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ABSTRACT 

Linear and macrocyclic nitrogen ligands have been found wide application during the years. 

Nitrogen has a much stronger association with transition-metal ions than has oxygen, because 

it is less electronegative and the electron pair is more available for complexing purposes. For 

this reason, we decided to investigate the synthesis of new macrocyclic and linear ligands and 

study their application as complexing agent.  

We started our investigation with the synthesis of new chiral perazamacrocycles containing 

four pyrrole rings. This ligand has been synthesized by the [2+2] condensation of (R,R)-

diaminocyclohexane and dipirranedialdehydes and was tested, after a complexation with  2 

equiv Cu(OAc)2, in Henry reactions. The best yields (up to 90%) and higher ee’s (up to 96%) 

were obtained when the meso-substituent on the dipyrrandialdehyde was a methyl group. The 

positive influence of the pyrrole-containing macrocyclic structure on the 

efficiency/enantioselectivity of the catalytic system was demonstrated by comparison with the 

Henry reactions performed using analogous macrocyclic ligands. Where the dialdehyde unit 

was replaced by a triheteroaromatic dialdehyde (furan-pyrrol-furan), the new macrocyclic 

ligand allowed to obtain the Henry product with a good yield but only 73% of ee in standard 

reaction condition.  

Another well known macrocyclic ligand is calix[4]pyrrole (phorphyrins analogue). We 

decided to investigate, in collaboration with Neier’s group, the metal-coordinating properties 

of  calix[2]pyrrole[2]pyrrolidine compounds obtained by the reduction of calix[4]pyrrole in 

very harsh conditions. Before studying the complexation properties, we focused our attention 

on the reduction conditions, and tested different Pd supported (charcoal, grafite) catalysts at 

different pressures and temperatures. We observed that, using catalytic amounts of Pd/C in 

AcOH as solvent at 100 bar of H2 pressure and 100 °C, the calix[4]pyrrole was converted to 

the two half-reduced compounds; otherwise, using 10 equiv of Pd on charcoal in the same 

other reaction conditions only fully reduced products were observed. 

Concerning the synthesis of linear polyamine ligands, we focused our attention to the 

synthesis of 2-heteroaryl- and 2,5-diheteroarylpyrrolidines. The chiral, substituted pyrrolidine 

ring has found application in organocatalysis as well as in catalytic organometallic reactions. 

The reductive amination reaction of diaryl ketones and aryl-substituted keto-aldehydes with 

different chiral primary amines was exploited to prepare a small library of diastereo-enriched 

2-aryl- and 2,5-diaryl-substituted pyrrolidines. 

We have also described a new synthetic route to 1,2-disubstituted 1,2,3,4-

tetrahydropyrrole[1,2-a]pyrazines, which involves the diastereoselective addition of Grignard 

reagents to chiral oxazolidines. The diastereoselectivity was dependent on the nature of both 

the chiral auxiliary, (S)-1-phenylglycinol or (S)-valinol, and the nature of the organometallic 

reagent. The best stereochemical outcome (98:2) was obtained by the use of MeMgBr on the 

oxazolidine derived from (S)-phenylglycinol. The NH free target was finally obtained by 

reductive cleavage of the chiral auxiliary. 
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Chapter 1: Perazamacrocyclic ligands 
 

 

1.1  Introduction 
 

Macrocyclic ligands with a ring size of at least nine members and containing three or more 

identical or different heteroatoms are important complexing agents for cations, anions, and 

also neutral molecules. Particularly, azacrown ethers play an important role in this field. 

Nitrogen is less electronegative and a stronger basic site with respect to oxygen, so that the 

nitrogen electron pair is more available for complexing purposes and especially allows a 

much stronger association with transition-metal ions. The aza-crown ethers have metal ion 

complexing properties that are intermediate between those of the crown ethers, which strongly 

coordinate alkali and alkaline-earth metal ions, and those of the perazamacrocycles, which 

form strong complexes with heavy-metal ions. These complexing properties make the 

nitrogen-containing macrocycles interesting to researchers in many areas.
1a

 

The chemistry of nitrogen-containing macrocyclic compounds started over 100 years ago 

when Bayer prepared tetraazaquaterene, that is calix[4]pyrrole, (1) in 1886.
1b

 Hinsberg and 

Kessler in 1905 prepared similar nitrogen-containing macrocycles.
2
 Cyclic tetraamines 2 and 

the dibenzo-hexaazacrowns 3 were prepared by Krassig and Greber.
3
 The important 

complexing properties of the perazamacrocycles were known before the milestone discovery 

of all oxygen-containing crown ligands 4 by Pedersen.
4
 

 

 

Fig 1. Typical macrocyclic ligands. 
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The metal ion-templated synthesis of a bis(aminoimino) macrocycle was reported more than 

30 years ago by Curtis. The macrocycle resulted from the reaction of tris(1,2-

diaminoethane)nickel(II) perchlorate with acetone to form the 14-membered macrocyclic 

ligand-Ni(II)complex (5). Numerous examples of this and other metal ion-templated reactions 

have been investigated in the intervening years.
5
  Macrocycle 6 founded interesting 

application as a ligand of alkali metal anion favoring their solubilization in organic solvents.
6
 

The most important characteristic of the macrocyclic polyamines is their ability to form 

complexes with cations, anions and neutral organic molecules. There are many reviews on the 

complexing abilities of the crowns and azacrowns.
7
 The azacrown macrocycles generally 

form 1:1 complex with metal ions. However, di-and trinuclear complexes are known where 

two or three metal ions are coordinated by a single perazamacrocyclic ligand, especially when 

the ring is large and the cation is small, and the number of basic sites is adequate. Substitution 

of oxygen by nitrogen in ligand such as 18-crown-6 and dibenzo-18-crown-6 result in 

macrocycles that have less affinity for the alkali metal ions such as K
+
, than did the parent 

peroxa-crown. The log K values in these cases decrease in the order: O > NR > NH. However, 

replacing the oxygen donor atom by nitrogen resulted in increased affinities for the heavy 

metal ions such as Ag
+
 and Pb

2+
. Increasing interaction for Ca

2+,
 Sr

2+
, and Ba

2+
 was observed 

for [15]aneN2O3 where the two ring nitrogen atoms bear -hydroxyalkyl substituents. These 

examples of modified ligand-metal ion interactions by changing the macrocycle cavity size, 

the nature of donor atoms, and the N-substituent justify the great interest in these macrocyclic 

compounds. The design and synthesis of macrocycles having selectivity for a desired cation 

or group of cations are now possible. 

 

1.1.1  The macrocyclic effect 
 

The peraza macrocycles form more stable complexes with a variety of metal ions than do 

those formed by the corresponding open-chain polyamines. This feature is called the 

macrocyclic effect. Triazacrown macrocycles, in nearly every case, form 1:1 complexes with 

metal ions that are thermodynamically more stable than those derived from 

diethylenetriamine. Only complexes of the open chain triamine with Cu
2+

 and Hg
2+

 ions are 

more stable than those obtained from the cyclic triamine.
7a

 Triazacyclononane 7 forms 

stronger complexes with most cations than does the triazacyclodecane 8, -cycloundecane 9, 

and -cyclododecane 10. The tetraazacycloalkanes, particularly the 14-membered cyclic 

tetraamine (called cyclam) 11, exhibit the macrocyclic effect due to a more favorable enthalpy 

contribution to complex stability.
8
 Complexes of the pentaaza- macrocycles have been studied 

extensively from a thermodynamic point of view.  
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Fig 2. Triaza- and tetraazamacrocycles 

Perazamacrocycles that have large cavities do not exhibit the macrocycle effect. They have 

several features: 1) they are polybases producing highly charged protonates species in 

solution in the pH range in which they could serve as model reagents for the study of 

nucleotide complexation; 2) they are suitable for anion-coordination studies; and 3) because 

of the great number of donor atoms, they can form polynuclear metal ion complexes that 

could prove useful in the search for more effective catalysts.  

The possibility for these ligands to bind more than one metal ion in the macrocyclic 

framework has aroused the interest of several research groups. Since second and third-row 

metal ions complexes are active as calalysts and several of these cations have large affinities 

for nitrogen.  In general, large polyazacycloalkanes can form mono-, di- and trinuclear (e.g. 

with copper) species, as well polyprotonated  complexes. The dinucleating and trinucleating 

abilities of these ligands increase as  the ring size increases. 

 

 

1.1.2 Azacyclophanes 
 

Azacyclophanes, macrocycles with cyclophane subunits incorporated into the ring, have 

internal cavities and are able to interact with neutral molecules, cations, and anions through 

hydrophobic host-guest interactions that are scarcely affected by external factors such as pH, 

temperature, and ionic strength. The azacyclophane 12 consisting of diphenylamine and 

piperazine fragments was synthesized and found to be an effective ligand for alkali metal and 

ammonium cations. Thus, the log K(CHCl3) value for Li
+
 interaction is 8.06, and the ligand is 

effective in the selective extraction of  Li
+
 from H2O to CHCl3. Corey-Pauling-Koltun 

molecular model shows that the cavity of this ligand is too large to include the bare Li
+
, but 

Li(H2O)6
+
 can fit into the cavity by formation of hydrogen bonds between the piperazine 

moieties and two metal-coordinated water molecules. 
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Fig 3. Azacyclophane macrocycle. 

 

 

1.1.3 Selective complexation of cations 
 

The main target in macrocyclic ligand design is the capability to discriminate among different 

cations. The many factors influencing the selectivity of macrocyclic ligands for cations have 

been determined. They may be divided roughly into several groups, including macrocycle 

cavity dimension, shape and topology, substituent effects, conformational flexibility/rigidity, 

donor atom type and number.
4b,7a-c-f-l,9

 

Macrocycles of the “rigid” type (e.g. small cryptands) and other rigid discriminate the cation 

that exactly fits into the cavity among other smaller and larger cations. Macrocycles of the 

“flexible” type, e.g. larger polyether crowns and cryptands, discriminate principally among 

smaller cations (“plateau selectivity”).
9c

 Incorporating benzene, cyclohexane or pyridine 

rings, and/or other cyclic fragments into a macrocyclic skeleton leads to a more rigid 

macroring and possibly alters the strength and selectivity of the ligand-cation interaction. As 

an example, the 20-membered crown ether 13 with an incorporated 1,8-naphthyridine ring  

shows excellent selectivity for Ba
2+

 over Ca
2+

 in CDCl3
10

. Moreover, chiral substituents 

incorporated in a polyether macrocyclic framework, see 14, allow separation of enantiomeric 

organic ions.
9c,7d,11

 

 

Fig 4. Example of typical achiral and chiral chelating structures. 



P a g e  | 9 

 

9 

 

1.1.4 Selective complexation of anions and organic molecules 
 

Macrocyclic polyamines that can be fully or nearly fully protonated in pH range close to 

neutrality appear to be the best ligands for biologically important carboxylates and adenosine 

phosphate anion because the formation of these anions occurs in these pH regions. Lehn and 

Dietrich and their coworkers have synthesized macrocyclic polyamines [24]N6 and [32]N8, 

based on propylene units, and macrocycles [27]N6O3 with mixed nitrogen-oxygen donor 

atoms connected by ethylene units.  

Both types of protonated macrocycles were found to form stable and selective complexes with 

both organic and inorganic polyanions in aqueous solution at almost neutral pH. Since 

selectivity in these systems depend on electrostatic and geometric effects, modification of 

macrocyclic cavity shape and size should allow one to control the selectivity sequence. The 

most stable complex is formed when the macrocycle is fully protonated and the dicarboxylate 

anion complements the ammonium sites separation in the macrocycle. In the case of the (2-

aminoethyl)-substituted [14]N4 ligand 15, protonation occurs first at the primary amines in the 

side arms and the flexibility of this tetra-protonated receptor leads to a better matching in its 

interaction with anions.
12

 

 

Fig 5. pH-Sensible polyamine macrocycle. 

Azacyclophane-type macrocycles possess large cavities of different sizes that have 

pronounced hydrophobic character. They form host-guest inclusion complexes with charged 

or uncharged organic compounds in aqueous solution by electrostatic or hydrophobic 

interactions, respectively. In these complexes, the shape of the hydrophobic anion is important 

for optimum complex stability. In addition, increasing the hydrophobic volume of the cavity 

improves formation of the complex. Azacyclophan-type macrocycles are able to select guest 

by recognition of steric structure and charge of the guests. For example, they form strong 

complexes with anions having naphthalene rings, weaker although relatively strong 

complexes with anions having benzene rings, and only weak complexes with non aromatic 

anions.
13
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1.1.5 Medical uses of the azamacrocycles 

There are important medical application of azamacrocycles. The perturbation of metabolic 

processes based on biological metal ion-ligand coordination can produce a disease or even 

death. Conversely, undesirable biological processes can be prevented by using certain metal 

ion-ligand interaction; for example, the weak Pt-Cl bond in cis-platin (16) allow this complex 

to display antitumor activity. In fact, when applied in biological systems, chlorine dissociates, 

and the platinum ion can interact with the DNA molecules of the cancer tissue. Other drugs 

such as metallocene dichloride and diorganotin dihalide use this mechanism for their 

antitumor action. Up to the mid 1980s, only metal ion complexes of linear ligands had been 

tested, and only in the first part of 1990s complexes of tetrabenzyl[14]N4 17 with copper, gold 

and silver have been tested for antitumor activity.
14

 

 

 

Fig 6. a) cis-Platinum, b) tetrabenzyltetraazamacrocyclic ligand: Cu, Au and Ag complexes show 

antitumoral activities 

Other antitumor active compounds such as the bleomycin, antracycline, and stempomycin 

antibiotics have different mode of action. Antitumor activity is manifested by DNA binding to 

the antibiotics followed by DNA strand cleavage. Cleavage requires oxygen and a metal ion 

to form a complex. A different method to localize and treat tumors by means of a ligand-

radioisotope complex attached to an antibody is now being tested. Cyclic polyamines are ideal 

ligands for this purpose as they coordinate the appropriate radioactive metal ions forming 

complexes that are kinetically inert with respect to dissociation either at the pH of body fluids, 

or by reaction with the common metal ions in body fluids.
15

 

Early experiments in tumor localization and treatment using C-functionalized EDTA and 

DTPA chelates were not promising because the complexes with Cu
2+

 and In
3+

 were labile in 

body fluids and mixed complexes with Ca
2+

, Mg
2+

 and Zn
2+

 were formed. Since the 

radioactive metal ions can damage liver and bone marrow, it is very important to use ligands 

that form very strong complexes with those cations. Complexes of Bi
3+

 and DTPA 

incorporating rigid cyclohexane rings between the nitrogen atoms exhibit good in vivo 

stability. Azamacrocycles of 9-14-ring members and with acetic or phosphoric acid group 

attached to each nitrogen atoms appear to be good candidates to replace DTPA or EDTA for 

this application. A number of these macrocycles were tested and the inefficient labeling was 

only found for the complex of [12]N4-tetraacetate and 
90

Y, where cations such as Ca
2+

 and 

Zn
2+

 effectively competed for the ligand.  
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1.1.6   Synthesis of perazamacrocycles 
 

Perazamacrocycle are preferably prepared starting from difunctional reagents and using three 

different methods to achieve ring closure involving formation of a C-N bond: 

1) SN2 reaction of a bistosylamide and a dihalide 

2) Nucleophilic acyl substitution between an activated derivative of an arenedicarboxylic 

acid and a diamine (formation of amide) 

3) Condensation of an aromatic dialdehyde and a diamine (formation of imine) with or 

without metal ion template 

These simple approaches have been used to prepare many perazacyclophanes containing more 

than two benzene ring and more than two nitrogen atoms, and can produce one or more of 

different macromolecules incorporating [1+1, [2+2], [3+3],… molecules of the starting 

reaction partners, depending on their shape and size. For example, the perazacyclophane 18 

containing four nitrogen atoms was prepared in 40% yield by Stetter and Roos
16

 by [1+1] 

cyclocondensation of the disodium salt of N,N′-ditosyl-p-phenylenediamine with a suitable 

dibromide under high-dilution condition. On the other hand, reaction of the bistosylamide of 

m-phenylenediamine with a m-phenylene dibromide gave the [2+2] cycloadduct 19.
17

 

 

Fig 7. a) Synthesis of [1+1] macrocycle; b) Synthesis of [2+2] macrocycle 

The reaction of an aromatic diacyl chloride with a diamine is also a common method for 

preparing cyclocondensation products containing amide functions, which can be successively 

reduced to amines.
18

 The formation of [1+1] cyclocondensation products 20
19a 

 was favored in 
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the reaction of two extended aromatic systems,
 
otherwise, using more compact diacid 

dichlorides and diamines the [2+2] product 21
19

  was prevalent (Fig 8). 

 

Fig 8. a) [1+1] Cyclocondensation reaction; b) [2+2] cyclocondensation reaction 

Rodger
20

 and coworker thoroughly studied the reaction of terephthaloyl dichloride with 

various linear aliphatic diamines. Owing to the lack of rigidity of the diamine, mixtures of 

products were always obtained, the composition being dependent on the length of the 

aliphatic fragment (Fig 9). 

 

Fig 9. Range of products in macrocyclization using an aliphatic diamine 

Finally the reaction between dialdehydes and diamines is a useful method to form cyclic 

oligo-imines. A metal ion can be used as a template agent to favor ring closure, e.g. 

preparation of macrocyclic complexes 22 and 23 (Fig. 10).  

 

Fig 10. Use of a metal ion as a template agent 
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Starting from 5-methylisophthaldialdehyde  and 1,3-propanediamine was necessary to use a 

metal ion template (Cu(II), Ni(II), or Co(II)) to observe the desired [2+2] cyclization product 

22. Select the perfect ion template is very difficult, because changing the type of metal ion is 

possible to obtain macrocycle with different sizes. The self condensation of o-

aminobenzaldehyde has been studied extensively: it undergoes cyclo-condensation reactions 

to give metal complexes with differently sized macrocyclic ligands. The trimer 24 was 

obtained using VO
2+

 as a template, the tetramer 25 with Cu(II) or Zn(II), and mixtures of 

trimers  and tetramers with Co(II) and Ni(II).
21

 

  

Fig 11. Use of metal ions as template agents to obtain differently sized macrocycles 

Non-template-assisted formation of macrocyclic Schiff base has also been used to prepare 

perazamacrocycles. This required rigid starting materials, mostly due to the presence of 

aromatic ring.
22

 The first example was reported by Lyndoy and coworkers in 1977 and 

Owston in 1980. It is likely that internal hydrogen bonding in the starting tetraamine 26 

helped the ring closure process. 

 

Fig 12. Internal hydrogen bonding act as template effect 
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1.2 Chiral perazamacrocycles 
 

1.2.1  Synthesis 
 

In the last two decade perazamacrocycle have found increased interest in the scientific world. 

The possibility to use cheaper and natural building blocks as starting material to obtain a final 

well organized product has gained attention. Chiral building blocks (aminoacids or their 

derivatives) are used as starting material to insert one or more carbon stereocenters in the final 

macrocyclic ring, e.g. 27-30
23

 shown in Fig 13.  

 

Fig 13. Chiral building blocks as starting material 

 

The formation of chiral macrocycle can be achieved by different methodologies which usually 

exploit the sequential formation of C-N bonds by reaction of several nucleophilic nitrogen 

functions with electrophilic compounds. Chiral non-racemic macrocycles containing at least 

three nitrogen atoms in the ring have found applications in supramolecolar and material 

chemistry as well as in pharmaceutical and biological fields, preparation of new material, gel 

formation, chiral recognition and separation of organic anions and biologically important 

molecules, catalysis and ion transport across the membranes. Another class of interesting 

ligands have been prepared starting from optically pure or racemic trans-1,2-
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diaminocyclohexane. DOTA-gadolinium(III) complex 31 has found us as contrast agent for 

magnetic resonance imaging (MRI).
24

 The synthesis of a DOTA analogue from racemic trans-

1,2-diaminocyclohexane results in the formation of two diasteroisomers: trans-syn-trans 33 

and trans-anti-trans 32.
25

 DOTA analogues with increased hydrophobicity were then 

prepared, e.g. 34. 

                                                                                                                                                                                              

Fig 14. DOTA-Gd complex and chiral analogues 

Other procedures can be applied to achieve the synthesis of DOTA analogues. The tetra-

substituited macrocycle 35 was prepared in low overall yield by a sequence of steps involving 

photoelectron transfer-induced tetramerization of (R)-1-benzyl-2-benzyloxymethylaziridine, 

which led to a mixture of compounds. Alternatively, the poly(amido-amino) macrocycle 36 

was prepared by reaction between a chiral diamine and the bis(N-chloroacetyl) derivative of 

another diamine, followed by reduction with LiAlH4 or borane.
26

 

 

Fig 15. Alternative routes to  DOTA analogues  

 

Incorporating aromatic rings in the carbons skeleton of chiral macrocycles serves to increase 

the structure rigidity of the macrocycle, which assumes a well defined conformation. For this 

reason, the rigid compounds have found applications as chiral shift reagents (to resolve the 

NMR spectra of enantiomerically enriched compounds) or ligands of metal catalysts in 
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enantioselective reactions.  Gautam and co workers
27

 presented a new synthesis of a DOTA 

analogues 37 and 38 using Mitsunobu reactions in the cyclization step (Fig 16). 

 

Fig 16. Mitsunobu reaction in the synthesis of DOTA analogues 

This strategy offers the advantages of mild reaction  conditions, short reaction times and good 

product yields. Natural amino acids were used as starting materials, so that changing the 

aminoacid a library of chiral macrocycle with different substituents could be prepared. 

Chiral hexaazamacrocycles 39 were prepared by condensation of 2,6-pyridinedialdehyde with 

substituted ethylenediamines in the presence of BaCl2 or  lanthanide salts,  followed by 

reduction with NaBH4.
28

 This family of ligands forms strong complexes with lanthanide metal 

ions; this particular affinity became attracting for future applications, considering the 

maintaining of luminescence and paramagnetism, typical properties of lanthanide ions. 

 

Fig 17. Synthesis of a chiral hexaazamacrocycle 
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Simply changing the procedure/solvent for the condensation of the same organic precursor 

that previously produced [2+2] macrocycles (MeOH-BaCl2), an easy access to the [3+3] 

cycloadducts was achieved.
29

 Another procedure to synthesize the [3+3] macrocycle 

(“trianglimine”) involves the use of tartrate salt of 1,2-diaminocyclohexane as chiral starting 

material.
30

  Routine reduction of the hexaimine macrocycles gave the corresponding 

hexaamino macrocycle 40. 

 

Fig 18. Synthesis of a [3+3] macrocycle 

Procedure allowing the construction of polyiminomacrocycles in the absence of metal salts 

have been recently reviewed.
31

 A large variety of [3+3] polyimino-macrocycles and the 

corresponding reduced products have been prepared using different aromatic dialdehydes.
32

 

The formation of [3+3] macrocycle is favored by the favorable geometrical features of the 

substrates and thermodynamically if the aldehyde has a rigid structures. The study of 

cyclocondensation of (R,R)-1,2-diaminocyclohexane with biaryl- and terphenyldialdehydes 

showed that the ratio [2+2]/[3+3] macrocycles was dependent on the geometry of the 

dialdehyde. All compounds with a liner arrangement of carbonyl carbons and the biaryl axis, 

produce trianglimines by [3+3] cyclocondensations. Conversely, in the case of non-linear 

arrangement of the carbonyl carbons, mixtures of [2+2], and [3+3] macrocycle were formed, 

but increasing the reaction time the more stable smaller products 41 and 42 were prevalently 

formed.
33k

 Sometimes, it is possible to convert the [3+3] hexaimino-products 43 to the 

[2+2]tetraimino-products 44 by warming in dichloromethane.
33f

 

 

Fig 19. a) Favored [2+2] condensation reaction, b) conversion of [3+3] to [2+2] macrocycles  
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Using linear aliphatic aldehyde or dialdehyde with a preferred anti-conformation, led to 

preferential formation of linear products; the [3+3] macrocyclic product 45 was isolated with 

only 14% yield starting from 1,1′-ferrocenedialdeyde.
33j

 

 

Fig 20. Effect of lack of rigidity of the dialdehyde  

The synthesis of macrocycles with definite size is important in traditional host-guest 

chemistry and particulary in the emerging field of molecular devices and machines. In the 

restricted domain of chiral perazamacrocycles derived from dialdehyde/diamine 

cyclocondensation, the proper choice of the starting material and the reaction procedure 

permits the preparation of a lot of [2+2] and [3+3] macrocycles with a wide range of cavity 

size and different number of nitrogen atoms. Moreover oxygen and sulfur can be introduced 

in the macrocycle to modulate the basicity  and coordination properties of the final ligand. 

 

1.2.2 Applications 
 

Perazamacrocycle ligands finds application in different fields, as catalyst, as chiral solvating 

agent and as ions or molecules recognition. Depending on the foreseen use, the desired 

macrocycle displaying the required steric, geometrical and chemical (basic) properties, can be 

synthesized by choosing the appropriate reagents. In the case of diamine-dialdehyde 

condensation, there is a wide choice of both partners, especially the dialdehyde (aromatic, 

heteroaromatic, meta- or para-substituted,…), whereas the chirality of the macrocycle is 

usually derived from the starting diamine, principally 1,2-diaminocyclohexane.  

Ion recognition 

The most important macrocycles capable of cation recognition are porphyrin and its analogue 

pyrrole macrocycles. In chlorophyll 46 and HEME 47 (Fig 21), which are metallo-porphyrins, 

the four pyrrole nitrogens are strongly bound to a divalent metal ion (Mg
2+

 or Fe
2+

). We will 

discuss in detail  this class of macrocycle in subchapter 1.4.  
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Fig 21. a) Chlorophyll; b) HEME 

The capability to extract selectively a particular metal ion from a mixture of cations can be 

achieved exploiting the multiple cooperative coordination of heteroatoms other than 

nitrogens. As reported by Gao
33

 (Fig 22) the [2+2] macrocycle 48 derived from 2,5-

thiophenedialdehyde is able to extract silver ions from a mixture of different cations. 

 

Fig 22. Ag+ recognition by a chiral N4S2 macrocyclic ligand 

Concerning the recognition of organic molecules, the trianglamine 49 resulted very useful in 

the recognition of 1,3,5-benzenetricarboxylic acid,
34

 thanks to the hydrogen bond interactions 

with the amine groups as shown in 49a (Fig 23). 

 

Fig 23. Molecular recognition 
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Chiral Solvating Agents (CSA) 

The interaction of a chiral host (mixture of enantiomers in any ratios) and a homochiral guest 

forms formal diastereomeric complexes, mainly due to hydrogen bonding interactions 

between the partners, and different chemical shifts are observed in NMR experiments. In this 

case, the guest is called Chiral Solvating Agent (CSA). The enantiomeric purity of the host 

can be determined just by adding a small amount of the CSA reagent to the chiral compound 

in a deuterated solvent.
35

 In the ideal but rare case, a catalytic amount of CSA is enough for 

the chiral discrimination. Chiral solvating agents have an advantage over chiral derivatizing 

agents,
36

 which are used in excess for derivatization before analysis, and over chiral HPLC, 

which consumes much more solvent. Various types of chiral solvating agents or shift reagents 

have been reported, such as lanthanide complexes,
37

 cyclodextrins,
38

 crown ethers,
39

 

calixarenes,
40

 porphyrins,
41

 BINOL derivatives,
42

 and others.
43,44,45

 Although a few of them 

are commercially available, the lanthanide complexes often cause signal broadening 

particularly at a high magnetic field because of the paramagnetic metal, and sometimes form 

precipitates via ligand exchange. On the other hand, crown ethers are effective only for 

amines. In many cases, a large amount of CSA is needed to give rise to signal splitting.  

 

It has been envisioned that bifunctional guests bearing both hydrogen-bond donor and 

acceptor sites could bind a wide range of compounds. Sakai and co worker
46

 presented a very 

attracting and particular CSA 50  (Fig 24) which can discriminate a wide range of chiral 

compounds, such as carboxylic acids, oxazolidinones, carbonates, lactones and epoxides 

using hydrogen bonding as the driving force of binding interaction (Table 1).  

 

 
 

Fig 24.  Highly effective CSA 

Other chiral solvating agents are trianglamines. Several examples of differently funzionalized 

trianglamines used as CSA have been reported in the literature. They were prepared from a 

number of aromatic dialdehydes and presented different substituents on the amine nitrogens. 

The research group of Prof. Savoia, where I carried out my research program, focused the 

attention on the diasteroselective synthesis of trianglamines by addition  of organolithium 

reagents to the trianglimine 51 (Fig 25).
47

 Particularly, the addition of phenyllithium occurred 

with complete stereocontrol giving the adduct 52 with the R configuration of the six newly 

formed stereocenters. Previous work of Periasamy
48

 described the successful use of diamines 

and macrocyclic polyamines derived from (R,R)-1,2-diaminocyclohexane in the 

enantiodiscrimination of carboxylic acids, in contrast to the failure  reported by Tanaka.
49
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Table 1. Selected Regions of NMR Spectra of Racemic Guests 1-12 in the Presence of (R)-50 

 

[a] 600 MHz 
1
H NMR of 6-10 and 12-16; 300 MHz 

1
H NMR of 17; and 565 MHz 

19
F NMR of 11 in the 

presence of (R)-1 (15 mM, 1 equiv except for 12 and 17 (2 equiv) in CDCl3 at 22 C. The resonances for the 

protons or fluorines indicated by the arrows are shown in the right column. The signals for the enantiomers were 

assigned by adding some amount of one enantiomer to the above solution. Filled and open circles represent 

(R)/(1R,5S)- and (S)/(1S,5R)-enantiomers, respectively, which are shown only when the signals for the 

enantiomers are separated well. [b] At -50 C. 

 

 

Inspired by the results of Periasamy the possible use of trianglamine 52 as CSA with chiral 

carboxylic acids was investigated by my group (Table 2).  

 

 

Fig 25. Synthesis of the trianglamine 52, useful as CSA 
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The experiment was performed by successively adding aliquots of racemic carboxylic acids to 

a 10 mM solution of 52 in CDCl3 in the NMR tube, after each addition the 1H NMR was 

acquired at 400 MHz and 25 °C. Table 2 shows the values of the induced chemical shift () 

on selected signals of rac-carboxylic acids and the difference () between the shifts of two 

different enantiomers after the addition of the macrocyclic ligand.  

 

Table 2. Induced chemical shifts () and chemical shift non-equivalences () of selected be signals for a 

mixture of 52 and different guests  

Guest 52:Acid ratio Probe signal 
a
 (ppm)  (ppm)

a 1:10 C

H -0.319 0.044 

b 1:14 C

H -0.227 0.061 

c 1:10 C

H -0.165 0.066 

d 2:1 
C


H -0.360 0.066 

OCH3 -0.323 0.023 

d 1:4 
C


H -0.224 0.033 

OCH3 -0.323 0.037 

e 4:1 
C


H -0.166 0.006 

CH3 -0.168 0.119 

f 5:1 
C


H -0.316 0.006 

CH3 -0.297 0.062 

g 4:1 

C

H -0.178 0.002 

CH2CH -0.019 0.010 

CHCH3 -0.184 0.058 

CH(CH3)2 -0.003 0.008 

h 4:1 

C

H -0.220 0.002 

OCH3 -0.004 0.010 

CH3 -0.204 0.051 

j 1:4 
COCH3 -0.319 0.057 

CH3 -0.143 0.027 

Spectroscopic information:  
1
H NMR, 400 MHz, 10 mM in CDCl3, 25 °C. 

As a general trend, observed in Fig 26a, the average signal of the two enantiomers of mandelic 

acid moved upfield (<0), suggesting that the deprotonation of the carboxylic acid function 

had occurred. At the same time, the absorption of the benzylic proton of the macrocycle 52 
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moved downfield ( > 0), also indicating that an acid–base reaction occurred between the 

two species. Increasing the amount of mandelic acid, the 1H NMR benzylic signal of 52 kept 

moving downfield, while the signal of the acid kept moving upfield, approaching the position 

of the signals observed for a solution of the pure acid. The same behavior was observed in the 

titration of racemic acids (b,c), instead, for the racemic acid (d,e) where the signal of the alfa 

group of the two enantiomers were splitted 0.119 ppm when 4 eq. of 52 were added, whereas 

for the C

H signal a small  value (0.006 ppm) was determined.  Fig 26b shows the split of 

the methyl group when the CSA 52 was used with racemic mixture of 2-phenylpropanoic acid 

(rac-f), the signal relative to the C

H on the stereogenic centre was not considered because 

the  value was smaller than width of the quartet and the signal of the two enatiomers 

resulted overlapped. Baseline separation of the methyl signals of the two enantiomers was 

observed until 2 eq. of rac-f were added, after which the two signals became overlapped and 

unsuitable for the enantiomeric excess determination. Plotting the  corresponding to a 

particular NMR signal versus the increasing ratio of host in solution, a Job-plot graphics
50

 was 

elaborated that gave information on stoichiometric ratio between host and guest spaces.  

 

                                    [a]                                                               [b] 

Fig 26. [a] Partial 
1
HNMRspectra (400 MHz, CDCl3, 25 ◦C) showing: (a–h) the CH signal of a and the PhCH 

signal of 52 after the addition of different aliquots of a to a 10 mM solution of 52; (i) CH signal of a; (j) PhCH 

signal of 52.  

[b] (a–j) Partial 
1
H NMR spectra (400 MHz, CDCl3, 25 °C) of f showing signals of the CH3 group after the 

addition of aliquots of f to a 10 mM solution of 52. (k) A partial 
1
H NMR spectrum (400 MHz,10 mM, CDCl3, 

25 °C) of f showing the CH3 signal. 

 

Catalytically active metal complexes 

The potential of the chiral macrocyclic structures as ligands of metal species in 

enantioselective catalytic reactions was then evaluated. 

An enantioselective aldol reaction between 4-nitrobenzaldehyde and acetone was successfully 

performed in the presence of a catalytic amount of the complex 53 formed in situ by the 

reaction of the trianglamine 48 with diethylzinc in the presence of triethylamine (Fig 24). It 
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was observed that the enantiomeric excess increased by increasing the amount of diethylzinc 

with respect to the ligand 48, which indicated  a cooperative effect within the macrocyclic 

framework of the 3:1 complex (Fig 27).
51

 

 

 

 

 

 

 

 

 

 

 

Fig 27. Legand 48 tested in condensation reaction 

Similarly, the trianglamine obtained by [3+3] cyclocondensation of 1,2-diaminocycloexane 

and 2,5-thiophenedialdehyde 54 was used to prepare the zinc complex by treating it with 

different equivalent of diethylzinc, and this complex could catalyze a typical Henry reaction. 

It was observed that a better enantioselectivity was obtained with the trinuclear zinc complex 

(Fig 28).
33

 

 

 

 

 

 

 

 

 

Fig 28. Tio-trianglamine ligand used in the Henry reaction 

Macrocyclic chiral salen complexes were synthetized by [2+2] condensation of 2,6-

diformyldiphenol ad optical active 1,2-diphenylethylenediamine, then heating the formed 

tetraimine with an excess of Mn(II) and Co(II) acetate in ethanolic solution. Further heating of 

Mn(II)complex with LiCl afforded the Mn(III) complex,
52

 which was tested in enantioselctive 

Catalyst 

(5mol%) 
Yield(%) E.e(%) 

L 92 36 

L-ZnEt2 93 42 

L-2ZnEt2 93 48 

L-3ZnEt2 94 56 

Catalyst 

(5mol%) 

Yield(%) E.e(%) 

L-ZnEt2 54 51 

L-2ZnEt2 63 57 

L-3ZnEt2 68 75 
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epoxidation reactions. Starting from the same reagents, it was possible to prepare the 

corresponding [3+3] macrocyclic hexaimine,
53

 called calixsalen by analogy with calixarenes. 

Reduction of the macrocycle with NaBH4 gave the saturated macrocycle 55, whose crystalline 

Zn3, Zn2Cu, and lanthanide ions complexes were studied by X-ray diffraction. When the 

ZnEt2 complexes of calixsalen 55 were used in aldol condensation the highest enantiomeric 

excess was obtained when the ration between the ligand and the metal was 1:3.
54

 

 

Fig 29. Calixsalen ligand tested in condensation and Henry reaction  
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1.3 Synthesis of new chiral macrocyclic ligand and 

application  

 

1.3.1 Introduction  

 
We were surprised to observe that although a large number of aromatic and heteroaromatic 

dialdehydes including pyridine, furan- and thiophenedialdehydes had been used for the 

construction of chiral macrocycles by condensation with optically pure trans-1,2-

diaminocyclohexane, the synthesis of analogous chiral macrocycles from pyrroledialdehydes 

had been neglected. This contrasts with the ubiquitous presence of pyrrole rings in 

biologically active macrocycles as well as unnatural macrocyclic compounds, including 

porphyrins, expanded porphyrins, cryptophyrins, calyxpyrroles, calyxphyrins, and sapphyrins, 

which are mostly useful as ligands of metal ions and as receptors, carriers and sensors of 

inorganic and organic anions.
55

 For example, the anion-binding capabilities of 

calixpyrroles,
56,57

 and the partially reduced calixpyrrole
58

 have been documented. 

The first example of chiral macrocycle incorporating a pyrrole ring was the hybrid compound 

56, reported by Lee,
59

 it is composed in part by a fragment of phorfyrin and in part by racemic 

trans-1,2-diaminocyclohexane (Fig 30). 

 

 
Fig 30. First example of chiral macrocycle containing pyrrole 

 

The condensation of diformyldipyrromethanes with o-phenylenediamine has been exploiyed 

to synthesize achiral macrocyclic tetraimines,
60

 which display binding properties toward 

transition-metal and uranyl salts,
61a-c

 anions,
61d

 and metallo-macrocycles.
61

 Love and 

coworkers
61a

 focussed their attention on the study of new compounds that can promote 

efficient chemical transformation of small molecules (such as O2, H2O, alkanes, CO2, N2) and  

the development of technologies for the synthesis of carbonius compound with low energy 

generation. Strategies directed towards the development of suitable catalysts for multielectron 

redox processes have often taken inspiration from nature, which takes advantage of 

metalloenzymes that contain bi- or multimetallic reaction sites that are organized precisely.
62

 

For this reason, the design of ligands that can promote the construction of bi- and 

multimetallic complexes that imitate enzymes activities  as catalysts in multielectron redox 

processes has both a long held fascination and strategic significance.
63

 This approach is 
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exemplified by the synthesis and chemistry of cofacial or Pacman diporphyrin complexes, e.g. 

57, in which the well-known coordinative properties of the porphyrin are combined with 

exceptional control of the intrametallic separation by a rigid and well-defined spacer between 

the two porphyrinic units (Fig. 31). 
64,65,66

 

 

 
57                            58 

 
Fig 31. Pacman phorphyrin complex 57 vs macrocyclic Schiff-base complex 58 

Schiff-base polypyrrolic macrocycles that combine the coordinative and physicochemical 

properties of the pyrrole moiety with the particular geometric feature of macrocyclic Schiff-

bases can be easily obtained by the [2+2] cyclocondensation procedure (Fig 32). 

 

 

Fig 32. Synthesis of pyrrole containing Schiff-base macrocycle 

 

Furthermore, polypyrrolic macrocycles exhibit a rich and diverse chemistry. Their flexible 

frameworks can accommodate a variety of transition metals, forming complexes with Cu, Co, 

Fe, Pd, Cd, Ni, Ti, V (Fig 33a,c) and f-block elements in a range of oxidation states, from 

which elegant transformations of the macrocycle itself or activation of small molecules can 
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ensue.
67

 Schiff-base polypyrrolic lanthanide complexes such as motexafin lutetium, where 

one pyrrole unit of the phorphyrin system is replaced by an aromatic Schiff-base unit, are 

receiving considerable attention as photodynamic therapy agents.
68

 Similarly, 

iminopolypyrroles can complex actinide cations such as uranyl (Fig 33b) and late first-row 

transition metals.                             

 
                 a)                                                   b)                                           c) 

Fig 33. a)  Pd-Pacman complex. b) U-Pacman complex. c) Cu-Pacman complex.                     

         

1.3.2  Synthesis of new chiral pyrrole macrocyclic ligands useful for 

Cu-catalyzed asymmetric Henry reaction 

 

As a continuation of our ongoing research on the synthesis of (chiral) peraza macrocycles and 

on the use of chiral 2-pyrroleimines for the synthesis of stereochemically defined molecules,
69

 

we now report the first preparation of C2-symmetric, optically pure macrocycles containing 

pyrrole rings and their application as ligands in enantioselective Henry reactions. We choose 

to begin our research by preparing a few macrocycles (Fig 34) from (R,R)-1,2-

diaminocyclohexane and meso-disubstituted diformyldipyrromethanes.  

 

Among the many synthetic tools of organic chemists, the Henry reaction is prominent because 

of the versatile chemistry of the nitro group. In particular, the asymmetric version of the 

reaction affords enantiomerically enriched β-hydroxy nitroalkanes which are precursors of 

valuable bifunctional compounds, such as β-amino alcohols and -hydroxy carboxylic 

acids.
70

 Metal complexes with chiral ligands are widely used as catalysts for Henry reactions. 

Among the enantioselective protocols, those exploiting copper complexes with a variety of 

ligands have provided remarkably high levels of enantioselectivity.
71

 A very important class 

of catalyst previously used as cupper catalyst are the bis-oxazoline, called BOX. The first 

application as organo-metallic catalyst (as copper-complex) was reported by Jorgensen,
72

 in 

condensation reaction between  nitromethane and an -ketoester. The same catalyst was 

tested also in Henry reaction with very good enantiomeric excess (around 90%), using 

aromatic or aliphatic aldehydes. Evans
73

 synthesized a new BOX ligand with bigger chiral 

group, and tested it in Henry reaction using very low catalyst loading with high e.e. Recently, 

diammine-Cu complexes as catalysts have provided interesting results. Good values of 

enantiomeric ratio were observed when (-)-sparteine
74

 or oligothiophene-substituted (R,R)1,2-

diaminocyclohexane
75

 were used in combination with copper salts (CuCl2 or Cu(OAc)2). 
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The choice of the dialdehydes 60 was dictated first of all by their easy preparation. Moreover, 

they allow the study of the effect of different substituents R in the macrocyclic ligand on the 

activity and enantioselectivity of the derived catalysts. The dialdehydes 60 were prepared by 

formylation of the pyrrole nuclei of the dipyrrole derivatives 59, in turn obtained by reaction 

of pyrrole with different ketones. Then, condensation of 60 with (R,R)-1,2-

diaminocyclohexane, formed in situ by treatment of the corresponding L-tartrate salt with 

triethylamine, gave the expected macrocyclic tetraimines 62 with good yields. The subsequent 

reduction of the crude imines with sodium borohydride occurred without event to give the 

octadentate macrocyclic ligands 63 with good overall yields. 

 

 
 

Fig 34. Synthesis of ligands useful for Cu-catalyzed Henry reactions 

 

In order to evaluate the importance of the macrocyclic structure of the ligands 63 on the 

enantioselectivity of the catalytic system, we also synthesized the acyclic, tetraaza ligands 64, 

65,
76

 and 66, which feature different fragments present in the macrocyclic ligands (Fig 35).  
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Fig 35. Synthesis of acyclic pyrrole ligands from 1,2-diaminocyclohexane 

 

The former was prepared from dipyrroledialdehyde 60a, and the chirality was derived from 

(S)-1-phenylethylamine. On the other hand, the ligands 65 and 66 were prepared from (R,R)-

1,2 diaminocyclohexane by condensation with 2 equivalents of 2-pyrrolecarboxaldehyde and 

mono-formylated dipyrrole 60e , respectively, followed by routine reduction in both cases.  

 

With all these ligands in hand, the prototypical Henry reaction between benzaldehyde and 

nitromethane was explored, first looking for the optimal metal salt/ligand combination. The 

reactions were carried out in ethanol as the solvent at room temperature using 10 molar equiv 

of nitromethane and were analyzed after 14 h (Fig 36 and Table 3). 
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Table 3. Copper-catalyzed enantioselective Henry reactions of benzaldehyde with nitromethane
[a]

 

Entry L(mol %)  Metal salt (mol %)  Base(mol %) 67a( Yield%)
a
 e.e.(%)

[b]
  

1 63a (5)  -  - 90 0 

2 ˝ (5)  CuCl2 (10)  - 0 0 

3 ˝ (5)  Cu(OTf)2 (10)  - 0 0 

4 ˝ (5)  Cu(OTf)2 (10)  Et3N (10) 98 8 

5 ˝ (5)  Zn(OAc)2·2H2O(10)  - 99 5
[c]

 

6 ˝ (5)  Cu(OAc)2·H2O (10)  - 95 90 

7 ˝ (5)  Cu(OAc)2·H2O (10)  Et3N (10) 99 64 

8 63b (5)  Cu(OAc)2·H2O (10)  - 92 61 

9 63c (5)  Cu(OAc)2·H2O (10)  - 99 75 

10 63d (5)  Cu(OAc)2·H2O (10)  - 85 61 

11 -  Cu(OAc)2·H2O (20)  - 10 0 

12 64 (10) Cu(OAc)2·H2O (10)  - 59 3 

13 65 (10) Cu(OAc)2·H2O (10) - 99 59 

14 66 (10) Cu(OAc)2·H2O (10) - 30 52 

 

 [a]Conditions: 0.25 mmol of benzaldehyde, 2.5 mmol of nitromethane, 1.5 mL of EtOH, rt, 14 h. [b] Yield 

determined by 1HNMR. [c] Determined by HPLC on chiral column. [d] A slight prevalence of the (S)-

enantiomer was observed. 
 

We observed that the methyl-substituted ligand 63a (5 mol%) in the absence of a metal salt 

was an  effective organocatalyst, as the nitro alcohol 67a was produced with 90% yield by 

stirring overnight (14 h) but, unfortunately, as a racemic compound (entry 1). On the other 

hand, when the reaction was carried out with the same ligand in the presence of either CuCl2 

or Cu(OTf)2 (10 mol %), no reaction took place (entries 2 and 3). However, the presence of a 

small amount of triethylamine had a dramatic effect on the copper-catalyzed reaction, as an 

almost complete formation of the product was observed (entries 4). Therefore, since a weakly 

basic medium was required, we directed our attention to the use of zinc(II) and copper(II) 

acetates because the acetate anion is more basic than chloride and triflate anions, so that the 

presence of triethylamine should have been avoided. As a matter of fact, the use of these salts 

enabled us to obtain excellent conversions to the nitro alcohol 67a without the need to use 

added base (entries 5 and 6). A strikingly different degree of stereoocontrol was observed 

with the two salts, as only with copper acetate a remarkable degree of enantioselectivity was 

obtained (90% ee, entry 6). Moreover, when the reaction was performed in the presence of 
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triethylamine the ee decreased to 64% (entry 7).
77

 On the basis of these results, the following 

experiments were carried out using the other ligands in the presence of Cu(OAc)2. In this way, 

we assessed that increasing the size of the substituents R on the carbon tether linking the 

pyrrole nuclei had a detrimental effect on the enantioselectivity, which decreased down to 

75% ee for ligand 63b and 61% ee for ligand 63c (entries 8 and 9). Successively, in order to 

verify the importance of the macrocyclic structure of the ligand on the enantioselectivity, we 

checked the acyclic ligands 64, 65 and 66, each of them featuring a different fragment of the 

macrocyclic ligands 63a. Ligand 64, which lacks rigidity of the peripheral chiral moieties, 

gave an unsatisfactory performance, particularly in terms of enantioselectivity (3% ee, entry 

12). On the other hand, ligand 65 with the rigid 1,2-diaminocyclohexane structure afforded 

67a with excellent yield and moderate stereocontrol (59% ee, entry 13). Using the ligand 66 

was observed a good yield and good enantioselectivity (entry 14). Finally, we demonstrated 

that copper acetate in the absence of the ligand was unable to catalyze the reaction to a 

significant extent, as rac-67a was formed in 10% yield (entry 11). Overall, it was 

demonstrated  that the combined use of copper acetate and the macrocyclic polydentate ligand 

63a was necessary for the efficient enantioselective catalysis. 

 

 

Fig 36. Enantioselective Cu-catalyzed Henry reaction with macrocyclic pyrrole ligands 

The role of the solvent was investigated by performing the reaction in other protic, polar 

aprotic and apolar solvents using the Cu(OAc)2
.3H2O/63a (2:1 ratio) system (Table 4). It was 

demonstrated that the nature of the solvent affected to a limited extent the yield and the 

enantioselectivity. When the protic solvents MeOH, i-PrOH, and H2O were used, comparable 

levels of ee were achieved, but a lower yield of 67a was obtained in water. Among the polar 

aprotic solvents, CH2Cl2 gave an unsatisfactory performance in terms of both yield (81%) and 

ee (60%, entry 5), whereas in MeCN an almost complete conversion (99%) but a moderate ee 

(74%) were obtained (entry 6). On the other hand, either in THF and in MeNO2 (entries 7 and 

8, respectively) the levels of  enantioselectivity were comparable to or slightly higher than 

those obtained in alcoholic solvents, but the yields were slightly lower. Finally, 92% ee was 

obtained in toluene, but the yield was very low (entry 9). In conclusion, it appeared that the 

use of EtOH as the solvent gave a convenient balance of yield and enantioselectivity. 
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Table 4. Effect of solvent in the 63a-Cu-catalyzed reaction of benzaldehyde and nitromethane
[a] 

Entry  Solvent  67a (Yield %) e.e. (%)
[b]

 

1  EtOH  95 90 

2  MeOH  84 91 

3  i-PrOH  92 89 

4  H2O  94 71 

5  CH2Cl2  81 60 

6  CH3CN  99 74 

7  THF  84 92 

8  CH3NO2  79 91 

9  Toluene  35 92 

a Conditions: 0.25 mmol of benzaldehyde, 2.5 mmol of nitromethane, Cu(OAc)2
.3H2O (0.025 mol), 63a (0.012 

mmol), 1.5 mL of solvent, rt, 14 h. b Yield determined by 1H NMR. c Determined by HPLC on chiral column. 
 

The effect of the ligand/metal ratio and catalyst loading on reaction rate and enantioselectivity 

was investigated next working in the previously established optimal conditions (Table 5). 

Working with a fixed amount of the ligand (5% molar equivalents), the loading of copper 

acetate was varied with respect to the 2-fold amount previously employed. Thus, it was 

observed that reducing to half the metal loading resulted in the decrease of the 

enantioselectivity to 80% ee (entry 2), although a comparable conversion was achieved. On 

the other hand, an increase of the metal loading to 15 mol% had no influence on ee (entry 3). 

Having so established the optimal ligand/metal ratio 1:2, we performed a set of reactions by 

varying the loading of the catalytic system. Using a 2-fold amount of the catalytic system 

63a/Cu(OAc)2
.3H2O (10/20 mol%) did not change the outcome of the reaction (entry 4), 

although it is likely that a complete conversion should have been accomplished in a reduced 

time. In particular, reducing the L/Cu loading to 3/6 and then 1/2 mol % had no significant 

effect on the yield and enantioselectivity (entries 5 and 6), whereas a further reduction of the 

L/Cu loading to 0.2/ 0.4 mol % slowed the reaction and a moderate yield of 67a was obtained 

after the canonical 12 h, although the same level of enantioselectivity was maintained (entry 

7). At this point, we hoped that higher ee could have been obtained at a lower temperature, so 

we performed two tests at 0°C using different catalyst loading. This allowed us to establish 

that the same high levels of reactivity and enantioselectivity were maintained using a L/Cu 

ratio of 4:8 mol % (entry 8), but a further decrease of the loading to L/Cu 1:2 reduced both the 

yield (82% after 48 h) and the ee (86%) (entry 9). This negative trend was confirmed when 

the reaction was carried out 
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at 25 °C using a L/Cu loading of 5:10 mol %, when 45% yield (after 48 h) and 83% ee were 

obtained. 

 

Table 5. Effect of Cu/63a ratio, catalyst loading, and temperature in the Henry reaction
[a] 

Entry 63a(mol%) Cu(OAc)2·3H2O(mol%) T (°C) 67a(Yield%)
[b]

 E.e.(%)
[c]

 

1  5 10 22 95 90 

2  5 5 22 92 80 

3  5 15 22 92 90 

4  10 20 22 94 90 

5 3 6 22 99 (92)
d
 92 

6 1 2 22 93 90 

7 0.2 0.4 22 56 (42)
d
 92 

8 4 8 0 97 92 

9 1 2 0 82
e
 86 

10 5 10 -25 45
 e
 83 

a The reactions were performed using 0.25 mmol of benzaldehyde, 2.5 mmol of nitromethane, and copper 

acetate as the catalyst in 1.5 mL of EtOH at 22 °C for 14 h. b Determined by 1H NMR. c Determined by HPLC 

on chiral column. d Isolated yield. e Reaction performed at 0 °C. f Reaction time: 48 h. g Reaction performed at 

25 °C. 

 

The study was then extended to other aldehydes (Table 6) to verify the full scope of the 

catalytic system. A number of aromatic and aliphatic aldehydes were screened in the reaction 

with nitromethane in the optimized experimental conditions: Cu(OAc)2 3H2O (6 mol %), 63a 

(3 mol %), EtOH, 22 °C, 14 h (Scheme 5). The results obtained showed that the protocol can 

be successfully applied to most aldehydes, although structural and electronic features of the 

substrate can affect significantly the reaction outcome (Table 4). The results obtained with 

aromatic aldehydes did not allow a rationalization of steric and electronic effects of the 

substituents. Methyl, methoxy, and fluoro orthosubstituents (entries 1-3) on the phenyl ring 

allowed to maintain or even increase the enantioselectivity observed with benzaldehyde, and 

the highest ee was observed with 2-methoxybenzaldehyde (95% ee). On the other hand, lower 

yield and enantioselectivity were obtained with 2-nitrobenzaldehyde (entry 4), and the 2-

hydroxybenzaldehyde reacted efficiently but produced a racemic compound (entry 5).  
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Table 6. Synthesis of β-nitro alcohols in the optimized conditions 
[a] 

Entry R Product, Yield (%)
[b]

 e.e.(%)
[c]

 

1  2-MePh  67b, 91 91 

2  2-MeOPh  67c, 90 95 

3  2-FPh  67d, 80 90 

4  2-NO2Ph  67e, 66 84 

5  2-HO-Ph  67f, 87 0 

6  4-HOPh  67g, 40 77 

7  4-NO2Ph  67h, 96 71 

8  4-ClPh  67i, 78 86 

9  4-MeOPh  67j, 61
[d]

 83 

10  4-BocOPh  67k, 81 87 

11  3-MeOPh  67l, 75 86 

12  4-MePh  67m, 93 91 

13  2-Naphthyl  67n, 67 86 

14  PhCH=CH  67o, 45 91 

15  Ferrocenyl  67p, 20 43 

16  
N-Boc-3-

Indolyl  
67q, 60 73 

17  3-Py  67r, 92 74 

18  i-Bu  67s, 98
[e]

 85
[f]

 

19  t-Bu  67t, 98
[e]

 89
[f]

 

20  Cyclohexyl  67u, 79 91 

 

[a] Conditions: aldehyde (0.25 mmol), nitroalkane (2.5 mmol), 63a (3 mol %), Cu(OAc)2 2H2O(6 mol %), EtOH 

(1.5 mL), 22 °C, 14 h. [b] Determined by 1H NMR. [c] Determined by HPLC on chiral column. [d] Reaction 

time: 48 h. [e] Yield of crude product, which decomposed during purification.[ f] Determined on the crude 

mixtures. [g ]Syn/anti 61:39. [h] Reaction performed at 0 _C. i Syn/anti 67:33. 
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The variable effect of steric and electronic factors was confirmed when para- and meta-

substituted benzaldehydes, bearing either electron-withdrawing and -donating substituents, 

such as 4-OH, 4-NO2, 4-Cl, 4-OMe, 4-OBoc, and 3-OMe (entries 6-11), were converted to 

the corresponding products with variable yields and lower ee's (in the range 74-86%), with the 

exception of p-tolualdehyde (93% yield and 91% ee, entry 12). In particular, the behavior of 

4-hydroxybenzaldehyde (40% yield, 77% ee, entry 6) was opposite to that of 2-

hydroxybenzaldehyde. Moderate to good yields and high ee's were obtained from 2-

naphthylcarbaldehyde and cinnamaldehyde (entries 13 and 14), whereas 

ferrocenylcarbaldehyde proved to give a bad substrate yield and an especially poor 

enantioselectivity (entry 15). Among the heterocyclic aldehydes, N-Boc-3-

indolylcarbaldehyde and 3-pyridinecarbaldehyde, which display opposite electronic effects, 

provided the same level of enantioselectivity (73-74% ee, entries 16 and 17). Aliphatic 

aldehydes with primary, secondary, and tertiary alkyl substituents were efficiently converted 

to the expected products with high levels of enantioselectivity (85-91% ee, entries 18-20), but 

problems were often encountered during the isolation of the products, as previously observed. 

As a matter of fact, extensive decomposition of the products 67s (R = i-Bu) and 67t (R = t-

Bu) occurred during purification by chromatography on a silica gel column, and only the 

cyclohexyl derivative 67u could be isolated. The reaction of nitromethane with racemic 2-

phenylpropanal under the standard conditions gave the nitro alcohol 67v as a mixture of 

diastereoisomers, with a moderate prevalence of the syn diastereoisomer, as the result of 

similar reactivities of the two enantiomers of the aldehyde (entry 21). The enantioselectivity 

for anti-67v (90% ee) was higher than for syn-67v (78% ee). For both diastereomers, we 

assume that the asymmetric induction is only slightly affected by the configuration of the 

starting aldehyde and the OH-substituted stereocenter is prevalently formed with the R 

configuration, by analogy with the reactions of achiral aldehydes. An almost complete 

conversion and a similar outcome was observed by performing the same reaction at 0 °C for 

48 h, although increased yield and ee of syn-67v but slightly lower ee of anti-67v were 

obtained (entry 22). 

Crystals of the complex 63a-2[Cu(OAc)2] were then obtained by slow evaporation of a 

solution of the amine and copper acetate (1:2 molar ratio) in methanol. The X-ray structure of 

the complex (Fig 37a) shows that both copper atoms assume the square planar geometry, 

where the N,N bidentate diaminocyclohexane moiety and one oxygen of each carboxylate 

groups occupy cis equatorial positions in the plane. The other two oxygens are toward the 

vacant apical positions. Both cyclohexane rings have the chair conformation and the amino 

groups are equatorially disposed, and the dinuclear complex can be ideally split in two 

identical halves. In both halves, the two acetate ligands are involved in intramolecular 

hydrogen bonding: one equatorial oxygen atom is linked to the adjacent pyrrole N-H group, 

and the axial oxygen of the other acetoxy ligand is oriented toward the non-adjacent pyrrole 

N-H group. Moreover, intermolecular hydrogen bonding interactions were observed between 

the oxygens of the apical carboxylate groups and the amino groups of adjacent macrocycles, 

thus determining the formation of a chain with a helicity feature (Fig 37b). 
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a)   

b)    

Fig 37. a: X-ray structure of the compound 63a-2[Cu(OAc)2]. b: Helicity feature 

The nitro-aldol derivative 14k was then used to synthesize (R)-isopropylnorsynephrine, alias 

N-isopropyloctopamine
78

 (Scheme 38), a member of the class of biologically active and 

pharmacologically active 1-aryl-2-amino alcohols
79

 that have been prepared by a variety of 

asymmetric methods.
80

 For that purpose, the nitro group of 68 was reduced by heterogeneous 

hydrogenation to give the β-hydroxy amine,
81

 and then reductive amination with acetone and 

sodium borohydride followed by removal of the Boc protection with HCl/MeOH afforded the 

hydrochloride salt of (R)-isopropylnorsynephrine with an overall yield of 47%. 

 

 

Fig 38. Synthesis of (R)-isopropylnorsynephrine 

 

We can assume in the end that the best ligand is the 63a, the different group in alfa position 

are extremely important  in the enantiomeric  ratio because can modify the 3D disposition of 

the ligand in the final complex. Finally to evaluate the importance of methyl group we 

decided to synthesized a new macrocycle without any substituent. The synthetic way to obtain 
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the macrocycle 74 is the same previously described (Fig 39). The dipyrran intermediate 71 

was synthesized as reported in literature,
82

 by reaction of pyrrole and formaldehyde and TFA 

as catalyst. The crude product was purified by Kugelrohr distillation to obtain the final 

product as a white solid in 40%yield. The dialdehydes 72 were prepared by formylation of the 

pyrrole nuclei of the dipyrrole derivative 71.  

 

 
Fig 39. Synthesis of macrocycle 74 lacking meso substituents 

In this case the condensation of the dialdehyde 71 with 1,2-cyclohexan diamine is more 

difficult than in the macrocycle 63a. Probably, the “non rigid” structure of the dialdehyde 

decrease the reactivity in the final macrocycle synthesis. Finally the tetraimmine macrocycle 

73 was reduced by NaBH4 to obtain the tetraamino macrocycle 74 that was tested in standard 

condition with 2 equiv of Cu(OAc)2 in the Henry reaction (benzaldehyde, nitromethane, 

EtOH). The corresponding nitroalchool was obtaind with good yield (60%) but low 

enantiomeric excess (37%). 

 

1.3.3 Synthesis of new [2+2] macrocycles from diformyl-

tris(heteroarenes) 
 

Observing the X-ray structure of macrocycle 64 it can be observed that the copper center was 

not coordinated by the pyrrolic rings, which, however, formed hydrogen bonds with the 

acetate substituents on copper. For this reason we focussed our attention to the synthesis of 

new macrocyclic ligands differing from the previous ones for the ring size and the number 

and nature of the incorporated heteroaromatic rings. By this way, the heteroaromatic units 

might directly coordinate the metal ion. The simultaneous presence of polyaromatic structure 

or aromatic unit and Schiff base, are the optimal conditions to  obtain a square planary 

coordination by the heteroatoms. Expanded porphyrins (sapphyrins, rubyrin, hexapyrrin)
83

 Fig 

40, are capable of strong ion complexation. 
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Fig 40.  Rubyrin (a), Schiff base porphyrins (b,c), hexapyrrin (d), 

 

Sessler prepared a huge amount of expanded porphyrins and analogues macrocycles 

containing Schiff base units. One example of this latter type of ligands is the Schiff base 

porphyrin shown in Fig 41; in this case, the ligand c can coordinate two Cu(I) ions through 

the imine nitrogens. X-ray structure showed that no interaction was present between the metal 

ion and the aromatic rings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 41. Effect of the oxidation state of copper on the coordination pattern of the polypyrrole ring  
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When the complex was exposed to the O2 flow, each metal ions underwent oxidation and 

could coordinate one pyrrole ring to balance its new charge. As a consequence, the metal ions 

lie in a distorted square-pyramidal ligand environment that includes a bridging nitrate ion (Fig 

41). 84 

Considering the particular coordination behavior of complex c, where the pyrrole rings are 

directly linked together through the position 2,2′, we decided to synthesize a new macrocycle 

containing three linearly linked heteroaromatic units and 1,2-diaminocyclohexane moiety. 

Schiff base porphyrins with different aromatic units have been studied during the years, but 

the presence of furan in such structures was neglected. Considering the easy preparation of the 

starting material and the excellent results obtained in catalysis with furan-containing chiral 

ligands, we decided to focus our attention on the furan-pyrrole-furan triaromatic unit as 

building block in the construction of chiral macrocyclic ligands.  

As reported in the literature by Skarzewski,
85

 chiral complex of the diamine 75 and copper 

acetate was tested as catalyst in nitroaldol reaction and showed good enantioselectivityes (Fig 

42). 

 

Fig 42. Henry reaction catalyzed by chiral furan-containing ligand 

 

In the synthesis of a new macrocycle the [2+2] condensation reaction take place between the 

(R,R)-1,2-diaminocyclohexane and the dialdehyde of furan-pyrrole-furan system. The 

diformylation of 2-2’bridged systems was reported by Sessler in the synthesis of the analogue 

macrocycle c
86

 shown  in Fig. 39. 

Starting from the furfural 76, applying a Stetter reaction
87

 with divinylsulphone and a 

catalytic amount of a thiazolium salt, the 1,4-di(2-furan)-1,4-butanedione 77 was obtained. 

The triaromatic system 78 was obtained by Paal-Knorr
88

 reaction of the dicarbonyl compound 

77 with NH4OAc in EtOH at reflux for 2 h, then Vilsmeier formylation gave the diformylated 

triaromatic structure 79, which was isolated as a red-brown solid and characterized by 
1
H 

NMR spectroscopy in d
8
-DMSO. 
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Fig 43. Synthesis of the tris(heteroarene) dialdehyde 

 

The key step in the full sequence is the Stetter reaction which led to the 1,4-di(2-furyl)-1,4-

diketone 77. Observing the mechanism, it is noteworthy that the thiazolium salt allows the 

umpolung of the the reactivity of the aldehyde group as the intermediate b acts as a 

nucleophile attacking divinyl sulfone to form the ,-unsaturated compound d through c. 

Further reaction between compounds b and d leads to the diketone 77 through the 

intermediate e (Fig 44). 

 

Fig 44. Mechanism of the Stetter reaction 

The condensation of the dialdehyde 79 with (R,R)-1,2-diaminocyclohexane, formed in situ by 

treatment of the corresponding L-tartrate salt with triethylamine, gave the expected 

macrocyclic tetraimines 80. The subsequent reduction of the crude imine with sodium 

borohydride occurred without event to give the macrocyclic ligands 81 with good yield (Fig 

45). 
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Fig 45. Synthesis of the macrocycle 81 

 

The poor rigidity of the dialdehyde 79 can explain the relatively low yield of the 

cyclocondensation product and can increase the formation of linear product during the 80 

synthesis. To evaluate the structure of a new macrocycle we decide to tested it in Henry 

reaction. The catalyst was prepared from the ligand 81 and 2 equivalent of Cu(OAc)2 under 

nitrogen atmosphere in ether, to obtain a green-gray powder after the solvent stripping. The 

complex was tested in standard Henry condition and the corresponding nitroalchool was 

obtained in 90% yield and good enantiomeric excess (73%). 

 

Fig 46. Henry reaction using 81 as a ligand 

 

Unfortunatly, the enantiomeric excess was lower than the previously described catalyst 63a. 

To justify the lower e.e. ratio we tried to obtain crystals of the Cu-complex to determine its 

3D structure and evaluate which coordination capability of the ligand to the metallic center, 

but we got no success. Then we carried out NMR NOE (Nuclear Overhauser Effect) 

experiments to determine the conformation of the triarene moieties. The experiment showed 
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the proximity of the furan C-H protons and the pyrrole NH proton in the same furan-pyrrole-

furan segment, due the trans-trans orientation of the three rings. Moreover, irradiating the 

pyrrole NH proton a response was observed for the pyrrole CH protons of the opposite 

triarene fragment. Therefore, we could assume that the ligand structure was particularly 

narrow and elongated. 

 

        

 

 

Fig 47.  NOE effect. 
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1.4  Hydrogenation of calix[4]pyrrole  
 

1.4.1 Introduction 
 

Many organic ligands used by nature in important biological processes
89

 are formed by the 

condensation of simple starting materials.
90

 Uroporphyrinogen III, the biosynthetic precursor 

of the “pigments of life”, forms metal complexes only under specific reaction conditions.
91

 

The first meso-octaalkylporphyrinogen 82 was synthesized more than 120 years ago by 

Baeyer.
92

 

 

 

Fig 48. Baeyer synthesis of calix[4]pyrrole  

The correct structure was proven by Rothemund in 1955.
93

  Forty years later the X-ray 

structure analysis of this class of compounds showed   alternating conformations of the 

pyrrole rings in the solid state.
94a

 The X-ray structures of these macrocycles acting as ion-pair 

receptors revealed a conelike conformation and resembled the structures observed for 

calixarenes.
90

 Hydrogen bonding, the dominating mode of interaction of neutral calixpyrroles, 

allows these compounds to be used as anion sensors.
95

 Many interesting modifications of 

calixpyrroles have been reported: calixphyrins,
96

 hybrids between calixpyrroles and 

porphyrins, expanded calixpyrroles like the calix[6]pyrroles,
97

 and calixpyridines, hybrids 

containing pyrroles and pyridines.
98

 Many of these studies were carried out with the aim to 

improve the anion-binding properties.
90b,99

 As they have numerous applications, macrocyclic 

nitrogen-containing ligands and their metal complexes have been thoroughly studied.
100

 

 

Inspired by naturally occurring metalloenzymes, chemists have invested their efforts in 

designing biomimetic metalbased catalysts, with the goals of understanding the mechanistic 

details of biochemical dioxygen activation and oxygen transfer reactions and of developing 

novel oxidation technologies.
101

 The first and some of the most studied catalysts in the field 

were the iron and manganese-porphyrin derivatives, which were investigated as chemical 

models of heme enzymes and were shown to perform alkane and alkene oxidations in the 

presence of a variety of oxidants.
102

 The planar and electron-rich structure of 

metalloporphyrins is well-suited for the stabilization of high-valent metaloxo intermediates, 

which are believed to be the active oxygen transfer species during these reactions.
103

 

Nonporphyrin iron and manganese complexes, as mimics of non-heme enzymes, were also 

intensively studied.
104

 They present the advantage of being more accessible and readily 
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tunable compared to porphyrins.
105

 A wide variety of ligands with N-donor and O-donor 

functionalities, from bidentate to pentadentate and forming mono- or dinuclear metal centres 

have been designed for modelling the active site of non-heme enzymes and for developing 

catalytic alkane hydroxylations, alkene epoxidations and alkene dihydroxylations. 

Similarly, the products of hydrogenation of calix[4]pyrrole are very interesting, new 

macrocyclic nitrogen-containing ligands. The reduction of pyrroles usually require relatively 

harsh conditions.
106

 Most efficient reductions of alkylpyrroles require an acid as the solvent or 

as a component of the solvent mixture. 

 

1.4.2 Optimized synthesis of calix[2]pyrrole[2]pyrrolidine and 

calix[4]pyrrolidine 
 

As reported by preliminary studies by the Neier group,
107,108

 the hydrogenation reactions were 

performed during 24 hours using Pd/C as the catalyst in acetic acid as the solvent at 100 °C 

and 100 bar of H2 pressure to give two half-reduced diastereoisomeric products 83a,b, and  

only one fully reduced product, the all-cis calix[4]pyrrolidine 84b.  

 

 
Fig 49. Hydrogenation reaction in standard condition  

 

The totally-reduced product 84b displayed very interesting application as new ligand. As 

reported by the same group,
14

 using salts of Cu, Ni, and Pd, it was possible to prepare stable 

complexes. The Mn complex found application as catalyst in the epoxidation of alkenes.
109
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Fig 50. Calix[4]pyrrolidine-Mn(II) complex 

 

Starting from this exciting results, Neier group proposal was to thoroughly investigate the 

reaction conditions to optimize the preparation of the semi-hydrogenated compounds 83a,b 

and the two fully reduced product 84a,b. The attention was focused on reaction time, 

temperature, and solvent and then on the amount and type matrix of the Pd/C catalyst. 

 

Based on the experimental results, Neier proposed a plausible mechanism of the 

hydrogenation of calix[4]pyrrole 82 to the fully reduced product 84 involves the consecutive 

hydrogenation of two adjacent pyrrole rings to form the intermediates 85 (Fig 51).  

 

 

Fig 51. Mechanism of the formation of the totally reduced macrocycle 84b 

 

Compound A has never been observed, presumably because it is a very reactive species 

toward hydrogenation. On the other hand, compound 85, coming from hydrogenation of the 

first pyrrole ring, could be isolated by stopping the reaction before conversion of the starting 

material was completed. It should be observed that hydrogenation occurs only in acidic 

medium, hence the pyrrole ring must undergo protonation to become enough reactive, and 

after reduction the formed pyrrolidine ring is obviously protonated. It is likely that if a double 

protonation of the starting calix[4]pyrrole is required, this should preferentially occur on two 

opposite pyrrole rings. As an alternative, after a first pyrrole ring has been reduced to a 

protonated pyrrolidine, the opposite pyrrole ring should preferentially undergo a second 

protonation step. Probably, two neighbour protonated pyrrole rings would suffer a more 

important charge repulsion. Consequently, a complete mechanistic sequence of the 

hydrogenation process is depicted in Fig 52.  
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Fig 52. Sequence of steps in the hydrogenation of calix[4]pyrrole  

 

The two diastereoisomeric semi-hydrogenated products 83a and 83b are formed from 

intermediate 85 in a relatively fast steps, but their subsequent hydrogenation is too slow. On 

the other hand, hydrogenation of 85 to give A is quite slow. This explain the fact that the fully 

hydrogenated product 84b was obtained in a low yield, despite the fast hydrogenation steps 

ensuing on the intermediate A. Starting from these preliminary results we tried to optimize the 

conversion of 82 to compounds 83a,b and 84a,b. For this purpose, we first examined the 

effects of the reaction time and the catalyst loading (Table 7). We observed that decreasing 

the reaction time to 1 h and the amount of Pd to 4 mol%, 83 and 84 were obtained only in 

75% yield and side products were observed (Table 7, entry 2,3) together with a new 

intermediate product 85 (25% yield) (Table 7, entry 4). 

 

Table 7. Final optimization of the catalytic hydrogenation of calix[4]pyrrole 82[a]  

Entry 10% Pd/C (mol%) Time (h) Conversion of 82 83a/83b
[b]

 84
[b]

 

1 16 2 100 34/48 10 

2 16 1 100 31/43
[c]

 1 

3 8 1 100 23/33
[c]

 1 

4 4 1 90 23/26
[c] [d]

 0.5 
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[a] The reactions were performed in an autoclave using  AcOH as solvent at 100 bars of H2 and 100 °C. [b] 

Yields (%) were calculated by GC analysis using the internal standard methodology. [c] Side products were 

observed coming from the degradation of 82. [d] A new product 85 has been identified with 25% yield. 

 

We attempted to achieve the total reduction of the isolated semi-hydrogenated compound 83b 

(Fig 53). Submitting 83b to optimal hydrogenation conditions applied to calix[4]pyrrole 82, it 

was impossible to obtain the complete hydrogenation to 84. Using a specific sample of Pd/C 

(Fluka), small but reproducible quantities of 84 were obtained, however, with a new batch of 

Pd/C from the same provider the hydrogenation did not work anymore.  

 
Fig 53. Hydrogenation of the half-reduced compound 83b 

 

Faced to the irreproducibility, it became important to analyze the influence of different Pd 

catalysts on the hydrogenation of 83b. For such purpose, we varied Pd/C catalyst achieved 

from different providers, the catalyst loading and even the solid matrix of the Pd catalyst. The 

results of hydrogenation runs carried out on compound 83b in the different conditions are 

summarized in Table 8. In all cases, no conversion of the starting material was observed over 

any catalyst (36 mol%), even under harsh conditions. 

Table 8. Catalytic hydrogenation of calix[2]pyrrole[2]pyrrolidine 83b.[a]  

Entry Catalyst Provider, type 84 

1 10% Pd/C  Aldrich, basis - 

2 10% Pd/C  Fluka, basis - 

3 5% Pd/C  Aldrich, basis - 

4 10% Pd/C  Stream, reduced, dry powder - 

5 5% Pd/C  Stream, reduced, dry powder - 

6 5% Pd/C Stream, eggshell, reduced (50% wet), evonik E5 - 

7 20% Pd/C Stream/(Pearlman cat.),  

unreduced (50% wet) 

- 

8 30% Pd/C Aldrich/basis - 

9 0.6% Pd/C  Stream, 50% wet - 

10 0.5% Pd/Al2O3 Stream, reduced, dry - 

11 1% Pd/SiO2 Stream, supported on 

 polyethylenimine 

- 

12 5% Rh/Al2O3 Aldrich/powder - 

[a] The reactions were performed in an autoclave using 36 mol% of catalyst, 100 bars of H2, at 100 °C for 12 h.  



P a g e  | 49 

 

49 

 

The mechanism we have proposed attributes a considerable importance to the protonation 

degree of the starting material and intermediate compounds. Therefore, the influence of the 

acidic medium at different temperatures was investigated (Table 9).  

 

Table 9. Catalytic hydrogenation of calix[2]pyrrole[2]pyrrolidine 83b.[a]  

Entry Pd (mol%) Solvent/Acid T (°C) 84 

1 34 AcOH 100 - 

2 34 AcOH / TFA (8/2) 100 - 

3 34 AcOH / H2SO4 (8/2) 100 - 

4 34 AcOH / BF3OEt2 100 - 

5 34 i-PrOH / BF3OEt2 65 - 

6 34 AcOH/aqHCl
[c]

 (1/1)  100 - 

7 34 TFA 65 - 

8 34 aq HCl
[c]

 50 - 

[a] The reactions were performed in an autoclave using 10% Pd/C (0.34 mol%, Aldrich), 100 bar of H2 for 12 h.  

[b] Degradation of the starting material was observed. [c]  Commercially available  37% aq HCl.  

 

Even increasing the temperature to 150 °C, we only observed a degradation of the starting 

material. Moreover, in the presence of different  strong acids (Table 9, entry 2-8) including 

37% HCl as the solvent, no traces of the totally reduced product 84 were detected and starting 

material was completely recovered. The semi hydrogenated compound 83b proved to be 

stable and very resistant under extremely strong acidic conditions.  

Lastly, it appeared that the nature of the catalyst is the key parameter on which work to 

increase the yield of compound 84. Having observed that a specific batch of Pd/C-Fluka gave 

a better result than other Pd/C catalysts of other brands, three reasons were considered as 

possible cause(s) of the diverse reactivities: 1) The efficiency of the catalyst was due to the 

dispersion of palladium on the matrix. 2) The matrix had a special surveying/morphology. 3) 

An impurity on the catalyst was the key of this success. At the moment, we cannot choose 

among the three hypothesis. 

Having tested so many different types of catalyst with no success, further hydrogenation runs 

were performed increasing the catalyst loading. The first  trial in the hydrogenation of 84b by 

increasing the amount of catalyst of 34 mol% to 70 mol% failed, for these reason was decided 

to carry out the reaction with stoechiometric amounts of catalyst until 10 eq of Pd (Table 10). 

As shown in Table 10, increasing the amount of Pd/C up to 9.5 equivalents, the yield of 

compound 84 increased to 80%. 
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Table 10. Stoechiometric  hydrogenation of calix[2]pyrrole[2]pyrrolidine 83b.[a]  

Entry Pd (equiv.) Conversion of 83b
[b] 

1 1 32 

2 2.5 41 

3 3.5 53 

4 4.5 51 

5 5.5 60 

6 7.5 72 

7 9.5 100/80
[c]

 

[a] The reactions were performed in an autoclave using 10% Pd/C (Aldrich) in AcOH at 100°C and 100 bars of 

H2. [b] Conversions (%) were calculated by GC. [c] Isolated yield (%). 

 

Considering the deep knowledge of Prof. Savoia group on the particularly reactive transition 

metals supported on graphite,
110

 we started an investigation of the matrix-effect on the 

hydrogenation process. As reported in the literature, switching from activated carbon to 

graphite has several advantages, including lower costs, easier manipulation, greater thermal 

conductivity, and an ordered planar structure. Graphite can accommodate alkali metals 

between the carbon sheets. Intercalation compounds of graphite and alkali metals of known 

stoichiometry, e.g. C8K and C24K, can be prepared by melting potassium metal on graphite 

with the proper molar ratios at 150 °C by stirring under an inert atmosphere. By this way, the 

4s electrons of the potassium are transferred to the -system of graphite, and a compound 

with negatively charged graphite layers intercalated by layers of potassium cations is formed. 

Potassium graphite C8K has a very high reducing power that can be exploited to reduce C=N, 

C=O, or activated C=C double bonds or to cleave C–S or C–CN bonds.
111

 Most importantly, 

treatment of C8K with metal salts, including Ti(III), Ti(IV), Mn(II), Cu(II), Fe(III), Co(II), 

Sn(II), Pd(II) and Zn(II) salts in refluxing tetrahydrofuran or 1,2-dimethoxyethane gives the 

corresponding highly dispersed zero-valent metal in a highly active form on the graphite 

surface (Fig 54). 

 
Fig 54. Synthesis of Pd/grafite catalysts 

We hoped that using a different carbon morphology to support palladium could be useful to 

improve the hydrogenation reaction. We synthesized three different Pd/graphites with 

different metal loading using the procedure shown in Fig 54. Each of the catalysts prepared 

was structurally characterized by TEM and powder X-ray diffraction. In Fig 55 is reported the 

TEM image of 15% Pd/graphite (C48Pd), where Pd nanoparticles are deposited on the grafite 

surface. 
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Fig 55. TEM image of 15% Pd/graphite (C48Pd) (20.0 kVx 20.0 K, 1.50 m) 

We carried out hydrogenation reactions using Pd/C and Pd/graphite with different metal 

loadings and compared the activities of these catalysts with those obtained using the catalyst 

10% Pd/C (2.5 equiv) as a reference (Table 11, column a, entry 1). Moreover, the effect of 

increased molar equivalents of Pd on each reaction was investigated. We first observed that 

increasing the pressure to 120 bar afforded in the decomposition product of 82, whereas at 70 

bar no product was formed. This was confirmed in the two runs performed using different 

loadings of Pd/C (Table 11,column a, entries 2 and 3). When 5% Pd/C was used, an increases 

of the yield to 65% was observed (Table 11, column a, entry 2). On the contrary, using a 

highly loaded catalyst decrease the amount of matrix and therefore decrease the yield of the 

reaction to 15% (Table 11, column a, entry 3). By comparing the reactivity of Pd/C to 

Pd/graphite, we observed that only C96Pd showed a small activity in the same reaction 

conditions(Table 11, column a, entry 7). This result supported our hypothesis that the nature 

and morphology of the matrix, besides the dispersion of the metal, is determinant for the 

success of the hydrogenation. Increasing the amount of Pd to 10 euiv, 20% yields was 

observed (Table11, column b, entry6).  

 

Table 11. Hydrogenation of calix[2]pyrrole[2]pyrrolidine 83b with different Pd loading and matrix.[a]  

a) Using 2.5 equiv of Pd                                      b)  Using 10 equiv of Pd 

Entry Catalyst 84b
[b]

  Entry Catalyst 84b
[b]

 

1 10%Pd/C 41  1  10% Pd/C 90 

2 5%Pd/C 65  2  5% Pd/C 90 

3 30%Pd/C 15  3 30% Pd/C 70 

4 10%Présat.Pd/C 55  4  35%Pd/graphite (C16Pd) 6 

5 35%Pd/graphite (C16Pd) 

 

-  5  15% Pd/graphite (C48Pd) 9 

6 15%Pd/graphite (C48Pd) -  6  8% Pd/graphite (C96Pd) 20 

7 8%Pd/graphite (C96Pd) 2     

b)  [a] The reactions were performed in 0.1 mmol scale (0.01 M) in autoclave using AcOH as solvent at 100 

°C and 100 bar H2. [b] Conversions (%) were calculated by GC.
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In view of these results, it is possible to suppose that the catalyst became “poisoned” during 

the reaction. The active sites of the catalyst are blocks, so the catalyst does not have a 

catalytic activity. The hypothesis that an impurity could be responsible to the reduced activity 

of the catalyst could be discarded on the basis of the performance of a presaturated by 

hydrogen catalyst (Table 11, column a, entry 4) that show a small increasing in activity 

compare to the normal reaction condition.  

 

At this point we had now a good knowledge of the hydrogenation reaction allowing us to 

broaden our investigation to the preparation of other isomers 84a starting from 83a (Fig 56). 

 

 

Fig 56. Hydrogenation of compound 84a 

 

The hydrogenation of compound 83a afforded infact the new diastereisomer of the 

calix[4]pyrrolidine, 84a. The reaction was highly stereoselective, as only one diastereoisomer 

was formed. The stereochemistry of 84a could be assigned by NMR analysis. The two 

possible isomers with their symmetry are represented Fig 57.  

 

                                  
 

Fig 57. The two possible isomers 84a and 84c. 

 

It can be seen that compound 84c is more symmetrical than 84a. As a matter of fact 84c has a 

plane of symmetry m and a C2 axis, where in compound 84a a plane m is present. As a 

consequence, the 
1
H-NMR spectra should shows only two different peaks for the methyl 
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groups of 84c. The NMR spectra of 84a was unexpected. In CDCl3 two broad peaks 

corresponding to α-CH proton of pyrrolidines were observed. Surprisingly, after an unusual 

double protonation/deuteration presumably attributed to the solvent in the NMR tube, the 

spectrum appeared highly resolved and showed, as expected, four different signals for the α-

CH proton. COSY analyses of the same sample showed two different NH signals (9.5 ppm, 6 

ppm) corresponding to a highly selective protonation of opposite  pyrrolidine rings. The 

protonation/deuteration  of the porrolidines is a long process, is necessary leave the compound 

in NMR solution for a few days before obtain the totally  conversion. Crystals of compound 

84a (Fig 58) were obtained, and confirmed the proposed structure. 

 

 
Fig 58. X-Ray structure of 84a 

 

Finally, we applied the new reaction conditions (10 equivalents of 10% Pd/C, 0.01 M in 

AcOH, 100 bar,100°C ) for the hydrogenation of the calix[4]pyrrole 82 to obtain directly the 

two diastereoisomeric calix[4]pyrrolidines 84a and 84b which were obtained in 60/40 radio 

and overall 82% yield (Fig. 59). 

 
 

Fig 59. Full hydrogenation of calix[4]pyrrole 
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1.5 Synthesis of a new calix[2]pyrrole[2]pyrrolidine 

Pd(II)  complex 
 

The calix[2]pyrrole[2]pyrrolidine 83b displays suitable coordination abilities towards metal 

species. We have previously described different metal complexes from the fully reduced 

macrocycle 84 where metals ions were surrounded by four nitrogen atoms. In the case of 

ligand 83b, two pyrrolidine rings are present together with two pyrroles nuclei, which can 

undergo deprotonation and consequently bind metal ions by covalent bonds. Interestingly, 

metal complexes of 83b would be closely related to metal complexes of porphyrins, as both 

ligands have the same size and the same way to chelate metals, i.e. by two dative and two 

covalent bonds (Fig 60). The only difference is the hybridization sp3 or sp2 of the nitrogen 

atoms acting as Lewis bases. 

 

 

 

Fig 60. A) Calix[2]pyrrole[2]pyrrolidine-metal complexes. b) Porphyrine-metal complex 

Curious to know more about the coordination behavior of ligand 83b, we appled to it the 

successful conditions already developed for the synthesis of metal complexes from the fully 

recuced compound 84. All the experiments were done under Ar atmosphere and using 

different metal salts, the formation of complex was indicated by a colour change of the 

solution 

Moreover, the course of the reaction was monitored by 
1
H NMR analysis. We prepared a 0.02 

M solution of 83b in CDCl3 (0.5 mL) and added 1 equivalent of palladium acetate dissolved 

in CDCl3 (0.2 mL) in an “open tube” (under air). Then, we followed the complexation of 

compound 83b at 50 °C (Fig 61). A different orange color, was soon observed,  that indicated 

the formation of different complexes. This was confirmed by the complete disappearance of 

the pyrrole signals typical of the free ligand at 5.80 ppm and the simultaneous appearance of a 

singlet signal at 6.06 ppm, presumably due to formation of a Pd complex. At increased times, 

the latter signal disappeared, meanwhile other small peaks growed correspondingly in the  
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region between the free ligand signal and the complex signal.This trend continued until the 

complete consumption of the complex.  

 

Fig 61. Variation of the 1H-NMR spectrum by increasing time at 50 °C in CDCl3. Only the spectral region 

of pyrrole absorptions is shown. 

 

Meanwhile the NMR monitoring was developing, we took out samples of the solution at 

different time and analyze them by mass spectroscopy. The first sample was taken out after 

about 50% consumption of  the starting material, and another one at the end. The MS analysis 

of both samples shown the same results. The mass spectrum  displayed a very small peak at 

437 corresponding to the starting material (M+1) and three other peaks at 541, 557 and 573, 

which possess the Pd isotope mass (zoom, Fig 62). 



P a g e  | 56 

 

56 

 

 
Fig 62. Zoom of the MS spectrum  

We assigned the mass 541 to a  Pd-legand symmetrical complex and 557 to a first oxidated 

product. The molecular weight 541 corresponds to a neutral Pd complex 86 where the metal is 

bound to ligand by two covalent and two dative bonds (Fig 63). This complex should be 

formed by  deprotonation of the two pyrrole N-H bonds by the acetate counterions of Pd 

cation, it is confermed by NMR analysis that show the presence of Pd-complex in the reaction 

mixture. On the other hand, the molecular weight 557 corresponds to weight of complex  86 

plus 16 (one oxygen), hence, apparently, an oxidation occurred. Analogously, the molecular 

weight 573 corresponds to the addition of two oxygen atoms to complex 86 and the last small 

peaks, 589 molecular weight, to the addiction of three oxygen atoms. Unfortunately for the 

moment considering the NMR and MS results we are not able to discuss if during the 

oxidation reaction we obtained different products with different molecular weight, or only one  

chiral product with the insertion of 3 oxygen atoms that produce different diasteroisomers 

easily observed during the NMR experiment. 

 

 
 

Fig 63. Preparation of the complex 86  

 

Then, we repeated the same reaction under N2 atmosphere to avoid such oxidation. 

Compound 83b was mixed with palladium acetate in CDCl3 under argon in the NMR tube 

which was sealed, and the formation of the metal complex 86 was followed by 1H NMR at 50 
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°C (Fig. 64). A symmetrical structure of the so formed palladium complex 86 was 

hypothesized on the basis of the disappearance of the pyrrolic N-H signal of the starting 

material, the concomitant shift of the C-H pyrrole signal from 5.86 ppm (doublet) to 6.08 ppm 

and  the appearance of a singlet to 2.1 ppm that corresponded to the two CH3COOH 

molecules. To be sure that the “oxidized complexes” were formed from the initially formed 

Pd complex 86 and not from the free ligand 83b, the NMR tube was opened to air atmosphere 

and the formation of the unsymmetrical oxidated complex was again observed. 

 
Fig 64. Superposition of 1H-NMR spectrum of complex 86 according to the time recorded at 50 °C in 

CDCl3 under inert atmosphere. Only the spectral region of pyrrole is shown 

 

It appears that the complex 86 is highly sensitive toward oxygen; however, no simple 

explanation for such sensitivity can be advanced. It is likely that oxo- palladium complexes 

are intermediate in the oxidation process, or can be one of the products observed. Considering 

these results, we performed the complexation reactions in different solvents and at various 

temperatures (Table 12). When dichloromethane was used, even performing the reaction 

under air at 40 °C an amazing stability of the complex 86 was observed: it was accompanied 

by the ligand salt 83b-2AcOH, but no oxidation had occurred during the reaction time (Fig. 

65 and Table 12, entries 3 and 9). 

 

Fig 65. Pd-complex and protonated half reduced form 
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Performing the reaction in CHCl3, MeOH, EtOH, CH3CN at 50 °C for 3 h the oxidized 

product was formed together with small amounts of complex 86 and the ligand salt 83b-

2AcOH (Table 12, entry 2, 4, 5, 7), and similar results were obtained at room temperature 

(entries 10-13). In acetic acid at 50 °C or at r.t. only the salt was observed, without any traces 

of Pd complexes (Table 12, entries 6 and 14). Only performing the reaction in DCM at 40°C 

is possible to observe only the Pd complex and the salt were present in 80/20 ratio. Apart the 

case of dichloromethane, in all the other solvents the oxidation was favored working under O2 

atmosphere and at room temperature, probably because more gas is dissolved at the low 

temperature. 

 

Table 12. reaction of ligand 83b with palladium acetate in diverse conditions  

Entry Solvent Atmosphere 86/83b-2AcOH
a 

Other products T (°C),time 

1 CHCl3 O2 15/55 Ox-P 50, 3 h 

2 CH2Cl2 O2 80/20  40, 3 h 

3 CH2Cl2 Ar 75/25  40, 3 h 

4 MeOH O2 38/12 Ox-P 50, 3 h 

5 EtOH O2 25/25 Ox-P 50, 3 h 

6 AcOH O2 0/100 Pd
(0) 

50, 3 h 

7 CH3CN O2 -/- Ox-P 50, 3 h 

8 CH2Cl2 Ar 50/50  r.t., 4 h 

9 CH2Cl2 O2 65/35  r.t., 4 h 

10 CHCl3 O2 25/42 Ox-P r.t., 4 h 

11 MeOH O2 0/30 Ox-P r.t., 4 h 

12 EtOH O2 10/10 Ox-P r.t., 4 h 

13 CH3CN O2 0/30 Ox-P r.t., 4 h 

14 AcOH O2 0/100  r.t., 4 h 

[a] The ratio was determined by 1H NMR  

 

To avoid formation of the protonated ligand and increase the yield of complex 86b we added 

an heterogeneous base (resins and inorganic base) to the reaction mixture (Table 13). If the 

reaction was performed in the presence of the base, the Pd complex was not formed and the 

ligand 86 was recovered. Unfortunately all the conversion was determined by NMR 

integration, considering that we can’t identify the different oxidation product is very difficult 

attribute an exactly ration between all the different product.  
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Table 13. Complex formation in basic conditions 

Entry Base or basic  resin Reaction time / T(°C) 86/83b-2AcOH
b 

1 Dowex 1 2,5/rt 50/50 

2 Lewatit VP OC 1065 2,5/rt 10/90 

3 Amberlite IRA 67 3,5/rt 70/30 

4 Amberlite IRA 400 3,5/rt 70/30 

5 Na2CO3 3,5/rt 80/20 

6 K2CO3 2,5/rt 20/80 

7 Amberlist A21
a 

3,5/rt - 

8 DCM purified over basic Al2O3
 

3,5/rt 70/30 

9 Al2O3
a 

3,5/rt - 

10 CHCl3 degassed 3,5/rt 50/50 

[a] Added after 2 h. [b]the ratio was determined by 1H NMR  

All the experiment was performed in DCM at room temperature. Amberlite IRA 67 and 

Amberlite IRA 400 (Table 13, Entry 3,4) have been show increasing of complex amount. Best 

result was observed using Na2CO3 as base, final complex was obtain in 80% yield (Table13, 

Entry 5). Particularly behavior was observed when DCM was pre purify over basic Al2O3 and 

the complex was obtain 70% yield (Table 13, Entry 8).The complex 86 is extremely stable, it 

can be purified by flash chromatography over basic alumina by a cyclohexane/ethylacetate 

solvent mixture obtaining a yellow-green solid that was crystallized in THF under Ar 

atmosphere. The crystal structure can confirm  the NMR prediction, the Pd is square planary 

coordinate by the four heteroatoms, and in particular is covalently bound to the two pyrrole 

unit without the presence of acetate conter ions but with a molecule of THF in apical position.  

 

Fig 66. X-ray structure of the Pd-complex 86  

To determinate how much is fast the oxidation process in acetonitrile, we performed an NMR 

experiment. Ar was bubbled inside through the CD3CN solution of the Pd complex 86 

deuterated, The complex was found stable for a long time in the absence of oxygen, then the 

NMR tube was opened to air and spectra were recorded at first every 5 minutes, and 

successively every 15 min, and again every 1 h. By this way we could observe that no 

oxidation producy was formed after 1 day. Probably, the surface area in the NMR tube is too 

small to permit a good exchange between Ar and air and Ar. 
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SUPPORTING INFO 

 

General Methods. Chemical shifts are reported in ppm from TMS with the solvent resonance 

as the internal standard (deuterochloroform: δ 7.27 ppm). Data are reported as follows: 

chemical shift, multiplicity (s = singlet, d = duplet, t = triplet, q = quartet, bs = broad singlet, 

m = multiplet), coupling constants (Hz). Chemical shifts are reported in ppm from TMS with 

the solvent as the internal standard (deuterochloroform: δ 77.0 ppm). GC-MS spectra were 

taken by EI ionization at 70 eV. They are reported as m/z (relative intensity). 

Chromatographic purification was done with 240-400 mesh silica gel. Determination of 

enantiomeric excess was performed on HPLC instrument equipped with a variable-

wavelength UV detector, using a DAICEL Chiralpak columns (0.46 cm i.d., 25 cm) and 

HPLC-grade 2-propanol and n-hexane were used as the eluting solvents. Optical rotations 

were determined in a 1 mL cell with a path length of 10 mm (NaD line). Melting points are 

not corrected. Materials: All reactions were carried out under inert gas and under anhydrous 

conditions. Commercially available anhydrous solvents were used avoiding purification. 

 

Chiral Pyrrole macrocyclic ligands for Cu-catalyzed asymmetric Henry 

reaction 

 

 

Synthesis of Dialdehyde 60a-d. POCl3 (0.13 mL, 1.4 mmol) was added dropwise to a stirred 

solution of 2,20-(cyclohexane-1,1-diyl) bis(1H-pyrrole) (150 mg, 0.7 mmol) in DMF (1 mL), 

which was cooled at 0 °C. The mixture was stirred at room temperature for 1 h and then 

cooled to 0 °C, and 10 N NaOH (10 mL) was added portionwise. The resultant precipitate was 

filtered and washed with water until pH = 7 was reached to obtain the crude product 60 as a 

white amorphous solid: 162 mg, (86%). Mp = 208.4-209.7 °C (dec). 1H NMR (CDCl3, 400 

MHz): δ = 1.34 (m, 2 H), 1.61 (m, 4 H), 2.32 (t, J = 5.2 Hz, 4 H), 6.22 (d, J = 2.4 Hz, 2 H), 

6.93 (d, J = 2.0 Hz, 2 H), 9.47 (s, 2 H), 10.45 (bs, 2 H). 
13

C NMR (CDCl3, 100 MHz): δ = 

22.5, 25.6, 34.9, 39.9, 108.7, 123.3, 132.6, 146.8, 179.5. IR (KBr): ν = 3281, 3198, 3131, 

3109, 3093, 2925, 2856, 1679, 1472, 1269, 1193, 1052, 812, 776 cm-
1
. ESI-MS m/z: 271.1 

[M+ H]
+
, 293.1 [M +Na]

+
, 541.3 [2 M + H]

+
. Anal. Calcd for C16H18N2O2: C, 71.09; H, 

6.71; N, 10.36. Found: C, 71.29; H, 6.74; N, 10.40. 
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Synthesis of Imines 62a-c. General Procedure. To the suspension of (R,R)-1,2-

diaminocyclohexane L-tartrate (0.580 g, 2.2 mmol) in MeOH (25 mL) were added aldehyde 

60a (0.51 g, 2.2 mmol) and triethylamine (0.67 mL, 4.8 mmol). The reaction mixture was 

stirred for 48 h, and the solvent was evaporated at reduce pressure. A saturated aqueous 

solution of NaHCO3 (20 mL) was added, and the organic material was extracted with 

dichloromethane (3 × 30 mL). The collected organic layers were washed with brine (20 mL), 

dried over Na2SO4, and concentrated to leave a white solid, which was crystallized from 

MeOH to give pure 62a (0.63 g, 1.0 mmol, 90%) as colorless crystals. Mp = 160-162 °C 

(dec). []20
D = +689.2 (c 0.8, CHCl3). 1H NMR (CDCl3, 400 MHz): δ = 1.34 (m, 4 H), 1.53 

(m, 4 H), 1.64 (m, 4 H), 1.67 (s, 12 H), 1.78 (m, 4 H), 3.16 (m, 4 H), 6.11 (d, J = 3.6Hz, 4 H), 

6.29 (d, J = 3.6 Hz, 4 H), 7.90 (s, 4 H). 13C NMR (CDCl3, 100 MHz): δ = 24.7, 27.9, 34.1, 

35.2, 73.5, 105.1, 115.1, 129.6, 142.8, 151.4. IR (KBr): ν = 3296, 2971, 2925, 2855, 1633, 

1561, 1486, 1270, 1216, 1042, 776 cm
-1

. ESI-MS m/z: 617.3 [M + H]
+
. Anal. Calcd for 

C38H48N8: C, 73.99; H, 7.84; N, 18.17. Found: C, 74.28; H, 7.87; N, 18.09. 

 

62b. Colorless crystals, 80%. Mp = 197-199 °C (MeCN). []20 D = +379.5 (c 1.1, CHCl3). 
1
H NMR (CDCl3, 400 MHz): δ = 1.36-1.49 (m, 12 H), 1.52-1.52 (m, 4 H), 1.61-1.71 (m, 8 H), 

1.78 (m, 4 H), 2.04 (m, 4 H), 2.25 (m, 4 H), 3.14 (m, 4 H), 6.08 (d, J = 3.6 Hz, 4 H), 6.26 (d, J 

= 3.6 Hz, 4 H), 7.85 (s, 4 H). 
13

C NMR (CDCl3, 100 MHz): δ = 22.5, 24.6, 26.0, 33.3 35.3, 

39.5, 73.5, 105.7, 115.6, 129.6, 142.1, 151.4. IR (KBr): ν = 3447, 2929, 1633, 1560,1476, 

1044, 775 cm
-1

. ESI-MS m/z: 697.4 [M+H]
+
. Anal. Calcd for C44H56N8: C, 75.82; H, 8.10; N, 

16.08. Found: C, 76.10; H, 8.12; N, 16.03.  

 

62c. Red amorphous solid, 40%. Mp = 158-160 °C. []20 D = -498 (c 0.9, CHCl3). 
1
H NMR 

(CDCl
3
, 400 MHz): δ = 1.36 (m, 4 H), 1.57 (m, 4 H), 1.78-1.82 (m, 8 H), 3.05 (m, 4 H), 5.80 

(d, J = 3.6 Hz, 4 H),6.17 (d, J = 3.6 Hz, 4 H), 6.95-6.97 (m, 4 H), 7.21-7.23 (m, 16 H), 7.71 (s, 

4 H). 
13

C NMR (CDCl3, 100 MHz): δ = 24.5, 32.7, 56.4, 72.9, 112.2, 114.6, 127.1, 127.8, 

129.4, 129.6, 140.2, 144.3, 152.5. IR (KBr): ν = 3439, 2924, 2853, 1632, 1445, 1182, 

1044,734, 700 cm
-1

. ESI-MSm/z: 865.4 [M+H]
+
. Anal. Calcd for C58H56N8: C, 80.52; H, 6.52; 

N, 12.95. Found: C, 80.22; H, 6.55; N 12.97. 
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Synthesis of amines 63a-c. General procedure. NaBH4 (0.15 g, 4.1 mmol) was added to the 

solution of 62a (0.50 g, 0.8 mmol) in MeOH (20 mL) and the reaction mixture was stirred 

during 20 h, then a 1 M NaOH solution (5 mL) was added and the solvent was evaporated at 

reduced pressure. The organic material was extracted with EtOAc (3 x30 mL). The collected 

organic layers were washed with brine (20 mL), dried over Na2SO4 and concentrated to leave 

63a (0.47 g, 0.76 mmol, 95%) as a white solid: mp =166-167 °C; []D 20 = -23.7 (c 0.8, 

CHCl3). 
1
H NMR (CDCl3, 400 MHz): δ = 0.72-0.82 (m, 6 H), 1.03-1.11 (m, 4 H), 1.46 (s, 12 

H), 1.61 (m, 6 H), 1.99-2.09 (m, 4 H),3.37 (d, J = 14.7 Hz, 4 H), 3.62 (d, J = 14.7 Hz, 4 H), 

5.72 (d, J = 2.4 Hz, 4 H), 5.89 (t, J = 2.4 Hz, 4 H), 10.82 (bs, 4 H); 
13

C NMR (CDCl3, 100 

MHz): δ = 25.2, 31.4, 33.0, 35.8, 42.9, 60.3, 103.4, 103.9, 130.1, 137.6. IR (KBr): ν = 3442, 

2928, 2856, 1646, 1456, 1075 cm
-1

. ESI-MS m/z: 

625.4 [MþH]þ. Anal. Calcd for C38H56N8:C, 73.04; H, 9.03; N, 17.93. Found: C, 73.26; H, 

9.06;N, 17.88.  

 

63b. White solid; 90%. Mp = 147.9-148.9 °C (MeCN).[]20 D = -52.0 (c 1.0, CH2Cl2). 
1
H 

NMR (CDCl3, 400 MHz): δ = 0.89-0.96 (m, 4 H), 1.15 (m, 8 H), 1.39-1.42 (m, 2 H), 1.45-

1.53 (m, 8 H), 1.54-1.72 (m, 10 H), 1.86-1.93 (m, 8 H), 2.06-2.14 (m, 4 H), 3.60 (d, J = 13.7 

Hz, 4 H), 3.81 (d, J = 13.7 Hz, 4 H), 5.82 (t, J = 2.8Hz, 4 H), 5.90 (t, J = 2.8 Hz, 4 H), 8.78 

(bs, 4 H). 
13

C NMR (CDCl3, 100 MHz): δ = 22.8, 25.0, 26.2, 31.5, 36.2, 39.1, 43.7, 60.6, 

103.1, 106.1, 129.2. IR (KBr): ν = 3439, 2929, 2854, 2361, 2342, 1636, 1448, 1105, 1036, 

770 cm
-1

. ESI-MS m/z: 705.5 [M + H]
+
. Anal. Calcd for C44H64N8: C, 74.96; H, 9.15; N, 

15.89. Found: C, 75.11; H, 9.16; N, 15.87. 

 

63c. Red amorphous solid; 80%. Mp = 230-231 °C dec. []20 D = -44.8 (c 0.8, CH2Cl2). 1H 

NMR (CDCl3, 400 MHz): δ = 0.77-0.82 (m, 6 H), 1.15-1.21 (m, 4 H), 1.27-1.49 (m, 6 H), 74-

1.86 (m, 4 H), 1.99_2.16 (m, 4 H), 3.16 (m, 8 H), 5.79 (d, J = 2.4 Hz, 4 H), 6.13 (d, J = 2.4Hz, 

4 H), 7.14-7.20 (m, 4H), 7.21-7.30 (m, 4 H), 7.40-7.62 (m, 12 H). 
13

C NMR (CDCl3, 50 

MHz): δ = 24.7, 25.9, 46.3, 47.6, 60.7, 102.3, 104.6, 127.3, 127.8, 129.2, 138.3, 140.2, 151.4. 

IR (KBr): ν = 3442, 2923, 2853, 2363, 1635, 1445, 1384, 1109, 1039, 700 cm
-1

. ESI-MS m/z: 

873.3 [M+ H]
+
. Anal.Calcd for C58H64N8: C, 79.78; H, 7.39; N, 12.83. Found: C, 79.99; H, 

7.41; N, 12.80. 

 

 

 

Synthesis of the Copper Complex (63a-2[Cu(OAc)2]). To a solution of 63a (0.075 g, 0.12 

mmol) in DCM (5 mL) was added Cu(OAc)2 3H2O(0.048 g, 0.024 mmol), and the solution 

was stirred for 1 h. The solvent was removed in vacuo, and the residue was washed with 

pentane/Et2O9/1 (2x10 mL) and dried under vacuum to obtain 0.113 g (95%, 0.11 mmol) of 

copper complex 10a 3 2[Cu(OAc)2] as a slightly green solid. [R]20 D =-47.1 (c 1.1, CHCl3). 
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Mp = 180 °C dec. IR (KBr): ν = 3405, 3239, 3160, 2966, 2932, 2859, 1559, 1404, 1211, 

1050, 1003, 778, 680 cm
-1

. ESI-MS m/z: 747 [M-4 CH3COOH + H]
+
, 749 [M-4 CH3COOH 

+ H]
+
. CCDC numbers 803953 (9a(MeOH)4) and 803954 (63a 2[Cu-(OAc)2]) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of charge 

from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Synthesis of Amine 11.  

 

 

 
Synthesis of compound 64: The dialdehyde 60a (200 mg, 0.87 mmol) and (S)-

phenylethylamine (0.22 mL, 1.74 mmol) were dissolved in DCM (10 mL), and then MgSO4 

(0.500 g) was added. The mixture was stirred at room temperature for 48 h and then filtered 

through a short pad of Celite, which was washed with DCM. The solvent was evaporated at 

reduced pressure. The crude product was dissolved in MeOH (10 mL), NaBH4 (66 mg, 179 

mmol) was added, and the mixture was stirred at room temperature overnight. Water (5 mL) 

was added, and the mixture was stirred 20 min and then concentrated at reduced pressure to 

remove MeOH. The organic phase was extracted with EtOAc (2 x20 mL), and the collected 

organic layers were concentrated at reduced pressure to leave a yellowish oil. Column 

chromatography (SiO2, DCM/MeOH, 9:1) gave 64 as a colorless oil, 340 mg (90%). []20 D 

= -22.1 (c 1.0, CHCl3). 
1
H NMR (CDCl3, 200 MHz): δ = 1.36 (d, J = 6.6 Hz, 6H), 1.67 (s, 6 

H), 1.88 (bs, 2 H), 3.48 (d, J = 13.6 Hz, 2 H), 3.57 (d, J = 13.6 Hz, 2 H), 3.73 (q, J = 6.6 Hz, 2 

H), 5.94 (t, J = 2.7 Hz, 2 H), 6.00 (t, J = 2.9 Hz, 2 H), 7.25-7.41 (m, 10 H), 8.24 (bs, 2 H). 
13

C 

NMR (CDCl3, 50 MHz): δ = 23.9, 29.2, 35.3, 44.3, 57.4, 103.3, 105.5, 125.6, 126.5, 126.9, 

128.4, 129.8, 138.6. ESI-MS m/z: 439.3 [M+H]
+
. Anal. Calcd for C29H36N4:C, 79.05; H, 

8.24; N, 12.72. Found: C, 79.22; H, 8.26; N, 12.69.  

 

 
 

Enantioselective Henry Reaction. Typical Procedure. To a solution of Cu(AcO)2 3H2O 

(0.003 g, 0.015 mmol) in EtOH (1.5 mL) was added 63a (0.004 g, 0.007 mmol), and the 

reaction mixture was stirred at room temperature for 30 min. Benzaldehyde (30 μL, 0.25 

mmol) and nitromethane (134 μL, 2.5 mmol) were added. After 20 h, the reaction mixture 

was filtered through a small pad of silica, which was washed with EtOAc. Column 

chromatography (SiO2, cyclohexane/EtOAc, 9:1) gave (R)-67a: 0.181 g (92%). 92% ee was 

determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 0.8 mL/min.; 214 nm; 40 

°C): retention times 14.5 min (S, minor enantiomer) and 17.4 min (R, major enantiomer).  

67b. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 25:75, 0.5 

mL/min; 214 nm; 40 °C): retention times 11.6 min (S, minor enantiomer) and 15.1 min (R, 

major enantiomer). 

http://www.ccdc.cam.ac.uk/data_request/cif.%20Synthesis%20of%20Amine%2011
http://www.ccdc.cam.ac.uk/data_request/cif.%20Synthesis%20of%20Amine%2011
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67c. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 0.8 

mL/min; 214 nm; 40 °C): retention times 14.2 min (S, minor enantiomer) and 18.1 min (R, 

major enantiomer). 

67d. The ee was determined by chiral HPLC (Chiralpak OJ; 2-propanol/hexane 2:98, 0.8 

mL/min.; 214 nm; 40 °C): retention times 19.5 min (S, minor enantiomer) and 21.1 min (R, 

major enantiomer). 

67e. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 0.5 

mL/min.; 214 nm; 40 °C): retention times 22.1 min (S, minor enantiomer) and 23.2 min (R, 

major enantiomer). 

67f. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 0.6 

mL/min.; 214 nm; 40 °C): retention times 19.3 min (S, minor enantiomer) and 21.0 min (R, 

major enantiomer). 

67g. The ee was determined by chiral HPLC (Chiralpak OJ; 2-propanol/hexane 3:7, 0.8 

mL/min.; 214 nm; 40 °C): retention times 16.4 min (S, minor enantiomer) and 19.5 min (R, 

major enantiomer). 

67h. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 2:8, 0.5 

mL/min.; 214 nm; 40 °C): retention times 17.0 min (S, minor enantiomer) and 21.1 min (R, 

major enantiomer). 

67i. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 2:8, 0.5 

mL/min.; 214 nm; 40 °C): retention times14.0 min (S, minor enantiomer) and 16.1 min (R, 

major enantiomer). 

67j. The ee was determined by chiral HPLC (Chiralpak OD;2-propanol/hexane 2:8, 0.8 

mL/min.; 214 nm; 40 °C): retention times 18.8 min (S, minor enantiomer) and 22.3 min (R, 

major enantiomer). 

67k. White solid. []20 D = þ25.3 (c 0.8, CHCl3). Mp = 85.4-86.0 °C dec. 
1
HNMR(CDCl3, 

400 MHz): δ = 1.53 (s, 9 H), 3.29 (bs, 1 H), 4.48 (dd, J = 3.3 Hz, J = 13.2 Hz, 1 H), 4.51 (dd, 

J = 9.5 Hz, J = 13.1 Hz, 1 H), 5.36 (dd, J = 3.3 Hz, J = 9.3 Hz, 1 H), 7.13-7.17 (m, 2 H), 7.34-

7.38 (m, 2 H). 
13

C NMR (CDCl3, 100 MHz): δ = 27.6, 70.3, 81.1, 84.0, 121.8, 127.1, 135.9, 

151.1, 151.8. IR (neat): ν = 3489, 2990, 2935, 1732, 1556, 1286, 1221, 1149 cm
-1

. ESI-MS 

m/z: 301.1 [M + H2O]
+
, 306.0 [M + Na]

+
, 322 [Μ + K]

+
. Anal. Calcd for C13H17NO6: C, 

55.12; H, 6.05; N, 4.94. Found: C, 55.00; H, 6.10; N, 4.99. The ee was determinedby chiral 

HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 1.0 mL/min; 214 nm; 40 °C): retention times 

11.9 min (S, minor enantiomer) and 13.71 min (R, major enantiomer). 

67l. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 3:7, 0.6 

mL/min.; 214 nm; 40 °C): retention times 12.0 min (S, minor enantiomer) and 14.1 min (R, 

major enantiomer). 

67m. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 2:8, 0.8 

mL/min.; 214 nm; 40 °C): retention times 11.9 min (S, minor enantiomer) and 13.8 min (R, 

major enantiomer). 

67n. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:1, 0.6 

mL/min.; 214 nm; 40 °C): retention times 12.5 min (S,minor enantiomer) and 15.5 min (R, 

major enantiomer). 
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67o. The ee was determined by chiral HPLC (Chiralpak IC; 2-propanol/hexane 25:75, 0.5 

mL/min.; 214 nm; 40 °C): retention times 22.6 min (S, minor enantiomer) and 24.8 min (R, 

major enantiomer). 

67p. The ee was determined by chiral HPLC (Chiralpak IC; 2-propanol/hexane 5:95, 0.7 

mL/min.; 214 nm; 40 °C): retention times 59.9 min (S, minor enantiomer) and 62.7 min (R, 

major enantiomer). 

14q. Yellow oil. []20 D = +15.5 (c 0.5, CHCl3). 
1
H NMR (CDCl3, 400 MHz): δ = 1.65 (s, 9 

H), 3.00 (bs, 1 H), 4.65 (dd, J = 3.1 Hz, J = 13.3 Hz, 1 H), 4.77 (dd, J = 9.4 Hz, J = 13.3 Hz, 1 

H), 5.81 (dt, J = 3.0 Hz, J = 9.4 Hz, 1 H), 7.26 (ddd, J = 1.1 Hz, J = 7.3 Hz, J = 8.2 Hz, 1 H), 

7.34 (ddd, J = 1.2 Hz, J = 7.3 Hz, J = 8.4 Hz, 1 H), 7.61 (dt, J = 0.9 Hz, J = 7.7 Hz, 1 H), 7.63 

(s, 1 H), 8.15 (d, J = 8.6 Hz, 1 H). 
13

CNMR (CDCl3, 100 MHz): δ = 28.1, 65.2, 80.0, 84.4, 

115.6, 117.9, 119.0, 123.1, 125.1, 127.4,135.7, 149.3. IR (neat): ν = 3468, 3054, 2979, 2928, 

1735, 1555, 1373, 1155, 1097 cm
-1

. ESI-MS m/z: 324.2 [M+H2O]
+
, 329.1 [M+Na]

+
. Anal. 

Calcd for C15H18N2O5: C, 58.82; H, 5.92; N, 9.15. Found: C, 58.78; H, 5.97; N, 9.11. The ee 

was determined by chiral HPLC (Chiralpak OD; 2-propanol/hexane 1:9, 0.8 mL/min.; 214 

nm; 40 °C): retention times 11.4 min (S, minor enantiomer) and 12.8 min(R, major 

enantiomer). 

67r. The eewas determined by chiralHPLC (Chiralpak IC; 2-propanol/ hexane 4:6, 0.5 

mL/min.; 214 nm; 40 °C): retention times 14.3 min (S, minor enantiomer) and 17.5 min (R, 

major enantiomer). 

67s. The ee was determined by chiralHPLC (ChiralpakOJ; 2-propanol/ hexane 2:98, 0.5 

mL/min.; 214 nm; 40 °C): retention times 35.1 min (S, minor enantiomer) and 39.2 min (R, 

major enantiomer). 

67t. The ee was determined by chiral HPLC (Chiralpak OD; 2-propanol/ hexane 2:98, 0.7 

mL/min.; 214 nm; 40 °C): retention times 16.9 min(S, minor enantiomer) and 18.9 min (R, 

major enantiomer). 

67u. The ee was determined by chiral HPLC (Chiralpak IC; 2-propanol/hexane 5:95, 0.7 

mL/min.; 214 nm; 40 °C): retention times 24.7 min (S, minor enantiomer) and 25.9 min (R, 

major enantiomer). 

67v. The ee was determined by chiral HPLC (Chiralpak OD;2-propanol/hexane 1:9, 0.6 

mL/min.; 214 nm; 40 °C): retention times 16.7 min (anti, S,S), 18.3 min (anti, R,R), 20.9 min 

(syn, R,S) and 22.9(syn, S,R). 

 

 

 

 

Preparation of Compound 70. To a solution of compound 68 (123 mg, 0.43 mmol) in EtOH 

(2 mL) was added 10% Pd/C (17 mg). The mixture was stirred under a hydrogen atmosphere 

(balloon) for 22 h. The mixture was filtered through a short pad of Celite to remove the 

catalyst. Removal of the solvent under reduced pressure afforded 73 mg (70%) of primary 

amine. 
1
H NMR (CDCl3, 400  MHz): δ = 1.52 (s, 9 H), 2.74 (dd, J = 8 Hz, J = 13.2 Hz, 1 H), 
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2.91 (dd, J = 3.6 Hz, J = 12.8 Hz, 1 H), 4.57 (dd, J = 4 Hz, J = 8 Hz, 1 H), 7.08 (d, J = 8.4 Hz, 

2 H), 7.31 (d, J = 8 Hz, 2 H). A solution of amine 68 (73 mg, 0.29 mmol), acetone (34 μL, 

0.46 mmol), and MgSO4 (40 mg) in EtOH (2 mL) was stirred at rt overnight. Then the 

reaction mixture was cooled to 0 °C (ice bath), and NaBH4 (16 mg, 0.43 mmol) was added. 

After being stirred for 1 h, the reaction mixture was filtered through a small pad of Celite, 

which was washed with EtOAc and MeOH to give 80 mg (94%) of compound 69. 
1
HNMR(CDCl3, 400 MHz): δ = 1.05 (d, J = 6.4 Hz, 6 H), 1.58 (s, 9 H), 2.62 (dd, J = 10 Hz, J 

= 13.2 Hz, 1 H), 2.78-2.85 (m, 1 H), 2.91 (dd, J = 3.6 Hz, J = 12.4 Hz, 1 H), 4.63 (dd, J = 4 

Hz, J = 9.2 Hz, 1 H), 7.12 (d, J = 8.8 Hz, 2 H), 7.35 (d, J = 8 Hz, 2 H).  

 

A solution of HCl in MeOH, prepared by addition of acetyl chloride (0.100 mL, 1.35 mmol) 

to MeOH (2 mL), was added dropwise to a solution of 69 (80 mg, 0.27 mmol) in MeOH (7 

mL) at room temperature. After 6 h, the mixture was concentrated at reduced pressure. The 

solid was washed with Et2O (3 x 3 mL) to give the crude salt 70 as a white solid, 0.04 g (0.22 

mmol, 80%). Mp = 149-150 °C (lit. racemic compound, mp 151.5-152.5 °C). [R]20 D = -32.1 

(c 1.2, MeOH). 
1
H NMR (CDCl3 with 10% DMSO, 400 MHz): δ = 1.41 (d, J = 6.4 Hz, 3 H), 

1.44 (d, J = 6.4 Hz, 3 H), 2.89-2.98 (m, 1 H), 3.00-3.10 (m, 1 H), 3.35-3.42 (m, 1 H), 4.81 

(dd, J = 2.4 Hz, J = 10 Hz, 1 H), 6.84 (d, J = 8.4 Hz, 2 H), 7.14 (d, J = 8.4 Hz, 2 H). 
13

C NMR 

(DMSO, 100 MHz): δ = 18.5, 19.2, 49.8, 50.3, 56.1, 78.7, 115.9, 128.0, 128.5, 158.2. IR 

(KBr): ν = 3220, 2979, 1613, 1614, 1555, 1448, 1267, 1224, 1100, 838 cm
-1

. ESI-MSm/z: 

196.1 [M+H]
+
.  

 

 
 

Synthesis of Dialdehyde 60c. POCl3 (0.13 mL, 1.4 mmol) was added dropwise to a stirred 

solution of  cc (150 mg, 0.7 mmol) in DMF (1 mL), which was cooled at 0 °C. The mixture 

was stirred at room temperature for 1 h and then cooled to 0 °C, and 10 N NaOH (10 mL) was 

added portionwise. The resultant precipitate was filtered and washed with water until pH = 7 

was reached to obtain the crude product 60c as a red crystal : 162 mg, (86%). 
1
H NMR 

(CDCl3, 400 MHz): δ = 1.68 (s, 3 H), 2.16 (s, 3 H), 6.09 (s, 1 H), 6.13 (s, 1 H), 6.18 (s, 1 H), 

6.67 (s, 1 H), 6.87 (s, 1 H) 9.37 (s, 1 H). 
 13

C NMR (CDCl3, 100 MHz): δ = 178.5, 131.9, 

122.0, 117.8, 108.2, 107.5, 104.7, 30.9, 28.7 ppm. ESI-MS m/z =
 
203.1 [M+ H]

+
. 

 

 

 
 

Synthesis of Imines 66a. To the suspension of (R,R)-1,2-diaminocyclohexane L-tartrate 

(0.580 g, 2.2mmol) in MeOH (25 mL) were added aldehyde 8a (0.51 g, 2.2 mmol) and 

triethylamine (0.67 mL, 4.8 mmol). The reaction mixture was stirred for 12h, and the solvent 
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was evaporated at reduce pressure. A saturated aqueous solution of NaHCO3 (20 mL) was 

added, and the organic material was extracted with dichloromethane (3 x 30 mL). The 

collected organic layers were washed with brine (20 mL), dried over Na2SO4, and 

concentrated to leave a white solid, which was crystallized from MeOH to give pure 9a (0.63 

g, 1.0 mmol, 90%) as orange solid. 
1
H NMR (CDCl3, 400 MHz): δ = 1.32-1.42 (m, 2 H), 

1.53-1.60 (m, 2 H), 1.62 (s, 12 H), 1.70-185 (m, 4 H), 3.07-3-14 (m, 2 H), 6.00 (d, J = 3.56 

Hz, 2 H), 6.04-6.07  (m, 2 H), 6.12 (t, J = 2.96 Hz, 2  H), 6.26 (d, J = 3.56 Hz, 2 H), 6.60 (s, 2 

H) 7.80 (s, 2 H). 7.95 (bs,  H, NH).
 13

C NMR (CDCl3, 100 MHz): δ = 151.1, 138.4, 129.4, 

116.9, 114.6, 114.5, 107.8, 105.8, 103.8, 73.2, 35.6, 33.4, 29.1, 24.5 ppm. ESI-MS m/z: 483.1 

[M+ H]
+
.  

 

 
 

Synthesis of amines 66. NaBH4 (0.15 g, 4.1 mmol) was added to the solution of 9a (0.50 g, 

0.8 mmol) in MeOH (20 mL) and the reaction mixture was stirred during 20 h, then a 1 M 

NaOH solution (5 mL) was added and the solvent was evaporated at reduced pressure. The 

organic material was extracted with EtOAc (3 x30 mL). The collected organic layers were 

washed with brine (20 mL), dried over Na2SO4 and concentrated to leave 10a (0.47 g, 0.76 

mmol, 95%) as a white solid: 
1
H NMR (CDCl3, 400 MHz): δ = 0.90-1.00 (m, 2 H), 1.03-1.20 

(m, 2 H), 1.62 (s, 12 H), 1.80-2.00 (m, 4 H), 3.68 (d, J = 14.2 Hz, 2 H), 3.93 (d, J = 14.2 Hz, 2 

H), 5.85 (s, 2 H), 5.92 (s, 2 H), 5.98 (s, 2 H), 6.04 (s, 2 H), 6.47 (s, 2 H), 8.32 (bs,2 H, NH).
 

13
C NMR (CDCl3, 100 MHz): δ = 140.1, 116.4, 107.7, 107.5, 103.4, 102.9, 58.6, 42.8, 35.3, 

30.6, 29.2, 28.8, 24.7 ppm. ESI-MS m/z: 487.1 [M+ H]
+
.  

 

 

 

Synthesis of dipyrrole 71. This compound was synthesized following the reported procedure. 

 

 

 

Synthesis of Dialdehyde 72. POCl3 (0.13 mL, 1.4 mmol) was added dropwise to a stirred 

solution of 71 (150 mg, 0.7 mmol) in DMF (1 mL), which was cooled at 0 °C. The mixture 

was stirred at room temperature for 1 h and then cooled to 0 °C, and 10 N NaOH (10 mL) was 

added portionwise. The resultant precipitate was filtered and washed with water until pH = 7 

was reached to obtain the crude product 72 as a white amorphous solid: 162 mg, (86%).  
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Synthesis of Imines 73. To the suspension of (R,R)-1,2-diaminocyclohexane L-tartrate 

(0.580 g, 2.2mmol) in MeOH (25 mL) were added aldehyde 72 (0.51 g, 2.2 mmol) and 

triethylamine (0.67 mL, 4.8 mmol). The reaction mixture was stirred for 12 h, and the solvent 

was evaporated at reduce pressure. A saturated aqueous solution of NaHCO3 (20 mL) was 

added, and the organic material was extracted with dichloromethane (3 x 30 mL). The 

collected organic layers were washed with brine (20 mL), dried over Na2SO4, and 

concentrated to leave a white solid, 73 (0.63 g, 1.0 mmol, 90%) as. 
1
H NMR (CDCl3, 400 

MHz): δ = 1.34 (m, 4 H), 1.53 (m, 4 H), 1.64 (m, 4 H), 1.67 (s, 12 H), 1.78 (m, 4 H), 3.16 (m, 

4 H), 6.11 (d, J = 3.6Hz, 4 H), 6.29 (d, J = 3.6 Hz, 4 H), 7.90 (s, 4 H).  

 

 

Synthesis of amines 74. NaBH4 (0.15 g, 4.1 mmol) was added to the solution of 73 (0.50 g, 

0.8 mmol) in MeOH (20 mL) and the reaction mixture was stirred during 20 h, then a 1 M 

NaOH solution (5 mL) was added and the solvent was evaporated at reduced pressure. The 

organic material was extracted with EtOAc (3 x 30 mL). The collected organic layers were 

washed with brine (20 mL), dried over Na2SO4 and concentrated to leave 74 (0.47 g, 0.76 

mmol, 95%) as a white solid.  

 

Chiral Pyrrole macrocyclic ligands for Cu-catalyzed asymmetric Henry 

reaction 

 

 

Synthesis of 1,4-bis(2-furyl)-1,4-butandione 77: To a solution of furfurale (1.6ml, 20mmol) 

in EtOH were added 3-benzyl-5-(2-hydrossiethyl)-4-methyl-1,3-tiazolio chloride (816mg, 

3mmol) e NaOAc (418 mg, 5.1mmol). the mixture was refluxed for any minut and after that 

divynilsulphone (1 ml, 10 mmol)  was added drop by drop and the reaction was refluxed for 
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12h. A with precipitate was observed in the mixtureand was removed by filtraction and 

washed by cool water and etere. The crude mixture was recrystalized by EtOH. With solid , 

2.2 g (50%) ; 
1
H NMR (200 MHz, CDCl3): 3.33 (s, 4H); 6.58 (m, 2H); 7.29 (m, 2H); 7.62 (m, 

2H). GC-MS (m/z): 218 (22), 123 (30), 95 (100). IR (CH2Cl2): 1700 (CO).  

  

 

Synthesis of 2,5-bis(2-furyl)pyrrole 78: 77 (2.2g, 10mmol) and NH4OAc ( 7.7 g, 100 mmol) 

were dissolved in EtOH and the solution was refluxed for 2 h. H2O was added to the coolled 

solution and the reaction was extracted by DCM, all the collected organic fases were dried 

over Na2SO4. The crude mixture obtained after the solvent remotion was purified by flash 

chromatography  (cyclohesan:EtOAc 8:2).  The pure product was obtain as a Green amorfus 

solid (1.2 g) Resa: 59%. 
1
H NMR (200 MHz, CDCl3): 6.41 (t, J = 4 Hz, 2H), 6.46-6.48 (m, 

2H), 7.39 (t, J = 8 Hz, 2H), 8.8 (bs). GC-MS (m/z): 199 (100), 170 (31), 142 (47), 115 (25).   

 

 

Synthesis of 5,5'-(1H-pyrrol-2,5-diil)difuryl-2-carbaldehyde 79. POCl3 (1.3 ml, 14 mmol)  

was added dropwise to a stirred solution of 78 (1.2 g, 5.9 mmol) in DMF (5 mL), which was 

cooled at 0 °C for 20 min ander Ar athmospher. The mixture was stirred at room temperature 

for 1 h and then cooled to 0 °C, and saturated spolution of NaOAc (10 mL) was added 

portionwise and the mixture was refluxed for 10min after that the soluzion was leave at rt for 

30 min. The resultant precipitate was filtered and washed with water until pH = 7 was reached 

to obtain the crude product  79 as a red-brown amorphous solid: 1 g, yields: 80%.  Mp= 

decomposition. 
1
H NMR (400 MHz, DMSO-d6): 6.78 (s, 2H), 6.97 (d, J = 3 Hz, 2H), 7.58 (d, 

J = 3 Hz, 2H), 9.93 (s, 2H). 
13

C NMR (100MHz, DMSO-d6): 107.38, 112.0, 126.3, 150.8, 

153.7, 177.4. GC-MS (m/z): 255 (100), 188 (58), 141(22). 

 

Synthesis of Imines 80: To the suspension of (R,R)-1,2-diaminocyclohexane L-tartrate (1 g, 

3.9 mmol), in MeOH (10 mL) were added aldehyde 79 (1g, 3.9 mmol), triethylamine ( 0.8 

ml,5.8mmol) and DCM (3ml) to increase the akdehyde solubility. The reaction mixture was 

stirred for 12 h, and the solvent was evaporated at reduce pressure. A saturated aqueous 
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solution of NaHCO3 (20 mL) was added, and the organic material was extracted with 

dichloromethane (3 x30 mL). The collected organic layers were washed with brine (20 mL), 

dried over Na2SO4, and concentrated to leave  80 (1.23 g, 1.8 mmol, 41%) as brown powder. 
1
H NMR (400MHz, DMSO-d6): 1.40-1.53 (m, 8H), 1.58-1.90 (m, 8H), 3.23-3.34 (m, 4H), 

6.48 (s, 1H), 6.66 (dd, J = 4Hz, 4H), 6.88 (dd, J = 4Hz, 4H). HPLC-MS (m/z): 667[M+H]
+
, 

334 [M+H]
2+

, 255   

 

 

Synthesis of amines 81: NaBH4 (49 mg, 1.32 mmol) was added to the solution of) 80 (879 

mg,  1.32 mmol), in MeOH (20 mL) and the reaction mixture was stirred during 20 h, then a 1 

M NaOH solution (5 mL) was added and the solvent was evaporated at reduced pressure. The 

organic material was extracted with EtOAc (3 x 30 mL). The collected organic layers were 

washed with brine (20 mL), dried over Na2SO4 and concentrated to leave 81 (40 mg, 1.0 

mmol, 70%) as brown solid :
1
H NMR (CDCl3, 400 MHz): = 1.46 (s, 12 H), 1.61 (m, 6 H), 

1.99-2.09 (m, 4 H), 3.37 (d, J = 14.7 Hz, 4 H), 3.62 (d, J = 14.7 Hz, 4 H), 5.72 (d, J = 2.4 Hz, 

4 H), 5.89 (t, J = 2.4 Hz, 4 H), 10.82 (bs, 4 H); 
13

C NMR (CDCl3, 100 MHz): = 25.2, 31.4, 

33.0, 35.8, 42.9, 60.3, 103.4, 103.9, 130.1, 137.6. ESI-MS m/z: 675 [M

+ H]

+
.  

 

 

Calix[4]pyrrole hydrogenation and calix[2]pyrrole[2]pyrrolidine-Pd(II) 

complex 

Palladium/Graphite (C96Pd): Graphite powder (5,91 g, 496mmol) was poured into a three-

necked flask equipped with a condenser, a dropping funnel, an argon inlet, and amagnetic 

stirrer bar, and the contents of the flask were heated under argon at 150 °C for 10 min. Freshly 

cut potassium (0.39 g, 10 mmol) was slowly added to the graphite at 150 °C with stirring. 

After all the potassium pieces had melted and bronze-colored C48K powder was formed, the 

flask was allowed to cool to r.t. and the C48K was covered with anhyd THF (15 mL) without 

stirring. A suspension of anhydrous PdCl2 (0.88 g, 5 mmol) in THF (50 mL) was slowly 

added with stirring. The mixture was then refluxed for 3 h, cooled to 0 °C, and H2O (10 mL) 

was slowly added. The mixture was stirred for 30 min and then filtered. r.t. under vacuum and 

the solid was washed successively with H2O, MeOH, and Et2O (30 mL each). The drark-gray 

powed was heated at 70°C for 6 h  under pressure to give  C16Pd as a dark grey powder; yield: 

6.031 g (96%). 
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Calix[4]pyrrole:
 1

H-NMR (400 MHz, CDCl3): δ 7.01 (4H, br s, NH), 5.89 (8H, d, J=2.5 Hz, 

β-pyrrole), 1.50 (24 H, s). HRMS (ESI-MS) :  C28H36N4 [M-H]- : calcd : 427.2862, found : 

427.2860 

 

 

 

Unprotonated trans-calix[4]pyrrolidine : 
1
H-NMR (400 MHz, CDCl3): δ 0.73 (s, 6H), 0.76 

(s, 6H), 0.84 (s, 12H), 1.22-1.34 (m, 6H), 1.39-1.55(m, 10H), 2.73 (s, 2H), 2.78 (s, 2H), 2.88 

(m, 3H), 2.99 (s, 1H). 
13

C-NMR (400 MHz, CDCl3): δ 12.07, 23.02, 23.17, 25.25, 25.61, 

26.63, 25.80, 27.41, 37.44, 38.49, 65.51, 68.12, 70.22. HRMS (ESI-MS): m/z 

445.42619[MH
+
]. IR(): 3376.45, 3325,79, 2963.12, 2870.62, 1467.07, 1383.70, 1287.03, 

1258.04 cm
-1

 

 

Synthesis procedure Pd-complex: 100 mg (0.23 mmol) of Calix[2]pyrrole[2]pyrrolidine was 

stirred with 51.4mg (0.23mmol) of Pd(OAc)2  in 25 ml of DCM at room temperature under Ar 

atmosphere. After 2 hours the solvent was removed and the crude was directly purified by 

chromatographic column  over basic Al2O3 (cyclohexane/Ethylacetate, 9/1); 70% yield. The 

pure product was obtain as yellow-green solid. It was crystallized in THF under Ar 

atmosphere: 
1
H-NMR (400 MHz, CDCl3): δ 1.30 (s, 12H), 1.38 (s, 12H), 1.64-1.67(m, 4H), 

1.93-1.96 (m, 4H),3.01 (t, J=12, 2H), 3.55-3.61 (m, 4H), 6.06 (s, 4H). 
13

C-NMR (400 MHz, 

CDCl3): δ 23.73, 25.97, 28.40, 36.08, 67.33, 102.25,143.56. HRMS (MALDI-MS): m/z 

540.24485[M+H
+
] and 542.24359[M+H

+
] isotope of Pd.  
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Chapter 2:  Synthesis of enantio-enriched 2-aryl- and 

2,5-diaryl-substituted pyrrolidines 

 

2.1 Introduction  
 

N-Heterocyclic compounds have attracted considerable attention owing to their many 

applications in pharmaceutical chemistry, material chemistry, and synthetic organic 

chemistry.
112

 In particular, pyrrolidine, piperidine, and morpholine derivatives are present in a 

large class of biologically active natural products.
113

 A huge amount of natural derivatives 

containing such heterocyclic rings are involved in many biological regulation processes, so it 

is extremely important to study the behavior of novel synthetic analogues. Alkaloids, for 

examples, are produced by a large variety of organisms, including bacteria, fungi, plants, and 

animals, and are part of the group of natural products that are  called secondary metabolites. 

They often have pharmacological effects and are used as therapeutics, as recreational drugs, 

or in entheogenic rituals.  

Examples are the local anesthetic and stimulant cocaine, the psychedelic psilocin, the 

stimulant caffeine and nicotine, the analgesic morphine, the antibacterial berberine, the 

anticancer compound vincristine, the antihypertension agent reserpine, the cholinomimetic 

galantamine, the spasmolysis agent atropine, the vasodilator vincamine, the antiarhythmia 

quinidine, the antiasthma therapeutic ephedrine, and the antimalarial drug quinine.  

 

 
 

Fig 67. Some important alkaloids.  

 

The need of new chiral, optically pure drugs has become more and more pressing in 

pharmaceutical industry, and consequently the development of synthetic procedures for an 

ever increasing number of such compounds represents the most important goal in organic 
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synthesis. The asymmetric synthesis of chiral products can be achieved starting from chiral 

materials (“ex-chiral pool” synthesis), using chiral auxiliaries (either derived from natural 

compounds or cheap intermediates from chemical industry) which can be removed in a 

subsequent step, or using chiral catalysts. Natural products are the first chiral catalysts used in 

enantioselective catalytic processes. 

A nitrogen-containing functional group can act as a strong base, as in guanidines, or as a 

strong nucleophile, as in hydrazines. The absence of an available d-orbital in such 

functionalities could, at first glance, be considered as a limitation for an effective interaction 

with transition metal complexes. This weakness could, nevertheless, be counterbalanced by 

numerous other types of interactions. Indeed, natural metal transition complexes (i.e., 

porphyrines) in which nitrogen acts as a ligand have already proven their efficiency not only 

for precious metal complexes (such as Rh, Pd, Ru,...) but also for early transition metal 

complexes (such as Mn, Cu, Ni, Co,...). 

Quinine, cinchonine, sparteine, strychnine, and emetine are only few examples of chiral 

natural products used as catalysts in homogeneous and heterogeneous systems. 

 

 

Figure 2. Natural compounds used as chiral catalysts in heterogeneous hydrogenation reaction.  

 

Although nitrogen-containing ligands were only rarely used in the 70’s and the 80’s, some of 

the first historic asymmetric catalysts were heterogeneous nitrogen-containing chiral systems. 

One of the first application of the “chiral pool” derived chiral catalyst was presented by 

Orito
114

 in 1978: Pt/Al2O3 modified by cinchona alkaloids 3 allowed the reduction of 

ketoesters to R--hydroxy acids. Since its discovery, no new chiral catalyst with similar 

efficiency has been reported.  During the years other alkaloids catalysts were proposed in the 

same reaction as an example finely dispersed poly-(vinylpyrrolidone) stabilized platinum 

clusters
115

. Up to 97% ee in favor of the (R)-(+)-methyl lactate was measured in the presence 

of cinchonodine. Contrary to most observations of the Pt/cinchonidine system, the smallest Pt 

clusters gave the best results despite having no flat surface large enough for the adsorption of 

cinchonidine. Studies on the structural requirements for the modifiers to reach good to 

excellent ee led Pfaltz and Baiker
116

 to the conclusion that it was the interaction of the 
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substrate and the quinuclidine part of the ligand which determined the ee. They, therefore, 

proposed ligands with simpler structures (Figure 2). Using ligand 4a with the N-substituted 

pyrrolidine structure, only 75% ee was reached at 100% conversion as compared to the 95% 

ee obtained using the classic dihydrocinchonidine.
117

 Wells
118

 then proposed codeine 2 and 

strychnos alkaloids 5 and 6 for the same reduction. To summarize, the best ligands proved the 

cinchona alkaloid at high-pressure and 1-(1-naphthyl)ethylamine at low-pressure conditions.  

 

In the same years it was discovered that proline 7 was an efficient ligand for transition metal 

complexes used in asymmetric catalysis, e.g. heterogeneous hydrogenation. Most importantly, 

proline itself is an effective organocatalyst of several powerful asymmetric transformation, 

such as the aldol, Mannich, and Michael reactions, Robinson annulation, Diels Alder reaction, 

and so on. (S)-Proline is an abundant chiral molecule that is inexpensive and also the 

unnatural enantiomer is commercially available. Particularly, both acid or base fuctionalities 

present in proline act in concert to facilitate chemical transformations, similarly to enzymatic 

catalysis.  

During the years a big family of similar compounds were synthesized, Corey-Bakshi-

Shibata
119,120

 catalyst (10), MacMillan
121

 catalyst (8), and  the Hayashi-Jørgensen 
122

catalyst 

(9) were tested in the same reaction obtaining enthusiastic results. 

 

 
Figure 68: Proline (7) and similar compounds commonly used in organocatalysis: MacMillan catalyst (8), 

Hayashi-Jørgensen catalyst (9), Corey-Bakshi-Shibata catalyst (10). 

 

In the last decade the search for new catalysts and  biological active molecules with 

pyrrolidine core has grown exponentially. Pyrrolidines play important roles in the drug 

discovery process.
123

 Several polysubstituted pyrrolidines have shown very potent activities as 

enzyme inhibitors, agonists, or antagonists of receptors.
124

 Furthermore, the advanced 

progress achieved in genomic research increases the demand for identification of small 

molecules that are active and selective against a broader range of therapeutical targets. In the 

perspective of more biologically interesting targets becoming available, the efficient synthesis 

and optimization of new drug-like chemical entities actually constitutes the bottleneck in 

medicinal chemistry.
125

 The functional assay technology R-SATTM
126

 enables exploration of 

an enormous range of possible drug targets in a nonbiased manner.  

Considering the high value of chiral pyrrolidine as a catalyst
127,128 

(chiral ligand or 

organocatalyst) or as component in chiral biological molecules,
129

 different asymmetric routes 

have been proposed in the last decade. Recent examples include 1,3-dipolar cycloadditions of 

azomethine ylides to electron-deficient alkenes,
130

 reduction of pyrroles,
131

 intramolecular 

hydroamination,
132

 annulation reactions of allyl-,
133

 vinyl-,
134

 and allenylsilanes,
135

  and ring-

closing metathesis.
136
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2.1.1 Organocatalysis or Organometallic catalysis ? 
 

Pyrrolidine-based compounds can be used as ligands of organometallic catalysts, or can act 

themseves as organocatalysts. Here, I will report some examples that perfectly illustrate both 

the catalytic applications.  

 

2.1.1.1 Organocatalysis 

 

Organocatalysis has become a favourite theme of research thanks to activity displayed by 

proline.
137

 Since then, new similar compounds have been prepared and studied aiming to 

achieve a higher activity than proline. In all cases. the new molecules were made of a five-

membered nitrogen ring with a hindered substituent in the  position. The catalytic pathway 

(“iminium” or “enammine” catalysis) was dependent on the nature of the substrate
138

 as well 

as of catalyst. Over the last 10 years, imidazolidinones have been established as LUMO-

lowering iminium catalysts that can be employed in a wide variety of enantioselective 

transformations including conjugate additions, Friedel– Crafts alkylations, hydrido reductions, 

and cycloadditions. While imidazolidinones can also serve as enamine catalysts, they do not 

contain the necessary structural features to participate in bifunctional enamine catalysis 

(wherein activation of the electrophilic reaction partner is also performed by the amine 

catalyst). In contrast, proline has been shown to be an enamine catalyst for which bifunctional 

activation is a standard mode of operation across a variety of transformation types; yet, 

remarkably, this amino acid is generally ineffective as an iminium catalyst with enals or 

enones. Given these mutually orthogonal reactivity profiles, MacMillan has been 

hypothesized that the combination of imidazolidinone and proline should provide a dual-

catalyst system that fully satisfies the chemoselectivity requirements for cycle-specific 

catalysis as show in Fig 4.  
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Fig 69. Different affinities of MacMillan catalyst and proline; imminum-enamine catalysis. 

 

It was possible to take advantages of the different abilities of the two catalysts and design 

cascade reactions with the two catalysts acting in different steps of the one-pot process. As 

show in Fig 5 starting from simple and cheaper starting material as -insaturated aldehyde 

11 and substituted furan is possible to obtain a complex final product 15 using at the same 

time imminium (12) and enamine catalysis (14). This is only one example of the hundreds 

publications in the last years, that clearly demonstrates why the application of this kind of 

catalysis has found a so rapid development.  

 

Fig 70. Catalityc cycle of the combined MacMillan-proline catalysis. 

 

2.1.1.2 Organometallic catalysis 

 

On the other hand the applications of pyrrolidine-based ligands in organometallic catalysis are 

not as much diffused as in organocatalysis. The Overman complex 16 is one of the first 

example of pyrrolidine-organometallic catalyst.
139

 The bidentate ligand creates a chiral 

environment around PdCl+, and both the monomeric and dimeric complexes were observed. 

It was used in the enantioselective rearrangement of allylic imidates to allylic amide with 

good yields and ee (Figure 6). 
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Fig 71. Pyrrolidine-Pd complex 16 in the allylic imidates rearrangement. 

Another chiral Pd-pyrrolidine complex was presented by McGrath.
140

 The ligand 17 contains 

the trans-2,5-disubstituted pyrrolidine moiety linked to a pyridine ring. Pyridine is a strong 

electron donor ligand, but, because of the delocalized -framework, also has the capacity to 

be a strong electron acceptor depending on ring substituents.
141

 Electronic character can play 

an extremely important role in ligands for transition metal-catalyzed processes, affecting both 

rate and stereoselectivity,
142,143

 and the presence of the pyridine moiety should allow to alter 

the electronic character of these ligands. The 
1
H NMR spectrum of the allyl-Pd complex 

prepared from the ligand 17 showed that diastereomeric allyl complexes (-allyl rotamers a 

and b) an approximately 1:1 ratio, which underwent slow exchange at room temperature (400 

MHz 
1
H NMR). 

 

 

Fig 72. Pyridine-pyrrolidine ligands in allyl Pd-complexes. 

 

At the same time Furukawa presented a different application of proline as ligand in the Ru 

complex 18 used in the homogeneous hydrogenation of aromatic ketones,
144

 where good 

yields and ee were obtained. 

Figure 73. Proline-Ru complex 18 in homogeneous ketone hydrogenation reaction. 
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(R,R)-2,2′-Bispyrrolidine 19 was firstly prepared by Hirama by resolution of the racemic 

compound with tartaric acid.
145

 An asymmetric synthesis was reported by Kotsuki starting 

from mannitol or tartaric acid.
146

 On the other hand, Alexakis has developed a shorter route,
147

 

which is feasible on a large scale: the first steps are based on the chiral diamine synthesis 

reported by Neumann
148

 and later improved by Savoia, which starts from a chiral glyoxal 

diimine.
149

 The two pyrrolidine complexes with ZnCl2 20 and 21 were prepared, and the X-

ray structures were determined.  

 

Fig 74. Alexakis’ 2′,5′-bispyrrolidine-ZnCl2 complexes. 

The same scaffold 19 was used by White to prepare a new organometallic Fe complex useful 

in sp
3
 carbon oxidation reactions.

150
 It was hypothesized that site-selective oxidations of 

unactivated sp
3
 C–H bonds could be predictably controlled provided that a reactive metal 

catalyst could be capable of discriminating C–H bonds in complex molecules on the basis of 

subtle electronic and steric differences. The electrophilic iron catalyst 22 shown in Figure 10, 

featuring a tetradentatate ligand framework, uses H2O2 as an inexpensive, environmentally 

friendly oxidant to effect highly selective oxidations of unactivated sp
3 

C–H bonds over a 

broad range of substrates. The corresponding reactions catalyzed by the achiral complex 23 

were less selective. 

 

 

Fig 75.  sp
3
-Carbon oxidation reaction using White’s catalyst. 

 

The site of oxidation in complex organic substrates using 22 can be predicted on the basis of 

the electronic and steric environment of the C–H bonds (Figure 11). 
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Fig 76. Reactivity scale of sp
3
 carbons in oxidation reaction catalyzed by 22. 

Table 1 shows that the highly selective oxidation process preferentially occurred at the remote 

tertiary hydrogen, remote from the electron-withdrawing substituent. This report is one of 

recent examples where pyrrolidine core ligands have been used in organometallic catalysis 

with amazing results. 

 

Table 14. Exploring substrates  

 

 

2.2 Synthetic routes to pyrrolidines  

  

During the years different synthetic routes have been proposed leading to new 

enantiomerically pure pyrrolidine derivatives. We divide such reactions in four classes: 

1) Annulation  

2) Cyclopropane expansion 

3) Hydroamination  

  

 

1) Annulation  reaction 

Somfai reported the annulation reaction where a Lewis acid promoted the reaction of -silyl-

substituted allylsilanes to -amino aldehydes, leading to the stereoselective formation of 

pyrrolidine rings 24 (Figure 12).
151
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Fig 77. [3 + 2] Annulation reaction  

Allylsilanes can also function as synthetic equivalents of 1,2-
152

 or 1,3-dipoles
153 

in 

annulations reactions to activated C=X -bonds, due to the efficient p  hyperconjugative 

stabilization of -silyl carbocations by adjacent C-Si bonds. Li
154

 and Kobayashi
155

 have 

presented reactions in which modified amino acids were used as starting material. Kobayashi 

observed that Brønsted base catalysts such as alkaline earth metal alkoxides (Ca(O
i
Pr)2) 

bound to chiral ligands, e.g. PhBOX 26a-c, were highly active complexes in the Michael 

reaction of imine derivatives and methyl acrylates. Using this complexes the desired Michael 

adduct was obtained in 88% yield and 94% ee when the reaction was conducted in THF at -30 

°C for 12 h in the presence of 4A MS 4A. During the examination of the substrate scope, it 

was discovered that when other unsaturated carbonyl compounds was allowed to react with 

enamine under the standard reaction conditions, the reaction also proceeded smoothly; 

however, the product was the corresponding pyrrolidine 25, obtained in excellent yield and 

enantioselectivity via a formal [3+2] cycloaddition pathway  (Figure 13).
156

 

Fig 78. [3 + 2] Annulation reactions catalyzed by Ca(Oi-Pr)2 and PhBOX. 

 

2) Cyclopropane expansion 

Ring opening of cyclopropyl ketones with metal iodides affords attractive synthetic 

intermediates incorporating either a nucleophile (i.e. metal enolate) and an electrophile (i.e. 

alkyl iodide) within the same molecule. Oshima and co-workers reported the formation of 

acyltetrahydrofurans by trapping metal enolates derived from cyclopropyl ketones with 

aldehydes.
157

 Encouraged by those results, Olson envisioned that replacing the aldehydes with 

imines formed in situ would be an efficient way to synthesize pyrrolidines 27 (Figure 14).
158
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Fig 79. Cyclopropane expansion as a tool to synthesize pyrrolidines. 

 

Recently, Carreira has reported the ring expansion of a cyclopropanecarboxamide with 

aldimines using the same LA of Olson.
159

 Sun proposed a new cyclopropane expansion 

starting from 2-substituted 1,1-cyclopropane carboxylates  and phenyl-immin in catalityc 

amount of different LA. Highly functionalized pyrrolidines 28 were obteined in good yield 

and very good enantioselectivity (Figure 15).
160

 The same procedure  but with different 

sobstituted cyclopropen were performed by Carreira and Lautens.
161

 

 

Fig 80. Cyclopropane expansion. 

 

3) Hydroamination 

 

The first reaction of this type was disclosed by Widenhoefer,
162

 who used 

[PtCl2(H2C=CH2)]2/PPh3 and later PtCl2/biarylphosphine (5-10 mol% Pt) for the cyclization 

of secondary alkylamines. More recently, the same author reported a mild and effective Au-

catalyzed protocol for the intramolecular hydroamination of alkenyl carbamates to form 

protected nitrogen heterocycles.
163

 More recently, Hollis
164

 reported the use of pincer-type N-

heterocyclic carbene complexes (5 mol%) of Rh and Ir for the intramolecular hydroamination 

of terminal alkenes by tethered secondary alkyl- and phenylamine functions. Liu and 

Hartwig
165

 disclosed the use of [Rh(COD)2]BF4/Cy-DavePhos for the cyclization of substrates 

that contain primary or secondary alkylamines and terminal or internal alkenes. In this vein, 

Stradiotto reported herein that [Ir(COD)Cl]2 was an effective catalyst for the hydroamination 

of unactivated alkenes with pendant secondary alkyl- and arylamines at relatively low 

loadings of the catalyst (0.25-5 mol%) without the need for added ligands or cocatalysts 

(Figure 16).
166

 

 

Fig 81. Ir-catalyzed intramolecular hydroamination reaction. 
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2.3 2-Arylpyrrolidines and 2,5-diarylpyrrolidines 
 

 

Considerable attention has been devoted in recent years to the synthesis of enantiopure 2-

substituted pyrrolidines, such as 2-arylpyrrolidines,
167

 which are useful as chiral bases, chiral 

auxiliaries, and chiral ligands.
168

 A general method for the enantioselective arylation of N-

Boc-pyrrolidine to give 2-aryl-N-Boc-pyrrolidines 30 is lacking.
169

 As an alternative, Beak
170

 

reported the enantioselective lithiation/intramolecular substitution of N-(-chloropropyl) 

benzylic amines, which afforded (S)-2-aryl-N-Boc-pyrrolidines with high enantiomeric 

excesses (Figure 17).  

 

 

Fig 82. Metalation/cyclization of N-(-chloropropyl) benzylic amines. 

Chiral auxiliary-mediated approaches have been reported. 
171,172

 Savoia and coworkers have 

used (S)-valine as the chiral auxiliary for the stereoselective synthesis of 2-phenylpyrrolidine 

by reductive ammination.
173

 Catalytic methods have also been developed for the syntheses of 

enantioenriched 2-arylpyrrolines and -pyrrolidines. Ozawa and Hayashi have used palladium 

acetate-2(R)-BINAP complex for the catalytic asymmetric C-2 arylation of 1-alkoxycarbonyl 

2-pyrrolidines with aryltriflate compound to obtain optically active (R-1-(alkoxycarbonyl-5-

aryl-2-pyrrolines of up to 83% ee, together with the regioisomers 1-(alkoxycarbonyl)-5-aryl-

3-pyrrolines.
174

 An especially efficient approach has been reported by Willoughby and 

Buchwald who used an enantioselective chiral titanocene-based catalyst to reduce 2-aryl and 

2-alkyl-1-pyrrolines to 2-aryl- and 2-alkylpyrrolidines with very high enantioselectivities.
175

 

 

2,5-Diaryl-substituted pyrrolidines can find same application as the mono-substituted 

analogues, but they are often synthesized by different methods. Since the first preparation of 

optically pure C2- symmetrical amines,
176

 such as trans-2,5-disubstituted pyrrolidines, by 

Whitesell in 1977,
177

 these compounds have been extensively applied in various types of 

stereoselective syntheses, and a number of procedures for their preparation have been 

proposed.
178

 Among them, one of the most accessible methods involves the enantioselective 

reduction of 1,4-diketones, which was realized by using chiral 

diisopinocamphenylchloroborane as reducing agent,
179

 or by oxazaborolidine catalyzed 

reduction with borane.
180

 For example, the 1,4-diphenyl-1,4-butanediol was obtained with 

high optical purity and the transformed into the optically pure 2,5-diphenylpyrrolidine 32 in 

good yield thanks to Salen-type Co complex 31 (Figure 18). A few reports have been 
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published dealing with the preparation of optically pure 2,6-diphenylpiperidine,
181

 and 2,4-

diphenylazetidine.
182

 Yamada
183

 presented an analogous synthetic way, which was limited to 

the preparation of pyrrolidines. 

 

Fig 83. Synthesis of 2,5-diaryl pyrrolidines from optically pure 1,4-diols. 

 

The application of the pyrrolidine 32 as chiral auxiliary in asymmetric Diels-Alder reactions 

was presented by Rawal.
184

 Working on differently substituted acrylates, he observed 

excellent facial selectivity in the formation of functionalized cyclohexenones 33. 

 

 
 

Fig 84. Diarylpyrrolidine used as chiral auxiliary in Diels-Alder reactions. 

 

Rawal also used diphenylpyrrolidine as chiral auxiliary in asymmetric Thio-Claisen 

Rearrangements,
185

 which proceeded with good to exceptionally high diastereoselectivities. 

The use of a C2-symmetric amine prevents the rotomer issue as a consequence of free rotation 

around the C-N bond in the N,S-ketene acetal intermediate so reducing the number of 

different transition states, and produce only one isomer, and generally allow a higher 

stereoselectivity to be obtained. 
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Figure 85. Auxiliary-induced stereoselective Thio-Claisen Rearrangement. 

 

The diaryl pyrrolidine has found application also as ligand of organometallic species. An 

example was reported by Kim who used a BINOL-diarylpyrrolidine ligand in the asymmetric 

conjugate addition of organometallic compounds to enones.
186

 

 

 

2.3.1 Synthesis of 1-substituted 2,5-di(2-furyl)pyrrolidines 
 

Having observed the large number of aryl- and diarylpyrrolidines reported in literature, we 

could recognize that only the phenyl and similar aromatics groups have been widely used as 

substituents of the pyrrolidine ring, whereas only a few heteroaryl ( pyridine or imidazolium) 

substituted pyrrolidines were reported. For this reason, we decided to investigate the 

asymmetric synthesis of heteroaryl and diheteroaryl substituted pyrrolidines, and began with 

2,5-di(2-furyl)pyrrolidine.  

Taking in account the knowledge of Savoia’s group on the preparation of chiral 

pyrrolidines
187

 by reductive amination of 1,4-diketones and 1,4-ketoaldehydes using optically 

pure primary amines as chiral auxiliaries, and the different strategic ways to obtain 1,4-diaryl-

1,4-diketones thanks to Stetter procedures, we thought to combine these background 

informations to synthesized new di-heteroaryl pyrrolidine. In this way we decide to start our 

investigation applying the reductive amination route to the known 1,4-difuryl-1,4-butanedione 

(product 77, subchapter 1.3.3) previously described in the synthesis of corresponding 

triaromatic scaffolds. Using several optically pure primary amines and sodium 

cyanoborohydride as reductive agent in ethanol at controlled pH, the reductive ammination 

reaction took place and afforded 2,5-di(2-furyl)pyrrolidines 34b-g in good yields and 

moderate to high diasteromeric ratio. 

The reaction proceeds through two consecutive reductive amination processes¸in both cases, 

the reactive intermediate which undergoes attack by hydride ion is an iminium ion (Figure 

21). 
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Figure 86. Reductive amination mechanism. 

 

Owing to the presence of a fixed stereocenter in the nitrogen substituents (chiral auxiliary, 

R*), the reaction can give three different diastereoisomers of the expected product, i.e. one cis 

and two, C2-symmetric, trans diastereoisomers. 

 

 

 

Fig 87. a) Reductive amination reaction, b) cis and trans products. 

 

Different chiral primary amines were tested in the reductive ammination reaction, so that we 

could observe the effect of the nature of R* on the degree of asymmetric induction. The 

reactions occurred only by heating at 70 °C in EtOH as the solvent, the reaction rate being too 

low at lower temperature. The yields and the diasteroisomeric ratios observed for all the 

products prepared 34a-g are reported in Table 2. 
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Table 15. Synthesis of 2,5-di(2-furyl)pirrolidines 34a-g from 1,4-di(2-furyl)-1,4-butandione and chiral 

primary amines.[a]  

Entry Amine Product, Yield (%) d.r.
[b] 

(cis/trans) 

1 NH4OAc 34a, 80 50/50 

2 

 

34b, 85 70/30 

3 

 

34c, 85 90/10 

4 

 

34d, 70 80/20 

5 

 

34e, 60 93/7 

6 

 

34f, 55 90/10 

7 

 

34g, 70 70/30 

[a] Reaction conditions: 1 equiv diketone, 1.1 equiv amine, 6 equiv NaCNBH3, 0.5 equiv KOH, 1 equiv AcOH, 

EtOH, 70 °C, 3 d. [b] Determined by GC-MS. The distero results was reported in the same order  to the GC time 

eluition. [c] Determined by GC-MS after reaction with TBDMSCl  

All the diasteroisomeric ratios were determined by GC-MS of the crude mixtures. Using 

NH4OAc as ammonia source, the NH-free 2,5-di(2-furyl)pyrrolidine was obtained, obviously 

as a racemic compound (Table 2, entry 1).  

It can be observed that increasing the size of the N-substituent, the relative amount of the cis 

diastereoisomer increases at the expense of the trans-diastereoisomer (presumably, only one 

of the two possible trans diastereoisomers was formed, as an effect of the auxiliary-induced 

asymmetric induction). If we compare the results of the reactions performed with O-t-

butyldimethylsilyl (S)-valinol and (S)-valine methylester, we can observe different 

diasteroselectivity (Table 2, entries 4 and 6). The prevalence of the 2,5-cis- over the 2,5-trans-

disubstituted products can be explained considering that the former is definitely more stable 

than the latter, because in the 2,5-cis-disubstituted pyrrolidine each aryl substituent is in a 

trans relationship with the N-substituent. Consequently, even the transition state for the 

hydride attack to the intermediate iminium ion leading to the 2,5-cis-diastereoisomer has a 

lower energy compared to the alternative transition state leading to the 2,5-trans 

diastereoisomer, so we can conclude that the cis- product is major thanks to kinetic and 

termonidamic contribute  . 
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Figure 88.  Iminium reduction 

 

The compounds 34 a-g  could be separated by column chromatography, so that their cis and 

trans configuration could be determined by 1H NMR analysis. It was so confirmed that the 

cis isomers were the prevalent products in the reductive amination reaction. 
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2.3.2 Asymmetric synthesis of 1-substituted-2-(2-furyl)pyrrolidines  
 

To synthesize the 2-(2-furyl)pyrrolidine moiety we performed the same, previously described. 

reductive amination procedure, but used different route to prepare the required -ketoaldehyde 

36. Furan was lithiated at C-2  by n-BuLi at -78 °C in THF,
188

 then the 2-furyllithium was 

added to -butyrrolacton to obtain the corresponding -hydroxyketone 35. Using PCC, the 

alcohol was converted in  the corresponding aldehyde 36 in good yields. The reductive 

amination reactions were carried out with the same optically pure primary amines we had 

previously used and following the previous protocol. The yields and diasteroisomeric ratios of 

the corresponding pyrrolidines 37a-h are reported in Table 3.  

Fig 89. Synthesis of N-substituted 2-furylpyrrolidines 

Table 16. Synthesis of 2-(2-furyl)pyrrolidine 37a-h by reductive amination of ketoaldehyde 36.
[a]

 

Entry Amine Product, Yield (%) d.r.
[b]

 

1 NH4OAc 37a, 40 50/50 

2 

 

37b, 60 33/67 

3 

 

37c, 70 88/12 

4 

 

37d, 50 50/50
[c]

 

5 

 

37e, 75 57/43 

6 

 

37f, 37 61/39
[c]

 

7 

 

37g, 60 8/92 

8 

 

37h, 60 75/25 

[a] Reaction conditions: 1 equiv 36, 1.1 equiv amine, 6 equiv  NaCNBH3, 0.5 equiv KOH, 1 equiv AcOH, EtOH, 

70 °C, 1 d. [b] Determined by GC-MS. The distero results was reported in the same order  to the GC time 

eluition. [c] Determined by GC-MS after reaction with TBDMSCl.  
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Very good results was observed when (S)-valine methyl ester was used as chiral amine (Table 

3, entry 3) and especially using O-t-butyldimethylsilyl (S)-valinol (Table 3, entry 7). On the 

other hand, worse results were observed using (S)-phenylglicinol and its O-t-

butyldimethylsilyl derivative (Table 3, entries 4 and 5). The silyl protection of the OH group 

was necessary to determine by GC-MS analysis the diastereoisomeric ratio (dr) of the 

products obtained using (S)-valinol and (S)-phenylglycinol (Table 4, entry 6). An expected 

phenomena was observed comparing the dr of entry 6 and 7. Firstly we observed that there is 

an increase in yield and in dr an at last we can assume that using as starting material the OH 

protected valinol the diasteroselectivity is inverted. In the first case the diastero selectivity 

was evaluate only after the OH protection, so finally we will observe during the GC analysis 

the same product.  We can conclude with an unexpected result that the sililation of the free 

OH  in (S)valinol permit to obtain the opposite diastroisomers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 95 

 

95 

 

2.3.3 Synthesis of 1-substituted-2-(2-pyrrolyl)pyrrolidines  
 

In the synthesis of 2-(2-pyrrolyl)pyrrolidines, the intermediate product 38 was obtained 

according to the Nicolau procedure.
189

 The subsequent oxidation reaction, performed using 

PCC, afforded the desired ketoaldehyde 39, which was submitted to the reductive amination 

step (Figure 25). 

 

Fig 90. Synthesis of 2-(2-pyrrolyl)pyrrolidine 40a-h derivatives. 

Table 17. Synthesis of 2-pyrrolyl pyrrolidine 40a-h using chiral amines.[a] 

Entry Amine Product, Yield (%) d.r.
[b]

 

1 NH4OAc 40a, 30 50/50 

2 

 

40b,70 66/34
[d]

 

3 

 

40c,75 70/30 

4 

 

40d,55 80/20
[c]

 

5 

 

40e,70 29/71 

6 

 

40f,35 60/40
[d]

 

7 

 

40g,55 83/17 

8 

 

40h,60 77/23 

[a] Reaction condition: 1 equiv 39, 1.1 equiv amine, 6 equiv  NaCNBH3, 0.5eq KOH, 1 equiv AcOH, EtOH, 70 

°C, 2 d. [b] Determined by GC-MS. The distero results was reported in the same order  to the GC time eluition. 

[c] Determined by GC-MS after reaction with TBDMSCl. [d] Determined by 1H NMR. 
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Table 4 shows that the diasteroselectivity was moderate to good in most cases, and the best 

d.r. was observed for the product 40d coming from (S)-phenylglycinol, whereas preliminary 

protection of the OH group led to a decreased d.r. and for the product 40g (OH-protected (S)-

valinol with d.r. of 83/17). As observed before after a OH protection of  phenylglycinol 

(Table 4, entry 5) there is an disteroselectivity inversion compare to the OH free product 

(Table 4, entry 4) that was sililated only after the reductive ammination reduction. In this case 

unfortunately we observe (Table 4, entry 5) an increase in yields but a small decrease in dr. 

This is in sharp contrast with the stereochemical outcomes of the analogous reactions 

performed with the furyl ketoaldehyde. Since the reactions were performed in a very small 

scale, we did not attempt to separate the diastereoisomers for a more safe identification. 

 

2.3.4 Asymmetric synthesis of 1-substituted 5-(2-furyl)-2-

methylpyrrolidines and 2-methyl-5-(2pyrrolyl)pyrrolidines  
 

Using the same synthetic procedure we have synthesized other two unsymmetrically 2,5-

disubstituted pyrrolidines 41a-d and 42a-d. This has been achieved simply using -

valerolactone in the reactions with 2-furyllithium and pyrrolylmagnesium bromide, 

respectively, in the first step of a previously exploited sequence. 

 

 

 

Figure 91. a) Synthesis of new disubstituted pyrrolidines 42. b) The four diastereoisomers of compounds 

41 and 42. 
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After the lactone ring opening step, the -hydroxy ketones were oxidized to obtain the 

required 1,4-diketones; then, the reductive amination step was carried on by the previously 

applied protocol. In this case, the 1,2,5-trisubstituted pyrrolidine could be generated as up to 

four diasteroisomers (Figure 26b). However, GC-MS analysis of the crude reaction mixtures 

showed in some cases the presence of only two or three peaks. We can not exclude, however, 

that minor amounts of other diastereoisomer(s) could be present but were eluted together with 

the prevalent ones.  

The four diastereoeisomers can be distinguished as cis and trans, considering the relative 

orientation of the two substituents at the C-2 and C-5 positions. Our hypothesis, analogous to 

that advanced for the symmetrically 2,5-disubstituted pyrrolidines, is that two of the major 

components the mixture are cis isomers. Since the reactions were performed in a very small 

scale, we did not attempt to separate the diastereoisomers for a more safe identification. 

Table 18. Synthesis of 1-substituted 2-furyl-5-methylpyrrolidine and 5-methyl-2-pyrrolylpyrrolidine by 

reductive amination with chiral amines. 

                                                                                      

Entry 
Product, 

Yield (%) 
d.r.

[b] 
Amine Entry 

Product, 

Yield (%) 
d.r.

[b] 

 

1 

 

41a, 85 31/51/18 
 

5 42a, 75 45/45/5/5 

 

2 

 

41b, 80 29/41/39 
 

6 42b, 80 27/34/39 

 

3 

 

41c, 55 31/43/26
[c]

 
 

7 42c, 40 25/30/45
[c]

 

 

4 

 

41d, 60 50/35/7/8
[c]

  8 42d, 50 45/55
[c]

 

[a] Reaction condition: 1 equiv diketone, 1.1 equiv amine, 6 equiv  NaCNBH3, 0.5 equiv KOH, 1 equiv AcOH, 

EtOH, 70 °C, 2 d.  [b] Determined by GC-MS. [c] Determined by GC-MS after reaction with TBDMSCl  
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2.4 Removal of the chiral auxiliary  
 

The diasteroisomers of compounds 37a-h and 40a-h could be separated by flash 

cromatografy. On the other hand, separation of diastereoisomers of 41a-d and 42a-d was very 

difficult and only one compound could be isolated in a pure state. Removal of the chiral 

auxiliary from a pure diastereoisomer would give an enantiomerically pure pyrrolidine, whose 

absolute configuration should be determined by comparison of the optical rotation with that of 

the authentic compound, or by analogy with similarly substituted pyrrolidines.
190

 

For this reason we focused our attention on the removal of the chiral auxiliary of isolated N-

substituted pyrrolidines. Concerning the removal of valinol group, Savoia used an oxidative 

protocol with periodic acid and methylamine.
191

 The mechanism of such oxidative cleavage 

was described by Coates
192

 and involves formation of an imminium ion, whose hydrolysis 

forms  the free amine and isobutyrraldehyde, which is captured by methylamine (Figure 27). 

 

Fig 92. Remotion auxiliary mechanism 

 

For this reason we reduced the methyl ester group of 37c using LiAlH4 to obtain the 

corresponding alcohol (Fig 28). Unfortunately, the oxidative cleavage failed on our substrate.  

 

Fig 93. Envisioned removal of valine methylester or valinol. 

 

At the same time we tested an alternative procedure:
193

 we firstly hydrolyzed the ester group 

to the corresponding acid 37c, which was then reacted with POCl3 for the decarboxylation 

step proceeding through the formation of the enamine/iminium intermediates followed by 

hydrolysis to give the NH-free pyrrolidine (Fig 29). 

 

Fig 94. Hydrolysis of ester and removal of the chiral auxiliary. 
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However, the ester hydrolysis was problematic and gave poor results in different basic 

conditions. Considering our experience
194

 on the reductive hydrogenolysis of benzylic 

amines, we applied the known protocols to the phenyl glycinol 37e and phenylethylamine 

derivatives 37e and 37b, respectively. Normally these particular auxiliaries are removed by 

Pd/C catalyzed hydrogenolysis under hydrogen pressure in neutral or acidic medium. 

 

 

Fig 95. Envisioned hydrogenolysis of benzylic amines. 

 

Surprising results were observed during the hydrogenation of compound 37b in standard 

conditions. The 1H NMR analysis of the product showed a complete conversion of the 

starting material into a new product where the furan signals were absent, wheres the 

molecular weight determined by HPLC-MS analysis was consistent simply with an uptake of 

six hydrogen atoms, rather than with the removal of the N-substituent. The novel product 43 

was formed by full hydrogenation of the heterocyclic ring and reductive cleavage of the 

substituted C-O bond (Fig 31). 

 

Fig 96. Hydrogenaion-hydrogenolysis of a substituted furan ring. 

 

Moreover, we successively observed that the same unexpected reaction occurred when the 

hydrogenolysis conditions were applied to substrate 37c which underwent conversion to 

substituted pyrrolidine 44. (Figure 32). 
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Fig 97. Hydrogenaion-hydrogenolysis of a substituted furan ring. 

 

We observed that using a low amount of 10%Pd/C (5% mol), the rate of the reaction 

decreased, so that we could monitor its progress by 1H NMR and GC-MS analysis of 

samples, and observed the formation of the  intermediate hydrogenated product (Fig 33).  

 

Fig 33. Intermediate hydrogenation product 
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SUPPORTIN INFO 

 

General Methods. Chemical shifts are reported in ppm from TMS with the solvent resonance 

as the internal standard (deuterochloroform: δ 7.27 ppm). Data are reported as follows: 

chemical shift, multiplicity (s = singlet, d = duplet, t = triplet, q = quartet, bs = broad singlet, 

m = multiplet), coupling constants (Hz). Chemical shifts are reported in ppm from TMS with 

the solvent as the internal standard (deuterochloroform: δ 77.0 ppm). GC_MS spectra were 

taken by EI ionization at 70 eV. They are reported as m/z (relative intensity). 

Chromatographic purification was done with 240_400 mesh silica gel. Determination of 

enantiomeric excess was performed on HPLC instrument equipped with a variable-

wavelength UV detector, using a DAICEL Chiralpak columns (0.46 cm i.d. _25 cm) and 

HPLC-grade 2-propanol and n-hexane were used as the eluting solvents. Optical rotations 

were determined in a 1 mL cell with a path length of 10 mm (NaD line). Melting points are 

not corrected. Materials: All reactions were carried out under inert gas and under anhydrous 

conditions. Commercially available anhydrous solvents were used avoiding purification. 

 

General Procedure for the synthesis of 2,5difuryl pyrrolidine 

 

77 

Procedure to synthesize of starting material 1,4-difuryl-1,4- butanedione(77): The 

compound 77 is the same previously describe in the synthesis of  the triaromatic unit starting 

material in the diformylation reaction for the synthesis of triaromatic macrocycle 81 in 

subchapter 1.3.3 

 

 

General Sililation  procedure of phenyl glycinol and valynol: An aminoalcohol (1eq) was 

dissolved  in DCM and TEA (1eq), DMAP (0.1eq) and terbutyldimethylsilil chloride (1 eq) 

were added. After 12h the reaction mixture was quenched by a saturated solution of NaHCO3 

end extract in DCM. All the organic fases were collected and concentrate to obtain the desired 

product in very good yields (90%).  
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General Procedure for the synthesis of 2,5difuryl pyrrolidine: In a vials the difuryldiketon 

(1 eq) was dissolved in EtOH and KOH (0.5 eq) and Aceticacid (1eq) was added to the 

mixture. NaCNBH3 (6eq) and finally the amine were added and the reaction mixture was 

heated to 70°C. The progress of the reaction was monitored by TLC and after 3 days the 

reaction mixture was quenched by a saturated solution of NaCO3 and water and extract with 

EtOAc (3 times). The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 98/2 to 90/10). 

 

34b:Compound 34c was prepared according to the general procedure. Amount of reagents 

included 30 mg (0.14 mmol) of difuryldiketon , 4 mg (0.07 mmol) of KOH, 10 l (0.14 

mmol) of Acetic acid, 53 mg (0.84 mmol) NaCNBH3 and 17 l (0.14 mmol) of benzylamine 

in 3ml of EtOH. Compound 34b (24 mg, 0.08 mmol, 60%) was obtained as yellow oil. Dr 

=60/40 was determined by GC-MS. 

 Major diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 2.00-2.15 (m, 4H), 3,76 (s, 2H), 3.85 

(t, J = 5.4 Hz,  2H), 6.24 (d, J = 3.0 Hz, 2H), 6.27 (t, J = 2.0 Hz, 2H), 7.10-7.22 (m, 5H), 7.35 

(s, 2H).  GC-MS m/z = 307 (10), 292 (60), 230 (10), 202 (30), 187 (50), 105 (100), 77 (70). 

Minor diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 2.00-2.10 (m, 2H), 2.39-2.47 (m, 2H), 

3.09 (d, J = 13.8 Hz, 2 H), 3.68 (d, J = 13.8 Hz, 2 H), 4.18-4.40 (m, 2 H), 6.12 (d, J = 3 Hz, 2 

H), 6.32 (t, J = 2 Hz, 2 H), 7.13 (s, 2H), 7.15 (s, 1H), 7.24(s, 2H), 7.41 (s, 2 H) ppm.  

 

34c:Compound 34c was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of 77 , 4 mg (0.07 mmol) of KOH, 10 l (0.14 mmol) of Acetic 

acid, 53 mg (0.84 mmol) NaCNBH3 and 17 l (0.14 mmol) of S-methylbenzylamine in 3ml of 

EtOH. Compound 34c (33 mg, 0.11 mmol, 80%) was obtained as yellow oil. Dr = 90/10 

(determined by GC-MS). 

Major diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 1.29 (d, J = 7 Hz,  3 H), 1.77-1.83 (m, 

1 H), 1.91-1.97 (m, 3H), 3.99-4.05 (m, 2H), 4.19 (dd, J = 4.5 Hz, J = 8 Hz, 1 H), 6.25 (d, J = 

3.12 Hz, 1 H), 6.29-6.30 (m, 3H), 7.25-7.28 (m, 5 H), 7.33-7.34 (m, 2 H). 
13

C NMR (CDCl3, 
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100 MHz): =159.4, 157.9, 141.6, 141.2, 140.9, 128.1, 127.9, 126.7, 58.7, 58.1, 56.8, 31.3, 

31.0, 18.6. 

. 

34d:Compound 34d was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of difuryldiketon, , 4 mg (0.07 mmol) of KOH, 10 l (0.14 

mmol) of Aceticacid, 53 mg (0.84 mmol) NaCNBH3,  23 mg (0.14 mmol)  of valine 

methylester hydrochloride and 20 l (0.14 mmol) of TEA in 3ml of EtOH. Compound 34d 

(34 mg, 0.11 mmol, 80%) was obtained as yellow oil. Dr = 83/17(determined by GC-MS). 

Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 0.68 (d, J = 6.5 Hz , 3H), 0.75 (d, J = 

6.5 Hz , 3H), 1.80-1.90 (m, 1H), 1.91-1.98 (m, 1H), 2.01-2.12 (m, 2H),2.13-2.23(m, 1H), 3.05 

(d, J = 10.4 Hz, 1H), 3.75 (s, 3H), 4.04 (dd, J = 6 Hz, J = 3.5 Hz, 1H), 4.73 (dd, J = 2.8 Hz, J 

= 5 Hz, 1H), 6.25 (d, J = 3 Hz, 1H), 6.29 (dd, J = 1.8 Hz, J = 1.3 Hz, 1H), 6.31 (d, J = 3 Hz, 

1H), 6.34 (dd, J = 1.8 Hz, J = 1.3 Hz, 1H), 7.33 (dd, J = 1 Hz, 1H), 7.39 (dd, J = 1 Hz, 1H) 

ppm. 
13

C NMR (CDCl3, 100 MHz): =198.1, 173.7, 159.6, 157.0, 141.7, 140.9, 110.1, 110.0, 

106.2, 105.8, 69.6, 61.8, 55.3, 50.9, 32.0, 30.9, 29.4, 20.0 ppm.  

Minor diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 0.76 (d, J = 6.5 Hz, 3H ), 0.83 (d, J = 

6.5 Hz, 3H ), 1.90-2.00 (m, 3H), 2.42-2.50 (m, 2H), 3.40 (s, 3H), 4.53-4.58 (m, 2H), 6.15 (d, J 

= 3.2 Hz, 2H), 6.31 (dd, J = 1.8 Hz, J = 1.3 Hz, 2H), 7.34 (s, 2H) ppm.
13

C NMR (CDCl3, 100 

MHz): =157.4, 141.2 (2C), 109.8 (2C), 106.9 (2C), 64.8, 55.7 (2C), 50.9, 30.4 (2C), 29.7, 

20.1 ppm.  

 

34e:Compound 34e was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of 77, , 4 mg (0.07 mmol) of KOH, 10 l (0.14 mmol) of Acetic 

acid, 53 mg (0.84 mmol) NaCNBH3 and  34 mg (0.14 mmol) of O-t-butyldimethylsilyl (S)-

phenylglycinol in 3ml of EtOH. Compound 34e (33 mg, 0.11 mmol, 80%) was obtained as 

yellow oil. Dr = 93/7(determined by GC-MS) 
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Major diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = -0.14 (d, J = 10.04 Hz, 6 H), 0.72 (s, 9 

H), 1.78-1.82(m, 1H), 1.90-1.99 (m, 4H), 3.69 (dd, J = 8 Hz, J = 10.32 Hz, 1 H), 3.83 (dd, J = 

6 Hz, J = 10.4 Hz, 1 H),  3.98 (dd,  J = 6.06 Hz,  J = 7.88 Hz, 1 H), 4.19 (t,  J = 7 Hz, 1 H), 

4.23 (dd, J = 5.16 Hz, J = 8 Hz, 1 H),  6.26 (d, J = 3 Hz, 1 H), 6.29 (d, J = 1.8 Hz, 1 H), 6.31 

(bs, 2H), 7.20-7.26 (m, 4H), 7.34 (s, 2H), 7.36 (bs, 1H). 
 

Minor diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 0.01 (d, J = 6 Hz, 6 H), 0.88 (s, 9 H), 

1.25 (s, 2H), 1.55-1.75 (m, 2H), 3.50-3.68 (m, 3H),3.72-3.82 (m, 2H), 6.09 (d, J = 3.04 Hz, 

2H), 6.29 (dd, J = 1.08 Hz,  J = 3.04 Hz, 2H), 7.25-7.40 (m, 7H). 

  

 

34f:Compound 34f was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of 77 , 4 mg (0.07 mmol) of KOH, 10 l (0.14 mmol) of Acetic 

acid, 53 mg (0.84 mmol) NaCNBH3 and  l (0.14 mmol) of O-t-butyldimethylsilyl (S)-valinol 

in 3ml of EtOH. Compound 34f (16 mg, 0.04 mmol, 300%) was obtained as yellow oil. Dr = 

90/10 was determined by GC-MS. 

Mix of diasteroisomer: ESI-MS m/z: 404.1 [M+ H]
+
.   

 

  

34g:Compound 34g was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of 77 , 4 mg (0.07 mmol)of KOH, 10 l (0.14 mmol) of 

Aceticacid, 53 mg (0.84 mmol) NaCNBH3 and  30 mg (0.14 mmol) of phenylalanine 

methylester hydrochloride and 20 l (0.14 mmol) of TEA in 3ml of EtOH. Compound 34g 

(40 mg, 0.11 mmol, 80%) was obtained as yellow oil. Dr = 70/30 (determined by GC-MS) 

Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 1.95-2.01 (m, 1 H), 2.04-2.20 (m, 

J3H), 2.78 (dd, J = 6.88 Hz, J = 14 Hz, 1 H), 2.90-3.00 (m, 1 H), 3.62 (s, 1H), 3.81 (t, J = 
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7.32 Hz, 1H),  4.09 (dq, J = 2.64 Hz, J = 7.08 Hz, J = 14.2 Hz, 1 H), 4.19 (t, J = 7.96 Hz, 1H), 

4.63 (dd, J = 2.56 Hz, J = 7.52 Hz, 1 H), 6.05 (s, 1H), 6.19 (s, 1H), 6.26 (s, 2H), 6.89 (d, J = 

85.92 Hz, 2 H), 7.09-7.18 (m, 3 H), 7.34 (s, 2H).  

 

 

34a:Compound 34a was prepared according to the general procedure. Amount of reagents 

included 30mg (0.14 mmol) of difuryldiketon , 4 mg (0.07 mmol) of KOH, 10 l (0.14 mmol) 

of Acetic acid, 53 mg (0.84 mmol) NaCNBH3 and  mg (0.14 mmol) of NH4OAc in 3ml of 

EtOH. Compound 34a (14 mg, 0.07 mmol, 50%) was obtained as yellow oil. Dr = 50/50 was 

determined by GC-MS. 

Cis: 
1
H NMR (CDCl3, 400 MHz):  2.02-2.10 (m, 2 H), 2.12-2.20 (m, 1 H), 2.2.22-2.32 (m, 

1H), 2.70 (s, 1H, NH), 4.31 (t, J = 5.6 Hz, 1H), 4.45 (t,  J = 5.76 Hz, 1 H), 6.17 (d, J = 3.16 

Hz, 1 H), 6.18 (d, J = 3,12 Hz, 1 H), 6.28 (s, 2H), 7.33 (s, 2H). 
13

C NMR (CDCl3, 100 MHz): 

=157.2, 156.6, 141.5, 141.4, 109.9, 109.9, 105.2, 104.9, 56.0, 54.8, 30.6, 30.4 ppm. GC-MS 

(EI): m/z = 91 (100), 174 (95), 202 (35), 65 (30), 77 (15). 

Trans: 
1
H NMR (CDCl3, 400 MHz): = 1.90-2.10 (m, 4 H), 3.10 (bs, 1H, NH), 4.74 (s, 2 H), 

6.22 (d, J = 3.16 Hz, 2 H), 46.30 (s, 2 H), 7.34 (s, 2 H). 

 

 

General Procedure for the starting material synthesis: At a solution of furan (1eq) in THF 

at -78°C under Ar atmosphere  was added under magnetical stirring a 2M n-BuLi in n-hexane 

(1eq). After 1h all the solution was added dropwise to a lactone solution  (1.1eq) in THF at     

-78°C. After 5h the reaction was quenched by NH4Cl and exatracted by Ethylacetate 

(3x20ml), all the organic fases were collected, dried over Na2SO4, and concentrated to obtain 

the crude product. The mixture was purify by flash chromatography to obtain the final 

product. 

 

35: After flash cromatography (cyclohexane/ethylacetate, 80/20 to 50/50), the product was 

obtain at orange oli in 70% yield.
195
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XX: After flash cromatography (cyclohexane/ethylacetate, 80/20), the product was obtain at 

orange oli in 70% yield : 
1
H NMR (CDCl3, 400 MHz): = 1.20 (d, J = 13.2 Hz, 6.2 H), 1.75-

1.95 (m, 2H), 2.40 (s, 1H, OH), 2.95 (dt, J = 2.36 Hz, J = 7.36 Hz, 2 H), 3.80-3.90 (m, 1H), 

6.50 (dd, J = 1.68 Hz, J = 3.52 Hz, 1 H), 7.19 (d, J = 3.52 Hz, 1 H), 7.56 (s, 1H). 
 

 

General Procedure for the starting material synthesis: At a solution of pyrrole (1eq) in 

THF/toluene at 50°C under Ar atmosphere  was added under magnetical stirring a 2M 

solution of EtMgBr in THF (1eq). After 1h a lactone solution  (1.1eq) in THF was added drop 

by drop to the mixture at 50°C. The reaction was warmed to100°C for 24h, finally the 

reaction was quenched by saturated solution of NaHCO3 and extracted by Ethylacetate 

(3x20ml), all the organic fases were collected, dried over Na2SO4, and concentrated to obtain 

the crude product. The mixture was purify by flash chromatography to obtain the final 

product. 

 

 

XX: After flash cromatography (cyclohexane/ethylacetate, 80/20, to 50/50), the product was 

obtain at pink oil in 45% yield :  
1
H NMR (CDCl3, 200 MHz): = 2.00 (t, J = 8 Hz,  2H), 2.60 

(bs, 1H, OH), 3.00 (t, J = 8 Hz,  2H), 3.75 (t, J = 8 Hz, 2H), 6.30 (s, 1H), 7.00 (s, 1H), 7.08 (s, 

1H), 10.05 (bs, 1H, NH).  

 

XX: After flash cromatography (cyclohexane/ethylacetate, 70/30 to 40/60), the product was 

obtain at yellow oil in 60% yield : 
1
H NMR (CDCl3, 200 MHz): = 2.20 (s, 3 H), 2.86 (t, J = 

13.2 Hz, 2 H), 3.10 (t, J = 12.8 Hz, 2 H), 6.30 (s, 1 H), 6.98 (s, 1 H), 7.02 (s, 1 H), 9.41 (bs, 

1H, NH).
13

C NMR (CDCl3, 100 MHz): =195.2, 131.7, 124.9, 116.6, 110.6, 67.5, 34.3, 33.8, 

23.6 ppm.  
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General Procedure for the oxidation process: The ketoalcohol (1 eq) compound was 

dissolved in DCM and an excess of PCC (1,5 eq) was added and the reaction mixture was 

stirred at rt. After 12h SiO2 was added to the mixture and the solvent was removed by 

evaporation to obtain the solid mixture that was directly purify by flash chromatography to 

achieve the desired product.  

 

 

36: After flash cromatography (cyclohexane/ethylacetate, 90/10), the product was obtain at 

orange oli in 60% yield : 
1
H NMR (CDCl3, 400 MHz): = 2.87 (t, J = 6.04 Hz, 3 H), 3.15 (t, J 

= 6.24 Hz, 1 H), 6.51 (dd, J = 1.72 Hz,  J = 3.6 Hz, 1 H), 7.19 (d, J = 3.56 Hz, 1 H), 7.56 (s, 1 

H), 9.83 (s, 1H).  
13

C NMR (CDCl3, 100 MHz): = 200.2, 187.0, 152.2, 146.4, 117.1, 112.3, 

37.2, 30.6  ppm.  

 

36a: After flash cromatography (cyclohexane/ethylacetate, 90/10), the product was obtain at 

yellow solid in 60% yield 
1
H NMR (CDCl3, 200 MHz): =2.19(s, 3H), 2.87 (t, J = 6.04 Hz, 3 

H), 3.14 (t, J = 6.24 Hz, 1 H), 6.51 (dd, J = 1.72 Hz,  J = 3.6 Hz, 1 H), 7.19 (d, J = 3.56 Hz, 1 

H), 7.56 (s, 1 H), 9.83 (s, 1H). 
13

C NMR (CDCl3, 100 MHz): = 206.9, 187.6, 152,4, 146.3, 

116.9, 112.2, 36.6, 32.0, 29.9 ppm. GC-MS (EI) m/z: 95 (100), 124 (20), 166 (10). 

 

39: After flash cromatography (cyclohexane/ethylacetate, 80/20, to 50/50), the product was 

obtain at pink solid in 50% yield :  
1
H NMR (CDCl3, 200 MHz): =  2.85 (t, J = 6.04 Hz, 2 

H), 3.19 (t, J = 6.24 Hz, 2 H), 6.28 (s, 1 H), 6.98 (s, 1 H), 7.05 (s, 1 H), 9.85 (s, 1H), 9.93 (bs, 

1H, NH). 

 

39a: After flash cromatography (cyclohexane/ethylacetate, 80/20), the product was obtain at 

orange oli in 50% yield :  
1
H NMR (CDCl3, 200 MHz): = 2.20 (s, 3 H), 2.86 (t, J = 6.04 Hz, 
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2 H), 3.10 (t, J = 6.24 Hz, 2 H), 6.30 (s, 1 H), 6.98 (s, 1 H), 7.02 (s, 1 H), 9.41 (bs, 1H, NH), 

9.90 (s, 1H). 

 

General Procedure for the synthesis of 2-furyl pyrrolidine: In vials the 36 (1 eq) was 

dissolved in EtOH and KOH (0.5 eq) and Acetic acid (1eq) was added to the mixture. 

NaCNBH3 (6eq) and finally the amine were added and the reaction mixture was heated to 

70°C. The progress of the reaction was monitored by TLC and after 1 days the reaction 

mixture was quenched by a saturated solution of NaCO3 and water and extract with EtOAc (3 

times). The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 98/2 to 90/10). 

 

 

37b:Compound 37b was prepared according to the general procedure. Amount of reagents 

included 20 mg (0.13 mmol) of 36, 4 mg (0.07 mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and  16 l (0.13 mmol) of S-methylbenzylamine in 3ml 

of EtOH. Compound 37b (26 mg, 0.11 mmol, 80%) was obtained as yellow oil. Dr = 33/67 

(determined by GC-MS) 

Major diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 1.38 (d, J = 6.64 Hz , 3 H),1.75-1.185 

(m, 1H), 1.90-2.00 (m, 2H), 2.07-2.17 (m, 1H), 2.58 (q, J = 8 Hz, J = 14.9 Hz, 1 H), 2.80-2.87 

(m, 1H), 3.57 (q, J = 6.56 Hz, J = 13.12 Hz, 1 H), 4.08 (dd, J = 4.12 Hz, J = 8.52 Hz, 1 H), 

6.00 (d, J = 8.4 Hz, 2 H), 6.23-6.25 (m, 1H), 7.15-7.31 (m, 5H), 7.32 (s, 1 H). 
13

C NMR 

(CDCl3, 100 MHz): =144.6, 141.1, 128.1, 127.9 (2C), 127.5 (2C), 109.8, 106.3, 60.1, 58.1, 

49.3, 31.1, 22.8, 18.3ppm.  GC-MS (EI): m/z= 241 (10), 226(100), 105 (50), 77 (50), 91(40.) 

 Minor diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = 1.36 (d, J = 6.8 Hz, 3 H), 1.50-1.70 

(m, 2H), 1.85-2.00 (m, 2H), 2.45-2.55 (m, 1H), 2.90-3.10 (m, 1H), 3.60-3.75 (m, 2H), 6.14 (s, 

1H), 6.33 (s, 1H ), 7.25 (s, 2H), 7.31(s, 1H), 7.33 (s, 2H), 7.39 (s, 1H) ppm. 
13

C NMR 

(CDCl3, 50 MHz): =151.0, 141.3, 128.1(3C), 127.9 (2C), 109.8, 106.2, 59.6, 59.0, 48.5, 

43.3, 22.5, 21.9 ppm.  
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37c:Compound 37c was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 36 , 4 mg (0.07mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and 22 mg (mmol) of valinemethylester.hydrochloride, 

18 l (0.13 mmol) of TEA  in 3ml of EtOH. Compound 37c ( 27 mg, 0.11 mmol, 80%) was 

obtained as OIL. Dr=90/10(determined by GC-MS). 

Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 0.82 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 

6.64 Hz, 3 H), 1.72-2.05 (m, 5H), 2.82-2.92 (m, 2H), 3.00-3.07 (m, 1H), 3.72 (s, 3H), 2.81 (t, 

J = 7.56 Hz, 1 H), 6.18 (d, J = 3.12 Hz, 1 H), 6.30 (dd, J = 1.84 Hz, J = 3.12 Hz, 1 H), 7.35 (s, 

1H). 
13

C NMR (CDCl3, 100 MHz): =172.8, 156.7, 141.5, 109.8, 106.4, 67.7, 58.9, 50.5, 

45.8, 31.2, 28.6, 23.2, 19.8, 19.5 ppm.  GC-MS (EI): m/z= 192(100), 121 (30), 208 (20). 

 Minor diasteroisomer= 0.80 (dd, J = 10.8 Hz, J = 6.68 Hz, 6 H), 1.73-1.82 (m, 1 H), 1.85-

2.10 (m, 5H), 2.74 (q, J = 7.76 Hz, J = 15.4 Hz, 1 H), 3.00 (d, J = 18.64 Hz, 2 H), 3.10-3.17 

(m, 1H), 3.59 (s, 3H) 4.16 (dd, J = 3.56 Hz, J = 7.92 Hz, 1 H),  6.07 (d, J = 3.12 Hz, 1 H), 

6.24 (dd, J = 1.88 Hz, J = 3.12 Hz, 1 H), 7.30 (s, 1H). 
13

C NMR (CDCl3, 100 MHz): =173.5, 

158.2, 141.2, 109.8, 106.1, 70.6, 56.6, 50.9, 50.8, 31.7, 29.1, 31.7, 29.1, 23.6, 20.0, 19.2  ppm.  

 

 

37e:Compound 37e was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 36, 4 mg (0.07 mmol) of KOH, 8l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and  7 mg (0.13mmol) of O-t-butyldimethylsilyl (S)-

phenylglycinol in 3ml of EtOH. Compound 37e (33 mg, 0.09 mmol, 70%) was obtained as 

OIL.  Dr = 57/43 (determined by GC-MS) 

Major diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = -0.18 (d, J = 7.88 Hz, 6 H), 0.72 (s, 

9H),  1.68-1.75 (m, 1H), 1.80-2.00 (m, 3H), 2.56 (q, J = 7.32 Hz, J = 16 Hz, 1 H), 2.94 (dt, J 

= 4 Hz, J = 8.64 Hz, 1 H), 3.56 (dd, J = 5.64 Hz, J = 7.36 Hz, 1 H), 3.73 (dd, J = 7.48 Hz, J = 

10.04 Hz, 1 H), 3.82 (dd, J = 4.52 Hz, J = 8.12 Hz, 1 H), 3.86 (dd, J = 5.56 Hz, J = 10.08 Hz, 

1 H), 6.95 (d, J = 2.96 Hz, 1 H), 6.28 (dd, J = 1.84 Hz, J = 3.12 Hz, 1 H),7.20-7.30(m, 5H), 
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7.34 (s, 1H). 
13

C NMR (CDCl3, 100 MHz): =157.6, 141.3, 139.6, 129.1(2C), 127.6 (2C), 

126.9, 109.8, 106.6, 66.7, 66.3, 58.1, 49.4, 30.5, 25.7(3C), 22.8, 18.1, -5.7(2C) ppm. ESI-MS 

m/z: 169.1 [M + H]
+
, 191.1 [M+Na]

+
.  

Minor diasteroisomer: 
1
H NMR (CDCl3, 400 MHz): = -0.09 (d, J = 7.88 Hz, 6 H), 0.78 (s, 

9H),  1.75-1.82 (m, 1H), 1.85-1.95 (m, 2H), 1.97-2-07 (m, 1H), 2.74 (dd, J = 7.32 Hz, J = 

14.88 Hz, 1 H), 2.90-3.00 (m, 1H),  3.65 (t, J = 6.08 Hz, 1 H), 3.77 (dd, J = 6.08 Hz, J = 

10.04 Hz, 1 H), 4.05 (dd, J = 5.92 Hz, J = 10.04 Hz, 1 H), 4.12 (dd, J = 4.4 Hz, J = 8.4 Hz, 1 

H),   5.91 (d, J = 2.84 Hz, 2 H), 6.18 (dd, J = 1.84 Hz, J = 3.12 Hz, 1 H), 7.13-7.22 (m, 5H), 

7.31 (s, 1 H). 
13

C NMR (CDCl3, 100 MHz): =157.5, 141.1, 141.0, 128.4 (2C), 127.6 (2C), 

126.6, 109.8, 106.1, 66.7, 66.1, 58.8, 49.9, 31.1, 25.8 (3C), 23.0, 18.1, -5.6 (2C) ppm.  

 

 

37f:Compound 37f was prepared according to the general procedure. Amount of reagents 

included 20mg ( 0.13 mmol) of 36 , 4 mg (0.07 mmol) of KOH, 8 l ( 0.13 mmol) of Acetic 

acid, 49 mg (0.13 mmol) NaCNBH3 and 28 mg (0.13 mmol) of (S)-valinol in 3ml of EtOH. 

Compound 37f ( 30 mg, 0.09 mmol, 70 %) was obtained as OIL. Dr= 50/50 (determined by 

GC-MS). 

Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 7.40 (m, 2H), 6.30 (s, 1H), 3.73-3.66 

(m, 1H), 3.35-3.23 (m, 1H), 2.26-1.86 (m, 6H), 0.92 (d, J=12.0Hz, 3H), 0.86(d, J=12.0Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz): =157.7, 141.3, 110.0, 105.8, 65.6, 60.8, 55.0, 52.0, 32.2, 

28.2, 23.6, 21.6, 19.7 ppm.  

 

37g:Compound 37g was prepared according to the general procedure. Amount of reagents 

included 20mg ( 0.13 mmol) of 36, 4 mg (0.07 mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.13 mmol) NaCNBH3 and 28 mg (0.13 mmol) of O-t-butyldimethylsilyl (S)-

valinol in 3ml of EtOH. Compound 37g (30 mg, 0.09 mmol, 70 %) was obtained as OIL. Dr= 

92/8 (determined by GC-MS) 
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Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): = 0.03 (d, J = 2.12 Hz, 6), 0.77(d, J = 

6.64 Hz, 1 H), 0.84 (d, J = 6.64 Hz, 1 H), 0.88 (s, 9 H), 1.65-1.80 (m, 2H), 1.81-1.90 (m, 2H), 

1.93-2.05 (m, 1H), 2.27-2.33 (m, 1H), 2.81 (q, J = 7.76 Hz, J = 15.4 Hz, 1 H), 2.90-2.97 (m, 

1H), 3.76 (dq, J = 3.76 Hz, J = 10.64 Hz, J = 18.64 Hz, 2 H), 4.16 (dd, J = 5.84 Hz, J = 8.08 

Hz, 1 H),  6.11 (d, J = 3.12 Hz, 1 H), 6.25 (dd, J = 1.88 Hz, J = 3.12 Hz, 1 H), 7.30 (s, 1H). 
13

C NMR (CDCl3, 100 MHz): =158.7, 141.1, 109.8, 105.9, 63.6, 61.0, 59.5, 57.0, 45.9, 31.3, 

29.0, 25.9, 24.0, 20.3, -5.4 ppm.  

Minor diasteroisomer
1
H NMR (CDCl3, 400 MHz): = 0.02 (d, J = 2.88 Hz, 6), 0.85-0.92 (m, 

15 H), 1.75-195 (m, 3H), 1.97-2.09 (m, 1H), 2.35-2.40 (m, 1H), 2.89 (q, J = 7 Hz, J = 15.72 

Hz, 1 H), 3.05-3.15 (m, 1H), 3.65 (d, J = 5.04 Hz, 2H), 4.26 (dd, J = 3.8 Hz, J = 8.48 Hz, 1 

H), 6.12 (d, J = 3.2 Hz, 1 H), 6.27 (dd, J = 1.84 Hz, J = 3.12 Hz, 1 H), 7.31 (s, 1H).   

   

 

37h:Compound 37h was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 36 , 4 mg (0.07 mmol) of KOH, 8 l(0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and 28 mg (0.13 mmol) of phenylalanine methylester- 

hydrochloride, 18 l (0.13 mmol) of TEA in 3ml of EtOH. Compound 37h (26 mg, 0.09 

mmol, 70%) was obtained as OIL.  Dr= 75/25(determined by GC-MS). 

Major diasteroisomer:  
1
H NMR (CDCl3, 400 MHz): =  1.40-160 (m, 3H), 1.61-1.75 (m, 

1H), 2.47-255 (m, 2H), 2.72 (dd, J = 8.04 Hz, J = 13.68 Hz, 1 H), 2.79-2.85 (m, 1H), 3.24 (s, 

3H),  3.56 (t, J = 7 Hz, 1 H),  5.47(d, J = 2.96 Hz, 1 H), 5.83 (bs, 1 H),  6.70-6.95 (m, 6H). 
13

C NMR (CDCl3, 100 MHz): = 172.7, 156.3, 141.7, 138.6, 129.1 (2C), 128.2 (2C), 126.3, 

109.9, 106.6, 63.0, 59.1, 51.0, 46.8, 37.4, 31.3, 23.3 ppm.  

 

 

General Procedure for the synthesis of 2pyrrolyl pyrrolidine: In vials the starting material 

39 (1 eq) was dissolved in EtOH and KOH (0.5 eq) and Acetic acid (1eq) was added to the 

mixture. NaCNBH3 (6eq) and finally the amine were added and the reaction mixture was 

heated to 70°C. The progress of the reaction was monitored by TLC and after 2 days the 

reaction mixture was quenched by a saturated solution of NaCO3 and water and extract with 

EtOAc (3 times). The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 95/5 to 80/20). 
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40b:Compound 40b was prepared according to the general procedure. Amount of reagents 

included 20 mg (0.13 mmol) of 39 , 4 mg (0.07 mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and  16 l (0.13 mmol) of S-methylbenzylamine in 3ml 

of EtOH. Compound 40b (21 mg, 0.09 mmol, 70%) was obtained as yellow oil. Dr = 

66/34(determined by NMR). 

Identification signal of Mix of diasteroisomers: 
1
H NMR (CDCl3, 400 MHz): = 1.30 (d, J = 

6.84 Hz,3H, Maj), 1.32 (d, J = 6.69 Hz, 3 H, Min), 3.61-370 (m, 5H, Maj) 3.81 (q, J = 6.76 

Hz, J = 13.52 Hz, 1 H, Min), 3.91 (dd, J = 5.84 Hz, J = 7.96 Hz, 1 H, min),  5.97 (bs, 1H, 

Min), 6.01 (bs, 1H, Maj)6.09 (q, J = 2.72 Hz, J = 5.84 Hz, 1 H), 6.17 (q, J = 2.72 Hz, J = 5.84 

Hz, 1 H), 6.68 (q, J = 2.56 Hz, J = 4.08 Hz, 1H, Min), 6.73 (q, J = 2.56 Hz, J = 4.04 Hz, 1H, 

Maj), 715-7.35 (m, 5H maj+5Hmin, mix), 8.45 (bs, 1H, NH, Min), 8.55 (bs, 1H, NH, Maj). 
13

C NMR (CDCl3, 100 MHz): =128.2, 128.0, 127.9, 127.4, 126.9, 126.3, 116.3, 115.9, 

108.1, 107.9, 105.2, 104.8, 59,7, 58.45, 58.43, 58.3, 57.2, 48.5, 46.7, 33.6, 22.9, 21.44, 21.41, 

13.3 ppm.  

 

40c:Compound 40c was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 39, 4 mg (0.07mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and 22 mg (mmol) of valinemethylester hydrochloride, 

18 l (0.13 mmol) of TEA  in 3ml of EtOH. Compound 40c ( 27 mg, 0.11 mmol, 80%) was 

obtained as OIL. Dr=90/10 (determined by GC-MS). 

Mix of diasteroisomers: 
1
H NMR (CDCl3, 400 MHz): = 0.83 (d, J = 6.6 Hz, 3H, Maj), 0.92 

(d, J = 6.76 Hz ,3H, Min), 0.95 (d, J = 6.6 Hz, 3 H, Maj),  0.98 (d, J = 6.76 Hz ,1H, Min), 

3.72 (s, 3H, Maj), 3.74 (s, 3H, Min), 4.13 (q, J = 7.08 Hz, J = 14.26 Hz, 1H, Maj), 4.75-4.80 

(m, 1H, Min), 7.22 (d, J =3.52 Hz, 1 H, min), 7.35 (m, 1H, Maj), 7.60 (m, 1H, Min).  
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40e:Compound 40e was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 39 , 4 mg (0.07 mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and  7 mg (0.13mmol) of O-t-butyldimethylsilyl (S)-

phenylglycinol in 3ml of EtOH. Compound 40e (28 mg, 0.08 mmol, 60%) was obtained as 

OIL.  Dr = 71/29 (determined by GC-MS) 

Mix of diasteroisomers: : 
1
H NMR (CDCl3, 400 MHz): = -0.02 (d, J = 1.68 Hz,6H, Maj), 

0.87 (s, 9H, Maj), 0.98 (d, J = 6.4 Hz,3H, Maj), 1.03  (d, J = 6.4 Hz, 3 H, Min), 3.52 (q, J = 

8.28 Hz, J = 9.8 Hz, 2 H, Maj), 3.65 (q, J = 4.24 Hz, J = 9.84 Hz, 2 H, Maj), 4.02 (q, J = 7.72 

Hz, J = 9.56 Hz, 1 H, Maj), 4.26 (dd, J = 3.84 Hz, J = 7.98 Hz, 1 H, min),  5.90 (bs, 1H, Min), 

5.98 (bs, 1H, Maj), 6.11 (q, J = 2.76 Hz, J = 5.76 Hz, 1 H, Min), 6.18 (q, J = 2.76 Hz, J = 

5.76 Hz, 1 H, Maj), 6.62 (m, 1H, Min), 6.68 (m, 1H, Maj), 7.10-7.38 (m, 5H maj+5Hmin, 

mix) 8.95 (bs, 1H, NH,Min), 9.30 (bs, 1H, NH ,Maj). 

Major compound : 
13

C NMR (CDCl3, 100 MHz): = 157.6, 141.8, 129.0, 128.1, 127.8, 127.6, 

127.0, 115.6, 108.2, 104.1, 68.3, 62.4, 46.1, 25.9, 24.4, 23.1, 22.2, 18.2, -5.5  ppm.  

  

40f:Compound 40f was prepared according to the general procedure. Amount of reagents 

included 20mg ( 0.13 mmol) of 39 , 4 mg (0.07 mmol) of KOH, 8 l( 0.13 mmol) of Acetic 

acid, 49 mg (0.13 mmol) NaCNBH3 and 13 mg (0.13 mmol) of valinole in 3ml of EtOH. 

Compound 40f ( 10 mg, 0.04 mmol, 30 %) was obtained as OIL. Dr=  (determined by GC-MS 

after sililation). 

Major diasteroisomer :
 1

H NMR (CDCl3, 400 MHz): = 0.89 (d, J = 6.76 Hz, 3H), 0.97 (d, J = 

6.76 Hz ,3H), 2.55-2.62 (m, 1H), 3.55- 3.65 (m, 2H), 4.62 (s, 1H), 4.67 (dd, J = 3.68 Hz, J = 

4.92 Hz, 1 H),  5.97 (bs, 1H), 6.15 (t, J = 3.08 Hz, 1 H), 6.92 (m, 1H). 
13

C NMR (CDCl3, 100 

MHz): =127.0, 117.5, 107.9, 102.7, 55.6, 45.8, 36.4, 32.1, 29.7, 23.4, 17.0, 15.4 ppm. 

Minor diasteroisomer:
 1

H NMR (CDCl3, 400 MHz): = 1.13 (d, J = 7.04 Hz, 3H), 1.21 (d, J = 

7.04 Hz ,3H), 1.87-1.92 (m, 3H), 2.25-2.32 (m, 1H), 2.35-2.45 (m, 2H),  2.98-3.05 (m, 1H), 
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3.15 (d, J = 3.92 Hz, 1H), 3.55 (t, J = 6.36 Hz, 1 H),  5.92 (bs, 1H), 6.21 (t, J = 3.2 Hz, 1 H), 

7.29 (m, 1H). 

 

40g:Compound 40g was prepared according to the general procedure. Amount of reagents 

included 20mg ( 0.13 mmol) of 39 , 4 mg (0.07 mmol) of KOH, 8 l( 0.13 mmol) of Acetic 

acid, 49 mg(0.13 mmol) NaCNBH3 and 28 mg (0.13 mmol) of O-t-butyldimethylsilyl (S)-

valinol in 3ml of EtOH. Compound 40g ( 30 mg, 0.09 mmol, 70 %) was obtained as OIL. Dr= 

83/17 (determined by NMR). 

Mix of diasteroisomers:  
1
H NMR (CDCl3, 400 MHz): = 0.06 (d, J = 4.48 Hz, 6H, Maj), 0.14 

(d, J = 2.4 Hz ,6H, Min), 0.84 (d, J = 6.68 Hz, 3H, Maj), 0.87 (d, J = 6.72 Hz, 3H, Min), 0.91 

(s, 9H, Maj), 0.96 (s, 9H, Min), 0.97 (d, J = 6.68 Hz, 3H, Maj), 3.71 (q, J = 5.56 Hz, J = 10.76 

Hz, 2 H, Maj), 3.83 (q, J = 2.88 Hz, J = 10.76 Hz, 2 H, Maj), 4.18 (q, J = 7 Hz, 1 H, Maj), 

4.37 (dd, J = 3.68 Hz, J = 4.92 Hz, 1 H, min),  5.86 (bs, 1H, Min), 5.96 (bs, 1H, Maj), 6.12 (q, 

J = 2.76 Hz, J = 5.76 Hz, 1 H, Maj), 6.15 (q, J = 2.76 Hz, J = 5.76 Hz, 1 H, Min), 6.60 (m, 

1H, Min), 6.69 (m, 1H, Maj), 8.50 (bs, 1H, NH ,Maj), 10.01 (bs, 1H, NH, Min).  

 

40h:Compound 40h was prepared according to the general procedure. Amount of reagents 

included 20mg (0.13 mmol) of 39, 4 mg(0.07 mmol) of KOH, 8 l (0.13 mmol) of Acetic 

acid, 49 mg (0.78 mmol) NaCNBH3 and 28 mg (0.13 mmol) of phenylalanine methylester- 

hydrochloride, 18 l (0.13 mmol) of TEA in 3ml of EtOH. Compound 40h (26 mg, 0.09 

mmol, 70%) was obtained as OIL.  Dr= 75/25(determined by GC-MS). 

Mix of diasteroisomers: ESI-MS m/z: 299.1 [M

+ H]

+
. 
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General Procedure for the synthesis of 2-aryl-5-methyl N-substituted pyrrolidine: In 

vials the starting material 36a or39a (1 eq) was dissolved in EtOH and KOH (0.5 eq) and 

Acetic acid (1eq) was added to the mixture. NaCNBH3 (6eq) and finally the  chiral amine 

were added and the reaction mixture was heated to 70°C. The progress of the reaction was 

monitored by TLC and after 2 days the reaction mixture was quenched by a saturated solution 

of NaCO3 and water and extract with EtOAc (3 times).  
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Chapter 3:  New synthesis of 1,2,3,4-

tetrahydropyrrole[1,2-a]pyrazines 
 

 

3.1   Introduction  
 

Substituted 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines, e.g. 1, are compounds of considerable 

utility because of their antiamnesic, antihypoxic,
196

 psychotropic,
197

 and antihypersensitive
198

 

activities.
199

 Moreover, a stereochemically defined 3,5,5-trisubstituted-2,4-dioxo derivative 

displayed significantly potent aldose reductase inhibitory property.
200

  

 

 

Figure 98. Pyrrole/pyrrolidine [1,2-]pyrazine derivatives. 

 

1-Substituted- and 1,2-disubstituted-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 1 were 

previously synthesized by hydrogenation or reduction of 2-substituted-3,4-

dihydropyrrolo[1,2-a]pyrazines 2.
,201,202,203

 The compounds 2 were in turn prepared by 

reaction of 2-furylcarboxaldehyde or 2-furyl ketones with ethylenediamine,
204,205,206 or by 

addition of Grignard reagents to the unsubstituted 2 (R = H).
207

 Furthermore, hydrogenation 

of the pyrrole ring in more forcing conditions were exploited for the preparation of octahydro 

derivatives which were useful intermediates for the synthesis of coronary-dilators and 

neuroleptics. Compounds 2 were also prepared by POCl3-mediated condensation of N-[2-

(pyrrol-1-yl)]ethyl carboxylic acid amides 3, which were in turn obtained in moderate yields 

from 2,5-dimethoxytetrahydrofuran.
208,209

 N2-Substituted derivatives 1 can be easily obtained 

from the NH-free precursors by routine alkylation/acylation reactions.
210 

An alternative route 

to 1 (R
1
 = H, R

2
 = CH2R) involves reaction of 1-(2-aminoethyl)pyrrole with 2 equivalents of 

formaldehyde and benzotriazole, followed by reactions with Grignard reagents, which provide 

the R substituent. Moreover, 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-

c]pyrazines (1, R
1
-R

2
 = CH2CH2CH2CHR) were prepared by the same benzotriazole 

methodology using glutaric dialdehyde.
211
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Figure 99. Retrosynthetic pathways of substituted 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 1. 

 

Interesting substances with the same skeleton but containing a substituent on the pyrrole ring 

are the compounds 5 and 6 (Scheme 2). The former is a modulator for mGluR5, useful for 

control and prevention of cronical neurological disorders.
212

 For 7-(1,2,3,4-

tetrahydropyrrolo[1,2-a]pyrazin-7-yl)quinolones 6 with methyl-substituted 1,2,3,4-

tetrahydropyrrolo[1,2-a]pyrazine side chains, the position of the methyl group with the S 

configuration at C3 on the tetrahydropyrazine ring was important for the in vivo efficacy in a 

murine lethal systemic infection model. On the other hand the configuration of the methyl 

substituted C1 was not determinant. It is noteworthy that the 1,2,3,4-tetrahydropyrazine 

fragment was stereoselectively constructed starting from (4R)-hydroxy-L-proline and the 

pyrrole nucleus was obtained by dehydrogenation of an intermediate pyrroline.
213

 

 

 

Figure 100. Drugs containing substituted 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines fragments. 



P a g e  | 121 

 

121 

 

Other syntheses of configurationally pure 1-substituted 1,2,3,4-tetrahydropyrrolo[1,2-

a]pyrazines were lacking in the literature. Hence, as a part of our ongoing research on the 

stereoselective synthesis of 1-(pyrrol-2-yl)alkylamines
214

 and considering the potential of 

stereochemically defined, substituted 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines we aimed at 

developing an efficient asymmetric route to this class of compounds. Among various possible 

routes to the target compound 1, we privileged those exploiting 2-pyrrolecarboxaldehyde 10 

as the convenient, easily available starting material. Thus three alternative retrosynthetic 

pathways were envisaged, as described in Figure 4, which rely on the different order of 

formation of three C-N bonds (a-c) and one C-C bond (d) and involve 1-(2-

pyrrolyl)alkylamines 8 and cyclic iminium ions 9 as intermediates.
215

 In both cases, the chiral 

auxiliary, i.e. the nitrogen substituent R*, would induce asymmetry in the formation of the 

C1-R bond. Final removal of the chiral auxiliary from 1 would led to the desired 

enantiomerically pure or enantiomerically enriched NH-free 1-substituted 1,2,3,4-

tetrahydropyrrolo[1,2-a]pyrazines. 

 

 

Figure 101. Retrosynthetic pathways of chiral 1-substituted 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 7. 

 

We have previously reported that the secondary amines 8 with R configuration of the shown 

stereocenter can be prepared in high yields and with excellent diastereoselectivities from the 

aldehyde 10 through formation of the imine with (S)-phenylglycinol and subsequent addition 

of organolithium reagents (paths c, d).  
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Figure 102. Alternative synthesis of pyrazine ring. 

 

After separation of the minor diastereoisomer (traces) and removal of the chiral auxiliary by 

oxidative cleavage of the -aminoalcohol moiety, the optically pure primary amines were 

finally obtained. Then, in order to obtain the desired compounds 1 from 8, the formation of 

two C-N bonds would be required (paths a, b). In a preliminary experiment, insertion of the 

two carbons tether between the two nitrogen atoms of 1-(pyrrole-2-yl)-3-butenamine 8 (R = 

allyl, R* = H) was attempted by reaction with 1,2-dibromoethane (NaH, THF, ) but the 

outcomes were disappointing, as no reaction occurred. Perhaps, the goal would be 

accomplished by the proper choice of the two-carbon 1,2-dielectrophilic reactant, e.g. 

chloroacetyl chloride in a three step sequence.
216

  

 

Figure 103. Alternative synthesis of pyrazine ring. 

 

A different retrosynthetic pathway (sequence: e, c, a) can describe a potentially route starting 

from 2-(1-pyrrolyl)ethaneamine 11 that after a reaction with an aldheyde produce a pyrazine 

ring that can be functionalize in different way. The first way  propose by Katritzky
211 

show 

belong (Figure 7, way a) show as Grignard reagent can be useful in the insertion of different 

R groups obtaining very good yields.   
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Figure 104. Previous syntheses of  2-substituted and 1-substituted 1,2,3,4-tetrahydropyrrol[1,2-

a]pyrazines. 

Using the same procedure it was possible to introduce different R groups in position 1 of the 

pyrazine ring starting  from different aldehydes.
209

 The reduction of the iminium intermediate 

produced the desired product as a mixture of enantiomers.  

However, we reasoned that the alternative route described in Figure 8 (sequence: a, b, c, d) 

would offer several advantages:  

1) the higher acidity of the pyrrole N-H bond in 10, due to the electron-withdrawing effect of 

the formyl function, would facilitate the pyrrole metalation and formation of the first C-N 

bond by reaction with a 1,2-dihaloethane (step a); 

 2) ring-closure to the iminium ion 9 by subsequent reaction with an optically pure primary 

amine would occur in a single step by consecutive formation of two C-N linkages (b, c or vice 

versa);  

3) the higher reactivity of the iminium ion with respect to the imine would allow the general 

use of more convenient Grignard reagents. 

              

Figure 105. Alternatively retrosynthetic route: d, a, b, c. 
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3.2 New synthetic route to1,2,3,4-

tetrahydropyrrole[1,2apyrazines 
 

Hence, we began our investigation looking for optimal reaction conditions for the conversion 

of 2-pyrrolecarboxaldehyde 10 to N-(2-haloethyl) derivatives 11a,b (Figure 9). Treatment 

with KOH in DMSO (0 °C, 1 h) followed by slow addition of 1,2-dibromoethane (20 

equiv)
217

 and stirring for 24 h gave a good conversion to 11a, which was accompanied by 

little amounts of the N-vinyl derivative. After purification by column chromatography, the 

desired 11a was isolated in 69% yield, however, slow decomposition was observed by storing 

it at room temperature. To prevent this, the product was stored at 4 °C. On the other hand, 

stirring overnight the aldehyde 10 in the two-phase system 50% aqueous NaOH-CH2Cl2
 in the 

presence of the phase-transfer catalyst tetrabutylammonium iodide (TBAI), afforded cleanly 

the air-stable N-(2-chloroethyl) derivative 11b in 92% yield.
218

 

 

Figure 106: Synthesis of N-(2-haloethyl)pyrrole-2-carboxaldehyde. 

 

Both halo-aldehydes were submitted to reaction with a slight excess of either (S)-

phenylglycinol and (S)-valinol in anhydrous CH2Cl2 in the presence of MgSO4 as dehydrating 

agent for 2 days. In all cases the corresponding bicyclic iminium ions 12 were observed in the 

crude products isolated by filtration of the solid and evaporation of the solvent. Variable, 

although minor  amounts of starting materials, a different aldehyde (presumably 1-vinyl-2-

pyrrolecarboxaldehyde) and the tricyclic compound 14 were also present in the crude 

mixtures.  
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Figure 107. Diastereoselective synthesis of tricyclic oxazolidines 14 and 15 from 2-pyrrolecarboxaldehyde. 

 

Testing different solvent we observed that the crude iminium bromide 12 precipitated from its 

CH2Cl2 solution upon addition of Et2O, and it was obtained in a 70% yield. This particular 

low affinity to Et2O could be useful during the workup. The 
1
H NMR spectrum of compound 

12 in CDCl3 showed an adsorption of the H-C=N
+
 proton at  9.33 ppm, distinctly higher than 

the proton of the formyl group in 11a ( 9.49 ppm). It was also observed that in the CDCl3 

solution an equilibrium was slowly attained betweeb the open species and the oxazolidine 

derivative 14, the chemical shift of the O-CH-N proton being observed at  5.24 ppm. 

However, this result could not be always reproduced by repeating the same procedure several 

times. On the other hand, treatment  directly the CH2Cl2 solution of compound 12 or 13 with 

sat aq NaHCO3 and extraction of the organic phase afforded the tricyclic compound 14 and 15 

in 87% yield and 90% respectively in a pure state. The 1H NMR spectra of the tricyclic 

structures 14 and 15 gave singlet peaks at  5.58 and 5.24, respectively, for the O-CH-N 

protons of the oxazolidine groups. Minor amounts (about 5%) of another diastereoisomer 

could be observed with some difficulty in the spectrum at room temperature, but the relative 

signals were narrower and more evident at lower temperature. Other reaction conditions were 

also tested by varying the solvent (DMF), the dehydrating agent (molecular sieves), the 

temperature, but with less satisfactory results. Moreover, mixtures of products 12a and 13a 

were obtained by carrying out the reactions in the presence of a base (K2CO3 or Et3N). 

 

Successively, crystals suitable for a single X-ray diffraction study, grown by slow evaporation 

of a THF solution of 14, allowed the structure determination (Figure 11) of 14 in the solid 

state that corresponds to the most stable of the possible diastereomers (the N atom is a 

stereocenter, too),  as previously hypothesized by NMR-nOe experiment and calculated at the 

MM2 level. 
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Figure 108. ORTEP drawing of compound 14. Thermal ellipsoids are at 30% probability. 

Oxazolidines are useful substrates for conducting organometallic reactions, particularly with 

Grignard reagents. The tricyclic oxazolidines 14 and 15 were used as substrates in 

organometallic reactions.
219

 Reactions of phenylglycinol-derived N-substituted oxazolidines 

with organometallic reagents have been previously exploited for the diastereoselective 

synthesis of secondary amines.
220,221

  

 

Figure 109. Addition of organometallic reagents to the tricyclic oxazolidines 14. 

 

In our hands, Grignard reagents proved to be the reagents of choice for 14, as in many cases 

high yields and diastereoselectivities were obtained for the resulting 1,2-disubstituted-1,2,3,4-

tetrahydropyrrolo-[1,2-a]pyrazines 16 (Figure 12 and Table 1). 

The addition of methylmagnesium bromide in THF was particularly effective in terms of both 

the yield and diastereoselectivity at 78 °C, as the prevalent diastereomer 16a (d.r. 98:2) was 

obtained pure in 95% yield after column chromatography (entry 1). The stereocontrol 

progressively decreased with increasing the length of the alkyl group of the Grignard 

reagents, e.g. ethyl and n-hexyl (entries 2 and 3). Allylmagnesium chloride was totally devoid 

of stereoselectivity (entry 4) and gave no reaction in presence of titanium tetrachloride (entry 

5). Hence we moved to allylzinc bromide, but the diastereoselectivity increased only slightly 

(entry 6) and a better stereocontrol (d.r. 76:24) was finally obtained using preformed mixed 

zincate, AllylEt2ZnMgCl (entry 7). Benzylmagnesium chloride gave only a moderate 

diastereoselectivity (d.r. 65:35, entry 8). Finally, phenylmagnesium bromide reacted with 

almost complete stereocontrol, affording the crude secondary amine with high yield and more 

than 99:1 diastereomeric ratio (entry 9), whereas phenyllithium reacted sluggishly even by 

raising the temperature to 20 °C (entry 10).  
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Table 19. Addition of organometallic reagents to the tricyclic oxazolidine 14.
[a]

 

Entry RM °C, h D. r. 
[b]

 Products (Yield %) 
[c] 

1 MeMgBr 78, 2 98:2 16a (95) 

2 EtMgBr 78, 1 92:8 16b (78), epi-16b (3) 

3 nHexylMgBr 78, 1 93:7 16d (77), epi-16d (6) 

4 AllylMgCl 78, 1 50:50 16e (41), epi-16e (35) 

5 AllylMgCl-TiCl4 78, 2 
[d]

 - - 

6 AllylZnBr 78 to 20, 4 62:38 16e (47), epi-16e (24) 

7 AllylEt2ZnMgCl 
[e]

 78, 1 76:24 16e (38), epi-16e (14) 

8 BnMgCl 78, 1 65:35 16f (53), epi-16f (29) 

9 PhMgBr 78, 1 >98:2 16g + epi-16g (72) 
[f]

 

10 PhLi 78 to 20, 12 78:22 16g + epi-16g (45) 
[f]

 

[a] The reactions were performed by adding the organometallic reagents (4 equiv.) to the solution of the imine in 

anhydrous THF under an atmosphere of N2. 
[b]

 The diastereomeric ratios were determined by 
1
H NMR analyses 

of the crude reaction product. 
[c] 

Yields refer to pure diastereoisomers isolated by column chromatography 

(SiO2).  
[d]

 No reaction occurred. 
[e]

 The zincate was prepared by adding allylmagnesium chloride to Et2Zn in 

THF and stirring for 1 h at 0 °C. 
[f]

 Pure diastereoisomers could not be obtained because epimerization occurred 

during chromatography on SiO2 column.  

 

Unfortunately, attempted purification of the crude phenyl-substituted product 16g obtained in 

entry 9 by chromatography an a silica gel column produced epimerized product in all eluted 

fractions. This can be explained by the acidity present in silica which induces heterolytic 

cleavage of the benzydrylic C-N bond, to form a carbenium ion which is stabilized by both 

adjacent aromatic rings (Figure 13). To confirm the role of SiO2 in the epimerization process, 

we leave for a week a mixture of 16g and silica in DCM. The silica was removed by filtration 

and the solvent was evapourate to obtain the crude product as a 1:1 mixture of the two 

disteroisomers.  We can assume that because of this unfortunately behaviour is impossible to 

purify the 16g product by flash cromatografy. 
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Figure 110. Epimerization mechanism in product 16g. 

 

Then, we examined the effectiveness of (S)-valinol as chiral auxiliary by performing the same 

organometallic reactions on the oxazolidine 15 (Figure 14 and Table 2) and obtained in all 

cases unsatisfactory stereochemical outcomes, as the diastereomeric ratios ranged between 

70:30 and 50:50 using Grignard reagents and n-butyllithium. 

 

 

Figure111. Addition of organometallic reagents to the tricyclic oxazolidines 15. 

 

 Also in this case on of the best results in diasteroselectivities was obtained using MeMgBr 

(Table 2, entry 1) that show 70/30 diastero ratio. The same result was obtained using n-BuLi 

as organometallic reagent (Table 2, entry 3). Allyl(tri-n-butyl)tin-SnCl4 and –BF3 systems 

were totally unreactive (Table 2, entries 7 and 8), whereas allyltitanium reagent formed in situ 

from the Grignard reagent and titanium tetraethoxide afforded 17e (Table 2, entries 4 and 5) 

with lower yield with respect to the Grignard reagent alone, and the d.r. remained 

unsatisfactory. Moreover, column chromatography was not adequate to separate the 

diastereoisomers of the products 17b,e-g (Table 2, entried 2,5,6,7). Particularly, the phenyl-

substituted product 17i (Table 2, entry 9), initially obtained with a d.r. of 65:35, was eluted 

with an inverted 40:60 ratio. 
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Table 20. Addition of organometallic reagents to the tricyclic oxazolidine 15.
[a]

 

Entry RM °C, h D. r. 
[b]

 Products (Yield %) 
[c]

 

1 MeMgBr 78, 2 70:30 17a (49), epi-17a (17) 

2 EtMgBr 78, 1 65:35 17b + epi-17b (68) 
[d]

 

3 nBuLi 78, 1 70:30 
[e]

 17c [f] 

4 AllylMgCl 78, 1 50:50 17e + epi-17e (64) 
[d]

 

5 AllylMgCl-Ti(OEt)4 78, 1 54:46 17e + epi-17e (50) 
[d]

 

6 Allyl(nBu)3Sn-SnCl4 78 to 20, 4 -
[f]

 - 

7 Allyl(nBu)3Sn-BF3 78 to 20, 4 -
[f]

 - 

8 BnMgCl 78, 1 50:50 17f  + epi-17f (76) 
[d]

 

9 PhMgBr 78, 1 65:35 17g  + epi-17g (78) 
[d]

 

[a] The reactions were performed by adding the organometallic reagent (4 equiv) to the solution of the imine in 

anhydrous THF under an atmosphere of Ar.  
[b]

 The diastereomeric ratios (d.r.) were determined by 
1
H NMR 

analysis of the crude reaction product.  
[c]

 Yields refer to pure diastereoisomers isolated by column chromatography 

(SiO2).  
[d]

 The diastereomers could not be separated by column chromatography.  
[e] 

The reaction mixture contained 

mainly unreacted 15 and minor amount of the addition product 17c (ca 10%). 
[f]

 No reaction occurred.   

 

The absolute stereochemistry of the main diastereoisomers could not be unambiguously 

demonstrated, however, the R-configuration can reasonably be postulated by analogy with all the 

previously reported outcomes of Grignard reactions performed on various N-substituted 

oxazolidines derived from (S)-phenylglycinol.
25

 We assume that the same mechanism considered 

for those reactions is also operating with our substrate 14, as described in Figure 15. The Lewis 

acidity of the Grignard reagent is determinant for the successful reaction, which therefore 

proceeds by the preliminary O-Mg coordination. This leads to the incipient formation of the 

carbenium ion 18 which undergoes attack of the R nucleophile from the same face of the C-O 

bond being broken, obtaining finally a product with the same absolute R configuration. 
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Figure 112. Mechanism and stereochemical model for the organometallic addition to oxazolidine 14. 

 

The formation of a true carbenium ion 19 cannot be excluded, and in this case a reduced 

diastereoselectivity might be expected owing to the possible rotation of the nitrogen 

substituent around the C*-N bond. Moreover, the lower diastereoselectivity of allylic reagents 

can be explained by the unfavourable transition state that should be attained for the -attack in 

allylic rearrangement (Figure 16).  

 

Figure 113. Formation of product 20e. 

 

Finally, we directed our efforts to the removal of the chiral auxiliary. Unfortunately, all efforts 

to achieve this goal from both amines 16a and 17a by oxidative procedures including the use 

of periodic acid/methylamine (Figure 17) and lead tetraacetate were unsuccessful. 

 

Figure 114. Envisioned removal of the chiral auxiliary of 17a by H5IO6 and MeNH2. 
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For compounds 16, however, another efficient way is possible for the removal of 

phenylglycinol fragment, that is the hydrogenolysis catalyzed by Pd/C. The first test took 

place on  compound 16b, it has been react with ammonium formate and Pd/C afforded a 

complex mixture of products. Being this way  particularly problematic we decided to change 

the hydrogen source. Compounds 16a,b were submitted to 7 bar of hydrogen pressure in the 

presence of 10% Pd/C in methanol for 2 days gave mainly the desired secondary amines 

21a,b in about 80% yield, which were accompanied by 2-phenylethanol and trace amounts of 

the fully hydrogenated compounds 22 (Figure 18) identify by HPLC-MS. 

 

Figure 115. Removal of the chiral auxiliary from 1,2-disubstituted-1,2,3,4-tetrahydropyrrolo[1,2-

a]pyrazines 16a,b. 

In conclusion, we have developed the first asymmetric synthesis of 1-substituted-1,2,3,4-

tetrahydropyrrolo[1,2-a]pyrazines by a four step route starting from 2-pyrrolecarboxaldehyde. 

The key intermediate  was a tricyclic pyrrole-tetrahydropyrazine-oxazolidine that was formed 

with very high diastereoselectivity by condensation of 1-(2-haloethyl)-2-

pyrrolecarboxaldehyde with (S)-phenylglycinol. This compound reacted with Grignard 

reagents to give 1,2-disubstituted-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines with variable 

level of diastereoselectivity, which decreased with increasing the length of the alkyl group of 

the Grignard reagent. The highest d.r. was obtained with methylmagnesium bromide (98:2) 

and phenylmagnesium bromide (>98:2). In the latter case, the product could not be purified 

by chromatography on silica gel, as epimerization occurred at considerable extents. The chiral 

auxiliary was removed from 1-methyl- and 1-ethyl-substituted products by hydrogenolysis. 
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SUPPORTING INFO 

 

Melting points are uncorrected. Optical rotations were measured on a digital polarimeter in a 

1-dm cell and []D-values are given in 10
-1

 deg cm
3
 g

1
. 

1
H NMR spectra were recorded on 

Varian MR400 and Gemini 200 instruments for samples in CDCl3 which was stored over Mg: 
1
H chemical shifts are reported in ppm relative to CHCl3 (H 7.27), J-values are given in Hz. 

Infrared spectra were recorded on a Nicolet FT-380 spectrometer and IR assignments are 

reported in wave numbers (cm
1

). MS spectra were taken at an ionising voltage of 70 eV on a 

Hewlett-Packard 5975 spectrometer with GLC injection (using HP-5 column, 30 m, ID 0.25 

mm). Molecular weights were determined on an Agilent Technologies MS 1100 instrument. 

Chromatographic separations were performed on columns of SiO2 (Merck, 230-400 mesh) at 

medium pressure. All the organic, inorganic and organometallic reagents and anhydrous 

solvents were purchased from Aldrich.  

 

Preparation of 1-(2-bromoethyl)-2-pyrrolecarboxaldehyde (11a): To a stirred solution of 

pyrrole-2-carboxaldehyde 10 (1.00 g, 10 mmol) in dry DMSO (6 mL), KOH (5.88 g, 100 

mmol) was added in one portion at room temperature. After 1 h, 1,2-dibromoethane (18.1 mL, 

0.2 mol) was slowly added at 0 °C. The resulting solution was stirred overnight at room 

temperature. The reaction was quenched by addition of water (10 mL) and the organic layer 

was extracted with EtOAc (3 x 20 mL). The collected organic layers were washed with brine 

(20 mL), dried over Na2SO4 and concentrated to leave the crude product. Purification was 

achieved by flash column chromatography (SiO2, cyclohexane/EtOAc, 9:1) and gave the 

product 11a as a yellow oil: 1.59 g (75%). IR (neat): ν = 3111, 2947, 2807, 2722, 1660, 1530, 

1479, 1321, 1208, 1075, 822, 623, 607. 
1
H NMR (200 MHz, CDCl3): δ = 9.49 (s, 1 H), 7.04-

6.99 (m, 2 H), 6.29-6.25 (m, 1 H), 4.8 (t, J = 5.8 Hz, J = 6.2 Hz, 2 H), 3.7 (t, J = 5.8 Hz, J = 

6.2 Hz, 2 H). 
13

C NMR (50 MHz, CDCl3): δ = 179.4, 150.9, 132.5, 125.6, 109.6, 50.6, 31.7. 

MS (EI): m/z = 122 (100), 94 (36), 201 (14), 203 (12), 202 (3). Anal. Calcd for C7H8BrNO 

(202,05): C, 41.61; H, 3.99; N, 6.93. Found: C, 41.50; H, 4.01; N, 6.91. 

 

 

Preparation of 1-(2-chloroethyl)-2-pyrrolecarboxaldehyde (11b):218 To a solution of 

pyrrol-2-carboxaldehyde (0.500 g, 5.3 mmol) in CH2Cl2 (2 mL), 1,2-dichloroethane (9.7 mL, 
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0.12 mol), TBAI (1.94 g, 5.3 mmol) and a 50% solution of NaOH (5 mL) were added. The 

reaction was vigorously stirred overnight and water (2 mL) was added. The organic layers 

were extracted with CH2Cl2 (2 x 30 mL) washed with HCl (2 x 20 mL, 1 M), NaHCO3 (2 x 20 

mL, sat. sol.) and brine (2 x 20 mL). After drying over Na2SO4 and the organic layers were 

concentrated in vacuo producing orange slurry. Purification was achieved by column 

chromatography (SiO2, cyclohexane/EtOAc, 9:1) gave the product 11b as a yellow oil: 0.76 g 

, (92% yield). IR (neat) ν = 3111, 2959, 2809, 1663, 1655, 1479, 882, 766, 705, 678, 656, 

608; 
1
H NMR (200 MHz, CDCl3): δ = 9.51 (s, 1 H), 7.03-6.97 (m, 2 H) , 6.23 (t, J = 2.6 Hz, 1 

H),  4.57 (t, J= 5.8 Hz, J = 5.4 Hz, 2 H), 3.79 ( t, J = 5.8 Hz,  J = 5.4 Hz, 2 H) ppm. 
13

C NMR 

(50 MHz, CDCl3): δ = 179.2, 132.7, 130.7, 125.4, 109.5, 50.5, 43.7; MS (EI): m/z = 122 

(100), 94 (50), 157 (34), 53 (19), 108 (18), 80 (14). Anal. Calcd for C7H8ClNO (157.6): C, 

53.35; H, 5.12; N, 8.89. Found: C, 53.19; H, 5.14; N, 8.86.  

 

 

Preparation of the iminium salt 12 and 13. Typical procedure : The mixture of 1-(2-

bromoethyl)pyrrole-2-carboxaldehyde (0.203 g, 1.0 mmol), (S)-phenylglycinol (0.138 g, 1.2 

mmol) and MgSO4 (0.5 g) in dry CH2Cl2 (4 mL) was protected from light and magnetically 

stirred for 2 d under inert atmosphere. Then, the mixture was filtered through a small pud of 

celite and washed with CH2Cl2. The filtered solution was concentrated under reduced pressure 

to a final volume of 1 mL and Et2O (3 mL) was slowly added, so producing a brown 

precipitate of compond 12: 0.228 g (71%). IR (neat): ν = 3381, 2962, 2924, 2848, 1646, 

1629,1491,1377, 1103,1067. 
1
H NMR (400 MHz, CDCl3): δ = 9.33 (s, 1 H), 7.39-7.26 (m, 7 

H), 6.44-6.36 (m, 1 H), 5.56-5.49 (m, 1 H), 5.39 (bs, OH), 4.60-4.20 (m, 3 H), 4.10-3.93 (m, 2 

H), 3.80-3.60 (m, 1 H). 
13

C NMR (100 MHz, CDCl3): δ = 151.8, 134.5, 132.7, 129.5, 127.9, 

127.3, 122.6, 115.4, 72.5, 60.1, 45.9, 43.4. MS (ES): m/z = 241.1 [M – HBr + H]
+
 (100).  

 

 

Preparation of the tricyclic oxazolidine 14: The mixture of 1-(2-bromoethyl)pyrrole-2-

carboxaldehyde (1.515 g, 7.5 mmol), (S)-phenylglycinol (1.233 g, 9.0 mmol) and MgSO4 (5 
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g) in dry CH2Cl2 (15 mL) was protected from light and stirred for 2 d under inert atmosphere. 

Then, the mixture was filtered through a small pad of celite and washed with CH2Cl2. The 

collected organic layers were washed with sat. aq. NaHCO3 (20 mL) and brine (20 mL). The 

organic phase was concentrated under reduced pressure to give 14 as a white solid: 1.531 g 

(85%). mp = 85.1-85.5 
o
C; []D

20
 = +8.5 (c = 1.0, CHCl3). IR (KBr): v = 3101, 3027, 2847, 

1600, 1449, 1212, 1190, 873, 798, 757, 698. 
1
H NMR (400 MHz, CDCl3): δ = 7.49-7.34 (m, 5 

H), 6.63 (dd, J = 1.6 Hz, J = 2.8 Hz, 1 H), 6.28 (d, J = 2.2 Hz, 1 H), 6.20 (t, J = 3.0 Hz, 1 H), 

5.53 (s, 1 H), 4.50 (t, J = 7.9 Hz, 1 H), 4.30 (t, J = 6.8 Hz, 1 H), 4.14-4.03 (m, 2 H), 3.76 (dd, 

J = 6.6 Hz, J = 8.5 Hz, 1 H), 3.37-3.27 (m, 1 H), 3.16-3.07 (m, 1 H) ppm. 
13

C NMR(100 

MHz, CDCl3): δ = 141.4, 134.9, 128.7, 127.3, 126.5, 119.5, 108.7, 107.6, 86.6, 71.2, 67.8, 

47.4, 44.1 ppm. MS (EI): m/z = 239 (100), 210 (20), 106(15). Anal. Calcd for C15H16N2O 

(240.30): C, 74.97; H, 6.71; N 11.66. Found: C, 74.78; H, 6.74; N, 11.62. 

 

 

Preparation of the tricyclic oxazolidine 15: This was prepared by the same procedure 

followed for 14 starting from 11a (1.515 g, 7.5 mmol): yellow oil, 1.443 g (92%). []D
20

 = 

13.0 (c = 1.2, CHCl3). IR (neat): v = 3101, 2957, 2868, 1663, 1494, 1469, 1299, 1195, 1037, 

861, 769, 609. 
1
H NMR (400 MHz, CDCl3): δ = 6.59 (s, 1 H), 6.28-6.24 (m, 1 H), 6.19 (t, J = 

2.9 Hz, 1 H), 5.24 (s, 1 H), 4.14 (t, J = 8.0 Hz, 1 H), 4.06 (ddd, J = 3.5 Hz, J = 12.0 Hz, 1 

H),3.98-3.88 (m, 1 H), 3.50 (dd, J = 6.0 Hz, J = 8.1 Hz, 1 H), 3.21 (dt, J = 3.4 Hz, J = 11.5 

Hz, 1 H), 2.86-2.78 (m, 1 H), 2.74-2.64 (m, 1 H), 1.74-1.64 (m, 1 H) 1.07 (d, J = 6.4 Hz, 3 H), 

0.88 (d, J = 6.4 Hz, 3 H) ppm. 
13

C NMR (50 MHz, CDCl3): δ = 124.7, 119.2, 108.6, 107.5, 

85.7, 72.7, 67.6, 48.7, 44.9, 31.9, 20.3, 18.9 ppm. MS (EI): m/z = 205 (100), 161 (90), 176 

(13). Anal. Calcd for C12H18N2O (206.28): C, 69.87; H, 8.80; N 13.58. Found: C, 69.60; H, 8. 

83; N, 13.54. 

 

 

Preparation of 1,2-disubstituted-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 16 and 17. 

Typical procedure: Methylmagnesium bromide (3.0 M in Et2O, 1.3 mL, 4.0 mmol) was 

added to a magnetically stirred solution of 14 (0.240 g, 1.0 mmol) in anhydrous THF (15 mL) 
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cooled at –78 °C. The reaction was stirred until TLC showed the disappearance of starting 

material, then was quenched by adding a sat aq NaHCO3 (10 mL). The organic material was 

extracted with Et2O (3 × 10 mL). The collected ethereal layers were dried over Na2SO4 and 

concentrated to leave an oil. The diastereomeric ratio was determined by 
1
H NMR analysis of 

a sample solution in CDCl3. Flash column chromatography (SiO2) eluting with 

cyclohexane/EtOAc (9:1) gave the product 16a as a yellow oil: 0.253 g (99%): []D
20

 = 21.4 

(c = 1.3, CHCl3). IR (neat): v = 3415, 3101, 3050, 2970, 2928, 1601, 1492, 1453, 1266, 1186, 

1056, 735, 609; 
1
H NMR(400 MHz, CDCl3): δ = 7.45-7.29 (m, 5 H), 6.50 ( t, J = 1.7 Hz, 1 

H), 6.15 (t, J = 3.0 Hz, 1 H), 5.85-5.80 (m ,1 H), 4.30 (q, J = 6.8 Hz, J = 13.0, 1H), 4.02-3.90 

(m, 3 H), 3.82-3.75 (m, 1 H), 3.43 (t, J =6.7 Hz, 1 H), 3.38-3.21 (m, 1 H), 3.10-3.02 (m, 1 H), 

1.39 (d, J= 6.6 Hz, 3 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 140.4, 132.1, 128.6, 128.4, 

128,3, 117.9, 107.8, 102.9, 65.4, 63.2, 50.8, 43.38, 41.3, 19.2 ppm. MS (ES): m/z = 271.2 [M 

+ H]
+
 (100). Anal. Calcd for C16H20N2O (256.34): C, 74.97; H, 7.86; N 10.93. Found: C, 

74.75; H, 7.88; N, 10.90. 

 

16b: yellowish oil, 0.210 g (78%). []D
20

 = 10.5 (c = 0.5, CHCl3). IR (neat): v = 3411, 3109, 

3046, 2974, 2921, 1605, 1457, 1174, 1050, 736; 
1
H NMR (400 MHz, CDCl3): δ= 7.40-7.29 

(m, 5 H), 6.52 (t, J = 1.8 Hz, 1 H), 6.12 (t, J = 3.2 Hz, 1 H), 5.79-6.75 (m, 1 H), 4.04 (dt, J = 

4.6 Hz, J = 11.8 Hz, 1 H), 3.96-3.88 (m, 3 H), 3.82-3.73 (m, 2 H), 3.46-3.36 (m, 1 H), 3.22-

3.14 (m, 1 H), 1.86-1.74 (m, 1 H), 1.71-1.58 (m, 1 H), 0.92 (t, J = 7.4 Hz, 3 H) ppm. 
13

C 

NMR (100 MHz, CDCl3): δ = 140.5, 130.0, 128.5, 127.7, 118.3, 107.4, 104.0, 65.2, 63.6, 

56.4, 41.6, 40.9, 26.8, 11.0 ppm. MS (ES): m/z = 271.2 [M + H]
+
 (100). Anal. Calcd for 

C17H22N2O (270.37): C, 75.52; H, 8.20; N 10.36. Found: C, 75.68; H, 8.21; N, 10.32. 

epi-16b: yellowish oil, 0.008 g (3%). []D
20

 =  (c = 1.2, CHCl3). IR (neat): v 

= 3414, 3107, 3054, 2978, 2923, 1611, 1497, 1451, 1263, 1051, 736; 
1
H NMR 

(400 MHz, CDCl3): δ = 7.38-7.24 (m, 5 H), 6.47 (t, J = 1.8 Hz, 1 H), 6.12 (t, J = 

2.9 Hz, 1 H), 5.85-5.81 (m, 1 H), 4.20 (dd, J = 5.2 Hz, J = 9.6 Hz), 4.07 (dd, J = 

10.4 Hz, 1 H), 3.98 (t, J = 4.2 Hz, 1 H), 3.96-3.84 (m, 2 H), 3.76 (dd, J = 4.9 Hz, 

J = 10.8 Hz, 1 H), 3.28-3.20(m,1 H), 3.02 (bs, 1 H), 2.54-2.45 (m, 1 H), 2.21-

2.14 (m, 1 H), 1.98-1.88 (m, 1 H), 0.92 (t, J = 7.3 Hz, 3 H) ppm. 
13

C NMR (100 

MHz, CDCl3): δ = 135.3, 129.9, 129.0, 128.4, 118.1, 107.9, 103.5, 62.4, 60.7, 

55.9, 44.3, 41.7, 25.6, 8.3 ppm. MS (ES): m/z = 271.2 [M + H]
+
 (100). 

 

16d: light brown oil, 0.251 g (77%). []D
20

 =  5.9 (c = 0.6, CHCl3). 
1
H NMR (400 MHz, 

CDCl3): δ = 7.39-7.28 (m, 5 H), 6.52 (t, J = 2.2 Hz, 1 H), 6.11 (t, J = 3.2 Hz, 1 H), 5.78-5.76 

(m, 1 H), 4.05 (dt, J = 4.7 Hz, J = 11.7 Hz, 1 H), 3.97-3.91 (m, 3 H), 3.80-3.74 (m, 1 H), 3.50-

3.38 (m, 1 H), 3.21-3.16 (m, 1 H), 1.85-1.71 (m, 1 H), 1.70-1.55 (m, 1 H), 1.41-1.18 (m, 10 

H), 0.90 (t, J = 6.7 Hz, 3 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 140.5, 128.6, 128.4, 

127.8, 118.3, 107.5, 104.0, 65.3, 63.8, 54.9, 41.4, 40.9, 34.1, 31.8, 29.2, 26.4, 22.6, 14.0 ppm. 

MS (ES): m/z = 327.1 [M + H]
+
 (100). Anal. Calcd for C21H30N2O (326.48): C, 77.26; H, 

9.26; N, 8.58. Found: C, 77.56; H, 9.29; N, 8.55. 
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epi-16d: yellow oil, 0.020 g (6%). []D
20

 = +5.4 (c = 0.9, CHCl3). 
1
H NMR (400 

MHz, CDCl3): δ= 7.41-7.28 (m, 5 H), 6.60 (t, J = 2.2 Hz, 1 H), 6.20 (t, J = 2.5 

Hz, 1 H), 5.80-5.75 (m, 1 H), 4.36-4.26 (m, 1 H), 4.25-4.16 (m, 2 H), 3.72-3.66 

(m, 1 H), 3.37-3.27 (m, 1 H), 3.15-3.08 (m, 1 H), 2.04-1.98 (m,2 H), 1.40-1.18 

(m, 10 H), 0.90 (t, J= 6.8 Hz, 3 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 139.4, 

131.3, 128.6, 127.8, 127.5, 118.6, 107.9, 104.9, 72.7 63.0, 42.2, 31.8, 30.1, 29.6, 

29.4, 26.8, 23.6, 22.6, 14.1 ppm. MS(ES): m/z = 327.1 [M + H]
+
 (100). 

 

16e: light brown oil, 0.107 g (38%). []D
20

 = +18.3 (c = 0.9, CHCl3). IR (neat): ν = 3416, 

3068, 2924, 2852, 1639, 1569, 1492, 1333, 1290, 1069, 1029, 914, 702; 
1
H NMR (400 MHz, 

CDCl3): δ = 7.39-7.26 (m, 5 H), 6.52 (t, J = 1.7 Hz, 1 H), 6.11 (t, J = 2.9 Hz, 1 H), 5.88-5.80 

(m, 1 H), 5.79-5.76 (m, 1 H), 5.09-4.99 (m, 2 H), 4.06 (t, J = 6.7 Hz, 1 H), 4.03-3.93 (m, 2 H), 

3.92-3.87 (m, 2 H), 3.79-3.72 (m, 1 H), 3.46-3.38 (m, 1 H), 3.20-3.13 (m, 1 H), 2.63-2.52 (m, 

1 H), 2.47-2.38 (m, 1 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 140.2, 136.1, 129.5, 128.5, 

128.4, 127.8, 118.4, 116.8, 107.5, 103.9, 65.7, 63.4, 54.6, 41.7, 41.6, 38.8 ppm. MS (ES): m/z 

= 283.2 [M + H]
+
 (100), 305.2 [M + Na]

+ 
(15). Anal. Calcd for C18H22N2O (282.38): C, 

76.56; H, 7.85; N, 9.92. Found: C, 76.58; H, 7.87; N, 9.90. 

epi-16e: yellowish oil , 0.039 g (14%). []D
20

 = 13.4 (c = 0.8, CHCl3). IR (neat): 

ν = 3415, 3078, 2975, 2926, 2849, 2793, 1639, 1496, 1485, 1339, 1219, 1119, 

1002, 849, 704; 
1
H NMR (400 MHz, CDCl3): δ = 7.38-7.23 (m, 5 H), 6.47 (t, J = 

1.6 Hz, 1 H), 6.12 (t,  J = 3.3 Hz, 1 H), 5.89-5.86 (m, 1 H), 5.80-5.67 (m, 1 H), 

5.23-5.17 (m, 1 H), 5.22 (s, 1 H), 5.14 (t, J = 11.6 Hz, 1 H), 4.22 (dd, J = 4.8 Hz, 

J = 9.7 Hz, 1 H), 4.13 (t, J = 4.1 Hz, 1 H), 4.05 (t, J = 10.6 Hz, 1 H), 3.94-3.87 

(m, 2 H), 3.73 (dd, J = 4.8 Hz, J = 10.9 Hz, 1 H), 3.26-3.18 (m, 1 H), 2.94-2.85 

(m, 1 H), 2.76-2.68 (m, 1 H), 2.55-2.47 (m, 1 H), 1.57 (bs, 1 H) ppm. 
13

C NMR 

(100 MHz, CDCl3): δ =136.0, 134.6, 128.9, 128.4, 128.2, 118.2, 117.7, 108.0, 

103.8, 62.7, 60.6, 54.7, 44.2, 41.5, 38.3 ppm. MS (ES): m/z = 283.2 [M + H]
+
 

(100), 305.1 [M + Na]
+
 (23). 

 

16f: yellowish oil, 0.176 g (53%). []D
20

 = 86.2 (c = 1.0, CHCl3). 
1
H NMR (400 MHz, 

CDCl3): δ = 7.34-7.03 (m, 10 H), 6.48 (dd, J = 1.7 Hz, J = 2.6 Hz, 1 H), 6.06 (t, J = 3.1 Hz, 1 

H), 5.48 (dd, J = 1.4 Hz, J = 3.4 Hz, 1 H), 4.14 (t, J = 7.4 Hz, 1 H), 4.10-3.98 (m, 1 H), 3.90 

(t, J = 5.1 Hz, 1 H), 3.79-3.70 (m, 1 H), 3.67-3.58 (m, 1 H), 3.36-3.24 (m, 1 H), 3.13 (dd, J = 

7.9 Hz, J = 13.2 Hz, 1 H), 2.83 (dd, J = 6.3 Hz, J = 13.2 Hz, 1 H) ppm. 
13

C NMR (100 MHz, 

CDCl3): δ = 140.0, 139.2, 131.2, 129.6, 129.1, 128.5, 128.4, 128.2, 128.1, 127.7, 127.6, 

127.5, 126.2, 118.3, 107.4, 104.2, 66.1, 63.8, 56.3, 41.5, 41.3, 40.9 ppm. MS (ES): m/z = 

333.2 [M + H]
+
 (100). Anal. Calcd for C22H24N2O (332.44): C, 79.48; H, 7.28; N, 8.43. 

Found: C, 79.28; H, 7.31; N, 8.41. 

epi-16f: yellowish oil, 0.096 g (29%). []D
20

 =  (c = 1.6, CHCl3). 
1
H NMR 

(400 MHz, CDCl3): δ = 7.32-7.12 (m, 10 H), 6.46 (m, 1 H), 6.12 (t, J = 3.1 Hz, 1 

H), 5.77 (m, 1 H), 4.04 (dd, J = 4.9 Hz, J = 7.1 Hz, 1 H), 3.75 (dd, J = 7.7 Hz, J 

= 11.0 Hz, 1 H), 3.71-3.54 (m, 4 H), 3.10 (dd, J = 5.8 Hz, J = 13.2 Hz, 1 H), 2.75 
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(ddd, J = 4.2 Hz, J = 5.8 Hz, J = 13.2 Hz, 1 H) ppm. 
13

C NMR (100 MHz, 

CDCl3): δ = 138.8, 137.2, 129.5, 128.7, 128.4, 128.3, 128.2, 128.0, 126.5, 118.2, 

104.2, 64.4, 61.7, 56.7, 42.5, 41.9, 40.4 ppm. MS (ES): m/z = 333.1 [M + H]
+
 

(100). 

 

16g + epi-16g: this was obtained as an oil, 0.141 g (45%, d.r. 60:40). Representative signals 

of 16g in the 
1
H NMR spectrum (400 MHz, CDCl3) of the mixture were observed at δ = 6.61 

(dd, J = 2.0 Hz, J = 2.8 Hz, 1 H), 6.15 (dd, J = 2.8 Hz, J = 3.6 Hz, 1 H), 5.59 (m, 1 H), 5.06 

(s, 1 H), 3.29 (m, 1 H), 3.21 (m, 1 H) ppm. MS (ES): m/z = 319.1 [M + H]
+
 (100). 

Representative signals of epi-16g: δ = 6.51 (t, J = 1.6 Hz, 1 H), 6.03 (t, J = 3.2 Hz, 1 H), 5.27 

(m, 1 H), 4.79 (s, 1 H), 4.22 (dd, J = 4.6 Hz, J = 10.6 Hz, 1 H), 4.22 (ddd, J = 1.9 Hz, J = 3.0 

Hz, J = 12.1 Hz, 1 H), 2.59 (ddd, J = 3.7 Hz, J = 12.1 Hz, J = 12.2 Hz, 1 H) ppm. MS (ES): 

m/z = 319.1 [M + H]
+
 (100). Anal. Calcd for C21H22N2O (318.41): C, 79.21; H, 6.96; N, 8.80. 

Found: C, 79.02; H, 6.97; N, 8.78. 

 

17a: yellowish oil, 0.033 g (15%). []D
20

 =  (c = 1.0, CHCl3). IR (neat): v = 3361, 2968, 

2934, 2853, 1466, 1449, 1367, 1315, 1114, 1080, 1069, 1019, 886, 733, 715. 
1
H NMR (400 

MHz, CDCl3): δ = 6.56-6.53 (m, 1H), 6.18 (t, J = 3.3 Hz, 1 H), 5.91-5.89 (m, 1 H), 4.34 (q, J 

= 6.2 Hz, J = 12.2 Hz, 1 H), 4.00-3.92 (m, 2 H), 3.62 (dd, J = 5 Hz, J = 10.2 Hz, 1 H), 3.31 (t, 

J = 10.6 Hz, 1 H), 3.19-3.12 (m, 1 H), 3.10-3.00 (m, 1 H), 2.99-2.90 (m, 1 H), 2.00-1.90 (m, 1 

H), 1.47 (d, J = 6.4 Hz, 3 H), 1.08 (d, J = 6.4 Hz, 3 H), 0.90 (d, J = 6.9 Hz, 3 H) ppm. 
13

C 

NMR (100 MHz, CDCl3): δ = 132.5, 118.4, 108.0, 103.2, 63.1, 58.8, 53.0, 45.7, 41.4, 27.9, 

22.6, 20.9, 19.9; MS (EI): m/z = 207 (100), 121 (53), 191 (35), 222 (1); MS (ES): m/z = 223.1 

[M + H]
+
 (100). Anal. Calcd for C13H22N2O (222.33): C, 70.23; H, 9.97; N, 12.60. Found: C, 

70.19; H, 10.00; N, 12.58. 

epi-(17a): yellow oil, 0.011 g (5%). []D
20

 = 15.2 (c = 1.0, CHCl3). IR (neat) v 

= 3407, 2954, 2921, 1581, 1450, 1348, 1066, 1029, 731, 702. 
1
H NMR (400 MHz, 

CDCl3): δ = 6.53-6.50 (m, 1 H), 6.15 (t, J = 3.0 Hz, 1 H), 5.88-5.84 (m, 1 H), 

4.21 (q, J = 6.4 Hz, J = 12.7 Hz, 1 H), 4.00-3.86 (m, 2 H), 3.81 (dd, J = 3.7 Hz, J 

= 11.2 Hz, 1 H), 3.69 (dd, J = 7.1 Hz, J = 11.1 Hz, 1 H), 3.24-314 (m, 1 H), 2.68-

2.60 (m, 1 H), 2.03-190 (m, 1H), 2.00-1.90 (m, 1 H), 1.41 (d, J = 6.2 Hz, 3 H), 

1.02 (d, J = 6.8 Hz, 3 H), 0.98 (d, J = 6.8 Hz, 3 H) ppm. 
13

C NMR (100 MHz, 

CDCl3): δ =133.2 118.0, 107.8, 102.8, 66.2, 60.2, 52.2, 45.7, 44.9, 27.6, 21.7, 

20.9, 20.1 ppm. MS (EI): m/z = 207 (100), 121 (51), 191 (19), 222 (1); MS (ES): 

m/z = 223.1 [M + H]
+
 (100). 

 

17b + epi-17b: yellow oil, 0.160 g (68%, d.r. 65:35). Representative signals of 17b in the 
1
H 

NMR spectrum (400 MHz, CDCl3) of the mixture were present at δ = 4.23 (t, J = 4.6 Hz, 1 

H), 3.64 (dd, J = 5.2 Hz, J = 10.4 Hz, 1 H), 3.35 (t, J = 10.4 Hz, 1 H), 3.04 (dt, J = 3.2 Hz, J = 

11.7 Hz, 1 H), 2.77 (m, 1 H). Representative signals of epi-17b: δ = 4.08 (t, J = 4.7 Hz, 1 H), 

3.82 (dd, J = 3.5 Hz, J = 11.4 Hz, 1 H), 3.69 (dd, J = 6.1 Hz, J = 6.8 Hz, 1 H), 3.20 (dt, J = 

4.0 Hz, J = 12.3 Hz, 1 H), 2.50 (m, 1 H). Anal. Calcd for C14H24N2 (236.25): C, 71.14; H, 

10.23; N, 11.85. Found: C, 71.11; H, 10.25; N, 11.84. 
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17e + epi-17e: yellowish oil, 0.158 g (64%, d.r. 50:50). Representative signals of 17e in the 
1
H NMR spectrum (400 MHz, CDCl3) were observed at δ = 6.57-6.55 (m, 1 H), 5.95-5.88 (m, 

1 H), 5.62-5.49 (m, 1 H), 4.39 (t, J = 4.2 Hz, 1 H), 4.23 (t, J = 5.1 Hz, 1 H), 3.36 (t, J = 10.4 

Hz, 1 H), 3.09-2.93 (m, 2 H), 1.05 (d, J = 6.8 Hz, 3 H), 0.90 (d, J = 6.8 Hz, 3 H) ppm. 

Representative signals of epi-17e: δ =6.54-6.50 (m, 1 H), 5.87-5.84 (m, 1 H), 5.83-5.71 (m, 1 

H), 3.28 (dt, J = 4.6 Hz, J = 12.8 Hz, 1 H), 2.85-2.77 (m, 1 H), 0.87 (t, J = 7.2 Hz, 3 H) ppm. 

Anal. Calcd for C15H24N2 (248.36): C, 72.54; H, 9.74; N, 11.28. Found: C, 72.28; H, 9.76; 

N, 11.24. 

 

17f + epi-17f: light red oil, 0.226 g (76%, d.r. 50:50). Representative signals of 17f in the 
1
H 

NMR spectrum (400 MHz, CDCl3) were observed at δ = 7.33-7.21 (m, 4 H), 6.95 (m, 1 H), 

6.54 (m, 1 H), 6.11 (dd, J = 2.8 Hz, J = 3.6 Hz, 1 H), 5.64 (ddd, J = 0.7 Hz, J = 1.6 Hz, J = 

3.5 Hz, 1 H), 4.54 (dd, J = 4.8 Hz, J = 6.1 Hz, 1 H), 3.86 (dt, J = 3.9 Hz, J = 12.1 Hz, 1 H), 

3.64 (dd, J = 5.1 Hz, J = 10.7 Hz, 1 H), 3.54 (m, 1 H), 3.33 (t, J = 10.7 Hz, 1 H), 3.17 (dd, J = 

4.6 Hz, J = 13.1 Hz, 1 H), 3.00-2.87 (m, 3 H), 2.82 (ddd, J = 5.1 Hz, J = 7.9 Hz, J = 13.1 Hz, 

1 H), 1.87 (m, 1 H), 0.97 (d, J = 6.7 Hz, 3 H), 0.87 (d, J = 6.7 Hz, 3 H) ppm. Representative 

signals of 17f in the 
13

C NMR (100 MHz, CDCl3) sèectrum were present at δ = 138.3, 129.7, 

128.5, 128.1, 126.3, 118.3, 107.4, 104.5, 66.8, 50.1, 44.9, 43.8, 43.0, 40.6, 28.4, 22.0, 19.7 

ppm. MS (ES): m/z = 299.2 [M + H]
+
 (100).  Representative signals of epi-17f in the 

1
H NMR 

spectrum (400 MHz, CDCl3) were observed at δ = 4.34 (t, J = 6.7 Hz, 1 H), 3.93 (ddd, J = 4.3 

Hz, J = 8.3 Hz, J = 12.3 Hz, 1 H), 3.78 (ddd, J = 4.3 Hz, J = 5.3 Hz, J = 12.3 Hz, 1 H), 3.44 

(dd, J = 4.3 Hz, J = 8.3 Hz, J = 13.1 Hz, 1 H), 2.65 (t, J = 7.7 Hz, 1 H), 2.58 (ddd, J = 3.8 Hz, 

J = 6.3 Hz, J = 10.2 Hz, 1 H), 1.80 (m, 1 H), 0.89 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 3 

H) ppm. MS (ES): m/z = 299.2 [M + H]
+
 (100). Anal. Calcd for C19H26N2 (298.42): C, 

76.47; H, 8.78; N, 9.39. Found: C, 76.45; H, 8.78; N, 9.37. 

 

17g + epi-17g: light red oil, 0.221 g (78%, d.r. 40:60). Representative signals of 17g in the
 1

H 

NMR spectrum (400 MHz, CDCl3) were observed at δ = 7.36-7.28 (m, 5 H), 6.58 (m, 1 H), 

6.08 (dd, J = 2.8 Hz, J = 3.5 Hz, 1 H), 5.32 (m, 1 H), 5.19 (s, 1 H), 4.15 (ddd, J = 4.0 Hz, J = 

11.3 Hz, J = 11.4 Hz, 1 H), 4.08 (ddd, J = 2.1 Hz, J = 3.9 Hz, J = 11.4 Hz, 1 H), 3.42 (dd, J = 

5.2 Hz, J = 10.7 Hz, 1 H), 3.35 (t, J = 10.7 Hz, 1 H), 3.29 (ddd, J = 1.9 Hz, J = 4.0 Hz, J = 

12.1 Hz, 1 H), 3.16 (m, 1 H), 2.61 (ddd, J = 5.4 Hz, J = 6.4 Hz, J = 11.6 Hz, 1 H), 2.04 (m, 1 

H), 1.05 (d, J = 6.4 Hz, 3 H), 0.83 (d, J = 6.4 Hz, 3 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 

141.8, 131.8, 129.4, 128.6, 128.0, 118.2, 108.3, 105.7, 63.7, 62.5, 58.5, 45.7, 42.0, 26.9, 22.9, 

19.6 ppm. Representative signals of epi-17g: δ = 6.55 (m, 1 H), 6.05 (dd, J = 2.8 Hz, J = 3.6 

Hz, 1 H), 5.30 (m, 1 H), 5.10 (s, 1 H), 3.94 (dd, J = 2.9 Hz, J = 11.7 Hz, 1 H), 3.72 (dd, J = 

5.7 Hz, J = 11.7 Hz, 1 H), 2.26 (m, 1 H), 0.93 (d, J = 6.6 Hz, 3 H), 0.80 (d, J = 6.6 Hz, 3 H) 

ppm. Anal. Calcd for C18H24N2O (284.40): C, 76.02; H, 8.51; N, 9.85. Found: C, 76.16; H, 

8.50; N, 9.83. 
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Removal of the chiral auxiliary. Typical procedure: 10% Pd/C (0.048 g) was added to a 

solution of 16a (0.476 g, 1.9 mmol) in MeOH (10 mL) inside an autoclave. The reaction 

mixture was kept under 7 bar of H2 for 2 d, then the catalyst was filtered through a small pad 

of Celite and the organic solution was concentrated under vacuum. The oily residue was 

subjected to column chromatography (SiO2, CH2Cl2/MeOH mixture 95:5) to give (R)-1-

methyl-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine 21a (0.205 g, 81%) as an orange oil. []D
20

 = 

+8.3 (c = 0.7, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ = 6.54 (t, J = 2.4 Hz, 1 H), 6.15 (dd, J 

= 2.8 Hz, J = 3.6 Hz, 1 H), 5.90-5.80 (m, 1 H), 4.06 (q, J = 6.8 Hz, 1 H), 3.95-3.90 (m, 2 H), 

3.38-3.31 (m, 1 H), 3.24-3.15 (m, 1 H), 1.06 (d, J = 6.8 Hz, 3 H) ppm. 
13

C NMR (100 MHz, 

CDCl3): δ =132.9, 119.0, 107.7, 102.3, 49.5, 45.4, 43.4, 31.0 ppm. MS (ES): m/z = 136.1 [M 

+ H]
+
. Anal. Calcd for C8H12N2 (136.19): C, 70.55; H, 8.88; N, 20.57. Found: C, 70.28; H, 

8.91; N, 20.50. 

 
(R)-1-Ethyl-(1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine (21b): this was prepared starting 

from 16a (0.156 g, 0.6 mmol) as an orange oil: 0.156 g (79%). []D
20

 = +11.8 (c = 0.7, 

CHCl3). 
1
H NMR (400 MHz, CDCl3): δ = 6.55 (t, J = 2.1 Hz, 1 H), 6.15 (t, J = 3.4 Hz, 1 H), 

5.90-5.88 (m, 1 H), 3.95-3.87 (m, 2 H), 3.38-3.35 (m, 1 H), 3.20-3.12 (m, 1 H), 2.03-1.94 (m, 

2 H), 1.06 (t, J = 7.4 Hz, 3 H) ppm. 
13

C NMR (100 MHz, CDCl3): δ = 131.5, 118.8, 107.5, 

102.3, 55.0, 45.3, 42.9, 28.2, 10.2 ppm. MS (ES): m/z = 151.1 [M + H]
+
 (100). Anal. Calcd 

for C9H14N2 (150.22): C, 71.96; H, 9.39; N, 18.65. Found: C, 71.63; H, 9.43; N, 18.58. 

 

X-ray crystallographic study of 14: The X-ray intensity data for 14 were measured on a 

Bruker SMART Apex II diffractometer equipped with a CCD area detector and a graphite 

monochromated Mo-K radiation source ( = 0.71073 Å). Cell dimensions and the orientation 

matrix were initially determined from a least-squares refinement on reflections measured in 

three sets of 20 exposures, collected in three different  regions, and eventually refined 

against all data. For all crystals, a full sphere of reciprocal space was scanned by 0.3  steps. 

The software SMART[222] was used for collecting frames of data, indexing reflections and 

determination of lattice parameters. The collected frames were then processed for integration 

by software SAINT
[
222

]

 and an empirical absorption correction was applied with 

SADABS.
[223]

 The structure was solved by direct methods (SIR 97)
[224] 

and subsequent 

Fourier syntheses and refined by full-matrix least-squares calculations on F
2
 (SHELXTL)

[225] 

attributing anisotropic thermal  parameters to the non-hydrogen atoms. All hydrogen atoms 
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were located in the Fourier map. The aromatic and methylene hydrogen atoms were placed in 

calculated positions and refined with isotropic thermal parameters U(H) = 1.2 Ueq(C), and 

allowed to ride on their carrier carbons whereas the methine H atoms were located in the 

Fourier map and refined isotropically [U(H) = 1.2 Ueq(C)].  CCDC-792774  contains the 

supplementary crystallographic data for this paper. These data can be obtained free of charge 

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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ABBREVIATIONS 

 

EDTA = Ethylenediaminetetraacetic acid 

DTPA = Diethylenetriaminepentaacetic acid 

DMAP = Dimethylaminopyridine 

TEA = Triethylamine 

DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

DMF = N,N-Dimethyl formamide 

CSA = Chiral solvating agent 

BOX= Bisoxazoline 

TFA= Trifluoroacetic acid 

TEM = Transmission electron microscopy 

TBAI = tetrabutylammonium iodide 

MCR = multicomponent reactions 

COD = cyclooctadiene 

BINAP = (1,1′-Binaphthalene-2,2′-diyl)bis(diphenylphosphine) 

SALEN = N,N′-Disalicylidene-ethylenediamine 

PCC = Pyridinium chlorochromate 

 

http://en.wikipedia.org/wiki/Transmission_electron_microscopy

