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Abstract 

 
 People are daily faced with intertemporal choice, i.e., choices differing in the timing 

of their consequences, frequently preferring smaller-sooner rewards over larger-delayed 

ones, reflecting temporal discounting of the value of future outcomes. This dissertation 

addresses two main goals. New evidence about the neural bases of intertemporal choice is 

provided. Following the disruption of either the medial orbitofrontal cortex or the insula, 

the willingness to wait for larger-delayed outcomes is affected in odd directions, suggesting 

the causal involvement of these areas in regulating the value computation of rewards 

available with different timings. These findings were also supported by a reported imaging 

study. Moreover, this dissertation provides new evidence about how temporal discounting 

can be modulated at a behavioral level through different manipulations, e.g., allowing 

individuals to think about the distant time, pairing rewards with aversive events, or 

changing their perceived spatial position. A relationship between intertemporal choice, 

moral judgements and aging is also discussed. All these findings link together to support a 

unitary neural model of temporal discounting according to which signals coming from 

several cortical (i.e., medial orbitofrontal cortex, insula) and subcortical regions (i.e., 

amygdala, ventral striatum) are integrated to represent the subjective value of both earlier 

and later rewards, under the top-down regulation of dorsolateral prefrontal cortex. The 

present findings also support the idea that the process of outcome evaluation is strictly 

related to the ability to pre-experience and envision future events through self-projection, 

the anticipation of visceral feelings associated with receiving rewards, and the 

psychological distance from rewards. Furthermore, taking into account the emotions and 

the state of arousal at the time of decision seems necessary to understand impulsivity 

associated with preferring smaller-sooner goods in place of larger-later goods. 
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To Cecilia and Matteo 

 

 

“Hard work pays off in the future; laziness pays off now!” 
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Introduction 

  

 Every day of their life people make decisions. From the moment they wake up until 

they go to sleep again, people make choices that give a direction to the course of their day, 

also affecting the general course of their life. On the one hand, some choices will 

apparently have an impact only on the short-term (e.g., ‘Do I clean my bedroom or do I 

order the books in the bookcase in the lounge, today?’). On the other hand, other choices 

will affect what people will become or do in the future (e.g., ‘Do I study for my upcoming 

exam or do I go out with friends, today?’). Even though we have evolved from prehistoric 

mankind, making optimal choices is still necessary for people to survive. Of course, this 

will depend on how good or bad one defines an outcome; what are one’s emotions about it; 

what were one’s previous experience with it; how much effort it requires to be obtained; 

what one forecasts about it, and so on. When people have to make a decision between two 

outcomes achievable at different points in time (e.g., going out with friends today means 

spending fun time in a few hours, whereas studying today for the exam means gaining a 

much more important reward, a good score, in a few days, but with a present effort), they 

are making an intertemporal choice. Basically, the more people tend to prefer the sooner 

smaller reward over a larger delayed one, the more they are considered impulsive, assigning 

a smaller value to the future outcome (i.e., temporal discounting). 

 This type of decision-making has been widely studied both in behavioral economics 

and, more recently, in neuroeconomics. As compared to the former, by combining 

paradigms and concepts derived from neuroscience, psychology, genetics, and economics, 

neuroeconomics investigates how the brain represents, computes, stores, and acts upon 
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value (Monterosso et al., 2012): Instead of inferring value from the behavioral choices 

(Bickel et al., 2007), it uses the neuronal value signal to predict those choices. 

Neuroeconomics has primarily challenged the standard economic assumption that decision 

making is a unitary process — a simple matter of integrated and coherent utility 

maximization — suggesting instead that it is driven by the interaction of several 

mechanisms, including automatic and controlled processes, resulting in patient or 

imprudent behaviors (Loewenstein et al., 2008).  

 

 In Part I of this dissertation, current behavioral and neural knowledge about 

decision-making and intertemporal choice will be reviewed. The starting point will be 

neuroeconomics and recent imaging findings to highlight the role of neuroscience in 

understanding the way in which people encode decisions. Then, a general overview on 

value-based decision-making will be made to introduce the main topic of intertemporal 

choice, on which this dissertation will extensively further focus. Here, behavioral and 

neural findings about the phenomenon of temporal discounting will be outlined, as well as 

its relationship with levels of impulsivity (Sellitto et al., 2011). 

 

 Part II of this dissertation is dedicated to new neural evidence we provided about 

intertemporal choice. By the means of using a lesional approach, the first two studies will 

outline opposite altered intertemporal choice patterns deriving, on the one hand, from 

damage to the medial orbitofrontal cortex, and, on the other hand, from damage to the 

insular cortex. While the first group of patients showed an increase in impulsive choices 

along different commodities (Sellitto et al., 2010), the second group of patients showed 

decreased imprudent decisions when both an immediate option was available in the pair and 
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when it was not (Sellitto et al., under submission). The third study will provide preliminary 

evidence about the neural substrate of the carry-over effect in intertemporal choice. That is, 

we started to investigate, in a fast and counterbalanced series of intertemporal decisions, the 

influence that a previous monetary intertemporal choice can have on the subsequent one at 

neural level. The idea was that stimuli perceived to be similar were represented by similar 

neural states, so that, during stimulus repetition, a reduced firing rate of cells can be 

observed (Henson and Rugg, 2003; Aguirre, 2007). The reduction in the magnitude of 

neurons response that can be seen toward stimuli sharing a particular property is considered 

the proof that the identified voxel contains a population of neurons that code that specific 

dimension (Aguirre, 2007; Grill-Spector and Malach, 2001). Also, both univariate and 

multivariate techniques have been used. 

 

 Part III of this dissertation will go through several behavioral manipulations of 

intertemporal choice we carried out to lessen impulsive preferences for smaller sooner 

rewards over larger later ones. In Study I we trained participants to mentally time travel 

before making decisions, in order to activate representations of the distant time. In Study II 

we showed correlations between the degree to which people tended to prefer sooner smaller 

options and the degree they tended to accept violations during moral judgments forgoing 

long-term gains (e.g., larger monetary amounts and no remorse for having broken a social 

norm). In Study III we changed the perceived spatial position of monetary outcomes to 

decrease impatient choices: Highlighting abstract features of the options at stake or 

increasing the salience of the larger later outcome affected participants mental 

representations about rewards. In Study IV we showed a way to influence intertemporal 

choices toward foods, suggesting the use our method as training for people suffering from 
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obesity and binge eating disorders. In Study V we will provide evidence about discounting 

trajectories in intertemporal decision-making at different ages. 

 

 Both lesional studies, preliminary imaging evidence, and behavioral manipulations 

of individual intertemporal decisions provide support to a proposed unitary model in which 

different brain structures are supposed to work together, with special attention to the medial 

orbitofrontal cortex, to result in the subjective value one assigns to different outcomes 

available at different delays, driving her to pick her preferred option up when making an 

intertemporal judgement. 
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PART I – Intertemporal decision-making: Current knowledge 
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Précis 

 

 How can species, whether they be humans or other animals, survive? The ‘trick’ is 

to make advantageous choices that foster them to adapt to several conditions. It is also a 

consolidate matter of fact that now people cannot be seen as simple Homo oeconomicus, 

namely rational actors who ponder their choices to maximize their individual satisfaction. 

In fact, humans have reached a level of brain organization that allows them to live in a 

complex social and technological environment, even simulated ones, where they do not 

simply calculate their advantage rationally, but are more often than not influenced by their 

emotions, by the way in which they represent outcomes and gains, by their present inner 

state, and by the presence of other individuals. All these factors combine to generate the 

overall utility derived from a specific decision, with an impact on their immediate present 

and/or the near or far future. 
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Chapter I – Decision-making: A general overview 

 

Neuroeconomics and the irrational decision-maker 

 The recent field of neuroeconomics (e.g., Glimcher and Rustichini, 2004; Glimcher 

et al., 2009) is trying to put together, since the late 1990s (Loewenstein et al., 2008), all we 

know about how human beings act upon the value they individually assign to rewards to 

choose (i.e., biological mechanisms of decision-making, Levallois et al., 2012), to 

construct a general neural model of ‘behavior of markets’ (Glimcher, 2011) that could be 

applied on a large scale. A common neural base for all individuals is a necessary 

presumption for all those attempts toward problem solving of all kinds, from goods 

availability and distribution, to wealth and health. This implies that neuroscientific 

techniques are nowadays able to overcome the pessimism associated with seeing the brain 

as a ‘black box’ (Jevons, 1871, Camerer et al., 2005).  

 Neuroeconomics research is focused principally in three domains of interest 

common to both economists and psychologists: decision-making under risk and 

uncertainty, social decision-making, and intertemporal choice (Loewenstein et al., 2008). 

While it was convenient for economists to think that decision-makers are rational, namely, 

they make choices to maximize the utility of rewards (i.e., its desirability) or actions 

allowing them to obtain that reward (expected utility model, EUD, Bernoulli, 1738), 

people have been demonstrated by ‘psychological realism’ (Loewenstein et al., 2008) to 

act irrationally, under the influence of several variables. 

 

 Decision-making under risk and uncertainty. Consider you are playing a lottery. 

You have to choose between a sure option of £ 5 and the 50% of chance of winning £ 10 or 
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the 50% of chance of losing everything (gamble option). Both gamble options are 

equipollent in the expected value (i.e., the probability of receiving an amount multiplied by 

the amount itself, EV = px, where EV = expected value, p = probability, x = amount), 

however, people do not choose equally when faced with the first and the second type of 

offer (based on the different gamble option). Indeed, as demonstrated by Tversky and 

Kahneman (‘prospect theory’, 1981), under the ‘framing effect’, people are biased to think 

(i.e., the perspective) that there is a greater risk associated with the alternative implying a 

loss, rather than equal to the risk associated with the option where a win is hypothesised. 

The framing effect, indeed, accounts for how people tend to be description-sensitive, 

preferring gains and displaying loss aversion when faced with an uncertain outcome (Fig. 

1; Tversky and Kahneman, 1981).  

 

 

 

 Moreover, judgement under uncertainty is also modulated by other variables like 

the amount of money at stake (inducing people to accept the risk with different degrees), 

their insensitivity to prior probability of outcomes, the sample size, their need of ‘narrow 

Figure 1. A typical value function, 
based on losses and gains (Adapted 
from Tversky and Kahneman, 1981). 
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bracketing’ (i.e., the evaluation of risky decisions separately, Tversky and Kahneman, 

1974) and so on, suggesting a revision of the EUD. Thus here it is the turn of neuroscience. 

This new discipline is helping to understand how humans act differently, driven by 

emotions when faced with uncertain decisions. Several imaging studies (e.g., those using 

functional magnetic resonance imaging, fMRI), highlighted how the brain tends to encode 

gambles as gains or losses based on the deviations from expectations (Loewenstein et al., 

2008). Areas like the medial prefrontal cortex (mPFC) or the Nucleus Accumbens (NAcc), 

both targets of dopaminergic projections, responded differently between anticipated and 

unanticipated reward delivery (e.g., Berns et al. 2001; Knutson et al., 2003; McClure et al. 

2003). Furthermore, amygdala and NAcc responded accordingly to the anticipated emotion 

elicited by the prospect of a risky outcome (e.g., Knutson et al., 2001a; Kahn et al., 2002). 

More recently, De Martino and colleagues (2006) found that those subjects who acted 

more rationally exhibited greater activation in the medial and the orbitomedial portions of 

the prefrontal cortex (OMPFC) associated with the frame effect, supporting a model in 

which the OMPFC evaluates and integrates emotional and cognitive information, thus 

underpinning more rational (i.e., description-invariant) behavior (Fig. 2; De Martino et al., 

2006; Loewenstein et al., 2008; for a complete review, see Platt and Huettel, 2008). 

 

 Social decision-making. As we saw for risky decisions and as we will later see for 

intertemporal choices, social decision-making, namely, the type of choices where we do 

not care only about our self-interests, but also about the welfare of others, cannot be 

explained by simple sum and the difference between our weighted payoffs and those of 

other people. In fact, not only in our daily life do we make a lot of decisions that are 

dependent on the concomitant choices of others (Sanfey 2007), affecting others and not 
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only ourselves (Fehr and Camerer 2007), but also, once again, emotions come into play 

(e.g., Loewenstein et al., 1989; 2008). 

 

    

Figure 2. On the left, example of a gambling task with (A) the gain frame and (B) the loss frame. On the 
right, rationality across participants: fMRI correlational analysis. (A) OMPFC and vmPFC activations; (B) 
correlation between the susceptibility to the framing manipulation (rationality index) and the parameter 
estimates (Adapted from De Martino et al., 2006). 
 

 

 Social emotions often help us to reach more adaptive decisions than would be 

possible by reasoning alone (Damasio 1994, Frank 1988), for example feeling guilty can 

dissuade us from harming a friend, whereas sometimes we need to override emotions 

through cognitive control, e.g., when suppressing indignation over unfair treatment by a 

more powerful other (Rilling and Sanfey, 2011). What does happen when, interacting with 

other individuals, we make decisions that deviate from the predicted rationality? Why do 

subjects prefer to punish at their own cost peers who have previously treated them unfairly 
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(e.g., Singer et al. 2006)? When making a moral judgment, namely when deciding if an act 

can be considered appropriate or not taking in consideration both that it can harm other 

people and that it can be due to the subject’s intentionality or not (e.g., Greene et al., 

2001), patients with a lesion in the ventromedial prefrontal cortex (vmPFC) have been 

found to be more likely to make utilitarian judgments (i.e., they were more willing to 

accept a moral violation) then control participants (Ciaramelli et al., 2007; Koenigs et al., 

2007), failing to generate anticipatory skin conductance responses before endorsing 

personal moral violations (Moretto et al., 2010). Sanfey and colleagues (2003; Fig. 3) 

found that whether players rejected unfair offers from human proposers or from a 

computer could have been reliably predicted by the level of their anterior insula activity, 

the same as when watching a loved one receiving a painful stimulus (Singer et al. 2004). 

Furthermore, Knoch et al. (2006) provided evidence of the right dorsolateral prefrontal 

cortex (dlPFC)'s key role in overriding or weakening self-interested impulses, allowing 

people to implement their taste for fairness, by selectively disrupting either the right or the 

left portion of the dlPFC by the means of using repetitive transcranial magnetic stimulation 

(rTMS) (Loewenstein et al., 2008; for a complete review, see Rilling and Sanfey, 2011). 

 

 

 

Figure 3. Activations in 
the PCC, insula, and 
dlPFC when receiving 
unfair offers from other 
humans (Adapted from 
Sanfey et al., 2003). 
 



 20 

 The above evidence, together with evidence of intertemporal choice (outlined later), 

comes a long way to support the view that it is currently pointless to study how people 

behave toward outcomes regardless of the brain. Indeed, we know that neurochemical 

factors drive our preferences and then our decisions. Functional studies, brain stimulation 

techniques, real and virtual lesional evidence are the way to follow for a complete 

understanding of how we adapt to the environment by making decisions, sometimes 

apparently against our evident interests, which is continuously outlined by behavioral 

experiments. The integration of these disparate theoretical approaches and methodologies 

in a unified perspective offers exciting potential for the construction of more accurate 

models of decision-making (Sanfey et al., 2006). 

 

Reward and value-based decision-making 

 What we have assumed here is that, in order to adapt, people (and other animals) 

have to make good choices. What we are referring to specifically is the way in which we 

all direct our behaviors towards a reward (i.e., ‘economic choice’; Padoa-Schioppa, 2011).  

 In 1927, Pavlov defined the reward as an object that produces an observable change 

in behavior, serving as a positive reinforcer by increasing the frequency of that behavior 

resulting in that outcome, also called learning (Schultz, 2006). On the one hand, there are 

rewards that elicit approach and consumption due to their appetitive value, being under the 

control of innate mechanisms (e.g., primary rewards) or of classical or instrumental 

conditioning (e.g., Wise, 2002). For instance, if one is thirsty and she sees a bottle of 

water, this object will suddenly reach a high value since it is able to reduce her state of 

need. On the other hand, rewards can also have a negative valence, functioning as 
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punishments, inducing withdrawal behavior, thereby increasing the frequency of behaviors 

that can decrease the aversive outcome frequency (Schultz, 2006). 

 In the model proposed by Rangel and colleagues (2008), value-based decision-

making, namely the kind of choice that occurs whenever an animal decides between 

several alternatives, can be synthesized in five basic steps. The first process (1) is the 

representation of the decision problem, that is, the comparison of internal and external 

states, and the identification of potential courses of action. Second (2), one will compute 

the value of each action, and, based on this, (3) she will select the optimal action. Finally, 

(4) the evaluation of the outcome will define how desirable is the chosen outcome, 

depending on the resulting states, and then (5) she will update the initial representation of 

states and actions based on satisfied or not conditions and expectations (i.e., learning).  

 The starting point for value-based decision-making, whatever the domain in which 

the choice is applied, is the subjective value. 

 

 Neural bases of subjective value. The subjective value (i.e., desirability) of a 

reward is computed in the brain in order for choices to be guided by preferences 

(Grabenhorst and Rolls, 2009). What we have to calculate is the expected value of a 

reward, namely the weighted probabilistic average of all possible values for an uncertain 

reward (Schultz et al., 1997). To express preferences, people have to consider different 

dimensions of options at stake (i.e., magnitude and delay) that, even though different and 

incommensurable, are valued and compared on a common scale (Chib et al., 2009; Padoa-

Schioppa, 2011). Although many cells in the brain respond to reward, the cortical-basal 

ganglia circuit [i.e., principally the orbital part of the prefrontal cortex (i.e., orbitofrontal 
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cortex, OFC), the anterior cingulate cortex (ACC), NAcc, the ventral striatum (VS), the 

ventral tegmental area, substantia nigra)] is the core of the reward system. Recent studies 

demonstrated that human frontal functional and structural imaging evidence map close to 

nonhuman primate anatomy (Schultz, 2006; Luhmann, 2009; Montague and Berns, 2002; 

Haber and Knutson, 2010). Specifically, in both humans and sanimals, neurons in OFC 

seem to be pivotally designated to encode the subjective value assigned to different reward 

stimuli, more active when the situation does require a choice, and is not attached to 

specific goods, actions or spatial locations (for review, see O’Doherty, 2004; Padoa-

Schioppa and Cai, 2011; Cai and Padoa-Schioppa, 2012). In humans, the OFC 

(Schoenbaum et al., 1998, 1999, 2006; Rangel et al., 2008) and its relative medial portion 

(i.e., medial orbitofrontal cortex, mOFC) [paralimbic Brodmann’s areas (BAs) 25, 13, and 

medial portion of BA 11, 12 and 10 (Brodmann, 1909; Kringelbach and Rolls, 2004; 

Bechara, 2005)], together with striatal and midbrain areas, such as the entire VS (including 

the NAcc), the medial amygdala, and the substantia nigra (Fig. 4; Haber and Knutson, 

2010) were activated during the anticipation of expected rewards (e.g., Mainen and 

Kepecs, 2009), coding the incentive value of both real and abstract rewards (Damasio, 

1994; Rolls et al., 1999; Elliott et al., 2000b; O’Doherty et al., 2001; O’Doherty, 2004; 

Kringelbach, 2005; Schoenbaum et al., 2006), monitoring the value of different reinforcers 

(Kringelbach and Rolls, 2004), and responding to changes in outcome predictions (e.g., 

Gottfried et al., 2003; O’Doherty et al., 2002). Moreover, while neurons in the caudate 

nucleus (dorsal striatum) encode the difference in the temporally discounted value of two 

alternative rewards more reliably than neurons in the VS, these latters encode the sum of 

temporally discounted values, that is, the overall goodness of available options (Cai et al., 

2011). 
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 The orbitofrontal cortex. As we highlighted above, frontal and prefrontal neural 

circuits (both cortical and subcortical) are the principal candidates as areas encoding the 

subjective value of different goods. However, the OFC and its involvement in dopamine 

transmission seem to play a prominent role in reward processing, both in nonhuman (e.g., 

Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 2008) and human primates 

(O’Doherty et al., 2003; Plassmann et al., 2007; Chib et al., 2009; Fitzgerald et al., 2009). 

OFC is part of the human prefrontal cortex, lying in the ventral surface of the 

frontal lobe, over the orbits, and consists of five cytoarchitectonic subregions: frontal polar 

Brodmann Area (BA) 10, BA 11 anteriorly, BA 13 posteriorly, BA 14 medially, and BA 

47/12 laterally (Fig. 5; see Carmichael and Price, 1994, Petrides and Pandya, 1994, Wallis, 

2007). Fuster (1997, 2001) defined it as the part of the prefrontal cortex that, differently 

Figure 4. Human key structures and pathways 
of the reward circuit. Red arrow = input from 
the vmPFC; dark orange arrow = input from 
the OFC; light orange arrow = input from the 
dACC; yellow arrow = input form the dPFC; 
brown arrows other main connections of the 
reward circuit. Amy = amygdala; dACC = 
dorsal anterior cingulate cortex; dPFC = 
dorsal prefrontal cortex; Hipp = hippocampus; 
LHb = lateral habenula; hypo = hypothalamus; 
OFC = orbital frontal cortex; PPT = 
pedunculopontine nucleus; S=shell, 
SNc=substantia nigra, pars compacta; STN = 
subthalamic nucleus; Thal = thalamus; 
VP=ventral pallidum; VTA=ventral tegmental 
area; vmPFC=ventral medial prefrontal cortex  
(Adapted from Haber and Knutson, 2010). 
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from the others, receives projections from the magnocellular, medial nucleus of the 

mediodorsal thalamus (Kringelbach and Rolls, 2004), conveying information from the 

object-processing visual stream, and taste, olfactory and somatosensory inputs (see Öngur 

and Price, 1998, 2000; Rolls, 2000), projecting back principally to the temporal lobe and 

the cingulate cortex (see Carmichael and Price, 1994, Petrides and Pandya, 1994, Rolls, 

2004). OFC is indeed special because it is the only portion of the frontal cortex that 

receives information from all sensory modalities; it has only weak motor connections, and 

extensively links with the limbic system, amygdala, cingulate gyrus and hippocampus 

(e.g., Carmichael and Price, 1995; Walliss, 2007), making it a region that integrates 

multiple sensory properties with affective information (Wallis, 2007).  

 

 

 

 

 

Specifically, OFC anterior part, characterized by granular cells, is thought to be more 

phylogenetically and ontogenetically recent than posterior and medial parts, consisting in 

Figure 5. Ventral view of  
macaque (left) and human 
(right) brains illustrating the 
major cytoarchitectonically 
distinct regions of OFC 
(Petrides & Pandya 1994) and 
the main sulci. Olf = olfactory 
sulcus, M = medial orbital 
sulcus, T = transverse orbital 
sulcus, L = lateral orbital 
sulcus. In the macaque brain 
preparation, the olfactory 
tubercle obscures the 
olfactory sulcus. (Adapted 
from Wallis, 2007). 
 



 25 

agranular and dysgranular cortices (Öngur and Price, 2000; Wise, 2008). While the 

anterior part seems to respond to secondary rewards, the posterior preferentially processes 

primary outcomes (Kringelbach and Rolls, 2004). Recently, Sescousse and colleagues 

(2010) demonstrated that, while the anterior lateral OFC (BA 10) processes monetary 

gains, the posterior lateral OFC (BA 11) processes more basic erotic stimuli, considered as 

primary outcomes as food. Importantly, all rewards in the above study were hypothetical, 

suggesting that OFC processes representations of both abstract and real outcomes (see also 

Johnson and Bickel, 2002; Bickel et al., 2009). Moreover, it has been demonstrated (Elliott 

et al., 2000a; Liu et al., 2007; Mainen and Kepecs, 2009; O’Doherty et al., 2001) that 

mOFC is specifically sensitive to benefits and positive outcomes, whereas the lateral 

portion of the OFC is more modulated by costs (i.e., losses or punishments), and that that 

more medial-caudal regions encode reward-identity representations that are invariant to 

predictive stimuli, whereas more rostro-lateral regions contain reward representations 

paired to specific stimuli (Klein-Flugge et al., 2013). 

 OFC is the target of dopamine projections (e.g., Haber et al., 2000; Roesch et al., 

2007; Winstanley, 2007; Takahashi et al., 2009; Winstanley et al., 2010), as demonstrated 

to be dysfunctional, for instance, in abstinent cocaine users (e.g., Volkow et al., 1996) and 

patients with Parkinson disease (Moustafa et al., 2008), both pathological populations in 

which dopamine dysregulation has a prominent role. The involvement of OFC in the 

dopamine system, and so in the ‘reward prediction error’ (i.e., the ability to learn stimulus-

reward associations depending on the discrepancy between the predicted reward and the 

actual occurrence of reward; e.g., Rescorla and Wagner, 1972), helps to explain why OFC 

is involved in processing reward value. Some neurons in OFC are able to distinguish 

between rewarding outcomes and punishments (Thorpe et al., 1983) and between 
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rewarding and non-rewarding outcomes (Tremblay and Schultz, 2000), namely, the 

relative motivational value of a good at that moment (Schultz, 2000), as well as in coding 

the economic value of an outcome independently of other goods available at the same time 

(i.e., ‘transitivity’; Padoa-Schioppa and Assad, 2008). OFC lesioned patients were indeed 

found to be impaired in reversal learning, producing more perseverations (Fellows and 

Farah, 2003), as well as in the Iowa gambling task where they failed to adjust their choices 

according to money losses (Bechara et al., 1998).  

 More broadly, damage to the mOFC in humans results in motivational, emotional, 

affective and behavioral deficits, such as dysregulated social behavior (Damasio et al., 

1991; Damasio and Anderson, 1993), inability to inhibit simple responses, short-term goals 

preference instead of long-term goals, inability to make advantageous decisions (poor 

choice pattern), inefficient coping with risk, abolished physiological responses in 

anticipation of punishment or before endorsing harmful actions that maximize good 

consequences (Moretto et al., 2010), all in the presence of well-preserved basic intellectual 

abilities (Bechara et al., 1997). Moreover, early signs of fronto-temporal dementia (e.g., 

eating disorders), a pathology affecting also the OFC (Glimcher et al., 2009), may reveal 

deficits in assigning the correct value to appetitive stimuli (Pasquier and Petit, 1997). 

 A suggested model (Schultz, 2000) is that, while ACC is involved in matching the 

actual outcome with the expected one to guide movements and execution activity, OFC 

seems to be engaged in the details of detection, perception and expectation of rewards, 

encoding the value of a choice outcome based on current needs and trade-offs, comparing 

the present reward with other potential outcomes. All this information will be held in 

working memory, passing then to the dlPFC, which uses them to control behavior and 
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prepare plans toward the acquisition of rewarding goals based on cost-benefits analysis 

(Fig. 6; Schultz, 2000; Wallis, 2007; Kennerly and Wallis, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Model of reward 
processing related to brain regions. 
Many reward signals are processed 
by the brain, including those that are 
responsible for the detection of past 
rewards, the prediction and 
expectation of future rewards, and 
the use of information about future 
rewards to control goal-directed 
behaviour (SNpr, substantia nigra 
pars reticulata; GP, globus pallidus) 
(Adapted from Schultz, 2000). 
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Chapter II – Intertemporal choice and temporal discounting  

[This review has been published in Sellitto et al., 2011] 

 

Intertemporal choice 

 Individuals are often faced with choices whose consequences are spread over time. 

Such decisions, involving trading off between benefits and costs differing in the time of 

their occurrence, are commonly referred to as intertemporal choices. Making advantageous 

choices is crucial for survival and adaptation to the environment. People may have to 

choose, for example, between saving money or spending it immediately, quitting smoking 

to reduce the risk of future disease or continuing to smoke, forgoing a walk with friends to 

remain at home to study for an upcoming exam or giving up studying and going out. In all 

these cases, the question is: in order to reach the greatest advantage, is it best for me to 

indulge in the present or postpone the gain? By taking into account what they prefer and 

how long they are willing to wait to obtain it, all intertemporal choices affect people's 

health, wealth and mood (Frederick et al., 2002), with an impact on the immediate present 

or on the near or far future. In a more general view, individual intertemporal choices also 

affect others lives and the overall economic prosperity of nations (Smith, 1776). 

Humans and other animals’ preferences for one option over another reflect not just 

the amount of expected reward, but also the time at which the reward will be received. 

Economic models usually explain this in terms of maximization of achieved utility 

(Kalenscher and Pennartz, 2008). In order to choose the most rewarding course of action, 

people consider the utility of the temporally proximal outcome against the utility they 

assign to a temporally distant outcome. To explore such issue in the laboratory (both from 

an economic and psychological point of view), these decisional situations are usually 
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recreated manipulating the amount of the offered rewards (e.g., money for humans), and 

the time at which these rewards are delivered, along a series of binary choices (e.g., Kirby 

et al., 1995; Mazur et al., 1997; Frederick et al., 2002). As an example, a subject might 

choose between $5 now and $15 in one week. However, a wide range of goods has been 

tested during years, not only at a behavioral level1, but also with neuroimaging techniques 

(e.g., McClure et al., 2007; Prévost et al., 2010), with important implications on both the 

understanding of the neural bases of intertemporal choice, and of the computation of the 

subjective value for all goods. I will further examine this issue later. 

 

Temporal discounting 

Economics and psychology have long established that humans and other animals 

frequently prefer smaller rewards with short-term availability over larger rewards that 

become available in the long run, even when waiting would yield larger payoffs than 

pursuing immediate feelings (Ainslie, 1974; Rosati et al., 2007). Preferring closer reward 

implies that the subjective value (i.e., utility depending on specific characteristics of a 

subject) of a future reward is weakened (discounted), as a function of the time until 

its delivery (e.g., Cardinal et al., 2001; Kalenscher et al., 2005; Myerson and Green, 1995). 

This phenomenon is known as delay or temporal discounting (TD, Ainslie, 1975; 

Samuelson, 1937).  

 

_________________________________________________________________________ 
1e.g., traffic tickets, Thaler, 1981; pain, Loewenstein, 1987; salary, Hsee et al., 1991; discomfort, 

Varey and Kahneman, 1992, dinners and vacation trips, Loewenstein and Prelec, 1993; health, 

Dolan and Goodex, 1995; life years, Johannesson and Johansson, 1997; corn, Holden et al., 1998; 

for a complete review, see Frederick et al., 2002. 
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In economics, the discounted utility (DU) model (Samuelson, 1937) provided for 

many years a theory framework for intertemporal choices, taking into account that all 

reasons or drives to make such choices can be described by a single parameter, the 

discount rate (usually referred to as k; Frederick et al., 2002). Discount rate refers to the 

subjective value of rewards that decreases by a fixed percentage for each unit of time that 

those rewards are delayed (Luhmann, 2009). This drop is described, within the DU model, 

by a curve represented by the exponential function SV = ekD (Ainslie, 1992; Mazur, 1987)2. 

This model however, implies that a given temporal delay leads to the same degree of 

discounting regardless of when it occurs (Loewenstein et al., 2008), that is, the discount 

rate is a weighted sum of utilities, constant over time (Kalenscher and Pennartz, 2008). For 

instance, delaying the availability of a reward by one day from now leads to the same 

degree of discounting of delaying the availability of the same reward by one day from one 

year (Frederick et al., 2002). 

 More recently, research has pointed out that intertemporal behavior may be not 

linear, and that deviations from rationality in estimating present and future consequences 

of actions cannot be well captured by an exponential function (Frederick et al., 2002). Both 

humans and animals care in fact, more about a delay if it is proximal than if it is distal in 

time (Loewenstein et al., 2008), so that reward discounting is initially more prominent, and 

then as more time passes, it becomes less steep (Kirby and Marakovich, 1995; Johnson and 

Bickel, 2008). For instance, one may prefer $110 in 31 days over $100 in 30 days, but 

$100 now over $110 tomorrow (Frederick et al., 2002).  

 

2where SV = subjective value (expressed as a fraction of the delayed amount), D = delay (in days), 

and k = discounting coefficient. 
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These so called ‘preference reversals’ or ‘time inconsistencies’ (Frederick et al., 2002) are 

better explained by a hyperbolic model described by an hyperbolic function (Ainslie, 1992; 

Mazur, 1987) 

SV = 1/(1+kD) 

than by an exponential model, which accounts for non-constant discounting (Cardinal, 

2006; Kalenscher and Pennartz, 2008; Mazur, 1987)2. Other anomalies in discount rates 

are detectable when people have to decide, between gains vs. losses, or between small vs. 

large outcomes. As for the former, losses are usually less discounted in time than gains are. 

People are eager to receive gains as soon as possible, not so to obtain losses, even if these 

would be less conspicuous than future losses. (‘sign effect’, Thaler, 1981; Loewenstein, 

1987). Second, large quantities of an outcome are discounted less than smaller quantities: 

larger outcomes are valued more, making people more willing to wait for them 

(‘magnitude effect’, Fig. 1; Myerson and Green, 1995;Green et al., 1997). 

 

 

 

 

Figure 1. Example of ‘magnitude effect’: 
present, subjective value of the delayed 
reward as a function of the time until its 
receipt. Data for four different future 
amounts are shown in separate panels. Data 
points represent the median amount of 
immediate reward judged equal in 
subjective value to the delayed reward. 
Solid and dashed curves represent the best 
fitting hyperbolic and exponential 
discounting functions, respectively 
(Adapted from Green et al., 1997). 
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Impulsivity, state and trait factors 

 TD is usually considered a good measure of impulsivity (e.g., Takahashi, 2005). 

Individuals with greater discounting, are described as unable to wait for delayed rewards 

(impatience choices, Takahashi et al., 2007; Frederick et al., 2002) and may have impaired 

self-control (e.g., Takahashi et al., 2007), which is necessary to favour distant, more 

important goals (Shamosh and Gray, 2008). Suboptimal intertemporal choices can be 

observed in conditions characterized by poor self-control, including drug addiction 

(heroine or cocaine), cigarette smoking and binge drinking (e.g., Vuchinich and Simpson, 

1998; Bickel et al., 1999, 2007; Kirby et al., 1999; Dalley et al., 2011; Vassileva et al., 

2011; Klapproth, 2012; MacKillop et al., 2012; Yi and Landes, 2012), attention 

deficit/hyperactivity disorder (ADHD), oppositional defiant disorder and autism spectrum 

(e.g., Barkley et al., 2001; Demurie et al., 2012; Scheres et al., 2013), bipolar disorder and 

schizophrenia (Ahn et al., 2011), depression (Takahashi et al., 2011), compulsive gambling 

(Holt et al., 2003; Dixon and Holton, 2009) and obesity (Weller et al., 2008; Takahashi, 

2010). Substance users (Kirby and Petry, 2004) show increased discount rates compared to 

healthy controls, consistent with their inability to make prudent choices forgoing instant 

gratifying rewards (e.g., drug) to favor later rewards of larger value (e.g., health). 

Moreover, this is true not only for the object of their desire, the drug itself, but also for 

other rewards, for example monetary rewards in alcoholics (e.g., Petry, 2001) and opioid-

dependent individuals (e.g., Madden et al., 2007; Fig. 2).  
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 Related to both poor self-control and higher delay discounting also performance on 

measures of intelligence, working memory and cognitive abilities has been found impaired 

(Shamosh and Gray, 2008; Shamosh et al., 2008). For instance, it has been observed that 

children who were able to wait longer to obtain more marshmallows at age 4 or 5 became 

adolescents more academically and socially competent, rational, planful and able to deal 

well with frustration and stress (Mischel et al., 1988; Eigisti et al., 2006), indicating that 

individual differences in delay gratification are stable in time. Moreover, the ability in 

delay gratification at age 4 correlated with the risk of being overweight as an adolescent 

(Seeyave et al., 2009; Tsukayama et al., 2010). It is not surprising, then, that even in non-

obese women, the delay discounting linearly moderated the total energy intake (Rollins et 

al., 2010), as well as with a relationship with the Body Mass Index (Borghans and 

Golsteyn, 2006). Hinson and colleagues (2003) found that the more the cognitive load, the 

greater the discount rate (but see Franco-Watkins et al., 2010), together with an increased 

number of disadvantageous choices during a reversed Iowa gambling task (Dretsch and 

Tipples, 2008). Moreover, evidence for a functional relationship between delay 

discounting and working memory has also been provided in addicted individuals: 

Figure 2. Hyperbolic delay discounting 
function curve, representing median k 
values, reported for heroin users and 
healthy individuals (Adapted from 
Madden et al., 2007). 
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neurocognitive training of working memory significantly decreased delay discounting 

(Bickel et al., 2011). 

 Large delay discounting rates in adults have been found to correlate with a number 

of personality traits, such as extraversion (Ostaszewski, 1996), empathy (e.g., Kirby et al., 

1999), agreeableness (Miller et al., 2008), sense of powerlessness over the future (i.e., 

fatalism, Johnson et al., 2010) and religious beliefs (Paglieri et al., 2013), as measured by 

personality scales. Gender differences have been found in time consistency, for example 

females are less impulsive than males under several conditions (Prince and Shawhan, 

2011; Diller et al., 2011). Education level influenced the discount rate (the higher the 

education, the lower the discounting; de Wit et al., 2007). Age is also a factor, teenagers 

are indeed more impulsive than adults (Reimers et al., 2009; Whelan and McHugh, 2009; 

Löckenhoff et al., 2011; but see also Study V-Part III). Intelligence quotient (Shamosh and 

Gray, 2008) and culture also influence time consistency (e.g., Western people are more 

impulsive than Eastern people; Markus et al., 1991; Du et al., 2002, de Wit et al., 2007; 

Takahashi et al., 2009; Ma-Kellams et al., 2012). In this regard, it is worth reporting that 

recently genetic investigations highlight how TD rates could be predetermined at an innate 

level. For instance, different polymorphisms of the catechol-O-methyltransferase (COMT) 

gene, which is important in regulating frontal dopamine (e.g., Chen et al., 2008; Pine et al., 

2010), were found to predict discounting behavior and brain activity during intertemporal 

choice (e.g., Boettiger et al., 2007; Paloyelis et al., 2010; Gianotti et al., 2012; Lancaster et 

al., 2012; Smith and Boettiger, 2012). Recently, also variations of the DRD2 gene, a D2 

subtype of dopamine receptors, have been associated with impulsivity in delay discounting 

(Kawamura et al., 2013). 
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 However, as a multicomponent construct, intertemporal choice and TD are sensitive 

to both state and trait influences (Odum and Baumann, 2010). That is, individual 

differences in discount rate can be attributable not only to traits (i.e. differences between 

subjects, such as genetic factors or personality), as just reported above, but also to internal 

state features (i.e. differences within the same subject, such as stress or hunger) and aspects 

of the situation, such as reward type (Kirby 2009; Peters and Büchel, 2011). On the one 

hand, a trait factor drives overall a choice by determining the degree at which a good is 

discounted generally. On the other hand, a state factor influences behavior on the relatively 

short-term. Indeed, a difference in the ability to resist to immediate gratification can be 

observed when people are faced with primary or secondary rewards (‘domain effect’, e.g., 

Madden et al., 1997; 2007; Frederick et al., 2002; Odum and Rainaud, 2003; McClure et 

al., 2007). Primary rewards, such as, food, drugs and alcohol, due to their perishability, 

depending upon internal states (e.g., hunger, stress, mood) and desires (Catania, 1998; 

Odum et al., 2006; Charlton and Fantino, 2008), as well as their ability to rapidly bring to 

satiety, are discounted at a higher rate than secondary rewards. Compared to primary 

rewards, money and gift certificates tend to elicit a less strong desire for immediate reward 

consumption (e.g., Odum et al., 2006; Estle et al., 2007; see Evans et al., 2012 for a 

comparison with animals). Metabolism is a powerful determinant of humans’ choice 

behavior, exerting an effect also on secondary rewards (Wang and Dvorak, 2010): 

increased blood glucose levels led to an increase in the value placed on future rewards; 

vice versa, drinking a beverage without sugar led to an increase in the value placed on 

current rewards. Moreover, if a reward implies a gain, a loss, or a punishment, the context 

in which the choice is made (Dixon et al., 2006), the effort required, and so on, will have 

an impact on the decision at stake. 
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Chapter III – The neurobiology of intertemporal choice: insight from imaging and 

lesion studies 

[This review has been published in Sellitto et al., 2011] 

 

Functional studies  

Since about ten years (see Appendix A), neurobiological research has focused on 

the neural underpinnings of value encoding of competing rewards, necessary to guide 

optimal choice behavior among alternatives differing in the time of their consequences.  

 

 Animal studies. Due to evolutionarily similarities, relying on animal evidence is 

always a useful starting point for neural and behavioral research in humans, both healthy 

and pathological individuals (e.g., Chang et al., 2012). Overall, animal studies (mostly 

conducted with single unit cell recording) suggest a role of mOFC in intertemporal 

decision-making (Winstanley et al., 2004). In both rodents (Roesch et al., 2006; da Costa 

Araùjo et al., 2010) and monkeys (Wallis and Miller, 2003; Padoa-Schioppa and Assad, 

2006; Roesch et al., 2006), mOFC neurons have been found to encode the subjective value 

of different foods when choosing between them, and to be sensitive to the reward amount 

and to the duration of a delay intervening before food delivery, responding more strongly 

to short delays predicting cues and before larger rewards. Disruption of both rats’ (Cardinal 

et al., 2001; Mobini et al., 2002; Winstanley et al., 2004; Rudebeck et al., 2006; Mar et al., 

2001; Jo et al., 2013) and monkeys’ (Tremblay and Schultz, 1999; Izquierdo and Murray, 

2004) mOFC was found to alter discount rates differently (e.g., in odd directions based on 

wether the lesion occurred before learning the task or not), sensitivity (preferences) to size 
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of reward and time to wait for it, and to produce abnormal responses to changes in reward 

expectations. Moreover, the inactivation of the OFC has been found to increase impulsive 

choices in less impulsive rats when the delay of the outcome was cued, but decrease 

impulsive choices in highly impulsive rodents in an uncued condition, suggesting 

differential changes in the dopamine system activation (Zeeb et al., 2010). Similarly, a 

disruption of NAcc in rodents (da Costa Araùjo et al., 2009; Valencia-Torres et al., 2012) 

has been found to decrease indifference points between sooner and later rewards, as well as 

a disconnection of OFC from NAcc (Bezzina et al., 2008). Also, single-cell recordings in 

pigeons’ analogue of the mammalian prefrontal cortex revealed that neural response was 

modulated by reward amount and delay, according to the hyperbolic equation (see Part I; 

Kalenscher et al., 2005).  

Humans have been deemed to be evolutionarily more patient than animals, despite 

both exhibit TD of future delays (e.g., Green and Myerson, 2004; Woolverton et al., 2007; 

Hwang et al., 2009; Andrade and Hackenberg, 2012). However, several studies (Rosati et 

al., 2007; Addessi et al., 2011) demonstrated recently that humans share similar levels of 

patience with bonobos and chimpanzees in some contexts, for example when food rewards 

are at stake, but also with capuchins, due to their tool use ability. Under some conditions, 

humans were even less willing to wait for food than chimpanzees. Moreover, Jimura and 

colleagues (2009) found that, like animals, humans exhibited TD also with rewards 

delayed by seconds.  

 

 Human studies. In humans, VS, mOFC, PCC, and lateral prefrontal cortex have 

been identified as other critical neural substrates of intertemporal choices (McClure et al., 

2004, 2007; Kable and Glimcher, 2007, 2010). Their specific role, however, is still unclear. 
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Imaging studies by McClure and colleagues (2004, 2007) emphasize the view that 

discounting behavior reflects the differential activation of two distinguishable neural 

systems (see also Elster, 1979; Loewenstein, 1996; Loewenstein et al., 2008; Shefrin and 

Thaler, 1988). One system is responsible for impatient choices, driven by the desire for 

present outcomes (the ‘myopic doer’, Thaler and Shefrin, 1981; Elster, 1985, 1986; 

Graham and Isaac, 2000). The other is responsible for prudent choices, emphasizing more 

the consequences of choosing delayed outcomes (the ‘farsighted planner’, Thaler and 

Shefrin, 1981). These two systems are commonly defined ß, the more impulsive system, 

and ∂, the more rational system (e.g., Laibson, 1994, 1997; Loewenstein, 1996). From this 

perspective, the balance between the activation of these two systems is responsible for the 

impulsivity or the patience exhibited by people during intertemporal choices (e.g., Laibson, 

1994, 1997; Loewenstein, 1996; Peters and Büchel, 2011). McClure and colleagues (2004; 

Fig. 1) found that VS, mOFC and mPFC were preferentially activated when an immediate 

monetary option was available; therefore, they deemed these structures as the neural bases 

of the ß-system. Conversely, lateral prefrontal cortex and the posterior parietal cortex 

(PPC) were not preferentially activated by the presence of a particular option, but activated 

by all types of choice (between immediate versus delayed options, or between two delayed 

options); therefore, the authors related these areas to the ∂-system. When the ß-system is 

engaged, it favors the immediate option, whereas when a greater activation in the ∂-system 

overcomes that in the ß-system, a delayed option is favored (McClure et al., 2004). These 

activations (McClure et al., 2004) were not found solely using monetary rewards, but also 

with primary rewards available immediately after each decision (McClure et al., 2007).  
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Another approach to relate neural activity to intertemporal choices is by linking 

neural states to subjective value directly (Kable and Glimcher 2007, 2010). In Kable and 

Glimcher (2007)’s study, participants were submitted to monetary choices between a fixed 

option, always immediately available, and a variable option, offered at different delays. 

Based on behavioral choices, they derived an individual preference curve for each 

participant, to estimate how the subjective value changed as a function of delay and 

amount. Brain activity during subsequent intertemporal choices was then examined that 

covaried with this parameter. It was found that activity in VS, mPFC and posterior PCC 

tracked subjective value, regardless of whether the delayed reward could be obtained in 

hours or in months. Despite marked differences in the discount curves of each subject 

(ranging from most patient to most impulsive), subjective preferences were mirrored in the 

pattern of activity in VS, mPFC and PCC (Kable and Glimcher, 2007).  This activity varied 

with the delayed option (the immediate option was fixed and never presented on the screen 

during the experiment) demonstrating that these regions do not value immediate rewards 

analysis to identify potential ! and " brain
areas but instead conduct a whole-brain
analysis. We regress voxel-level neural ac-
tivity (i.e., the BOLD signal measured in
each voxel) on control variables (time in
experiment and number of juice/water
squirts in previous delivery period) and on
dummy variables that represent different
types of intertemporal choices. As de-
scribed previously, one dummy variable
identifies intertemporal choices that in-
volve a decision between an immediate re-
ward and a delayed reward (! dummy). A
second dummy variable identifies all inter-
temporal choices (in other words, all deci-
sion epochs) (" dummy). Note that the !
dummy identifies a subset of the decision
epochs identified by the " dummy and that
brain regions load on the ! regressor to the
degree that they respond preferentially to
intertemporal choices involving immedi-
ate rewards. Brain areas that load only on
the " regressor do not respond preferen-
tially to the presence of an option for im-
mediate reward.

We identify several brain regions that
load on the ! regressor (Fig. 4A). These
regions include the nucleus accumbens (NAc), subgenual cingu-
late cortex (SGC), medial orbitofrontal cortex (mOFC), poste-
rior cingulate cortex (PCC), and precuneus. As demonstrated
below, these are very similar to the areas identified by a similar
analysis in our previous study (McClure et al., 2004). All of these
regions are within the limbic system and paralimbic cortex and
have been directly implicated in reward processing in previous
studies (Breiter and Rosen, 1999; Knutson et al., 2001). The !
dummy also identifies a region in the dorsal anterior cingulate
cortex (ACC). The ACC is frequently associated with the pres-
ence of response conflict (Barch et al., 2001; Botvinick et al.,
2001). Finding ACC activity in this context may imply that
choices involving an immediate reward option are associated
with greater conflict. Such conflict is consistent with a two-
system model of decision making.

As in our previous study, regions that correlate significantly
with the " dummy included both visual and motor areas, as well
as regions commonly associated with higher-level cognitive func-
tions. It is likely that areas of primary visual and premotor cortex
(including PMA and supplementary motor area) were activated
because task performance requires subjects to look at a visual
display and press a button to indicate preference. The remaining
areas we find to correlate with the " dummy include a region in
the PCC, bilateral areas in the posterior parietal cortex (PPar),
bilateral areas in the anterior insula (Ant Ins), and several regions
in the dorsolateral prefrontal cortex (DLPFC) (Brodmann areas
9, 44, 46, and 10) (Fig. 4B). Activity in DLPFC and PPar is ob-
served commonly in tasks involving cognitive processes such as
working memory, abstract problem solving, and exertion of con-
trol in favor of long-term goals (Miller and Cohen, 2001). The
region in the PCC lies slightly rostral to the region that correlated
with the ! regressor, with no shared voxels.

Consistency with results from intertemporal choice for money
The areas associated with the ! and " regressors, henceforth re-
ferred to as ! and " areas, are close to, or overlap with, the areas

identified in our previous study of intertemporal choice for
money (McClure et al., 2004). To directly compare the responses
in this and our previous report, we performed a conjunction
analysis to identify overlapping voxels (Fig. 5). Among the " ar-
eas, every region of activity replicates our previous findings, with
the exception of the additional finding of a rostral area of the
PCC. There is substantial overlap of the voxels among the " areas
at p ! 0.001 and even greater overlap with a threshold of p ! 0.01.

Among the ! areas, almost all regions of activity replicate
across the two studies, but, unlike the " regions, this region-level
replication does not translate into voxel-level replication. At p !
0.001, only seven voxels in the medial prefrontal cortex are con-
sistent across the two studies. Two of these voxels are in the SGC,
and the other five are in the dorsal ACC. The number of overlap-
ping voxels increases somewhat at p ! 0.01 to include one voxel
in the PCC and one voxel in the NAc (Fig. 5B).

A possible interpretation of these results is that cognitive (")
brain regions are domain general and hence are consistent across
tasks, a finding that has been reported by others (Shallice, 1982;
Duncan, 1986; Miller and Cohen, 2001). In contrast, limbic
reward-related (!) areas may be more stimulus or task specific.
The same general brain regions may be involved in a variety of
functions, but the specific subregions involved may be dependent
on reward modality, time scale, or other details of the particular
task circumstance.

Neural discounting
Our analysis has shown that subjects’ behavioral choices are de-
scribed by a two-system discounting model. Our analysis of the
brain-imaging data has also identified two different neural sys-
tems, which appear to be associated with each of the two dis-
counting systems. To test this relationship more directly, we fit
discount functions to the identified ! and " brain areas, respec-
tively. Under the hypothesis that the ! and " brain areas generate
the two components of the discount function that we estimated
from the behavioral data, we may expect that there will be a direct
correspondence between fits to behavior and fits to brain activity.

Figure 4. ! and " brain areas. fMRI data were fit with two regressors. A, The ! regressor identified those brain areas that are
preferentially activated by choices involving a reward available at a 0 min delay. Brain areas that correlated with this regressor
included a set of brain areas all closely linked with the mesolimbic dopamine system. These include the NAc, PCC, mOFC, and ACC
( p ! 0.001; minimum 8 contiguous voxels). PCu, Precuneus. B, The second (") regressor identifies brain areas that are activated
by all intertemporal choices. This regressor identified several brain areas identified with general cognitive processing, including
the PPar bilaterally, the Ant Ins, and regions of the dorsolateral prefrontal cortex [Brodmann area 9 (BA9), BA44, BA46, and BA10;
p ! 0.001]. Vis Ctx, Visual cortex.
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Figure 1. ß and ∂ 
brain regions in the 
context of the dual 
model (Adapted 
from McClure et 
al., 2007).  
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only, but represent the subjective value of delayed rewards (Kable and Glimcher, 2007). 

According to Kable and Glimcher (2007); therefore, findings from McClure and colleagues 

(2004) that limbic activity was greatest for immediate rewards, could merely reflect the 

fact that immediate options generally have a greater subjective value than delayed ones 

(Kable and Glimcher 2007).  

To strengthen their point further, Kable and Glimcher (2010) conducted a second 

experiment including a condition in which two delayed options were offered, testing for 

preference reversals in the context of a model called ‘As Soon As Possible’ (ASAP). While 

the hyperbolic model accounts for a hyperbolic decline of the subjective value with regard 

to the present, the ASAP model accounts for a hyperbolic decline of the subjective value 

relative to the soonest possible reward, which may not necessarily be available 

immediately. The most evident difference between these two models is the expected 

occurrence of preference reversals. While in McClure and colleagues (2004, 2007) 

discounting function predicts that people will sometimes make preference reversals 

between two delayed options (i.e., choosing the larger later reward, while this same option 

was previously refused when paired with an immediate one), the ASAP model predicts that 

people will make the same choice in both conditions, and that possible changes are just 

stochastic (Kable and Glimcher 2010). Indeed, Kable and Glimcher (2010) found that 

when subjects chose between two delayed options, they were, in some cases, even more 

impulsive than when an immediate reward was available. At a neural level, the activity in 

VS, mPFC and PCC was found to track the subjective value of both immediate and 

delayed rewards. This (absolute) subjective value varied as a function of the delay to the 

soonest possible reward. Once again, Kable and Glimcher (2010, Fig. 2) did not find a 

greater activation of VS, mPFC and PCC in the immediate condition compared to the 
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delayed condition, showing that these areas do not carry an impulsive signal that primarily 

values immediate rewards, but rather a value signal for delayed rewards. At any rate, 

marked differences in the analysis of the above-described studies (McClure et al., 2004, 

2007; Kable and Glimcher, 2007, 2010) make direct comparison of the two diverse 

findings difficult. 

 

 

 

 

More recently, the study of Ballard and Knutson (2009) provided further evidence 

for the involvement of mesolimbic and lateral brain regions in future rewards evaluation, 

but differentially according to magnitude and delay. Across subjects, activity in the NAcc, 

mPFC, and PCC positively correlated with the magnitude of future rewards, while that in 

Figure 2. Activations correlating with 
subjective value for money, both whenn 
an immediate option was available 
(NOW), and when it was not (60 DAY) 
(Adapted from Kable and Glimcher, 
2010). 
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the dorsolateral prefrontal cortex, temporo-parietal junction cortex and PCC negatively 

correlated with the delay of future rewards. Neural activity in response to magnitude and 

delay was then correlated with discount rates for each participant. More impulsive subjects 

showed diminished activation of NAcc to future rewards magnitude (they were even less 

sensitive to large magnitudes of future rewards), and increased deactivation of dorsolateral 

prefrontal and parietal cortices to future rewards (Ballard and Knutson, 2009). This 

functional dissociation is in fact reminiscent of the dual-system model of McClure and 

colleagues (2004, 2007). However, the finding mPFC and PCC responded to both 

immediate and delayed rewards (Ballard and Knutson, 2009) better fits with the unitary 

model proposed by Kable and Glimcher (2007, 2010; Peters and Büchel, 2010b). 

 Moreover, it is worth highlighting that very recently new imaging techniques have 

been used to explore intertemporal choice. On the one hand, two studies applied the multi-

voxel pattern analysis to fMRI data (Clithero et al., 2009; Murawski et al., 2012; but see 

also Study III-Part II). This technique, by the means of support learning vector machines, 

investigates if the stimulus encoding depends on patterns of high and low activation across 

voxels, instead of averaging across voxels within an area thus concluding that if that area 

responds more to that stimulus it means that it encodes that stimulus, as in traditional 

univariate analysis (Huettel et al., 2009). Local voxel patterns in the left PPC have been 

found to contain unique information to differentiate probabilistic (when outcomes occur 

only with some probability; Frederick et al., 2002) and intertemporal valuation (Clithero et 

al., 2009), while regions included in the mPFC, where the subjective value during 

intertemporal choices is encoded, were modulated by incidental contextual information 

(Murawski et al., 2012). On the other hand, functional connectivity during resting state 

allows investigating abnormalities in specific interacting neural networks without 
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confounding like stimulus presentation or task performance (Friston et al., 2003). Using 

this technique, Camchong and colleagues (2011) found that hyperconnectivity within the 

ACC network involved in ‘mentalizing’ (i.e., the ability to understand the thoughts and the 

intentions of oneself and others) in chronic drug addicted was associated with difficulties 

during intertemporal choice and adaptive learning. Also, Li and colleagues (2013) found 

that resting-state functional connectivity of regions involved in valuation and choice 

processes (i.e., VS, PCC, mPFC, dlPFC, ACC, and insula) predicted impulsivity in a 

monetary TD task. More recently however, functional connectivity has been recorded also 

while making on-line intertemporal choices (Jimura et al., 2013). This study showed that 

vmPFC exhibited a specific pattern of activity during the delay periods and during choice. 

The same pattern was found in VS, but only in impulsive individuals, and activity in the 

anterior PFC (aPFC) was present only in patient subjects. vmPFC and aPFC had an 

opposite modulatory influence on VS (Jimura et al., 2013). Furthermore, the dynamic 

causal modeling (Friston et al, 2003) has also been suggested as an integrative tool for 

research on intertemporal choice, focusing on both the dynamic properties of the decision 

process, and on the role of self-control and time framing (e.g., calendar dates or delays) 

during choice behavior (Scherbaum et al., 2012). 

 

Lesion studies 

Fellows and Farah (2005) evaluated for the first time intertemporal choices in 

brain-lesioned patients. They compared performance of vmPFC patients, dorsolateral 

frontal patients, in which damage encompassed frontal cortex, but spared vmPFC, non-

frontal patients, in which frontal cortex was spared, and healthy controls. Participants were 

assessed on intertemporal monetary decisions (Kirby and Marakovic, 1995), and on the 
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‘future time perspective’ test, which assesses several facets of future time representation. 

VmPFC patients showed discounting rates comparable to those of the other two groups of 

patients and healthy controls. Concerning ‘future time perspective’, instead, vmPFC 

patients revealed significant foreshortened personal future time perspective than healthy 

controls. These results suggest that despite the temporal (future) window of vmPFC 

patients was shorter than it was in the other groups, this did not have an impact on 

intertemporal choice. Fellows and Farah (2005) themselves, anyway, did not exclude the 

possibility that their discounting task was less sensitive than the future time perspective 

task. Recent studies have evidenced that focal lesions encompassing mOFC, but not 

necessarily vmPFC affected TD in monkeys by increasing its steepness (Rudebeck et al., 

2006), which suggests that mOFC may be the critical region for evaluating different 

rewards delivered at different times (Noonan et al., 2010). Since in Fellows and Farah 

(2005)’s study some patients had damage involving mPFC, but sparing mOFC, their results 

did not clearly shed light on the role of human mOFC during intertemporal choice. 

More recently, Sellitto and colleagues (2010, see Study I-Part II) reconsidered 

intertemporal choices, comparing mOFC damaged individuals with patients whose lesion 

spared the frontal lobe, and healthy controls. Precisely, the maximal overlap of lesions in 

the mOFC was in BAs 10 and 11, and the adjacent mPFC (BA 32). All participants 

performed three TD tasks involving, separately, primary (food) and secondary (money and 

discount voucher). In the three TD tasks, participants chose between an immediate variable 

amount of reward and a fixed amount of reward that could be received after a delay (Kirby 

and Herrnstein, 1995; Myerson et al., 2003; Sellitto et al., 2010). The amount of the 

immediate reward was adjusted based on the participant’s choices, using a staircase 



 45 

procedure that converged on the amount of the immediate reward that was equal, in 

subjective value, to the delayed reward (Du et al., 2002; Sellitto et al., 2010).  

mOFC patients exhibited greater impatience than healthy and brain-damaged 

control participants across types of reward. That is, compared to controls, the preference 

for immediate rewards was increased in mOFC patients, as was the steepness of the 

hyperbolic function that best described their behavior. Moreover, lesion volume in BA 11 

showed a strong correlation with discounting behavior, with larger lesions associated with 

steep discounting rates. These findings argue for a necessary role for mOFC in the 

valuation of rewards, regardless of the type of reward at stake. This is consistent with a 

recent study (Chib et al., 2009) that found that vmPFC (which includes mOFC and mPFC) 

activity correlated with subjects’ value for all types of goods (food, non-food consumable 

and money), suggesting that a common ‘neural currency’ (Montague and Berns, 2002), 

computed via mOFC, underlies the evaluation of different categories of goods. 

Interestingly, differences in TD were observed despite patients not rating themselves as 

impulsive in a self-assessed impulsivity scale (Fossati et al., 2001). This finding confirms 

previous reports of a lack of awareness self-insight in vmPFC patients (Ciaramelli and 

Ghetti, 2007; Modirrousta and Fellows, 2008; Barrash et al., 2000; Beer et al., 2006; 

Sellitto et al., 2010), and stresses the need for converging measures. Moreover, the lesion 

volume in BA 11 strongly correlated with the discounting behavior, further suggesting that 

mOFC is a crucial area in evaluating reinforcers. A further, recent study (Figner et al., 

2010) focused on the role of cognitive control during intertemporal choices, based on the 

idea that choice does not follow automatically from valuation, as valuation judgments and 

choice can be discrepant due to the intervention of deliberative processes. Activity in 

lateral prefrontal cortex, often found during intertemporal choices in previous studies 
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(McClure et al., 2004, 2007; Kable and Glimcher, 2007, 2010), has long known to be 

responsible of the implementation of self-control during several types of task (e.g., Miller 

and Cohen, 2001; Knoch and Fehr, 2007). When we are faced with tempting short-term 

gratifications, self-control processes must intervene to resist temptation in favor of a 

farsighted choice (i.e., the future outcome). Figner and colleagues (2010, Fig. 3) described 

two types of preference reversals: ‘self controlled preference reversals’, in which, despite 

the higher valuation of the tempting short-term gratification, the long-term outcome is 

chosen, and ‘impulsive preference reversals’, where the long-term outcome has the larger 

evaluation but the short-term one is chosen. This model predicts more ‘self controlled 

preference reversal’ than ‘impulsive preference reversal’ when self-control mechanisms 

are normally available. This ‘self-control account’ (Figner et al., 2010) makes three 

fundamental predictions. First, lateral prefrontal cortex is involved in choice, but not in 

explicit evaluation; therefore, a virtual disruption of these cortices should affect the former 

but leave unaltered the latter. Second, this disruption should affect predominantly choices 

in which an immediate option is available, not when only delayed options are put up 

against, since the former are strong and tempting, requiring more self-control. Third, to the 

extent that disruption of the lateral prefrontal cortex leads to diminished self-control 

capability, both a reduction in ‘self-controlled preference reversals’ and an increase in 

‘impulsive preference reversals’, should be expected. Low-frequency repetitive 

transcranial magnetic stimulation on lateral prefrontal cortex before performing the choice 

task resulted in an increase in impatient choices, without changing the pattern of choices 

involving only future options, or valuation ratings of both types of rewards. 
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 These findings support the idea that lateral prefrontal cortex exerts a modulatory 

(self-control) role on the activity of regions (e.g., mOFC) involved in intertemporal reward 

choice (Figner et al., 2010). It is worth noting, however, that very recently Essex and 

colleagues (2012) found that the posterior parietal cortex had roughly the same role as the 

dorsolateral prefrontal cortex in favoring long-term choices over immediate gratification, 

again only when decisions were difficult. Namely, when the subjective value of the two 

options at stake are close to them, suggesting a wider circuit involved in implementing 

self-controlled and more rational decisions. Focusing particularly on choice difficulty helps 

to better understand the role of areas involved in the reward circuit. Indeed, VS, vmPFC, 

and insula have been found to be activated in trials below and above the indifference point, 

with the mPFC activated during decisions at the indifference point (Marco-Pallarés et al., 

2010). Moreover, vmPFC, ACC, dlPFC, and insula activations have been found to be 

associated with choosing the larger later option in the pair; during larger later option 

Figure 3. Proportion of prudent 
choices as a function of the 
relative difference between 
magnitude of sooner-smaller and 
later-larger rewards. Lines 
indicate the proportion of later-
larger choices for left, right and 
sham rTMS groups. (a) Now 
trials immediately after rTMS 
train. (b) Now trials 30 minutes 
after rTMS train. (c) Not-now 
trials immediately after rTMS 
train. (d) Not-now trials 30 
minutes after rTMS train. The 
largest standard error of the mean 
for difference left versus sham in 
each panel is shown (Adapted 
from Figner et al., 2010). 
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choices, steeper discounters recruited more larger later option-related activity during larger 

later option choice (Luo et al., 2012). 

 To date, following Sellitto and colleagues’ evidence (2010), only one study (Wood 

and McHugh, 2013) examined TD in another category of patients. Individuals who had 

suffered from traumatic brain injury showed increased discount rates as compared to 

control participants. TD rates were unaffected by ratings of impulsiveness, intelligence, 

memory, and everyday executive function. However, no lesion information has been 

reported in the study, so that these findings cannot be related to a specific focal brain 

damage. In the first two studies reported in Part II of this dissertation, both lesional 

findings of Sellitto and colleagues (2010) on mOFC patients and new lesional evidence on 

insular cortex damaged individuals (Sellitto et al., under submission) will be reported. To 

follow, preliminary results of an fMRI study will be described. 
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PART II – Neural basis of intertemporal choice and temporal 

discounting: New evidence from lesional and imaging studies 
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Précis 

 

 Functional imaging studies in humans are useful to observe and detect activity in 

brain regions during cognitive processes a subject is engaged in, as in the present case, 

when it comes to make a choice between goods available at different delays. However, 

these methods in isolation can account only for mere statistical correlations, while a 

causative explanation is required. Lesion studies can overcome this inferential limitation. 

Of course, we are aware that also lesional studies have their limitations. Indeed, as 

highlighted by Molenberghs and colleagues (2008), even if lesions are restricted to a 

specific brain region of interest, fibres connections could also be impaired (Corbetta et al., 

2005), and, ways commonly used to dichotomize patient groups for the purpose of lesion 

mapping (Karnath et al., 2001; Mort et al., 2003; Hillis et al., 2006) do not map rigorously 

onto the specific processes that are isolated by the subtraction method in fMRI in the intact 

brain (Husain and Rorden, 2003; Nachev and Husain, 2006). For this reason, here we 

assume that lesion studies can add important information to the knowledge of cognitive 

processes of interest, but not regardless of imaging evidence. 

Here I will provide new neural evidence about intertemporal choice along two 

lesion studies carried out on brain lesioned patients, demonstrating the causal involvement 

of both mOFC and insular cortex during the computation of intertemporal decisions about 

hypothetical rewards. In a third study, I will provide preliminary evidence about brain 

areas active during intertemporal choice, specifically those involved in the carry-over 

effect on TD, by the means of using also both univariate and multivariate fMRI analyses. 
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Study I - Medial Orbitofrontal Cortex damage increases myopic discounting of 

future rewards in humans 

[These data have been published in Sellitto et al., 2010] 

 

Introduction 

 As highlighted before (see Part I; Sellitto et al., 2011), research in cognitive 

neuroscience has begun to investigate the neural mechanisms governing TD (Luhmann, 

2009). On the one hand, fMRI studies in humans have consistently detected activity in 

brain structures such as the medial orbitofrontal cortex (mOFC) and adjacent mPFC 

(designated collectively as vmPFC) during intertemporal choices, especially when 

individuals weighted delayed rewards against immediately available rewards (McClure et 

al., 2004, 2007; Ballard and Knutson, 2009). Other fMRI studies have shown that activity 

in the mOFC and mPFC tracked the subjective value of rewards, over both short and long 

timescales (Kable and Glimcher, 2007; Peters and Büchel, 2009; Pine et al., 2009). 

Together, these findings identify the mOFC as an important structure for intertemporal 

choice. On the other hand, while several nonhuman animal studies have shown abnormal 

TD following lesion to the OFC (Cardinal et al., 2004; Winstanley et al., 2004; Rudebeck et 

al., 2006), providing evidence for a causal involvement in TD, the only study assessing TD 

in human patients with lesion to the vmPFC, found no deficit (Fellows and Farah, 2005). 

Crucially, some patients in that study had damage involving mPFC but sparing mOFC. 

Thus, whether mOFC plays a necessary role in TD in humans remains unknown. 

 Here, we investigated TD of hypothetical primary and secondary rewards in patients 

with lesions in mOFC, control patients with lesions outside the frontal lobe, and healthy 
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individuals. If mOFC plays a crucial role during intertemporal choice, favouring valuation 

of long-term outcomes (Bechara et al., 1997; Schoenbaum et al., 2009), then patients with 

lesions involving this brain region should show increased TD of future rewards compared 

with control groups. 

 

Materials and Methods 

 

Participants 

 Participants included 16 patients with brain damage and 20 healthy individuals (see 

Table 1 for demographic and clinical information). Patients were recruited at the Centre for 

Studies and Research in Cognitive Neuroscience, Cesena, Italy. Patients were selected on 

the basis of the location of their lesion evident on magnetic resonance imaging (MRI) or 

computerized tomography (CT) scans. 

 Seven patients (1 female) had lesions encompassing the medial one-third of the 

orbital surface and the ventral one-third of the medial surface of the frontal lobe, as well as 

the white matter subjacent to these regions (Fig. 1). Since lesions predominantly involved 

the mOFC (see Lesion analysis), we henceforth refer to this group as mOFC patients. 

Lesions were the results of the rupture of an aneurysm of the anterior communicating artery 

in 5 cases, and traumatic brain injury in 2 cases. Lesions were bilateral in all cases, though 

often asymmetrically so. 

 

 



 53 

 

Figure 1. Location and overlap of brain lesions. The panel shows the lesions of the seven patients with mOFC 
damage projected on the same seven axial slices and on the mesial view of the standard Montreal 
Neurological Institute brain. The level of the axial slices has been marked by white horizontal lines on the 
mesial view of the brain. z-coordinates of each axial slice are given. The color bar indicates the number of 
overlapping lesions. In each axial slice, the left hemisphere is on the left side. Maximal overlap occurs in the 
medial orbitofrontal cortex (BAs 10, 11), and adjacent mPFC (BA 32). 
 

 

 Nine patients (two females) were selected on the basis of having damage that did 

not involve the mesial orbital/vmPFC and frontal pole, and also spared the amygdala in 

both hemispheres. We henceforth refer to this group of non frontal patients as non-FC 

patients. In this group, lesions were unilateral in all cases (in the left hemisphere in 6 cases, 

and in the right hemisphere in 3 cases), and were all caused by ischemic or hemorrhagic 

stroke. Lesion sites included the lateral aspect of the temporal lobe and adjacent white 

matter (in 5 cases), the inferior parietal lobule (in 1 case), the medial occipital area (in 1 

case), and the lateral occipitoparietal junction (in 2 cases). 

 Included patients were in the stable phase of recovery (at least 12 months 

postmorbid), were not receiving psychoactive drugs, and had no other diagnosis likely to 
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affect cognition or interfere with participation in the study (e.g., significant psychiatric 

disease, alcohol abuse, history of cerebrovascular disease). There was no significant 

difference in lesion volume between mOFC patients and non-FC patients (49.2 vs. 46.9 cc; 

p = 0.88). 

 The healthy control (HC) group comprised 20 individuals (two females) matched to 

the patients on mean age, gender, and education. Control participants were not taking 

psychoactive drugs, and were free of current or past psychiatric or neurological illness as 

determined by history. Participants gave informed consent, according to the Declaration of 

Helsinki (International Committee of Medical Journal Editors, 1991) and the Ethical 

Committee of the Department of Psychology, University of Bologna. 

 Patients’ general cognitive functioning was generally preserved, as indicated by the 

scores they obtained in the Mini-Mental State Examination (Folstein et al., 1975), the 

Raven Standard Matrices, and the digit span test, which were within the normal range in all 

cases (Spinnler and Tognoni, 1987) (Table 1). 

 

Group 
Sex 

(M/F) 

Age 

(years) 

Education 

(years) 
MMSE BIS-11 

Lesion 

volume (cc.) 
SRM DS 

mOFC 

(n=7) 
6/1 

57.7 

(10.4) 

11.1  

(6.4) 

27.6  

(2.3) 

63.4 

(6.1) 
49.3 (14.6) 

30.1 

(5.8) 

4.9 

(0.7) 

non-FC 

(n=9) 
7/2 

57  

(12.8) 

12.1  

(4.0) 

28.1  

(1.9) 

64.3 

(10.9) 
46.8 (33.9) 

27.6 

(4.5) 

5.1 

(1.4) 

HC  

(n=20) 
18/2 

58.2  

(6.6) 

10.6  

(4.6) 

28.6 

(1.44) 

57.9 

(7.5) 
- - - 

 
Table 1. Participant groups’ demographic and clinical data. Note. mOFC group = patients with lesions in 
medial orbitofrontal cortex; non-FC group = patients with lesions outside the frontal lobe; HC group = healthy 
controls; M = male; F = female; MMSE = Mini Mental State Examination; BIS-11 = Behavioral Impulsivity 
Scale; SRM = Standard Raven Matrices (corrected score); DS = digit span forward (corrected score). The 
values in parentheses are standard deviations.  
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Lesion analysis 

 For each patient, lesion extent and location were documented by using the most 

recent clinical CT or MRI scan. Lesions were traced by a neurologist with experience in 

image analysis on the T1-weighted template MRI scan from the Montreal Neurological 

Institute provided with the MRIcron software (Rorden and Brett, 2000; available at 

http://www.mricro.com/mricron). This scan is normalized to Talairach space and has 

become a popular template for normalization in functional brain imaging (Moretti et al., 

2009). Superimposing each patient’s lesion onto the standard brain allowed us to estimate 

the total brain lesion volume (in cubic centimeters). Furthermore, the location of the lesions 

was identified by overlaying the lesion area onto the Automated Anatomical Labeling 

template provided with MRIcron. Figure 1 shows the extent and overlap of brain lesions in 

mOFC patients. Brodmann’s areas (BA) affected in the mOFC group were areas 10, 11, 47, 

32 (subgenual portion), and 24, with region of maximal overlap occurring in BA 11 [mean 

(M) = 21.0 cc, SD = 8.6], BA 10 (M = 12.6 cc, SD = 4.7), and BA 32 (M = 5.4 cc, SD = 

4.0). 

 

Temporal discounting tasks 

 In each of three computerized TD tasks, participants chose between an amount of a 

reward that could be received immediately and an amount of reward that could be received 

after some specified delay (Kirby and Herrnstein, 1995; Myerson et al., 2003). The nature 

of the reward changed across tasks. One task assessed TD for money, one task assessed TD 

for food (e.g., chocolate bars; see Procedures), and one task assessed TD for discount 

vouchers (e.g., discount vouchers for gym sessions; see Procedures). All rewards used were 

hypothetical. In each task, participants made five choices at each of six delays: 2 d, 2 
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weeks, 1 month, 3 months, 6 months, and 1 year. The order of blocks of choices pertaining 

to different delays was randomly determined across participants. Within each block of five 

choices, the delayed amount was always 40 units (e.g., 40 €, 40 chocolate bars, a 40 € 

discount voucher for a gym session). The amount of the immediate reward, on the other 

hand, was adjusted based on the participant’s choices, using a staircase procedure that 

converged on the amount of the immediate reward that was equal, in subjective value, to 

the delayed reward (Du et al., 2002). The first choice was between a delayed amount of 40 

units and an immediate amount of 20 units. If the participant chose the immediate reward, 

then the amount of the immediate reward was decreased on the next trial; if the subject 

chose the delayed reward, then the amount of the immediate reward was increased on the 

next trial. The size of the adjustment in the immediate reward decreased with successive 

choices: the first adjustment was half of the difference between the immediate and the 

delayed reward, whereas for subsequent choices it was half of the previous adjustment 

(Myerson et al., 2003). This procedure was repeated until the subject had made five choices 

at one specific delay, after which the subject began a new series of choices at another delay. 

For each trial in a block, the immediate amount represents the best guess as to the 

subjective value of the delayed reward. Therefore, the immediate amount that would have 

been presented on the sixth trial of a delay block was taken as the estimate of the subjective 

value of the delayed reward at that delay. 

 

Self-report impulsivity scales 

 Participants were administered the Barratt Impulsiveness Scale (BIS-11) (Fossati et 

al., 2001), a 30-item self-report questionnaire evaluating everyday behaviors reflecting 

impulsivity on a 4-point Likert scale. The BIS-11 assesses 3 facets of impulsivity: 
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attentional impulsivity (AI sub- scale, e.g., “I am more interested in the present than the 

future”), motor impulsivity (MI subscale, e.g., “I do things without thinking”), and 

impulsive nonplanning (INP subscale, e.g., “I make up my mind quickly”). High BIS-11 

scores indicate high levels of impulsivity. 

 

Procedure 

 To ensure motivation across tasks, before starting the experiment, participants were 

invited to choose their favourite food and discount voucher among four alternatives, 

presented on the computer screen. Food alternatives included two sweet snacks (cookie and 

chocolate bar), and two salty snacks (cracker and breadstick). Discount voucher alternatives 

included discount vouchers for a museum tour, gym session, hairdresser/ barber session, 

and book purchase. The favorite food and discount vouchers were used as the reward for 

the food task and the discount voucher task, respectively. 

 Participants then underwent the three TD tasks. The tasks were administered 

separately, and the order of tasks was randomly determined across participants. Participants 

were told that, on each trial, two amounts of a hypothetical reward would appear on the 

screen. One could be received right now, and one could be received after a delay. They 

were informed that there were no correct or incorrect choices, and were required to indicate 

the option they preferred by pressing one of two buttons (Estle et al., 2007). Figure 2 

illustrates the experimental paradigm. Each trial began with a 1 s fixation screen, followed 

by a screen depicting the two available options. The two options appeared on the left and 

right side of the screen, and clearly indicated the type of reward, the amount of reward, and 

the delay of delivery of the reward. After the participants made their choices, the 

nonpreferred option disappeared, whereas the preferred option remained on the screen for 1 
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s, with a triangle underneath it. The intertrial interval was 1.5 s. 

 

 

Figure 2. Experimental paradigm. In each trial, after a 1 s fixation period, subjects chose between a small 
amount of reward delivered immediately and a larger amount of reward delivered after a delay. The preferred 
option remained highlighted for 1 s. Separate tasks involved different types of rewards, including money, 
discount vouchers, and food. All rewards used were hypo- thetical. The picture refers to a choice trial in the 
money task. See Materials and Methods for a more detailed explanation of procedures. 
 

 

Data analysis 

 For each task, the rate at which the subjective value of a reward decays with delay 

(TD rate) was assessed through two indices: the TD parameter (k) (Mazur, 1987; Rachlin et 

al., 1991; Green and Myerson, 2004; Fellows and Farah, 2005), and the area under the 

empirical discounting curve (AUC) (Myerson et al., 2001). 

 Estimation of k. The hyperbolic function SV = 1/(1+kD), where SV = subjective 

value (expressed as a fraction of the delayed amount), and D = delay (in days), was fit to 

the data to determine the k constant of the best fitting TD function, using a nonlinear, least-

squares algorithm (as implemented in Statistica; Statsoft). The larger the value of k, the 

steeper the discounting function, the more participants were inclined to choose small-

immediate rewards over larger-delayed rewards. Subjective preferences were well 

characterized by hyperbolic functions across groups. There were not significant differences 
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in R2 across participant groups in any of the tasks (money task: HC group = 0.72; mOFC 

group = 0.72; non-FC group = 0.68, F(2,33) = 0.11, p = 0.89; discount voucher task: HC 

group = 0.65; mOFC group = 0.70; non-FC group = 0.72, F(2,33) = 0.37, p = 0.68; food 

task: HC group = 0.71; mOFC group = 0.87; non-FC group = 0.80, F(2,33) = 1.74, p = 

0.19). 

 For comparison purposes, we also assessed the fits to the data of an exponential 

discounting model. For each TD task, the exponential function SV = ekD was fit to the data 

to determine the k constant of the best fitting TD function. Although both the hyperbolic 

and the exponential functions fit the data well, the hyperbolic function fit better than the 

exponential across participant groups and reward types. We entered R2 scores as the 

dependent variable in an ANOVA with group (mOFC patients, non-FC patients, and HC) 

and model (hyperbolic, exponential) as factors, for each reward separately. For the money 

task, there was a significant effect of model (F(1,33) = 10.16, p = 0.003), such that the 

hyperbolic model fit better than the exponential model (0.71 vs. 0.64; p = 0.001), with no 

significant effect of group (p = 0.94) or group × model interaction (p = 0.91). Similar 

results were found for the discount voucher and food tasks. For the discount voucher task, 

there was a significant effect of model (F(1,33) = 5.83, p = 0.02), such that the hyperbolic 

model fit better than the exponential model (0.69 vs. 0.63; p = 0.01), with no significant 

effect of group (p = 0.62) or group × model inter- action (p = 0.61). As well, for the food 

task, there was a significant effect of model (F(1,33) = 4.43, p = 0.04), such that the 

hyperbolic model fit better than the exponential model (0.79 vs. 0.73; p = 0.02), with no 

significant effect of group (p = 0.11) or group × model interaction (p = 0.77). It is worth 

noting that the superiority of the hyperbolic over the exponential model in describing 

discounting behavior applied to healthy participants as well as patients with mOFC lesions. 
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This finding indicates that lesions to mOFC steepened the discounting function, but did not 

alter it in any other way (e.g., shape). Together with the lack of evidence for inconsistent 

preference in this patient population (see Results), this finding strongly suggests that mOFC 

patients’ behavior was truly reflective of TD, and not poor task comprehension or 

idiosyncratic preferences. Given the superiority of the hyperbolic over the exponential 

model in describing discounting behavior, hyperbolic k values were adopted as measures of 

TD. The hyperbolic k constants were normally distributed after log-transformation 

(Kolmogorov–Smirnov d < 0.14, p > 0.2 in all cases), and therefore, comparisons were 

performed using parametric statistical tests. 

 Estimation of AUC. Although hyperbolic functions captured participants’ TD 

behavior relatively well, we also obtained AUC as an additional index of TD rate that, 

unlike k, does not depend on theoretical models regarding the shape of the discounting 

function (Myerson et al., 2001; Johnson and Bickel, 2008). Briefly, delays and subjective 

values were first normalized. Delays were expressed as a proportion of the maximum delay 

(360 d), and subjective values were expressed as a proportion of the delayed amount (40 

units). Delays and subjective values were then plotted as x and y coordinates, respectively, 

to construct a discounting curve. Vertical lines were drawn from each x value to the curve, 

subdividing the area under the curve into a series of trapezoids. The area of each trapezoid 

was calculated as (x2 - x1)(y1 + y2)/2, where x1 and x2 are successive delays, and y1 and 

y2 are the subjective values associated with these delays (Myerson et al., 2001). The AUC 

is the sum of the areas of all the trapezoids. The AUC varies between 0 and 1. The smaller 

the AUC, the steeper the TD, the more participants were inclined to choose small- 

immediate rewards over larger-delayed rewards. The AUC scores were normally distributed 

(Kolmogorov–Smirnov d < 0.12, p > 0.2 in all cases), and therefore, comparisons were 
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performed using parametric statistical tests. 

 

Results 

 Figure 3 shows TD curves by participant group and delay. The k value for each 

curve reflects the geometric mean of the group — which corresponds to mean of the log-

transformed values — and thus provides a better measure of central tendency for positively 

skewed metrics, such as TD rates, than does the arithmetic mean. Figure 4 shows the AUC 

for each participant group and type of reward. As is evident, TD curves were steeper and 

the AUC was smaller in mOFC patients compared with non-FC patients and normal 

controls (HC), suggesting that mOFC patients had an increased tendency to discount future 

rewards compared with the control groups. For example, on average, 40 € delayed by 1 

month were worth ~32 € now for normal controls, but only 12 € for mOFC patients (losing 

~70% of their value). Figures 3 and 4 also highlight that TD of food was steeper than TD of 

money and discount vouchers across groups. These impressions were confirmed by 

ANOVA analyses. 

 

Figure 3. TD functions by participant group (mOFC, non-FC, HC) and type of reward. The hyperbolic curves 
describe the discounting of subjective value (expressed as a proportion of the delayed amount) as a function 
of time (days). The discounting parameter k reflects the geometric mean of the group (mean of the log-
transformed values). Confidence intervals are 95% intervals. 
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k. An ANOVA on log-transformed k values with group (mOFC, non-FC, and HC) 

as a between-subject factor, and task (money, food, discount voucher) as a within-subject 

factor yielded a significant effect of group (F(2,33) = 8.56, p = 0.001). Post hoc 

comparisons, performed with the Newman–Keuls test, showed that TD was steeper in 

mOFC patients compared with non-FC patients (-0.92 vs. -1.93; p = 0.0006) and HC (-0.92 

vs. -1.80; p = 0.0009), whereas no significant difference was detected between non-FC 

patients and HC (p = 0.61). Moreover, there was a significant effect of task (F(2,66) = 

14.85, p = 0.000005), indicating that TD of food was steeper than TD of money (-1.16 vs. -

1.80; p = 0.0001) and discount vouchers (-1.16 vs. -1.69; p = 0.0001), whereas no 

significant difference emerged between TD of money and discount vouchers (p = 0.30). 

There was no significant group × task interaction (p = 0.98). Group differences in TD were 

confirmed when the ANOVA was run on data from the money and discount voucher tasks 

only (see Appendix B), and using nonparametric tests (see Appendix B). 

 AUC. Similar results were obtained using AUC as the dependent variable. An 

Figure 4. Area under the empirical 
discounting curve by participant 
group (mOFC, non-FC, HC) and 
type of reward. The error bars 
indicate the standard error of the 
mean. 
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ANOVA on AUC scores with group and task as factors yielded a significant effect of group 

(F(2,33)= 5.90, p = 0.006). 

 Post hoc comparisons, performed with the Newman–Keuls test, showed that AUC 

was smaller (i.e., TD was steeper) in mOFC patients compared with non-FC patients (0.22 

vs. 0.47; p = 0.003) and HC (0.22 vs. 0.42; p = 0.01), whereas no significant difference was 

detected between non-FC and HC (p = 0.54). There was a significant effect of task (F(2,66) 

= 16.86, p = 0.000001), indicating steeper TD of food than money (0.25 vs. 0.44; p = 

0.0001) and discount vouchers (0.25 vs. 0.43; p = 0.0001), with no significant difference 

between TD of money and discount vouchers (p = 0.86). No significant group × task 

interaction emerged (p = 0.91). Group differences in TD were confirmed when the 

ANOVA was run on data from the money and discount voucher tasks only (see Appendix 

B), and using nonparametric tests (see Appendix B). 

 

 TD and mOFC. We investigated whether TD rate in mOFC patients correlated with 

lesion volume. As anticipated, brain lesions in mOFC patients overlapped maximally in 

BAs 11, 10, and 32. By using partial correlation analyses, we investigated the relation 

between AUC scores and lesion volume in each of the three BAs, partialing out the effect 

of lesion volume in the other two BAs. We found that lesion volume in BA 11 correlated 

significantly with AUC scores for money (r = -0.91; p = 0.01, two-tailed; Fig. 5), and, 

marginally, with AUC scores for food (r = -0.83; p = 0.056, two-tailed) and discount 

vouchers (r = -0.78; p = 0.08, two- tailed): the larger the lesion in BA 11, the steeper the 

TD. We also observed a marginal correlation between lesion volume in BA 32 and AUC 

scores for money (r = -0.81; p = 0.07, two-tailed). No other correlations were significant (p 

> 0.15 in all cases). Although these results should be taken with caution due to the small 
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sample size, they suggest that BA 11 of mOFC may play a privileged role in governing TD 

across types of reward. 

 

 

 

 

 Self-reports of impulsivity. mOFC patients’ self-reports did not reflect significantly 

higher levels of impulsivity than those of non-FC patients and healthy controls [F(2,33) = 

2.18, p = 0.13]. Separate analysis on scores from the three subscales of the BIS-11 also 

failed to yield statistically significant group differences [AI subscale: F(2,33) = 1.91, p = 

0.16; INP subscale: F(2,33) = 2.85, p = 0.08; MI subscale: F(2,33) = 2.64, p = 0.09], 

although the results trended toward more impulsive nonplanning and motor impulsivity in 

mOFC patients than in controls. This finding was surprising in light of mOFC patients’ 

poor valuation of the future in the TD tasks. It is important to note, however, that self-

reports assess awareness of a behavior, which may dissociate from more objective 

measures of the same behavior (Schooler, 2002), especially in patients with damage to 

vmPFC regions (Ciaramelli and Ghetti, 2007; Modirrousta and Fellows, 2008), who may 

Figure 5. Scatter plot of the 
correlation between lesion 
volume in BA 11 and degree of 
TD for money (AUC scores). 
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lack self-insight (Barrash et al., 2000; Beer et al., 2006). mOFC patients, therefore, may 

have had problems introspecting on their impulsive behaviors. 

 The results indicate that mOFC patients discounted delayed rewards more steeply 

than normal controls. Crucially, large TD rates were not a general consequence of brain 

damage. Patients with lesions outside the frontal lobe, indeed, did not exhibit TD rates 

different from normal controls. These findings argue for a necessary role of mOFC for 

valuation of future rewards. Before discussing these results further, it is important to rule 

out the possibility that differences in TD rates between mOFC patients and control groups 

depended on factors other than TD, such as poor comprehension of the task, or the presence 

of inconsistent preferences in mOFC patients. The fact that hyperbolic functions described 

TD behavior equally well in mOFC patients and control groups, and better than did 

exponential functions, argues against this possibility: mOFC patients’ TD behavior obeyed 

the typical (hyperbolic) curves, though reflecting a reliable increase in the parameter k. As 

a more direct (and model-free) test for the ability to perform the task, we counted the 

number of inconsistent preferences participants had evinced. By definition, TD behavior 

should result in a monotonic decrease of the subjective value of the future outcome with 

delay (Johnson and Bickel, 2008). That is, if R1 is the subjective value of a reward R 

delivered at delay t1, R2 is the subjective value of R delivered at delay t2, and t2 > t1, then 

it is expected that R2 < R1. As a consequence, subjects exhibit inconsistent preference 

when the subjective value of the future outcome at a given delay is greater than that at the 

preceding delay, i.e., R2 > R1 (Johnson and Bickel, 2008). To allow variability in the data, 

we considered as indicative of inconsistent preferences only those data points in which the 

subjective value of a reward overcame that at the preceding delay by a value of >10% of 

the future outcome, i.e., R2 > R1 + R/10, as recommended by Johnson and Bickel (2008). 
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The mean number of inconsistent preferences was small, and comparable across participant 

groups [money task: HC, 0.40; mOFC, 0.57; non-FC, 0.44, F(2,33) = 0.15, p = 0.86; 

discount voucher task: HC, 0.75; mOFC, 0.42; non-FC, 0.55, F(2,33) = 0.57; p = 0.56; food 

task: HC: 0.55; mOFC: 0.57; non-FC: 0.33, F(2,33) = 0.33; p = 0.71]. This held even if all 

deviations from a monotonically decreasing function were counted as inconsistent 

preferences, regardless of their magnitude, i.e., R2 > R1 (see Appendix B). Moreover, no 

participant in any group followed a response heuristic, such as always selecting the larger- 

delayed amount or the smaller-immediate amount across delay and reward conditions, 

regardless of the options at stake. Together, the findings that lesion to mOFC did not result 

in changes to the shape of the discounting function aside from its steepness, inconsistent 

preferences, or response heuristics, strongly suggest that mOFC patients’ behavior was 

indeed reflective of increased TD, and not poor task comprehension or idiosyncratic 

preferences. 

 One further aspect of the present study deserves attention. Participants did not 

receive the actual consequences of their choices, but instead made choices about 

hypothetical rewards. Hypothetical outcomes have the advantage of allowing the use of 

reward amounts and delays that are large enough to be meaningful to participants, which 

are generally infeasible in studies involving real outcomes (Frederick et al., 2002; Jimura et 

al., 2009). Hypothetical outcomes, on the other hand, have the disadvantage that people 

may not be motivated to, or capable of, accurately predicting what they would do if 

outcomes were real (Frederick et al., 2002; Jimura et al., 2009). For this reason, although 

there is, as of yet, no evidence that hypothetical rewards are discounted differently from 

real rewards, either in terms of the degree of TD (Johnson and Bickel, 2002), the shape of 

TD curves (Kirby and Herrnstein, 1995; Kirby and Marakovic, 1995; Johnson and Bickel, 
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2002), or the neural bases of TD (Bickel et al., 2009), we conducted a corollary 

investigation of TD for money in mOFC patients and healthy controls using real rewards. 

We confirmed our results: mOFC patients discounted real monetary rewards more steeply 

than controls (see Appendix B). 

 

Discussion 

 The present study investigated the role of mOFC in intertemporal choice. Patients 

with lesions in the mOFC, control patients with lesions outside the frontal lobe, and healthy 

individuals made a series of hypothetical choices between small-immediate rewards and 

larger-delayed rewards. Since decisions about money are not necessarily representative of 

all decisions, and to examine the role of the mOFC across a wide range of contexts, we 

varied the type of outcome, which included both primary (food) and secondary (money and 

discount vouchers) rewards. The study yielded two main findings. Lesions to the mOFC 

increased significantly the preference for small-immediate over larger-delayed rewards, 

resulting in steeper TD of future rewards in mOFC patients compared with the control 

groups. This finding held for both primary and secondary rewards. Damage to the mOFC, 

however, did not alter the normal tendency to discount different types of rewards at 

different rates, such that food was discounted more steeply than money and discount 

vouchers across groups. 

 Our primary finding that damage to mOFC caused steep TD of future outcomes is 

consistent with a large body of literature. Single-neuron studies of OFC (Roesch et al., 

2006) in rodents show that neural response to reward is affected by the delay preceding its 

delivery. Moreover, disruption of the OFC in animals affects discounting of future rewards 

(Mobini et al., 2002; Cardinal et al., 2004; Winstanley et al., 2004; Rudebeck et al., 2006). 
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In humans, fMRI studies have detected consistent activation of mOFC and adjacent mPFC 

during intertemporal choice (McClure et al., 2004, 2007; Kable and Glimcher, 2007). Our 

results confirm and extend previous evidence by providing, for the first time, evidence for a 

necessary role of mOFC in valuing delayed outcomes in humans. 

 Although fMRI studies have reported wide activation of vmPFC areas during TD 

tasks, there may be heterogeneity in the causal involvement of different regions within 

vmPFC in TD behavior. As extensively reported in Part I of this dissertation, a previous 

neuropsychological study in patients with lesions to vmPFC, overlapping maximally in 

mPFC with some patients having spared OFC, found no deficit in TD (Fellows and Farah, 

2005). Together with our findings, this null effect raises the possibility that mOFC, but not 

mPFC, is necessary for normal discounting behavior. Consistent with this proposal, 

ablation studies in animals have found that lesions in the OFC, but not mPFC, affect 

reward-based decision-making (Noonan et al., 2010) and increase delay discounting 

(Rudebeck et al., 2006). Moreover, in our study, lesion volume in BA 11 of mOFC showed 

the strongest association with behavior. This proposal, of course, will need to be tested 

empirically in future studies. 

 The present results have important implications for current neurobiological models 

of intertemporal choice. According to the ß-∂ model (McClure et al., 2004, 2007), limbic 

areas, including the mOFC, VS, and PCC, form an impulsive (ß) system that places special 

weight on immediate rewards, whereas a more providential cognitive (∂) system, based in 

the lateral prefrontal cortex and posterior parietal cortex, is more engaged in patient 

choices. During intertemporal choice, activation of the ß system would favor the immediate 

option, whereas activation of the ∂ system would favor the delayed option (McClure et al., 

2004). Our finding that damage to the mOFC increases impatient choices is not in line with 
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the hypothesis that mOFC acts as a neuroanatomical correlate of the impulsive system 

(McClure et al., 2004). Were this the case, lesions to mOFC should lead to a weakening of 

the ß system relative to the ∂ system, and, consequently, more patient choices. 

 Our results can be understood in the context of an alternative model of intertemporal 

choice (Kable and Glimcher, 2007, 2010; Peters and Büchel, 2009; see also the general 

discussion of this dissertation), according to which a unitary system, encompassing mOFC 

and adjacent mPFC, VS, and PCC, represents the value of both immediate and delayed 

rewards, and is subject to top-down control by lateral prefrontal cortex (Hare et al., 2009; 

Figner et al., 2010). Within this network, the mOFC is thought to signal the subjective 

value of expected outcomes during choice (Rudebeck et al., 2006; Schoenbaum et al., 2006, 

2009; Murray et al., 2007; Rushworth et al., 2007; Talmi et al., 2009), by integrating 

different kinds of information and concerns (e.g., magnitude, delays) into a common 

‘neural currency’ (Montague and Berns, 2002).  

 Though generally more impulsive than controls, mOFC patients retained the same 

tendency of the controls to discount food more steeply than money and discount vouchers. 

This finding confirms previous evidence that TD depends strongly on reward type 

(McClure et al., 2007): Delayed monetary rewards are discounted less steeply than directly 

consumable rewards (Odum and Rainaud, 2003; Estle et al., 2007; Rosati et al., 2007; 

Charlton and Fantino, 2008). Why this difference occurs is not entirely clear. People may 

discount delayed money less steeply than consumable rewards because money can be 

stored, exchanged for other primary and secondary reinforcers (Catania, 1998), and retains 

its utility despite fluctuations of desire and changes in the internal state of the organism. In 

the present study, the interpretation of differences in TD for primary versus secondary 

rewards is complicated by the fact that delays and amounts used, though comparable to 
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those used in previous research (Odum and Rainaud, 2003; Estle et al., 2007; Charlton and 

Fantino, 2008), may have been more suited for the assessment of TD for money than for 

food (Jimura et al., 2009). For example, 40 chocolate bars may reach saturation and may 

therefore be less appetitive than 40 units of money. 

 Our finding that mOFC patients discounted all types of reward more steeply than 

controls, and that differences in TD rates between mOFC patients and controls were not 

modulated by the type of reward, is important in many respects. First, it reinforces the 

suggestion that the role of the mOFC during valuation and choice is generalized across a 

wide range of stimuli and contexts, ranging from primary to secondary rewards (Chib et al., 

2009; FitzGerald et al., 2009; Hare et al., 2010). Second, it is consistent with the hypothesis 

that the mOFC is necessary to encode the prospective value of available goods to choose 

between them (Padoa-Schioppa and Assad, 2006), but not to encode the incentive value of 

a stimulus per se, regardless of whether an economic choice is required (for review, see 

O’Doherty, 2004). Indeed, in experiments that compared conditions in which subjects did 

or did not make a choice, mOFC was significantly more active in the choice condition 

(Arana et al., 2003). By contrast, neural responses in the amygdala were related to incentive 

value, and independent of behavioral choice. Finally, the preserved effect of reward type on 

TD after mOFC lesion rules out the possibility that increased choosing of smaller-

immediate rewards in mOFC patients simply resulted from poor motor impulse control 

(Bechara and Van Der Linden, 2005): mOFC patients in the money task faced a situation 

identical to that in the food task, yet showed increased willingness to wait for a larger 

reward. 

 In conclusion, we have shown, for the first time in humans, that damage to mOFC 

causes abnormally steep TD of delayed rewards, indicating that mOFC is necessary for 
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optimal weighting of future outcomes during intertemporal choice. mOFC may be crucial 

to form vivid representations of future outcomes, capable of competing with immediate 

ones, or to incorporate top-down signals promoting resistance to immediate gratification in 

the valuation process, ultimately extending the reach of humans’ choices into the future. 

We will further discuss these findings at the end of this dissertation taking into account 

lesional evidence on insular damaged patients (Study II-Part II, Sellitto et al., under 

submission), preliminary imaging results (Study III-Part III) and all behavioral findings 

reported in Part III of this thesis. 
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Study II – Insular damage increases willingness to wait in intertemporal choice  

[This data are under submission in Sellitto et al.] 

 

Introduction 

 

As outlined before (see Part I and Study I-Part II; Sellitto et al., 2010, 2011), the 

extant cognitive neuroscience evidence show that limbic structures, including the mOFC 

and the VS, and the dorsolateral prefrontal cortex, are core areas of the valuation and the 

control network, respectively (Rangel et al., 2008; Hare et al., 2009; Figner et al., 2010; 

Sellitto et al., 2010, 2011), governing intertemporal choice.  

Emotions and drive states (e.g., hunger, drug craving) influence choice markedly 

(Bechara and Damasio, 2005; see also Part I). By signaling the current needs of the body, 

such inputs influence the valuation of different goods. For example, bodily signals may 

convey the urge to obtain a reward soon, overwhelming attempts to implement far-sighted 

decisions (Loewenstein, 1996; Camerer et al., 2004). Consistently, TD is elevated when 

people are hungry or tired, so that emotional responses promoting impulsivity are maximal 

(van Boven and Loewenstein, 2003). 

The insula plays a critical role in emotion (Bechara, 2005; Craig, 2009). It has been 

proposed that the insula mediates the conscious representation of bodily states, and the 

anticipation of the bodily effects of emotional events (Rolls, 1999; Craig, 2009; Damasio et 

al., 2000). As such, the insula may play a critical role in TD, influencing participants’ 

valuation of rewards available at different times. Functional neuroimaging (fMRI) studies 

have shown that insula activity modulates according to the time availability of rewards. 
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Increased insula activity, however, has been reported in association with both delayed 

(Wittmann et al., 2007; Claus et al., 2011; Kayser et al., 2012) and immediate rewards 

(Tanaka et al., 2004; McClure et al., 2007; Wittmann et al., 2010), and therefore its role in 

TD is unclear. To overcome this limitation, we used a lesion approach.   

Patients with lesion to the insula (Insular patients), control patients with lesions 

outside the insula, and healthy participants chose between smaller-sooner rewards and 

larger-later rewards. Participants were tested in two conditions: in one, the earlier quantity 

of money was delivered immediately, whereas in the other it was delayed by 60 days 

(Kable and Glimcher, 2010). If the insula is necessary to represent the emotional/bodily 

states associated with sooner and later rewards, Insular patients’ choices should be 

relatively devoid of emotion, and governed by a heuristic of quantity, making patients more 

willing to wait to larger-later rewards than controls (reduced TD). This tendency could be 

even more pronounced when a reward is available immediately, maximizing the 

involvement of emotion on choice. 

 

Materials and Methods 

 

Participants  

 Participants included 25 patients with brain damage and 30 healthy individuals (see 

Table 1 for demographic and clinical information). Patients were recruited at the Centre for 

Studies and Research in Cognitive Neuroscience, Cesena, Italy, and at the Spedali Civili of 

Brescia, Italy. They were selected on the basis of the location of their lesion evident on 

magnetic resonance imaging (MRI) or computerized tomography (CT) scans, and divided 

into two groups based on their lesion location.  
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Table 1. Participant groups’ demographic and clinical data. Insular = patients with lesions in the insular 
cortex; Non-insular = patients with lesions outside the insula; HC = healthy controls; F = female; M = male; 
MMSE = Mini Mental State Examination (corrected score); CRM = Coloured Raven Matrices (corrected 
score); DS = digit span forward (corrected score); BDI-II = Beck Depression Inventory scale. The values in 
parentheses are standard deviations. 
 

 

Twelve patients (5 females) had lesions involving the insular cortex, hidden in the 

lateral sulcus, covered by frontal, temporal, and parietal opercula, as well as surrounding 

grey and white matter (Fig. 1). Since lesions predominantly involved the insular cortex (see 

Lesion analysis), we henceforth refer to this group as “Insular patients”. Lesions were 

caused by an ischemic or hemorrhagic stroke of the middle cerebral artery (MCA) and were 

unilateral in all cases (left hemisphere: 8 cases, right hemisphere: 4 cases). Thirteen patients 

(7 females) had brain damage that spared the insular cortex in both hemispheres. We 

henceforth refer to this group as “Non-insular patients”. Lesions were caused by ischemic 

or hemorrhagic stroke (9 cases) or tumor resection (4 cases), were unilateral in all cases 

(left hemisphere: 7 cases, right hemisphere: 6 cases), and mainly involved the occipital 

cortex, the temporal cortex, and the superior frontal cortex. In no case did patients’ lesions 

involve the mOFC. There was no significant difference in lesion volume between Insular 

patients and Non-insular patients (33.33 vs. 25.36 cc.; p = 0.29). 

 Sex 
(M/F) 

Age 
(years) 

Education 
(years) 

BDI-
II MMSE DS CRM 

Lesion 
volume 

(cc.) 

Insular 
(n=12) 5/7 60.6 

(14) 
10.5 
(4.9) 

10.6 
(8.7) 

25.1 
(2) 

5 
(1.2) 

28.8 
(4.6) 33.3 (23.5) 

Non-
insular 
(n=13) 

7/6 59 
(12.7) 

10.1 
(3.8) 

10 
(7.1) 

25.6 
(1.6) 

5.8 
(1.3) 

25.5 
(3.1) 25.4 (11.7) 

HC  
(n=30) 15/15 63 

(10.9) 
8.5 

(3.2) 
10.2 
(7.3) 

27 
(1.4) 

5.5 
(0.8) - - 
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Figure 1. Location and overlap of brain lesions. The panel shows the lesions of the Insular patients projected 
on the same seven axial slices and on the mesial view of the standard Montreal Neurological Institute brain. 
The level of the axial slices has been marked by white horizontal lines on the mesial view of the brain. z-
coordinates of each axial slice are given. The colour bar indicates the number of overlapping lesions. In each 
axial slice, the left hemisphere is on the left side. 
 

 

All patients were in the chronic phase of recovery (at least 12 months post onset), 

were not receiving psychoactive drugs, and had no other diagnosis likely to affect cognition 

or interfere with the participation in the study (e.g., significant psychiatric disease, alcohol 

abuse, history of cerebrovascular disease). Patients’ general cognitive functioning was 

generally preserved, as indicated by the scores they obtained in the Mini-Mental State 

Examination (MMSE, Folstein et al., 1975), the digit span forward test (DS), and the 

Colored Raven Matrices (CRM), which were within the normal range in all cases (Spinnler 

and Tognoni, 1987) (Table 1). In addition, left-damaged patients had no aphasia 

documented, and right-damaged patients had no hemispatial neglect documented.  
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The healthy control group comprised 30 individuals (15 females) matched to the 

patients on demographic ground, including mean age, gender, and level of education. 

Control participants were not taking psychoactive drugs, and were free of current or past 

psychiatric or neurological illness as determined by history. 

All participants gave informed consent, according to the Declaration of Helsinki 

(International Committee of Medical Journal Editors, 1991) and the Ethical Committee of 

the Department of Psychology, University of Bologna. 

 

Lesion analysis 

Individual lesions extent and location were documented by using the most recent 

clinical CT or MRI. Lesions were traced by a neurologist expert in image analysis on the 

T1-weighted template MRI scan from the Montreal Neurological Institute provided with 

the MRIcron software (Rorden and Brett, 2000). This scan is normalized to Talairach space 

and is a widely used template for normalization in functional brain imaging (e.g., Moretti et 

al., 2009). Lesions’ location was identified by loading the lesion drawings onto the 

Brodmann template provided with MRIcron, and the Automated Anatomical Labeling 

template (AAL, Tzourio-Mazoyer et al., 2002).  

Figure 1 shows the extent and overlap of brain lesions in Insular patients. As is 

evident, although all patients had damage that included the insula, areas adjacent to the 

insula that are within the MCA blood supply territories were damaged to some degree as 

well. This included parts of the somatosensory cortex, the basal ganglia (e.g., caudate, 

putamen), the temporal lobe (especially the superior portions), the dorsolateral and/or 

ventrolateral prefrontal cortex, the inferior parietal lobule, the occipito-parietal junction, 

and the dorsomedial sectors of the occipital lobe. Lesions of Insular patients overlapped 



 77 

maximally in BA 20 (M = 7.0 cc., SD =11.0 cc.), BA 21 (M = 2.7 cc., SD =5.5 cc.), BA 38 

(M = 2.1 cc., SD = 2.7 cc.), and BA 22 (M = 1.3 cc., SD = 2.2 cc.), as well as not numbered 

areas (M = 18.1 cc., SD = 6.4 cc.). Since the insular cortex is part of the areas with no 

Brodmann label (e.g., Kurth et al., 2010), we calculated maximal overlap location also 

using the AAL template. This included the left (M = 6.6 cc., SD = 2.7 cc.) and the right (M 

= 6.5 cc., SD = 1.3 cc.) insula, as well as the temporal lobe bilaterally [pole (M = 1.9 cc., 

SD = 2.4 cc.); superior portions (M = 5.2 cc., SD = 3.3 cc.)]. 

 

Temporal discounting tasks  

In a computerized TD task, participants chose hypothetically between an amount of 

reward that could be received sooner and an amount of reward that could be received later 

(e.g., Kirby and Herrnstein, 1995; Myerson et al., 2003; Figner et al., 2010; Sellitto et al., 

2010). Two temporal conditions were included. In the Now condition, participants made a 

series of choices between a smaller amount of money (in €) that could be received 

immediately (now), and 40 € that could be obtained after a variable delay. In the Not-now 

condition, choices involved a smaller amount of money that could be received in 60 days, 

and 40 € that could be delivered after a variable delay larger than 60 days, while 

maintaining the same temporal gaps between earlier and later rewards as in the Now 

condition. Thus, in the Now condition participants made five choices at each of six delays: 

2, 14, 30, 90, 180, and 365 days, whereas in the Not-now condition the delays were 62, 74, 

90, 150, 240, and 425 days.  

Within each block of five choices, the amount of the sooner reward was adjusted 

based on the participant’s previous choice, using a staircase procedure that converged on 

the amount of the sooner reward that was equal, in subjective value, to the later reward. The 
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first choice was between a later amount of 40 € and a sooner amount of 20 €. If the sooner 

reward was chosen, then the amount of the sooner reward was decreased on the next trial; if 

the later reward was chosen, then the amount of the sooner reward was increased on the 

next trial. The size of the adjustment in the sooner reward decreased with successive 

choices: the first adjustment was half of the difference between the sooner and the later 

reward, whereas for subsequent choices it was half of the previous adjustment (Myerson et 

al., 2003). This procedure was repeated until the subject had made five choices at one 

specific delay, after which the subject began a new series of choices at another 

delay/temporal condition. For each trial in a block, the sooner amount represented the best 

guess as to the subjective value of the later reward. Therefore, the sooner amount that 

would have been presented on the sixth trial of a delay block was taken as the estimate of 

the subjective value of the later reward at that delay.  

Moreover, two control conditions were included. In one, subjects made five choices 

between 40 € and a smaller amount of money, both available immediately. In the other, 

participants made five choices between 40 € and a smaller amount of money, both available 

in 365 days. The amount of the sooner option of the two control conditions was adjusted 

based on the staircase procedure described above. Both patients and healthy subjects always 

chose the larger reward in the two control conditions, suggesting adequate comprehension 

of the task as well as adequate sensitivity to reward. 

The blocks of choices pertaining to the two temporal and control conditions were 

interspersed, and the order of blocks of choices relative to different delays of both temporal 

conditions was randomized for each participant.  

Participants did not receive the actual consequences of their choices, but instead made 

choices about hypothetical rewards. While using hypothetical rewards has both advantages 
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and disadvantages, there is no evidence that hypothetical rewards are discounted differently 

from real rewards, either in terms of the degree, shape, and neural bases of TD (Johnson 

and Bickel, 2002; Bickel et al., 2009). Moreover, in a previous work, we confirmed our 

results on hypothetical rewards using real rewards (Sellitto et al., 2010). 

 

Self-report depression scale 

Given that the insular cortex has been implicated in depression (e.g., Takahashi et 

al., 2010; Sprengelmeyer et al., 2011), participants in the present experiment were 

administered the Beck Depression Inventory-II (BDI-II, Beck et al., 1996; Ghisi et al., 

2006), a 21-item self-report questionnaire evaluating the presence and the severity of 

several aspects of depression symptoms. The BDI-II assesses, on a 4-point Likert scale, two 

components of depression: the affective component (AC subscale, e.g., “I do not expect 

things to work out for me”), and the somatic component (SC subscale, e.g., “I have less 

energy than I used to have”) (e.g., Steer et al., 1999). A total score between 0 and 13 

indicates minimal depression, 14-19 indicates mild depression, 20-28 indicates moderate 

depression, and 29-63 indicates severe depression. 

 

Procedures 

Before the beginning of the experimental session, participants were told that, on each 

trial, two hypothetical amounts of money would appear on the screen. One could be 

received sooner, and one could be received later. They were informed that there were no 

correct or incorrect choices, and were required to indicate the option they preferred by 

pressing one of two buttons (Sellitto et al., 2010). 

The experimental paradigm is shown in Figure 2. Each trial began with a 1 sec 
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fixation screen, followed by a screen depicting the two available options. The two options 

appeared on the left and right side of the screen, indicating the amount and the delay of 

delivery of the reward. After the participants made their decisions, the non-chosen option 

disappeared, whereas the preferred option remained on the screen for 1 sec, with a triangle 

underneath it. The inter-trial interval was 1.5 sec.  

Once the TD task was over, participants were administered the BDI-II.  

 

 

Figure 2. Experimental paradigm. In each trial, after a 1 s fixation period, subjects chose between a small 
amount of money delivered sooner and a larger amount of reward delivered after a delay. The preferred option 
remained highlighted for 1 s. Upper panel, a trial for the Now temporal condition is shown, in which the 
sooner option is available immediately (‘now’). On the bottom, a trial for the Not-now temporal condition is 
shown, in which a fixed delay of 60 days was added to both options in the Now condition. See Materials and 
Methods for a more detailed explanation of procedures. 
 

 

Data analysis 

For each task, the rate at which the subjective value of a reward decays with delay 

(TD rate) was assessed through the same two indices used in Sellitto and colleagues (2010; 
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Study I-Part II): the temporal discounting parameter (k) (Mazur, 1987; Rachlin et al., 1991; 

Green and Myerson, 2004), and the area under the empirical discounting curve (AUC) 

(Myerson et al., 2001). 

Estimation of k. For the estimation of k see Study I-Part II. Subjective preferences 

were well characterized by hyperbolic functions, as indexed by high R2 across participant 

groups and temporal conditions (R2 > 0.61 in all cases). For comparison purposes, we also 

assessed the fits to the data of an exponential discounting model. For each TD task, the 

exponential function SV = e-kD was fit to the data to determine the k constant of the best 

fitting function. The hyperbolic function proved to fit the data better than the exponential 

functions across participant groups and temporal conditions. We entered R2 scores as the 

dependent variable in an analysis of variance (ANOVA) with Group (Insular patients, Non-

insular patients, healthy controls) as a between-subject factor, and Model (hyperbolic, 

exponential) and Temporal condition (Now, Not-now) as within-subject factors. There was 

a significant effect of Model [F(1, 52) = 22.95, p = 0.00001]. Post hoc comparisons, 

performed with the Fisher test, showed that R2 values were significantly higher for the 

hyperbolic than the exponential model (0.73 vs. 0.70, p = 0.000003).  No other effects were 

significant (p > 0.12 in all cases). Given the superiority of the hyperbolic over the 

exponential model in describing TD behavior, hyperbolic k values were adopted as 

measures of TD. The hyperbolic k constants were normally distributed after log-

transformation (Kolmogorov-Smirnov d < 0.09, p > 0.20 in all cases), and therefore 

comparisons were performed using parametric statistical tests. 

Estimation of AUC. For estimation of AUC see Study I-Part II. The AUC scores were 

normally distributed (Kolmogorov-Smirnov d < 0.10, p > 0.20 in all cases), and therefore 

comparisons were performed using parametric statistical tests. 
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Voxel-based Lesion-Symptom Mapping  

 Standard groupwise comparisons were supplemented with a VLSM analysis 

oriented at investigating the relation between brain damage and behavior on a voxel-by-

voxel basis. VLSM allows lesion-behavior associations to be tested without assigning 

patients to arbitrary groups. In this method, a behavioral measure is entered as the 

dependent variable, and the lesion status of each voxel (lesioned or not) is the independent 

variable. Then, for each voxel, statistical comparisons are made between the performance 

of subjects with vs. without lesions affecting that voxel. The output is a statistical map 

indicating voxels associated with poor performance when lesioned (Bates et al. 2003). 

We entered patients’ TD scores (k and AUC) in the Non-Parametric Mapping 

software (NPM, Rorden et al., 2007), separately for the Now and Not-now condition. The 

software compares performance of patients with vs. without damage at each voxel using the 

nonparametric Brunner-Munzel (BM) rank-order test (Brunner and Munzel, 2000). Only 

voxels affected in at least 20% of cases were included for the analysis. The alpha level of 

significance was set at p < 0.05, corrected for False Discovery Rate (FTD; Nichols and 

Hayasaka, 2003), and an extent threshold of 50 voxels per cluster was adopted (see also 

Gläscher et al., 2010). 

 

Results 

Figure 3 shows TD curves by participant group and temporal condition. The k value 

for each curve reflects the geometric mean of the group − which corresponds to the mean of 

the log-transformed values − and thus provides a better measure of central tendency for 

positively skewed metrics, such as TD rates, than do the arithmetic mean. Figure 4 shows 

the AUC for each participant group and temporal condition. As is evident from the figures, 
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Insular patients discounted future rewards less steeply than the control groups. For 

example, the delay at which 40 € decreased to 50% of their original value (so that they were 

worth 20 € now) was about 33 days for normal controls, but 100 days for patients. These 

impressions were confirmed by ANOVA analyses. 

k. An ANOVA on log-transformed k values with Group (Insular patients, Non-

insular patients, healthy controls) as a between-subject factor, and Temporal condition 

(Now, Not-now) as a within-subject factor yielded a significant effect of Group [F(2, 52) = 

6.96, p = 0.002]. Post hoc comparisons, performed with the Fisher test, showed that TD 

was less steep in Insular patients compared to Non-insular patients (-2.12 vs. -1.46; p = 

0.0009) and healthy controls (-2.12 vs. -1.62; p = 0.003), whereas no significant difference 

was detected between Non-insular patients and healthy controls (p = 0.30). Moreover, there 

was a significant effect of Temporal condition [F(1, 52) = 31.48, p = 0.000001], indicating 

that TD was generally steeper in the Now compared to the Not-now condition  (-1.52 vs. -

1.86; p = 0.000001). There was no significant Group X Temporal condition interaction 

[F(2, 52) = 1.89, p = 0.16]. 
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Figure 3.  Temporal discounting functions by participant group (Insular = patients with lesions in the insular 
cortex; Non-insular = patients with lesions outside the insular cortex; HC = healthy controls) and type of 
temporal condition. The hyperbolic curves describe the discounting of subjective value (expressed as a 
proportion of the delayed amount) as a function of time (days). The discounting parameter k reflects the 
geometric mean of the group. 
 

 

 AUC. Similar results were obtained using AUC as the dependent variable. An 

ANOVA on AUC scores with Group and Temporal condition as factors yielded a 

significant effect of Group [F(2, 52) = 5.95, p = 0.005]. Fisher post hoc comparisons 

showed that AUC was larger (i.e., TD was slower) in Insular patients compared to Non-

insular patients (0.49 vs. 0.28; p = 0.003) and healthy controls (0.49 vs. 0.32; p = 0.003), 

with no difference between the latter two groups (p = 0.56). Again, there was a significant 

effect of Temporal condition [F(1, 52) = 14.86, p = 0.0003], indicating smaller AUCs in the 

Now condition than in the Not-now condition (0.31 vs. 0.38; p = 0.0009), but no significant 

Group X Temporal condition interaction [F(2, 52) = 1.41, p = 0.25].  
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VLSM. To investigate the relation between TD deficits and specific brain lesions, we 

performed a VLSM analysis. The VLSM analysis related patients’ k rates and AUC values 

for the Now and Not-now conditions (in separate analyses) to their brain lesions. Figure 5 

shows the statistical power map, indicating the voxels where we had adequate power to 

detect effects with a 5% FDR threshold (Rorden et al., 2007; Gläscher et al., 2010). The 

brain regions associated with reduced TD, along with the coordinates of their center of 

mass, based on the Montreal Neurological Institute (MNI) brain atlas, are listed in Table 2 

and shown in Figure 6. 

 

 

Figure 5. Statistical power map. Map showing the voxels (in red) where there is sufficient statistical power to 
detect an effect in this group of patients, overlaid on the MNI brain. In each axial slice, the left hemisphere is 
on the left side. 

Figure 4. Area under the 
empirical discounting curve 
by participant group (Insular 
= patients with lesions in the 
insular cortex; Non-insular 
= patients with lesions 
outside the insular cortex; 
HC = healthy controls) and 
type of temporal condition. 
The error bars indicate the 
standard error of the mean.  
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Hemisphere x y z Cluster size 
(voxel) BA Max 

K 
Now condition 
Insula Right 44 8 -10 4596 - 2.67 
Insula Left -37 6 9 295 - 2.30 
Temporal Superior Left -63 3 -3 128 48 2.09 
Temporal Medial Left -51 -34 -15 97 20 2.05 
Temporal Inferior Left -50 -35 -24 276 20 2.04 
Insula Left -34 21 6 333 48 1.96 
Rolandic Operculum Left -40 -19 14 61 48 1.93 
Insula Left -36 18 -9 133 47 1.80 
 
K 
Not-now condition 
Insula Right 41 8 -10 122 48 2.67 
Fusiform Gyrus Left -38 -15 -22 28021 20 2.45 
Temporal Superior Left -55 -14 13 76 48 1.69 
 
AUC 
Now condition 
Insula Right 43 8 -10 9733 48 -2.67 
Temporal Inferior Left -50 -35 -24 276 20 -2.10 
Temporal Medial Left -51 -34 -15 97 20 -2.10 
Insula Left -36 18 -9 133 47 -1.79 
 
AUC 
Not-now condition 
Insula Right 44 8 -10 247 - -2.48 
Temporal Superior Left -57 2 1 11869 48 -2.37 
Fusiform Gyrus Left -38 -23 -25 838 20 -2.14 
 
Table 2. Note. Coordinates of the regions associated with reduced TD in the VLSM analysis on both k and 
AUC values, in MNI space. Region labels are taken from the automated anatomical labeling template (AAL). 
BA = Brodmann Area. Z = Maximum Brunner-Munzel Z statistics obtained for each cluster. Z scores are 
significant at a threshold of p < 0.05, FDR-corrected. 
 

 

As indicated in Table 2, the largest clusters and the highest Z-values, for both the 

analysis on k and AUC values, were located in the insula. In both cases, in the Now 

condition, the highest concentration of significant voxels was in the right insula. A second 
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distinct cluster of significant voxels was located in the left insula. There were other, smaller 

and less reliable clusters of voxels associated with reduced TD, including more anterior 

portions of the left insula and regions in the lateral temporal lobe, as listed in Table 2.  

 

 

 

Figure 6. VLSM statistical map computed for k in the Now condition (a), k in the Not-now condition (b), 
AUC in the Now condition (c), and AUC in the Not-now condition (d), thresholded at p < 0.05, FDR-
corrected, and shown on representative axial slices of the MNI brain. z-coordinates of each axial slice are 
given. 

 

 

In the Not-now conditions, for both the analysis on k and AUC values, the voxels 

with the highest Z-values were again located in the right insula, and in an extended cluster 
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in the left hemisphere – with peak in the left fusiform gyrus for the analysis on k, and in the 

superior temporal lobe for the analysis on AUC - that also included the insula. Again, 

smaller and less significant clusters were detected in the left temporal lobe.  

Thus, the VLSM results confirm that the abnormal TD behaviour of Insular patients 

was mainly driven by damage to the insula. As anticipated, the VLSM analysis also 

revealed other regions, mainly in the temporal lobe, that were also related to TD behavior, 

although less reliably. The emergence of these additional regions in the VLSM analysis is 

difficult to interpret, primarily because we have no hypotheses on their putative role on TD. 

Additionally, damage in some of those regions (operculum, superior temporal pole) 

correlates with insula damage in this data set. 

 

Self reports of depression. Insular patients’ self-reports did not evince significantly 

higher levels of depression at the BDI-II than did those of Non-insular patients and healthy 

controls [F(2,52) = 0.18; p = 0.84; Table 1]. Separate analysis on the scores from the 

affective and somatic subscales of the BDI-II also failed to yield statistically significant 

results (p > 0.83 in both cases). 

 

Discussion  

The present study investigated the role of the insular cortex in intertemporal choice. 

Patients with lesions involving the insular cortex and control participants made a series of 

choices between smaller-sooner and larger-later amounts of money. Two temporal 

conditions were tested: in one, the earlier quantity of money was delivered immediately, 

whereas in the other it was delayed by 60 days. Lesion to the insular cortex significantly 

reduced TD of future rewards: Insular patients behaved more prudently than control 
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participants, being more willing to wait for the larger-later reward. This finding held in both 

the Now and Not-now condition. Notably, all participants, including Insular patients, 

showed a significant decrease in TD in the Not-now compared to the Now condition: They 

behaved more impatiently when the sooner option was available immediately than when 

both options were delayed in time, replicating previous findings in healthy individuals 

(Ainslie, 1975; Frederick et al., 2002; McClure et al., 2004; Green et al., 2005; Figner et al., 

2010; but see Kable and Glimcher 2010).  

Reduced TD in Insular patients is not attributable to a general effect of brain 

damage, because Non-insular patients showed normal TD. Moreover, in our previous report 

(Study I-Part II, Sellitto et al., 2010), we showed that patients with lesion to the mOFC 

consistently prefer smaller-sooner over larger-later reward, a behavior that is opposite to the 

one exhibited by Insular patients. It is also unlikely that our findings were due to a general 

insensitivity to reward, or blatant problems at estimating the passage of time in Insular 

patients. Indeed, all patients consistently chose the larger of two rewards in the control 

conditions of the TD task. Moreover, Insular patients behaved more impulsively in the Now 

compared to the Not-now condition, and this tendency was as pronounced in Insular 

patients as it was in the control groups, indicating that Insular patients were generally able 

to represent the passage of time, and sensitive to the saliency of an immediate reward. 

Furthermore, it is worth noting that in our preliminary fMRI results (Study III-Part II), 

when using a multivariate analysis to investigate neuronal patterns able to discriminate 

between offers with and without an immediate option available, no insular recruitment has 

been found. This gives further support to the idea that insula is not responsible for 

differentiating between those two types of offer. Were this the case, a damage to insula 



 90 

should have resulted in no difference in TD rates in our insular patients when faced with 

Now and Not-now trials. 

Thus, our findings indicate that the insula plays a crucial role during intertemporal 

choice, contributing to shape TD behavior. Several fMRI studies have implicated the insula 

in choice about money, drug, and other goods (e.g., Knutson et al., 2000; Guillem et al., 

2010; Tusche et al., 2010). Moreover, activity in the insula modulates according to the time 

of availability of edible and monetary outcomes (Tanaka et al., 2004; McClure et al., 2007; 

Wittmann et al., 2007, 2010; Claus et al., 2011; Liu and Feng, 2012; Luo et al., 2012). 

fMRI evidence, however, have not univocally associated insula activity with choice of 

either delayed (Wittmann et al., 2007; Claus et al., 2011; Liu and Feng, 2012; Luo et al., 

2012; Kayser et al., 2012) or immediate options (Tanaka et al., 2004; McClure et al., 2007; 

Wittmann et al., 2010), and therefore cannot clarify whether it is imperative for, or instead 

merely associated with, intertemporal choice. The fact that Insular patients behaved more 

patiently than controls, forgoing sooner rewards to receive larger-later ones, confirms that 

the insula is necessary during intertemporal choice, and suggests that it is normally 

implicated in upregulating the incentive value of relatively sooner reward options. How 

does the insula accomplish such a role? 

The insula has been implicated in the conscious representation of bodily states 

(Rolls, 1999; Bechara, 2001; Kringelbach, 2004; Craig, 2009; Jones et al., 2011). During 

decision-making, the insula may anticipate the emotional/bodily effects of different choice 

options, contributing to their incentive value (Barrett et al., 2007), and translate such 

signals into conscious urges capable of driving behavior (e.g., Craig, 2009; Naqvi and 

Bechara, 2009). In a TD task involving receiving rewards at different delays, the insula may 

signal the urge to obtain a reward as soon as possible. Damage to the insula, therefore, 
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would diminish the motivation to obtain a reward soon, allowing patients to wait for larger-

later outcomes, resulting in reduced TD. This interpretation makes contact with extensive 

evidence implicating the insula in craving associated with cigarette and alcohol addiction, a 

paradigmatic condition of capitulation to immediate rewards despite bad long-term 

consequences (e.g., Wang et al., 2007; Hoffman et al., 2008; Naqvi and Bechara, 2009; 

Paulus et al., 2009; Kenny, 2010; Claus et al., 2011; Kang et al., 2012; Sutherland et al., 

2012; Vaidya et al., 2012). Crucially, lesion to the insula disrupts addiction to smoking 

(Naqvi et al., 2007), as if the patients’ “body forgot the urge to smoke” (p. 534), confirming 

that insula activity promotes courses of action directed at satisfying current needs. Another 

clinical population exhibiting an apparent ability to resist current temptations is that of 

individuals with anorexia nervosa, who sustain self-denial of food (Kaye et al., 2009). 

Patients with anorexia nervosa, too, show reduced TD (Steinglass et al., 2012), and 

functional abnormalities in the insula (Frank et al., 2012; Gaudio and Quattrocchi, 2012). 

Another possibility is that, instead of reducing the urge for reward, damage to the 

insula reduced the feeling of uncertainty related to waiting for delayed rewards (Tom et al., 

2007; Clark et al., 2008; Christopoulos et al., 2009; Weller et al., 2009). Even though 

intertemporal choices are not typically designed as risky choices, delay may influence 

choice via the perceived risk of loss inherently associated with waiting (Paulus et al., 2003; 

Kuhnen and Knutson, 2005; Knutson et al, 2007). Consistent with this hypothesis, the 

insula is preferentially activated during decisions involving uncertainty (Huettel et al., 

2006), and its activity is negatively correlated with expected value, the product of 

probability of an uncertain option and outcome magnitude, but not with outcome magnitude 

(Rolls et al., 2008). Moreover, whereas healthy individuals make choices based on both 

probability and outcome magnitude in a task involving decision under uncertainty, patients 
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with damage to the insula may be insensitive to outcome probability levels (Weller et al., 

2009; see also Clark et al., 2008). 

Although our design does not allow distinguishing whether damage to the insula 

reduced the urge to obtain something positive (a reward soon), or to avoid something 

negative (the fear of loss related to waiting for a later reward), we emphasize that both 

possibilities point to the insula as crucial to provide emotional inputs to intertemporal 

choice. On this view, reduced TD in Insular patients arises as a consequence of a failure in 

anticipating the bodily signals associated with receiving rewards at different delays, 

resulting in choices governed by a heuristic of quantity (i.e., based on the larger disposable 

amount). We note that Insular patients showed steeper TD in the Now compared to the Not-

now condition, as did the control groups. This unexpected finding suggests that unilateral 

damage to the insula does not result in a blatant inability to appreciate the saliency of an 

immediate reward, but in a more subtle problem at contributing interoceptive signals for the 

valuation of, and choice between, competing options (see also Weller et al., 2009).  

As we discussed earlier, the results on Insular patients in the present study are at 

odds with those obtained on patients with lesion in the mOFC (Study I-Part II, Sellitto et 

al., 2010), who showed steeper TD compared to controls. The present findings allow us 

refining the architecture of the neural network underlying intertemporal choice (see the 

general discussion of this dissertation), with the mOFC and adjacent medial prefrontal 

regions weighting the long-term prospects of a given choice (Schoenbaum et al., 2009; 

Sellitto et al., 2010), and the insula, which possesses connections with both the vmPFC and 

the VS (Reynolds and Zahm, 2005), relaying interoceptive inputs about need states to both 

systems, determining the strength with which the individual will pursue a reward option or 

the other (Weller et al., 2009). According to this model, damage to the mOFC would cause 
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a problem envisioning future outcomes, leading to steep TD, whereas damage to the insula 

would lead to emotionally blunt intertemporal choices based on a heuristic of quantity, and 

therefore reduced TD, which is what we have observed in brain damaged patients.  

In conclusion, we have shown that damage to the insula causes increased 

willingness to wait in intertemporal choice. While far-sighted decision-making has obvious 

advantages, in many situations in life it is important, and preferred, to pursue current 

opportunities instead of waiting for potential future ones, as captured in the popular saying 

“every missed chance is lost forever”. The present results point to the insula as crucial to 

pursue current rewards, and take chances as soon as possible, favoring action over 

prospection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 94 

Study III – Neural basis of carry-over effect during intertemporal choice: Preliminary 

results of an fMRI experiment 

 

Introduction 

As highlighted in Part I, over the last few years, an increasing number of imaging 

studies on TD in humans has been carried out (see Appendix A). Whatever be the 

manipulation, the target population, the focus (e.g., behavioral, genetic, personality traits) 

and so on, fMRI studies evidenced, sometimes with a high consistency, the engagement of 

several recurrent brain areas activated during intertemporal decision-making. However, 

nearly all previous imaging studies in this domain (except Clithero et al., 2009, and 

Murawski et al., 2012) have used a version of the basic univariate contrast. 

The present study investigated for the first time the carry-over effect during 

intertemporal choice in healthy young individuals using fMRI with also both univariate and 

multivariate approaches. With carry-over effect here we do not mean the phenomenon that 

previous studies investigated at a behavioral level. Indeed, carry-over effect during 

intertemporal choice in literature refers to how tasks people engage in prior to making 

intertemporal decisions affect their discounting levels. Some situations can evoke concrete 

mindset (enhancing focus on the context and the details, biasing choices toward the sooner 

smaller option) or facilitate abstract mindset (enhancing focus on the big picture, thereby 

decreasing the discount rate) (e.g., Malkoc et al., 2010), by influencing the construals (i.e., 

mental representations) of those specific rewards (‘construal level theory’, Liberman and 

Trope, 1998, 2008; Trope and Liberman, 2003; see Study III-Part III). Some emotions, 

moreover, like fear, can prime in different ways subsequent intertemporal decisions (Lerner 

et al., 2004; Luo et al., 2012). We investigated this kind of carry-over effect in Part III, 
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associating mental time travel with intertemporal choice, manipulating outcome construals, 

and conditioning participants through the association between rewards and aversive events. 

Instead, the carry-over effect we were interested in here refers to the influence that a 

previous monetary intertemporal choice can have on the subsequent one at neural level. 

Specifically, we address to investigate the modulation of the neural response (by the means 

of detecting the BOLD signal) to the current stimulus (a binary offer) by the preceding 

stimulus, manipulating the presentation ordering (e.g., Aguirre, 2007; 2011). Several neural 

measures of carry-over effects have been used, like anticipation, priming, and bias (Kahn et 

al., 2010). Here we used the measure defined as ‘repetition suppression’ (Henson and 

Rugg, 2003). Namely, the reduction in the magnitude of neurons response that can be seen 

toward stimuli sharing a particular property is considered the proof that the identified voxel 

contains a population of neurons that code that specific dimension (Fig. 1; Aguirre, 2007; 

Grill-Spector and Malach, 2001). In other words, stimuli perceived to be similar are 

represented by similar neural states, so that, during stimulus repetition a reduced firing rate 

of cells can be observed (Henson and Rugg, 2003; Aguirre, 2007). To study the impact of 

stimulus history and context upon neural response, a counterbalanced stimulus sequence, 

where each stimulus is included an equal number of times, is required (Aguirre, 2007). 

While traditional fMRI analysis provides evidence about how an event is represented on 

average across a population of neurons within a voxel (e.g., Friston et al., 1995a,b), 

‘repetition suppression’ fMRI makes inferences about neural populations within a voxel 

(Grill-Spector and Malach, 2001; Henson and Rugg, 2003, Aguirre, 2007). 
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How do neurons react, or adapt, to a continuous sequence of intertemporal choices 

based on specific features? The aim of this study was to identify if different features of 

binary monetary intertemporal choices were differently represented within and across 

voxels, in a small sample of young participants. We mostly focused on choices where an 

immediate option was provided against choices were both options were offered delayed in 

time, and on the size of the temporal gap between the earlier and the later option. We 

examined both the average response to each stimulus type (i.e., univariate analysis) and the 

effect of stimulus history (i.e., the carry-over effect, within voxels).  

Moreover, a further advantage of the present approach is that, since we can get a 

measure for each voxel of the response to each condition, we also performed a distributed 

pattern analysis to ask about how the representations of stimuli are distributed across local 

regions (Haxby et al., 2001; Haynes and Rees 2006; Norman et al. 2006; Aguirre, 2007; 

Oosterhof et al. 2010). This approach, called multi-voxel pattern analysis (MVPA), 

examines the mean difference in the neural response between stimuli across voxels.  

We expected to find (1) activity in brain areas commonly engaged in coding the 

subjective value of intertemporal choice (see Part I), e.g., mOFC, vmPFC, including ACC, 

Figure 1. Example of 
similarity matrix for a set 
of 8 stimuli consisting of a 
bar of light rotated in 22.5º 
increments (Adapted from 
Aguirre, 2007). The lighter 
the square, the more 
stimuli will be represented 
by the same neural 
population in a given 
voxel. 
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PCC, dlPFC, and insular cortex, with a specific engagement of areas included in the 

‘default network’ (Schacter et al., 2007) when distinguishing between offers with and 

without an immediate option; (2) (a reduction in the) activity in brain areas when options 

are preceded by similar options as an index that they code specific properties; (3) neuronal 

patterns able to discriminate, within-modality, among options features. The results we will 

present are meant to be considered preliminary.  

 

Materials and Methods 

 

Participants 

Four healthy volunteers (2 females, all right-handed, mean age 24 years) were 

recruited from the Bangor University community. All participants had normal or corrected-

to‐normal vision. Participants satisfied all requirements in volunteer screening and gave 

informed consent. Procedures were approved by the Ethics Committee of the School of 

Psychology at Bangor University. Participation was compensated at £15 at the end of the 

scanning session. 

 

Design 

Our subjects were presented stimuli in a rapid counter-balanced sequence of 

continuous binary monetary offers. Specifically, each stimulus preceded each other for an 

equal number of times (Aguirre, 2007). We restricted the sequential dependence of the 

response to influences from the previous (n-1) stimulus. To this purpose, we generated for 

each participant a unique sequence of stimuli, where each stimulus consisted of a pair of 
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monetary options, where the larger one was always set at £ 50. However, since the aim of 

the present study was to investigate the effect of the preceding offer on the subsequent one, 

we had to make sure that our participants were (approximately) ‘indifferent’ between the 

two options presented each time in each trial (e.g., Frederick et al 2002, see also Part I). For 

this reason, one week before the fMRI session, participants underwent to a TD task that 

allowed us to estimate their individual k rates. 

 Behavioral prescanning task. The TD task was displayed using Matlab 

(MathWorks, Inc®) and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997), and the 

delays and the titration procedure were the same as in Study II-Part II, as well as the timing 

and the no time limit to respond. This time, however, we presented amounts and delays 

only, on a black screen (Sellitto et al., 2010, see also Study I-Part II). The larger amount, £ 

50, was paired with a smaller amount of money along two different temporal conditions. 

During the Now condition, the earlier option was always immediately available (‘this 

minute’), whereas the larger amount was offered with a delay of 2 days, 2 weeks, 1 month, 

3 months, 6 months, and 1 year. During the Not-now condition, the sooner option was 

always available in 2 months, whereas the larger amount was offered with a delay of 2 

months and 2 days, 2 months and 2 weeks, 3 months, 5 months, 8 months, and 1 year and 2 

months. Along 5 trials, using the staircase procedure of Du and colleagues (2002; Sellitto 

et al., 2010), the indifference points for all delays were derived. Once applied the 

hyperbolic function SV = 1/(1+kD) to the subject’s data [where SV = subjective value 

(expressed as a fraction of the delayed amount), D = delay (in days), and k = discounting 

coefficient] using a nonlinear, least-squares algorithm, as implemented in Statistica, 

(Statsoft®), the temporal discounting k parameter was calculated, for both Now and Not-
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now conditions (Mazur, 1987; Rachlin et al., 1991; Green and Myerson, 2004; Sellitto et 

al., 2010).  

Behavioral scanning task. Using the two derived k parameters for each participant, 

we applied the same hyperbolic function to calculate the indifference points at each delay 

we included in the task for the fMRI session. These indifference points were used as 

smaller sooner options for this task. Moreover, to make the task less repetitive, and to avoid 

participants remembering amounts paired with delays, and then their choices, we slightly 

changed quantities by randomly adding or subtracting some pence from the calculated 

indifference point (10 pence < x < 90 pence). In the scanning task, during the Now 

condition, £ 50 were available at each of 9 delays: in 6 days, 3 weeks, 2 months, 5 months 

and 6 days, 5 months and 3 weeks, 7 months, 9 months and 6 days, 9 months and 3 weeks, 

and 11 months. During the Not-now condition, £ 50 were available at each of nine delays: 

in 2 months and 6 days, 2 months and 3 weeks, 4 months, 7 months and 6 days, 7 months 

and 3 weeks, 9 months, 11 months and 6 days, 11 months and 3 weeks, and 1 year and 1 

month. As is evident, we maintained the same temporal gaps between earlier and later 

rewards in both temporal conditions, as in the behavioral prescanning task. This allowed us 

to group the first three delays as Short gap, the second three delays as Medium gap, and the 

third three delays as Long gap. 

The fMRI task had then a 2 × 3 event-related design (Fig. 2): 2 temporal conditions 

(Now, Not-now), and 3 temporal gaps (Short, Medium, Long). Moreover, null trials (a 

black blank screen) were included in the sequence in an equal number as the other 

conditions (the seventh condition). Having these variables in mind, we generated a 1-back 

order sequence using a custom written script in Matlab (MathWorks, Inc®). This means that 

for each of the seven conditions, 49 trials were generated in a unique sequence, where each 
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type of condition preceded each type of condition. However, the number of trials was too 

high for subjects to be presented at once. We then divided the sequence in 7 chunks, 

making sure that each chunk started with the last type of trial of the previous chunk, to do 

not lose the 1-back order. This resulted in 7 blocks of 50 trials each. Moreover, to make 

sure that the attention of our participants remained constant along the experiment, we 

included in each block 3 catch trials, for a total of 371 trials presented in 7 blocks of 53 

trials each. Catch trials were randomly included in each block, making sure that at least one 

of the three was in the first half of the trials, and at least one was in the other half of the 

trials. Nine types of catch trials were provided. In one, both the smaller and the larger 

option were available ‘this minute’, in one, both options were available ‘in 2 months’, and 

in the others we used some of the delays included in the real conditions, but having the 

earlier option a larger amount than the later option.  

 

 

 

 

Figure 2. fMRI task 2 × 3 design 
where the n trial is preceded by the 
n-1 trial. The sooner option could be 
available immediately (‘this 
minute’) or ‘in 2 months’. Delay 
gaps between the availability of the 
sooner and the later option could be 
‘short’, ‘medium’, ‘long’. 
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Figure 3 shows the timing of a trial displayed using Matlab (MathWorks, Inc®) and 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The position of stimuli was randomly 

determined (between the left and the right side of the screen), and participants had 4000 ms 

to choose their preferred option on each trial. All options pairs remained on the screen for 

4000 ms independently of subjects’ response, and no feedback was given about their 

choice. Each chunk of trials lasted 4.5 minutes. 

 

 

 

 

 

Data acquisition 

Imaging data were recorded using a 3T Philips Achieva MRI scanner, equipped 

with a SENSE parallel head coil (Philips, Best, Netherlands). Stimuli were presented using 

a Sanyo LCD projector (Sanyo, Osaka, Japan) directed at a rear-projection screen and was 

administered using Matlab (MathWorks, Inc®) and Psychophysics Toolbox (Brainard, 

1997; Pelli, 1997), running on an Apple Mac Pro computer. Participants’ responses were 

recorded using a nonferrous, fiber-optic response keypad by the means of two buttons 

positioned according to the spatial positions of stimuli on the screen (one on the left, and 

Figure 3. Timing 
of a trial. After 
1000 ms of 
fixation cross, the 
two monetary 
options appeared 
for 4000 ms, and 
then a new trial 
began. 
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one on the right) (Current Designs, Philadelphia, PA). Functional data acquisition was 

achieved with T2*-weighted scans using a single-shot echo planar (EPI) sequence. 

Acquisition parameters for all participants were: 28 slices acquired in a square root 

interleaved order, no slice gap, 80×80 matrix, slice thickness = 3mm, voxel dimensions = 

3×3 mm in-plane; echo time (TE) = 35 ms; repetition time (TR) = 2000ms; flip angle = 90◦. 

Coverage included the entire cortex, principally the orbitofrontal lobe. Parameters for T1-

weighted scans, which served as an anatomical reference for each participant, were: 

256×256 matrix; slice thickness = 1.3mm; voxel dimensions = 1mm×1mm in-plane; TR = 

16ms, TE = 3ms; flip angle = 8◦. Nine dummy volumes were obtained prior to each scan in 

order to minimize T1 saturation effects. 

 

Data preprocessing 

Preprocessing and statistical analyses of the MRI data were performed using 

BrainVoyager QX 2.2.0 (Brain Innovation, Maastricht, The Netherlands), and custom 

written scripts in Matlab (MathWorks, Inc®). Functional data were motion corrected, and 

low-frequency drifts removed with a temporal high-pass filter (0.004 Hz), and spatial 

smoothing was applied. Functional data were automatically co-registered with the three-

dimensional anatomical T1 scans. The three-dimensional anatomical scans were 

transformed into Talairach space (Talairach & Tournoux, 1988), and the parameters from 

this transformation were subsequently applied to the co-registered functional data that were 

re-sampled to 1mm×1mm×1mm voxels. 
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Data analysis 

Data were modeled and analyzed using BrainVoyager QX. Given the low number 

of participants, we decided to perform a whole-brain fixed effect analysis at the group 

level, for each contrast of interest, as exploratory analysis. For each participant, general 

linear models (GLMs) were created to investigate the average response to each stimulus 

type (i.e., univariate analysis), the effect of stimulus history and context (i.e., the carry-

over effect and the repetition suppression, within voxels), and the local pattern analysis.  

Whole-brain univariate analysis. We constructed parametric regressors to 

investigate activation differences between trials in which an immediate option was 

presented (Immediate) and trials in which no immediate option was presented (Not-

immediate), and trials with different time gaps between the sooner and the later option 

(Short, Long). At this stage of analysis (preliminary data), we did not include a regressor 

for the Medium gap. On the one hand we contrasted 2 conditions: Immediate and Not-

immediate; on the other hand, we contrasted 2 conditions: Short delay gap and Long delay 

gap. The model also included a constant as regressor of noninterest. Uncorrected voxelwise 

threshold was set at p < 0.005, FDR, and t maps will be displayed. 

Carry-over effect analysis. We constructed parametric regressors in order to 

investigate, on the one hand, trials with/without an immediate option preceded by trials 

with/without an immediate option, and on the other hand, trials with a short/long delay gap 

preceded by trials with a short/long delay gap. To this purpose, we contrasted in one case 2 

conditions: Same preceding trial and Different preceding trial. This means that a trial with 

an immediate option preceded by a trial with an immediate option is considered the same 

as a trial with no immediate option preceded by a trial with no immediate option. Figure 4 

shows the similarity matrix for these two conditions. 
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Based on the delay gaps, with these preliminary data we focused only on trials with 

a short and a long delay gap between the two options, so that we contrasted 2 conditions: 

Same preceding delay gap and Different preceding delay gap. Figure 5 displays the 

similarity matrix for these two conditions. This means that a trial with a short delay gap 

between earlier and later reward preceded by a trial with a short delay gap between options 

is considered the same as a trial with a long delay gap between the options preceded by a 

trial with a long delay gap between the options. The model also included a constant as 

regressor of noninterest. Uncorrected voxelwise threshold was set at p < 0.005, FDR, and t 

maps will be displayed. 

Figure 4. Similarity matrix for trials 
preceded by the same or a different 
type of trial, based on the 
availability or not of an immediate 
option. Trials preceded by the same 
type of trial will be represented in 
the same way by a given neural 
population (lighter color), so that 
their firing rate will be reduced as 
compared to trials preceded by a 
different type of trial (darker color). 
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MVPA. This analysis makes inference about distributed responses without requiring 

focal activations or certain topological response features (Haxby et al., 2001). Basically, it 

investigates how similar are the patterns of activity produced by the same conditions across 

scans, relative to the similarity of patterns of activity produced by different conditions. We 

determined whether the distributed pattern of responses evoked by the availability of an 

immediate option in the binary choice could be distinguished from the pattern of responses 

to choices in which no immediate option was offered in the pair. Figure 6 illustrates the 

similarity matrix for our design. With these preliminary data we did not investigate 

patterns of neural activity related to different delay gaps between outcomes.  

Each participant’s data were analyzed with a whole-brain information mapping 

approach (‘decoding searchlight analysis’), without restricting our analysis to predefined 

regions of interest (Kriegeskorte et al. 2006; Haynes et al., 2007; Kriegeskorte and 

Bandettini, 2007; Oosterhof et al. 2010), implemented in Matlab (The MathWorks, 

Cambridge, UK). For every voxel we constructed a searchlight corresponding to a 

Figure 5. Similarity matrix for 
trials preceded by the same or a 
different type of trial, based on the 
delay gap (short or long) between 
the two options. Neural response is 
hypothesized to be reduced if a trial 
is preceded by the same type of trial 
(light green), as compared to when 
it is preceded by a different type of 
trial (dark green). Medium delay 
gaps are not considered in this 
preliminary data analysis. 
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spherical cluster of 7 voxels. The searchlight classifier is defined as the mean signal of all 

voxels in the searchlight, calculated extracting at each voxel the patterns from the 

surrounding voxels. Inputs for the classifier consisted of the number of conditions of 

interest (2: availability of an immediate option in the binary choice vs. no immediate 

option offered in the pair) by seven runs β-estimates in order to construct a correlation 

matrix to contrast patterns of response. Both conditions in each run are correlated resulting 

in a 2 × 2 correlation matrix and a single performance metric is calculated, by checking 

how often the diagonal elements of the correlation matrix are greater than the off-diagonals 

(Haxby et al., 2001). We tested the classifier against performance of a chance (50%), p < 

0.05, FDR. The quality of the classifier was calculated by averaging across runs and 

participants (see also Aguirre, 2007; Clithero et al., 2009; Murawski et al., 2012).  

 

 

 

 

 

Figure 6. Similarity matrix for 
neural patterns. The more 
neural patterns are 
hypothesized to be similar, the 
darker the square. Here we are 
considering only neural 
patterns coding for offers 
where an immediate option 
was available vs. offers where 
no immediate option was 
included (only half matrix has 
been displayed). 
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Results 

Behavioral scanning task. An ANOVA on log-transformed k values with Chosen 

option (sooner, later) and Position of the option (left, right) as a within-subject factors 

showed that participants chose indifferently between both the sooner and the later option 

[F(1, 3) = 0.35, p = 0.60] and left- and right-positioned options [F(1, 3) = 4.80, p = 0.12], 

with no significant interaction between Chosen option and Position of the option [F(1, 3) = 

0.50, p = 0.53]. 

 Whole-brain univariate analysis. In order to display results, we averaged the 

anatomical images of all four participants previously transformed in Talairach space. We 

set the threshold at p = 0.002 to avoid excessive false positives. In this analysis, the 

contrast Immediate > Not-immediate produced significant activations in several brain areas 

(Fig. 7a). These were mainly clustered bilaterally around the medial frontal gyrus 

(including ACC), the superior frontal gyrus (BA 9), the PCC (BA 23), and the left lateral 

PPC, including the precuneus and the angular gyrus.  

 The contrast Not-immediate > Immediate produced significant activations (Fig. 7b) 

in areas principally clustered bilaterally on the insula (including BA 13), the medial frontal 

gyrus and the superior frontal gyrus (BA 9), the left precuneus, and the left occipital lobe.  

 As is evident from the first contrast, the average neural response during trials where 

an immediate option was available was preferentially located in the medial frontal cortex, 

including ACC, and the PCC, the precuneus and the angular gyrus, suggesting that the 

computation of the subjective value for those choices was probably given a special weight 

to the immediately available smaller option, matching the areas found by McClure and 

colleagues (2004, 2007) associated with their hypothesized ß-system. 
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Figure 7. Activations from the whole-brain analysis (overlaid on the average anatomical scan from all 4 
participants). a. Immediate > Not-immediate contrast; b. Not-immediate > Immediate contrast. z-coordinates of 
each axial slice are given. 
 

 

In the opposite contrast, when no immediate option was offered in the pair, bilateral 

activations principally located in the lateral prefrontal cortex and on the anterior insula were 

found, matching this time areas identified by McClure and colleagues (2004, 2007) as part 

of the ∂-system, including part of the occipital cortex. However, while these functional 

activations are reminiscent of the dual-system model of McClure and colleagues (2004, 

2007) the finding that medial frontal gyrus and the precuneus responded to both immediate 

and delayed rewards (as in Ballard and Knutson, 2009) better fits with the unitary model 

proposed by Kable and Glimcher (2007, 2010; Peters and Büchel, 2010; see Part I and the 

general discussion of this dissertation).  

 The contrast Short delay gap > Long delay gap (Fig. 8a) yielded activity in areas 

mostly clustered on the bilateral insula (including BA 13), the BA 10 of OFC, and in several 



 109 

bilateral portions of the frontal (superior and inferior gyri, including BA 9 and 6) and the 

parietal (including the BA 7 and 19) lobes. On the contrary, the contrast Long delay gap > 

Short delay gap produced several significant activations (Fig. 8b) mainly located in the right 

temporal lobe (both inferior and superior gyri), the right inferior parietal lobe, and the left 

occipital lobe. 

 Contrasting short and long gaps activations located mainly in the anterior insula and 

the frontal cortex, including the OFC, emerged when the temporal distance between the two 

options was short, suggesting that the recruitment of those areas commonly responsible for 

the computation of the subjective value is necessary when both options are enough salient, 

because both close in time at the same way. Conversely, more dorsal activations located in 

the temporal and parietal lobe were found according to a longer delay gap between the two 

offers. These results suggest that mechanisms like mental simulation and future envisioning 

are required when thinking about very far options, recruiting regions like the temporal and 

the parietal lobe, both part of the ‘core brain network’ (Schacter et al., 2007).  
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Figure 8. Activations from the whole-brain analysis (overlaid on the average anatomical scan from all 4 
participants). a. Short delay gap > Long delay gap contrast; b. Long delay gap > Short delay gap contrast. z-
coordinates of each axial slice are given. 
  

 

 Carry-over effect analysis. In this analysis, the contrast Same preceding trial > 

Different preceding trial, based on whether an immediate option is present or not, produced 

significant activations in several brain areas (Fig. 9a). These were mainly clustered 

bilaterally around the insular cortex (including BA 47 and 13), the frontal lobe, including the 

middle frontal gyrus, the superior temporal gyrus, and the lentiform nucleus of the putamen. 

 The contrast Different preceding trial > Same preceding trial revealed significant 

activations (Fig. 9b) principally located bilaterally in the frontal lobe, including the vmPFC 

(middle frontal gyrus, BA 9), the BA 4, and the superior frontal gyrus, and the ACC (BA 

24). Moreover, significant clusters emerged bilaterally from the temporal lobe, including the 

middle temporal gyrus, the superior temporal gyrus, and the BA 39. 
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 From both contrasts, significantly activated clusters emerged from the frontal 

(including the middle gyrus) and the temporal lobe (including the superior temporal gyrus), 

commonly engaged during intertemporal choice as also evidenced with the univariate 

analysis above. In a repetition suppression paradigm these activations are indicative of areas 

coding a certain property, so that a reduced firing is expected when the same offer is 

repeated (based on the time availability of the sooner option).  

 

 

 

Figure 9. Activations from the whole-brain analysis (overlaid on the average anatomical scan from all 4 
participants). a. Same preceding trial > Different preceding trial contrast; b. Different preceding trial > Same 
preceding trial contrast. z-coordinates of each axial slice are given. 
 

   

 Significant activations for the contrast Same preceding delay gap > Different 

preceding delay gap (Fig. 10a) mainly clustered bilaterally on PCC and the frontal lobe 
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(including BA 10, superior, middle, and inferior frontal gyri), and on the right insular cortex 

and the right putamen. 

 The opposite contrast, Different preceding delay gap > Same preceding delay gap 

(Fig. 10b) produced significant activations principally clustered bilaterally on the insular 

cortex (including the BA 13), the temporal lobe (superior and medial gyri, including BA 38), 

the superior and inferior frontal gyri (including the BA 47), the parietal lobe, the right PCC, 

and the left lentiform nucleus of the globus pallidus. 

 When contrasting trials proceeded by the same or a different type of trial based on 

the delay gap criterion, activity in areas like insular cortex, PCC, and the frontal lobe 

emerged. Again, in a repetition suppression paradigm like this, these activations are 

indicative of areas coding a certain property, so that a reduced firing is expected when 

considering offers preceded by the same type of offer based on the temporal gap between the 

two options. All these impressions will be tested in a second phase of this study, when more 

participants will be scanned. 
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Figure 10. Activations from the whole-brain analysis (overlaid on the average anatomical scan from all 4 
participants). a. Same preceding delay gap > Different preceding delay gap contrast; b. Different preceding 
delay gap > Same preceding delay gap contrast. z-coordinates of each axial slice are given. 
 

  

 MVPA. The searchlight analysis revealed several brain areas able to distinguish 

distributed patterns of response evoked by the availability of an immediate option in the 

binary choice from patterns of response to choices in which no immediate option was 

offered in the pair, with predictive accuracy greater than 90%. Due to a small sample, we set 

a very strict threshold (p < 8.4707-25) and cluster size = 50 voxels to trim the number of 

activations down. Patterns of response predominantly clustered bilaterally on the occipital 

lobe (e.g., BA 19) and the parietal lobe (e.g., precuneus, BA7, BA 39), on the 

parahippocampal gyrus (e.g., B 35), and the inferior and middle frontal giri (e.g., BA 6, BA 

9) (Fig. 11). We will discuss these results later. 
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Figure 11. Brain areas able to distinguish distributed patterns of response evoked by the availability of an 
immediate option in the binary choice from patterns of response to choices in which no immediate option was 
offered in the pair. z-coordinates of each axial slice are given. 
 

 

Discussion 

In this study we provided for the first time preliminary evidence about neural 

regions involved in intertemporal choice, by way of a carry-over (repetition suppression) 

measure and both univariate and multivariate approachs. We presented participants a rapid 

series of monetary binary offers. Offers differed on the availability of an immediate option 

in the pair, and on the temporal gap between the earlier and the later option in each trial. 

We tuned amounts on subjects’ individual discount rates to make sure that they were 

indifferent between options along trials. This procedure aimed to identify areas coding 

properties of intertemporal choices based on the suppression of the neural response during 

trials preceded by similar trials.  

We firstly localized with a traditional univariate analysis areas preferentially 

responding to offers when a money amount was immediately available, and those 

preferentially responding to offers where both amounts were offered delayed in time. When 

an immediate option was available, the signal was preferentially located in areas also 

identified by McClure and colleagues (2004, 2007) and called as ß-system. This network 
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comprised the medial frontal cortex, including ACC, PCC, the precuneus and the angular 

gyrus, suggesting that the computation of the subjective value for those choices was 

probably given a special weight to the immediately available option, which is the more 

tempting one. When no immediate amount was offered, neural activity was located in areas 

identified by McClure and colleagues (2004, 2007) as part of the ∂-system, as the lateral 

prefrontal cortex, the anterior insula, and the occipital cortex. This result suggests that when 

choices were more difficult, because no immediate tempting option was offered but both 

were projected in time, more dorsolateral areas activity, involved in planning and 

implementation of self-control, was required. Moreover, the recruitment of the anterior 

insula could have been necessary to anticipate and simulate feelings associated with 

outcomes in order for choices to be guided by the estimated desirability. Anterior insula is 

also involved in the reproduction of temporal intervals (Wittmann et al., 2010) and 

awareness across time (Craig, 2009), suggesting a role in time computation (Harrington et 

al., 2004). However, even if these functional activations are reminiscent of the dual-system 

model of McClure and colleagues (2004, 2007), the finding that further clusters located in 

the medial frontal gyrus and the precuneus responded to both immediate and delayed 

rewards (as in Ballard and Knutson, 2009) better fits with the proposed unitary model we 

will outline at the end, in the general discussion of this dissertation (Kable and Glimcher, 

2007, 2010; Peters and Büchel, 2010; Part I). 

Contrasting short and long gaps, activations emerged mainly in the anterior insula 

and the frontal cortex, including the OFC, when the temporal distance between the two 

options was short, suggesting that the recruitment of those areas commonly responsible for 

the computation of the subjective value is necessary to give a special weight to both 

options, highly salient, because both simultaneously close in time. Conversely, more dorsal 
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activations located in the temporal and parietal lobe were found according to a longer delay 

gap between the two offers. These results suggest that mechanisms like mental time travel 

(see Study I-Part III) and future envisioning are required when thinking about very far 

options, recruiting regions like the temporal and the parietal lobe, both part of the ‘core 

brain network’ (Schacter et al., 2007).  

Through the carry-over effect analysis, we confirmed the previous response profile. 

Indeed, in a repetition suppression paradigm, where subjects are presented a fast series of 

stimuli, emerging (attenuated) activations indicate that neurons are coding for the property 

shared by repeated stimuli. Activity in the insular cortex, the middle frontal gyrus, the 

superior temporal gyrus, and the lentiform nucleus of the putamen emerged when 

contrasting trials based on the same preceding type of trial (independently of if an 

immediate option was available or not). Activity in vmPFC, the superior frontal gyrus, the 

ACC and the temporal lobe emerged when contrasting trials based on the different 

preceding type of trial (independently of if an immediate option was available or not). 

These results suggest that these regions participate in coding offers at all times of 

availability (both with and without an immediate outcome available), not in line with the 

dual model hypothesis of McClure and colleagues (2004, 2007; see Part I). As extensively 

outlined before, areas located in the medial wall of the prefrontal cortex as well as 

subcortical structures have been long demonstrated to be necessary for the subjective value 

computation during economic choices (e.g., Kable and Glimcher, 2007, 2010). At the same 

time, activations in mPFC, the temporal lobe, and the parietal cortex (precuneus) relate to 

the ‘default network’ and the mechanism of future simulation during decision-making. 

Mentally travelling in time seems to be indeed necessary to project our-self far in time and 

to imagine future events, as future outcomes in our task, before making a decision, 



 117 

requiring the engagement of medial frontal regions, precuneus, and mesial and lateral 

portions of temporal regions (Buckner et al., 2008). Moreover, our findings are also in line 

with Wencil and colleagues (2010) results. They found that the activity in the superior 

temporal cortex and in the inferior frontal cortex increased with the difficulty of making a 

temporal comparison. These areas, together with parietal cortex, middle frontal areas, and 

thalamus are indeed recognized as having a role during the comparison and decision-

making period of temporal discrimination tasks (Rao et al., 2001; Harrington et al., 2004; 

Livesey et al., 2007; Wencil et al., 2010). These preliminary results suggest that a repetition 

suppression approach not only can help to elucidate neural responses to specific features of 

stimuli, but also is a worth doing paradigm that allows to make stronger predictions when 

considering complex stimuli as our hypothetical monetary binary choices. This paradigm, 

focusing here on choices being under the influence of previous choices, demonstrated that 

several brain regions are activated both when an immediate option was offered and when it 

was not, allowing us to further support the unitary model we will outline in the general 

discussion of this dissertation, in line with Kable and Glimcher (2007, 2010)’s suggestion. 

The carry-over effect thus opens new scenarios for understanding how different brain 

regions code specific features of decisions, and if they work independently or conjointly 

(see Harris and Aguirre, 2010). 

 MVPA further supported previous findings. Distributed patterns of activity appeared 

to discriminate between offers with and without an immediate outcome. Activations were 

mostly located posteriorly (occipital and parietal lobe), on the parahippocampal gyrus, and 

along the inferior and middle frontal giri. In the specific, hippocampal activations are 

reminiscent of Peters and Büchel (2010a) findings about an involvement of this region in the 

valuation stage of intertemporal choices, predicting the degree to which future thinking 
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modulated individual TD rates. Hippocampal regions have been found to affect decision-

making in both humans (Hassabis et al., 2007; Gupta et al., 2009), and animals (e.g., Cheung 

and Cardinal, 2005; Mariano et al., 2009), suggesting a role in imagining novel experiences 

and mental time travel (e.g., Schacter and Addis, 2009). While occipital activations can 

account for visual features of offers (e.g., immediate options were shorter so faster to be 

read), as suggested by McClure and colleagues (2004), fronto-parietal activations can 

account for numerical processing (Dehaene et al, 1998), inhibition of impulsive choices, or 

in projection of future benefits providing top-down control to compete effectively with 

limbically mediated responses when present. The absence of insular cortex activity in this 

analysis is not surprising since in Study II-Part II we demonstrated that our insular patients 

were still able to distinguish between offers with an immediate available option and offers 

were both options were delayed in time, showing a reduced TD rate in the latter case. What 

this decoding analysis highlights here is that several regions are recruited to distinguish 

between offers with/without an immediate offer available. While with the univariate analysis 

reported above we could affirm that a special weight was placed on the immediate option, 

because salient and tempting, and that other areas are mostly activated when decision are 

more difficult, MVPA clearly evidenced that the recruitment of areas involved in both 

memory and future envisioning (Schacter et al., 2007) seem necessary when processing 

intertemporal choices. This could be because, as suggested by Bechara (2005), affective 

reactions to stimuli can emerge from recall of personal emotional experiences, or from the 

imagination of hypothetical affective events (somatic-marker hypothesis, Damasio, 1994; 

Bechara and Damasio, 2005; Verdejo-García and Bechara, 2009; see also anticipatory-utility 

perspective, Rae, 1834; Frederick et al., 2002). Results of MVPA also support our proposed 

unitary neural model generating the subjective value for outcomes to choose through both 
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mechanisms of valuation and prospection. The conceptual appeal of pattern-information 

fMRI is that it allows to ‘look into’ the regions and investigate their representational content, 

suggesting that neuroeconomics might benefit from this approach (Mur et al., 2009). 

All the activations reported here support the idea that intertemporal decision-making 

relies on a brain network in which regions work in producing multiple signals integrated at 

the end as they were in a unitary system. We will further discuss these observations at the 

end of this dissertation. 
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PART III – Behavioral modulations of intertemporal choice and 

temporal discounting: Transcending the ‘hic et nunc’ 
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Précis 

 

When faced with intertemporal choice, what makes people lean towards one option 

rather than another? Consider you are on a diet and have to decide if eating a slice of 

chocolate cake or a fruit salad for dessert. Whilst the tempting option would lead to 

immediate gratification, only the less pleasurable option would lead to avoid put on weight 

in the future. On the one hand, choosing the first is considered an impulsive decision: you 

are giving in to temptation of a tasty dessert now, forgetting long-term gains of your diet. 

On the other hand, choosing the second option is considered a prudent decision: you are 

giving up the immediate pleasure of the cake, arguably with a little bit of wrench, of 

course, but avoiding future weight gain instead, going for the healthier option. What guides 

people to behave impulsively or prudently when choosing between earlier good and long-

term gain? And, why do attempts to resist immediate gratification often fail? 

We found different effective ways to address this question by indirectly modulate 

behavior on several domains to actively change it with reliable effects at least in the short-

term. The purpose of the present study, of course, was to reduce people’s propensity 

towards the ‘hic et nunc’ (from Latin, ‘here and now’) and consequently the discount rate 

of future rewards. Here I report three studies in which we manipulated in different ways 

people’s behavior towards monetary and/or edible outcomes during intertemporal choice, 

basing our ideas on both recent neural and behavioral evidence. Moreover, a link with 

moral judgment and aging will be provided along two corollary studies, to provide further 

support to the proposed unitary model we will outline at the end in the general discussion 

of this dissertation. 
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Study I – Mental time travel toward past and future reduces temporal discounting of 

monetary but not edible rewards 

 

Introduction 

 Shortsighted decision-making occurs in part because people fail to take into account 

their future interests (Gilbert et al., 2002). Faced with a tempting option (the slice of 

chocolate cake of my introductive example), people neglect the beneficial effects of the 

long-term outcome (losing weight).  

 In daily life, individuals frequently engage in envisaging possible future events 

(Suddendorf and Corballis, 2007), simulating and anticipating ‘here and now’ the affective 

impact they might have on themselves in the long run. This process is defined as episodic 

prospection or self-projection (Hassabis and Maguire, 2007; Schacter et al., 2007; Spreng et 

al., 2009), and recent neural evidence extensively showed that areas like mOFC and 

vmPFC, the same recurrent areas subserving intertemporal decisions, underpin it. These 

areas are also commonly identified as part of the so-called ‘default network’ (Gusnard et 

al., 2001), indicating a set of brain regions more active during rest or passive thought than 

directed cognitive processing (Buckner et al., 2008). This network extends to the 

neighbouring medial frontal and precuneas regions, as well as mesial and lateral aspects of 

the temporal lobes. Raichle and colleagues (2001) labelled it the ‘default mode’ because of 

the consistency of this activity pattern in undirected tasks.  

 It comes quite intuitively to imagine that when people are at rest, but awake, they 

think about something related to themselves, such as personal events occurred in the past 

(e.g., what happened yesterday when I came to visit my grand-mother), or to occur in a 

possible future (e.g., how should I dress tonight for my friends’ party?). This might explain 
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why activations in the ‘default network’ regions are remarkably similar to those during the 

act of self-projection, including imagining the future (prospection), and remembering the 

past (Buckner and Carroll, 2006): as is evident, in both processes mental time travel (MTT; 

Schacter et al., 2007) is required. The notion of MTT has been largely developed by 

Suddendorf and Corballis (1997), and refers to human beings’ capacity to both re-

experience episodes from one’s personal past, and pre-experience possible events that may 

occur in the future (see Wheeler et al., 1997; Atance and O’Neill, 2001; Tulving, 2001; 

Suddendorf and Busby, 2003; Suddendorf, 2006; Botzung et al 2008). Interestingly, as 

Schacter and colleagues (2007) suggested, the brain areas included in the ‘default mode’ 

could be necessary to adaptively integrate information about relations and associations 

deriving from past experiences (memory) to construct mental simulations about possible 

future episodes (prospection and forecasting) (see Part I). 

 MTT and temporal discounting have been linked in several ways. For instance, 

Peters and Büchel (2010a) found that cued episodic future thinking during an intertemporal 

choice task reduced TD significantly. More specifically, participants performed a standard 

TD task, and a modified TD task with embedded cues to pre-experience future events. 

Future rewards were discounted significantly less in the latter compared to the former 

condition. This correlated with self-report imagery for the future episode and brain activity 

in ACC (coupled with hippocampus and amygdala activity) during cue processing, 

predicting how much individuals changed their preferences toward more future-minded 

choice behavior (Peters and Büchel, 2010a). Also, Ersner-Hershfield and colleagues (2009) 

tested the association between the ‘future self-continuity’, namely individual differences in 

the perception of one’s present self as continuous with a future self, with a discounting 

measure. They found that that current self- vs. future self-relevant information activated a 
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rostral portion of the ACC, and that individual differences in the magnitude of this effect 

predicted the tendency to discount future outcomes. More recently, Benoit and colleagues 

(2011) provided further evidence in favour of the hypothesis that imagining the future 

biases subsequent monetary decisions toward options associated with a higher long-term 

pay-off. Specifically, in an fMRI study, they found that participants were more likely to 

choose a delayed but larger reward instead of a current but smaller reward if they had 

previously imagined the consumption of the delayed reward. Thus, episodic prospection 

effectively attenuated TD. Importantly, they found that the activation of the medial rostral 

prefrontal cortex (mrPFC) was associated with the simulation of future episodes as well as 

with the considered reward magnitude (Benoit et al., 2011).  

 In light of imaging (e.g., Kable and Glimcher, 2010; Peters and Büchel, 2010a; 

Benoit et al., 2011) and lesion (Sellitto et al., 2010) evidence about an involvement of 

vmPFC and mOFC in both TD and in MTT, we decided to test more downrightly the 

relationship between these two phenomena. Differently from the previous mentioned 

studies (Ersner-Hershfield et al., 2009; Peters and Büchel, 2010a; Benoit et al., 2011), we 

used the TD task we proposed in previous works (Sellitto et al., 2010; Sellitto et al., under 

submission; see also Study I, II-Part II) and a manipulation of MTT preceding, and 

unrelated to, the TD task. We also investigated if this manipulation had the same effect 

result in different types of rewards, namely, monetary and edible ones. We hypothesized 

that individuals trained to think to a distant time (past or future) would have reduced TD 

compared to individuals who thought about the present time, especially regarding monetary 

rewards.  
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Materials and methods 

 

Participants 

 Two hundred and thirty participants were recruited both in Bologna and Cesena 

(Italy). Participants gave informed consent, according to the Declaration of Helsinki 

(International Committee of Medical Journal Editors, 1991) and the Ethical Committee of 

the Department of Psychology, University of Bologna, and they were randomly assigned to 

four different groups (see Table 1 for demographic information). Groups did not differ 

regarding sex, age, level of education, Body Mass Index (BMI, Borghans and Golsteyn, 

2006), and hours of fasting (all ps > 0.10). 

 

Groups Number 
Mean age 

(years) 
Education BMI 

Fasting 

(hours) 

Past 30 f / 23 m 37.4 (12.2) 15.4 (3) 23 (2.5) 3 (2) 

Future 39 f / 23 m 36 (12) 16 (3) 24 (5) 3.4 (3) 

Present Described 25 f / 20 m 42 (12.5) 14.4 (3.5) 24 (3.5) 3.2 (2.2) 

Present Imagined 45 f / 25 m 37 (14) 15.1 (3.4) 23.6 (4) 3.1 (3) 

Table 1. Participants’ demographic data. f = female, m = male, BMI = Body Mass Index. Numbers in 
parenthesis are standard deviations. 
 

 

Time manipulation task and ratings 

 Participants underwent to different time manipulations based on the group they were 

randomly assigned to by the experimenter. Subjects assigned to the Past group were trained 

to think to the past before performing two TD tasks. Specifically, they had to recall an 

event occurred in the last year that they had experienced personally, trying to re-experience 

it in the present, and write it down on a paper sheet. After that, they rated on three separate 
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5 points scale (from ‘a lot’, to ‘not at all’) how easy they found the act of remembering that 

event (difficulty scale), the level of emotion felt upon recalling the event (e.g., moved or 

excited, emotionality scale), and the degree to which how they felt to re-live the event 

(reliving scale). Ratings were the same for all groups in this experiment. Afterward, they 

had to think about a second event occurred in the last 3 years, write it down, and rate it in 

the same way they did for the previous event.  

Participants in the Future group followed the same procedure, with the difference 

that they had to envisage possible future events and write a first time about a plausible 

scenario that may occur them 1 year later in the future. After the rating, they had again to 

imagine and write as more detailed as possible about another plausible scenario that might 

have occurred to them 3 years later, and then rate it.  

Subjects included in the Present Described group the first time had to describe the 

more precise and detailed they could what they were seeing on the desk in front of them, 

and the second time what was happening around them. As for the other groups, they had to 

rate both times the difficulty, the emotionality, and the subjective experience of ‘living’ the 

current reality during the task. However, since we thought that this task might have been 

quite easy in terms of cognitive effort, and for someone maybe quite fast to be executed, we 

included a condition (group), the Present Imagined, in which participants had to think about 

two plausible experiences that may happened in the present moment and in the present 

spatial context different from what was actually happening. Again, participants underwent 

the three different ratings after both writings. 
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Procedure 

 After collecting demographic data, all groups performed the time manipulation task 

together with ratings (about 10-15 minutes; see next section), and then they underwent two 

TD tasks, based on two different reward types: in one we offered them money amounts 

(Euro), and in the other we offered them chocolate bars as reward (making sure at the 

beginning that participants liked it). The two TD tasks were administered in a randomized 

order and were the same (both amounts and delays) we used in Study I-Part II, as well as 

the titration procedure to adjust quantities of reward (Sellitto et al., 2010). 

  

Results 

Temporal discounting tasks. The k value for each curve reflects the geometric mean 

of the group. To analyse data, we used the same procedure as in Study I-Part II (Sellitto et 

al., 2010). Since we found in all our previous studies that hyperbolic model was always 

superior to the exponential model, here we will analyse only hyperbolic k parameters, and 

no AUCs were calculated. 

An ANOVA on log-transformed k values with Group (Past, Future, Present 

Described, Present Imagined) as a between-subject factor, and Reward type (money, 

chocolate) as a within-subject factor, yielded no significant effect of Group [F(3, 226) = 

2.35, p = 0.07], a significant effect of reward type [F(1, 226) = 42, p = 0.000001], and no 

significant Group × Reward type interaction [F(3, 226) = 1.51, p = 0.21]. Post hoc 

comparisons, performed with the Newman-Keuls test, showed that TD was less steep when 

participants chose between monetary amounts rather than chocolate bars (-2.1 vs. -1.4; p = 

0.00001). The result that subjects behaved less impulsively toward money than food is 

completely in line with our previous results and literature as well (Charlton and Fantino, 
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2008, Estle et al., 2007; Odum and Rainaud, 2003; Sellitto et al., 2010). Moreover, when 

we performed an ANCOVA including, separately, participants’ BMI scores and fasting 

hours as covariates, a similar pattern of results was found. 

Although no significant interactions have been found, taking into account the 

significant tendency of the group effect, for completeness purpose, we decided to repeat the 

analysis separately for reward, to be sure we were not underestimating any significant 

result. 

An ANOVA on log-transformed k values for the monetary TD task with Group 

(Past, Future, Present Described, Present Imagined) as a between-subject factor, revealed a 

significant effect of Group [F(3, 226) = 4.35, p = 0.005]. Post hoc comparisons, performed 

with the Newman-Keuls test, showed that TD was significantly reduced in participants 

previously trained with the Past and the Future tasks as compared to participants in the 

Present Described and in the Present Imagined groups. Participants in the Past group had 

the same mean discount rate as participants in the Future group (-2.35 vs. -2.30; p = 0.63), 

significantly smaller than that of participants in the Present Described group (-2.35 vs. -1.9; 

p = 0.03) and of those in the Present Imagined group (-2.35 vs. -1.8; p = 0.02). Similarly, 

subjects in the Future group had a smaller discount rate than those in the Present Described 

group (-2.3 vs. -1.9; p = 0.04) and of those in the Present Imagined group (-2.3 vs. -1.8; p = 

0.04). Conversely, no difference in the TD between the Present Described group and the 

Present Imagined group was detected (-1.9 vs. -1.8; p = 0.70) (Fig. 1).  

When we performed the same analysis on log-transformed k values for the TD task 

with food, no significant difference among groups emerged [F(3, 226) = 0.80, p = 0.50],  

suggesting that, while our manipulation differently influenced discount rates for monetary 

amounts based on which kind of MTT we induced (or the lack thereof), this did not affect 
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the discounting behavior for the primary reward (Fig. 1). We will further discuss these 

results later.  

 

 

 

Figure 1. On the left, TD functions for money by group. On the right, TD functions for chocolate by group.  

 

 

Time manipulation ratings. We compared the four groups on all ratings they 

performed twice during the time manipulation phase. It is important to note that smaller 

numbers correspond to higher ratings, due to the way in which we asked the three questions 

(see the Time manipulation section). An ANOVA on scores about the difficulty of the task 

with Group (Past, Future, Present Described, Present Imagined) as a between-subject 

factor, and Time of rating (first, second) as a within-subject factor, yielded no significant 

effect of Group [F(3, 226) = 2.1, p = 0.10], a significant effect of Time of rating [F(1, 226) 

= 12, p = 0.0006], and a significant Group × Time of rating interaction [F(3, 226) = 5, p = 

0.002]. Post hoc comparisons, performed with the Newman-Keuls test, showed that the 

second time subjects had to perform the task the difficulty incremented as compared to the 
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first time (2.1 vs. 1.8; p = 0.002). This result might be explained by the ego depletion due to 

the cognitive effort required the first time they performed the task, but also because 

travelling farther in time, be this towards the past or the future, as well as describing a more 

complex situation (for the Present Described group), and imagining again something 

different from the actual present (for the Present Imagined group), was sensibly more 

difficult. In accordance with our intuitions, the first attempt to describe the present (Present 

Described group) was rated as significantly easier than the second attempt (1.33 vs. 2.04; p 

= 0.0007), and than all other (MTT) conditions. (all ps < 0.05). All other comparisons did 

not reach statistical significance (all ps > 0.10).  

An ANOVA on scores about the emotionality of the task with Group (Past, Future, 

Present Described, Present Imagined) as a between-subject factor, and Time of rating (first, 

second) as a within-subject factor, yielded a significant effect of Group [F(3, 226) = 45, p = 

0.000001], but no significant effect of Time of rating [F(1, 226) = 0.04, p = 0.83], and no 

significant Group × Time of rating interaction [F(3, 226) = 1.23, p = 0.30]. Post hoc 

comparisons, performed with the Newman-Keuls test, showed that while participants in the 

Present Described group were those who experienced less emotion during the task (4.05; all 

ps < 0.00006), those in the Future group experienced the highest emotionality (2.10; al ps < 

0.004). Finally, the Past and the Present Imagined groups experienced the same level of 

emotion (2.6 vs. 2.8; p = 0.14).  

Finally, an ANOVA on scores about the reliving during the task with Group (Past, 

Future, Present Described, Present Imagined) as a between-subject factor, and Time of 

rating (first, second) as a within-subject factor, revealed no significant effect of Group [F(3, 

226) = 2.2, p = 0.09], no significant effect of Time of rating [F(1, 226) = 3, p = 0.10], and 
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no significant Group × Time of rating interaction [F(3, 226) = 2, p = 0.15]. We will discuss 

these findings in the next session. 

 

Discussion 

 In this study we trained participants to either think about past events (Past group) or 

future possible scenarios (Future group) before making intertemporal decisions, while two 

control groups were trained to either describe the present situation (Present Described) or 

imagine an alternative present situation (Present Imagined). Following null results in the 

principal analysis, we repeated it separately for commodities (money and food) to be sure 

we were not missing any significant effect. As compared to control groups, the Past and the 

Future groups made significantly less shortsighted decisions. However, this result yielded 

only for amounts of money, whereas no difference has been detected between groups when 

choosing among amounts of edible reward. When analysing participants’ ratings about the 

MTT task, we found that, among the others, participants in the Present Described group 

judged the task, the first time they did it, as significantly easier then the other participants 

did other times, suggesting that their task was different in the cognitive effort we required 

them. However, both Past and Future groups differed from the Present Imagined group in 

the discount rates for money but not in the difficulty rating, indicating that our MTT 

manipulation succeed. Moreover, while we observed that the four groups did not differ 

from each others regarding the re/pre-living experience, we found a difference in the way 

they rated the emotion experienced during the time manipulation task. Indeed, while 

participants in the Present Described group revealed lower levels of emotionality during the 

MTT task, those in the Future group had significantly higher levels of emotionality as 

compared to all other groups, whereas no difference was detectable between the Past and 
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the Present Imagined. This result might suggest that the experienced emotion is associated 

more than anything else to the act of imagining something not yet real, because it is yet to 

come, but also, to a lesser extent, to the imagery about something that is not happening 

now, and to recollect events happened in the past, rather then to the movement of our self in 

the future time only. 

 Taking together the findings of the present study, it seems that it is not to travel in a 

particular time direction, but, rather, transcending the ‘here and now’, moving one’s self in 

time, that has the effect to unbind people from their sensorial self. Thinking about events 

not linked to the current surrounding environment is sufficient to become less discounter 

and to make less shortsighted decisions toward monetary outcomes. However, these 

considerations are not true for edible rewards. It is important to note, indeed, that edible 

rewards are characterised by perishability, they lead to satiety and saturation very quickly 

(this is difficult to happen with money, indeed!), and they are not exchangeable for other 

outcomes like secondary rewards. Moreover, here we tested only one food. All these factors 

might have influenced the present results. We will further analyse this issue in Study III-

Part III. 

 In light of our previous finding about the causal involvement of mOFC in 

intertemporal decision-making (Sellitto et al., 2010; Ciaramelli and di Pellegrino, 2011; 

Study I-Part II), present results support the idea that one of the possible mechanisms 

through which mOFC may influence valuation and judgment of future rewards relies in its 

role in enabling us to shift perspective to alternatives in time other than the present 

(Buckner and Carroll, 2006; Andrews-Hanna et al., 2010), that is self-projection. When 

faced with an intertemporal choice, mOFC may serve to recall past experiences associated 

with rewards, anticipate future feelings, and modulate the subjective value of future 
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outcomes based on the resulting affective states (Bechara, 2005). For instance, mOFC may 

be responsible to the ability to remember, and then imagine and reproduce how we will feel 

in two weeks after collecting € 40. Moreover, vmPFC activity predicted both how much 

people would enjoy something in the future and the extent to which they made impulsive 

monetary decisions (Mitchell et al., 2010), and also future forecasting reduced discount 

rates (Benoit et al., 2011; Peters and Büchel, 2011), suggesting that damage to mOFC 

would result in a poor representation of future outcomes and, consequently, in imprudent 

behavior (Ciaramelli and di Pellegrino, 2011). As a consequence, mOFC patients of our 

first study (Study I-Part II, Sellitto et al., 2010) might have been unable in the imagery of 

future rewards, being thereby overwhelmed by salient, current rewards. This idea is also 

supported by a study of Moretti and colleagues (2009) who found that vmPFC patients 

accepted unfair offers during an ultimatum game, in the same way control participants did, 

only when monetary outcomes were visible and readily available. That is, the concreteness 

with which gains were presented, and how soon they will have been experienced, 

influenced their choices, whereas they substantially reduced their acceptance rate of unfair 

offers when financial gains were presented as abstract amounts to be received later (Moretti 

et al., 2009). Moreover, our result supports imaging findings (Peters and Büchel, 2010a) 

about TD being predicted by the degree of spontaneous episodic imagery during decision-

making.  

 Recently, Smallwood and colleagues (2013) demonstrated that the ability to delay 

gratification was related to mind-wandering (Antrobus et al., 1966; Klinger, 1978a,b; 

Killingsworth and Gilbert, 2010; Baumeister et al., 2011; Smallwood et al., 2011). That is, 

when the environment is poorly interesting, people engage in task-unrelated thoughts, they 

start off-thinking. The degreeto which their participants engaged in task-unrelated thoughts 
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during a simple RT task positively correlated with the degree to which they discounted 

delayed monetary rewards (in a separate TD task session that could have occurred before or 

after the RT task) (Smallwood et al., 2011). Smallwood and colleagues (2013) suggested 

that this capacity to let go of the present and concentrate on more personally relevant issues 

helped individuals to make decisions about their personal futures, probably because both 

protecting the internal goals from distraction and interference, and promoting the episodic 

projection into future and past situations, instead of resulting in a cognitive interference 

(but see McVay and Kane, 2011).  

 The fact that in the present study also individuals trained to think about past events 

reduced their discount rates, together with the evidence that future forecast lessened 

discounting behavior, and that individual differences in the differential activation of medial 

prefrontal regions for current vs. future self-relevant information predicted the degree to 

which subjects were capable to save money for the future (i.e., greater the activation in 

medial prefrontal regions, larger the impatience in discounting future rewards; Ersner-

Hershfield et al., 2009; Pronin et al., 2008), supports Schacter and colleagues (2007)’ idea 

that the brain areas included in the ‘default mode’ are necessary to adaptively integrate 

information about relations and associations deriving from past experiences (memory), to 

construct mental simulations about possible future episodes. Clinical data also endorse this 

idea, since patients with lesions to those areas were found to be dysfunctional not only 

during episodic memory tasks, but also in episodic future thinking (Atance and O’Neill, 

2001; Ciaramelli and Ghetti, 2007).  

 From an evolutionary perspective, Boyer (2008) proposed that the engagement with 

past and future events enrich them with motivational force: both memory and imagination 

may break impulsiveness or boost on patience by associating plans with non-opportunistic 
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rewards. MTT would lead to activate stored knowledge against which to compare imagined 

future events, bypassing current goals. This could be the best way to get adapted to new 

contingencies, escaping form errors made in the past, and consequently reducing TD. 

 Another possible explanation of why our MTT training had the effect of lessening 

impulsivity during monetary intertemporal choices, without excluding our previous 

suggestion though, could be that forecasting about oneselves or remembering oneselves can 

highlight differences between far selves and present selves (Ersner-Hershfield et al., 2009), 

helping in making the optimal decision. This can be considered an alternative way to think 

about future rewards using more abstract construals (i.e., mental representation; Liberman 

and Trope, 1998, 2008; Trope and Liberman, 2003). Indeed, looking at something from a 

distant view, in a decontextualized manner, not linked to the surrounding actual situation, 

lead people to think in a ‘colder’ way about future outcomes, highlighting the fact that they 

are larger, and so more convenient, than sooner outcomes. I will examine more in depth this 

issue in Study III-Part III. 
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Study II – Intertemporal choice and moral judgement: When pre-experiencing future 

outcomes is necessary 

 

Introduction 

 

Can a moral judgement be considered an intertemporal choice? While during time-

based decisions people have to choose whether to prefer a smaller but earlier reward or 

waiting for a larger but later reward, when faced with moral dilemmas, they have to decide 

if acting in some way can be considered moral or immoral. On the one hand, when you 

have to choose, for instance, if staying at home writing your PhD thesis or spending the day 

out enjoying sun with friends, you are considering if enjoying something pleasurable in the 

short run or wait for the future but greater gratification (i.e., succeed in your viva voce). On 

the other hand, consider you are on a footbridge above railway tracks and an oncoming 

train is going to kill five persons if you will do anything (‘footbridge dilemma’; Thomson, 

1985). If you decide to throw out a large person standing near you, you will stop the train 

saving the five people but killing him. When you choose what to do in this case, you are 

comparing a short-term gain, saving five lives at the cost of killing one person, with a long-

term gain, having no future remorse for having been respectful of social rules. Moral 

dilemmas require people to judge weather it is appropriate or not to incur a moral violation 

to follow utilitarian, more reasoned, considerations (i.e., maximize overall consequences 

saving five persons; Greene et al., 2001). However there is a distinction to be made. The 

example above is considered a personal dilemma, in which the moral violation consists in 

causing serious bodily harm to someone through one’s own agency. On the contrary, if you 

are required, for instance, to choose whether or not to hit a switch that will turn the trolley 
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to an alternate set of tracks, where it will kill one person instead of five (‘trolley dilemma’; 

Foot, 1967), is considered an impersonal moral judgment, because the violation do not 

involve one’s own agency and, therefore, may induce a less intense emotional experience in 

individuals (Greene et al., 2001). Accordingly, Greene and colleagues (2001, 2004) found 

that, emotional processes were mostly active when individuals in the scanner were making 

judgments about personal moral scenarios, whereas cognitive mechanisms were 

predominant when they were making judgments about impersonal moral dilemmas (Greene 

et al., 2001, 2004, 2008). Ugazio and colleagues (2012) proposed that these results show 

that cognitive mechanisms inform moral judgments based predominantly on action’s 

consequences (utilitarian judgments), while emotional mechanisms primarily inform moral 

judgments focusing on the means used to obtain a given outcome (deontological 

judgments). Sometimes, moral reasoning is more concerned with adherence to duties and 

proscriptions than with consequences (Bennis et al., 2010). Moreover, as suggested by 

Frank (1988), moral problems require people to make commitments to behave in ways that 

may later prove contrary to their interests (Loewenstein, 1992). Indeed, anticipating non-

egoistic emotions, like feelings of guilt or embarrassment, can prevent someone, in his 

examples, from cheating on someone or stealing something in a shop (Loewenstein, 1992). 

This demonstrates that, as intertemporal choices do, also moral dilemmas require people to 

exercise self-control, referred to by Baumeister’s research group (e.g., 1998, 2003, 2007) as 

the ‘moral muscle’ because it provides the power to do what is right.   

Neurally, both the process of intertemporal decision-making and the process of 

moral judgment share a common brain network, engaging vmPFC. In spite of preserved 

general intellectual abilities, patients with vmPFC lesions show several deficits regarding 

judgment, decision-making, social conduct, and personality (e.g., Bechara and Damasio, 



 138 

2005; see also Part I). This cortex is generally deemed as responsible for mediating aversive 

emotional responses toward moral violations to prevent people from approving immoral 

acts, even if at costs (Greene et al., 2001). Moreover, as we demonstrated before (Study I-

Part II), mOFC patients were less willing to wait for future rewards, increasing their 

preferences for immediate outcomes (impulsivity), regardless of the good type (Sellitto et 

al., 2010), and they were more willing to accept moral violations, especially when there 

was high conflict between the emotional and the utilitarian component (Ciaramelli et al., 

2007). 

Here we investigated the relationship between intertemporal choice and moral 

judgment in healthy participants through a TD task (Sellitto et al., 2010) and several 

personal and impersonal moral dilemmas (Ciaramelli et al., 2007). We expected to 

determine how mind decisions relate to the balance of short- versus long-term choices that 

people make. Specifically, we expected a linear relationship between TD and moral 

violations, namely, the larger the impulsivity in intertemporal choice, the larger the 

willingness to accept moral violations, thereby suggesting that a common MTT mechanism 

can drive both processes with the anticipation of future outcomes. 

 

Materials and methods  

 

Participants 

 We tested 32 healthy individuals [24 females; mean age: 34 years (standard 

deviation: 8.4), mean education: 14 years (standard deviation: 3.0)] who were not taking 

psychoactive drugs, and were free of current or past psychiatric or neurological illness as 

determined by history. All participants gave informed consent, according to the Declaration 
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of Helsinki (International Committee of Medical Journal Editors, 1991) and the Ethical 

Committee of the Department of Psychology, University of Bologna. 

 

Neuropsychological assessment 

 We assessed the general cognitive functioning of participants through several 

neuropsychological tests widely used in clinical practice to exclude that results could have 

been explained by poor reasoning abilities or other cognitive defects. Analytic abilities 

were evaluated with the Coloured Progressive Matrices of Raven (CPM, Raven, 1981; 

Basso et al., 1987). Cognitive flexibility was assessed through the Wisconsin Card Sorting 

Test (WCST, Berg, 1948; Spinnler and Tognoni, 1987). Attention and speed of information 

processing were assessed using the Paced Auditory Serial Addition Test (PASAT, 

Gronwall, 1983) (3-s and 2-s versions). Language was assessed through phonetic and 

semantic fluencies (Novelli et al., 1986b). Memory was assessed with a series of tests: digit 

span test (Orsini et al., 1987) and short story test for the short-term memory (Novelli et al., 

1986a), Corsi’s test for the visuo-spatial span (De Renzi and Nichelli, 1975; Splinner et al., 

1987), Rey-Osterrieth Complex Figure Test (ROCF, copy and recall, Carlesimo et al., 

1996; Osterrieth, 1944; Rey, 1941) for visuo-spatial abilities and long-term memory. All 

participants obtained scores in the normal range for their gender, age and education. 

 

Temporal discounting task 

The TD task was the same used in the Study II-Part II (see also Sellitto et al., 2010). 

Hypothetical monetary amounts (€) were offered participants in two different temporal 

condition: the Now condition, where a smaller current option was paired with a larger but 

delayed option, and the Not-now condition, where the sooner option was always available 
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in 60 days. Task procedure, delays and titration procedure were exactly the same we used in 

that previous study.  

Before the beginning of the experimental session, participants were told that, on 

each trial, two amounts of hypothetical money would appear on the screen. One could be 

received sooner, and one could be received later. They were informed that there were no 

correct or incorrect choices, and were required to indicate the option they preferred by 

pressing one of two buttons on a keyboard with no temporal constrictions (see Study I-Part 

II, Sellitto et al., 2010). 

 

Moral dilemmas task 

 Participants were submitted to 12 personal moral dilemmas, and 12 impersonal 

moral dilemmas, translated into Italian after being randomly selected from a battery of 60 

dilemmas developed by Greene and colleagues (2001; the complete battery is available at: 

www.sciencemag.org/cgi/content/full/293/5537/ 2105/DC1). Contrary to non-moral 

decisions, all moral dilemmas are supposed to elicit moral emotions (Greene et al., 2001; 

Ciaramelli et al., 2007). Personal moral dilemmas in the present study included scenarios in 

which the action was driven by the agent willingness, for instance when deciding if 

practicing a lethal injection to discover a new vaccine, or pushing down people from a 

lifeboat to avoid sinking. Conversely, impersonal dilemmas induce people to decide if 

being involved in a risky but predetermined situation, as for instance when deciding if 

pushing or not a level to move railway tracks to change the oncoming train direction to kill 

one person instead of five. Participants’ judgement was based on their on-line appraisal of 

the specific situation they were contemplating (Ciaramelli et al., 2007). 

Each dilemma was presented as text through a series of three screens. The first 
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screen described the scenario. The second screen posed a question about the 

appropriateness of an action one might perform in that scenario (i.e. the ‘dilemmatic 

question’) (e.g. ‘Is it appropriate to save the five persons by pushing the stranger to 

death?’). After reading the scenario (with no time limits), subjects pressed a button to 

advance from one screen to the next, where the dilemmatic question appeared, and they 

responded ‘appropriate’ (‘yes, it is appropriate to do that’) or ‘inappropriate’ (‘no, it is not 

appropriate to do that’) by pressing one of two buttons. Participants were told to respond as 

soon as they had reached a decision, within no more than 60 seconds. For all dilemmas 

being tested, ‘appropriate’ responses implied the maximization of overall consequences 

(Greene, 2003; Ciaramelli et al., 2007), e.g. killing one instead of five persons. Both the 

number of ‘appropriate’ responses and response times (RTs; i.e. the time from the onset of 

the dilemmatic question to the moment a response was given) were collected. Once a 

response was given, a 5 sec-fixation cross appeared, signalling the beginning of the new 

moral scenario. 

 

Procedure 

 TD task and moral dilemmas were administered in a random and counterbalanced 

order across subjects. Both tasks were completed seating in front of the same laptop in a 

quiet room after receiving adequate instructions. The whole experiment required about 45 

minutes. 

 

Results 

 Temporal discounting task. To analyse data, we used the same procedure as in 

Study II-Part II (see also Sellitto et al., 2010). Since we found in all our previous studies 
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that the hyperbolic model was always superior to the exponential model, here we will 

analyse only hyperbolic k parameters, and no AUCs were calculated. 

An ANOVA on log-transformed k values with Temporal condition (Now, Not-now) 

as a within-subject factor yielded a significant effect of Temporal condition [F(1, 30) = 

26.2, p = 0.00001]. Post hoc comparisons, performed with the Newman-Keuls test, showed 

that TD was significantly steeper in the Now condition than in the Not-now condition  (-

1.27 vs. -1.80; p = 0.0001) (Fig. 1). This result is completely in line with our previous 

findings, suggesting that subjects differently as well as correctly performed intertemporal 

decisions when an immediate option was offered and when it was not. 

 

 

 

 

 Moral dilemmas task. An ANOVA on the number of times participants made moral 

violations (namely, they accepted that the action described in the moral scenarios was 

appropriate) with Dilemma (Personal, Impersonal) as a within-subject factor yielded a 

significant effect of Dilemma [F(1, 30) = 5.63, p = 0.01]. Post hoc comparisons, performed 

Figure 1.TD functions 
for money by temporal 
condition.  
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with the Newman-Keuls test, showed that participants made a larger number of violations 

during impersonal than personal dilemmas (6.4 vs. 5.4; p = 0.03). This result is in line with 

the literature, suggesting that our participants were more willing to make violations during 

impersonal moral decisions, rather than during personal dilemmas (Fig 2.). 

 

 

  

 

 An ANOVA on mean RTs (in milliseconds) with Response (‘appropriate’, 

‘inappropriate’) and Dilemma (Personal, Impersonal) as within-subject factors, yielded no 

significant effect of Dilemma [F(1, 30) = 0.16, p = 0.70], and no significant effect of 

Response [F(1, 30) = 0.04, p = 0.84], but a significant Response × Dilemma interaction 

[F(1, 30) = 9, p = 0.006]. Post hoc comparisons, performed with the Newman-Keuls test, 

indicated that during personal dilemmas participants were marginally significantly slower 

when judging ‘appropriate’ rather than ‘inappropriate’ the described scenario (9616.4 vs. 

7776; comparison tending to be significant, p = 0.07), while no difference was detectable 

during impersonal dilemmas between ‘appropriate’ and ‘inappropriate’ responses (8222 vs. 

Figure 2. Number of 
violations for personal and 
impersonal moral dilemmas. 
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9734; p = 0.15), replicating previous findings (Greene et al. 2001, 2004; Ciaramelli et al., 

2007) (Fig. 3).  

 

 

  

 

 Temporal discounting task and moral dilemmas task. By using partial correlation 

analyses, we investigated the relation between k rates for both temporal conditions (Now, 

Not-now) and the number of moral violations for both types of dilemmas (Personal, 

Impersonal). We found that the discount rate for the Now temporal condition correlated 

significantly with both the number of personal (r = 0.38; p = 0.03, two-tailed) and 

impersonal (r = 0.52; p = 0.002, two-tailed) violations during the moral dilemmas task (Fig. 

4a,b). Conversely, the discount rate for the Not-now temporal condition did not correlate 

significantly with either the number of personal (r = 0.20; p = 0.30, two-tailed) or 

impersonal violations (r = 0.04; p = 0.83, two-tailed). These positive correlations indicated 

that the larger the impulsivity during intertemporal choices when an immediate reward was 

Figure 3.RTs for accepting 
and refusing moral violations 
for personal and impersonal 
moral dilemmas. 
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available, the more individuals tended to accept violations during both personal and 

impersonal moral dilemmas.  

 

 

a. b.  

Figure 4. a. Correlation between TD rates and number of violations for personal dilemmas. b. Correlation 
between TD rates and number of violations during impersonal dilemmas. 
 

 

However, when we performed partial correlations to investigate the relationship between k 

rates for both temporal conditions (Now, Not-now) and RTs (‘appropriate’, ‘inappropriate’) 

for both types of dilemmas (Personal, Impersonal), we found that k rates for the Now 

temporal condition significantly correlated only with the RTs during ‘appropriate’ 

responses for personal dilemmas (r = -0.41; p = 0.02, two-tailed) (Fig. 5). No other 

significant correlation, indeed, was found between TD rates and RTs (all ps > 0.36). This 

negative correlation indicated that people more impulsive in choosing between smaller but 

immediate and larger later rewards (larger k values) were also faster in accepting as 

appropriate a personal moral dilemma (smaller RTs). 
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Discussion 

 In the present study we related the monetary discounting behavior to the moral 

judgement. On the one hand, during TD tasks, subjects were more impulsive when we 

offered them a larger delayed reward against a smaller but current one, rather than when 

both options were delayed in time, replicating previous findings (e.g., Frederick et al., 

2002; McClure et al., 2004, 2007; Sellitto et al., under submission). On the other hand, 

during moral judgements, the same subjects made fewer violations during personal rather 

than during impersonal dilemmas. Moreover, while it took them the same time to both 

accept and condemn actions described in impersonal dilemmas, the decision took longer 

when defining as ‘appropriate’ rather than ‘inappropriate’ the scenario of personal 

dilemmas, replicating again literature findings (Greene et al. 2001, 2004; Ciaramelli et al., 

2007). When we put in relation both discounting and moral behaviors, we found that the 

more our participants were imprudent during intertemporal choices when an immediate 

option was available, the more they were willing to define as ‘appropriate’ both personal 

and impersonal dilemmas. However, when we repeated this analysis on RTs instead of the 

Figure 5. a. Correlation between 
TD rates and RTs for violations 
during personal dilemmas.  
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number of violations, we found that the more subjects were impulsive during intertemporal 

choices when an immediate option was available, the faster they were in accepting 

violations during personal dilemmas only. On the one hand, intertemporal choices between 

a current reward and a delayed one put people through a conflict generated by the presence 

of the tempting gratification available very close in time, even when outcomes are just 

hypothetical. The conflict between the two options is attenuated when replacing the 

immediate reward with a sooner yet not immediate one. On the other hand, people 

experience higher conflict when judging a personal moral dilemma rather than an 

impersonal one, also taking longer to authorize a personal violation. Both processes (TD 

and moral judgement) share a common brain network, engaging vmPFC and mOFC. 

Indeed, in spite of preserved general intellectual ability, patients with vmPFC and mOFC 

lesions show several deficits regarding judgment, decision-making, social conduct, and 

personality (e.g., Bechara and Damasio, 2005; Moretti et al., 2009). The present results 

parallel both findings of Sellitto and colleagues (2010; see Study I-Part II) about the 

increased impulsivity in mOFC patients (‘myopic discounting’), and findings of Ciaramelli 

and colleagues (2007) about the increased inclination to approve, more quickly as well, 

personal moral violations, in vmPFC patients. Having damage in those cortices, indeed, 

decreased both the willingness to wait for future rewards and the reluctance in accepting 

moral violation, especially when there was high conflict between the emotional and the 

utilitarian component (Ciaramelli et al., 2007). It is also worth to note that, as mOFC 

patients were more willing to wait for delayed money and discount vouchers than for 

delayed food, like control participants did (Sellitto et al., 2010), vmPFC patients 

(Ciaramelli et al., 2007) had normal behavior in impersonal and non-moral dilemmas, 

suggesting that those behaviors cannot be explained with a mere poor motor impulse 
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control or impulsiveness to approve the behaviors at stake without evaluating their merit 

properly. 

 To make these two types of judgement, we call into play visceral sensations. 

Anticipating emotions (e.g., ‘how will I feel after doing that?’) drives our choices based on 

previous experiences of the probability of feeling pleasure or pain as a consequence of an 

act (Bechara, 1994, 2005; Mellers et al., 1999; Mellers and McGraw, 2001; Ciaramelli and 

di Pellegrino, 2011). As suggested by Bechara (2005), affective reactions to stimuli can 

emerge from recall of personal emotional experiences, or from the imagination of 

hypothetical affective events (somatic-marker hypothesis, Damasio, 1994; Bechara and 

Damasio, 2005; Verdejo-García and Bechara, 2009).  

 In the model we are proposing here (Sellitto et al., 2010, 2011), mOFC, vmPFC, 

VS, and PCC signal the subjective value of both immediate and delayed reward, with a 

specific role for mOFC in considering and mediating low-level signals coming from insula 

(see Study II-Part II, Sellitto et al., under submission) with top-down signals deriving from 

cognitive control structures (e.g., dlPFC; Christakou et al., 2009, 2011; Hare et al., 2009; 

Figner et al., 2010; Sellitto et al., 2010, 2011; see the general discussion of this 

dissertation). Abnormalities in this mechanism can compromise the ability to make 

advantageous long-term choices (Bechara, 2001; Clark et al., 2008), failing in mediating 

intentions’ understanding, and in overriding prepotent responses to salient outcomes 

(Ciaramelli et al., 2012). However, what the present data also support, is that the process of 

considering the future consequences of an action is required both when people are asked to 

accept a future reward instead of an immediate gratification, and when they are asked to 

take into account the future outcome of having broken a social rule. When this process is 

dysfunctional, they do not envision optimally future outcomes (both monetary and moral) 
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of their actions, thereby neglecting future consequences (e.g., gain a larger monetary 

amount, and have remorse) (Ciaramelli and di Pellegrino, 2011; but see also the 

‘intervention myopia hypothesis’, Waldmann and Dieterich, 2007). As Ciaramelli and di 

Pellegrino (2011) suggested, this might happen not only because one can be unable to 

prefeel and recall visceral emotions associated with a future outcome (‘gut feelings’; Hume, 

1777/1960; Haidt, 2001; Wheatley and Haidt, 2005; Prinz, 2007; Schnall et al., 2008; 

Ugazio et al., 2012), as in our insular patients (see Study II-Part II, Sellitto et al., under 

submission), but also because actually unable to envision future events in the first place, 

through an adequate MTT, and how they will feel after a specific decision.  
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Study III – Visual spatial travel and monetary intertemporal choice  

 

Introduction 

As said before, when faced with tempting sooner outcomes, people frequently tend 

to prefer sooner smaller outcomes during intertemporal choice, being attached to the ‘hic et 

nunc’ of the moment, deciding to go for the less advantageus option. One way to exercise 

the required self-control to achieve the larger later reward is to emphasize its abstract and 

core features in presence of the more salient sooner, even if smaller, reward.  

We based the idea of the present study upon the Construal Level Theory (CLT, e.g., 

Liberman and Trope, 1998, 2008; Trope and Liberman, 2003; Fujita et al., 2006; Fujita and 

Carnevale, 2012), that links psychological distance from objects to their mental construal. 

Namely, different dimensions of psychological distance correspond to different ways in 

which objects or events can be represented: An object can be psychologically distant in 

time (past or future), in space, in the social dimension (e.g., because linked to others’ 

experience; ingroup vs. outgroup), or in the probability domain (e.g., if it is a matter of 

hypothetical rewards, it is likely to do not occur) (Liberman and Trope, 2008).  

The CLT assumes that the more one is able to remove objects from the self, the 

more she construes them at a higher abstract level. Accordingly, any event or object can 

be represented at lower-level construals, that are concrete and contextualized 

representations that include subordinate and incidental features of events, or at higher-

level construals, that are abstract, schematic, and decontextualized representations 

(Liberman and Trope, 2008). A demonstration of how construals affect one’s way of 

thinking comes from a study of Bar-Anan and colleagues (2007): A modified version of a 
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Stroop Task (Fig. 1) required participants to indicate the location of an arrow and to 

identify the word on it. In congruent trials, a word denoting social proximity (e.g., ‘us’) 

was located near the observer, and a word denoting social remoteness (e.g., ‘them’) was 

located far from the observer. The opposite condition was denoted as incongruent. 

Because spatial distance is associated with social distance, participants were slower when 

social proximity words were located in the distant space and vice versa. There are many 

others ways to change the level of construal of a good at stake, and so the mindset to think 

about it. These range from changing the spatial position of visual objects, to the 

substitution of adjectives reminding low-level meanings, with abstract features reminding 

high level goals that can be reached through that good. For instance, in the example at the 

beginning of Part III, one could have said ‘delicious and creamy slice of chocolate cake’, 

or ‘fresh and healthy fruit salad’. 

 

 

 

Figure 1. In the context of CLT and psychological distance, two examples of incongruent visual stimuli: a 
word denoting social proximity, ‘us’, located far from the observer, and a word denoting social remoteness, 
‘them’, located near the observer. Because spatial distance is associated with temporal distance, social 
distance, and hypotheticality, participants are slower to indicate the location of the arrow and to identify the 
word on it with incongruent stimuli than with con- gruent stimuli (‘us’ located near the observer and ‘them’ 
located far from the observer) (Adapted from Bar-Anan et al., 2007; Liberman and Trope, 2008). 
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The prediction of CLT is that increased psychological distance should shift the 

overall attractiveness of an outcome closer to its high-level construal value and away from 

its low-level construal value. In terms of CLT accounting for intertemporal choice, the 

value of the outcome (i.e., the magnitude of the reward) is considered a high-level 

construal, while the length of time one needs to wait to obtain that outcome (i.e., its delay) 

is considered a secondary low-level feature of the outcome. When the attention is focused 

on the low-level value of an outcome, being more concerned with the outcome delay, TD 

would result, so that the future outcome would be less attractive. When the attention is 

focused on the high-level value of an outcome, the future outcome should be more 

attractive (Leiser et al., 2008). The trick is to shift attention toward higher construals. Fujita 

and colleagues (2006) provided preliminary evidence by manipulating the participants’ 

willingness to pay towards both immediate and delayed outcomes. In a between-subjects 

design, participants primed with high-level construal questions (e.g., ‘why do you do 

this?’), as compared to those primed with low-level construal questions (e.g., ‘how do you 

do this?’), displayed then a reduced tendency to prefer immediate over delayed outcomes. 

Switching objects’ high-level representations on enabled people to be more willing to wait 

for larger later outcomes, as we did in Study I-Part III, training people to think about far 

time, consequently reducing their discount rates of future monetary rewards. 

The present study aimed to explore if influencing outcomes representations can 

reduce TD. In a previous study (Study I-Part III), by way of MTT procedure, we trained 

participants to project their self in the distant time to detach them from their sensorial self, 

therefore reducing TD. Here we increased the psychological distance from the outcome by 

moving the outcome itself, in the spatial dimension, thereby allowing participants being 

attracted by high-level construal of future options (i.e., the magnitude) and less attracted by 
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its low-level property (i.e., longer time to be waited), thus reducing TD. To address this 

question we manipulated the physical position of monetary rewards in order to change their 

perceived spatial distance from decision-makers during binary intertemporal choices. Along 

two experiments, in one case both options were positioned in the near or in the far space at 

the same time. In another case, while one option was positioned in the far space, the other 

was positioned in the near space. We predicted that, when both options are perceived as 

more spatially distant, or when the larger later option is perceived as more spatially distant, 

abstract features are highlighted (i.e., enriched with high level attributes), leading people to 

shift their preference toward the larger delayed outcome, thus reducing TD. 

 

Experiment 1 

 

Materials and methods 

 

Participants 

 Fifty-nine undergraduate students were recruited through the research website Sona 

Systems Ltd. at the Bangor University, earning school and printer credits for their 

participation. This study has been approved by the ethics committee of the School of 

Psychology of Bangor University (Ethics Review Board Approval Code 2012-6142).  

Participants were randomly assigned to two different groups matched for sex and age (see 

Table 1 for demographic information), and performed a series of hypothetical monetary 

intertemporal choices along two different tasks.  
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Groups Number Mean age (years) 

Space 29 (19 f) 20 (2) 

No-space 30 (18 f) 20 (3) 

Table 1. Note: f = females; numbers in parenthesis for age are standard errors. 
 

Tasks 

 Experimental tasks were displayed using E-Prime 2.0 software (Psychology 

Software Tools ©). All participants were administered, in a counterbalanced order, two 

different intertemporal choice tasks, differing in the spatial positions of monetary options 

(Near-Far manipulation and Congruent-Incongruent manipulation). Two groups (Space 

condition and No-space condition) saw both tasks on a different spatial background.  

The group assigned to the Space condition (Space group) saw all intertemporal 

choices on a spatial background depicted on the screen: Options appeared in each trial 

superimposed to the drawing of a spatial perspective (Fig. 2a). Conversely, the group 

assigned to the No-space condition (No-space group) saw all intertemporal choices on a 

grey background on the screen with no evident spatial clues (Fig. 2b).  

 

 

Figure 2. a. Spatial background for the Space group. b. Grey background for the No-space group. 
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Near-Far manipulation. Along all intertemporal choices in the Near-Far 

manipulation, two different options could appear on the bottom part of the screen (Near), or 

on the top part of the screen (Far), randomly positioned one on the left and one on the right 

side of the screen. We refer to this manipulation as Near-Far because options on the lower 

part of the screen should have been perceived, at the least by participants in the Space 

group, due to the presence of the spatial background, as close to subjects, and those on the 

higher part of the screen as far from subjects. All options were depicted with a £1 coin 

picture, and the amount and the delay of availability as text (Fig. 3). In order to maintain 

coherence in our manipulation, and to avoid retinal mismatch (we know in our daily life 

that far objects are smaller than when they are near in space), options were smaller than 

those in the Near space.  

 

   

Figure 3. On the left, an example of a Near trial for the No-space group. On the right, an example of a Far 
trial for the No-space group. 
 

 

Congruent-Incongruent manipulation. In each trial of the Congruent-Incongruent 

manipulation, one option was displayed on the top part of the screen, and the other was 

displayed on the down part of the screen. When the later option was displayed on the top, 
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and the sooner option was displayed on the bottom, the trial was defined as Congruent, 

because what was sooner in time should have also been perceived as close in space, and 

what was later in time should have also been perceived as distant in space, at least for 

participants in the Space group. The opposite case was defined as Incongruent (Fig. 4).  

 

 

  

Figure 4. On the left, an example of a Congruent trial for the No-space group. On the right, an example of an 
Incongruent trial for the No-space group. 
 

 

In both tasks, each trial began with a 1 sec fixation cross, followed by the two 

options (there was no time limit to respond). After choosing, the preferred option remained 

highlighted for 1 sec, and then a new trial started. To express their preference, participants 

pressed two buttons on a keyboard according to the spatial position of their chosen options. 

Along both tasks, participants chose hypothetically between an amount of reward that 

could be received sooner and an amount of reward that could be received later (e.g., Kirby 

and Herrnstein, 1995; Myerson et al., 2003; Figner et al., 2010; Sellitto et al., 2010). Two 

temporal conditions were included. In the Now condition, participants made a series of 

choices between a smaller amount of money (£) that could be received immediately (now), 
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and £ 40 that could be obtained after a variable delay. In the Not-now condition, choices 

involved a smaller amount of money that could be received after 60 days, and £ 40 that 

could be delivered after a variable delay larger than 60 days, while maintaining the same 

temporal gaps between earlier and later rewards as in the Now Condition. Thus, in the Now 

condition, participants made five choices at each of six delays: 2, 14, 30, 90, and 180 days, 

whereas in the Not-now condition the delays were 62, 74, 90, 150, and 240 days. The 

blocks of choices pertaining to the two temporal conditions were interspersed, and the order 

of blocks of choices relative to different delays of both temporal conditions was 

randomized for each participant. The titration procedure used to adjust sooner amounts 

based upon participants’ previous choice is the same we used in the Study 1-Part II (Du et 

al., 2002; Sellitto et al., 2010). 

Moreover, four control conditions were included. Subjects made five choices between 

a smaller amount of money and £ 40, both available immediately, in both Near and Far 

conditions for the Near-Far manipulation, and in both Congruent and Incongruent 

conditions for the Congruent-Incongruent manipulation. Moreover, subjects made five 

choices between a smaller amount of money and £ 40, both available in 180 days, in both 

Near and Far conditions for the Near-Far manipulation, and in both Congruent and 

Incongruent conditions for the Congruent-Incongruent manipulation. The smaller amount 

of these control conditions was adjusted, along the block of choices, based on the same 

staircase procedure of the other blocks of choices (Du et al., 2002). Control conditions were 

randomly interspersed during the experimental session. All subjects included in the study 

always chose the larger reward in all control conditions along both tasks, suggesting 

adequate comprehension of the task as well as sensitivity to reward.  
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Procedure 

 In a quiet room, after collecting demographic data, all participants (both Space and 

No-space groups) underwent the two different TD tasks (the one with the Near-Far 

manipulation, and the one with the Congruent-Incongruent manipulation) in a 

counterbalanced order on a laptop with a 13” screen. They were asked to choose their 

preferred option between the two displayed each time on the screen, with no time limit to 

respond, and they were reassured that there were no right or wrong answers. However, to 

avoid participants to remember their choices for the first TD task when submitted to the 

second TD task, they all performed a brief task between the two that was completely 

unrelated to TD. In this task, displayed using E-Prime 2.0 software (Psychology Software 

Tools ©) on the same laptop, real and scrambled images of neutral human faces of different 

gender (both males and females) were presented, one on the right and one on the left side of 

the screen. The faces we used were static black and white pictures selected from the 

Pictures of Facial Affect series (Ekman and Friesen, 1975). Along 144 trials, all 

combinations of both real and/or scrambled faces were shown, also counterbalanced for 

gender. Participants were asked to maintain their eyes on a fixation cross in the middle of 

the screen, and push the space bar (within a time window of 1000 ms) only when they 

perceived two real faces on both sides of the fixation cross, trying to be as accurate as 

possible. Neither rewards or punishments, nor memory or emotion were involved in this 

task. All participants performed this task with accuracy greater than chance level (50%). 

 Once the second TD task was over, subjects were debriefed. The whole experiment 

took about 45 minutes. 
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Results 

To analyse data we used the same procedure as in Study II-Part II (see also Sellitto 

et al., 2010). Since we found in our previous studies that the hyperbolic model was superior 

to the exponential model, we will henceforth fit only hyperbolic curve, and no AUCs were 

calculated. 

 Near-Far manipulation. An ANOVA on log-transformed k values with Group 

(Space and No-space) as a between-subject factor, and Spatial position (Near, Far) and 

Temporal condition (Now, Not-now) as within-subject factors, yielded no significant effect 

of Group [F(1, 57) = 2.25, p = 0.14], no significant effect of Spatial position [F(1, 57) = 

3.10, p = 0.08], and no significant effect of Temporal condition [F(1, 57) = 0.01, p = 0.91]. 

Moreover, there was no significant Group × Spatial position interaction [F(1, 57) = 0.27, p 

= 0.61], no significant Group × Temporal condition interaction [F(1, 57) = 0.58, p = 0.45], 

no significant Spatial position × Temporal condition interaction [F(1, 57) = 2.53, p = 0.13], 

and no significant Group × Spatial position × Temporal condition interaction [F(1, 57) = 

1.25, p = 0.27].  

However, taking together the significant tendency of both the manipulation of 

interest, that is, the Spatial position factor, and the Spatial position × Temporal condition 

interaction, we repeated the analysis separately for temporal conditions (Now and Not-now) 

to be sure we were not underestimating a significant result. 

 Now temporal condition. An ANOVA on log-transformed k values with Group 

(Space and No-space) as a between-subject factor, and Spatial position (Near, Far) as a 

within-subject factor yielded a significant effect of Spatial position [F(1, 57) = 4.25, p = 

0.04], with no significant effect of Group [F(1, 57) = 2.40, p = 0.13], and no significant 

Group × Spatial position interaction [F(1, 57) = 1.01, p = 0.32]. A post-hoc analysis 
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(Newman-Keuls test) revealed that our manipulation was effective when an immediate 

option was offered in the pair (Near: k = -2.20, Far: k = -2.30; p = 0.04), with no differences 

between the two groups (Fig. 5a). Both groups tended to have smaller discount rates when 

options were offered far in space as compared to when options were offered close to them. 

This result suggests that future goods presented far from individuals were represented in a 

more abstract way, highlighting higher construals (representations), thus lessening 

impatience during choice. However, this finding cannot be explained with our principal 

manipulation, namely, a spatial background behind monetary options for one group but not 

for the other, but with the presence of other spatial cues. We will further discuss this result 

later. 

Not-now temporal condition. An ANOVA on log-transformed k values with Group 

(Space and No-space) as a between-subject factor, and Spatial position (Near, Far) as a 

within-subject factor yielded no significant effect of Spatial position [F(1, 57) = 0.10, p = 

0.76], with no significant effect of Group [F(1, 57) = 1.70, p = 0.20], and no significant 

Group × Spatial position interaction [F(1, 57) = 0.20, p = 0.66]. This analysis on Not-now 

trials suggested that our manipulation had no effect when no immediate option was offered 

in the pair, with no differences between the two groups (Fig. 5b). 
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Figure 5. On the left, TD functions by group (Space, No-space) and type of trial (Near, Far) for the Now 
temporal condition. On the right, TD functions by group (Space, No-space) and type of trial (Near, Far) for 
the Not-now temporal condition. The discounting parameter k reflects the geometric mean of the group (mean 
of the log-transformed values).   
 

 

 Congruent-Incongruent manipulation. An ANOVA on log-transformed k values 

with Group (Space and No-space) as a between-subject factor, and Spatial position 

(Congruent, Incongruent) and Temporal condition (Now, Not-now) as within-subject 

factors, yielded no significant effect of Group [F(1, 57) = 2.43, p = 0.12], no significant 

effect of Spatial position [F(1, 57) = 0.40, p = 0.55], and a significant effect of Temporal 

condition [F(1, 57) = 4.40, p = 0.04]. A post-hoc analysis (Newman-Keuls test) revealed 

that both groups tended to behave more prudently when both option were delayed in time 

as compared to trials in which an immediate option was provided in the pair (Now: -2.13; 

Not-now: -2.21), in line with literature and results of our previous studies. Moreover, there 

was no significant Group × Spatial position interaction [F(1, 57) = 2.10, p = 0.15], no 

significant Group × Temporal condition interaction [F(1, 57) = 0.30, p = 0.60], no 

significant Spatial position × Temporal condition interaction [F(1, 57) = 0.71, p = 0.40], 

and no significant Group × Spatial position × Temporal condition interaction [F(1, 57) = 

2.40, p = 0.13].  



 162 

Although no significant interactions between factors have been found, for 

completeness purpose and to be sure we were not underestimating a significant result, we 

decided to repeat the analysis separately for temporal conditions (Now and Not-now), as we 

did for the Near-Far task. 

 Now temporal condition. An ANOVA on log-transformed k values with Group 

(Space and No-space) as a between-subject factor, and Spatial position (Congruent, 

Incongruent) as a within-subject factor, yielded no significant effect of Spatial position 

[F(1, 57) = 1.02, p = 0.32], with no significant effect of Group [F(1, 57) = 1.70, p = 0.20], 

and a significant Group × Spatial position interaction [F(1, 57) = 4.30, p = 0.04]. A post-

hoc analysis performed with the Newman-Keuls test revealed that, while the No-space 

group (i.e., the one where no perspective drawing was provided under options on the 

screen) behaved in a significantly different way between Congruent and Incongruent 

conditions, showing higher discount rates for Congruent trials as compared to Incongruent 

trials (-2.20 vs. -2.29; p = 0.03), the Space group did not make any difference between the 

two (-2.10 vs. -2.01; p = 0.46) (Fig. 6a). All other contrasts did not reach statistical 

significance (all ps > 0.30). This result indicates that only participants in the No-space 

group differently decided between conditions, behaving more prudently when the larger 

option was perceived as close to participants. We will further discuss this result later. 

 Not-now temporal condition. An ANOVA on log-transformed k values with Group 

(Space and No-space) as a between-subject factor, and Spatial position (Congruent, 

Incongruent) as a within-subject factor, yielded no significant effect of Spatial position 

[F(1, 57) = 0.06, p = 0.80], with no significant effect of Group [F(1, 57) = 3.03, p = 0.09], 

and no significant Group × Spatial position interaction [F(1, 57) = 0.05, p = 0.82] (Fig. 6b), 

thus suggesting that our manipulation had no effect when no immediate option was offered. 
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Figure 6. On the left, TD functions by group and type of trial (Congruent, Incongruent) for the Now temporal 
condition. On the right, TD functions for the Not-now temporal condition. please, note that the blue and the 
green curves in the right panel are overlapping.  
 

 

Discussion  

Based on the results of the Near-Far manipulation of Experiment 1, we concluded 

that, according to our hypothesis and to CLT, all participants behaved more prudently when 

choosing between options perceived as far in the space rather than near in the space, but 

only when an immediate option was offered. Indeed, since the principal analysis yielded a 

significant tendency for the interaction between groups and Temporal conditions, to be sure 

we were not underestimating a significant result, we decided to repeat the analysis 

separately for Now and Not-now trials. This analysis, as anticipated, however, did not 

reveal any difference between groups. Our post-hoc interpretation is that, since the coin 

picture size was arranged along trials in the same way for both groups, it did not matter if a 

spatial background was provided or not. Indeed, coin picture size is still an important index 

of deepness that could have affected responses of subjects in the No-space group in the 

same way it did for the Space group: the small/large coin picture size was a sufficient clue 

to perceive options in the Near condition as close in space, and the options in the Far 
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condition as far in space, no matter if a spatial background was attended or not.  

Considering the Congruent-Incongruent manipulation, the principal analysis 

revealed only that both groups tended to behave more prudently when both options were 

delayed in time as compared to trials in which an immediate option was provided in the 

pair, in line with literature and our previous studies. However, although no significant 

interaction between groups and Temporal condition has been found, for completeness 

purpose, we decided to repeat the analysis separately for Now and Not-now trials to be sure 

we were not underestimating a significant result, as we did for the Near-Far task. From this 

analysis we found that when a spatial background was displayed, subjects did not make any 

difference between Congruent and Incongruent conditions, for both Now and Not-now 

conditions. Conversely, when there was no spatial background, and when an immediate 

option was offered, individuals decided more prudently when the larger later option was 

perceived as close to them (Incongruent condition) as compared to the opposite condition. 

In this task, according to the CLT, subjects’ attention should have been grabbed on the 

higher-level construals of the option perceived far away. However, the option perceived as 

close to participants at the same time could have strengthened the low-level representations 

of options, making difficult to disentangle which process was driving the obtained effect. 

Our manipulation could have affected the salience of the option perceived closer. In the 

Congruent condition, the focus is on the immediacy of the sooner option. In the 

Incongruent condition the focus is on the larger quantity. It might be that we made the 

larger later option more salient than the smaller immediate one, conveying participants’ 

decisions toward the bigger amount, probably because of the way we used to depict that 

option (bigger coin). However, this consideration did not apply to the Space group who, as 

said before, did not show any significant effect of this manipulation. We speculated that, in 
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the context of the Congruent-Incongruent manipulation, the spatial background attended by 

the Space group made the scene more crowded, so that no effect could emerge: in light of 

the different spatial position of the two options at the same time, indeed, the presence of the 

drawing could have made the task more difficult, having participants to process both near 

and far space at the same time, with the presence of all other elements in the scene. This did 

not happen in the Near-Far manipulation, where, on the spatial background, only the 

representation of either the near space or the far space needed to be activated.  

Finally, the fact that significant results of our manipulations yielded only for Now 

trials in both the Near-Far and the Congruent-Incongruent tasks (with the difference that in 

the latter participants behaved overall significantly more prudently during Not-now trials 

than during Now trials, as compared to the former) might be explained by the lower 

saliency of options when both projected in the future, thus inducing to a ceiling effect. 

For all the reasons explained above, we decided to carry out another experiment 

with a different manipulation, avoiding all previous confounding elements. To this aim, we 

decided to manipulate the distance between options and participants using different 

distances from screens (close or far), so that no font size adjustment was required. No 

spatial background underneath the options was provided, and we did not use any coin 

picture. Moreover, we submitted participants only to intertemporal choices in which an 

immediate option was offered (Now trials). 

 

Experiment 2 

 In a within-subjects study all participants underwent both the Near-Far condition 

and the Congruent-Incongruent condition in a randomized order. No spatial or grey 

background was provided under the options at stake. Participants performed the 
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experiment on two different screens at the same time. One screen was positioned far away 

from them, and one screen was positioned close to them. The near screen was used to 

depict both options during the Near condition in the Near-Far task and to depict close 

options (both congruent and incongruent trials) in the Congruent-Incongruent task. The far 

screen was used to depict both options for Far trials in the Near-Far task and for far options 

(both congruent and incongruent trials) in the Congruent-Incongruent task. This time 

subjects performed only Now trials, pairing the larger later option (£ 40) always with a 

smaller option immediately available (’now’). 

 

Materials and methods 

 

Participants 

 Twenty-eight undergraduate students (14 females, mean age = 20 years old, 

standard deviation = 2.03) were recruited through the research website Sona Systems Ltd. 

at the Bangor University, earning school and printer credits for their participation. This 

study has been approved by the ethics committee of the School of Psychology of Bangor 

University (Ethics Review Board Approval Code 2012-6142).  

 

Tasks 

Experimental tasks were displayed using Psychophysics Toolbox (Psychtoolbox-3, 

GNU General Public License, http://www.psychtoolbox.org) for Matlab 2010b 

(MathWorks, Inc ®). All participants were administered two different intertemporal choice 

tasks, in a counterbalanced order. The two tasks, similarly to the first experiment, differed 

in the spatial positions of options (Near-Far manipulation and Congruent-Incongruent 
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manipulation), with the manipulation achieved through the use of two different screens 

(22”) at the same time. On a long desk, one screen was positioned far from the subject 

(about 110 centimeters distant), and the other was positioned close to the subject (about 40 

centimetres distant) (Fig. 7). To make both screens visible at the same time by participant, 

one was positioned on the right of the midline and the other on the left of the midline. To 

avoid any confounding due to this difference in screens position, we counterbalanced the 

left-right position between the close-far screens. This means that for half of our 

participants, the near screen was on the left and the far screen was on the right, whereas for 

the other half, the near screen was on the right and the far screen was on the left (Fig. 7). 

We found no difference in TD between participants who had the close screen on the left 

and the far screen on the right, and those in the opposite condition. 

 

 

 

 

 

Figure 7. Setting of Experiment 2. 
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Along all intertemporal choices in the Near-Far manipulation, two different options 

could appear on the screen positioned close to the subject (Near), or on the screen 

positioned far from the subject (Far), randomly positioned one on the left and one on the 

right side of the screen. All options were indicated with the written amount and the delay of 

availability with a white font on a black background (Fig. 8). Font size was the same for 

both screens. For the Congruent-Incongruent manipulation, in each trial, one option was 

displayed in the middle of the far screen, and the other was displayed in the middle of the 

close screen. When the later option was displayed on the far screen, and the sooner option 

was displayed on the close screen, the trial was defined as Congruent. The opposite case 

was defined as Incongruent. Each trial began with a 1 sec fixation cross, followed by the 

two options (there were no time limit to respond). After choosing, the preferred option 

remained highlighted for 1 sec, and then a new trial started. To express their preference, 

participants, sitting in front of the desk, pressed two buttons on a keyboard according to the 

spatial position of their chosen options. 

 

 

 

 

In both tasks, participants made a series of hypothetical choices (e.g., Kirby and 

Herrnstein, 1995; Myerson et al., 2003; Figner et al., 2010; Sellitto et al., 2010) between a 

Figure 8. Example of options presentation 
during the Near-Far task. See the main text for 
procedure details for both Near-Far and 
Congruent-Incongruent tasks. 
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smaller amount of money (in £) that could be received immediately (now), and £ 40 that 

could be obtained after a variable delay. Specifically, participants made five choices at each 

of seven delays: 2 days, 2 weeks, 1 month, 3 months, 6 months, and 1 year. The order of 

blocks of choices relative to different delays was randomized for each participant. The 

titration procedure used to adjust sooner amounts based on participants’ previous choice is 

the same we used in the Study 1 (Part II; Du et al., 2002; Sellitto et al., 2010). 

Moreover, four control conditions were provided. Subjects made five choices 

between a smaller amount of money and £ 40, both available immediately, both in the Near 

and in the Far condition for the Near-Far manipulation, and in the Congruent and 

Incongruent condition for the Congruent-Incongruent manipulation. Moreover, subjects 

made five choices between a smaller amount of money and £ 40, both available in 1 year, 

both in the Near and in the Far condition for the Near-Far manipulation, and in the 

Congruent and Incongruent condition for the Congruent-Incongruent manipulation. The 

sooner amount of these two control conditions was adjusted, along the block of choices, 

based on the same staircase procedure of the other blocks of choices (Du et al., 2002). The 

control conditions were randomly presented during the experimental session. All subjects 

included in the study always chose the larger reward in the control conditions along both 

tasks, suggesting adequate comprehension of the task as well as sensitivity to reward.  

 

Procedure 

 In a quiet room, after collecting demographic data, all participants underwent the 

two different TD tasks (Near-Far manipulation, and Congruent-Incongruent manipulation) 

in a counterbalanced order. To avoid participants remembering their choices in the first TD 

task when submitted to the second TD task, they all performed a brief task between the two 
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that was completely unrelated to TD. In this task, they were asked to copy on a white A4 

sheet the Rey-Osterrieth Complex Figure (Osterrieth, 1944). Neither rewards or 

punishments, nor memory or emotion were involved in this task. All participants performed 

the task accurately. After the second TD task was over, subjects were debriefed. The whole 

experiment took about 25 minutes. 

 

Results 

To analyse data, we used the same procedure as in Study I-Part II (Sellitto et al., 

2010). Since we found in previous studies that hyperbolic model was always superior to the 

exponential model, we will only fit the hyperbolic curve, and no AUCs were calculated. 

 Near-Far manipulation. An ANOVA on log-transformed k values with Spatial 

position (Near, Far) as within-subject factor yielded no significant effect [F(1, 27) = 0.50, p 

= 0.50], indicating that our manipulation of space did not affect in any direction our 

participants’ intertemporal choice behavior (Fig. 9). When we used as a covariate the 

participants’ gender and age, we found a similar pattern of results. 

 

 

Figure 9. Results on log-
transformed k scores for the Near-
Far manipulation.  
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Congruent-Incongruent manipulation. An ANOVA on log-transformed k values 

with Spatial position (Congruent, Incongruent) as within-subject factor yielded a significant 

effect of Spatial position [F(1, 27) = 4.50, p = 0.04], indicating that our participants tended 

to behave more prudently when the larger later option was presented on the screen close to 

them (incongruent condition) as compared to the congruent condition (-2.36 vs. -2.27) (Fig. 

10). This result replicates that of the Congruent-Incongruent manipulation we used in 

Experiment 1. Subjects chose more impulsively when the larger later option was perceived 

far away from them. We will further discuss this result later. Finally, when correcting for 

participants’ gender and age, a similar pattern of results has been found. 

 

 

 

 

Discussion 

 In Experiment 2 we manipulated the actual position of two screens on which we 

presented the smaller immediate option and the larger later option. This held for both the 

Near-Far condition, when options were both depicted either in the near or in the far space, 

Figure 10. Results on log-transformed 
k scores for the Congruent-Incongruent 
manipulation. The larger the bar, the 
higher the impulsivity. 
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and the Congruent-Incongruent condition, when one option was always displayed in the 

near space and one was always displayed in the far space. 

 The Near-Far manipulation was not effective: participants had the same discount rate 

for the future monetary reward, no matter the spatial position of the options. Two 

considerations can be made about why we did not replicate results of Experiment 1. First, 

we have to take into account the absence of Not-now trials. Indeed, the presence of offers 

without an immediate option helps in polarize evaluation (e.g., Tesser and Conlee, 1975; 

Dai and Fishbach, 2013), inducing people to simulate more extensively offers with an 

immediate outcome (i.e., enabling an increase in the perceived difference between options): 

this allows the Near-Far effect to emerge during Now trials, where options are considered 

more extreme. Second, we have to consider the different context of Experiment 2. Indeed, 

in Experiment 1 the screen was always the same, allowing the Near-Far effect to emerge, 

since participants always considered the same scene independently of Near and Far trials. 

Conversely, here, participants made decisions considering either a screen or the other, so 

that a comparison between a close and a far space (screen) was basically not required. This 

consideration can be better understood in light of the Congruent-Incongruent manipulation, 

where the effect of space emerged (see below). Indeed, in that case, a comparison between 

the two screens, and so between the two different spaces, was always required (being the 

options always showed one on a screen and one on the other), so that the spatial 

manipulation could have effect. 

 As anticipated, the Congruent-Incongruent manipulation yielded significant results. 

Specifically, we replicated findings of Experiment 1: subjects performed intertemporal 

choices less impulsively when the larger later option was presented in the close space 

(Incongruent condition). Both experiments shared the presence of an immediate option in 
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the pair, and no spatial background was provided under the options. Indeed, in Experiment 

2, no perspective drawing was used to clue participants with closeness and farness, but 

options were physically close or far from them.  

  

General discussion 

According to the CLT (Liberman and Trope, 1998, 2008; Trope and Liberman, 

2003; Fujita et al., 2006; Fujita and Carnevale, 2012), different dimensions of 

psychological distance correspond to different ways in which objects or events can be 

represented. CLT posits that the more we are able to remove objects from the self, the more 

we construe (represent) them at a higher abstract level (Liberman and Trope, 2008). During 

intertemporal choice, people tend to prefer the sooner smaller option to a larger later one. 

How can we meke them able to transcend the ‘here and now’ and decide to go for the larger 

later option? Being engaged in high level (abstract) construals should lead people to have 

greater self-control when deciding between short-term and long-term goals (Trope and 

Liberman, 2010; Fujita and Carnevale, 2012). We investigated if highlighting abstract 

features of money amounts offered along a series intertemporal choices could lead 

individuals to reduce TD. We attempted this through a visual spatial manipulation of 

relative positions of options at stake. 

In a first manipulation (Near-Far), participants performed a task in which both 

offers were presented either in the far space or in the near space. In Experiment 1 we 

induced more willingness to wait for the larger later reward when paired with a sooner 

immediate reward, when both options were depicted far in space. This finding, in line with 

our hypothesis and CLT, however is not the result of our principal manipulation. Indeed, 

participants of both groups showed the same effect. We explain this result with the 



 174 

presence of other spatial cues present along trials, i.e., coins and the text size to depict 

options. This means that a sort of spatial manipulation was still present, but equally in both 

groups, allowing us to demonstrate that subjects tended to look at, and think of, options in a 

more abstract and schematic way when they were perceived as far away from them 

(because represented with smaller pictures and text), whereas subjects represented them in a 

more concrete and contextualized way when they were perceived as close and more 

physically reachable (because represented with bigger pictures and text). However, in 

Experiment 2, where we released options on different screens to make closeness and 

farness more physically real, we failed to replicate the above finding. We explained this 

result in light of both the absence of Not-now trials, which helps in polarize decisions when 

faced with Now trials, and the use of two screens that made difficult to cosider the whole 

scene with a near and a far space (see above). 

 In a second manipulation (Congruent-Incongruent), we offered participants the 

smaller sooner option and the larger later option in different spatial positions. When a 

spatial background was displayed (Experiment 1), subjects decided in the same way in both 

Congruent (smaller sooner option close, larger later option far) and Incongruent condition. 

We suggested that the spatial background contributed in making the scene more crowded, 

having participants to process both near and far space at the same time in light of all other 

elements in the scene, so that no effect could emerge. Conversely, when there was no 

spatial background, when an immediate option was offered, individuals decided more 

prudently when the larger later option was perceived as close to them (Incongruent 

condition) as compared to the opposite condition. This result yelded also in Experiment 2. 

In this task, according to the CLT, subjects’ attention should have been grabbed on the 

higher-level construals of the option perceived far away. However, the spatial closeness of 
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the larger later option in the Incongruent condition could have strengthened its low-level 

representations, making difficult to disentangle which process was driving the obtained 

effect. In other words, paradoxically, our manipulation could have actually affected the 

salience of the option perceived closer. While in the Congruent condition, the focus is on 

the immediacy of the sooner option, in the Incongruent condition the focus is on the larger 

quantity. It might be that, in the Incongruent condition, we made the larger later option as 

more salient than the smaller immediate one, conveying participants’ decisions toward the 

bigger amount, probably because of the way we used to depict that option (bigger coin). 

This result could also be explained with the difficulty in activating at the same time a more 

abstract representation for the larger later option when far in space, in place of a more 

concrete representation for the smaller immediate option. This could have resulted in 

choosing significantly more times the larger later option when it was represented close in 

space because, paradoxically, more salient, voiding our manipulation. 

Overall, allowing people to think about rewards in a more abstract way seems to 

have reduced TD only during easier tasks, that is: (1) when an immediate option was 

offered against a delayed one; (2) when sterling coins (and text) size represented the actual 

spatial cue; (3) when instead of directly manipulating the coins (and text) size we used two 

screens in different positions to depict options; (4) when both options were in the same 

spatial position (both far or near). This suggests that to engage in an effective spatial 

manipulation, only one variable at time should be manipulated. This allows subjects to truly 

focus on the most evident feature of the offer, that is, options are on a certain space, near or 

far. Only when both offers are in the same space, individuals focus on higher-level features 

of the two options (the larger amount) highlighting high-level construals, being less 

concerned with the effort related to wait a longer time for the larger option (e.g., Leiser et 
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al., 2008). Conversely, when spatial position of options is manipulated differently, the 

larger later option become more salient and concrete to choose when it is perceived close to 

the decision-maker. 

Based on the guidelines evidenced by this study, we can think about other and more 

effective spatial manipulations for the future to further investigate this issue. 
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Study IV – Errors modulate preference for food in intertemporal choice 

 

Introduction 

 As we can see from previous studies, both training people to mentally travel in time 

before making an intertemporal choice, and influencing mental representations of both 

outcomes at stake (manipulating their spatial position), had the effect of lessening the 

discount rate of future rewards. However, when we tried to obtain the same result through 

the MTT on edible rewards, our efforts failed. 

 Are we so hopeless when faced with food? Are those impulsive behaviours (not 

related to pre-existent medical conditions) like obesity and other binge eating disorders1 

really unmanageable and impossible to overcome? People frequently experience conflict 

when intertemporal choice is difficult, particularly when visceral sensations are called into 

play, for instance, when craving for a tasty treat, consequently experiencing loss of self-

control. Even the simple visual exposure to tempting foods, is a powerful trigger for 

immediate consumption (Hawk et al., 2004; di Pellegrino et al., 2011). 

 One way to successfully resist to immediate gratification is to reduce the appetitive 

value of reward. With food, this is usually obtained by satiating the subject selectively on 

the outcome (e.g., Haddad et al, 1976; Rolls et al., 1981; Placanica et al., 2002; di 

Pellegrino et al., 2011), or by pairing it with an aversive event (e.g., Baxter and Murray, 

2002; Schultz, 2010).  

 
 

1i.e., recurrent episodes of eating an unambiguously large amount of food accompanied by a sense 

of loss of control in the absence of regular use of inappropriate compensatory behaviours (see 

Fortuna, 2012, for a review). 
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Errors are typically highly arousing, negative signals motivating avoidance responses. 

Indeed, they are considered aversive events, producing a negative neural wave (error-

related negativity, ERN; Falkenstein et al., 1991; Gehring et al., 1995), generated in ACC 

(e.g., Miltner et al., 2003), when subjects become aware of having committed a mistake, 

thus priming defensive motivation (Hajcak and Foti, 2008).  

Here, we investigated whether pairing desirable foods with errors decreased 

impatient behaviour towards those foods. In the main experiment, participants performed a 

Stop-signal task (Brown and Braver, 2005) in which food cues predicted errors in 

performance, and then they made intertemporal choices about the same foods. Since recent 

findings highlighted that women and men have different behavioral (e.g., Bates et al, 2009; 

Beer-Borst et al., 2000) and neural responses (e.g., DelParigi et al., 2002; Smeets et al., 

2006) to food cues, hunger, and satiation, we decided to test women only. In a control 

experiment, we investigated if the Stop-signal task influenced judgements and emotions 

toward those foods used as cues in the task itself. 

 

Materials and Methods 

 

Participants  

 Forty young adult females participated in the experiment. All participants were 

normal weight and fasted for at least two hours at the moment of the experiment. Before the 

beginning of the experimental procedure, participants’ personal data were collected (see 

Table 1 for all demographic information). Participants were not taking psychoactive drugs, 

and were free of current or past psychiatric or neurological illness as determined by history. 

Participants gave informed consent, according to the Declaration of Helsinki (International 
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Committee of Medical Journal Editors, 1991) and the Ethical Committee of the Department 

of Psychology, University of Bologna. 

 

Subjects 
Hunger 

rating 

Fasting 

(hours) 

Age 

(years) 

Education 

(years) 
BMI 

DEBQ (external 

eating behavior) 

BAS 

(tot) 

40 f 2 (0.4) 4 (0.5) 25 (0.6) 15 (0.4) 21 (0.4) 3 (0.1) 39 (0.6) 

Table 1. Participants’ demographic data. BMI = Body Mass Index; Bas (tot) = total score obtained at the 
Behavioral Activation Scale. Numbers in parenthesis are standard errors. 
 

 

Stop-signal task 

 Based on the paradigm of Brown and Braver (2005), a Stop-signal task was adjusted 

using foods as cues. Two types of conditions were included. Half of the trials had a Low-

Error likelihood, and the other half had a High-Error likelihood. One food (Low-Error 

Food, LEF) was used as cue for the Low-Error trials. The other food (High-Error Food, 

HEF) was used as cue for the High-Error trials. Hence, for a given trial, food type predicted 

Low versus High-Error likelihood, respectively.  

 Figure 1 illustrates the experimental paradigm. Each trial began with a black and 

white picture of one of the two foods appearing for 1000 ms. Then, the black and white 

picture became coloured: this represented the Go signal. The Go signal required 

participants a button-press response as quickly as possible. However, on 33% of the trials, a 

Stop signal was postponed to the Go signal after a variable Stop-Signal Delay (SSD) 

relative to the Go signal onset. This Stop signal, a red circle appearing around the coloured 

picture, indicated that response to the Go signal was no longer required. Both Stop and Go 

signals remained visible until a response deadline of 1000 ms after Go signal onset, which 
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indicated a time limit of 1000 ms to produce or not a response. After each trial, a black 

screen appeared as for a variable intertrial interval (500, 1000, 1500, 2000 ms). Error rates 

(low vs. high) were explicitly set and controlled by dynamically adjusting the SSDs for 

each error-likelihood condition independently with the use of a staircase algorithm. The 

Low-Error condition had shorter SSDs, whereas the High-Error condition had longer SSDs 

(Brown and Braver, 2005). The SSD started at 200 ms (after Go signal onset) for both Low- 

and High-Error conditions. During Low-Error trials, if the participant succeeded in 

withholding the response, the SSD increased by only 5 ms; conversely, if the subject failed, 

the SSD decreased by 50 ms on the next trial. During High-Error trials, if the participant 

succeeded in withholding the response, the SSD increased by 50 ms; conversely, if the 

subject failed, the SSD was decreased by 50 ms on the next trial (Logan et al., 1984).  

 After a correct response to the Go signal or a non-response to the Stop signal, a 

message ‘correct!’ (in Italian) appeared on the screen. If participant did not respond in time 

to the Go signal, or if he responded to the Stop signal, a message ‘error!’ appeared on the 

screen. If participant responded to the black and white picture, a message ‘too early!’ 

appeared on the screen. Low-Error trials and High-Error trials were presented in a random 

order. All cues and stimuli were presented centrally on a black screen. 

 Participants performed 240 trials in total, that is 80 Stop trials (40 for the Low-Error 

condition and 40 for the High-Error condition) and 160 Go trials (80 for the Low-Error 

condition and 80 for the High-Error condition) Data were analysed with regard to accuracy 

and RT effects of correct vs. error (no-response trials ignored), Low- vs. High-Error 

condition, and Stop vs. Go trials. The task lasted about 16 minutes. 
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Figure 1. Stop-signal experimental paradigm. Muffin here is assigned to the High-Error condition. 
Conversely, the chocolate cake represent the cue for the Low-Error condition 
 

 

Temporal discounting tasks  

 In each of two computerized TD tasks, participants chose between an amount of 

tastes (units) of a hypothetical food that could be received immediately and an amount of 

units of that food that could be received after some specific delay (e.g., Kirby and 

Herrnstein, 1995; Myerson et al., 2003). One task assessed subjective preferences in time 

for one food (LEF), and one task assessed subjective preferences in time for the other food 

(HEF). The two TD tasks were submitted in a random order across participants, and foods 

used were exactly the same used for the Stop-signal task. 

In each task, participants made five choices at each of six delays: 2 days, 2 weeks, 1 
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month, 3 months, 6 months, and 1 year. The order of blocks of choices pertaining to 

different delays was randomly determined across participants. Within each block of five 

choices, the delayed amount was always 40 units (e.g., 40 tastes of muffin) (Sellitto et al., 

2010). The task and the titration procedure used to adjust sooner amounts based on 

participants’ previous choice is the same we used in the Study I-Part II (Du et al., 2002; 

Sellitto et al., 2010). 

 

Self-report scales 

 

External Eating Scale  

 The Dutch Eating Behavior Questionnaire (DEBQ, Van Strien et al., 1986; Italian 

version, Caccialanza et al., 2004) assesses individual’s structure of eating behaviour. DEBQ 

has separate scales for emotional, external, and restrained eating. The restrained eating 

scale assesses if subjects are on a diet chronically. The emotional eating scale assesses how 

much emotional states trigger the overeating response, namely eating in response to 

emotional arousal states such as fear, anger, or anxiety. The emotional eating scale has two 

subscales: the first specifically assesses eating in response to diffuse emotions, and the 

second specifically assesses eating in response to clearly labelled emotions. The external 

eating scale assesses the sensitivity to external cues such as during food exposure (Van 

Strien et al., 1986). Participants have to report for each item the frequency of engagement 

to those behaviors on a 5-points Likert scale. For our purposes, subjects were administered 

only the external eating subscale of the DEBQ. A higher score at the external subscale 

corresponds to a higher sensitivity to external cues such as sight and smell of food (Van 

Strien et al., 1986). 
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Behavioral Activation System scale 

The Behavioral Activation System (BAS) scale (Carver and White, 1994) is a self-

report questionnaire providing a measure of the tendency to behave in response to reward. 

A behavioral approach system, indeed, is thought to regulate appetitive motivation, in 

which the goal is to move toward something desired. BAS scale is comprised of three 

subscales: BAS reward responsiveness, BAS drive, and BAS fun seeking. The reward 

responsiveness subscale assesses the tendency to positively respond to rewards; the drive 

subscale assesses the motivation and the ability in focusing to reach a goal; the fun seeking 

subscale assesses the impulsive tendency to pursue new pleasant rewards (Meyer et al. 

2005). For each item, subjects has to indicate on a 4-points Likert scale (from ‘completely 

disagree’ to ‘completely agree’) how much they agree or disagree with what the item says. 

People with high BAS sensitivity respond more to cues of reward and experience more 

positive affect in the presence of such cues (Carver and White, 1994). 

 

Procedure  

 The whole experiment took place in a quiet room. After collecting participants’ 

personal data (including height and weight to calculate their BMI; Smalley et al., 1990; 

Borghans and Golsteyn, 2006), they rated on a paper and pencil 11-points Likert scale (-5, 

5, 0 in the middle) their hunger level at the time (anchoring labels ‘not hungry at all’ and 

‘very hungry’), and, one at a time, how appetizing (appealing to eat) they find each of six 

foods depicted in picture (anchoring labels ‘not at all’ and ‘very much’) (Fig. 2). Pictures 

were matched for dimension, luminance, and contrast, and were presented in a random 

order across participants on a computer screen. Then, the experimenter chose, individually 

for each participant, the two favourite foods (that obtained the higher rating value) as 
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stimuli for subsequent Stop-signal task and TD tasks, carried out through E-Prime 1.0 

software (Psychology Software Tools ©). Since the two most attractive (favourite) foods 

often obtained a different evaluation, they were assigned in a counterbalanced order to the 

two different trial conditions of the Stop-signal task, so that, along participants, no 

difference in the attractiveness of one food over the other was provided [mean rate for LEF 

and HEF: 3 vs. 3; F(1, 39) = 0, p = 1]. For the whole duration of the Stop-signal task, no 

changes of cues were provided. After completed the Stop-signal task, participants 

underwent to the two TD tasks. At the end of the second TD task, participants were 

administered the DEBQ and the BAS scales. 

 

 

Figure 2. The six foods rated by participants. From left to right: ice cream, doughnut, muffin, pudding, 
profiterole, chocolate cake. 
 

 

Results  

 

Stop-signal task 

Figure 3 shows the percentage of errors committed by our participants at the Stop-

signal task along both Go and Stop trials, for both Low- and High-Error conditions. An 

ANOVA with error likelihood (Low, High) and trial type (Go, Stop) as within subject 

factors was performed on the percentage of errors. This analysis evidenced a significant 
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effect of error likelihood [F(1, 39) = 1537.53, p = 0.000001], a significant effect of trial 

type [F(1, 39) = 844.54, p = 0.000001], and a significant interaction error likelihood × trial 

type [F(1, 39) = 1122.91, p = 0.000001]. Post hoc comparisons, performed with the 

Newman-Keuls test, first of all showed that the percentage of errors was significantly 

higher during the High-Error condition than the Low-Error condition (28% vs. 11%; p = 

0.0001), and that the number of errors committed during Stop trials was significantly higher 

than the number of errors committed during Go trials (32% vs. 1%; p = 0.0001). Moreover, 

while the percentage of errors committed during Go trials was the same along High and 

Low conditions (0.07 vs. 0.07; p = 0.99), the percentage of errors during Stop trials was 

significantly higher for the High-Error condition than the Low-Error condition (50% vs. 

15%; p = 0.0001).  

 

 

 

 

We then entered RTs for correct trials in an ANOVA with error likelihood (Low, 

High) and trial type (Go, Stop) as within subject factors. This analysis evidenced a 

Figure 3. Percentage of errors 
committed by our participants at 
the Stop-signal task, separated 
by type of trial (Go, Stop) and 
error likelihood (Low, High). 
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significant effect of error likelihood [F(1, 39) = 40, p = 0.000001], a significant effect of 

trial type [F(1, 39) = 420, p = 0.000001], and a significant interaction error likelihood × 

trial type [F(1, 39) = 45.50, p = 0.000001]. Post hoc comparisons, performed with the 

Newman-Keuls test, first of all showed that RTs were significantly higher (i.e., responses 

were slower) during the High-Error condition than the Low-Error condition (430 ms vs. 

405.10 ms; p = 0.0001), and that RTs during Go trials were significantly higher than RTs 

during Stop trials (454 ms vs. 381 ms; p = 0.0001). Moreover, while RTs for correct 

responses during Go trials were the same along High and Low conditions (453 ms vs. 455 

ms; p = 0.99), RTs for incorrect responses during Stop trials were significantly higher for 

the High-Error condition than the Low-Error condition (404 ms vs. 357 ms; p = 0.0001). 

These results, in line with previous findings (e.g., Brown and Braver, 2005), are indicative 

of the higher conflict (-driven ACC activity) during Low-Error likelihood condition. 

Moreover, following the procedure of Logan (1994; see also Eagle et al, 2008), we 

calculated the Stop-Signal Reaction Time (SSRT) that measures the inhibition of a response 

that has already been initiated, namely, the ability to Stop. SSRT represents the time at 

which stopping finished relative to the Stop signal, and it is calculated subtracting the mean 

SSD from the mean RT during Go trials (for both Low-Error likelihood and High-Error 

likelihood). An ANOVA on SSRT values with error likelihood (Low, High) as within 

subject factor revealed a significant difference between High and Low-Error likelihood 

[F(1, 39) = 292.5, p = 0.0000001], evidencing how inhibition was higher during Low-Error 

trials (because easier) rather than during High-Error trials (353.88 vs. 242.0), that is, 

participants were worse, as expected, during High-Error likelihood trials. As suggested by 

Brown and Braver (2005), this result is indicative of the fact that the SSRT would be 

associated with increased ACC activity. These results support the validity of the paradigm 
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of Stop-signal task in producing different patterns of errors for the Stop condition 

comparing to the Go condition, and for the High versus Low-Error likelihood. Indeed, 

participants clearly made a significantly higher number of errors during the High-Error 

condition only when performing Stop trials. 

 

Temporal discounting tasks  

Data analysis procedure is the same we used in Study I-Part II (Sellitto et al., 2010). 

Hyperbolic k values were entered in an ANOVA, with type of food (Low-Error Food LEF, 

High-Error Food HEF) as within subject factor. No significant effect of food type was 

found [F(1, 39) = 2.10, p = 0.16]. However, when performing an ANCOVA entering as 

covariate the hunger level, the BMI value, the SSRT, the DEBQ score, and the BAS score 

(both the total and the separate subscales), only the hunger level reached significant 

threshold [F(1, 38) = 6.62, p = 0.01], significantly interacting with our manipulation [F(1, 

38) = 7.70, p = 0.01], yielding a significant effect of type food [F(1, 38) = 7.54, p = 0.01] 

(all others covariates, ps > 0.11). We then decided to divide our sample in three groups 

based on the median value of hunger rates (= 2.5) (Low-Hunger, Medium-Hunger, High-

Hunger; see Table 2 for demographics), to further investigate the effect of our 

manipulation.  

The three obtained groups did not differ among each other concerning both the 

percentage of errors and RTs for correct trials along Go and Stop trials for both Low and 

High-Error conditions (all ps > 0.44), while maintaining the same direction of results we 

previously found, that is, a significant higher number of errors for Stop trials than for Go 

trials, and a significant higher number of errors for Stop trials for the High-Error condition 

as compared to all other cases (all ps < 0.0000001). 
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Table 2. Participants’ demographic data after being divided in three groups. BMI = Body Mass Index; Bas 
(tot) = total score obtained at the Behavioral Activation Scale. Numbers in parenthesis are standard errors. 

 

 

We also compared the three groups on SSRTs, finding no significant difference (all 

ps > 0.45). Moreover, as we expected, since they differed for the hunger level, the three 

groups differed in the overall rating of attractiveness for the two food chosen for the TD 

task [F(2, 37) = 6.43, p = 0.004], with the Low-Hunger group having significantly lower 

hunger as compared to the Medium- and High-Hunger groups (2.14 vs. 3.85 vs. 3.62; p = 

0.007), whereas no difference was detectable between Medium- and High-Hunger groups 

(p = 0.66). However, no significant difference emerged between the overall rating between 

LEF and HEF [F(1, 37) = 0.0003, p = 0.98], and, more importantly, no significant 

interaction between food type and group has been revealed [F(2, 37) = 0.17, p = 0.85]. This 

allowed us to analyse k values for both LEF and HEF among the three different groups. 

Hyperbolic k values were entered in an ANOVA, with group (Low-Hunger, 

Medium-Hunger, High-Hunger) as between subject factor, and with type of food (LEF, 

HEF) as within subject factor. No significant effect of group [F(2, 37) = 1.60, p = 0.22] and 

no significant effect of food type was found [F(1, 37) = 2.47, p = 0.12], in light of a 

significant group × food type interaction [F(2, 37) = 8.23, p = 0.001] (Fig. 4). Since 

geometric means of k values are very high, because discounting for food was very steep, to 

Groups Number  
of subjects 

Fasting 
(hours 

Age 
(years) 

Education 
(years) BMI 

DEBQ  
(external eating 

behavior) 

BAS 
(tot) 

Low- 
Hunger 14 2.5 (0.3) 25 (1.2) 17 (0.5) 21 (1) 3.4 (0.1) 40 (1) 

Medium- 
Hunger 13 4.6 (0.8) 25 (1) 16 (0.5) 22 (0.7) 3.2 (0.1) 37 (1) 

High- 
Hunger 13 5.6 (1.0) 24 (1) 16 (0.5) 21 (0.7) 3.4 (0.1) 39 (1) 
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make the difference between groups and foods visible, this time we will represent mean 

non-log transformed k values as bars instead of curves as usual; the larger the bar, the 

higher the discount rate, the higher the impulsivity). Post hoc comparisons, performed with 

the Fisher test, showed that while in the Low-Hunger group TD was significantly steeper 

for the LEF as compared to the HEF (-0.72 vs. -1.45; p = 0.0007), in the High-Hunger 

group TD was steeper for the HEF as compared to the LEF (-0.20 vs. -0.62; p = 0.04). No 

difference in discount rate for the Medium-Hunger group between LHF and HEF was found 

(-0.50 vs. -0.75; p = 0.22). However, to better understand these findings, and to do not miss 

any important information, we decided to repeat this analysis between the three groups but 

separately for the two foods. While when entered k scores in an ANOVA for the three 

groups we found no significant difference between groups for the LEF (F(2, 37) = 0.15; p = 

0.86), for the HEF the analysis yielded a significant difference between groups (F(2, 37) = 

4.62; p = 0.02). Post hoc comparisons, performed with the Fisher test revealed that the 

Low-Hunger group significantly differed from the High-Hunger group (-1.45 vs. -0.18; p = 

0.004) but not from the Medium-Hunger group (-1.45 vs. -0.75; p = 0.10), as well as no 

significant difference was detected between the High-Hunger group and the Medium-

Hunger group (-0.18 vs. -0.75; p = 0.20). This demonstrates that the Stop-signal task had a 

differential effect on the two extreme groups, based on hunger level, only relatively to the 

food associated with a higher number of errors. 
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Discussion 

 In this main experiment, we trained participants to associate two sweet foods with a 

different number of errors in performance during a Stop-signal task. Our purpose was to 

reduce impulsivity toward the one of those two foods that was associated with a higher 

number of errors as compared to the other. We measured this effect with two TD tasks. In 

one, subjects made intertemporal choices toward the food associated with a lower number 

of errors during the Stop-signal task, and, in the other, subjects made intertemporal choices 

toward the food associated with a higher number of errors during the Stop-signal task. The 

principal analysis did not yield a significant result. However, we found that this result 

covaried with the hunger level of participants at the beginning of the experiment. This 

allowed us to divide participants in three different groups: Low-Hunger group, Medium-

Hunger group, and High-Hunger group. We then investigated again the difference in 

intertemporal choices about the two foods (one associated with a high number of errors and 

Figure 4. TD rates separated by 
group (Low-Hunger, High-
Hunger) and error likelihood 
associated with food (Low, 
High). The larger the bar, the 
higher the discount rate, the 
higher the impulsivity. 
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one associated with a low number of errors). We found an interesting interaction between 

groups and the two types of food. Our Stop-signal task, indeed, had the effect we 

hypothesised of reducing impulsivity toward the food previously associated with a larger 

number of errors. However, this yielded only for participants with a lower level of hunger. 

Conversely, our Stop-signal task had the opposite effect on participants with a higher level 

of hunger at the moment of the experiment. Indeed, these subjects behaved even more 

impatiently toward the food associated with the higher number of errors, as compared to the 

other. Our suggestion is that, while the association between one food and an aversive event 

(errors) negatively conditioned participants with no specific motivational states toward food 

thus avoiding that specific object, the arousing quality of the same aversive event could 

have been misinterpreted by hungry participants as hunger itself. We will further discuss 

this interpretation in the general discussion of this study. 

 However, we did not include a rating of desirability of the two foods at the end of 

the TD task, since we were concerned that this would have reduced or changed the effects 

of our emotion induction through the Stop-signal task (see Keltner et al., 1993; Dunn and 

Schweitzer, 2005) and led suspicion in participants about the experiment’s aim. Instead, we 

ran an emotion manipulation check on a separate sample of participants in a control 

experiment to measure if their attitudes toward the two foods could have changed after the 

error task. 

 

Control experiment 

 In this control experiment, before and after the Stop-signal task, we asked 

participants several judgements about both foods used as cues in that task. Judgements 

included desirability, pleasantness, healthiness, disgust, surprise, anger, anxiety, calmness, 
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happiness, and sadness. We chose positive- and negative-valenced emotions to see if 

subjects’ attitudes toward foods changed due to having committed more or less errors 

during the task. 

 

Materials and Methods 

 

Participants  

Thirty-seven young adult females participated in this control experiment. All 

demographic characteristics of subjects (see Table 3) were matched with those of 

participants in the main experiment. This yielded when both we considered the two general 

samples, and we divided participants in subgroups. There were no differences in age, years 

of education, hours of fasting, hunger level, and BMI, DEBQ, and BAS between the two 

groups [all Fs(1, 75), ps > 0,12].  

 

 
Table 3. Participants’ demographic data. BMI = Body Mass Index; Bas (tot) = total score obtained at the 
Behavioral Activation Scale. Numbers in parenthesis are standard errors. 
 

 

 Participants were not taking psychoactive drugs, and were free of current or past 

psychiatric or neurological illness as determined by history. Participants gave informed 

consent, according to the Declaration of Helsinki (International Committee of Medical 

Subjects 
Fasting 

(hours) 

Age 

(years) 

Education 

(years) 
BMI 

DEBQ (external 

eating behavior) 

BAS 

(tot) 

37 f 3.5 (0.5) 25 (0.6) 17 (0.2) 21 (0.7) 3 (0.1) 39 (0.6) 
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Journal Editors, 1991) and the Ethical Committee of the Department of Psychology, 

University of Bologna. 

We then used the same procedure as in the main experiment to divide our sample in 

three groups based on the median value of hunger rates (= 2) (Low-Hunger, Medium-

Hunger, High-Hunger). Since only three participants had the hunger rating equal to the 

median, and since we did not obtain any significant results in the main experiment for the 

group with a medium level of hunger, here we tested only participants with a low level of 

hunger (lower than the median value of hunger rates) and a high level of hunger (higher 

than the median value of hunger rates) (Table 4). All demographic characteristics of 

subjects in these two groups (lower hunger and higher hunger) were matched with those of 

participants in the main experiment (lower hunger and higher hunger). Indeed, there were 

neither differences in age, years of education, hours of fasting, hunger level, and BMI, 

DEBQ, and BAS between the two lower hunger level groups [all Fs(1, 30), ps > 0,12], nor 

between the two higher hunger level groups [all Fs(1, 26), ps > 0,10]. 

 

 

Groups 
Number  

of subjects 
Hunger 
rating 

Age 
(years) 

Education 
(years) 

BMI 
DEBQ  

(external eating 
behavior) 

BAS 
(tot) 

Low-
Hunger 

18 -1.3 (0.5) 25 (1.2) 17 (0.4) 21 (1.5) 3.4 (0.1) 40 (1) 

High-
Hunger 

16 4 (0.2) 24.5 (0.5) 17 (0.5) 20 (0.6) 3.6 (0.1) 40 (1) 

Table 4. Participants’ demographic data after being divided in three and then two groups. BMI = Body Mass 
Index; Bas (tot) = total score obtained at the Behavioral Activation Scale. Numbers in parenthesis are standard 
errors. 
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Food rating task 

 Participants underwent to a computerized Food rating task (carried out through E-

Prime 1.0 software, Psychology Software Tools ©) in which they rated on a 11-points Likert 

scale (-5, 5) their hunger level at the time (anchoring labels ‘not hungry at all’ and ‘very 

hungry’), and then, one at a time, they were asked several questions concerning six foods 

depicted in picture (the same as in the main experiment, see Figure 2). Participants rated on 

a 11-points Likert scale (-5, 5) how much they wanted that food at the moment [‘wanting’ 

process, indicating the incentive salience (e.g., Berridge, 2007, 2009) or the decision utility 

(Kahneman et al., 1997) of an outcome], how much they liked that food at the moment 

[‘liking’ process, indicating the hedonic pleasure of an outcome (Peciña et al, 2006; 

Berridge, 2009)], the perceived healthiness of that food, and how they felt angry, anxious, 

calm, disgusted, happy, sad, and surprised, with respect to that food. The order of blocks of 

ratings pertaining to different foods was randomly determined across participants, as well 

as ratings order within each block of food. To make sure that any result of the present 

experiment could have been explained with a difference in the rating Pre test between these 

participants and those in the main experiment, we compared scores at the question ‘how 

appetizing do you find this food?’ of the main experiment, with scores at the question ‘how 

much do you want to eat this now?’ (‘wanting’ rating scale) obtained in this experiment, for 

both general groups, and lower hunger groups and higher hunger groups. No significant 

difference emerged between all participants along the two experiments, neither for LEF [all 

Fs(1, 75), ps > 0.89] nor for HEF [all F(1, 75), p > 0.24]. The same results yielded for both 

lower hunger groups [LEF: all Fs(1, 30), ps > 0.62; HEF: all Fs(1, 30), ps > 0.80], and 

higher hunger groups [LEF: all Fs(1, 26), ps > 0.62; HEF: all Fs(1, 22), ps > 0.44].  
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Procedure 

 The whole experiment took place in a quiet room. After collecting participants’ 

personal data, subjects completed the Food rating task. Then, the experimenter chose, 

individually for each participant, the two foods that obtained the highest score to the rating 

concerning the ‘wanting’ as stimuli for subsequent Stop-signal task (see the main 

experiment). Since the two most favourite foods often obtained a different evaluation, they 

were assigned in a counterbalanced order to the two different trial conditions of the Stop-

signal task, so that, along participants, no difference in the attractiveness of one food over 

the other was detectable. For the whole duration of the Stop-signal task, no changes of cues 

were provided. After completed the Stop-signal task, participants underwent again to the 

Food rating task. At the end of this task, participants were administered the DEBQ (external 

eating behavior subscale, van Strien et al., 1986) and the BAS (Carver and White, 1994). 

 

Results  

 

Hunger rating 

 An ANOVA on rating scores about the perceived hunger level, with group (Low-

Hunger, High-Hunger) as a between-subject factor, and time (Pre, Post Stop-signal task) as 

a within-subject factor, showed a significant effect of group [F(1, 32) = 33.10, p = 

0.000002], no significant effect of time [F(1, 32) = 0.16, p = 0.70], and a significant group 

× time interaction [F(1, 32) = 7.93, p = 0.008]. Post hoc comparisons, performed with the 

Newman–Keuls test, showed that hunger ratings were overall lower for the Low-Hunger 

group as compared to the High-Hunger group (-0.61 vs. 3.56; p = 0.0001), and, while in the 

Low-Hunger group the hunger level significantly increased in the Post test as compared to 
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the Pre test (-1.28 vs. 0.05; p = 0.03), in the High-Hunger group the hunger level tended to 

decrease, even if non significantly (4.10 vs. 3.06; p = 0.10), suggesting that someway, 

arguably due to energy depletion after the Stop-signal task, the sense of hunger increased 

for those participants who were not so much hungry at the beginning of the experiment, 

whereas the opposite trend is detectable in participants who were already quite hungry at 

that moment, suggesting that a different mechanism could have been acted on them. 

 

Stop-signal task 

Here we replicated results of the main experiment. An ANOVA with group (Low-

Hunger, High-Hunger) as between subject factor, and with error likelihood (Low, High) 

and trial type (Go, Stop) as within subject factors was performed on the percentage of 

errors. This analysis evidenced a significant effect of error likelihood [F(1, 32) = 937.20, p 

= 0.000001], a significant effect of trial type [F(1, 32) = 428.70, p = 0.000001], and a 

significant interaction error likelihood × trial type [F(1, 32) = 1178.0, p = 0.000001]. No 

significant difference between groups or interaction with groups was found (all ps > 0.51). 

Post hoc comparisons, performed with the Newman-Keuls test, first of all showed that the 

percentage of errors was significantly higher during the High-Error condition than the Low-

Error condition (30% vs. 12%; p = 0.0001), and that the number of errors committed during 

Stop trials was significantly higher than the number of errors committed during Go trials 

(34% vs. 7%; p = 0.0001). Moreover, while the percentage of errors committed during Go 

trials was the same along High- and Low-Error conditions (0.08 vs. 0.07; p = 0.25), the 

percentage of errors during Stop trials was significantly higher for the High-Error condition 

than the Low-Error condition (50% vs. 18%; p = 0.0001).  
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We then entered RTs for correct trials in an ANOVA with group (Low-Hunger, 

High-Hunger) as between subject factor, and with error likelihood (Low, High) and trial 

type (Go, Stop) as within subject factors. This analysis evidenced a significant effect of 

error likelihood [F(1, 32) = 45.32, p = 0.000001], a significant effect of trial type [F(1, 32) 

= 257.40, p = 0.000001], and a significant interaction error likelihood × trial type [F(1, 32) 

= 31, p = 0.000004]. No significant difference between groups or interaction with groups 

was found (all ps > 0.18). Post hoc comparisons, performed with the Newman-Keuls test, 

first of all showed that RTs were significantly higher (i.e., responses were slower) during 

the High-Error condition than the Low-Error condition (450 ms vs. 421.1 ms; p = 0.0001), 

and that RTs during Go trials were significantly higher than RTs during Stop trials (470 ms 

vs. 400 ms; p = 0.0001). Moreover, while RTs for correct responses during Go trials were 

the same along High-Error condition and Low-Error condition (466.40 ms vs. 474 ms; p = 

0.13), RTs for incorrect responses during Stop trials were significantly higher for the High-

Error condition than the Low-Error condition (423.53 ms vs. 376 ms; p = 0.0001).  

Moreover, an ANOVA on SSRT values with group (Low-Hunger, High-Hunger) as 

between subject factor, and with error likelihood (Low, High) as within subject factor 

revealed a significant difference between High- and Low-Error likelihood [F(1, 32) = 

412.1, p = 0.0000001], evidencing how inhibition was higher during Low-Error trials 

(because easier) rather than during High-Error trials (382.14 vs. 282.23), that is, 

participants were worse, as expected, during High-Error likelihood trials. No significant 

difference between groups or interaction with groups was found (all ps > 0.20). 

These results support the validity of the paradigm of Stop-signal task in producing 

different patterns of errors for the Stop condition comparing to the Go condition, and for 

the High- versus Low-Error likelihood, replicating results of the main experiment. Indeed, 
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participants clearly made a significantly higher number of errors during the High-Error 

condition only when performing Stop trials. 

 

Food rating task  

 We started with a general ANOVA on rating scores with group (Low-Hunger, High-

Hunger) as a between-subject factor, and type of food (LEF, HEF), time (Pre, Post), and 

type of judgement (desirability, pleasantness, healthiness, disgust, surprise, anger, anxiety, 

calmness, happiness, and sadness) as within-subject factors. This analysis yielded a 

marginally significant effect of group [F(1, 32) = 3.95, p = 0.05], and a significant effect of 

time [F(1, 32) = 7.82, p = 0.009]. Post hoc comparisons, performed with the Newman-

Keuls test, showed that ratings were overall lower for the Low-Hunger group as compared 

to the High-Hunger group (-1.10 vs. -0.48; p = 0.05), and ratings in the Post test phase were 

overall lower than in the Pre test phase (-0.95 vs. 0.63; p = 0.007). Moreover, the principal 

analysis yielded a significant effect of type of judgement [F(9, 288) = 35.40, p = 0.000001], 

a significant group × type of judgement interaction [F(2, 288) = 1.95, p = 0.04], and a 

significant type of judgement × time interaction [F(9, 288) = 8.50, p = 0.000001]. This 

result is not surprising, since we were comparing very different judgements and emotions. 

No other significant results for this general analysis were found (all ps > 0.21). To 

investigate the main effect, avoiding possible confounding, we carried out separate 

analysis, one for each judgement at stake.  

 An ANOVA on desirability ratings with group (Low-Hunger, High-Hunger) as a 

between-subject factor, and type of food (LEF, HEF) and time (Pre, Post) as within-subject 

factors yielded a significant effect of group [F(1, 32) = 5.00, p = 0.03], a significant effect 

of time [F(1, 32) = 29.02; p = 0.000006], no significant effect of type of food [F(1, 32) = 
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2.30, p = 0.14], and a marginally significant group × time interaction  [F(1, 32) = 4.20, p = 

0.05]. No other significant results (all ps > 0.53). Post hoc comparisons, performed with the 

Newman–Keuls test, showed that ratings were overall lower for the Low-Hunger group as 

compared to the High-Hunger group (1.00 vs. 3.00; p = 0.03), and ratings in the Post test 

phase were overall lower than in the Pre test phase (3.00 vs. 0.80; p = 0.009). We also 

developed the group × time interaction, finding that the decrease in the rating for the Low-

Hunger group was significantly more pronounced (2.44 vs. -0.50; p = 0.0001) than in the 

High-Hunger group (3.50 vs. 2.20; p = 0.06), suggesting that the Stop-signal task had a 

greater effect on the wanting system relative to both food in individuals not so much 

hungry, rather than in individuals with higher levels of hunger. 

 The same analysis on pleasantness ratings yielded a significant effect of group [F(1, 

32) = 53.76, p = 0.006], and a significant effect of time [F(1, 32) = 11.76, p = 0.002]. No 

other significant results were found (all ps > 0.20). Newman–Keuls post-hoc test revealed 

that ratings were overall lower for the Low-Hunger group as compared to the High-Hunger 

group (1.46 vs. 3.05), and ratings in the Post test phase were generally lower than in the Pre 

test phase (2.80 vs. 1.62). 

 The analysis on anxiety yielded no significant effect of group [F(1, 32) = 1.60, p = 

0.21], no significant effect of time [F(1, 32) = 3.57, p = 0.07], no significant effect of type 

of food [F(1, 32) = 0.001, p = 0.98], a significant group × time × type of food interaction 

[F(1, 32) = 4.50, p = 0.04], no significant group × time interaction [F(1, 32) = 0.03; p = 

0.85], and no significant group × type of food interaction [F(1, 32) = 0.22, p = 0.64]. We 

developed the group × time × type of food interaction (Fig. 5), finding that, while for the 

Low-Hunger group the LEF in the Post test phase was rated as associated with the same 

level of anxiety as in the Pre test phase (-2.80 vs. -2.89; p = 0.75) whereas the HEF in the 
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Post test phase was rated as more associated with anxiety as in the Pre test phase (-2.11 vs. 

-3.33; p = 0.007), we found a different trend for the High-Hunger group. That is, both LEF 

(-1.10 vs. -2.10; p = 0.04) and HEF (-1.40 vs. -2.0; p = 0.03) were rated as producing more 

anxiety in the Post test as compared to the Pre test. Note that, since anxiety, as well as 

disgust, anger, and sadness are negative judgments, smaller negative values mean higher 

scores. 

 The analysis on calmness ratings revealed only a significant effect of group [F(1, 

32) = 5.03, p = 0.03], with High-Hunger participants being less calm than Low-Hunger 

participants (-0.73 vs. 1). No other significant results were found (all ps > 0.21). 

The analysis on disgust ratings revealed only a significant effect of time (F(1, 32) = 

4.63, p = 0.04), with an increase in the disgust toward both foods after the Stop-signal task 

as compared to before the task (-2.85 vs. -3.72). No other significant results were found (all 

ps > 0.13). 

The analysis on anger scores revealed no significant effects. Only the time factor 

was close to statistical significance [F(1, 32) = 3.72, p = 0.06], suggesting a tendency to 

increase the anger toward both foods after the Stop-signal task as compared to before the 

task (-2.50 vs. -3.32). No other significant results were found (all ps > 0.46). 

The analysis on surprise ratings revealed a significant effect of time [F(1, 32) = 

14.40, p = 0.0006], with an decrease in being surprised toward both foods after the Stop-

signal task as compared to before the task (-2.00 vs. -0.12). No other significant results 

were found (all ps > 0.08). The same analysis on healthiness, happiness, and sadness 

yielded no significant results (p > 0.16; p > 0.10; p > 0.31 respectively). 
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Discussion 

 The important finding here is that the Stop-signal task had a differential effect on 

self-report judgements about the two foods between groups only regarding the perceived 

anxiety. 

 Overall, participants with a lower hunger level had lower rating scores as compared 

to participants with a higher hunger level. Among the several judgements, the desirability 

decreased in the Post test phase as compared to the Pre test phase in both groups, more for 

the lower hunger group than for the higher hunger group, but without any difference 

between the two foods. This means that the wanting system (e.g., Berridge, 2007, 2009), 

that is, the incentive motivation, was affected in the same direction, even if in a more 

pronounced way for the former group. The same decrease was detectable for the perceived 

pleasantness, suggesting the same effect on the liking system (e.g., Berridge, 2009), that is, 

the hedonic pleasure. However, anxiety seems the only to have been influenced differently 

Figure 4. Anxiety scores 
Pre and Post test, separated 
by groups (Low Hunger, 
High Hunger), and error 
likelihood associated to 
foods (Low, High).  
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between the two groups concerning the two foods. Indeed, in individuals with a lower 

hunger level, the Stop-signal task increased the perceived anxiety only towards the food 

associated with a higher number of errors during the performance. Conversely, in 

individuals with a higher hunger level at the moment of the task, their attitude was 

characterised by more anxiety toward both foods. Finally, while the disgust and the anger 

experienced toward the two foods increased in the same way across groups in the Post error 

task as compared to the Pre test, surprise decreased, whereas all other judgements remained 

unaffected. 

 Anxiety is strictly related to arousal, and both should have changed, as they did, 

after the error task. However, as we suggested in the discussion of the main experiment, 

having a different motivational state related to food at the beginning of a task also related to 

food, influenced in a different way our participants’ attitude. In a low level of hunger state, 

the aversive and arousing nature of mistakes has been correctly attributed (switched from 

errors) to one of the two foods, namely, the one toward subjects made more errors. 

Conversely, in individuals already hungry at the beginning of the task, the arousing quality 

of errors has been probably translated in hunger itself, increasing anxiety toward both 

foods. We will discuss these findings later. 

 

General discussion 

Consistent with our hypothesis, errors reduced impatient food decisions, indicating 

that the aversive quality of errors lessened the desirability of food. However, this occurred 

only in participants with a low hunger level. Conversely, in participants with a high hunger 

level, errors had the opposite effect, reducing participants’ willingness to wait for future 

rewards. This suggests that, when individuals are not in a particular motivational state or 
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need related to food, they are subjected to the negative conditioning, whereas this is not the 

case when they are in the opposite condition. Similarly to our dual result, Stafford and 

Scheffer (2008) found that participants in the pre-lunch time were slower to associate food 

with unpleasant words (implicit association test, IAT, Greenwald et al., 1998) as compared 

to participants in the post-lunch time, and Seibt and colleagues (2007) found that hungry 

individuals were influenced in the immediate evaluation of food items, rating them with a 

more positive valence. This is because food deprivation is associated with an increase in the 

reinforcing value of food (Lappalainen and Epstein, 1990; Epstein et al., 1996, 2003). 

The finding that hungry participants behaved then more impulsively when choosing 

between immediate and future amounts of food suggests not only a failure in associating 

errors with food, but also that, in a state of hunger, the arousing quality of errors may be 

apparently misinterpreted as being related to food, thereby increasing immediate desire for 

this reward. Kavanagh and colleagues (2005), indeed, starting from the work of Schachter 

and Singer (1962; the same physiological arousal can have different cognitive labels) 

suggested that under particular conditions people can misattribute ambiguous internal 

states, as in Bauer and Kranzler (1994), where drug cravers’ responses to erotic stimuli 

were apparently mistaken for responses to drug cues, or in Dutton and Aron (1974), where 

fear arousal appeared to be misattributed to sexual arousal in male subjects interviewed on 

a high suspension bridge from a female researcher (for other examples, see Ross et al., 

1969; Storms and Nisbett, 1970; Zanna and Cooper, 1974). Deprivation itself induces 

desire (Jarvik et al., 1995; Jorenby et al., 1996), and the involvement of associational 

processes implies that desire may arise from salient but misleading attributions, so that the 

physiologic activation that does not arise from desire (e.g., sympathetic nervous system 

arousal associated with anxiety) can also be misattributed to desire (Kavanagh et al., 2005). 
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It is like to say that the negative emotion increased the awareness of deprivation (Kavanagh 

et al., 2005). 

 As said before, errors are considered aversive event, producing a negative neural 

wave (error-related negativity, ERN; Falkenstein et al., 1991; Gehring et al., 1995) 

generated in ACC (e.g., Miltner et al., 2003) when subject becomes aware of having 

committed a mistake, thus priming defensive motivation (Hajcak and Foti, 2008). When 

expectancy violations occurs, dopaminergic neurons projecting from the midbrain to ACC 

temporarily cease firing, resulting in the generation of the ERN that acts as a reinforcement 

learning signal (or prediction error) to adjust the ongoing behavior (Inzlicht and Al-Khindi, 

2012; Holroyd and Coles, 2002). What we found in the control experiment is that self-rated 

anxiety toward the two foods differently changed between before and after the error task in 

the two groups. It seems that the Stop-signal task induced an increase in the physiological 

activation and consequently in anxiety toward the HEF only in participants free of food-

related motivational state. Conversely, individuals in a state of need of food exhibited an 

increase in arousal and anxiety for both foods. This could explain why in the main 

experiment, participants with lower hunger differentiated between the two foods during the 

TD task, being less impulsive toward the HEF, whereas those with higher hunger had the 

opposite trend, even if non statistically significant. This also suggest that High-Hunger 

participants in the main experiment were someway aware of a difference between the two 

foods even if the increasing in the anxiety and arousal toward them was probably the same. 

Our result is completely in line with a recent study of Inzlicht and Al-Khindi (2012) 

suggesting that the ERN may partially reflect a distress response to errors. Their 

participants consumed a drink they believed would have either increased their anxiety or 

would have had no side effects, and then they completed a Stop-signal task. Results 
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evidenced that subjects who were given the opportunity to misattribute arousal had a 

reduced ERN than participants who were not given any misattribution cues. This occurred 

despite no differences in performance on the error task, as for our participants. Moreover, 

correlations between the ERN and behavior were observed only for participants who did 

not misattribute their arousal to the placebo beverage. These findings suggest that the ERN 

is dissociable from cognitive performance but not from negative affect. Also, startle, that is 

a protective or defensive response that is reduced when appetitive stimuli are presented and 

augmented when aversive stimuli are showed (Lang et al., 1990; Lang, 1995; Bradley et al., 

1999), has been found decreased in smokers as compared to non-smokers, during smoking 

cues (Geier et al., 2000). 

 Accumulating evidence indicates that dopamine signals are integrated with 

metabolic signals to guide reward search (in this case, food) in response to homeostatic 

state (e.g., Berridge, 2007; Schultz, 2007). Our suggestion, here, is that dopamine signals 

deriving from errors could have been misinterpreted as signals triggering consumption. 

Indeed, research showed that the experience of desire is qualitatively in subjective reports 

similarly across a range of rewards, including food, soft drinks, alcohol, and tobacco (May 

et al., 2004), relying in the commonality in the dopamine mesocorticolimbic pathways 

(Robinson and Berridge, 1993, 2003; Kavanagh et al., 2005). For instance, dopamine 

antagonists attenuate the incentive properties of food, water, and drugs in deprived animals 

(Nader et al., 1997).  

It is worth to note that in our study we induced participants to associate a negative 

event with food and we did not prime them with an aversive event unrelated to food: This 

could have induced a negative mood influencing then spontaneous motivational tendencies 

toward edible stimuli (e.g., Wagner et al., 2012). However, even if this were our case, 
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inducing negative affect and distress with a lot of mistakes in performance, our results are 

clearly different between less hungry participants and more hungry participants. Moreover, 

it is also important to say that even if we did not control for menstrual cycle in our subjects, 

we know that food intake fluctuates across hormonal phases in women. Specifically, 

women eat less food during the late follicular and periovulatory phases of the menstrual 

cycle, which are characterized by elevated levels of estrogen and low levels of 

progesterone, compared to the luteal phase, the only phase of the menstrual cycle in which 

progesterone is elevated (Lyons et al., 1989; Johnson et al., 1994; Pelkman et al., 2001; 

Reimer et al., 2005; Bryant et al., 2006). However, our initial purpose was to test subjects at 

least 2 hours fasted just to avoid them to have been in touch with food too recently, and the 

fasting that hours correlated with the hunger rating (β = 0.41, p = 0.01) suggests that hunger 

level in our participants was due to how long they have been without food.  

Finally, we could also hypothesise that the Stop-signal task could have induced 

different levels of inhibition or cognitive control toward the two different foods. However, 

no significant differences were found between groups relative to this issue (as for instance 

in Hawk et al., 2004), and also this could have not explained the opposite result we found 

between Low-Hunger and High-Hunger participants. The same consideration is valid also if 

we hypothesised that during the Stop-signal task participants had someway to associate 

that, during High-Error trials, do not perform the action was rewarding as compared to do 

perform it, or that with a food, as compared to the other, they were required a higher effort 

to have success. Conversely, in a study in which our participants carried out a sustained 

attention task with food as cue (unpublished data), where the food appeared as reward only 

in correct trials, we found that the pleasantness associated with that food increased at the 

end of the task, suggesting that, in that case, we positively conditioned our participants. 
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Furthermore, since disordered eating have been recently consistently linked to drug 

addiction, sharing with it not only behavioral features like impulsivity and executive 

dysfunction, but also a documented dysregulation of the reward circuit (e.g., Avena et al., 

2011; Gearhardt et al., 2011; Fortuna, 2012; Umberg et al., 2012), we could suggest to use 

the method here tested as a clinical training for people suffering from obesity and binge 

eating disorders (not related to pre-existent medical conditions). 
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Study V – The effect of aging on intertemporal choice  

 

Introduction 

 

  The two causative studies I previously reported here (Study I, II-Part II) were based 

on the comparison between brain lesioned groups of patients and healthy groups of 

individuals, matched each other on sex, education, and age. Lesional studies, whose aim is 

to investigate how specific brain damage affects cognitive processes, require experimenters 

to collect data from patients with acquired lesions in a chronic phase, which is necessary to 

avoid confounding effects relative to the acute phase (e.g., spontaneous improvement of the 

disorder is highly likely; see Karnath et al., 2011 for an example). It turns out that the mean 

age of participants in the first lesional experiment here reported was about 58 years old, 

whereas in the second lesional study here reported was about 61 years old. However, when 

it comes to test healthy participants in behavioral or imaging studies, experimenters are 

used to recruit young subjects, especially at the University (that also means that they have 

at least several years of education). Among those trait variables influencing intertemporal 

decision-making in humans, age plays a prominent role. Are elderlies more wisdom than 

young individuals in making their intertemporal decisions? Or, have they a shorter horizon 

of future life to forecast about? 

Contrasting findings arise from studies about this issue. For instance, evidence from 

Green and colleagues (1994, 1999) suggest that the older the subject the shallower the 

discount rate during intertemporal choice (Fig. 1).  
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Figure 1. Mean hyperbolic discounting functions for children (mean age 12 years), younger (mean age 20 
years), and elderly (mean age 68 years) (Adapted from Green et al., 1994). 
 

 

Similarly, three recent studies (Reimers et al., 20091; Löckenhoff et al., 20112; Rhodes and 

Pivik, 20113) found that impulsive intertemporal choices (gains but not losses) were 

associated with several demographics, like younger age, lower income, and lower 

education, and positive affect (e.g., liking for risky driving behaviors) more strongly 

predicted risky driving for teen and male drivers than for adult and female drivers. 

Conversely, other studies (Harrison et al., 20024; Sozou and Seymour, 2003; Read and 

Read, 20045) showed that individuals tend to become more patient with age, but only until 

adulthood, and then, elderly adults start to prefer again smaller sooner gains, behaving 

myopically, thereby suggesting that choosing a smaller but sooner reward is a warranty 

against an uncertain future, to maximize physiological conditions (Fig. 2). 

 

 

 

1participants aged 21-65; 2participants aged 19-91; 3teens aged 16-20 and adults aged 25-45; 
4participants aged 19-75; 5younger mean age 25, middle-aged 44, and elderly 75.



 210 

 
 

At the same time, however, it is well documented that the prefrontal cortex is among 

the brain regions most sensitive to the negative effects of aging (e.g., Lezak, 1995; West, 

1996, 2000; Jahanshahi et al., 2000; Raz, 2000), even if with different outcomes on 

different areas. Several reviews (e.g., Carstensen and Mikels, 2005; Brown and 

Ridderinkhoff, 2009; Mohr et al., 2010) unanimously pointed out that, in the aging mind, 

while judgment, knowledge, and emotion regulation are relatively spared, processing 

capacity declines, with elderly performing overall less efficiently than younger participants, 

as demonstrated by the smaller total reward that the elderly acquired in lab tasks. For 

instance, Lamar and Resnik (20046) found that tasks requiring a greater involvement of 

OFC appeared more sensitive to the effects of aging when directly compared to measures 

requiring a greater engagement of dlPFC. Similarly, Denburg and colleagues (2005) found 

that all their younger normal participants7 performed in an advantageous manner on the  

 

6young participants aged 23-34, older participants aged 64-74; 7aged 26-55. 

Figure 2. TD behavior 
changes with age (Adapted 
from Read and Read, 2004). 
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Gambling task (the same task in which vmPFC patients were impaired in Bechara et al., 

2000; see also Koenigs and Tranel, 2007, and Moretti et al., 2009 for other economics and 

social deficits following the disruption of vmPFC), while a subset of elderlies8 performed 

abnormally on it, failing to shift their selections toward advantageous outcomes.  

All these studies support the idea that the decision-making process is affected by 

neurocognitive changes due to age. However, while evidence clearly suggests that the 

smaller the age the larger the discount rate during pre-adolescent and adolescent age (e.g., 

Olson et al., 20089), results are less clear for older people. We thereby decided to 

investigate if and how intertemporal choice behavior for hypothetical rewards is modulated 

by age in a group of Italian young participants and a group of Italian elderly individuals. 

For the first time, moreover, we assessed if and how age differently affected monetary and 

edible outcomes, both when an immediate option was offered and it when it was not. 

 

Materials and methods 

 

Participants 

 Forty healthy individuals participated in this study. Participants comprised twenty 

young adults and twenty elderlies (see Table 1 for demographics) who were not taking 

psychoactive drugs, and were free of current or past psychiatric or neurological illness as 

determined by history. 

 

 

8aged 56-85; 9participants aged 9-23 years. 
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Table 1. Groups’ demographic data. Values in parenthesis are standard deviations.  

 

 

To ensure that all participants had intact cognitive functions, participants were 

submitted to several neuropsychological tests, commonly used in clinical practice. Both 

groups were assessed through the digit span (DS) forward and the DS backward. Elderlies 

were also submitted to the MMSE (Folstein et al., 1975) to evaluate language and visuo-

spatial abilities (see Table 2). Even if the two groups differed in the education level (p <  

0.000001), since it is quite difficult to find now elderly who gained high scholar degrees 

when they were young, all participants reached normal scores to neuropsychological tests 

corrected for their age. That is, even if groups differed in both the DS forward (p < 

0.00001) and the DS backward (p < 0.001), their performance were in the normal range for 

their age (this held also for MMSE in elderlies). 

 

Groups DS forward DS backward MMSE 

Young adults 7.3 (1.1) 6.5 (1.9) -­‐  

Elderlies 4.8 (1.4) 4.3 (0.7) 26.8 (2.5) 

Table 2. Mean values (corrected scores) for cognitive tests. Values in parenthesis are standard deviations. DS 
= digit span. 
 

Procedure 

 After collecting demographic data (younger participants were also asked to report 

their height and weight to calculate their BMI; Smalley et al., 1990), both groups performed 

in a randomized order two TD tasks (Sellitto et al., 2010, see also Study I, II-Part II) based 

 Groups Sex (f/m) Age (years) Education 

Young adults 10/10 21.7 (1.9) 13.6 (3.1) 

Elderly 10/10 67.3 (9.7) 7.7 (2.4) 
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on two different reward types: in one we offered money amounts (Euro), and in the other 

we offered bites of food as reward. However, before starting the experiment, all participants 

chose their favourite food among four alternatives, which included two sweet snacks 

(cookie and chocolate bar), and two salty snacks (cracker and breadstick), to ensure 

motivation in the food TD task. Moreover, to avoid hunger confounding, all participants, 

before choosing among those four foods, rated their hunger level at the moment on a 6-

points Likert scale (from 0, no hunger at all, to 5, very hungry). At the end of the second 

TD task, all participants were submitted to the BDI (Beck et al., 1961) to assess depression, 

and, only younger participants filled out both the BIS-11 (Fossati et al., 2001) and the BAS 

(Carver and White, 1994) scales to assess both inhibition and activation levels. Finally, the 

neuropsychological assessment was carried out. Groups did not differ on BDI scores (p = 

0.40) and hunger levels (p = 0.63) at the moment of the experiment. 

TD task procedure was the same we used in the study here reported in the Part II 

about insular cortex patients. That is, subjects performed intertemporal choices for both 

reward types along two different temporal conditions: one in which we provided an 

immediate option (Now condition), and one in which the sooner option was available only 

after 60 days (Not-now condition). Delays and titration procedure used to adjust sooner 

amounts based on participants’ previous choice is the same we used in the Study I-Part II 

(Du et al., 2002; Sellitto et al., 2010). The whole experiment required about 40 minutes. 

  

Results 

 To analyse data we used the same procedure as in Sellitto and colleagues (2010; see 

Part II). Since we found in all our previous studies that hyperbolic model was always 

superior to the exponential model, here we will analyse only hyperbolic k parameters, and 
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no AUCs were calculated. 

 Figure 3 (a, b) shows TD curves by participant group and delay for both rewards, 

separately for Now and Not-now condition. The k value for each curve reflects the 

geometric mean of the group — which corresponds to mean of the log-transformed values 

— and thus provides a better measure of central tendency for positively skewed metrics, 

such as TD rates, than does the arithmetic mean. As is evident, TD curves were steeper for 

elderly individuals as compared to younger participants, suggesting that elderlies had an 

increased tendency to discount future rewards. Figure 3 (a, b) also highlights that TD of 

food was steeper than TD of money across both groups. These impressions were confirmed 

by statistical analyses. An ANOVA on log-transformed k values with group (Young adults 

and Elderlies) as a between-subject factor, and task (money and food) and temporal 

condition (Now and Not-now) as a within-subject factors yielded a significant effect of 

group [F(1, 38) = 4.48, p = 0.04]. Post hoc comparisons, performed with the Newman-

Keuls test, showed that TD was steeper in Elderlies compared with Young adults (-1.59 vs. 

-2.01). Moreover, there was a significant effect of task [F(1, 38) = 6.38, p = 0.02], 

indicating that TD of food was steeper than TD of money (-1.65 vs. -1.95), and a significant 

effect of temporal condition [F(1, 38) = 12.32, p = 0.001], indicating that participants 

behaved less prudently when an immediate option was offered in the pair as compared to 

those trials in which no immediate option was provided (-1.68 vs. -1.92). Moreover, a 

significant task × temporal condition interaction was found [F(1, 38) = 5.76, p = 0.02], 

indicating that future food amounts in the Now condition were the most discounted as 

compared to future food amounts in the Not-now condition and future money amounts in 

both temporal conditions (all ps = 0.0001). This result was held for both young adults and 

elderlies. All other interactions did not reach statistical significance (all ps > 0.20). 
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 Furthermore, BIS-11, BAS, and BMI values did not predict TD behavior in younger 

subjects (all ps > 0.63). 

 

 

Figure 3a. TD functions by participant group (Young adults and Elderlies) and type of reward for the Now 
temporal condition. The hyperbolic curves describe the discounting of subjective value (expressed as a 
proportion of the delayed amount) as a function of time (days). The discounting parameter k reflects the 
geometric mean of the group (mean of the log-transformed values).   
 

 

 

Figure 3b. TD functions by participant group (Young adults and Elderlies) and type of reward for the Not-
now temporal condition. The hyperbolic curves describe the discounting of subjective value (expressed as a 
proportion of the delayed amount) as a function of time (days). The discounting parameter k reflects the 
geometric mean of the group (mean of the log-transformed values).   

- - 
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Discussion 

Divergent trajectories characterize the aging mind: older adults evidence superior 

cognitive performance for emotional relative to non-emotional information, and age 

differences are most evident when the emotional content is positively as opposed to 

negatively valenced (Brown and Ridderinkhof, 2009). Overall, speaking specifically about 

outcome-based decision-making, it seems clear that aging has an effect on the subjective 

value computation. Accordingly, here we demonstrated that healthy elderly individuals had 

higher discount rates as compared to healthy younger participants when offered different 

gains attainable at different delays. This result held for both hypothetical money and food. 

However, as younger participants, elderly tended to prefer the sooner option significantly 

more frequently for primary than for secondary outcomes. Moreover, the tendency to 

behave more prudently when no immediate option was offered in the pair remained 

unaltered between the two groups.  

Our finding that older people behave overall less patiently than younger people is in 

line with recent findings (Trostel and Taylor, 2001; Finkelstein et al, 2008; Chao et al., 

2009) and also theories (e.g., Rae, 1834) suggesting that aging is associated with 

uncertainty of life, reduction in the ability to enjoy pleasure, and the discomfort from 

delaying gratification, resulting in a decline in people’s ability to enjoy consumption, and 

higher discount rates. More precisely, our result is in agreement with the U-shaped 

relationship between age and discounting behavior, with individuals who tend to become 

more patient after adolescence (as for our younger participants), but only until adulthood, 

and then, elderly adults start to prefer again smaller sooner gains, behaving myopically like 

our elderlies, suggesting that choosing a smaller but sooner reward is a warranty against an 

uncertain future, to maximize physiological conditions (e.g., Read and Read, 2004). 
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Moreover, the fact that our older subjects lessened their impulsivity when faced with only 

delayed rewards (one sooner and one available later) suggests that, when nothing is 

accessible in the near time, choices are shifted toward the larger option, probably applying 

an heuristic of quantity. 

 However, this result does not reject older findings (e.g., Green et al., 1994, 1999) 

that suggest that older people are less impulsive during intertemporal choice because more 

wisdom and patient. In fact, most of those studies (e.g., Green et al, 1994, 1999) did not 

analysed participants as different groups but they only looked at age as a continuum, with 

the exception of Rhodes and Pivik (2011) who, however, did not test very old participants 

in their sample of elderly people (see Introduction). 

Why people become more impulsive with age? Evolutionary theory posits that this 

behavior should be considered advantageous in light of increasing paucity of resources 

available in the future, for instance because with aging people are less able to find them 

(e.g., Rogers, 1994; Sozou and Seymour, 2003), maximizing their gains as they can. 

However, intertemporal decision-making is a complex process that need memory and 

computation capabilities, adequate visceral sensations translation (see Study II-Part II), 

correct selection of strategies among those acquired and/or learned in the past, emotion 

regulation, attention to social rules, intact affect forecast abilities and so on (e.g., Payne et 

al., 1992; Bechara, 2005). That said, it comes that we cannot overlook evidence about brain 

changes with aging. Indeed, cognitive decline with aging is well documented (e.g., Craik et 

al., 2006). Löckenhoff and colleagues (2011), for instance, suggested that the apparent 

paradox of age-related increments in processing speed but decrements in decision time 

highlights that people can decline in the ability to correctly estimate time intervals. 

According to them, age differences in the use of heuristic decision strategies might be a 
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compensatory response to limitations in processing speed, but could also result from shifts 

in global time perspective that promote an affect-rich processing style. Similarly, effects of 

aging in correct affective forecasting and future anhedonia could result from a subjective 

compression of time perceptions, differences in the subjective speed of time, or deeper 

insights into one’s emotional functioning in the face of limited future time horizons. 

 Our results can also be read in light of our previous findings about intertemporal 

choice in mOFC patients. Indeed, as our mOFC patients did, our elderlies showed an 

increased impulsivity towards future outcomes as compared to younger individuals, while 

maintaining unaltered the tendency to behave less prudently when tastes of food were 

available in the immediate present against larger but later amount of the same food. This 

result could suggest a dysfunction in the activity of mOFC in older people when processing 

intertemporal choice. A less effective activation of mOFC with aging, indeed, has been also 

suggested by Löckenhoff and colleagues (2011), together with a dysfunctioning of dlPFC 

during the experience of a conflict when engaged in difficult intertemporal decisions 

(Reuter-Lorenz et al., 2005; see also Figner et al., 2010; Essex et al., 2012; Roesch et al., 

2012). 

Moreover, taking into account the MTT manipulation we did in Study I-Part III (i.e., 

we made individuals who had just thought about events of their past, or imagined events of 

their probable future, as less shortsighted decision-makers when faced with monetary 

amounts), we can also read the present results in light of a study of Addis and colleagues 

(2009). They evidenced how older adults generated fewer episodic details than younger 

individuals for both past and future events. Indeed, our study supports the idea that aging 

affects the capacity to both recollect past events as well as imagine possible future 

scenarios (by affecting the same neural circuits involved in intertemporal choice), making 
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thereby more difficult the act of envisage future selves projected in time receiving future 

monetary amounts (Ersner-Hershfield et al., 2009). 

 It is worth suggesting that neuroscientific research should consider the intertemporal 

choice and its modulation by aging, since mean lifespan of people is considerably rising. 

Indeed, most of the future decision-makers will be over 65 years old. Among older persons 

without dementia, a lower level of cognitive function, for instance, is associated with greater 

TD, having implications regarding the ability of older persons to make decisions that 

involve delayed rewards but maximize well-being (Boyle et al., 2012).  
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General discussion 

 

 People make decisions daily. Sometimes, these decisions appear to have a quite 

restrained impact, affecting, for instance, the course of a day when choosing how to spend 

free time. However, the overall impact of a choice may also have broader consequences, 

with important implications in the long term, requiring then a more careful consideration of 

all alternatives. Indeed, in a larger range, spending the free time out with friends, for 

example, can have a good impact on one’s social life, health, and mood, discharging from 

working stress, and increasing knowledge, e.g., visiting a museum. Even more broadly, this 

can affect overall economy (buying the ticket at the museum), friends’ mood (they will be 

happy to spend fun time together), and so on. However, one can decide to make an effort 

forgoing fun activities and remaining home working on a job application. Similarly, this 

will increase chances to be shortlisted, leading then to become, for instance, a good 

researcher, with a larger income, and so on. Such type of decisions, involving trade-offs 

between benefits and costs differing in the time of their occurrence, is commonly referred 

to as intertemporal choices (e.g., Frederick et al., 2002).  

 Economics and psychology have long established that humans and other animals 

tend to prefer smaller rewards with short-term availability over larger rewards that become 

available in the long run, even when waiting would yield larger payoffs than pursuing 

immediate feelings (Ainslie, 1974; Rosati et al., 2007). Preferring closer reward implies 

that the subjective value (i.e., utility depending on specific characteristics of a subject) of a 

future reward is weakened (discounted), as a function of the time until its delivery (e.g., 

Cardinal et al., 2001; Kalenscher et al., 2005; Myerson and Green, 1995). This 
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phenomenon, known as delay or temporal discounting (TD, Ainslie, 1975; Samuelson, 

1937), is usually considered a good measure of impulsivity (e.g., Takahashi, 2005). 

Individuals with greater discounting, indeed, are described as unable to wait for delayed 

rewards (i.e., impatience choices, Takahashi et al., 2007; Frederick et al., 2002) and may 

have impaired self-control (e.g., Takahashi et al., 2007), which is necessary to favour 

distant, more important goals (Shamosh and Gray, 2008). But, how do people make such 

decisions, and why do they all choose differently?  

 Neuroeconomics gives the opportunity to understand at neural level how people 

weight outcomes to choose and how they assign them a subjective value, appearing 

sometimes as irrational. As highlighted before, intertemporal decision-making is not a 

unitary process: Several mechanisms, including automatic and controlled processes, go 

beyond a coherent utility maximization, resulting in either patient or imprudent behaviors.  

 Extant functional neuroimaging evidence in humans converges to suggest that 

intertemporal choices are governed by a network of brain regions, including VS, mOFC, 

PCC, and lateral prefrontal cortex (e.g., McClure et al., 2004, 2007; Kable and Glimcher, 

2007, 2010; Sellitto et al., 2011; Part I), whose specific role, however, is still unclear. 

Mainly, two different views emerge from previous studies. On the one hand, according to 

the dual model proposed by McClure and colleagues (2004, 2007, Part I), during 

intertemporal choice, the activation of the so-called impulsive ß-system, which includes 

VS, mOFC and mPFC, is preferentially activated when an immediate option is available, 

whereas activation of the so-called rational ∂-system, which includes lateral prefrontal 

cortex and PPC, is activated by all types of choice (Laibson, 1994, 1997; Loewenstein, 

1996; McClure et al., 2004, 2007). The ß-system is thought to be responsible for impatient 

choices, driven by the desire for present outcomes (i.e., the ‘myopic doer’, Thaler and 
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Shefrin, 1981; Elster, 1985, 1986; Graham and Isaac, 2000). The ∂-system is thought to be 

responsible for prudent choices, emphasizing more the consequences of choosing delayed 

outcomes (i.e., the ‘farsighted planner’, Thaler and Shefrin, 1981). On the other hand, 

according to the unitary model proposed by Kable and Glimcher (2009, 2010, Part I), the 

activity in VS, mPFC and PCC tracks the subjective value of both immediate and delayed 

rewards, suggesting that these areas do not carry an impulsive signal that primarily values 

immediate rewards, but rather a value signal for delayed rewards as a function of sooner 

ones. 

In Part II of this dissertation we provided new evidence about the neural bases of 

intertemporal choice both using a lesional approach and neuroimaging novel paradigms, 

which have important implications for understanding mechanisms regulating this neural 

network. 

 

A proposed unitary neural model 

Our lesional findings (Study I, II-Part II) supported the hypothesis of the unitary 

model proposed by Kable and Glimcher (2007, 2010; Peters and Büchel, 2009), according 

to which mOFC and adjacent mPFC, VS, and PCC represent the subjective value of all 

rewards at stake. On the one hand, the fact that damage to mOFC increased imprudent 

choices (Study I-Part II, Sellitto et al., 2010) does not support the idea that mOFC 

underlays the impulsive system, as suggested by the dual model of McClure and colleagues 

(2004, 2007). As discussed above, were this the case, damage to mOFC should have 

resulted in a weak ß-system overwhelmed by the ∂-system, and, consequently, in less 

impulsive choices. On the other hand, findings on patients with damage to the insular 

cortex (Study II-Part II, Sellitto et al., submitted), at odds with those obtained on patients 
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with lesion in the mOFC (Study I, Sellitto et al., 2010), showed that lesion to insula 

decreases TD of future rewards. This allows us to add another tile to the architecture of the 

neural network underlying intertemporal choice. Within the proposed network, the mOFC 

and adjacent medial prefrontal regions are thought to weight the long-term prospects of a 

given choice (Schoenbaum et al., 2009; Sellitto et al., 2010), signaling the subjective value 

of expected outcomes during choice (Rudebeck et al., 2006; Schoenbaum et al., 2006, 

2009; Murray et al., 2007; Rushworth et al., 2007; Talmi et al., 2009), by integrating 

different information (e.g., magnitude, delay; Ballard and Knutson, 2009) coming from 

different structures (e.g., amygdala, De Martino et al., 2006) into a ‘common neural 

currency’, namely, a common scale used to compare future actions and outcomes value 

(Montague and Berns, 2002). The insula, which possesses connections with both the 

vmPFC and the VS (Reynolds and Zahm, 2005), therefore may relay interoceptive inputs 

about need states and reward preference, possibly remapping changes in bodily states 

generated by the amygdala (Winston et al., 2002). This in turn will determine the strength 

with which one will pursue a reward option rather than the other (Weller et al., 2009). 

According to this model, damage to the mOFC would cause a problem envisioning future 

outcomes, leading to steep TD, whereas damage to the insula would lead to emotionally 

blunt intertemporal choices based on a heuristic of quantity, and therefore to a reduced 

discount rate.  

Our preliminary imaging findings (Study III-Part II), on the one hand, partially 

replicated (univariate analysis) McClure and colleagues (2004, 2007)’ results. Mainly, as in 

their studies, regions located in the medial frontal cortex (including ACC), PCC, the 

precuneus and the angular gyrus have been found activated when an immediate option was 

available, whereas the lateral prefrontal cortex, the anterior insula, and the occipital cortex 
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have been found activated when no immediate option was offered. On the other hand, 

however, we found other areas clustering in the medial frontal gyrus and in the precuneus 

responding to both immediate and delayed rewards (as in Ballard and Knutson, 2009). Both 

these regions are included in the limbic system and involved in reward processing (Breiter 

and Rosen, 1999; Knutson et al., 2001b), but if they were underlaing the impulsive ß-

system, as hypothesized in the dual model of McClure and colleagues (2004, 2007), they 

should not have been activated during choices in which both options were projected in the 

future. This suggestion is further supported by the novel carry-over effect analysis on the 

same data. We contrasted offers preceded by the same or a different type of offer (based on 

the availability or not of an immediate option). Activity in the insular cortex, the middle 

frontal gyrus, the superior temporal gyrus, and the putamen emerged when contrasting trials 

preceeded by the same type of trial against trials preceeded by a different type of trial (be 

an immediate option available or not). Activity in vmPFC, the superior frontal gyrus, the 

ACC and the temporal lobe emerged when contrasting trials preceeded by a different type 

of trial vs. trials preceeded by the same type of trial (whether an immediate option be 

available or not). These results strongly suggest that these regions participate in coding 

offers at all delays (both with and without an immediate outcome available), thus not 

supporting the dual model hypothesis of McClure and colleagues (2004, 2007), while in 

line with the proposed unitary model of Kable and Glimcher (2007, 2010; Peters and 

Büchel, 2010b). Our suggestion is that, on the one hand, during the computation of 

subjective value (univariate analysis), it has been given a special weight to the immediate 

option (i.e., the more tempting one) when available, whereas, when choices were more 

difficult (because both options were projected in future), more dorsolateral areas activity 

was required. On the other hand, however, when not distinguishing between offers with and 
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without an immediate option (carry-over effect analysis), regions in the medial wall of the 

prefrontal cortex, the superior frontal cortex, the temporal lobe, and the insula were 

recruited to value outcomes at all delays.  

 

Proposed mechanisms: prospect and valuation  

We proposed (Sellitto et al., 2010, 2011; Ciaramelli and di Pellegrino, 2011) two 

possible mechanisms through which mOFC may influence evaluation and preference of 

future rewards: prospect and valuation. vmPFC regions, including mOFC, are at the core of 

a network of brain regions involved in self-projection, namely, the ability to shift 

perspective to alternatives other than the present, unbinding one from her sensorial self 

(Buckner and Carroll, 2006; Andrews-Hanna et al., 2010). During intertemporal choice, 

mOFC may allow individuals to anticipate future experiences associated with rewards, and 

modulate valuation of future outcomes based on the resulting (positive) affective states 

(Bechara, 2005). For instance, mOFC may subserve the ability to imagine and reproduce 

how one will feel tomorrow after collecting 20 €. Moreover, signals in ACC, coupled with 

hippocampus and amygdala, have been found to predict the degree to which future thinking 

modulated individual TD (Peters and Büchel, 2010a), suggesting a mechanism through 

which decision-making and prospection neural networks can interact to generate future-

minded choice behavior. Our imaging data (Study III-Part II) showed that neural patterns in 

the medial temporal lobe and the parahippocampal gyrus are able to discriminate between 

offers with and without an immediate option, in line with the idea that affective reactions to 

stimuli can emerge from recall of personal emotional experiences, or from the imagination 

of hypothetical affective events, driving choices (somatic-marker hypothesis, Damasio, 
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1994; Bechara, 2005; Bechara and Damasio, 2005; Verdejo-García and Bechara, 2009; see 

also anticipatory-utility perspective, Rae, 1834; Frederick et al., 2002).  

We further explored this possibility linking MTT to TD (Study I-Part III). MTT 

refers to human beings’ capacity to both re-experience episodes from one’s personal past, 

and pre-experience possible events that may occur in the future (Suddendorf and Corballis, 

1997; Wheeler et al., 1997; Atance and O’Neill, 2001; Tulving, 2001; Suddendorf and 

Busby, 2003; Suddendorf, 2006; Botzung et al 2008). As Schacter and colleagues (2007) 

suggested, the brain areas included in the ‘default mode’, the same activated when 

projecting oneself in time, could be necessary to adaptively integrate information about 

relations and associations deriving from past experiences (memory retrieving) to construct 

mental simulations about possible future episodes (prospection and forecasting) (see Part I), 

so that one can recall memories of receiving a money amount to anticipate feelings 

associated with collecting 20 € tomorrow. Being engaged in MTT in prior to making 

intertemporal decisions reduced preferences for smaller immediate monetary amounts in our 

participants (Study I-Part III), suggesting that training to detach from one’s present self and 

project it in time allow the system to more accurately evaluate time. Importantly, our data 

showed that thinking about future selves (e.g., Ersner-Hershfield et al., 2009) was not the 

only way to disengage one from her sensorial self: Also thinking about the past time had the 

same effect. Reduced impulsivity seemes thereby coming directly from moving oneself in a 

distant time.  

The idea that mOFC enables one to envision future rewards (Ciaramelli and di 

Pellegrino, 2011) is not confined to intertemporal choice only, but is also supported by our 

findings about TD and moral judgment (Study II-Part III). We demonstrated that more 

impulsive individuals during intertemporal choices were also more impulsive when judging 
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the moral valence of an action, being at the same time more willing to accept both 

immediate outcomes and moral violations. Lesional findings show not only that our mOFC 

patients were less willing to wait for larger delayed outcomes (Sellitto et al., 2010; Study I-

Part II), but also that vmPFC patients (Ciaramelli et al., 2007) were less reluctant in 

accepting moral violation, suggesting a system dysregulation when faced with a conflict 

between emotional and utilitarian components. In both cases, being not able to anticipate 

emotions driving one’s choices, based on previous experiences (probability) of feeling 

pleasure or pain as a consequence of an act, might be the general underpinning of impulsive 

behavior (e.g., Bechara 1994, 2005). If one is not efficient in envisioning future outcomes 

(i.e., a larger amount of money; no remorse for having violated a moral rule), poor 

representations of future goods will be underpowered to compete with salient, current 

rewards representations, so that imprudent choices will follow (Ciaramelli and di Pellegrino, 

2011).  

 

mOFC has also been proposed to enable more rational behavior by integrating 

emotional and cognitive information (De Martino et al., 2006). Indeed, mOFC is the target 

of top-down signals from lateral prefrontal cortex promoting ‘rational’ decision-making and 

self-control over immediate gratification (Christakou et al., 2009; Hare et al., 2009; Figner 

et al., 2010). Lateral cortices are involved in goal pursuing, future planning and 

implementation of cognitive control (e.g., Miller and Cohen, 2001; Knoch and Fehr, 2007; 

Figner et al., 2010; Essex et al., 2012), and neurophysiological studies suggest that the PFC 

is also important for the ability to prospectively activate long-term memories (Rainer et al., 

1999; Tomita et al., 1999; Miller and Cohen, 2001). Based on findings reported in this 

dissertation, damage to the mOFC, therefore, would prevent lateral prefrontal signals from 
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modulating the value signal influencing preferences, thus depriving patients of self-control 

during intertemporal decisions (Sellitto et al., 2010; Study I-Part II). Poor MTT (during 

both intertemporal choice and moral judgement) and/or poor self-control arguably result in 

problems anticipating, or adapting behavior to, the long-term consequences of decisions 

biasing choices towards closer rewards (i.e., ‘myopia for the future’; Damasio, 1994, 

Bechara, 2005; Sellitto et al., 2010; Ciaramelli and di Pellegrino, 2011). This suggestion is 

compatible with a theory of impulse control proposed by Bechara (Bechara, 2005; Bechara 

and Van Der Linden, 2005), according to which regions in the vmPFC, including mOFC, 

weight the long-term prospect of a given choice during decision-making (Schoenbaum et 

al., 2009), while the amygdala and VS signal the immediate prospect of pain or pleasure 

(Bechara and Damasio, 2005; Kringelbach, 2005). Impulsive behavior would emerge as the 

result of an imbalance between competing signals, favoring valuation of immediate over 

future outcomes. Competing signals from insula and other somatosensory cortices, critical 

for representing patterns of emotional/affective states, and from dlPFC and the 

hippocampus, critical for memory and imagination (Damasio, 1994; Bechara, 2004), 

converge to vmPFC and mOFC: A disruption of these cortices might lead to the 

hypervaluation of immediate over future outcomes, as in our mOFC patients (Study I-Part 

II), or as in previous studies where, during the Iowa gambling task, mOFC patients made 

impulsive, shortsighted choices that warranted (monetary) gains in the short-term but 

proved disadvantageous losses in the long-term (Bechara et al., 1997; Berlin et al., 2004; 

Anderson et al., 2006).  

As argued by Monterosso and Luo (2010), instead of describing intertemporal 

choice as governed by separate and competing value systems, the alternative hypothesis 

that it is guided by a single valuation system better fit with lesional and imaging evidence 
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to date: Higher cognitive capacities leading to greater valuation of larger later alternatives 

affect intertemporal choice through mediation of (rather than competition with) older 

cortical and subcortical structures, core regions for reward and motivation (Monterosso and 

Luo, 2010).  

 

Outcome representation 

 Humans have been found to discount at some degree all types of reward. Is there a 

way to reduce peoples’ impulsivity during intertemporal choices, namely, to increase their 

willingness to wait for larger but later outcomes? In Study III (Part III) we explored the 

possibility of modulating the psychological distance between decision-makers and 

outcomes. In the self-control domain, being engaged in high levels of construal is thought to 

lead people having greater consistency between long-term goals value and behavior (Trope 

and Liberman, 2010; Fujita and Carnevale, 2012). We demonstrated that, removing objects 

from the self could affect objects’ construals (i.e., representations): Increased spatial 

distance from outcomes made people thinking to more abstract properties (high level 

representations) of rewards in prior to choosing, leading to a decreased discount rate. 

Namely, participants were induced to be less concerned about the effort related to waiting 

longer for the larger outcome, thereby being more attracted by its greater magnitude. This 

result can also be thought in terms of MTT. Here, instead of projecting the self in the distant 

time to detach one from her sensorial self, we increased the psychological distance from the 

outcome by moving the outcome itself, making one less attracted by the low-level property 

of the reward (i.e., longer time to be waited). We could say that here the sensorial properties 

of outcomes have been removed from the decision-maker. Moreover, at the same time, we 

demonstrated that, by manipulating the perceived spatial position of monetary amounts, a 



 230 

reduced TD rate can be obtained making the larger later reward as more salient and concrete, 

increasing its appeal, instead of increasing the distance from objects to highlight their 

abstract and decontextualized representations (e.g., Leiser et al., 2008). When the immediate 

outcome was perceived as far away, but the future one was perceived as close, the 

attractiveness of the latter increased, shifting peoples’ choices towards it. This further 

supports the idea that one can act on rewards’ representations in order to drive choices. To 

make a general consideration, in order to guide decisions toward the optimal outcome, on 

the one hand, one’s attention can be capitalized toward global, centre features of an event, 

undermining goals with short-lived effects, and, on the other hand, one’s attention can be 

directed toward the larger (but later) outcome, making it more attractive (accompanied by 

lessening temptation associated with the smaller sooner outcome). Both these solutions 

imply acting on objects representations, as it is already done in advertisement and 

marketing. 

 

Outcome value 

When we applied the cognitive procedure of MTT with edible goods (Study I-Part 

III) we failed to bias choice behavior toward larger amounts. Are we so hopeless with food? 

As explained above, people face an even stronger conflict with primary rewards since 

stronger visceral sensations are called into play, for instance when craving for a tasty treat, 

consequently experiencing loss of self-control. Even the simple visual exposure to tempting 

foods is a powerful trigger for immediate consumption (Hawk et al., 2004; di Pellegrino et 

al., 2011), making higher-level intervention more difficult to succeed. We demonstrated 

that reducing impulsivity for food is thereby possible by conditioning individuals to 

associate it with aversive events (Study IV-Part III). Changing the value of a reward, at 
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least with a short-term effect, allowed individuals to be more inclined in avoiding that 

object, moving it in the distant time in order to move away the negative emotion associated 

with it. This means that we can operate at a lower level, manipulating emotions influencing 

outcome representations in prior to making an intertemporal decision. Indeed, also an 

increased level of anxiety has been recorded after our manipulation. However, we obtained 

the desired effect only taking into account arousal and visceral feelings at the moment of 

decision: While not hungry individuals showed the expected reduced impulsivity, hungry 

individuals showed the opposite effect, leading us to suggest that, in a state of need 

(hunger), increased arousal can be misattributed to hunger itself (e.g., Kavanagh et al., 

2005). Indeed, it seems that the temporal and physical proximity of the food that could have 

reduced the aversive arousal state (hunger) leaded thereby to a disproportionate, even if 

transient, increase in the attractiveness of that reward (Loewenstein, 1996). This finding has 

important implications in light of the modern western problem of obesity and binge eating 

disorders (e.g., Fortuna, 2012). Eating when moody or stressed, or eating because of a lack 

of self-control can be effectively reduced with a training similar to the one we proposed 

here. Abnormalities in OFC and ACC associated with craving (e.g., Gautier et al., 2000; 

Volkow and Fowler, 2000; Wang et al., 2004), together with dopamine dysregulation 

(Wang et al., 2001), have been reported in obese individuals, similar to those reported for 

addicted people. This suggests that increased salience attribution, enhanced motivation, and 

decreased inhibitory control drive drug/food-oriented behaviors (Volkow and Wise, 2005). 

Moreover, an inhibitory feedback circuit linking dlPFC and OFC in successful dieters in 

response to meal ingestion has been found (DelParigi et al., 2007), supporting the idea that 

the inhibition of food reward is probably the goal of this frontal loop as a peculiar case of 

OFC being the target of top-down signals from lateral prefrontal cortex, promoting 
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‘rational’ decision-making and self-control, necessary to override more valuable immediate 

gratification (Christakou et al., 2009; Hare et al., 2009; Figner et al., 2010; Essex et al., 

2012). When the system is dysregulated, affecting emotions can drive one toward less 

prudent decisions. Even obese children were more likely to behave impulsively than 

children of normal weight (Braet et al., 2007). This suggest that, when one cannot switch 

her decision toward the optimal outcome based on its representation, affecting emotions 

can be an effective strategy to reduce impulsivity, taking into account the pre-existent 

arousal state. 

 

The future of intertemporal choice 

The finding that mOFC patients had steeper TD rates than controls (Study I-Part II), 

and that they were still able to make a difference between primary and secondary rewards 

are paralleled by our results on elderly healthy individuals (Study V-Part III). Indeed, while 

behaving less prudently than young adults, older individuals maintained unaltered 

youngers’ tendency to behave more patiently when faced with secondary rewards (i.e., 

money) as compared to edible ones. This supports recent research about negative effects of 

aging on mOFC and dlPFC: These regions activity resulted dysfunctional during both 

experiencing a conflict when engaged in difficult intertemporal decisions, and when 

shifting selections toward advantageous outcomes was required during a gambling task 

(Lamar and Resnik 2004; Denburg et al., 2005; Reuter-Lorenz et al., 2005; see also Figner 

et al., 2010; Löckenhoff and colleagues, 2011; Essex et al., 2012; Roesch et al., 2012). As 

highlighted before, signals conveyed to the mOFC (e.g., from VS, insula, and amygdala) 

are at the same time under the top-down regulation of lateral prefrontal cortex, and possibly 

the PPC (Kable and Glimcher, 2007, 2010; Hare et al., 2009; Figner et al., 2010; Christakou 
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et al., 2009, 2011; Essex et al., 2012), coming into play especially if more self-control is 

required (e.g., when the choice is difficult; Figner et al., 2010; Essex et al., 2012; Study III-

Part II). Once the mechanism becomes dysregulated due to aging, an increased TD rate is 

detectable, as in our mOFC patients. 

 Boyer (2008) proposed that the engagement with past and future events enriches 

them with motivational force: both memory and imagination may break impulsiveness or 

boost on patience by associating plans with non-opportunistic rewards. MTT would lead to 

activate stored knowledge against which to compare imagined future events, by passing 

current goals (Ciaramelli and di Pellegrino, 2011). This could be the best way to get 

adapted to new contingencies, escaping form errors made in the past, and then reducing TD 

rates. However, from an evolutionary perspective, impulsive behavior in elderly individuals 

(Study V-Part III) should be considered advantageous in light of increasing paucity of 

resources available in the future, for instance because with aging people are less able to find 

them (e.g., Rogers, 1994; Sozou and Seymour, 2003), maximizing their gains as they can. 

Taking into account these considerations, we cannot overlook the present increase in life 

expectancies: Most of the decision-makers in the near future, indeed, will be over 65 years 

old. Intertemporal decision-making is a complex process that need memory and 

computation capabilities, adequate visceral sensations translation (see Study II-Part II), 

correct selection of strategies among those acquired and/or learned in the past, emotion 

regulation, attention to social rules, intact affect forecast abilities and so on (e.g., Payne et 

al., 1992; Bechara, 2005). All these abilities are still required in old age, and looking at the 

evidence about brain changes with aging, a cognitive decline is well documented (e.g., 

Craik et al., 2006). Löckenhoff and colleagues (2011), for instance, suggested that the 

apparent paradox of age-related increments in processing speed but decrements in decision 
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time highlights that people can decline in the ability to correctly estimate time intervals. 

According to them, age differences in the use of heuristic decision strategies might be a 

compensatory response to limitations in processing speed but could also result from shifts 

in global time perspective that promote an affect-rich processing style. Similarly, effects of 

aging in correct affective forecasting and future anhedonia could result from a subjective 

compression of time perceptions, differences in the subjective speed of time, or deeper 

insights into one’s emotional functioning in the face of limited future time horizons 

(Löckenhoff et al., 2011). Taking into account all this evidence, together with our finding 

that old individuals reduced impulsivity during intertemporal choice when no immediate 

option was available, it opens up to the need of interventions and policies on elderlies, 

based, for instance, on the MTT training we used here (Study I-Part III). As suggested by 

Löckenhoff and colleagues (2011), in contrast to chronological age, affective forecasting 

and time horizons can be modified in different ways, like contextual and motivational 

manipulations (Löckenhoff and Carstensen, 2007). Being engaged in MTT, thinking about 

events occurred in the past or possible events coming in the future, led people to disconnect 

themselves from the present sensorial self, and project them in the distant time. This could 

help to more efficiently anticipate and forecast feeling associated with going for a future 

reward, especially if it requires an effort in waiting.  

 

Concluding remarks 

 As is evident from this dissertation, neuroeconomics methods open the way to 

disentangle between different mechanisms regulating intertemporal decision-making at 

neural level. Not only lesional and imaging approaches add important information to the 

current knowledge about how people weight goods available with different timings, but 



 235 

also the TD procedure used along experiments in this dissertation offers the unique 

opportunity to measure directly and effortlessly how impulsivity is modulated during 

intertemporal choice. As extensively pointed out, making the optimal choice is necessary 

for humans to survive. When faced with intertemporal choices, apparently people are 

choosing for themselves. Frequently, however, they are also considering, for instance, their 

relatives and their ingroup in prior to deciding. In a broader range, and the current 

worldwide financial crisis is an example, whatever they choose will affect the overall 

economy of nations (Smith, 1776). In the domain of the social discounting (e.g., Yi et al., 

2011), several behavioral studies have already been conducted looking at intertemporal 

choice in a more complex context, linking decision process to ingroup/outgroup, social 

distance, and prosociality effort, in both healthy (e.g., see Jones and Rachlin, 2006; 

Charlton et al., 2012; Ziegler and Tunner, 2012; Locey et al., 2013) and pathological 

populations characterized by steep TD (e.g., Bickel et al., 2012). The next step for 

neuroeconomics should be the effort in finding neuroscientific procedures that can account 

also for these variables that can no longer be underestimated. 
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Appendices 

 
A - Table 1  

Example of a research in PubMed.gov database by using as search keywords ‘imaging OR 

fMRI AND intertemporal choice OR temporal discounting’; 1fNIRS and fMRI; 2Resting 

state; 3DTI; 4Meta-analysis. 

 

Authors Journal Year Content 
Heinzel et al.1 Neuroimage 2013 Impulsivity-related personality traits 
Jimura et al. J Neurosci  Dynamic reward representations 
Zhang and Hirsch Neuroimage  Temporal derivative 
Amlung et al. Addict Biol 2012 Alcohol Use Disorder 
Essex et al. J Neurosci  PPC and dlPFC: long-term value 
Gianotti et al. Front Neurosci  Dorsal PFC, COMT genotype 
Kayser et al. J Neurosci  Dopa, Corticostriatal connectivity 
Kim et al. Phil Trans R Soc B  Cultural differences 
Liu et al. Behav Brain Res  Valuation, Choice 
Liu and Feng Brain Res  Valuation, Choice 
Luo et al. Neuroimage  Moderators 
Luo et al. SCAN  Emotional primes 
MacKillop et al. Psychiatry Res  Nicotine, money, cigarettes 
Miedl et al. Arch Gen Psychiatry  Gamblers, delay, probability 
Murawski et al. PLoS One  Brand logos, incidental decisions 
Ripke et al. Brain Res  Adult, adolescents, impulsivity 
Yu PLoS One  White matter 
Albrecht et al. SCAN 2011 Self, others 
Benoit et al. J Neurosci  Episodic prospection 

Camchong et al.
2
 Biol Psychiatry  Hyperconnectivity, Cocaine 

Christakou et al. Neuroimage  Connectivity 
Claus et al. Alcohol Clin Exp Res  Alcohol 
Samanez-Larkin et al. Front Neurosci  Age, striatal sensitivity 
Kable and Glimcher J Neurophysiol 2010 Single valuation system 
Luo et al. Drug Alcohol Depend  Cigarette smokers 
Marco-Pallarés et al. Brain res  Conflict monitoring 
Mitchell et al. J Cogn Neurosci  Future thinking 
Peters and Büchela Neuron  Episodic future thinking 
Pine et al. J Neurosci  DOPA 
Sripada et al. Human Brain Map  Impulsivity trait 
Wittmann et al. J Neurosci Psychol Econ  Immediate, delayed 
Ballard and Knutson Neuroimage 2009 Magnitude, delay 
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Bickel et al. J Neurosci  Real and fictive, Gain and Loss 
Clithero et al. Neuroimage  Pattern classification 
Ersner-Hersfield et al. SCAN  Future self-continuity 
Gregorios-Pippas et al. J Neurophysiol  Short-term discounting 
Luo et al. J Neurosci  Incentive bias, intertemporal  

Olson et al. 
3
 J Cogn Neurosci  White matter 

Peters and Büchel J Neurosci  Risky choice, Intertemporal 
Pine et al. J Neurosci  Marginal utility 
Plichta et al. Biol Psychiatry  ADHD 
Xu et al. Brain Res  Gain, Loss 
Bjork et al. Biol Psychiatry  Frontal gray matter, cocaine 
Hoffmann et al. Psychopharmachol 2008 Metamphetamine dependent 
Luhmann et al. J Neurosci  Delay, Uncerteinty, Prospection 

Shamosh et al.
4
 Psychol Sci  Intelligence 

Weber and Huettel Brain Res  Probabilistic, Intertemporal 
McClure et al. J Neurosci 2007 Primary reward 
Boettiger et al. J Neurosci  Genotype, Alcohol 
Kable and Glimcher Nat Neurosci  Single valuation system 
Wittmann et al. Exp Brain Res  Time perception 
Hariri et al. J Neurosci 2006 Off-line, VS 
McClure et al. Science 2004 Dual valuation system 
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B - Supplementary material  

(Study I-Part II; Sellitto et al., 2010) 

 

 Inconsistent preferences: Count of any deviation from a monotonically decreasing 

function, regardless of the magnitude. As an additional measure of inconsistent preference, 

we counted the number of times the subjective value of the future outcome at a given delay 

was greater than that at the preceding delay, with no constrain on the magnitude of the 

difference between the subjective values at the two different delays. The mean number of 

such departures from a monotonically decreasing function was small, and comparable across 

participant groups [Money task: HC: 0.80, mOFC: 1.28, non-FC: 1.00, F (2,33) = 0.91, p = 

0.40; Discount voucher task: HC: 0.90; mOFC: 1.14; non-FC: 1.00, F (2,33) = 0.25; p = 

0.77; Food task: HC: 0.95; mOFC: 0.57; non-FC: 0.66, F (2,33) = 0.86; p = 0.43]. 

 

 ANOVA analyses (food reward data removed). To make comparisons across money, 

discount vouchers, and food rewards possible, the same delays and amounts were used 

across types of reward. Although we took care that delays and amounts used were 

comparable with those used in previous experiments (Charlton and Fantino, 2008, Estle et 

al., 2007; Odum and Rainaud, 2003), it is possible that these were more suited for the 

assessment of TD of money and discount vouchers than for TD of food (Jimura et al., 2009). 

One may argue, for example, that 40 units of food (e.g., 40 chocolate bars) would reach 

saturation, and be therefore less appetitive than 40 units of money, leading to increased TD 

for food than money. Although this and other problems are somewhat intrinsic to the study 

of TD of food (see Charlton and Fantino, 2008 for a discussion), we also ran all our 
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ANOVA analyses including data for money and discount vouchers only (see Supplementary 

material). We confirmed our results. 

 k. An ANOVA on log-transformed k values with Group (mOFC, non-FC, and HC) as 

a between-subject factor, and Task (money, discount voucher) as a within-subject factor 

yielded a significant effect of Group [F(2, 33) = 9.02, p = 0.0007]. Post hoc comparisons, 

performed with the Newman-Keuls test, showed that TD was steeper in mOFC patients 

compared to non-FC patients (-1.08 vs. -2.15; p = 0.0004) and HC (-1.08 vs. -2.00; p = 

0.0008), whereas no significant difference was detected between non-FC patients and HC (p 

= 0.54). There was no significant effect of Task (p = 0.36) or Group × Task interaction (p = 

0.95). 

 AUC. An ANOVA on AUC scores with Group and Task as factors yielded a 

significant effect of Group [F(2, 33) = 5.13, p = 0.01]. Post hoc comparisons, performed 

with the Newman- Keuls test, showed that AUC was smaller (i.e., TD was steeper) in mOFC 

patients compared to non-FC patients (0.28 vs. 0.54; p = 0.004) and HC (0.28 vs. 0.48; p = 

0.01), whereas no significant difference was detected between non-FC and HC (p = 0.41). 

There was no significant effect of Task (p = 0.88) or Group × Task interaction (p = 0.94). 

 

 Nonparametric Mann-Whitney U analyses. Due to the small sample size, and the 

presence of a few outliers (data points falling outside the 95% confidence limits) in the HC 

(1 subject had low TD rates for discount vouchers, 1 subject had low TD rates for food) and 

non-FC group (2 subjects had high TD rates for food), we also ran all our analyses using 

robust non-parametric tests. We confirmed our results.   

 k. Mann-Whitney U analyses on k values showed that TD for money was steeper in 

mOFC patients compared to non-FC (U = 9; p = 0.01) and HC (U = 23; p = 0.01), with no 
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difference between non-FC and HC (p = 0.67). Similarly, TD for discount vouchers was 

steeper in mOFC patients compared to non-FC (U = 4; p = 0.003) and HC (U = 20; p = 

0.005), with no difference between non-FC and HC (p = 0.37). Finally, TD for food was 

steeper in mOFC patients compared to non-FC (U = 8; p = 0.01) and HC (U = 25; p = 0.01), 

with no difference between non-FC and HC (p = 0.70). 

AUC. Mann-Whitney U analyses on AUC scores showed that TD for money was 

steeper in mOFC patients compared to non-FC (U = 13; p = 0.05) and HC (U = 31; p = 

0.03), with no difference between non-FC and HC (p = 0.57). Similarly, TD for discount 

vouchers was steeper in mOFC patients compared to non-FC (U = 11; p = 0.03) and HC (U 

= 33; p = 0.04), with no difference between non-FC and HC (p = 0.63). Finally, TD for food 

was steeper in mOFC patients compared to non-FC (U = 12; p = 0.03) and HC (U = 15; p = 

0.002), with no difference between non-FC and HC (p = 0.77). 

 

Corollary study: TD for real monetary rewards. We tested 3 mOFC patients (mean 

age = 61.3; SD= 10.01) and 11 healthy controls (mean age = 57.01; SD= 7.23) using real 

monetary rewards. The 3 mOFC patients and 6 of the 11 healthy controls had taken part in 

the primary study. Unfortunately, the other patients and controls involved in the primary 

study were no longer available for testing. The new investigation took part about 1.5 years 

after the primary study. The task assessing TD for money and the procedure to calculate k 

were the same as in the primary investigation. This time, however, participants were 

informed before testing that they would be awarded the outcome chosen in one randomly 

selected discounting trial. 

 Despite the very small sample size, the difference in k between mOFC patients, M = 

0.04, SD = 0.04, and healthy controls, M = 0.01, SD = 0.008, approached statistical 
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significance, Mann-Whitney U = 4, p = 0.051. These results confirm that mOFC patients 

have increased TD of monetary rewards compared to normal controls. 

 The use of real money did not change participants’ behavior significantly. We 

compared the k value evinced by participants (3 mOFC patients and 6 healthy controls) in 

the real money vs. hypothetical money TD tasks using Wilcoxon Matched Pairs Tests. k 

values obtained with real money were not significantly different from those obtained with 

hypothetical monetary rewards, in both mOFC patients (kreal: M = 0.04, SD = 0.04, 

khypothetical: M = 0.05, SD = 0.08; Z = 0, p = 1.00) and healthy controls (kreal: M = 0.004, SD = 

0.003, khypothetical: M = 0.01, SD = 0.01; Z = 0.73, p = 0.46). 
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Glossary 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACC 

AUC 

BAS 

BDI 

BIS-11 

BMI 

BOLD 

LEF 

HEF 

CLT 

COMT 

CNS  

CT 

DA 

DEBQ 

dlPFC 

DU 

DS 

DTI 

EPI 

ERN 

EUD 

fMRI 

fNIRS 

HRF 

GLM 

IAT 

mOFC 

MMSE 

MRI 

rostral 

anterior cingulate cortex 

area under the curve 

behavioral activation scale 

Beck depression inventory scale 

Barratt impulsiveness scale 

body mass index 

blood oxygenation level dependent 

low-error likelihood food (Study IV-Part III 

high-error likelihood food (Study IV-Part III) 

construal level theory 

catechol-O-methyltransferase 

central nervous system 

computerized tomography 

dopamine 

Dutch eating behavior questionnaire 

dorsolateral prefrontal cortex 

discounted utility model 

digit span 

diffusion tensor imaging 

echo planar 

error related negativity 

expected utility model 

functional magnetic resonance imaging 

functional near infrared spectroscopy 

hemodynamic response function 

general linear model 

implicit association test 

medial orbitofrontal cortex 

mini mental state examination 

magnetic resonance imaging 

mrPFC: medial rostral prefrontal cortex 
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mrPFC 

MTT 

MVPA 

NAcc 

OFC 

OMPFC 

PCC 

PFC 

PPC 

ROCF 

rTMS 

RT 

SRS 

SSD 

SSRT 

TD 

TE 

TR 

vmPFC 

VOI 

VS 

 

medial rostral prefrontal cortex 

mental time travel 

multi voxel pattern analysis 

nucleus accumbens 

orbitofrontal cortex 

orbitomedial portions of the prefrontal cortex 

posterior cingulate cortex 

prefrontal cortex 

posterior parietal cortex 

Rey-Osterrieth Complex Figure Test 

repetitive transcranial magnetic stimulation 

reaction time 

self-regulation scale 

stop-signal delay 

stop-signal reaction time 

temporal discounting 

echo time 

repetition time 

ventromedial prefrontal cortex 

volume of interest 

ventral striatum 

 


