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A B S T R A C T

PERVASIVE Sensing is a recent research trend that aims at providing
widespread computing and sensing capabilities to enable the creation
of smart environments that can sense, process, and act by considering
input coming from both people and devices. The capabilities neces-
sary for Pervasive Sensing are nowadays available on a plethora of
devices, from embedded devices to PCs and smartphones.

The wide availability of new devices and the large amount of data
they can access enable a wide range of novel services in different ar-
eas, spanning from simple data collection systems to socially-aware
collaborative filtering. However, the strong heterogeneity and unre-
liability of devices and sensors poses significant challenges. So far,
existing works on Pervasive Sensing have focused only on limited
portions of the whole stack of available devices and data that they
can use, to propose and develop mainly vertical solutions.

The push from academia and industry for this kind of services
shows that time is mature for a more general support framework for
Pervasive Sensing solutions able to enhance frail architectures, pro-
mote a well balanced usage of resources on different devices, and
enable the widest possible access to sensed data, while ensuring a
minimal energy consumption on battery-operated devices. This the-
sis focuses on pervasive sensing systems to extract design guidelines
as foundation of a comprehensive reference model for multi-tier Per-
vasive Sensing applications. The validity of the proposed model is
tested in five different scenarios that present peculiar and different
requirements, and different hardware and sensors. The ease of map-
ping from the proposed logical model to the real implementations
and the positive performance result campaigns prove the quality of
the proposed approach and offer a reliable reference model, together
with a direction for the design and deployment of future Pervasive
Sensing applications.
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1 I N T R O D U C T I O N

PERVASIVE Sensing is a recent research trend that aims at provid-
ing widespread computing and sensing capabilities to enable the
creation of smart environments that can sense, process, and act by
considering input coming from both people and devices. Pervasive
Sensing is driven by the progress of three different, but linked, tech-
nological areas: computing, networking, and sensing. First, enhance-
ments to the manufacturing process of integrated circuits provides
portable devices, such as smartphones, with powerful processors and
plenty of memory and storage resources. Second, as computing de-
vices have gotten smaller, they have become personal and portable
terminals that can participate in dynamically configured networks. Fi-
nally, recent progress of microelectromechanical systems has enabled
the manufacturing of small low-power low-cost sensors and actua-
tors that allow devices to be connected not only to other devices via
heterogeneous network, but also with the physical world.

The capabilities necessary for Pervasive Sensing are nowadays avail-
able on a plethora of devices, spanning from embedded devices to
PCs and smartphones. Notably, personal devices, like tablets and
smartphones, usually have access also to data generated by users,
such as pictures, information on social networks, device usage statis-
tics, and so on. This information can be managed as sensed data and
allows devices to potentially use it to gather additional knowledge
about the current real world context. This large amount of data that
they can access paves the way to a wide range of novel services in
different application areas, such as health care, environmental moni-
toring, and collaborative filtering, that will likely have a huge impact
on our everyday lives.

The potential and challenges of Pervasive Sensing systems can be
studied at three different levels of increasing abstraction. At the low-
est level, that we cal data-centric, Pervasive Sensing focuses mostly on
collection, routing, and processing of data, with particular for energy-
efficiency and collection latencies. Having technologically and eco-
nomically viable techniques to collect and dispatch environmental
data is a prerequisite for successful deployment of Pervasive Sens-
ing systems, and it is an essential building block of other, higher-
level management functions. At the medium-level, that we call person-
centric, Pervasive Sensing systems deal with processing sensed data
to provide people-centric services, such as healthcare monitoring and
lifestyle tracking. These kind of services, that are more complex than
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2 INTRODUCTION

straightforward environment monitoring services, make Pervasive Sens-
ing systems perceivably important for individuals. Finally, at the high-
est social-centric level, Pervasive Sensing systems scale up sensing
and processing to human communities: data that emerge within so-
cial communities can be collected and processed to provide services
that are relevant for specific social groups that spontaneously form in
larger communities.

Supported by the large amount of literature by both academia and
industry, we believe that time is mature for a support framework for
Pervasive Sensing solutions based on reliable architectures that pro-
mote well-balanced usage of resources on different devices and en-
able the widest possible access to sensed data, while ensuring a min-
imal energy consumption on battery-operated devices. However, the
wide range of devices, communication protocols, technologies, and
scenarios involved in Pervasive Sensing systems pose significant is-
sues that still have to be overcome for their successful deployment in
the real world, that we group along three directions:

• Heterogeneity. Pervasive Sensing systems feature extremely het-
erogeneous devices that have severely different energy, comput-
ing, and network resources. Getting all these different devices
working together requires a careful engineering of workloads
assignment and communications among heterogeneous devices,
that should use cross-layer informations to coordinate sensing
tasks.

• Dynamic environments. Many devices involved in Pervasive Sens-
ing systems exist in an inherently dynamic environment (e.g.:
due to user moving and low-cost hardware failing) whose fail-
ures and inaccuracies should be tolerated by sensing systems.
This causes distributed resources not to be consistently avail-
able, thus requiring an opportunistic approach to their usage.

• Resource constraints. Even if in certain scenarios they can rely on
the Cloud, Pervasive Sensing systems unavoidably need to ac-
cess embedded and mobile devices to collect sensed data. These
devices have very strict constraints for processing, communicat-
ing, storing data, and battery consumption. It is important to
stress that working around these limitations is not simply de-
sirable, rather it is a core requirement for Pervasive Sensing
systems.

• Scalability. Large scale Pervasive Sensing systems feature thou-
sand of fixed and mobile sensors, that stream large amounts of
sensed data. As the system scale grows, data sensing, routing,
and processing introduce a fundamental scalability bottleneck,
that should be addressed by properly tailoring and distributing
sensing tasks, exploiting locality principles to improve scalabil-
ity.
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Several efforts in the research literature have tried to address these
challenges; however, to the best of our knowledge, previous works are
mostly focused on specific applications of Pervasive Sensing systems,
leaving out the great deal of complexity, from the management of
data collection at the low-level to the provisioning of services at a
very high level. Hence, although previous works provide valid and
interesting solutions, this thesis work is motivated by the fact that
additional research is needed to make large-scale Pervasive Sensing
systems viable in real-world scenarios.

Our thesis fills this void by highlighting through an in-depth anal-
ysis of the challenges of integrated large scale Pervasive Sensing sys-
tems composed of heterogeneous devices connected by next genera-
tion networks, and by proposing novel architectural models and de-
sign guidelines for their development and deployment. One of the
main claims is that Pervasive Sensing systems must have a layered
architecture with cross-layer visibility to make it as easy as possible
to calibrate communications between different devices. In addition to
this major claim, the contributions of this thesis can be grouped in
the following main areas:

• The introduction of a new unifying logical model for large-scale Per-
vasive Sensing systems. The thesis proposes a high-level logical
architecture, detailing its modules, issues and design trade-offs.
We accurately analyze design choices, discuss their impact and
compare them to current state of the art implementations, by
highlighting how network and devices dynamic behaviour can
be tolerated and even exploited via opportunistic communica-
tion protocols.

• The design and the implementation of different Pervasive Sensing sys-
tems, targeted for five different significant case studies. Considering
the different levels of abstraction of Pervasive Sensing systems,
we apply our logical model to five different case studies, that
can be classified in three main research direction: the first di-
rection is data collection and sensing devices management, the
second one is data processing to provide services to individuals,
the third and last research direction is scaling sensed data-based
to social communities.

• Thorough evaluation of Pervasive Sensing systems. To assess the va-
lidity of technical contributions of this thesis we implemented
the facilities described by our logical model. In particular, we
used mathematical models, simulation approaches, and real-
world testbeds to collect extensive performance statistics about
several performance indicators, such as CPU load, memory over-
head, sensing task completion rate. The joint usage of simu-
lators and real world deployment allows to evaluate network
performances for large-scale scenarios while considering real-
world resource loads.
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• Performance evaluation of the performances for all considered case
studies. Exploiting both simulator-based and real-world imple-
mentations we thoroughly evaluate the performances of the pre-
sented case studies, to measure the effectiveness and the effi-
ciency of proposed protocols and techniques.

The thesis is organized in six chapters, that analyze Pervasive Sens-
ing systems starting from low-level data collection up to social-aware
sensing systems. Chapter 2 gives background information about cur-
rent state of the art of sensing systems and how they interact with
network architectures expected to be commonplace in the next future.
Chapter 3 describes the requirements of Pervasive Sensing systems,
analyzes the limitations of current proposals, presents sound design
principles, and derives from them our novel logical model, describing
its high-level tiered architecture, network deployment and functional
components; in addition, it compares the proposed model to existing
solutions, to better highlight the need of research in this area. To as-
sess the validity of our logical model, we present five different case
studies, all relying on our proposal, that explore different Pervasive
Sensing systems, starting from systems focused on data collection,
then moving on to systems that exploit sensed data to provide person-
alized services, and finally to systems that provide services to social
communities.

Chapters 4 and 5 prove that the device heterogeneity that makes
Pervasive Sensing systems hard to design can actually enable large-
scale systems with better performance guarantees compared to exist-
ing solutions. In particular, they analyze the design and implementa-
tion of two systems for data collection: the former provides efficient
data routing in WIRELESS SENSOR NETWORK (WSN) by opportunistically
exploiting mobile devices, the latter stems from the logical model a
systems that manages sparsely connected WSN by leveraging mobile
devices as opportunistic controllers of WSN nodes. Then, we shift our
focus on systems that exploit collected sensed data to provide per-
sonalized services. In particular, Chapter 6 derives from the proposed
logical model the architecture of an application that opportunistically
measures physical events on smartphones to infer information about
its owner wellness, thus providing a personalized service based on
pervasive opportunistic sensing. Scaling up services based on per-
vasive sensing, Chapter 7 presents two Pervasive Sensing solutions,
called SOCIAL-AWARE IMS-ENABLED RECOMMENDER (SAIR) and McSense,
that use techniques described in previous chapters and show two dif-
ferent integrations with social groups: SAIR is a service based on sens-
ing proof of concept that implements collaborative filtering based on
distributed sensing, whereas McSense integrates with human groups
by asking them to be sensors themselves, thus providing sensing data
that would be very hard to gather without willing participation of
people in Pervasive Sensing systems.
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Finally, Chapter 8 ends this dissertation by highlight main thesis
contributions and by detailing still open challenges and future re-
search directions.





2 P E R VA S I V E S E N S I N G I N
F U T U R E N E T W O R K S

MARK D. Weiser postulated long ago that “the most profound tech-
nologies are those that disappear” [1]: his vision was establishing the
blooming of Ubiquitous Computing, the idea that computing devices
will get so powerful, compact, energy-efficient, and self-managed that
eventually they will stop needing active attention and will vanish in
the background while still providing their services, transmitting infor-
mation ready to use. The research by Weiser at the Xerox Palo Alto Re-
search Center lead the development of several experimental portable
devices, similar to modern tablets and interactive whiteboards that
were deeply integrated with the supporting infrastructure of the re-
search center itself (Figure 2.1).

The system architecture pioneered in those early days of research
on Ubiquitous Computing is very close to the ideas of present day
tablets and smartphones whose data is backed up on the cloud. How-
ever, that vision is strongly centered on considering Ubiquitous Com-
puting for large systems that receive input from user and route it
wherever and whenever needed, but have little or no direct knowl-
edge of the real world environment: they can only manage data that is
already available. A big step forward for the usefulness of Ubiquitous
Computing systems is the possibility to wire them sensors, namely to
devices that are capable of measuring stimuli and transduce them in
a machine-readable format. Adding sensors to a computing system
unlocks new information layers that were previously impossible to
manage, enabling a deep integration between the digital world and
the real world by producing a Pervasive Sensing scenario.

Several important research topics are being promoted by the grow-
ing trend of Pervasive Sensing and Ubiquitous Computing: the for-
mer has pushed the evolution of new sensors and their integration
in electronic devices, vehicles and buildings; the latter has stimulated
the development of novel network architectures to dynamically in-
tegrate new mobile devices with commodity, wired networks. This
chapter analyzes the recent results of these research topics and makes
the case for the importance of their integration to provide pervasive
sensing in future networks.
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8 PERVASIVE SENSING IN FUTURE NETWORKS

Figure 2.1: Experimental electronic “chalkboards” and “tablets” at the Xe-
rox Palo Alto Research Center in 1991. Courtesy of [1].

2.1 SENSING DATA

The capability of gathering data via sensors is the core feature that
sets apart Pervasive Sensing systems from traditional networked sys-
tems. Thus, it is important to define exactly what we consider a sensor
and what are sensed data. Generally speaking, a sensor is any device
for the detection or measurement of a physical property to which it
responds. This definition is correct, but it is also too broad to be use-
ful in the context of Pervasive Sensing systems for two reasons: first,
it does not capture the key aspect of sensors as electronic devices
connected to a system, second, it excludes all the sensors that do not
directly access the physical world. For example, the fact that two peo-
ple have a social relationship is not physically-sensed, nonetheless
it is real and can be concretely identified and sensed by networked
systems (e.g., processing social networks data).

For these reasons, here we define sensors as any physical or logical
data source that provides information about events in the real world in a
machine readable format. This definition captures the fact that sensors
are gateways that reflect events in the real (not necessarily physical)
world to the digital world of Pervasive Sensing systems [2].

The distinction between physical and logical sensors directly mir-
rors a fundamental difference between collected data. Physical sen-
sors detect events of the physical world (e.g., temperature, noise level),
that we call physical data. Logical sensors collect data about events that
can not or are very hard to be physically be measured, but nonethe-
less are real (e.g., a person stress level, a relationship between friends).
These kind of events are not tied to an unambiguous physical mea-
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Figure 2.2: Examples of physical sensors: a humidity sensor (courtesy of
Sparkfun.com), a TelosB sensor node, and a Galaxy Nexus An-
droid Smartphone.

surement, rather, they are part of human emotions and social relation-
ships, hence we call them social data and, for the same reason, we call
logical sensors also social sensors.

Even though the goal of sensors is to remove humans from the loop
and enable automatic data collection, nonetheless users can voluntar-
ily input physical and social data. Of course, humans are neither hard-
ware physical sensor nor software logical sensor, hence, we regard hu-
man as a special category of sensors. In the following subsections we
describe the most important and recent works about physical sensors,
social sensors and humans as sensors, and their applications.

2.1.1 Physical Sensors

Physical data are collected by any device or physical sensor that can
react to physical stimulation and translating them in a machine read-
able format. Physical sensors can be classified in three categories: sen-
sors1, sensor nodes, namely autonomous sensors provided with com-
puting and communication capabilities, and mobile sensor nodes, namely
sensor nodes that can either move autonomously or are carried by ve-
hicles and people (Figure 2.2).

Sensors are chronologically the first devices that allowed collection.
Sensors are composed by a transducer and a signal processor. The
transducer is a device that converts variations of a physical quantity
(e.g., light, pressure) into variations in another, which often is a volt-
age or current change. The signal processor receives the output of the
transceiver and processes it, cleaning it up, by possibly running other
refining algorithms that gather specific information from the raw sen-
sor data; the resulting data is then sent to the transceiver that trans-
mits it to the device that uses the sensor. The most important change
brought by integrating sensors in a computer system is the possibil-
ity of taking humans out of the loop in all those cases where humans

1 We use the term sensor to refer to sensors as the actual hardware devices for this
subsection only, throughout the rest of this work we will instead use the generic
definition given in Section 2.1.
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had to measure properties and then manually input them into an
application. Being able to perceive some physical properties, process
them, and act accordingly allows computing systems to reduce their
reliance on users, coming closer to the the vision of Pervasive Sensing
systems. It is important to stress that, depending on the application
domains, sensors sometimes can not substitute humans. For exam-
ple, sensors are very accurate when measuring physical properties
such as temperature and length, but they are much more error prone
with some tasks that humans can do effortlessly, such as recognizing
complex-shaped objects and classifying emotions.

Sensors are a basic building block of Pervasive Sensing systems,
however they present several limitations: they have no processing
power (except for the signal processor), no storage resources, they
must be configured one by one, and they must be connected to a
computing system to be useful. These drawbacks are especially se-
vere when sensing has to be run on a very large area, or has to be
very detailed, thus involving hundreds or thousands of nodes. Aca-
demic research has tackled this problem with the development of
sensor nodes. Sensor nodes are low cost, small, autonomous devices,
that enhance sensors adding new features such as computing power,
memory, persistent storage, and wireless communication capabilities
[3]. Sensor nodes can be sparsely deployed, thus requiring an external
node to harvest their data; in alternative, through a cooperative effort
and exploiting ad hoc networking protocols, they can form a WIRELESS
SENSOR NETWORK (WSN), a decentralized multi-hop wireless network
that uses low-power wireless links and can be deployed very close
to the monitored phenomenon to collect, process, and route sensed
data. WSNS require no (or very limited) network engineering and pre-
determined routing and can work on almost randomly deployed sen-
sor nodes. The greater flexibility of sensor nodes compared to sensors
makes them suitable for a very large spectrum of applications, such as
environmental (e.g., fire and flood detection, pollution analysis, mon-
itoring of animal behavior), health (e.g., physical activity monitoring,
heartbeat monitoring), military (e.g., surveillance, targeting, damage
assessment, attack detection), domestic (e.g., home automation, smart
environments), and civil (e.g., heating, ventilation, and air condition-
ing management, structure flexure detection, traffic management) ap-
plications [4]. Data collected by WSNS can be used directly within the
network itself [5], by routing it to actuators, but it can be also routed
to specific gateway sensor nodes that connect WSNS to a network or to
the Internet, thus making collected data available to other computing
systems [6].

Sensor nodes are key technology for the realization of Pervasive
Sensing systems, but there is still room for improvements. In partic-
ular, WSNS take time to be deployed in new areas, which can be a
lengthy process, and they are limited to monitor only the area they
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have access to: any event that is even slightly out of their monitor-
ing range has no chance of being detected. This limitation can be re-
moved and sensing coverage can be improved by mobile sensor nodes
that are sensor nodes that can move either actively or because they are
passively carried by vehicles and people [7]. Examples of mobile sen-
sor nodes with autonomous movement capabilities are the so called
data MULEs, namely controlled nodes that harvest data from WSNS
[8], and robots, that are often used only in emergency scenarios and
not only for data collection [9]. A very relevant example of mobile
sensor nodes that are passively carried are current generation smart-
phones. In fact, any off the shelf smartphone is provided with several
sensors, such as accelerometer, magnetometer, gyroscope, GLOBAL PO-
SITIONING SYSTEM (GPS), proximity sensor, microphone, and camera.
Smartphones have been provided with these sensors for straightfor-
ward tasks, such as rotating their screen view and rotate maps of nav-
igation applications; however, recent research has shown that signal
processing and machine learning techniques can infer very high-level
data from them. Those data can be person-centric or urban-centric:
examples of person-centring smartphone sensing tasks are the estima-
tion of quantity and quality of physical activity using the accelerom-
eter [10], detection of social situations such as being in a cafeteria,
on the road or listening to music using the microphone [11], and
estimation of user heartbeat and lung function via smartphone cam-
era [12, 13]; examples of urban-centric smartphone sensing tasks are
noise pollution mapping via microphone [14], road condition mon-
itoring via accelerometer [15], automatic tagging of indoor environ-
ments via camera [16]. This opportunistic explotation of smartphones
has been called in literature opportunistic crowdesensing, hinting at
crowdsourcing, namely the process that outsources data elaboration
tasks to human operators [17–19].

Sensors, sensor nodes, and mobile sensor nodes are not a replace-
ment of one another, altought their features partially overlap, because
are mostly complementary, as summarized in Table 2.1. Consequently,
Pervasive Sensing systems should exploit and integrate these differ-
ent physical sensors, to get a data collection coverage as large as pos-
sible.

2.1.2 Social Sensors

Social data is harvested by any sensor, that we called social sensor,
that can collect socially-relevant data, either inferring it by process-
ing the output of physical sensors or by extracting metadata from
data manually input by users [20, 21]. A prominent example of social
data derived from physical data stems from processing information
provided by smartphones. For example, user mobility patterns can
be processed to automatically identify places of interests (e.g., a con-
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Table 2.1: Summary of features of sensors, sensor nodes, and mobile sensor
nodes.

Sensor Sensor node Mobile sensor node

Autonomous 7 3 3

Direct connection to
the Internet

7 7 3

Low power 3 3 7

Variable sensing area 7 7 3

Continuous sensing
of an area

3 3 7

cert hall, a gym), which are likely to be shared with people that have
similar interests [22], user proximity collected via Bluetooth scanning
can help identifying user cliques [23, 24]; audio processing can col-
lect social data, for example how often and how long the user talks
[25], if she talks to groups of people [26], and if she is under stress or
presents other relevant emotions [27, 28].

Smartphones are also an entry point for real social interactions,
such as phone calls, text messages, emails and interactions via so-
cial networks. Logical sensors can tap into these data streams, mak-
ing smartphones a privileged platform to gather social information
about users [29]. Traditional phone interactions, namely phone calls
and text messages, have been used for different goals, such as to au-
tomatically classify contacts as family members, friends or colleagues
and to provide a smart phonebook that predicts which contact the
user is going to use [30, 31]. More recently, the widespread usage
of social networks readily available on mobile devices has unlocked
a potentially very large dataset to harvest social information about
users. Some data is immediately accessible and needs little or no
processing, for example friendship relationships (Facebook), profes-
sional relationships (LinkedIn), topics of interest at any given time
(Twitter hashtags and Pinterest), musical preferences (Last.fm) and
even health conditions (PatientsLikeMe) [32]. By further processing
data collected from social networks allows inferencing higher level
data, from estimating personality traits [33] to aiding mental health
assessment [34], from very accurate prediction of user mobility based
on friendship [35], to optimization of data delivery and content dis-
tribution networks based on social relationships [36].

2.1.3 Humans as Sensors

Even though physical and social sensors can collect large amounts of
data, human can still contribute to data harvesting and act as sensors,
a process called crowdsensing or participatory crowdsensing. People, by
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using personal devices such as smartphones, can take pictures, audio
recording or directly input data that can be fed to Pervasive Sensing
systems [17, 19, 37]. Let us stress that we call crowdsensing the sens-
ing processes based on voluntary actions of users that actively input
sensing data, not to data that is just collected by devices carried by
users. The data provided by users can be a supplement or a comple-
ment to automatically collected data. Supplementary data may also
be picked up by physical or social sensors; for example, traffic conges-
tion could be detected by aggregating and processing users position
and speed via GPS; however the same data can also be very quickly
provided by a user that simply signals the problem by using an ap-
propriate software. Complementary data is very hard or impossible
to collect for automated sensors; for example signaling that air is pol-
luted in an area that is not monitored by environmental sensors.

Crowdsensing applications can be classified in two categories de-
pending on their main goals: environment-centric and human-centric.
Environment-centric applications leverage humans as sensors by asking
them to measure, signal, or take pictures of environmental phenom-
ena, such as noise and air pollution, water levels, and natural haz-
ards [38, 39]. Human-centric applications encourage people to sense
their surroundings to generate data to share amongst themselves, for
example to compare habits and interests [19, 40]. Due to its human
factor, crowdsensing can not generate the same volume of data that
physical and social sensor can, unless it is distributed on a very large
population; nonetheless, it is a product of human intelligence and
compensates its relative scarcity with its high quality level: a single
human inference can save hundreds of measurements on simpler sen-
sors; thus crowdsensing is an important data source for Pervasive
Sensing systems.

2.2 PERVASIVE SENSING IN FUTURE NETWORKS

The overview about sensing techniques of the previous section shows
that current techniques are capable of collecting and processing large
amounts of data that can be used in several different domains, that
span from urban monitoring to healthcare, from civil engineering to
social network data mining. Despite the many fields that can benefit
from Pervasive Sensing, academic and industrial research efforts have
yet to make the breakthrough that makes it available to the large pub-
lic. According to the recent NSF Workshop on Pervasive Computing
at Scale [41], this is in part due to the fragmentation of research efforts
in very specific niches, which is caused by the lack of largely accepted
reference testbeds, datasets, models, and software, that would ease
the development of new sensing systems and allow to fairly compare
them. However, a holistic approach that would solve the fragmen-
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Figure 2.3: Pervasive Sensing system in a Future Network.

tation problem has to deal with the technical difficulties of design-
ing a system that manages very different devices, from sensor nodes
for physical sensing, to smartphones for physical and social sensing,
to high end servers for data processing. In addition to their compu-
tational differences, these systems also use different network types
to communicate, that can further complicates coordination. Manag-
ing this complex landscape requires a deep knowledge of technolog-
ical details, with many complex cross-layer consequences. For exam-
ple, the usage of different physical networking protocols constraints
the communication windows between different devices, the computa-
tional resources available on them will require specific processing to
be demanded to other, more suitable devices, and so on. Thus, it is
important to describe our main, complete, Pervasive Sensing system
deployment scenario and how it conforms to Future Networks that
are likely to be more and more common in the next decade.

Pushed by the significant interest by academia and industry, the
sensing technologies described in the previous section are expected
to become widespread. In particular, WSNS market has steadily grown
for the last few years, and with no slow down: thus WSNS will be
a common technology [42–45]. At the same time, smartphone mar-
ket share is constantly increasing and is expected to take over the
global mobile phone market [46, 47]; to avoid the congestion of mo-
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bile telecommunication infrastructures, smartphones will rely, when
possible, on peer-to-peer network architectures called MOBILE AD-HOC
NETWORKS (MANETS). In addition, smartphones that are already equipped
with multiple wireless interfaces (IEEE 802.11, Bluetooth and cellular
2G/3G), are expected to host on board also low-power wireless inter-
faces that will enable direct communication between them and sensor
nodes, unlocking a potential deep integration of MANETS and WSNS
[48–50]. Fixed infrastructure, too, has gone through deep changes: tra-
ditional, consolidated backends have been enhanced along the cloud
computing direction that exploits hardware virtualization to provide
computing resources on-demand. In particular, solutions such SOFTWARE
AS A SERVICE (SAAS), PLATFORM AS A SERVICE (PAAS), and INFRASTRUCTURE
AS A SERVICE (IAAS) allow programmers to develop applications based
on software services, frameworks, and infrastructures that can be eas-
ily tuned to scale up and to provide the desired level of reliability.
The cloud eases the management of large amounts of data and are
capable of quickly reacting to sudden request spikes, hence we can
expect new devices to integrate with both existing infrastructures and
with Cloud architectures that provide large-scale data processing and
storing capabilities [51].

Figure 2.3 reports an example of Pervasive Sensing system in a Fu-
ture Network, and highlights its inherently three-tiered architecture
based on fixed infrastructure at the top level, that comprises servers
and Cloud services that are linked to the Internet via commodity
wired connections, on mobile infrastructure at the mid level, namely
by smartphones and other mobile sensor nodes, and on physical sens-
ing infrastructure at the lower level, namely WSNS and sensor nodes.
Let us stress that none of the three tiers in Figure 2.3 is mandatory:
a Pervasive Sensing system can comprise any pair of the three tiers
and still be useful, as we will show with the case studies presented in
the next chapters.

Future developments in electronic and telecommunications will cer-
tainly deeply modify the implementations of these three tiers. Re-
searches in energy scavenging and novel radio protocols will make
sensor nodes truly ubiquitous, enabling every object to have a net-
work and computing resources, thus realizing the vision of INTERNET
OF THINGS (IOT) that predicts that all objects will be eventually con-
nected to the Internet. Smartphones, that currently are the most im-
portant mobile device, may completely change their appearance (e.g.,
the Google Project Glass project is currently experimenting with sub-
stituting smartphones with augmented reality head-mounted displays)
and be integrated with other technologies that provide healthcare and
wellbeing data, such as BODY AREA NETWORKS (BANS). Fixed infrastruc-
ture will become more distributed to be more quickly available to
users, for example research about “cloudlets” is currently investigat-
ing the possibilities of offering on-demand virtualization-based com-
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puting resources as support for resource-rich mobile computing [52].
The research trends of the technologies in the three tiers promote a
sharp increase of the number of networked nodes. Managing them
will require to encourage, whenever possible, local interactions be-
tween nodes because they do not require support infrastructure to
scale as the number of nodes grows. Despite the possible profound
changes that the tiers will go through, they will still provide the func-
tionalities the we can reasonably expect from Pervasive Sensing sys-
tems:

• smart environments and smart objects, realized via sensor nodes;
• automatic inference of user context, realized via artificial intelli-

gence algorithms on mobile devices;
• background processing and ubiquitous availability of personal

data, realized via fixed infrastructure.

We claim the relevance of the scenario described in this chapter as
long term reference because it represents a system capable of pro-
viding the functionalities required by Pervasive Sensing systems and
highlights the need for localized interactions.

The reference scenario of Future Networks features extremely het-
erogeneous devices, that differ in terms of computational resources,
spanning from the very limited sensor nodes, to the powerful but
battery-bound smartphones, to high end servers, and in terms of net-
work resources, from slow, low-powered WSN, to the many telecom-
munication protocols available to smartphones, to the low-latency
high-bandwidth wired connection available on the fixed infrastruc-
ture. In addition, the scenario is highly dynamic; for example mobile
devices can change their position, thus changing the neighbourhood
of other devices they can directly connect to, and sensor nodes de-
ployed in difficult condition or for a long time can run out of bat-
tery causing changes in the topology of WSN. The heterogeneity of
devices and the dynamic conditions force Pervasive Sensing systems
to support heterogeneous networking and encourage opportunistic
behavior.

2.2.1 Heterogeneous Networking

The reference scenario in Figure 2.3 includes four different types of
networks: commodity wired networks for the fixed infrastructure,
data-oriented mobile telecommunications protocols such as GENERAL
PACKET RADIO SERVICE (GPRS), ENHANCED DATA RATES FOR GSM EVO-
LUTION (EDGE), and 3G connect smartphones and sensor nodes to
the fixed infrastructure [53, 54], finally, ad-hoc networks interconnect
smartphones and sensor nodes, thus creating the so called MANETS
and WSNS. While wired connectivity and GPRS/EDGE/3G protocols
are commodity networking solutions, MANET and WSN are still very
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active research areas. Due to their relevance for Pervasive Sensing in
Future Networks, this section sketches their main features.

Mobile Ad-hoc NETworks

A MANET is an IP-based impromptu peer-to-peer network of co-located
wireless mobile nodes, such as smartphones, laptops, and PERSONAL
DIGITAL ASSISTANTS (PDAS)s, which cooperate to route network traffic to
compensate for the lack of a fixed network infrastructure (e.g., access
points, routers, switches) [55]. MANETS are versatile tool with several
application areas, such as network extension (i.e., extending network
access to areas not covered by fixed infrastructure), local interconnec-
tion networks (i.e., spontaneously forming a network to interconnect
devices, for example in emergency response scenarios), ubiquitous
computing, and vehicular networking [56]. However, to be a viable
technology, MANET have still to solve many challenges. Some of these
stem from the fact that all the communication is transmitted via wire-
less channel, which has several well known problems:

• no clear propagation boundaries;
• unprotected from external signals and noises;
• less reliable than wired links;
• asymmetric;
• subject to hidden terminal and exposed terminal.

In addition to these problems, which are common to all wireless
networks, MANETS have a number of additional constraints and com-
plexities [55, 57]:

• Autonomous and infrastructure-less. MANETS do not require any
fixed infrastructure, all supporting services are run in a com-
pletely distributed fashion. This approach greatly increases the
difficulties of management of nodes and fault detection.

• Multi-hop routing. The infrastructure-less approach means that
there are no routers that manage packet dispatching, hence a
subset or every node of a MANET must dedicate part of its re-
sources to route data packets on behalf of other nodes.

• Dynamic topology and link capabilities. Nodes of a MANET have
usually little or no movement constraints, which causes the net-
work topology to change continuously, and the characteristics
of established links, such as symmetry and packet loss ratio,
vary with time.

• Network scalability. Theoretical studies show that the bandwidth
between two arbitrary nodes in a MANET does not scale as the
MANET size increases [58], thus techniques as clustering must be
employed, further increasing management complexity.

The large pool of applications of MANETS has promoted many re-
search efforts to overcome these limitations, mostly by focusing on
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routing protocols, that have a pivotal role to overcome all the com-
plexity previously listed [56, 59]. We can identify four main routing
protocol categories by aggregating them based on similar features,
shortcomings and suitable scenarios: reactive, pro-active, hybrid, and ge-
ographical. Reactive protocols evaluate routing paths on-demand, when
a node tries to send a packet to another one. The reactive approach
is a good choice for dynamic networks and has a low overhead, but
it has high latencies and leads to frailer routes compared to other ap-
proaches [60–62]. Pro-active protocols maintain always updated routes
in distributed tables, even for routes that have never been used. The
protocols of this category have low latencies, but are not suitable to
highly dynamic networks and have a high overhead [63–65]. Hybrid
protocols try to balance the features of reactive and pro-active proto-
cols: each node pro-actively maintains up-to-date routing tables of its
neighbor nodes, to which it has stronger links, while routes to farther
nodes are evaluated reactively. Hybrid protocols are more suitable
to large networks, while for smaller networks is usually possible to
use simpler reactive or pro-active protocols [66–68]. Finally, geograph-
ical protocols exploit the knowledge of node position to route data
following a path that is geographically short. These protocols have
generally good performances, but they require location information,
that can often be unreliable or not available (e.g.: indoor) [69, 70]. All
these protocols manage MANET nodes as a flat collection, but it can
be shown that as the network size increases the total throughput in-
creases, but the end-to-end throughput approaches 0, making very
hard to maintain robust, large MANETS [58]. This additional problem
can be mitigated by organizing hierarchically MANET nodes in clusters
managed by clusterhead nodes. In fact, many existing flat routing al-
gorithms have been modified to support clustering, allowing routing
to scale well to large networks. However, this approach strains cluster-
head nodes, because they bear the additional load of managing nodes
in their cluster, causing a quicker depletion of their battery; hence, it
is advisable to keep MANETS small whenever possible, and resort to
clustering only when MANET size is too large for flat routing protocols
[56, 71].

Wireless Sensor Networks

WSNS, whose application areas have been already described in Section
2.1.1, share some similarities with MANET, especially the limitations of
the wireless medium. However, they also have remarkable differences
[72]:

• Network scale. Some WSN applications require hundreds or thou-
sands of sensor nodes, deployed much more densely than the
nodes of a MANET, causing a potential overcrowding of wireless
channels.
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• Failures. Sensor nodes are much more prone to failures than
MANET nodes, due to the lower quality of their components,
which is needed to keep the cost per node low, and to harsh-
ness of the environment in which they are deployed.

• Computing resource limitation. The low cost constraint on sensor
nodes, which is necessary to make sensor nodes disposable, lim-
its severely the computational, storage, and memory resources
of sensor nodes. A typical sensor node has a 5-10MHz microcon-
troller, 8-128KB for storage, and 1-10KB for RAM [73]. These
critical limitations constrain the complexity of algorithms and
protocols that can run on sensor nodes.

• Energy constraints. Sensor nodes are battery-powered and, due
to the potentially very large number of sensor nodes in a net-
work, battery replacement could be very hard or infeasible.

All these constraints make WSNS less adaptable than MANETS, be-
cause the specific usage scenario has consequences on all layers of
software and network stacks, making it very hard to develop generic
protocols suitable for all use cases. Hence, the goal of a WSN must be
defined before its deployment, to configure it to use the most suitable
protocol and avoid costly upgrades after the deployment. Usage sce-
narios of WSNS fall into one of the following tasks: collection, dissemina-
tion, and point-to-point communication; each of these communication
tasks requires specialized networking protocols [74]. Collection is the
most important use case, needed by all the monitoring applications
based on WSNS: it is the collection of data sensed by nodes, that is pro-
cessed and dispatched, according to an anycast policy, to any gateway
node in the WSN, that then forwards it to the Internet [75, 76]. Dis-
semination is the opposite use case: data from the Internet reaches the
gateway sensor nodes, which then is sent to all sensor nodes, accord-
ing to a broadcast policy [77–80]. An example of dissemination is the
propagation of firmware images to update the software running on
sensor nodes. It is important to note that protocol for collection and
dissemination are usually not IP-based, thus sensor nodes forming a
WSN are not directly addressable neither by other sensor nodes nor
by clients on external networks. Finally, point-to-point communication
allows direct communication of sensor nodes in a unicast fashion. An
example of networks that can benefit from point-to-point communi-
cation are the so called WIRELESS SENSOR AND ACTOR NETWORK (WSAN),
namely WSNS which are connected to actors that can be directly con-
trolled by sensors nodes [81]. Contrarily to protocols for collection
and dissemination, specialized protocols for peer-to-peer communi-
cation often are IP-based, thus not only sensor nodes can directly ad-
dress other sensor nodes, but they can also exchange packets directly
with other commodity clients connected to the Internet [74, 82].

In the following, we report the state of the art about WSN routing
algorithms, summarized in Table 2.2. For collection, the most impor-
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Table 2.2: Summary of communication protocols for WSNS.
C: Collection - D: Dissemination - P: Point-to-Point.

Protocol Scenario Basic mechanism
Support
for bulk

data

Underlying
data link

BCP C Backpressure 7 Any

CTP C Gradient 7 Any

Deluge D Versioned timer 3 Any

Drip D Versioned timer 7 Any

RPL C+D+P Versioned graph 7
IEEE

802.15.4

ZigBee C+P Routing tree 7
IEEE

802.15.4

tant protocols are COLLECTION TREE PROTOCOL (CTP) and BACKPRESSURE
COLLECTION PROTOCOL (BCP). CTP is the de facto standard reference for
data collection protocols, because it provided by default as part of
the widely used TinyOS operating system for sensor nodes [83]. It is
based on periodic broadcasts that become exponentially slower and
carry the network metrics necessary to build a routing tree routed
on any gateway node; in case a node fails or a new node is added,
the timers are reset, allowing the routing tree to adapt quickly to the
new topology [75]. BCP is a collection protocol that for each packet
computes a backpressure weight that is a function of the local packet
queue and state of links to other nodes, thus establishing a gradient
for routing without explicitly computing routing paths [76]. Both CTP
and BCP are packet based, and support the collection of small packets
only.

About dissemination, the most notable examples are Deluge and
Drip. Deluge is a a network programming protocol that supports rout-
ing of bulk data. It is designed to broadcast firmware images in a WSN
to update the code running on sensor nodes [84]. Drip supports reli-
able dissemination of small values, for example a new configuration
setting, in a WSN [77]. Both Deluge and Drip are based on Trickle [85],
a communication protocol based on periodic broadcasts that get ex-
ponentially slower as time goes on. The payload of each broadcast is
the actual data to disseminate and a versioning number, which allows
sensor nodes to know if they need to receive the disseminated value
and re-broadcast it.

Point-to-point communication is technically the most difficult to re-
alize, because it requires bi-directional routing path between any ar-
bitrary pair of nodes. Notwithstanding the large number of works in
this area, the most important proposal are the aforementioned ZigBee
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[86] and ROUTING PROTOCOL FOR LOW POWER AND LOSSY NETWORKS (RPL)
[87]. ZigBee manages routes point-to-point routes as an overlay over
its basic single-rooted tree topology: whenever a sensor node receives
a packet that its not addressed to itself or to one of its children, it
starts a route discovery, based on the well known AD HOC DISTANCE
VECTOR (AODV) protocol [61]; if it has not enough resources to drive a
route discovery, then it routes the packet along the tree [86]. RPL is a
IPv6-based multi-hop routing protocol that could be, in principle, be
applied to any physical protocol; however, in practice, it is currently
considered mostly as routing layer for ZigBee (as part of the ZigBee
IP effort). RPL organizes its nodes in DIRECTED ACYCLIC GRAPHS (DAGS),
which are partitioned in smaller DAGS called DESTINATION ORIENTED
DIRECTED ACYCLIC GRAPHS (DODAGS), whose root is a destination node.
This approach allows efficient collection of data and also supports
dissemination of very small data. In addition, RPL supports point-
to-point communications, because it is designed to be a full-fledged
IPv6 stack. This flexibility comes at the cost of it being hard to use on
very constrained devices with limited memory (less than 10KB), but
it has the advantage of being able to integrate seamlessly WSN to the
Internet [87].

MANETS and WSNS are key components and technological enablers
of Future Networks and Pervasive Sensing. The overview of the is-
sues and active researches sketched in this section shows that that
there is no single routing protocol or network architecture that works
for all MANET and WSN scenarios; rather, there are several protocols
that provide good performances when used in the specific setting
they were designed for.

Network Security

The security, confidentiality, and robustness of MANETS and WSNS are
very important for a widespread adoption because they store and
route critical environmental and personal data. The highly dynamic
scenario of MANETS and the limited resources available to WSNS make
network security an especially hard challenge. Due to its complexity
and specialized scope, this thesis does not directly address network
security, however we list here the most significant works that could
be applied to the case studies that we will present throughout this
work.

Security on MANETS focuses on three topics [88]: secure routing, au-
thentication, access control. Most research efforts have studied the
issues related to secure routing, exploring different solutions based on
intensive usage of cryptographic primitives to validate MANET routing
paths and to detect and isolate malicious nodes that try to disrupt
routing. The seminal work by Marti et al. [89] extended the DYNAMIC
SOURCE ROUTING (DSR) protocol [62] to introduce special nodes called
watchdogs and pathrater that monitor MANET nodes behavior and iso-
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late misbehaving nodes. Similarly, Wang et al. describe in [90] a mech-
anism based on local observation of AODV [61] to identify selfish nodes
that do not cooperate to the MANET routing. Soltanali et al. [91] com-
bined the features of the two previous works by proposing a com-
pletely distributed mechanism that identifies selfish nodes using a
reputation-based control and encourages cooperation via a currency-
based scheme.

Authentication in MANETS tries to enforce control mechanisms that
allow only trusted nodes to join the network. Davis [92] proposed a
hierarchical model for trust management in MANETS based on pub-
lic keys of all nodes being distributed to all other nodes. This ap-
proach makes the proposed scheme robust to malicious accusations,
but poses scalability problems. Ngai and Lyu described in [93] a dis-
tributed authentication scheme based on cluster-local public key ex-
changes, that alleviates some the scalability issues of other solutions.

Access control refers to the techniques that enforce policies to control
whether or not a node should have access to certain resources. Luo et
al. describe in [94] a completely distributed access control framework
that allows only well-behaving nodes to access MANET resources. This
solution relies on threshold cryptography that is a technique that al-
lows to decrypt an encrypted message if and only if a given number
of parties exceeding a threshold cooperates in the decryption proto-
col. [94] exploits this system to globally trust a node if it is trusted by
other k nodes, where k is a system-wide threshold.

WSNS have the same security challenges, but the techniques devel-
oped for MANETS can not be directly applied to WSNS because they
rely on asymmetric cryptography that is hard to use on WSNS due
to resource constraints. For this reason, equivalent solutions for WSNS
exploit lightweight symmetric cryptography. For example secure rout-
ing has been tackled by Deng et al. [95] that proposed an intrusion-
tolerant routing algorithm, that hinges on the idea that a subset of
sensor nodes is more powerful than others and can manage the com-
plete network topology, that is secured because every node provides
a list of its neighbors with a proof of neighborhood. The work by
Lee and Choi [96] improves on the centralized approach of the pre-
vious by delegating partial verifications to sensor nodes, that refer to
more powerful nodes only when they detect a node misbehaving. An
example of authentication algorithm for WSNS is the work by Perrig
et al. [97] that proposes µTESLA, an authentication algorithm based
on symmetric cryptographic primitives that exploit delayed key dis-
closure to avoid much more CPU- and memory-intensive asymmetric
algorithms. In the same work, the authors propose access control in the
form of data confidentiality that is achieved by exploiting a symmet-
ric cryptographic that prevents eavesdropping from malicious nodes.

This brief review of the state of the art of network security for
MANETS and WSNS is by no means intended to be a complete sur-
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vey, however it shows that the challenges of network security, authen-
tication, and access control are known to be of utmost importance
and there is large research community that is actively tackling these
challenges, providing solutions that can realistically be adopted in
real-world deployments to make future networks secure, reliable, and
trustworthy when dealing with sensitive data.

2.2.2 Opportunistic Behaviour

The reference scenario for Pervasive Sensing presented in the previ-
ous sections is highly dynamic at two levels: at the sensing level and
at the networking level. At the sensing level, Pervasive Sensing sys-
tems, connected to commodity sensors and sensor networks, are ex-
pected to exploit also mobile sensor nodes, which are likely to be not
directly controllable. At the networking level, Future Networks will
comprise volatile networks, i.e., MANETS, and unreliable networks, i.e.,
WSNS. The dynamic and heterogeneous features of the reference sce-
nario make in unsuitable for traditional system designs that are based
on the assumption that network and system characteristics are well
known at design time and do not change with time. We claim that
the best approach to tackle this shape-shifting scenario is adopting
novel design principles that assume that devices are unreliable and
system conditions are uncertain. To still exploit as much as possible
the available sensing and networking resources, we propose to adopt
an opportunistic behavior at both levels.

Opportunistic Sensing

As explained in Section 2.1, Pervasive Sensing systems use smart-
phones and humans as sensors to better exploit all available sensing
resources and increases the sensing coverage [7, 98], so to enable a
wide range of novel sensing applications, that we already defined in
Section 2.1.3 as human- or environment-centric, that rely on oppor-
tunistically exploiting resources to achieve their goals [17]. Human-
centric applications focus on detecting and collecting data about hu-
man activities and understanding behavior. They can work by either
explicitly asking users for input or by opportunistically accessing
smartphone sensors, such as microphone and accelerometer, and run
machine learning algorithms to infer current user activities. The met-
ric that drives this category of applications is time: sensors should not
be accessed when they are used for higher priority tasks and when
they are in unfavourable conditions (e.g., sound sensing should be
disabled during phone calls and when the phone is in a pocket).

Environment-centric applications strive to collect data about envi-
ronmental parameters such as noise pollution, road and traffic condi-
tions, and so on. They too use opportunistically smartphones as sen-
sors, waiting for them to roam near the target area during the window
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of interest. Thus, the opportunistic approach of environment-centric
applications is driven by time and space: sensors must be accessed,
like in the previous case, when they are not being used and when
they are in favourable conditions; in addition, their location must be
close to the area targeted by the application. Moreover, environment-
centric applications exploit humans, too, in an opportunistic fashion.
In fact, they can assign sensing tasks to many people, asking them
to go near the monitored area, or waiting for them to accidentally
get there. The coordinating application has the burden of selecting
mobile sensor nodes that may successfully execute the sensing task
based on its requirements (e.g., the quantity to measure, its location,
its validity window), to delegate the task to them and to coordinate
its execution.

Opportunistic sensing poses several key challenges, that we present
here along with some recent work aimed at overcoming them [17, 99,
100]:

1. filtering noisy data;
2. inferencing context;
3. preserving privacy;
4. detecting fraudulent data;
5. promoting user participation;
6. minimizing energy consumption.

First, opportunistic sensing must deal with noisy, incomplete sens-
ing data, because sensors are not used exclusively. Moreover, when
mobility is involved, the measurements can only come from areas
where users are present, causing data to be randomly distributed in
space and time. A possible solution to this challenge, proposed by
Rana et al. is to use a technique called compressive sensing to recover
missing data and improve the spatial-temporal coverage of sensing
[14]. Second, advanced sensing requires raw-sensor data to be pro-
cessed to infer user context and activities. This is typically achieved
by using supervised machine learning algorithm, that learn from la-
belled data a model to classify unlabelled one [101]. However, it can
be exceedingly hard to obtain a significant dataset of labelled data,
hence approaches such as [102] use a pooling approach to share mod-
els among sensors. Third, opportunistic sensing must strive to pre-
serve user privacy. In fact, if there are no controlling mechanism in
place, smartphones can leak private information about users, for ex-
ample by tracking their position, recording intimate discussions, and
photographing private spaces. This possibility violates the reasonable
expectations of individual privacy, and could discourage them from
participating in sensing activities, thus reducing the impact of sensing
campaigns. AnonySense proposes to sidestep this problem by using k-
anonimity, namely by running sensing tasks over groups of k spatially
co-located people and stripping sensed data by any unambiguously
identifying feature, ensuring that users cannot be identified within
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the set of k users [103, 104]. PriSense protects user privacy by hiding
raw harvested data and providing only aggregated results about it
(e.g., average, median, min/max values) [105]. Fourth, the openness
of sensing relies on user contribution, making it vulnerable to collec-
tion of erroneous data, either by mistake or by malicious contribution.
For example, a user asked to take a picture of a building may mistak-
enly put his finger on the camera lens, or a leasing agent asked to use
the accelerometer to monitor road condition data may alter the mea-
surements to fabricate smoother readings so to promote properties in
a particular neighbourhood. Huang et al. propose to use a reputation
system that considers more trustworthy data coming from users that
provided useful data, and quickly decreases their trustworthiness if
they provide corrupted data, either by accident or by mischief [106].
Fifth, for large scale collections it is necessary to promote user par-
ticipation [107]. Several studies have found that monetary incentives
work for repetitive, low-effort tasks, but increasing the reward does
not increase the quality of effort by people. Recent work suggest that
modifying the task and proposing them as a game (a process called
gamification) can actually improve the quality of people-provided data
[108, 109]. Sixth, and final, opportunistic sensing strains smartphone
resource, in particular reducing the battery lifetime. In particular, sen-
sors such as GPS and microphone can easily halve battery duration.
Rachuri et al. show in [110] that it is possible to learn from user behav-
iors to pro-actively shut down sensors when it is unlikely that they
will collect useful data, thus saving energy.

Opportunistic Networking

At the networking level, Pervasive Sensing systems have to deal with
the fragile connections of WSNS, due to the low-power lossy wireless
protocol that they use, and of MANETS, due to node mobility. Refer-
ring to Future Networks presented in Section 2.2, there is an addi-
tional weak point, namely communications between mobile smart-
phones and sensor nodes over weak low-power links. These features
make our reference scenario a kind of DELAY TOLERANT NETWORK (DTN),
namely a network where, given an arbitrary pair of nodes, there may
not exist a complete routing path that connects them [111]; in this
case, the message to delivery should be buffered in the network, un-
til a new routing path emerges [112, 113]. This approach is called
opportunistic networking and it finds a solution with increased delays
in data delivery, but, compared to traditional networking protocols,
it allows to exploit links that else would have never been used, and
allows to exchange data between nodes that may have never been
properly connected.

Opportunistic networking manages wireless devices carried by an-
imals, people, and vehicles, that can form small mobile ad hoc net-
works when they are close to each other and store data and routing
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Figure 2.4: Taxonomy of opportunistic networking techniques.

information when they are disconnected. Applications that can ben-
efit from opportunistic networking include mobile sensor networks
[114], wild-animal tracking [115], “pocket switched networks” that
base routing on pair-wise contacts between personal devices [116],
and transportation networks [117].

Several routing algorithms have been developed to overcome the
challenges of ephemeral links to realize opportunistic networking
[112]. In first instance, they can be classified in algorithms designed
for completely flat networks that can not rely on any kind of infras-
tructure (without infrastructure) and in algorithms designed for net-
work that have some kind of tiered architecture (with infrastructure).
Algorithm without infrastructure can be further divided in dissemination-
based and context-based. Dissemination-based algorithm work by flood-
ing the network with copies of the message to be delivered [118, 119].
This approach is very resource-hungry, and can lead to network con-
gestions, typically reduced by limiting the number of copies of a
packet that can be stored on the network at any given time. More
refined algorithms are based on network coding, a technique that
exploits information theory to allow nodes to reconstruct data pack-
ets using redundant bits carried by other packets, without receiving
the full original packet [120]. Also Context-based algorithms view net-
works as a flat collection of nodes, but they limit the propagation
of messages by choosing the next hop for each packet based on the
context in which nodes are operating. Compared with dissemination-
based algorithms, context-based algorithms greatly reduce the net-
work load, at the cost of a generally higher latency. Algorithms such
as CONTEXT-AWARE ADAPTING ROUTING (CAR) base routing decision on
predictions of the probability that any given node will meet any other
one. When a node must deliver a packet, it stores it in a buffer until it
meets the destination node or when it meets another node that has a
higher probability of having a rendez-vous with the destination node
[121]. Algorithms based on networks with infrastructure do not need to
disseminate packets, rather, they try to get packets as close as possible
to the access points of the infrastructure, that is usually a less chal-
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lenged network. The access point to the infrastructure can be either
fixed or mobile. In case of fixed infrastructure, the nodes usually retain
their packets until they are within the communication range of the in-
frastructure access point, then they rely their packet. This approach,
called Infostation, causes high latencies [122]. The performances of
the Infostation approach can be greatly improved by allowing packet
routing between mobile nodes: in this way, a node can either forward
a packet directly to the access point, or to another node that has a
greater chance than itself to reach the access point [123]. Finally, the
infrastructure can be formed by mobile nodes that act as data collec-
tors, called data MULEs or ferries [8, 124]. These agent move around
the network to gather data, and can be the only ones enabled for data
collection, or, if node-to-node communication is allowed, they roam
to enhance connectivity in areas that have severely limited bandwidth
or are completely disconnected. All these approaches to opportunis-
tic networking, summarized in Figure 2.4, focus on specific scenarios;
however, there are still no proposal of multi-tier opportunistic net-
works that exploit mesh networks, mobile networks, fixed and mo-
bile infrastructures. Among the other result, the present work tries to
overcome this challenge.

2.3 CHAPTER CONCLUSIONS

This chapter has presented the reference scenario of Pervasive Sens-
ing systems in Future Networks. It has shown that the sensing capa-
bilities derive from the large diffusion of sensors, sensor nodes and
mobile sensor nodes (i.e., smartphones), which, in addition to raw
sensed data, can also provide high level inferences, and possibly by
asking users to input data themselves. From the point of view net-
working, the reference scenario relies on MANETS and WSNS, which
we have described presenting their features and challenges. We claim
that, due to the characteristics of the reference scenario of Future Net-
works, opportunistic sensing and opportunistic networking are key
mechanisms for the successful realization of Pervasive Sensing sys-
tems. In the next chapter we will describe a logical model that pro-
vides a robust structure to design multi-tier Pervasive Sensing sys-
tems.





3 LO G I C A L M O D E L

THE overview about sensing technologies and networks presented
in the previous chapter has shown the complex and multi-layered sce-
nario of Future Networks in which Pervasive Sensing systems should
be integrated. This chapter outlines general design principles for Per-
vasive Sensing systems and analyzes the main challenges of working
on this heterogeneous scenario. Then, it presents a reference logical
model for Pervasive Sensing systems and compares it to the current
state of the art. Finally, it proposes five case studies based on the
proposed logical model.

3.1 DESIGN PRINCIPLES

Before describing the main challenges of Pervasive Systems, let us
recall the reference scenario of Future Networks. In Section 2.2 we
have defined and described a three-tier scenario. At the lowest tier
there is the physical sensing infrastructure, that comprises WSNS and
sensor nodes, that communicate using low-power protocols such as
IEEE 802.15.4. At the middle tier there is the mobile infrastructure,
composed of smartphones and other mobile devices, possibly orga-
nized in MANETS, that can connect to nearby sensor nodes. Both sensor
nodes and mobile devices can communicate with the top tier, namely
the fixed infrastructure, via wired networks, via wireless networks
such as 2G/3G/4G cellular protocols or IEEE 802.11. The three tiers
can be used together to design a full-fledged Pervasive Sensing sys-
tem, however let us stress once again that none of them is essential:
combinations of just two tiers still allow to design significant working
systems with different use cases, as we will show when describing the
case studies at the end of this chapter. The analysis of Pervasive Sens-
ing systems and Future Networks highlighted recurring challenges
that we used to identify some design principles that underpin the
logical model proposed in this chapter.

• Opportunistic behavior. The mobile infrastructure and the phys-
ical sensing infrastructure have very dynamic network behav-
iors, as explained in Section 2.2.1. To manage them, the ref-
erence model should support opportunistic networking, thus
exploiting network resource that would be unusable for tradi-
tional networking architectures. In addition, we have presented

29
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in Section 2.2.2, the advantages of exploiting opportunistic sens-
ing to collect data that is out of reach of WSNS. For these reasons,
the reference logical model should emphasize the opportunistic
approach to networking and sensing, that allow to successfully
collect data even from challenged networks.

• Adaptability. Nodes participating in a Pervasive Sensing system
are connected over time to networks that have different resources
(e.g., a smartphone that is connected to a MANET composed of
other powerful devices and to a low-power WSN), or whose re-
sources change over time (e.g.: available network bandwidth
that changes during peak traffic times). Thus, the reference logi-
cal model should support adaptability, namely the capability of
dynamically tuning resource consumption based on current use
conditions.

• Power conservation. Energy consumption is not a very relevant is-
sue at the fixed-infrastructure tier, but it is very important at the
mobile infrastructure and physical sensing infrastructure tiers,
for different reasons: on mobile devices such as smartphones,
Pervasive Sensing systems exploit their resource to either collect
sensing data or to opportunistically connect to WSNS; both tasks
can be battery-intensive, to the point that they could suggest
the user not to lend her phone resource because the perceived
benefit brought by the sensing system does not compensate the
detrimental effects to the user experience. On sensor nodes run-
ning at the physical sensing infrastructure, battery lifetime is
a very precious resource due to the sheer size of WSNS: replac-
ing exhausted batteries is an arduous, if not impossible, task.
The sensing and routing tasks opportunistically run by Perva-
sive Sensing systems may reduce the battery lifetime; however,
this reduction should be minimized to extend as long as possi-
ble the working period of WSNS and to not penalize users that
voluntarily offer resources for Pervasive Sensing by using tech-
niques such as duty cycling and offloading of tasks to upper
tiers should be employed to minimize energy requirements.

• Resource awareness. Our reference scenario clearly shows that
Future Networks are composed of sub-networks composed by
devices with very different hardware and software capabilities.
Roughly, computational resources increase two order of mag-
nitudes (or more) from a tier to the upper one; for example, a
very common sensor nodes such as the MEMSIC TelosB is pow-
ered by a 10 MHz microcontroller, with 10 kB of RAM and 48

kB of flash storage, and can communicate via a IEEE 802.15.4
compliant transceiver, that has a nominal data rate of 250 kbps
[73, 125]. Sensor nodes like this are expected to run on two AA
batteries for a couple of years. Going up of one tier, a modern
smartphone such as the LG Nexus 4 has a quad-core 1.5 GHz
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ARM processor, 2 GB of RAM and 16 GB of flash storage, it can
connect to 42 Mbps cellular networks and to IEEE 802.11n wire-
less networks (from 54 Mbps to 600 Mbps), and are expected
to run for about 24-48 hours on a fully charged battery. A typ-
ical server at the fixed-infrastructure tier, such as these offered
by Amazon EC2, has a quad-core 1.2 GHz Xeon CENTRAL PRO-
CESSING UNIT (CPU), 15 GB of RAM and 2 TB of local storage
and is connected to the Internet via a wired 100 Mbps Ethernet
link; however, exploiting cloud technologies, all these resources
are virtually infinite for many practical purposes. It is appar-
ent that tiers are heavily asymmetric, and each tier should be
managed with specialized sub-architectures, aimed at exploit-
ing in the best possible way the available resources, thus the
reference model should provide specialized components for de-
vices running at different tiers of the reference scenario, tailored
to perform optimally on the available resources. Moreover, spe-
cial care has to be taken in the design of the communication
interfaces between the different tiers: in fact, due to the differ-
ence of performance, data can be freely routed from any tier to
the upper ones, even in bulk, but the reverse would easily cause
network congestion and even overloading of CPUS; hence data
should trickle from upper tiers to lower ones.

• Scalability. Pervasive Sensing system can scale to different sizes,
from an apartment, to a building, to a campus, to a whole
city. As the size of the system increases, so does the number
of involved devices. Scaling up systems is a classical problem
of distributed systems; however, for Pervasive Sensing systems,
the challenges of scaling up are made worse by the limited re-
sources available on WSNS and MANETS and by theoretical limits
[58]. The key to enable scaling of the system is the “divide et im-
pera” approach: breaking down devices in each tier in smaller,
more manageable groups, possibly with the help of devices at
the upper tier, and exploiting local interactions to ease the coor-
dination load on upper tiers.

• Resiliency. WSNS and MANETS are inherently unreliable networks,
due to mobility, faulty hardware, and use of lossy wireless links.
However, a Pervasive Sensing system is expected to have reason-
able reliability and tolerate these disruptive events. Hence, Per-
vasive Sensing systems should implement appropriate mecha-
nisms to provide a resilient service despite these expected fail-
ures.

• Low disruption. Due to their opportunistic behavior, Pervasive
Sensing system are expected to exploit resources on mobile de-
vices, that are not directly interested in the final goal of the
sensing (e.g., exploiting a mobile node for routing data). Users
can agree to provide these resources as long as they are appro-
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priately incentivized and the resource consumption is not detri-
mental to the user experience of their own devices, otherwise
they may not cooperate and participate in sensing tasks, harm-
ing the quality and quantity of sensed data. Thus, the software
implementation should safeguard the normal workflow on de-
vices that it opportunistically exploits.

• Modularity. Pervasive Sensing systems present a very high de-
gree of variability: they can involve only one tier of the reference
architecture, or two, or all three; they can be centered on a sin-
gle person, or on a building, or a whole city, they may require
continuous sensing or just a periodic one, it may be necessary
to harvest data as soon as possible or it can be safely stored on
sensing nodes and harvested only once in a while, and so on.
All these possible variations, and many other, impose the strict
need for the reference logical model to be highly modular, to
make it possible to include only necessary components in the
specific Pervasive Sensing system developed atop the logical
model.

These design principles summarize the most important features, re-
quirements and challenges of Pervasive Sensing systems. We used
them as directive to develop a reference logical model, that is de-
scribed in the next section.

3.2 SYSTEM LOGICAL MODEL

In this section we present a general logical model for Pervasive Sens-
ing systems based on the overview of sensing and networking tech-
nologies outlined in the previous section. This logical model is not
intended to be a full featured architecture, rather it is aimed at high-
lighting the architectural components that overcome the challenges
of Pervasive Sensing systems while following the design principles
listed in Section 3.1.

Before delving into the details of the components that compose our
logical model, let us recall the reference scenario. Pervasive Sensing
system can span up to three different interconnected network tiers:
the physical sensing infrastructure, the mobile infrastructure, and the
fixed infrastructure (Figure 3.1). At a very high level, the physical
sensing infrastructure focuses on sensing physical data using sensor
nodes, possibly organizing them in WSNS; the mobile infrastructure
manages sensing on mobile nodes (i.e., mainly smartphones) and op-
portunistic connections with sensor nodes; finally, the fixed infrastruc-
ture provides coordinates the lower tiers, collects data from them and
provides powerful processing and storage services for sensed data.
According to the modularity principle, none of these tiers is strictly
necessary. Devices in each tier have to perform the following tasks:
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Figure 3.1: Pervasive Sensing system tiers.

• sense data (if provided with sensor);
• process data;
• communicate with peers in the same tier;
• communicate with devices in different tier;
• manage power consumption (if it is a concern).

The following sections analyze in detail how these functions are
organized in logical components running on devices of each tier, and
how they enable inter-tier communication for deep integration of het-
erogeneous networks.

3.2.1 Physical Sensing Infrastructure Tier

The physical sensing infrastructure is composed of sensor nodes, that
can be deployed in a very sparse fashion, resulting in disconnected
sensor nodes that have to wait for another node to roam nearby to
forward their sensed data, or close enough to allow them to com-
municate with each other, thus forming a WSN. The components run-
ning on sensor nodes need to provide the following functionalities:
manage sensor node hardware and provide access to sensors, process
sensed data, coordinate with other sensor nodes, manage communi-
cation with upper tier devices (either smartphones or fixed infras-
tructure servers), and dynamically manage power consumption. The
logical blocks that realize these functionalities are, in the same order,
the components OS/Sensing, Data Processing, Peer Coordination, Upper-
tier Interface, and Power Management, that are organized in a layered
structure, as shown in Figure 3.2.
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OS/sensing

The OS/Sensing component is a basic building block of the compo-
nents running on sensor nodes. It wraps any OPERATING SYSTEM (OS)
specialized for sensor nodes, such as TinyOS and Contiki [83, 126],
that provides core functionalities such has a hardware abstraction
layer, a filesystem to store data on the local storage, process manage-
ment, and primitives for communication via network interfaces. We
explicitly wrap in a component the OS because, due to the very lim-
ited resource available on sensor nodes, it can not provide its service
in a transparent manner and processes running inside its context are
strongly coupled with it; hence, we want to stress its relevant role on
sensor nodes. Among the hardware abstractions provided by the OS,
there are the interfaces to access the sensors available on the node
(e.g., sensors for light, humidity, and vibrations): they allow to collect
physical data, that can be passed to the upper layer component, Data
Processing.

Data Processing

The Data Processing component receives sensed data and processes
it, producing more refined data. Examples of data processing are dis-
carding too noisy or irrelevant samples, averaging or calculating other
aggregated results over time, and detecting physical conditions that
should trigger a reaction. This capability is one of the main advan-
tages of sensor nodes over simple sensors, because it allows to easily
remove redundancy and minimize network traffic by transmitting ag-
gregated data, that are more compact than raw values. The data pro-
cessing component is not restricted to process locally collected data:
in fact, if the device is part of a WSN, it can also process data trans-
mitted by other sensor nodes to fuse it with local information, thus
producing higher level data. To receive data from other sensor nodes,
the data processing component must cooperate with the peer coordi-
nation component, that manages communications with other sensor
nodes.
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Upper-tier Interface
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Figure 3.2: Components running on sensor nodes (physical sensing infras-
tructure).
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Peer Coordination

If sensor nodes are densely deployed, thus making peer communi-
cation possible via low-power wireless interfaces, then the peer coor-
dination component manages the collective behavior of sensor nodes,
providing routing and high level network services, realized on top of
the basic functionalities implemented by the OS/sensing component.
It is a wrapper of routing algorithms presented in Section 2.2.1; thus,
depending on the desired usage scenario of the WSN, it can provide
dissemination, collection, or point-to-point communication function-
alities. Peer coordination is the key component that enables scalability
of WSNS, because it makes possible to quickly deploy a large number
of sensor nodes that self-organize to sense the environment. Peer co-
ordination uses lossy, low-power links, such as IEEE 802.15.4, hence
this component, according to the resiliency principle, has to imple-
ment suitable mechanisms to reliably manage communications even
when poor wireless link conditions cause high packet losses.

Upper-tier Interface

From the point of view of Pervasive Sensing systems in Future Net-
works, sensor nodes and WSNS are not stand alone: they are part
of a larger system that spans different tiers. The Upper-tier Interface
manages the connection of sensor nodes with the fixed and mobile
infrastructure, usually to upload sensed data. Connections to fixed
infrastructure can be wired or wireless: in the former case the sen-
sor node is physically connected to a fixed network, for example
via a UNIVERSAL SERIAL BUS (USB) or ethernet cable, in the latter case,
the sensor node is provided, in addition to the low-power wireless
transceiver, with a long-range wireless interface, such as a 2G/3G/IEEE
802.11 interface. These sensor nodes are sometimes called gateways or
border routers because they connect low-power WSNS with commodity,
infrastructured networks. It is important to stress that having an ad-
ditional special-purpose wireless interface increases significantly the
cost of a sensor node, hence most WSN deployments limit the number
of sensor nodes with two interfaces to minimize costs [127]. Sensor
nodes can also communicate opportunistically with mobile devices,
such as smartphones. In this case, the communication can be estab-
lished on traditional, energy-hungry links, such as IEEE 802.11, or on
low-power links, such as IEEE 802.15.4, depending on the hardware
available on sensor nodes and on mobile devices. According to the re-
siliency principle, in the latter case the Upper-tier Interface may need to
implement a mechanism for data transmission that minimizes packet
drops over lossy wireless links. In addition to being a network in-
terface, the Upper-tier Interface is also an access interface that allows
mobile and fixed infrastructure to coordinate sensing tasks of sensor
nodes and issue re-configuration commands. This open access makes
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WSN integrated in Pervasive Sensing systems more dynamic and ca-
pable of being reconfigured after the deployment, thus they are an
improvement compared to traditional, stand-alone networks, that are
very hard to configure or re-program after their deployment.

Power Management

The power conservation principle that we adopted in the design of
Pervasive Sensing systems clearly states the utter importance of a
careful management of energy-intensive processes, because they can
quickly exhaust sensor nodes batteries. The Power Management com-
ponent oversees all activities on sensor nodes, tuning them to mini-
mize battery consumption. Power management is a cross-layer func-
tionality, because almost any functionality of a sensor node can be
tuned and controlled to minimize its power consumption. For exam-
ple, the power management component can modify the parameters of
the wireless MEDIA ACCESS CONTROL (MAC) protocol to shut down the ra-
dio transceiver more often, it can postpone processing of non-urgent
data, and periodically shut down sensors and the microcontroller to
save energy.

3.2.2 Mobile-Infrastructure Tier

The mobile-infrastructure tier comprises mobile devices, that can au-
tonomously run sensing task, and can connect to devices in the physi-
cal infrastructure tier. By definition any mobile device could belong to
this tier, such as laptops and PDAS, but in practice the most common
ones are smartphones. The components running on mobile devices
are very similar to those running on sensor nodes, as shown in Fig-
ure 3.3; most of the differences in the model derive from the intrinsic
hardware and networking differences of the devices, analyzed in the
following sections.
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Figure 3.3: Components running on mobile devices (mobile infrastructure).
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Lower-tier Interface

The Lower-tier Interface component manages the opportunistic inter-
actions between mobile nodes and sensor nodes, both to exchange
sensed data, and to issue re-configuration commands. As explained
when describing its symmetrical counterpart, namely the upper tier
component on sensor nodes, sensor node – mobile node communica-
tions links can be established on either energy hungry links or on
low-power links [48–50]. The latter case is of major interest, because
opportunistic networking over low-power links makes mobile infras-
tructure a cost-effective way of accessing physical sensing infrastruc-
ture in Pervasive Sensing systems.

Sensing

Smartphones are sensors from several points of view: they are mobile
sensor nodes, hence they are capable of measuring physical proper-
ties, they are also social sensors, because they have access to social
data generated by their owners, and they are also enabling devices
for crowdsensing (Section 2.1). The sensing component wraps these
functionalities, by collecting data and forwarding it to the data pro-
cessor for further analysis and refinement. The role of the sensing
component is especially relevant when accessing hardware sensors
available on phones. In fact, most smartphone sensors are exclusive
resources, namely they can not be accessed by more than one process
at time, and they need to be accessed by user-level applications; for ex-
ample the accelerometer is used to rotate the screen when the phone
is horizontal, and the microphone is used during vocal searches and
phone calls. Hence, they can not be acquired exclusively and for long
periods of time. According to the low disruption principle, the sensing
component arbitrates the accesses to sensors, serializing them and
making sure that opportunistic sensing does not interfere with the
normal usage of mobile devices.

Data Processing

The Data Processing component receives data from the sensing compo-
nent, to process it and infer higher level data. It can also receive data
by other mobile devices, via the peer coordination component, and from
sensor nodes, via the Lower-tier Interface. The main difference of this
component, compared with the Data Processing component on sensor
nodes, is its much higher computational power. Thanks to the fast
CPUS available on smartphones, the Data Processing component can
run very complex analysis on sensed data, that would be impossi-
ble on sensor nodes, such as signal processing and machine learning
algorithms.
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Peer Coordination

Like its counterpart on sensor nodes, the peer coordination component
manages communication with other mobile devices, by implementing
routing algorithms such as those presented in Section 2.2.1, and their
group behavior, such as cooperatively assigning sensing tasks. Peer
coordination is a key element to enable scaling of Pervasive Sensing
systems, because it encourages “divide et impera” solutions that dis-
tribute workload over many different nodes. Due to their higher com-
munication capabilities compared to sensor nodes, that allow mobile
devices to be always connected to the fixed infrastructure, peer coor-
dination can be driven locally (i.e., via ad hoc networking with nearby
mobile nodes) and globally (i.e., delegating organization decision to
the infrastructure): in the former case peer coordination manages com-
munication with other nodes, runs distributed algorithms that drive
group behavior, and enforces resulting decision, in the latter case it
receives configurations from the fixed infrastructure via Upper-tier In-
terface and enforces them.

Upper-tier Interface

The Upper-tier Interface manages connection of smartphones to the
fixed-infrastructure tier. It allows to connect to the fixed infrastructure
via 2G/3G/4G/IEEE 802.11; and it models the possibility of using
very advanced communication protocols such as SESSION INITIATION
PROTOCOL (SIP) [128], publish-subscribe framework, and web services,
for more reliable data transfers. In addition, it receives configuration
commands from the fixed-infrastructure tier, that may provide poli-
cies for sensing, for coordination with other mobile devices, or even
for sensor nodes. In the last case, the configuration data is passed to
the Lower-tier Interface.

Power Management

The power management component is a cross-layer mechanism that
watches the Pervasive Sensing components running on smartphones
and can manage their behavior to reduce power consumption. Simple
examples of possible actions carried out by power management compo-
nent are turning off unused wireless interfaces, pausing sensing activ-
ities, and temporarily disabling access to hardware sensors. Generally,
aggressive power saving techniques reduce the impact of Pervasive
Sensing on smartphones, usually at the cost of reducing the quantity
of harvested sensed data, whereas lazy power saving policies allows
to collect very detailed sensing data, at the cost of a very reduced
battery lifetime. Hence, the challenge for power management for Per-
vasive Sensing systems on smartphones is to strike the right balance
between high quality data collection and acceptable battery lifetime.
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Figure 3.4: Components running on fixed infrastructure.

3.2.3 Fixed-Infrastructure Tier

The fixed infrastructure is the last tier in our reference scenario. In ad-
dition to traditional servers, it includes servers running in the cloud,
namely virtual servers that can be easily allocated on-demand and de-
stroyed when they are no longer in use. The reference logical model
for devices in this tier is reported in Figure 3.4.

Lower-tier Interface

The Lower-tier Interface is the access end-point for mobile devices and
sensor nodes to fixed infrastructure. In addition to supporting access
over standard wireless links, such as 2G/3G/IEEE 802.11, the Lower-
tier Interface also supports high level protocols such as SIP [128], that
enable a robust communications between the the infrastructure and
nodes from other tiers. It receives sensed data and forwards it to
Data Storage component to archive it. Moreover, the Lower-tier Inter-
face is the exit point for re-configuration commands targeted at mo-
bile devices and sensor nodes, driven by Sensor-Node Management and
Mobile-node management components.

Data Storage

Depending on sampling rate and number of devices participating, a
Pervasive Sensing system can produce a huge amount of data, that
is not manageable by sensor nodes and smartphones. For this reason
fixed infrastructure includes a Data Storage component, either local or
distributed, that stores all sensed data. Data Storage can be a relational
database, a key/value data store or any other suitable persistent stor-
age service. Stored data is accessed by the Data Processing component,
that can analyze it and produce additional, higher level data, and by
the Sensor-node Management and Mobile-node Management components,
that use data about nodes in the lower tiers to take decisions about
their management.
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Sensors-Node and Mobile-node Management

The privileged position of fixed infrastructure in the multi-tier stack
allows it to have a broad view of the status of devices in lower tiers.
To exploit this information in the best possible way, our logical model
proposes to run Sensor-Node Management and Mobile-node Management
components on fixed infrastructure, that manage devices respectively
in the physical infrastructure tier and in the mobile-infrastructure tier,
issuing configuration commands that are dispatched to devices via
the Lower-tier Interface. Examples of configurations generated by the
Sensor-Node Management component are scheduling sensing activities
and tuning parameters of the MAC protocol. Examples of configura-
tions generated by the Mobile-node Management component assigning
sensing tasks to mobile nodes in a specific area and scheduling data
harvesting tasks on mobile nodes near a WSN. Let us note that the two
management components can cooperate to manage sensor and mo-
bile nodes; for example, if sensor nodes are not directly connected to
infrastructure, then the Sensor-node Management component can gen-
erate a configuration and upload it on sensor nodes using mobile
nodes, configured by the Mobile-node Management component, as op-
portunistic relays.

Data Processing

Notwithstanding the importance of computation run on mobile and
sensor nodes by the Data Processing component, the fixed infrastruc-
ture is in an even better position for Data Processing. In fact, freshly
collected data and historical values are stored in the Data Storage, thus
it is possible to further process sensed data to get high level inferences
that would be infeasible to get as result of distributed processing on
sensor nodes and smartphones. Data resulting from data processing
is not necessarily just passive data to be stored back in the Data Stor-
age, because it can be fed back to the system as basis to manage sensor
and mobile nodes. For example, data history about location of mobile
devices can be processed to predict their movements; this knowledge
can be exploited to assign sensing task in a specific area to nodes that
are likely to pass nearby it, improving the overall performance of the
Pervasive Sensing system [35, 129].

Power Management

The devices in the fixed-infrastructure tier do not have the same strict
energetic constraints of sensor and mobile nodes, because they are
directly connected to the electrical grid, often backed up by unin-
terruptible power supplies. Nonetheless, a Power Management com-
ponent in fixed infastructure is of utter importance because energy
consumption is the most important cost in data centers due to the
power absorbed by servers and by air conditioning systems that keep
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them cool. Software power management can contribute to minimize
energy consumption, complementing hardware approaches such as
using low-wattage CPUS and optimizing the air-flow in data centers.
More in detail, architectures based on cloud computing provide two
main techniques to manage power consumption: live migration and
on-demand resource allocation. Live migration allows to migrate vir-
tualized systems from a physical server to the other, hence it is pos-
sible to consolidate running virtual machines on few servers, turning
off those that are not currently used. On-demand system allocation
is a generic term that highlights the possibility for scalable services
running on the cloud to dynamically instantiate resources only when
they are needed. For example if a web server on the cloud is over-
loaded a new one can be quickly started. The Power Management com-
ponent supervises live migration and on-demand resource allocation,
driving them based on cross-layer knowledge of the load on the sys-
tem and possibly of other virtual systems in the same cloud.

3.3 RELATED WORKS

In the following we present the most relevant proposals that are close
to the logical model presented in this chapter, while we will present
other works more closely related to the specific applications of the
logical model in following chapters. The logical model that we pro-
posed for Pervasive Sensing systems in Future Networks is a recent
research topic, that overlaps several different areas in the areas of ur-
ban scale sensing, tiered sensor networks, and delay tolerant sensor
networks.

A seminal work about urban scale sensing is the MetroSense frame-
work proposed by S. B. Eisenman [98]. MetroSense relies on a physi-
cal architecture that has three tiers, called Server Tier, Sensor Access
Point (SAP) tier, and Sensor Tier. The Server Tier provides practically
unbounded storage and computational resources and provides ser-
vices such as data mining, data storage, and support for queries to
select sensors. The SAP tier comprises all SAP nodes, namely nodes
that offer gateway access to server tier for sensor tier elements and
provide services such as managing rendezvous with other nodes and
uploading tasks and configurations. The sensor tier is formed by sen-
sor nodes and mobile sensor nodes as defined in Section 2.1.1; some
of these nodes can double as SAP nodes, but they are not required
to do so. The G-Sense architecture [130] defines autonomous systems
that are based on four components: sensing devices that run data col-
lection tasks, first-level integrators that receive and process data from
sensing devices, a data transport network, and servers, that perform
additional processing on sensed data. Each system can be federated to
other systems for information sharing. Compared to MetroSense and
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G-Sense, our proposal has a more modular architecture, that makes
it suitable for people-centric sensing like the existing proposals, but
can also be tailored for very different scenarios, such as using mobile
nodes just as passive network bridge to other nodes and deploying
completely distributed autonomous sensing systems that do not rely
on fixed infrastructure.

Tiered sensor networks are similar to our proposal for the use of
heterogeneous nodes for sensing. The ExScale project [127] uses het-
erogeneous nodes in WSN to improve network performances as the
number of participating nodes increases, in particular, it requires
WSNS to have a subset of highly powered, multi-homed nodes that
can be exploited for faster networking and to improve connectivity.
Siphon proposes to use special nodes provided with two radio inter-
faces: a low-power short-range radio to interact with sensor nodes,
and a long range, high bandwidth radio. These special nodes form a
network parallel to the WSN, that can be used to reduce network con-
gestion by rerouting excessive traffic [131]. Gnawali et al. proposed
the Tenet architecture in [132], which divides sensors in two tiers: a
lower tier of cheap, low-powered sensor nodes, and an upper tier of
high-powered “master” devices that have completely different hard-
ware and software stacks. Tenet forces sensor nodes to collect data
only and master devices to process it. This approach facilitates opera-
tions such as data aggregation, but also limits scalability of the whole
system, making it economically unsuitable for large scale sensing.
Several other proposal have leveraged tiered architectures in WSNS
to realize improvements such as better connectivity coverage, longer
battery lifetime, support for QUALITY OF SERVICE (QOS), and faster data
processing [133–137]. However, all these works focus on static WSN,
and have very little or no support for mobile devices and sensing
task management.

Our system shares also some similarities with delay tolerant sensor
networks that are characterized by the usage of opportunistic net-
working to route data in sparse sensor networks. The data MULE
system focuses on exploiting mobile nodes as harvester of data col-
lected by fixed sensors [8]. Its architecture is divided in three tiers:
the lower level performs sensing, the middle level consists of mobile
nodes named MULEs that roam over the area serviced by the lower
tier to collect sensed data then forwarded to the upper layer that
consists of gateways connected to a data storage facility. The mes-
sage ferrying approach proposed by Zhao et al. in [124] implements
a delay tolerant routing based on mobile nodes named message ferries
that move around on predefined known paths: mobile sensor nodes
can approach a message ferry to relay to it a packet, that is buffered
by the ferry and forwarded to the destination node as soon as the
ferry happens to encounter it. The DELAY/FAULT-TOLERANT MOBILE SEN-
SOR NETWORK (DFT-MSN) architecture by Wang and Wu analyzes a
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scenario where all sensors are mobile and have a short radio trans-
mission range; while roaming, they can run into fixed access points
to the backbone network, that allow them to upload collected data
[138]. The authors show that using flooding and network coding it is
possible to achieve a good data delivery ratio while minimizing over-
head. Khouzani et al. investigate in [139] the trade off between epi-
demic routing and energy consumption in DTNS, showing that simple
threshold-based policies based on the remaining energy of each sen-
sor are optimal for dynamic forwarding decisions. All these works
are very focused on routing of sensed data while minimizing net-
work overhead, delivery latency and energy consumption. Our pro-
posal supports the implementation of these techniques, in additions
it manages sensing tasks and enables integration with the fixed in-
frastructure, that can tune the parameters of data collection process.

3.4 OVERVIEW OF CASE STUDIES

The overview of related works in the previous section shows that
there is an active interest in Pervasive Sensing systems. So far, re-
search efforts have been focused on vertical architectures for urban
sensing that delegate to the backend coordination of sensing on mo-
bile nodes, or on optimized algorithm for data collection in WSNS.
Our reference logical model has a modular design that spans these
different scenarios and actually allows to integrate them. To test the
validity of the proposed logical model, we used it as reference to de-
velop several large scale Pervasive Sensing systems, hinged on differ-
ent tiers of the reference scenario presented in Section 2.2 and focused
on different sensing activities.

We defined three categories to classify Pervasive Sensing systems
based on their goals to better present the implemented systems, or-
dered by increasing scope of their goals. The categories are: data-
centric, person-centric, and social-centric systems. Data-centric systems
focus on the collection, routing, and processing of sensed data; person-
centric systems enhance the previous ones adding advanced process-
ing and inference capabilities that provide personal services, possibly
based on personal data; finally, social-centric systems extends the ser-
vices provided on a personal basis to serve a whole community. In
the next sections, we give an overview of the implemented systems,
that are analyzed in detail in the following chapters.

3.4.1 Sensor Network and Smartphone Integration

The first category of Pervasive Sensing system is data-centric, with
its goal of exploiting smartphones as opportunistic mobile infrastruc-
ture to provide high QOS routing to WSN (Figure 3.5). More in detail,
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Figure 3.5: Integration of MANET and WSN.

this system, called WSN HYBRID ROUTING PROTOCOL (WHOO) [140], de-
rives from the reference logical model a novel WSN/MANET integra-
tion based on the primary design guideline of opportunistically ex-
ploiting MANET overlays impromptu formed over the WSN to improve
and boost the data collection task of a typical WSN, in a completely
distributed fashion that does not require a fixed infrastructure. On
the one hand, it adopts a cross-layer approach that exploits MANET
connections to differentiate and speed up the delivery of sensed ur-
gent data by pushing them over low-latency MANET paths. On the
other hand, it takes advantage of local cross-layer visibility of the
WSN data collection procedures and protocols to carefully control and
limit WSN–MANET coordination overhead. We prove that our proposed
solution can obtain significant quality of service improvements via
differentiation, by granting faster delivery times to urgent data with
a very limited cost in most common execution scenarios.

3.4.2 Centralized Sensor Network Management via Smartphone In-
tegration

The second Pervasive Sensing system that we present is a data-centric
three tiered system for the management of sparse sensor nodes (Fig-
ure 3.6). This system uses the support session control and interop-
erability in future networks made available by the IP MULTIMEDIA
SUBSYSTEM (IMS) to opportunistically use smartphones, that roam in
geographically sparse environments (such as a smart city), as WSN
data harvesters and as relays to upload on sensor nodes configura-
tion parameters decided by the fixed infrastructure. The primary de-
sign guideline is to exploit IMS and the recently released IMS Presence
Service to effectively coordinate mobile nodes, thus saving energy
on sensor nodes via reduction of unnecessary communications. Our
logical model allows to effectively design an architecture tailored for
this scenario, unambiguously assigning responsibilities to each de-
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Figure 3.6: Integration of MANET and WSN.

vice, while promoting opportunistic interaction to minimize energy
consumption on battery-operated devices.

3.4.3 Smartphones as Sensors: Healthcare with BeWell

We now shift the focus from data-centric to person-centric Perva-
sive Sensing systems, presenting the architecture of BeWell, a joint
project with Dartmouth College and Cornell University. BeWell is a
mobile app that uses sensors available on smartphones to automati-
cally monitor user everyday lifestyle, and uploads collected data to
the fixed infrastructure, that provides advanced data mining function-
alities [141] (Figure 3.7). This chapter analyzes the core component of
BeWell that enables continuous, low-power sensing and provide high
level inferences from raw sensor data. The core component design
is derived from the components defined by our reference model for
mobile nodes, and it is actually a completely reusable and flexible
platform, that eases the development of mobile sensing applications
through the definition of a common set of facilities that masks all
low-level technical details in reading and processing raw sensor data.

3.4.4 Smartphones as Social Sensors: Recommendation and Partic-
ipative Sensing

Finally, we present two social-centric systems, that exploit user mo-
bile devices and users themselves as sensor to provide socially rele-
vant services; they both opportunistically exploit devices in the mobile-
infrastructure tier for sensing and the fixed infrastructure for coor-
dination of the devices. The first project, SOCIAL-AWARE IMS-ENABLED
RECOMMENDER (SAIR), is a recommendation system: it measures users
engagement when using smartphone applications and correlates it
with the context of the usage (e.g., location, physical activities, recent
interests posted on social networks); this knowledge is then exploited
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Figure 3.7: Smartphone running BeWell, a healthcare app based on mobile
sensing.

to suggests new applications to users that are in a similar context. The
second project, named McSense, is a joint project with the NEW JERSEY
INSTITUTE OF TECHNOLOGY (NJIT) focused on study of incentives to drive
crowdsensing (Figure 3.8). Here we will analyze the issues related to
using smartphones as sensors to optimize task assignment to users
for crowdsensing, by collecting data that allows characterization of
regions to monitor, evaluation of a good balance between sensing ac-
curacy and resource usage (e.g., number of people involved, network
load, battery level), and profiling users to know which sensing tasks
are more likely to execute successfully.

3.5 CHAPTER CONCLUSIONS

In this chapter we have presented the main issues of Pervasive Sens-
ing systems in Future Networks, namely the management of tier im-
balance, the necessity of using a software design that eases scaling up
as the number of users increases, and the importance of reducing the
energy consumption on smartphones and WSN to avoid detrimental
effects on user experience and on WSN battery lifetime. To address
these issues we presented eight design principles (i.e., modularity, op-
portunistic behavior, adaptability, power conservation, resource awareness,
scalability, resiliency, and low disruption), that we translated to a gen-
eral multi-tier logical model, that overlays the structure of Future Net-
works. The logical model ensures that every sensor and mobile node
is provided with components to collect and process data, and to com-
municate with peer nodes and, possibly, with devices in other tiers,
while guaranteeing that the fixed infrastructure can receive and pro-
cess collected data. After describing the details of the logical model,
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Figure 3.8: Control console of McSense, an application for management of
crowdsensing tasks.

we compared it to existing solutions. Finally, we presented five Per-
vasive Sensing applications with different goals and requirements,
whose architecture is based on the our logical model. The next chap-
ters will analyze in detail the case studies, highlighting how the ref-
erence logical model drives the design and implementation of robust
and scalable Pervasive Sensing systems.





4 S E N S O R N E T W O R K A N D
S M A R T P H O N E I N T E G R AT I O N

THE first case study that we present as implementation of the refer-
ence model presented in Chapter 3 is a data-centric application that
exploits MANETS in the mobile infrastructure tier to improve data col-
lection on WSNS in the physical sensing tier. In fact, the possibility
of integrating WSNS and MANETS paves the way to brand new cross-
network routing opportunities to overcome the typical limitations of
WSN data collection solutions. For many WSN applications, it is possi-
ble to identify specific classes of traffic that are urgent (for example,
they may be measurements that are connected to possible future criti-
cal condition or may be part of a premium service) and would benefit
from a specific, low-latency delivery. Current WSN data collection so-
lutions are usually unable to grant timely delivery of urgent data with
low-latency requirements [75, 142]. In fact, data must traverse a large
number of potentially congested WSN nodes before reaching the ul-
timate gateway toward the fixed infrastructure; hence, data delivery
time could unacceptably increase, especially if low-power communi-
cation mechanisms can impose radio switched-off times. In addition,
existing data collection solutions typically tend to interfere and mix
together in-band urgent data with normal non-urgent ones.

To overcome all the above problems, research about tiered sensor
networks, described in Section 3.3, have started considering the pos-
sibility of using special nodes, immersed in the WSN and equipped
with both low-power and powerful ad hoc wireless radios, that can
play as relays to facilitate WSN data collections [127, 131]. These nodes,
dynamically organized in MANET overlays, could accelerate WSN data
collection toward collection points. However, notwithstanding their
potential, those seminal proposals have not been widely deployed be-
cause they required special-purpose sensor node hardware, that is
more expensive, requires more energy and, consequently, more main-
tenance. Due to the possibility for mobile phone to host on board low-
power communication technologies and directly interact with sensor
nodes [48–50], we propose to exploit these new mobile devices to
help in WSN data collection. Let us stress that, differently from other
approaches in the literature, we do not consider these nodes neither
as mobile harvesters that relay sensed data to the Internet, nor as mo-
bile users of WSN, rather as efficient relays taking part in the WSN data
collection to speed it up with the help of other MANET nodes.

49
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This chapter presents an architecture based on the logical model of
Chapter 3 for cross-network opportunistic data collection for WSN in
mobile environments with several contributions:

1. we propose an opportunistic solution that exploits the network
layering created by a MANET within a WSN, without assuming
any previous knowledge about node mobility, to differentiate
and speed up data collection, especially tailored for most valu-
able urgent data;

2. we adopt a cross-network and cross-layer design that limits the
communication over the WSN by activating interactions between
MANET and WSN only when necessary, typically for urgent data
delivery, by integrating and fine-tuning local execution of the
data collection protocol to eliminate any possible energy waste;

3. we dynamically adjust the proposed protocols to MANETS and
WSNS to find the best balance between the benefit of enabling
a higher level routing layer and the cost of coordinating both
MANETS and WSN.

Our urgent data collection solution is fully compliant with the COL-
LECTION TREE PROTOCOL (CTP) standard, integrates with existing open-
source WSN implementation platforms and tools such as TinyOS op-
erating system and components [83], and is publicly available for
WSN practitioners. Our experimental setups show that our solution
can effectively differentiate and speed up urgent data delivery with
controlled, predictable and very limited cross-network coordination
overhead.

This chapter is organized as follows. Section 4.1 presents the moti-
vating scenario for our work and the design guidelines that drive our
study. Section 4.2 describes the distributed architecture of our pro-
posal and the facilities that enable the opportunistic integration of its
main components. Section 4.3 derives the software architecture of our
protocol from the logical model of Chapter 3. Section 4.4 presents the
MANET–WSN integration protocol and the theoretical analysis to illus-
trate its optimal low cost. Section 4.5 discusses the implementation
detail of our protocol. Section 4.6 that presents analytical and experi-
mental results that support our proposal. The chapter finally presents
a brief survey of related works (Section 4.7), and the chapter conclu-
sions in Section 4.8.

4.1 BACKGROUND AND REFERENCE SCENARIO

This section details the motivating scenario for urgent data delivery
and the design guidelines that stem from that environment and from
the peculiarities of involved WSN and MANET networks.
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4.1.1 Urgent Data Delivery Motivating Scenario

To better clarify the importance of urgent data delivery for WSN, let us
introduce a real-world example. Our main motivating scenario is the
realization of quality-enabled networks for environmental monitor-
ing in emergency prevention and response scenarios such as under-
ground mines. That example is typical for all those environments that
should take into account known and avoidable dangerous situations
in operating conditions.

Monitoring of mine tunnels is a crucial task to ensure workers’
safety, by sensing several factors, such as wall stability and percent-
age of air components, mainly oxygen, methane, water and dust.
The monitoring of the structural stability of mine walls is a task of
paramount importance: of the 480 coal mine fatalities in the past 10

years in the USA, 50% where caused by the fall of ribs or high walls
[143]. WSN technology could greatly help in such scenarios: it does
not require wiring, its deployment is simple notwithstanding poor
working conditions and high maintenance costs underground, and
it scales well in long and narrow tunnels. In particular, the stress of
walls can be monitored by sensor nodes equipped with strain gauges
and fiber optic strain sensors, that can not only detect catastrophic col-
lapses of walls, but also forewarn changes such as cracks and flexures
[144, 145]. Moreover, wireless sensor nodes can spontaneously form
impromptu WSNS to collect and forward measurements to a data sink
that can work as a gateway toward the fixed Internet.

During monitoring operations, measured data can be both in ei-
ther normal range values (e.g. normal levels of oxygen) or it can be
a warning that associates abnormal values with some environmental
parameters that, if not cared about, may worsen and cause major fail-
ures (e.g. detection of slight deformation of a rib, which signals that it
requires urgent maintenance): warning-level data should be marked
as urgent and delivered very fast to data sinks, possibly overcoming
non-urgent data. Since miners and machinery are already equipped
with portable ad hoc devices able to form MANETS for system control
and team communication, it is possible to use MANETS also to create
low-latency paths for urgent data delivery.

Of course, most deployment scenarios that exploit WSN for environ-
ment monitoring share the same essential trait of producing both nor-
mal and urgent data, that would greatly benefit from differentiated
routing. Examples of such deployments are WSNS for structural moni-
toring to prevent collapses of old buildings, for detection of pollution
in urban and industrial areas, for measurement of road conditions
and so forth.

Stemming from the above application scenarios, we can directly de-
rive our main requirements. First of all, we want the WSN urgent data
relay and flow over more powerful MANET network trunks as soon as
the WSN can communicate with a mobile node. That goal is crucial



52 SENSOR NETWORK AND SMARTPHONE INTEGRATION

because integrating MANET with WSN can alleviate both fundamental
WSN communication problems: scarcity of energy and low communi-
cation bit rate [74]. Moreover, even if MANET devices suffer constraints
on computational power, communication bandwidth, and available
energy, MANET constraints are of orders of magnitude weaker than
the WSN ones; therefore, whenever possible, MANETS should take over
the urgent WSN communication load. In addition, since communica-
tion between MANET and WSN could drain precious WSN node energy
resources, it is of utter importance to design solutions and protocols
that minimize MANET–WSN interaction by employing it only when nec-
essary, such as for urgent data delivery, and to automatically adapt
system configuration depending on the current execution environ-
ment, especially based on the density of WSN and MANET nodes in
reciprocal visibility. Finally, the resulting integrated data collection
system should not only grant fast delivery of urgent data, but also
carefully monitor MANET–WSN reciprocal visibility to prevent possi-
ble packet losses due to MANET node movements.

4.1.2 Desing Guidelines for Mobile WSN Data Collection

The realization of a real-world system to support cross-network data
collection of normal and urgent WSN data is a challenging task that re-
quires a deep understanding of several management issues that span
different networks and different protocol stack layers. To enable fast
and low-cost data delivery in mixed MANET–WSN environments, we
distilled the following five main design guidelines, derived from the
principles presented in Section 3.1.

First, the system should have an opportunistic behavior. It should be
able to take advantage of any communication opportunity between
the MANET and the WSN. MANET nodes are mobile, and thus the time
frame when one WSN node can communicate with one MANET node
may be at any time and connections can have an unknown duration;
thus, it is crucial to exploit them as soon as they are available, but
be ready to react when no longer available. Some forms of initial
discovery and continuous advertisement between the MANET and the
WSN are necessary to integrate MANET node mobility.

Secondly, MANET–WSN integration should be as much as possible
power conservative. The MANET should not blindly integrate with the
WSN when there are no urgent data to route, thus wasting sensor
node battery; instead, the integration should be reactive: The MANET
should typically stay in a dormant state (with no MANET–WSN traffic
exchange) and react to urgent data arrival, by waking up and starting
to route urgent data. To sense urgent data arrival without draining
precious energy resources for additional communication, the MANET
should exploit traffic snooping techniques. Finally, the management
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of MANET mobility should be carefully designed to control and limit
the overhead of all protocols used for monitoring node mobility.

Thirdly, all cross-network protocols should be adaptive. Because the
dynamics of the MANET–WSN interaction depend on several parame-
ters, data collection solutions should have cross-network and cross-
layer visibility of all system parameters (mainly WSN and MANET size,
average number of WSN nodes visible by each MANET node and MANET
nodes speed) and exploit that awareness to adapt integration policies
and time configurations at different protocol stack layers.

Fourthly, to be resilient the integration should be localized. It is well
known in the literature that MANETS have capacity and bandwidth
problems when their size and routing PATH LENGTH (PL) increase [146,
147]; hence, MANET–WSN integration should be enabled only when
useful, by avoiding the fragility of large mobile networks, and hence
by limiting the number of involved MANET nodes. In other words, the
MANET should organize itself into impromptu formed, independent,
limited-size clusters as soon as there are urgent data to route and be
freed quickly when it is no more needed.

Finally, it should be off the shelf, to facilitate the acceptance and pen-
etration of the proposed solution so as to ease integration with exist-
ing data collection proposals and seamless inter-working with them.
In particular, we claim the importance of accepted tree-based data col-
lection protocols, such as Hyper, CTP and ZigBee [75, 86, 142]; multi-
homed MANET nodes functioning as a bridge between the MANET (ad
hoc IEEE 802.11) and the WSN (IEEE 802.15.4) should support most
widely diffused tree-based data collection protocols to make cross-
network communications viable and easy.

4.2 OPPORTUNISTIC LOW-COST NETWORK INTE-
GRATION

According to the above design guidelines, we have realized our cross-
network opportunistic data collection solution; this section describes
the distributed architecture of our proposal and its main facilities;
then it details our protocol to guarantee cross-network integration
with a low communication cost by focusing both on the WSN layer
and on the MANET layer.

4.2.1 Background and Reference Architecture

The abstract reference model of our distributed architecture spans
different network layers and includes several distributed entities; this
section gives some needed background material about the data col-
lection protocol.
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Figure 4.1: Overview of the scenario showing the WSN and MANET routing
layer. The numbers reported for each WSN node are their costs.
Dashed and normal arrows show the routing path for normal
data and the desired routing path for urgent data.

Our model includes two tiers: the lower tier is the physical sens-
ing infrastructure tier, i.e., the WSN network, sensor nodes form an
autonomous routing layer that routes normal and urgent data to one
or more data roots, while the higher tier is the mobile-infrastructure
infrastructure tier, where multi-homed mobile MANET nodes roam
across the WSN-equipped environment (Figure 4.1). We assume to
use tree-based data collection for WSN, that leads to organize the WSN
in a tree-like topology and to exploit a very general tree formation
method based on a gradient function [75, 86, 142]. Data roots start
advertising a zero cost, while each internal node advertises a total
incremental cost, equal to the cost of its father node plus the cost of
the link to the next hop: data packets flow along paths to lower cost
nodes (dashed arrows in Fig. 4.1). The MANET level opportunistically
exploits its nodes in visibility with WSN sensor nodes to create an
additional low-latency high-bandwidth layer to route urgent data. To
glue together WSN and MANET networks, MANET nodes exploit their
WSN interface to reactively participate in urgent data routing by dy-
namically discovering sensor nodes at the WSN layer as they move
by, and by advertising their presence to them. To overcome possible
mobility and scalability issues typical of large and dense MANET de-
ployments, we organize mobile nodes in small local clusters.

To make our system easier to understand, let us define here some
useful terms (at Figure 4.1). Roots are sensor nodes that advertise
themselves as collection tree roots: they are typically gateways to the
Internet and offer interfaces, such as wired, satellite and wide area
cellular ones (in Figure 4.1 there is only one root advertising a zero
cost); all other sensor nodes build routing trees to forward collected
data toward roots at the WSN layer. The WSN exit point is any WSN
node able to forward packets to the MANET because it can directly
communicate with at least one MANET node (in Figure 4.1 the WSN
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exit point is the sensor node advertising a cost of 14; it is the one that
routes urgent data), while the WSN entry point is the WSN node with
the lowest gradient cost that the MANET cluster can reach (in Fig. 1 the
sensor node advertising a cost of 5). Similarly, MANET entry/exit points
are MANET nodes that can, respectively, receive/forward data from/to
the WSN.

Our solution is general enough to work with most tree-based col-
lection protocols; however, we preferably adopt the CTP [75] because
it is representative of a wide set of tree-based collection protocols
and it is robust and thoroughly assessed, apart from being widely
available as the default collection protocol on TinyOS [83]. The CTP
uses the estimated number of transmissions as the cost metric [148],
builds minimum cost data collection trees by using control beacons
exchanged by WSN nodes and keeps the topology coherent by exploit-
ing both control beacons and data piggybacking to disseminate con-
trol information about sensor node gradient costs. The low-overhead
algorithms and protocols used by the CTP allow quickly building and
reconfiguring the routing topology, while keeping low the control
traffic overhead in stable conditions; for more details about the CTP,
refer to [75, 149]

4.2.2 WSN-side Facilities for MANET-WSN Integration

This subsection overviews our facilities for MANET–WSN integration by
addressing specifically the interactions within the WSN. Our proposal
aims to enable inter-network urgent data forwarding over the MANET
by seamlessly integrating with and by extending CTP; the main goal
is to let MANET nodes locate and reach those WSN nodes more conve-
nient for data collection, and to advertise the upper MANET routing
layer to the lower WSN network at the same time.

To acquire and create reciprocal knowledge of WSN and MANET
nodes, we need two facilities: discovery, to permit MANET nodes to
explore the tree collection topology to select the best MANET node
exit point, and advertising, to make sensor nodes aware of the avail-
able MANET node entry points. In particular, the discovery facility ex-
ploits local MANET clusters, created impromptu when an urgent data
routing situation occurs, to scan the WSN to select sensor nodes with
low gradient costs as WSN entry points. It should be noted that a
functionally equivalent of the discovery facility would be to have sen-
sor nodes periodically advertise their gradient value. However, unso-
licited WSN-sent advertisement would be blindly transmitted without
knowing if there is a MANET node that could receive it, thus unnec-
essarily draining precious battery power. For this reason MANET-sent
discovery messages are energetically more efficient. After the cluster
has obtained the best WSN entry point cost, it starts to advertise it to
all reachable WSN exit points, by forming urgent data routing paths
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from entry to exit MANET nodes (see details in the next subsection).
Regardless of the inner workings of MANET–WSN integration, it comes
without saying that continuous interactions with sensor nodes, if they
were always on, would significantly shorten the WSN battery lifetime.
Hence, it is crucial to activate integration protocols reactively, only
when there are urgent data to route and to minimize the number of
message exchanges so as to lower communication energy costs.

Therefore, according to our power-conservative design principle,
the MANET cluster is on (running state) only as long as it receives ur-
gent data from the WSN, and it switches off as soon as these data
stop (dormant state). The scheduling of the switch-off time is difficult:
going to the dormant state too early means swinging back to run-
ning state for additional single urgent packet, while switching too
late leads to higher energy consumption. We propose a novel power
management strategy that models MANET–WSN integration analyti-
cally and evaluates the threshold traffic level to sustain it; our strategy
monitors and controls several configuration parameters, such as WSN
size, MANET cluster size and discovery/advertising periods, and adap-
tively chooses the intervals for the running and the dormant state, as
detailed in Section 4.4.

To further lower energy consumption, we have also carefully de-
signed our discovery and advertising facility protocols. In the discovery
protocol, each MANET cluster node obtains CTP gradients by periodi-
cally emitting a request and expecting replies from WSN nodes in
visibility (we call it full discovery). To limit the energy cost of continu-
ous requests/responses, we have defined also an asymmetric discov-
ery protocol, where sensor nodes have to reply only to the requests
coming from not recently listened nodes, by using lazy discovery. Let
us stress that the discovery protocol enables low-cost monitoring of
nearby WSN nodes: as long as a MANET node does not change its radio
neighborhood, which typically occurs either because of interfering
events (such as suddenly interposed obstacles) or mobility, lazy dis-
coveries reach the same WSN nodes that will not reply, thus saving en-
ergy. When discovery messages will reach new WSN nodes, they will
send a reply, thus letting the MANET node know that the radio neigh-
borhood has changed. About the advertising protocol, it enables data
routing from the WSN to the MANET: each MANET node periodically
beacons to the WSN a message with the gradient of the farthest WSN
node the MANET cluster can reach; to limit message exchanges, only
MANET nodes that overhear urgent data transmissions participate in
advertising. WSN nodes, once having received the advertisement, com-
pare advertised gradients with the ones they see at the WSN layer and
decide whether they have to intervene and route urgent data over the
MANET.
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Figure 4.2: Phases of the MANET cluster formation. Phase 1: a MANET node
snoops an urgent data packet and broadcasts a 2-hop limited
broadcast request. Phase 2: MANET nodes hit by the request send
a full discovery request to the WSN, obtain the gradient cost of
reachable sensor nodes and choose the best one. Phase 3: all
sensor nodes reply to the MANET node that started the process.
MANET nodes marked with a “g” will not take part in the cluster
because their gradient cost is not better than the one broadcasted
in phase 1.

4.2.3 MANET-side Facilities and Protocols

Our solution exploits MANET clusters opportunistically formed and
localized on restricted areas centered where urgent message trans-
mission is needed; the proposed cluster formation protocol is simple
and robust with its own packet routing at the application level, and
hence it does not require any underlying network layer ad hoc rout-
ing protocol: it uses only 1-hop communications and some limited
broadcasts. Even if our proposal does not intrinsically impose hop
limits on broadcasts to form and maintain clusters, we have found
that a radius of 2-hops is a good trade-off between MANET size and
achieved robustness. That is the reason why in the following we as-
sume that all MANET broadcasts are propagated in a 2-hop neighbor-
hood.

The cluster formation protocol is followed reactively by any MANET
node that overhears a data urgent transmission at the WSN layer and
consists of three phases (Figure 4.2). In the first phase, the MANET
node that snoops the urgent data (acting as the MANET entry point)
extracts from its header the sensor node gradient, propagates it to its
2-hops neighborhood and, with the same message, asks other MANET
nodes for the best reachable gradient. In the second phase, every
MANET node in the 2-hop neighborhood sends a full discovery re-
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quest to sensor nodes and, based on received replies from the WSN
layer, determines whether it is part of the MANET cluster. The cluster
membership of MANET nodes too close to the potential entry point
would engage resources while providing no relevant benefit to the
system: hence a MANET node does not participate in the cluster if it
is unable to provide access to a WSN node with a cost strictly bet-
ter than the one declared in the received broadcast request. In the
third phase, every MANET node reached by the broadcast replies to
the MANET entry point with its bid of being member of the cluster
(or not) and the gradient cost of its reachable sensor nodes. Finally,
the MANET entry point that started the clustering formation protocol
and plays the cluster-head role chooses the lowest gradient node as
the MANET exit point, while collecting important information about
the current deployment, such as the number of messages exchanged
with the WSN and the number of MANET cluster nodes to be used to
better schedule MANET switch-off time.

Before delving into internal cluster maintenance details, it is worth
remarking that when CTP routes the first urgent message on the WSN,
more MANET nodes along CTP data delivery path could snoop it and
initiate, as cluster-heads, new concurrent cluster formation phases.
During this initial transitory phase, there may be several overlapping
clusters in the same 2-hop neighborhood, but this behavior does not
jeopardize cluster organization because when urgent data start to be
routed by a preceding cluster-head, following cluster-heads, along the
same CTP path and in the same 2-hop neighborhood, can detect no
urgent data on the WSN (already routed over the MANET) and switch-
off to the dormant state.

Within each cluster it is the cluster-head that manages routing and
coordinates between other MANET nodes of the same cluster; MANET
entry points (potentially many in the cluster) forward urgent data to
the cluster-head to be routed to the MANET exit point. In particular, the
cluster-head coordinates also the energy-saving strategy by emitting
periodically 2-hop cluster keep-alive broadcast messages confirmed
by cluster members so as to refresh cluster information; each clus-
ter member automatically switches back to the dormant state when
it does not receive such messages, because either the cluster-head
has switched-off the cluster (stopping keep-alive transmissions) or
the MANET node has moved far away from the cluster.

Finally, let us focus on the mobility of either the cluster-head or one
cluster member. When the cluster-head moves, it can no longer inter-
cept urgent traffic; in this case, it stops sending keep-alive messages
and the cluster will switch-off eventually. When the MANET cluster
member moves, on the other hand, it may either reach sensor nodes
with a different gradient cost or be too far from the cluster to estab-
lish a successful communication. Both these situations are handled
by using our keep-alive cluster maintenance protocol: cluster mem-
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bers reply to the 2-hop keep-alive broadcast by sending back to the
cluster-head the best reachable gradient and, when a cluster member
moves so far that it is not able to send replies to the cluster-head, the
cluster-head considers the member unreachable and cancels it from
the cluster.

4.3 WSN HYBRID ROUTING PROTOCOL SYSTEM AR-
CHITECTURE AND PROOTOCOLS

We have designed and realized a working prototype called WSN HY-
BRID ROUTING PROTOCOL (WHOO) that implements the distributed ar-
chitecture, facilities and protocols, described in the previous sections,
based on the logical model described in Chapter 3. In the following,
we sketch the layered architecture of main distributed component and
we provide a detailed description of our power management strategy
to schedule the MANET switch-off time and of all low-cost integration
protocols at the WSN layer.

4.3.1 WHOO Layered Software Architecture

An important goal of our layered architecture is to hide complicated
underlying sensor node communication mechanisms and to neatly
separate our cross-network routing support from WSN data collection
protocol (CTP in the current WHOO implementation). We focus first
on WHOO sensor node internal architecture, which is organized in
three levels (Figure 4.3a): the OS/Sensing level offers low-level sup-
port for sensor node hardware access; the Peer Coordination level real-
izes the tree-based collection protocol [75] and the highest Upper-tier
Interface realizes our implementation of the MANET–WSN integration.
WHOO does not explicitly mandate any data processing or additional
power management functions, hence these components of the logical
model are not present in this software architecture.

The operating system provides a Communication Support that en-
ables reliable and unreliable 1-hop transmission functions; The Peer
Coordination level implemented by CTP is developed atop and consists
of two components: the Routing Engine manages the routing table and
the beaconing of CTP routing packets and the Forwarding Engine is in
charge of forwarding collected data at the WSN layer. The Upper-tier
Interface is the upmost level and includes two components: the Adver-
tisement and Discovery Receiver accepts incoming advertisements/dis-
coveries from MANET nodes, while the Forwarder intercepts traversing
urgent data and exploits cross-layer visibility of the Forwarding Engine
at CTP level (as pointed out in Fig. 4.3b) to decide whether to forward
them over the MANET or via the CTP data collection path.
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Figure 4.3: WHOO software architecture.

The MANET nodes internal architecture is also layered with two
main levels: the Lower-tier Interface manages the integration with the
WSN layer, while the Peer Coordination level handles coordination among
MANET nodes. The Lower-tier Interface consists of two main compo-
nents: Advertisement and Discovery Sender realizes our WHOO advertise-
ment and discovery protocols by interacting with its counterpart run-
ning at the sensor node Upper-tier Interface; the WSN CTP Data Manager,
on the other hand, glues together WSN data collection and MANET data
routing by enabling data reception/transmission functions. At the
MANET entry point, the WSN CTP Data Manager receives urgent data
from the sensor node Forwarder component and at the MANET exit
point it sends urgent data back to the WSN as normal CTP messages,
received and managed by the sensor node Routing Engine component.
At the same Lower-tier Interface, the WSN Neighbour Table aggregates
the information extracted by CTP routing and data traffic to create
and maintain, for each MANET node, a routing table toward all reach-
able WSN sensor nodes.

The higher Peer Coordination level coordinates MANET nodes and in-
cludes three main components: the WHOO MANET Manager deals with
initial cluster formation and lifecycle management, until the cluster
goes back to the dormant state; the Cost Advertisement Manager runs at
the cluster-head node, it receives gradient updates from other MANET
nodes and keeps the MANET cluster up to date with the latest best
reachable gradient, so as to enable consistent advertising; finally, the
MANET CTP Data Manager forwards CTP data from entry to exit MANET
points by using source routing techniques to reach the local cluster-
head, acting as a centralized routing entity and to deliver the urgent
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data to the MANET exit point. The Whoo Coordinator includes all the
decision logic that enables power management and coordinates Peer
coordination and Lower-tier Interface levels; for instance, at the cluster-
head node it schedules the MANET switch-off time, while at cluster
members it receives cluster keep-alive messages and de/activates dis-
covery and advertisement protocols conveniently, as detailed in the
next section.

4.4 ADAPTIVE SWITCH-OFF MANAGEMENT

The scheduling and the evaluation of the MANET switch-off time stems
from a balancing activity between the running state traffic related to
(continuous) periodic lazy discovery and advertising, and the cost
of initial full discovery for each dormant-to-running-state switching.
This balance dilemma belongs to the class of problems to help in
choosing between periodic cost, paid repeatedly (rent a pair of skis)
and a determined price paid once (buying price) also known as the
“ski rental problem” [150]. It can be demonstrated that the optimal
off-line deterministic strategy to minimize losses for this class of prob-
lems is to pay the repeated rent cost until it is equal to the buying
price; after that it is better paying the buying cost. In our scenario,
it means that the optimal strategy is to keep the MANET cluster in
running state until the sum of messages periodically exchanged for
lazy discovery and for advertising equals the number of messages
exchanged for initial full discovery, namely to switch from dormant
to running state. Karlin et al. demonstrated in [151] that this strategy
is two-competitive, namely never sends more than twice the num-
ber of messages of an ideal online strategy that could forecast urgent
packet arrival time and apply the best possible strategy to switch the
MANET back to the dormant state. Even though there are probabilistic
strategies that offer better cost guarantees, we chose to use the two-
competitive strategy because it is the simplest and achieves easily
reproducible results [152].

More formally, the proposed strategy is based on two metrics: MANET
pressure (MP) is the repeating cost of renting and MANET wakeup (MW)
cost is the one-time buying cost to switch on the MANET cluster. MP
accounts for all messages exchanged between the WSN and the MANET
while in a stable running state situation due to advertising and lazy
discovery. Since sending and receiving messages usually requires com-
parable amounts of energy when not employing specific power trans-
mission tuning [73], the MP is a good estimation of the energy cost of
using the MANET for routing. MW cost, on the other hand, accounts
for messages exchanged in the initial full discovery load by all MANET
cluster nodes to obtain sensor nodes gradient during cluster forma-
tion, when the MANET switches from the dormant to the running state
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plus the cost of urgent data delivery at the WSN layer (until the inter-
network routing has been set up).

To obtain analytical results about our power management strategy,
we analytically model WHOO integration protocols by using some sim-
ple formulas. First of all, let F be the number of 2-hop neighborhood
MANET nodes around the cluster-head, D be the number of MANET
nodes selected by the cluster formation protocol and A be the sub-
set of the cluster MANET nodes that participate in advertisement, with
A ⊆ D ⊆ F . In addition, the delays between two consecutive adver-
tisements/lazy discoveries are for the ith and jth member of A and
D, τAi and τDj seconds, respectively, while each lazy discovery/adver-
tisement transmission reaches, respectively, an average of SAi and SDj
WSN sensor nodes. Consequently, we define MP as:

MP =

|A|∑
i=1

1

τAi
SAi +

|D|∑
j=1

1

τDj
SDj

where the first term accounts for advertisement packets received by
sensor nodes, and the second term accounts for lazy discovery pack-
ets, assuming that MANET nodes are stationary and all discoveries are
lazy.

MW cost, on the other hand, includes the number of full discovery
messages initially exchanged by the F MANET nodes to obtain gradient
data from the WSN, with each message from the kth node reaching
an average of SFk WSN sensor nodes, plus the urgent data messages
exchanged at the WSN layer until inter-network routing is active. Let
us remark that typically D ⊆ F , i.e. the set of MANET nodes involved
in the initial full discovery is a superset of the set of nodes that send
lazy discovery while the MANET cluster is in the running state because
MANET nodes unable to reach sensor nodes with a good gradient are
evicted during cluster formation. Moreover, we define PL the number
of sensor nodes that urgent data would traverse at the WSN layer
without our cross-network routing support, and lost occurrences (LO)
the number of lost inter-routing occurrences, namely the number of
urgent packets that the MANET layer failed to route because of not
being in the running state. Hence, we define MW cost as:

|F|∑
k=1

2SFk + 2 · LO · PL− 2 · LO

The first term accounts for the full discovery packets sent by MANET
nodes and related replies by sensor nodes and the second term ac-
counts for the lost chance of routing an urgent data packet using the
MANET; because each WSN sensor node sends and receives the urgent
data packet we count them twice. Finally, we subtract two times LO
because, whether the cross-network routing is already active or not,
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at least the WSN exit and entry points, respectively, send and receive
the urgent message.

Then, we apply the two-competitive strategy to compute the opti-
mal timeout. We recall that the optimal strategy is to pay the repeat-
ing cost (MP) until its cumulative cost equals the one-time cost (MW).
The time that satisfies this condition is expressed as the ratio between
the initial one-time MW cost and the continuous MP cost:

t =
MW

MP
=

∑|F|
k=1 2S

F
k + 2 · LO · PL− 2 · LO∑|A|

i=1
1
τAi
SAi +

∑|D|
j=1

1
τDj
SDj

Here SAi , SDj , SFk are known at runtime and all other values (i.e.,
A, D, F, τAi , τDj ) are known and can be controlled by the cluster-head.
The value of LO is unknown and typically depends on the specific de-
ployment; it can be estimated by dividing the urgent data frequency
by the time that it takes to form a cluster; after the identification it can
be considered a constant. PL is unknown too, but even for mid-sized
MANET clusters and WSNS, it is easy to see that it quickly becomes
not so significant as the other parameters grow; hence, it can be con-
sidered a constant value. Thus, we can control the integration cost
independently of the urgent data traffic pattern on the WSN, by prop-
erly configuringMP andMW parameters, in other words, by limiting
the MANET cluster size and by modifying discoveries/advertisements
time intervals.

4.5 DISCOVERY AND ADVERTISEMENT PROTOCOL
IMPLEMENTATION INSIGHTS

The implementation of discovery and advertisement protocols required
modifying existing CTP packets and implementation modules [132];
this section provides some more details about our WHOO extensions
to CTP.

WHOO discovery relies tightly on the standard CTP routing mecha-
nism but it adds some adjustments to avoid excessive and useless ad-
ditional load. In CTP, when sensor nodes receive a gradient cost query,
they start to broadcast repeatedly their routing information with an
exponentially decaying frequency: this technique allows CTP to build
a collection tree, and to take advantage of new and better routes
quickly by using the same mechanism in WHOO would have caused
unnecessary control overhead and would have wasted battery energy
of sensor nodes; hence, we use a reserved bit from the option field of
CTP routing header, called DNR (“do not reset”), to signal the sensor
node to broadcast routing information (gradient cost) only once. In
addition, we exploit another reserved bit from the option field of CTP
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routing header, called L (“lazy”) to realize lazy discoveries: a discov-
ery request with L bit zero is full and requires a response, otherwise
it is a lazy request. Let us also remark that a MANET node discovery
request potentially triggers immediate responses from many sensor
nodes simultaneously, thus inducing possible MAC layer failures; to
obviate to this problem, especially for highly dense WSNS, each sensor
node schedules its response randomly in a given period to lower the
probability of data collisions.

As far as advertisement is concerned, WHOO adds a new control
packet to CTP with two main fields: the ValidTime field that reports
interval of node reachability, after which a sensor node receiving the
advertisement can consider the advertising MANET node unreachable,
and the Cost field that contains the advertised gradient cost. The de-
lay between two consecutive advertisements should be shorter than
ValidTime to avoid undesirable bouncing effects of the MANET–WSN
integration: we set the delay to one-third of ValidTime to allow a
robust advertisement mechanism, even in the presence of losses of
single control packets. About Cost, when it is lower than the one of
its parent in the data collection tree, the sensor node forwards the
urgent data to the advertising MANET node. Another relevant aspect
is the management of urgent data forwarding during the transition
from the running to the dormant state. In fact, when MANET–WSN
integration has been switched-off, MANET nodes are no longer will-
ing to accept urgent packets; hence, we add a bit called POSITIVE in
the advertisement packet header that, when 0, signals a negative ad-
vertisement that immediately stops urgent data forwarding from the
WSN to the MANET layers.

4.6 EXPERIMENTAL RESULTS

This section presents results coming from different sources and meth-
ods; we evaluated WHOO partly analytically, partly on a large scale
simulated deployment, and partly on a small scale real deployment.
In the first part of this section, we describe performance figures about
MANET–WSN integration energy cost in terms of switch-off time evalu-
ation collected with our analytical model. However, since our analytic
model has been designed to evaluate the MANET–WSN integration cost,
it does not cover other aspects such as routing latency, protocol over-
head and node mobility impact. Hence, the second part of this section
is devoted to performance figures collected on a large scale the field
by running a prorotype of WHOO on a network simulator. The last
part includes results from a real testbed.
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4.6.1 Analytical Evaluation of Adaptive Switch-off Performance

We show two main sets of analytical results: first, we explore how the
MANET switch-off time depends on the number of MANET and WSN
nodes, and secondly we analyze the switch-off time in dependency
from the lazy discovery delay. To have a better idea of how the opti-
mal switch-off time varies, we simplify the general formula so as to
be more easily evaluated, with the goal of deriving general consider-
ations about sensitivity to various parameters.

t =
MW

MP
=

∑|F|
k=1 2S

F
k + 2 · LO · PL− 2 · LO∑|A|

i=1
1
τAi
SAi +

∑|D|
j=1

1
τDj
SDj

With the assumption that the MANET node that starts cluster forma-
tion is homogeneously surrounded by N MANET nodes in its 2-hop
broadcast neighborhood (i.e., |F| = N ), half of them become members

of the MANET cluster (i.e. |D| =
N

2
). In addition, we assume that both

the interval between discoveries and the number of sensor nodes that
every MANET node can communicate with (i.e., τD and S previously
defined) have almost the same values for all MANET nodes. Let us also
assume that only one node sends advertisement packets (|A| = 1):
this assumption reflects the typical situation where one MANET node
intercepts urgent data traffic from a sensor node that forwards it on
behalf of a whole collection tree branch. Finally, we assume that the
MANET cluster misses the opportunity to route just one urgent data
packet (|LO| = 1). That can simplify the timeout formula:

t =
2S ·N+ 2PL− 2
1
τA
S+ 1

τD
SN2

We intend to evaluate how the MANET cluster size influences the
optimal switch-off time: Figure 4.4 reports the values of the switch-
off time, given τA = 5s, τD = 10s, PL = 10 for a growing number of
MANET nodes and for different values of S. Figure 4.4 shows that if
the MANET cluster size grows, the timeout goes toward its limit:

lim
n→+∞ 2S ·N+ 2PL− 2

1
τA
S+ 1

τD
SN2

= 4τD

Thus, increasing the MANET cluster size does not necessarily shrink
the optimal switch-off time. Let us remark that obviously the timeout
is guaranteed to be positive because PL > 0, but by using very aggres-
sive parameters (e.g. extremely high discovery frequency), it becomes
arbitrarily small, thus the MANET–WSN integration ceases to be bene-
ficial. Nonetheless, such values are unviable for most deployments,
but can easily be detected so as to exclude MANET–WSN integration.
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Figure 4.4: MANET state switch timeout as function of MANET size (N) and
the number of reachable sensor nodes per MANET node (S).

Figure 4.5: MANET state switch timeout as function of lazy discovery delay
and MANET size (N).
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Our first results show the influence of τD over optimal switch-off;
hence, it is interesting to detail how τD influences the switch-off time-
out for different values of N and for a WHOO system with τA = 5s,
S = 5 and PL = 10. Figure 4.5 shows that the optimal switch-off time
grows rapidly as τD grows for low values of τD and that it is upper
bounded by:

lim
τD→+ inf

2S ·N+ 2PL− 2
1
τA
S+ 1

τD
SN2

=
τA(S ·N+ PL− 1)

S

The figure shows that the timeout value reaches a plateau for high
values of τD , while for lower values, especially before the 50s mark,
a small increment of τD causes a relevant increment of the timeout.
That clearly suggests that using the highest possible value of τD to
maximize the time duration of the MANET–WSN interconnection, espe-
cially when τD is too small to achieve the plateau range. Moreover, a
MANET node that moves at high speed would typically use low τD val-
ues to discover fast new potential sensor nodes; so, Figure 4.5 shows
also the sensitivity of WHOO to MANET node speed and justifies more
formally the intuitive notion that MANET–WSN integration would cost
less when MANETS are relatively static.

4.6.2 Simulated Evaluation of Network Performance

To validate our proposal on a wide scale, instead, we developed and
run extensive simulations: we have originally ported CTP to the Qual-
Net network simulator and we have implemented our protocol on
top of it. In the adopted simulation environment, we made the sen-
sor nodes use the IEEE 802.15.4 physical layer and a CARRIER SENSE
MULTIPLE ACCESS (CSMA) MAC protocol, thus simulating a realistic com-
munication testbed, similar to what used by many widely adopted
real-world sensor nodes, such as TelosB and MICAz . Moreover, we
stress another point about this performance result: real WSN deploy-
ments often duty cycle the radio, to save energy by modifying the
ratio between the time intervals with the radio on and off, because
duty cycle techniques can grant higher energy savings at the cost of
higher data delivery latencies [153]. We have tested WHOO with a duty-
cycled version of CTP, simulating the duty-cycling described in [154]
(that is representative of a large class of asynchronous MAC protocols
very suitable for opportunistic integration WSN communication such
as B-MAC and X-MAC [155, 156]), simulating the delays experienced
by a TelosB sensor node running on a 2.5% duty cycle (i.e., that keeps
the radio interface active for the 2.5% of its running time). This duty
cycling, much less aggressive than what usually employed (1% or less
[157]), has been chosen as a worst-case scenario not to favor too much
our MANET-enabled urgent data delivery. Finally, MANET nodes use the
IEEE 802.11b physical and MAC layers.
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Figure 4.6: WHOO packet latency vs. MANET nodes density.

To evaluate the performance of our system in a smart city environ-
ment, in QualNet we have modeled two scenarios. The first one is a
1 km-long and 10 m-wide street, monitored by 50 sensor nodes, 20m
apart from each other; the sensor node at the beginning of the street
acts as the tree root, while the one at the end of the street alternately
generates one normal data packet and one urgent data packet, with
a period of 3s. The second one is a 1km-long and 1km-wide square,
monitored by 200 nodes positioned in a star-like shape with eight
branches, each one composed by 25 sensor nodes 20m apart from
each other; the sensor node at the center of the star is at the center of
the square and acts as the tree root, while the ones at the end of the
branches alternately generate one normal data packet and one urgent
data packet, with a period of 3s.

Our first evaluation focus on packet latencies. In particular, we have
observed the impact of MANET node density on packet delivery e la-
tency. We have simulated the reference scenarios by constantly in-
creasing the number of randomly placed MANET nodes and we have
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repeated each test for 30 runs; the collected error margins were al-
ways under 5% of the reported average. Figure 4.6a shows obtained
experimental results for the street scenario: as expected, our solution
vastly reduces delivery latency of urgent packets in every tested case;
in addition, results show that there is a minimum for MANET node
density that gives the best latency improvements (in our scenario, for
30 MANET nodes). For lower MANET densities, latencies are not so good
because MANET clusters do not cover all the WSN areas, thus forcing
data packets to hop over slower WSN hops. When there are more than
30 nodes, latency goes up again due to the increased traffic induced
by advertising and discovery packets, which cause more packet colli-
sions. Experimental results for the square scenario (Figure 4.6b) show
that it is necessary a higher number of MANET nodes to have a rele-
vant decrease of latencies for urgent packets: that is expected, because
MANET nodes are scattered in a much larger area and can easily be
placed in areas that are disconnected from the WSN; however, let us
stress that 100 MANET nodes per km2 is a very low density, hence the
performances of our proposed approach are good even with a low
MANET density. Finally, it is worth noting that, since the basic CTP pro-
tocol does not include any form of traffic differentiation, the reported
results for normal packets also exemplify the performance of urgent
packets in a WSN-only scenario where MANET nodes are not available
to help in speeding up the routing function.

Our second set of simulated experimental results assesses the im-
pact of MANET node mobility on packet latency. We used the same
scenarios of the previous evaluation and kept the number of MANET
nodes fixed at 40 for the street scenario and 100 for the square sce-
nario. We made MANET nodes move randomly over the simulated ar-
eas adopting the random waypoint mobility model at various speeds
(from 0 m/s to 10 m/s). Figure 4.7 reports the related evaluation re-
sults. Numerical simulation shows that for both scenarios, as MANET
node speed increases, latency remains substantially constant, with a
small growth for lower speeds. This result shows that speed per se
has a limited impact on packet latency, because a successful routing
over a MANET cluster takes much less time than the time needed by
speed to break apart the cluster itself.

Another important indicator is the packet delivery ratio, namely
the number of packets successfully dispatched from data source to
root. Figure 4.8 reports packet delivery ratio under the same condi-
tions of the previous evaluation and with MANET nodes moving at
growing speeds. As expected, CTP is very reliable and always deliv-
ers more than 98% of packets. Our solution achieves a packet delivery
ratio comparable to CTP when MANET nodes are not moving, while the
ratio sensibly decreases as MANET nodes become more and more mo-
bile. In particular in the street scenario, it delivers more than 80% of
urgent packets when MANET nodes move at 1 m/s, and drops to about
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Figure 4.7: WHOO packet latency vs. mobile nodes speed.
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Figure 4.8: WHOO Delivery ratio vs. mobile nodes speed.

50% when MANET e nodes move at 10 m/s, whereas in the square sce-
nario it delivers slightly less than 80% packets at 1 m/s and 30% at
10 m/s.

That trend is expected, because in the i square scenario MANET
nodes have much more movement freedom, thus MANET clusters can
break apart more easily compared to the street scenario. However,
let us note that the delivery ratio of our solution can be boosted
by repeated sending of urgent packets. For example, when MANET
nodes move at 1 m/s, a urgent packet has about 80% probability to
be successfully routed to the collection tree root. If the node sends
the packet twice, the probability of successful routing raises to 96%;
another repeated send operation achieves the success probability of
99%. Thus, we claim that our solution can achieve a good trade-off
between routing speed and delivery ratio, by significantly improving
data collection in scenarios that do not rely on a fixed infrastructure.



72 SENSOR NETWORK AND SMARTPHONE INTEGRATION

WSN

MANET

Sink Data
source

Sensor node
exit point

Sensor node
entry point

MANET node
entry point

MANET node
exit point

Routing path

Normal data
Urgent data

Path length

Figure 4.9: Setup of the experimental testbed to evaluate WHOO perfor-
mance.

4.6.3 Real World Deployment Evaluation

To thoroughly evaluate our proposal, we conclude the evaluation of
our proposal by presenting three three crucial performance results
collected on our real WHOO prototype: the first set of results shows
urgent data packet latency with and without our cross-network rout-
ing support to evaluate the speed improvement granted by WHOO; the
second one, under the same working conditions, assesses WHOO proto-
col overhead and the third one evaluates the packet delivery ratio and
WHOO resiliency to MANET node mobility. To collect these performance
measurements, we used our WHOO implementation by deploying it in
the heterogeneous wireless network at our campus. On the WSN side,
we developed WHOO components for TinyOS 2.1.1 and installed the
software on our WSN testbed, composed of TelosB sensor nodes man-
ufactured by MEMSIC [73, 125]. On the MANET side, we developed
WHOO in Java, and deployed it on Linux laptops, each one connected
to a TelosB node that enables communications with WSN nodes.

From now on, we refer to Figure 4.9 for the reference deployment
of our practical tests. We set up a chain of sensor nodes of variable
length, the first node acting as root and the last one as data genera-
tor and used two MANET nodes as the entry and exit points. In the
following, we refer to the total number of sensor nodes in the chain
as the total chain length, while the number of sensor nodes between
the WSN entry point and the WSN exit point is the already defined PL
parameter (Section 4.4).

Because we intend to get faster delivery for urgent data, our first
set of experiments assesses how much faster the network can route ur-
gent data while exploiting opportunistically a MANET compared with
the plain use of the WSN. In particular, we measure the time for a
data packet generated by the last node to reach the sink by using
either CTP only or CTP with WHOO. The data source sensor node gen-
erates 200 messages alternately: one normal and one urgent CTP data
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Figure 4.10: Latency for normal and urgent data when using WHOO for dif-
ferent PLs.

packet, each one with a 20-byte long payload and sent every 2s. The
radio interface of sensor nodes runs on a 15% duty cycle. Experimen-
tal results measure latencies by using different total chain lengths and
by making the MANET cover each time the whole WSN except for the
root and data generator nodes; Figure 4.10 shows collected results, as
average values over 50 runs and their 90% confidence interval (verti-
cal bars), as a function of the PL. We can observe that WHOO becomes
convenient when the PL is either 3 or more, i.e. when WHOO allows to
avoid CTP routing on at least three sensor nodes.

Our second set of experimental results on a real testbed estimates
the WSN–MANET integration cost by measuring the overhead due to
WHOO integration protocols (discovery, lazy discovery and advertis-
ing ones). We use the same chain topology of previous tests with the
total chain length fixed to 12 nodes and by progressively increasing
the PL. The data generation rate is the same as that of our previous
experiment, but with 400 messages instead of 200. For each run, we
reset the WSN, wait for 90 s to let CTP routes stabilize and then we
again start the data source node and wait for it to send all messages.
Figure 8 shows collected results: we derive the total traffic as the sum
of sent and received messages on each node by classifying and divid-
ing messages as follows: CTP data traffic, CTP routing traffic, WHOO
advertisements, WHOO discoveries and WHOO discovery replies.

We expect a low overhead and, in fact, WHOO introduces a small
and fixed overhead cost independently of the PL. Even when the PL
is only 1 WHOO slightly relieves sensor nodes from traffic handling
(columns 0 and 1), but as soon the PL increases and WHOO skips more
and more hops on the WSN (and related CTP data packet transmis-
sions), the benefits of inter-routing become stronger and much more
evident. These experimental results can also evaluate the ratio be-
tween the number of saved CTP messages and of additional WHOO
(overhead) messages; let us call O the WHOO overhead, T the total
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Figure 4.11: Overhead when using WHOO for different PLs.

traffic without using WHOO and W the total traffic using WHOO (sub-
tracting the WHOO overhead): the ratio is O/(T −W). For example,
when the value of PL is 1, this ratio is 266/(9104− 8696) ≈ 1/1.5; in
other words, for each WHOO overhead message, the system saves 1.5
messages as whole. When the PL is 8, on the other hand, the ratio
is 266/(9104− 5915) ≈ 1/12, and thus in this case WHOO reduces the
WSN traffic load by more than an order of magnitude.

Finally, our last set of performance results measures how mobility
influences the packet delivery ratio between a fixed WSN sensor node
and a mobile MANET node. As shown by some previous works in the
field, the general problem is complex due to the presence of asymme-
tries in communication links of WSNS both under static and dynamic
conditions [158–160]; our goal here is to assess the reliability of WHOO
protocols, even with MANET node mobility, and to give a qualitative
estimation of WHOO behavior under those dynamic conditions.

We observe that in our reference scenario, namely sparse MANET
nodes roaming and immersed in a dense WSN, communication be-
tween the WSN and the MANET is essentially asymmetric; in fact, it is
probable that a WSN exit point can communicate only with one MANET
entry point; in contrast, a MANET exit point can dispatch urgent data
to a specific WSN node (the one that is advertising the lowest cost), but
if it fails, since the WSN is dense, it is probable that there are other WSN
nodes with a near-optimal cost nearby that the MANET exit point can
communicate with; hence, we are more interested in the results about
the WSN-to-MANET scenario than in the MANET-to-WSN ones. To evalu-
ate performances about communication from the WSN to the MANET,
we use a fixed WSN sensor node and a mobile MANET node. We have
programmed the fixed sensor node so that when it detects a MANET
node advertisement packet, it start generating one urgent data packet
per second and tries to forward it to the MANET node; if it fails, it re-
sends it again after a 30ms delay, and then it gives up. Due to the
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Figure 4.12: Robot carrying a TelosB node. On the background, a fixed sen-
sor node.

intrinsic characteristic of the wireless medium, this communication
could fail if the link is too weak or noisy. To minimize the packet
losses, we added a threshold mechanism that allows the fixed node
to send a packet if and only if the LINK QUALITY INDICATOR (LQI), that is a
synthetic indicator of the reliability of a IEEE 802.15.4 link, is higher
than 95, a value that we chose empirically [161]. We deployed the
sensor node at the center of a 90m long corridor at our campus; we
put the mobile node on a small robot capable of moving at different
speeds, from 0.2 up to 1m/s, which is a good approximation of the
speed of a walking person (Figure 4.12) [162], and we made it to send
one advertisement packet per second, each one with ValidTime of
3s. Let us stress that this specific setup makes communication a hard
nut, mainly for two reasons: first, because the robot moves continu-
ously and traverses areas with both high and low packet reception
rate; secondly, both the WSN and the MANET being extremely sparse,
because we have only one node for both networks, the capacity and
possibility of the WSN node to route urgent data into the MANET layer
are strongly reduced with respect to a more dense MANET scenario.

Figure 4.13 shows the number of packet deliveries successfully com-
pleted and failed at the mobile node using our LQI-enabled threshold-
based sending function plotted for different speeds, from 0.2 to 1m/s.
When the speed increases, the number of successfully delivered pack-
ets decreases because the mobile node spends less time in the com-
munication range of the fixed node.

To further evidence the relevance of the above result, Figure 4.14

plots PACKET RECEPTION RATIO (PRR), i.e., the ratio of packet successfully
received over total sent packets, of packets successfully delivered at
the first and second try, and the percentage of failed deliveries. A
first important finding is that PRR is almost constant regardless of
mobile node speed. The average PRR (averaged over all considered
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different speeds.

P
R

R
 %

Speed (m/s)

Failed Success 2ndtry Success 1sttry

0
10
20
30
40
50
60
70
80
90

100

0.2 0.4 0.6 0.8 1

Figure 4.14: PRR for a mobile node, moving at different speeds, that tries to
communicate with a fixed node, using incoming LQI threshold.

speeds) is 70% and reaches 80%. In addition, focusing on particular
PRR values obtained for each speed, as mobile node speed increases,
the portion of packets delivered at the second try increases too. This
is a consequence of the fact that LQI filtering reduces communication
in grey areas that need to repeat a send for a successful delivery, but
such second tries cannot be completely eliminated; hence as speed
increases and the total number of sent packets decreases, second tries
become proportionally more relevant.

4.7 RELATED WORKS

The use of multi-radio devices in a WSN scenario and the integration
of WSN and mobile nodes, have already been explored with reference
to specific target techniques, without considering the MANET–WSN as
an integrated system. In the following, we sketch a selection of re-
search efforts in three main technical areas, presented in order of
growing similarity with our research: tiered radio-heterogeneous sen-
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sor networks, data harvesting and WSN coordination with mobile
nodes and MANET–WSN integration. Some of these works have been al-
ready presented in Section 3.3; here, we describe them with a focused
comparison to WHOO, rather than to the logical model of Chapter 3.

The usage of heterogeneous radio interfaces to optimize and im-
prove WSN has been already proposed in the literature: Yarvis et
al. [163] demonstrated that using a modest number of reliable long-
range link vastly improves sensor network delivery ratio and bat-
tery lifetime. A practical evidence of that effect is the ExScal project
that deployed more than a thousand sensor nodes with about 200

high-powered dual-radio sensor nodes to provide an always-on high-
speed network overlay usable by all other resource-constrained sen-
sor nodes [127]. Siphon is similar to ExScal but exploits multi-radio
sensor nodes to provide an on-demand traffic management service
that relieves congested traffic [131]. In general, these works assume
that a subset, but relevant, number of sensor nodes provides both a
low-power radio and an IEEE 802.11 interface: this assumption is rea-
sonable in some scnearios, but it is usually not viable for real large
sensor nodes deployments, given the higher cost of dual-radio nodes
adtheir short battery lifetime.

Another hot research area is the one that explored the use of mobile
nodes as data harvesters and as WSN gateways toward the fixed Inter-
net. Chakrabarti et al. [164] proposes usage of mobile nodes whose
path can be predicted as data sinks to lower the power consumption
at the expense of higher latencies, and Wang et al. [165] give interest-
ing theoretical results about the use of mobile relays by showing that
one mobile relay that stores and forwards gathered data to a data
sink can improve a sensor network lifetime up to a factor of 4. The
mWSN architecture proposes a tiered architecture in which sensor
nodes form a cluster around the expected position of mobile nodes
that act as mobile data sinks able to store and forward sensed data
to well-known Internet gateways [166], while a survey of hierarchical
multi-tiered architectures for WSN enhanced by mobile nodes can be
found in [167]. All these works stress energy-saving aspects, but en-
ergy savings come at the cost of higher data delivery latencies, which
becomes critical when dealing with urgent data and MANET node mo-
bility.

4.8 CHAPTER CONCLUSIONS

This chapter proposes a novel solution for opportunistic cross-network
data collection for urgent data, based on the integration of MANETS
and WSNS outlined in Chapter 3. Through analytical and practical ex-
perimental results, we fully assessed the qualities of our proposal by
evaluating both its benefits and its costs. Analytical results show that
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our system can give guarantees about the total integration cost, ac-
cording to strong energy-saving principles that have driven WHOO
development, while the performance results collected on the field
demonstrate that WHOO significantly boosts data collection perfor-
mances and can be easily integrated into existing WSN deployments
to lower the urgent data delivery time. All results show the viability
of our proposal in terms of caused overhead and confirm that the
opportunity of employing mobile MANET nodes equipped with low
power interfaces can valuably contribute to increase data collection
performance.



5 C E N T R A L I Z E D S E N S O R
N E T W O R K M A N A G E M E N T V I A
S M A R T P H O N E I N T E G R AT I O N

THE previous chapter showed an instance of completely distributed
Pervasive Sensing system that does not rely on any fixed infrastruc-
ture. However, if a fixed infrastructure is available then it can be
exploited to coordinate access of mobile nodes to WSN, with the fi-
nal goal of minimizing WSN communications and energy consump-
tion. The main advantage of a centralized approach is that knowl-
edge about the whole network status is available, making it easier to
control in a optimal way interactions between mobile nodes and sen-
sor nodes. Controlling devices in the mobile-infrastructure tier from
the fixed-infrastructure tier is a challenge per se. A large group of
standardization bodies has recently defined the IP MULTIMEDIA SUB-
SYSTEM (IMS) [128]. IMS defines an overlay architecture for session con-
trol in all-IP next generation networks to obtain openness and inter-
operability with an application-layer approach, based on the SESSION
INITIATION PROTOCOL (SIP). A few research activities have already pro-
posed to integrate IMS and WSN, for instance to disseminate data col-
lected from a WSN but, to the best of our knowledge, none of them
considered the possibility to use IMS to deliver highly innovative, in-
teroperable, and ready-to-market energy-efficient solutions for WSN
data harvesting.

This chapter fills that gap by proposing a novel solution that in-
tegrates IMS in the logical model proposed in Chapter 3 with three
original core properties. First, it exploits mobile devices to enable de-
centralized sensed data harvesting and dynamic control/change of
sensor node communication strategies (such as changing radio wake-
up periods). To save further energy, second, it centrally coordinates
mobile devices to avoid unnecessary communications with already
harvested sensors by disseminating lists of harvested sensor nodes
and harvester locations. Third, it is fully compliant with IMS: the diffu-
sion of sensor status and device location data effectively exploits, also
from the energy point of view, the recently standardized IMS-based
PRESENCE SERVICE (PS). Our solution prototype integrates with widely
accepted, internationally recognized, and open-source IMS/WSN im-
plementation platforms and tools, such as OpenIMSCore, OpenSIPS,
UCT Client, and TinyOS components [83, 168–170].

79
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5.1 MOTIVATIONS AND BACKGROUND

This section first defines the main requirements and guidelines for
energy-efficient sensor data harvesting driven by fixed infrastructure.
Next, it briefly introduces the IMS architecture, the IMS-based PS, and
main elements of low-power WSN media access, which are the crucial
technical elements to fully understand our original proposal.

5.1.1 Application Scenario and Design Guidelines

Our target scenario is an environmental monitoring application in-
volving several sensor nodes sparsely disseminated in a smart city.
Sparse WSN deployments are very interesting because single sensors
can usually provide with measurements that are valid for an area
much wider than their communication range. For this reason, in nor-
mal (dense) WSNS, there is the need to add wireless (sensor) nodes
just to route collected data to a gateway, thus increasing WSN deploy-
ment/maintenance costs. We claim the relevance of novel opportunis-
tic solutions where user mobile devices, such as smartphones, could
act as sensor data harvesters by (i) directly querying sensor nodes,
(ii) collecting recorded data, and (iii) especially publishing them to
the Internet via their usually available long-range wireless interfaces.
However, to effectively save energy at sensor nodes, it is overwhelm-
ing important to intelligently coordinate and to adaptively tune data
harvesting operations.

Let us introduce some of the benefits of our energy-efficient ap-
proach with a simple and practical example. Consider a monitoring
service targeting air pollution, with sensor nodes deployed over dif-
ferent city areas, namely busy roads, boulevards, and parks. In addi-
tion, suppose that mobile devices have Internet access via a 4G net-
work composed by WiFi hotspots, deployed along the roads and in
parks, and by a UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM (UMTS)
infrastructure deployed over all city districts. The main goal of our
energy-efficient harvesting solution is to save communication energy
by automatically adapting to the specific conditions a sensor node
operates. In fact, depending on the type of urban area, a sensor node
is exposed to harvesters with different mobility patterns. First, sensor
nodes deployed on busy roads and boulevards would be easily reach-
able from the early morning until evening, and almost completely iso-
lated during the night. Second, depending on the area, data harvester
speed may vary significantly. Third, in areas such as parks, mobility
patterns could be time-dependent: for instance, in early morning the
park is populated by fast moving joggers equipped with their audio-
enabled smartphones, while during lunch times and in the evening
periods potential harvesters are (rather static) users equipped with
their laptops and PDAS. Another important aspect is sensor querying
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frequency. Each sensor node periodically samples and logs air pollu-
tion data; hence, querying it before it has collected an adequate num-
ber of samples is inefficient, especially during rush hours when there
may be a high number of contacts between sensors and harvesters. Fi-
nally, it might happen that a sensor node remains isolated from any
harvester for relatively long time spans; an effective solution for data
harvesting should be aware of this and should switch off the sensor
node radio for some time to save energy.

Existing works have shown the feasibility of distributed access to
WSNS via mobile nodes [8, 124, 171]; however harvesting solutions
managed in the mobile ecosystem by means of open session con-
trol standards, such as IMS, allows to support the execution of all
distributed and possibly complex management operations to save
energy at resource-limited sensor nodes (integrated communication
management, harvester coordination, energy-saving strategy control,
etc.).

Let us note that, from the sketched application scenario, we natu-
rally adapt the design principles described in Section 3.1, followed
in our energy-efficient data harvesting infrastructure: adaptivity, loca-
tion/communication awareness, and resource awareness implemented as
proactivity.

First, and most important, the data harvesting infrastructure should
adapt to dynamically changing sensor communication strategies and
to switch off wireless interfaces whenever possible. In particular, it
should support a long-term power strategy to (de-)activate sensor
communications for a long time span, such as during the night. It
should also implement a short-term power strategy to control sensor
node duty cycle, namely the ratio between the time interval of radio
on and the time interval between two consecutive wake-ups (for in-
stance, when harvesters move relatively fast), duty cycle should be
raised to increase the probability of communication establishment.
Figure 5.1 shows an example of combined long-/short-term power
strategies.

Second, the data harvesting infrastructure should be aware of loca-
tion and communication status to avoid useless transmissions. Mobile
devices should periodically update their locations and attempt low-
power communications for data harvesting only if there are sensors
in their proximity. At the same time, the infrastructure should coor-

Radio off

Radio on

0:00 6:00 9:00 12:00 15:00 18:00 22:00

Figure 5.1: Example of differentiated duty cycles for a sensor node in a park:
high when people jogging, low during lunch time and evening.
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Figure 5.2: IMS distributed architecture. The core IMS components are:HOME
SUBSCRIBER SERVER (HSS); PROXY-CALL SESSION CONTROL FUNC-
TION (P-CSCF);SERVING-CALL SESSION CONTROL FUNCTION (S-CSCF);
INTERROGATING-CALL SESSION CONTROL FUNCTION (I-CSCF); and AP-
PLICATION SERVER (AS) such as our energy-saving management
function. The figure shows also IMS-based presence service com-
ponents: PRESENCE SERVICE (PS); Watcher (we use the label W to
tag an entity acting as watcher); and Presentity (we use the label
P to tag an entity acting as presentity).

dinate data collection to avoid hammering already harvested sensors,
with positive effects on sensor node lifetime. Third, the harvesting in-
frastructure should be proactive, to predict harvester movements and
mobility patterns, thus properly anticipating power strategy changes.
For instance, it should switch off sensors that will be isolated for a
given time, and finely tune short-term power strategy by changing it
before harvester mobility modifications.

5.2 BACKGROUND ABOUT IMS

The provisioning of interoperable session control over heterogeneous
wireless infrastructures, including converged Future Network scenar-
ios with WSNS for environmental monitoring, is still a challenging
issue. To tackle this problem, the large group of standardization enti-
ties that has defined IMS and related services, has recently proposed
IMS PS [128, 172].

Very briefly, the core IMS functional entities are as follows. The
IMS Client controls session setup and media transport via SIP exten-
sions specified by the IETF and 3GPP IMS-related standards; a unique
HTTP-like UNIFORM RESOURCE IDENTIFIER (URI), such as sip:user@domain,
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identifies any IMS Client. HSS stores authentication data and pro-
files for clients by using standard DATA BASE MANAGEMENT SYSTEM
(DBMS). AS allows the introduction of new IMS-based services; the
IMS-based PS and our energy-saving management functions are re-
alized as specific ASS. P-CSCF, I-CSCF, and S-CSCF are the core entities
of IMS. They realize several main functions including: localizing mo-
bile clients within IMS, establishing secure associations with MOBILE
NODES (MNS), routing out/ingoing SIP messages, associating a client
with its S-CSCF (as indicated within the client profile), and modifying
the routing of specific types of SIP messages to ASS depending on fil-
ters/triggers specified by client profiles (IMS filter criteria). Figure 5.2
shows the deployment of all main IMS components presented in this
and in the following subsections.

By specifically focusing on IMS PS, presence is a well-known ser-
vice in the traditional Internet, widely used in applications such as
Instant Messaging or multiparty games [173]. PS allows users and
hardware/software components, called presentities, to communicate
presence-related data to interested watchers. In particular, to receive
PS publish/update messages from presentities, i.e., presence notifi-
cations, watchers subscribe to PS servers that act as intermediaries in
any communication between presentities and watchers. The main IMS
PS components are:

• IMS Clients, which may act as either presentities or watchers.
More precisely, the PS user agent is the entity that provides
PS information about a presentity (for the sake of presentation
simplicity, in the following we use presentity to refer both).

• Presence Servers, which facilitate PS interactions. They accept
and store PS subscriptions from watchers, and notify messages
from presentities to registered watchers.

In addition, PS specifies protocols, such as the XML CONFIGURATION
ACCESS PROTOCOL (XCAP), to tailor notification distribution; additional
detail about IMS and its PS are out of the scope ofthis chapter, inter-
ested readers may refer to [128].

5.3 BACKGROUND ABOUT WSN LOW-POWER ME-
DIA ACCESS

In this section, we briefly analyze the impact of network communi-
cations on sensor nodes battery lifetime and techniques to minimize
their detrimental effects.

Energy is the most important resource for sensor nodes and wire-
less interfaces are widely recognized to be one of the most relevant
components that contribute to drain battery power. For example a
widely adopted microcontroller installed on several WSN nodes draws:
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1.1µA in idle state and up to 1320µA (when running at 4MHz, 2.2V)
[174]. For the sake of comparison the Texas Instruments CC2420, one
of the most common RADIO FREQUENCY (RF) transceiver for WSN nodes
draws: less than 1µA when turned off, 426µA when in idle state, and
around 20mA when active (receiving/transmitting) [175]. The rele-
vant difference between those values show that a sensible manage-
ment of wireless transmissions can vastly improve the sensor lifetime.

Techniques at the MAC level that aim at lowering power consump-
tion of RF transceivers are called LOW-POWER LISTENING (LPL). Their
main goal is to periodically turn on the radio receiver just long enough
to detect whether there is a transmitter nearby and, if there is none,
to turn the radio off as fast as possible. The ratio between the time
spent listening for packets and the interval between two consecutive
checks is called duty cycle. Reducing the duty cycle is the simplest
way to reduce power consumption at the expenses of packet laten-
cies. In fact, nodes using LPL infrequently check for incoming packet,
thus a point-to-point transmission will take more time compared to
the same transmission between two nodes that are not duty cycling
their radio interface. In addition, a node that wants to send a packet
to a node needs to make sure to send it while the receiver radio is on
to wake it up. Each MAC protocol employs a different technique for
waking up receivers, for example repeatedly sending the data packet,
sending a train of specially crafted wake up packets, announce trans-
mission with a long preamble, and so on.

Besides the use of duty cycling there are other techniques that MAC
protocol may adopt to reduce the time the radio is switched on and
achieve a more efficient LPL; among them some of the most prominent
are:

• invalid packet shutdown: a receiver may turn off the radio as
soon as detects that the destination address of the packet being
sent is different from its own;

• early transmission completion: the receiver may acknowledge
the correct reception of a packet, allowing the transmitter to
terminate earlier the transmission;

• auto shutdown: if the radio does not send or receive packets
for a certain amount of time the sensor node goes back to duty
cycling mode.

Each MAC protocol may employ one or more of these and other tech-
niques, based on the transceiver and traffic conditions that it targets,
giving therefore different guarantees in terms of energy consumption
and network performances, additional details are available in [154].
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5.4 ENERGY-EFFICIENT IMS-BASED HARVESTING

This section describes our distributed architecture for energy-efficient
data harvesting derived from the logical model proposed in Chapter
3, and its main components. Then, it shows how our solution ex-
ploits IMS-based session control protocols to coordinate and adapt
the distributed data harvesting task. Finally, it sketches how data har-
vesters interact with sensor nodes to finely and locally tune sensor
node energy-saving strategies.

5.4.1 Distributed architecture

To understand our solution for data harvesting, let us overview the
main entities of our proposal (Figure 5.3). Apart from the IMS infras-
tructure and the PS, there are three main entities: sensor nodes, mobile
nodes as harvesters, and the coordinator. Sensor nodes, at the physical
sensing infrastructure tier, log their measurements and provide them
on request. Harvesters, part of the mobile-infrastructure tier, are the
mobile devices that act as presentities; they query sensor nodes, can
elaborate collected data, publish sensed data to the IMS infrastructure,
and receive notifications about data collected by other harvesters. Fi-
nally the coordinator, that is part of the fixed-infrastructure tier, is our
core component: it acts both as a watcher that is notified about all the
data published by the harvesters and as a presentity that uses publi-
cations to coordinate the harvesting task, by also notifying harvesters
about data they are interested in.

With a closer view to details, sensor nodes have four components, de-
rived from the logical model described in Section 3.2.1: Sensor, Data
Processor, Wireless Interface, and Low-power Strategy Manager. Sensor is
derived from the OS/Sensing component and wraps the access to hard-
ware sensors. Data Processor receives data from Sensor and runs local
processing algorithms to clean it or extract higher level data, then for-
wards it to the Wireless Interface, that realizes the Upper-tier interface,
that sends it on request to harvesters. Finally, the Low-power Strat-
egy Manager receives power management instructions from harvesters
and enforces them on the whole sensor-node system, for example by
accordingly throttling MAC duty cycling.

The harvester consists of four main components, derived from those
described in Section 3.2.2: WSN Access Interface, IMS Presentity/Watcher,
Data Processor, and WSN Low-power Strategy Manager. The WSN Access
Interface realizes part of the Lower-tier interface connecting to sensor
nodes to harvest data and to configure their communication strat-
egy. The Data Processor has two main functions: it aggregates data
harvested from different sparse sensor nodes so to possibly limit
transmissions between the mobile node and the fixed infrastructure;
in addition, it can locally elaborate sensed data by executing algo-
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Figure 5.3: General architecture of our IMS-based architecture for data har-
vesting. The picture does not represent the various components
of IMS for the sake of simplicity.
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rithms, such as harmonic analysis to filter noisy measurements, that
cannot execute directly on sensor nodes due to computing and mem-
ory resource limitations. The IMS Presentity/Watcher effectively real-
izes the Upper-tier interface acting as both presentity and watcher; it
publishes data harvested from sensor nodes, gets notifications about
data harvested from other nodes, updates its own location, and re-
ceives power management configuration to upload on sensor nodes.
Finally, the WSN Low-power Strategy Manager completes the Lower-tier
interface: it translates long-/short-term power strategy control instruc-
tions, received by the coordinator as IMS PS notifications, into low
level WSN control messages; in addition, if needed, it inhibits useless
sensor node querying, for example by avoiding querying a sensor
node whose data was just harvested by another mobile node.

The Coordinator consists of several components, derived from the ar-
chitecture described in Section 3.2.3: an IMS Presentity/Watcher client, a
Data Aggregator, a Persistency Manager, a Web Access Interface, a Sensor
Node Configuration Planner, and a Harvester Configuration Manager. The
IMS Presentity/Watcher client is the Lower-tier interface; it collects mobile
nodes location updates and sensed data notifications by all harvester
nodes, and publishes harvesting updates to coordinate and control
the harvesting task. The Data Aggregator realizes the Data Processing
component: it processes and puts together sensed data using mecha-
nisms more general than the ones available to harvesters, due to its
broader view of current and past sensed data from many sources,
such as evaluating longer temporal span average values for a specific
sensed data type (temperature, pollution, etc.). The Persistency Man-
ager is the implementation of the Data Storage component: it stores
all harvested data on a database that in turn permits to provide a
wide range of additional services. For instance, the Web Access Inter-
face enables HTTP-based access to sensed data by full-fledged clients
and provides also easy-to-use data analysis and data visualization fa-
cilities. Sensor-Node Management and Mobile-Node Management are im-
plemented by the Sensor-Node Confguration Planner and the Harvester
Configuration Manager. The Sensor-Node Configuration Planner collects
statistics about sensor nodes querying frequency and selects adequate
long- and short-term power management strategies to regulate radio
off periods and duty cycling. Finally, the Harvester Configuration Man-
ager duty is twofold: on one hand, it computes the length of the wake
up signal that the harvester must emit to switch on the target sensor
node radio; on the other hand, it inhibits the querying of sensor nodes
that have already been queried in the recent past by other harvesters.

Due to its role as core integration component, it is important that
the Coordinator is able to serve large deployments with good scala-
bility, such as real urban monitoring scenarios with a large number
of harvesters and frequent data publications and harvesting synchro-
nizations. About scalability, we claim that that all main Coordinator
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tasks, namely data harvesting and harvesting synchronization, are in-
trinsically highly parallelizable because they are spatially correlated
and it is possible to apply a strong locality principle to divide dif-
ferent geographical areas and to neatly separate and manage their
internal state, apart from the limited sets of data that characterize
border zones between different areas.

5.4.2 IMS Network Protocols

Two main events trigger messages exchanges in our infrastructure:
harvested data publication and location updates sent by harvesters.

IMS-based data harvesting publication and management requires
five steps. First, after querying a sensor node, the harvester (H) pub-
lishes the data on the PS (step 1 in Figure 5.4), which in its turn
notifies the coordinator (C) with the sensed data (step 2). Then, the
coordinator stores the data in its database (DB) and synchronizes all
harvesters with a harvesting status update notified by means of IMS
PS (steps 3–5). To represent harvesting status, we defined a new XML-
based SIP event package including the following fields [176]:

• addresses of the sensor nodes in that area;
• next time to query the sensor node;
• current communication strategy of each node;
• any needed communication strategy update; and
• whether to instruct the sensor node to switch off the radio after

successful querying and, if so, the time span of the additional
sleep time.

About harvester location updates, harvesters can gather location
information by using various methods (GPS, decentralized wireless-
based localization, and any available IMS-based localization service),
and publish them as a presence notification encoded according the
GEOPRIV standard data format [177]. The coordinator node uses lo-
cation updates to update system harvesting status. Moreover, in large
system including several harvesters and sensor nodes, location infor-
mation allows to divide the notification load according to a physical
locality principle. In brief, by using XCAP it is possible to instruct the
IMS PS to send harvesting status updates triggered by the harvesting
of specific sensor, only to harvesters that are moving in its vicinity.

5.4.3 Sensor Node Energy-saving Strategies Tuning

As detailed in the previous sections, we propose to improve sensor
lifetime by deploying a communication strategy on a per-sensor node
basis, so that each sensor node is configured based on its specific
location and the mobility characteristic of the harvesters that typically
may acquire its data.
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Figure 5.4: Protocol for data publishing, data notification and harvesting
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typedef nx_struct {

nx_uint32_t start_tm;

nx_uint32_t stop_tm;
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} energy_slot_t;
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energy_slot_t slots[0];

} energy_strtg_t;

Figure 5.5: Structure of data packets that carry sensor node energy saving
policies.
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According to our solution guidelines, our infrastructure supports
both long- and short-term power management strategies. The com-
munication protocol between harvesters and sensor nodes is based
on compact packets that easily fit in the limited-length frames sup-
ported by many sensor nodes. Figure 5.5 shows the header of the
packet that uploads a communication strategy on a sensor node, and
a description of it. The first current_tm field contains the current time
represented as standard Unix time and is necessary to compensate
the drift between sensor nodes internal clock and real time, which
is often non negligible because sensor node clocks are usually cheap
and imprecise to minimize their cost. The second field, slots_count,
represent the number of slots contained in the data packet that de-
fine an active period that is a period of time during which the radio
transceiver of a sensor node is active (possibly duty-cycled). The last
field, slots, is an array of structures that define active periods. Each
active period is described by its start time (start_tm), its end time
(end_tm), and the duty cycle, expressed as a 32 bit fixed point value
(duty_cycle).

For each active period slot, the sensor node uses the above configu-
ration parameters to set up two asynchronous timers: one to switch
on the radio at the slot start time and the other to switch it off at its
end. Then, it uses the duty cycle specified by the strategy to check for
transmitters during the on periods.

5.5 EXPERIMENTAL RESULTS

We have tested and evaluated the performance of our solution by de-
ploying it in the heterogeneous wireless network at our campus that
includes both WSN nodes and Cisco WiFi access points. Sensor nodes
are TelosB nodes running TinyOS 2.1.1 [73, 83]. Harvesters are Linux
laptops equipped with an OrinocoGold WiFi card and a TelosB node
that enables communications with WSN sensor nodes. Finally, the IMS
infrastructure components and the coordinator run on Linux boxes,
each one equipped with two 1.8 GHz CPUs and 2048 MB RAM.

As for software components, we have based the development of our
energy-efficient harvesting solution on the currently available stan-
dard technologies for next generation IMS-based mobile multimedia
services. Hence, for session signaling we employed the OpenIMSCore,
an IMS platform that is fully compliant with 3GPP IMS specifications
[128, 168]. OpenIMSCore provides all the basic components of the
IMS infrastructure, e.g., P-CSCF, I-CSCF, S-CSCF, and HSS and a frame-
work to support and manage new ASS. Harvester has been imple-
mented by using standard Linux tools to integrate the sensor node
available onboard and designed to integrate with the open-source
University of Cape Town (UCT) IMS Client that we significantly mod-
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ified to support our energy-efficient data harvesting [170].The power
management strategies implemented at sensor nodes use the default
LPL implementation of TinyOS for TelosB (Box-MAC-2) [154]. Coordi-
nator implementation is based on the eXosip stack [178]. Finally, we
employed OpenSIPS for the PS server [169].

The reported experimental results aim to evaluate three different
and crucial aspects of our proposal: (i) the performances of our IMS-
based support and of the coordinator component; (ii) how the pro-
posed short-term power management strategy can still grant low data
harvesting latency times; and (iii) the significant battery lifetime im-
provements achievable at sensor node via our long-term power man-
agement strategies.

About IMS-based support performances, we refer to Figure 5.3 de-
ployment scenario; reported experimental results, including total re-
sponse time, IMS PS CPU usage, and coordinator CPU usage, are aver-
age values over 100 runs. We concentrate on CPU utilization because,
from our experience, CPU is the main bottleneck in IMS infrastruc-
tures due to the costs of message parsing/forwarding. In addition,
we assume that the number of harvesters that the coordinator has to
notify in the same location (step 5 in Figure 5.4) is 20; in other words,
we have a watcher/presentity (w/p) factor of 20 subscriptions (from
harvesters) for presentity (coordinator). Under those conditions, we
stressed the system by injecting PUBLISH messages over harvester
WiFi interface (step 1) with an increasing rate, from 10 to 120 call
per second (cps) and increasing steps of 10 cps. The system response
time, evaluated from PUBLISH message sending (step 1) to final NO-
TIFY message reception (step 5), always lasts below 20ms with a stan-
dard deviation of 1ms in the [10, 110]cps traffic interval; 120cps is
IMS PS scalability threshold that provokes a sudden response time in-
crease to 800ms. CPU utilization follows a similar trend: IMS PS CPU
load increases linearly from about 2% (for 10cps) to 60% (for 110cps),
then it goes up to 100%. The coordinator instead, does not show any
overload issue: before IMS PS overload, its CPU load is always be-
low 55%. Let us note that those values, obtainable in a centralized
easy-to-manage system, are largely worse in load than in a highly
dense metropolitan monitoring scenarios; for instance, a recent study
about sensor data harvesting frequencies in central London, Taipei,
and Beijing, shows that obtained frequency values are always under
72 cps [179], well below the 120 cps load that our system achieves;
for higher loads, it is straightforward to split the incoming load ac-
cordingly by applying the geographical locality principle as detailed
in Section 5.4.1.

The second experimental result assesses our short-term power man-
agement strategy by measuring the latency time to wake up a sensor
node using LPL for different duty cycles: this measurement assesses
the possibility for a mobile node to wake up a fixed sensor node
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Figure 5.6: Latency time for different sleep times. The radio checks for
senders for an 11 ms long period. The vertical bars show the
95% confidence interval.

even if the mobile node moves quickly and the sensor node runs an
aggressive duty cycling policy that keeps the radio off most of the
time; data harvesting requests are uniformly distributed in a [0, 2]s.
LPL keeps the radio on for a fixed amount of time (11ms) and allows
changing the sleep time; Figure 5.6 reports obtained results (a sleep
time of 0 ms means that the radio is always on): each result is an
average value over one hundred runs, while error bars represent the
95% confidence interval. The average latency time can be considered
as half the sleep time, with a better precision as the sleep time grows,
and is a linear function of the sleep time. Let us stress that when a
mobile node successfully sends a first wake up packet to a sensor
node, the sensor node can switch off radio duty cycling to get better
network performances. The results in Figures 5.6a and 5.6b show that
the time necessary for a first successful communication is predictable
and reasonable short even for very aggressive duty cycling policies
(e.g., the sleep time of 1000ms is a 1% duty cycle).

The third result is an analytical evaluation of the benefits of our
long-term power management strategies; for our analysis, we exploit
Crossbow TelosB energy consumption characterization model and pa-
rameters [73, 125]. In particular, we considered constant energy con-
sumption values for all sensor node components (namely, microcon-
troller load, flash memory reads and writes, sensors sampling, battery
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Figure 5.7: Estimate of battery lifetime for different radio management
strategies and battery sizes.

self-discharge rate) except for the radio. Focusing on the radio duty
cycle, instead, we considered four different strategies:

• LPL with sleep time 1s (“LPL” in Figure 5.7);
• a naïve strategy with sleep time 1s and a radio switching off

period of 8 hours per day (“Radio off during night” in 5.7);
• a more complex strategy with two different radio duty cycles,

respectively for morning and lunch/evening periods with sleep
times 500ms and 1s, such as the one shown in Figure 5.1 (“Fine-
grained communications tuning” in 5.7); and

• an enhancement of the previous strategy with radio switching
off after data harvesting and until next morning, assuming that
sensor node harvesting occurs before noon (“Radio off after
query” in 5.7).

As shown in Figure 5.7 the energy-saving technique enabled by our
solution enhances noticeably the battery lifetime of the sensor node
and permits to obtain an average improvement of 76% in the best case,
i.e., comparing “Radio off after query” and “LPL” graphs, thus prov-
ing the significant contribute of centralized sensor node management
to feasibility of large scale distributed Pervasive Sensing systems.

5.6 RELATED WORKS

Even if a few good papers have started to discuss about the general
benefits and issues of energy-efficient data harvesting in Future Net-
work application scenarios, the research work in IMS-WSN integration
is still in its infancy. We refer readers interested in works about mo-
bile nodes and WSN integration to Section 4.7.

By specifically focusing on the few seminal research studies about
IMS-WSN integration, several works mainly discuss the issues of dis-
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patching sensed data. El Barachi et al. [180] analyze the technical chal-
lenges to integrate WSNS in the IMS architecture, by proposing a gate-
way and a common representation of sensor data. iSSEE is a search
engine that allows IMS applications to get information about sensor
availability, location, and type of sensed data [181]. Finally, iRide is an
IMS application that notifies drivers about hazardous situations on the
road [182]. Differently from above proposals, that typically focus on
IMS-based data dispatching only, our solution explores the possibility
to use IMS to actively coordinate and control WSN management tasks,
such as data harvesting. We foresee this as a very fruitful research
area for the next decade.

5.7 CHAPTER CONCLUSIONS

The project presented in this chapter demonstrates the adaptability of
the logical model presented in Chapter 3, by allowing to effectively
design a energy-efficient solutions for WSNS data harvesting based
on the standard IMS infrastructure. Our tests practically show that a
centralized IMS-based system can manage the coordination of data
harvesting and the adaptive configuration of each sensor node with
minimal impact on data freshness and with a relevant increase in
battery lifetime. We stress that our proposal is fully compliant with
IMS standards and, thus, easily deployable over already existing IMS-
conformant networks. It is important to note that even if they both
tackle the problem of dynamic integration of mobile nodes in WSNS,
the project described in this chapter and WHOO, described in Chapter
4 are not competitors, rather they are complementary: the project pre-
sented in this Chapter leverages a centralized control component to
upload power-efficient strategies on sparse sensor nodes and collect
data, whereas WHOO dynamically exploits in a completely distributed
fashion mobile nodes to route urgent data.
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WE presented in Chapters 4 and 5 two implementations of our log-
ical model to data-centric Pervasive Sensing systems focused on en-
vironment monitoring that opportunistically exploit mobile devices
as infrastructure to support sensing tasks. However, mobile devices,
especially smartphones, are candidates not just as support for WSN,
but also as sensors themselves, due to the large set of sensing hard-
ware that they host on-board, including accelerometers, gyroscopes,
GPSS, microphones and cameras. These new features make mobile de-
vices powerful and complete sensing platforms to continuously watch
and monitor the behavior of users who move and act in the physical
world bringing with them their mobile devices. Moreover, it is possi-
ble to process on the mobile device large sets of locally collected raw
data and to distill meaningful views of the activity currently done by
the user, such as running, cycling, talking, and sitting, by exploiting
signal processing and machine learning algorithms; in brief, we call
the whole continuous sensing process as inferring user current activity.
Many mobile applications can benefit these brand-new mobile sens-
ing capacities and span different areas, from healthcare to homecare,
from safety to smart grids and environmental monitoring, and many
more.

In this chapter we briefly present a healthcare mobile sensing appli-
cation (Section 6.1) that is supported by a continuous sensing library
introduced in Section 6.2. Section 6.3 describes previous works useful
to understand main issues in mobile sensing, Section 6.4 details the
design guidelines stemmed from the analysis of previous work and
the resulting architecture of our sensing library. Section 6.5 delves
into the details of a classifier supported by the sensing library. Fi-
nally, Section 6.6 describes implementation details and assesses the
library performance by comparing it to an existing framework and
to a bare-bone implementation. Section 6.7 summarizes the contribu-
tions of this chapter.

6.1 BEWELL: A HEALTHCARE MOBILE APPLICATION

A leading example of a Pervasive Sensing system that exploits smart-
phones as sensors is BeWell that was created at Dartmouth college
and has been further developed in joint collaboration with Cornell
University and University of Bologna [141]. BeWell is an application

95
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Figure 6.1: BeWell showing user score summary.

for Android smartphones that exploits sensors to automatically es-
timate three wellness metrics: physical activity, social activity, and
sleep. These metrics are normalized in a 0 - 100 score, 0 being the
worst score and 100 being the best, which is shown on request to
users as a popup (Figure 6.1). In addition, BeWell implements a live
wallpaper that allows users to understand what are their scores by
simply glancing the screen (Figure 6.2).

The live wallpaper shows an animated marine environment with
an orange clownfish that represents the user himself. The fish swim-
ming style reflects the level of physical activity: if the score is high the
fish will zip across the screen, if it is low it will slowly drift (Figure
6.2a). The clownfish is surrounded by a school of blue fish that repre-
sent social activity: if the user has many social interactions and talks
to several people then there will be a lot of blue fish that become
fewer and fewer as the score decreases, until the clownfish swims
alone if the social score is very low (Figure 6.2b). Finally, the back-
ground light represents sleep: if the user sleeps enough time then the
marine environment is bright and colorful, otherwise it will become
progressively darker and gloomier (Figure 6.2c).

Physical activity is classified as stationary, walking, or running
by continuously processing accelerometers values. These inferences
are then used to estimate METABOLIC EQUIVALENT OF TASK (MET) value
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(a) Physical activity. (b) Social activity. (c) Sleep.

Figure 6.2: Tutorial of the BeWell mobile application that explains to users
how their scores influences the live wallpaper.

[183]. MET is a physiological measure that estimates the energy cost of
physical activities, from sleeping (0.9 MET) to running (23 MET). Esti-
mated daily MET is then compared with healthy ranges suggested by
CENTERS FOR DISEASE CONTROL AND PREVENTION (CDCP). Social activity
is estimated as a function of the duration of ambient speech during a
day that is detected using a classifier that continuously receives data
from the smartphone microphone. Currently the score is estimated
by comparing ambient speech duration to the typical daily quantities
of speech encountered by people in a field trial, as described in [141].
Finally, sleep duration is currently estimated by a best effort classifier
that uses regression over several inputs (time since last phone usage,
ambient light, physical activity), and achieves a ±1.5 hours accuracy
compared to ground truth. Sleep duration is then converted to a 0-
100 score by mapping it to a normal bell curve that has its peak for 8
hours of sleep, decreasing for much longer or shorter sleep durations.
As part of the research on BeWell, we developed a more accurate
classifier, described in Section 6.5.

Users can optionally upload their data on our web site that allows
to see the historical trend of their wellness scores (Figure 6.3). More-
over, the web site geolocalizes scores, thus allowing users to under-
stand whether there is a correlation between their scores fluctuations
and the places that they attend (Figure 6.4). From the point of view of
researchers, data collected on the fixed infrastructure allows to build
a “mood map” that shows the influences of places on average well-
ness of contributing users.

A key challenge for the realization of BeWell is supporting con-
tinuous sensing on smartphones without reducing too much battery
lifetime and avoiding bad impacts on the quality of smartphone user
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Figure 6.3: Web interface of BeWell that shows user historical scores.

Figure 6.4: Web interface of BeWell showing relationship between physical
activity scores and locations.
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experience. We derived from the experience of BeWell development
an open source library that tackles and solves these challenges, and
can be re-used as basic building block for novel applications based
on smartphone sensing.

6.2 BACKGROUND TO SMARTPHONE SENSING

There are several technical challenges to be solved in designing mo-
bile sensing applications and supports viable and valuable to the
mobile market, mainly because there are still several open technical
issues that affect the mobile sensing practice. First, most of the cur-
rently available solutions are considered vertical ones and make it
difficult to reuse specific components, such as data gathering and en-
ergy management just to cite two typical horizontal facilities. Second,
inferring user activity is a CPU-intensive task that requires retrieving
raw data from sensors, preprocessing them to extract some synthetic
characterizations of sampled signal periods (or features) and using
these features to evaluate and infer actual activity [25]. In other words,
mobile sensing is intrusive and risks to disrupt the overall user expe-
rience, especially because several mobile apps include multimedia
services with strict soft real-time constraints. Third, monitoring tasks
require intensive use of hardware sensors, computing resources, and
storage to continuously gather, process, and save data; those activities
can drastically reduce battery lifetime and should be carefully man-
aged to control and minimize the mobile sensing energy footprint.
Fourth, although early projects used to off-load sensing and process-
ing to external devices [10], modern sensing applications run both
monitoring and processing directly on the smartphone, thus requir-
ing a more careful management of concurrent access to both sensors
and computing resources [184].

To address all above issues, we propose the MOBILE SENSING TECH-
NOLOGY (MOST) solution, a novel Android framework for mobile sens-
ing that aims at offering app developers a set of attractive facilities
and functions to quickly and easily design their own mobile sensing
services. Faithful to the principles described in Section 3.1, MOST ex-
hibits several original characteristics. First, MOST is general-purpose: its
architecture includes some horizontal services, such as sensor control
functions, raw data gathering, power management to allow develop-
ers to focus on sensing logic and to easily wire their own data pro-
cessing code into existing MOST skeletons, without having to deal with
repetitive control and management tasks, demanded to the frame-
work. Second, MOST is non-intrusive on user experience: it has been op-
timized for managing large streams of raw sensing data by carefully
tuning and controlling concurrent access to system resources so to
avoid any useless resource bind and to minimize additional process-
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ing overhead. Third, MOST is energy-aware: it implements an efficient
and flexible power management component that minimizes the im-
pact of sensing applications on battery lifetime and includes several
policies, both pre-defined and configurable by developers, to automat-
ically control the duty-cycle of each sensing task. Finally, MOST is per-
formant: to better underline this original aspect of MOST, we presents
a thorough quantitative comparison with a selection of very close
mobile sensing solutions to show that MOST outperforms other bench-
marked systems in terms of performances and scalability.

6.3 RELATED WORKS

The mobile sensing trend has spurred many research projects that
have focused on a variety of different problems, spanning from power-
efficient signal processing to social sharing of sensed data. We believe
that understanding the goals, the needs and techniques of existing
research efforts is the key to develop a lightweight mobile sensing
framework that is useful and easy to use. Hence, in the following we
report some of the major works in mobile sensing literature presented,
by starting with more simple single ones, such as applications based
on a single sensor, and then moving on to multi-sensor applications,
to conclude with general-purpose sensing frameworks.

The first type of mobile sensing applications includes seminal works
that leverage a single sensor, among the many available on the mo-
bile device (accelerometer, microphone, light, etc.), to gather moni-
toring data and to use them to infer user current activity, such as
walking, running, and standing. Usually, these are typically vertical
“silos” applications that start from raw sensor data, go through a pre-
processing stage, and end with a classification stage. A commonly
used sensor is the accelerometer exploited to infer the current phys-
ical activity of the user [185, 186]; then, recognized activities can be
used in multiple ways, to include promoting green behavior, monitor-
ing fitness, and emergency detection. For instance, UbiFit measures
the physical activity of users to nudge them towards using more en-
vironmentally sustainable means of transportation (e.g.: walking vs.
driving) [10]. GymSkill is another example of a fitness mobile sens-
ing application that monitors and assesses the quantity and quality
of some physical activities that use standard fitness equipment [187].
About healthcare, PerFallID uses accelerometer data to detect user
falls via a simple classification stage based on a threshold whose
value is dynamically adjusted by using data collected from real users
and occurred falls [188]. However, the accelerometer is not the only
sensor used in many people-centric sensing applications: microphone
is also a good source of information to make accurate inferences
about people and environment. For example, the SoundSense real-
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izes a high-level activity inference component that recognizes mu-
sic, speech, and different ambient sound [11]. SpiroSmart, instead, is
an iPhone healthcare app from an analysis user exhaling sound es-
timates breathing parameters, usually obtained via spirometer [13].
The second type of mobile sensing applications explores the possibil-
ity to fuse data coming from multiple sensors toward different possi-
ble goals, such as either increasing classification accuracy or provid-
ing additional features. These proposals are still vertical systems, but
start to adopt more complex architectural solutions that may include
horizontal services, such as in power management. Prominent exam-
ples of these multi-sensor applications, in addition to BeWell itself,
are CenceMe and BALANCE [101, 189]. CenceMe is a personal sens-
ing system that allows users to share their activities with friends on
social networks: it gets data from accelerometer, camera, and micro-
phone, and infers different socio/physical dimensions such as user
activity (e.g., walking, biking, and running), disposition (e.g., happy
and sad), and environmental conditions (e.g. noisy, hot, and bright)
that can be automatically shared on popular social network such
as Facebook and Twitter [102]. BALANCE, instead, based on input
from accelerometer, barometer, GPS, light sensor, humidity and mi-
crophone, aims at automatically estimating calories burst by users
[189].

All these research efforts, together with many ones we cannot cover
here for space limitations, have generated enough momentum to push
the development of the third generation of mobile sensing appli-
cations represented by more comprehensive mobile sensing frame-
works. A seminal work in this direction is the Funf Open Sensing
Framework (in short Funf) [190]. Funf is an extensible sensing and
data processing framework for Android providing a minimal set of
reusable facilities for collecting, locally configuring, and uploading
to remote servers a wide range of sensing activities. First of all, Funf
divides sensors in hardware ones (e.g., accelerometer, microphone,
GPS, etc.) and logical ones (e.g., recorded sound streams, applica-
tion usage data, etc.) and defines data sources abstractions, namely
“probes”, and APPLICATION PROGRAMMING INTERFACE (API) to gather raw
sensing data. However, it presents several limitations: it provides only
low-level sensing data access functions and does not support infer-
ring higher-level activities; its horizontal facilities are very static, such
as power management that only allows for the definition of configu-
ration files indicating the query period of each probe; and it does
not include those micro-/macro-optimizations, such as object reuse,
lightweight resource binding, and so forth, that are extremely impor-
tant to make a framework acceptable in terms of overhead, respon-
siveness, and resource consumption for the final user.
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6.4 DESIGN GUIDELINES AND LOGICAL ARCHITEC-
TURE

As in the previous section, designing a general-purpose mobile sens-
ing is still a complex task that requires a deep knowledge about all
common traits and issues of mobile sensing applications. From our
knowledge and experience of this area, we have identified some main
design guidelines for a logical architecture of our full-fledged sensing
framework that includes not only generalized sensing capabilities but
also horizontal ancillary service, to ease the design of novel, even
complex, activity recognition components, by efficiently taking care
of all low-level system-/resource-management issues and by hiding
unnecessary details.

6.4.1 Design Guidelines

We apply the generic principles of Section 3.1 to MOST. First of all,
mobile sensing applies to several application domains, each one with
its own specific characteristics: sensing can be either continuous or
sparse, classification can be either lightweight or complex, data can
be processed either locally or not. Thus, the framework architecture
should be modular and easy-to-use at two levels: application devel-
opers should be able to quickly create new applications based on raw
data and/or already computed high-level inferences; library develop-
ers should be able to easily plug-in new components, such as support
for new sensors and activity classifiers. To achieve both goals, it is cru-
cial to adopt the modular approach via a layered architecture that clearly
divides the main framework levels: accessing sensors and system re-
sources; inferring activities by processing sensed data; and providing
high-level abstractions to services to query and to register for specific
activity recognition events.

Second, mobile devices must always be responsive to user input
and should not cause any unexpected behavior, such as errors due
to hardware resource locking. Therefore, the framework should be
able to manage and control itself, namely to adaptively tailor all sens-
ing operations that might undermine and degrade user experience,
by resolving all possible conflicts. For example, because the micro-
phone resource can be acquired exclusively by one process sensing at
a time, the framework should automatically switch-off all audio sam-
pling sensing tasks whenever the user receives a call not to interfere
with user expected phone-call behavior. Moreover, user transparency
requires to hide the take-over to library developers without requiring
a deep knowledge of low-level system issues.

Third, the framework should be adaptive, allowing library and ap-
plication developers to flexibly and dynamically change the framework
behavior through easy-to-use configuration primitives and directives.
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Along that direction, the framework should provide a set of con-
figurable management components, especially for sensor and power
management. The sensor management should make it possible to dy-
namically reconfigure all ongoing activity recognition tasks, when ap-
plications/users decide activities on specific sensors. Similarly, since
mobile devices have a limited battery capacity and continuous sens-
ing can significantly reduce battery life time, the framework should
support multiple energy saving strategies and adaptive duty-cycling
approaches, and it should be possible to switch from one approach
to another at runtime, without stopping ongoing sensing tasks.

Fourth, and finally, because mobile sensing applications rely heav-
ily on CPU and memory hungry algorithms that can deteriorate smart-
phone performances, the sensing framework should be resource-aware,
hence carefully designed and tailored to include any possible low-level opti-
mization to reduce overhead and to limit the impact on local resource
usage (CPU, memory, communications, bandwidth, etc.). In particular,
used resources should be carefully bounded and reuse of resources
should be fostered, so to avoid the execution of frequent and heavy
garbage collection operations; hence, whenever possible, resources
should be preferred reusable in pools and employed for both passive
and active entities involved in the whole sensing process.

6.4.2 MoST Logical Architecture

The MOST goal is to provide a high level framework for the devel-
opment of sensing applications that provide out-of-the-box classifica-
tion algorithms capable of inferring high-level activities (e.g., walking,
running, and cycling) from raw sensor data.

Let us all start by introducing some basic MOST concepts and ab-
stractions. First of all, we name Input any source of sensing data (e.g.,
accelerometer, microphone, GPS), while a Pipeline is the component
that encapsulates the application logic to gather, process, and meld to-
gether sensed data. Pipelines process data collected from one or more
Inputs, so to evaluate – typically by exploiting specific classification
algorithms – high-level views of current user activity, such as sleep-
ing, walking, and standing. Conceptually, Inputs and Pipelines are
the basic building blocks to realize new MOST mobile sensing chains
that continuously run and evaluate activity via inferences. According
to our sensing framework resource-aware self-control principle, there
must be a way to interact with and, when necessary, to interrupt parts
of these sensing chains. The Management System is in charge of me-
diating MOST interactions with the external world, by handling two
main types of event: system events, triggered either by the system of
by other apps (e.g., incoming call, battery running out, etc.), and user
events, triggered by the user (e.g., pause all sensing tasks, disable
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Figure 6.5: MOST use case for system/user events handling.

an input, etc.), and controls and coordinates the interactions between
Inputs and Pipelines.

To better ground these concepts and to illustrate the complexity
of the management issues involved in realizing non-intrusive mobile
sensing tasks, let us introduce a simple but real activity recognition
scenario. Suppose that we want to develop a sensing application that
uses a microphone and an accelerometer to recognize the following
activities: walking, running, stationary silent, and stationary speak-
ing user. In order to realize it, we need two Input objects to read,
respectively, the microphone and the accelerometer, and a Pipeline
that encapsulates activity inference application logic. When the ap-
plication is running, Input components read and deliver sensed data
to the Pipeline, which returns the result of the activity recognition
algorithm to the registered application. Now, let us assume that an
incoming call, signaled as an internal system event, arrives while the
sensing application is executing: the framework must immediately
release the microphone to allow user answering the call.

To be more precise, Figure 6.5 details all main interactions between
framework components in the above example. When the incoming
call arrives, the audio-call app broadcasts an event to other inter-
ested apps; MOST, that handles all available system/user events (step
1 in Figure 6.5), dispatches it to our Management System that must
stop sensing processes that require the microphone, release the micro-
phone, and then reacquire it, and restart stopped processes when the
call completes. In particular, the Management System triggers the fol-
lowing chain of actions: it sends a control message to the audio Input
asking it to release the microphone resource (step 2); the Input pauses,
releases the microphone and notifies this state by broadcasting an in-
ternal Input event (within the MOST framework) that can be caught
by all Pipelines using the microphone Input that can either pause
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themselves until the microphone is available again or keep running
without that data (step 3); Pipelines that decide to stop notify their de-
cision to the Management System that keeps track of the whole MOST
internal state (step 4). When the call ends, the Management System
wakes up the microphone Input and notifies all stopped Pipelines
that microphone is available again (step 5). It is important to stress
the relevance of this design that allows continuous access to sensors
and dynamically pausing them on external events, thus minimizing
the impact on user perceived responsiveness of their smartphone, be-
cause it minimizes the possibility of users uninstalling applications
based on MSF due to a detrimental effect of user experience.

After presenting the main MOST components, in the following, we
detail the logical architecture and all entities of our framework that
consists of two main subsystems: Sensing and Management (Figure
6.6).

The Sensing subsystem adopts a three-layered architecture and deals
with all data gathering and data processing aspects: at the bottom
layer, we find Inputs to gather sensing data and to wrap them in easy-
to-manage local objects sent by a Bus to enable internal delivery of
sensed data to all interested Pipelines; Pipelines are the core compo-
nents of the middle layer to work on a global and efficient view; and
finally, at the top layer, the Dispatcher provides to interested apps the
APIs to register to MOST to receive high-level inferences evaluated by
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Pipelines. The Management subsystem, on its turn, coordinates and
controls the whole interaction of the Sensing subsystem with the en-
vironment: the Interaction Layer is the listener that receives internal
(i.e., framework) and external (i.e., system and user) events, while
the Input Manager is the core management component that, accord-
ing to Pipeline needs and currently monitored system/user situation,
coordinates Input and Pipeline execution by propagating Input state
change to Pipelines that can temporarily pause until the needed In-
puts are available again. From this logical architecture, applicable to
any mobile platform, we realized our MOST for the Android platform
that is the most widely adopted one in mobile sensing. In addition,
Android allows sensor access even when the system is in standby, a
key feature needed by continuous sensing systems and is not avail-
able on other mobile platforms (e.g., Apple iOS) [141, 191].

6.4.3 Sensing Components

This section describes some finer-level details of Sensing subsystem
components. The Input component is the data source to enable sens-
ing from local hardware and logical sensors: it gathers data and makes
them available to Pipelines. All Inputs share the same interface, thus
MOST can instantiate them and manage their lifecycle by abstracting
from their internal details: this allows third-party developers to easily
develop and integrate new Inputs. Input instantiation is dynamically
managed by Input Manager according to Input needs expressed by
Pipelines through the Input Factory; then, Input Manager manages
the whole Input lifecycle (Figure 6.7a).

To facilitate programmers with a well-known pattern, the Input
lifecycle is a simplified flow derived from the one of Android com-
ponents [192]. As soon as it is created, Input switches to the Inited
state (Figure 6.7b) in which it is configured and initialized before start
reading sensor data; more precisely, this state makes the Input get all
long-term resources to use for its whole lifetime span, such as inter-
nal buffers to store sensed data. Started state is the actual execution
state in which Input gathers sensing data and pushes them up to
the Bus and eventually to Pipelines; then, when Input has to tem-
porarily stop, it makes a transition from Started to Stopped. Following
the behavior suggested by Android, in Stopped state, Input must re-
lease lightweight resources that can be easily re-acquired afterwards,
including used sensors, such as the microphone released during a
phone call. Finally, in the Stopped state Input can be either destroyed
(to Finalized state that frees all long-term resources) or reactivated (to
Started state again).

The second sensing component is the Bus: it realizes many-to-many
distribution of sensed data samples from each Input to all Pipelines
subscribed to that Input type; to correctly dispatch sensed data to
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Pipelines, it keeps track of both active Pipelines/Inputs and all de-
pendencies between Pipelines and Inputs.

Focusing on the resource usage aspects, we reason on sample, the
minimum chunk of sensed data returned by hardware/logical sensor,
and encapsulate each sample in a DataBundle realized as a container
object wrapping that tags the raw sensed data sample with additional
details useful both for the Pipeline and for the internal resource man-
agement: typical information are Input type, sensing timestamp, and
a reference counter. In particular, let us stress that Input sampling
rate may cause a high rate creation of DataBundle objects, such as
in common cases of using microphone and accelerometer with high
sampling frequency; hence, Pipelines use them, DataBundle objects
could uselessly waste memory resources until they are collected by
the garbage collector, thus wasting CPU cycles too.

Following our main design guidelines, MOST avoids that waste by
using a DataBundle object pool to reduce the average memory foot-
print of the framework, by recycling already used DataBundle objects,
and by using explicit reference counting: when the Input obtains a
new sample from a sensor, it gets a free DataBundle from DataBun-
dle pool and passes it to the Bus; then, the Bus initializes the refer-
ence counter to the number of Pipelines subscribed to that Input and
delivers the DataBundle; afterwards, each Pipelines, once completed
the sampling process, decrements the DataBundle counter; when the
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DataBundle has been used by all Pipelines it is released back to the
pool (Figure 6.8).

We have to better describe Pipelines, the general-purpose skeletons
to be filled with specific activity inference application logic. Pipelines
are designed to be self-contained and easy to dynamically instan-
tiate, activate, and deactivate at runtime. Each Pipeline, identified
via a unique global identifier, has to explicitly declare the Inputs it
wants to subscribe to, and has to follow the Pipeline lifecycle de-
fined by MOST. The unique identifier, currently represented as the
fully-qualified package name, allows applications to unambiguously
choose the Pipelines to use; about Input subscriptions, instead, each
Pipeline has to statically declare them and then, at runtime, Bus
and Input Manager uses those subscriptions, respectively, to deliver
DataBundles and to signal the Pipeline of Input state changes. Finally,
Pipeline lifecycle is similar to Inputs one: Pipelines are first created
and inited; then, while started they can receive raw data from Inputs
and can output inferences; Pipelines can also stop, by temporarily re-
leasing resources; if they are not needed anymore, they are finalized.
At the same time, it is important to note that while Input lifecycle
is mainly driven by external user and system events via the Input
Manager, Pipeline lifecycle is self-contained in the private Pipeline
code that controls and decides needed strategies for state transitions
autonomously, to allow different policy coexistence. For instance, a
Pipeline that takes data from two different Inputs may be able to
work even if one of them is stopped by generating approximate in-
ferences; another Pipeline may not work without the data from all
Inputs and hence should switch to stopped state as soon as any of its
Inputs stops.

The very loose constraints imposed by MOST allow the development
of arbitrarily complex Pipelines, that run in separate threads; how-
ever, it is up to developers not to abuse by designing Pipelines CPU-
and memory-hungry that, in their turn, could cause excessive battery
usage and worsen final user experience.

The last Sensing component is the Dispatcher. It realizes a many-to-
many distribution model to deliver activity inferences from Pipelines
to interested apps. New apps present to the Dispatcher their interest
in receiving activity inferences from a specific Pipeline, and the Dis-
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patcher calls them back, as soon as a new relevant inference is avail-
able. Thanks to MOST dynamic management of Pipelines and Input,
apps can also register for Pipelines that have not been instantiated be-
cause there are not interested clients yet: in that case, Dispatcher boot-
straps the required sensing chain by creating a new Pipeline; symmet-
rically, if all apps de-registered from a Pipeline, the Dispatcher frees
systems resources by shutting it down. Pipeline creation and destruc-
tion triggers the creation/destruction of Inputs, managed by Input
Manager.

6.4.4 Management Components

The Input Manager is the key Management subsystem component
that manages Input lifecycle from instantiation to shut-down thus,
indirectly, influencing also Pipelines lifecycles. When the Dispatcher
creates a new Pipeline, the Input Manager starts all needed Inputs;
correspondingly, when a Dispatcher is destroyed, the Input Manager
also frees all Inputs that are no longer used. In addition to Inputs
de-/allocation, the Input Manager is also responsible for driving the
whole Input lifecycle by triggering their pause, resume, stop, and
restart operations, based on event notification received from the In-
teraction Layer.

The Interaction Layer receives system- and user-events and reports
them to MOST so to avoid their interference with the expected behavior
of the mobile phone, in the sense of non-intrusiveness. The Interaction
level also supports other events, such as low-level battery warning,
screen going on or off, and other user-defined events (that allow users
to stop sensing whenever they want). The Interaction Layer receives
all these events and passes them to the Input Manager, which then
accordingly manages the life cycle of inputs. The Interaction Layer
acts on a strict event-action basis and its support for arbitrary events
provides the building block to develop new power management poli-
cies that drive the duty cycling of Inputs. The current MOST power
management policy leverages the Interaction Layer to implement a
simple duty-cycle policy that periodically pauses and, after a while,
resumes all active sensors; however, the same architecture allows to
easily integrate more complex policies that selectively pause Inputs
by adapting their decision to the current usage context [193–195].

6.5 SLEEP CLASSIFIER

According to the long-term plan to make MOST a complete sensing
library that provides high level inferences to developer, and to refine
the capabilities of the BeWell app, we developed a Pipeline that ex-
ploits the accelerometer to estimate sleep duration.
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6.5.1 Motivation

From the medical point of view, sleeping is a complex activity whose
impact on overall wellbeing depends on its quantity and quality. Qual-
ity of sleep can be evaluated partially via physiological measure-
ments, such as respiration rhythm, alternation between deep and
RAPID EYE MOVEMENT (REM) sleep phases, and limb movement, and
partially via personal evaluations [196]. The proper way to monitor
sleep quantity and quality are polysomnographic studies that use
a polysomnogram to monitor sleep. A polysomnogram monitors at
the same time brain waves via ELECTROENCEPHALOGRAPHY (EEG), eye
movements via ELECTROOCULOGRAPHY (EOG), muscle contraptions via
ELECTROCARDIOGRAPHY (ECG), blood oxygen levels via pulse oximetry,
snoring via microphone, and restlessness via camera. Due to their
complexity and costs polysomnograms are impractical for long term
sleep monitoring. Currently there are no devices that can cheaply run
full-fledged polysomnographic studies on a large scale. Due to this
technological restriction, we focus on the simpler task of measuring
sleep duration. Sleep duration is a coarse indicator of sleep quality,
however it is well correlated to wellbeing [197], and can be deeply
influenced by a wide range of physical and physiological conditions
such as affective disorders, depression, anxiety, hypertension, heart
diseases, diabetes. For example, Schlosberg and Benjamin report in
[198] that heavily stressed people suffer of reduction total sleep time
(an average of 3.8 hours), of longer sleep latency (the amount of time
taken to fall asleep initially), and of more awakenings during the
night.

There exists tools that approximate a polisomnographic study us-
ing additional hardware such as accelerometers strapped to patient
limbs and simplified EEGS [199–201], but they constitute an additional
cost, thus they may not be a viable solution for large scale sleep mon-
itoring. There exist apps that help users keeping track of their sleep
patterns, but they require users to actively input their sleep time, mak-
ing them less appealing to users who are not enough keen on actively
tracking their wellbeing. Using a smartphone for estimating sleep du-
ration has two advantages: first, it does not require any additional
hardware, second, it is based on a device that users often interact
with, thus easing the task of detecting whether the user is asleep or
not.

Inspired by other accelerometer-based devices such as Actigraph
and Fitbit [199, 201], the core idea of the pipeline for sleep duration
estimation is to ask users to keep their phone face-down in bed with
them when they go to sleep: this action can be automatically detected
by a pipeline by processing accelerometer data. Let us state early that
even if we were able to detect whether a phone is on a bed (or not),
that does not guarantee that the user is sleeping (or not); however if
the user complies to the very simple protocol, we can get accurate
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estimations of the time spent in bed, which is reasonably linked with
the actual sleep time.

6.5.2 Pipeline Implementation

Realizing a classifier like the sleep classifier is a three step process:
first, build a dataset of labelled raw data, second, process the raw data
to extract relevant features that summarize their properties, third,
feed it to a machine learning algorithm that trains a classifier that
can label unknown data.

To build the dataset of raw data we wrote a simple accelerometer-
logging application that records at the highest possible sampling rate
data from accelerometers. This application has been used for one
week by three different people, using three different smartphones,
sleeping on three different mattresses, for a total of more than five
hundred hours worth of data. Users manually took note of the time
they put the phone on the bed and the time they took it off, allow-
ing to correctly label collected data. Figures 6.9 and 6.10 show exam-
ples of accelerometer readings respectively collected when the user is
awake and when she has gone to sleep and has put her phone face
down under her pillow, showing that they are qualitatively different
(in the figures the Z axis points towards the outside of the front face
of the screen). It is important to notice that even if the phone is left
face-down on a flat surface, as in the first 10 minutes inf Figure 6.9, ac-
celeration values are much less noisy than values collected when the
phone is in a bed, that gives us confidence that it should be possible
to train an accurate classifier.

We then extracted characterizing features from accelerometer data.
Feature extraction requires deciding the time window in which ex-
tract features. A small time windows allows to be more precise when
running the classifier by reducing the granularity of classification re-
sults, for example a one hour long window allows to infer at what
time the user went to bed at most within a one hour precision, whereas
a one minute window potentially allows to be much more precise.
However, a too small time window may make the classifier less ac-
curate, in other words smaller time windows are easier to misclassify.
We empirically decided to divide sensed data in 5-minutes long win-
dows that are long enough to present significant features but not too
short to boost misclassification. The dataset samples were extracted
using a 5-minutes long window with a 3-minute step (i.e., the first
dataset sample goes from minute 1 to minute 5, the second sample
goes from minute 3 to minute 8, the third sample goes from minute
6 to minute 11, and so on), resulting in more than twelve thousand
samples that were then used for feature extraction. For the sake of
simplicity, in the following we will refer to samples collected while
a phone is face-down on a mattress as sleeping samples and to other



112 SMARTPHONES AS SENSORS

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40 45 50

A
cc

el
er

at
io

n 
(m

/
s2 )

Time (min)

X
Y
Z

Figure 6.9: Accelerometer readings over one hour when the user is awake.
First the phone is resting face-down on a table, then the user
picks it up and walks while keeping it in a pocket until the 25
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Figure 6.10: Accelerometer readings over one hour while the user is in her
bed. Sporadic peaks are caused by the user rolling over.
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samples as awake samples, even if neither of them conclusively proves
that the user is asleep or awake.

Features to extract from a signal in a time windows can be time-
domain or frequency domain; however, since our collected data about
sleep does not seem to contain periodic components that we are in-
terested in, we chose to use time-domain features only because they
are not computationally intensive. In particular, for each five minutes
window we extract for each accelerometer axis:

• average;
• maximum;
• minimum;
• standard deviation;
• ROOT MEAN SQUARE (RMS).

The strong accelerations experienced by a smartphone when the user
is awake, as shown in Figure 6.9, can be easily detected by average,
maximum and minimum values for each time window. Telling apart
when the phone is face-down on a flat surface (e.g., on a table, as
shown in the first ten minutes in Figure 6.9) from when it is in a
bed is more difficult; but it can be picked up by the offset between
accelerations over X and Y axes and by the more noisy values, as
measured by standard deviation and RMS.

Finally, we used the Weka machine learning software [202] to train
the actual model for sleep detection. We tested several industry-standard
algorithms: C4.5 decision tree [203], SUPPORT VECTOR MACHINE (SVM)
[204], Bayesian Network Classifier [205], and random forests [206].
All the resulting models had similar performances; we decided to
use the C4.5 decision tree because it is simpler to implement without
depending on the Weka library. The resulting decision, notwithstand-
ing the large size of the dataset, is rather compact having an height of
4, 11 nodes, and 6, which suggests that it does not overfit the training
data. This intuition is proved correct in Section 6.6.2 that reports the
performances of the sleep classifier.

The resulting classification model has been wrapped in a MOST
pipeline. The sleep pipeline receives accelerometer data from the Bus
and processes it to extract on-line the features that we used to train
the classifier. After five minutes of data processing it passes result-
ing features to the decision tree that classifies them as either awake or
sleeping. The output of the decision tree is then sent to the Dispatcher,
that notifies all components interested in sleep classification. The re-
sulting pipeline is used by BeWell, but as part of MOST it can be easily
reused by any other application (e.g., sleep trackers).
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6.6 EXPERIMENTAL RESULTS

This section presents MOST implementation and shows an interesting
selection of experimental results that compare MOST with the Funf
framework that is the closest one available in state-of-the-art literature
[190]. In addition, it evaluates inference performances of the sleep
classifier described in Section 6.5.

6.6.1 MoST performances

MOST has been realized as a self-contained app that runs on Android
platform and is compatible with version 2.2 up to version 4.2. The
current MOST implementation includes Input objects for the following
sensors: accelerometer, microphone, magnetometer, gyroscope, and
light sensor; in addition, it provides two Pipelines, one based on ac-
celerometer data and one based on audio data. The accelerometer
Pipeline is the one described in the previous section that detects if
the user is actively carrying the phone or if she is resting and has put
the phone under her pillow, by running a classification algorithm that
analyzes maximum, minimum, average, standard deviation, and root
mean square over the three accelerometer axes. The audio Pipeline
recognizes human voice based on some time-domain and frequency-
domain features typically considered in the related literature, namely,
L1-norm, L2-norm, L-inf norm, Fast Fourier Transform, power spec-
tral density across five different band ranges, and Mel-frequency cep-
stral coefficients [25, 101, 141]. These pipelines are representative of
real world workloads, because similar functionalities have been used
by existing works based on continuous mobile sensing.

We compared MOST performances for these two Pipelines, with
other two implementations of the same Pipelines: a native Android
and a Funf solution. The native solution does not rely on any exter-
nal library and runs the barebone minimum code to perform sen-
sor sampling and the feature extraction of audio: this solution repre-
sents the reference to evaluate memory and CPU overhead of other ap-
proaches, namely MOST and Funf. Funf-based solution, instead, uses
two probes (data sources), namely, AccelerometerSensorProbe and Au-
dioFeaturesProbe, that implement the same MOST sensing chain for the
two considered Pipelines. In order to make the test fair and compara-
ble, we disabled the Funf default feature that dumps all data to a local
database because it slows down and worsen system performances, es-
pecially for high sensing frequencies. Let us also stress that the audio
feature extraction code that is the most CPU intensive task has been
coded exactly in the same way for all the compared solutions.

We tested the three implementations (native, Funf, and MOST) us-
ing different sensor sampling frequencies. Audio was tested at 8kHz
and 44kHz sampling frequency, while accelerometer was tested us-
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Figure 6.11: CPU usage for Funf, MOST, and native implementations.

ing the three sampling frequencies made available by standard An-
droid APIS, from lowest to highest frequency: SENSOR_DELAY_NORMAL,
SENSOR_DELAY_GAME, and SENSOR_DELAY_FASTEST. All test have been
run on a Samsung I9100 Android device featuring a dual core ARM
Cortex-A9 processor running at 1.2 GHz and 1 GB RAM.

Our first set of experiments measures the introduced overhead in
terms of CPU. Figure 6.11 shows obtained average CPU usage for each
test setting, for different sampling frequencies and with different ac-
tive Pipelines (only audio, only accelerometer, both); each experiment
has been repeated 33 times and black vertical error bars report 95%
confidence intervals. In general, the results show that MOST has a very
little overhead compared to native, barebone, implementation, thanks
to its careful management of resources. Focusing on the second test
that processes audio at 44kHz, the MOST CPU usage is even smaller
than that of the native solution one: we believe that is because the
thrifty resource management of MOST recycles many of the internal ob-
jects and especially the byte arrays that store audio samples wrapped
in DataBundles; whereas, the simple solution creates a lot of new
objects for each sensing cycle that have to be routinely freed by the
Garbage Collector, thus causing increased CPU usage. That effect is
more noticeable when audio is sampled at 44 kHz because that high
frequency stresses more the sensing code. The last and sixth test, in-
stead, that realistically simulates the accelerometer and microphone
being sampled at the same time, shows the very low overhead of
MOST: the barebone native solution causes 9.9% CPU load on average,
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Figure 6.12: Heap memory usage for Funf, MOST, and native implementa-
tions.

while MOST takes 11.8%, only 1.9% more. On the other hand, Funf
CPU load is 18.9%, almost the double compared to the cheapest so-
lution: that big difference mainly is due to internal Funf architecture
that does not pool objects by completely relying on Android Bundle
objects that are easy to use, but introduce very high overhead [207].

Our second set of experimental results assesses, under the same ex-
perimental conditions, memory usage for MOST, Funf, and native An-
droid; in particular, we have used the heap dump feature of the DALVIK
DEBUG MONITOR SERVER (DDMS) provided by the Android SOFTWARE DE-
VELOPMENT KIT (SDK) that takes a snapshot of current heap status for
a running application by describing the live set of objects allocated at
the moment the snapshot was triggered. Figure 6.12 shows the heap
size in each test settings and highlights the very good performance
of MOST: Funf and native Android solution have a very similar ap-
proach to memory management based on creating new objects for
each sensor sampling and letting the garbage collector remove them,
thus they have very similar heap usages; MOST optimized object pool-
ing, instead, significantly reduces the average heap size by up to 2 MB
compared to them. This good improvement over other solutions is
even more important considered the strict heap size constraints that
Android enforces by default: on lower-end smartphones the maxi-
mum allowed heap size is as low as 16MB; hence, MOST frees valuable
memory resources that can be more fruitfully exploited to increase
activity inference tasks. We also compared MOST heap footprint with
the one of an empty Android application (not shown in Figure 6.12)
that, on our test device, was 8.1 MB; as Figure 6.12 shows, apart when
dealing with high quality audio, MOST footprint is always very close



6.6 EXPERIMENTAL RESULTS 117

Table 6.1: Details of the accuracy of the sleep classifier.

TP rate FP rate Precision Recall Class

0.964 0.076 0.965 0.964 Awake

0.924 0.036 0.922 0.924 Sleeping

Weighted
average

0.951 0.063 0.951 0.951

to that value thus confirming the limited overhead introduced by our
framework.

6.6.2 Sleep Classifier Performances

We trained and tested the sleep classifier using ten-fold cross-validation
as implemented by Weka. The classifier correctly identified 12018

samples out of 12633, i.e., it correctly classified 95.13% of the samples.
Table 6.1 shows more in depth details about the accuracy of the clas-
sifier, reporting them for the two classes that identifies and averaging
them based on the relative size of samples labelled as awake and as
sleeping. The TRUE POSITIVE (TP) rate column shows the rate of TP sam-
ples (i.e., correctly classified samples), while the FALSE POSITIVE (FP)
rate reports the rate of FP samples (i.e., incorrectly classified samples);
the high TP rate (95.1%) and low FP rate (6.3%) prove that the clas-
sifier can reliably infer whether the phone is face-down on a bed or
not. It is interesting to note that the FP rate of the awake class is higher
than the FP rate of the sleeping class, in other words it is easier to mis-
classify a time window as awake even if actually the phone on a bed
(for example due to strong acceleration) than the other way around.
The misclassificated sleeping samples have strong acceleration, caused
by users vigorously rolling over in their bed, that make the classifier
assume that the phone was picked up.

An additional way to assess the performance of a binary classifier,
such as our sleep classifier, is ROC curve. ROC curve shows how TP
rate and FP rate are affected by varying the probability threshold of
the classifier above which a sample is assigned to that class. Figure
6.13 shows the ROC curve for the sleep classifier for the awake class.
The ROC curve of a perfect classifier is represented by a single point
at coordinate (0, 1) that means that the classifier has zero false posi-
tives, i.e., it does not classify any sample of the sleeping class as awake,
and has 100% true positives, i.e., all awake samples are correctly clas-
sified. The diagonal line that goes from (0, 0) to (1, 1), called line of
no-discrimination, represents the behavior of a classifier that randomly
guesses the class of each instance (e.g., by throwing a fair coin). The
colored line in Figure 6.13 is the ROC curve of our classifier. When the
line is dark red the probability threshold to classify a sample as awake
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Figure 6.13: ROC curve of the sleep classifier for the awake class. The gray
dashed line is the line of no-discrimination.

is close to 1, hence a sample is classified as awake only if the classi-
fier is very confident of its output, causing low FP rate and TP rate,
because most samples are rejected. As the line hue becomes green,
the probability threshold goes to 0, hence every sample is classified
as awake because most of them are accepted regardless of the classifi-
cation confidence. The evaluation of the ROC curve confirms that the
sleep classifier performs much better than chance and it is actually
close to an ideal classifier.

From the practical point of view, the sleep time estimated by the
classifier has an precision of ±40 minutes compared to the actual
sleep time per day, thus it is a good improvement compared to the
±1.5 hours error of the best effort classifier originally implemented
in BeWell.

6.7 CHAPTER CONCLUSIONS

This chapter presented BeWell, a wellness app for Android smart-
phones. In particular, we focused on its core sensing library MOST,
a general-purpose high-performance framework for mobile sensing.
The modular design of MOST presents two main architectural advan-
tages over existing solutions: it makes it easy for application-level
developers to exploit the intelligent MOST inferences and allows signal
processing and machine-learning experts to quickly add new Pipelines
without having to deal with all additional technical complexities and
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details of mobile sensing. We also described a pipeline based on ac-
celerometer that exploits simple time-domain features to accurately
and precisely estimate whether the user is laying on his bed or not.
The inferences that it outputs are being used by BeWell, but they are
also available to any other application based on MOST.

In conclusion, MOST design choices have allowed very efficient mem-
ory and CPU management, as stressed by experimental performances,
that make MOST a powerful, easy-to-use, and flexible mobile sensing
platform.





7 S M A R T P H O N E S A S S O C I A L
S E N S O R S : R E C O M M E N DAT I O N
A N D PA R T I C I PAT I V E S E N S I N G

SO far we have shown how the logical model proposed in Chapter
3 allows to model data-centric systems that are focused on data collec-
tion for environmental monitoring, and person-centric systems that run
inferencing algorithms on collected data, such as the MOST library, to
provide to users accurate high-level data that is relevant to their ev-
eryday activities. We call social-centric systems those Pervasive Sensing
system that further scale up the usage of sensing from single persons
to social communities.

In the scenario of socially relevant sensing applications, human
communities can participate as simple recipients of services based
on collected data and as collectors themselves. In the former case
social communities are exploited as collective intelligence agents to
provide users with services based on crowdsensed data. In the lat-
ter case people voluntarily participate in data collection campaigns,
encouraged with monetary or symbolical goods [18, 19]. In this Chap-
ter we present two projects that represent the two cases, called SAIR
and McSense: SAIR focuses on providing mobile software recommen-
dations based on social preferences and crowdsensed usage context,
while McSense on managing crowdsensing tasks.

7.1 SAIR: SOCIO-TECHNICAL AWARE RECOMMEN-
DATION

The sensing capabilities available on smartphones (Section 2.1) rep-
resent the convergence of computing, social, technical and physical
worlds: they can access typical Internet resources such as web sites
and web services, they can retrieve user provided data from social
networks, they can gather technical measurements about service us-
age and they can infer user activities. What is still missing is a gen-
eral support platform able to truly enrich the whole mobile service
management cycle to fully exploit the power of the collective (though
imprecise) socio-technical monitoring information deposit to enhance
service delivery from both social (recommendation of services of in-
terest) and technical (resource and data delivery optimization) points
of view so to improve the QUALITY OF EXPERIENCE (QOE) for final users.

121
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IP MULTIMEDIA SUBSYSTEM (IMS) (Section 5.2), based on the SESSION
INITIATION PROTOCOL (SIP), has recently gained success as the session
control protocol for application delivery over all-IP next generation
networks. IMS specifies a simple and powerful service delivery plat-
form and service composing model, and defines the SERVICE CAPABILI-
TIES INTERACTION MANAGEMENT (SCIM) component to manage integration
and composition of IMS service blocks [208]. At its current stage, how-
ever, IMS still exhibits limitations in the support of integrated moni-
toring and service composition/recommendation management. On
the one hand, the possibility to automatically maintain lists of more
useful and widely used mobile services built around user needs, so-
cial behaviors, and current activities is still widely unexplored in IMS.
On the other hand, SCIM is still a raw composer component with-
out much intelligence: in other words, SCIM is unable to dynamically
exploit socio-technical monitoring information about people, service,
and network usage dynamically (re-)adapt the delivery of composed
mobile multimedia services.

This section addresses all the above issues by proposing a novel so-
lution that exhibits several original characteristics. First, it exploits a
very lightweight component mobile that nodes can deploy to monitor
socio-technical information in three main areas: user physical location
and activity (running, driving, sit down in the office, . . . ), user social
context (friends, common social interests, application used by friends,
. . . ), and service usage (frequency of use, time from last use, messages
exchanged, . . . ). Second, it proposes a novel service recommendation
system that applies scoring and social matching techniques to distill
user common interests and service usage pattern similarities from
monitored data. Third, it presents a new IMS-based SCIM implemen-
tation that uses workflow management abstractions and tools to ease
the mobile service composition process and to enable dynamic adap-
tion and tuning of service delivery at runtime. Finally, our proposal,
called SOCIAL-AWARE IMS-ENABLED RECOMMENDER (SAIR), is fully compli-
ant with the IMS standard and does not require any change on already
installed IMS equipment. SAIR greatly advances the related work in
the field of major flexibility and leveraging service usage information
[209, 210].

In the following we overview background and related work about
the main research areas needed for a full comprehension of our pro-
posal. Then, we motivate the need for the SAIR platform and detail its
distributed architecture and main components in Section 7.1.2. Sec-
tion 7.1.3 presents SAIR platform implementation and experimental
results.
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7.1.1 Background and State of the Art

SAIR operates at the intersection among socio-technical monitoring,
service recommendation, and IMS-based service management plat-
forms for Future Networks. This section gives some technical back-
ground and briefly surveys the current state-of-the-art in these fields.

Socio-technical monitoring of service usage and social context

Traditional monitoring metrics include technical information to eval-
uate service provisioning quality at the system level, such as band-
width usage, latency, CPU and memory load. More recently, various
research efforts on service recommendation are trying to capture and
measure also service usage through higher-level, but still rather social-
agnostic, user engagement indicators. A widely diffused and effective
metric is RECENCY, FREQUENCY, DURATION (RFD) that is a variation of the
RECENCY, FREQUENCY, MONETARY (RFM) marketing model widely used
to evaluate loyalty of customers [211]. The RFD score monitors and
quantifies service usage as a weighted sum of: Recency, measuring
the time elapsed since the last time the service was used; Duration,
namely the fraction of time spent using the service; and Frequency,
the number of times that the service was accessed in a given period.

Focusing on social information, the analysis of user social context
permits to infer interesting data about user interests via informa-
tion provided spontaneously by users, and analyzing behavior and
habits of his social network. Therefore, several research efforts in this
area proposed and studied novel methods and algorithms that ana-
lyze social networks and contents to understand and to extract au-
tomatically from that social information deposit users relationships,
interests, and even their mood [212]; the main problem of those ap-
proaches approach is that they are prone to errors and imprecision.
Therefore, some social network market players, such as Twitter and
Google+, have recently started to explore more pragmatic social con-
text characterization solutions; they encourage their users to classify
their input using the so called hashtags, namely, keywords marked in
user messages by the # symbol (e.g., #IEEE). The goal is to improve
the accuracy of searches on past messages and to ease the aggrega-
tion of similar messages; in fact, relationships between hashtags are
simpler to infer compared to raw text, and they have already been
successfully exploited for content classification and recommendation
[213].

The monitoring of activities in which users are involved while ac-
cessing a service, including both user physical location and current
activity, is another good indicator of service usefulness. For the back-
ground on activity detection we refer readers to Sections 2.1 and 6.3.
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Recommendation Systems

The explosive growth of mobile services and applications numbers
makes almost unfeasible for users to browse all related resources tai-
lored to their specific needs: recommendation systems improve that
situation by collecting information about application usage from pre-
vious users and by using that context data to automatically select and
recommend applications with minimal user intervention. Previous
work in this area has shown that mixing together monitoring data
about service usage, user activities and social interests, allows rec-
ommendations very valuable for final users. The two most important
trends in recommendation are collaborative and social filtering: collab-
orative filtering is more social-agnostic and based on previous service
usage and activity indicators; social filtering, instead, privileges and
looks for social information about users, services, and their social in-
terconnections.

A seminal research effort in collaborative filtering for services is
AppJoy, that automatically rates user interest for a specific applica-
tion based RFD score and suggests to users applications used by other
people with a similar application usage pattern [214]. Woerndl et al.
proposed to use location information to recommend applications, by
observing that the same applications will be used in the same place
(e.g., a bus timetable application will be used near bus stops); thus,
on the basis of geographical location and proximity to points of in-
terest ranked by user-provided score, the system scores application
usefulness and recommendations [215]. Focusing on social filtering,
the key observation of this research trend is that social networks link
the user with people that are like-minded or that she shares some
interests with; thus, the content contributed by people linked to her
indirectly provide information about the user herself. For example
interests, activities and tags of users in the social network of a user
can be integrated in recommendation systems by modeling them as
a graph and using well known techniques, such as random walks, to
predict common interests [216].

Let us stress that while application recommendation systems, both
collaborative and social filtering based, have already been tackled in
the literature, the possibility to leverage socio-technical monitoring
information not only for the benefit of final users, but of the service
provider and network efficiency too is still widely unexplored. In par-
ticular, we are convinced that knowing when, where, how, and by
whom the services are used will lead to improve the efficiency of ser-
vice provisioning. For example, a video streaming service could take
advantage of mobile nodes to relay the stream other nodes in their
vicinity, knowing in advance from common socio-technical profiles
that those users are interested in the same service, content distribu-
tion could be partially off loaded on the client side thus saving band-
width and guaranteeing overall better performances such as [217].
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These services, that we refer in the following as MOBILE P2P (MP2P)
because they are able to take advantage of more decentralized and
mixed service operation modes, are likely to alleviate cellular network
usage, especially in highly dense and overcrowded situations such as
exhibitions, Olympics games, and so forth, through the usage of local
impromptu wireless ad-hoc interactions. Hence, we claim the impor-
tance to evolve recommendation systems to suggest those classes of
services whenever possible according to current socio-technical con-
text.

IMS Platform

The deployment, provisioning, and management of services over het-
erogeneous wireless infrastructures is still a challenging issue. To
tackle the problem, a large group of standardization entities has de-
fined the IP MULTIMEDIA SUBSYSTEM (IMS) framework, that provides a
homogeneous access to multimedia and voice applications, without
imposing a standard structure to services that use it [128]. The main
components of IMS have already been presented in Section 5.2; in this
section we present additional details about integrating additional ap-
plications running in IMS.

IMS services are run and hosted on the APPLICATION SERVER (AS) and
they can be orchestrated to provide more complex, feature-rich ser-
vices. IMS composite services integrate multiple services that act on a
single user session and that are organized in a workflow without the
need to modify their own service interfaces [128, 218]. In particular,
IMS specifications say that service composition and orchestration is
delegated to the SERVICE CAPABILITIES INTERACTION MANAGEMENT (SCIM),
however there are no guidelines on what its responsibilities are and
how it should be structured, thus so far SCIM has been open to various
implementation and researches [208].

We conclude this section with an overview of seminal research ef-
forts done on SCIM and dynamic composition of services in IMS-based
environments, mostly focusing on easing management of compos-
ite services and on providing added value to service providers. Ko-
morita et al. proposed in [209] a framework that allows users to ask
to service providers a specific sequence of loosely coupled services
(e.g.: to transcode and compress a video stream), that are dynami-
cally chained to provide the desired service. Jianxin et al. designed
a multi-tier architecture for next generation networks that supports
service composition and can exploit it to optimize content delivery
[210]. However, those works design solely infrastructure-side architec-
tures and are targeted at optimizing technological aspects only and
do not consider socio-technical recommendation aspects of service
management, such as performance improvements and increased user
satisfaction.
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7.1.2 Social-driven data elaboration for service composition and
recommendation

SAIR is a complete framework that leverages environmental and social
context to suggest services to users, and allows them to easily build
new services based on existing ones to better suit their needs. In fact,
advanced users could be willing to customize a service composing
basic IMS AS building blocks to create new composite service. Just
to give a very simple example, a user could personalize her phone
calling service as follows: she can receive both audio and and video
streaming when she is at home, as audio streams only when walking
and even downsized as text messages when working and in a “busy”
state. The possibility to introduce new composite services paves the
way to new social-aware mobile service scenarios where the service
ecosystem can autonomously evolve and recommend to people with
similar lifestyles and social/activity patterns most popular and val-
ued services. In general, this services composition and social sharing
requires: access to context information (e.g., current activity) for both
service composition and suggestion; a mechanism for service recom-
mendation; and an interface for the simple definition of new com-
posite services. In the following, we describe how these three core
functionalities are distributed between mobile devices and backend
infrastructure, and how context information and service usage data
is processed for service recommendation.

Distributed Architecture

SAIR architecture is organized in three layers: Service Configuration
and Usage Monitoring layer, Infrastructure ayer, and Service Recom-
mendation layer (see Figure 7.1).

The Service Configuration and Usage Monitoring layer consists of
a lightweight software stub (SAIR stub) running on mobile user de-
vices that associates context to service usage; compared to the logical
architecture presented in Chapter 3 it realizes the Mobile Infrastruc-
ture Tier by implementing the Sensing, Data Processing, and Peer
Coordination components (Section 3.2.2). The Service Configuration
and Usage Monitoring layer also includes a web interface that al-
lows to compose services, that can be considered part of the Data
Processing component of the Fixed Infrastructure Tier. The Infras-
tructure layer of SAIR contains IMS and its satellite services, such as
the IMS PRESENCE SERVICE (PS), that run IMS services. They provide
the cross-tier communication interface between mobile nodes and
the fixed infrastructure, that we called Lower-tier interface. The Infras-
tructure layer also contains UniboSCIM, our custom component that
enables service composition, that logically implements Data Process-
ing mechanisms of the Fixed Infrastructure Tier (Section 3.2.3). Fi-
nally, the Service Layer contains all the SAIR components that manage
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Figure 7.1: SAIR distributed architecture and data flow.

and process application context and are part of the Fixed Infrastruc-
ture Tier: the USER CONTEXT STORAGE (UCS) maintains user and ser-
vice socio-technical context (Data Storage component), the SERVICE
RANKER (SR) sorts services by different socio-technical monitoring di-
mensions (Data Processing component), and the SERVICE RECOMMEN-
DATION DISPATCHER (SRD) builds the final recommendations and noti-
fies them to users (Data Processing component). In the following, for
sake of understanding, we describe the data flow that spans these
three layers to sustain SAIR core functionalities in Figure 7.1.

Service Usage and Physical and Social Context Data Collection

SAIR stub is the core monitoring component: it logs service usage and
detects applications that are in the foreground and are actively used.
Then, it links application usage with physical and social context and
dispatches those monitoring data to the infrastructure components
(Figure 7.1, step 1).

Activity context includes both physical location and user activity
and is obtained in completely decentralized way by exploiting cur-
rently available local smart phone sensors. GPS provides the precise
location of the user; when GPS is not available, the SAIR stub switches
to other wireless-based localization techniques with lower precision,
such as Bluetooth co-location and WiFi triangulation techniques. Raw
coordinates are useful to evaluate user spatial vicinity and are also
exploited to determine whether the user is close to a specific place
(e.g., a restaurant, a stadium) by using specialized APIS, such as those
provided by foursquare.com. Accelerometer and microphone can pro-



128 SMARTPHONES AS SOCIAL SENSORS

vide very accurate information about physical activities; in particular,
SAIR uses the same library that enables activity detection in BeWell
(Chapter 6).

To get social context, SAIR requests user permission to access user
personal data on social networks and considers hashtags as privi-
leged social context information, thus avoiding complicate text pro-
cessing. In the current implementation, SAIR can collect and process
hashtags (called tags from now on) from Google+ and Twitter, via
their respective APIS. The basic idea is to obtain a broad indication
of the links between service usage and social tagging, by associating
each running application to all the tags generated by users within a
time window that contains the service usage period. The significance
of this simple association, although initially imprecise, increases when
the number of contributing people grows: the more tags associated to
a service pour in, the higher the probability that more frequent tags
are likely to be the ones to consider.

Transmission of service usage and context is managed by the IMS
PS: SAIR stub acts as a presentity and pushes collected monitoring
data to PS that dispatches them to interested receivers via the UCS
(see Figure 7.1, steps 1 and 2).

Service Recommendation

For service recommendation SAIR follows a novel hybrid approach
that aims to take the best of both collaborative and social filtering
methods, but taking into account also some additional technical in-
formation. The proposed recommendation method consists of three
main phases as shown in Figure 7.2: the first one collects socio-technical
context data at the mobile side; the second one ranks the applica-
tions according to socio-technical dimensions; and the third phase
melds those ranks together to obtain the final recommendation for
final users.

Looking closer to more technical details, SAIR stub, SR, and SRD
work in a pipeline where each stage exploits output from previous
one to output data on its turn over the next stage. In the first phase,
SAIR stub collects and pushes monitoring data to UCS as described in
the previous section. In the second one, SR processes incoming data: it
clusters services usage by geographical area, by tags, and by physical
activity, and then it uses RFD to determine which services are most
relevant within each cluster. SR processes all data of all users and, for
each user, processes all data of his related friends only; in other words,
that approach builds two pools of service usage data, one based on
all users suitable for default recommendations for general population,
and another one based only on data collected from people in a social
relationship with the user (the higher the sociality of the user the
better social-aware recommendations and obtained QOE).
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Figure 7.2: Recommendation process phases: gathering of context associ-
ated to service usage, clustering and ranking of services, and
dispatching of recommendations.
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We define the RFD score as the sum of three scores (sR, sF, and sD),
each one normalized in a [0, 1] interval: RFD = sR + sF + sD. The sR
score measures how recently the service has been used, by weighting
less services that have not been used lately; more formally, sR is the
multiplicative inverse of the time elapsed since the last time the ser-
vice was used, i.e., sR = 1

time_interval_since_last_service_use . The sF
score, instead, fixes a time window and an upper threshold of service
use frequency in that window (number of times a HIGHLY FREQUENTLY
USED SERVICE (HFUS) is launched in the time period), scores the ser-
vice 1 when it has been used more frequently than that threshold,
and sF = number_of_service_launches

number_of_HFUS_launches_upper_bound otherwise. The sD
definition is similar to the sF one, but while sF focuses on frequency,
sD considers the total time sent using a service in the time window;
in brief, a fixed time window and an upper threshold for the total
service use duration of a HIGHLY USED SERVICE (HUS); sD = 1 when the
total service usage time is more than the upper duration time thresh-
old of HUS, and sD = service_usage_total_time

HUS_usagetotal_time_upper_threshold other-
wise. Then SR weights RFD scores with the popularity of the service:
a service used by more people will rank higher than a less popular
service with the same RFD score. Thus, the score of service s1 will
be RFDs1 =

#users_of_s1
#users

(
sRS1 + sFS1 + sRD1

)
; finally, for ease of com-

parison for the final user, SR normalized the obtained scores in the
[0, 100] interval.

The third and last phase is executed by SRD and it is the most ar-
ticulated and value-added one. SRD rank cycle consists of four steps:
getting user socio-technical context; matching user context with ser-
vices clusters ranked by the SR; identifying services whose usage is
favorable for the service provider and boost their scores; and finally
notifying results to the user. In the first step, the SRD filters from the
UCS the clusters corresponding to current social and activity context
of the user: for instance, let us assume that a user is walking in New
York City and recently wrote a tweet about an “#IEEE” (see step 1 in
Figure 7.3). In particular, for each context dimension, SRD looks up
in the SR outputs which are N top ranked applications (in Figure 7.3
N = 2), as scored by RFD. Then, SRD chooses as topmost services to
recommend first those ones that appear more frequently across dif-
ferent clusters and, for those that appear with the same frequency, it
ranks higher the ones with higher RFD scores. Hence, in the exam-
ple shown in Figure 7.3, SRD would rank services in the following
order (not shown in Figure 7.3): A, I, H, B and K starting with A,
the one most frequent one across different clusters, and assuming
RFDI > RFDH > RFDB > RFDK.

When SRD has associated to the user a ranked list of services of
potential interest, in the third step, it adjusts the RFD score of those
services that the service provider is interested in promoting, such as
MP2P services for an overcrowded provisioning area that present a
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Figure 7.3: Service recommendation steps: MP2P services are marked with a
red dot. To reduce figure complexity, SR output from user friends
is not shown.

sudden technical quality indicators drop. In that case, SRD looks for
MP2P services in the temporary recommendation list, and looks how
many people, close to each other in the same location, have recently
used it. If there is a critical enough number, the SRD boosts the score
of MP2P services to further increase their use, namely, services I and
B that would be ranked lower otherwise, as shown in the final right-
most rank in Figure 7.3. Finally, in the fourth and last step, IMS PS
pushes the recommendations to users by concluding the work cycle.

User-driven Service Composition

IMS supports and provides already several services; however users
may have sophisticated requests unlikely to be addressed by available
service: let us recall the example of a user who wants to receive phone
calls as audio stream only when her status is “at work”, as both audio
and video stream when she is at home, and just a text message when
her status is “busy”. Conceptually, this service is still a phone call
service, but it is composed by simpler services that can be expressed
by a simple workflow with a few branches and decision points.

To maximize usefulness of available services and to ease their com-
position, SAIR provides an intuitive user friendly Web application, that
displays services as building blocks to be connected in a workflow by
using a simple GRAPHICAL USER INTERFCE (GUI) to build services based
on existing ones, and so to make them immediately available. SAIR
manages composed services in the same way as simple ones, thus
they can get in the loop of recommendation system and can be au-
tomatically suggested to interested users. In addition, more expert
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Figure 7.4: Internal architecture of UniboSCIM, black arrows represent
main data flows.

users can also mark composite services as MP2P, further enhancing
he possibilities of SAIR of leveraging social information to improve
service provisioning and QOE.

Service composition is managed by our custom SCIM, called Uni-
boSCIM, that does all the heavy lifting to provide an easy way to
express composed services and to run them on IMS. UniboSCIM con-
sists of four working blocks of Figure 7.5: the Data Federator, the
Service Discovery, the Policy Engine and the Service Broker. Data Fed-
erator is the interface that allows context data retrieval (e.g., user sta-
tus, user location, data in the HSS, and especially a console showing
all socio-technical data store by UCS). Service Discovery finds available
IMS services and makes them available for composition. Policy Engine
translates the graphical description of composite services in a busi-
ness process management description, retrieves context data from the
Data Federator to correctly chain services and pushes the description
of the service to run to the Service Broker. The Service Broker receives
the description of the service, retrieves the details of the service via
the Service Discovery and runs them using IMS session management
mechanism, such as the IFC! (IFC!) [218].

7.1.3 Implementation and experimental Results

To evaluate the advantages and the challenging aspects of SAIR, we
fully implemented several prototypes. The user layer software is based
on Android 2.3 (Figure 7.5 shows SAIR Android-based user-friendly
and intuitive interface used by final users) and leverages MOST for ac-
tivity recognition; the infrastructure layer exploits the OpenIMSCore
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Figure 7.5: Google Nexus S phone running SAIR service recommendation
application.

[168]; UniboSCIM has been developed using the Mobicents JAIN
SLEE container [219] and uses the jBPM business process and work-
flow management suite [220]; finally, SR and SRD are custom Java-
based servers. To assess SAIR quality, we evaluate mainly the user ex-
perience, such as the relevance of suggested services and the overall
responsiveness of services. Thus, we have chosen three performance
metrics: accuracy of the RFD scoring for service ranking, system load
when the UniboSCIM aggregates services, and impact of running SAIR
on mobile devices.

Figure shows representative RFD scores of a messaging (Figure 7.6a)
and of a video streaming application (Figure 7.6b) during a working
day, from 8 a.m. to 6:30 p.m. and the gray bars indicate service us-
age time intervals. First of all, we experimentally evaluated on the
field the duration of the time window and of the frequency and the
service usage duration upper thresholds defined in Subsection 7.1.2,
and we found that 2 hours time span, 4 times, and 12 minutes (over
that 2 hours period) are practical values that can be used for com-
mon, uniformly distributed, services. To ease the presentation, the
graphs show the RFD score for the two applications used by a stu-
dent. The video streaming application is used less frequently but for
longer periods, namely, in the early morning when he is commuting,
at lunchtime, and in the evening when he is back home; during those
period the RFD score increases accordingly and that confirms the ef-
fectiveness of our approach since other people in similar situations
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Figure 7.6: RFD score for two services over an interval of 10.5 hours (630

minutes) starting in the morning, when users go to work at 8

a.m., until evening, when they go back home at 6.30 p.m..
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Figure 7.7: UniboSCIM load.

can take great advantage of this recommendation. Similarly, the mes-
saging application is more recommended during the working hours,
due to the higher frequently application use, although service usage
is for shorter time intervals.

IMS services often have soft real-time requirements (e.g., phone
calls), thus it is very important that the SAIR service composition does
neither lower service performance nor reduce user QOE. To assess this
aspect, we ran a stress test on UniboSCIM and IMS, to evaluate how
many clients can be served and the latency in service provisioning
caused by service composition. Figure 7.7a shows that the CPU load on
an average server grows linearly with the number of calls per second,
reaching the saturation at 70 calls per second: considered that the Uni-
boSCIM in our deployment executes both the workflow engine and
IMS session signaling processing on the same host, and according to
performance evaluations about vertical handoff signaling handling in
IMS [221], that is a realistic and satisfactory value. We also measured
the time to set up a sample composited service: our test showed that
OpenIMSCore takes about 610 ms, to which UniboSCIM adds a delay
that, depending on the complexity of the composition, varies in the
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300-600 ms range for a composite service consisting of three branches
and starting up to three services at the same time (according to our
experience, three branches is the usual complexity of real practical
composite services). We can thus claim that the performance impact
of UniboSCIM is acceptable because it introduces a delay that is defi-
nitely compatible with the usual total session set-up time [221].

We also tested the impact of off loading service provisioning on the
mobile side of MP2P services. In particular, we tested bandwidth re-
quirements of a simple video streaming service. We set up a video
streaming service that streams a medium quality video requiring
220kbps and used concurrently by 5 mobile devices over a 3G net-
work. A bandwidth measurement of the devices shows that this ser-
vice takes 223kbps per device, for a total of 1.11Mbps on the cellular
network corresponding to the bandwidth required by the video plus
a control stream. Then, we set up one phone as WiFi access point
(this function is natively supported by Android phones) to receive
and re-broadcast the same video stream to other devices in the same
location: using WiFi it is possible to offload the cellular network of
a very significant 4.7 factor that can be improved further in more
densely populated ares. This simple experiment shows that leverag-
ing social knowledge for technical tuning of services can be good
both for service provider and users.

We are aware that due to the complexity of SAIR, fully assessing its
potentialities, accuracy, limits and performances requires further thor-
ough testing, possibly over a demographically homogeneous group
of people to encourage creation and sharing of composed services.
We plan to test our system by asking a group of university students at-
tending the same department, about fifty people aged between twenty
and twenty-two years, to use SAIR for three months that will allow
us to collecti performance statistics, user feedbacks, and raw context
data. About performance statistics we plan to measure the computa-
tional, memory, and network loads caused by the deployment and, if
we find bottlenecks in our system, using appropriate load-balancing
techniques to improve the scalability of SAIR. User feedbacks will be
used to evaluate the accuracy of suggestion, thus allowing to tune
how context features are weighted to suggest applications. Finally,
raw context data will be used to build a valuable dataset that, merged
with users feedback, can be exploited to train and test alternative
suggestion algorithm based on different approaches, such as pattern
recognitions algorithms and logic-based knowledge basis.

7.2 MCSENSE: CROWDSENSING MANAGEMENT

SAIR shows that social-centric sensing applications that opportunisti-
cally gather data from users can provide valuable services by leverag-
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ing social sensing. However, users are not necessarily passive players
in these category of applications, because they can willingly and ac-
tively collaborate toward continuous data harvesting process (crowd-
sensing). From a social perspective, there is the need to identify people
willing to participate in urban sensing tasks and to find good incen-
tives for participation, not only monetary rewards but also social ones
(e.g. cleaner and safer cities). Once such people are identified, they
have to be involved and kept in the crowdsensing loop, thus foster-
ing people participAction. From a more technical perspective, one of
the main challenges is finding, through a careful management of all
involved resources, a good balance between system scalability and
sensing accuracy for city-wide deployment environments.

At the current stage, although a few seminal works have started
to consider how to facilitate the delivery of crowdsensing tasks and
the collection of their results [38, 39, 222], much work is still to be
done to characterize and manage the urban crowdsensing process
itself due to several open issues. First of all, human behavior is in-
herently difficult to predict and calls for novel approaches based on
probabilistic models. In addition, to design meaningful models, there
is the need to run beforehand extensive experiments to collect large
datasets by involving a high number of socio-technical resources for a
long time duration. Finally, while some efforts have started to appear
in the crowdsourcing research community to mathematically model
and quantify socio-technical resources and the performance of accom-
plished crowdsourcing tasks (completion duration, ratio, etc.) in fixed
Internet settings [223, 224], to the best of our knowledge this rele-
vant effort is still missing in the mobile crowdsensing area, which is
becoming of greater and greater importance due to the tremendous
opportunities offered by people carrying today’s smartphones.

We expand the proposal of SAIR, that does no elicit active user par-
ticipation, with another project, called McSense. McSense is an ongo-
ing project in collaboration with the NEW JERSEY INSTITUTE OF TECH-
NOLOGY (NJIT) that aims at studying the social and technical dynamics
of crowdsensing. In this section, we focus more specifically on task
management issues and propose a novel technical solution that ex-
hibits several original characteristics. First, it proposes a novel geo-
social model that statistically quantifies and describes, in a compact
and easy-to-use way, how socio-technical resource availability varies
in space and time, e.g., people density and vitality. The core idea is
to build time-variant resource maps that could be used as a starting
point for the design of crowdsensing participActions. Second, it stud-
ies and benchmarks different matching algorithms aimed to find, ac-
cording to specific urban crowdsensing goals geo-localized in the ur-
ban environments, the “best” set of people to include in the collective
participAction. Here the technical challenge is to find, for the specific
geo-socially modeled region, the good dimensioning of number/pro-
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file of involved people and sensing accuracy. Third, it presents a new
crowdsensing platform that consists of, on the one hand, an Android
mobile app to ease crowdsensing tasks delivery/execution and col-
lected results upload, and, on the other hand, an infrastructure-side
server to manage crowdsensing tasks and associated incentives. We
have validated the proposed solution over a large set of data collected
for 2 months over a population of 44 people; we present both tech-
nical results about the accuracy/overhead of the employed match-
ing algorithms and the results of a survey to assess user satisfaction
about our crowdsensing mobile app usage and the received incen-
tives. In short, the collected results show that, with relatively low
socio-technical resource overhead, it is possible not only to achieve
good sensing accuracy, but also to minimize monetary incentives nec-
essary to drive user participation.

7.2.1 Background and State of the Art

ParticipAction services typically cross-cut and work at the intersec-
tion of two main research areas: mobile sensing and crowdsourcing
techniques. The current state of the art about mobile sensing has
been already presented in Chapters 2 and 6. In this subsection we
give some technical background and overview mobile crowdsourcing
models and tools for collaborative sensing.

One way to collect sensing data across large cities in a scalable way
is to exploit the full potential of crowdsensing: while crowdsourcing
aims to leverage collective intelligence to solve complex problems by
splitting them in smaller tasks executed by the crowd, crowdsens-
ing splits the responsibility of harvesting information (typically ur-
ban monitoring) to the crowd. Traditional crowdsourcing platforms,
such as AMAZON MECHANICAL TURK (AMT), act as mediators between
task clients, usually called workers, and providers: the introduction
of such platforms has driven specific research efforts that aim at op-
timizing crowdsourcing resources. For example, Bernstein et al. pro-
pose a statistical model and an algorithm to pre-recruit, pool, and pay
workers to minimize task execution time on AMT [223]. Another im-
portant efficiency goal is to minimize the number of workers to get a
sufficiently reliable result; for instance, CrowdSense aims at sampling
subsets of workers and weighting their contributions to efficiently ob-
tain an output that approximates the opinion of the whole crowd
[224].

Although very useful and effective in fixed Internet settings, these
crowdsourcing models, tools, and platforms are typically not suit-
able for mobile crowds because they are unable to exploit the sen-
sors available onboard of mobile devices and do not include context-
aware mechanisms which are necessary for effective mobile sensing
(e.g., task replication to mitigate client mobility or impossibility to
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connect). Therefore, mobile crowdsensing is recently emerging as a
new research area to propose original solutions that enhance and ex-
tend traditional crowdsourcing platforms with the goal of facilitating
the management, delivery, and execution of potentially global mas-
sive tasks of sensing information to mobile clients. In the following,
we briefly report a selection of these projects, from the first seminal
works in crowdsensing to the research activities that are closer to our
proposal.

PERSONAL ENVIRONMENTAL IMPACT REPORT (PEIR) is a smart applica-
tion that exploits mobile phones to evaluate if users have been ex-
posed to airborne pollution, enables data sharing to encourage com-
munity participation, and estimates the impact of individual user/-
community behaviors on the surrounding urban environment [38].
mCrowd is an iPhone app that enables users to post and work on
sensor-related tasks, such as requesting photos of a specific location,
asking to tag photos, and monitoring traffic [39]. mCrowd can accom-
modate other mCrowd users, as well as ChaCha and AMT subscribers,
as workers to complete the posted tasks. Medusa is the project closest
to our effort: it uses a high-level domain-specific programming lan-
guage, called MedScript, to define sensing tasks and workflows [222].
Medusa tasks can be deployed on both mobile phones, for instance
to take pictures or videos, and the AMT platform; it also supports
incentives to encourage user participation. By using MedScript it is
possible to organize incentives, sensing tasks, and processing tasks in
high-level workflows while the underlying Medusa framework hides
the resulting complexities and takes care of task coordination, work-
ers management, incentives assignment, and result collection. PEIR,
mCrowd, and Medusa are important milestones of crowdsensing, but
still do not include any specific model to ease the decisions of mobile
sensing task assignment to people and to quantify urban sensing par-
ticipActions. Our platform aims to fill that gap, as detailed in the
following.

7.2.2 McSense: a Geo-social Mobile Crowdsensing Platform

In its simplest formulation, crowdsensing is a two-step process: as-
sign sensing tasks to users and wait for them to complete the assign-
ments. A more refined approach, taken by McSense is to exploit in-
formation about potential workers and their mobile execution context
(processing power of their phones, battery level, people geographical
location, etc.) to better and more effectively tailor the task assignment
process. In particular, McSense puts task description, task assignment,
and mobile sensing in a closed loop that allows a more efficient and
effective usage of all involved socio-technical resources.

Figure 7.8 shows the McSense sensing lifecycle that consists of three
main modules: mobile sensing, user/region profiling, and task as-
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Figure 7.8: The feedback loop of McSense: users sense surrounding envi-
ronment; McSense profiles their performance and helps design-
ing/assigning new tasks which feed new sensing activities.

signment. The Sensing Management system interacts with the Sens-
ing modules to provide a full-fledged framework for data sensing
including functions to create and describe new sensing tasks and to
analyze sensed data. Mobile sensing is a comprehensive term used to
describe all types of sensing activities carried out by users via their
mobile devices, such as recording noise pollution and taking pictures.
Data processing analyzes the output of mobile sensing to reap the
relevant data for the active sensing task. User profiling processes the
collected data and aims to profile user participAction by drawing ac-
curate estimations about their potential involvement in future mobile
sensing tasks; moreover, to avoid long processing operations and to
improve user experience, McSense includes region profiling to cache
already evaluated user profiles, stored by geo-localized regions, thus
exploiting also the physical locality principle (higher probabilities of
similar profiles in the same region). Task assignment automatically as-
signs tasks to users as function of their characteristics derived by the
profiling module. The task design console is a web-based user inter-
face that enables the creation and publication of new crowdsensing
tasks and includes all tools and support components to ease and as-
sist the design of these tasks. Data processing & visualization provides
active mapping features and exploits over-imposed informative visu-
alization layers to show statistics about completed sensing tasks and
collected data.

Before going on providing more details about these core compo-
nents, let us briefly introduce and define more formally three core
McSense entities: worker, task, and task app. Worker is the user running
the McSense app and specific sensing tasks on her smartphone; in
particular, in McSense, we assume that worker participAction is in-
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centivized with a monetary compensation notified to users with the
request to participate to a crowdsensing action. However, we could
think of that monetary compensation as virtual currency, which could
be translated into other types of incentives in the future (e.g., in-
creased social recognition/visibility and task-related awards). Tasks,
instead, are geo-dependent units of sensing work and are either long-
running, such as recording location via GPS or noise-level via the
microphone for six hours, or one-shot, such as taking a picture of a
specific location. For task localization, we adopt a simplified model
that associates each task with three properties, namely location, area,
and duration: location is the set of physical GPS coordinates; area is a
circle-like region determined by a radius, and a task is successfully ex-
ecuted if the worker executes it within the area; duration is the time
a task remains valid and waiting for possible completion before its
deadline. Finally, to ease the sensing action for workers, we provide
each sensing task with a ready-to-use and intuitive mobile app, called
task app, which includes everything needed to complete the required
task. For instance, for a geo-localized photo, the McSense task app
interacts directly with GPS and WiFi localization functions and only
requires the user to snapshot the picture by pressing a single button.

7.2.3 The McSense Distributed Architecture

The McSense architecture includes three main distributed compo-
nents that map the three phases of data collection and management
into the mobile app, the data backend, and the task control console,
as shown in Figure 7.9. The McSense mobile app acts as an active stub
deployed on the worker smartphone: it receives task offers, allows
users to accept them, and provides the tools to complete them, pos-
sibly with a very simple interaction and user GUI, by accepting the
corresponding task app that seamlessly configures all needed sensors
available onboard. The task apps report their data to the McSense mo-
bile app. In addition, the McSense mobile app collects all data useful
to profile users, devices, and, eventually, regions. When tasks are com-
pleted, it also uploads both sensed data and locally profiling results to
the data backend. Functionally, the McSense mobile app implements
the Sensing, Data Processing, and Upper-tier Interface components of
the Mobile Infrastructure Tier described in Chapter 3.

The McSense data backend is the infrastructure component that re-
ceives data from the McSense mobile app via a public interface, reli-
ably stores and analyzes sensed data to evaluate task-related statistics,
such as the number of workers receiving it, the number of tasks suc-
cessfully completed, and the task completion time. In the proposed
reference logical model it is part of the Fixed-Infrastructure Tier, be-
cause it stores and processes sensed data. The data backend exploits
global visibility to proceed with user profiling by using both tech-
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Figure 7.9: The McSense distributed architecture.

nical and social dimensions. Technical dimensions are system-level
resources, such as number and type of sensors available on the smart-
phone, type of available network interfaces, and available battery. So-
cial ones, instead, focus more on geo-social behavior of workers in
terms of location, such as visited areas and current position, and of
social relationships, such as co-location and social ties. Worker and
region profiles, incrementally refined as McSense collects more and
more data about workers crossing an area, are very useful to tailor
future task assignment and making it more effective.

The last component of the distributed architecture of McSense is
the task control console, used by sensing managers, namely the human
operators who create and assign tasks. Like the previous component,
it is part of the Fixed-Infrastructure Tier, implementing Data Process-
ing and Mobile-Node Management functionalities. The console, apart
from data visualization, offers two main functions: task design and
task assignment. The task design component gives immediate feed-
back to the operators by estimating expected performance for a geo-
localized sensing task. In particular, by using statistics/profiles stored
in the data backend and task-related data (location, area, and dura-
tion), the task design component evaluates the time required and the
number of workers needed to complete the task with a desired prob-
ability. The task assignment component goal, instead, is to define the
optimal set of workers to carry out the sensing task with the targeted
objectives and success level. For example, assigning a task to a user
typically spending much time in an area increases its probability of
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Figure 7.10: The McSense task assignment.

success, whereas assigning it to a user that has been there recently
tends to decrease the time needed for task completion.

In McSense, we prototyped several different task assignment al-
gorithms and thoroughly evaluated their performance based on col-
lected user profile data and real-world user participAction. The Sens-
ing Manager subsystem uses these valuable user/region profiles to
assist sensing managers in the definition and selection of the assign-
ment algorithm that is expected to maximize the performance metrics
they care most, with minimum consumption of associated socio/tech-
nical resources.

7.2.4 Task Assignment Policies

McSense deals with a continuously changing landscape: tasks are dy-
namically described and assigned, while workers roam free and by
following paths that unpredictably change dynamically, making it
difficult to predict the best task-worker assignment schema. McSense
evaluates sensing task performance in terms of three main goal pa-
rameters: success ratio (i.e., ratio of successfully completed tasks over
created ones), completion time (i.e., the interval between task start
time and its successful conclusion), and number of required workers
(i.e., number of workers to activate for task execution). At sensing task
creation time, the sensing manager can either rely on default goal
parameter values proposed by McSense or configure them depend-
ing on the experience stemming from previous task execution runs
and specific application requirements. For instance, for a mission-
critical sensing task, she will choose higher completion probability
with higher number of workers, whereas if the budget is low the she
may be primarily interested in minimizing the number of workers, so
to reduce the associated incentive costs. Moreover, let us stress that
these parameters also represent variables that are mutually depen-
dent and deeply related to the assignment algorithm used to select
workers.
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McSense provides three different policies that, taking as inputs task
properties (e.g., location, area, and duration) and user/region profiles,
assign tasks to workers (see Figure 7.10): random policy, attendance
policy, and recency policy. The random policy does not exploit any con-
text awareness and selects the set of workers to employ as a random
group of available people in the whole city. The attendance policy ex-
ploits knowledge about the time previously spent by people in the
task area; based on that indicator, it chooses and ranks potentially
good workers. The recency policy, instead, favors and selects as work-
ers the people who have more recently (with respect to the creation
time of sensing task) traversed the sensing task area. For each policy,
McSense calculates ranked lists of candidate workers; let us note that
profiling information about people attendance and recency permits to
keep their respective lists much smaller than the one for the random
policy, which will include any user in the whole city area. In addi-
tion, all the implemented policies do not consider workers whose bat-
tery level is below a certain threshold, called battery threshold, at task
starting time because we assume that these workers will unlikely run
the sensing task to avoid battery exhaustion. Finally, the last input
parameter, called workers ratio, is used to decide the percentage of
candidate workers that will receive the task assignment, expressed
as a percentage value in the [0.0, 1.0] range; in fact, since a task can
be completed by any one worker, the sensing manager can set this
parameter to replicate the task to multiple workers so to increase the
completion probability before the deadline.

Given the above inputs and assignment policies our McSense task
assignment component evaluates sensing task performance (success
ratio, completion time, and number of required workers). Moreover,
because completed tasks are typically much fewer than all possible
crowdsensing tasks of potential interest (e.g., some of them could re-
late to scarcely traversed areas), the task assignment component also
runs prediction algorithms to decide how to effectively self-manage
its behavior based on the sensing&profiling data harvested so far. The
primary goal is to exploit the already collected sensing&profiling in-
formation to calculate reasonably accurate performance forecasts and
estimations about future potential tasks in a relatively lightweight
way. The prediction process consists of two phases and exploits the
collected real-world dataset, by dividing it temporally into two parts.
The first phase considers the first part of the dataset as the past
history and builds user/region profiles, such as ranked candidate
worker lists. The second phase, instead, as better detailed in the fol-
lowing, creates synthetic (“virtual”) future tasks and assigns them
to candidate workers selected according to the prediction algorithms;
then it evaluates the performance of the predicted situations. Task
designers take advantage of those forecasts, evaluated offline by our
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prediction process, to get fast feedbacks online about the expected
performance of the sensing tasks they are defining.

With a closer view to technical details, McSense task prediction au-
tomatically and stochastically generates virtual tasks with different lo-
cations, areas, and durations. It emulates their execution based on the
user profile stored in the data backend, in particular based on location
traces: a virtual task is considered to be successfully completed if the
location trace of a user comes in its range. To make the model more
realistic, we also assume that workers whose device battery level is
very low (e.g., less than 20%) will never execute any task, while if the
battery level is high (e.g., 80% or more), they will always execute any
task they can; the probability of executing a task increases linearly
between 20% and 80%. In particular, given a task, its duration, and
the set of workers it has been assigned to, the emulator looks for a
worker within the task area by iterating over worker position records
in the task duration period. When it finds one, it stochastically eval-
uates whether the worker will be able to complete the task based on
its battery level, and then updates the statistics about the policy un-
der prediction by moving to the next worker location record. In the
future, additional user profile parameters can be added, such as task
completion rate or quality of data provided. We run those predicted
situations for each assignment policy implemented in McSense; thus,
sensing managers can exploit these additional data to compare pos-
sible assignment policies and to choose the one which better suits
their needs, being it having a high chance of successful completion,
minimizing the success time, or minimizing the number of workers
involved.

Implementation Insights and Experimental Results

We developed a prototype of the McSense platform to assess its archi-
tecture and the validity of its assumptions. The McSense mobile app
has been implemented as an Android app that runs on the smart-
phones of available workers. The McSense data backend interface
that receives data from the mobile app is a Java servlet, running
on Apache Tomcat 7.0; it uses a PostgreSQL 9.1 database for persis-
tent data storage. The database has been optimized with PostGIS 1.5,
a package to support geographic object storage and indexing: this
upgrade makes geographical queries much faster if compared with
a naïve schema that simply stores coordinates as longitude-latitude
tuples. Finally, the Task control console is an Ajax Web application
based on the Google Web Toolkit at the client side and Apache Spring
at the server side.

As part of our experiment, the McSense mobile app has been in-
stalled by 44 people who often visit the NJIT campus in Newark, New
Jersey, and who volunteered as potential workers. The experiment has
run for two months in the middle of the spring semester, from Febru-
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ary 2012 to April 2012. During that period, McSense has executed
many tasks that collected the following data: location, accelerome-
ter readings, MAC addresses of nearby Bluetooth devices, BASIC SER-
VICE SET IDENTIFICATION (BSSID), capabilities and signal power of WiFi
hotspots, application usage and associated bandwidth usage, battery
level, and photos. During the two-month study, we posted daily sens-
ing tasks requests to all users; workers had competes to get them,
without enforcing any specific assignment policy, such as in the ran-
dom policy.

The collected data from real scenarios of urban sensing have been
used to quantitatively evaluate the emulated performance of our Mc-
Sense assignment policies. In particular, we assigned tasks randomly
placed on a 4km× 4km area centered on NJIT campus. Tasks had an
area with radius in the [100m, 500m] range and duration between 1
and 7 days; according to our prediction process, we used the first part
of the dataset (data sensed in the first month) to evaluate user/region
profiles, while virtual tasks were temporally placed in the second
month. Fixing an area with radius 400m and task duration equal to 3

days, Figure 7.11a shows how selected candidate workers ratio influ-
ences the success ratio of executed tasks: when the workers ratio is 1,
the random policy has the highest success ratio, but employs all avail-
able workers (see Figure 7.12). Let us preliminary anticipate that in
all our experiments we consider a worst case scenario in which tasks
are randomly generated in the whole target 4km× 4km area; hence,
because some tasks may be placed in locations very rarely visited by
workers, none of the considered policies can achieve a 100% comple-
tion rate. If we consider highly-visited locations only, completion rate
would definitely be higher, but the associated results would represent
unrealistically optimistic situations, while we want to derive forecasts
valid for the whole area, including less visited ones. Of course, the
same prediction process may be modified and applied to smaller and
more densely populated areas only. Attendance and recency policies
(with slightly better performance results by recency) have exhibited
better results when the workers ratio is low because they carefully
target task assignment only to users who have higher probability to
accept executing the assignments. In addition, we collected analogous
experimental results by ignoring battery level: as shown in Figure
7.11b, those predictions overestimate the success ratio because they
are based on the assumption that tasks will be executed by work-
ers located within the task area independently of their battery levels,
which typically does not hold in real-world scenarios. That result con-
firms the importance to use technical profiles to forecast workers and
device behavior so to improve task assignment performance.

Relating the task success ratio reported in Figure 7.11a to the num-
ber of workers (Figure 7.12), we remark that the recency and atten-
dance policies allow for very good performance even using fairly low
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Figure 7.12: Number of workers that receive a task assignment as function
of the worker ratio parameter.

numbers of workers. Moreover, they allow to carefully control the
number of workers to involve in the participAction, even for high
worker ratio values: indeed, these two policies always use less than 4

workers because they are able to filter and keep in only good candi-
dates; in other words, their ranked lists of workers are much shorter
than the one for the random policy.

Figure 7.13 shows the impact of task radius on success time: as the
radius increases, the success time decreases, because there is a larger
number of workers who are likely to execute the task; however, the
radius is more relevant for the random policy, mainly because the
attendance and recency policies have already good performance also
for small radius values.

We also collected statistics about task that were actually assigned
to users. First, by observing the user behavior regarding task completion vs.
monetary incentive, McSense could perform a more intelligent task assign-
ment that finds the right balance between budget and data quality. In our
study, users prefer long-term automatic tasks (e.g., collect GPS and
accelerometer readings for a day) to short-term manual tasks (e.g.,
take a photo at a given location), but once tasks were accepted, the
completion rate was higher for manual tasks: that was caused in large
part by certain power-hungry sensing applications that induced users
to abort the tasks when the battery was below a threshold. However
many were willing to recharge their phone during the day due to the
monetary incentive. Similarly, many users seem willing to trade-off
privacy (e.g., location privacy) for money. Second, fault-tolerance mech-
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anisms are needed to cope with poor quality data or not receiving data at
all from users who accepted a task. Assigning more tasks than necessary
(i.e., using high workers ratio) could be a potential solution, although
budget constraints could create impediments. In terms of the quality
of the data collected in our study, we learned two interesting facts: (i)
as expected, a non-negligible percentage of users attempted to “fool”
the system by providing fake data (i.e., for photo tasks); (ii) users are
tempted to accept high-priced short-term tasks with short duration,
but quite often they were not able to complete them. Third, user and re-
gion profiling can help with task decomposition decisions. For example, the
decision how to split long term tasks into several shorter tasks given
to many users or keep the longer tasks and assign them to a few users
is important. Based on our results, the completion rate is higher for
longer tasks, but mobility traces and other parameters should also be
considered when making decomposition decisions. Forth, the places
most frequented by users are a good indicator of task acceptance. In fact,
our results show that users are less willing to take tasks that require
to change their daily routine (e.g., to take a picture on a road that
they do not usually go through for their normal commute) and prefer
those located at highly frequented points of interest in the campus.

7.3 CHAPTER CONCLUSIONS

In this chapter we conclude the scaling up of Pervasive Sensing sys-
tems bringing them from data-centric collection applications to full
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fledged systems that exploit sensed data and social communities to
provide novel, useful services. We have shown that the role of social
communities is two-fold: they can be passively involved for data col-
lection and they can actively and willingly participate to provide data
that is impossible to harvest opportunistically.

For the passive data collection aspect we have presented SAIR, a
system that exhibits the capacity of providing a great user experi-
ence, keep the user engaged over time and build personalized ser-
vices. This work paves the way to a new generation of socio-technical
IMS-based mobile service platforms able not only to keep users in
the service creation and provisioning loop through both ease service
composition tools and automatic recommendation.

We investigated the possibilities of actively involving users in data
collection as part of the McSense project, a full-featured geo-social
crowdsensing platform. Its distributed architecture and data analysis
capabilities make it a flexible and reliable framework for leveraging
sensing crowds in city-wide deployment environments with expected
high density of workers. The reported experimental results show that
McSense assignment policies allow easily tuning the preferred perfor-
mance tradeoff depending on specific task properties.



8 C O N C L U S I O N S

IN the previous chapters we presented our work on Pervasive Sens-
ing systems in Future Networks. Our case studies showed the appli-
cability of our logical model that opportunistically exploits sensing
and networking resources on data-centric, person-centric, and social-
centric systems in five different significant scenarios, that have been
throughly evaluated on simulators and on real-world testbeds. In this
chapter we overview our technical contributions and the future re-
search directions highlighted by this thesis. In Section 8.1 we summa-
rize our main findings, then in Section 8.2 we describe the most in-
teresting and promising future research directions that the work pre-
sented in this thesis has uncovered. Section 8.3 concludes this chapter
and the thesis work.

8.1 MAJOR CONTRIBUTIONS

The analysis of previous researches presented in Chapter 2 shows that
the bulk of sensing tasks (i.e.: actually measuring physical and social
data) is a very well investigated field that can be reliably exploited.
What is still lacking is a deep integration of sensing activities in Fu-
ture Networks that are expected to comprise low-power embedded
devices and mobile personal devices, backed up by powerful servers,
both physical and virtualized in the Cloud (Chapter 2).

The challenges of integrating sensing systems in Future Networks
are twofold: technical and social. On the one hand, there are many
technical issues to address to realize Pervasive Sensing systems mainly
caused by the heterogeneous scenario of Future Networks, on the
other hand, there is the social challenge to provide useful services to
engage users and encourage them to use and participate in sensing
systems. In the following we present our main technical and social
findings. We start with data-centric systems that deal with raw data
collection, then we focus on person-centric systems that process raw
data to provide services to individuals, and finally we describe social-
centric systems that exploit sensing in human communities.

In Chapter 3 we presented a generic, robust module for the develop-
ment of Pervasive Sensing systems, that can be used as reference for
the development and deployment of data-, person-, and social-centric
systems. Our model implements a tiered architecture that supports
sensor nodes, mobile nodes, and fixed infrastructure that makes it
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easy to design scalable systems, and at the same time adopts cross-
tier visibility that allows devices to be aware of the resources and
limitations of other devices. In other words we claim that the key to
realize Pervasive Sensing systems is not to conceal device intrinsic
features and to let devices be aware of the reciprocal heterogeneity
and status: this approach sacrifices the simplicity of assuming that
all devices have similar resources to gain the capability of tailoring
data collection and processing to the actual available resources, and
dynamically adapting these tasks as they cross the boundary from a
tier to another. Differently from existing works [8, 98, 124, 127, 131–
139], our proposal does not mandate all the tiers to be present and all
the tier components to be implemented; rather, it is a highly modular
framework that can be easily adapted to very different sensing sce-
narios, ranging from traditional WSN-based data collection systems
to cloud-backed large-scale sensing deployments.

We tested the logical model by using it as framework for two data-
centric systems in Chapters 4 and 5: the first one exploits mobile
devices that roam in a dense WSN to opportunistically organize rout-
ing bridges that improves data collection performances by reducing
routing latencies for urgent data, while the second one leverages mo-
bile devices as intermediaries that receive configuration data from
the Cloud and upload it on sparse sensor nodes, enabling large bat-
tery savings. The analysis of these systems prove two major claims of
this dissertation: firstly, that the engineering cost of distributing Per-
vasive Sensing systems over heterogeneous devices is compensated
by the performance boost caused by properly shifting workloads on
more powerful devices; secondly, that the detrimental dynamic ef-
fects of Future Networks, caused by node mobility and high packet
loss probability, can be mitigated with opportunistic networking.

Moving on to person-centric systems, Chapter 6 shows that mobile
devices, in addition to being a support to WSN, can directly sense sur-
rounding environment and provide high level inferences about user
activities. In particular, we designed a high-performance reusable
sensing component for smartphones called MoST that provides high-
level inferences about user, that can be easily exploited by program-
mers to quickly develop novel applications based on user activities,
for example by simply tracking them or by adapting application be-
havior based on them. The work presented in this chapter proves that
the guideline of an opportunistic design, already used for dynamic
network integration, is useful also for sensing itself; in fact, even if
smartphones are not primarily designed to be sensors, our work has
shown that robust machine learning techniques can filter out noisy
data and produce meaningful measurements. In addition, we have
identified several techniques and software designs, such as object
pooling to reduce the overhead of Java garbage collection and mul-
tiplexing of sensed data to minimize data processing latencies, that
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maximize the efficiency of mobile sensing software with minimal im-
pact on the quality of user experience when using smartphones, sig-
nificantly improving sensing performance compared to current state-
of-the art mobile sensing software.

We have built upon the techniques and findings of the previous
chapters to design two Pervasive Sensing systems, called SAIR and Mc-
Sense, that provide services to social communities (Chapter 7). SAIR
uses MoST to build a recommendation systems that suggests apps to
users based on their activity, location and interests. We have shown
that RFD scoring is a simple metric that allows to accurately estimate
over time user interest in a given application and that it can be ex-
ploited to rank by relevance applications to real world contexts, such
as location and physical activity. In addition, the experimental as-
sessment of SAIR has shown that the industry-standard IMS platform
can provide a scalable support for the development of collaborative
social-centric sensing applications. McSense explores the possibility
of exploiting users as providers of sensed data (i.e., crowdsourcing) in-
centivizing them with monetary reward, focusing on predictive tech-
niques to drive sensing task to optimize metrics such as task success
probability and cost. The real-world data collected during the Mc-
Sense experiment has highlighted the need for design social-centric
sensing systems to be socio-technical aware to maximize opportunis-
tic sensing performances. Both SAIR and McSense are systems that
keep humans in the loop of sensing, allowing to provide innovative,
useful services and even to collect data that would be very hard to
get in an automatized fashion, thus enhancing Pervasive Sensing sys-
tems and allowing them to thrive. Our logical model has shown to
be a robust framework to develop these systems despite their radi-
cal differences compared to more traditional sensing systems such as
WSNS.

To summarize, in this dissertation we provide design guidelines
and a robust, reusable model for Pervasive Sensing systems. Experi-
mental results, obtained via simulation and real world deployments
show that our design guidelines and logical model, based on oppor-
tunistic approaches, cross-layer visibility, localized interactions, and tiered
architectures, are a successful framework for the design and develop-
ment of Pervasive Sensing systems. Opportunistic networking and
sensing have been proved to be useful tools to exploit resources in
the scenario of Future Networks, whose dynamic behavior makes re-
sources availability very volatile, enabling the development of sensing
systems in an otherwise very hostile scenario. However, opportunis-
tic networking and sensing can not be simply implemented as blindly
and aggressively starting communications and sensing whenever re-
sources are available, due to the heterogeneity of involved devices,
some of which could soon run out of energy: cross-layer visibility
promotes explicitly sharing node status, and in our case studies has
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proven to be a key technique to tune networking and sensing tasks ac-
cording to the resources actually available on very different devices,
that are expected to co-exist in Future Networks. Finally, Pervasive
Sensing systems naturally aim to large-scale deployments, either to
monitor large areas or to provide services to large human communi-
ties; we proved that such large-scale deployments are made possible
by the tiered architecture of our logical model and the localized in-
teractions recommended by our guidelines, that enable scaling by re-
spectively promoting hierarchical organization of devices and avoid-
ing costly long-range communications.

To conclude, in this thesis we strove to strike a balance between
Pervasive Sensing system requirements and their applicability to real-
world scenarios in Future Networks, with their limits and features.
With the extensive experimental evaluation of our work we have proven
the validity of of theoretical background, hoping that it will be use-
ful to the research community to further develop Pervasive Sensing
systems and foster their widespread adoption.

8.2 FUTURE RESEARCH DIRECTIONS

In this dissertation we pursued several important research directions,
however there are still aspects related to the presented work that de-
serve further investigation. In the following we present the principal
research directions that we intend to pursue.

Data-centric systems - While our work showed the valuable contri-
bution of mobile nodes to data collection on sensor nodes, we feel
that there is still room to optimize data collection, by reducing power
consumption and data collection latencies. In particular, we plan to
further exploit dynamic MANET-WSN integration even for non-urgent
data, by supporting delay-tolerant routing. In particular, we aim at de-
veloping novel algorithms with power consumption guarantees simi-
lar to those described in Section 4.4 that dynamically decide whether
to route data or to store it and forward it to a more powerful mobile
node as soon as it is possible. About the opportunistic exploitation
of smartphones to re-configure sensor nodes, described in Chapter
5, we have so far explored the potentialities of IMS for coordination
and the possible power savings on sensor nodes; we plan to refine
the reconfiguration task assignment, currently based on simple geo-
graphical considerations, by profiling users and selectively assigning
to them the reconfiguration of sensor nodes that they are more likely
to roam by, possibly using techniques similar to those presented in
Chapter 7. Let us stress once again that prolonging battery lifetime,
both on sensor nodes and mobile nodes, is a very important step to
make Pervasive Sensing systems viable in real-world scenarios, hence
additional research in this direction is needed.
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Person-centric systems - We claim that the MOST component described
in Chapter 6 for mobile sensing is an important step to promote
the development of novel applications based on smartphone sens-
ing, allowing programmers not familiar with signal processing and
machine learning techniques to directly get high-level inferences. We
have two main goals for the development of MOST: the first one is
transforming it in a full-fledged system for data collection, the second
one is to make it usable even to non-technical savvy researchers. We
will achieve the first goal in three steps: first, we will integrate more
inputs and high-level inference algorithms (e.g.: user stress level from
voice processing and environment context via geo-localization). The
second step is implementing several power management policies to
reduce the impact on smartphone battery lifetime, for example by
adapting sensing rate to the time of the day and to current user ac-
tivity. In the final step we will complement MOST with a server-side
support, capable of automatically harvesting high level inferences
from smartphones. The second goal, i.e. making MOST available to
non-technical researchers, is motivated by the feeling that MOST could
be a great instrument to help psychologist and sociologist tracking
human behavior in a non-intrusive fashion, collecting information
that has always been unavailable until now. Hence, we plan to de-
velop a simple applications that asks researchers what kind of data
they want to track (e.g.: location and stress level via voice process-
ing), configures accordingly MOST and automatically compiles it as
an Android application ready for the deployment, that will automat-
ically upload sensed data to a server. We feel that these extensions
to MOST will make it an important building block for both the devel-
opment of Pervasive Sensing systems and a powerful aiding tool for
psychological studies and tracking physical and mental behavior. It
is possible that some of signal processing and machine learning al-
gorithm will have CPU or memory requirements unavailable in the
foreseeable future on smartphone. Even though we do not currently
plan to directly investigate this problem, we feel that the integration
of MoST with cloudlets, i.e. resource-rich computer clusters available
for use by nearby mobile devices [52], would be an interesting re-
search topic showcasing the potentialities of both mobile sensing and
dynamically-instantiated cloud services.

Social-centric systems - Our research, reported in Chapter 7, and ex-
isting and ongoing works on crowdsensing have just started scratch-
ing the surface of the potentialities of including people in the sensing
loop. A very interesting topic is how to best incentive user participa-
tion to sensing. We believe that the capabilities of MOST for sensing
and the already presented work put us in a good position to fur-
ther study what influences willingness of participating in sensing,
how much users are willing to go out of their way to provide re-
quested data, how rewards can be tuned for data can be passively
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collected vs. data that needs active user participation, and what kind
of rewards (e.g.: monetary, virtual badges) most improve or reduce
sensing task success. On a larger scale, we believe that social-centric
systems based on MoST, SAIR, and McSense can greatly contribute to
research on smart cities. In fact, the high-level inferences collected by
MoST, together with the collaborative filtering techniques of SAIR and
crowdsensing capabilities of McSense, deployed in a city-wide sce-
nario allow to run social evaluations, (e.g., analyze people commute
habits and derive their carbon footprint, identify places that promote
social interactions and physical activities) and develop several novel
services (e.g., suggest city sightseeing tours based on automatically
built user profiles, realize collaborative journalism services, provide
navigation services that relieve traffic by exploiting global knowledge
of people location and direction).

8.3 FINAL REMARKS

The recent technological advances are making the vision by Mark D.
Weiser of a “calm technology” that disappears while still providing its
services a reality [1]. This profound change in technology and society
is being pushed by several concurrent trends: the pervasiveness of
sensing devices, the availability of powerful personal mobile devices,
the possibility of dynamically integrating heterogeneous network, the
consistent accessibility of computing and data storage resources on
the Cloud in wired and wireless scenarios.

We believe that Pervasive Sensing systems will play a pivotal role
in this change, because they are the technological enabler that truly
make computer systems aware of real world environments, allows to
interact with it and let them perceive the activities and intentions of
users, thus making possible to seamlessly provide targeted services
to users with minimal effort. Due to the findings reported before,
supported by the publication record obtained from this dissertation,
and to the promising future research directions, we are convinced
that this thesis can foster future research activities and have an impact
on the design of Pervasive Sensing systems in Future Networks.
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