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Abstract 
 

Enterobacteriaceae genomes evolve through mutations, rearrangements and 

horizontal gene transfer (HGT). The latter evolutionary pathway works through the 

acquisition DNA (GEI) modules of foreign origin that enhances fitness of the host to a 

given environment. The genome of E. coli IHE3034, a strain isolated from a case of 

neonatal meningitis, has recently been sequenced and its subsequent sequence 

analysis has predicted 18 possible GEIs, of which: 8 have not been previously 

described, 5 fully meet the pathogenic island definition and at least 10 that seem to be 

of prophagic origin. 

In order to study the GEI distribution of our reference strain, we screened for the 

presence 18 GEIs a panel of 132 strains, representative of E. coli diversity. Also, using 

an inverse nested PCR approach we identified 9 GEI that can form an 

extrachromosomal circular intermediate (CI) and their respective attachment sites 

(att). Further, we set up a qPCR approach that allowed us to determine the excision 

rates of 5 genomic islands in different growth conditions. Four islands, specific for 

strains appertaining to the sequence type complex 95 (STC95), have been deleted in 

order to assess their function in a Dictyostelium discoideum grazing assays. 

Overall, the distribution data presented here indicate that 16 IHE3034 GEIs are more 

associated to the STC95 strains. Also the functional and genetic characterization has 

uncovered that GEI 13, 17 and 19 are involved in the resistance to phagocitation by 

Dictyostelium d thus suggesting a possible role in the adaptation of the pathogen 

during certain stages of infection. 
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1 Introduction: 

1.1 Escherichia coli 
Escherichia coli is a gram-negative bacteria belonging to the gamma-proteobacteria 

class of microorganisms. The vast majority of Escherichia coli strains live within the  

healthy human organism without causing disease; the colonization generally begins a 

few hours after birth setting up a mutual benefit relationship. E. coli are generally 

non-pathogenic bacteria but in an immune-compromised host they find a way to 

breach the gastrointestinal barriers it 

may happen that strains that were 

harmless in the digestive tracts start to 

cause diseases. E. coli has been 

identified as a versatile bacteria with a 

an ability to reorganize its genetic 

material in order to adapt to the 

environmental conditions in which it 

grows[42].  

Pathogenic E. coli can be divided into 

two major sub-groups depending on 

the location where they cause disease. 

The Intestinal Pathogenic E. coli (InPEC) 

cause bowel diseases such as diarrhea, 

bloody stools and comprises pathotypes 

such as enterotoxigenic (ETEC), 

enteropathogenic (EPEC), 

enterohemorrhagic (EHEC), 

enteroinvasive (EIEC), diffusely adherent (DAEC) all causing infections to the human 

intestinal tract. The second group of strains are the Extraintestinal Pathogenic E. coli 

(ExPEC) includes both human and animal pathogen causing urinary tract infections 

(UPEC) while others cause neonatal meningitides (NMEC) [5, 14]. 

ExPEC strains represent a major cause of morbidity, as it is responsible for 85-95% of 

uncomplicated cystitis cases and for over 90% of the episodes of uncomplicated 

pyelonephritis in premenopausal women. It has been estimated that 40-50% of 

Fig. 1: Sites of pathogenic Escherichia coli 
colonization. (Croxen et. al 2010) 
Pathogenic Escherichia coli colonize various sites 
in the human body. EPEC, ETEC, DAEC colonize the 
small bowel and cause diarrhoea, whereas EHEC, 
EIECcause disease in the large bowel; EAEC can 
colonize both the small and large bowels. 
UPECenters the urinary tract and travels to the 
bladder to cause cystitis. Septicaemia can occur 
with both UPEC and NMEC, whereas the latter can 
cross the blood–brain barrier into the central 
nervous system, causing meningitis 3. 
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women will experience at least one case of UTI due to E. coli during the lifetime, with 

one fourth of these cases becoming a recurrent infection within 6 months of initial 

infection. Extra-intestinal strains are also responsible for episodes of catheter-

associated UTIs (25-35%). NMEC together with Streptococcus agalactiae (GBS) are 

the leading causes of neonatal meningitis, accounting for an estimated 20 to 40% of 

the cases, with a fatality rate ranging from 25 to 40% and with neurological sequelae 

affecting 33 to 50% of survivors. These strains account for 17% of the cases of severe 

sepsis, with a mortality rate of approximately 30%. There are also strains that can be 

associated with intra-abdominal infections and nosocomial pneumonia and that 

occasionally participate in other extraintestinal infections, such as osteomyelitis, 

cellulitis and wound infections[25, 26, 65]. 

These kinds of diseases have never captured the public attention because they do not 

cause dramatic epidemics like those that cause food borne illness, thus 

underestimating the health and economic impact that they have. The high plasticity 

and rate of mutation of the E. coli genome is one variable that leads to the high 

number of diseases and the increasing antimicrobial resistance of the ExPEC strains. 

These characteristics translate into a large burden  on the healthcare systems 

increasing the already heavy strain due to the actual economical environment; it is 

thus clear that a better understanding of E. coli is necessary in order to reduce the 

impact on healthcare[40].  

1.1.1 E. coli classification methods 

In order to classify E. coli many different typing methods have been developed; the 

most used ones are the multi-locus sequence typing (MLST) and the Phylogenetic 

groups.  

MLST is a generic typing method for the molecular characterization of bacterial 

isolates that is robust and easily accessible. It has been employed principally, but not 

solely, to type bacterial pathogens and its strength relies on the fact that it is based 

explicitly on the same population genetics on which was based the multilocus enzyme 

electrophoresis (MLEE). MLST has the additional aims of providing a unified bacterial 

isolate characterization approach that generates data that can also be used for 

evolutionary and population studies of a wide range of bacteria regardless of their 

diversity, population structure, or evolution[47]. This methodology is based on the 

sequencing PCR of seven highly conserved housekeeping genes (purA, adk, icd, fumC, 



 9 

recA, mdh, gyrB) as it can be seen 

in Fig. 2. The sequences are then 

concatenated and aligned through 

a program such as eBurst; each 

unique combination of alleles was 

assigned a sequence type (ST). 

Related STs were assigned to so-

called ST complexes (STC), using 

the principles of the eBurst 

algorithm: each ST complex 

includes at least three STs that 

differ from their nearest neighbour 

by no more than two of the seven 

loci while ST complexes differ from each other by three or more loci. STs not 

matching the criteria for inclusion were referred to by their ST designation[81]. E. coli 

demonstrated to be a clonal bacteria and as Wirth and colleagues have pointed out 

the strains appertaining to a given ST or STC tend to have similar virulence factors 

and thus phenotypes. This is particularly true for very conserved STCs like: STC10 

were almost all the non-pathogenic phylogenetic group A strains group or STC95 

strains that are all of the phyl. group B2 and carry the K1 capsule gene cluster.  

This typing method is highly used by clinical microbiologists and epidemiologists as it 

is very robust and reproducible. The limit of this typing technique is that, in order to 

create an homogeneous classification of the bacterial populations, it requires a 

common agreement on the alleles (and their order) to be used [47].  

Originally phylogenetical grouping was performed using techniques like MLEE and 

ribotyping that are complex, time-consuming and also require a collection of typed 

strains. Thirteen years ago (2000) Clermont et. al. proposed a rapid and simple 

method for typing Escherichia coli that uses a triplex polymerase chain reaction to 

amplify three targets genes. The markers were: chuA, a gene required for heme 

transport in enterohemorrhagic O157:H7; yjaA, a gene of unknown function 

identified in a E. coli K-12 strain and an anonymous DNA fragment designated 

TSPE4.C2. 

Fig. 2: MLST genes and genomic position (Wirth et. 
al 2010) 
Genomic disposition of all the 7 alleles used for the 
MLST analysis.  
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The results of these three amplifications 

made it possible to establish a 

dichotomous decision tree (Fig. 3) that 

could attribute to any typed strain a 

phylogenetical group out of the four 

possible (A, B1, B2, D)[12].  This new 

typing method used by Clermont allows 

a faster and easier discrimination of the 

strains appurtenance to a 

phylogenetical group with an accuracy 

ranging from 80-85%[30]. The previous 

methods, due to not-common pattern of 

bands, assigned some strains to smaller 

sister groups (ABD, AxB1) that had a 

typing profile which was intermediate to between A and B1. 

1.2 E. coli diversity: when boundaries are not so clear. 
The high rate of mutation and plasticity of E. coli genome is the peculiarity that allows 

this bacteria to survive and thrive in different enviroments ranging from waste water 

to human/animal body. Bio-informatic analysis of the ever-growing collection of E. 

coli genomes allowed to understand that bacterial genomes comprise stable regions 

that form the “core” genome and variable regions that form the flexible gene pool. [3] 

Also genomic comparisons revealed that non-pathogenic E. coli genomes size varies 

from the 4,6Mb of the non-pathogenic strains to the 5.7Mb of the pathogenic and 

Asymptomatic Bacteriuria (ABU) strains. ExPEC virulence factors exhibit distinct 

patterns of phylogenetic distribution. This provides evidence of both, vertical and 

horizontal transmission of the corresponding virulence-associated genes as well as of 

host-specific associations and strong associations among different virulence-

associated genes[18]. The constant typing effort allowed the identification of 

phylogenetic groups into which the major E. coli pathotypes cluster together (Fig. 4). 

Fig. 3: Phylogenetic group decision tree 
(Clermont et al.) 

Dichotomous decision tree to determine the 
phylogenetic group of an E. coli strain by using the 
results of PCR amplification of the chuA and yjaA 
genes and DNA fragment TSPE4.C2. 
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The majority of the non-pathogenic strains cluster together in the group A, ABD, 

AxB1; while the intestinal pathogenic strains tend to cluster in the AxB1, B1 and D 

groups. It is important to understand that the groups AxB1 and ABD are sister groups 

to the B1 group. Intestinal pathogenic E. coli strains derive from phylogenetic groups 

A, B1 or D or from ungrouped lineages and are seldom found in the fecal flora of 

healthy individuals as the mere acquisition of these bacteria by the naïve host is 

sufficient for disease to ensue. Each intestinal pathotype possesses a characteristic 

combination of virulence and fitness factors that allow the colonization of specific 

niches and results in a unique diarrheal syndrome. 

The B2 cluster is where almost all the ExPEC strains group while the remaining 

strains belong to cluster D. Extraintestinal strains have acquired various virulence 

genes that allow them to induce infections outside the digestive system in both 

normal and compromised hosts. ExPEC are incapable of causing gastrointestinal 

disease, but they can asymptomatically colonize the human intestinal tract and 

become the predominant strain in approximately 20% of normal individuals[40, 71]. 

Fig. 4: Schematic representation of the E. coli pathogenic organization.  

E. coli  can be divided in pathogenic and non-pathogenic strains. Pathogenic strains can be further 

divided in Intestinal pathogenic or in Extra Intestinal pathogenic strains depending on where they 

cause a disease. In the image are represented to which phylogenetic groups the different pathogroups 

are associated.  
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ExPEC strains carry a broad range of virulence factors, distinct from those found in 

InPECs, that allow them to colonize host mucosal surfaces, avoid or subvert local and 

systemic host defense mechanisms, scavenge essential nutrients such as iron, injure 

or invade the host, and stimulate a noxious inflammatory response[40]. Due to extra-

intestinal E. coli ability to survive either in or out of the gastrointestinal tract the 

definition of non-pathogenic strains has been hard to define. As colonizing sites 

outside the gut are unlikely to provide any selective advantage in terms of 

transmissibility, it is clear that any so-called ‘‘extra-intestinal virulence factors’’ are 

likely to have evolved to enhance survival in the gut and/or transmission between 

hosts, and therefore will be shared with at least some commensal strains. So this 

ability to fluctuate between mutualism, commensalism, opportunistic pathogenesis or 

even specialized pathogenesis make Escherichia coli the perfect candidate to study 

the boundaries between pathogenicity and commensalism[18, 74].  

1.3 Pathogenesis of ExPEC 
Among ExPEC strains, uropathogenic E. coli and neonatal meningitis E. coli are 

characterized by different molecular mechanisms of pathogenicity. 

Urinary tract infection usually begins with the colonization of the bowel with a 

uropathogenic strain in addition to the commensal flora these strains, by virtue of its 

virulence factors, are able to colonize the periurethral area and to ascend the urethra 

to the bladder. Between 4 and 24 hours after infection, the new environmental 

conditions in the bladder select for the expression of type 1 fimbriae that allow the 

adhesion to the uroepithelium[42]. This attachment is mediated by fimbrial adhesin 

H (FimH), which is located at the tip of type 1 pili. FimH binds to mannose moieties of 

the receptors uroplakin Ia and IIIa that coat terminally differentiated superficial facet 

cells in the bladder, stimulating also unknown signaling pathways that induce 

invasion and apoptosis (Figure 5). Bacteria internalization is also mediated by FimH 

binding to 3 and 1 integrins that are clustered with actin at the sites of invasion, as 

well as by microtubule destabilization. 

These interactions trigger local actin rearrangement by stimulating kinases and Rho-

family GTPases, which results in the envelopment and internalization of the attached 

bacteria. 
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Once internalized, UPEC can rapidly replicate and form biofilm-like complexes called 

intracellular bacterial communities (IBCs), which act as transient, protective 

environments. UPEC can also leave the IBCs through a fluxing mechanism and enter 

again the lumen of the bladder. Filamentous UPEC has also been observed fluxing out 

of an infected cell, looping and invading surrounding superficial cells in response to 

innate immune responses. During infection, the influx of polymorphonuclear 

leukocytes (PMNs) causes tissue damage, while apoptosis and exfoliation of bladder 

cells can be induced by UPEC attachment and invasion, as well as by sublytic 

concentrations of the pore-forming toxin HlyA. This breach of the superficial facet 

cells temporarily exposes the underlying transitional cells to UPEC invasion and 

Fig. 5: Pathogenic mechanisms of ExPEC (Croxen and Finlay, 2010). The different stages of 
extraintestinal E. coli infections are shown. (A) UPEC attaches to the uroepithelium through type 1 
pili, which bind the receptors uroplakin Ia and IIIa. Sublytic concentrations of the pore-forming 
toxin HlyA can inhibit the activation of Akt proteins and lead to host cell apoptosis and exfoliation. 
Exfoliation of the uroepithelium exposes the underlying transitional cells to further UPEC invasion. 
(B) NMEC is protected from the host immune response by its K1 capsule and outer-membrane 
protein A (OmpA). Invasion of macrophages may provide a replicative niche for high bacteremia, 
allowing the generation of sufficient bacteria to cross the blood-brain barrier (BBB) into the 
central nervous system.  
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dissemination. Invading bacteria are trafficked in endocytic vesicles enmeshed with 

actin fibers, where replication is restricted. Disruption of host actin allows rapid 

replication, which can lead to IBC formation in the cytosol or fluxing out to the cell. 

This quiescent state may act as a reservoir that is protected from host immunity and 

may, therefore, permit long-term persistence in the bladder, as well as recurrent 

infections[14]. In strains causing cystitis, type 1 fimbriae are continuously expressed 

and the infection is confined to the bladder. In strains that are able to cause 

pyelonephritis, the invertible element that controls type 1 fimbriae expression turns 

to the “off” position and type 1 pili are less well expressed. This releases the UPEC 

strain from bladder epithelial cell receptors and allows the microorganism to ascend 

through the ureters to the kidneys, where it can attach by P fimbriae to digalactoside 

receptors that are expressed on the kidney epithelium. At this stage, hemolysin could 

damage the renal epithelium inducing an acute inflammatory response with the 

recruitment of PMNs to the infection site. Hemolysin has also been shown to cause 

calcium oscillations in renal epithelial cells, resulting in increased production of 

interleukin-6 (IL-6) and -8 (IL-8). Secretion of the vacuolating cytotoxin Sat damages 

glomeruli and is cytopathic for the surrounding epithelium. In some cases, bacteria 

can cross the tubular epithelial cell barrier and penetrate the endothelium to enter 

the bloodstream, leading to bacteremia[42]. The pathogenesis of NMEC strains is a 

complex mechanism, as the bacteria must enter the bloodstream through the 

intestine and ultimately cross the blood-brain barrier (BBB) into the central nervous 

system, which leads to meningeal inflammation and pleocytosis, that means presence 

of a higher number of cells than normal, in the cerebrospinal fluid (Fig. 5). Bacteria 

can be acquired perinatally from the mother and, after the initial colonization of the 

gut, they can translocate to the bloodstream by transcytosis through enterocytes. The 

progression of disease is dependent on high bacteremia (>10
3 

colony forming units 

per ml of blood), therefore survival in the blood is crucial. NMEC is protected from 

the host immune responses by its K1 antiphagocytic capsule, made up of a 

homopolymer of polysialic acid, and by outer membrane protein A (OmpA), which 

confers serum resistance through manipulation of the classical complement pathway. 

NMEC has also been shown to interact with immune cells: invasion of macrophages 

and monocytes prevents apoptosis and chemokine release, providing a niche for 

replication before dissemination back into the blood. Bacterial attachment to the BBB 
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is mediated by FimH binding to CD48 and by OmpA binding to its receptor, ECGP96. 

Invasion of brain microvascular endothelial cells involves CNF-1 binding to the 67 

kDa laminin receptor (67LR), which leads to myosin rearrangement, as well as OmpA 

and FimH binding to their receptors, which results in actin rearrangement. The K1 

capsule, which is found in approximately 80% of NMEC isolates, also has a role in 

invasion by preventing lysosomal fusion and thus allowing delivery of live bacteria 

across the BBB. Collectively, these mechanisms allow NMEC to penetrate the BBB and 

gain access to the central nervous system, where they cause edema, inflammation and 

neuronal damage[14]. 

1.4 E. coli and genetic islands: evolution at a fast pace. 
The ability to adapt and thrive across a huge diversity of hosts both human and 

animal make microbial pathogens a considerable threat all around the world [3]. The 

versatility that pathogens show is caused, at a molecular level, by the ability of the 

bacteria to adapt and evolve to 

evade detection. 

Bacterial genome evolution is a 

continuous process that can be 

analysed from two points of view: 

a long-term ‘macroevolution’, 

which leads to the development 

of new species or subspecies over 

millions of years, and short-term 

‘microevolution’, which spans 

shorter time frames (days or 

weeks) and leads to the alteration 

of genes and traits[84]. Bacterial 

evolution takes place following 

three main mechanisms of large-

scale genome alteration: DNA 

deletions, rearrangements a point 

mutations, gene duplication and 

gene acquisition through 

Fig. 6: Mechanisms that contribute to bacterial 

genome evolution(Ahmed et. al. 2004)  

Genome plasticity results from DNA acquisition by 

horizontal gene transfer (HGT; for example, through 

the uptake of plasmids, phages and naked DNA) and 

genome reduction by DNA deletions, rearrangements 

and point mutations. The concerted action of DNA 

acquisition and gene loss results in a genome-

optimization process that frequently occurs in 

response to certain growth conditions, including host 

infection or colonization. 
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horizontal gene transfer (HGT). Upon selection, such modifications to the genome, 

create subgroups of strains able to resist environmental stress and possibly cause a 

diseases using a common set of virulence/fitness factors (pathotypes) (Fig. 6). 

As previously noted pathogenic genomes are bigger than non-pathogenic ones, 

bioinformatic analysis has shown and that these areas of difference are generally 

very variable, thus dividing the bacterial genome in very conserved “core” areas and 

variable areas that are more susceptible to rearrangements[22]. Such areas can be 

hotspots for insertions and stabilization pieces of DNA carried by phages, 

transposons and larger mobile chromosomal elements such as genomic islands 

(GEIs). 

GEIs are very long non replicative mobile elements, ranging from 10Kbp to 120Kbp, 

that have features taken by other mobile elements (ICEs, prophages, plasmids,…) 

allowing them to integrate and excise from the genome. Given the great amount of 

genes carried by such mobile elements, the acquisition of a GEI, is generally 

considered to be a big evolutionary event that may cause a marked variation in the 

microorganism phenotype[31]. After such an event the genomic islands become 

integrant part of the bacteria and are subsequently subject to mutation to prevent 

further transmission and integration depending on the usefulness of the island 

itself[32]. Of course, the line that separates these conditions can be very subtle, 

according to the niche and to the right combination of factors.  

Genomic islands take different names based on the kind of fitness advantage they 

furnish with the genes encoded on them: help the microorganism to live in the 

environment (ecological islands) or to persist as saprophyte (saprophytic islands), to 

colonize the host and provide benefit (symbiosis islands) or to cause disease 

(PAIs)[31, 60]. Most notably the recent German E. coli outbreak was caused by a 

mildly pathogenic InPEC strain integrating the Shiga toxin-encoding genomic island 

(stx island) in its own genome thus creating a new microorganism more fit to survive 

against the immune system. 

Among the most characterized islands such as: the shiga phage or the high 

pathogenicity island (HPI). The stx island is a GEI of prophagic origin that carries the 

shiga toxin genes. This island has been throughoutly studied as it carries genes that 

significantly enhance the pathogenicity of the host and that are highly over expressed 

when DNA interfering or oxidative agents are added to the media[46].  The HPI island 
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or Yersinia island is devided in two portions: a conserved “core” portion and a 

variable AT-rich. The stable encodes a functional cluster of genes coding for 

biosynthesis, transport and regulation of the siderophore yersiniabactin, the 

recombinase gene and siderophore (intHPI); while the AT-rich carries genes carries 

the excisionase (XisHPI) and Hex two genes foundamental for the island mobilization. 

It is of interest that this island is able to successfully colonize Enterobacteriacea such 

as E. coli, but in the majority of this strains (Yersinia excluded) this AT-rich zone is 

truncated and missing the attR site and thus is immobilized[4]. 

Genomic islands are identified by bioinformatic means as this genetic elements have 

very distinct features such as: the presence of an integrase gene, a GC content lower 

than the surrounding core DNA, the presence of a tRNA (facultative), the presence of 

direct repeat sites (att sites) at each side of the area. The integrase gene and the att 

sites play a fundamental role in the island mobilisation as they are the molecular 

machinery that allows GEIs to mobilize themselves. There are GEIs though missing 

some of this features that have been stabilized by the selective pressure; all these 

islands are not able to mobilize themselves anymore and generally carry 

virulence/fitness factors. To excide from the genome and release the plasmid-like 

structures, called circular intermediates (CI), in the cytoplasm the integrase protein 

brings the att sites close to each other, thus allowing for a site-specific recombination 

event to happen[9, 37, 50]. This ability to excise from the genome and create discrete 

CIs is thought to be an adaptation of the one used by bacteriophages to integrate and 

excide from the genome[50]. Continuous non-perfect integration and mobilization 

events may also have been the cause for the creation of this stretches of DNA that do 

still carry some prophagic elements, but should not able to create a fully working 

prophage. This assumption may be considered true to the point that genomic islands 

can be divided in two groups depending on their gene content and integrase gene 

(GEI-encoded, Phage-encoded)[55]. Also If we take into account that, for the 

prophages, the passage from a lysogen to a lytic cycle is considered to be their way to 

survive to stressful conditions[56, 78] we can also understand that the variations of 

genomic island excision rates in bacteria may be affected by external stress 

conditions (temperature, minimal medium, iron depletion, oxidative stress). 

E. coli has been selected as the representative the pathogen genomic fluidity due to its 

high concentration of plasmid-mediated and phage-encoded virulence factors and 
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GEIs that have been fully described. Plasmids, phages and PAIs all play a crucial part 

in the evolution of different E. coli pathotypes[18, 42]. 

One main feature of the different intestinal E. coli pathotypes is the presence of 

pathotype-specific plasmids that often encode toxins. The characteristic protein 

toxins of enterotoxigenic, enteroaggregative, enteroinvasive, enterohaemorrhagic 

and enteropathogenic E. coli (and also extraintestinal pathotypes) are plasmid-

encoded.  

Also it is important to understand that as whole GEIs have a mosaic-like, modular 

structure and, although many of them superficially resemble each other (presence of 

certain virulence determinants), a great variability exists with regard to GEI 

composition, structural organization and chromosomal localization among strains 

even if they are of the same patho- or sero- type. 

1.4.1 Genomic islands and virulence factors in ExPEC. 

As previously stated genomic islands are the main effectors of the HGT due to their 

ability to transfer themselves from a donor to a host; their importance is also due to 

the high amount of open reading frames (ORFs), many of which of unknown origin, 

that encode for fitness or virulence factors.  

IHE3034 is a neonatal meningitis strain appertaining to the phylogenetical group B2 

and to the clonal complex (STC) 95 that it has been sequenced in 2010. The 

bioinformatic analysis carried out by Moriel et. al. uncovered 19 possible genomic 

islands present in IHE3034 (Tab. 1) [53].  

Table 1  

GEI Virulence / Fitness Factors Kbp Related islands 
1 Putative type VI secretion system 30 PAI IIAPECO1 

2 Prophage DNA 57 F-CFT073-smptB 

3 Prophage DNA 22 Moriel DG et al. 

4 Prophage DNA 33 Moriel DG et al. 

5 S-perfimbriae, IroN, putative TonB-dependant receptor, 

Antigen 43 

61 PAI III536, PAI-CFT073-serX, PAI 

INissle1917 

6 sitABCD 47 PAI-CFT073-icdA 

7 Prophage DNA 46 F-CFT073-potB 

8 Yersiniabactin and cdtABC 78 PAI-CFT073-asnT 

9 Colibactin gene cluster 54 PAI VI536, GI-CFT073-asnW 

10 Putative TonB-dependent receptors and ibrAB 44 PAI VI536, GI-CFT073-cobU, PAI 

IVAPECO1 

11 Prophage DNA 37 Moriel DG et al. 

12 Prophage DNA 40 Moriel DG et al. 
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13 Enterohemolysin 1 39 Moriel DG et al. 

14 Prophage DNA 43 Moriel DG et al. 

15 Putative type VI secretion system 36 PAI-CFT073-metV, PAI-536-metV 

16 T2SS and K1 capsule 28 PAI V536, PAI IAPECO1 

17 Prophage DNA 16 Moriel DG et al. 

18 IbeA and IbeT 20 GimA 

19 Prophage DNA 46 Moriel DG et al. 

 

Among virulence factors carried by ExPEC GEIs, a fundamental role is played by 

adhesins (GEI 5), which allow the strict interaction of the pathogen with the host, 

facilitating the colonization and invasion processes and avoiding clearance by the 

host immune defences. Also the presence of group K1 (GEI 16) capsule confers 

additional selective advantages to ExPEC strains. Indeed, their molecular mimicry to 

host tissue components helps the bacteria to evade the immune response, providing 

protection against phagocytic engulfment and complement-mediated bactericidal 

activity[24, 79]. GEI 16 though is not a genomic island but a hotspot of integration; 

bioinformatic analysis has shown that it is a highly variable region and that the tRNA 

present in the middle of it is a typical insertion point for mobile elements. Other 

proteins are also associated with the virulence of ExPEC strains. For example IbeA 

and IbeT (GEI 18) that are involved in the invasion of brain microvascular endothelial 

cells [38, 85]. Antigen 43 (Ag43 – GEI 5) is associated with a strong aggregation 

phenotype and with biofilm formation, promoting long-term persistence in the 

bladder, although its relevance and contribution in the pathogenesis are far from 

clear[76].  

Growth of ExPEC strains in iron-limited conditions, such as urine, requires successful 

mechanisms for the scavenging of iron, which rely on siderophores and iron-complex 

receptors [80]. Several iron and siderophore receptors, which are highly expressed 

during infection of the urinary tract, have already been described in E. coli, for 

example the salmochelin siderophore receptor IroN[33] and the ferric and 

manganese receptor sitABCD[83].  

Eight out of nineteen islands of IHE3034 islands are or prophagic origin and have 

been identified for the first time by Moriel et. al.; many of the ORFs on these GEIs are 

of unknown function. These islands altogether account for the 0,5% of the genome of 

IHE3034 and the percentage of ORFs of known function ranges from 50% to 75%. 

Understanding the mechanisms behind GEI mobilization and functions is a key point 
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to develop preventive and therapeutic approaches that could aim to selectively 

induce PAI deletion and reduce the incidence of E. coli diseases.  

1.4.2 Dictyostelium discoideum: a bacterial hunter. 

Bacteria like E. coli are mainly environmental microorganism; they live in the soil 

were they are constantly threatened by bacteria-eating predators such as protozoa 

and nematodes. These evolutionary pressures may affect bacterial populations in 

multiple ways, like creating defense strategies that allow them to survive and to 

establish new replicative niches. For example, to protect themselves from predators, 

produce biofilms thus preventing engulfment and phagocytosis, or use molecular 

machinery to avoid lysosomal killing[34]. As a soil amoeba and a phagocyte 

Dictyostelium discoideum can be a natural host of opportunistic bacteria that may 

have developed strategies to invade, survive and replicate intracellularly inside the 

amoeba itself[10].  

 D. discoideum is a fascinating member of the amoebozoa, its natural habitat is 

deciduous forest soil and decaying leaves, where the amoebae feed on bacteria, yeast 

and grow as separate, independent, single cells. The organism offers unique 

advantages for studying fundamental cellular processes with powerful molecular 

genetic, biochemical, and cell biological tools[23].  

Phagocytosis is a very complex, evolutionarily conserved mechanism that is used by 

higher eukaryotes to clear dead cells and cell debris and to counter the constant 

threat posed by pathogens. For this purpose they harbour specialized cells such as 

macrophages, neutrophils or dendritic cells that have the ability to rapidly and 

efficiently internalize a variety of organisms and particles and degrade them. For 

lower eukaryotes like D. discoideum phagocytosis is a means to internalize bacteria 

that are used as food source. The ingested microorganism is trapped in a phagosome 

and, via the phago-lysosomal pathway, is ultimately delivered to a lysosome where it 

is degraded by a cocktail of hydrolytic enzymes[11, 13].  

Bacterial pathogenicity was certainly largely developed to resist predatory 

bacteriovorous microorganisms in the environment, and this accounts for the fact 

that a large number of bacterial virulence traits can be studied using Dictyostelium as 

a host.  

The increasing number genome sequences and the genetic tractability of E. coli 

generate many opportunities for the study of host-pathogen interactions. The use of 
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Dictyostelium cells as a screening system for bacterial virulence combining the use of 

E. coli mutant cells will allow to identify determinants of susceptibility and resistance 

to infection providing a particularly powerful, simple and animal-free system [13]. 
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2 Matherials and Methods. 

2.1 Bacterial growth. 

2.1.1 Bacterial strains. 

IHE3034 (O18:K1:H7), ST95, is a neonatal meningitis-associated strain isolated in 

Finland in 1976[1]. Its genomic sequence has been revealed in 2012[53]. 

The 132 E. coli strains extra intestinal, intestinal pathogenic and non-pathogenic that 

have been used in this analysis are described in table 3. The eleven ST131 strains 

have been kindly provided by Marina Cerquetti from the Istituto Superiore di Sanità 

(Rome). 77 strains mixed ExPEC, InPEC and non-pathogenic have been kindly 

provided by Lothar H. Wieler from the Freie Universität Berlin. 35 strains ExPEC, 

InPEC and non-pathogenic have been kindly provided by Ulrich Dobrindt from the 

Universitätklinikum of Münster. The collection is composed of strains belonging to 

the A, AxB1, ABD, B1, B2 phylogenetic group[39]. Throughout the manuscript, GEI 

deletion mutants (partial or whole) of E. coli strain IHE3034 are named by the 

symbol “G” followed by the numbers of the deleted GEI and if needed, the letter of 

the deleted portion. The numbers indicating the GEI are expressed in the Arabic form 

instead of the Roman one (classically used to number GEIs in the literature) to ease 

readability. Bacteria were routinely grown in LB broth at 37°C except when 

otherwise stated. Ampicillin (Amp 100g/ml), Kanamycin (Kan 25g/ml), 

Trimethoprim (Trim 100g/ml), Mitomycin C (Mit. C 0,5g/ml) or Chloramphenicol 

(Clm 8 g/ml) were added to the media when necessary.  

2.1.2 Isolation of chromosomal DNA. 

Genomic DNA was prepared by culturing bacteria overnight at 37 °C, with 

antibiotics added when needed, and left overnight in an orbital shaker. The extraction 

took place the following day using either the GenElute Bacterial Genomic DNA Kit 

(Sigma) according to the manufacturer’s instructions or preparing a raw genomic 

extract.  Final DNA concentration, of the genomic kit preparation sample, was 

assessed by optical density determination at 260 nm. 

Raw genomic extract preparations were prepared adding 200l of ON culture (c.a. 

4,6*107 CFU) in a clean Eppendorf. The culture was centrifuged and the supernatant 

was removed; the pellet was re-suspended in 100l of PCR-grade water and boiled 
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for 10 minutes. The raw extraction was then centrifuged for 5 minutes at 1100 g in a 

table top centrifuge (Eppendorf) and the supernatant was transferred in a new tube. 

2.1.3 Single and multiple GEI-deletion mutants . 

2.1.3.1 Preparation of electro-competent cells. 

For electro-competent IHE3034 cell preparation, 2ml LB were inoculated starting 

from the glycerol stocks and set to grow overnight at 37°C shaking at 180rpm. If the 

red recombinase (p434, pKOBEG) or the flipase plasmid (pCP20) were present the 

culture was grown at 30°C. The next day 25ml of fresh LB were inoculated to a final 

OD/ml of 0,1 and left to grow, with Arabinose to a final concentration 0,2%, up to 0,6-

0,8OD/ml. When the OD/ml of 0,6-0,8 is reached the culture was poured into a Falcon 

tube and the cells precipitated for 30min at 3650g at 4°C in a Heraeus MULTIFUGE 3 

S-R centrifuge with a 75006445 rotor. The pellet was then washed 3 times with 25ml 

of cold sterile water (4°C) and one time with 25ml of cold a 10% glycerol solution. 

The pellet was resuspended in 500l of 10% glycerol solution and divided in 60l 

aliquots in Eppendorf tubes and stored at -80°C. 

2.1.3.2 Transformation of bacterial cells by electroporation. 

For electroporation 60l of electro-competent cells were thawed on ice and mixed 

with 1-12l of plasmid or purified PCR constructs to the final concentrations of up to 

100ng plasmid, 1g PCR product. Cells were transferred in a 1-mm-wide GenePulser 

electroporation cuvette and then electroporated using program Ec1 of the Biorad 

GenePulser Xcel (1,8kV). Transformations with a time constant no lower than 4 were 

recovered in 250l of SoC media and set to grow 1-2hrs at 37°C (30°C for 

temperature-sensitive plasmids) in a shaking thermal block before being plated on 

selective LB-Agar plates. The following day colonies were PCR screened after being 

streaked in a fresh plate. 

2.1.3.3 Single and multiple Genomic island deletion by  Red recombinase-mediated 

mutagenesis. 

 4,  13,  17 and 19: each single GEI deletion mutant was generated using the -

Red recombinase gene inactivation method [16]. Flipase recognition target (FRT)-

flanked kanamycin or chloramphenicol cassettes were generated by PCR using as a 

template pKD4 or pKD3. Primers carried tails of 60 to 71 bases homologous with 

both ends of the GEI to be deleted (Fig. 7). 
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 PCR conditions are listed in 

paragraph 2.4.1. Since tRNA and 

certain genes deletions have been 

shown to result in a decreased 

fitness[21, 63, 72] the primers 

were designed, for all but GEI 17, 

so that this regions flanking the 

GEIs were left untouched (Primer 

#184 to #223). Strains with GEIs 

partially deleted were also created 

following the lambda-red protocol 

with GEIs have divided in 2 to 4 

regions named A to D. Each section 

has been selected so that gene 

continuity and operons were not 

interrupted.  

Multiple Knock-out strain: t 4 mutant was used to successively remove GEIs, 

13, 17, and 19 using the  Red recombinase method as for single GEI deletion 

mutants. After the deletion of two GEIs, the antibiotic resistance cassette was 

removed using Flp before proceeding to the next GEI deletion [16]. 

2.2 Dictyostelium discoideum growth and grazing assay. 
Amoeba spore aliquots where thawed and allowed to grow for three days in 10ml 

of HL5 medium in 25cm2 cell-culture flasks in order to generate pre-cultures[27, 70]. 

All the amoeba cultures were grown at room temperature (21-25°C) in a thermally 

controlled laboratory.  

2.2.1 Working culture. 

After all the spores have germinated 5 ml of pre-culture were inoculated in 15ml of 

fresh HL5 medium to generate a new Working culture a 75cm2 cell-culture flask. The 

new culture was then left to grow for three to four days in a temperature controlled 

room at 21-25°C. [27, 70]. 

Fig. 7: One-step gene inactivation (Datsenko et. al. 

2000)  

H1 and H2 refer to the homology tails. P1 and P2 

refer to priming sites. FRT sites refer to the 

recombinations sites used by the Flipase (pCP20) to 

excide the resistance. 
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2.2.2 Amoeba spore generation. 

A shaking culture of 25ml HL5 was inoculated in a conical cylinder using 1,5-2ml 

of matured pre-culture. After 3 to 4 days the cells are counted using the Neubauer 

improved counting chamber using the following formula: 

                       

                 
       ⁄  

If needed cell were concentrated in Soerensen Buffer 1x[28] to a final concentration 

no less than 1x107cell/ml. In each Soerensen-Agar Plate were then plated 400l of 

amoeba resuspension and gently distributed by rotating the plate with circular 

motions. 

The plates were put in a closed-lid box with wet towel papers in the bottom and left 

to incubate for 3-4 days at room temperature. The Dyctyostelium d. yellowish spore 

heads were harvested by rinsing the plates with 2ml of Soerensen buffer 1X until the 

majority of the spore heads were in solution. Each stock cryotube was filled with 1ml 

of spore suspension and stored at -80°C[28]. 

2.2.3 Bacterial growth curves. 

The Dyctiostelium discoideum grazing assay is heavily influenced by the bacterial 

fitness. In order to confirm that the assay is not biased by such a problem, both 

IHE3034 wild type and all the mutant strains have been tested in a growth curve 

assay. This analysis has been carried out to assess if the deletions that have been 

made reduce the fitness of the bacteria. 

For each strain, a 0,01 OD/ml LB or SM inoculum was prepared in a 96 well plate with 

a final volume of 200l. The plate was then sealed tight with parafilm and placed in a 

pre-warmed Tecan Infinite 200 with a Heating and Shaking module. The instrument 

temperature has been pre-set to 37°C shaking at 180rpm; the OD measurements 

(600nm) were taken every 10 min for 24hrs. The data gathered were then plotted in 

an OD – Time graph with the X axis (OD) expressed in logarithmic scale. 

2.2.4 Dictyostelium d. grazing assay. 

The IHE3034 wild type and the deletion mutant E. coli strains were inoculated 

from the glycerol stock and let to grow for 3-4 hrs in LB media at 37°C shaking at 

180rpm. 300l of bacterial growth (c.a. 4,5x108CFU) were then evenly plated on fresh 

SM-Agar petri dishes using a plating spatula and left to dry in a laminar flow hood for 
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1 hr. The amoeba population in the working culture was then quantified and four 

working dilutions were prepared in HL5 medium: 106cell/ml, 2x105cell/ml, 

2x104cell/ml and 2x103cell/ml. The bacterial SM plates were divided in four areas in 

which different amount of amoeba cells (5000, 1000, 100 and 10) were plated. In 

order to reduce the experimental variability two 5l drops were placed on each plate; 

each working dilution was vortexed after each use to reduce the error caused by the 

fast sedimentation rate of the amoeba cells. The plates were then left at room 

temperature for a variable period between 3 and 7 days and the plaque formation 

assessed daily; each plate was photographed with an acquiring time of 230ms using 

the Protocol 2 (Synbiosis) cell counter. The plating assay was repeated 3 times for 

each bacterial strain under study and for the two control strains. As a negative 

control, immune to the amoeba grazing, the highly virulent UPEC strain 536 was used 

and due to its susceptibility to Dictyostelium, the non-pathogenic E. coli DH5 has 

been selected as positive control.  

2.3 Bioinformatic analysis and primer design. 
All of the E. coli genomes sequences used for the analysis were gathered from the 

NCBI website (www.ncbi.gov)  and have been imported in the Geneious 5.6 

software[49] (for the list of the genomes refer to Tab. 2). Full genome alignments 

have been carried out using the plug-in MAUVE program implemented on Geneious 

using the default settings[15]. The primer designs have been carried out using the 

Primer 3 plugin for Geneious [67]. Real time data analysis and images generation has 

been don using the REST2009 program[57, 62]  

Table 2  

 Name Pathotype Group Sequence Length (Bp) 

1 ABU 83972 ABU Non-pathogenic 5131397 

2 LF82 AIEC InPEC 4773108 

3 O83:H1 str. NRG 857C AIEC InPEC 4747819 

4 UM146 AIEC InPEC 4993013 

5 APEC O1 APEC ExPEC 5082025 

6 SMS-3-5 AREC InPEC 5068389 

7 042 EAEC InPEC 5241977 

8 55989 EAEC InPEC 5154862 

9 O26:H11 str. 11368 DNA EHEC InPEC 5697240 

10 O103:H2 str. 12009 EHEC InPEC 5449314 

11 O157:H7 EDL933 EHEC InPEC 5528445 

http://www.ncbi.gov/
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12 O157:H7 str. EC4115 EHEC InPEC 5572075 

13 O157:H7 str. Sakai EHEC InPEC 5498450 

14 O157:H7 str. TW14359 EHEC InPEC 5528136 

15 O111:H- str. 11128 EHEC InPEC 5371077 

16 O55:H7 str. CB9615 EPEC InPEC 5386352 

17 O127:H6 str. E2348/69 EPEC InPEC 4965553 

18 E24377A ETEC InPEC 4979619 

19 H10407 ETEC InPEC 5153435 

20 UMNK88 ETEC InPEC 5186416 

21 ATCC 8739 Laboratory strain Non-pathogenic 4746218 

22 BL21(DE3) Laboratory strain Non-pathogenic 4570938 

23 B str. REL606 Laboratory strain Non-pathogenic 4629812 

24 DH1 (ME8569) Laboratory strain Non-pathogenic 4621430 

25 BW2952 Laboratory strain Non-pathogenic 4578159 

26 DH10B (K-12) Laboratory strain Non-pathogenic 4686137 

27 MG1655 (K-12) Laboratory strain Non-pathogenic 4639675 

28 W3110 (K-12) Laboratory strain Non-pathogenic 4646332 

29 KO11 Laboratory strain Non-pathogenic 4920168 

30 MDS42 (K-12) Laboratory strain Non-pathogenic 3976195 

31 W Laboratory strain Non-pathogenic 4900968 

32 IHE3034 NMEC ExPEC 5108383 

33 O7:K1 str. CE10 NMEC ExPEC 5313531 

34 S88 NMEC ExPEC 5032268 

35 HS Non-pathogenic Non-pathogenic 4643538 

36 SE11 Non-pathogenic Non-pathogenic 4887515 

37 SE15 DNA Non-pathogenic Non-pathogenic 4717338 

38 IAI1 Non-pathogenic Non-pathogenic 4700560 

39 ED1a Non-pathogenic Non-pathogenic 5209548 

40 536 UPEC ExPEC 4938920 

41 CFT073 UPEC ExPEC 5231428 

42 IAI39 UPEC ExPEC 5132068 

43 NA114 UPEC ExPEC 4971461 

44 str. 'clone D i2' UPEC ExPEC 5038386 

45 str. 'clone D i14' UPEC ExPEC 5038386 

46 UMN026 UPEC ExPEC 5202090 

47 UTI89 UPEC ExPEC 5065741 

 

2.3.1 Primer design. 

The distribution studies were carried out using 3 sets of primers; the first set was 

a single pair of primers while the second and third sets were combined together in a 

Multiplex PCR design. Primers (#72 to #183) have been designed on three open 

reading frames (ORF) spanning along the whole island. Each ORF was selected only if 

it was present, in the BLAST analysis, in IHE3034 or in pathogenic strains and absent 
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in non-pathogenic strains.  

Primers for the identification of the circular intermediates (CI) and for the exclusion 

PCR were designed to be functional only if the CI was formed and thus the island was 

not integrated in the genome (Primer #1 to #71). 

Primers for the generation of knock out strains were designed to have a fixed portion 

that could anneal on pKD3/4[16] and had a tail spanning between 60 and 71bp that 

was completely homologous to the flanking regions that were to be knocked-out 

(#184-#223). 

Primers designed for the screening of the knock-out strains were a forward annealing 

at the 5’ region of the KO region and a reverse annealing either on the inserted 

resistance gene or on the 3’ of the insertion region. The external oligonucleotides 

were also used to test if the islands had lost their resistances after pCP20 

transformation (#241-#262). 

Primers for the Relative Real Time PCR were designed to be no more than 20bp and 

each pair had to have a Tm of 60°C, equal GC content when possible, a Ta difference 

within 0,5°C and a final amplicon of no more than 350bp. Before being used in the 

real-time experiment a test PCR was run and the product of these primers were 

analysed on an agarose gel for aspecific bands. All the products were sequenced to 

check for the specificity of the reaction (#224-#240). 

2.3.2 Statistical analysis. 

Data were analyzed by Fisher’s exact tests to evaluate associations. Results with p 

values lower than 0.5 indicate a low significance, 0,05 indicate good significance 

while a p value lower than 0,01 indicates a strong significance. The statistical 

significance of expression ratios of the real time data has been calculated using the 

integrated randomization and bootstrapping methods in the REST2009 program[77]. 

2.4 GEI distribution and excision studies.  
Using the PCR approach a panel of 132 E. coli isolates (listed in table 2) were 

examined for the presence of 3 genes carried on the genomic islands of IHE3034[53]. 

The GEIs have also been analyzed for their ability to form circular intermediates, 

their dependence on the int gene to excide and for CI resistance to DNase.  
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Table 3  

 Strain ST STC Pathotype Group Phyl. Group 

1 042 n.a. n.a. EAEC InPEC n.a. 

2 764 14 14 UPEC ExPEC B2 

3 3970 155 155 ETEC InPEC B1 

4 40956 n.a. n.a. EAEC InPEC n.a. 

5 A5/10 40 40 STEC InPEC B1 

6 05-07839-2 38 n.a. EAEC InPEC D 

7 06-04456-2 131 n.a. EAEC InPEC B2 

8 08-24489 10 n.a. EAEC InPEC A 

9 303/89 29 29 EHEC InPEC B1 

10 312/00 n.a. n.a. EPEC InPEC n.a. 

11 350 C1A 10 n.a. ETEC InPEC n.a. 

12 37-4 n.a. n.a. EPEC InPEC n.a. 

13 413/89-1 113 29 STEC InPEC B1 

14 537/89 298 306 STEC InPEC nt 

15 540/00 n.a. n.a. EPEC InPEC n.a. 

16 5477/94 n.a. n.a. EAEC InPEC n.a. 

17 7476A 58 n.a. ETEC InPEC n.a. 

18 76-5 n.a. n.a. EIEC InPEC n.a. 

19 B10363 95 95 NMEC ExPEC B2 

20 B13155 390 95 NMEC ExPEC B2 

21 B616 390 95 NMEC ExPEC B2 

22 E 34420 A 1312 n.a. ETEC InPEC n.a. 

23 E1392-75 2353 n.a. ETEC InPEC n.a. 

24 E22 20 20 EPEC InPEC B1 

25 E2348/69 n.a. n.a. EPEC InPEC n.a. 

26 E457 95 95 Commensal Non-pathogenic B2 

27 Ecor19 48 10 Commensal Non-pathogenic A 

28 Ecor20 48 10 Commensal Non-pathogenic A 

29 Ecor34 58 155 Commensal Non-pathogenic AxB1 

30 Ecor35 59 59 Commensal Non-pathogenic ABD 

31 Ecor64 14 14 UPEC ExPEC B2 

32 EDL1284 n.a. n.a. EIEC InPEC n.a. 

33 F630 23 23 APEC ExPEC B1 

34 F645 62 n.a. SEPEC ExPEC ABD 

35 F911 12 12 SEPEC ExPEC B2 

36 H10407 n.a. n.a. ETEC InPEC n.a. 

37 IHE3034 95 95 NMEC ExPEC B2 

38 IHE3036 390 95 NMEC ExPEC B2 

39 IHE3080 390 95 NMEC ExPEC B2 

40 IHIT0578 29 29 EHEC InPEC B1 

41 IHIT0608 28 28 EHEC InPEC ABD 

42 IHIT2087 21 29 STEC InPEC B1 

43 IMT10651 10 10 ExPEC ExPEC A 

44 IMT10666 58 155 Commensal Non-pathogenic AxB1 
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45 IMT10740 1159 n.a. Commensal Non-pathogenic B2 

46 IMT14782 69 69 Commensal Non-pathogenic D 

47 IMT14967 73 73 UPEC ExPEC B2 

48 IMT14973 12 12 UPEC ExPEC B2 

49 IMT14993 127 127 UPEC ExPEC B2 

50 IMT15000 95 95 UPEC ExPEC B2 

51 IMT15006 88 23 UPEC ExPEC B2 

52 IMT15007 141 n.a. UPEC ExPEC B2 

53 IMT15009 80 568 UPEC ExPEC B2 

54 IMT15010 12 12 UPEC ExPEC B2 

55 IMT15014 117 117 UPEC ExPEC ABD 

56 IMT15019 127 127 UPEC ExPEC B2 

57 IMT15020 88 23 UPEC ExPEC B1 

58 IMT15146 95 95 Commensal Non-pathogenic B2 

59 IMT15150 131 131 Commensal Non-pathogenic B2 

60 IMT15991 32 32 STEC InPEC ABD 

61 IMT16101 73 73 Commensal Non-pathogenic B2 

62 IMT17424 10 10 UPEC ExPEC A 

63 IMT1930 88 23 APEC ExPEC B1 

64 IMT1932 23 23 APEC ExPEC B1 

65 IMT1939 155 155 APEC ExPEC B1 

66 IMT2111 38 38 APEC ExPEC D 

67 IMT2113 101 101 APEC ExPEC B1 

68 IMT2120 356 23 APEC ExPEC B1 

69 IMT2121 357 n.a. APEC ExPEC n.a. 

70 IMT2283 23 23 APEC ExPEC B1 

71 IMT2312 10 10 APEC ExPEC A 

72 IMT2358 915 117 APEC ExPEC ABD 

73 IMT2470 95 95 APEC ExPEC B2 

74 IMT2487 69 69 APEC ExPEC D 

75 IMT2490 117 117 APEC ExPEC ABD 

76 IMT5112 127 127 APEC ExPEC B2 

77 IMT5124 369 23 APEC ExPEC B1 

78 IMT5155 140 95 APEC ExPEC B2 

79 IMT5214 95 95 APEC ExPEC B2 

80 IMT5215 93 168 APEC ExPEC A 

81 IMT8103 10 10 UPEC ExPEC A 

82 IMT8897 141 n.a. APEC ExPEC B2 

83 IMT9087 131 131 UPEC ExPEC B2 

84 IMT9096 73 73 UPEC ExPEC B2 

85 IMT9213 88 23 SEPEC ExPEC B1 

86 IMT9258 73 73 UPEC ExPEC B2 

87 IMT9286 80 568 UPEC ExPEC B2 

88 IMT9650 372 372 UPEC ExPEC B2 

89 IMT9713 372 372 APEC ExPEC B2 

90 IMT9884 372 372 UPEC ExPEC B2 
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91 IN16/R 131 131 SEPEC ExPEC B2 

92 IN22/R 131 131 SEPEC ExPEC B2 

93 IN30/R 131 131 SEPEC ExPEC B2 

94 IN31/R 131 131 SEPEC ExPEC B2 

95 IN33/R 131 131 SEPEC ExPEC B2 

96 IN36/R 131 131 SEPEC ExPEC B2 

97 IN40/R 131 131 SEPEC ExPEC B2 

98 IN6/R 131 131 SEPEC ExPEC B2 

99 MG1655 10 10 Lab Strain Non-pathogenic A 

100 Ref. Str. O164 270 n.a. EIEC InPEC n.a. 

101 RL318/96 17 20 EPEC InPEC B1 

102 RS168 59 59 NMEC ExPEC ABD 

103 RS179 62 n.a. NMEC ExPEC ABD 

104 RS226 95 95 Feacal Non-pathogenic B2 

105 RW1374 17 20 EHEC InPEC B1 

106 RW2297 113 29 STEC InPEC B1 

107 St5119 141 n.a. SEPEC ExPEC B2 

108 TB156A 335 n.a. EPEC InPEC n.a. 

109 U3454 95 95 UPEC ExPEC B2 

110 U4252 48 10 UPEC ExPEC A 

111 U5070 69 69 UPEC ExPEC D 

112 UEL31 101 101 APEC ExPEC B1 

113 Uli 2038 59 59 Human Fec. Non-pathogenic B2 

114 Uli 2039 405 405 Human Fec. Non-pathogenic A 

115 Uli 2040 93 168 Human Fec. Non-pathogenic A 

116 Uli 2041 10 10 Human Fec. Non-pathogenic A 

117 Uli 2042 1497 n.a. Human Fec. Non-pathogenic A 

118 Uli 2043 59 59 Human Fec. Non-pathogenic B2 

119 Uli 2044 95 95 Human Fec. Non-pathogenic B2 

120 Uli 2045 73 73 Human Fec. Non-pathogenic A 

121 Uli 2046 1298 469 Human Fec. Non-pathogenic A 

122 Uli 2047 1298 469 Human Fec. Non-pathogenic A 

123 Uli 2048 59 59 Human Fec. Non-pathogenic D 

124 Uli 2049 636 n.a. Human Fec. Non-pathogenic A 

125 Uli 2050 59 59 Human Fec. Non-pathogenic D 

126 Uli 2051 350 350 Human Fec. Non-pathogenic B2 

127 Uli 2052 567 n.a. Human Fec. Non-pathogenic B2 

128 Uli 2053 93 168 Human Fec. Non-pathogenic A 

129 UR14/R 131 131 UPEC ExPEC B2 

130 UR3/R 131 131 UPEC ExPEC B2 

131 UR40/R 131 131 UPEC ExPEC B2 

132 W9887 48 10 SEPEC ExPEC A 
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2.4.1 PCR Amplification and Sequencing.  

For screening and distribution purposes 100ng of chromosomal DNA were used as 

the template for the amplification of the target genes. The amplification of the 

knockout inserts was carried out in two PCR steps: a 50l reaction with 4ng of 

plasmid (pKD3 or pKD4) and a second PCR in 100l using 1l of the previous 

reaction. The amplification enzymes used were either the Phusion® DNA Polymerase 

(Finnzymes) for sequencing, KO amplification or the GoTaq® Green Master Mix 

(PROMEGA) for the screening and distribution studies. The amplification of the GEI 

portions to create the complementation vectors was carried out using the PfuUltra II 

Fusion HS (Agilent).  Primers were designed in conserved DNA region and the 

sequences are reported in Table #. The sequencing and KO PCRs were run for 30 

cycles of denaturation at 98 °C for 10 s, annealing at 57-60°C for 20 s, and elongation 

was carried out depending on the length of the amplicon at 72 °C considering the 

speed of the Taq enzyme to be around 17bp/sec. The distribution PCRs were carried 

out in 20l for 30 cycles, denaturation at 94 °C for 30 s, annealing at 57-60 °C for 30 s, 

and elongation at 72 °C for 1 min 10 s. The complementation vector’s inserts has been 

amplified using the following cycles: 92°C for 2 min, 10 cycles with Tm of 92°C for 10 s 

Ta of 57°C for 30 s and an elongation at 68°C of between 14 min / 34 min and 24 s, 20 

cycles Tm=92°C for 10 s - Ta=57°C for 30 s and elongation at 68°C between 14 min / 

34 min and 24 s with 10 s added after the end of each cycle. 

PCR products used for the knockout generation and the complementation were 

treated for 2Hrs with DpnI at 37°C to erase any leftover of template plasmid/genomic 

DNA. All the products were purified with Wizard® SV Gel and PCR Clean-Up System 

protocol (PROMEGA) and sent for sequencing at the in-house facility. Sequences were 

assembled with Geneious 5.6 (Biomatters), aligned and analyzed using its clustalW 

plugin.  

2.4.2 Nuclease resistance of circular intermediates. 

To examine whether the circular DNA intermediates were nuclease resistant, we 

extracted DNA from culture supernatants. To this aim E. coli IHE3034 strain was 

grown until late exponential phase in a 250ml conical flask with 50ml of LB. Next, 

cells were precipitated at 4000g for 5 minutes at 4°C in a Heraeus MULTIFUGE 3 S-R 

centrifuge with a 75006445 rotor. The supernatant was then transferred in a 50ml 
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syringe with a 0,45m PES filter attached to it. After filtration the supernatant was 

split in two 25ml aliquots and one was treated with DNAse I (Roche) and RNAse A 

(PROMEGA) to the final concentration of 25g/ml for one hour at 37°C while the 

other Falcon was left in ice. Following enzymes inactivation for 10 minutes at 75°C 

the prophage particle extraction protocol was started. NaCl and Polyetilene Glycol 

8000 were added to the final concentration of 1M and 10%vol respectively to both 

the samples The supernatants were then gently mixed and left overnight at 4°C to 

precipitate. Samples were centrifuged at 11000g for 30 minutes at 4°C, the 

supernatant gently poured away and the tubes left to dry upside down on a sheet of 

paper. The transparent pellet was gently re-suspended in 400l of SM Buffer and, 

after the addition an equal volume of Chloroform, lightly vortexed for 30 seconds. The 

solution is then left to separate in two phases for 5-10 minutes and the superior 

acqueos portion is recovered and tested by PCR or frozen a -20°C.  

 

2.4.3 Relative Real-Time PCR.  

The frequency of detection of GEI excision was assessed by relative quantification 

using real-time PCR on IHE3034 raw DNA extractions. The PCR mix was composed of 

2l of raw DNA extract (see chapter 2.1.2.2), 2l of each primer (final conc. 0,3M), 

12.5l of FastStart Universal SYBR green master mix (ROX)(Roche), and PCR-grade 

water to a final volume of 25l in a LightCyclerII 480 real-time PCR system (Roche). 

The reaction was initiated by enzyme activation and DNA denaturation at 95°C for 10 

min and 40-45 cycles at 95°C for 10 s, annealing at 60°C for 8 s, and extension at 72°C 

for 14 s. The specificity of the reaction was assessed by melting curve analysis using 

the LightCycler 4.5 software V1.5.5 and by running the qPCR results in 1,2% agarose 

gels. The melting curve has been carried out by heating the PCR amplicons to 95°C for 

1 s, then by cooling them down at 65°C for 15 s and heated again slowly with a 

ramping temperature of 0.1°C/s to 99°C under continuous fluorescence monitoring. 

Each real-time experiment included in the plate a negative control without DNA. The 

Cq values were extrapolated from the software and the fold-change of the frequency 

of excision was estimated using the Cq method. All the conditions have been tested 

in three independent experiments and each sample had three technical replicates. 

The primers used for the real time analysis were from #224 to #240. 
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2.5 Primer List. 

Table 4   

# Thesis NAME Sequence (5'->3') Bp Tm 

1 3034P01ciF GTTATGGTCTTTTGTTTGATGTTATTG 27 57°C 

2 3034P01ciF GCTTTCATCTTTGTTTTTGTCTTTATT 27 57°C 

3 3034P02ciF TTTCCGTCATACCTTTCTCTTTCAG 25 57°C 

4 3034P02ciF GTATCAACTCAGACAAAGGCAAAGC 25 57°C 

5 3034P03ciF CGGACTGATTTACCTTTTCTCAATATG 27 57°C 

6 3034P03ciF ATCGTTCAGTATGGTTGTAAATGTGTG 27 57°C 

7 3034P04ciF GTAAAACTGAAACGCAAAAAGAAAGA 26 57°C 

8 3034P04ciF GTAAATCGGCATCTGGCAATAATG 24 57°C 

9 3034P05ciF AAACGATGATGTCAGATATCACAATCTC 28 57°C 

10 3034P05ciF TGTAAGTATCACCATTAATAACAGTGCG 28 57°C 

11 3034P06ciF TTTTTATTGTTTTATCTTGTTGACTTTG 28 57°C 

12 3034P06ciF AAACCCAAAACTCCAAAGGATAATC 25 57°C 

13 3034P07ciF TAAAACCCAGTTCCAACACCAATATC 26 57°C 

14 3034P07ciF GGAAAAGGATGGTTACTTTTTACAG 25 57°C 

15 3034P08ciF ATATCATCGTTTTCAGGTTCTTTTTAC 27 57°C 

16 3034P08ciF GAAGAGGAGCAAGAAGATGAAAACAG 26 57°C 

17 3034P09ciF TTTTAGCGGAGAACAACAACAGATAG 26 57°C 

18 3034P09ciF TATCTTGTTTCGTGTTGTATCCCATCT 27 57°C 

19 3034P10ciF AGTAAATCTTAACCACCGATAAGGAG 26 57°C 

20 3034P10ciF GTCAACCACCAAAAGAAAATACAATAC 27 57°C 

21 3034P11ciF ACTAAACCAAAAGGATAACAAAATGAAA 28 57°C 

22 3034P11ciF TCAAAAGATAGCTGAAGGATTGAAAC 26 57°C 

23 3034P12ciF CGCTATAAAGGTGAATATCGACAATG 26 57°C 

24 3034P12ciF CGAGATACTGAGCATGGTTGTAAATAC 27 57°C 

25 3034P13ciF GCATCACCAGCAGATTTAAGAAAATG 26 57°C 

26 3034P13ciF AAACATGGAGATTAAACAATTCCAGC 26 57°C 

27 3034P14ciF TAAGGACTACACCAACAAAAACAGGAA 27 57°C 

28 3034P14ciF CAATAACAACCTTCACTTTTCCTTCC 26 57°C 

29 3034P15ciF CAAACAAACCAAGACTAACAATGAAATC 28 57°C 

30 3034P15ciF GTACAGACATCAGCATTTCCTTTTCAG 27 57°C 

31 3034P17ciF TGAACATACTGCGATAGTTATCAACCTC 28 57°C 

32 3034P17ciF AACCGATATGAGGGAATATATAAAGCTC 28 57°C 

33 3034P18ciF CTTATTGTTCTGTGCTTTACCTTTTTG 27 57°C 

34 3034P18ciF GTGTATTGTTCTGTTGCTCAGGCTTT 26 57°C 

35 3034P19ciF CTATGCTCTGATACCTCCAAAATGTA 26 57°C 

36 3034P19ciF ATGACCTAGCATTATTTCTGCAATATG 27 57°C 

37 3034P01esF CTACGAAATAGATAACAGTAAACGA 25 57°C 

38 3034P01esR CTAGCACAAGATGACGTAGTGAAC 24 57°C 

39 3034P02esF AACGTTCCTCTTGCGGTAAAGACAC 25 57°C 

40 3034P03esF TGGAATAATGAGCGAAAATATCTTC 25 57°C 

41 3034P03esR AAGACAATATTGAAATGCAAGGTA 24 57°C 

42 3034P04esF ATCGAGTTTGTATTCTTCACCCATTG 26 57°C 

43 3034P04esF AAATCTTCAACGGTAACTTCTTTA 24 57°C 

44 3034P04esR GTTGTGTATGGTAAGAAAACTGGTAA 26 57°C 

45 3034P04esR ACTTCTAACGTTGTGTATGGTAAG 24 57°C 

46 3034P05esF GAATAAAGTTAGTGAAAACACAAAAC 26 57°C 

47 3034P05esR GACTAAAGCATAATCAGCAGAGTC 24 57°C 

48 3034P06esF AAAAATCCACACAGGTTTATGGTCAG 26 57°C 

49 3034P06esF ATTGAAGATGTAGAAAATAATAAACC 26 57°C 
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50 3034P07esF TATTAACTACACCACCTTCTTTGATA 26 57°C 

51 3034P07esR TTCTGATGAAATAGTCAAAGGCTCTA 26 57°C 

52 3034P08esF TTTTAACCTGATTATTCATGAAGTC 25 57°C 

53 3034P08esF GTTCATATCTTCGGCGAGCAGAGA 24 57°C 

54 3034P09esF CTAAATGCTTTATTTATGCCTATTT 25 57°C 

55 3034P09esR AGAATATGAGTCTGACCGAAAAGT 24 57°C 

56 3034P11esF AGAGTGGCGTATGGAAAGTCAGAATA 26 57°C 

57 3034P11esR GTAAATACTCCCCTAATTGCGCTAAAAG 28 57°C 

58 3034P12esF GTTCTGTTGAAATCCTCTATCTGGTGTT 28 57°C 

59 3034P12esF GATAGACAAACAGAGGGTTATCAG 24 57°C 

60 3034P13esF GAACAGCAAGGTAAAAATGAAGAGCA 26 57°C 

61 3034P13esF GTAAGTATGACTGGGTTGTCTCTCT 25 57°C 

62 3034P14esF ACGATAAACGTTCAGATATCAAAG 24 57°C 

63 3034P14esR AAAACGCAGAAACGATTTGTACTC 24 57°C 

64 3034P15esF TATAAACATTACTCTGGTTGCCATAC 26 57°C 

65 3034P15esR TTTATCAGTAACGTTGAGGAAGAG 24 57°C 

66 3034P17esF ATCGTACTCATAAACTTCCAGTTC 24 57°C 

67 3034P17esR AGGATAATAAAGTCACAGTACAAAAC 26 57°C 

68 3034P18esF ATCATAAAGACGCCGTACAATC 22 57°C 

69 3034P18esR CAAAGACTATGATTTCAGTATCAGC 25 57°C 

70 3034P19esF TGAAGATTTTCAGGACTATCAGG 23 57°C 

71 3034P19esR GTCAAGTTTGTTCATAAAGGTGAG 24 57°C 

72 unGI01aF TCTATGTGCTGATGGAGGCGCTGT 24 57°C 

73 unGI01aR CCTGATTCGGATTGTGATGGCGGG 24 57°C 

74 unGI01bF TAATAACCACAACTGCCTTG 20 57°C 

75 unGI01bR ATGCCCTACTTTACTTCCAG 20 57°C 

76 unGI01cF AAACTCCCACAAATAACCAG 20 57°C 

77 unGI01cR TAATACAACTCAGCACTCCTTC 22 57°C 

78 unGI02aF TGCCCATCACCATTTATTGT 20 57°C 

79 unGI02aF ATAATACCGGAGCCGAAGTC 20 57°C 

80 unGI02bF ACGATTACCGAAAAGAGAAC 20 57°C 

81 unGI02bR GTGATGCGAGTAACCTTCTA 20 57°C 

82 unGI02cF GAGTTGAAATCGGAAATATG 20 57°C 

83 unGI02cR AAAGGTGGGGTAAGTAAAAC 20 57°C 

84 unGI03aF TATTCAGAGCACAGGGCCAC 20 57°C 

85 unGI03aR AGGCTGTTTCTGGTCGTGTA 20 57°C 

86 unGI03bF GTAACTGGTTGATATTTTCG 20 57°C 

87 unGI03bR TTTTTCTGTGTTGTGGCTAT 20 57°C 

88 unGI03cF GTTAACAATGCAATTAGCCA 20 57°C 

89 unGI03cR GCCTTTCTTCTGTAGCAACT 20 57°C 

90 unGI04aF GCGTAAGGTGGCATCAGGTATGGC 24 57°C 

91 unGI04aR GCCTTGAGCACCATTGCGGTTTTC 24 57°C 

92 unGI04bF GGTTTTACTCAGTTAAGCAG 20 57°C 

93 unGI04bR TGTCTGGATATACGATTCAA 20 57°C 

94 unGI04cF CTCTTTGACTGTTTGGTTGA 20 57°C 

95 unGI04cR TTACGCATCCTGTTTTTATC 20 57°C 

96 unGI05aF ACAGGAATTGTTCTTTCTGACACTA 25 57°C 

97 unGI05aR CTTCGCCAGCGTATCCCACTTCAC 24 57°C 

98 unGI05bF GCTTTGGTGTTTATTACGAG 20 57°C 

99 unGI05bR TAGTATATTTCGGGATGACC 20 57°C 

100 unGI05cF ATGAAATGACAATGAAAAGC 20 57°C 

101 unGI05cR CAGTGAAAAGGAATGTATGG 20 57°C 

102 unGI06aF GGACAGATAGTTTTGGTTTTACTT 24 57°C 
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103 unGI06aR AACTTACCACTACCTCTGTTGATT 24 57°C 

104 unGI06bF AAGTGGGAAAGAGTTTAGGA 20 57°C 

105 unGI06bR CATCATCCAAGCATTCATAG 20 57°C 

106 unGI06cF TTGGAGAATGGTAGAACTTG 20 57°C 

107 unGI06cR ATACTCGCATCAACTTTGTC 20 57°C 

108 unGI07aF TTGTCCGTATGAAAGTAGAGAAG 23 57°C 

109 unGI07aR GTCGATTACCTTTTTAGTGCTATG 24 57°C 

110 unGI07bF CCTAACATACTTCGCATCAA 20 57°C 

111 unGI07bR TATTTTCATTAGGTCGCTCA 20 57°C 

112 unGI07cF GCCCTTCTATCTCCAGTTTA 20 57°C 

113 unGI07cR GCGTTACATAAGTTCACTGG 20 57°C 

114 unGI08aF CGGAGGTCACGCAACTGGAAGAAG 24 57°C 

115 unGI08aR GGCATATCAATAACACCACTGTAAA 25 57°C 

116 unGI08bF CGTTAGACATCATCCAGTTC 20 57°C 

117 unGI08bR TCCCTGTTATTTGGTATCAC 20 57°C 

118 unGI08cF AATTACCGAAAACTCCAGAA 20 57°C 

119 unGI08cR TTATATGGGCTGTCTTGGAT 20 57°C 

120 unGI09aF TACAAGTAACGCAGCCGGGTCTCA 24 57°C 

121 unGI09aR AAATCTCTCCTTCCACCCCGACCG 24 57°C 

122 unGI09bF TTTTCCACTTGTATCACTCG 20 57°C 

123 unGI09bR TACTATCGATTTACCGCAGA 20 57°C 

124 unGI09cF GTCGTTGAGTGGAGTGATAG 20 57°C 

125 unGI09cR CTGCACAGAATATTGAACGT 20 57°C 

126 unGI10aF GGGGAAGGCAATGTGGATGACAGC 24 57°C 

127 unGI10aR TGCGGCGTAAATGTCACCGTATCG 24 57°C 

128 unGI10bF TACAATGCTCAGAAAGAACG 20 57°C 

129 unGI10bR TTTTATCGCTATCATTGCTTC 21 57°C 

130 unGI10cF CACCATCCACTATCACCATC 20 57°C 

131 unGI10cR ATCTGGCAATGAACTACCTC 20 57°C 

132 unGI11aF GCCTGATGGGGCAGTTTGGTGACT 24 57°C 

133 unGI11aR GCCTGAACGCGGGACATCTCTT 22 57°C 

134 unGI11bF GCTGGTCAAATCAGGCATCA 20 57°C 

135 unGI11bF ATAATGGTATTGGCGATGTG 20 57°C 

136 unGI11cF TCCAACATTTACTCCATCTG 20 57°C 

137 unGI11cR GATGTAGTAATGGATGTGTGC 21 57°C 

138 unGI12aF ATGATTCTGGCCTTCGATTC 20 57°C 

139 unGI12aF GGCAGAAAACACACCAGAAG 20 57°C 

140 unGI12bF TCTCTTGTGCTGATAACCTC 20 57°C 

141 unGI12bR AAGGTTTTGGATGATGTTTA 20 57°C 

142 unGI12cF ATTTTCCTGTTTGTGTCGTT 20 57°C 

143 unGI12cR ACTGACTACACTGACACGCT 20 57°C 

144 unGI13aF AGACTCGTTGGTCGGGCTGGTTTC 24 57°C 

145 unGI13aR ACCTGTGCCATCTTCCGCATTTCA 24 57°C 

146 unGI13bF GTTTTTCTTCTTTCATTTCGA 21 57°C 

147 unGI13bR AGTCGAATCTCTACCAGTCTCT 22 57°C 

148 unGI13cF CAGAAGACGAAGAGAAAAAGT 21 57°C 

149 unGI13cR CAAGAAAGAAAAAACCATGC 20 57°C 

150 unGI14aF CCGCTGGTATCGTTCATCTCGGTC 24 57°C 

151 unGI14aR GTCGAATACGCTGGTTCCGCTGTT 24 57°C 

152 unGI14bF CCTATGTATGGACTCAGCAA 20 57°C 

153 unGI14bR GCTCTTCCACTCATTTTCAT 20 57°C 

154 unGI14cF ACTGGCCTGTTTATTCATCT 20 57°C 

155 unGI14cR TTGTCCTTCTTCACTAAAACC 21 57°C 
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156 unGI15aF CAAGAAAAGATCGCGGCTGGGGAG 24 57°C 

157 unGI15aR GCGTTCTTCGGGGGCAATACCTTC 24 57°C 

158 unGI15bF TCCGGGAATGTTTATTATTG 20 57°C 

159 unGI15bR AAACTGACTCGTGAACTGCT 20 57°C 

160 unGI15cF TAAACAACTCTGGCAACACT 20 57°C 

161 unGI15cR CAAATGACGATGAGGAGATA 20 57°C 

162 unGI16aF GTGTACGTGACCGGATTTGTGCGT 24 57°C 

163 unGI16aR AGGCTGGCTTCTTCTTTGGTGGA 23 57°C 

164 unGI17aF TGAGGTAGCCAATTACACCGGAAGA 25 57°C 

165 unGI17aR CCAGGAGAATCACGCAATCACACT 24 57°C 

166 unGI17bF GAGTCCTCCCTTTGATAATG 20 57°C 

167 unGI17bR CTATCCAGCCCTAAGAACAC 20 57°C 

168 unGI17cF TAATGAAATGGTTGTTGCTAA 21 57°C 

169 unGI17cR AACTTAGATGCCAAAACCTC 20 57°C 

170 unGI17F GGTCTGAAGCGTTTTAAACA 20 57°C 

171 unGI17F CACCAAGATAATGATTGCAC 20 57°C 

172 unGI18aF CCGATGATTTCTGCCGTATTTTGCC 25 57°C 

173 unGI18aR GGTTCACTCTCACTATCTGCCCGT 24 57°C 

174 unGI18bF ATCGCTGTATGTGAAGTTGT 20 57°C 

175 unGI18bR ATCTTGCTCTGTGTGCTAAA 20 57°C 

176 unGI18cF GCTACTATGCTGATTGAACG 20 57°C 

177 unGI18cR CGTCACATCTTTTGGAATAA 20 57°C 

178 unGI19aF ATTTATATTTATGACGAGATTGGTT 25 57°C 

179 unGI19aR AGACTTACATTATCTGTGGAGATTTT 26 57°C 

180 unGI19bF ACTAGCCTATCCACCAAGAG 20 57°C 

181 unGI19bR CAGTGGCAAGTAATGGTAGA 20 57°C 

182 unGI19cF TTAAAAGTCTCCGCTCTACC 20 57°C 

183 unGI19cR CGATACGTTGATGACATTCT 20 57°C 

184 KO_GI04F GGTGATAAAGCGAATACCCGGGCCGTCTACGGTTCCACAGGA
TTCAAAGGAGTGAATGCGGTGTAGGCTGGAGCTGCTT 

79 57°C 

185 KO_GI04R GCCTTCGAGCTGCGCACCAACACGGCCTCAGATGGGCCACAT
CTGGAGAAACACCGCAATCATATGAATATCCTCCTTA 

79 57°C 

186 KO_GI06F CGAAATATGCCGGACAGGACAAAGTAAACCCAGGCTCTATTA
TTCTCTCCGCTGAGATGAGTGTAGGCTGGAGCTGCTT 

79 57°C 

187 KO_GI06R GTCTTCGCGTTGATTGCACCTTCCATACCTTTAACAATCAGG
TCTGCGGCTTCAGTCCAGCATATGAATATCCTCCTTA 

79 57°C 

188 KO_GI07F TCTTGGGGAGCTGCCGGGCAGGTGGGGGTTGATTATCTGATT
AACCGTGACTGGTTGGTTGTGTAGGCTGGAGCTGCTT 

79 57°C 

189 KO_GI07R CCCGTAATTACGGGGTCATTTTTGTGCGGAATTAAAAACGAT
ATCCTGCTGAGAACATAACATATGAATATCCTCCTTA 

79 57°C 

190 KO_GI13F TTAGGATAAAAAAACCCTCTGTAGTAACAGAGGGTTTTGTT
CATTCATAGTGCAGGGTCAGTGTAGGCTGGAGCTGCTT 

79 57°C 

191 KO_GI13R AATGAAGTGAATGGTATTTCCCGCGTGGTGTATGACATCAGC
GGCAAGCCACCAGCAACTCATATGAATATCCTCCTTA 

79 57°C 

192 KO_GI17F AGTGGCGAAATCGGTAGACGCAGTTGATTCAAAATCAACCGT
AGAAATACGTGCCGGTTCGTGTAGGCTGGAGCTGCTT 

79 57°C 

193 KO_GI17R ATATGGGTGATTTCAGACACAAAAAAAGCCGCTCTTGAGCG
ACTCGATTTGCATACGGTGCATATGAATATCCTCCTTA 

79 57°C 

194 KO_GI19F GCGCGGCGCGATGCCGCTTACTCAAGAAGAAAGAATTATGAC
GTTGTCTCCTTATTTGCAGTGTAGGCTGGAGCTGCTT 

79 57°C 

195 KO_GI19F GCGCGGCGCGATGCCGCTTACTCAAGAAGAAAGAATTATGAC
GTTGTCTCCTTATTTGCAGTGTAGGCTGGAGCTGCTT 

79 57°C 
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196 KO_GI19R GTCTGAATGGCCTGTCCGAACAGCAGCACCTTCTCGGTGATG
GTAGTCTTACCGGCGTCCCATATGAATATCCTCCTTA 

79 57°C 

197 KO_G13A_F GCTATTGCCTGATATTTATTTCAGATAATAAATATTCACCCA
TAAGGTAACAAAAATCAAGTGTAGGCTGGAGCTGCTT 

79 57°C 

198 KO_G13B_F ATCAATGACTCCGTACGCAATTAAATTATTACCAATTTAACC
ACATATGATTTATTTATCGTGTAGGCTGGAGCTGCTT 

79 57°C 

199 KO_G13B_R GATGATTCAATTTAAAGCAATATTACCCAACAGGTAAATGC
ACCCCACAGGTAACTATCCCATATGAATATCCTCCTTA 

79 57°C 

200 KO_G13C_F AGCCAGTGGGCTGATTTCTGTTGGGGCAGTGATAAAGATGT
GCATACCCACAGACTACTGGTGTAGGCTGGAGCTGCTT 

79 57°C 

201 KO_G13C_R GAATGAGCCCTTTGGTTACCTGAAAGGTAATAATTAACGCGT
TAAATGTCAACCTTCTACCATATGAATATCCTCCTTA 

79 57°C 

202 KO_G13D_R CGTCCACAAAAAAGCCCGCGCTGCGGGCTTCTATTAATGCAG
TTTATCTTTGCTTATAACCATATGAATATCCTCCTTA 

79 57°C 

203 KO_G17A_R GTAAGCCGGTTTTTCCTGCGACCTTTTCCTGGCTTGCCGGTC
TGAGGATGAGTCTCCTGTCATATGAATATCCTCCTTA 

79 57°C 

204 KO_G17B_F AGAAAATTGTGACGTACACCGGACAACAACACGACGCATTGC
AGATGTGCCAGCCCTGACGTGTAGGCTGGAGCTGCTT 

79 57°C 

205 KO_G19A_R ACTGCAATATCTTCAGAAGGCCTGATTAAATGCTGTTTTTCA
CTTGTCCACCAGCGTGTTCATATGAATATCCTCCTTA 

79 57°C 

206 KO_G19B_F GTGATAGCAACCCGCCACTGAGCGGGTTTTTTGTACCTGTAA
ACTTGGTGCAGTACAGTAGTGTAGGCTGGAGCTGCTT 

79 57°C 

207 KO_G19B_R CATGTTCTCCACCTGCAAAAAAGCCCCGGATAACCGGGGCAA
ATGATGAGTATCGTCCTGCATATGAATATCCTCCTTA 

79 57°C 

208 KO_G19C_F ATGACTTCTGACGGCGATTTTGTGGCAGTGGCTACGGTGGCT
GTCAGCGCCGCAGGTTAAGTGTAGGCTGGAGCTGCTT 

79 57°C 

209 KO_GI19R GTCTGAATGGCCTGTCCGAACAGCAGCACCTTCTCGGTGATG
GTAGTCTTACCGGCGTCCCATATGAATATCCTCCTTA 

79 57°C 

210 KO_intGI04_F CGAAAGAAAATTGCATTAATTTTCAAGTAGTAGAAGTAAAC
AGCGTCATCGGAGGGCTTTCATATGAATATCCTCCTTA 

79 57°C 

211 KO_intGI04_R GTTGTATTACAATTAGTTAAATTACTCATATCGCTTCAATTG
GCTCTAGTTAACTCTGGTGTGTAGGCTGGAGCTGCTT 

79 57°C 

212 KO_intGI06_F CGCTTGCAGAACCGCAACTCCCAATAAACGCAAACCCAAAAC
TCCAAAGGATAATCGCTGCATATGAATATCCTCCTTA 

79 57°C 

213 KO_intGI06_R GATGATGTAAAATCTTCCCCAAAACTTTCCCCAAAACCCTTC
CCCAAAACTGGCTATTTTGTGTAGGCTGGAGCTGCTT 

79 57°C 

214 KO_intGI07_F TGCTAAACAAGCCGGAGGTGATCGCCACAGATCACCCTGCTT
TGAAGAGGATACTGGAAGCATATGAATATCCTCCTTA 

79 57°C 

215 KO_intGI07_R GGATATCGTTTTTAATTTTCTCTGCAAAACCTCTGCAAAACC
CCTCTGCAAAACTGGTCAGTGTAGGCTGGAGCTGCTT 

79 57°C 

216 KO_intGI11_F CTGATTATTGCTGGAAAGAGGCTGGAGAAATTGTAGAGCGG
TTCATTGGAGGGCTTCGTACATATGAATATCCTCCTTA 

79 57°C 

217 KO_intGI11_R GGCAATACTGAAAAATTGTTATTCAGTATCGCCCTTTAAGCC
GTTTCAGGCTATATAAAAGTGTAGGCTGGAGCTGCTT 

79 57°C 

218 KO_intGI12_F TTGTTTCATAGCCTATGAGACACACAAGGCTTTGTGCTCTTC
GATAGTTGTTAAGGCGGACATATGAATATCCTCCTTA 

79 57°C 

219 KO_intGI12_R GCCGCACTACATGACGGGTAAAAAGTGGATAAAATAATTTT
ACCCACCGGATTTTTACCCGTGTAGGCTGGAGCTGCTT 

79 57°C 

220 KO_intGI13_F GTATTACCTTAAAGGTATACTCTCATACCGTCATGAAAATGG
TTTCTATACGGGTGAATTCATATGAATATCCTCCTTA 

79 57°C 

221 KO_intGI13_R AAAATTGAATCACTGGCAGCAGAAGCAGAGATGGAAGAAAA
TCAGCAGAACTATTAAACGGTGTAGGCTGGAGCTGCTT 

79 57°C 
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222 KO_intGI17_F ATTAAAAACTCCAGATTATGTTACTTAACACTCATTTTAAAA
ATCAACCAATAACTATTTCATATGAATATCCTCCTTA 

79 57°C 

223 KO_intGI17_R CGGATATCATTGGGGGCATAATTGGGGGCATCTTAACTTCGA
TTAGAAATGTGCCCCCAAGTGTAGGCTGGAGCTGCTT 

79 57°C 

224 RTdinBHF AGCCTATCTCGATGTCACCG 20 60°C 

225 RTdinBHR TTTAGCCGCTGAGACTTTGC 20 60°C 

226 rtGEI04F CGATGTGGTCAATGTGTGGA 20 60°C 

227 rtGEI04R CGCATCCTGGGTCATTCTAA 20 60°C 

228 rtGEI06F GCAAGGCCACACATGTATTG 20 60°C 

229 rtGEI06F CGCTTCAGTCCAACCCATAT 20 60°C 

230 rtGEI07F GAGCGATGATGATTGGCAGT 20 60°C 

231 rtGEI07F CTTAGCCGTGGTATCGATAT 20 60°C 

232 rtGEI12F TGCCGCCTCAAGTAGATGTC 20 60°C 

233 rtGEI12F ATCTGAAGCGAACCATGACG 20 60°C 

234 rtGEI13F AATACCGTCACCTGTACCGC 20 60°C 

235 rtGEI13F CGGAAGAGTCTGCGAAAAAC 20 60°C 

236 rtGEI17F CCCTTCACCCATTATTCACC 20 60°C 

237 rtGEI17F ACTTTCTCGGATGGTCTTGG 20 60°C 

238 rtGEI19F CAAAATGTACAATCAGCGGC 20 60°C 

239 rtGEI19F TCTGCTATGCTCTGATACCTCC 22 60°C 

240 rtGEI19R ATTTGGGCTTAATTATTGGGG 21 60°C 

241 AMPscrF GAGTAAGTAGTTCGCCAGTT 20 60°C 

242 AMPscrR GATCATGTAACTCGCCTTGA 20 60°C 

243 CLM3scrF GCAAGAATGTGAATAAAGGC 20 60°C 

244 CLM5scrR TATGTTTTTCGTCTCAGCCA 20 60°C 

245 KAN3scrF GCAAGGTGAGATGACAGGAG 20 60°C 

246 KAN5scrR GTCATAGCCGAATAGCCTCTC 21 60°C 

247 kanG04scrR AACCTTGCACCACTCAGACC 20 60°C 

248 kanG07scrR TAAATACGCTAAAGCCGGAA 20 60°C 

249 kanG17scrR ATCACACTCACTTCACGTTG 20 60°C 

250 KO_G13Ascr_F TTTGAGCGCAGCCATTGTCT 20 60°C 

251 KO_G13Bscr_F TAGAACTACGACCAGCAGCA 20 60°C 

252 KO_G13Bscr_R GCGTCTGAACACCATTGAAT 20 60°C 

253 KO_G13Cscr_F TTCATGGTTTGCCTCAGATT 20 60°C 

254 KO_G13Cscr_R AATAAAACCGCTCGACTTGC 20 60°C 

255 KO_G13Dscr_R AATGTGGCGTCAATGAGTGT 20 60°C 

256 KO_G17Ascr_R AACAGTGGTGAACAGACGGT 20 60°C 

257 KO_G17Bscr_F CCTTTTCCAGTTGTGCCAGT 20 60°C 

258 KO_G19Ascr_R CGCGCGCAGAATAATAACGT 20 60°C 

259 KO_G19Bscr_F TGTCGGGTTGATGTAGAGCA 20 60°C 

260 KO_G19Bscr_R AACCGGGGCAAATGATGAGT 20 60°C 

261 KO_G19Cscr_F AGTGTCAGCATTGTGGGCAT 20 60°C 

262 recAscrF AGATAGCCACGATAGAGCAG 20 60°C 



 40 

2.6 Media and Buffers. 

2.6.1 Media. 

2.6.1.1 LB 

Tryptone (Difco)    10g 

Yeast Extract (Difco)   5g 

NaCl     10g 

dH2O     1L 

Agarose    20g 

 

pH to 7,6±0,1using NaOH 1M. 

Fill up to 1000 ml with MilliQ water and 

autoclave. 

 

2.6.1.2 SM 

Glucose      10g  

Proteose Peptone N2 (Difco)  10g 

Yeast Extract (Difco)    1g 

MgSO4*7H2O     1g 

KH2PO4     1,9g 

K2HPO4     0,6g 

dH2O     1L 

Elute the Glucose in 100ml dH2O sterile 

filter it and add it to the SM media after it 

has cooled down. If SM-Agar is needed 

add 20g of Agar before autoclaving. [28] 

2.6.1.3 HL5 

Glucose    15,4g 

Proteose Peptone N2 (Difco)  14,3g 

Yeast Extract (Difco)   7,15g 

Na2HPO4*2H2O   1,28g 

KH2PO4    0,49g 

dH2O    1L 

 

pH to 7,6±0,1using KOH 1N. 

Elute the Glucose in 100ml dH2O sterile 

filter it and add it to the media after it has 

cooled down. [70] 

2.6.1.4 SoC 

Glucose   0,36g 

Tryptone    2g 

Yeast Extract    0,5g 

NaCl   0,05g 

1M KCl   0,25ml 

1M MgCl2   1ml 

1M MgSO4   1ml 

dH2O   100ml 

 

pH to 7,6±0,1using KOH 1N. 
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2.6.2 Buffers. 

2.6.2.1 50x Soerensen buffer 

KH2PO4    99,86g 

Na2HPO4   17,80g 

 

Fill up to 1000 ml with MilliQ water and 

autoclave. [70] Use 1x for experiments 

 

2.6.2.2 Arabinose 20% 

L-Arabinose   20g 

 

 

Fill up to 100 ml with MilliQ water and 

sterile filter using a 22m (PES) sterycup. 

 

2.6.2.3 50x TBE buffer 

The 50x TBE buffer has been bought 

from Quiagen and used 1x to prepare 

Agarose gels and running buffers. 

2.6.2.4 SM Buffer (Phage extraction) 

NaCl    5,8g 

MgSO4 x 7H2O   2g 

Tris-Cl (1M, pH7,5)   50ml 

 

Fill up to 1000 ml with MilliQ water.  
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3 Results 

3.1.1 ExPEC isolates have a greater number of GEIs than InPEC and non- 
pathogenic strains. 

The distribution analysis allowed to stratify the data to show GEI prevalence in the 

major pathotypes of E. coli (Fig. 8). This representation showed that IHE3034 

associated islands are generally more represented in ExPEC isolates than in non-

pathogenic ones and almost not present in InPEC isolates. Of the 18 islands identified 

10 are completely absent in InPEC (GEI 2, 3, 4, 8, 11, 12, 13, 14, 18, 19). In the 32 

intestinal strains studied the genomic island prevalence ranges from 0,8% of GEI 5, 

10, 17 to the 3,3% of GEI 7. 

The non-pathogenic strains, taken all together, carry almost all the islands of the 

study but the GEI prevalence is generally lower ranging from 0,8% for GEI 2, 4, 11 

and 17 to the 4,6% for GEI 6 and 9. All of the 29 non-pathogenic strains completely 

lack GEI 19 that is present only in ExPEC isolates. 

The extra-intestinal strains are positive for the GEIs under study; the prevalence 

ranges from 0,8% for very rare genomic islands such as GEI 17 and19 to 24% of GEI 

10. This group of strains is the only one that contains GEI19 and also has a high count 

(>10%) of GEIs that carry known virulence/fitness factors (GEI 1, 5, 15, 18). It is of 

note that four of these high prevalence islands (GEI 6, 7, 11 and 14) are still able to 

excide from the genome.  

 

 

 

Fig. 8: Genomic islands distribution in E. coli major pathotypes. 

GEI distribution study, on a collection of 132 strains, grouped by their major pathotype. Strains have 

been sorted using the average-linkage algorithm of cluster on both the strains and the islands. 
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3.2 Distribution of IHE3034  islands among a panel of diverse  E. coli 
isolates.  

The prevalence of the 18 genomic islands (GEIs) present in IHE3034 was assessed 

in 132 strains representative of the E. coli diversity (found in our strain collection)  

and selected depending on the  different pathotypes, phylogenetic groups and MLST 

types. The panel has been assessed by multiplex PCR with three target regions as 

probes for each island. These regions have been chosen following two selection 

criteria: 1) being present and conserved among pathogenic E. coli isolates; and 2) 

being absent in non-pathogenic strains such as K12 MG1655. Primers corresponding 

to three of these regions were designed, for each bioinformatically predicted GEI, in 

order to cover the whole island using IHE3034 as reference strain. In the distribution 

analysis, GEIs have been considered present only if all three PCRs reactions were 

positive. As expected, testing primers on our reference strain yielded exclusively 

positive results while no product could be detected in reactions with non-pathogenic 

K12 MG1655 genomic DNA (Fig. 9). Data were sorted using the average-linkage 

algorithm of Cluster and the obtained results were used to create a graphical 

representation with Treeview. The GEI content among the panel was variable; with 

some groups of island being present in the majority of isolates while others were 

restricted to strains or groups of strains with a particular phylogenetic group or 

sequence type. The obtained dendogram demonstrates the presence of two major 

clusters. In the first cluster, associated with GEI’s presence, included the majority of 

the ExPEC isolates (60/79 75,9%, Fig 9A) while in the second group, due to their lack 

of genomic islands, InPEC and non-pathogenic isolates were predominant (42/53 

79,2%, Fig. 7B). The latter can be further divided into six subgroups (1-6) depending 

on the GEI content of the studied strains (Fig. 9A).  

There are three ExPEC subgroups that may be considered outliers (1A, 1B and 2), as 

they are very divergent from the GEI pattern of the reference strain IHE3034. Group 

1A is composed of six strains with only 1 GEI; five isolates are ExPEC and one non-

pathogenic. Of the extra-intestinal bacteria four belong to the phylogenetic groups A, 

ABD and AxB1. The second cluster 1B contained the sequence type complex 131 

strains that were all positive for the presence GEI 10; strain IN40/R exhibits one of 

the most rare islands which is particularly related to STC95 strains (GEI04, Fisher 

p<0,01) whereas strain UR3/R contains GEI 3 and 6. It is of note that E457, a non-
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pathogenic strain of the same STC, displays the same GEI pattern as UR3/R. The last 

outlier group 2 is composed of 2 UPEC (B2), 1 APEC, 1 EPEC (both B1) and 2 non-

pathogenic strains (B2 and A) with 1 to 3 genomic islands each. All strains except the 

non-pathogenic Uli2049 (phyl. group A) carry the virulence/fitness factor GEI 5. 

Strain APEC B1 IMT2120 carries GEI 7 but lacks any other island that is related to this 

outlier; IMT9096 only harbours island 5 but any other island. In the second sub-

cluster of group B all strains carry GEI 1, known to encode for a type VI secretion 

system related to virulence in E. coli and P. aeruginosa[51]; this is very interesting as 

both of the non-pathogenic strains have this island. GEI 8 is a virulence factor island 

related to the B2 group (Fisher p<0,01) and is present in both the UPEC (B2) isolates 

and, surprisingly, the B2 non-pathogenic strain. 

The dendrogram created by cluster analysis  shows that the remaining 4 groups (3-6) 

are linked together and are increasingly related to the reference strain, residing in 

group 6, due their prevalence of genomic islands. Thus it is not surprising that the 

majority of APEC (B2), UPEC and SEPEC strains are clustering here. 

Cluster 3 exhibits an isolate composition similar to group 2 as it shows 3 APEC, 2 

UPEC and 1 ETEC with 1 to 3 GEIs for each isolate. These strains all have in common 

GEI 7 but two ExPEC B2 strains, IMT2121 and IMT9650, are also positive for the 

presence of GEI 18 and GEI 13 or GEI 1, respectively; these islands except for GEI13, 

are highly associated to the B2 phylotype and to the ExPEC pathotype (Fisher 

p<0,01). Moreover, the APEC strain IMT1939 carries the colibactin island GEI 9[36, 

44, 61]. 

The biggest group in this analysis, with 22 strains, is cluster 4. Almost all of the 

phylogenetic group B2 strains, 16 out of 22 (72,7%), are ExPEC, while the remaining 

six are either A, B1 (InPEC/non-pathogenic) or non-classified; notably one B1 strains 

is APEC. All the strains in this group exhibit GEI 9, but this analysis allowed for the 

identification of three other smaller sub-groups that have different combinations of 

GEI 1, 5, 6, 10 (sub-cluster 4A), GEI 7, 9, 10 (4B) or GEI 5 and 18 (4C). The latter group 

is of special note as GEI 5 and 18 are known to carry genes encoding for very 

important virulence and fitness factors of the bacteria such as S-prefimbriae, IroN, 

Antigen 43 and the ibe cluster [53]. 

Cluster 5 contains thirteen strains, almost all of them belonging to APEC/UPEC (9/13 

– 69,2%), and all harbour GEI 6, 7 and 15; although it is mainly composed of A, B1 and 
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ABD strains (10/13 - 76,9%) it is the nearest group to the STC95 cluster due to its 

high GEI content. Within this group of strains there are three identifiable subgroups 

that have GEI 1, 5 or 11, respectively.  

Almost all of the STC95 strains are gathered in a single group (Cluster 6) together 

with IHE3034. Nevertheless, three sub-clusters (6A, 6B, 6C) could be identified that 

differ in the number of genomic islands shared between them. The 6A sub-group is 

separated from its sister groups 6B and 6C that are linked together. These isolates 

share GEI 1, 6, 14, 15 and 18; strains IMT2470 and IMT2487 (APEC) also have GEI 9, 

10 or 12, respectively. The 6B cluster is composed of four strains, three of which are 

ST390 (data not shown), that have a mosaic composition of GEIs and completely lack 

GEI 4, 8, 11, 13, 17 and 19. Strain B13155 and RS226 miss GEI 6 and 7, respectively, 

while strain IHE3080 contains GEI 2 but does not possess GEI 3. The IHE3034 sub-

group 6C is composed of four strains that show a very similar, but never identical, GEI 

profile in respect to the reference strain. All of the bacteria forming this sub-cluster 

have in common GEI 1, 2, 5, 6, 7, 8, 10, 14, 15 and 18. Although IHE3036 harbours GEI 

11 but lacks GEI 3, 4, 12, 13, 17, 19. The two strains nearest to IHE3034 IMT5214 

(APEC) carry GEI 13 but miss GEI 3, 11, 17 and 19 whereas Uli2044 (Healthy Faecal, 

B2) lacks GEI 11, 19 in respect to the reference strain.  

The distribution analysis has identified four GEIs (4, 13, 17, 19) that have a low 

prevalence and are almost exclusive for STC95 and ExPEC strains, the islands cluster 

together in the tree generated with Cluster. These islands were observed for the first 

time in the paper from Moriel and colleagues [53]. The percentage of unknown ORFs 

in these islands ranges from 18,2% (8 of 44 ORFs) of GEI 4 to the 56,2% (27 out of 48 

ORFs) of GEI 13; in each island there is a variable number of genes of phagic origin 

ranging from 3 of GEI 17 to 19 of GEI 13. All the islands are present only in ExPEC 

strains except for GEI 13 that is also present in an EPEC strain; it is of note that this 

GEI is also the only one carrying a known virulence factor, enterohemolysin 1. GEI 19 

with its 48Kbp and is the longest mobile island in IHE3034; the distribution analysis 

pointed out that this island is the only one that is present only in in our reference 

strain. 
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Fig. 9A: Prevalence of genomic islands present in NMEC IHE3034 among E. coli isolates belonging to different phylogenetic groups. 

GEI distribution study on a collection of 132 strains E. coli MG1655 and IHE3034, respectively, were taken as negative (no GEI present) and positive controls. GEIs 

considered as present are shown in red while GEIs absent are shown in black. The used strains show: name of the strain, STC, pathotype and phylogenetic group; “N.P.” 

strands for Non-Pathogenic while “n.a.” for not available. The strains have been sorted using the average-linkage algorithm of cluster on both the strains and the islands. In 

the green box the reference strain MG1655. 
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Fig. 9B: Prevalence of genomic islands present in NMEC IHE3034 among E. coli isolates belonging to different phylogenetic groups. 

Portion of the graph displaying all the negative strains that cluster together. The used strains show: name of the strain, STC, pathotype and phylogenetic group; the strains 

have been sorted using the average-linkage algorithm of cluster on both the strains and the islands. The used strains show: name of the strain, STC, pathotype and 

phylogenetic group; “N.P.” strands for Non-Pathogenic while “n.a.” for not available. The strains have been sorted using the average-linkage algorithm of cluster on both the 

strains and the islands. In the green box the reference strain MG1655. 
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3.3 Molecular and genetic characterization of IHE3034 genomic 
islands. 

The acquisition of genomic islands by horizontal gene transfer (HGT) is an 

effective mechanism of generating diversity between bacterial species [44]. The study 

of the plasticity of the genome is important, as it allows a better understanding of 

how bacteria evolve and acquire new genes contributing to virulence.,  

Nine IHE3034 genomic islands were able to excise from the genome and form circular 

intermediates. 

The ability of genomic islands to excide from the genome has been shown to be linked 

to the mechanism used by bacteriophages [50]; they have been found to mobilize 

themselves, at least transiently, by forming circular intermediates (CI) which are then 

transferred from a donor bacteria to a recipient bacteria. In order to understand 

which of these GEIs are still viable as possible HGT vectors the circular intermediates 

were identified using an IHE3034-specific PCR assay that entails 2 rounds of 

screening. The first steps of the analysis were 

carried out by testing for the presence of 

circular intermediates using a set of inverted 

primers that would anneal on the newly 

formed circular DNA structure. Results 

indicate that GEI 4, 6, 7, 11, 12, 13, 14, 17 and 

19 are still able to excide from the genome 

and form circular intermediates; exclusion 

PCR data confirmed the results obtained by 

the inverted PCR (Fig. 10). 

In order to confirm the specificity of the PCR 

reaction and to characterize the att sites of the 

circularizing GEIs, the inversed and exclusion PCRs were sequenced and analysed by 

a multiple alignment. This approach allowed the identification of the att sites of every 

genomic island (Tab. 5). The att sequences in the reference strain vary between 16 

and 51 base pairs in length and their nucleotide identity (left site against right site) 

ranges from 81% (GEI 19) to 100% (GEI 11 and 13). 

 

 

Fig. 10: Detection of Circular 

intermediates  (CI). 

Detection of CI PCRs in a SYBRsafe stained 1% 

agarose gels. 
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Table 5 

GEI att-L / R Identity 

4 aatgcg/tcaccaataactgac 89,5% 
6 tgctgcgccatatgggt/ctggactgaagc 96,4% 
7 aaca/ctgt/accagtg/ctggtacatggatatcgataccac 85,7% 

11 ttttcatcaacaaggatttt 100% 
12 ctgcag/-gggacaccatt 94,1% 
13 aatcattcccactcaat 100% 
14 cgggttcaactcccgccagctcca/-----ccaatcatgattggacggtgtaaggac 90,2% 
17 gagtccggccttcg/-gcacca 95% 
19 agaggtg/agcgaagc/aagcc/aagc/aact/ctttgcc/aattatttctcaccc 81% 

ATT sites were identified by aligning (MEGA5, clustalW algorithm) the inverted and the exclusion 

PCR sequences then by finding the proposed att sites on the reference genome sequence of IHE3034. 

Bases in indicate variations between the two att sites. 

3.3.1 Deletion of genomic island (GEI) Integrases prevents the formation of 
circular intermediates. 

To study if the excision of the genomic islands is mediated by either the recA allele 

[50] or by the integrase gene that is present in each island a recA mutant of IHE3034 

has been generated. The circular intermediates analysis carried out on the mutant 

strain showed that none of the 9 genomic islands was influenced by the absence of 

recA. (data not shown)  

To confirm that the excision of the genomic islands is dependant on the integrase, 

nine int deletion mutants of IHE3034 were constructed. The gene was deleted from 

each GEI that was able to excise from the genome; the ability of the genomic island to 

create CIs was then assessed by PCR. The results indicate that all the islands except 

GEI 6 and GEI 7 are completely dependant on their int gene to excide from the 

genome and to create a circular intermediate. This might be explained by a crosstalk 

mechanism between the two islands as the deletion of either GEI’s integrase gene still 

enables the formation of CIs (Fig. 11).  
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Fig. 11:  Deletion of the Integrase gene prevents the formation of CIs. 

Detection of CI PCRs in a SYBRsafe stained 1% agarose gels. Circular intermediate production was 

assessed before and after the deletion of the int gene. (A) PCR done using real time primers. (B) PCR of 

GEI 12 using longer identification primers. 

3.3.2 GEI 11, 13 and 17 circular intermediates are resistant to DNAse 
treatment. 

The bioinformatic analysis conducted on the chromosome of IHE3034 allowed 

Moriel and colleagues to identify many genomic islands of prophagic origin [53]. To 

further characterize these GEIs the supernatant of an IHE3034 culture was tested for 

traces of nuclease resistant circular intermediates (nrCI). The presence of nrCIs could 

indicate the possible production of prophagic molecules into which the circular 

intermediates are packed, thus shedding light on which genomic islands may be HGT 

vectors [7, 48, 73]. 

In the untreated sample all the CIs of genomic islands previously identified as mobile 

were present (Fig. 12). By contrast, the DNase treated samples yielded three bands of 

the expected heights for GEI 11, 13 and 17.  
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Fig. 12: GEI 11, 13 and 17 circular intermediates are resistant to DNAse treatment. 

Detection of CI PCRs in a SYBRsafe stained 1% agarose gels. Circular intermediate production was 

assessed in both the supernatant samples. (A) supernatant late log growth not treated with DNase. (B) 

supernatant late log growth treated with DNase. 

3.3.3 Growth conditions alter the excision rate of IHE3034 genomic islands. 

The HGT mechanisms by which these islands are able to move within and among 

the genome is still an unresolved question .  

The E. coli reference strain had been tested under different stress conditions in order 

to study excision rates variations  among the GEIs using a relative qPCR assay. Results 

provide evidence that all of the stress conditions (temperature, minimal medium, 

iron depletion and oxidative stress) used for these experiments do not modify GEI 6 

and GEI 7 excision rates as the CI production never raised more 1,9 times or reduces 

itself of more than 1,8 times except when the cells were grown in an iron depleted 

media such as 2’2’-Dipyridyl (Fig. 13A to F).  

Our experimental methods indicate that temperature significantly reduces GEI 4, 13 

and 17 (6,2x, 8,5x and 32,3x, p<0,05), while the use of sub-lethal quantities of 

A 

B 
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Mitomycin C, an antibiotic known for its ability to stimulate prophage production, 

does not cause any changes in the excision rates of the islands, except GEI13, where it 

increases the CI production by 30,3 times (p<0,05) (Fig. 13A/B). 

Iron depletion by 2’2’-Dipyridyl greatly affects GEI 4 as it lowers the CI production by 

more than 30,3 times thus posing the question which kind of ORF may be found to 

work on this island (Fig. 13C). Additionally, as previously mentioned, this 

environmental condition increases GEI 06 excision rates (2,3 times) and the relative 

expression of the sitABCD operon carried in this island by 47,3 to 114,6 times (data 

not shown). 

Growth in chemically defined media (RPMI) caused a reduction of circular 

intermediates by 2,8 times (p<0,01) and 4,1 times (p<0,01) for GEI 13 and 17, 

respectively (Fig. 13D).  

Reducing compounds that generate free radicals such as H2O2 and Menadione had an 

effect only on  GEI 17 by rising its CI production of 3,8 times (p<0,01). Genomic island 

13 produces 4,4 times more circular intermediates when treated with H2O2 (p<0,01) 

(Fig. 13E/F).  

A 

Fig. 13: Growth conditions alter IHE3034 genomic islands excision rates. 

Relative circular intermediates production variation in bacterial cells grown in different 

conditions. The whisker-box plot encompasses 50% of all observations, the dotted line represents 

the median and the whiskers represent the outer 50% of observations. CI production variations 

above 2 times are considered as statistically significant. The conditions used were (A) growth 

temperature set to 20°C. 
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Fig. 13: Growth conditions alter IHE3034 genomic islands excision rates. 

Relative circular intermediates production variation in bacterial cells grown in different 

conditions. The whisker-box plot encompasses 50% of all observations, the dotted line represents 

the sample median and the whiskers represent the outer 50% of observations. CI production 

variations above 2 times are considered as statistically significant. The conditions used were (B) 

0,5 g/ml mitomycin C, (C) 0,25 M 2’2’ Dipyridyl, (D) growth in a minimal media, (RPMI).  

B 

D 

C 
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Fig. 13: Growth conditions alter IHE3034 genomic islands excision rates. 

Relative circular intermediates production variation in bacterial cells grown in different 

conditions. The whisker-box plot encompasses 50% of all observations, the dotted line represents 

the sample median and the whiskers represent the outer 50% of observations. CI production 

variations above 2 times are considered as statistically significant. The conditions used were (E) 

60 M, hydrogen peroxide. (F) 75 M menadione. 

E 

F 
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3.4 IHE3034 genomic islands 13, 17 and 19 are linked to survival in 
the Dyctiostelium discoideum grazing assay. 

Dictyostelium discoideum, is a haploid amoeba that has been extensively used as a 

model to study host-factors involved in cellular aspects of host-pathogen interactions 

[2]. D. discoideum has been extensively used to define the maintenance and the 

evolution of genes associated with virulence and fitness in bacteria such as Legionella 

pneumophila, Aeromonas salmonicida, Klebsiella pneumonia and E. coli[10, 27, 70]. In 

this work the functional effects of the genomic islands, almost exclusively associated 

to the STC 95, are analysed in order to understand their possible contribution to 

pathogenicity. 

3.4.1 GEI13, 17, 19 deletion affect IHE3034 ability to resist to the Dyctiostelium 
discoideum grazing assay. 

In this work IHE3034 wild type and its genomic islands mutants have been tested 

for their resistance to D. discoideum grazing in order to assess the possible functions 

of the deletes GEIs.  

In order to assess if the lack of the genomic islands affects the ability to grow of the 

bacteria, the knock-out strains (IHE3034 G4-13-17-19 / G4/ G13/ G17/ G19) 

have been tested in a growth curve. The results showed that in both LB and SM the 

growth rates of all the strains were comparable to that of the wild type strain (Fig. 

14).   

We tested different bacteria / amoebae cells ratio by measuring grazing capacity at 

different amoebae population sizes. Over the course of a few days, the bacteria 

formed lawns on these plates with amoeba embedded in them. The bacteria 

phagocytized by D. discoideum were assessed through the occurrence of bacterial 

lysis plaques. 

The wild type strain showed a resistance to grazing only slightly inferior to the 

negative control (str. 536). The strain missing island 4 showed a reduction in its 

ability to resist the amoeba grazing comparable to the wild type thus excluding it as a 

possible carrier of phagocitation resistance genes (Fig. 15). The G13 strain showed a 

marked resistance reduction as in the 1000 amoeba area big plaques were readily 

visible. IHE3034 G17 demonstrated to be the most susceptible strain of all the single 

GEI deletion mutants as the plaque created by Dictyostelium were very big and 

visible. The lack of GEI 19 caused an impaired resistance to the amoeba phagocytosis. 
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Even if reduced, the effect caused by the lack of this island, seemed to be similar to 

the one of IHE3034 G17. The strain missing all of the genomic islands (IHE3034 

G4-13-17-19) was the most susceptible to D. discoideum when tested. As you can see 

in Figure 15, the large  plaques resembled the DH5 strain, and in some cases it was 

Fig. 14: Single and multiple genomic islands deletion do not alter IHE3034 growth rates. 

Growth curves of the 6 KO strains generated for the Dictyostelium discoideum grazing assay. The 

strains have been grown for almost 23 hours in a 96 well plate inside a Tecan N200 infinity. The 

plate was left at 37°C shaking and the OD600 has been measured every 10 mintes. (A) Growth 

curve done in LB. (B) growth curve done in SM. 

 

A 

B 
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possible to witness spore formation (Fig. 15). It is important to note that no bacterial 

strain (except 536) was completely resistant in this test  (even when 5000 amoebas 

were used so this dilution was not considered significant). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: GEI 13, 17, 19 deletion affect IHE3034 ability to resist to the Dyctiostelium discoideum 

grazing assay. 

Dyctiostelium discoideum grazing assay, bacteria were plated on SM plates and challenged with 

different concentrations of amoeba. 536 is the negative control, DH5a is the positive control; IHE3034 

WT to G19 are the samples. 



 58 

4 Discussion 
Genomic islands are often studied from a strain-centric perspective and 

investigations of the distribution and gene content of these mobile elements in varied 

strain collections are not frequent. The importance of these studies is paramount as 

they provide a better understanding of the mechanisms driving the evolution of 

bacteria with open genomes such as E. coli [74].  

The distribution analysis proposed in this work has allowed for the study of the 

prevalence of genomic islands (associated with the NMEC strain IHE3034) in a 

diverse panel of E. coli strains. The data has been stratified by the major pathotypes 

(ExPEC, InPEC or Non-Pathogenic) in order to detect the differences among the major 

sub-groups. It comes as no surprise that IHE3034 genomic islands have a higher 

prevalence (ranging from 0,75% to 24%) in ExPEC strains (Fig. 8). However, it is 

important to note that the non-pathogenic group also showed the presence of all 

tested islands (but for GEI19), even if with much lower frequency (0,75% - 11%). The 

presence of these islands in non-pathogenic E. coli strains may be explained by 

different theories. ExPEC strains are known to live and thrive in the normal intestinal 

flora of healthy humans without causing damage; such situation is optimal for GEI 

transmission and creates an ideal environment for horizontal gene transfer to occur 

[6]. Another theory is that the colonization of the gastrointestinal tract by attenuated 

strains with reduced pathogenicity that has been developed to enhance host survival 

[82]. The results obtained in this analysis (Fig. 8) are consistent with other 

epidemiological findings from Dobrindt et. al. and Logue et. al. [20, 45]. The almost 

complete absence of IHE3034 related genomic islands in the InPEC group is to be 

expected as these bacteria colonize a different niche than the ExPEC ones. Still the 

low prevalence (0,75% - 7,6%) of islands that are known to carry virulence/fitness 

factors, like GEI 05, 06, 07, may be of interest to better understand if these strains are 

able to colonize other niches (Fig. 8).  

The distribution analysis studied by a strain specific point of view describes a much 

more detailed situation (Fig. 9A/B). The InPEC or non-pathogenic strains are 

generally attributed to the phylogenetic groups A and B1; the lack of NMEC related 

islands shown in Fig. 9B can be either related to the incapability of the strains to 

cause harm or to a content of islands different from the one under study. It is of 

interest though that some intestinal pathogenic isolates are positive for some islands 
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posing the question if these strains are actually able to survive outside the intestine in 

either blood or urinary tract.  

Of all the strains representing the B2 group the most difficult to understand are the 

sequence type complex 131 ones. These isolates are emerging as one of the most 

virulent and antibiotic resistant strains infecting both humans and animals [29, 59, 

64]. For this group of isolates the primers used for the prevalence study have failed to 

consistently amplify almost any island but GEI 10; also considering that the 

sequences of these strains are not available (at the moment of writing) we can only 

speculate that the genomic/pathogenic island content is different from IHE3034 one. 

Still, extensive molecular epidemiology studies have been carried out to understand 

the possible virulence factors carried by this clonal complex strains; these analysis 

concluded that no differences can be gleaned from ExPEC strains other than the 

presence of plasmids encoding for multi-antibiotic resistance genes [58, 64, 75]. 

It is of interest that the average-linkage algorithm used in this work to analyse the 

distribution study, was not able to group the APEC strains in a single cluster.  This 

heterogenicity of the avian strains mirrors the previously observed results on APEC’s 

virulence factors by Moulin-Schouleur and colleagues [54]. This data may thus be 

considered a representation of what really happens in nature where avian strains of 

E. coli can be isolated from many different hosts. 

As previously reported by Middendorf and colleagues genome flexibility also has an 

impact on the evolution of new bacterial pathogens. The acquisition of new traits by 

horizontal gene transfer is one of the driving forces in the emergence of new bacterial 

variants [50]. Comparable to the excision mechanism of bacteriophages, GEIs are 

thought to exist at least transiently as CIs after excision from the chromosome. The 

analysis of the circular intermediates formations has shown that nine GEIs (04, 06, 

07, 11, 12, 13, 14, 17 and 19) were able to excide from the genome in presence of 

their respective int gene (Fig. 10 and 11) and the attL-R sites (Tab. 5).  

As considered before GEI 01, 05, 06, 07, 08, 09, 10 and 12, which include both CI 

forming and non-mobile islands, were associated to the B2 ancestral group (p<0,5-

0,01). 

GEI 01 is a non-mobile island of 29-Kb highly associated to the B2 phylogenetic group 

(Fisher p<0,01). This GEI carries an uncharacterized type VI secretion system (T6SS) 

that has been discovered first in the UPEC strain CFT073; also it has been found in 
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other strains of different pathotypes of the ExPEC group. Recent studies have 

proposed this T6SS as a possible NMEC marker due to its action in: inter-bacterial 

relationships, biofilm formation, cytotoxicity and survival in phagocytic cells[8, 41]. 

GEI 05 is a genomic island of 61 kilobases inserted at the 5’ of a Serine tRNA that is 

also is not mobile. This GEI has been reported to carry many virulence fitness factors 

such as S-fimbriae, IroN, putative TonB-dependent receptor, and Antigen 43 [19, 66, 

76]. This island is highly associated to the B2 phylotype and to the ExPEC pathotype 

(Fisher p<0,01). The fact that this GEI is not mobile may be an example of how 

selective pressure works actively to retain useful pieces of genetic information; this 

mechanism allows bacteria to have a survival advantage overcoming stress situations 

not suitable growth conditions [50]. 

GEI 06 is a mobile island of prophagic origin [55]. In its 47-Kb it carries an active 

sitABCD operon mediating the transport of iron and manganese that confers to the 

bacteria a boost to resistance to hydrogen peroxide [68, 69]. Real time data showed 

that operon is highly overexpressed when the growth media gets depleted of iron 

ions using 2’2’-Dypiridil (data not shown). This islands is mainly associated to B2 

phylogenetical group (Fisher p<0,05) and has a higher than usual prevalence in 

strains not belonging to B2 phylotypes. 

As many genomic islands are, GEI 07 is also of prophagic origin and it was first 

identified by Lloyd and colleagues [44]. This 46-Kb GEI has a high number of 

unknown ORFs and it’s function is unknown. We were able to see that its ability to 

form circular intermediates is not impaired in absence of the int gene and also its 

excision rates were similar to genomic island 6 ones (Fig 11 and 13). This effect may 

be explained by an integrase cross-talk mechanism such as the one described by 

Hochhut et. al. in an UPEC strain [35]. It is of note that this effect was present even 

even if the att sites are almost completely different (att-L 38,7%, att-R 41,9%), 

sharing though a common pattern of bases that may be a recognized by both the 

integrases (data not shown). However, more studies will be needed to understand if a 

similar mechanism is present in an NMEC strain.  

GEI cluster 08, 09, 10 is a group of three separated non-CI-forming islands that span 

189-Kb. In this work we confirmed the previous observations by Antonenka and 

colleagues that GEI 08, known as HPI from Yersinia, is missing the AT-Rich portion 

and is not able to excide from the genome [4]. In addition, we were not able to 
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identify any circular intermediates for GEI 09 and 10 in our conditions. Taken 

together these data suggests that this cluster could be an example of different 

genomic islands that have been stabilized into the genome by evolutionary forces in 

order to maintain their virulence and fitness factors.  

All of the GEIs in this cluster are highly associated to the B2 phylotype (Fisher 

p<0,01) even if their prevalence varies among the whole panel (GEI 08 0,5%, GEI 09 

2,5%, GEI 10 2,8%). It is of note that 25 out of 46 (54,3%) strains carry both the 

colibactin island (GEI09) and the TonB island (GEI10) while the remaining 19 strains 

carry alternatively one of the two indicating a possible association between GEI 09 

and GEI 10. In addition, the presence of many tRNA sites of the same type, identical 

direct repeat sites and of different Insertion sequences (IS) indicates that this zone is 

a hot spot region for mutation and recombination likely able to be the target of future 

mutations. 

GEI12 is a mobile island of prophagic origins long 40-Kb. Sequencing of the att sites 

showed two sequences of 17bp with an identity of 94,1% (Tab. 5). Also this island is 

known to carry the neuO gene that is involved in the O-acetylation of the sialic acid 

residues of Escherichia coli K1, groups W-135, Y, and C. meningococci, and group B 

Streptococcus capsular polysaccharides thus modifying their immunogenicity and 

susceptibility to glycosidases [17]. As previously reported by Mordhorst et. al. this 

island is very poorly represented in non-STC95 strains [52]. The distribution analysis 

showed that this GEI was present only in ExPEC strains (8/71) and statistical analysis 

consistently assigns it to the B2 and STC95 groups (7/8 strains - Fisher p≤0,01). 

However, island excision proved to be not measurable by relative real time means 

thus not allowing the study of this island’s response to cellular stress. 

Overall, the study of the prevalence of IHE3034 genomic islands also uncovered four 

islands (GEI 04, 13, 17, 19) that may be considered as ExPEC specific and very rarely 

represented or unique outside our reference strain’s STC. These islands are all of 

prophagic origin and still mobile possibly indicating that they have been recently 

acquired or that the stabilization effort of the cell on these mobile elements is low. 

Interestingly, as shown in Fig. 12 three islands, GEI 11, 13 and 17, were resistant to 

DNase digestion. Hence, even if this data has not completely confirmed the 

production of full-fledged virions, it still indicates that the CIs of these GEIs may be 

protected by proteins of phagic origin produced by their ORFs. These four islands, 
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identified by Moriel et. al., have never been described before and their function, as the 

gene content, is largely unknown.  

GEI04 is a medium sized island of 33-Kb that carries no known virulence/fitness 

factor. Real time analysis indicates that this island’s excision rates are stable when 

cells are treated with Mitomycin C, H2O2, or Menadione. When the bacterial culture is 

grown in cold temperature (20°C) or gets iron depleted using 2’2’-Dipyridyl, the 

excision rates drop of 6 and 13,5 times (Fig 13A/C). This effect could be due to two 

mechanisms: the genes on the island give the cell an evolutive advantage so it focuses 

its efforts to stabilize it into the genome; or the integrase expression levels on this GEI 

are effectively lower thus leading to a marked reduction of the CI formation.  

GEI13, like the other islands of this list, is actively mobile it is 39-Kb long and it has 

been detected for the first time by Moriel and colleagues [53]. More than 50% of its 

ORFs are uncharacterized but this is the only GEI, of the less represented ones, that 

carries a known virulence factor the enterohemolysin 1. This, together with GEI17, is 

highly susceptible to the stress conditions in which the cell is. The excision rates are 

variable between the different conditions tested; temperature, a minimal medium 

(RPMI) and the use of Menadione cause the GEI to be more stable in the genome with 

rates reduced of 2,3 and 8,1 times (Fig. 13A/D/F). However, Mitomycin C, an 

antibiotic known for its ability to induce the phage lithic circle [43], and H2O2 cause a 

marked increase in CI production; this is especially true for Mitomycin C as the 

excision rates rise of 28 times. The fact that the CI is mildly resistant to the DNase 

treatment and the high presence of prophagic ORFs mark this GEI as of prophagic 

origin, thus suggesting that it may still be “trying” to switch from a dormant stat to an 

active one (Fig. 12).  

GEI17 is the smallest island of IHE3034 (16-Kb) and almost all of the ORFs have been 

identified as of prophagic origin. Of all the predicted genes present in this island, 6 

over 13 (46,2%), are labelled as conserved hypothetical and of unknown function. 

Intrestingly this island’s circular intermediate is also protected from the DNase action 

thus posing the question if this islands is still able to produce full phages. The real 

time analysis shows that the excision rates of island 17 are increased by 2,6 and 6,8 

times when the growing media is treated with agents producing free radicals such as 

H2O2 and Menadione. Low temperature causes a great reduction (31,2 times) of this 

island’s CI; this is possibly due to a preservation mechanism of the possible phage 
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encoded by this island. Also adding Mit. C to the growth media or growing bacteria in 

RPMI causes a reduction of the presence of circular intermediates of 2 and 3,5 times.  

GEI19 is a very peculiar island that has been found as a whole only in IHE3034. This 

GEI is still actively mobile but its excision rates were not measurable by real time PCR 

as the att region is highly variable and it is not possible to obtain clean PCR results 

suitable for real time analysis. This island is 46-Kb long and the bioinformatic 

analysis identified 54 ORFs; of these 39 are fully annotated, 15 are listed as “unknown 

origin” or of “prophagic origin”. BLAST analysis on the NCBI database identified 7 

ORFs to be completely unique to IHE3034.  

The capacity of bacteria to modulate their genome structure is an important feature 

for adapting to changing environmental conditions and thus for the evolution of new 

bacterial pathogens. GEIs contribute to the formation of new species by providing 

virulence and fitness genes that allow a better survival in hostile environments [22]. 

Certain IHE3034 genomic islands have only recently been identified and little is 

known about their role in pathogenesis. In this study we identified four GEIs (04, 13, 

17, 19) with a prevalence almost exclusive in STC95 strains. in order to study their 

possible involvement in pathogenicity a D. discoideum grazing assay has been set up 

as described by Froquet and colleagues [27]. 

The results showed that GEI 04 was not involved in the phagocytosis resistance as the 

phenotype of the mutant missing the island was not different from wild-type strain.  

On the contrary, genomic island 13, as GEI 17 and 19, may carry unknown genes 

involved in survival against internalization and digestion by Dyctiostelium discoideum 

as the knock out strains showed a reduced survivability to grazing (Fig. 15). 

Bioinformatic analysis had revealed that all the GEIs under study have large portions 

that are completely uncharacterized and that carry ORFs of unknown function. In 

order to better understand which genes are the responsible for the grazing resistance 

phenotype further localized deletion studies are needed. Nonetheless, the 

Dictyostelium discoideum grazing assay has proven to be a solid tool to study deletion 

mutants resistance to phagocytosis. 

In conclusion, despite the genomic similarities between E. coli strains, it is evident 

that numerous genetic differences exist even among strains of the same pathotype or 

clonal complex. Our understanding of E. coli genome modifications would greatly 

benefit from distribution and functional studies on genomic islands, as they would 
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give insights on bacterial pathogenesis, host adaptation and their effects on ExPEC 

strain’s virulence potential. 
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