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Introduction 
The introduction of exotic insect species is one of the most important threats to 

biodiversity (Colombo and Juker, 2004). This phenomenon may cause both economic 

and environmental damage, like production losses, increases of pesticide treatments, 

and modification of native flora and fauna. To prevent these invasions, besides 

international regulations, there are institutions like the European and Mediterranean 

Plant Protection Organization (EPPO), with the aim to control imported goods or 

determine and study and harmful pests. Nevertheless, the introduction of exotic pests is 

an increasing issue, difficult to control.  

Classic insect biological control, based on importation of natural enemies from the 

country of origin of the exotic pest (Caltagirone, 1981), has been successfully used for 

over 120 years, and use of more than 2000 species of natural enemies has resulted in 

the control of at least 165 pest species worldwide (van Lenteren et al, 2006). This 

strategy has provided good results, even in recent time, in the world (Mineo et al, 1999; 

Hanks et al, 2000; Viggianiet al, 2000; Lambkin, 2004; Quacchia et al, 2008); but has 

also raised some criticism (Michaud, 2002), as well as concern about the potential 

negative effects induced by exotic natural enemies on indigenous and, in general, on 

non-target insects (Howarth, 1997; van Lenteren et al, 2003). The introduction of non-

native natural enemies to new landscapes creates novel interactions with native 

communities; these interactions can adversely affect the demographics of native 

species, which may in turn prevent non-native species from establishing in a new 

community (Sakai, et al, 2001). The ecologists are interested in the evolving 

interactions, and their implications, between indigenous and non-native antagonist 

species. Following a lag time of variable duration, non-native antagonist species may in 

turn become invasive (Blossey and Notzold, 1995; Sakai et al, 2001). 

It is however important to note that, after the 1992 Rio Convention on Biodiversity, 

international organizations and national governments published general guidelines for 

the import and release of invertebrate biological control agents (e.g. The Food and 

Agriculture Organization of the United Nation code of conduct for the import and release 

of exotic biological control agents; [Greathead, 1997]). In Europe, a methodological 

guide on how to measure the environmental impact of using invertebrates for biological 

control of arthropods was published as a result of the Regulation of Biological Control 

Agents (REBECA) project, funded by the EU-Commission (Ehlers, 2011). Prior to the 
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release of a beneficial insect into the environment, all of the risks and benefits should 

always be weighed (van Lenteren et al., 2003; Bigler et al, 2006; van Lenteren and 

Loomans, 2006; De Clercq et al, 2011). 

Beyond the limits of classical biological control it is useful to improve knowledge 

on the role played by indigenous antagonists, including parasitoids, in the control of 

introduced pests. It has to be pointed out that, in many cases, in biological control, a 

better effectiveness occurred resulted more effective compared to the previous ones 

(Hokkanen and Pimentel, 1984); in Italy there are cases in which the activity of 

indigenous parasitoids was of support in the control of introduced exotic insects 

(Giorgini et al, 1998; Viggiani, 2000). 

My research work focused on the study of the new associations occurring between 

indigenous parasitoids and three exotic pests introduced in Italy and Europe and was 

performed within a project “PRIN 2008” (Programmi di Ricerca di Rilevante Interesse 

Nazionale - Research Programs of National Interest) especially devoted to this topics. 

The three insects considered were the Geranium Bronze Cacyreus marshalli Butler 

(Lepidoptera: Lycaenidae), a pest of Geranium plants (chapter 2, page 5); the Oriental 

Chestnut Gall Wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), a 

plague of Castanea sp. (chapter 3, page 16) and the Multicolored Asian Ladybug 

Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae); this ladybug was introduced into 

Europe and Italy as a biological control agent, but for since some years it has 

considered as an invasive species, dangerous for local enthomophagous insects 

(chapter 3, page 31). The studies were performed with field samplings and laboratory 

tests on the three species, as described in the following text. 
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Cacyreus marshalli Butler 

Introduction 

Cacyreus marshalli Butler is a Lepidoptera species from Lycaenidae family. The 

genus Cacyreus includes nine species, eight of them exclusive of Africa, one found in 

the Arabic area (Ackery et al, 1995). Except two species (C. audeoudi Stempffer and C. 

ethiopicus Tite) all these butterflies were known as pests of Lamiacee and Geraniacee; 

in particular C. palemon (Stoll), C. dicksoni Pennington, C. neibuhri Larsen and 

C.marshalli feed on Geranium and Pelargonium plants (Clark and Dickson, 1971). 

The Geranium Bronze C. marshalli, native of southern Africa, can live in different 

habitats, from sea coast to mountain (Clark and Dickson, 1971) its life cycle is 

influenced by environmental conditions, in particular temperature: at 20°C the cycle is 

complete in 60 days, at 30°C in a month (Sarto i Monteys, 1994). In the Balearic island 

this species has probably up to six overlapping generations per year (Sarto i Monteys, 

1994). Eggs, whitish to light-yellow or brown in colour, 0.5 mm in 

diameter x 0.3 mm in height, are oviposited near flower buds or 

rarely on leaves (EPPO, 1993) (Fig. 1). The first instar larva is 

basicaly green in colour but sometimes yellowish with whitish tufts 

of setae. It has an average lenght of 1 mm which increases to 2 

mm within 8 days (Clark and Dickson, 1971). Second, third and 

fourth instar grow to 3, 6 and 13 mm typically in 8, 8 and 9 days, 

respectively; the colour may be greenish and/or yellowish with or 

without pink markings, tufts of setae are always present (Clark and 

Dickson, 1971). The larvae produce galleries in the stems and 

flower peduncles, which become packed with frass. The damage 

becomes most visible during the hot season when the larvae are 

most active; flowers can be totally eaten by the larvae. Damage is 

often associated with secondary damage by microorganisms 

which can also colonize the tissue around the entrance hole of the 

larvae into the peduncles (Sarto i Monteys and Maso, 1991). 

Leaves may be partially eaten by the larva but this symptom is 

less frequent and can be confused with feeding by snails (Sarto i 

Monteys and Maso, 1991). Seriously affected plants may die as a 

Figure 1: Adult, egg laid on 

stem, four instar larva with 

damage and pupa of 

Cacyreus marshalli 
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result of the infestation. Fourth (last) instar larvae emerge from stems, making circular 

holes and feed on leaves and flowers (Fig. 1). The larvae turn into pupae, which have 

no cocoon, mainly at the base of the plant near the soil surface (Favilli and Manganelli, 

2006); usually they are very hairy; greenish, pale-yellowish or brownish, with brown 

mottling and an average size of 9 mm (Clark and Dickson, 1971) (Fig. 1). The 

development time varies depending on temperature (17 days at 20°C, 8 days at 30°C) 

(Sarto i Monteys, 1994). Female adults have a wingspan of 18-27 mm while male adults 

have a wingspan of 15-23 mm. Cacyreus marshalli has a bronze brown colouring of the 

upper wing surface with white spots on the fringe (Fig. 1). 

The first record in Europe of this butterfly was in United Kingdom, at Cheshunt in 

Hertfordshire, in 1978; when two larvae were accidentaly found on plants of the genus 

Pelargonium originated from the Republic of South Africa. Fortunately these larvae were 

identificated by the British Ministry of Agriculture, Fisheries and Food (MAFF) in 

Harpenden, Hertfordshire, and destroyed (Sarto i Monteys, 1992). But in the early 

1990s some samples of C. marshalli were found in the Balearic Archipelago (Spain) 

(Eitschberger and Stamer, 1990); the high number of samples, five males and eight 

females, suggests that the introduction had happened some years before (Eitschberger 

and Stamer, 1990). Nowadays C. marshalli is estabilished in various European 

countries (Favilli and Manganelli, 2006; Pignataro et al, 2007; Verovnik et al, 2011). In 

Italy it was first recorded in 1996 in Latium (Trematerra et al, 1997) and later spread to 

most other regions (Jucker et al, 2009). 

The Geranium Bronze mainly attacks Pelargonium and Geranium plants and has 

become one of the most harmful insect pest of cultivated geraniums in Italy and other 

European countries where it occurs. As a consequence it has been included in the 

EPPO A2 quarantine list (EPPO,  2002). However C. marshalli shows some 

preferences among different cultivars of Pelargonium; in particular it has shown 

preference for the varieties zonal and peltatum, over the varieties grandiflorum and 

capitatum (Sarto i Monteys, 1994; Lupi and Jucker, 2005). In laboratory tests larvae 

also ate wild species like Geranium pyrenaicum Burm, G. robertianum L, G. 

rotundifolium L (Sarto i Monteys, 1994; Lupi and Jucker, 2005). Therefore this species 

is not only dangerous to cultivated geraniums, but also rapresents a potential threat for 

Italian (and European) biodiversity, for wild-growing native Geranium species and 

indigenous lycaenid butterflies through of competition (Quacchia et al, 2008). The fast 

spreading and estabilishment of C. marshalli in introduced areas is probably due to 
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various factors including polyvoltine cycle, lack of diapause requirement (in Italy larvae 

don’t show a diapause period [Trematerra et al, 1997]), difficult detection of the larvae in 

the stems and also the scarcity of effective natural enemies compared with the native 

range (EPPO, 2002; Quacchia et al, 2008). 

Difficulties in controlling this pest are due to the life cycle of the larvae, which live 

inside the plants for long time. Initially in the aeras of introduction chemical control 

(Herrero et al, 2002: Sacco et al, 2004) or the use of different varieties of Pelargonium 

and Geranium were utilized (Alonso et al, 2004; Lupi and Jucker, 2005). In South Africa 

C. marshalli is controlled by a complex of predators and parasitoids like Diptera 

Tachinidae and Hymenoptera Braconidae of the genus Apanteles, parasitoids of third 

instar larvae (Clark and Dickson, 1971). In Italy there were a few records of predation by 

spiders of the family Thomisidae and lizards of the genus Podarcis (Favilli and 

Manganelli, 2006). In Europe recorded natural enemies of the Geranium Bronze include 

the oophagous parasitoid Trichogramma evanescens Westwood in Spain (Sarto i 

Monteys and Gabarra, 1998) and the tachinid larval parasitoid Aplomya confinis (Fallen) 

in Italy (Vicidomini and Dindo, 2007), but their impact on the target species has not 

been remarkable so far. Moreover the predatory activity of Macrolophus caliginosus 

Wagner toward the eggs and young larvae of C. marshalli has been shown and the 

possible use of this mirid as biocontrol agent of the lycaenid has been suggested 

(Sacco et al, 2009). In this framework, studies aimed at increasing the knowlwdge on 

the possible role of other native natural enemies in the control of C. marshalli are 

justified. In this part of my research the acceptance and suitability of the Geranium 

Bronze by two indigenous parasitoids, Exorista larvarum (L.) (Diptera: Tachinidae) and 

Brachimeri tibialisi (Walker) (Hymenoptera: Chalcididae), was thus investigated in the 

laboratory, so as to evaluate the possibility that a new association between these two 

beneficial insects and the aliene lycaenid butterfly also occurs in the field. The two 

parasitoids are wildspread in Italy and most other European countries where C. 

marshalli has been introduced (www.faunaeur.org). Exorista larvarum and B. tibialis are 

polyphagous parasitoid of Lepidoptera, including Lymantria dispar (L.) and other 

defoliators (Luciano and Protta, 1984) and are currently maintained in a continuous 

colture in the laboratory of Entomology at the University of Bologna (Italy) using Galleria 

mellonella (L.) as factitious host. Exorista larvarum (Fig. 2) is a gregarious larval 

parasitoid which lays eggs on the host body. The newly hatched larvae penetrate the 

host intergument and continuosly grow until pupation which generally occurs outside the 

http://www.faunaeur.org/
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host carcass (Michalkova et al, 2009). In the laboratory 

of the University of Bologna an E. larvarum colony was 

estabished in 1992 and augmented in 2004 with adult 

emerged from Lymantria dispar (L.) and Hyphantria 

cunea (Drury) larvae that were field-collected in the 

province of Bologna (Italy, 44°30’27’’N, 11°21’5’’E). 

Bachymeria tibialis (Fig. 2) is a solitary parasitoid 

which develops from egg to adult in the host pupa. 

Brahymeria tibialis colony was established in the early 

2000s with adults emerged from L. dispar pupae field-

collected at Tempio Pausania (Sardinia, Italy, 

40°54’0’’N, 9°6’0’’E). 

Aims of research 

The present work was aimed at the studying the acceptance and suitability of C. 

marshalli by E. larvarum and B. tibialis, compared to the factitious host G. mellonella, 

maintained as control. 

Materials and Methods 

The experiments concerning E. larvarum and B. tibialis were performed in the 

laboratory of Entomology at the University of Bologna, Italy; the colonies of the 

parasitoids and the experiments were all conducted in a rearing chamber at 26±1°C, 

65±5 RH and L16:D8 photoperiod. 

Insect rearing 

The trials were carried out using C. marshalli larvae that were collected in the field 

from Pelargonium sp. in Bologna area (northern Italy, 44°48’39’’N, 11°37’84’’E). The 

larvae were individually mantained in 10-cm diameter plastic Petri dishes inside the 

rearing chamber and fed with leaves of P. zonale (Fig. 2) until they reached for the four 

(final) instar, identified according to Clark and Dixon (1971) and Favilli and Manganelli 

(2006) (at least 7 mm in length). 

Exorista larvarum and B. tibialis were reared on G. mellonella as described by 

Dindo et al. (2001; 2007).The adults of both parasitoids were kept in plexiglass cages 

(40x30x30 cm). 

Figure 2: Females of Exorista larvarum on 

lump of sugar, female of Brachymeria 

tibialis on cage wall and larva of Cacyreus 

marshalli fed with leaf of Pelargonium spp.  

after exposure to E. larvarum (the eggs of 

the parasitoid are visible on the body) 
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Exorista larvarum adult were fed on cotton balls soaked in a honey and water 

solution (20% honey) and lump sugar (Fig. 2). One day per week 80 larvae of the 

factitious host G. mellonella were placed inside E. larvarum cages and removed after 

the parasitoid had laid about 4-5 eggs per larva; subsequently the host larvae were 

removed and mantained in a plastic box (10x20x10 cm) in the rearing chamber waiting 

for the exit of the parasitoid larvae, which subsequently turned into puparia. The puparia 

obtained were used for creating new cages of adults. 

Brachymeria tibialis adults were fed on cotton balls soaked in a honey and water 

solution (20% honey) and drops of honey. One day per week some 2-4 days old pupae 

of G. mellonella were placed inside B. tibilalis cage and removed after one hour; the 

pupae were mantained in the rearing chamber waiting for the parasitoidadult 

emergence.  

The lepidopterous larvae were reared on an artificial diet (Campadelli, 1987), at 

30±1°C, 65±5% RH and in complete darkness. The larvae were fed every two days until 

shortly before maturity; these mature larvae were used to maintain the parasitoid 

colony, for the experiments or to maintain the G. mellonella colony. 

Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by 

Exorista larvarum  

The experiment was performed under no-choice conditions. I tested sixty larvae of 

C. marshalli and sixty larvae of the control species G. mellonella. All larvae were of the 

last instar, which proved to be the most suitable to E. larvarum in the case of G. 

mellonella (Mellini et al, 1994). A preliminary experiment showed that no E. larvarum 

eggs were laid on C. marshalli larvae unless the latter were exposed to flies for 2 hours 

at least. For the experiment, therefore, C. marshalli or G. mellonella larvae were placed 

individually in a plexiglass cage (40 x 30 x 30 cm) which contained about 25 adult 

females and 25 adult males of E. larvarum; all flies had emerged 5-6 days before (Dindo 

et al, 2007) and had already oviposited on G. mellonella larvae. The larvae were 

removed after 2 hours and the eggs laid on their body were counted. The larvae with 

eggs were individually kept in 10 cm diameter Petri dishes with food until death, 

parasitoid puparium formation or host emergence (Fig. 2). The newly formed puparia 

were weighed and individually kept in glass tubes until parasitoid emergence. The sex 

of the newly-emerged adults was recorded. The experiment was carried out at 26±1°C, 

65±5% RH, and a L16:D8 photoperiod. 
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Each host larva was considered as a replicate. The larvae were considered as 

“accepted” when at least one E. larvarum egg was found on their body. As a measure of 

host acceptance, I considered 1) the number and percentage of larvae with at least one 

E. larvarum eggs (over the total number of larvae exposed to flies = 60) and 2) the 

mean number of eggs per accepted larva (the highest the eggs per larva, the highest 

the acceptance of the host larvae by the parasitoid flies). The number and percentage 

of suitable larvae (i.e. accepted larvae from which puparia formed) were also calculated. 

The weights of the newly-formed puparia, the development times from egg to puparium 

and from puparium to adult emergence and sex ratio were recorded. The number and 

percentage (based on puparia) of emerged flies was also calculated. The number and 

percentage (based on puparia) of emerged flies was also calculated. All these 

parameters were also considered as criteria for host suitability. Host mortality was 

evaluated as number and percentage of dead larvae based on accepted larvae. 

Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by 

Brachymeria tibialis 

Also this experiment was performed under no-choice conditions. Cacyreus 

marshalli or G. mellonella 2-day old pupae were individually exposed to about 10 B. 

intermedia females and 10 males in a plexiglas cage. Due to low availability of 

parasitoids in the laboratory colony, adults of mixed ages were used. The parasitoid 

females had already oviposited in G. mellonella pupae before the experiment. In this 

trial, the host pupae were removed from the cage as soon as a female pierced their 

body with the ovipositor. The pupa was considered as not accepted if no ovipositor 

insertion was detected following 2 hours after its placement in the cage. Upon removal 

from the cage, all pupae (accepted and not accepted) were individually kept in 5-cm 

diameter plastic Petri dishes until death, parasitoid or host emergence. The newly 

emerged parasitoid adults were sexed and weighed. 

Twenty-five pupae of each species were tested, each of which was considered as 

a replicate. Host acceptance and suitability were respectively evaluated as number and 

percentage of accepted pupae and number and percentage of accepted pupae which 

let a parasitoid adult emerge. Successful parasitism (= number of host pupae which let 

a parasitoid adult emerge/original number of pupae x 100) was also calculated. The 

newly-emerged adults were sexed and their weights and development times from egg to 

adult were separately recorded for males and females 



11 

 

Statistical analysis 

 The Kruskall-Wallis non-parametric test was used to analyze the mean number of 

eggs/number of accepted larvae, the puparium weights and development time from egg 

to puparium of E. larvarum and the overall development time of B. tibialis, due to 

heteroscedasticity. One-way ANOVA was used to analyze the effects of C. marshalli 

and G. mellonella on weights of adult B. tibialis and E. larvarum. The data for other 

parameters were analyzed by 2x2 contingency tables using Yates correction for small 

numbers (< 100). All statistical tests were done with STATISTICA 6.0 (StatSoft, 2001). 

 Results 

 Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by 

Exorista larvarum  

The mean length of all larvae tested was 0.93±0.06 cm (mean±SE); instead the 

mean length of G. mellonella was 2.4±0.03 cm (mean±SE). Exorista larvarum females 

accepted C. marshalli larvae, though at a significantly lower rate than G. mellonella 

larvae (χ2=27.55, df=1, P=0.00001) (Fig. 3-a). The mean number of eggs per accepted 

larva was also significantly lower for C. marshalli than for G. mellonella (Tab. 1). 

Following acceptance, parasitoid puparia were obtained from both hosts, but at a 

significantly lower rate in the case of the Geranium Bronze (χ2=13.96, df=1, P=0.0002) 

(Fig 3-b). Galleria mellonella larvae produced a minimum of 1 and a maximum of 3 

puparia each, whereas successfully parasitized C. marshalli larvae produced only one 

puparium. Only in a case I obtained a puparium of E. larvarum from a pupa of C. 

marshalli, meaning that the parasitoid had continued its development after the host 

larval stage, an unusual event. Independently of puparium formation, most of the 

accepted C. marshalli larvae died, at a not significantly different level compared to G. 

mellonella, whereas the non-accepted ones pupated and emerged as adults. Compared 

to G. mellonella, total mortality was however significantly lower for C. marshalli than for 

G. mellonella (χ2=3.64, df=1, P=0.006) (Fig. 3-c). 

The weight of the puparia formed in G. mellonella was significantly higher 

compared to that of the puparia obtained from C. marshalli (Tab. 1), but the parasitoid 

development times, from egg to puparium and from puparium to adult, were not 

significantly different between the two host species (Tab. 1). Fly emergence was 

significantly lower (χ²=4.03, df=1; P=0.045) for the puparia obtained from C. marshalli 
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(=15.2%) compared to those formed in G. mellonella (=50%) (only two of the puparia 

formed in Geranium Bronze larvae let an adult emerge); it should be noted that in a few 

cases E. larvarum tried to emerge by puparium but were not successful. Only two adult 

parasitoids were obtained from C. marshalli, 1 male and 1 female; as a result the 

parasitoid sex ratio was female biased (2.6:1) when compared to G. mellonella results. 

Due to the low number of flies obtained from the latter host, no statistics was done 

either for this parameter or for the development time from puparium to adults. These 

time were (means±SE) 8.9±0.2 and 9.5±0.5 days for the flies respectively obtained from 

G. mellonella (n=36) and C. marshalli (n=2), thus slightly longer in the latter host 

species. Mating capacity and female fecundity were not checked in this study, due to 

the very low number of flies obtained from C. marshalli. 

Table 1: Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by Exorista larvarum: parasitoid eggs per 

acceptate larva, puparium weight and development time from eggs to puparium. Means±SE. Number of replicates (n) is given in 

parentheses over the means. Means in a column followed by the same letter are not significantly different, P>0.05; Kruskall-

Wallis test.  

Host species Eggs/accepted larva (no) Puparial weight Time from eggs to puparium (days) 

Galleria mellonella 
(60) 

38.6±3.6a 

(72) 

30.2±1.6a 

(72) 

8.1±0.1a 

Cacyreus marshalli 
(36) 

2.4±0.3b 

(13) 

9.1±0.9b 

(13) 

8.2±0.6a 

H 64.9 28.4 0.15 

N 96 85 85 

P 0.00001 0.0001 0.96 

  

0% 

20% 

40% 
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80% 

100% 

Galleria mellonella Cacyreus marshalli 

Acceptance 

Accepted larvae Non-accepted larvae a 

0% 
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Suitable larvae Unsuitable larvae b 
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Dead larvae Alive larvae c 

Figure 3: Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by Exorista larvarum: a) accepted larvae 

(%), b) suitable larvae (=accepted larvae form which puparia formed) (%), c) dead larvae (on accepted larvae) (%). Original 

number of larvae = 60 per species 
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Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by 

Brachymeria tibialis   

The mean (±SE) pupal lenght was 0.8±0.02 cm for C. marshalli and 1.5±0.2 cm for 

G. mellonella. 100% G. mellonella and 52% C. marshalli pupae were accepted by B. 

tibialis females (fig. 4-a); the difference in host acceptance was significant (χ²=13.27, 

df=1; P=0.0003). There was no significant difference between the two host species with 

regard to suitability, indicated by the percentage of accepted pupae which let a 

parasitoid adult emerge (χ²=2.61, df=1; P=0.11) (Fig. 4-b). The percentage for C. 

marshalli was considerably lower compared to that recorded for G. mellonella and, at 

the end of the study, successful parasitism was significantly lower for C. marshalli than 

for G. mellonella (χ²=13.72, df=1; P=0.002) (Fig. 4-c). All the accepted pupae of both the 

host species died, whether successfully parasitized or not, whereas the non-accepted 

ones (only C. marshalli) emerged as adults.  

From exposed C. marshalli seven parasitoids emerged, all of them were males; 

some females emerged from G. mellonella, but for this host species the sex ratio was 

male biased (15 males: 6 females). The result concerning the mean weights and 

development time are shown in the Table 2. The mean weights and development times 

of the six B. tibialis females emerged from G. mellonella pupae were respectively 

13.8±0.1 mg and 15.7±0.2 days. Since no females were obtained from C. marshalli 

pupae, no statistical analysis was possible for this parameter. 
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Figure 4: Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by Brachimeria tibialis: a) accepted pupae 

(%), b) suitable pupae (accepted pupae from which parasitoid adults emerged) (%), c) successfully parasitized pupae (%), 

calculated on the original number of pupae (=25). The unparasitized pupae included both the non-accepted pupae and unsuitable 

ones. Yates corrected χ2 values are presented (sample size <100). 
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Table 2: Acceptance and suitability of Cacyreus marshalli and. Galleria mellonella by Brachymeria tibialis:, parasitoid male 

adult weight and development time from eggs to adult. Means±SE. Number of replicates (n) is given in parentheses over the 

means. Means in a column followed by the same letter are not significantly different, P>0.05; one-way ANOVA or Kruskall-

Wallis test. 

Host species Weight (mg) Time from eggs to adult (days) 

Galleria mellonella 
(15) 

8.4±0.1 a 

(15) 

15.7±0.3a 

Cacyreus marshalli 
(7) 

3.8±0.3 b 

(7) 

14.9±0.4 a 

H(N)  1.46(22) 

F (df) 340.96 (1,20)  

P 0.0000001 0.23 

Discussion 

As expected, no successful parasitism of C. marshalli by E. larvarum was found, 

because the mature larvae of this butterfly are considerably undersized compared to the 

recorded host species of the tachinid fly (Carretti and Tschorsnig, 2010). Successful 

parasitism occurred in a previous laboratory trial, but at very low rates (Depalo et al, 

2010; 2012). As hypothesized by some authors, similarly to most tachinids which lay 

eggs on the host body (Stireman, 2002; Dindo, 2011) at close range (such as cage 

environment) E. larvarum primarily uses visual cues and motion signal in host location 

and acceptance. Besides being undersized compared to G. mellonella larve, C. 

marshalli larvae are also not very mobile. Their low acceptance by E. larvarum females 

was therefore probably related to these two physical factors, besides chemical cues, 

which are, however, less important in the process of host location and acceptance for 

Tachinidae, compared to Hymenoptera parasitoids (Mellini, 1991). Suitability to E. 

larvarum was also lower for C. marshalli compared to G. mellonella. Similarly to 

acceptance, this parameter was apparently affected by host size, which also influenced 

the parasitoid size. Whit this regard, Baronio et al. (2002) showed that E. larvarum 

development on artificial substrate was not only affected by the amount of food, but also 

by vital space available to larvae (i.e. the volume of the rearing containers). In particular, 

at equal amounts of medium, the number of individuals attaining larvael maturity and 

pupation was significantly lower in small containers, compared to standard ones. 

Otherwise, the puparium size was found not to be affected by vital space. Based on 

these findings, in C. marshalli–E. larvarum association, it may be hypothesized that 

parasitoid development was negatively affected by host size, whereas the puparium 

size was primarily influenced by the low amount of food resources available. 



15 

 

For B. tibialis, host location and acceptance are guided by chemical and physical 

cues (Drost and Cardé, 1992). Either of these stimuli could influence the lower 

acceptance of C. marshalli pupae by B. tibialis compared to G. mellonella pupae; but 

the effect of pupal size on this parameter is doubtful, because the recorded hosts of B. 

tibialis also include species of similar size as C. marshalli (Noyes, 2012). More research 

is therefore needed to clarify this matter. Moreover, no significant difference was found 

in the suitability of C. marshalli and G. mellonella, despite the different pupal size, but, 

as expected, B. tibialis adults (all males) emerged from C. marshalli were much smaller 

compared to those obtained from G. mellonella. As it is well known, the size of insects, 

including parasitoids, is often linked to their quality (Godfray, 1994). It may therefore be 

argued that the fitness of E. larvarum and B. tibialis obtained from C. marshalli is lower 

than that of the parasitoids formed from G. mellonella; due to be low number of adults 

obtained. This hypothesis was not tested in this study, and could be the subject of 

further research. It would be even more interesting to test to what extent previous 

experience with G. mellonella may influenced the acceptance and suitability of C. 

marshalli by the female wasps and flies.  

In conclusion, the results obtained with E. larvarum and B. 

tibialis suggest that both these native parasitoids have, the 

potential to create a new association with C. marshalli in 

nature. However in the short run their possible contribution to 

biological control of this pests seems especially related to host 

mortality due to incomplete parasitoid development; in fact 

most C. marshalli larvae accepted by E. larvarum and all C. 

marshalli pupae accepted by B. tibialis died, despite the low 

successful parasitism. These results indicate that, similarly to 

native parasitoids antagonists of other alien insect pest in Italy, 

E. larvarum and B. tibialis could effectively contribute to 

lowering the population of C. marshalli, even if parasitism is 

successfully completed in only a few cases; but additional 

studies are required to better evaluate this issue.  

Figure 5: Larva of Cacyreus 

marshalli killed by Exorista 

larvarum larvae; larva of 

Exorista larvarum emerged from 

larva of Cacyreus marshalli and 

puparium of Exorista larvarum 

emerged from Cacyreus 

marshalli larva 
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Dryocosmus kuriphilus Yasumatsu 

Introduction 

Dryocosmus kuriphilus Yasumatsu is a hymenopteran species belonging to the 

family Cynipidae, subfamily of Cynipinae, tribe of Cynipini. Its native area is in China, 

where it lives at the expense of chestnut trees (Castanea sp.); D. kuriphilus is one of the 

two species in this tribe (and the only palearctic species) to induce galls on Castanea 

(Felt, 1940; Stone et al, 2002; Ács et al, 2007). From China D. kuriphilus has spread to 

many chestnut wood areas of the world, so that it is wordwilde considered one of the 

major pests of chestnut trees (Moriya et al, 1990; Brussino et al, 2002). It is also known 

with its common English name: oriental chestnut gall wasp. 

Dryocosmus kuriphilus reproduces by thelytokous parthenogenesis; no males are 

known, and it has one generation per year (Moriya et al, 2003) (Fig. 6). The adult 

females live 2-10 days (Yasumatsu, 1961). They are 2.5-3 mm long on average; body is 

black, legs, scapulus and pedicels of antennae, apex of clypeus and mandibles are 

yellow-brown; head is finely sculptured; scutum, mesopleuron and gaster are highly 

polished, smooth; propodeum has 3 distinct longitudinal carinae; propodeum, pronotum 

(especially above) are strongly sculptured; scutum has 2 uniformly impressed and pitted 

grooves (notaulices) that converge posteriorly; the radial cell of forewing is opened; the 

antennae are 14-segmented with apical segments not expanded into a club (EPPO, 

2005). The females emerge in early summer, from the end of May until the end of July, 

depending on locality and chestnut (Bosio et al, 2009), and immediately lay eggs inside 

chestnut buds that will develop the following 

spring. Each female may lay more than 100 

eggs, with 23-30 eggs found in one bud 

(Otake, 1980; Otake, 1989; EPPO, 2005). 

Eggs are oval, milky white, 0.1-0.2 mm 

long with a long stalk. They hatch in 30-40 

days and first instar larvae remain within the 

eggs and overwinter in the plant buds. 

The larvae are 0.2-0.6 mm in length in the first instar, 0.8-1.5 mm in the second, 

2.3-2.5 mm when fully grown (Viggiani and Nughes, 2010), milky white, without eyes 

Figure 6: Life cycle of Dryocosmu kuriphilus (from Alma 

and Quacchia, 2012; modified) 
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and legs. At bud burst in spring, larval feeding induces the formation of green or rose-

colored galls. These are are unilocular or multilocular, 5-20 mm in diameter on 

Castanea crenata Siebold and Zucc. (Tamura, 1960; Otake, 1980), 8-15 mm on C. 

sativa Miller or C. sativaXC. crenata in Europe (Breisch and Streito, 2004). Each gall 

can contain 1-5 gall-cells and can host 1-16 larvae (Zhang, 2009). The larvae live in the 

gall for 30-70 days, generally for 50 days (Ding et al, 2004). Pupation occurs within the 

gall from mid-May to mid-July. The pupae are 2.5 mm long, black or dark brown. 

 Dryocosmus kuriphilus emerged as a pest in the the mid twentieth century and is 

now one of the most important global insect pests of Castanea trees (Aebi et al, 2006). 

The first record out of China of this pest was in Japan in 1941 (Moriya et al, 2003). 

Subsequently it was found in 1958 in Korea (Murakami et al, 1995) and in Nepal in 1999 

(Abe et al, 2007). The first record out of Asia was in North America, in 1974 in Georgia, 

USA (Cooper and Rieske, 2007); after this finding D. kuriphilus spread quickly 

throughout the USA. In Europe the first record was in Italy (in Piedmont) in 2002 

(Brussino et al, 2002); after this first record D. kuriphilus was reported in other European 

countries (tab. 3). 

Table 3: Spread of Dryocosmus kuriphilus in Europe (from EPPO, 2012)  

Country 
Year of first 

record 
Status Reference (First record) 

Croatia 2010 
Present, under official 

control 
Matosevic et al, 2010 

Czechia 2012 
Transient, under 

eradication 
EPPO, 2012 

France 2005 
Present, restricted 

distribution 
Aebi et al., 2006 

France 

(Corse) 
2010 

Present, restricted 

distribution 
Aebi et al., 2006 

Hungary 2008 
Absent, considered 

eradicated 
EPPO, 2009 

Italy 2002 Present Bosio et al, 2003 

Italy 

(Sardinia) 
2008 Found http://www.sardegnaagricoltura.it/index.php?xsl=44 

Italy (Sicily) 2010 Found (around Catania) EPPO, 2011 

Netherlands 2008 
Transient, under 

eradication 
EPPO, 2010 

Slovenia 2004 Absent, pest eradicated Knapic et al, 2009 

Switzerland 2009 
Transient, actionable under 

eradication 
Foster et al., 2009 

In its native areas D. kuriphilus feeds on C. mollissima Blume (Chinese chestnut) 

(Zhu et al, 2007). In the countries of introduction it has adapted to live on different 

species of genus Castanea such C. crenata Sieb. et Zucc. (Japanese chestnut) (Kato 

and Hijii, 1993), C. dentata (Marsh.) (American chestnut) (Anagnostakis, 2001), C. 

http://www.sardegnaagricoltura.it/index.php?xsl=44
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sativa Mill. (European chestnut) (Brussino et al, 2002) and their hybrids. It also infests 

C. seguinii Dode in China, but is not known to attack the wild North American species C. 

pumila Mill. (Rieske, 2007) and C. pumila Miller (ex C. alnifolia Nuttal) (EPPO, 2005), 

which are very often grown near infested chesnuts. Also, the numerous cultivars show 

different rates of infestation: for example the varieties "Marsol" and "Madonna", in Italy, 

were highly susceptible to be attack by the D. kuriphilus, while conversely the French 

"Bouche de Bétizac" seems to be immune (Ministero delle politiche agricole, 2010). 

The introduction is thought to be associated with the import of infested Chinese 

chestnut trees (infected cultivars and/or material for grafting) (Aebi et al, 2006). Local 

spread occurs throug the movement of infested planting material (EFSA, 2010), or by 

flight of the adult females during the period of flights.  

The damages were caused by the larvae which induce the formation of galls on 

developing leaves and twigs. After adult emergence, the galls 

dry and become wood-like, and remain attached to the tree for 

up to two years. While new galls are readily detected on plants, 

eggs or first instar larvae inside the buds cannot be detected 

by simple visual inspections. Dryocosmus kuriphilus disrupts 

development of twigs and leafs and it reduce fruiting. Severe 

infestation can result in mortality of young trees (Payne et al, 

1975; Dixon et al, 1986; Anagnostakis and Payne, 1993), 

probably in combination with other detrimental factors such as 

fungal infection, drought or severe attack by other herbivores 

(Moriya et al, 2003). The reduction of fruit yield can be high, up 

to 50-80% (Payne et al, 1983; EPPO, 2005; EFSA, 2010). 

Chestnut cultivation fulfils several important commercial, socio-cultural, and 

ecological roles in southern Europe. For example in Piedmont, chestnut orchards are 

traditionally planted for fruit and wood production, representing a significant additional 

long-term income for many farmers. From an ecological point of view, chestnut forests 

are the major woodland type in Northern Italy (Bounous, 2002). Due to the threats for 

chestnut-growing, D. kuriphilus has been included in 2003 to the EPPO A2 action list 

(no. 317), and EPPO member countries are thus recommended to regulate it as a 

quarantine pest. Due to its rapid spread, in Italy a specific Ministerial Decree has been 

Figure 7: Galls of Dryocosmus 

kuriphilus 
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issued in 2008 (Ministero delle politiche agricole, Decreto 30 ottobre 2007, 2008), in 

order to prevent its propagation. 

The effectiveness of chemical control is limited by the cryptic nature of this insect, 

which is in dormant buds for the majority of its life cycle, and by the difficulty of precisely 

detecting of adult emergence (Torii, 1959; Murakami, 1981; EFSA, 2010). Moreover, 

chemical treatments often are impractical due to the natural distribution of chestnut 

trees on steep terrain. Mechanical removal of infested twigs (pruning) and the protection 

of immature twigs with nets, although effective, do not represent practical solutions 

because of labour intensiveness. Breeding of resistat chestnut varieties was successful 

for about 20 years in Japan, but these were eventually rapidly overcome by novel 

aggressive strains of D. kuriphilus (Murakami, 1981). Within some parts of their native 

area in China D. kuriphilus populations are kept at low densities, presumably by natural 

enemies like hymenopteran parasitoids, although little is known of alternative sources of 

mortality of the pest in this region (EFSA, 2010). In galls of D. kuriphilus collected in 

China, Korea and Japan several chalcid parasitoids have been found (Tab. 4); 

futhermore other parasitoids has been found in other countries of introduction, Italy 

included (Stone et al, 2002; Aebi et al, 2006) (Tab. 4). All these parasitoids are known 

as antagonists of oak gall wasps, showing that, when D. kuriphilus becomes established 

in new environments, local gall parasitoids are rapidly recruited as enemies of this 

wasp.  

Generally, the attack rates of indigenous parasitoid species are low (Stone et al, 

2002; Aebi et al, 2007), but some of these appeared to be very effective, especially 

Torymus sinensis Kamijio (Hymenoptera: Torymidae). Torymus sinensis was described 

as a specific parasitoid of D. kuriphilus (Murakami et al, 1977) and some research 

showed that it is highly species-specific (Quacchia et al, 2008) presumably due to the 

highly similar biological cycles of the parasitoid and the chestnut gall wasp (Moriya et al, 

2003). Programs of biological control, based on the introduction of T. sinensis, have 

been started in some countries; the first was made in Japan, where this parasitoid has 

shown encouraging results (Quacchia et al, 2008; Moriya et al, 2003). After this first 

program, other were conducted in North America in the 1970s, and in Europe (Italy) in 

the 2000s (Payne, 1978; Aebi et al, 2006; Cooper and Rieske, 2007; Quacchia et al, 

2010). 
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Table 4: Hymenoptera Chalcidoidea parasitoids emerged from galls of Dryocosmus kuriphilus in Asia (from: EPPO, 2005; 

Yasumatsu and Kamijio, 1979), North America (from: Payne, 1978; Cooper and Rieske, 2007) and Europe (from: Speranza et al, 

2009; Aebi et al, 2007; Graziosi and Santi, 2008). 

 Name FamilyandSubfamily 
Asia Torymus sinensis Kamijio Torymidae:Toryminae 

 Torymus beneficus Yasumatsu et Kamijo  

 Torymus geranii (Walker)  

 Megastigmus nipponicus Yasumatsu et Kamijo Torymidae:Megastigminae 

 Megastigmus maculipennis Yasumatsu et Kamijo  

 Ormyrus punctiger Westwood  Ormyridae 

 Ormyrus flavitibialis Yasumatsu et Kamijo  

 Eurytoma brunniventris Ratzeburg Eurytomidae:Eurytominae 

 Eurytoma setigera Mayr  

 Eurytoma schaeferi Yasumatsu et Kamijo  

 Sycophila variegata (Curtis)  

 Eupelmus urozonus Dalman Eupelmidae:Eupelminae 

 Cynipencyrtus flavus Ishii Tanaostigmatidae 
North America Torymus tubicola (Osten-Sacken) Torymidae:Toryminae 

 Torymus advenus (Osten-Sacken)  

 Ormyrus labotus Walker Ormyridae 

 Sycophyla mellea (Curtis) Eurytomidae:Eurytominae 
Europe Torymus flavipes (Walker) Torymidae:Toryminae 

 Torymus erucarum (Schrank)  

 Megastigmus dorsalis (Fabricius) Torymidae:Megastigminae 

 Ormyrus pomaceus (Geoffroy) Ormyridae 

 Eurytoma brunniventris Ratzeburg Eurytomidae:Eurytominae 

 Sycophyla bigutta (Swederus)  

 Eupelmus urozonus Dalman Eupelmidae:Eupelminae 

 Mesopolobus sericeus (Forster) Pteromalidae:Pteromalinae 

The introduction of non-native natural enemies to different countries as biological 

control agents that are self-perpetuating, self-dispersing and potentially permanent is a 

way of controlling pest insects, but this system can create new interaction with native 

communities (Sakai, et al, 2001). These interactions can adversely affect the native 

species, which may in turn prevent non-native species from establishing in a new 

community (Sakai, et al, 2001). Although T. sinensis is known as a specific parasitoid of 

D. kuriphilus, it should be noted that such supposed specificity is exceptional among 

parasitoid species attacking cynipid galls (Bailey et al, 2009). The host range of T. 

sinensis has never been studied or tested in detail in its native or introduced areas, 

whether in the laboratory or field (EFSA, 2010; Aebi et al, 2011). To date, only a few 

experiments have been conduced (Quacchia et al, 2008) and there are uncertainties 

about the experimental design and the choice of non-target host species, above all for 

the limited range of alternative host galls (EFSA, 2010). However, this range of 

alternative hosts is limited, and other alternative host galls on other plants (such as 

Diplolepis rosea (L.) or Dryocosmus cerriphilus Giraud, the only species of genus 

Dryocosmus present in Europe) were not considered. The parasitoid communities 
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associated with cynipid communities on oak, rose and chestnut galls are species-rich 

and generally regarded as closed; for example cynipids on each host plant taxon are 

attacked by a relatively few (but slightly overlapping) sets of natural enemies (Csoka et 

al, 2005). Moreover, as it has been seen in oak gall parasitoids (Nicholls et al, 2010), a 

shift from galls on chestnut to those on alternative hosts would allow T. sinensis to 

disperse beyond chestnut trees. Another risk associated with the introduction of T. 

sinensi is the possibility of hybridization with native species of Torymus (EFSA, 2010; 

Aebi et al, 2011). Hybridization of a biological control agent with native species is 

considered as an environmental risk to non-target species, and is a general threat to 

native biodiversity from related introduced or invading species (e.g. Perry et al, 2002). A 

case of hybridization was reported between T. sinensis and Japanese T. beneficus 

Yasumatsu et Kamijio (Moriya et al, 1992); hybrids were also detected in the field and 

molecular markers proved their hybrid origin (Yano et al, 200). 

Also due to the above mentioned potential risk related to the introduction of exotic 

natural enemies (which, at present, however seem to be limited for T. sinensis), it is 

worth to deepen our knowledge on the new association between this wasp and 

indigenous parasitoids. 

Aims of research 

My research was aimed at improving the knowledge on the association occurring 

in the field between D. kuriphilus and native parasitoids and, possibly, at increasing the 

list of parasitoids that have adapted to develop on this new host, in Emilia Romagna 

region. An other aim was to gain some preliminary laboratory data about the timing of 

emergence of the native parasitoids compared to D. kuriphilus. 

Materials and Methods 

This research was conduced in collaboration with the DIVAPRA (University of 

Turin). 

For this research I collected galls from infested chestnuts. The selected area was 

located in Castel del Rio, a municipality in the Bologna Province (44°12’50’’ N, 

11°30’15’’ E), on the Tuscan-Emilian Appenines. Historically, the town's countryside is 

well known as an important chestnut area; the tipical chesnut of this area, "il Marrone di 

Castel del Rio", has been cultivated for over 500 years and has received the European 
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Protected Geographic Status (PGI-Protected Geographical Indicatio) 

(http://www.marronedicasteldelrio.it/index.htm). 

The sampling occurred in the locality “Sestetto”, at 

an altitude of 460 m.a.s.l. The area appears as a mixed 

forest dominated by C. sativa, but there were also other 

tree species either spontaneous (eg. Quercus pubescens 

Willd and Fagus sylvatica L.) or planted (eg. Prunus 

avium L. and Ficus carica L.). The reason of this mixture 

is probably related to change in management landscape 

occurred in the second half of the XX century, when the 

local population fled the area and cultivated fields have 

gradually been invaded by wild species. In the mid 1980 

there was instead a gradual increase in the area used for 

the cultivation of the chestnut. The first record of D. 

kuriphilus in this area was in 2009 (A. Pollini, personal 

communication), one year after the first record of this gall 

wasp in Emilia Romagna (Graziosi and Santi, 2008). 

The sampling was performed in 2010, 2011 and 2012, in cooperation with the local 

chesnut growers and Dr. Aldo Pollini. Galls were selected randomly from chestnut trees. 

Each year, sampling was conducted in late spring (Tab. 5), when the trees of C. sativa 

were in the vegetative stage and the galls were evident on the plants. All the galls 

collected were transferred into laboratory; they were counted, put in a plastic boxes 

(30x18x10 cm,150 per box) with perforated covers closed by a very narrow wire netting 

and placed at standard conditions in a rearing chamber at 26±1°C, 65±5 RH and 

L16:D8 photoperiod. The boxes were daily checked and all the insects found inside the 

boxes (D. kuriphilus or others) were captured by an insect aspirator, killed by freezing 

and subsequently observed under a microscope. The samples were classified with the 

aid of guides (Chinery, 2004; de Vere Graham and Gjswijt, 1998), dubious samples 

were sent to external researchers (A. Quacchia and R. Askew) to confirm the 

identification. In November 2011 some winter galls were also collected in order to 

assess possible presence of overwintering parasitoids. 

 

Castel del Rio 

Figure 8: Up: the municipality of Castel del 

Rio and the area of research (in yellow); 

down: the locality "Sestetto" 
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Table 5: Dates of sampling, number of galls collected from trees of Castanea sativa in collection sites (I or II) in the three years 

of research.  

Date of sampling Number of galls Site 

01 June 2010 649 
I 

16 June 2010 2061 

25 May 2011 2050 I 

25 May 2011 237 II 

09 June 2011 2000 I 

12 July 2011 218 I 

20 November 2011 560 I 

28 May 2012 3500 
I 

21 June 2012 1300 

The specific aim of the first year of research was to find if any native parasitoid 

emerged from to D. kuriphilus galls collected in the area of study. Since new 

associations were found, in the second year I enlarged the research: during the first 

date of sampling I collected galls also in a second site (II), placed at a lower altitude 

(430 m.a.s.l.) than the first and south-facing, and I also made a third sampling in the first 

site in early summer (Tab. 5). Due to the results obtained in the second year, in the third 

year of research I decided to perform only two sampling in a single site, the first (I). 

The variables considered for this research were: the species (or genus) richness 

of parasitoids found, the relative abundance of each insects species/genus calculated 

on the overall number of insects emerged from galls (in total and in different year of 

sampling), the time from the day of sampling to insect emergence (in days) and 

percentage of parasitism. The latter, following the DIVAPRA indications, was calculated 

assuming the presence of 3.5 gall-cells per gall; therefore the percentage of parasitism 

was calculated as: number of parasitoids emerged from galls/(number of galls x 3.5). 

Since all galls were maintained in the standard conditions descrived above, the time 

from sampling to insect emergence was measured to have a preliminary information 

about the timing of insect emergence (either D. kuriphilus or parasitoids) 

Statistical analysis 

The analysis was performed for the second and third year of research. The data 

concerning the insect species, the time and the site of sampling were analyzed by 2x2 

contingency tables. Statistical tests were done with STATISTICA 6.0 (StatSoft, 2001). 
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Results 

Parasitoids found 

All parasitoids found are known as antagonists of oak gall wasps. The most 

common genus was Torymus Dalman and almost all the individuals of this genus were 

T. flavipes (Walker). In all three years the other genera/species found were a small 

percentage of the parasitoids emerged (Fig. 10). Since there are still some doubts about 

the classification of a number of specimens, in the text I generally refer to samples with 

the genus name. Below I report notes on the most common parasitoid found, T. 

flavipes, with particular reference to external morphology. 

Torymus flavipes (Walker) 

This ectoparasitoid species presents two generation per year; the first generation 

usually emerges in late spring, the second in early autumn (Askew, 1965). The adults 

emerge from the oak galls where they have overwintered. Usually only one egg is laid 

on a host, which is paralysed, but in some case more eggs can be found in a gall 

(Askew, 1965). 

The female wasp measures 1.7-3.3 mm, i.e 2.5 mm on average, excluding the 

ovipositor. The head is coriaceous, metallic green with red/brown tints. The eyes are 

large and bright red, however the ocelli are almost colourless. The antennae are dark 

brown with a yellow marked scape and pale sensillae running along the segments. 

There is one ring and seven funicular segments. The thorax is metallic gold green and 

bronze. The wings are clear and hairy, with pale brown hairs. The veins are yellow 

brown and although the stigmal vein is short the stigma and uncus are both well formed. 

The legs have metallic green coxae with only afew long, pale hairs on the top of the rear 

pair. The rest of the legs are coloured pale yellow with 5 tarsal segments and darker 

claws. The gaster (abdomen) is a shiny brilliant metallic gold green with visible 

segments that are lightly sculptured and punctured. It is thin from above and from the 

side view it appears triangular. The ovipositor sheaths are hairy, dark above and yellow 

below.  

The male measures 1.6-2.9 mm with an average of 2.4 mm. The head is slightly 

different from the female, being coriaceous, bright metallic green and hairy. The 

antennae are grey brown in colour, with a glossy pedicel and yellow markings on the 
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scape and longitudinal sensillae. The thorax is a bright metallic green with some gold or 

bronze tinges and it is hairy. The stigmal vein is short but the stigma is sizable. The legs 

have metallic green coxae with a few long pale hairs on the top of the rear pair. The 

gaster is bright metallic green at the front, changing to bronze in the rear half with some 

hairs. It is slender from above but appears to be quite full from the side. 

There are differences in colour and form between individuals of the two 

generations of T. flavipes. Insects of the first generation are darker and more bronzed 

than those of the second generations, and tipically all the femora and the hind tibiae are 

marked with metallic green. Second generation pasasitoids are a much brighter green, 

with generally only the hind femora marked with metallic green. There is also a marked 

difference in length of the ovipositor sheathes: insects of the autumn generation always 

have short ovipositor sheaths; whilst those of the spring generation are dimorphic, 

sometimes having short ovipositor sheaths similar to the autumn generation, but most 

often having considerably longer ovipositors (Askew, 1965). 

 

     
Torymus flavipes 

(Walker) ♀ 

Mesopolobus tibialis 

(Westwood) ♀ 

Ormyrus pomaceus 

(Geoffroy) ♀ 

Megastigmus dorsalis 

(Fabricius) ♀ 

Sycophila iracemae 

Nives-Aldrey ♂ 

Figure 9: Parasitoids emerged from Dryocosmus kuriphilus galls in 2011 (identified by R. Askew) 
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Parasitoids emerged (quantitative and qualitative data) 

In 2010 (01/16 June) I collected 1356 galls; from these 1627 insects emerged, 

most of which were D. kuriphilus (Fig. 10-a). Most parasitoids were Torymus (70.14%) 

(Fig. 10-b); the other species found were Mesopolobus (20.14%), Ormyrus (7.91%), 

Eurytoma (1.08%) and Megastigmus (0.72%). 

 In 2011 (25 May, 9 June, 12 July) I collected 4505 galls; from these 3209 insects 

emerged, in this year the percentage of parasitoids and of D. kuriphilus were almost 

equaled (Fig. 10-a). Most parasitoids (92.38%) were Torymus (Fig. 10-c), whereas 

fewer than 10% belonged to other species. 

 In 2012 (28 May, 21 June) I collected 4800 galls; from these 2224 insects 

emerged, mainly D. kuriphilus (Fig. 10-a). The few parasitoids found (0.68%) belonged 

to only three species (Fig. 10-d). 

In total, in the 3 years, I collected 12015 galls and captured 7060 insects, mainly 

D. kuriphilus (Fig. 10-a). Among the parasitoids found, 88.89% were Torymus (Fig. 10-

e), the others were mainly Mesopolobus and Ormyrus. 

  

   

  

 

Figure 10: Percentage of Dryocosmus kuriphilus and parasitoids emerged from the galls collected in the 3-year research and 

in total (a) and percentages of parasitoid genera or species emerged in the 3-years research (b-d) and in total (e). The 

percentages were calculate considering all insects emerged from galls (a) or all parasitoid found (b-e). 
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Flight time (time from gall collection to insect emergence) 

These laboratory data gave preliminary information concerning the timing of insect 

emergence (either D. kuriphilus or parasitoids); they cannot, however, be considered as 

representative of the field situation, since the galls were all maintained at the same 

standard conditions when they were transported to the laboratory. Due to the low 

number of parasitoids found in 2012 I decided to perform statistical anlyses only on the 

time of emergence (detected in the laboratory, from the data of field collection) of the 

insects found in 2011. 

 The largest number of Torymus emerged a few weeks after the first sampling and 

increased steadily until the first half of June; after this period the number of emerging 

specimens decreased rapidly. Conversely, the largest number of D. kuriphilus emerged 

almost one month after the second field sampling (Fig. 11-a) and increased quickly. 

Among the other species, Mesopolobus and Ormyrus were constantly found, whereas 

the other species were found sporadically. Despite the low number of individuals found, 

Mesopolobus showed two different peaks of emergence (Fig 11-b): in early June (like 

Torymus) and in late June. Also Ormyrus showed two peaks of emergence, both in mid 

 

 
Figure 11: Times of emergence of the most abundant insect species found in 2011. The adults emerged in the laboratory from field-

collected galls. The graphs show the number of parasitoids found daily in the boxes containing the galls collected (in all sites) in the 

first (25 May) and second sampling (9 June, yellow point) until 6 July. In (a) I reported the data concerning the two most abundant 

insects, D. kuriphilus and Torymus spp; in (b) the other two relatively abundant parasitoids, Mesopolobus spp. and Ormyrus spp. 

0 

100 

200 

300 

400 

500 

600 

27-May 31-May 4-Jun 8-Jun 12-Jun 16-Jun 20-Jun 24-Jun 28-Jun 2-Jul 6-Jul 

Flight time 

Dryocosmus kuriphilus Torymus sp. 
a 

0 

2 

4 

6 

8 

10 

12 

14 

16 

27-May 31-May 4-Jun 8-Jun 12-Jun 16-Jun 20-Jun 24-Jun 28-Jun 2-Jul 6-Jul 

Mesopolobus spp.  Ormyrus spp. b 



28 

 

June (Fig. 11-b). All parasitoids species (including Torymus) were found in increasingly 

small numbers, until their complete disappearance, from the end of June. 

No statistical difference was found in the relative abundance of D. kuriphilus and 

parasitoids (of all species) emerged from the galls collected on May 25 in the two site 

placed at different altitudes (460 and 430 m.a.s.l.); in both sites the relative abundance 

of parasitoids was considerably higher compared to D. kuriphilus (Tab. 6). Conversely, 

a statistical difference was found in the relative abundance of parasitoids and D. 

kuriphilus between the samples collected on the different dates on site I (Tab. 6). In 

particular, from the galls collected on June 9,  the number of parasitoids compared to D. 

kuriphilus dramatically decreased comared to May 25. 

Table 6: Relative abundance (= number and percentages, calculated on the total number of insects emerged), of Dryocosmus 

kuripilus and all parasitoids found: a) in two sites of field-sampling (I and II) and b) at the same site (I) on different dates (May 

25 and June 9 2011) 

Statistical differences were found in the relative abundance of Torymus and other 

parasitoids emerged both on the same date between the two sites, and on different 

dates at the same site (Tab. 7). 

Table 7: Relative abundance (= number and percentages, calculated on total number of parasitoids emerged), of Torymus and 

other parasitoids found a) in two sites of sampling (I and II) and b) at the same site (I) on different dates (May 25 and June 9 

2011) 

Percentage of parasitism 

The total percentage of parasitism (calculated on the gall number, see materials 

and methods), across all three years of research, was 4.47%. The higher percentage 

was found in 2011 (Tab. 8). As mentioned before, in the year 2012 only few parasitoids 

were found (Tab. 8). 

 

 

Date/Site D.kuriphilus Parasitoids % D.kuriphilus % parasitoids χ
2
 P 

May 25/I 254 1059 19.3 80.7 
1.83 0.18 

May 25/II 62 208 22.9 77.1 

May 25/I 254 1059 19.3 80.7 
1004.38 0.00001 

June 9/I 1220 329 78.8 21.2 

Date/Site Torymus sp. Other parasitoids % Torymus sp. % other parasitoids χ
2
 P 

May 25/I 1025 34 96.79 3.21 
118.06 0.00001 

May 25/II 163 50 76.53 23.47 

May 25/I 1025 34 96.79 3.21 
39.61 0.00001 

June 9/I 209 40 83.94 16.06 
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Table 8: Percentages of parasitism calculated for each date of sampling and in total for each year of research (2010, 2011, 2012). 

All samplings were performed in the site I except (*) which was made at site II at altitude 430 m.a.l.s. 

Date of sampling N° galls Parasitoids Parasitization (%) 
Total parasitization per 

year (%) 

01 June 2010 649 37 1.63 
3.07 

16 June 2010 2061 254 3.52 

25 May 2011 2050 1025 14.29 

9.79 
25 May 2011* 237 213 25.68 

09 June 2011 2000 330 4.71 

12 July 2011 218 4 0.52 

28 May 2012 3500 6 0.05 
0.09 

21 June 2012 1300 9 0.20 

Discussion 

The control strategy of D. kuriphilus in Italy and other countries of introduction is 

mainly focused on the importation and release of Torymus sinensis. Considering the 

high specificity of interactions occurring between the two wasps, this classical biological 

control approach seems to be the best possibility. The introduction of an alien parasitoid 

in a new area of new species is however always hard for different reasons, including the 

difficulties of adaptation of the new species to the new habitat. Torymus sinensis has 

shown high capacity to adapt itself to new habitat in Japan and in North America, but 

also in these countries the contribution of indigenous parasitoids has proved important 

(Cooper and Rieske, 2007). 

Moreover in Italy, where T. sinensis was introduced in some areas as biological 

control agent, some indigenous parasitoids were found on D. kuriphilus galls (Quacchia, 

et al, 2012). A new association between D. kuriphilus and T. flavipes was found in 

different chestnut areas in Bologna district (Emilia Romagna) by Santi and Maini (2011). 

My research has shown that also other sites of Emilia Romagna this association is 

occurring. The data of 2010 and 2011 showed that a range of native parasitoids can 

attack D. kuriphilus. Most species were found in a low number, but Torymus spp. 

(probably T. flavipes), has shown high capacity of adaptation to this new host, thus 

confirming the finding of Santi and Maini (2011). From 2010 to 2011 the number of 

parasitoids and the percentage of parasitism increased rapidly (Tab. 8), contrary to 

2012. The dramatic reduction of parasitoids found in 2012 is presently unexplained. It 

can be hypothesized that temperature had an influence: in fact in spring 2012 in Emilia 

Romagna weather conditions were highly variable with temperatures which rapidly 

(even in 2-3 days) dropped from 20 ° C to 8 ° C. My hypothesis is that Torymus spp. 

adults emerged from their overwintering sites, oak galls, when the temperature was 

higher but they were killed by the subsequent drop in temperature. It is also possible 
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that the parasitoids were killed by fungi present on galls (A. Pollini, personal 

communication). It should be noted that also the number of D. kuriphilus found was 

lower in 2012 that in 2011, despite the number of galls collected was similar (Tab. 8). 

The low number of other parasitoids found in the 3-year research may be due to 

their biology and lower suitability of the new host to them. Given the large number of 

Torymus spp. present in that area (at least in 2011), competition may have occurred 

among the different species. 

An objective problem in this research was the little information existing on the 

range and biology of the indigenous parasitoids of gall wasps. Scant information is in 

general available on these parasitoids: Torymus sinensis itself was described relatively 

recently (in 1982) and since then its biological cycle (highly synchronized with that of D. 

kuriphilus) has been studied (Alma and Quacchia, 2012).  

The area of my research was a mixed forest dominated by C. sativa, but other 

plants present in the same area (trees but also shrubs and herbaceous plants) could be 

a source of other gall wasps, hosts of the parasitoids found; in fact all the parasitoids 

found present a large range of hosts (Noyes, 2012). The parasitoids found in my 

research (expecially Torymus flavipes) have shown the capacity to develop on D. 

kupiphilus larvae when the galls are fresh; but their destiny after the emergence is 

unknown. Probably they have a second generation on oak galls and overwinter in other 

oak galls; in spring time they emerge and attack other gall-wasps, includeding D. 

kuriphilus galls. It has to be noted that no parasitoid emerged from overwintering 

chestnut galls collected in the same area; at the moment, it seems therefore unlikely 

that the native parasitoids may overwinter in these galls (Francati, unpublished data). 

The complex of parasitoids found by me include some species which were also 

found in other regions of Italy (Quacchia et al, 2012). It is also possible that in other 

areas of Italy other parasitoids could adapt to this host. More research on the 

parasitoids involved in the new association with the chestnut gall wasp is required, 

either concerning the species, quantitative data ant their biology especially on their life 

cycle and the other hosts present in the area. The final purpose is not only to improve 

the knowledge on these insects but also to exploit them as biological control agents of 

D. kuriphilus in support of T. sinensis. 

  



31 

 

Harmonia axyridis (Pallas) 

Introduction 

Harmonia axyridis (Pallas) is a species of Coleoptera of the family of 

Coccinellidae. The presumed native distribution extends from the Altai mountains 

(Siberia) to the Pacific Coast, and from southern Siberia to southern China 

(Korschefsky, 1932; Dobzhansky, 1933; Chapin, 1956; Sasaji, 1977; Kuznetsov, 1997). 

However this ladybug could be found also in Japan, Korea, Taiwan and in Bonin and 

Ryukyu archipelago (Dobzhansky, 1933; Chapin, 1956; Iablokoff-Khnozorian, 1982). 

Numerous subspecies and aberrationes have been described for this polymorphic 

species (Korschefsky, 1932) so that H. axyridis is often referedd to by its English 

common name, the multicolored Asian ladybugs (Kock, 2003). It is well known as an 

active predator of aphids, scales and other insects. 

Harmonia axyridis usualy has two generations per year in Asia (Sakurai et al, 

1992; Asawa, 2000), in North America (LaMana and Miller, 1996; Koch and Hutchison, 

2003) and Europe (Ongagna et al, 1993); however, four or five generations per year 

were also observed (Wang, 1986; Katsoyannos et al, 1997). Typically, females can lay 

20/30 eggs per day (Takahaschi, 1987), but in laboratory conditions they can lay more 

than 3000 eggs with a mean of 25.1 eggs per day (Hukusima and Kamei, 1970). 

LaMana and Miller (1998) showed that, at 26°C on a diet of Acyrthopiphon pisum 

Harris, the mean duration of each stage was: egg 2.8 days, first instar larva 2.5 day, 

second instar 1.5 days, third instar 1.8 days, four instar 4.4 days, pupa 4.5 days (Fig. 

13). Eggs are oval-shaped and about 1.2 mm long (El-Sabaey and El-Gantiry, 1999); 

freshly oviposited eggs are pale yellow in color and with time turn to a darker yellow and 

become grey-black before hatching (He et al, 1994; El-Sabaey and El-Gantiry, 1999). 

The larval size ranges from 1.9 to 2.1 mm in the first instar to 7.5 to 10.7 mm in the 

fourth instar (Sasaji, 1977). Larvae are covered with many tubercles (“scoli”) 

(Savoiskaya and Klausnitzer, 1973). The various instars can be relatively easily 

distinguished from one another based on coloration; first instars generally have a dark 

blackish coloration (Sasaji, 1977; Rhoades, 1996), second instars are similar except for 

coloration of the dorsal-lateral areas of the first (Rhoades, 1996) or first and second 

abdominal segments (Sasaji, 1977). In the third instar the orange coloration covers the 
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dorsal and dorsal lateral areas of the first abdominal segment and dorsal lateral area of 

the second to fifth abdominanl segment (Sasaji, 1977; El-Sabaey and El-Gantiry, 1999); 

the fourth instar is similar to the third, but the scoli of the dorsal area of the fourth and 

fifth abdominal segment are also orange (Sasaji, 1977). Like other members of the 

subfamily Coccinellinae pupae are exposed and the fourth instar exuvium remains 

attached to the posterior end of the pupa, where the pupa is attached to the substrate 

(Savoiskaya and Klausnitzer, 1973). Cannibalism appears to play an important role in 

the population dynamics of H. axyridis (Osawa, 1993). The intensity of cannibalism 

seems to be inversely related to aphid density (Hironori and Katsuhiro, 1997; Burgio et 

al, 2002). The intensity of sibling cannibalism on eggs was density independent, while 

non-sibling cannibalism on eggs was density dependent (Osawa, 1993) and most 

intense near aphid colonies (Osawa, 1989). Larval cannibalism increased as a function 

of conspecific larval density (Michaud, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Life cycle of Harmonia axyridis= eggs, four instar larva, pupa, adult just emerged, two different adult morphotypes 

(spectabilis and succinea) 

Adults are 4.9-8.2 mm in length and 4.0-6.6 mm in width (Kuznetsov, 1997). 

Coloration and maculation is highly variable (Korschefsky, 1932). The head can be 

black, yellow or black with yellow marking (Sasaji, 1977; Kuznetsov, 1997); the 

pronotum is yellowish with black markings in center, these markings can be four black 

spots, two curved lines, a black M-shaped or may be black trapezoid (Chapin and Brou, 

1991). The ventral surface can be yellow-orange to black (Chapin and Brou, 1991; 

Kuznetsov, 1997). Adults of H. axyridis are highly polimorphic for the colour and pattern 

of their elytra. The ground colour may be orange, red or black. Orange and red form 

may be patterned with 0-21 black spots (the succinea form complex), or may show a 

grid-like black pattern (axyridis form); black or melanic forms usualy have two 

(conspicua form) or four (spectabilis form) large orange or red spots; other forms are 

possible, especially in areas of origin, such as the rare form nigra (Tan, 1946). This 

variation has been shown to have a genetic basis, controlled by a multi-allelic gene, with 

melanic forms generally genetically dominant to non-melanic forms (Hosino, 1933; Tan 
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and Li, 1934; Komai, 1656; Sasaji, 1977). Larval diet (Grill and Moore, 1998) and 

temperature to which pupae are exposed (Sakai et al, 1974) may also influence the 

adult coloration and maculation. Colour polymorphism was also shown to vary 

seasonally within a year (Komai, 1656; Osawa and Nishida, 1992). Spatial variation in 

the frequency of the various colour morphs has also been documented (Dobzhansky, 

1933). 

Adults typically live 30 to 90 days depending on temperature (He et al, 1994; El-

Sabaey and El-Gantiry, 1999; Soares et al, 2001). Pre-mating and pre-oviposition 

periods were shown to decrease with increasing temperature (He et al, 1994; Stathas et 

al, 2001). In Asia the start of migratory flights ranges from mid-October (Liu and Qui, 

1989) to late November (Sakurai et al, 1993); H. axyridis expresses a hypostactic 

behavior, meaning that it migrates towards prominent, isolated objects on the horizon 

(Obata, 1986). Overwinter aggregations may be formed on buildings, often on walls with 

a southern or western exposure (Kidd et al, 1995). Most of the winter is spent by the 

adults in diapause that appears to be regulated by corpora allata (Sakurai et al, 1992); 

this period is entered with an empty digestive tract, enlarged fat body (Iperti and 

Bertand, 2001). In later winter or early spring ladybugs switch from diapause to 

quiescent state (Iperti and Bertand, 2001) and upon arrival of warm temperature they 

mate and disperse from overwinter sites (LaMana and Miller, 1996). During the fall 

migrations, they preferentially choose to land on white or light-coloured objects 

(Tanagishi, 1976; Obata, 1986). During the summer beetles may become quiescent 

(Sakurai et al, 1992). 

Althought it is mainly known as a tree species (Hodek, 1973) both in its native area 

and in the other countries, H. axyridis was found in numerous habitats like as meadows, 

heathland, riparian areas (Adriaens et al, 2008), reeds (Ware et al, 2005; Brown et al, 

2008) and cultivated areas (Colunga-Garcia and Gage, 1998). Harmonia axyridis 

appears to have a high ability to track aphid population in space and time (Osawa, 

2000; With et al, 2002). Peak arrival and oviposition generally occurs before or at the 

peak of the aphid population (Hironori and Katsuhiro, 1997; Osawa, 2000). If a 

coccinellid oviposits when an aphid colony is waning, it is possible that the coccinellid 

dies due to starvation (Dixon, 2000). Han and Chen (2002) showed that H. axyridis 

could respond to volatiles from aphids and aphid-damaged tea shoots. This coccinellid 

is a predator of numerous aphid species (Hodek, 1996). They also feed on 

Tetranichidae, Psyllidae, Coccoidea, immature stages of Chysomelidae, Curculionidae 
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and Lepidoptera (Kock, 2003), and also on pollen and nectar (LaMana and Miller, 1996; 

Berkvens et al, 2008). The total numeber of aphids consumed through the larva stages 

can vary from 90 to 370 aphids, depending on the aphid species (Hukusima and Kamei, 

1970), with increasing aphid consumption for each successive instar (Hukusima and 

Kamei, 1970). 

Despite having aposematic coloration and reflex bleeding (Grill and Moore, 1998) 

of alkaloid secretion (Alam et al, 2002), H. axyridis does have natural enemies and may 

fall victim of predation. Eight species of birds preyed on H. axyridis in Russia (Nechayev 

and Kuznetsov, 1973). Dutcher et al. (1999) reported hight densities of H. axyridis on 

tree without ants compared to trees with ants. Howerer, H. axyridis was more 

successful than C. septempunctata at avoiding attack red imported fire ants, Solenopsis 

invicta Buren (Dutcher et al, 1999). Male-killing bacteria can influence the demography 

of coccinellids; the male killing bacterium infecting some populations of H. axyridis was 

identified as a member of the genus Spiroplasma (Majerus, 1999). Several parasitoids 

attack H. axyridis. A phorid Phalacrotophora sp. was reported to parasitize H. axyridis 

pupae in its native Asian range (Maeta, 1969; Osawa, 1992). Dysney (1997) described 

this phorid as Phalacrotophora philaxyridis Disney. In Korea two parasitoids parasitized 

H. axyrids adults: the tachinid fly Deigeria lutuosa (Park et al, 1996) and the braconid 

wasp Dinocampus coccinellae (Schrank) (Park et al, 1996). 

Harmonia axyridis is a well-known aphid predator in its native range (Hukusima 

and Kamei, 1970), for thir reason it has been utilized in augmentative biological control 

in Asia (Seo and Youn, 2000), Europe (Trouve et al, 1997) and North America (LaRock 

and Ellington, 1996). The relative ease of H. axyridis rearing makes it particularly 

attractive for biological control. The mass rearing can be made on a variety of aphid 

species (Hodek, 1996), but it is also possible on many non-aphid foods, such as the 

eggs of various Lepidoptera (Abdel-Salam and Abdel-Baky, 2001), pulverized drone 

bee brood (Okada and Matsuka, 1973), pollen and fruit (Berkvens et al, 2008) and 

some artificial diets (Niijima et al, 1986; Dong et al, 2001; Sighinolfi, et al., 2008). 

However the number of commercial insectaries rearing H. axyridis is decreasing in the 

word, due to its potential pest status; nowadays, in Europe, this coccinellid (a flighless 

strain) is produced and commercialized only by BIOTOP (Valbonne, France). In fact 

adverse effects of this ladybug on insects, humans and crops have been reported 

(BioControl, 2011). For example in a nine-years-study of the abundance of various 

Coccinellidae in an agricultural landscape a decrease in the abundance of native 
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coccinellids after the establishment of H. axyridis was shown (Colunga-Garcia and 

Gage, 1998); intraguild predation has been examined as a mechanism leading to 

displacement of native species since H. axyridis appeared to be a top predator in the 

guild of aphidophagous insect (Dixon, 2000). Numerous studies indicated that H. 

axyridis can effectively utilize other members of the aphidophagous guild, as well as 

other non-pest insects, as a food source (Tab. 9).  

Table 9: Non-pest insect prey of Hamonia axyridis (from Kock [2003] modified) 

Order  Famiy Species Staged consumed* Reference 

Coleoptera Coccinellidae Adalia bipunctata PP,P Sakuratami et al., 2000 

   L Kajita et al, 2000 

   E Lynch et al., 2001 

   E Burgio et al, 2002 

  Adonia variegata E Lynch et al., 2001 

  Coleomegilla maculata E,L Cottrell and Yeargan, 1998 

  Coccinella septempunctata L Hironori and Katsuhiro, 1997 

   L Yasuda and Ohnuma, 1999 

   L Yasuda et al, 2001 

  C. septempunctata brucki P Takahashi, 1989 

   L Dixon, 2000 

  Cycloneda sanguinea E, L Michaud, 2002 

  Propylea japonica L Dixon, 2000 

  P. quatuordecimpunctata E Lynch et al, 2001 

Lepidoptera Nymphalidae Danaus plexippus E, L Koch et al, 2003 

Neuroptera Chysopidae Chrysoperla carnea E Phoofo and Obrycki, 1998 

Diptera Syrphidae Episyrphus balteatus L Ingels and de Clercq, 2011 

*E= eggs, L= larva, PP= prepupa, P= pupa 

In many cases H. axyridis had a greater ability than the other guild member to 

utilize heterospecifics for food. The intensity of predation on other guild members 

appeared to be inversely related to aphid density (Hironori and Katsuhiro, 1997; Burgio 

et al, 2002). It was also suggested that high predation rates of H. axyridis on its own 

eggs compared to eggs of other coccinellid species may mitigate the displacement of 

native coccinellids (Lynch et al, 2001; Burgioet al, 2002). The displacement of native 

coccinellids might also be driven by indirect mechanisms, one of them is the resource 

competition; Michaud (2002) showed that, in citrus groves, H. axyridis was a more 

voracious predator and had higher fecundity and fertility than Cycloneda sanguinea L. 

Alternatively Hoogendoom and Heimpel (2002) obseved an indirect interaction between 

H. axyridis and Coleomegilla maculata De Geer mediated by the parasitoid D. 

coccinellae: the presence of H. axyridis actually benefited C. maculata by diverting 

some of parasitoid eggs away from the C. maculata population. 

Harmonia axyridis is the prime example of a biological control agent reported to 

have become a nuisance of humans; in late autumn, when swarms of this ladybug fly to 
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the overwintering sites like buildings (Kidd et al, 1995), many people become vexed. 

Some people have even developed an allergic rhinoconjunctivitis to H. axyridis 

(Huelsman et al, 2002). Surprisingly H. axyridis has also been reported to bite humans 

(Huelsman et al, 2002). Furthermore, H. axyridis has attained the status of a potential 

pest of fruit production and processing; in autumn adults of these ladybugs have been 

reported aggregating on, and in some case feeding on, different fruits. This is a 

particularly important problem in vineyards that grow grapes for vine production 

(Radcliffe and Flanders, 1998; Ejbich, 2003); H. axyridis is apparently difficult to remove 

from clusters of grapes during harvest, so some get crushed with the grapes and their 

alkaloids taint the flavour of the resulting wine (Ejbich, 2003). 

However, the species has also a long history of use as a classical biological 

control agent of aphids and coccids in North America, where it was first introduced in 

1916 in California (Gordon, 1985); it has been widely used for pest control in crops as 

diverse as pecans (Tedders and Schaefer, 1994) and red pines (McClure, 1987). 

Despite releases in fourteen US states between 1964 and 1982 (Gordon, 1985) H. 

axyridis was not reported as established in the country until 1988 (Chapin and Brou, 

1991); after this initial detection it spread rapidly across North America (Tedders and 

Schaefer, 1994; Colunga-Garcia and Gage, 1998). There is uncertainty over the source 

of this established population, which might have originated from eigther a single 

intentional release or accidental introduction (Krafsur et al, 1997), but Day et al (1994) 

suggested that the source could have been accidental seaport introductions. In Europe, 

early introductions of H. axyridis occurred in the east, including Ukraine from 1964 (for 

the contol of aphids on fruit trees) (Katsoyannos et al, 1997) and Belarus from 1968 

(Sidlyarevich and Voronin, 1973). In western Europe, H. axyrids was first used as a 

biological control agent in 1982 in France, introduced by Institut National de la 

Recherche Agronomique (INRA) (Iperti and Bertand, 2001), but it was in quarantine 

until 1990 (Kabiri, 2006). After this first introduction H. axyridis was largely used in many 

countries in Europe as an agent for biological control (Tab. 10). In Italy, it was used in 

greenhouses in the north from 1995 to 1999 (Burgio et al, 2008), but in 2000 the 

commercialization was been interrupted due the concern aroused by its invasiveness 

and its impacts on the indigenous coccinellids and other predators (Burgio et al, 2002). 

The first known record of H. axyridis in the wild was in Turin in 2006 (Burgio et al, 2008); 

after this initial detection the ladybug rapidly spread across all northern Italy (Burgio et 

al, 2008). At present only two records of H. axyridis in central Italy are known, the first in 
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vineyards of Tuscany (Canovai and Lucchi, 2011) and the second near a building in 

Abruzzo (Olivieri, 2011). No records are presently known for the Southem Italy, Sicily or 

Sardinia (EPPO, 2012). Harmonia axyrisid has never been imported as a biocontrol 

agent in UK, but in September 2004 some specimens were found in the field (Majerus 

et al, 2006; Roy et al, 2006); the species has been recorded and mapped and its rapid 

spread to north and west from southeast is clear (Roy et al, 2005; Brown et al, 2007). 

Since mid 2007 H. axyridis was recored in 88% of English and 38% of Welsh vice-

countries. Harmonia axyridis was also found in South America (de Almeida and da 

Silva, 2002) and in Africa (Brown et al, 2011). 

Table 10: Summary of Harmonia axyridis occurrence in Europe until 2010 (from Brown et al. [2011], modified) 

Country 

Year of first 

record in the 

wild 
(not necessarily 

established) 

Deliberately 

introducted? 
(earliest year of 

introduction) 

Evidedence of 

establishment? 
Reference 

Austria 2006 no yes Rabitsh and Schuuh, 2006 

Belarus Unknown Yes (1968) Unknown Sidlyarevich and Voronin, 1973 

Belgium 2001 Yes (1997) Yes Adriaens et al, 2003 

Bosnia and 

Herzegovina 

2010 No No Kulijer, 2010 

Bulgaria 2009 No Yes Tomov et al, 2009 

Croatia 2008 No Yes Stanković et al, 2001 

Czech Republic 2006 Yes (2003) Yes Brown et al, 2008 

Denmark 2006 Yes (2000s) Yes Steenberg and Harding, 2009 

England 2003 No Yes Majerus et al, 2006 

France 1991 Yes (1982) Yes Coutanceau, 2006 

Germany 1999 Yes (1997) Yes Tolasch, 2002 

Greece 1998 Yes (1994) Limited Kontodimas et al, 2008 

Hungary 2008 No Yes Merkl, 2008 

Ireland 2010 No No http://invasivespeciesireland.com/  

Italy 2006 Yes (1990s) Yes Burgio et al, 2008 

Latvia 2009 No Yes Barsevskis, 2009 

Liechtenstein 2007 No Yes Brown et al, 2008 

Luxembourg 2004 No Tes Schneider and Loomans, 2006 

Netherlands 2004 Yes (1996) Yes Cuppen et al, 2004 
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Northern Ireland 2007 No No Murchie et al, 2008 

Norway 2006 No Yes Staverlokk et al, 2007 

Poland 2006 No Yes Przewozny et al, 2007 

Portugal None Yes (1984) No Brown et al, 2011 

Romania 2009 No Yes Marko and Pozsgai, 2009 

Scotland 2007 No Yes Holroyd et al, 2008 

Serbia 2008 No Yes Thalji and Stojanovic, 2008 

Slovakia 2008 No Yes Brown et al, 2011 

Slovenia 2008 No Yes Bravnicar et al, 2009 

Spain 2007 Yes (1995) No Goldarazena and Calvo, 2007 

Sweden 2007 No Yes Brown et al, 2008 

Switzerland 2004 Yes (1996) Yes Klausnitzer, 2004 

Ukraine 2009 Yes (1964) Yes Marko and Pozsgai, 2009 

Wales 2006 No Yes Brown et al., 2008 

In a risk assessment of 31 exotic natural ememies of pests in biological control in 

Europe, H. axyridis had the second highest environmental risk index (Brown et al, 

2008); search of new associations between this coccinellid and native parasitoids is 

therefore justified. Shea and Cresson (2002) showed that the impact of native 

parasitoids on introduced exotic insects is often not remarkable in the first phases of 

invasion, but becomes more and more effective in controlling the exotic pest 

populations over time. Some of the parasitoids of H. axyridis in the areas of origin are 

present in also other countries; in these countries, indigenous parasitoids, with a biology 

similar to those present in the native areas, were also recorded; for example in Canada 

H. axyridis was parasitized by the tachind fly Strongygaster triangulifera (Loew) 

(Katsoyannos and Aliniazee, 1998) and in North America and Europe by the wasp 

Dinocampus coccinellae (Firlej et al, 2005; Berkvens et al, 2010). Harmonia axyridis has 

spread in Europe at a very fast rate; it is not possible to fully explain the mechanisms of 

spread leading to the current distribution because of the spatial and temporal aspects of 

the deliberate releases (Brown et al, 2008). Researches indicate a variable time lag 

between initial establishment and major explansion in the country where H. axyridis was 

deliberately introduced (Brown et al, 2008); in France this time was approximately 13 

years, in Netherlands 6 and in Belgium 4 (Brown et al, 2008). In countries where the 

species has not been intentionally introduced there seems to be very little time lag 
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between the first record and major expansion (e.g. in England). The reasons for the 

time lag between establishment of H.axyridis and major expansion in Europe are as yet 

unknown; it is possible that it is related to the genetic makeup of releases and to 

differences between environmental conditions in the locations from where releases 

stocks originated and locations where they were released. In some cases, releases did 

not lead to establishment such as in Greece (Kontodimas et al, 2008) and Azores 

islands (Soares and Serpa, 2007). 

Aims of research 

The aim of this part of the research was to find new field association between H. 

axyridis and native coccinellid species and indigenous parasitodis in Italy (Emilia 

Romagna) or other Europian countries (Ascot, Berkshire, UK). I chose to capture eggs, 

larvae, pupae and adults with the aim to find some parasitoids of the different stages of 

the coccinellids (Riddick et al, 2009). The purposes was to gain information on the 

range of the parasitoids of coccinellids existing in the study areas and their impact on H. 

axyridis compared to the native species. Should any parasitoid have been detected, the 

following thesis part were intended to be focused on the investigation on the biology, 

host-parasitoid interaction and rearing technique of the species found. This part of the 

research was preliminary to the others. 

Part one: searching parasitoids in the field 

Materials and Methods 

Samples of coccinellids larvea, pupae and adults were collected using the sight 

insect catch system in Emilia-Romagna (Italy) and Berkshire (UK). Eggs were collected 

togheter with the supporting leaf. The captures were made from 2010 to 2012 in Italy, 

mostly from early Spring to late Autumn, and in Autumn 2011 (from September to 

December) in the UK. The areas of research in Emilia-Romagna were: Bologna (city, 

suburbs and campus University) (44°48’39’’N, 11°37’84’’E), Granarolo dell’Emilia 

(Bologna, 44°33’15’’N, 11°26’38’’E), Crevalcore (Bologna, 44°43’0’’N, 11°9’0’’E), 

Nonantola (Modena, 44°41’0’’N, 11°2’0’’E) and Ravenna province (44°25’4’’N, 

12°11’58’’E). In UK the area of research was the campus of Imperial College London at 

Silwood Park (Ascot, Berkshire, 51°24’0’’N, 00°40’0’’E). 
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The samples were collected on different trees (peach and apple treees, oaks and 

plane trees) but also bushes (roses and bay laurel) and grasses (sunflowers, wheat, 

nettle, etc.), and on buildings walls; they were transferred in a Petri dish into the 

laboratory and stored in plastic boxes (25x20x10 cm) in rearing chambers at 26±1°C, 

65±5 RH and L16:D8 photoperiod. Frozen eggs of Ephestia kuehniella Zeller 

(Lepidoptera: Phyralidae) provided by BIOTOP (Valbonne, France) were used as food. 

When necessary (e.g. food shortage) eggs were integrated/replaced with other food 

sources like cotton balls soaked in a honey and water solution (20% honey) or fresh 

eggs of lepidopterous species Galleria mellonella (L.). The samples were maintained 

until death; in detail, the larvae and pupae were maintained under observation until the 

adults emerged and then for until death; the ladybugs were observed daily to detect 

potential emergences of parasitoids, to add new food, to remove dead individuals and to 

clean the boxes. When a parasitoid was found, it was isolated in a plexiglass cylinder 

(10 cm height, 9 cm diameter) and maintained under observation for all its life. The 

Coccinellidae were classified with the aid of a guide (Chinery, 2004)  

The following measurements were made: 1) number of H. axyridis and other 

coccinellids found; 2) number and species of parasitoids found (as it well be mentioned 

below, only one species, Dinocampus coccinellae, was found); 3) percentage of 

parasitism ( = number of parasitoid emerged/total number of ladybug of each species); 

4) time from the collection of ladybugs to parasitoid coccon finding (mean±SE); 5) time 

from the finding of parasitoid cocoon to adults emergence (mean±SE). With the aim to 

create a colony of D. coccinellae for subsequent studies all adults of the parasitoid were 

put in a plexiglass cage with some adults of H. axyridis; for this reason, at this stages of 

the research, data on parasitoid adult lifespan were not collected. 

Statistical analysis 

The effects of variables 2), 3) and 5) (descrive above) in number of H. axyridis and 

other coccinellids found were analysed by one-way ANOVA. No statistical analysis was 

made for the variable 4) because of the uncertainty of real day of parasitization 

occurrence. The statistical tests were done with STATISTICA 6.0 (StatSoft, 2001). 
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Results 

In 2010 (February-November) in Italy I collected 1583 ladybugs (Fig. 13-a), most 

of which were H. axyridis; the majority were adults (79.47%) but also larvae and pupae 

(5.69%) were found; most of other coccinellids were C. septempunctata (5.94% adults, 

1.20% larvae) or Hippodamia variegata (Goeze) (2.53%, only adults). The other 

Coccinellidae reached a total percentage of 5.18% (4.23% adutls, 0.95% larvae and 

pupae) this group, called “Others” in the graph, includes the species Adalia bipunctata 

(L.) and different genera among which Calvia spp., Propylea spp., Halyzia spp., which 

were grouped all together due to their low number. 

In 2011 (February-July) I collected 178 ladybugs (Fig. 13-b), almost all of which 

were H. axyridis adults (74.72%), but also larvae and pupae were found (16.85%). The 

other samples were C. septempunctata (5.62%) and “Others” (2.81%), all adults. 

In the 2012 (March-June) I collected 1380 ladybugs (Fig. 13-c) most of these were 

overwinteing adults of H. variegata (71.30%) (almost all these individuals were collected 

in Ravenna province). The other were H. axyridis (8.48% adults, 7.17% larvae and 

pupae), C. septempunctata (5.87% adults, 1.16% larvae and pupae) and “Others” 

(3.12% adults, 1.90% larvae and pupae). The Figure 13-d shows the coccinellids 

collected only in the Bologna area (the same of the year before). In this area, I collected 

401 ladybugs, most of which were H. axyridis (29.18% adults, 24.96% larvae and 

pupae), C. septempunctata (20.20% adults, 3.99% larvae and pupae) and “Others” 

(10.72% adults, 9.98% larvae and pupae); only a few were H. variegata (1.25% only 

adults). 

Overall, in three years in Italy I collected 3141 ladybugs (Fig. 13-e). The majority 

represented taxon was H. axyridis (48.01% adults, 6.97% larvae and pupae), followed 

by H. variegata (32.60%), the latter found mostly in early March 2012 near Ravenna; 

the other coccinellids included C. septempunctata (5.890% adults, 1.11% larvae or 

pupae), and other species all comprised in the “Others” group (3.66% adults, 1.75% 

larvae and pupae). Harmonia axyridis was more abundant in fall, because in Italy it was 

collected in overwintering sites were big number of ladybugs use to aggregate. 
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Figure 13: Percentages of ladybugs species found, in Italy, in the three years of research (a-d) and in total (e). The percentage 

were calculated considering all the stages collected (adults, larvae and pupae) per group. For the percentages considering the 

adults and immature stages separately, refer to the text. In f) are reported the numbers of H. axyridis captured in the several 

months in Italy and UK during the entire research 
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In the UK, from September to 

December 2011, I collected 717 ladybugs 

(Fig. 14); almost all were H. axyridis 

(89.40% adults, 2.65% larvae or pupae). 

Most of the others were C. 

septempunctata (4.88%, all adults), the 

remaining were A. bipunctata, Calvia spp., 

Halyzia spp., all including in “Others” 

group, (2.65% adults, 0.42% larvae and 

pupae). 

The only parasitoid found on H. 

axyridis, in these three years, in Italy and 

in UK, was Dinocampus coccinellae 

(Schrank). In Italy, from one pupa of A. bipunctata three larvae of Phalacrotohora 

fasciata (Fallén) (Diptera: Phoridae) emerged (classidied by R.H.L. Disney). During field 

research I also observed some Diptera on the remains of pupae of H. axyridis; 

unfortunately I could not capture those samples and establish whether they were 

parasitoids, but the behavior shown by them highlighted an interest to pupae (the flies 

carefully examined the pupae as if they were willing to oviposit). It is therefore possible 

to speculate that those Diptera were parasitoids of H. axyridis. 

In Italy D. coccinellae emerged from only three coccinellid species: H. axyridis, C. 

septempunctata and H. variegata. In 2010 (Fig. 15-a) almost all parasitoids emerged 

from H. axyridis (86.89%), fewer from C. septempunctata (11.48%), a very few from H. 

variegata (1.64%) (the percentages were calculated as number of D. coccinellae 

emerged from one coccinellid species/ total number of parasitoids emerged from all 

species). Except for one case, a larva of H. axyridis, all samples of D. coccinellae 

emerged from adult ladybugs. In 2011 (Fig. 15-b) the parasitoids emerged only from the 

adults of two species: H. axyridis (80.00%) and C.septempunctata (20.00%). 

Conversely, in 2012 (Fig. 15-c) a few parasitoids emerged from H. axyridis (11.76%) 

and higher percentages were obtained from C. septempunctata (47.06%) and H. 

variegata (41.18%). Over the three years (Fig. 15-d), however, I found most parasitoids 

on H. axyridis (72.04%), fewer in C. septempunctata (19.35%), an fewer still in H. 

variegata (8.60%). 

 

Figure 14: Percentages of ladybugs species found in the UK 

from September to December 2011. The percentages were 

calculated considering all stages collected (adults, larvae and 

pupae) per group. For the percentages considering the adults 

and immature stages separately, refer to the text 

Harmonia 
axyridis 
92,05% 

Coccinella 7-
punctata 

4,88% 

Others 
3,07% 

Coccinellidae- September/December 2012, UK 



44 

 

Conversely, the highest percentages of parasitism per species (= numbero of D. 

coccinellae emerged from one coccinellid species/number of coccinellids of that 

species) were always found in C. septempunctata. In 2010 this percentage was 3.93% 

for H. axyridis (4.21% if we consider only adult H. axyridis), 6.19% for C. 

septempunctata (7.45% of which only on adults) and 2.50% for H. variegata. In 2011 it 

was 7.36% for H. axyridis (11.76% only on adults) and 30.00% for C. septempunctata. 

In 2012 was 0.93% for H. axyridis (1.71% only on adults), 8.25% for C. septempunctata 

(9.88% only on adults) and 0.71% for H. variegata. Overall, for all three years, the 

percentages of parasitism found were 3.88% for H. axyridis (4.54% only on adults), 

8.18% for C. septempunctata (9.73% only on adults) and 0.78% for H. variegata (no 

parasitized immature H. variegata were found). 

  

  
Figure 15: Percentages of Dinocampus coccinellae found, in Italy, in the three years of research (a-c) and in total (d). The 

percentages were calculated separately for each species. 
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 In UK D. coccinellae emerged only 

from adults of two species: H. axyridis and 

C. septempunctata (Fig. 16); most 

parasitoids emerged from C. 

septempunctata (87.50%) and a few from 

H. axyridis (12.50%). For C. 

septempunctata the percentage of 

parasitism was very high (40.00%); while 

it was very low for H. axyridis (0.30%). 

The mean times (±SE) of 

development of D. coccinellae from the 

discovery of parasitoid cocoon to adult 

emergence were, in Italy, 7.75(±0.33) days in H. axyridis, 6.57(±0.57) days in H. 

variegata, 7.71(±0.47) days in C. septempunctata (Tab. 11). In this species, in UK, the 

mean time from cocoon to adults was 10.18(±0.60) days. No statistical difference was 

found among the three species of ladybugs in Italy (F=1.16, df=2.39, P=0.32); instead a 

significant difference was found between C. septempunctata in Italy and in England 

(F=8.49, df=1.16, P=0.010); no statistical analysis was done between H. axyridis in Italy 

and England due to the low number of samples found in the UK.  

Table 11: Mean time (±SE) of development of Dinocampus coccinellae from discovery of cocoon to adult emergence in Italy 

and UK. Number of samples (n) is given in parentheses over the means. Means of Italian ladybugs in the column followed by the 

same letter are not significantly different; means of Italian and UK Coccinella septempunctata in square brackets are significantly 

different. Values are significant at P>0.05 or lower. 
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Figure 16: Percentages of Dinocampus coccinellae found in 

UK from September to December 2011. The percentages were 

calculated separately for each species. 

Harmonia 
axyridis 
12,50% 

Coccinella 7-
punctata 
87,50% 

 Dinocampus coccinellae- UK 



46 

 

Part two: Dinocampus coccinellae (Schrank) 

Introduction 

Dinocampus coccinellae (Schrank) is a hymenopteran species belonging to the 

subfamily of Euphorinae, family Braconidae. This species has a cosmopolitan 

distribution covering all continents except Antartica. The natural geographic range is 

difficult to reconstruct (Balduf, 1926); the wasp might either have been introduced to 

North America from Europe or may be native to both North America and Eurasia. It is 

thought that this parasitoid arrived in some non-native countries together with ladybugs 

released for biological control purposes. It was probably transferred to the Hawaiian 

islands with the introduced Olla v-nigrum (Mulsant) (Timberlake, 1918), and to New 

Zealand with another biocontrol agent, Coccinella undecimpunctata (L.) (Gourlay, 

1930). 

Biology 

Dinocampus coccinellae usually reproduces by thelytokous parthenogenesis 

(Ceryngier and Hodek, 1996). However, males can sporadically appear (Muesebeck, 

1936; Hudon, 1959; Wright, 1978; Geoghgan et al, 1998; Shawet al, 1999), and at least 

some of its strains are actually deuterotokous. In some experiments D. coccinellae 

males showed courtship behaviour, involving wing vibration (Wright, 1978; Geoghgan et 

al, 1998; Shaw et al, 1999) and walking in tight circles (Wright, 1978). All males tried to 

mount females but only one completed the mating. This male mated with four females 

for about 20 minutes per female; only 24 of the 74 ladybugs offered to those four mated 

females were parasitized and from 11 of them adults wasps developed, all of them 

being females (Wright, 1978). 

Dinocampus coccinellae mostly oviposits into adult ladybug beetles but, especially 

when adult hosts are scarce, larvae and pupae can also be parasitized (Smith, 1960; 

Maeta, 1969; Filatova, 1974). The wasp most frequntly parasitizes its hosts when they 

are mobile (Bryden and Bishop, 1945; Walker, 1961; Richerson and DeLoach, 1972; 

Orr et al, 1992). Pre-oviposition and oviposition behaviour may be divided in three 

stages: pursuit and investigation of the host without extending the ovipositor, 

ovipositional stance with the ovipositor extended ventrally and forwards between the 

legs and ovipositional attack (Richerson and DeLoach, 1972); these activities are 

stimulated both by visual (movement, colour and size of a potential host) and olfactory 
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(host derived substance) cues (Ceryngier et al, 2012); odour is an important stimulus for 

host recognition but not for host acceptance (Richerson and DeLoach, 1972). The 

movement of the host not only facilitates its location but also makes oviposition easier; 

when ladybugs are walking their elytra are slightly raised and the head is extended 

forwards, which gives the female parasitoid better access to the soft membranes 

between the posterior abdominal segments or between the head and torax, the host 

areas into which D. coccinellae most often oviposits (Balduf, 1926; Iperti, 1964; Sluss, 

1968). If a potential host is motionless, the wasp stimulates such a host to walk by 

drumming it with the antennae, encircling it and probing with the ovipositor (Balduf, 

1926; Walker, 1961; Richerson and DeLoach, 1972). The host, in response to 

examination, may display some defensive behaviour: immobilization, rapid escape, 

attacks on the parasitoid with mandibles and attempts to kick the parasitoid ovipositor 

with hind legs (Firlej et al, 2010). Dinocampus coccinellae oviposition has to be very 

rapid because of host mobility and defensive reactions (Balduf, 1926). 

Dinocampus coccinellae is generally known as a parasitoid of ladybugs belonging 

to the subfamily Coccinellinae. It can successfully parasitize a wide array of species 

belonging to this subfamily, but some evidence indicates that representatives of other 

subfamilies or even families may also serve as occasional hosts (Ceryngier et al, 2012); 

there are also cases of successful laboratory parasitism on non-Coccinellinae host 

(Ceryngier et al, 2012). The rate of parasitism of ladybugs by D. coccinellae may 

fluctuate considerably depending on localion, season and host. Ladybugs are often 

more heavily attacked when aggregating at overwintering sites rather than when they 

are active (Iperti, 1964; Parker et al, 1977; Anderson et al, 1986); parasitism rates of 

such aggregating ladybugs may differ remarkably between overwintering sites in the 

same region. Due to parasitoid preferences, differential parasitism rates in relation to 

the species, sex, age and developmental stage of the host have been recorded. For 

example it was noted (Maeta, 1969; Parker et al, 1977) that females ladybugs are 

parasitized to more frequently than males or that adults are preferred to juvenile hosts 

(Geoghegan et al, 1998) and older larvae are preferred to younger ones (Obrycki et al, 

1985). 
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Eggs of D. coccinellae are 

elongate and measure about 

250 µm by 30µm. the hatched 

larvae undergo three instars 

(Ogloblin, 1924); the first instar 

larva is the only equipped with 

grasping mandibles used to kill 

other parasitoids (Ogloblin, 

1924). Although it is a solitary 

parasitoid more than one egg 

and/or first instar larva, 

sometime as many as a few 

dozen, can be found in a single 

host (Oglobin, 1913; Balduf, 

1926; Maeta, 1969). Only one 

larva survives to the second instar (Balduf, 1926; Sluss, 1968); however, two cocoons 

emerged from one single ladybug have sporadically been observed (M. I. Scheider, 

personal comunication). Also the rate of superparasitism (proportion of parasitized hosts 

harbouring more that one parasitoid individual) in field samples may be quite hight 

(Ceryngier et al, 2012). The frequent superparasitism of host by D. coccinellae may 

indicate a weak ability of this species to discriminate between unparasitized and already 

parasitized host (Okuda and Ceryngier, 2000). At 20-26°C the egg-larva development of 

D. coccinellae lasts 2-3 weeks (Sluss, 1968; Obrycki et al, 1985; Kadono-Okuda et al, 

1995; Firlej et al, 2007), of which 5-10 days are occupied with embryonic development 

(Balduf, 1926; Sluss, 1968; Kadono-Okuda et al, 1995). When the parasitized host 

stage is a larva or pupa the parasitoid development is arrested at the first instar larva 

until the eclosion of the host to adult (Kadono-Okuda et al, 1995). Dinocampus 

coccinellae usually diapauses as a first instar larva, or occasionally as an egg (Balduf, 

1926; Wright and Laing, 1982). In diapausing hosts the parasitoid will not develop 

beyond the first larval instar (Kadono-Okuda et al, 1995) but causes a decrease in the 

duration of its host’s diapause (Ceryngier et al, 2004). 

In the early phase of D. coccinellae development a stimulatory effect of the 

parasitoid on the maturation of the female host’s gonads may be observed. Later vitellin 

accumulated in the host oocytes is reabsorbed (Kadono-Okuda et al, 1995) and ovarian 

Figure 17: 1) Egg from oviduct, or newly deposited in host, x 100; 2) Same 

egg aged about four days , x 40; 3) Egg shortly before hatching, x 40; 4) first 

instar larva, dorsal wiew, showing mandibles extended, squarish head, tail-

like appendage, and alimentary tract in outline x 25; 5) First instar larva, 

lateral view, x 25; 6) Head capsule of firs instar larva, ventral view, x 69; 7) 

Mature larva, ventral view, showing mouthparts, x 17.5 [a – antennae, md – 

mandibles, mx – maxillae, o – oral cavity, l – labium, i – inflexed portion of 

tergum of head, m.p. – maxillary palpus, l.p. – labial palus] (from Balduf, 

1926) 
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maturation is inhibited (Balduf, 1926; Walker, 1961; Maeta, 1969). The gonads of male 

hosts also seem to be affected by the development of this parasitoid since inhibition of 

spermatogenesis activity was found in some experiments (Ceryngier et al, 2004). 

During most of its development, the D. coccinellae larva does not feed directly on the 

host tissues. As observed by Sluss (1968) only the first instar larva may directly consum 

the host’s fat body. Afterwards, larval nutrition is mediated by teratocytes, cells derived 

from the serosa of the parasitoid egg, known to occur in some parasitic wasps (Salt, 

1968; Tremblay, 1966; Dahlman et al, 2003). When the egg hatches, its serosal 

membrane dissociates into individual teratocytes which are released into the host 

haemocoel. In D. coccinellae the major function of teratocytes is to provide food for the 

developing parasitoid larvae. These teratocytes grow due to synthesis and 

accumulation of a specific polypeptide (Kadono-Okuda et al, 1995) and their numbers 

decreases as a result of larval feeding (Sluss, 1968; Kadono-Okuda et al, 1995). During 

developmental arrest of the parasitoid larva in a juvenil or diapausing host, teratocyte 

development is also halted. 

The mature D. coccinellae larva emerge from the host ladybug through the 

membrane between the fifth and sixth or between the sixth and seventh abdominal 

tergites and then spins its cocoon between the legs of the host before pupation (Balduf, 

1926; Sluss, 1968; Maeta, 1969). About 30 minutes before the emergence of the larva, 

the ladybug becomes immobile and usually remains in this condition until its death. The 

legs of the immobilized beetle can hold the cocoon and it is assumed that their extensor 

muscles are paralyzed (Balduf, 1926; Bryden and Bishop, 1945; Walker, 1961). The 

duration of the pupal stage of D. coccinellae at 22-26°C is about 7-10 days (Obrycki et 

al, 1985; Firlej et al, 2007); after completing its pupal development the wasp leaves the 

cocoon by biting through it all the cephalic end (Balduf, 1926). As a consequence of the 

indirect feeding of D. coccinellae larva most of the host organs remain intact during the 

development of the parasitoid larva. The only organs found to be strongly affected are 

the gonads, the development of which is inhibited, and the fat body that degenerates 

and considerably decreases in size (Sluss, 1968). Due to the relatively little damage 

inflicted, the ladybugs usually survive the emergence of the parasitoid larva; Triltsch 

(1996) found that some laboratory parasitized C. septempunctata females not only 

survived parasitism but also started laying eggs about 12 days after the emergence of 

the parasitoid larva (Berkvens et al, 2010). 
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Aims of research 

This part of research was focused on the investigartion of the biology, host-

parasitoid interaction and rearing technique of D. coccinellae. In particular the aims 

were to study 1) host acceptance and development time of D. coccinellae on H. 

axyridis, 2) fecundity and longevity of H. axyridis females parasitized by D. coccinellae 

and 3) development of D. coccinellae on H. axyridis reared with artificial diet. 

Materials and Methods 

Breeding of insects 

To have insects available for the experiments, it was 

necessary to set up a laboratory colony of H. axyridis. The 

colony was established with adults which were collected 

early February 2010 at Crevalcore (Modena, Italy, 44°43’0’’ 

N,11°9’0’’ E) and augmented with other adults which were 

found in differen locations of Bologna area in all 2010. These 

adults were maintained in plastics boxes (25x20x10 cm) and 

fed with frozen eggs of E. kuehniella with the aim to start the 

laboratory colony and also to find native parasitoids possibly 

emerging from the wild ladybugs.  

The eggs laid from the wild ladybugs were trasferred to 

plastic boxes of similar size. The larvae were fed ad libitum 

with frozen eggs of E. kuehniella until pupation. Adults then 

were moved into a plexiglass cage (40x30x30 cm) and fed 

with frozen eggs of E. kuehniella. The cage was checked 

every two days to find new eggs for the colony maintenance 

and for the experiments. In the second half of 2010 I noticed 

a decrease of fecundity and consequentely a decrease in the 

number of the larvae which developedt to adults. Therefore, 

for colony mantainance, I decided to switch to the natural 

food of the coccinellid such as alive aphids; as espected, this 

food enhanced female fecundity. More eggs and larvae were 

thus obtained with the advantage to decrease production 

costs.  

Figure 18: Larvae and adults of 

Harmonia axyridis which feed with 

Myzus persicae; adult of 

Dinocampus coccinellae which try 

to parasitize a ladybug; mature third 

instar larva of D. coccinellae which 

emerged from H. axyridis and (up) a 

cocoon 
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To have aphids, I started a colony of Myzus persicae Sulzer on plants of Pisum 

sativum L. This aphid species was chosen because it is easy maintain in continuous 

rearing. Every week, seeds of P. sativum were put in bowls (7x19x12 cm) filled with 

perlite, Agrilit®3 (Agriperlite Italiana, Alzaia Trento, Italy). Bowls were put in plastic 

boxes (13x36x24 cm), with perforated covers inside a rearing chamber (21±1°C, 65±5 

RH and L16:D8 photoperiod). After 2/3 days plants infested with aphids were put in 

bowls containing uninfested plants. The bowls with M. persicae were put inside 

plexiglass cages with H. axyridis adults; periodically the plants were checked to find 

eggs, which were in turn placed in plastic boxes, similar to those used for aphids. The 

new larvae were fed ad libitum until adult emergence (Fig. 18). 

The first D. coccinellae adult emerged in the laboratory from a field-collected 

specimens of H. axyridis collected in Bologna in the second half of 2010. Dinocampus 

coccinellae adults were used to start a laboratory colony The colony was maintained by 

keeping some D. coccinellae and H. axyridis adults in a plexiglass cage until death or 

parasitoid cocoon finding. Honey drops and frozen E. kuehniella were used as food for 

the parasitoids and the ladybugs, respectively. The eggs were preferred to aphids 

because their use facilitated to check the cage to find new cocoons on H. axyridis. The 

cages was maintained in a another rearing chamber with the same conditions to avoid 

contamination between two colonies. To try to increase the parasitoid colony, in 2011 I 

decided to remove the ladybugs from the parasitoid cage after one week and to keep 

them in plastic boxes until death or parasitoid cocoon emergence. 

The experiments concerning H. axyridis and D. coccinellae were performed in the 

laboratory of Entomology at the University of Bologna, Italy. The colonies of the ladybug 

and the parasitoid were mantained in rearing chamber at 26±1°C, 65±5 RH and L16:D8 

photoperiod. The experiments were all conducted in the same condictions. 

Host acceptance, suitability and development time of Dinocampus coccinellae 

in Harmonia axyridis 

The experiments were performed under no-choice conditions. I tested three 

different time of exposition of D. coccinellae to H. axyridis, resultimg in the following 

three treatments: 5 minutes (A) (Berkvens et al, 2010), 1 hour (B), 24 hours (C). for 

each treatments, 100 H. axyridis adults 3-4 days old, of both sexes, were used; each 

adult corresponded to a replicate. Dinocampus coccinellae females were obtained from 

the culture maintained on H. axyridis and were 2-3 days old. For the experiments five 
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ladybugs per treatment were exposed to one parasitoid; the arenas used for the 

different times of exposition were: a 9 cm diameter Petri dish (A), a plastic cylinder (20 

cm height, 9 cm diameter) (B) and a plexiglass cage (20x20x20 cm) (C). I decided to 

provide parasitoids with more space to fly in long expositions, and reduce risk of super 

pasitizatism; in the 24 hours treatment (C), inside the cage, more than one D. 

coccinellae at each time was used with the proportion 5 ladybugs/1 parasitoid. 

Specimens were fed with drops of honey (D. coccinellae) and frozen E. kuehniella eggs 

(H. axyridis). After the exposition H. axyridis were removed from the arenas, placed in 

plastic boxes (11x30x19 cm) and fed with frozen E. kuehniella eggs until cocoon 

appearance or ladybug death; the new cocoons found were placed individually in a 

plastic cylinder (20 cm height, 9 cm diameter) and checked daily until adult emergence. 

The ladybug was considered as suitable when a cocoon of D. coccinellae was 

found under its body. The percentage of parasitism (= number of cocoons 

found/number of ladybugs exposed), the percentage of emergence (= number of 

parasitoids/number of cocoons) and the percentage of adult yield (= number of adult 

parasitoids/number of ladybugs exposed) were calculated. The development times (in 

days) (larval: from exposure to cocoons detection; pupal: from cocoon detection to adult 

emergence; and total: from exposure to adult emergence) were also calculated. The 

time of larval development was calculated from the end of exposure, when H. axyridis 

were removed from arena and placed inside the plastic boxes. 

Fecundity and longevity of Harmonia axyridis parasitized by Dinocampus 

coccinellae 

For this experiment, 20 couples of H. axyridis were used, together with 20 control 

couples (i.e. non-parasitized specimens); all adults were 2-4 days old. All ladybugs, 

taken from the colony as pupae, were placed individually in a plastic cylinder (2.5 cm 

height, 4.5 cm diameter) until adult emergence; they were then fed with M. persicae on 

P. sativum plants until the beginning of the experiment. Dinocampus coccinellae were 

taken from the stock colony as cocoon that were separated from the host; these 

cocoons were placed individually in a plastic cylinder (10 cm height, 9 cm diameter) until 

adult emergence and fed with drops of honey. For the experiments one female of H. 

axyridis was placed in the cylinder of D. coccinellae (1-2 days old) for half hour (based 

on the results obtained in the previous experiments). After this time each ladybug was 

placed with an unparasitized male in another cylinder (8 cm height, 6 cm diameter), 
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lined with bubble wrap as an oviposition substrate (Sighinolfi et al., 2008); the couple 

was fed ad libitum with M. persicae. The female was observed for 25 days, which is 

more than the mean time of parasitoid development observed in the previous 

experiment. The samples were checked daily and when a cocoon was found its was 

removed from the host ladybug which was then fed until its death. The control couples 

were maintained under similar conditions. 

Each female of H. axyridis was considered as a replicate. Time from exposure to 

first oviposition (= time of pre-oviposition), time of oviposition (= time from the first to last 

oviposition), adult lifespan of the ladybugs were recorded. A couple was considered 

fecund when the female has laid one egg at least. The percentage of fecund couples 

(based on the original number of couples, n = 20), the eggs/female laid and the 

percentage of first instar larvae emerged from the eggs were also calculated. 

Development of Dinocampus coccinellae on Harmonia axyridis reared with 

artificial diet  

For this experiment, 20 adults of D. coccinellae were used; all samples were 1-2 

days old. The parasitoids, taken from the colony as only cocoons that were separated 

from the host, were placed individually in a plastic cylinder (20 cm height, 9 cm 

diameter) until adult emergence and fed with drops of honey. Harmonia axyridis eggs 

were taken from the colony and fed with M. persicae on P. sativum palnts until 2-4 days 

of adult life, when the experiment started. For the experiment,20 replicates were 

performed. Each replicate consisted of 10 H. axyridis which were exposed to D. 

coccinellae inside the above-mentioned cylinder for one hour. After exposure, the 

ladybugs were removed from the cylinder, and divided in two groups (A and B) of 5 

individuals. Each group was placed in a pastic box (5x10x15 cm). Group A was fed with 

an artificial diet (Sighinolfi et al, 2008) integrated with a cotton ball soaked in water. 

Group B was fed with frozen E. kuehniella eggs and maintained as control. The 

experiment was repeated with the first two generations of the parasitoid (so that the 

parental, the F1 and F2 generation were tested). For the F1 and F2 only 10 replicates 

were used. The ladybugs were observed daily for 30 days in order to check cocoon 

emergence or ladybug death. 

The results were evaluated in terms of percentage of cocoons (based on number 

of ladybugs exposed), percentage of adult emergence (= number of emerged adults 

parasitoids/ number of cocoons) and percentages of adult yields (= number of adult 
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parasitoids/number of ladybugs exposed). Times (in days) from exposure to cocoon 

detaction, time from cocoon to adults emergence, time of total development and adult 

D. coccinellae life span were also calculated. 

Statistical analysis 

For the first experiment the number of cocoons, of emerged adults (over cocoons) 

and total adult yields (over original number of ladybugs exposed) were analyzed by 2x2 

contingency tables. The development times (B) from cocoon to parasitoid emergence 

were analyzed by one-way ANOVA; due to heteroscedasticity, the Kruskall-Wallis non-

parametric test (followed by a non-parametric multiple range test) was used to analyze 

(A) the times from the ladybugs exposure to D. coccinellae to cocoon detection and (C) 

the total development time. 

For the second experiment the number of females which oviposited at least one 

egg (fecund female) and number of females from which eggs at least one larva hatched 

(fertile females) were analyzed by 2x2 contingency tables. The pre-oviposition times 

were analyzed by One-way ANOVA and mean separation was performed by applyng 

Turkey test. The Kruskall-Wallis non-parametric test was used to analyze the adult 

lifespan and the length of the oviposition period (data not homogeneous). To obtain 

indexes of fecundity I used the number of eggs laid in the first 10 days after oviposition 

started (Ferran et al, 1998; Evans et al, 1999) and up to 25 days from the ladybug 

exposure (e.g. the total time devoted to the observation of the adult couples). The 

percentages of hatched larvae over the number of eggs oviposited by each female were 

also calculated. The A-index of fecundity was analyzed by One-way ANOVA, whereas 

the Kruskall-Wallis non-parametric test was used to analyze the B-index and the 

percentages of hatched larvae (data not homogeneous). The percentages values were 

transformed from the analyses by the ARCSIN transformation (Zar, 1984). 

In the third experiment the number of cocoons found, of emerged adults (over 

cocoons), total adults yields (over original number of ladybugs exposed) and survived 

H. axyridis were analyzed by 2x2 contingency tables. The development times (for all 

treatment) ad adult lifespan were analyzed by a factorial analysis of variance (Zar, 

1984) (2x3 factors tested for the effects of food [Ephestia eggs or Artificial diet] and 

generation [Parental, F1 and F2]). 

All statistical tests were done with STATISTICA 6.0 (StatSoft, 2001)  
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 Results 

Host acceptance, suitability and development time of Dinocampus coccinellae 

in Harmonia axyridis 

The percentages of parasitism (i.e. the percentages of cocoons found) (Fig. 19-a) 

were: 18% for the treatement “5 minutes”, 36% for the treatement “1 hour”, 29% for the 

treatement “24 hours”. Significant differences were found between “5 minutes” and “1 

hour” (χ2= 8.22, df=1, P=0.0041) but not between “5 minutes” and “24 hours” (χ2= 3.37, 

df=1, P=0.0666) and between “1 hour” and “24 hours” (χ2= 1.12, df=1, P=0.2906). 

The percentages of parasitoid emergence (Fig. 19-b) found were: 89% for the 

treatement “5 minutes”, 89% for the treatement “1 hour”, 79% for the treatement “24 

hours”. No statistical differences were found between the treatments “5 minutes”/”1 

hour” (χ2= 0.21, df=1, P=0.6466), treatments “5 minute”/”24 hours” (χ2= 0.20, df=1, 

P=0.6526) and treatments “1 hour”/”24 hours” (χ2= 0.52, df=1, P=0.4727). 

The percentages of total yields (Fig. 19-c) found were: 16% for the treatment “5 

minutes”, 32% for the treatement “1 hour”, 23% for the treatement “24 hours”. A 

statistical difference was found between treatments “5 minutes”/”1 hour” (χ2= 7.02, df=1, 

P=0.0081) but not between treatments “5 minutes”/”24 hours” (χ2= 1.56, df=1, 

P=0.2116) and treatments “1 hour”/”24 hours” (χ2= 2.03, df=1, P=0.1541). 

 

  

   
Figure 19: Acceptance and suitability of Harmonia axyridis by Dinocampus coccinellae: a) percentage of parasitism (e.g. 

percentage of cocoons found) (on all ladybugs exposed), b) percentage of adult emergence (on all cocoons found), c) percentage 

of adult yields (on all ladybugs exposed). Original number of Harmonia axyridis= 100 per treatment 
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The results concerning the time of development are all shown in Tabel 12. 

Table 12: Mean times of development of Dinocampus coccinellae in Harmonia axyridis: a) from ladybug exposure to parasitoid 

cocoon detection, b) from parasitoid cocoon detection to adult emergence, c) from ladybug exposition to parasitoid adult 

emergence. Means in a column followed by the same letter are not significantly different, P>0.05. 

Treatments 
Time from exposition to 

cocoon found 

Time from cocoon to adult 

emergence 

Time from exposure to adult 

emergence 

5 minutes 17.44±1.34 a 7.44±0.96 24.68±1.20 a 

1 hour 17.08±0.77 a 7.25±0.76 24.38±0.87 a 

24 hours 19.41±3.21 b 7.48±1.2 26.70±3.59 b 

H (N)= 23.66 (83)  11.34 (71) 

F(df)=  0.43 (2,64)  

P= 0.00001 0.65 0.035 

Fecundity and longevity of Harmonia axyridis females parasitized by 

Dinocampus coccinellae 

It has to be emphasised that the percentage of successful parasitism of the 

exposed H. axyridis females (based on the number of females on which a parasitoid 

cocoon was detected over the number of females exposed to D. coccinellae) was low 

(15%). Of the females exposed, 85% laid eggs; two successfully parasitized ladybugs 

laid eggs before and after the cocoon emerged. 

For fecundity, no statistical difference was found between “exposed” and “non-

exposed” (= control) females (χ2=1.44, df=1, P=0.23) (Tab. 13) (the “exposed” group 

includes both successfully parasitized females and females on which cocoon were 

never detected). Of these females, 70.6% were fertile (at least one larva hatched from 

eggs), whereas all the control females were fertile; the difference was significant 

(χ2=4.52, df=1, P=0.03) (Tab. 13). 

Table 13: Difference between the number and the percentages of Harmonia axytidis exposed and not-exposed to Dinocampus 

coccinellae relative to a) females which oviposited at least one eggs (= fecund females)  and b) females from which eggs at least 

one larva harched (=fertile females) (2x2 contigency tables). 

Treatment 
Ovipositing females Non-ovipositing females 

χ
2
 df P 

Number Percentage Number Percentage 

Exposed 17 85% 3 15% 
1.44 1 0.23 

Not-exposed 20 100% 0 0% 

 Fertile females Non-fertile females 

   

 
Number Percentage Number Percentage 

Exopsed 12 70.6% 5 29.4% 
4.52 1 0.03 

Not-exposed 20 100% 0 0% 
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The exposure had no significant effect either on H. axyridis lifespan (Tab. 14) or 

on pre-ovipostition time (Tab. 14), but its influence was significant for the oviposition 

time (Tab. 14). 

Table 14: Means duration (±SE) in days of a) adult lifespan, b) pre-oviposition time and c) oviposition time of female of 

Harmonia axyridis females exposed or not-exposed to Dinocampus coccinellae. Number of samples (n= number of replicates) is 

given in parentheses over the means. 

Treatment Adult lifespan Pre-oviposition time Oviposition time 

Exposed 
(20) 

23.5±1.09 

(17) 

6.82±0.94 

(17) 

11.29±1.16 

Not-exposed 
(20) 

25.3±1.6 

(20) 

7.70±0.45 

(20) 

15.30±0.52 

F(dg)=  1.04 (1,35)  

H(N)= 1.67 (40)  7.17 (37) 

P= 0.2 0.31 0.0074 

The majority of the eggs were laid in the first 10 days of oviposition; the not-

exposed females laid more eggs on average than the exposed ones both in the first 10 

days and in total (Tab. 15). Also the eggs hatched (eggs from which larvae emerged) 

were more in the not-exposed H. axyridis both in the first 10 days and in total (Tab. 15). 

Highly significant differences were found between the two groups relative to eggs laid 

and fertility (Tab. 15). 

Table 15: Difference between Harmonia axyridis females exposed and not-exposed to Dinocampus coccinellae relative to: a) 

number of eggs laid in 10 days, b) number of eggs laid in 25 days (total time of the experiment, from adult exposure to D. 

coccinellae), c)percentage of larvae hatched from the eggs laid in 10 days (fertility) and d) percentages of larvae hatched from 

eggs laid in 25 days (total time of experiment, from adult exposure to Dinocampus. coccinellae). Number of samples (n) (= 

number of females which laid at least one egg)  is given in parentheses over the means  

Treatment Eggs laid (10 days) Eggs laid (total) 

Exposed 
(17) 

160.77±29.84 

(17) 

226.36±52.39 

Not-exposed 
(20) 

359.7±21.33 

(20) 

529.08±24.05 

F(df)= 30.82 (1,35)  

P= 0.000003 0.0002 

H(N)=  17.71 (37) 

 Eggs hatched (10 days) Eggs hatched (total) 

Exposed 
(17) 

20.63±4.83 

(17) 

18.94±4.67 

Not-exposed 
(20) 

49.92±3.11 

(20) 

51.22±3.40 

F(df)= 28.05 (1,35) 30.97 (1,35) 

P= 0.000007 0.000003 
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Development of Dinocampus coccinellae in Harmonia axyridis reared with 

artificial diet 

The data concerning percentages (±SE) of cocoons detected of emerged adults, 

of the adult yields and survived H. axyridis are summarized in Tabel 16. According to 

the result, the host food did not significantly influence the parasitoid development, either 

the larva (from host exposure to cocoon) or the pupal (from cocoon to adult 

emergence). The adult yields and H. axyridis survival were also unaffected by host food. 

Also the generation effect was not significant, as well as the interaction between the two 

factors. 

Table 16: Development of Dinocampus coccinellae in Harmonia axyridis reared on two different types of food (frozen Ephestia 

kuehniella eggs or artificial diet): a) cocoons founds (%), b) parasitoid adult emergence (%), c) adult yields (%), d) alive 

Harmonia axyridis (%), as related to the combination of the factors “generation” and “food”. Number of replicates (n) is given in 

parentheses over the means (±SE). 

Parameters 

(%) 

Food Generation ANOVA results 

  Parental F1 F2 
Food 

Effect 

Generation 

Effect 
Interation 

 Ephestia 

Eggs 

(20) 

44±4.7 

(10) 

18±6.3 

(10) 

42±8.7 
   

Cocoon 

F=0.06 F=2.01 F=1.83 

df=1,73 df=2,73 df=2,73 

P=0.81 P=0.14 P=0.16 

 Artificial diet (20) 

35±7.1 

(10) 

32±8.5 

(10) 

31.1±6.7 
   

 Ephestia 

Eggs 

(18) 

75.9±8.3 

(6) 

100±0.0 

(10) 

87.5±10.0 
   

Emerged Adults 

F=0.34 F=0.35 F=0.07 

df=1,58 df=2,58 df=2,58 

P=0.56 P=0.71 P=0.93 

 Artificial diet (14) 

76.2±9.6 

(9) 

83.3±11.8 

(7) 

81±9.2 
   

 Ephestia 

Eggs 

(20) 

23.9±5.3 

(6) 

16.7±6.8 

(10) 

27.4±8.7 
   

Adult yields 

F=0.90 F=0.60 F=0.16 

df=1,66 df=2,66 df=2,66 

P=0.35 P=0.55 P=0.85 

 Artificial diet (20) 

30.7±6.9 

(9) 

28.5±9.5 

(7) 

10.69±4.0 
   

 Ephestia 

Eggs 

(20) 

30.1±6.7 

(10) 

31.6±10.0 

(10) 

34.6±10.9 
   

Alive H. axyridis 

F=0.19 F=0.65 F=0.43 

df=1,73 df=2,73 df=2,73 

P=0.66 P=0.53 P=0.64 

 Artificial diet (20) 

34.6±7.7 

(10) 

16.9±5.3 

(10) 

24.0±8 
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The data concerning the mean time (±SE) from host exposure to D. coccinellae 

cocoon detection, from cocoon to parasitoid adult emergence, from exposure to 

parasitoid adult emergence (= total development) and adult D. coccinellae lifespan are 

summarized in Tabel 17. The total development were significantly influence both the 

food effect (time were longer for the parasitoids reared on diet-fed H. axyridis) and by 

the generation effect (time were shorter for the F2 parasitoids). The parasitoid lifespan 

was also significantly affected by the generation effect (the F2 parasitoids lived less) 

and the interaction between food and generation was also significant. 

Table 17: Mean times (±SE) of development of Dinocampus coccinellae in Harmonia axyridis reared on two different types of 

food (frozen Ephestia kuehniella eggs or artificial diet): a) from ladybug exposure to parasitoid cocoon detection, b) from 

parasitoid cocoon to adult emergence, c) from ladybug exposure to parasitoid adult emergence, d) adult parasitoid lifespan as 

related to the combination of the factors “food” and “generation”. The number of replicates is given in parenthesis over the 

means. 

Parameters 

(time- in days) 
Food Generation ANOVA results 

  Parental F1 F2 
Food 

Effect 

Generation 

Effect 
Interation 

        

 Ephestia 

Eggs 

(18) 

16.92±0.3 

(6) 

17.47±0.78 

(10) 

16.80±0.23 
   

From exposure  

to cocoon 

F=0.25 F=0.57 F=0.75 

df=1,59 df=2,59 df=2,59 

P=0.62 P=0.95 P=0.48 

 Artificial 

diet 

(15) 

17.55±0.25 

(9) 

17.06±0.85 

(7) 

17.30±0.31 
   

 Ephestia 

Eggs 

(16) 

6.77±0.19 

(6) 

8.13±0.46 

(9) 

6.7±0.37 
   

From cocoon  

to adults (1) 

F=0.26 F=4.86 F=1.69 

df=1,52 df=2,52 df=2,52 

P=0.61 P=0.01 P=0.19 

 Artificial 

diet 

(12) 

7.44±0.3 

(8) 

7.64±0.33 

(7) 

6.93±0.34 
   

 Ephestia 

Eggs 

(16) 

23.96±0.19 

(6) 

25.62±1.02 

(9) 

22.41±0.93 
   

From exposure 

to adults (2) 

F=4.27 F=6.36 F=0.98 

df=1,52 df=2,52 df=2,52 

P=0.04 P=0.003 P=0.38 

 Artificial 

diet 

(12) 

25.08±0.36 

(8) 

25.64±0.46 

(7) 

24.14±0.45 
   

 Ephestia 

Eggs 

(17) 

7.19±0.25A 

(6) 

6.83±0.54A 

(9) 

4.7±0.41A 
   

Parasitoid adults  

lifespan (3) 

F=0.72 F=15.07 F=3.33 

df=1,51 df=2,51 df=2,51 

P=0.40 P=0.00001 P=0.04 

 Artificial 

diet 

(12) 

6.15±0.32AB 

(8) 

9.63±2.25A 

(7) 

5.36±0.34B 
   

(1) The grand means dor the generation effect are shown in table 18; 

(2) The grand means for the food and generation effect are respectively shown in tabels 19 and 18; 

(3) Means in a raw followed by same capital letters were not significantly different (one-way ANOVA). 

The table 18 and 19 respectively show the grand means for the generation and food effect on development time  
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Table 18: Grand means for the generation effect on Dinocampus coccinellae development time from cocoon detection to adult 

emergence and from host exposure to adult (total development). Means in a column followed by the same letters are not 

significantly different. 

Generation Time (in days) 

 From cocoon to adults From host exposure to adults 

Parental 
(28) 

7.06±0.18 ab 

(28) 

24.44±0.22 ab 

F1 
(14) 

7.85±0.27 a 

(14) 

25.63±0.49 a 

F2 
(16) 

6.80±0.25 b 

(16) 

23.17±0.59 b 

F= 4.73 6.69 

df= 2,55 2,55 

P= 0.012 0.025 

Table 19: Grand means for the food effect on Dinocampus coccinellae development time from host exposure to adult (total 

development). Means in a column followed by the same letters are not significantly different.  

Food Time (in days) 

 From exposure to adult 

Ephestia Eggs 
(31) 

23.83±0.39 a 

Artificial diet 
(27) 

25.00±0.26 b 

F= 5.49 

df= 1,56 

P= 0.02 

Discussion 

Developing control methods against H. axyridis remains a challenge, for several 

reasons. It is the first time that a predatory ladybug, or any other predatory beetles, 

requires control. Thus, there is no previous experience on which to base new 

management strategies and research on this topic is to date limited. While the control 

methods presently used or under development may solve the problems in buildings, 

orchards or vineyards, it is very unlikely that any of these methods will limit the impact of 

H. axyridis on native biodiversity. From its appearance in the field in many countries of 

Europe, H. axyridis has shown to have a strong impact on native species (Brown et al, 

2001). The first part of my research was devoted to searching new association between 

native parasitoids and H. axyridis. Only the one between H. axyridis and D. coccinellae 

was found and it was somewhat expected. In fact D. coccinellae is already know as a 

parasitoid of H. axyridis in some area of introduction of this coccinellid, like Canada 

(Firlej et al, 2005), Belgium (Berkvens et al, 2010) or UK (Aldeburgh, Suffolk [Browdrey 

and Mabbott, 2005] and Colchester, Essex [Fremlin, 2007]); I confirmed that this 

adaptation has happened aso in Italy. As reported by Hoogendoorn and Heimpel (2002) 

the abundance of H. axyridis could have a positive effect on the population dynamic 
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involving the interaction between the coccinellid complex and D. coccinellae, as this 

parasitoid could prefer the new host to the native ones. 

In my research areas I always found that H. axyridis was the most abundant 

coccinellid species, both as adult and as immature stages (Figure 13, page 42). The 

percentages of parasitism by D. coccinellae found for this ladybug were hower lower 

than for the others (3.88% in Italy, 0.30% in UK). Conversely, C. septempunctata 

showed higher percentages of parasitism in Italy despite the low number of samples 

collected (Figure 15, page 44). Other field-collected ladybugs were parasitised by D. 

coccinellae, but at low rate. This was expected, because, usually, D. coccinellae prefers 

bigger host (Richerson and Deloach, 1972) and all the other coccinellids found were 

smaller than H. axyridis or C. septempunctata. Also Koyama and Majerus (2008) found 

that H. axyridis had lower susceptibility than C. septempunctata to D. coccinellae. 

The differences that I found between the parasitism rates of H. axyridis in Italy and 

UK could be also due to the different periods devoted to field samplings (three years in 

Italy, three months in UK). However, even if only the samples collected in the same 

period of the year (September/December), although in two different years (2010 and 

2011) in the two countries, are considered, the difference is still high (Tab. 20). 

Unfortunaly, I do not have data from the same period in the same year for the two 

countries. 

Table 20: Number of Harmonia axyridis and Dinocampus coccinellae and percentage of parasitism found in Italy and UK in the 

same period (September/December) in two different years (2010 in Italy and 2011 in UK) 

 Italy 

September/December 2010 

UK 

September/December 2011 

Harmonia axyridis 1070 712 

Dinocampus coccinellae 40 2 

Parasitism 3.7% 0.3% 

The low rate of parasitism in the field could be due to the low capacity of D. 

coccinellae to locate and accept H. axyridis. Accoding to Richerson and Deloach (1972) 

host location and recognition are mediate by odours, but odours have less importance 

for acceptance. The high spread capacity and the wide range of preys of H. axyridis 

(higher than for other ladybugs) could make more difficult the encounter between these 

two species. Moreover, usually the field data relative to H. axyridis and its parasitoids (in 

native or introduced areas) report the rate of parasitism, but usually this rate was 

calculated in different way by different authors (Ceryngier et al, 2012). 
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My field data confirm the observations of other authors (including Berkvens et al., 

2010) above the low percentage of parasitism of H. axyridis by D. coccinellae. The 

laboratory tests however gave more encouraging results. In my laboratory tests D. 

coccinellae showed a better possibility of adaptation to H. axyridis compared to the field. 

In the laboratory experiment aimed at evaluating the more appropiate time of host 

exposure the rate of parasitism was higher than in the field. The best results, in 

parasitoid yields and time of development, were obtained with the treatment "1 hour". In 

the "24 hours" treatment, the yield was lower and the development time increased, 

possibly due to superparasitism and the consequent cocurrence for food. The treatment 

"5 minutes", time used by other authors in experiments concerning this parasitoid (e.g. 

Berkvens et al, 2010), gave poor results. 

Insect fecundity may be affected by different factors (Leather, 1988; Honek, 1993). 

In the present study, in spite of the low successful parasitism (the parasitoid larval 

development was apparently not complete) the exposure to D. coccinellae had an 

important effect on the reproductive capacity of the female ladybugs. In fact, while H. 

axyridis females exposed to parasitoid could oviposit, the eggs laid and the larvae 

hatched were significantly fewer compared to the control ladybugs. This result suggest 

that, despite the low succesful parasitism detected in the field, D. coccinellae may play 

a role in controlling H. axyridis population by decreasing female fecundity and fertility. It 

might be also considered a field release of parasitized H. axyridis (which behave 

similarly to unparasitized ones) for implementing a sort of concurrence for food and 

males between parasitized and unparasitized H. axyridis. In fact, the parasitized 

females remain attractive to males (in one case I even observed a male which tried to 

mate with a female with cocoon); the lower number of eggs laid by parasitized females 

and low fertility could reduce over time the number of H. axyridis present in the area. 

The experiment concerning the rearing of D. coccinellae on H. axyridis fed on two 

different foods was aimed at improving and simplifying the parasitoid maintenance. The 

artificial diet tested (Sighinolfi er al , 2008) is easy to prepare and cheap compared to E. 

kuehniella eggs. The latter, though expensive, are commonly used as standard food for 

coccinellids due to easiness of handling (Signinolfi et al, 2008). The results of my 

experiments showed that it is possible to rear D. coccinellae on diet-fed H. axyridis 

adults and this may allow to speed and facilitate the parasitoid rearing. The fitness of 

the parasitoid was not influenced by the food supplied to H. axyridis. Dinocampus 
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coccinellae could develop in H. axyridis fed with artificial diet, for more generations 

without major impact on the yields of adults. Only the parasitoids development from 

exposure to adult emergence was negatively influenced by food (it was longer in diet-

fed H. axyridis). In my experiment, I did not make a comparison with aphid-fed H. 

axyridis (something that my be done in future tests). However, the diet preparation is 

simpler and reguires less labour comparted to the maintenance of aphid colony. Its 

used to feed parasitized H. axyridis adults seems therefore to be convenient. 

Probably D. coccinelle alone cannot reduce the population of H. axyridis in 

Europe, due to the problem of host recognition mentioned above and the problems 

associated to its biology (Berkvens et al, 2010); but to date, apart from tachinids 

belonging to the genus Medina, sporadically found in Korea, it is the only known natural 

enemy of this ladybug (Kenis et al, 2008). Morever, it has not to be neglected the effect 

of some superior intraguild predator over H. axyridis, including Anatis ocellata (L.) and 

Chrysoperla carnea (Stephens) (Nedved et al, 2013). However it is the aggressive H. 

axyridis that acts as a superior intraguild predator. 

The combined use of ladybug parasitoids, D. coccinellae and other (still to be 

detected), and females with reduced reproductive capacity following parasitization could 

have effects on the field populations of H. axyridis.  

Further research is needed to improve knowledge about the association between 

H. axyridis and D. coccinellae in field and semi-field conditions and to find other 

parasitoids species of this ladybug, in Italy and Europe. 
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General conclusions 
Classical biological control has raised some concern in the last years. Michaud 

(2002) reported that there are several problems with the way it is often applied. Firstly, 

classical introductions are increasingly used as a first line of defense against invasive 

pests, regardless of need or the availability of suitable candidate species for introduction 

and no time frame is allocated for assessing the responses of indigenous natural 

enemies before the introduction of exotic species. Secondly, due to the large 

investments spent on classical biological control, there is pressure in demonstrating its 

success which may in biased assessment and oversimplistic communication of its 

efficacy; at the same time, the contributions of native parasitoids and predators to 

suppression of the target pest may go unreported and unrecognized. Thirdly, the 

application of the classical approach to every new pest may lead to underestimate the 

potential resilience of native ecosystems to invasions. Moreover, the indiscriminate 

application of the classical approach may be environmentally irresponsible as it exposes 

native ecosystems to a risk of non-target effects (Messing and Wright, 2006; De Clercq 

et al, 2011; Katsanis et al, 2013). Harmonia axyridis is a good example of an exotic 

beneficial insect which has become a problem in the countries of introduction. Finally, 

many countries have enacted laws which are rigid in regulating the introduction of exotic 

species, including those useful (e.g. in Italy DPR n. 120/2003 art. 12, 3). For all these 

reasons, researches aimed at exploiting the role of indigenous natural enemies for the 

control of alien insect pest need to be encouraged. Moreover, the exploitation of such a 

strategy may be complementary to the classical biologic control, which, despite the 

concerns raised, when well applied has also produced excellent results (DeBach, 1964; 

Greathead, 1986; Gould et al, 2008)  

My research work has shown that indigenous parasitoids may have an effect in the 

containment of introduced insects. Cacyreus marshalli and D. kuriphilus were both 

parasitized by native parasitoids, either in the laboratory or in the field. Specifically, for 

C. marshalli the laboratory tests have demonstrated that native polyphagous parasitoids 

of Lepidoptera have the potential to adapt to this non-permissive host, as also shown 

with other native parasitoid species in some field research (Sarto i Monteys and 

Gabarra, 1998; Vicidomini and Dindo, 2007); for D. kuriphilus the low specificity of gall 

parasitoids has enabled them to adapt to this new host (as also shown by other authors, 

including Santi and Maini, 2011, and Quacchia, et al, 2012). It is however unlikely that 
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the parasitoids that I have tested in the laboratory or found in the field can provide, by 

themselves, an efficient control of the alien pests; but their effects could be useful in 

combination with other indigenous parasitoids or as a support to classical biological 

control strategies. 

Dinocampus coccinellae, the antagonist of H. axyridis that I have found in nature, 

is also present in the native area of this ladybugs, as well as in other areas of 

introduction (Firlej et al, 2005); therefore its adaptation to this "new" host was not 

unexpected. The results of my experiments showed that D. coccinellae could have an 

impact, direct or indirect, on H. axyridis populations, besides having an indirect 

beneficial effect on other coccinellid populations, due to the control exerted over the 

concurrent exotic ladybug (Koyama and Majerus, 2008). Other parasitoids of ladybugs, 

which I did not find in my samplings campaigns, may also be adapting to this host, as it 

happened in other countries of introduction (Riddick et al, 2009). 

In general, the exploitation of native natural enemies of alien insect pests can be 

complementary to classical biological control also because the latter may require some 

years to produce result. This requires studies on the suitable natural enemies of 

introduced pest in the native country, with a period of time sufficient to verify the 

establishment of the introduced insects in the new area. These two aspects are not 

always easy to manage; e.g. natural enemies of C. marshalli in its native country are 

little known, and T. sinensis has been discovered and studied only after D. kuriphilus 

has spread in Japan from China (Yasumatsu and Kamijio, 1979) 

Hokkanen and Pimentel (1984) suggested that new association between exotic 

insect species and native antagonists, expecially parasitoids, may provide, over time, 

higher successful parasitism compared to former associations. An example of an 

efficient native parasitoid for the control of an alien insect pest in Italy is represented by 

the eulophid parasitoid Diglyphus isaea (Walker), an efficient antagonist of two exotic 

leafminers, which is also commercialized for inoculative release (Bazzocchi et al, 2003). 

In conlusion I think it is desirable to improve knowledges on the interaction between 

indigenous parasitoids (and predators) and alien insects pests so as to plan biological 

control strategies that combine the exploitation of indigenous antagonists and classical 

biological control in order to minimize impact of the new species on the envirenment. 
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