24 h, at lower temperatures, namely 

50°C and 100°C. It must be noted that they are alwa ys greater than the normal 
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boiling point of the solvent used for the casting procedures, since 

dichloromethane normal boiling point is close to 40°C . For instance in Fig. 4.20 

are shown the different values of liquid solubility measured after different 

annealing procedures, while in Fig. 4.21 the vapor and liquid sorption  isotherms 

for methanol are depicted. It is easy recognizable that the sample treated at 

higher temperature were able to take up more penetrant. Exploratory FTIR ATR 

tests seems to show that even after the annealing at 50°C there should be no 

detectable amount of residual dichloromethane and thus that a mixed solubility 

effect should be discarded.  

 

 
Fig. 4.20   Liquid solvents sorption in Matrimid 5218 at 308 K, effect of the annealing 

temperature. 
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Fig. 4.21   Methanol Sorption isotherms in Matrimid 5218 at 308 K, effect of the annealing 

temperature. 

4.9. Sorption in PDMS 

Mainly pure and mixed liquid sorption experiments were performed in PDMS. 

Some limited vapor sorption data were collected with Pressure Decay 

Apparatus and with the Quartz Spring Apparatus for acetone and, only with the 

last apparatus, for pentane, in order to gain same insight on the shape of the 

sorption isotherms as a function of the penetrant activity. Since the behavior 

was always found to be Fickian, for pure liquids, when enough data were 

available, the mass uptake kinetics were regressed with the equation that 

results from the solution of the local mass balance and the diffusivity value was 

retrieved. The following liquid penetrants were used: pentane, hexane, octane, 

decane, dodecane, tetradecane esadecane, octadecane, eicosane, 

ciclohexane, water, PEG 400, acetone, ethanol, ethyl acetate, 1 propanol, 1 

butanol, iso butanol, tert butanol, 1 pentanol, 1 hexanol, Squalene, limonene, 

linalool, geraniol, olive oil, groundnut oil, sunflower oil and oleic acid. Oils were 
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purchased in local shops and were of commercial, food grade. Quite all the 

liquid organic solvent were purchased by Aldrich  and were all of reagent grade 

purity, while double distilled deionized water, with conductivity lower than 0.01 

µS/cm  was used for the liquid sorption experiments. The main exceptions were 

those of squalene, that was supplied by Acros, PEG 400 that was supplied by 

Merck and oleic acid that was supplied by Aldrich but was of technical grade 

(90% purity).  

  

Sorption experiments were performed with alkanes ranging from pentane 

through octadecane, while eicosane was used only for mixed liquid sorption, 

since at 35°C, while pure, is in solid form. Solubi lity and diffusivity depicts quite 

a regular trend, when plotted, as it is done in Fig. 4.22 and Fig. 4.23, as a 

function of the number of carbon atoms that form their chains. Solubility 

decreases linearly, while diffusivity decreases much more markedly. Actually 

the sorption of the lowest alkanes is really huge, since it could be as high as 

5.23 g/gpol, in the case of pentane. The sample undergoes a massive swelling 

upon such a mass uptake. It must be remarked that the diffusivity were obtained 

as values referred to the dry polymer thickness and thus should be regarded as 

the values that hold in the fixed polymer reference frame.  
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Fig. 4.22   Liquid alkanes sorption in PDMS at 308 K. 

 

 
Fig. 4.23   Liquid alkanes diffusivity in PDMS at 308 K. 

 

Then in Fig. 4.24 and Fig. 4.25 the solubility and the diffusivity for several others 

liquids in PDMS are represented. It is interesting to observe that the component 

with the highest solubility is cyclohexane, while polar, hydrogen bonding prone, 
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species like water and PEG 400, that are known to be mutally miscible, have 

really low solubility in PDMS. Solubility of many oxygenated species is in the 

range 0.1 ÷1 g/gpol  with the only exception of ethyl acetate. The solubility of 

linear chain alcohols show a non monotonous behavior, but this can be 

explained considering the fact that the PDMS has a scarce affinity with the 

hydroxyl group OH− , while it has a much greater one with the alkyl groups, but 

their solubility decreases with their size, as shown by the behavior of straight 

chains alkanes. Interestingly, even if the number of carbon atoms of the alkyl 

group is held fixed, its actual size and shape deeply affects solubility. In fact, as 

shown in Fig. 4.26, tert butanol is much more soluble then iso butanol, which is 

more soluble than normal butanol. In tertiary alcohols the alkyl group is able to 

shield to a larger extent the hydroxyl group, while this effect is less evident, but 

still present, for secondary alcohols. Diffusivities, shown in Fig. 4.27, follow the 

opposite trend, since the biggest cross section of the tertiary alcohol and of the 

secondary one hinders the kinetic of their molecular transport across the 

polymer. 

 

 
Fig. 4.24   Solubility of several liquids in PDMS at 308 K. 
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Fig. 4.25   Diffusivity of several liquids in PDMS at 308 K. 

 

 
Fig. 4.26   Solubility of butanols in PDMS at 308 K: effect of the molecular structure. 
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Fig. 4.27   Dffusivity of butanols in PDMS at 308 K: effect of the molecular structure. 

 

Liquids of interest for the pharmaceutical and for the aroma industry, like 

squalene, limonene, geraniol and linalool have quite different molecular 

structure, but they all belongs to the class of terpenes. Squalene is a triterpene, 

analogous to an hydrocarbon with 30 carbon atoms, limonene is a cyclic 

terpene with a 6 carbon ring, analogous to that of cyclohexane, geraniol is a 

monoterpenic alcohol and linalool is a terpenic alcohol as well and they share 

the same number of carbon atoms in chains. Solubility and diffusivities are 

shown in Fig. 4.28 and Fig. 4.29. It is interesting to note that limonene, due to 

its strong similarity with cyclohexane, that is the component with the highest 

solubility, at least among those tested, has a pretty high solubility as well. 

Geraniol is a primary alcohol, while linalool is a tertiary one and also in this case 

the solubility of the tertiary alcohol is higher than the solubility of the primary 

one and the diffusivities behave in the opposite way, like was previously 

discussed for the case of the butanols. 
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Fig. 4.28   Solubility of terpenes in PDMS at 308 K. 

 

 
Fig. 4.29   Diffusivity of terpenes in PDMS at 308 K. 

 

Solubility and diffusivities of edible oils, as well as those of oleic acid, are 

reported in Fig. 4.30 and Fig. 4.31. Since naturally occurring vegetable oils are 

complex multicomponent mixtures, the diffusivity and solubility values are to be 

intended as apparent or global values. The olive oil is a low acidity one, with 

less than 0.3 % of free fatty acids. Solubility of the edible oils are quite the 

same, while oleic acid is almost one order of magnitude more soluble. 
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Diffusivities are quite the same for all. In order to understand what was the 

effect of the oleic acid content on solubility and diffusivity, olive oils samples 

were added of known amounts of oleic acid and the sorption tests were 

repeated. The results are reported in Fig. 4.32 and Fig. 4.33: solubility seems to 

increase linearly with the free fatty acid content, while, as noted before, no 

systematic effect on diffusivity is recognizable. 

 

 
Fig. 4.30   Solubility of edible oils and of technical grade oleic acid in PDMS at 308 K. 

 

 
Fig. 4.31   Diffusivity of edible oils and of technical grade oleic acid in PDMS at 308 K. 
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Fig. 4.32   Solubility of edible oils and of technical grade oleic acid in PDMS at 308 K as a 

function of the free fatty acid contents expressed as equivalent oleic acid. 

 

 
Fig. 4.33   Diffusivity of edible oils and of technical grade oleic acid in PDMS at 308 K as a 

function of the free fatty acid contents expressed as equivalent oleic acid. 
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Some liquid mixtures were considered. First of all the sorption of a mixture of 

pentane and eicosane was measured at 35°C. The resu lts are shown in Fig. 

4.34. The solubility of pure eicosane is not available, due to the fact that 

eicosane is solid at 35°C. It is really interesting  to note that the solubility of the 

component that globally is less soluble, is being enhanced by the other, more 

soluble components. In fact the huge swelling induced by pentane promotes 

also the solution process of eicosane. This behavior has been found in all the 

mixtures that were considered. It is also interesting to note that the pentane 

solubility curve has the same concavity of the solubility isotherms in rubbers, 

when plotted against activity. 

 

 
Fig. 4.34   Pentane and eicosane solubility in PDMS at 308 K as a function of the pentane mass 

fraction in the external liquid phase. 

 

A mixture made by squalene and acetone was also tested. Results are shown 

in Fig. 4.35. Since solubility of squalene is rather high, quite of the same order 

of magnitude of that of acetone, there seem to be a synergic effect, since the 

solubility of both components in the mixture is found to be greater than the one 

of the pure species. 
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Fig. 4.35   Acetone and Squalene solubility in PDMS at 308 K as a function of the acetone mass 

fraction in the external liquid phase. 

 

Mixtures of acetone and oleic acid, as well as of acetone and olive oils were 

considered also and the results are shown in Fig. 4.36 and Fig. 4.37. In this 

case the less soluble components are the oleic acid and the olive oil and 

acetone acts promoting their solutions. It is interesting to note that in this case 

the shape of the acetone solubility curve differs greatly from that of pentane, 

especially regarding its curvature. On the other hand, the solubility of pentane 

and oleic acid, shown in Fig. 4.38, are more close to that of pentane and 

eicosane. Finally Fig. 4.39 depicts the results of the liquid mixture sorption of 

tertbutanol and PEG 400. That, as previously said, is scarcely soluble in PDMS. 

Also in this case, the presence of a component that is highly soluble in PDMS 

promotes the solubility of the other component. All this effects should be taken 

into account for membrane separation process, since they acts lowering the 

separation factors from the values that could be estimated by the sole pure 

liquids data. 
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Fig. 4.36   Acetone and oleic acid solubility in PDMS at 308 K as a function of the acetone mass 

fraction in the external liquid phase. 

 

 
Fig. 4.37   Acetone and olive oil solubility in PDMS at 308 K as a function of the acetone mass 

fraction in the external liquid phase. 
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Fig. 4.38   Pentane and oleic acid solubility in PDMS at 308 K as a function of the pentane mass 

fraction in the external liquid phase. 

 

 
Fig. 4.39   Tert butanol and PEG 400 solubility in PDMS at 308 K as a function of the tert 

butanol mass fraction in the external liquid phase. 
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4.10. Concluding remarks 

Vapors and liquids sorption experiments had been performed for many 

solvent/penetrant – polymer systems, with glassy and rubbery polymers, that 

gave rise to the peculiar behavior that is expected for that kind of systems. In 

glassy polymer several relevant features were observed, ranging from swelling 

and plasticization effects, to relaxation and history dependence. Solubility of 

pure and mixed liquids in rubbery polymers were measured and it was found 

that in mixtures the presence of an highly soluble, swelling inducing penetrant, 

can deeply affect the solubility of those penentrants that, while pure, exhibit 

really low solubility. 
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5. Modeling of the Sorption Isotherms of Low 

Molecular Weight  Species in Glassy 

Matrimid 5218 with the NET-GP Approach 

5.1. Introduction  

The application of Equation of State approach for modeling complex vapor 

liquid and liquid liquid phase equilibria has already been shown in the previous 

chapter about water-1,4 dioxane – polylactides systems. In order to evaluate 

the chemical potential of the species involved in the phase equilibria 

calculations, expressions arising from mechanical statistics theory were 

employed. This expressions depend, among the other state variable, on the 

density of the phases. Thus solution of the chemical potential equalities require 

that the corresponding volumetric Equations of State are simultaneously solved 

for each phases. Equations of State are obtained assuming that equilibrium 

conditions holds: minGG → , ),( TVf
V

A
Peq =









∂
∂−= . It can be argued that such 

approach leads to calculation of the complete equilibrium conditions, in the 

meaning that not only thermal, mechanical and phase equilibria conditions 

holds between the species that forms the different phases, but also each phase 

is assumed to be at the equilibrium conditions pertaining to their pressure, 

temperature and composition. This can be safely regarded to be the case of 

quite all the systems that are made by low molecular weight species. Even if 
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departure from the local equilibrium conditions can be recognized under  

specific conditions and when the time scale of the observed phenomena is 

really low, in an engineering perspective, the equilibrium assumption can often 

be applied, at least as a first guess, usually with good results. It is remarkable 

that even physical and chemical details of premixed gaseous combustion fronts, 

detonation phenomena and shock waves, that are indeed really fast processes, 

have been successfully modeled applying Equation of States102, 103. On the 

other hand, it is a well recognized fact that the equilibration processes of 

macromolecular species below their glass transition temperature are kinetically 

hindered and the glassy phase is a non equilibrium phase. In many case, the 

properties of the glassy phase, for example its density, will change with time, 

but will remain pretty different from its equilibrium value even if the observation 

process is continued for really long times. Therefore, if a sample of glassy 

polymer is exposed to a controlled atmosphere of a given pressure of a vapor or 

gaseous species, some kind of apparent equilibrium will be reached between 

the low molecular weight components dissolved in the polymer and the external 

atmosphere. The gaseous phase outside the polymer can be assumed to be at 

equilibrium, thus suitable to be modeled with an Equation of State, while the 

same conclusion cannot be taken for the polymer phase, at least in a general 

sense. In fact, two cases can be distinguished. If the plasticizing effect of the 

low molecular weight species is strong enough, the glass transition temperature 

of the polymer phase could be lowered enough to be equal or lower than the 

temperature of the sample and thus also the polymer phase could be at 

equilibrium.  In that case, not only the chemical potential of the low molecular 

weight species inside the polymer will be equal to that of the same species in 

the external gaseous phase, but also the volumetric behavior of the polymer 

phase could be described by means of an Equation of State. Then if this is the 

case, the solubility ( and the phase equilibria) of the low molecular weight  

species in the polymer could be calculated with the already discussed 

equilibrium methods94. On the other hand, if the penentrants are not able to 

plasticize the polymer, that phase will remain glassy and out of equilibrium. 

Thus the Equation of State models should be used only to describe the 
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external, gaseous phase. Moreover, it is known that the initial density of  the 

glassy phase, that is affected by its history, will exert an influence on the 

solubility of the low molecular weight species and that upon sorption of the 

penetrant, the glassy phase will swell. Thus the volumetric behavior of the 

glassy phase, that cannot be modeled with an Equation of State, is really 

important for the sorption process itself. This features of the sorption 

phenomena in glass polymers and the lack of classical thermodynamic tools 

that can deal with them, have hampered the development of theoretically 

models for  the description of glassy polymeric systems and have led to a 

widespread use of deeply empirical models such as the previously mentioned 

Dual Mode model88. An approach that have to be remarked for its internal 

coherence and completeness is that of Kirchheim82, 104-106, which assumes that 

in order to accommodate solute molecules inside the holes of the glassy 

polymer’s free volume, the holes should somewhat undergo an elastic 

deformation process. The energetic contribution of the elastic deformation of the 

holes is taken into account using the tools of the elastic solid thermodynamics. 

Statistic arguments are then been employed to derive an expression for the 

sorption isotherms, starting from this simple microscopic picture and taking into 

account that the actual free volume is made by holes which size  obeys a given 

distribution function. Both the Dual Mode model and the above mentioned 

Kirchheim approach, are inherently different from the usual tools of chemical 

engineering thermodynamics and the microscopic pictures onto which are 

based are not directly compatible with those of the molecular models that have 

proven their ability to describe equilibrium phases. In 1996 Sarti and Doghieri14, 

using the conceptual tools of the thermodynamics of systems endowed with 

internal state variables, have introduced the Non Equilibrium Theory for Glassy 

Phase, that offers a general procedure that enables to extend the results of any 

equilibrium Equation of State model of the polymer penetrant mixtures, to the 

non equilibrium glassy state.  
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5.2. Non Equilibrium Theory for Glassy Phase 

Glassy polymer phases are assumed to be homogenous, amorphous and 

isotropic. As previously observed, one of their properties that is more easily 

related to the distance from equilibrium is the density. This has been recognized 

long ago and it is a matter of fact that glass transition is commonly discussed in 

term of volumetric properties. Specifically, one of the diagnostic features of the 

glass transition, along with the change in heat capacity that is usually detected 

through calorimetric methods, is the change of the slope respect to the 

temperature of the isobaric volumetric curves in PVT data . Moreover, since the 

works of Struik83 about ageing, it has been recognized that during ageing of the 

glassy polymer phases, their density drifts toward the equilibrium value, that is 

quite different from the value observed in the glassy phase. Moreover, when 

dilation data are available along the sorption isotherms, as in the case of the 

CO2 – PC data published by Fleming and Koros107, 108, it is possible to 

recognize that the effect of conditioning, annealing and history of the samples, 

that is really evident in the sorption isotherm, it is paralleled by a corresponding 

effect on the volumetric properties of the polymer. Thus the choice of using the 

polymer density Pρ as an order parameter that measures the departure from 

equilibrium, yet empirical, is quite straightforward and coherent with the actual 

level of knowledge of the physical picture of the glassy state. Since the 

evolution of this order parameter depends on the other variables that define the 

state of the system, it should be regarded as an internal state variable and its 

rate of change has to be assumed as a function of the temperature, of the 

pressure, of the penetrant mass fraction and on the polymer density itself: 

 

5.1   ( )P
P PTf

dt

d ρωρ
,,, 1=  

 

This function describes the volume relaxation processes of the glassy polymer 

matrix and should be retrieved from a rheological model that is able to identify 

the effective driving force and to describe the kinetic of the relaxation process 
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itself. Since the swelling of the glassy polymer matrix that is induced by the 

sorption of a low molecular weight penetrant has to be regarded as the result of 

a set of complex phenomena, a relevant amount of empiricism is required in 

order to choose the appropriate rheological assumptions. On the other hand, 

the pseudo equilibrium criterion for the phase equilibria between the low 

molecular penetrant dissolved in the glassy matrix and the one in the external 

gaseous phase, can be defined without any further attempt to identify a proper 

choice for the relaxation function. One has only to observe that 

pseudoequilibrium, that is inherently a kinetic fact, can be assumed to hold 

when the rate of change of polymer density becames 

negligible: ( ) 0,,, ≈= PS
P PTf

dt

d ρωρ
. In other words, pseudoequilibrium is not a 

condition that holds when same thermodynamic function is maximum or 

minimum like in true thermodynamic equilibrium, but pseudoequilibrium 

conditions are achieved when sorption and dilation kinetic slow down to the 

point that their characteristic times became longer than the characteristic time of 

the sorption experiment. Clearly, even in that condition, the mobility of the low 

molecular weight penetrant is not kinetically hindered, thus as shown by in 1998 

by Sarti and Doghieri109, the mass flux at the interface between the polymeric 

phase and the external gaseous phase can be zero only when the difference 

between the chemical potentials in the two phases  became equal to zero. 

Therefore when the glassy polymer density is frozen at the non equilibrium 

value Pρ , the pseudoequilibrium conditions for the low molecular weight 

component is: 

 

5.2   ( ) ( )PS
NE

S
Ext

S PTPT ρωµµ ,,,, =  

 

where  ( )PTExt
S ,µ  is the chemical potential of the penetrant in the external 

phase, while ( )PS
NE

S PT ρωµ ,,,  is the chemical potential of the penetrant in the 

glassy phase, that since is not an equilibrium phase, it depends also on the 
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order parameter Pρ . Chemical potentials on a mass basis, even under non 

equilibrium conditions, can be calculated by derivation of the Helmholtz Free 

Energy per unit of volume respect to the mass density of the single species. 

Thus once an expression for Non Equilibrium Helmholtz Free Energy is 

available, the equality of the chemical potential in pseudo equilibrium condition 

can be solved for the penetrant mass fraction and the computations of the 

solubility isotherms in glassy polymer could be performed. Under non 

equilibrium conditions, it is assumed that  a functional dependence of the 

following form ( )SP
NENE PTAA ρρ ,,,′′′=′′′  holds, with Pρ  acting as an order 

parameter. The main achievement of the Non Equilibrium Theory for Glassy 

Phase by Sarti and Doghieri14, 25, 26, 109, 110 is that proper maps of the non 

equilibrium thermodynamic functions in term of equilibrium thermodynamic 

function are given by the simple relations which follow: 

 

5.3   ( ) ( )SP
EQ

SP
NE TAPTA ρρρρ ,,,,, ′′′=′′′  

5.4   ( ) ( )PS
EQ

SPS
NE

S TPT ρωµρωµ ,,,,, =  

 

Non equilibrium properties are calculated with the same expressions that arise 

from equilibrium theory, except for the fundamental fact that the polymer density 

Pρ is not the value that can be obtained as the root of an Equation of State but 

should be experimentally known or should be estimated on the basis of the 

rheology of the swelling process, in order to represent the specific non 

equilibrium state of a given sample of glassy polymer. For the case of sorption 

experiments, the density value should be the one at the end of the sorption 

step, when ( ) 0,,, ≈= PS
P PTf

dt

d ρωρ
. In the cases in which pressures are really 

low, and penetrant activities also are low, the mass uptake will be quite limited 

and swelling of the polymer matrix could be negligible and pseudoequilibrium 

calculation could be performed assuming that the polymer density is equal to 

the density of the dry polymer, as measured before sorption. In the other cases 

the extensive literature available on the application of the Non Equilibrium 
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Theory for Glassy Polymer show that a simple linear relationship is usually 

adequate for estimating the swelling of the polymer matrix:  

 

5.5   ( )Pk swPP −= 10ρρ  

 

The coefficient swk , whose units are that of the reciprocal pressure, is known as 

the swelling coefficient and represent the swelling of the glassy polymer phase, 

upon sorption of the penetrant. This expression is an integrated form of the 

evolution law ( )PS
P PTf

dt

d ρωρ
,,,= , but is not able to provide, per se, any 

guidance on the kinetic of the relaxation processes, since effectively does not 

bear any explicit link to any rheological model and is commonly used as an 

adjustable parameter, unless dilation data are directly available. Minelli et al. in 

2012111, have shown that a simple viscoelastic model can be used for predicting 

the swelling behavior and the onset of solvent induced glass transition. The 

model is defined assuming that the total specific polymer volume, below glass 

transition, is made by  the sum of two contributions, one for the relaxation 

modes that have relaxation times shorter than the duration of the sorption 

experiments, and one for the relaxation modes that can relax on longer times. 

The short term modes are supposed to owe to a fraction of polymer that is able 

to equilibrate to the density values that correspond to the true thermodynamic 

equilibrium, at the actual temperature, pressure and penetrant chemical 

potential. The short term contribution will be named ( )SEQ
P PTV µ,,ˆ  and should 

be calculated from an appropriate equilibrium model,  such as a Volumetric 

Equation of State. The long term modes are assumed to represent an 

absolutely rigid element, that is not affected by the sorption process, and will be 

indicated as gPV ,
ˆ .  

 

5.6   ( ) ( ) gP
SEQ

P
P

P VPTVV ,
ˆ1,,ˆ1ˆ χµχ

ρ
−+==  
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The weight factor χ  between the short term and the long term modes has been 

shown by Carlà et al.112 and by Minelli et al.111 to be equal to the ratio between 

the apparent compressibility of the glassy polymer and the compressibility of the 

same polymer under rubbery (equilibrium) conditions, evaluated in the vicinity of 

the glass transition temperature. Once that the parameter χ is known, the 

specific volume of the long term modes gPV ,
ˆ can be estimated from the dry 

glassy polymer density, that can be regarded as the limit of PV̂ for vanishing 

pressure. It is interesting to note that at the penetrant pressure at which glass 

transition is induced by the plasticizing effect of the sorbed molecules, the 

equilibrium specific volume is equal to the specific volume of the rigid element 

that represents long term modes: 

 

5.7   ( ) gP
SEQ

P VPTV ,
ˆ,,ˆ =µ  

 

This simple, yet powerful approach, enable to show that the above mentioned 

linear swelling relationship is a first order approximation of the dependence of 

the non equilibrium polymer specific volume respect to the penetrant external 

pressure. A rigorous application of this approach could have been really 

interesting in the present case, since several of the collected isotherms range 

from the glassy region to the rubbery one, passing through the solvent induced 

glass transition. Unfortunately in order to apply that approach it is necessary to 

estimate some parameters that are directly related to the volumetric behavior of 

the polymer under equilibrium condition and presently no such data are 

available for Matrimid 5218, manly due to the fact that its really high glass 

transition temperature poses a serious challenge to the ability to perform the 

PVT measurements above glass transition temperature without interference 

from pirolysis and other thermal degradation processes. In any way, some 

comments and estimates about the parameters of that simple viscoelastic 

model will be discussed along the way of presenting the modeling results for the 

sorption isotherms.  



 

 

 

125 

The conceptual framework of Non Equilibrium Thermodynamics of Glassy 

Phase is independent from the choice of the thermodynamic model, since it is 

based on general results on how to map the non equilibrium states respect to a 

known representation of the equilibrium ones. Originally the thermodynamic 

model used was the Lattice Fluid Equation of State by Sanchez and Lacombe 

and the non equilibrium model was known as Non Equilibrium Lattice Fluid or 

NELF. Since the first paper from Sarti and Doghieri, many others models have 

been considered for providing a suitable representation of the Helmholtz Free 

Energy, for example the Statistical Associating Fluid Theory in its various 

version, known as NE – SAFT, NE-PCSAFT and so on. In the present work, 

modeling results obtained with the NELF and NE PCSAFT version of the 

general Non Equilibrium Thermodynamic of Glassy Phases will be shown.  

5.3. Non Equilibrium Lattice Fluid 

The Sanchez Lacombe characteristic parameters for the low molecular weight 

penetrants were obtained from the literature and are typically obtained through 

regression of pure component vapor liquid equilibria and saturated liquid 

densities. The characteristic parameters of Matrimid 5218 adopted for the 

calculations are those presented in Minelli et al.113, to be published in 2013, that 

have been retrieved by means of an alternate procedure, that is described in 

the following lines. As previously said, the rigorous way to retrieve the 

characteristic parameters of  volumetric Equations of State for polymeric 

species is to regress them on the PVT isobars at temperatures above glass 

transition. Since  no such data exists for Matrimid 5218, a different approach 

had to be used. The alternate procedure have been previously used by the Sarti 

and Doghieri research group, for those polymers for which no PVT data in the 

rubbery region exists, like PTMSP and AF2400114. The procedure is based on 

the fact that whenever infinite dilution solubility coefficients of several gases are 

available, the characteristic parameters of Sanchez Lacombe equation of state 
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can be obtained with a best fitting procedure of regression of those data. At low 

pressure the swelling coefficient can be set to zero, so no dilation was taken 

into account and the dry polymer density values available in the original papers 

from which the solubility data were taken were used directly. The binary 

interaction parameters were set equal to zero. This characteristic parameters 

were then validated against low and high pressure isotherms of selected gases. 

All the characteristic parameters that have been used are reported in Tab. 5.1. 

 

Substance T* [K] P* [MPa] ρ* [g/cm3] Ref. 

Matrimid 5218 880 450 1.350 113 

Water 670 2400 1.050 113 

Methanol 510 1080 0.900 113 

Dichloromethane 487 560 1.540 113 

Tab. 5.1   Sanchez Lacombe EoS Characteristic parameters for the substance of interest, 

retrieved  from several different sources. 

 

Then the Non Equilibrium Lattice Fluid Model has been applied to modeling the 

experimental sorption isotherms that have been already shown in the previous 

chapter. The dry glassy polymer density was set equal to 3/239.1 cmg , as 

determined in Minelli et al.113 for specimens weighted in air and dodecane at 

27°C. The binary interaction parameters and the swe lling coefficients are 

considered adjustable parameters that can be used for optimizing the model 

prediction, in order to regress the actual isotherm. When mass uptake was 

reasonably high, so that it seemed justifiable to assume that the highest activity 

points could be close to the true thermodynamic equilibrium, the binary 

coefficient was checked against them using directly the equilibrium model, while 

the swelling coefficient was regressed only on the mid activity data points, 

where the concavity of the sorption isotherm was indeed that of a glassy 

polymer. The change in concavity and the onset of glass transition was quite 

obviously recognizable in the case of the 10°C sorp tion isotherm of 

dichloromethane, that is a good solvent of Matrimid. In other cases, such as for 

the oxygenated components, the liquid solubility has been found to be 
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dependent on sample thermal history. This is a well known feature of polymeric 

glasses. Then it is clear that even if the liquid solubility is perfectly modeled by 

the equilibrium models, the actual equilibrium nature of that points could be 

questioned. In fact, since around unit activity the equilibrium solubility curve is 

rather steep, a slight change of the value of the binary interaction parameter 

could be enough to predict a very different value of the solubility, ranging in the 

full span experimentally observed, and without affecting too much the prediction 

of the non equilibrium portion of the isotherms. It could be argued that in this 

case the actual value of the binary interaction parameters provide a correction 

to some of the error that is done when a true equilibrium model is used to 

regress data obtained for conditions in which some departure from equilibrium 

is still there.  

 

The first example of solubility isotherm modeling that will be considered is that 

of water in Matrimid 5218. In order to model the water solubility isotherm at 308 

K, it was made the choice to assume that no swelling is taking place and thus 

the swelling coefficient have been set equal to zero. In fact the mass uptake is 

so limited, that no swelling or plasticizing effect could be postulated, similarly to 

what could be observed for gas solubility at low pressure, for the same polymer. 

The results of the NELF model, shown in Fig. 5.1, are in quite a good 

agreement with the experimental values up to activity equal to 0.6, where larger 

deviation and a change in concavity start to appear. This change in concavity 

cannot be justified in term of plasticization and thus it should be regarded as an 

effect of  the water hydrogen bonding, that is an effect that is well beyond the 

limits of the physical picture on which the Sanchez Lacombe Equation of State 

is based. It must be reported that with the parameters available for water 

substance, its saturated liquid density is poorly predicted, as it is expected for a 

model that does not take into account hydrogen bonding. 
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Fig. 5.1    NELF modeling of the sorption isotherm of water in Matrimid 5218 at 308 K, complete 

with the value measured for liquid water. The swelling coefficient was set equal to zero, under 

the assumption that at such low mass uptake, the effect of the partial molar volume of water is 

negligible. 

 

As shown in Fig. 5.2, the methanol sorption isotherm at 35°C can be modeled 

quite adequately up to activity 0.6, modeling the swelling of the polymeric matrix 

through the linear swelling relationship. The solubility of the liquid cannot be 

directly represented neither through linear swelling, nor through the equilibrium 

model. In fact, if the equilibrium sorption isotherm is calculated with the binary 

interaction parameter that has been obtained trough regression of the 

experimental data at low activity with the non equilibrium model, the results 

deeply underestimate the liquid methanol solubility. Even if it is known that 

methanol could give rise to polar or even to hydrogen bonding interactions, the 

parameters used for the pure methanol are known to provide excellent 

description of both vapor pressure and saturated liquid density. Moreover the 

sorption is quite big and thus there is no way to dismiss the possibility that the 

upward concavity in the higher activity region is to be considered due to 

swelling phenomena.  
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Fig. 5.2    NELF modeling of the sorption isotherm of methanol in Matrimid 5218 at 308 K. The 

mass uptake is certainly enough to compel the necessity to take into account swelling 

phenomena. The equilibrium isotherm lies entirely below the complete set of experimental data 

and not even the data pertaining to the liquid methanol could be considered as a true 

equilibrium point. 

 

Finally the modeling of the sorption isotherms of dichloromethane in Matrimid 

5218 at 283 K and 305 K was attempted. The isotherm at 283 K is quite 

peculiar and intriguing, since it shows  a really evident change of concavity, that 

clearly suggest the onset of the penetrant induced glass transition. Therefore 

the binary interaction parameter for the pair dichloromethane – Matrimid 5218 

was retrieved fitting directly the higher pressure portion of that isotherm with the 

true thermodynamic equilibrium Sanchez Lacombe model. Subsequently the 

values of the swelling coefficients required in order to apply the model to the 

non equilibrium portion of the same isotherm and to the 305K isotherm were 

retrieved directly from the comparison with the experimental data. Therefore the 

modeling of the equilibrium portion of the 283 K isotherm was performed with 

only one adjustable parameter, namely the binary interaction parameter 

MatrimidDCMk − , while the non equilibrium isotherms were modeled with again only 

one adjustable parameter, the swelling coefficient swk . The comparison between 
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the experimental isotherms and those predicted with the NELF model can be 

considered excellent, as shown by Fig. 5.3. 

 

 
Fig. 5.3    NELF modeling of the sorption isotherms of dichloromethane in Matrimid 5218 at 

283K and 308 K. 

 

As previously observed, there are no available equilibrium volumetric data of 

the pure Matrimid 5218 in order to apply the latest development of the model, 

that ideally would be capable to predict the swelling behavior upon sorption, up 

to plasticization. In what follows, a simplified approach will be discussed, in 

order to show how and to what extent, it could be possible to apply the model. 

As a starting point, it is possible to observe that the specific volume of the 

polymer at the glass transition pressure could be estimated by means of finding 

the specific volume at the pressure corresponding to the point of intersection 

between the isotherm predicted with the NELF and the isotherm predicted with 

the Sanchez Lacombe EoS. The polymer specific isotherm volumes at 283K for 

the dichloromethane sorption had been calculated with the equilibrium Sanchez 

Lacombe and  with the linear swelling hypothesis and are depicted in Fig. 5.4 

and the crossing point can be recognized to take place around 270 mbar.  The 
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specific volume of the rigid contribution is  ( ) gcmVPTV gP
SEQ

P /075.1ˆ,,ˆ 3
, ==µ . 

Since the dry polymer density is known and the equilibrium density of the pure 

polymer can be estimated through the Sanchez Lacombe Equation of State, 

also the weight factor χ  now can be estimated. The value that is obtained 

through this calculation is 815.0=χ , a rather high value, but that it is still among 

the range of values found with the rigorous procedure by Minelli at al.111, for 

many other glassy polymers. Now that both parameters are known, the 

calculation of the complete isotherms could be performed, but this time only the 

binary interaction parameter can act as an adjustable parameter, since the 

swelling coefficient is no longer required. In the case of the dichloromethane 

sorption isotherm the results are shown in Fig. 5.5. The value of the binary 

interaction parameter was kept equal to the value that had been previously 

retrieved from the equilibrium portion of the 283 K isotherm. The results for the 

DCM Matrimid isotherm at 10°C is remarkable, while the comparison with a set 

of sorption data collected at 35°C on the same Quar tz Spring Apparatus show 

some deviation in the higher pressure region, but the agreement is still good. It 

was chosen to apply the complete model, with the parameters retrieved 

according to the previously introduced simplified procedure, only to the results 

of the Quartz Spring experiments, because similar conditions apply, respect to 

the thickness and the mechanical constraints acting upon the sample. In fact, in 

the Quartz Cristal Microbalance, the samples were much thinner (~1 µm in 

QCM respect to ~50 µm in the case of QS) and are supposed to adhere to a 

rigid substrate, while in Quartz Spring the film is left free standing. Both 

parameters could exert some effect on the swelling behavior, that is a relaxation 

phenomenon taking place in non equilibrium, history dependent material.  

Comparison with the methanol – Matrimid 5218 dataset, shown in Fig. 5.6, is 

certainly of interest, because despite some systematic overestimate, the shape 

of the isotherm is predicted quite well and with a little change of the binary 

interaction parameter from the value previously used, it is possible to give 

reason of the liquid solubility. It must be emphasized that the equilibrium model, 

with the same values of the binary interaction parameters, underestimate the 
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liquid solubility, as previously shown, while the present model, taking into 

account the extra free volume of the glassy phase can produce a more 

reasonable estimate. This results have been obtained with a pretty rough 

estimate of χ  and gPV ,
ˆ , and using only one adjustable parameter for each 

polymer penetrant pair. Therefore the resulting predictions of the swelling 

behavior, at temperature different from the one of the isotherm that was used 

for estimating gPV ,
ˆ  and for a different penetrant, are to be considered 

satisfactorily. Finally it is interesting to note that when the model for swelling is 

applied to the prediction of the water solubility isotherm, as shown in Fig. 5.7, 

the results are quite the same of the simpler model that was shown previously 

and for which 0=swk was postulated, at least up to activity 0.5. Even if at larger 

activity the complete model have a slightly better performance, still it is not able 

to take into account of the change of curvature. Thus the no swelling 

hypothesis, albeit not completely correct, was quite a good one and the 

deviations of the experimental data from the model predictions at high activity 

have to blamed mainly to hydrogen bonding effects. 

 

 
Fig. 5.4    Equilibrium and non equilibrium polymer specific volume as a function of the penetrant 

pressure. 
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Fig. 5.5    Solubility isotherms of Dichloromethane in Matrimid at 283 K and 308K, with swelling 

behavior prediction according to the latest version of the Non Equilibrium Thermodynamic for 

Glassy Phase model. 

 

 
Fig. 5.6    Solubility isotherm of Methanol in Matrimid at 308K, calculated with the swelling 

behavior prediction according to the latest version of the Non Equilibrium Thermodynamic for 

Glassy Phase model. The results of calculations shown with two slightly different values of the 

binary interaction parameters are shown. 
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Fig. 5.7    Solubility isotherms of water in Matrimid at 308K, with swelling behavior prediction 

according to the latest version of the Non Equilibrium Thermodynamic for Glassy Phase model. 

For comparison the result of the calculation without swelling is shown. 

5.4. Non Equilibrium Perturbed Chain Statistical 

Associating Fluid Theory 

As previously said, the Non Equilibrium Thermodynamic of Glassy Phase 

approach is general and have been applied to many different equilibrium 

thermodynamic models25, 26. Among them, one of the most interesting is the 

extension to non equilibrium of the Perturbed Chain Statistical Associating Fluid 

Theory by Gross and Sadowski22-24. The non equilibrium version will be 

indicated as NEPC-SAFT. The characteristic parameters for the low molecular 

weight species considered for the modeling of their sorption isotherms in 

Matrimid 5218 are listed in Table 2 and  were available in the literature, from 

several sources that are indicated in the same table. Also the characteristic 

parameters for Matrimid 5218 were available in the literature, from a paper by 

Hesse and Sadowski29 and were obtained by fitting on a data set made by the 

solubilities of several liquids in Matrimid 5218 and simultaneously to the PVT 
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data of a mixture made of Matrimid 5218 and dimethylsulfoxide, a known 

solvent of the Matrimid 5218 itself. That mixture was really lean in polymer, 

since the Matrimid 5218 mass fraction was equal to 2.5% and thus also the 

quality of the dimethylsulfoxide plays a major role in the regression procedure 

adopted for retrieving Matrimid 5218’s parameters. It must be observed that the 

liquid solubilities are probably referred to a glassy, not yet completely 

equilibrated state, as observed also for the data discussed in the present work, 

but had been fitted by Hesse and Sadowski29 by means of an equilibrium 

solubility calculation. Moreover, the prediction of PVT of the liquid mixture of 

Matrimid 5218 and dimethylsulfoxide is characterized by some systematic 

deviation between the experimental and the calculated values. Therefore the 

use of this parameter should be regarded as a strictly empirical one, but this is 

to be blamed only to the fact that when dealing with glassy polymer with such 

an high glass transition temperature, the measurement or the estimation of any 

equilibrium thermodynamic properties is impervious.  

 

Substance m/M [mol/g] σ  [Ǻ] ε  [K] Ref. 

Matrimid 5218 0.0380 3.1 320.0 29 

Acetone 0.0498 3.2279 247.4 115115 

Methyl Acetate 0.0424 3.1888 235.8 116116 

Dichloromethane 0.0266 3.338 274.2 116 

Tab. 5.2   Pertubed Chian Statistical Associating Fluid Theory EoS Characteristic parameters 

for the substance of interest, retrieved  from several different sources. 

 

As examples of application of the NEPC-SAFT, it was decided to consider the 

case of Acetone, Methyl Acetate and Dichloromethane. Since the code 

available at the University of Bologna does not have the capability to use a 

validated association contribution term, the modeling of water and methanol, 

that would have proven to be powerful benchmarks for the NEPC-SAFT model, 

was not attempted. The solubilities of Acetone and Methyl Acetate in Matrimid 

5218 at 308K at activity lower than one are available in Minelli et al.113. The 

modeling results Acetone and MetylAcetate are depicted in Fig. 5.8 and Fig. 

5.9. As previously discussed, the solubility of the liquid penetrants was found to 
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be somewhat history dependent and thus it could be argued that the polymer, 

even for mass uptakes in the range of 0.3 ÷ 0.4 g/gpol of this two penetrants, 

retains some kind of the character of the glassy phases. It must be cited that 

while performing the liquid sorption experiments for characterizing acetone and 

metylacetate solubility in Matrimid 5218, it was observed the development of 

cracks and crazes in the samples, both around the edges and in the bulk of the 

specimens. Therefore it is reasonable to say that an internal stress state 

developed upon sorption of the penentrant. In literature, such as in the works 

authored or supervised by Francis, McCormick and Scriven of the University of 

Minnesota68-71, there is a wide consensus that stress states in polymer solvent 

system arise due to frustrated swelling or frustrated shrinkage. In other words, if 

the specific volume of the sample in the stress free state is different from the 

actual specific volume, the actual state is a strained one and if the material is 

capable of elastic answer, stress arise. Eventually, if the material can also 

behave viscously, the stresses will relax and fade. When this is not possible, 

due to a lack of viscous answer or due to some constraint, the stress could build 

up to the point of locally exceeding the strength of the material. Since the films 

used in this work were free standing, the stress state could not be due to the 

effect of an external constraint, but are to be blamed to the absence of viscous 

relaxation, or to a characteristic time of the stress relaxation process far too 

large respect to the characteristic time of the stress build up (and thus of the 

sorption process). It is interesting to note that the sorption kinetic for acetone 

and methyl acetate are really close to the Fickian one and after the knee of the 

curve, no ongoing relxation was observed. This could indeed be the case of a 

rubber, but the appearance of stresses and of history dependence for the 

solubility value are characteristics of the glassy state. Thus no definite decision 

can be made regarding to considering the solubilities at unitary activity as 

equilibrium or non equilibrium ones. It appeared that those points were fitted 

quite naturally with the equilibrium curve. In the case of methyl acetate, shown 

in Fig. 5.9, it was also quite evident that a change in concavity is taking place 

for penetrant activities higher that 0.8. Following this discussion, it appears that 

the most correct point of view is to say that binary interaction parameters and 
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swelling coefficients were regressed simultaneously on the full isotherm, by 

comparing the equilibrium and non equilibrium predictions with the experimental 

data, again simultaneously. In this way some of the ambiguities about the exact 

nature of the liquid solubility are removed and the good agreement between the 

liquid solubilities and the values predicted with the equilibrium model is a mere 

consequence of the good results obtained at lower activities with the non 

equilibrium model.   

 

 
Fig. 5.8    Solubility isotherm of Acetone in Matrimid 5218 at 308K, predicted with NEPC-SAFT 

and PC-SAFT models. 
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Fig. 5.9    Solubility isotherm of Methyl Acetate in Matrimid 5218 at 308K, predicted with NEPC-

SAFT and PC-SAFT models. 

 

Modeling of the solubility isotherms of dichloromethane in Matrimid 5218 was 

done with the same procedure adopted for NELF, with excellent results, shown 

in Fig. 5.10. It should be noted that the swelling coefficients required for fitting 

the non equilibrium portion of the isotherms were found to be lower than that 

found when applying the NELF model. The same effect is observable for the 

swelling coefficient for Acetone and methylacetate in Matrimid 5218, when 

compared to those that can be found in Minelli et al.113 . This systematic 

differences could be explained by taking into account that different models 

could predict different partial molar volumes of the penetrants in the mixture 

with the polymer and on the fact that since the parameters for the Matrimid 

5218 had been retrieved with two different empirical procedure, the close 

packing state and thus the free volume available in the glassy polymer matrix 

could be predicted in different way by NELF and NEPC-SAFT. Since this 

differences, it was retained that application of the latest version of the NET-GP 

approach in order to predict the swelling behavior of the glassy Matrimid 5218, 

would have been of limited usefulness.  
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Fig. 5.10   Solubility isotherms of Dichloromethane in Matrimid 5218 at 283 K and 305K, 

predicted with NEPC-SAFT and PC-SAFT models. 

5.5. Concluding Remarks 

In his chapter modeling of the sorption isotherms of low molecular weight  

species in glassy Matrimid 5218 with the NET-GP approach had been 

performed, applying the NELF and the NEPC-SAFT versions of the NET-GP. In 

some cases, when plasticization induced by solvent was reasonable, modeling 

with equilibrium models was attempted with success. A simplified procedure for 

applying the latest version of NET-GP/NELF in order to predict the swelling of 

the polymer matrix was applied, again with good results.  
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6. Modeling of the Sorption Kinetic of Low 

Molecular Weight  Species in Glassy 

Matrimid 5218 within the NETGP 

framework 

6.1. Introduction  

The kinetic of the sorption (and desorption) of low molecular weight species in 

glassy polymers is relevant to many industrial processes and applications. In 

fact, processes like the production of polymeric foams, membrane separation 

processes, coating deposition and drying, controlled drug release and sensor 

applications are deeply affected by the kinetic of the mass transfer of low 

molecular weight in polymers that are quite often used at temperatures below 

their glass transition temperature. The production of foam from expandable 

thermoplastics requires that polymer pellets, loaded with a given amount of 

blowing agents, undergo a sudden temperature jump, along with the exposure 

to a suitable heat carrier, in order to trigger the start of the expansion process. 

Upon heating, inside the bulk of the pellet, the solvent starts the nucleation of 

multitude of bubbles and their internal pressure drives the expansion process. 

The diffusion of the solvent, along with the viscoelastic answer of the material to 

the stress state that develops, deeply affect the expansion process, in terms of 

global kinetic and final morphology of the expanded pellets. The process is run 
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at a temperature lower than the actual glass transition temperature of the neat 

thermoplastic, but close to the value of the glass transition temperature of the 

mixture made by the polymer loaded with the blowing agents. Modeling the 

kinetic of the sorption and desorption of the blowing agent could be useful for 

process analysis and optimization. Membrane separation process are usually 

operated under steady state conditions and in the case of dense films the 

solution diffusion model applies. The parameters that control the permeation 

across the membrane and its selectivity are the solubilities and the diffusivities 

of the low molecular weight species, under steady state conditions. Although 

apparatus specifically designed for characterizing the gases and vapors 

permeabilities across membranes exist, they commonly provide a direct 

measurement only of diffusivity and permeability, while solubility is only 

estimated from the other two variables. Therefore it is quite common to perform 

differential and integral sorption experiments in order to characterize directly the 

solubility of the low molecular weight species in the membranes. As shown by 

Crank77, differential sorption experiments enable to observe how the diffusion 

coefficient is affected by the average concentration of penetrant across the 

membrane and thus provide information relevant also to the steady state 

permeation process. The experimental data obtained from sorption experiments 

can be used to validate a model that, in turn can be used for design and for 

predicting the performance of a membrane separation device, for instance. The 

drying of polymer coating is essentially a desorption process: while solvent 

concentration decreases, the concentration of the macromolecules increases 

and the mechanical properties shift from the ones of a viscous liquid to the ones 

of a tough, elastic solid material. If the glass transition temperature of the 

polymer that is being used in the coating formulation is above the ambient 

temperature, then when the solvent concentration became lower than the 

amount required for plasticize the polymer, vetrification takes place and finally 

the coating would be glassy. The evaporation of the solvent takes place at its 

free boundary, while commonly the substrate onto which the coating is being 

applied is quite impermeable respect to the solvent. Thus the drying process 

takes place along with the diffusion of the solvent across the coating. If the 
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characteristic time of the drying process is far lower than the characteristic time 

of the mechanical relaxation processes, the build up of the stresses in the film 

will finally cause the appearance of cracks, delaminations and other defects. In 

the case of drug controlled release, the rate of release of the drugs, for example 

from a pill, into the body, should be tailored respect to the gastrointestinal transit 

time, the pharmacokinetics, dosage and blood concentration required in order to 

guarantee the pharmacological activity.  A lack of control of the rate of release 

of the drug will cause an improper concentration in the blood, possibly causing 

toxic effects in the case of an excessive release, or a concentration too low to 

exert the desired pharmacological effect, or even causing the elimination of the 

pill along with the feces before the complete release of the required dosage. 

Usually the pills, as well as others drug controlled release devices, are  made 

by a polymeric matrix loaded with the drug and the others ancillary components. 

The rate of release is determined, along with many other factors that acts in the 

in vivo  environment, by the rate of diffusion of the drug in the polymeric matrix, 

as well as by the swelling, the sorption of water and other fluids and, in same 

case, by the degradation of the polymer itself (i.e. due to hydrolysis). Again a 

modeling tool capable of dealing with sorption, desorption and swelling of the 

polymer matrix in glassy state can be useful for the design and optimization of 

controlled drug release devices. Similar reasoning applies to the cases of 

sensors made by a polymer film conjugated with an electromechanical 

transducer. In fact the solubility and diffusivity of the low molecular weight 

species to which the sensor is exposed and the induced swelling in the polymer 

film directly affect the sensibility and the response time of the sensor itself.  

 

As previously said in the chapter of the experimental sorption results, a 

constitutive law is required in order to close the set of mass balance equation in 

local form. Constitutive laws cannot be derived directly from the conservation 

principles or from the law of thermodynamics, but they should be based on 

experimental observation and should never contradicts the Second Law of 

Thermodynamic, as well as the principle of locality, causality and material 

objectivity (their form should not depend from the reference frame). For 
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example, the assumption that the diffusive mass flux of a given component is 

proportional to the gradient of its chemical potential could be a rather general 

form of constitutive equation for diffusion. A complete and extensive discussion 

of this topics can be found in the works of Truesdell117 and Slattery6 on 

continuum thermomechanics and rational thermodynamic, therefore it will not 

be discussed further here.  A more common choice, that can be obtained 

through application of the chain rule to the gradient of the chemical potential 

and with some reasonable simplifying assumptions, is that the diffusive mass 

flux of a component is proportional to its concentration gradient. This 

constitutive equation is known as Fick’s law and has been found to be 

applicable to a huge number of cases. As previously discussed, sorption of low 

molecular weight penetrants in glassy polymers is one of the most notorious 

exceptions. Useful insight in the non Fickian sorption of solvents and low 

molecular weight penetrants in glassy polymers can be gained considering the 

characteristic timescales of the diffusion process and of the relaxation 

processes. Diffusion characteristic time can be readily estimated as 
DD

2δτ = , 

where δ is the thickness of the sample along the sorption direction, while D is 

the diffusion coefficient of the penetrant in the polymer. The characteristic time 

of the relaxation processes is somewhat undefined, since a truly unified view on 

the argument is lacking, but a close analogy to rheological (mechanical)  

relaxation processes, like in creep or in stress relaxation can be surely 

portrayed and the characteristic time of polymer relaxation can be assumed to 

be the ratio between viscosity and bulk modulus of the polymer matrix: 

ER /ητ =   . The ratio between polymer relaxation characteristic time and 

diffusion characteristic time is a dimensionless quantity known as Deborah 

number and is commonly used for identifying different regimes in the analysis of 

non Fickian sorption.  
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When 1<<De , the polymer will relax much faster than the time required to the 

low molecular weight penentrant molecules in order to diffuse from the 

boundary of the sample to its core. Therefore the diffusion process will mainly 

take place in an already relaxed polymer matrix and the process will be 

adequately represented by means of the Fick’s constitutive law. In the case in 

which 1>>De , the relaxation process will take longer than the diffusion and 

separate contribution to the sorption process could be recognized. For example, 

in low pressure gas sorption in glassy polymers, the penetrant does not 

plasticize significantly the glassy matrix and thus the relaxation times are much 

longer than the duration of the sorption experiment itself. For differential 

sorption experiments for which 1>>De  and the duration of the sorption 

experiment is longer than the polymer relaxation time itself, the sorption kinetic 

will present two separate stages. The first one, that exhibits a kinetic close to 

the Fickian one, is due to the diffusion driven mass uptake, while the second 

one is due to relaxation. It can be observed that during the relaxation driven 

sorption stage, the concentration gradient across the sample is negligible. 

Commonly the two stages appear to be separated by a sort of plateau or of 

pseudo steady state, that arise from the superposition of  the slowing down of 

the diffusion driven sorption and of the initially slow relaxation rate. In this work, 

two stages kinetics were observed several times in the case of dichloromethane 

sorption in Matrimid 5218, especially when dealing with really thin films. When 

1≈De , diffusion and relaxation take place in the same timescale and the 

resulting rate significantly deviates from the Fickian one, leading to anomalous 

sorption kinetics. It must be remarked that even if the diffusion coefficient of the 

low molecular weight species in a glassy polymer can depend upon to 

concentration according to an exponential law and even if it is well known that 

the free volume of the system can exert a deep influence as well, the above 

mentioned features of the non Fickian processes cannot be simply explained as 

an effect of the variable diffusion coefficient. Several approaches have been 

developed in the past for dealing with non Fickian sorption kinetics, ranging 
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from simplified, phenomenological models, up to models that explicitly take into 

account, through a suitable rheological model, the effect of polymer volume 

relaxation77, 87, 89-92, 112, 118-121. It is worth mentioning that in order to model some 

of the most extremely anomalous sorption kinetics, such as those named Case 

II and Super Case II, in which the mass uptake is found to be proportional to 

time and even accelerating before reaching the equilibrium value, with rather 

sharp concentration fronts that propagate inside the sample, hyperbolic 

formulation of the conservation laws have been proposed and found able to 

provide results that compare well with the experimental evidence122, 123.  

 

In order to model the kinetic data collected while performing the experiments 

aimed to measuring vapor and liquid solubilities in the glassy Matrimid 5218, 

several approaches had been applied. The most simple one was that based on 

the application of Berens Hopfenberg Model87, 119, that should be regarded as a 

quite versatile correlation tool, but that lacks rigorous foundation and that is 

mainly phenomenological, despite suggesting some interesting thought about 

the actual physics of the sorption process. It will be shown that with a simple 

hypothesis it is possible to use the predictions of NETGP approach in order to 

reduce the number of adjustable parameters of the Berens Hopfenberg Model.  

The Long and Richman Model78, 79 have also been analyzed, providing some 

insight on the controlling processes in the non Fickian sorption. Finally the 

model proposed by Carlà and Doghieri112 on the basis of the simple rheological 

assumptions that had been found successful in NETGP had been applied to 

vapor and liquid sorption kinetics. 

6.2. Berens Hopfenberg Model 

The model introduced by Berens and Hopfenberg is based on the assumption 

of linear superposition between diffusion and relaxation processes. The mass 

uptake during the sorption (or desorption) of a low molecular weight penetrant in 
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a polymer is calculated by the direct summation of a contribution that is 

calculated using the integrated form of the partial differential equation that 

describe the Fickian diffusion process in a non relaxing medium and of a 

contribution that is calculated with a simple relaxation law, that describes the 

evolution toward a final value.  
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The diffusion problem, here considered in the form that is specific for the 

geometry of a slab, is formulated assuming that the boundary condition at the 

surface that is exposed to the external phase is given by the solubility of the 

penetrant itself, in term of concentration iC , that is assumed to be constant with 

time. Therefore the diffusion contribution is calculated assuming that relaxation 

processes does not influence the mobility of the low molecular weight species, 

as well as their solubility, that is the parameters that controls the boundary 

condition.  The relaxation process is then completely independent from the 

penetrant concentration in the film and from its profile: this assumption is clearly 

a weak one, since it does not take into account the fact that relaxation is 

promoted by the plasticizing action of the low molecular weight penetrant and 

thus relaxation rate should be dependent on penetrant concentration. The most 

important shortcoming of this model is that can predict the mass uptake upon 

non Fickian sorption, but does not enable to represent correctly the 

concentration profile inside of the sample.  
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The mass uptake is then calculated by summing the diffusion contribution 

( )
D

M

tM









∞

 to the relaxation contribution 
( )

R
M

tM









∞

, weighted by the coefficient  Dα . 

The simplest form of relaxation law is provided by the exponential decay law 








−−
τ
t

exp1 , where τ is the characteristic time of relaxation. The relaxation 

contribution  tends to zero when τ<<t and reaches monotonously its maximum 

value when τ>>t .  

 

6.4   
( ) ( ) ( ) ( )

R

D

D

D M

tM

M

tM

M

tM








−+








=









∞∞∞

αα 1  

6.5   
( ) ( ) ( ) 















−−−+







=









∞∞ τ
αα t

M

tM

M

tM
D

D

D exp11  

 

The Berens Hopfenberg requires the slab half thickness δ  and three adjustable 

parameters in order to describe the kinetic of the sorption process as 
( )









∞M

tM
 

and the final mass uptake ∞M must be supplied too, in order to plot the kinetic 

in the form of the mass uptake ( )tM . The adjustable parameters are the 

diffusivity, the relaxation time τ and the weighting factor Dα . Sometimes the 

weighting factor between the diffusion and the relaxation contributions is 

expressed as DR αα −=1 .  In differential sorption experiments all this 

parameters can be thought to be a function of the activity jump or of the 

average penetrant concentration and it is not uncommon that the trend of that 

fitting parameters is not completely regular, as shown, for instance, by Lee et 

al.87 in 2009 for the case of Heptane and Toluene sorption in Matrimid 5218 

hollow fibers. 

 

It must be noted that, despite its theoretical shortcomings, the Berens 

Hopfenberg model can be a powerful correlation tool for sorption mass uptake 
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kinetic and that it is possible to modify the model in order to take into account 

behaviors that arise when  instead of a single relaxation time, the polymer 

matrix relaxation is characterized by a spectrum of relaxation times. This can be 

done, for instance, representing the global relaxation contribution as a sum of 

relaxation contributions with different relaxation times kτ . If the relaxation 

spectrum is continuous, the summation can be replaced by an integral, 

introducing a suitable distribution function for the relaxation times. It is clear that 

the number of adjustable parameters rises significantly. 
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Another possibility is to use a single stretched exponential, in the form of a 

Kohlrausch–Williams–Watts relaxation modulus124 




















−−
β

τ
t

exp1 . This form is 

really versatile, since the use of the exponent β  as an adjustable parameter 

enables to represent a wide range of relaxation behaviors.  
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The Berens Hopfenberg Model was applied to the describe the sorption kinetic 

data of DCM in Matrimid 5218 at 291 K and 305 K that were collected with the 

QCM apparatus. The films were obtained applying a drop of 5% Matrimid 5218  

in DCM solution on one of the crystal resonator electrode. The resonator was 

placed on a spin coating device and the drop spreading, leveling and drying 

was obtained operating the spin coater at 2000 rpm for two minutes. The drop 

of polymer solution was deposited on the resonator during the initial ramp up of 

the spin coater. Solvent removal was obtained placing the crystal under vacuum 

at 50°C for one night. The mass of the film of Matr imid 5218 that coated the 
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electrode of the resonator was estimated by the departure of the crystal 

frequency, respect to the value measured, for the same crystal, before polymer 

deposition. The average thickness of the sample was then estimated by the 

mass of polymer itself, since density of the polymer and area of the electrodes 

are known. The thickness were around mµ1≈ . Since thickness of the samples 

are only indirect estimates,  the characteristic time of diffusion 
DD

2δτ =  was 

used directly as the input of the Berens Hopfenberg Model. Some of the results 

are depicted in the Fig. 6.1 to Fig. 6.5. It was found out that the better fitting of 

the experimental data was obtained assuming either assuming that two 

relaxation times existed or using the Kohlrausch–Williams–Watts relaxation 

modulus. In fact, using only one relaxation time, it was possible to represent 

only the long time relaxation behavior, while for times only  slightly longer than 

diffusion relaxation time, marked deviation between the experimental data and 

the model prediction arised. Therefore the two relaxation times were chosen, by 

comparison with the experimental results, in order to represent a short time 

relaxation and a long time relaxation. With the Kohlrausch–Williams–Watts 

relaxation modulus only one relaxation time was required, as by setting the 

value of the exponent β  different to unity some degree of broadening of the 

relaxation spectrum is achieved. The kinetics that had been modeled are quite 

variegated, ranging from situation in which after the knee of Fickian behavior 

starts a slow drift of the mass uptake, to those in which a more evident two 

stages kinetic is present. In the application of the Berens Hopfenberg model 

with two relaxation times, it was found out that the weighting factor 

Dα decreased as the average concentration of the dichloromtehane in the 

polymer increased, due to an higher and higher contribution of the volume 

relaxation to the total mass uptake. The weighting factor of the short time 

relaxation 1Rα decreased as well, with the increase of dichloromethane 

concentration. This results are summarized in Fig. 6.6 where the weighting 

factor of the diffusive contribution is reported as DR αα −=1 . The characteristic 

times of the short time relaxation terms are quite short, ranging from around 500 
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s in the first steps and decreasing to  few seconds for the steps at higher 

activity, while the characteristic times of the long time relaxation terms seems to 

increase with the amount of dichloromethane already sorbed in the polymer 

matrix, ranging from 10000 s up to 35000 s. It must be noted that neither at 

291K, nor at 305K was reached the plasticizer induced glass transition and thus 

this long relaxation times are to be referred to the slow evolution of a glassy 

matrix. The relaxation times are depicted in Fig. 6.7, in which lines had been 

drawn for guiding the eye. Some scattering in the parameters required for fitting 

the experimental sorption curves is evident, but it has already been mentioned 

that this phenomenon has been reported by other authors.    

 

 
Fig. 6.1    Mass sorption kinetic of Dichloromethane in Matrimid 5218 at 305 K. Initial pressure 

99.4 mbar, final pressure 145.2 mbar. Comparison between experimental data and several 

possible formulation of the Berens Hopfenberg model: one relaxation element, two relaxation 

elements or the Kohlrausch–Williams–Watts relaxation modulus. 
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Fig. 6.2    Mass sorption kinetic of Dichloromethane in Matrimid 5218 at 291 K. Initial pressure 

26.6 mbar, final pressure 40.8 mbar. Comparison between experimental data and the Berens 

Hopfenberg model with one relaxation element or two relaxation elements. 

 

 
Fig. 6.3    Mass sorption kinetic of Dichloromethane in Matrimid 5218 at 291 K. Initial pressure 

40.8 mbar, final pressure 85.9 mbar. Comparison between experimental data and the Berens 

Hopfenberg model with one relaxation element or two relaxation elements. 
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Fig. 6.4    Mass sorption kinetic of Dichloromethane in Matrimid 5218 at 291 K. Initial pressure 

85.9 mbar, final pressure 117.2 mbar. Comparison between experimental data and the Berens 

Hopfenberg model with one relaxation element or two relaxation elements. 

 

 
Fig. 6.5    Mass sorption kinetic of Dichloromethane in Matrimid 5218 at 291 K. Initial pressure 

117.2 mbar, final pressure 176.7 mbar. Comparison between experimental data and the Berens 

Hopfenberg model with one relaxation element or two relaxation elements. 
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Fig. 6.6    Berens Hopfenberg model of  Dichloromethane in Matrimid 5218 at 291 K and 305K: 

weighting factors DR αα −=1  and 1Rα . Lines are drawn only to guide the eyes. 

 

 
Fig. 6.7    Berens Hopfenberg model of  Dichloromethane in Matrimid 5218 at 291 K and 305K: 

short time and long time characteristic relaxation times. Lines are drawn only to guide the eyes. 
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6.3. Berens Hopfenberg Model and NETGP Approach 

As previously discussed, the Berens Hopfenberg model requires, among the 

various adjustable parameters, the value of the weighting factor Dα  that 

dictates how much of the total mass uptake is due to diffusion and how much is 

due to relaxation of the polymer matrix. The examples of application of the 

Berens Hopfenberg model to the kinetic of dichloromethane sorption in Matrimid 

5218 shown in the previous section, have shown that some separation of 

diffusion and relaxation timescales was present, to some extent, in quite every 

steps of the differential sorption experiment. Therefore it is reasonable to 

assume that diffusion takes place in a polymeric matrix into which relaxation 

has not yet produced relevant changes, respect to the conditions that were pre 

existent. Therefore it could be made the hypothesis that diffusion takes place in 

a polymeric matrix whose density (or specific volume) is equal to the density at 

the beginning of the sorption step. This hypothesis provide a simple rule for 

estimating the value of the weighting factor  Dα  applying the NETGP approach. 

In fact, the weighting factor Dα is the ratio between the total mass uptake in the 

sorption step and the mass uptake that is only due to diffusion and the following 

procedure could be applied: 

 

1. Model the Isotherm with NETGP, retrieving the binary interaction 

parameter of the polymer-penetrant pair, if not already available from 

true equilibrium data, and the swelling coefficient. 

2. For each sorption step i , that start with the pressure jump from 1−iP  to 

the final value iP , calculate the actual density or specific volume 
iPV̂ of the 

polymer at the final pressure iP . This can be done either by means of the  

linear swelling approximation or, if the single datapoint departs 

appreciably from the predicted isotherm, by solving the pseudo 

equilibrium equation ( ) ( )Pii
NE

Si
Ext

S CPTPT ρµµ ,,,, =  respect to the polymer 

density Pρ . 
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3. The weighting factor iD,α for the step i is then evaluated according to the 

following formula: 
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Fig. 6.8  shows the comparison between the values of Dα required to fit the 

experimental data collected at 291K and the values calculated according to the 

above procedure, applying the NELF version of NETGP theory. The NETGP 

approach provides quite always excellent estimates of the weighting factor Dα , 

that is being only slightly overestimated. Therefore the present procedure 

should be considered a suitable tool for predicting Dα and thus removing one 

adjustable parameters from the model. Moreover this confirms that, at least for 

the specific conditions in which the data considered in this study were collected, 

among which it must be considered that the films were just  mµ1≈  thick, it is 

quite reasonable that the Fickian mass uptake complete before that significant 

volume relaxation takes place. In thicker films this timescale separation will be 

less prominent and the hypothesis that diffusion step is completed in a 

polymeric matrix whose density (or specific volume) is equal to the density at 

the beginning of the sorption process will no longer apply. 
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Fig. 6.8 Berens Hopfenberg model of  Dichloromethane in Matrimid 5218 at 291 K: comparison 

between the weighting factor DR αα −=1 retrieved  applying the model and the results of the 

NELF calculations. 

6.4. Long Richman Model 

In 1960 Long and Richman78 published two papers dealing with methyl iodide 

diffusion in PolyVinil Acetate and Cellulose Acetate films at various 

temperatures, above and below the glass transition temperature of the 

polymers. The technique adopted made use of a device conceptually similar to 

the Quartz Spring balance that had been previously described in this thesis. In 

order to gain some insight on the concentration profile inside the samples, Long 

and Richmann removed the samples from the sorption cell at predetermined 

times, quenched them in liquid nitrogen and microtomed the samples itself in a 

position that was judged to be far enough from the edges. Finally an X ray 

technique was used for retrieving the methyl iodide concentration profiles. The 

sorption experiments performed at temperatures above glass transition 

temperature for PolyVinylAlcetate provided results that are recognizable without 
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any doubt as Fickian. In the case of methyl iodide sorption in glassy samples, 

the mass uptake kinetics deviated significantly from the Fickian one, with quite 

recognizable effects like relaxation, two stage sorption and sigmoid kinetic. The 

most astonishing result, however, came from the examination of the 

concentration profile, especially near the surface of the samples, where the 

boundary conditions apply. In fact, according to the own words of Long and 

Richman, for the case of methyl iodide in PolyVinylAcetate it was found that “for 

the early stages of  the sorption the surface concentrations of methyl iodide 

were well below the equilibrium sorption value and also that the surface 

concentrations increased  with time”. For the case of methyl iodide in Cellulose 

Acetate, from the analysis of the concentration profiles they found out that: “The 

striking feature … is that the surface concentrations are  much  lower  than  the  

equilibrium  value… of  methyl  iodide  and  are increasing with time.  This result 

is in sharp contrast to that for diffusion into a non-glassy polymer where  the 

surface concentration  is  essentially  the equilibrium value a t  all times.”. 

Starting from this observations, Long and Richman proposed to model the 

sorption kinetic in glassy polymers applying a time dependent boundary 

condition to the classic diffusion problem: transport inside the sample will be still 

described in term of a mass flux proportional to the gradient of the concentration 

of the low molecular weight penentrant, while the surface concentration will 

relax toward the equilibrium or pseudo equilibrium value. Long and Richman 

found that their approach was quite successful in modeling their kinetic data. In 

quite general terms, for an infinite slab, the Long Richman model can be 

formulated in the following way: 
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The choice of the function ( )tCi  will dictate the main features of the kinetic that 

is described by the model. Especially it is really relevant the ratio between the 

characteristic time in which ( )tCi will relax toward the equilibrium value, respect 

to the characteristic time of diffusion. Long and Richman found that linear 

dependence of ( )tCi  respect to time variable or a relaxation law like those 

previously introduced in the Berens Hopfenberg model were the two most 

effective choice, in order to model the results of differential and integral sorption 

experiments. For example, the sorption kinetics of dichlorometane in Matrimid 

5218 that had previously been modeled with the Berens Hopfenberg model 

could have been fitted also with the output of a Long Richman Model like: 
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Some observations must be formulated, especially taking into account the 

results of the NETGP approach. In fact, it has been clarified that a strong 

relationship holds between the solubility of low molecular weight species in 

glassy polymers and the density of the out of equilibrium glassy matrix. 

Moreover, it has been shown that a simple rheological model, based on the 

assumption that the specific volume of the polymer is made by a contribution 

that will evolve only in times much longer than the sorption experiment itself and 

by a contribution that will evolve in shorter time, can describe (and even 

predict!) quite successfully the swelling behavior of the glassy polymer itself. 

Swelling will take place, if permitted by the local mechanical constraints, in 

every portion of the sample that is reached by the penetrant, that will act as a 

plasticizer. Swelling in the bulk of the sample will change the free volume of the 

system and this could affect the mobility of the low molecular weight penetrant, 
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as described by the free volume theory by Vrentas and Duda125, but according 

to that theory, the driving force of the process will remain the concentration (or 

chemical potential) gradient. Therefore the assumption of describing the internal 

mass transport in term of concentration gradient it is still justified, even after that 

the role of swelling in the bulk of the polymer has been recognized. Swelling of 

the polymer chains that are immediately below or at the surface, will cause a 

change of the density of the polymer matrix, locally, that will play no role in 

terms of diffusivity or mobility of the low molecular weight penetrant, but will 

definitely cause a change of the solubility. Since relaxation is not instantaneous, 

but is endowed by kinetic limitations, that are rather typical of the glassy state, 

the density of the polymer at the interface and thus the solubility of the 

penentrant will evolve toward the final, equilibrium or pseudoequilibrium value. If 

the relaxation process is slower than diffusion, its effect will be recognizable and 

non Fickian kinetics will arise not due to some change of the nature of the bulk 

transport process itself, but due to the time dependent boundary condition. The 

model could be re written as: 
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The time dependency of the polymer density ( )tPρ  will then dictate the 

dependence upon time of the surface concentration. The interface 

concentration will then be calculated, for a given value of the chemical potential 

of the penetrant in the external phase, solving the pseudo equilibrium 

formulation of the phase equilibria problem: ( ) ( )PS
NE

S
Ext

S PTPT ρωµµ ,,,, = . 
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6.5. Long Richman Model and NETGP Approach 

A model that encompasses the above formulated observations and that 

explicitly uses the fact that the density of the polymer, in the NETGP approach, 

is an internal state variable that obeys to the evolution law ( )Pi
P CPTf

dt

d ρρ
,,,= ,  

can be defined in the following way:  
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As previously shown, a simple yet effective rheological model suggest that the 

specific volume of the polymer, and thus its density, can be thought as the sum 

of two contributions: one that is somewhat rigid and does not evolve during the 

sorption experiment and one that evolves on short times. The rigid element, say 

LV̂ , will evolve only for really long times. In the previous chapter, it has been 

shown that the rigid contribution is equal to polymer specific volume at the 

plasticizer induced glass transition, thus gPL VV ,
ˆˆ = . Under pseudoequilibrium 

conditions, the contribution that evolves on short times, say SV̂ , will became 

equal to the equilibrium value at the same temperature, pressure and penetrant 

chemical potential. Thus at the end of the sorption step, under 

pseudoequilibrium conditions, EQ
PV̂V̂S = . In general term, the polymer specific 

volume will be written as: 

6.13   ( ) LS
P

P VVV ˆ1ˆ1ˆ χχ
ρ

−+==  
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Carlà and Doghieri112 provided simple evolution laws for LV̂  and for SV̂ , 

assuming that the rheology of the glassy phase can be described by Voigt 

elements. In this approach the role of the deformation is assumed by 
dt

Vd

V

ˆ

ˆ
1

and 

the driving force is the difference between the pressure at which the specific 

volume of the element would be of equilibrium, for the given penentrant 

chemical potential, and the actual pressure of the system. A viscosity η will 

dictate the “resistance” to the evolution toward the final, equilibrium value. Since 

the term LV̂ will behave like the volume of a rigid element, whose evolution is not 

expected to take place during the sorption experiment, its viscosity will be 

infinite, thus +∞→gη . On the other hand, the viscosity of the term that evolves 

in shorter times, EQ
PV̂ , indeed will assume a finite value. 
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Since LV̂  is rigid, it is always equal to gPV ,
ˆ  and thus the polymer specific volume 

can be always written as ( ) gPS
P

P VVV ,
ˆ1ˆ1ˆ χχ

ρ
−+== , while only under 

pseuodequilibrium: ( ) gP
EQ

P
P

P VVV ,
ˆ1ˆ1ˆ χχ

ρ
−+== . 

 

The following set of equations bears the complete formulation of the problem, 

with the relevant boundary and initial conditions. The model is actually 

formulated in a polymer fixed reference frame. It is assumed that diffusivity of 

the low molecular weight penetrant and the viscosity of the polymer matrix are 
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constants. This assumption is somewhat weak and can withstand only for the 

purpose of modeling differential sorption steps in which composition and free 

volume changes are limited and thus average values of the above mentioned 

kinetic parameters can be used. The model therefore is an hybrid between the 

Long and Richman model78 and the model defined by Doghieri and Carlà112 for 

CO2 sorption in PMMA, because the formulation by Doghieri and Carlà 

explicitly accounted for free volume effects and the driving force of the diffusive 

process was assumed to be the chemical potential gradient and not simply the 

penetrant concentration gradient. It must be emphasized that this approach 

requires that a good fitting of the sorption isotherm with the NETGP approach is 

obtained, since the initial and the final composition of the sample are then 

simply predicted. From isotherm modeling the values of jik , χ and gPV ,
ˆ will be 

already known and the only adjustable parameters for kinetic modeling will be 

the diffusivity and the viscosity. Therefore it is possible to say that the kinetic 

model has only two adjustable parameters. 
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This set of differential equations, along with the calculation required for 

estimating the required pseudoequilibrium and equilibrium properties with the 

Lattice Fluid Equation of State and with the NELF model, has been 

implemented in a Matlab® code. The partial differential equations are solved 

with a finite element scheme that is available among the internal functions of 

Matlab®. The above formulated model has then been applied to predict and/or 

to fit the kinetic of vapor and liquid sorprtion of Methanol in Matrimid 5218 at 

308K and the sorption kinetic of liquid 1-propanol in the same polymer and at 

the same temperature. As a thermodynamic model the usual Lattice Fluid 

Model by Sanchez and Lacombe was applied. 

6.6. Methanol Sorption Kinetic 

The vapor sorption data have been collected by means of the Quartz Spring 

apparatus, on a sample prepared by solution casting from a 1% Matrimid 5218 

solution in Dichloromethane, that gave a film with thickness equal to 69.6 mµ . 

The sorption experiment with liquid methanol was performed on a sample 

prepared  by solution casting from a 5% Matrimid 5218 solution in 

Dichloromethane, and a film 119.5 mµ  thick was obtained. Even if a tentative 

modeling effort of the sorption isotherm of Methanol in Matrimid 5218 at 308 k 

have already been shown in the dedicated chapter, since the kinetic model is 

quite sensitive to the quality of the isotherm fit, it was decided to redo the fitting, 

trying to obtain results that, despite the already good qualitative agreement, 

provided better quantitative agreement with the data. In order to do so, the 

value of the parameter χ , previously estimated from the sorption isotherm of 

Dichloromethane in Matrimid 5218, was slightly changed and set equal to 

0.872, while the binary interaction parameter was set equal to -0.04 and the 

specific volume at the plasticization induced glass transition gPV ,
ˆ was left equal 

to the previously estimated value. As shown in Fig. 6.9 the agreement between 

the NELF model and the experimental data is really good, especially for the first 
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four points. The liquid solubility remains slightly underestimated, while the fifth 

vapor point, the one collected at activity close to 0.9, is slightly overestimated. 

Better results for this latter two points could be obtained only at relevant 

expenses of the quality of fitting for the other data. Since vapor sorption 

experiments were conducted as differential sorption experiment while liquid 

sorption is inherently an integral sorption experiments, the modeling of their 

sorption kinetic will be discussed separately. In the case of vapor sorption, at 

first, viscosity of the short term volumetric contribution was set equal to infinity, 

in order to study what was the effect, if any, of relaxation on the first steps, that 

most closely resembled the Fickian behavior, as well as for understanding to 

what extent the diffusion in the unrelaxed polymer matrix contributed to sorption 

in the last steps, in which relaxation played a more relevant role.  Results are 

shown in Fig. 6.10 and show that even for the first two steps a contribution of 

the polymer swelling is required to represent the correct final value of the 

sorption steps. Conversely, in the last three steps, that are undoubtedly 

dominated by volume relaxation, the contribution of diffusion alone is still of 

some relevance. The diffusivity values have been retrieved by a manual best fit 

procedure and are reported in Fig. 6.11 as a function of the average methanol 

concentration, calculated considering, for each step, the concentration at which 

the step was started and the final concentration at which the steady state was 

obtained, without relaxation of the polymer matrix. It is then a value that should 

be referred to the density of the polymer that was reached before the sorption 

step was started. In two stage kinetics, this diffusivity value is the one relevant 

for the first stage. Except for a single outlier, the diffusivity show a recognizable 

exponential dependence from the average concentration of the methanol in the 

polymeric matrix, as it is possible to see from the fit shown in Fig. 6.11 (Since 

the plot is logarithmic, the exponential fit appears like a straight line). 
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Fig. 6.9     Best fit of the sorption isotherm of Methanol in Matrimid 5218 at 308 K with the most 

recent development of NELF model, that enables to predict the swelling of the glassy polymeric 

matrix.  

 

 
Fig. 6.10   Comparison between the experimental sorption kinetics of vapor Methanol in 

Matrimid 5218 at 308 K with the prediction of the model derived from the model proposed by 

Doghieri and Carlà, assuming the viscosity is infinite.   



 

 

 

166 

 
Fig. 6.11   Methanol diffusivity in Matrimid 5218 as a function of the average Methanol 

concentration, calculated considering, for each step, the concentration at which the step was 

started and the final concentration at which the steady state was obtained, without relaxation of 

the polymer matrix. 

 

After this preliminary calculations performed neglecting the description of the 

relaxation of the polymeric matrix, calculations were redone varying the value of 

the viscosity, in order to obtain the best fit that was possible of the complete 

sorption kinetic curves. The results are shown in Fig. 6.12. The largest 

deviations between the predicted and the experimental results are those of the 

last two steps. In fact, the predicted kinetic of the fourth step exhibit a quite 

evident two stage behavior that is not found in the experimental data. This could 

arise since the diffusivity characteristic time is too short respect to the relaxation 

characteristic time (this could be tracked back to the choice of a diffusivity 

coefficient value too high, as suggest also by the fact that this value is the 

outlier of the plot reported in Fig. 6.11). At the same time it must be observed 

that, when applying the Berens Hopfenberg model, similar behavior arose when 

only one relaxation time was used and disappeared when using a broader 

distribution of the relaxation time itself. The present model use only one 

relaxation time, therefore if significant separation exist between this relaxation 
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time and the characteristic diffusion time, two stage behavior will be predicted. 

The fifth step is represented quite well, from the qualitative point of view, since 

the shape of the predicted mass uptake curve parallels pretty well the one of the 

experimental data, but from a quantitative point of view the model overestimates 

the mass uptake itself. This is not unexpected, since this problem has already 

been noticed when discussing the quality of the prediction of the sorption 

isotherm.  

 

 
Fig. 6.12   Comparison between the experimental sorption kinetics of vapor Methanol in 

Matrimid 5218 at 308 K with the prediction of the model derived from the model proposed by 

Doghieri and Carlà, using the viscosity as an adjustable parameter. 

 

The viscosity values retrieved from the fitting of the vapor sorption kinetics are 

reported in Fig. 6.13 as a function of the average Methanol concentration, 

calculated as the average between the composition at which ended the purely 

diffusive contribution previously calculated and the final concentration of the 

step. The viscosities decays exponentially as the methanol concentration in the 

polymer matrix increases, as shown by the exponential fitting of Fig. 6.13. This 

is certainly expected, since reflects the plasticizing action of the penentrant on 

polymeric matrix and several authors, like Hesse and Sadowski126 have applied 
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such kind of dependence in their effort of modeling non Fickian integral sorption 

kinetics in glassy polymer. In the present case the viscosity was assumed to be 

constant during each step, but there are no doubt that such assumption can 

hold only for differential sorption data, in which the change in concentration is 

limited during each step. In case of modeling integral sorption kinetic the 

composition dependence of the viscosity shall be explicitly accounted for. 

 

 
Fig. 6.13   Viscosity of the Matrimid 5218 matrix as a function of the average Methanol 

concentration, calculated as the average between the composition at which ended the purely 

diffusive contribution previously calculated and the final concentration of the step. 

 

Modeling of the liquid methanol sorption step requires some specific caution, 

since it is an integral sorption step in which the polymer undergoes the widest 

possible activity jump. Thus the driving force is going to be the maximum 

possible and it is expected that concentration gradient be quite steep inside of 

the sample. It is then questionable that kinetic properties such as penetrant 

diffusivity and the viscosity of the polymeric matrix could be assumed to remain 

constant. In fact, the data collected with the differential sorption experiment 

suggest that diffusivity of methanol in Matrimid 5218 could increase up to three 

order of magnitude, as well as viscosity decreases up to three order of 
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magnitude, in the concentration span that range from zero (dry polymer 

conditions) to 0.16 g/gpol, that is the solubility of the liquid methanol at 35°C. The 

same results suggest that an exponential dependence from the methanol mass 

fraction could be appropriate for describing the plasticizing effect of methanol on 

the glassy Matrimid 5218 matrix. Therefore the equation of the model should be 

modified as follow: 
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The introduction of concentration dependent kinetic parameters increase the 

non linearity of the model and its computational cost, but it is needed in order to 

provide a plausible description of the physical picture of the sorption process. At 

first it was attempted to use the exponential dependence of diffusivity and 

viscosity that had been obtained applying the model in order to model the vapor 

sorption kinetics. The result, depicted in Fig. 6.14 with a dotted line, departs 

significantly from the experimental data,  nevertheless it is really relevant the 

fact that the kinetic predicted by the model has the proper curvature and 

reproduce many of the qualitative features of the experimental sorption curve, 

without introducing artifacts such as two stage behavior, that would have meant 

a completely erroneous representation of the ratio between the diffusion 

characteristic time and the relaxation characteristic time. In Fig. 6.14 is reported 

with a continuous black line also the results of calculations performed assuming 

that the law that describe the dependence of viscosity upon methanol 

concentration is ( )ωη 75exp108 −= ,  that compares more favorable with the 

experimental data. The law that describe the dependence of the diffusivity on 

the methanol concentration has been modified as well as 
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)110exp(10*5.3 10 ω−=D  . In the same Fig. 6.14 it is reported, in fine dots, the 

results of the calculations of the sorption kinetic with the modified viscosity 

dependence and the diffusivity law that has been estimated from the differential 

sorption experiments: the only difference is recognizable in the initial portion of 

the curve. 

 

 
Fig. 6.14   Comparison between the experimental sorption kinetics of liquid Methanol in 

Matrimid 5218 at 308 K with the prediction of the model derived from the model proposed by 

Doghieri and Carlà, assuming that diffusivity and viscosity depends exponentially from the 

methanol concentration.  

 

In Fig. 6.15 are depicted some of the calculated concentration profile for the 

liquid methanol sorption: it is quite evident that the time evolution of the 

concentration at the boundary drive the sorption process and that at the 

beginning of the sorption process the concentration profile is characterized by 

the presence of some kind of intruding front, that is smoothed by the effect of 

diffusion. In any way, diffusion and relaxation process appear to be coupled and 

their characteristic timescales are not separated, because even at long times 

there are still recognizable concentration gradient across the sample. 
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Fig. 6.15   Concentration profiles predicted for liquid Methanol sorption in Matrimid 5218 at 308 

K, assuming that diffusivity and viscosity depends exponentially from the methanol 

concentration. The spatial variable is represented in non dimensional term and is normalized 

respect to the half thickness of the sample. 

6.7. 1-Propanol Sorption Kinetic 

The sorption experiment with liquid 1 propanol was performed on a sample 

prepared  by solution casting from a 5% Matrimid 5218 solution in 

Dichloromethane, that gave a film 68.8 mµ  thick. The sorption experiment was 

characterized by a really slow kinetic and lasted more than one month and the 

steady state mass uptake is equal to 0.172 g/gpol. Since no vapor sorption data 

are available, there is only one pseuodoequilibrium solubility datum that can be 

used for the purpose of tuning the thermodynamic model that is used for 

estimating the surface concentration and the driving force of the volume 

relaxation process. Therefore it was made the decision to retain the values of 

χ and gPV ,
ˆ that had been estimated directly from the sorption isotherms of 

dichloromethane in Matrimid 5218, in which the plasticizer induced glass 

transition has been detected. With this choice the binary interaction parameter 
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MatrimidopOHk −Pr1 remains the only adjustable parameter of the thermodynamic 

model and it was found that it has to be set equal to 0.0397 in order to predicted 

the correct value of the solubility of liquid 1 Propanol in Matrimid 5218. The 

coefficients of the laws ( )CDD βexp0=  and ( )Cγηη −= exp0  that describe the 

dependence of diffusivity and  viscosity upon penetrant concentration have 

been retrieved by fitting the integral sorption curve of the liquid 1 propanol in 

Matrimid 5218 at 308K. The best fit of the experimental kinetic data is obtained 

with ( )ω10exp10*2 10−=D  and ( )ωη 15exp108 −= , it is then evident as suggested 

also by the longer duration of the experiment, that the plasticizing action that the 

1 Propanol  molecules can exert on the Matrimid 5218 chains is less marked 

than that of Methanol. The result of the model calculations is the solid line in 

Fig. 6.16.  

 

 
Fig. 6.16   Comparison between the experimental sorption kinetics of liquid 1 Propanol in 

Matrimid 5218 at 308 K with the prediction of the model derived from the model proposed by 

Doghieri and Carlà, assuming that diffusivity and viscosity depends exponentially from the 1 

Propanol concentration.  
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Finally in Fig. 6.17 are depicted some of the concentration profiles predicted by 

the model, from which it is possible to observe that even in such a long lasting 

sorption process diffusion and relaxation are deeply coupled. The initial 

concentration profiles appear to be smoother than those obtained for the much 

faster methanol sorption.  

 

 
Fig. 6.17   Concentration profiles predicted for liquid 1 Propanol sorption in Matrimid 5218 at 

308 K, assuming that diffusivity and viscosity depends exponentially from the 1 Propanol 

concentration. The spatial variable is represented in non dimensional term and is normalized 

respect to the half thickness of the sample. 

6.8. Concluding remarks 

The Berens Hopfenberg Model is a phenomenological tool suitable for modeling 

and correlating experimental data regarding the kinetic of the sorption of low 

molecular weight species in glassy polymers. In the present work it was applied 

in order to model the data about the sorption kinetic of dichloromethane in 

Matrimid 5218 that had been collected with the Quartz Crystal Microbalance. It 

has been found out that the best modeling results are obtained using two 
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separate contribution with different relaxation characteristic times for 

representing the relaxation global contribution to sorption. The use of the 

stretched exponential, known as the Kohlrausch–Williams–Watts relaxation 

modulus, provide another successful option for modeling the same data. Since 

the Berens Hopfenberg model require the use of a relevant number of 

adjustable parameters, the development of procedures that enable to estimate 

some of the parameters, effectively reducing the degree of freedom of the 

model, can be useful. It has been shown that, when enough timescale 

separation exists between the diffusion characteristic time and the relaxation 

characteristic time, the weighting factor  Dα can be estimated applying the 

NETGP approach in order to estimate the mass uptake due to diffusion only in 

absence of relaxation of the glassy matrix. Comparison with the empirical 

values of  Dα  is favorable. The fundamental hypothesis of the Long and 

Richman Model have then been discussed, especially taking into account the 

relationship that can be exploited between the surface concentration, that is 

assumed to evolve during the sorption experiment, and the polymer density, as 

described by NETGP approach. Finally a model, that is hybrid between the 

Long and Richman model and the model proposed by Doghieri and Carlà has 

been introduced and applied to liquid and vapor sorption of Methanol in 

Matrimid 5218 and to the sorption of liquid 1 Propanol in the same polymer. 
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7. Gas Permeation in Electron Beam Cured 

Trifunctional Acrylate Films 

7.1. Introduction 

Polymerization reactions of the radical chain type require that, along with 

monomers and, if required, a solvent, the mixture contains a substance capable 

to act as an initiator. The initiator is  a substance that upon a stimulus, such as 

UV radiation or heat, will be promptly homolyzed, producing one or more radical 

species, that will start the chain of reactions that lead to polymerization of the 

monomers. Thermal stimulus or UV radiation usually does delivery enough 

energy, at a molecular level, in order to break up the monomer molecules, so 

the introduction in the mixture of a specific initiator molecule is not avoidable. 

This may be a problem for several reasons. In fact, initiator have an high price, 

are really reactive and are frequently species dangerous to health and that pose 

environmental problems. Moreover it is really difficult to assure that all the 

initiator molecules are reacted and thus the finished product could contain 

traces of the initiator: this should be avoided in food applications, as well as for 

products that are to be used inside the human body. Finally, if the strength of 

the initiating stimulus is not uniform across the sample, for example due to 

optical absorption of the UV radiation, will cause a non uniform reaction rate 

and conversion, potentially leading to stress build up that can cause loss of 

dimensional control and the generation of defects like crazes and cracks127. 
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Instead application of ionizing radiations, such as an electron beam, to a 

mixture of liquid monomers will produce enough radical species to start the 

chain reactions, without the need of any substance that act as an initiator128. 

This technology have many applications, for instance the manufacturing of hot 

water pipes in crosslinked polyethylene or the production of insulated cables for 

aeronautical applications, in which a good resistance to oil and grease 

contamination is required129-131. Another field of application, in substitution to the 

more traditional UV curing, is the curing of polymeric protective coatings. For 

this last application, the most interesting monomers are those of the family of 

the multifunctional acrylates and among them the trimethylolpropantriacrylate 

(TMPTA) is one of the most studied and characterized. Its molecular structure is 

shown in Fig. 7.1 In this work, this trifunctional monomer have been used for 

producing free standing films by means of electron beam curing of the liquid 

monomer. Several values of the radiation doses have been used, in order to 

study the effect that the dose of radiation delivered to the sample could exert on 

its final properties. In any case the monomers where polymerized and formed a 

glassy polymer in a matter of seconds: this  process is characterized by an 

abrupt change of phase, along with the sudden onset of the kinetic constraints 

that hold  in glassy phases. The samples were prepared at the 3M research 

laboratories of Saint. Paul (Minnesota). Conversion characterization through 

FTIR analysis was conducted at the Characterization Facility of the University of 

Minnesota, while gas permeation characterization of the previously prepared 

samples have been exploited at the University of Bologna. Several gases had 

been tested, in order to develop an understanding of the effect of radiation dose 

on the gas transport parameters and in order to evaluate if changing the 

radiation dose it was possible to tailor the properties of TMPTA glassy 

membranes for applications like hydrogen separation, air fractionation and 

carbon dioxide capture. 
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Fig. 7.1    TMPTA molecular structure.  

7.2. Interaction of ionizing radiation with organic  

materials 

Ionizing radiation are charged particles, nucleons or photons that possess 

enough energy to cause the ionization of neutral molecules onto which they 

may collide. Ionizing radiations are emitted by particle accelerator devices, by 

nuclear reactions and by the interaction between ionizing radiation beams and 

by solid targets of some specific materials132. The more common forms of 

ionizing radiations are, in order of increasing energy and penetration depth in 

common materials, the α  particles, the β  particles and γ  rays. The α  particles 

are nuclei of the helium atoms, β  particles are accelerated electrons or 

positrons (thus it should be made a distinction between +β  and −β radiation ) 

and γ  rays are photons of very very high frequency. Other accelerated 

particles, like neutrons, are further example of ionizing radiations. Interactions 

between ionizing radiation and solid or liquid matter are extremely complex, 

since they involve phenomena that takes place at different lengthscales and 

timescales, affecting the electrons of the atoms, their nuclei, the intramolecular 

bonds and so on, up to the supramolecular level, when the ions and the radicals 

that are being generated by the radiation react with each other and with other 

molecules, initially neutral. This field of study is very complex and intriguing and 

has deserved a lot of attention, especially for what concern the interaction 

between ionizing radiation and living cells, in order to understand the 

relationship between exposure to radiation and health hazard and 
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consequences. This studies have led to the understanding that two kinds of 

effects exists, known as  deterministic effects and stochastic effects. The first 

kind of effects are characterized by a recognizable dose – effect relationship 

and typically takes place at high exposures, such those that lead to acute 

radiation sickness. The second kind of effects are related to the development of 

ailments such as cancer and damage to fetuses of exposed pregnant mothers. 

The relationship between exposure doses and this effects is lacking, but it is 

known that this effects are related to the damage that the radiation inflicts on 

the DNA molecules of the target tissue. Many of the molecular details of this 

interactions are still uncharacterized. The other field concerning interactions 

between radiation and solid and liquid matter that has developed substantially 

after 1940’s, is the study of the radiation damage on the materials commonly 

used in the nuclear energy field.  The study of the damage that the long time 

exposure causes to steel and other metallic alloys, as well as to ceramics and 

concrete, is relevant for the safety and reliability of nuclear reactor pressure 

vessel, biologic shields and nuclear combustible rods. Radiolysis of the 

moderator fluid or of the thermovector fluid employed in nuclear reactors is 

another field of considerable interest. Since the vast majority of civil, military 

and research reactors use water as moderator and/or thermovector fluid, an 

extensive literature exist on the topic of water radiolysis. The literature that 

deals with the radiolysis of organic liquids is really limited, probably because the 

use of that materials, as well as the use of rubbers and polymeric materials, is 

not common in the area of nuclear power plant where radiation fields are more 

intense. In any case, some general features can be outlined as follows, 

especially regarding the fact that the ions and the radicals formed due to the 

effect of radiation on an organic mediums can trigger polymerization and 

crosslinking reactions or can cause chain scission effects. It has been 

recognized that there exists different kind of interaction events between an 

incoming radiation beam and a material media (known in the radiation chemistry 

literature as spur) with significantly different yield of chemical species formed. It 

is then useful to distinguish between single ionization and multiple ionization 

events, as their different chemical yield lead to different effects. In the present 
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case the irradiation is always performed with an electron beam, but the 

electrons of the beam itself do not play any important role in the chemical 

reaction that develops immediately after the interaction event. The phenomena 

of energy transfer explain the possible different results of the interaction of the 

interaction between the beam and the polymer chains. According to several 

estimates the ratio between the average energy loss of the incoming electrons 

due to the collision with atomic or molecular electrons and the average energy 

loss due to interactions with nucleus for an organic, carbon based media, is132: 
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Therefore it is possible to assume that in the present case all the relevant 

interactions take place with the molecular electrons and that the primary event 

following the collision is the detachment of electrons from the molecule. In ion 

irradiation, were 2Mm ≈  , it has been reported that also interaction with nuclei 

plays a relevant role. The primary detached electrons can have very different 

energies and can travel different ways and undergo different fates, more 

frequently being trapped in a diversity of modes. In single ionization spurs the 

most frequent results of the evolution of the detached electron and of the 

positive charged site in the polymer/oligomer chain or in the monomer molecule 

is an initial pair recombination followed by transfer of the excitation energy 

between different molecules modes and finally the formation of an unpaired 

electron in the polymer, a reactive macro radical, due to homolysis of one of the 

bond of the pendant side group of the chain, such as in the case of hydrogen 

detachment or of the chain itself129, 131. The fate of the detached electron can be 

different and it can react with other positive charged sites, different from the 

original one or with cationic species, but even solvation of the free electron with 

a previously neutral molecule is a possibility. Crosslinking then happens when 

the radicals produced react producing chemical bonds between adjacent 

chains. Multi ionization spurs contain more energy than single ionization spurs 
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and cause chain scissioning and production of low molecular weight debris. 

Further development of the reaction in the aftermath of a multi ionization event 

depends on the type of polymer as the loose end of the broken chain can react 

with neighboring chains, giving raise to crosslinked structures, but the general 

result can be a reduction of the average molecular weight. Both types of spurs 

contribute in a different way to the final effects and property modification of 

irradiation on polymers. The radical site on the chains can attach reactive 

compounds, such as molecular oxygen. This effect will limit the reaction 

between polymer chains or oligomers and monomers, therefore in polymer 

modification or curing it is required to operate under nitrogen blanket. In the 

present case the polymer itself was obtained by radiation initiated crosslinking 

of monomer (TMPTA). It is then obvious that the crosslinking plays a major role 

in the structure build up, especially the concentration of the activated species 

and the possibility that an already inert chain is again made reactive due to the 

formation of a radical site. It is not possible to exclude that some of the final 

properties of the sample are influenced by the relative relevance of the 

crosslinking effect and of the chain scission effect as once that the 

macromolecular structure had already been formed the radiation effects should 

be equal to those previously explained in the case of polymer irradiation. 

7.3. Material Preparation 

The sample preparation has been carried on at 3M corporate research 

laboratories in Saint Paul, Minnesota, US. 

The sample preparation procedure can be summarized in the following step: 

1. Monomer  deposition on a suitable substrate 

2. Irradiation under nitrogen atmosphere 

3. Film removal from the substrate 

As a substrate a commercial flexible film of polyester provided by 3M has been 

used and the monomer has been coated on it by means of a slit device. The 
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coating thickness was set to be 50 µm, but the final thicknesses of the samples 

were systematically higher and not homogenous. This could be relayed due to 

errors in the deposition step and to dewetting of the substrate that was 

observed to occur in the timeframe between deposition and irradiation. Electron 

Beam Irradiation then has been performed with a commercial apparatus for 

irradiation on a web line. The operating parameters that could be controlled 

were the web speed, the beam voltage (or the electron’s kinetic energy) and the 

beam current. It was then possible to choose different irradiation dose and dose 

rate. The values of the operating parameters used for each protocol are 

summarized in Tab. 7.1. The volume surrounding the irradiation window was 

shielded with lead and steel and in the irradiation chamber the samples were 

kept under nitrogen blanket, in order to prevent radical scavenging by oxygen. 

Radiation dose measurements were performed with a physical detector 

embedded in the irradiation apparatus and with a commercial radiochromic 

device that was introduced along with a sample. The irradiation protocols that 

were used are listed in Tab. 7.1 and Tab. 7.2. Due to the quick  volumetric 

shrinkage frustrated by the substrate adhesion and the simultaneous onset  of  

high elastic modulus  and brittle behavior  the glassy film made by TMPTA 

cracked and delaminated during the curing process and were directly recovered 

from the substrate as stand alone specimens.  

 

TMPTA      

Protocol Voltage [kV] Current [mA] Web Speed [m/s] Dose [kGy] 

A 170 1 0.15 8 

B 170 2 0.07 32 

C 170 4 0.07 64 

D 170 8 0.07 128 

Tab. 7.1   TMPTA samples irradiation protocol. 
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7.4. Conversion Measurement with FTIR-ATR 

The Attenuated Total Reflection Fourier Transform Infrared Spectroscopy is a 

method suitable for measuring the degree of conversion of multifunctional 

acrylates monomer or oligomers in electron beam cured films. The drop in the 

double bond C=C absorbance peaks, at 1635 1/cm and 1619  1/cm, respect to 

the peaks measured for the uncured monomer,  is a measure of the extent of 

the polymerization reaction. In order to take into account the density differences 

between monomer and polymer and any eventual effect introduced by the 

adhesion to the ATR crystal, it is necessary to normalize the area under the 

changing C=C peaks respect to the area of the peaks of C=O, at 1722 1/cm, 

from the same spectra, that are assumed to be not affected by the reaction. 

According to this the expression for conversion 

is:
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1χ In the case of TMPTA the conversion of 

the double bonds of the monomer were obtained by numerical integration of the 

absorbance curve and show a characteristic increase with the irradiation dose. 

The absorbance spectra of uncured monomer and of the TMPTA films are 

shown in Fig. 7.2. 
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Fig. 7.2    TMPTA FT – IR ATR absorbance spectra. 

 

The measured conversions of the double bonds for each preparation protocols 

are reported in Tab. 7.2 and are shown, as a function of the radiation dose, in 

Fig. 7.3. Quite reasonably conversion increase with the dose of radiation 

delivered to the monomer films. It should be noted that even with the lowest 

irradiation the conversion is pretty high: the interaction between electron beam 

and the monomers quickly generate a huge pool of radical, that initiate and 

speed up the chain reactions that lead to formation of the macromolecular 

structure.  

 

TMPTA Conversion 

Protocol  

A 56 

B 66 

C 81 

D 85 

Tab. 7.2   TMPTA samples measured conversion. 
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Fig. 7.3    TMPTA’s double bonds conversion as a function of the radiation dose delivered to the 

monomer films.  

7.5. Permeability Measurement 

Pure gas transport properties of the TMPTA e-beam cured films were 

investigated by means of a closed volume barometric device133. The 

permeability, the diffusivity and the solubility of Helium, Oxygen, Nitrogen, 

Carbon Dioxide, Argon and R134a where measured. Appropriate samples of 

the film were posed in a leak proof sample holder, in such a way that one side 

of the film can be connected to a pressurized reservoir of the pure penetrant 

gas, namely the upstream section of the device, while the other side of the film 

is exposed to a little chamber of which pressure is constantly monitored. The 

apparatus is embedded in an incubator with PID temperature controller, in order 

to ensure isothermal test conditions. The lay out of the permeation apparatus is 

shown in Fig. 7.4. Before the test starts both sides of the sample and the 

downstream section are kept under vacuum for at least 12 h, in order to remove 

any previously absorbed gases or vapors. At the beginning of the test, when the 

upstream reservoir is connected to the gas holder, the downstream chamber is 
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still under vacuum and the difference of pressure between the sides of the film 

will act as the driving force for the permeation process. Under steady state 

conditions the relationship between the flux and the driving force is: 

( )downsideupsidess pp
l

P
J −= . The permeability P is defined as the product between 

the average diffusivity and the average solubility coefficients across the film: 

DSP *= . The flux across the film will be monitored by means of continuous 

measurements of the pressure in the downstream chamber.  The sensibility of 

the apparatus is then related to the lower chamber volume, as according to the 

ideal gas law the relationship between the steady state flux and the pressure 

increase in that vessel is: 
ART
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It is usually assumed that the slight increase of the downstream pressure will 

not affect the driving force of the permeation process. The test is usually run 

until a steady state condition is reached. Under the assumption that the solution 

–diffusion model applies and that the diffusion process is well modeled by 

means of the Fick law it is then possible to apply well known results from the 

theory of the unsteady diffusion across a slab and estimate the diffusivity from 

the time lag value. The time lag is the value of time that can be extrapolated 

from the plot of the time integral of the downstream flux respect the time 

variable itself, when a straight line tangent to the steady state curve is drawn, as 

shown in Fig. 7.5, that is plot of the downstream pressure as a function of time, 

in a permeation test. 
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From the permeability and the diffusivity values it is then possible to estimate 

the solubility coefficient of the penetrant in the polymer. As long as with this 

method there is no direct measurement of this parameter it is affected by more 

relevant uncertainties. In order to compare the permeation of different gases in 
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a polymeric matrix it is often useful to define the ideal selectivity for each couple 

of gases:
j

i
ij P

P=α  as the ratio of the pure gases permeability.  

 

 
Fig. 7.4    Lay out of the permeation apparatus.  

 

 
Fig. 7.5    Characteristic result of a permeation test. Here is depicted the one performed with 

CO2 at 308 K on the TMPTA prepared  according to protocol A. 

 

At least two samples for each preparation protocol (A, B, C, D) were tested and 

the permeation experiment, for each polymer-gas pair, was repeated three 
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times. Film thicknesses were measured for each sample by means of a 

micrometer device, as previously stated some inhomogenities were found and 

each fragment that was used in the characterization process was measured  

several times and in several position and the average of their specific measured 

values was used in the data analysis. In Tab. 7.3 are listed the average 

thickness for the TMPTA film obtained taking into account all the measurement 

made on all the sample tested, for each tested sample the standard deviation of 

the thickness measurement is much less than the global value listed  in the 

table.  

 

TMPTA   

Protocol Thickness [mm] %Standard Deviation 

A 0.093 18 

B 0.077 4 

C 0.072 9 

D 0.095 18 

Tab. 7.3   TMPTA samples thickness measurements. 

 

The apparatus was operated at 35°C and the upstream  pressures were 

generally kept at around 1 atm. The results of the measurements of pure gas 

permeability and diffusivity are represented in Fig. 7.6 and Fig. 7.7 and show 

that the irradiation dose directly affects the gas transport properties of the 

glassy TMPTA. All the values were obtained at 35 °C . The experimental data 

show that there is a recognizable trend of decreasing permeability and 

diffusivity with the increase of the exposition dose. Solubility coefficients that are 

indirectly obtained from the permeation experiments are represented in Fig. 7.8. 

Although the solubility coefficients are affected by larger uncertainties it seems 

that this parameter is only a weak increasing function the dose. Finally in Fig. 

7.9 the same permeability results are plotted as a function of the measured 

conversion of the double bonds of the TMPTA monomers: this two properties, 

each one function of the radiation dose, are found to be completely correlated. 

Permeability depends on the degree of conversion of the double bonds 
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according to an exponential law of the type: )exp(0 βχ−= PP , where 0P  is the 

permeability in a fictive glassy TMPTA in which no double bonds have reacted.  

 

 
Fig. 7.6    Pure gas permeability as a function of the radiation dose. 

 

 
Fig. 7.7    Pure gas permeability diffusivities as a function of the radiation dose, as calculated 

from the thickness and time lag measurements. 
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Fig. 7.8    Pure gas solubility coefficients a function of the radiation dose, as calculated from 

permeability and diffusivity. 

 

 
Fig. 7.9    Pure gas permeability a function of the conversion of the double bonds of the 

monomer. 
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Besides the general trend of permeability decrease with the dose, according to 

Fig. 7.10 the diffusivity is a decreasing function of the kinetic diameter of the 

gaseous penetrant, that are summarized in Tab. 7.4. This trend is expected and 

has been documented for many other polymeric glasses. Fig. 7.11 show that 

despite their scatter the solubility increase with critical temperature of the 

penetrant according to an empirical relations such cTS ∝ln  , also this behavior 

is well recognized in the polymer literature134 and it is related to the gas 

condensability. The critical temperature of the gaseous penetrants used in this 

study are reported in Tab. 7.5.  

 

 
Fig. 7.10   TMPTA Pure gases diffusivity  versus penetrant kinetic diameter. 

 

He 2.55 

O2 3.37 

CO2 3.42 

Ar 3.43 

N2 3.58 

R134a 4.87 

Tab. 7.4   Gas kinetic diameters in Å. 
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Gas  Tc [K] 

He 5.2 

N2 126.2 

O2 154.6 

Ar 151.0 

CO2 304.1 

R134a 474.2 

Tab. 7.5   Critical temperature of the gaseous penetrants 

 

 
Fig. 7.11   TMPTA Pure gases solubility versus penetrant critical temperature. 

 

Beside the raw effect that the curing dose exerts on the gas permeability values 

there is also an interesting effect on the ideal selectivity values, as the decrease 

in permeability with dose can be different for each gas. According to the data 

shown in Fig. 7.12 there is a marked increase in the ideal selectivity of Helium 

versus Nitrogen and in a less marked way also in the ideal selectivity of Helium 

respect to Oxygen. This can be explained considering that the permeability of 

Helium decreases with dose in a less significant way than the permeability of 

other gases of higher molecular weight. Also the ideal selectivity of Helium 

versus Carbon Dioxide is deeply affected by the radiation dose. 
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Fig. 7.12   TMPTA Ideal selectivities of helium versus other gases as a function of the dose. 

 

The ideal selectivity of oxygen respect to Nitrogen, shown in Fig. 7.13, is almost 

dose independent, while the ideal selectivity of carbon dioxide versus nitrogen, 

depicted in the same plot, decrease slightly with the dose. A similar trend is 

observed for the ideal selectivity of carbon dioxide respect to oxygen.  

 
Fig. 7.13   TMPTA Ideal selectivities of several gases versus nitrogen as a function of the dose. 
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Due to their inherent volume each penetrant molecule can access only to the 

polymer holes that are bigger than a given threshold value.  The little effect of 

the dose on the ideal selectivity of the pairs O2/N2, CO2/N2 and CO2/O2, as 

well as the decrease in permeability of the same species suggest that although 

the free volume accessible to these penetrants is decreasing with the dose, the 

shape of the size distribution of the holes with radius higher than the threshold 

radius of these gases is not affected. Analogous consideration respect to the 

ideal selectivity of the helium respect to the same gases suggest that the 

accessible volume to the small molecule of helium is really reducing with the 

increase of the dose, therefore the shape of the size distribution of the holes 

with radius higher than the threshold radius of  helium is affected by the 

irradiation dose. 

 

The ideal selectivities of Helium respect to the heavier gases suggest that also 

hydrogen separation could attempted with these membranes, eventually 

tailoring the tradeoff between permeability and selectivity by means of a proper 

choice of the irradiation dose. The gas permeation tests have shown that the 

curing dose of electrons delivered to the sample affects the transport properties 

of the gas in the glassy TMPTA. Specifically the permeability decrease 

markedly with the dose, as well as the diffusivity, on the other side the solubility 

seems to be only a weak function of the dose. Comparison of the transport 

properties of gaseous penetrant with different molecular size and shape has 

shown that the permeability follow the order: He>CO2>N2>Ar>R134a>O2.  

7.6. Comparison with Permeability in Polymers Expos ed 

to Ionizing Radiation 

Comparison with the gas permeability and other transport properties of low 

molecular weight penetrants in other glassy or rubbery polymers obtained 

through direct radiation curing of the monomers would have been beneficial, but 
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to knowledge of the author, such kind of data are lacking in the open literature. 

Some limited data are available concerning the permeability of polymers 

irradiated with β radiation, such as those published in 1987 by Kita et al.135 In 

their work samples of polybutadiene, polycarbonate, polydimethylsiloxane, 

polypropylene, polyethylenterephtalate and polymethylpentene were irradiated 

with different radiation doses and tested for permeability of helium, nitrogen, 

carbon dioxide, sulfur hexafluoride, oxygen and methane. Kita et al. found out 

that three possible behavior existed: permeability remained quite unchanged 

upon irradiation, permeability decreased upon irradiation and permeability 

increased with irradiation. Doses up to 800 kGray were applied. Permeability 

through polypropylene films increased with dose: this effect is probably due to 

chain scission effects. Permeability through polybutadiene decreased with 

radiation dose. Permeabilities in the other polymers were substantially 

unchanged. Kita et al., through analysis of liquid toluene sorption experiments, 

have shown that the degree of crosslinking of polybutadiene chains was dose 

dependent and increased with the dose. It is really interesting to note that, like 

in the case of electron beam cured TMPTA, helium permeability is the less 

affected, while more pronounced decreases are observed with bigger 

penetrants like carbon dioxide. Also solubility coefficients were found to be only 

weak function of the radiation dose, similar to what observed with TMPTA in this 

work.  

7.7. Concluding Remarks 

In this chapter the preparation of electron beam cured TMPTA and the 

characterization with conversion measurements and permeability experiments 

conducted with a set of molecular probes of different sizes and condensability 

have been described. Since radiation dose influence the ideal selectivity of gas 

pairs like helium and carbon dioxide, helium and nitrogen and helium and 

oxygen, it is possible to speculate that glassy membrane prepared through 
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radiation curing could be used for hydrogen separation, since helium is a 

simulant of hydrogen. Ideal gas selectivity of the gas pairs relevant for carbon 

dioxide capture and air fractionation are not relevantly influenced by the dose 

and the separation factor seems to be too low to be acceptable for that 

applications.  
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8. Characterization of Rheological Properties 

of  Pentane Loaded Polystyrene  

8.1. Introduction 

Polystyrene pellets can be processed in order to form expanded beads, 

essentially made by a closed cell solid foam, that have outstanding thermal 

properties and quite interesting mechanical properties. The expanded 

polystyrene beads can be sintered to form slabs, blocks and other geometries, 

even complex. Due to their ability to absorb and dissipate mechanical shocks 

expanded polystyrene sheets and slabs are commonly used in packaging and 

shipping applications. Expanded polystyrene is used for the manufacturing 

items of common use, such as disposable cups and dishes used for serving hot 

food and beverages. The very low thermal conductivity and density of the 

materials formed through sintering of the expanded polystyrene beads make 

them suitable for insulation applications in house building. Expanded 

polystyrene sheets are commonly applied in basements, roofing and in 

composite walls, in the form of sheets that are inserted between layers of 

concrete, bricks and gypsum boards, in order to reduce the flow of heat 

between the room of the house and the external environment. This is beneficial 

both in summer, reducing the need or the time of operation of the energy 

consuming air conditioning units, as well as in winter, reducing the gas and 

electricity consumption required to keep the house warm. In non structural 
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applications concrete formulations in which part of the inert fraction (typically 

made by stones) is substituted by expanded polystyrene beads can be used. 

The expanded polystyrene concrete has better thermal and sound insulation 

properties, respect to the ordinary concrete, with reduced weight, thus helping 

to reduce the load on the structures. The use of expanded polystyrene in the 

building industry is increasing  year by year. In Fig. 8.1 are shown yearly 

consumption of expanded polystyrene products in the Italian construction 

industry, as provided by A.I.P.E., that is an association between expanded 

polystyrene producers. It is quite evident that the consumption and thus the 

demand of expanded polystyrene products has increased in the last decade.  

 

 
Fig. 8.1    Yearly consumption of Expanded Polystyrene products in the Italian construction 

industry.  

 

Production of expanded polystyrene beads is a complex process and the final 

properties of the product, that are required for the above mentioned 

applications, are deeply affected by many variables, among which the nature 

and concentration of the expansion agent, its ability to depress the value of the 

glass transition temperature of the polymer and the influence exerted on the 
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rheological properties. It can be argued that this process is one of those in 

which the coupling between thermodynamic, mechanical and mass transport 

properties is more deep and fundamental. The expansion is usually performed 

by applying a thermal stimulus to polystyrene pellets loaded with around 5% by 

weight of pentane or of its isomers, that act as the blowing agent. The thermal 

stimulus is delivered exposing the pellets to a stream of water vapor, that acts 

as a heat carrier. In laboratory characterizations nitrogen can be used as the 

heat carrier. Since pentane solubility in polystyrene will decrease upon heating, 

pentane bubbles will start to nucleate inside the bulk of the pellet and the 

internal pressure of the bubbles will drive the expansion process. Optimization 

of the expansion process should be pursued with a systematic approach based 

on both experimental characterization and modeling.  

 

The expansion process is characterized by a sequence of four different stages 

that takes place after that the polystyrene pellet is thermally equilibrated with 

the heat carrier agent. These four stages can be recognized looking at the 

change with time of the pellet radius. An example of what is commonly 

observed in the expansion experiments is shown in the following Fig. 8.2, in 

which the origin of the time axis is set at the end of the thermal equilibration.  
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Fig. 8.2    Characteristic time evolution of the radius of a spherical pellet of pentane loaded 

polystyrene that undergoes the expansion process. 

 

The first thing that can be observed is the presence of an induction period, that 

range from the end of the thermal equilibration to the point at which the radius 

starts to increase. This is the first stage of the process. The duration of the 

induction period, known as the induction time indt , has been found to depend on 

the temperature according to an Arrhenius-like law:   

 

8.1   
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It should be observed that experiments conducted seeding the polystyrene with 

particles, in order to promote heterogenous nucleation, have shown a reduction 

of the duration of the induction time , but not its complete elimination. Therefore 

it should be considered that the induction time is not only a consequence of the 

kinetic of bubble nucleation, but there should be some other concurring cause. 

At the end of the induction period, the pellet starts to expand pretty quickly and 

it is commonly assumed that the rate of expansion in this second stage is due to 

the balance between the pressure inside the bubbles and the viscous forces 
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that slow the extension of the surface of the bubble walls. After this second 

stage, the rate of expansion slow down, as shown by the change of the slope of 

the radius versus time curve. This third stage is thought to be diffusion 

controlled, in the sense that the further increase of the inner pressure of the 

bubbles that is required for the prosecution of the expansion process is due to 

the flux of pentane that diffuse toward the bubbles from the polymer layers that 

are far from the bubble walls. At the very end, the walls of the bubble burst and 

the expanded bead start to collapse. The Diffusion In Polymer research group 

of the University of Bologna and by Polimeri Europa S.p.A. (now Versalis 

S.p.A.) developed a model that is quite successful in describing the process, at 

least qualitatively, since it reasonably predicts the slopes of the second and 

third stages, but systematically overpredicts the induction time and its activation 

energy as well as wrongly predict the effect exerted by the initial pentane 

concentration.  

 

It must be said that the thermodynamic properties of the polystyrene – pentane 

system are quite well characterized, both in glassy and rubbery conditions, as 

well as the diffusion kinetics. Empirical or semiempirical correlations for 

estimating the glass transition temperature depression induced by the 

plasticizing effects of pentane are known as well. The mechanical and 

rheological properties of neat polystyrene are also well known, while the effect 

of pentane concentration on mechanical properties is not well characterized. 

This lack of knowledge hampers the modeling efforts that had been previously 

developed by the Diffusion In Polymer research group of the University of 

Bologna and by Polimeri Europa S.p.A. (now Versalis S.p.A.). The following Fig. 

8.3 and Fig. 8.4, obtained from the re-elaboration of data provided by Polimeri 

Europa S.p.A. that will not be further disclosed, show the deep sensitivity of the 

length of induction period respect to temperature and initial pentane 

concentration. The effect of the initial concentration of the blowing agent is 

really astonishing, since moving from 4% to 5% will almost double the induction 

time. The effect of the polystyrene molecular weight is less evident.  
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Fig. 8.3    Temperature effect on induction time. 

 

 
Fig. 8.4    Initial pentane effect on induction time. 

 

It is clear that experiments should be done in order to asses the effect of 

temperature, pentane concentration and polymer molecular weight on the 

mechanical properties of pentane loaded polystyrene. Therefore the aim of the 
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experimental activities that I performed at the Chair of Thermodynamics of 

Technical University of Dortmund was to run creep experiments on samples of 

polystyrene loaded with a controlled amount of n-pentane, according to the 

protocol described by Mueller et al.136, in order to fill the above mentioned 

knowledge gap. 

8.2. Materials 

Supply of polystyrene in pellet form was kindly provided by Polimeri Europa 

S.p.A. and n-Pentane, empirical formula C5H12, of analytical grade was 

purchased from Merck&Co. Inc. as well as the toluene required for the film 

casting procedure. Two different kind of polystyrene of industrial use, differing 

for their molecular weight, known as N2982 and N2380, were tested in the 

present work. The molecular weight of the former is 127948 kg/kmol, with 

polydispersity index equal to 2,09, while the latter’s molecular weight is 270349 

kg/kmol with polydispersity index equal to 2,19.  The glass transition 

temperature of these polymers is 105°C and their de nsity at ambient 

temperature is around to 1,033 kg/L. 

8.3. Pentane Solubility and Diffusivity in Polystyr ene 

Measurement of the solubility of vapors of n-pentane in the polystyrenes of 

interests were performed at DICMA-University of Bologna by Dr. Michele 

Galizia with gravimetric techniques, using the quartz spring balance, the quartz 

crystal microbalance and with the pressure decay apparatus that have already 

been described in previous chapters.  Data had been collected at 60°C, for 

vapor activities ranging from 0,1 to 0,7. According to Chow’s theory94 glass 

transition temperature, at 60°C, should take place at a pentane concentration 

that can be reached equilibrating the sample an activity of pure pentane around 
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0,5. This has been proved, at least indirectly, by inspection of the kinetic of the 

mass uptake in sorption experiments. Sorption steps taking place at activities 

lower than 0,5 are characterized by Non –Fickian behavior, such as those that 

could be modeled with the Berens Hopfenberg model or with the Long and 

Richman model, while above this activity the kinetic perfectly agrees with 

predictions of the Fickian model, as shown in the Fig. 8.5 and Fig. 8.6, that 

reproduce data previously obtained by Dr. Michele Galizia under the 

supervision of Professor Ferruccio Doghieri. 

 

 
Fig. 8.5    Relative mass uptake kinetic of pentane in polystyrene at 333K, measured with the 

QCM apparatus, below penetrant induced glass transition. 
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Fig. 8.6    Relative mass uptake kinetic of pentane in polystyrene at 333K, measured with the 

QCM apparatus, above penetrant induced glass transition. 

 

The value of the diffusivity of n-pentane in the polystyrenes of interest can be 

retrieved by application of the fickian model to the mass uptake data, as 

previously discussed. When the behavior is markedly non-fickian it is still 

possible to estimate that value by trying to fit the initial slope of the curve of 

mass uptake in the plot tvsM
M

∞
, under the assumption that the initial kinetic 

is dominated by diffusion, while the influence of relaxation phenomena is much 

more pronounced at late times. This assumption as been shown to be quite 

adequate in the kinetic modeling chapter and it is equivalent to the result that 

were obtained, for the case of Matrimid 5218, setting the viscosity equal to 

infinite. This analysis have been previously performed by Dr. Michele Galizia 

and the results are shown in Fig. 8.7.  
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Fig. 8.7     Diffusivity of pentane in polystyrene at 333K, measured with the QCM and the QS 

apparatus, for a wide range of activities and for different polysterene molecular weights. 

 

Despite the not negligible scatter in the dataset, it is still evident that diffusivity is 

only a weak function of the penetrant activity and that there is no recognizable 

influence of the polymer’s molecular weight. 

From the mass uptakes of (pseudo-)equilibrium measured in the sorption 

experiments it has been obtained a sorption isotherm, that represents the 

amount of n-pentane that these polystyrenes can take up under isotherm 

conditions. The sorption isotherm is shown in Fig. 8.8. 
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Fig. 8.8    Solubility of pentane in polystyrene at 333K, measured with the QCM and the QS 

apparatus, for a wide range of activities and for different polysterene molecular weights. 

 

Again no effect of the molecular weight have been detected. Modeling of the 

sorption isotherms has been attempted with NELF model and has been 

successful only for the low activity region, while at activities higher than 0,5 it is 

certainly correct  to use an equilibrium approach based on the Lattice Fluid 

EOS, consistently with the abovementioned consideration on glass transition 

depression induced by n-pentane sorption. The results of the modeling are 

depicted in the following Fig. 8.9. 
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Fig. 8.9    Solubility of pentane in polystyrene at 333K, modeled with NELF and Sanchez 

Lacombe Equation of State. 

 

The characteristic parameters of polystyrene are KT 750* = , 

MPaP 360* =  and Lkg /099.1* =ρ  and those of n-

pentane are ,  and . Interaction 

parameter required to model the data is set equal to .  The data are 

very well fitted by the equilibrium sorption isotherm even for quite low activities.  

8.4. Experimental Procedure 

The measurement were performed in the setup for creep measurement 

described in 2010 by Mueller et al.136. that is available at the Chair of 

Thermodynamics of the Chemical Engineering Faculty of Technical University 

of Dortmund. The device is built in such a way that enable to apply a controlled 

force up to 20N to a polymer film that is clamped between a VOC resistant force 

transducer and a linear drive that can perform linear steps greater than 100 nm 

and up to 50 mm. The linear drive is controlled by a LabView program that 
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enables to impose to the sample, with the proper choice of the PID controller 

parameters, a given force history. The sample and its holding clamps are put 

inside a measuring chamber that is surrounded by an air thermostat that 

ensures isothermal conditions and that can be operated from 20 to 85°C, with a 

control better than 0,03°C. The present experiments  were run at 70°C and 

80°C.The measuring chamber is designed to withstand  vacuum and in order to 

control the sorption of VOC components inside the polymer its internal 

atmosphere is imposed by a continuous vapor flow, at a pressure that can 

range from 0.1 mbar to 1330 mbar and that in the operating conditions used 

(P>1000 mbar) was never fluctuating more than 5 mbar. The polymer films were 

casted from toluene/polystyrene solutions on a glass surface, flattened with a 

slit of defined height and stored under vacuum for at least five days in order to 

promote toluene removal. Pentane was degassed by means of the freezing-

evacuation-melting procedure, that was repeated at least three times for each 

amount of pentane that had to be introduced in the apparatus. After loading the 

sample inside of the measuring chamber vacuum was pulled for 24h in order to 

promote degassing and desorption of any possible VOC still present inside the 

film, meanwhile the temperature of the thermostat was ramped up to the 

operating value. Then the pentane’s vapor flow was established through the 

chamber and the pressure controller was turned on. The thickness of the 

sample was never higher than 50 µm and according to the previously shown 

estimate of the diffusivity coefficient, it was assumed that one week was enough 

to obtain an homogeneous profile of the pentane concentration inside the 

samples. The operating conditions, as well as the predicted pentane loading are 

summarized in Tab. 8.1. As mentioned above, it was decided to run the 

experiments at 70°C and 80°C, at a vapor pressure h igh enough to have 

pentane equilibrium concentration around 0.04 g/g_pol. For N2982 were run 

three experiments, two at 80°C and two different pr essure, and one at 70°C but 

at a pressure value that was chosen in order to have, according to model 

predictions, the same amount of pentane’s uptake of one of the steps at 80°C. 

Finally with N2380 was run only one experiment in order to replicate one of the 

80°C’s step, to try to address the effect of the po lymer molecular weight.  
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P[mbar] T [°C]  gC5/gpol 

1057 70 0.043 

1150 80 0.0365 

1320 80 0.043 

Tab. 8.1   Operating conditions. 

 

After one week of equilibration at given temperature and pentane pressure the 

creep experiment was performed. At the beginning of each test a small tension 

was applied to the sample, then as soon as a stable force value was measured, 

a larger strain was applied in order to reach the final force’s setpoint. Once that 

a steady value of the force was obtained, the linear drive kept imposing a 

steadily increasing elongation strain to the sample, in order to compensate the 

stress relaxation and impose constant stress creep. The experiment was 

terminated once enough data were collected and when the elongation was so 

large that it was thought that the change in the sectional area could give rise to 

a big discrepancy between engineering stress and true stress.  

8.5. Data Analysis 

Stress was obtained directly from the measured force, as 

( ) ( )
A

tFt =σ , while elongation was recovered from the position of 

the linear drive, as ( ) ( ) ( )
( )0

0

=
=−=

tL

tLtL
tε .  The area A  is 

calculated from the thickness of the films, measured after the solvent removal 

procedure, and from their width, measured before clamping it inside the 

measuring chamber. The stress will be calculated using the initial value of the 

area A , thus rigorously this stress is not the real stress but should be regarded 

as the so called engineering stress. For small strains the two value should 

overlap, while for large strains the discrepancies could be relevant, especially if 
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local effects like necking take place. The following Fig. 8.10 to Fig. 8.15 show 

some of the elongation history and of the imposed stress that were collected in 

the experimental activity. 

 
Fig. 8.10 Polystyrene N2982 – Elongation history at 1320 mbar of pentane and 80°C. 

 

 
Fig. 8.11   Polystyrene N2982 – Imposed stress at 1320 mbar of pentane and 80°C. 
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Fig. 8.12   Polystyrene N2982 – Elongation history at 1150 mbar of pentane and 80°C. 

 

 
Fig. 8.13   Polystyrene N2982 – Imposed stress at 1150 mbar of pentane and 80°C. 
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Fig. 8.14   Polystyrene N2982 – Elongation history at 1057 mbar of pentane and 70°C. 

 

 
Fig. 8.15   Polystyrene N2982 – Imposed stress at 1057 mbar of pentane and 70°C. 

 

The creep compliance is defined respect to the steady value of the stress, say 

∞σ , as ( ) ( )
∞

= σ
ε ttJ  . Shear modulus is related to creep 
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compliance according to: ( ) ( )tJ
tG

3

1= . For a linear viscoelastic 

material that follows the simple spring dashpot Maxwell fluid model the creep 

compliance can be expressed in term of the spring modulus 0E  and of the 

dashpot viscosity  as:  

( )
00

1
η
t

E
tJ += . 

If the response of the viscoelastic material can be idealized as a spring, a 

dashpot and a series of N Voigt models, such as in Mueller et al.121, 136, the 

creep compliance is:   

( ) ∑
=

















−−++=

N

i i

i

i

E
t

E

t

E
tJ

100

exp1
11

ηη
 

Under the hypothesis of linear viscoelasticity and of small deformation, it is 

possible to assume that superposition holds between stress (and strain) 

induced by the small pretension step and the stress (and strain) induced by the 

effective creep measurement. Therefore these values have been subtracted by 

the data and the test is assumed to start effectively at the end of pretension 

step. 

 

The above mentioned expression for calculating creep compliance in 

(generalized) Maxwell model holds true rigorously only when the stress history 

can be idealized as a step function: 

( )
( )




=≥
=<

∞σσ
σ

tt

tt

0

00
 

In the actual experiments the force was not applied instantly, but was ramped 

up by the controller that actuated the linear drive, as shown by the data reported 

in Fig. 8.11, Fig. 8.13 and Fig. 8.15. Thus the application of the 

abovementioned relationship in order to retrieve the characteristic moduli and 

viscosities can be considered only approximate. In particular, it must be 

considered that, since the set point value of the stress was reached after a not 
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negligible amount of time, in the order of s310 , the value of the modulus 0E  that 

should have represented the instantaneous answer of the material, is certainly 

ill defined and possibly affected by large errors.  Anyway, it sounds reasonable 

to assume that 0η , that is evaluated at later times, when ( ) ∞≈ σσ t , retains the 

same physical meaning of the  parameter evaluated under the above defined 

ideal stress history. 

 

 
Fig. 8.16   Polystyrene N2982 – Creep compliance at 1320mbar of pentane and 80°C. 
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Fig. 8.17   Polystyrene N2982 – Creep compliance at 1150 mbar of pentane and 80°C. 

 

 
Fig. 8.18   Polystyrene N2982 – Creep compliance at 1057 mbar of pentane and 70°C. 

. 
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P [mbar] T [°C] gC5/gpol η0 [Pa*s] E0 [Pa] Polymer 

1057 70 0.0430 7.75E+9 1.99E+06 N2982 

1150 80 0.0365 4E+09 5.5E+05 N2982 

1320 80 0.0430 1.46E+09 2.11E+05 N2982 

1320 80 0.0430 8.76E+09 3.08E+05 N2380 

Tab. 8.2 Moduli and viscosities retrieved through the regression of the Maxwell model to the 

experimental compliance data. 

 

The Tab. 8.2 and the Fig. 8.16, Fig. 8.17 and Fig. 8.18 summarize the values of 

the modulus and of the viscosities obtained by means of application of the 

Maxwell model ( )
00

1

η
t

E
tJ += . Inspection of the results show that modulus and 

viscosities are affected by all the parameters that were allowed to change in a 

systematic way in the experiments. For a given equilibrium pentane 

concentration and for an assigned temperature the molecular weight of the 

polymer influences the rheological properties, that seems to be increasing 

function of that parameter. It must be noted that this behavior should be 

expected mainly for rubbery states or for very long time load applications, where 

the viscous behavior became relevant. In the present case it is not clear enough 

if the observed behavior has to be ascribed to the depression of glass transition 

temperature induced by pentane or to the effect of the stress history. On the 

other side increasing the amount of sorbed pentane lowers viscosity, while 

lowering the temperature lead to an increase of the value of that property. It is 

possible to observe that the apparent energy of activation that can be estimated 

from the viscosity of the pentane loaded polystyrenes is around half the value of 

apparent energy of activation that can be estimated from the final relaxation 

times of polystyrene reported by Rault137 in 2003, with appropriate correction for 

the effect of pentane on the actual glass transition temperature. At the same 

time, the apparent activation energy retrieved from viscosity data is around 

twice the apparent activation energy of the induction time that is measured in 

the expansion experiments. Lastly, the sensitivity of viscosity to pentane 

concentrations happens to be five times higher than the sensitivity of induction 

time respect to the same variable. Therefore it is possible to conclude that the 
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mechanical behavior of pentane loaded polystyrene deviate from the predictions 

that can be made using the data of neat polystyrene alone, but further analysis 

is required for identifying and describing the phenomena that govern the 

duration of the induction period of the expansion process. 

8.6. Some speculations on the effect of strain rate  on 

solubility 

It is commonly accepted that Helmholtz free energy can be written as a sum of 

terms that represent the contribution of different effects and physical processes. 

The structure of the Statistical Associating Fluid Theories is an example of this, 

but several other successful examples are the introduction of an elastic term in 

the Flory Huggins Theory or in Compressible Lattice Fluid Theories for 

describing the swelling behavior of crosslinked polymer such as the hydrogels 

or the organogels. In the previous discussions of the solubility calculation of low 

molecular weight species in glassy or rubbery polymers, it was always assumed 

that the Helmholtz free energy of the mixture and the chemical potential of the 

single species were not affected, even in out of equilibrium conditions like those 

addressed through the NET-GP approach, by the strain rate of the volume 

relaxation process. Under out of equilibrium condition the polymer density is the 

order parameter/internal state variable  that, at fixed temperature, pressure and 

penetrant chemical potential, measures the departure from equilibrium and 

enable us to calculate the actual Helmholtz free energy of the system. The ratio 

between the actual polymer density and the equilibrium polymer density is a 

measure of the strain of system, that actually is directly linked to deformation 

tensor F , being equal to its determinant. Therefore it is possible to argue that 

the mechanical strain that comes along with the out of equilibrium nature of the 

glassy state and  with the volume relaxation process that characterize sorption 

in glasses is accounted for in NET-GP approach through the choice of the 

polymer density as the order parameter. Do isochoric mechanical process like 
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creep, uniaxial elongation, stress relaxation and so on, in which the strain is not 

volumetric, affect Helmholtz free energy of a polymeric system? The answer is 

yes. The seminal work of Marrucci et al.138, published in 1983, has provided a 

way to calculate, in the framework of reptation theory and under the Indipendent 

Alignment Approximation, the contribution  to Helmholtz Free Energy that is due 

to strain rate in shear flow and in uniaxial elongation. Coppola et al.139 have 

shown that it is possible to express that contribution as a function of the 

mechanical Deborah number of the flow, defined as EDDe τε&= , where ε&  is the 

deformation rate and EDτ  is the disentanglement time of the polymer chains. 

The free energy change from the no flow situation can be estimated as: 

( ) ( )dzDezFzcRTA ∫
+∞

=∆
0

3 µ&  

Where c is the entanglement density, defined starting from the polymer density 

ρ , the molecular weight between entanglement eM  and the Avogadro number, 

and as 
eM

N
c

ρ= . The function ( )zµ  is the Doi Edwards memory function and F is 

an integral function of the deformation history that is calculated according to the 

procedure depicted by Marrucci et al. in 1983. Coppola et al. have shown that in 

the limit of little Debora number, the  function A∆  can be simplified, for example 

for  an uniaxial extension flow, as: 

2
4

200
3 DecRTA

π=∆  

Coppola et al.139 have shown that using that contribution it is possible to 

successfully model and predict flow induced crystallization in polyethylene and 

polypropylene. The flow regime that could describe the expansion process is, at 

a first level of approximation, a non isochoric elongation, since pentane 

desorption will certainly induce a volumetric change in the polystyrene, while at 

the same time the internal pressure of the bubbles will cause the elongation of 

the polymer that forms the wall of the bubble itself. Developing an expression 

for the contribution to Helmholtz free energy that is due to that flow is indeed a 

relevant task, due to the complex kinematic that has to be described, but some 
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approximate estimate could be obtained assuming that the volumetric change 

upon pentane desorption is negligible and thus using the above reported results 

for isochoric flow. The Helmholtz free energy contribution have then been 

added to the residual Helmholtz free energy calculated according to the 

Sanchez Lacombe Theory and some solubility calculation, have been 

performed and the results are shown in Fig. 8.19.  

 

 
Fig. 8.19   Pentane Solubility in Polystyrene N2982: effect of uniaxial extension. 

 

The results show that at high mechanical strain rates solubility is indeed 

affected by the flow. Actually solubility will decrease as much as the polymer 

elongation rate increase. Since the desorption rate ultimately will determine the 

pressure rise inside the bubbles and since the internal pressure is the driving 

force of the elongation process, the expansion process could be somewhat self 

accelerating.  
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8.7. Concluding remarks 

An experimental characterization of mechanical properties in pentane loaded 

polystyrenes have been conducted by means of creep experiments. The results 

have been discussed in term of compliance modulus and by means of the 

application of the Maxwell model. 
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Concluding remarks 

In this work several theoretical and experimental methods had been applied to 

the characterization of thermodynamic, mechanical and transport properties of 

system made by solvent, or other low molecular weight species, in polymers. 

Various specific problems had been addressed, ranging form phase equilibria 

measurement and modeling to sorption kinetic measurement and modeling. 

Whenever it was possible, the coupling between thermodynamic and 

mechanical (often rheological) properties and effects has been recognized and 

discussed. In same cases the relationship between mechanical and 

thermodynamic properties was made clear by the experimental method itself, 

such as in the case presented in Chapter 7, while other times it was the 

modeling effort that called for the adoption of a rheological point of view, such 

as in Chapters 4 and 5.  

 

The following results have been obtained in this work: 

 

• It was shown that Equations of State, that successfully represent the 

volumetric behavior of the polymer species, can be applied to modeling 

challenging systems such as those ternary system involving a 

macromolecular component in which the low molecular weight species 

behave as a solvent-non –solvent pair ; 

• Vapor and liquid solubility in glassy and rubbery polymers have been 

measured, along with their mass uptake kinetics, and it was possible to 
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identify several aspect of the relationship between size, shape and 

chemistry of the low molecular weight penetrants and their solubility and 

mass transport properties. Moreover solvent induced glass transition was 

observed for the dichloromethane –Matrimid 5218 system, while for the 

sorption of other species, like alcohols, alkylacetates and acetone, that 

had huge solubility in the same polymer, effects of the thermal history of 

the polymer were detected, suggesting that those polymer penetrant 

systems, albeit largely swollen, were still somewhat out of equilibrium; 

• Sorption isotherms had been successfully modeled with the Non 

Equilibrium Thermodynamic of Glassy Phase approach. It was also 

found a way to overcame the lack of experimental PVT data of rubbery 

Matrimid 5218 and to apply the latest version of the NETGP approach, 

that through the adoption of a simple rheological model enables to 

predict the swelling behavior of the polymer penetrant system, even in 

glassy region; 

• Mass uptake kinetics of dichloromethane in Matrimid 5218 have been 

modeled with the Berens Hopfenberg model and it was find a procedure 

that enables to reduce the number of adjustable parameters of the 

model, through application of the NETGP approach;  

• Modeling of differential and integral sorption kinetics for methanol in 

Matrimid 5218 and of an integral sorption step for 1 propanol in the same 

polymer had been performed with a model that is based on an 

appropriate description of the diffusion of the low molecular weight 

species in the polymer and of its volumetric relaxation behavior; The 

model used is based on the NETGP theory and on a simple rheological 

assumption about the short and long time behavior of the glassy phases, 

that is described by means of a series of Voigt models;  

• Conversion and gas permeability measurements had been performed on 

electron beam cured acrylate monomers and the effect of the radiation 

dose had been characterized. It must be remarked that the only data that 

can be found in literature are about gas permeability in irradiated 
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polymers. No data exist about gas permeability in radiation cured 

polymers. 

• Creep experiments had been performed on pentane loaded polystyrenes 

and through the application of the Maxwell model for creep compliance, 

moduli and viscosities had been retrieved.  

 

All the above mentioned results open to future research work.  

 

For what concerns the PC-SAFT modeling of the liquid liquid ternary equilibria 

of the PLAs-water-1,4 dioxane systems, the validation of the model against the 

equilibrium data, that are those of the binodal curves, opens up to the possibility 

of modeling also the spinodal curves and to couple the thermodynamic model to 

a kinetic model that can be used for describing the actual thermal induced 

phase separation process. This is a required step for developing a working 

knowledge of the phenomena that control the final scaffold morphology. This 

will be really important for the future clinical applications. 

 

The solubility data collected for pure edible oils and oleic acid and for some of 

their mixtures with solvents in PDMS suggest some effects that could be 

beneficial in membrane based deacidification process: further work is in 

progress at the laboratories of the Diffusion in Polymers research group of the 

University of Bologna. 

 

Liquid and vapor sorption in Matrimid 521 can provide some insight in 

processes, such as the so called Organic Solvent Nanofiltration, for which 

hollow fibers modules made by that polymer are being introduced in the market. 

Solubility and diffusivity modeling of low molecular weight species in glassy 

polymers will be a fundamental part of the process design and analysis. The 

huge plasticization effects that had been observed and modeled pose some 

intriguing challenges to the durability of glassy membrane modules. 
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Gas transport properties of radiation cured polymers can be tailored acting on 

the irradiation dose. It could be possible to prepare nanocomposite membrane 

by directly curing a monomer solution in which nanoparticles had been 

dispersed. Membrane separation or barrier material applications could be 

imagined, but are yet to be proven. 

 

Future modeling efforts for thermoplastic expansion process will be supported 

by the data measured on pentane loaded polystyrenes.  
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