Documenti full-text disponibili:
Abstract
Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones.
The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions.
The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.
Abstract
Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones.
The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions.
The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.
Tipologia del documento
Tesi di dottorato
Autore
Cardone, Giuseppe
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/5773
Data di discussione
19 Aprile 2013
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Cardone, Giuseppe
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/5773
Data di discussione
19 Aprile 2013
URI
Statistica sui download
Gestione del documento: