
 
 

Alma Mater Studiorum Alma Mater Studiorum ––  Università di Bologna Università di Bologna  
 

 
 

 DOTTORATO DI RICERCA IN  
 

MORFOFISIOLOGIA E PATOLOGIA VETERINARIA CON 
APPLICAZIONI BIOTECNOLOGICHE 

 
Ciclo xxv 

 
Settore Concorsuale di afferenza: 07/H1 

 
Settore Scientifico disciplinare: VET/01 

 
 

TITOLO TESI 
 
TASTE RECEPTORS IN THE GUT: A CHEMOSENSITIVE 

MECHANISM FROM FISH TO HUMAN 
 
 

Presentata da: ROCCO LATORRE 
 

 
 

Coordinatore Dottorato: Chiar.mo Prof. Eraldo Seren    
 
 
Relatore: Chiar.mo Prof. Paolo Clavenzani 

 
 
 

 
Esame finale anno 2013 

 
 



i 
 

Riassunto 
 

L’ingestione di un pasto evoca una serie di processi digestivi che consistono nelle funzioni 

essenziali dell’apparato digerente, trasporto degli alimenti, attività secretiva, assorbimento 

dei nutrienti digeriti e l’espulsione dei residui non assorbiti. La gastrointestinal 

chemosensitivity è caratterizzata da elementi cellulari endocrini della mucosa gastroenterica 

e da fibre nervose, soprattutto di natura vagale. Una ampia gamma di mediatori endocrini 

e/o paracrini possono essere rilasciati da varie cellule endocrine in risposta a nutrienti 

introdotti con la dieta. Tali ormoni, oltre alla loro attività diretta, agiscono attraverso 

recettori specifici attivando azioni di assoluta importanza nel controllo di varie funzioni tra 

cui l’introito calorico e l’omeostasi energetica dell’organismo. Ad integrazione di questo 

complesso sistema di controllo della chemosensitività gastrointestinale, recenti evidenze 

dimostrano la presenza di recettori del gusto (o taste receptors, TR) appartenenti alla 

famiglia dei recettori correlati alle proteine G espressi a livello della mucosa del tratto 

gastrointestinale di diversi mammiferi e dell’uomo.  

La presente ricerca, suddivisa in diversi progetti di ricerca, è stata concepita al fine di 

chiarire il rapporto tra TR e nutrienti. Per definire questo rapporto sono stati usati diversi 

approcci scientifici, che sono andati a valutare le variazioni delle molecole segnale dei TR 

in particolare dell’α-transducina in condizioni di digiuno e a seguito di rialimentazione 

standard nel tratto gastrointestinale di suino, la mappatura della stessa molecola segnale nel 

tratto gastrointestinale di pesce (Dicentrarchus Labrax), il signaling pathway dei bitter TR 

in colture cellulari endocrine STC-1 ed infine il coinvolgimento dei bitter TR, in particolare 

del T2R38 in pazienti con un eccessivo introito calorico. I risultati hanno evidenziato come 

ci sia una stretta correlazione tra nutrienti, TR e rilascio ormonale e come questi siano 

coinvolti non solo nella percezione del gusto propriamente detto ma probabilmente anche in 

patologie croniche come l’obesità. 
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Abstract 
 

The ingestion of a meal evokes a series of digestive processes, which consist of the 

essential functions of the digestive system: food transport, secretory activity, absorption of 

nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal 

chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal 

mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine 

and/or paracrine can be released from various endocrine cells in response to nutrients in the 

diet. These hormones, in addition to their direct activity, act through specific receptors 

activating some of the most important functions in the control of energy intake and energy 

homeostasis in the body. For integration of this complex system of control of 

gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste 

receptors (TR) belonging to the family of G proteins coupled receptor expressed in the 

mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided 

into several research projects that have been conceived in order to clarify the relationship 

between TR and nutrients. To define this relationship I have used various scientific 

approaches, which have gone on to evaluate changes in signal molecules of TR, in 

particular of the α-transducin in the fasting state and after refeeding with standard diet in 

the gastrointestinal tract of the pig, the mapping of the same molecule signal in the 

gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in 

the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of 

T2R38 in patients with an excessive caloric intake. The results showed how there is a close 

correlation between nutrients, TR and hormonal release and how they are useful both in 

taste perception but also likely to be involved in chronic diseases such as obesity. 
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INTRODUCTION 
 

 

THE GASTROINTESTINAL TRACT IN MAMMALS 
 

The alimentary canal consists of the esophagus, stomach, small intestine, large intestine and 

the anal canal. Associated to it there are two large glands that release their secretions into 

the intestinal lumen: liver and pancreas. 

I will consider only the gastrointestinal tract, and so I will not treat the esophagus and the 

associated glands. I will try to describe the generality of the gastrointestinal tract, 

highlighting the key parts in pigs and humans. 
 

 

I) THE STOMACH 
 

The stomach is a dilated portion of the digestive tract, which follows the esophagus at the 

level of cardia and it is continuous through the small intestine, in correspondence of the 

pylorus [1] [2] [3]. 
The stomach receives the insalivated boluses of food from the oral cavity through the 

esophagus. The bolus is temporarily stored in the stomach and soaked by gastric juice 

which is secreted by the gastric glands [1] [2] [3] [4]. This solution is mainly composed by 

pepsin, rennin and hydrochloric acid, which act on proteic substances [1]. The food, under 

the combined action of gastric juice and peristaltic movements is transformed into a fluid 

mass called chyme and is moved into the duodenum [1] [2] [3] [4]. The size and the 

structure of the stomach depends on the habits and on the food behavior of the singular 

species. Moreover the structure of the stomach depends on different feeding and lifestyle of 

the various species. pigs and humans are monogastric animals, but they show some 

differences: the human stomach (Fig 1) (glandular stomach) has a glandular mucosa 

covered with simple columnar epithelium and a capacity of 1,3 liters, while the stomach of 

the pig has a proventricular portion (Fig 1) (nonglandular mucosa; characterized by 

stratified squamous epithelium) and the presence of an esophageal-like mucosa, more or 

less extended from the cardia. The capacity of the pig’s stomach is 4 liters [2] [3]. 
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Fig 1: A. External and internal anatomy of the stomach of human (Tortora and Grabowski, 1996), B. Region 
of the pig stomach (http://www.thepigsite.com/articles/2749/digestive-system-anatomy-and-function) 

 

The stomach is characterized by two curvatures: the greater curvature is convex and 

directed ventrally toward the left, while the lesser curvature is concave and direcetd 

dorsally to the right [2]. The stomach can be divided into three anatomical regions: the 

fundus, or blind sac, overlooking the cardia, the body, located ventrally to the fundus, 

which continues on to the pyloric region. The latter, which corresponds to the flexed lower 

portion of the stomach, consists of the pyloric antrum and pyloric canal [2]. 

 

i) Structure 

The wall of the stomach consists of a mucous membrane, a muscular, and serous coat. The 

tunica mucosa (Mucous membrane) can be divided into layers: surface epithelium, lamina 

propria mucosae, lamina muscolaris mucosae, and tela submucosa [4]. 

 

Tunica Serosa 

The serosa is constituted by the visceral peritoneum; it is formed by two sheets, one 

anterior and one posterior. In proximity of the small curvature the serosa is coated with a 

small amount of elastic fibers, which seem to have the task of maintaining the two ends of 

the stomach close together. 

The tunica serosa is continuous at the level of the greater curvature with the greater 

omentum, near the diaphragm with the gastrophrenic ligament, and at the level of small 

curvature with the lesser omentum [2] [3]. 

 

 

A B 
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Tunica Muscolaris 

The musculature of the stomach is constituted by two fundamental layers of smooth muscle 

cells, one on the surface (longitudinal layer) and one in deep (circular layer). Depending on 

the considered levels we can observe a dissociation, a thickening or a change of direction of 

the muscle planes, in relation to the conformation and function of each region of the organ. 

In the fundus and in the body of the stomach, two oblique layers are added to the two 

fundamental layers, one of which is internal and the other external. [2] [3]. 

-Longitudinal muscle layer 

The longitudinal muscle layer is incomplete and is placed immediately after the subserosa. 

It is reduced to two straps, one of which runs along the small curvature and the other runs 

along the greater curvature [2] [3]. 

The first one is continuous on the surface of the esophagus and opens like a fan on the faces 

of the stomach, reaching the gastric incisure. The other one is relatively thin and extends 

from the left edge of the fundus to the pyloric area, where it is reinforced by elastic fibers. 

In the proximity of the pylorus the longitudinal layer is complete and thickened and then 

continues with the longitudinal layer of the intestine [2] [3]. 

-External oblique fibers 

This layer is a continuation of the longitudinal layer, which is located only in the vicinity of 

the fundus and the part next to it, i.e. the body. This is well developed in the pig, where it 

forms a relatively superficial and flat thickened layer. These external oblique fibers are 

poorly developed in the human stomach. 

-Circular muscle layer 

The circular layer is not present at the levelof the fundus and is thin in the adjacent part of 

the body of the stomach. The circular layer occupies an intermediate position between the 

layers descibed above and those of the internal oblique fibers; at the level of the pylorus 

this layer is in direct relation to the submucosa. Precisely in the pyloric part (pyloric canal), 

the circular layer becomes stronger and forms the pyloric sphincter, which through its 

contraction, completely closes the communication with the intestine [2] [3]. 

-Internal oblique fibers 

This layer is present only at the level of the fundus and in the body of the stomach. It is a 

thickened layer that is continuous with the circular bundles of the left face of the esophagus 

and which is made up of two parts: cardiac loop and the oblique layer. 

 

 



4 
 

Tunica Submucosa 

This layer is immediately beneath the mucosa; it is a layer of loose to dense connective 

tissue containing blood and lymphatic vessels. The submucosa also contains the submucous 

plexus, a critical component of the digestive tract’s nervous system which provides nervous 

control to the mucosa [4]. 

 

Tunica Mucosa 

When proventricular mucosa is present it is an esophageal-like mucosa. The rest of the 

stomach has a glandular mucosa, which has structural changes that allow us to divide it into 

three zones: fundic mucosa, cardiac mucosa and pyloric mucosa [2] [3]. 

-Proventricular mucosa 

The proventricular mucosa (non-glandular mucosa) of the stomach is often slightly folded, 

it is white and dry and very similar to esophageal mucosa; in the pig the proventricular 

mucosa extends for 3-4 cm on the right of the small curvature, while it reaches 7-8 cm in 

width to the left where it leads up to the margin of the gastric diverticulum [2] [3]. 

The muscularis mucosa is relatively thick and has two floors of irregular bundles, which are 

often dissociated. The tunica propria mucosa is thick and is formed by dense connective 

tissue which is rich in elastic fibers [2] [3]. 

Like in the esophagus, the epithelium is stratified squamous non-keratinized, thick and 

cornified. There are no glands in the proventriculum [2] [3]. 

 

 

ii) Fundic mucosa 

 

It is considered that the cardial mucosa and the pyloric mucosa derive from the fundic 

mucosa. The fundic mucosa occupies the fundus in humans and carnivores, whilst in pigs it 

is positionated fully into the body of the stomach and therefore it is not found in the fundus. 

The fundic mucosa is thick, soft, red to brown [2] [3]. 

Its overall organization is characterized by the provision of the muscularis mucosa, which is 

well developed and is provided with two floors of bundles, of which the exterior is 

longitudinal and the inner one is transverse. The transverse layer projects numerous bundles 

of cellular fibers between glands. They separate groups of glands forming lobules, which 

leads to the formation of small areas, called gastric areas, on the surface of the mucosa. 
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Each lobule is divided into small groups of glands, whose excretory ducts open into deep 

and narrow depressions called: gastric pits or crypts (Fig 2). 

 
Fig 2. General cell composition and location in a gastric gland. G and D cells are mainly in pyloric glands, 

while paretial and chief cells in oxyntic (fundic) mucosa. (Basic and Clinical Pharmacology. Mc Graw-Hill, 

2012) 

 

-Lamina propria mucosa is the delicate connective tissue interposed between glands. It is 

rich in vessels with a thick subglandular layer particularly developed in carnivores. 

Numerous lymphocytes infiltrate the lamina propria mucosa in particular in the 

subglandular area, and in some cases they form lymphatic nodules, which are especially 

developed and evident in the pig. The epithelium is simple, formed by a single row of cells 

supported by a basement membrane. Many tubular glands are present in the thickness of the 

tunica propria, these glands occupy almost the entire thickness of the mucosa. In the 

adjacent part of the crypts and on the surface of the mucosa, the epithelium is formed by 

high and clear prismatic cells, which become lower and cubic towards the bottom of the 

crypts, in correspondence of the glandular orifices [2] [3]. 

-Region of proper gastric glands, the fundic glands or proper gastric glands are closely 

packed tubular glands with a rectilinear course and perpendicular to the surface they 

become sinuous or convoluted in the vicinity of the muscularis mucosae. Each gland is 

composed of a narrow and cylindrical neck, a large cylindrical and slightly flexuous body, 

and finally a base convoluted with trend and terminating in a blind end [2] [3]. 

The epithelium has 4 types of cells: 1) the mucous neck cells have a cubical shape, are 

positionated in the neck where they form the coating, 2) the gastric chief cells, which are 
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positioned in the body and at the base of the glands they are clear and their volume changes 

in response to their function, as well as the position of the core which can be central or 

baseline, 3) the parietal cells or oxyntic cells, which are localized primarily in the body of 

the glands, while they are very rare at the base of the glands. In the glands they are in an 

eccentric position, between the chief cells and the basement membrane, their cytoplasm is 

acidophilus. The chief and the parietal cells secrete different products; the first process the 

pepsinogen and chymosin or rennin; the latter are involved in the secretion of hydrochloric 

acid 4) the enterochromaffin cells are located between the chief cells and the basement 

membrane; they are equivalent to the endocrine cells of the intestine, and are so called 

because their cytoplasm contains granules that stain with the Ag or Cr salts. They definitely 

have an endocrine function [2] [3]. 

 

 

iii) Cardial Mucosa 

 

The cardial mucosa gets its name because it is interposed between the esophageal mucosa 

and the fundic mucosa. In the majority of species including man, this takes place in the 

vicinity of the cardia, however in the pig it is positioned in the fundus and is well 

developed. Its organization is similar to that of the mucosa of the fundus, but the cardial 

glands are tubular branched and very tortuous. Their epithelium is composed of a single 

row of light-colored, cube-shaped mucous cells with basal nucleus [2] [3]. 

 

 

iv) Pyloric Mucosa 

 

The pyloric mucosa is located in the pyloric part of the stomach and is also located in part 

of the body of the stomach. It is thinner and lighter than the fundic mucosa and is also less 

crinkled, with the exception that it is in the immediate vicinity of the pylorus. It has the 

same overall organization, but the grouping in lobules of the glands is more evident than in 

other parts of the stomach and the crypts are much deeper and narrower. The pyloric glands 

are more branched and tortuous than the proper gastric glands. It lines most of the pyloric 

part in the pig's stomach, except for an area near the greater curvature. Apart from some 

exceptions, the pyloric glands are devoid of parietal cells and their epithelium is composed 

only of a layer of clear cells [2] [3]. 
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II) INTESTINE 
 

The intestine extends from the pylorus of the stomach to the anus, with the exception of 

some rare cases. It is easy to recognize two major parts in the gut: the first part is narrow 

and relatively long and is called small intestine, the second is more voluminous and 

variable and is called large intestine [2] [3] (Fig 3). 

 
Fig 3. Schematic representation of Human and Pig gastrointestinal tract (www.webmed.com, 

www.vetmed.vt.edu). 

 

i) Small Intestine 

 

The small intestine is a long cylindrical tube of nearly uniform caliber, where the most 

important stages of digestion occur. The small intestine is divided into three successive and 

unequal segments: duodenum, jejunum and ileum. Among these, only the duodenum is 

clearly demarcated, whilst the boundary between the other two segments is barely visible 

[2] [3]. 

The duodenum receives the secretion from the liver and pancreas, while in the jejunum and 

ileum there is only the secretion from their own mucosa. These secretions continue and 

complete the action started by gastric juices in the stomach due to the fact that certain 

substances such as carbohydrates are not modified in the stomach [2] [3]. In order to 

perform this function the small intestine needs many specilaized structures, a large amount 

of digestive enzimes and a large amount of mucus, which is indispensible to preserve the 

mucosa from mechanical insults and irritating compounds. 
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The size of the small bowel depends on the habits and on the food behavior of the singular 

species. It is 10 times the length of the body in humans and 13 times in pigs, but may vary 

also from animal to animal of the same species [2] [3] [4]. 

 

 

a. Duodenum 

 

Duodenum is the first part of the small intestine and extends from the pylorus to the 

jejunum. Its mesentery, the mesoduodenum, is relatively short, with the exception of 

carnivores. Two flexures divide the duodenum in 4 parts: 1) cranial part, which passes to 

the right along the visceral surface of the liver and ends at the cranial flexure; 2) descending 

part, which runs caudally from the cranial flexure towards the right kidney; this part of the 

duodenum is shorter in both humans and pigs; 3) transversal part, which runs towards the 

left and differs from animal to animal; in humans it is elongated, whilst it is shorter in 

carnivors and significantly shorter in ruminants; 4) ascending part, which is found in the 

vicinity of the left kidney; it passes cranially and as its mesoduodenum becomes longer it 

turns ventrally at the duodenojejunal flexure and continues into the jejunum [2] [3] [4]. 

The descending and ascending parts of the duodenum form a U-shaped loop around the 

caudal aspect of the root of the mesentery and the cranial mesentery artery [4]. The cranial 

part of the duodenum is closely related to the liver and pancreas; the duodenum receives the 

bile duct from the liver and the pancreatic duct from the pancreas [4]. 

 

 

b. Jejunum 

 

The jejunum begins at the duodenojejunal flexure at the cranial end of duodenocolic 

fold[4]. The jejunum is a long cylindrical tube covered by peritoneum, and continues from 

the duodenum. In the pig it is found mainly in the ventral part of the right half of the 

abdominal cavity, but it extend along the floor into the left half and lie ventrally to the 

coiled ascending colon and cecum [4]. The internal structure of the jejunum consists of a 

soft epithelium with many villosities; in some areas the mucosa has a particular appearance 

due to the partial lack of villi and accumulation of lymphnodes. This accumulation of 

limphonodes forms the peyer’s patch [2] [3]. Contractions called peristalsis occur-in this 

structure, but they never at the same time as in the ileum. Peristalsis is the contraction of 
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the muscle layer that helps the chyle to continue into the other parts of the gut [2] [3]. 

Peristalsis occur in each segmant of the gut. 

 

 

c. Ileum 

 

Ileum is the short terminal part of the small intestine and forms the link between the small 

and large intestine[4]. It terminates at the cecocolic junction of the large intestine forming 

the ileal orifice [4]. The anatomy of the terminal part of the ileum suggests that the junction 

of the ileum and large intestine is not only an anatomical division, but also an important 

functional division of the alimentary canal [4]. Similarly to the jejunum the ileum also has a 

cylindric shape and a soft epithelium, with many villosities and in some areas peyer’s 

patches. 

 

 

d. Structure 

 

The duodenum, the jejunum and the ileum have a very similar structure; they only differ in 

some aspects. As in the rest of the digestive tract, there are four different layers: tunica 

serosa, tunica muscolaris, tunica submucosa, tunica mucosa [2] [3]. 

 

Tunica Serosa 

The whole small intestine is covered with a thin tunica serosa, which derives from the 

peritoneum [2] [3]. The serosa adheres closely to the tunica muscolaris and near the 

mesentery it thickens and forms elastic connective tissue to facilitate the changes of caliber 

that the body undergoes during its functions [2] [3] [4]. 

 

Tunica Muscolaris 

As in all species, the tunica muscolaris is composed of two layers: a thick circular inner 

layer and a longitudinal and thinner outer layer. Both are relatively thin at the level of the 

duodenum and thicken towards the ileum [2] [3]. Between these two layers there is a thin 

layer of connective tissue which welcomes a network of nerve fibers with ganglion cells, 

which belong to the myenteric plexus [5]. 
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Tunica Submucosa 

The submucosa can be thinner or thicker depending on the segment considered. It is formed 

by a layer of connective fibers and contains some elastic fibers, which allow it to form 

folds. Moreover, a submucosal plexus is present at this level with an extensive neuronal 

network mixed with ganglion cells. Furthermore, deep in the submucosa there are 

submucosal glands (Brünner glands). In the pig the secretion of these glands lubrificates the 

epithelial surface and protects it from the acidity of gastric chyme [2] [3]. 

 

Tunica Mucosa 

The tunica mucosa is the most characteristic part of the bowel; it has a myriad of tiny 

finger-like processes called villi, which take on various shapes and positions and are 

specific organs that are very important for absorption [2] [3]. Each villus is coated by 

epithelium and presents connective tissue. Inside it is possible to note blind end lymphatic 

vessels surronded by an extensive network of capillaries formed by a small artery and 

drained by a small venule. Moreover, the villus axis presents smooth muscle cells from the 

muscolaris mucosae. Between the villi there are depression zones or crypts, which are 

considered intestinal glands [5]. The epithelium lining of the intestinal mucosa is a simple 

columnar epithelium, and it is formed by different types of cells (Fig 4). 

-Enterocytes, these cells are prismatic or pyramidal, with the restricted part facing towards 

the basement membrane. In an optic microscope the apical part of these cells presents a 

thickened and finely striated area, with microvilli which are very important for absorption 

[2] [3]. 

-Goblet cells, these cells are interspersed among the enterocytes; there are fewer than 

enterocytes. They are glandular simple columnar epithelial cells and secrete mucin, which 

in the end becomes mucus; they use both apocrine and merocrine methods for secretion. 

Mucus mainly consists of glycoproteins and glycosaminoglycans (PAS positive) [2] [3]. 

-Enteroendocrine cells, these cells are specilized endocrine cells, which produce hormones 

such as serotonin, somatostatin, colechistokinin (CCK), ghrelin, glucagone peptide-1 (GLP-

1), polypeptide YY (PYY) and regulate the digestive cycles. The enterochromaffin cells 

present in the stomach are also considered enteroendocrine cells [2] [3]. 
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Fig 4. Different types of epithelial cells present in the intestine (Nature Reviews 2006). 

 

ii) Large intestine 

 

The large intestine is the part of the digestive tract that follows the small intestine and ends 

with the anus. It is divided into the following three segments: the cecum, the colon and the 

rectum plus a short anal canal. The large intestine has an almost uniform structure and 

retains, in all its segments, which are variable in shape and size, an anatomical and 

functional unit. The last part of digestion takes place in this portion of the digestive tract, 

and in particular the absorption of liquids, which is very high despite the lack of villi [2] 

[3]. 

 

 

a. Cecum 

 

The cecum is the initial part of the large intestine and appears as a blind end, which is more 

o less voluminous and present in the gut between the ileum and colon. Depending on the 

species in question the cecum can be very small or well-developed, in most cases it presents 

sacculations and teniae [3]. In herbivores and omnivores it is quite developed, whilst it is 
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short and poorly developed in carnivores. It reaches maximum development in horses and 

rabbits. In the pig the cecum is 30-40cm long, it is positioned on the left side, and has very 

pronounced sacculations interrupted by longitudinal folds (tenie) [4]. Between adjacent 

sacculations, semilunar folds project into the interior of the gut and increase the initial 

surface area (the same process occurs in the colon) [4]. In humans the cecum, even though 

short and not voluminous, consists of two unequal segments, one proximal and one distal. 

The vermiform appendix is part of the distal segment [3]. 

 

 

b. Colon 

 

The colon is the largest part of the large intestine, followed by the cecum, when present, 

and terminates with the rectum. The size and shape of the colon is related to the diet. The 

description of the colon in comparative anatomy is based on human nomenclature. The 

simple arrangement in man gave rise to the division into an ascending colon, which  passes 

cranially on the right, a transverse colon, which passes from right to left in front of the 

mesenteric artery, and a descending colon, which passes caudally on the left [4]. 

The ascending colon in the pig has a spiral-shaped cone arrangement with apex on the left 

side and transverse axis disposed vertically [6], whilst the transverse colon is short and the 

descending colon presents a smooth appearance and is generally smaller than the ascending 

colon [3]. 

-Ascending Colon, this part of the colon, is very developed in ungulates and rabbits. In the 

pig it is from 2 to 4 meters long, wheras it is 5-10 meters long in the cow, 12-15 meters in 

the camel, 30-35 cm in the rabbit and 15-25 cm in humans. Due to these sizes the ascending 

colon is forced to bend and roll up to find a place in the abdomen [3]. In the pig it is coiled 

on itself and forms the spiral loop of the colon, which is between the cecum and the 

transverse colon and its bends are piled up to form a thick cone [4]. 

-Transverse Colon is relatively long in humans, from 50 to 60 cm, and is delimited by two 

angles, between which it forms a curve. The transverse colon is smooth in pigs, whereas it 

is bumpy in humans [3]. It passes from right to left in front of cranial mesenteric artery in 

the abdomen [4].  

-Discending Colon is very long and suspended by the long descending mesocolon. The 

large coils of the descending colon are found in the left dorsal quadrant of the abdominal 

cavity [4]. It has a simple arrangement and often extends in a straight line. It is smaller than 
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the ascending colon and has sacculations in humans, while it is smooth in pigs [3]. As in 

the cecum, the colon is also provided with semilunar folds which project into the lumen of 

the gut and increase the initial surface area. 

 

 

c. Rectum 

 

The rectum, so called because it does not describe any convolutions, is smooth and caudal 

and becomes enlarged, forming the ampulla recti before ending at the short anal canal [4] 

[6]. Infact the rectum is a straight piece of gut which continues from the descending colon 

into the pelvic cavity. 

 

 

d. Structure 

 

The large intestine consists of four concentrically arranged layers proceeding from outside 

to the lumen: tunica serosa, tunica muscularis, tunica submucosa, tunica mucosa. 

 

Tunica Serosa 

The tunica serosa is very thin and it is derived from the peritoneum. The serosa does not 

cover the entire large intestine but finishes at the rectum. The rectum is covered and 

surronded by dense connective tissue [3]. 

 

Tunica Muscolaris 

The muscular coat is composed of two layers, one circular and internal, and the other 

longitudinal and external. However the longitudinal layer in some places is considerably 

thickened and forms longitudinal bands called teniae in latin; in this part the elastic fibers 

are abundant (cecum and colon segments) [3] [5]. 

 

Tunica Submucosa 

The submucosa in the large intestine is no different from that of the small intestine. 
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Tunica Mucosa 

The mucosa lacks villi and the epithelium is reminiscent of the small intestine. It forms the 

Liberkuhn glands, which extend perpendicularly from the surface to the proximity of the 

muscolaris mucosae. These glands are more abundant and bigger than in the small intestine 

and are rich in mucous cells. These cells seem to be less in number in the cecum, but their 

number increases in proximity of the rectum [3]. 

 

 

THE GASTROINTESTINAL TRACT IN FISH 

 
The gut is a tubular structure beginning at the mouth and ending at the anus (Fig 5). The 

digestive system of the fish is divided into 4 parts[7]:  

• The head gut is generally divided into the oral (buccal) and gill (branchial, 

pharyngeal) cavities. As it is not part of the gastrointestinal tract it will not be 

treated here 

• The foregut begins at edge of the gills and includes the esophagus, the stomach, and 

the pylorus. 

•  The midgut includes the intestine posterior to the pylorus,.and often includes a 

variable number of pyloric caecae (pyloric appendages) near the pylorus. 

• The hindgut is marked by an increase in diameter of the gut and it ends is the anus. 

Some species of fish, such as the cyprinus, lack both a stomach and pylorus, in this case the 

foregut consists of the esophagus and an intestine anterior to the opening of the bile duct. 

 

 
Fig 5. Overview of gastrointestinal system in the bone fish (black line is the the black line is the path of food 
from ingestion to expulsion) (http://www.infovisual.info/02/033_en.html). 
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I) THE HEAD GUT 
 

As previously mentioned the head gut is not part of the gastrointestinal tract, but is a 

fundamental part of the digestive tract of the fish. 

 

 

II) THE FOREGUT 
 

The foregut includes the esophagus and the stomach. the anterior limit is given by the gills, 

while the caudal limit is given by the pylorus[8]. 

 

 

i) The esophagus 

 

I will only briefly introduce the esophagus, because it is only the anterior limit of the 

stomach, thus it is not part of the gastrointestinal tract that begins with the stomach. 

The esophagus is a large, short and straight tube, constituted by outside to the lumen of: 

tunica serosa, tunica muscolaris, tunica submucosa e tunica mucosa. There are many 

mucous cells that secerne mucus-like substances, which make the esophagus viscous [7]. 

 

 

ii) The stomach 

 

The stomach of teleosts, when it is present, presents a variety of different shapes, and in 

any case represents the caudal part of the foregut [7]. 

The stomach can be straight, like a tube of uniform diameter with no marked anatomical 

differences between the esophagus and stomach as in the Northern pike (Esox Lucius), U-

shaped or in the form of a round and muscular structure situated at the end of the esophagus 

and with a cardiac and pyloric region as in most teleosts, or Y-shaped with a blind sac of 

variable size and a cardiac and pyloric region as some teleosts and sharks [7] [8] (Fig 6). 
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Fig 6. Different shapes of fish stomachs (Dicentrarchus labrax have a Y-shaped stomach) 
(http://diversityofanimalsystem.wikispaces.com/digestive+system)  
 

 

The stomach is absent in different fishes, when present it has numerous gastric pits (like 

crypts) immersed in the mucosa and at the bottom there is the opening of the gastric glands 

[8]. The epithelium of the stomach and of the lining of the crypts consists of a single layer 

of high columnar prismatic cells; these cells in the apical part are positive to PAS reaction 

and so they secrete a protective mucus [8]. There are two different types of glands in the 

mucosa of the stomach: fundic and pyloric; the fundic glands cover most of the mucosa of 

the body of the stomach, while the pyloric glands are only present in the pyloric part of the 

stomach [8]. The fundic branched tubular glands possess more than one type of cell, this 

gland cell (oxyntopeptidic cell) contains acidophilic granules and produces pepsin and 

hydrochloric acid. The pyloric glands are less closely associated than the fundic glands; 

they are shorter, less frequently branched tubules [8]. Their epithelium is similar to that of 

the stomach, the stroma of the mucosa of the stomach contains many lymphocytes and 

eosinophilic granular cells, the muscularis mucosae is present and consists almost entirely 

of smooth, longitudinally-disposed muscle cells [7] [8]. The submucosa contains 

Y shape 
stomach 

NO STOMACH 
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eosinophilic granulocytes and is rich in networks of  nerves, arteries and veins, while the 

muscolar coat is formed by a circular, longitudinal and additional inner oblique layer [8]. 

 

 

III) THE MIDEGUT AND THE HINDGUT 

 
The segment of the intestine that follows the stomach is called midgut, while the terminal 

segment of the intestine is the hindgut. Unlike mammals, in fish there is no distinction 

between the small intestine and large intestine. The intestines of fish are mostly a tubular 

structure that can vary in size depending on their eating habits; in fact, carnivorous species 

often have a shorter intestine compared to herbivorous fish [7] [8]. Some species of bony 

fishes have an intestine with a smooth surface, others have longitudinal folds or folds which 

form a rather complex pattern or network. Moreover, some fish, such as higher vertebrates, 

have villi as their intestinal wall lining, which can be different sizes and shapes depending 

on the species. A villus is a finger-like process of the mucosa which is composed of an 

epithelial covering and a core of connective tissue containing blood and lymph capillaries. 

Many species have a number of protrusions extending from the midgut close to the pylorus 

[7] [8]. These blind-ending structures are the pyloric cecae, they possess a multi folded 

intestinal epithelium and their role seems to be to increase the area for the absorptive 

process and the duration of food retention in the intestine. The intestinal epithelium can be 

of a simple or pseudostratified columnar type; it is composed of cells that possess a well 

marked striated border called microvilli and goblet cells, which are mucus secreting cells 

[8]. These cells have different functions, such as absorption and secretion. In some fishes 

ciliated cells have been described among the ordinary prismatic cells of the intestine [8]. In 

the intestine of fish are present some glands similar to liberkhum glands [8]. The lamina 

propria and submucosa of some species contain large numbers of eosinophilic granular 

cells and lymphoid tissue [8]. The eosinophilic granular cells are similar to mastcells; they 

contain antimicrobal peptides and their release can increase the vascular permeability and 

promote neutrophil adhesion (innate immunity and inflamation) [8]. The muscularis 

mucosa is composed of a thin layer of smooth muscle, and the submucosa is generally 

composed of a loose connective tissue with blood vessels. In most fishes, as in mammals, 

the muscular coat of the intestine is very developed to ensure peristaltic contraction [8]. The 

rectum is the terminal part of the fish intestine [7] [8]. 
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THE SENSE OF TASTE 
 

Taste is the ability to respond to dissolved molecules and ions called tastants. The chemical 

senses (taste and smell) are the most ancient of the sensory modalities in any living species. 

There is no doubt that the gustatory system is essential for nutrition and survival. In fact, 

the discrimination between nutrient and/or potentially harmful compounds has effect on 

animal and human behaviour and, therefore, on their major organic and biological functions 

[9]. 

It is difficult to imagine how the many taste sensations that we perceive can be only related 

to four and more recently five types of taste: sweet, bitter, salty, sour and umami. These 

five types of taste, however, can be mixed together to produce many shades and hues of 

flavour. 

Taste at a molecular level is very similar to the other senses. Tastants are recognized and 

bound by taste receptor signaling to sensory neurons in order to convey the chemosensory 

information to the central nervous system (CNS). However the relationship between 

tastants and taste is not linear connection. It would be easy to think that the five main 

tastants can be recognized via respective receptors, one for each type of taste. In contrast, 

the complex web of information generated by various tastants results from a polymodal 

function of taste receptors, i.e. each receptor recognizes different stimuli. The same stimuli, 

can be evoked by many different tastants, and each taste modality may use more than one 

processing mechanism. Moreover each tastant can be recognized by taste receptors only if 

it reaches the right threshold. For example, some compounds such as sucrose and lactose, 

which elicit a sweet taste in humans, activate taste receptors only at high concentration [9], 

while bitter substances have a nanomolar concentration threshold. 
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TASTE BUDS 
 

The perception of different gustatory stimuli originates from the interaction of the 

molecules present in oral fluid as saliva. Found primarily on the tongue’s surface, taste cells 

are organized in specialized structures (specialized sensory cells) referred to as “taste buds” 

[10] (Fig 7).  

In mammals, the taste buds are located on the tongue, epiglottis, pharynx and in the upper 

part of esophagus [11]. In fish the distribution of taste cells is on the whole body surface, 

lips, gills, skin and barbells as well as in the mouth, pharynx and esophagus [12] [13] [14]. 

The distribution of taste buds in fish reflect the eating habits, hunting strategy and the 

different fish habitats [14] [15] [16]. 

Taste buds are approximately 50µm in diameter and appear to be composed of 50-150 taste 

cells that detect sugar (sweet taste), aminoacids (umami taste), poisons (bitter taste), acids 

(sour taste) and minerals (salty taste). Taste receptor cells are long and spindle shaped, with 

microvilli at their tips.  

 

 
Fig 7. Taste bud organizations 

 

The beginning of taste recognition occurs at the pore, an opening in taste buds where the 

microvilli of receptor cells contact the outside environment. Tastants penetrate into the pore 

and make contact with receptor molecules and channel within the microvillar membrane of 

the taste receptor cells [10][17]. Microscopic studies of taste buds, highlight four 

morphologically different cell types (Fig 8): light cells (type I cells), dark cells (type II 

cells), intermediate cells (type III cells) and basal cells [18]. 
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The basal cells, small and rounded, are located at the base of taste buds and are considered 

to be stem cells, because it is believed that all of the other cell types derive from the basal 

cells. The lifespan of an individual taste cell is only from 10 days to 2 weeks, thus cells 

within the taste buds are continually being replaced [11] [19]. 

The light cells are the mature taste cells and their primary function is to support dark and 

intermediate cells [20], while the dark and intermediate cells are different stages of 

differentiations of immature taste cells [11]. Functionally all four cell types are referred to 

as taste cells, they are elongated cells and extend from the bottom of taste buds up to their 

taste pore.  

The most studied cell are certainly the type II cell that expresses G-protein coupled 

receptors (GPCRs) for the detection of sweet, umami and bitter compounds [21]. Type III 

cells are thought to express sour taste receptors and detect acid taste [22]. This cell type 

also expresses the pan neuronal marker protein gene product 9.5 (PGP 9.5) and contains 5-

hydroxytryptamine (5-HT) [23]. Type I cells express nucleoside triphosphate 

diphosphohydrolase-2 (NTDPase2) and the oxytocin receptor [24] [25]. 

 

 
Fig 8. Cells types in taste bud: light cells (type I cells) are supporting cells, dark cells (type II cells) contain 

taste receptor, intermediate cells (type III cells) form synapses with afferent nerves, basal cells (type IV cells) 

are progenitor cells. 

 

Mammalian taste buds are localized in structures called papillae, varying in number 

depending on the species considered. In humans, three types of papillae are present on the 
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tongue of domestic animals, each with morphological differences and with a different 

localization. 

The fungiform papillae are numerous (in terms of hundreds) on the tip of the tongue of 

humans and pigs, in addition in pigs other fungiform papillae can be found on the anterior 

two-thirds of the tongue. This type of papillae has a simple structure generally containing a 

single taste bud. On the back of the tongue there are the circumvallate papillae, with a more 

complex structure, V-shape and many taste buds (in the pig there are only two papillae - 

one at each side of the back of the tongue, in humans they range from 8 to 12). Taste buds 

in circumvallate papillae line the side of the grooves with their pore facing the cleft [2] [3]. 

The foliate papillae are positioned on the lateral margin towards the posterior part of the 

tongue, they have a similar structure to the circumvallate papillae and also taste buds line 

the cleft of the papillae, their shape being like a leaf [2] [3]. These papillae are well 

developed and numerous in pigs [3]. 

Taste cells detect stimuli, but taste receptor cells have to convey taste information to the 

CNS. Nerve fibers representare the link between the taste receptor cells and the brain. Taste 

cells secrete neurotransmitters into the synapse, passing information from the taste receptor 

cells to neurons. The latter spike action potentials that signal to the brain [10] [26].  
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BITTER TASTE RECEPTORS 
 

Bitter stimuli is perceived as dangerous and harmful and therefore the gustatory system 

induces an adverse reaction [27]. In fact the bitter stimuli has evolved as a central warning 

system against the ingestion of potentially toxic substances, including the alkaloid and 

other environmental toxins [28]. 

The recognition of these potentially dangerous signals by the gustatory system is associated 

with the development of T2R family in the oral cavity. This is known thanks to the 

discovery of T2Rs genes in several animal species. In the human genome about 25 T2Rs 

have been identified [29] [30], in birds for example only three genes, whilst in amphibians 

about 50 T2Rs genes. Generally in mammals the expression of T2Rs genes ranges between 

15 and 36 [11] [29] [31] [32]. In general T2Rs belong to the guanine nucleotides, which are 

bound to the GPCRs superfamily, with a short NH2 terminal segment and seven 

transmembrane α-helics, three extracellular loops, three cytoplasmatic loops and a COOH-

terminal segment [10]. Specific G alpha subunits are common to all taste GPCRs called: 

gustducin and transducin (Gi/Go proteins) [33] (Fig 9). 

The T2R family is composed of many receptors, only some of them, to date, are associated 

with a specific ligand (6% of total receptors), this is the case of phenylthiocarbamide (PTC) 

and denatonium benzoate (DB), which bind T2R138 (T2R38 in humans) and T2R108 

(T2R4 in humans) respectively in mice. 

Most T2Rs are generally known as “orphan receptors” (about 80% of total T2Rs receptors) 

because it is not known exactly which substance can be used as an agonist [34] [35]. It 

should be remembered that a single receptor can also bind different substances, this further 

complicates the task of researchers who seek to shed light into the great family of T2Rs. 

A recent study[35] compared 25 hT2Rs with more than 100 natural and synthetic 

compounds, going on to establish a ranking of the most “broadly tuned” T2Rs. So today it 

is known that some T2Rs can respond to a wide range of bitter substances and others can 

have intermediate characteristics to recognize only a few bitter substances. In one of our 

studies, we treated the enteroendocrine STC1 culture cells with increasing doses of PTC 

and DB. 

This was done to evaluate the activation of phosphorylation MAPkp44/42, because PTC and 

DB bind T2R138 and T2R108 respectively, leading to a dose response activation of 

MAPkp44/42, which confirms the involvement of these two substances with T2Rs. 

 



23 
 

 
Fig 9. Bitter taste signalling pathways 

(http://www.qiagen.com/products/genes%20and%20pathways/Pathway%20Details.aspx?pwid=63). 
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α (gustducin and transducin)-SUBUNIT OF G PROTEIN 

COUPLED RECEPTOR SUPERFAMILY 
 

Gustducin plays an important role in transducing bitter and sweet gustatory signals in the 

taste buds of the lingual epithelium. Outside of the oral cavity α-gustducin (an alpha 

subunit of GPCR) has been localized in the gastrointestinal tract of rats and mice [36] [37] 

[38] [39] and in the pancreas [40], suggesting a role for taste sensing mechanisms in the 

gastrointestinal tract [37] [41]. Alpha transducin was originally described in the 

photoreceptor cells of the retina, but it is now well established that this subunit of the G 

protein is present in the taste cells of the lingual epithelium and thus is implicated in taste 

signal transduction [42]. 

The presence of taste receptors in the oral cavity was confirmed through the use of 

immunohistochemistry, which identified the expression of α-gustducin (Gi) and α-

transducin (Go) cells in the stomach and intestine mucosa of rats [43], mice [39] [44] [45], 

pigs [46] and man [47] [48]. 

In particular, both α-gustducin and α-transducin are stained in different subpopulations of 

enteroendocrine cells (98% of them). This has been established using 

immunohistochemestry to localize such as chromogranin A (an estabilished marker of 

endocrine cells in the GI tract), PYY, GLP-1, ghrelin, CCK, serotonin and somatostatin 

[46] [47] [48] [49] [50] [51]. 

The presence of the alpha subunit of G protein coupled receptors has been found not only in 

the oral cavity and gastrointestinal tract but also in the respiratory system [52]. In these 

systems, the alpha subunit of G protein coupled receptors has been localized in specific 

cells called brush cells distributed to the pancreas, stomach and intestine [53]. As described 

by Rozengurt and Sternini, these cells are morphologically different compared to the 

endocrine cells which have a “bottleneck” or “pear” shape or have an elongated pyramidal 

shape and the ability to secrete CCK, PYY, GLP-1 upon activation induced by taste stimuli 

[54] [55] [56]. 

Brush cells have an elongated soma with a basolateral rootlet and an apical tuft of 

microvilli that extends into the lumen [57], they do not contain granules and secrete 

neurotransmitters. 

Using immunohistochemistry, α-gustducin [39] [43] and α-transducin [46] are expressed 

throughout the epithelium surface in the brush cells in the rat and pig gut. 
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In conclusion, much remains to be understood about the distribution and function of the 

alpha subunit of the G protein coupled receptors involved in taste perception. The α-

gustducin seems to be more involved in the perception of the bitter and sweet stimuli, 

whilst α-transducin seems to have a secondary for scientific community. However, the 

study of Clavenzani et al [46] and the most complete study of Mazzoni et al [58]showed 

that α-transducin is localized throughout the gastrointestinal tract of pigs with exception of 

the esophagus. In that study, the α-transducin co-localizes with several neurotransmitters 

and fasting and refeeding evoke a modification in the expression of this protein in the entire 

gastrointestinal tract. This evidence highlights the role of α-transducin and α-gustducin in 

taste transduction [58]. 
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CELLULAR SIGNAL OF TASTE TRANSDUCTION 
 

Food intake causes a series of processes that lead the gustatory system and therefore our 

body to distinguish between different molecules, nutrients but also potentially hazardous or 

toxic substances. 

In fact taste cells are able to discriminate between various substances such as ions and 

complex compounds as sweet and bitter. Depending on their chemical nature, the ingested 

substances are reception and transduction with different kinds of processes (Fig 10). It is 

also true that different molecules may also be perceived as one [11]. 

Once received and recognized, taste stimuli are transduced with different cellular 

mechanisms (e.g., membrane potential or change in the concentration of free Ca2+), which 

lead to the release of neurotransmitters carryng  information to CNS. 

 
Fig 10. General transduction mechanisms in taste (publishing as Cummings B. 2006, in Cur Opin in 

Neurobiol) 

 

I) BITTER 

 

The bitter taste is often associated with toxic or harmful substances, in fact for an organism 

sensitivity to bitter stimuli is a protective mechanism for poison avoidance [59]. There is a 
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wide range of compounds that are very different chemically, but that induce the sensation 

of bitter. 

It is well known that different substances such as caffeine, nicotine, strychnine, drugs and 

plants alkaloid evoke the taste of bitter [10]. For this reason the perception of bitter taste is 

of fundamental importance for the survival of the animal kingdom. 

Bitter compounds are divided in lipophilic (kinin), which penetrate the membrane directly, 

hydrophilic (DB), which instead must use a mechanism as a receptor to enter in the cell. 

This suggests how there can be more than one intracellular signal pathway involved in 

bitter transduction (fig 11). The transduction of bitter stimuli is primarily mediated by the 

T2Rs, a G protein coupled receptor superfamily (a family of about 30 receptors). To date, 

we know two mechanisms of signal transduction for bitter taste: the activation of cell 

surface receptors and the following activation cascade of secondary messengers which 

involves phospholipase C that in turn activates the inositol tri-phosphate (IP3), which is 

well known to stimulate the release of calcium ions from intracellular stores [17] [60]. The 

Ca2+ thus liberated causes the hyperpolarization of the cell via K+ channel, but we have to 

remember that Ca2+ can also directly activate the release of neurotransmitters. The second 

way is identical to the first until the activation of G protein, which involves the activation 

of phosphodiesterase, which reduces the intracellular levels of cAMP or cGMP (cyclic 

nucleotides) [10] [17]. The decrease of the cAMP level activates protein kinase A, which 

regulates the passage of Ca2+ through the ion channel. 

The α-gustducin subunit is definitely involved in the bitter signal transduction. This is 

confirmed by several in vitro and in vivo studies on laboratory animals. One study in 

particular confirmed the α-gustducin as an important mediator of bitter stimuli. In this study 

the author used KO mice for α-gustducin gene, in which the responce of Ca2+ to bitter 

compounds was measured through calcium imaging technique [61]. The result shows how 

the bitter stimuli are transduced mainly by α-gustducin, because in KO mice for α-

gustducin gene, the response to bitter compounds was low but not zero. This evidence is 

very important because this means that there is a different subunit of GPCR to transduce 

the same bitter stimuli, maybe the α-transducin. 

As proof of this, the Clavenzani et al. study on the pig GI tract shows how the same 

enteroendocrine cells can co-express both α-gustducin and α-transducin [46]. 

It should be remembered that the mechanism which implicates GPCRs is valid only for 

hydrophilic molecules, because lyphophilic molecules use the ions channels directly (eg. K+ 

channel) to penetrate into the cell. 
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II) SWEET 

 

The transduction of sweet stimuli is similar to bitter stimuli. In fact, when sweet substances 

bind the taste receptor the stimulatory G protein is activated inside the taste cell. The 

activation of the taste receptors by sweet substances such as sugar, saccharin, aspartame, 

and alcohol, causes a depolarization of the taste cell due to the action of cyclic nucleotides 

cAMP and cGMP [62] (Fig 11). 

Avenet et al showed that the addition of cAMP in the taste cells of the frog, causes the 

activation of protein kinase, an enzyme that induces the closure of K+ channels [63] on 

basolateral side of the plasma membrane blocks this in turn, the exit of the K+ ions, causing 

the depolarization of taste cells and the release of neurotransmitters [19] [62]. 

The T1R receptors are responsible for transducing the sweet stimuli, this is a small family 

of receptors (T1R1, T1R2, T1R3) linked to G-protein that perform their function alone or in 

combinations (eg. T1R1 and T1R3 for umami taste) [64]. Likewise bitter, even the sweet 

taste is composed of very heterogeneous substances, in fact the gustatory signal 

transduction requires many processes and it seems unlikely that a single receptor can 

incorporate all sweet stimuli. 

 
Fig 11. Sweet and bitter taste transduction 
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III) SALT 

 

Salt stimuli are transduced by simple ion channels. Sodium is the most popular salty 

substance, it represents 90% of the inorganic ions in the extracellular fluid. About 30 yars 

ago, it was thought that taste cells were impermeable to ions, but different studies showed 

that Na+ could be transported across the tongue ephitelial membranes in dogs [65]. In 

addition, it was shown that the drug amiloride inhibits the passage of Na+ from outside to 

inside the taste cells, leading to a decreased perception of salt stimuli. This occurs because 

the amiloride blocks the Na+ channel, as demonstrated in humans and rats [66]. The salty 

taste is transduced through ionotrophic mechanisms and mediated by a particular receptor, 

an ion channel for the amiloride-sensitive sodium, known as ENaC [10] [17]. The entry of 

Na+ into the cells, depolarizes cells, leading to the release of neurotransmitters and, as a 

result, nerves convey sensory information to the brain (fig 12). 

 

 

IV)        SOUR 

 

Sour stimuli are perceived when in the oral cavity there are compounds that increase the H+ 

ions. Indeed sour tasting acids and substances may be inorganic, such as hydrochloric acid, 

or organic, such as lactic acid, both evoking H+ release. The signal transduction occurs 

through the modulation of the potassium channel. The increase of H+ block K+ channels 

and this effect prevents the release of K+ from the cells and depolarizes the cell membrane, 

thereby leading to neurotransmitters release [67] (fig 12). Other mechanisms may operate in 

sour stimuli transduction, such as the activation of Na+ channel due to elevated H+ 

concentrations [68]. 
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Fig 12. Salt and Sour taste transduction (Callmethedoctor.co.uk) 

 

 

 

V)     UMAMI 

 

Umami is a recently discovered taste. It is given from substances such as L-glutamate, and 

5’-ribonucleotides, including guanosine monophosphate (GMP) and inosine 

monophosphate (IMP) [69]. This taste was first discovered in 1908 by K. Ikeda, who 

coined the term “umami”. Most dietary proteins contain high amounts of glutamate (e.g. 

protein of meat, poultry, seafood and vegetables). 

Transduction for umami taste is still unclear. Biochemical studies showed that taste 

receptors are responsible for the sense of umami, and some receptors are taken into 

consideration for umami transductions, e.g. T1R1-T1R3 dimer and some modified 

glutamate receptors such as mGLuR4, mGLuR1. All of these receptors are found in the 

taste buds on the tongue [70] [71] [72]. However, to date, the specific role of these 

receptors in taste buds remains unclear. 

 

 

 

 



31 
 

TASTE RECEPTORS IN THE GASTROINTESTINAL 

TRACT 
 

The digestive system is of fundamental importance in taste perception. In fact, it is through 

the oral cavity first and the gastrointestinal tract after that our organism is able to perceive 

different nutrients. Nutrient sensing influences digestive process i.e. secretory activity of 

the glands, absorption, bloody supply and motility of the gastrointestinal tract (GI) [73]. 

Tasting of various nutrients allows the body to respond to a large array of signals originated 

in the lumen which include nutrients, non-nutrient chemicals, mechanical factors and 

microorganisms. Moreover, the ability to perceive taste is important for the defensive 

behaviour of the GI tract generated by many harmful substances such as toxins or plants 

alkaloids [59]. Generally, potentially harmful substances are associated with bitter taste and 

induce nausea and vomiting or by impairing gastric emptying, resulting in the delayed 

delivery of toxins to the gut, whilst the nutrient compounds are associated with sweet taste 

and might stimulate saliva as well as gastric and pancreatic secretion to prepare the GI tract 

for digestion and absorption [45]. It is well established that the taste receptors are localized 

in the taste buds of lingual epithelium [32] [34] [74] as well as in the gastrointestinal tract 

[37] [45] in mammals and fish. In fact, recent studies performed on the mouse and rat have 

demonstrated that there is no difference between the taste receptors present in taste buds 

and those present in the epithelium of the gastrointestinal tract. 

Both taste receptors belonging to T2Rs (about 30 subtypes) and a small family of T1Rs 

(three subtypes) have been found in the GI tract [45] [75] [76] [77]. It has also been shown 

that these receptors may participate in glucose homeostasis [55] [78]; in fact the oral 

administration of glucose can activate T1Rs in L-type endocrine cells, resulting in the 

release of mediators such as GLP-1 and GIP [79]. 

Mazzoni et al [58] showed that the α-transducin is localized in cells of the stomach, mainly 

in the pylorus, and in all segments of the intestine, with an increase of α-transducin cells in 

the pig large intestine. Other authors have shown that the α-gustducin was present in the rat, 

mouse and human intestne [39] [43] [44] [47] [48]. In fish (dicentrarcus labrax), we have 

shown α-transducin and α-gustducin immunoreacting in the stomach, mainly in the pyloric 

region and in the remaining segments of the intestine these cells were scarce. 

In conclusion, taste receptors and their effector proteins, α-transducin and α-gustducin, are 

present throughout the digestive system from the oral cavity to the proximal part of the 
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colon, with the exception of the esophagus. The mechanisms of signal transduction used 

depend on the tastants, the downstream of secondary messengers and the following increase 

of intracellular calcium for the depolarization of membranes. The cell membrane 

depolarization elicits hormone release from enteroendocrine cells. The interplay with the 

nervous pathways is associated with the activation of biological responses affecting gut 

physiology. 
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GUT CHEMOSENSING AND ENTEROENDOCRINE 

SYSTEM 
 

The gut responds to a wide range of substances in the lumen; these substances include 

nutrients, non-nutrient chemicals, mechanical factors and microorganisms [80]. 

Chemosensing of nutrients at mucosal level affects a variety of gastrointestinal functions, 

crucial for digestion and absorption. Chemosensing can also be used for detecting 

harmful/toxic substances, and this elicits adversive responses such as vomiting and food 

adverse behavior mediated by hormonal and neuronal pathways [81] (Fig 13). Probably the 

first level of the integration of information from the gut to the lumen is due to Bayliss and 

Starling, were the first to demostrate that the gut mucosa exhibits luminal chemosensitivity. 

Indeed they showed that a bioactive substance, then called secretin, was released from the 

gastrointestinal mucosa exposed to luminal acid [82]. There are specialized cells that 

respond to luminal signals, and based on these they control the digestion and the immune 

mechanisms. 

Enteroendocrine cells are the cells which are predisposed to perceive and transduce luminal 

signals, releasing other molecules such as hormones or paracrine factors. The 

enteroendocrine cells represent only 1% of the total cells present in the gut epithelium; they 

are distributed along all intestinal segments and are capable of perceiving luminal signals. 

As a result, these cells release a series of signal molecules that activate nerve fibers or other 

local or distant targets [83] [84] [85]. 

The enteroendocrine cells represent the largest endocrine organ of the human body, and 

secrete a large variety of hormones or signal molecules derived from different genes, which 

are expressed in multiple forms [86] [87]. Enteroendocrine cells release various hormones 

which have different actions (see chapter “food intake mechanisms”); some of these 

hormones include: gastrin from enteroendocrine G cells, somatostatin from D cells, 

cholecystokinin from I cells, ghrelin from X/A-like cells, serotonin from enterochromaffin 

cells, glucagone like peptides and peptide YY from L cells, and glucose-dependent 

insulinotropic-peptide from K cells [88] [89]. Depending on their position in the mucosa 

and their morphology, enteroendocrine cells are classified as “open cells” and “closed 

cells”. The “open cells” have microvilli facing towards the intestinal lumen, and this 

characteristic means that the “open cells” are able to perceive the luminal contents and 

release secretory product. Moreover, “open cells” accumulate this secretory product inside 
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the granules in the cytoplasm and they open these granules and release the secretory 

product upon stimulation by exocytosis at the basolateral membrane in the intestinal space, 

where they can act locally or reach distant targets through the bloodstream [83] [84] [86] 

[88] [90]. 

 
Fig 13. Possible mechanisms involved in GI chemosensing (Sternini et al 2006, Cur Opin Endocrinol 

Diabetes Obes) 
This is the case, of G cells localized in the gastric antrum and pylorus, which release gastrin 

upon stimulation by luminal amino acids and calcium [91]; L cells of the duodenum and 

jejunum, produce CCK in response to saturated fats, long chain fatty acids, amino acids and 

small peptides from protein digestion [84] [92]. Also X/A-like cells produce Ghrelin, which 

is the only peptide that increases food intake [90]; or of the ileum, which produces GLP-1 

or PYY from L cells in response to lipids or carbohydrates [49] [93]. GLP-1 and PYY 

hormones play a crucial role in the “ileal brake”, which is an inhibitory feedback 

mechanism regulating the nutrient transit via gastrointestinal motility and secretion and 

reducing gastric emptying [93]. These three hormones, GLP-1, PYY and CCK, have been 

regarded as satiety signals [89], while PYY, GLP-1 and gastric inhibitory polypeptide 
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(GIP) are involved in energy homeostatis and their altered processing/ release may have a 

role in metabolic diseases, such as obesity and type 2 diabetes [94]. 

Other enteroendocrine cells include the “closed type” subgroup, which is located close to 

the basal membrane, although they never reach the surface and lack microvilli. Similing 

open, “closed cells” contain granules and under stimulation they release the contents of the 

granules, mainly hormonal substances. 

An example of “closed cells” are the D cells of the gastric corpus that release somatostatin 

upon stimulation by intestinal hormones and neurotransmitters and so inhibit gastric acid 

secretion by acting on parietal cells and indirectly on the release of histamin [49]; 

enterochromaffin cells release 5-HT evoked by carbohydrates. 5-HT act in a paracrine 

manner on receptors located on nerve endings [95]. 

A second level of integration of information is represented by neurons of submucosal 

plexus and related nerves as well as extrinsic nerve endings [96]. These fibers do not reach 

the endoluminal side in fact, products secreted by enteroendocrine cells are released under 

stimulation by exocytosis in the basolateral membrane into the intestinal interstitium of the 

lamina propria, and act locally in a paracrine manner on primary afferent neurons and other 

cells, or through the bloodstream in an endocrine manner [97] [98]. Since virtually all gut 

peptides are subject to rapid liver extraction and breakdown by proteolitic enzymes, their 

highest concentration is found very close to the site of secretion [99] [100] [101] [102]. In 

this regard some gut peptides such as GLP-1 or PYY perform their anorectic effect by 

binding receptors near the site of secretion, or by binding receptors on vagal afferent fibers 

that innervate the lamina propria. The intraperitoneal administration of GLP-1 or PYY does 

not produce the anorectic effect if the mouse has undergone abdominal vagotomy or 

subdiaphragmatic vagal deafferentiation [103] [104]. Recently, researchers have shown that 

CCK is involved in the homeostasis of glucose. The authors propose that CCK is released 

in response to gut lipid sensing and binds to CCK-1 receptor on visceral vagal afferents; 

this carries signals to the brain through the liver and directly inhibits the production of 

glucose [105]. 

In this context, the discovery of the presence of TR in the gastrointestinal tract and their 

colocalization with neuropeptides, gives an important role to TR in endoluminal 

chemosensing in the GI tract [45] [106] [107] [108]. An example is given by Raybould et al 

[109], who showed that intragastric administration of DB (an agonist of  bitter taste 

receptor T2R108 in mice) and PTC (an agonist of bitter taste receptor T2R138 in mice) 

activated the nucleus tractus solitarius (NTS), an affect that was prevented by 
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subdiaphragmatic vagotomy. These findings demonstrate that TRs are implicated in 

endoluminal chemosensing and their interplay with afferent nerves of vagal origin to 

transduce sensory information to the CNS [110] [111] 
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FOOD INTAKE MECHANISMS 
 

It is well known that the coordination of biological activities between cells in living 

organisms involves several chemical messengers, mostly peptides. These polypeptides are 

synthesized and secreted by about 15 different enterendocrin cells, placed along the 

gastrointestinal tract and pancreas of mammals (gastro-entero-pancreatic complex; GEP) in 

response to chemical and nervous stimuli and communicate with their target cells via 

endocrine, autocrine and neurocrine secretion. [106] [112] [113]. Gastrointestinal 

regulatory peptides interact with specific receptors located on the cells surface and generate 

a signal which causes a series of intracellular events culminating in the synthesis and 

release of secondary chemical messengers that modify the secretion and motility of 

gastrointestinal structures, as well as the secretion of other hormones (table 1). This 

biological effect regulates a large number of functions, such as digestive behaviour, 

absorption, release of hormones, enzyme secretion, gut motility, satiety, appetite, 

elimination of toxins and energy homeostasis [113] [114]. Many gastrointestinal peptides 

are involved in delicate peripheral and central pathways that regulate appetite and satiety 

(Fig 14); 

 

 
Fig 14: Different Gi hormones regulate food intake through bloodstream and vagal afferent. 

 

 the imbalance between food intake and energy consumption leads to a number of diseases 

such as obesity. The central regulation of body weight is linked to various peripheral 

signals coming from the digestive tract, pancreas and adipose tissue [115] [116]. Recent 
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studies in non-diabetic obese patients have highlighted the role of leptin but also other 

gastrointestinal peptides such as cholecystokinin (CCK), Glucagon Like Peptide-1 (GLP-

1), ghrelin and peptide YY (PYY) in the control of food intake and body weight.  

A change in the regulation of intestinal peptides can cause weight loss, but also an 

enormous sense of hunger that may persist even up to one year after the termination of that 

diet [117]. 

 

 
Table 1: Gastrointestinal peptide, function and localization in endocrine cells in the GI tract 

 

 

I) GASTRIN 

 

Gastrin is a linear polipeptide to 17 amino acids produced by G cells of the pyloric antral 

part of the stomach and by G cells from the proximal duodenum. G cells are most abundant 

in the medium portion of the pyloric antrum; they are equipped with microvilli towards the 

luminal side and thanks to which they can capture substances contained in the gastric and 

duodenal lumen. Gastrin is stimulated by proteins and amino acids in the lumen of the 

stomach or by parietal distension that causes the release of this hormone into the 
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bloodstream (fig 15). Its major function is the physiological control of gastric digestion by 

the regulation of acid secretion; indeed Gastrin is an important regulator of postprandial 

acid secretion and gastric epithelial cell proliferation and parietal cell maturation [118]. In 

particular, Gastrin increases the abundance of histamine secreting enterochromaffin-like 

cells (ECL) and plays a role in the relaxation of the ileo-cecal valve [119]. 

Gastrin is involved in pancreatic secretion and gallbladder emptying, and aids gastric 

motility [120]. 

Recent studies have revealed that the PTC increases the expression of the ABCB1 (ATP-

Binding cassette B1) in STC1 cells through the CCK and gastrin signaling mechanism 

[121], suggesting that the stimulation of taste receptors and in particular of T2Rs in the 

gastrointestinal tract leads to the release of these incretin hormones. This evidence may 

indicate that the cells in the stomach that produce gastrin respond to PTC and T2Rs. 

 

 
Fig 15. Biological action of Gastrin hormone (www.sciecedirect.com). 

 

II) SOMATOSTATIN 

 

Somatostatin was first isolated from sheep hypothalamus for its capacity to inhibit the 

secretion of growth hormone [122]. Subsequently, cells containing somatostatin ( D cells) 

have been found and widely distributed in the gut mucosa and in pancreatic islets [123]. 

They are particularly abundant in the corpus and antral region of the stomach. Somatostatin 

is also widely distributed in the central and peripheral nervous system, located in the soma 

of neurons. Somatostatin has two active forms produced by the alternative cleavage of a 

single preproprotein: one with 14 (SOM-14), the other with 28 (SOM-28) amino acid 

residues [124]. 

Somatostatin released from enteroendocrine and pancreatic endocrine cells acts locally as a 

paracrine factor [125]. It acts on multiple receptors, there are five different somatostatin 
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receptors, SSTR-1 to SSTR-5, all belonging to the G protein coupled receptor superfamily 

[126]. In the gastrointestinal system the major somatostatin receptors are SSTR-2 and 

SSTR-5. 

Somatostatin has a wide spectrum of biological actions in different parts of the body [126]. 

Its main role when secreted by hypothalamus is undoubtedly the inhibition of the secretion 

of pituitary hormones such as the growth hormone prolactin, and thyroid-stimulating 

hormone (TSH) [126] [127]. Furthermore, somatostatin inhibits the release of different 

hormones from all regions of the gut (Gastrin, CCK, Secretin, Motilin, Vasoactive 

intestinal peptide VIP, GIP), decreases the rate of gastric emptying, absorption, 

proliferation and reduces smooth muscle contraction and blood flow within the intestine 

[128]. 
 

 

III) CHOLECYSTOKININ 

 

In 1906 the British physiologist Joy Simcha Cohen first described CCK as being found in 

the central nervous system as well as in the gut. 

CCK is a linear polypeptide of 33 amino acids, it represents one of the principal endocrine 

regulators of digestion. We can describe CCK as a family of hormones identified by the 

number of amino acids ( CCK58, CCK33, CCK8). CCK8 has a high structural homology 

with the gastrin receptor, more than 90%; in fact in our studies we used an antibody which 

recognized both CCK8 and gastrin. For this reason in the fast-refeeding project in the pig, 

we were unable to discriminate CCK8 and gastrin in the duodenum. In the brain CCK has 

the function of a neurotransmitter; in fact it acts as a peptide, it is released by neurons due 

to membrane depolarization. It is produced by various types of neurons.  

In the gastrointestinal tract it is synthesized by I cells in the duodenal and jejunal mucosa 

and secreted in the duodenum. In enteroendocrin cells CCK has multiple biological 

functions, its first gastrointestinal role is the regulation of protein and fat digestion in the 

upper small intestine [129] (fig16), but in addition CCK causes the stimulation of 

gallbladder contraction and emptying, pancreatic enzyme secretion, intestinal motor activity 

and inhibition of gastric emptying. All of these functions lead CCK to send a signal to the 

brain, which results in satiety sensation and decrease of food intake. The ingestion of a 

meal moves the basal levels of CCK from ~ 1pM to 5-8 pM [130], as previously said, 

because the CCK is mainly induced by proteins and fat in the small intestine. 
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FIG 16. Nutritional stimulation of CCK (www.rupress.org). 

 

Recent studies indicate that the stimulation of STC1 cells with PTC, an agonist for T2R138, 

leads to a dose-dependent increase of CCK, and this effect is mostly decreased in STC1 

cells where expression is silenced by siRNA mT2R138 [131], however let us not forget that 

the release of CCk is increased by the stimulation of STC1 cells with denatonium benzoate, 

an agonist for T2R108 [54]. 

 

 

IV)      GHRELIN 

 

The word for the hormone ghrelin derives from the root “ghre”, which in Proto-Indo-

European language means growth. This name is due to the ability of this peptide to 

stimulate the growth hormone GH. Ghrelin is a 28 –amino acid peptide, in which the 

serine-3 (Ser3) is n-octanoylated, this modification is essential for the activity of the 

hormone. It is mainly produced by X/A-like cells or G-cells [132] [133] in the pancreas. 

Ghrelin stimulates appetite, for this reason it is called the “Hunger Hormone”, as it 

increases food intake and it is considered the counterpart of leptin, a hormone produced by 

adipose tissue that induces satiation, and its secretion increases before meals and decreases 

after food is eaten (fig 17). The growth hormone secretagogue receptor (GHSR) is a GPCR 

that binds ghrelin. 
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Fig 17.  Biological action of ghrelin hormone. 

 

In mammals, ghrelin homologs have been identified in humans [132], rhesus monkeys 

[134], rats [132], mice [135], dogs [136] and other species. The amino acid sequence of 

mammalian ghrelin is well conserved, especially the 10 amino acids in the NH2-terminal 

are identical. Therefore the NH2-terminal region is the core for the activity of peptides. 

Ghrelin, like many other peptide hormones, is generated by a precursor protein called pre-

pro-ghrelin. 

In the stomach it is more abundant in the cells of the fundus than in the pylorus [137] [138]. 

It is not only expressed in the stomach, but in many other sites such as the small intestine, 

lungs, brain, ovaries, adrenal glands, islets of langerhans and testis [139]. This wide 

distribution shows that ghrelin has many different actions on feeding behaviour, 

reproduction, sleep regulation, energy homeostasis, regulation of gastro-entero-pancreatic 

function and corticotrope secretion [140] [141]. 

Recent studies, however, demonstrate that ghrelin KO mice show normal growth, energy 

expenditure and food intake under normal conditions [142] [143]; this means that ghrelin 

plays primarily a facilitatory role in several endocrine functions. Plasma levels of ghrelin 

depend on several factors, mainly on the caloric content [144] and macronutrient 

composition of the meal [145]. Taste receptors and specifically α-Transducin, α-Gustducin 

and T2Rs might be involved in the mechanism of secretion of ghrelin; in fact recently it has 

been shown that gavage with T2R agonist increased the plasma level of octanoyl ghrelin in 

wild type (WT) mice and this effect is partially attenuated in Gust KO mice [51].  
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V)   OBESTATIN 

 

Obestatin is a peptide hormone, which is a relatively small protein, that is potentially 

produced in the cells lining the stomach and small intestine of several mammals including 

Humans [146]. 

It is encoded by the same gene that also encodes ghrelin; in fact, bioinformatic studies 

carried out by Zhang et al. in 2005 [147] have identified a 23-amino acid peptide which 

derived from the ghrelin peptide precursor. This was a very exciting new insight to the gut 

peptide field. The name that the author gave to this new peptide was obestatin, and it seems 

that obestatin has the ability to inhibit food intake in mice by intraperitoneal or 

intracerebroventricular injection. In addition, the authors described how the peripheral 

injection of obestatin inhibited jejunal contraction, suppression of gastric emptying and 

decreased body weight gain [148] [149] [150]. However, to date, the role of obestatin 

remains not elucidated; further studies are needed to understand the exact physiological 

function of this peptide. 

 

 

VI)    GLUCAGON LIKE PEPTIDE-1 

 

GLP-1 is an incretin which is derived from the transcription product of the proglucagon 

gene. It is synthesized and secreted from endocrine L-cells in the intestine, mostly in the 

distal ileum and colon [151] [152] and from pancreatic alpha cells. There are two 

biologically active forms of GLP-1: GLP-1-(7-37) and GLP-1-(7-36)NH2, these peptides 

result from the cleavage of the proglucagon molecule. GLP-1 secretion from ileal L-cells is 

lead on the presence of nutrients in the lumen of the small intestine and its release depends 

on the size of the meal [153]. 

Macronutrients, such as carbohydrates, proteins and lipids [154], are likely to stimulate L-

cells to secrete GLP-1. Once in the bloodstream GLP-1 has a very short half-life, less than 

2 minutes, due to the rapid degradation by the enzyme dipeptidyl peptidase-4 (DPP-IV). 

DPP-IV circulates in the plasma and is mostly located on the luminal surface of vascular 

endothelial cells [151] [152] [155]. 

GLP-1 have many biological functions such as the stimulation of insulin secretion, 

reduction of glucagon secretions, regulation of gut motility, gastric emptying, acid 

secretions and food intake (Fig 18). 
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Fig 18: Biological action of GLP-1 . 

 

GLP-1 is indicated as a major component of ileal brake mechanism in some of these 

biological functions. Ileal brake is a combination of effects which influence ingestive 

behaviour and GI functions; in particular, it is a mechanism where fat and generally the 

undigested nutrients at ileum level stimulate a negative feedback mechanism that leads to 

the secretion of hormones such as GLP-1 and PYY, which produce the inhibition of gastric 

emptying, intestinal motility, transit, pancreatic secretions and finally a reduction of food 

intake. 

The secretion of GLP-1 is phase relating, depending on the macronutrient, GLP-1 is 

secreted in an early phase - within 15-30 min after meal onset and a late phase from 1 to 3 h 

postprandially [151] [152] [156] [157] [158].  

The anorectic effect of GLP-1 is thought to be mediated by GLP-1 receptors (GLP-1R) 

[152] [159] [160]. 

GLP-1 is secreted in a taste receptor dependent manner by gut enteroendocrine L-cells in 

response to natural and artificial sweeteners [161] and, moreover, in mice Gustducin often 

colocalizes with L-cells producing GLP-1 [51].  
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VII) SEROTONIN 

 

Serotonin is a mono-aminergic neurotransmitter, also called 5-hydroxytryptamine. 

Biochemically, serotonin derived from tryptophan is primarily found in the gastrointestinal 

tract and in the central nervous system of animals. In the human body 95% of serotonin 

distribution is in the enterochromaffin cells (EC) in the digestive system, the remaining 5% 

is synthesized in the serotoninergic neurons in the Central nervous system (CNS). It is well 

known that the Ecs are very common in the GI, and that cells play a crucial role in the 

regulation of secretion, motility and visceral pain. 

Like several peptide hormones, serotonin is activated and released by a wide variety of 

stimuli [162], which lead to the regulation of peristalsis, gastric motility and postprandial 

pancreatic secretion [163] [164] [165] [166] [167] [168]. It has been proved that it is a 

signal molecule which participates in mucosal sensory transduction [169] [170]. In humans, 

but not exclusively, serotonin levels are influenced by diet, it is well knows that a diet with 

a high percentage of carbohydrates and a low percentage of proteins will increase serotonin 

through the secretion of insulin [171].  

Literature shows that 27% of Gustuducin positive cells are co-localized with 5-HT [44], 

suggesting that the release of serotonin may be due to the activation of taste receptors by 

tastants present in the intestinal lumen. 
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CONCLUSION 
 
Gastrointestinal chemosensitivity is essential for gastrointestinal function (e.g., digestion, 

absorption/secretion, motility) and as well as body homeostasis. In recent years the role of 

chemosensitivity has been further studied through the discovery of TR and related signaling 

molecules, i.e. α-gustducin and α-transducin, at gastrointestinal level. TR, α-gustducin and 

α-transducin play a crucial role in gut chemical sensing as they are able to perceive and 

distinguish many different substances such as nutrients/non-nutrients, harmful substances 

and toxins. Thus, because of TR, the gut represents a large chemosensory organ at the edge 

between the environment and the human body. Furthermore, TR have proved to be of 

fundamental importance in energy balance regulation and they could have a protective role 

in the control of caloric intake. 

The general scope of my research projects performed in this PhD program was to better 

understand the role of TR in gastrointestinal chemosensitivity in different species. I have 

shown that the phylogenetic evolution of TR is almost unchanged in different species, 

including fish and humans. In our studies we showed that in pigs and in humans caloric 

intake is controlled and regulated by TR via release of gastrointestinal hormones and 

neuronal pathways (vagal afferents and the enteric nervous system). These findings have 

been confirmed by several studies on endocrine cell line (STC-1) which proved to be of 

strategic importance for the study of TR and in human colonic biopsy where the role of the 

T2R38 a bitter taste receptor could be involved in the detection of bacterial molecules 

(AHL) and on feeding alterations control.  

Taken together, the results of these studies help to elucidate the impact of TR on 

gastrointestinal chemosensitivity and establish how these receptors participate in food 

behaviors and defense mechanisms against a variety of harmful toxins threatening the 

human body. 
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Abstract 

 

 

In vertebrates, chemosensitivity of nutrients occurs through activation of taste receptors 

coupled with G protein subunits, including α-transducin (Gαtran) and α-gustducin (Gαgust). 

This study was aimed at characterizing the cells expressing Gαtran-immunoreactivity 

throughout the mucosa of the sea bass gastrointestinal tract. Gαtran immunoreactive cells 

were mainly found in the stomach, and a lower number of immunopositive cells were 

detected in the intestine. Some Gαtran immunoreactive cells in the stomach contained Gαgust. 

Gastric Gαtran cells co-expressed ghrelin, obestatin and 5-hydroxytryptamine 

immunoreactivity. In contrast, Gαtran cells did not contain somatostatin, 

gastrin/cholecystokinin, glucagon-like peptide-1, substance P, and calcitonin gene-related 

peptide immunoreactivity in any investigated segments of the sea bass gastrointestinal tract. 

Specificity of Gαtran and Gαgust antisera was determined by Western blot analysis, which 

identified two bands at the theoretical molecular weight of ~45 and ~40 kDa, respectively, 

in sea bass gut tissue as well as in positive tissue, and by immunoblocking with the 

respective peptide, which prevented immunostaining. The results of the present study 

provide a molecular and morphological basis for a role of taste related molecules in 

chemosensing in the sea bass gastrointestinal tract. 

 

Keywords: chemosensory system; gut peptides; taste receptors; teleost. 
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Introduction 

The gustatory system plays a dominant role in the detection of dietary nutrients, sodium 

content and the acidity of foods as well as sensing the presence of potentially harmful 

substances (Sternini 2007; Behrens and Meyerhof 2011). The sense of taste enables animals 

to adapt to specific habitats (Oike et al. 2007; Ishimaru 2009; Barreiro-Iglesias et al. 2010). 

In vertebrates (Chandrashekar et al. 2000; Nelson et al. 2001, 2002; Zhao et al. 2003; 

Behrens and Meyerhof 2011), including fish (Ishimaru et al. 2005), two families of taste 

receptors (TRs), T1R and T2R, which detect complex tastes, have been cloned. TRs are G-

protein-coupled receptors activated by different stimuli, including sweet and bitter 

substances, amino acids and nucleotides, which elicit a cascade of intracellular signals 

(Behrens and Meyerhof 2011). In mammals, TRs are abundantly expressed in taste buds, 

and interact with specific G α-subunits, including α-gustducin (Gαgust), which transmit 

gustatory signalling from the lingual epithelium to the sensory cortex in the brain (Ming et 

al. 1999; Margolskee 2002; Caicedo et al. 2003; Behrens and Meyerhof 2011). In addition 

to Gαgust, several G protein subunits have been identified, which are associated with TR 

signaling, Gα i-2, Gα i-3, Gα 14, Gα 15, Gα q, Gα s, and α-transducin (Gαtran) (Ruiz-Avila et al. 

1995; Kusakabe et al. 1998). TRs and signalling molecules have been reported in the 

human and rodent gastrointestinal mucosa and pancreas (Höfer et al. 1996; Höfer and 

Drenckhahn 1998; Wu et al. 2002; Rozengurt et al. 2006). Gαgust and Gαtran 

immunoreactivities have been localised to epithelial, predominantly endocrine, cells of the 

stomach and intestine of rodents (Höfer et al. 1996; Wu et al. 2002; Hass et al. 2007; 

Sternini 2007; Sutherland et al. 2007), pigs (Clavenzani et al. 2009; Mazzoni et al. 2013) 

and humans (Rozengurt et al. 2006; Steinert et al. 2011), including ghrelin, somatostatin, 

cholecystokinin, glucagon-like peptide-1 and peptide YY positive cells (Rozengurt et al. 

2006; Sutherland et al. 2007; Clavenzani et al. 2009; Fujita et al. 2009; Moran et al. 2010; 

Janssen et al. 2011; Steinert et al. 2011; Mazzoni et al. 2013). Endocrine cells, which are 

distributed throughout the gastrointestinal tract (GIT) mucosa and pancreas, control 

digestive functions and contribute to regulate caloric intake and metabolism (Holmgren 

1985; Plisetskaya and Mommsen 1996; Palmer andGreenwood-Van Meerveld 2001; 

Nelson and Sheridan 2006). Since fish taste buds express similar receptors and downstream 

signalling molecules as mammals (Yasuoka and Abe 2009), the aim of this study was to 

test whether the TR gustatory signalling protein, Gαtran is expressed in the sea bass gut and 

characterize the types of Gαtran immunoreactive (-IR) cells. 
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Materials and Methods 

Tissue preparation 

Nine, non-sexed, 1 year-old European sea bass (Dicentrarchus labrax) were sampled from 

three tanks at the Laboratory of Aquaculture, Department of Veterinary Medical Science, 

University of Bologna, Cesenatico, Italy. The average weight and total length of the 

individuals were 234 ± 26 g and 26 ± 1 cm, respectively. Sea bass were sacrificed by 

anaesthetic overdose and segments of the GIT were harvested. The stomach and pyloric 

caeca were isolated from each fish and the intestine was divided into cranial, middle and 

caudal segments. Part of the collected tissues were frozen for Western blot assay. For 

immunohistochemistry, tissue samples fixed in 4% paraformaldehyde in phosphate buffer 

(0.1 M, pH 7.2), for 48 h at 4°C. The specimens were then dehydrated in a graded series of 

ethanol and embedded in paraffin. From each sample, sections of 5 µm thickness were 

obtained and mounted on poly-L-lysine coated slides, and then processed for 

immunohistochemistry. 

 

Immunohistochemistry 

Sections were processed for single and double labelling immunofluorescence. The 

following primary antisera (see details in Table 1) were used: Gαtran, Gαgust, ghrelin (GHR), 

5-hydroxytryptamine (5-HT), obestatin (OB), somatostatin (SOM), gastrin/cholecystokinin 

(GAS/CCK), glucagon-like peptide-1 (GLP-1), calcitonin gene-related peptide (CGRP), 

and substance P (SP). Sections were deparaffinized, rehydrated and incubated in a humid 

chamber at room temperature with appropriate normal serum followed by the primary 

antibodies (2 days, at 4°C) and the appropriate secondary antibodies (1 hour at room 

temperature). For double labelling using antibodies raised in different species, sections 

were incubated with a mixture of primary antisera (e.g. Gαtran and SP or GAS/CCK) and 

immunoreactivities were visualized with secondary antibodies labelled with different 

fluorophores. Because the antibodies to Gαgust, SOM, OB, 5-HT, GLP-1 and CGRP were 

produced in the same species as the Gαtran antiserum, we utilised the procedure and 

appropriate specificity controls previously described by Takechi et al. (2008) to visualize 

more than one antigen. Sections were examined using a Zeiss Axioplan microscope and the 

images were recorded with a Polaroid DMC digital photocamera (Polaroid, Cambridge, 

MA, USA). 
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Antibody specificity 

Specificity of Gαtran, Gαgust, GAS/CCK, GHR, OB, and GLP-1 has been assessed by 

Western blot and/or immunoblocking with the corresponding peptide (see details in Table 

2). Specificity of the 5-HT, CGRP and SOM antibodies was previously demonstrated in the 

sea bass by preadsorption test (De Girolamo et al. 1999; Visus et al., 1996). We did not 

perform specificity controls for the mouse monoclonal SP antibody, since the staining we 

obtained with this antibody was completely overlapping with the immunostaining reported 

by Pederzoli et al. (2004) in the sea bass with a rabbit SP antibody (Cambridge Research 

Biochemical, U.K.), the specificity of which was verified by immunoblocking. Specificity 

of the secondary antibodies was assessed by omitting the primary antibodies. 

 

Western blot 

Sea bass brain, eye and stomach and mouse brain were collected, frozen in liquid nitrogen, 

and stored at −80°C. Tissues were homogenized directly into a sodium dodecyl sulfate 

(SDS) lysis solution (Tris-HCl 62.5 mM, pH 6.8; SDS 2%, 5% glycerol) with 0.1 mM 

phenylmethylsulfonylfluoride. Protein content of cellular lysates was determined by a 

Protein Assay Kit (TP0300; Sigma-Aldrich, St. Louis, MO). For Gαgust and Gαtrans 

antibodies specificity determination, aliquots containing 20 µg of proteins were separated 

on NuPage 4-12% bis-Tris Gel (Gibco-Invitrogen, Paisley, UK) for 50 minutes at 200V. 

Proteins were then electrophoretically transferred onto a nitrocellulose membrane.. After 

blocking treatment, the membranes were incubated at 4°C overnight with the respective 

antibodies in Tris-buffered saline-T20 (TBS-T20 20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 

0.1% T-20): anti-Gαgust rabbit polyclonal antibody (1:300); anti-Gαtrans rabbit polyclonal 

antibody (1:500). 

For GAS/CCK antibody specificity determination, aliquots containing 30 µg of proteins 

were separated on Novex 18% Tris-Glycine Gel (Gibco-Invitrogen, Paisley, UK) for 90 

minutes at 125V. Proteins were then electrophoretically transferred onto a nitrocellulose 

membrane. After blocking treatment the membranes were incubated at 4°C overnight with 

anti-GAS/CCK mouse monoclonal antibody (1:1,000). 

After several washings with PBS-T20, the membranes were incubated with the secondary 

biotin-conjugated antibody and then with a 1:1,000 dilution of an anti-biotin horseradish 

peroxidase linked antibody. The blots were developed using chemiluminescent substrate 

(Super Signal West Pico Chemiluminescent Substrate, Pierce Biotechnology, Rockford, IL) 

according to the manufacturer's instructions. The intensity of luminescent signal of the 
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resulting bands was acquired by Fluor-STM Multimager using the Quantity One Software 

(Bio-Rad Laboratories, Hercules, CA). 

 

 

Results 

Antibody Specificity 

Western blot analysis showed a major band at ~45 kDa in extracts from the sea bass gastric 

mucosa, brain and eye with the Gαtran antibody (theoretical molecular weight in human) and 

a unique band at ~40 kDa in extracts from the sea bass stomach and brain and mouse brain 

(Fig. 1a, b) with the Gαgust antibody (theoretical molecular weight in human). 

Different molecular forms of CCK have been described deriving from enzymatic cleavage 

of a precursor peptide of 115 aa (UNIPROT P06307) so the expected molecular weight of 

CCK is between 4 and 12 kDa. In our blot analysis, we identified a faint band near the 

theoretical molecular weight of ~15 kDa (Fig. 1c). We were unable to identify the smallest 

form probably because of the very low amount of each component present in the tissue. 

Preadsorption of Gαgust, Gαtrans, GLP-1, OB and GHR antisera prevented immunostaining 

with each antiserum (not shown) confirming tissue staining specificity. 

 

Distribution of Gαtrans  cells in the sea bass gut 

In the stomach, Gαtran-IR cells were counted in 54 randomly selected high power 

microscopic fields (0.28 mm2 each) for a total area of 15.1 mm2.  Since the intestinal 

mucosa differs morphologically from the stomach for the presence of folds, the number of 

Gαtran-IR cells in the intestine were evaluated in 200 randomly selected folds for a more 

accurate representation of cell density in these regions of the GIT. Values were expressed 

as mean ± standard error mean (SEM). The GIT of the sea bass consists of a siphonal 

stomach, numerous pyloric caeca and a relatively short intestine. Gαtran-IR cells were 

detected in the stomach and intestine, but not in the pyloric caeca. Intense immunolabelling 

was observed in the basal portion of the gastric gland and in the epithelial lining of the 

intestinal mucosal folds. Gαtran-IR cells showed homogenously labelled cytoplasm, with an 

unlabelled nucleus and an elongated (“bottle-like”) shape (Fig. 2a, e). These cells were 

characterised by two thin cytoplasmic prolongations, the first extending up to the 

endoluminal surface of the mucosa and the second projecting down to the basal lamina. 

These features indicate that these cells correspond to “open-type” enteroendocrine cells 

(EECs) (Höfer et al. 1999; Sternini 2008). Gαtran-IR cells in the stomach (Fig. 2a, c, e, g) 
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were 15.7 ± 2.2, while there were 3-4 IR cells / 200 folds and 1-2 IR cells / 200 folds in the 

cranial and middle-caudal portions of the intestine, respectively. Furthermore, in the 

stomach, most Gαtran-IR cells co-expressed 5-HT (Fig. 2a, b), OB (Fig. 2c, d) or GHR (Fig. 

2e, f). Only a few Gαtran-IR cells colocalized with 5-HT in the intestine. The colocalization 

between Gαtran- and Gαgust-IRs was observed in some cells in the gastric mucosa (Fig. 2g, h). 

In contrast, none of the Gαtran-IR cells contained SOM (Fig. 3g, h), GAS/CCK, CGRP, SP, 

and GLP-1-IR in the stomach and intestine. The SOM, SP, CGRP, GAS/CCK, (Fig. 3a, b, 

c, d) and GLP-1 labelled cells were observed intermingled with unlabelled epithelial cells 

in the GIT mucosa. In addition, CGRP (Fig. 3c, e), GAS/CCK (Fig. 3f), SOM and SP 

antibodies labelled nerve fibers running either singly or in small fascicles in the submucosal 

and muscular layers, with some GAS/CCK and CGRP positive neuronal cell bodies 

detected only in the muscular layer (Fig. 3e, f). 

 

 

Discussion 

Our data provide evidence for the presence of Gαtran immunolabelled cells in the sea bass 

GIT and their EEC nature as indicated by the co-expression with GHR, 5-HT or OB, which 

are markers of distinct subpopulations of EECs. Taste transduction in vertebrates is 

mediated by specialised receptors organised in groups of cells, which form the taste buds 

(Chandrashekar et al. 2000; Nelson et al. 2001; 2002; Zhao et al. 2003; Behrens and 

Meyerhof 2011). The molecular mechanisms through which sweet, L-amino acid (umami), 

and bitter tastes signal from the tongue to the sensory cortex have been clarified by the 

discovery of TRs (McLaughlin et al. 1992; Hoon et al. 1999; Lindemann, 2001), which 

activate Gα-subunits, including Gαtran and Gαgust, to transmit different tastes (Margolskee 

2002; Ruiz-Avila 1995; Ming et al. 1999; Caicedo et al. 2003). Gαgust is the best 

characterized Gα protein associated with bitter taste transmission, however, the findings 

that Gαgust
-/- mice retain sensitivity to bitter substances, imply that other Gα-subunits, 

including Gαtran, contribute to signalling bitter substances (Margolskee 2002; Ruiz-Avila et 

al. 1995; He et al. 2002). The discovery of Gαtran and Gαgust in the GIT of different species 

from the mouse (Hass et al. 2007; Sutherland et al. 2007; Wu et al. 2002), rat (Höfer et al. 

1996) and pig (Clavenzani et al. 2009; Moran et al. 2010; Mazzoni et al. 2013) to human 

(Rozengurt et al. 2006; Steinert et al. 2011), supports the involvement of TRs in 

chemosensory mechanisms elicited by luminal contents in different species. In addition, 

evidence for the presence of Gα-subunit immunolabelling in the chemosensory system of 
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teleosts (Hansen et al. 2003, 2004; Zhang et al. 2006, Ferrando et al. 2011; Koide et al. 

2009) and cartilaginous fish (Ferrando et al. 2009b; Ferrando et al. 2010) has been 

provided. Furthermore, Muradov et al. (2008) demonstrated Gαtran expression in long and 

short photoreceptors of lamprey (Petromyzon marinus) with the same antibody used in our 

paper, while Zhang et al. (2006) found Gαgust  immunofluorescence in the barbells of yellow 

catfish (Pelteobagrus fulvidraco) with the same rabbit polyclonal Gαgust antibody we used in 

the present study. Though recent studies on the fish genome failed to detect a gene 

encoding an ortholog of the mammalian Gαgust gene (Ohmoto et al., 2011), Oka and 

Korsching (2011) showed 80% homology between Gαgust and other G proteins, and Sarwal 

et al. (1996) reported a high homology of Gα gene between mammals and the puffer fish 

Fugu rubripes, with an identical intron/exon structure throughout the coding regions.  

The observation that only some cells showed both Gαtran and Gαgust immunoreactivities in 

the sea bass GIT is in agreement with previous reports in mammals showing only partial 

colocalization of these two Gα-proteins (unpublished, personal observation) and a 

differential distribution in some regions (Wu et al. 2002). Gαtran and Gαgust mediate signals 

initiated by tastants acting at both families of TRs, the T1Rs and the T2Rs (Wong et al. 

1996; Ruiz-Avila et al. 2001; He W et al 2002; Caicedo et al, 2003). Gαtran and Gαgust could 

serve different chemosensitive modalities depending upon the luminal content and 

according to the receptor subtype being stimulated, which would be consonant with the 

report that different T2Rs exert their function through the activation in vitro of distinct Gαi 

related forms (Sainz et al. 2007). Our findings that Gαtran immunoreactivity was localized to 

distinct subsets of EECs expand previous data in other animals species (Rozengurt et al. 

2006; Sutherland et al. 2007; Moran et al. 2010; Janssen et al. 2011, Steinert et al. 2011; 

Mazzoni et al. 2013). EECs have been reported in the stomach and intestine of several fish 

species (Holmgren et al. 1982; Reinecke et al. 1997; Ku et al. 2004; Bermúdez et al. 2007; 

Manning et al. 2008), including the sea bass, where 5-HT-, SOM- and GHR-IR EECs have 

been described (Visus et al. 1996; Ferrando et al. 2009a; Terova et al. 2008). Our study has 

shown GHR-IR cells in the gastric mucosa, many of which contain Gαtran-IR. Our results 

are consistent with data from Terova et al. (2008), who observed high levels of GHR gene 

expression in the sea bass stomach. The colocalization of Gαtran and GHR-IRs is in line with 

data reported by Janssen et al. (2011) showing that 89% of the Gαtran-IR cells co-express 

GHR in mouse stomach, a finding of special interest as it indicates that this cell 

immunophenotype is conserved through evolution. GHR might have a role  in regulating 

food intake in response to fasting and re-feeding in sea bass (Terova et al. 2008). Moreover, 



74 
 

OB, an anorexigenic peptide derived from the GHR precursor, has been reported to 

counteract GHR effects on energy homeostasis and gastrointestinal function (Zhang et al. 

2005). Furthermore, an OB encoding sequence has been recently identified in the black sea 

bream (Yeung et al. 2006) and in Atlantic halibut (Manning et al. 2008). Thus, our results, 

together with previous observations, suggest a morphological link between chemical 

sensing and food intake. 

Our findings that the GIT mucosa of the sea bass contains GAS/CCK, OB, 5-HT, CGRP, 

SOM, GLP-1 and SP EECs extend previous knowledge on the distribution of bioactive 

messengers in the fish alimentary tract (Elbal et al. 1988; Beorlegui et al. 1992; 

Barrenechea et al. 1994; Groff and Youson 1997; Reinecke et al. 1997; Al-Mahrouki and 

Youson 1998; Domeneghini et al. 2000; Bosi et al. 2004; Ku et al. 2004; Pederzoli et al. 

2004; Bosi et al. 2005a, b; Nelson and Sheridan 2006; Bermúdez et al. 2007). CGRP-, 

GAS/CCK-, SP- and SOM-IRs were also identified in nerve processes in the submucosal 

and muscular layer, and labelled neuronal cell bodies were observed in the muscular layer. 

Some studies have detailed peptide- and serotonin-containing innervation in fish. Bermúdez 

et al. (2007) have demonstrated 5-HT-, SP- and CGRP-, but not CCK-IR nerve fibers in the 

submucosal and muscular layers in the turbot Scophthalmus maximus; similar results were 

obtained by Bosi et al. (2005a) in chubs Leuciscus cephalus. Moreover, Pederzoli et al. 

(2004) observed SP-IR neurons in sea bass GIT. The presence of a peptidergic and 

serotonergic neural network, in addition to the EECs expressing the same signalling 

molecules, provides support for a link between chemosensory and neuronal systems, which 

could control GIT physiology in fish via integrated neuro-endocrine mechanisms. 

In conclusion, our study demonstrates that G proteins involved in chemosensory 

transmission are expressed in the sea bass GIT enteroendocrine system. Nutrients may elicit 

the release of different bioactive messengers (mainly peptides), which directly, or via 

neural reflexes, contribute to the control of GIT functions and nutrient intake of this fish. 

Taste-related molecules might represent the initial molecular events involved in 

chemosensing processes. A better understanding of the mechanisms involved in luminal 

chemosensitivity in the fish may provide a new basis for feeding formulations to be applied 

in aquaculture. 
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Table 1 List of antibodies used in this study. 

Primary antisera Antigens Code Dilution Supplier 
Polyclonal rabbit anti-α-

transducin 
Gαt2 of bovine origin sc-390 1:50 Santa Cruz 

Polyclonal rabbit anti-α-

gustducin 
Gα gust of rat origin sc-395 1:200 Santa Cruz 

Polyclonal rabbit anti-

somatostatin 

Synthetic somatostatin15-28 

conjugated to keyhole limpet 

hemocyanin 

566 1:1000 INCSTAR 

Monoclonal mouse anti-

gastrin/cholecystokinin 
Human gastrin/CCK C-terminus GAS/CCK9303 1:1000 

CURE Digestive 

Diseases Research 

Center, UCLA 

Polyclonal goat anti-ghrelin Human ghrelin sc-10368 1:800 Santa Cruz 

Polyclonal rabbit  anti-

obestatin 
Human obestatin ---- 1:1500 Prof. Rindi G.** 

Polyclonal rabbit anti-5-

hydroxytryptamine 

Rat hypothalamus, raphe and 

spinal cord 
20080 1:2000 INCSTAR 

Polyclonal rabbit anti-

glucagon-like peptide-1 

Synthetic peptide: 

HDEFERHAEGTFTSDVSSY, 

corresponding to amino acids 92-

110 of Human GLP 1. 

Ab22625 1:1000 Abcam 

Polyclonal rabbit anti-

calcitonin gene-related 

peptide 

Synthetic rat CGRP IHC 6006 1:1000 Peninsula/Bachem 

Monoclonal rat anti-

substance P 
Substance-P-BSA conjugate 10-S15 1:300 Fitzgerald 

Secondary antisera 
FITC-conjugated goat anti-rabbit IgG 1:600 Calbiochem 

TRITC-conjugated donkey anti-goat IgG 1:400 Jackson 

Alexa 594-conjugated goat anti-mouse IgG 1:400 Mol. Probes 

Alexa 594-conjugated donkey anti-rat IgG 1:500 Mol. Probes 

Biotin-conjugated goat anti-rabbit IgG 1:400 Vector 

Texas Red®-conjugated streptavidin 1:2000 Vector 
 

**Kindly provided by Prof. Guido Rindi, Institute of Pathology, Catholic University of the 

Sacred Heart, Rome, Italy. 
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Table 2 Peptides used for absorption tests. 

 

Peptide Code Concentration Supplier 

α-transducin sc-390 P 20 µg peptide in 1 ml PBS Santa Cruz Biotechnology, Santa Cruz, USA 

α-gustducin sc-395 P 20 µg peptide in 1 ml PBS Santa Cruz Biotechnology, Santa Cruz, USA 

Ghrelin* sc-10368 P 20 µg peptide in 1 ml PBS Santa Cruz Biotechnology, Santa Cruz, USA 
Glucagon-

likepeptide-1 
ab50245 10-5 M Abcam, Cambridge, UK 

 
* Ghrelin peptide was used for both anti-ghrelin and anti-obestatin antibody specificity, since 

obestatin belongs to the ghrelin peptide family. 
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Figure captions 

 

Fig. 1 

Western blot analysis showing α-gustducin (a), α-transducin (b) and cholecystokinin (c) 

immunoreactive bands in sea bass tissue extract. (a): α-gustducin antibody detects a single 

immunoreactive band near the theoretical molecular weight ~40 kDa in sea bass brain and 

gastric mucosa (lanes 1-2 respectively) and in mouse brain (lane 3); sea bass and mouse 

brain served as positive controls. (b): α-transducin antibody detects a major 

immunoreactive band at the theoretical molecular weight ~45 kDa in sea bass gastric 

mucosa, brain and eye (lanes 1, 2 and 3 respectively); the brain and eye served as positive 

control. (c): cholecystokinin monoclonal antibody visualizes a weak, single 

immunoreactive band close to the theoretical molecular weight of ~15kDa in sea bass 

intestinal mucosa 
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Fig. 2 

Representative images of sea bass gastric mucosa. α-transducin-immunoreactivity (Gαtran-

IR) (a, c, e and g) colocalised with 5-hydroxytryptamine (5-HT) (b), obestatin (OB) (d), 

ghrelin (GHR) (f) and α-gustducin (Gαgust) (h) (arrows) immunoreactivity in the basal 

portion of the gastric gland and in the epithelial lining of the mucosal folds. Arrowheads in 

a, b, c and d indicate  5-HT- and OB-IR (b and d) cells negative for Gαtran (a and c). a-f 

scale bars = 30µm;  g- h scale bars: 20µm 
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Fig. 3 

Representative images illustrating different subpopulations of EEC cells in sea bass gastric 

and intestinal mucosa. Somatostatin (SOM), substance P (SP), calcitonin gene-related 

peptide (CGRP), cholecystokinin (CCK) and α-transducin (Gαtran) (a-h) labelled cells in the 

stomach (a, arrows) and intestinal mucosa (b, c, d, g, arrows and h, arrowhead), 

respectively. CGRP and CCK immunolabelled nerve fibers (arrowheads) were observed in 

the stomach (e) and in the submucosal layer of the intestine (c and f). Some labelled CGRP 

(e) and CCK (f) neuronal cell bodies (arrows) were identified in the muscular layer. Arrow 

in g indicates a Gαtran-IR cell negative for SOM (h) in the intestinal mucosa and arrowheads 

in h point to SOM immunolabelled cells. a, b, e,  and h scale bars = 30 µm; c, d scale bars = 

60 µm; f scale bars = 20 µm 
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Abstract 
 

 

Taste signalling molecules are found in the gastrointestinal (GI) tract suggesting that they 

participate to chemosensing. We tested whether fasting and refeeding affect the expression 

of the taste signalling molecule, α-transducin (Gatran), throughout the pig GI tract and the 

peptide content 

of Gαtran cells. The highest density of Gαtran-immunoreactive (IR) cells was in the pylorus, 

followed by the cardiac mucosa, duodenum, rectum, descending colon, jejunum, caecum, 

ascending colon and ileum. Most Gαtran-IR cells contained chromogranin A. In the stomach, 

many Gαtran-IR cells contained ghrelin, whereas in the upper small intestine many were 

gastrin/cholecystokinin-IR and a few somatostatin-IR. Gαtran-IR and Gαgust-IR colocalized in 

some cells. Fasting (24 h) resulted in a significant decrease in Gαtran-IR cells in the cardiac 

mucosa (29.3 ± 0.8 versus 64.8 ± 1.3, P < 0.05), pylorus (98.8 ± 1.7 versus 190.8 ± 1.9, P < 

0.0 l), caecum (8 ± 0.01 versus 15.5 ± 0.5, P < 0.01), descending colon (17.8 ± 0.3 versus 

23 ± 0.6, P < 0.05) and rectum (15.3 ± 0.3 versus 27.5 ± 0.7, P < 0.05). Refeeding restored 

the control level of Gαtran-IR cells in the cardiac mucosa. In contrast, in the duodenum and 

jejunum, Gatran-IR cells were significantly reduced after refeeding, whereas Gαtran-IR cells 

density in the ileum was not changed by fasting/refeeding. These findings provide further 

support to the concept that taste receptors contribute to luminal chemosensing in the GI 

tract and suggest they are involved in modulation of food intake and GI function induced 

by feeding and fasting. 
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Introduction 
 

 

Sensing of luminal contents by the gastrointestinal (GI) tract mucosa plays a critical role in 

the control of digestion, absorption, food intake and metabolism [1, 2] by triggering 

functional responses appropriate for beneficial or potentially harmful substances. 

Enteroendocrine (EEC) cells act as specialized transducers of luminal content, by releasing 

signalling molecules, which activate nerve fibres as well as local and distant targets to 

influence gut functions. EECs can be either ‘open-type’ or ‘closed-type’ depending on their 

microvilli reaching or not the lumen [1–3]. Both types of cells can be regulated by 

intraluminal content, either directly (‘open cells’) or indirectly (‘closed cells’) through 

neural and humoural mechanisms to release a variety of secretory products, including 

gastrin (G cells), ghrelin (P or X cells), somatostatin (D cells), cholecystokinin (CCK) (I 

cells), serotonin (enterochromaffin cells), glucose-dependent insulinotropic peptide (GIP) 

(K cells), glucagon-like peptides (GLPs) and peptide YY (PYY) (L cells), according to the 

different substances detected in the lumen [1–3]. Once released, these signalling molecules 

affect different functions ranging from gastrointestinal motility and secretion to feeding 

regulation via the brain-gut axis [1–3]. The discovery that taste receptors (TRs) and 

signalling molecules identified in the oral cavity are expressed in the GI mucosa, suggests 

that they play a role in chemosensing in the gut. TRs are G proteincoupled receptors 

(GPCRs) sensing bitter (T2Rs), or sweet and umami (T1Rs) tastes. T2Rs are a large family 

of receptors (25–36 in mammals) perceiving a multitude of tastants, whereas T1Rs 

comprise 3 receptors that heterodimerize to sense sweetness (T1R2 and T1R3) or umami 

(T1R1 and T1R3) [4–6]. T1Rs and T2Rs mediate gustatory signalling by interacting with 

specific Gα subunits, including α-gustducin (Gαgust) and α-transducin (Gαtran) [7] through the 

activation of different effector systems leading to intracellular Ca2+ increase and transmitter 

release. Gαgust or Gαtran immunoreactivity (IR) has been localized to epithelial EECs and 

non-EECs in the rodent [8–11], pig [12, 13] and human [14] GI tract and pancreatic duct 

[15]. The aims of this study were to characterize the cellular sites of expression of Gatran 

and test the hypothesis that Gαtran is modulated by fasting and refeeding in the GI tract of 

the pig, an animal model closer to humans compared with rodents for food intake, body 

size, lifespan and body proportion. 
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Materials and methods 

 

Large White male pigs (n = 12), of about 45 days of age with an averageweight of 12.0 ± 

0.3 kg, purchased from Suidea (Reggio Emilia, Italy), were fed with a standard balanced 

diet and housed individually in pens with a mesh floor in a temperature-controlled room 

and tap water freely available. Following 1 day adaptation, animals were divided into three 

groups: standard diet (control, n = 4), fasted for 24 h (fasted, n = 4) and refed for 24 h after 

fasting (refed, n = 4). Experimental procedures were approved by the Ethic Committee for 

Experimental Animals of the University of Bologna, Italy. Pigs were deeply anaesthetized 

with sodium thiopental (10 mg/kg body weight, Zoletil 100, Virbac) and killed by an 

intracardiac injection of Tanax® (0.5 ml/kg BW; Intervet Italia). Specimens of the GI tract: 

oesophagus (cervical, thoracic and abdominal tract), stomach (cardiac, near to the gastric 

diverticulum; oxyntic, in the greater curvature; and pyloric, close to the pyloric sphincter), 

duodenum (about 10 cm from the pyloric sphincter), middle jejunum and ileum, caecum, 

ascending colon (near the centrifugal turns), descending colon (about 25 cm from the anus) 

and rectum (in the ampulla recti) were collected, pinned flat on balsa wood, fixed in 10% 

buffered formalin for 24 h at room temperature (RT), dehydrated and embedded in paraffin. 

 

 
Immunohistochemistry 

 
Serial (5 µm thick) sections mounted on poly-L-lysine–coated slides were processed for 

single and double labelling immunofluorescence using antibodies directed to Gatran or 

Gagust, chromogranin A (CgA), a generalized marker for EECs, or specific markers for 

EEC subtypes (ghrelin, GHR, somatostatin, SOM and gastrin/cholecystokinin GAS/CCK) 

(Table 1). Briefly, sections were deparaffinized through graded ethanols to xylene, 

rehydrated and heated in sodium citrate buffer (pH 6.0) in a microwave (2 cycles at 800 W, 

5 min each) for antigen unmasking. Sections were incubated in 15% normal horse serum/ 

0.01 M phosphate buffer saline (PBS) (1 h at RT) to prevent non-specific staining, followed 

by primary antibodies in PBS (overnight) and a mixture of fluorescein isothiocyanate 

(FITC)-conjugated, tetramethyl rhodamine isothiocyanate (TRITC)-conjugated, Alexa 

Fluor® 594- and Alexa Fluor® 488-conjugated secondary antibodies all diluted in PBS 

(Table 1), then coverslipped with buffered glycerol, pH 8.6. As the antibodies to Gαtran and 
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Gαgust were generated in the same species, serial sections (3 µm thick) were used to test 

their colocalization. 

 

Table 1. List and dilution of primary and secondary antibodies. 

*CURE/DDRC, UCLA, Los Angeles, CA, USA. 
Chemicon International, Temecula, CA, USA; Monosan, Sanbio B.V. 
Frontstraat, Uden, Netherlands; Santa Cruz Biotecnology, Inc., CA, USA.) 

 

Calbiochem-Novabiochem Corporation, San Diego, CA, USA; Molecular 
Probes, Eugene, Ore., USA; Jackson ImmunoResearch Laboratories, Inc., West 
Grove, PA, USA). 

 

Specificity of antibodies 

 

Specificity of Gαtran, Gαgust and GAS/CCK antibodies has been tested by Western blot 

(Supplementary material) whereas specificity of CgA monoclonal antibody (clone 

LK2H10) has been previously reported [16]. GHR antibody specificity was assessed by 

pre-adsorption with an excess of the homologous peptide (sc-10368 P, Santa Cruz, CA, 

USA) or another ghrelin peptide (code 031-52; Phoenix Pharmaceuticals, Inc., Burlingame, 

CA, USA). The pattern obtained with our S6 SOM antibody completely overlapped with 

that of SOM rabbit polyclonal antiserum (Monosan SANBIO B.V., Uden, The Netherlands-

catalogue PS 204), whose specificity was shown by immunoblocking in the pig gut and 

pancreas. 

 

 

 

Primary antibodies Code Species Dilution Supplier 
α-Transducin sc-390 rabbit 1:600 Santa Cruz 
α-Gustducin sc-395 rabbit 1:500 Santa Cruz 

Chromogranin A MON9014 mouse 1:1000 Monosan 
Gastrin / Cholecystokinin GAS/CCK#9303 mouse 1:1000 *CURE/DDC 

Ghrelin sc-10368 goat 1:800 Santa Cruz 
Somatostatin S6 mouse 1:1000 *CURE/DDC 

Secondary antisera Dilution Supplier 
Alexa 594-conjugated goat anti-mouse IgG 1:800 Mol. Probes 

FITC-conjugated goat anti-rabbit IgG 1:500 Calbiochem 
TRITC-conjugated donkey anti-rabbit IgG 1:500 Jackson 

Alexa 488-conjugated donkey anti-goat IgG 1:800 Mol. Probes 
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Cell counting and statistical analysis 

 

Cell counting was performed with a 40 X objective lens using a Zeiss Axioplan microscope 

(Carl Zeiss, Oberkochen, Germany) with appropriate filter cubes to discriminate different 

wave fluorescence, images were collected with a Polaroid DMC digital photocamera 

(Polaroid, Cambridge, Mass., USA) and minimal adjustment to brightness and contrast was 

performed with Corel Photo Paint and Corel Draw (Corel, Dublin, Ireland). Cell counting 

was performed in a blind fashion by two investigators. For each piglet, Gαtran-IR cells were 

counted in 36 random microscope fields (each field, 0.28 mm2), for a total area of 10 mm2, 

in the cardiac, oxyntic and pyloric mucosa, in 50 random villi and glands in the small 

intestine, and in 50 crypts in the colon. Only villi/glands/crypts located perpendicularly to 

the mucosal surface were counted. The values were pooled for each experimental group 

(control, fasted and refed respectively) and, subsequently, the mean and the percentage 

were calculated. Values were expressed as mean ± standard deviation (SD). Data were 

analysed using ANOVA One-Way (Graph Prism 4, GraphPad Software, Inc., La Jolla, CA, 

USA). Statistical significance was determined using the Student’s t-test. A P < 0.05 was 

considered statistically significant. 

 

 

Results 
 

 

Distribution of Gαtran-IR cells in the GI tract 

 

Gαtran-IR cells were detected throughout the whole pig GI tract (Fig. 1A–G), except the 

oesophagus and oxyntic mucosa. In the pylorus, intense Gαtran-IR was observed in the basal 

portion of the gastric gland and in the epithelial lining of the mucosal folds (Fig. 1A and F); 

Gαtran-IR cells had elongated, ‘bottle-like’, morphology with homogenously labelled 

cytoplasm (Fig. 1E and G). In the small intestine, a subset of cells along the crypt-villus 

axis showed Gαtran- IR (Fig. 1B, E and G), whereas in the large intestine, labelled cells were 

generally located in the surface and glandular epithelium (Fig. 1C and D). Most Gαtran-IR 

cells had two thin cytoplasmic prolongations, one extending to the endoluminal mucosal 

surface (Fig. 1E and G) and one to the basal lamina, suggesting they are ‘EEC open-type’ 
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cells [1, 3]. In the cardiac and pyloric mucosa, some cells were confined to the basal lamina 

and did not reach the lumen (Fig. 1F), like ‘EEC closed-type’ cells [1, 3]. 

 

 
Distribution of the Gαtran-IR cells in different experimental groups 
 

In the stomach, the highest density of Gαtran-IR cells was in the pylorus (there was an 

average of about 18.9 cells/mm2 or 5.3 cells per field); in the small intestine, the highest 

density of Gαtran-IR cells was in the duodenum followed by the jejunum and ileum, whereas 

in the large intestine it was in the rectum followed by descending colon, caecum and 

ascending colon (Fig. 2A and B). There was a decrease in the density of Gαtran-IR cells in 

fasted animals, which was significant in the cardiac mucosa (29.3 ± 0.8 versus 64.8 ± 1.3, P 

< 0.05 versus control), pylorus (98.8 ± 1.7 versus 190.8 ± 1.9, P < 0.0 l), caecum (8 ± 0.01 

versus 15.5 ± 0.5, P < 0.01), descending colon (17.8 ± 0.3 versus 23 ± 0.6, P < 0.05) and 

rectum (15.3 ± 0.3 versus 27.5 ± 0.7, P < 0.05), but not in the other regions. Interestingly, 

refeeding restored the control level of Gαtran-IR cells in the cardiac mucosa (57 ± 1 versus 

29.3 ± 0.8 in fasted, P < 0.01), but not in the pylorus, caecum, descending colon and rectum 

where the number of Gαtran-IR cells in refed was comparable to fasted pigs. In the jejunum, 

Gαtran-IR cells in the refed group were less than in the fasted condition and were 

significantly lower than in controls (9.3 ± 0.2 in refed versus 19 ± 0.3 in control, P < 0.01). 

In the ileum and ascending colon, the number of Gαtran-IR cells in fasted and refed animals 

was comparable to controls. 

 

 

Gαtran/CgA in the GI tract 

 
The majority of Gαtran-IR cells co-expressed CgA: 99% of the Gαtran-IR cells in the cardiac 

and pyloric mucosa were immunopositive for CgA, whereas 83% and 98% of Gαtran -IR 

cells were immunopositive for CgA in the small and large intestine respectively. However, 

some cells were Gαtran -IR, but CgA negative (Fig. 1 G and H). In the stomach, Gatran-

IR/CgA-IR cells were numerous in the glandular epithelium. The mean numbers of Gαtran 

/CgA-IR cells throughout the pig gut are reported in Table 2A. In the cardiac mucosa, the 

mean number of Gαtran /CgA-IR cells in control and refed groups is higher than that of 

fasted group (P < 0.05). In the pyloric mucosa, the mean number of Gαtran /CgA-IR cells in 

fasted and refed groups was lower than control (control versus fasted and control versus 



99 
 

refed, P < 0.05). A general decrease in Gαtran /CgA-IR cells was observed in the small and 

large intestine in fasted and refed compared with control. Specifically, in 

the duodenum and jejunum, the Gαtran /CgA-IR cells were significantly decreased in refed 

compared with control (P < 0.05). Moreover, in the duodenum, we found a reduced number 

of Gαtran /CgA-IR cells in refed compared with fasted (P < 0.05). Gαtran /CgA-IR cells were 

more abundant in the caecum, descending colon and rectum of control group compared 

with fasted (P < 0.05), whereas in the caecum and in the rectum, refed showed a number of 

Gαtran /CgA-IR lower than control (P < 0.05). The percentage of the Gαtran on the total of 

CgAIR cells have been indicated in Table 2B. Furthermore, there were no statistically 

significant differences in the absolute numbers of CgA-IR cells in the gastric and intestinal 

mucosa among the three experimental groups. 

 

 

Gαtran/GHR in the gastric mucosa 

 

Gαtran/GHR-IR cells were numerous in the pylorus, from the neck to the base of the glands 

(Fig. 3A and B), and less abundant in cardiac glands (Fig. 3C and D). Most Gatran/GHR 

cells were ‘closed-type’, lying at the gland basal lamina. Few Gαtran/GHR-IR cells in the 

surface epithelium were ‘open-type’ (Fig. 3C and D). In the cardiac and pyloric mucosa, 

approximately 96% and 91% of Gαtran-IR cells, respectively, co-expressed GHR. Gαtran 

/GHR-IR cells were significantly reduced in fasted versus control pigs in both cardiac 

mucosa (P < 0.01) and pylorus (P < 0.05). In refed, they were partly restored in the cardiac 

mucosa (P < 0.05), but not pylorus. The mean number and percentage of the Gαtran on the 

total of GHR-IR cells are reported in Table 3. In the cardiac mucosa, the number of GHR-

IR cells decreased in fasted versus control (114.8 ± 29.4 versus 244.5 ± 71.3, P < 0.01), 

while it increased in refed versus fasted (241.3 ± 57.5 versus 114.8 ± 29.4, P < 0.01). There 

were no statistically significant differences in the mean numbers of GHR-IR cells in the 

pyloric mucosa among the three experimental groups 

 

 

Colocalization of Gαtran with CCK, SOM and Gαgust in the duodenum and jejunum 
 

Co-expression of Gαtran and CCK was observed in open-type cells in the surface and 

glandular epithelium of the jejunum (Fig. 3E– H). As our monoclonal antibody cannot 
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discriminate CCK and GAS, we could not assess the actual number of GAS and CCK-IR 

cells in the duodenum where both cell types are present. Few Gαtran /SOM cells (about 1 

positive cell/400 villi) were detected 

(Fig. 4A and B). The mean number and percentage of the Gαtran compared with the total 

number of CCK-IR cells are reported in Table 4. In the jejunum, approximately 59% of 

Gαtran -IR cells coexpressed CCK. Gαtran /CCK-IR cells were reduced in fasted and refed 

compared with controls (P < 0.01) in the jejunum. Gαtran /CCKIR cells were not visualized 

in the pylorus and cardiac mucosa (Fig. 4C and D). Finally, occasional Gαtran / Gαgust-IR 

cells were detected in the pylorus (Fig. 4C and D) and duodenum (Fig. 4E– H), which 

expressed CgA-IR (Fig. 4G and H). Furthermore, the number of CCK-IR cells decreased in 

fasted versus control (19.3 ± 2.5 versus 10.3 ± 1, P < 0.01), while no changes were 

observed in refed versus fasted and control groups. 

Table 2A. Mean number of Gαtran / CgA-IR cells in the pig GI tract. 

 * Cardiac 
mucosa 

* Pyloric 
mucosa Duodenum Jejunum Ileum Caecum Ascending 

colon 
Descending 

colon Rectum 

Control 64.5 ± 1.2a 
190.8 ± 

1.9a 
46.8 ± 0.8a 

15.8 ± 0.3a, 

b 

11.8 
± 0.3 

15.3 ±  

0.5a 
13.8 ± 0.5 23 ± 0.6a 

27.5 ± 

0.7a 

Fasted 29 ± 0.8b  96.8 ± 1.7b 36 ± 0.9a 12 ± 0.4b, c 
7 ± 
0.2 8 ± 0.1b 10.5 ± 0.2 17.5 ± 0.3b 

15.3 ± 
0.3b 

Refed 56 ± 1a 
111.8 ± 

1.9b 11 ± 0.6b 8 ± 0.2c 
13.3 
± 0.6 

6.8 ± 
0.3b 

7.8 ± 0.2 
18.5 ± 0.3a, 

b 

12.8 ± 
0.3b 

 
*Values refer to a total area of 10 mm2 for each group. The other values represent the percentage evaluated in 
50 villi and in 50 intestinal glands for each group, respectively. Values with different superscripts within the 
same column differ significantly (P < 0.05). 
 
 

 

Table 2B. Percentage of Gαtran / total CgA-IR cells in the pig GI tract. 

 * Cardiac 
mucosa 

* Pyloric 
mucosa Duodenum Jejunum Ileum Caecum Ascending 

colon 
Descending 

colon Rectum 

Control 19% 
(258/1351) 

33.7% 
(763/2262) 

49% 
(187/381) 

36.2% 
(63/174) 

27% 
(47/174) 

50.4% 
(61/121) 

40.4% 
(55/136) 

16.5% 
(92/557) 

20.3% 
(110/543) 

Fasted 7% 
(116/1642) 

16% 
(387/2399) 

41.4% 
(144/348) 

23.9% 
(48/201) 

21.9% 
(28/128) 

24.4% 
(32/131) 

30.7% 
(42/137) 

21% 
(70/333) 

17% 
(61/359) 

Refed 15.7% 
(224/1429) 

17.6% 
(447/2546) 

23% 
(44/191) 

18.4% 
(32/174) 

31.2% 
(53/170) 

32.5% 
(27/83) 

27.7% 
(31/112) 

17% 
(74/434) 

12% 
(51/426) 

 
*Values refer to a total area of 10 mm2 for each group. The other values represent the percentage evaluated in 

50 villi and in 50 intestinal glands for each group, respectively 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Discussion 
 

Taste receptors are likely to represent an important mechanism for sensing nutrients and 

non-nutrients in the GI lumen and contribute to the initiation of appropriate physiological 

response of digestion/ absorption of nutrients or elimination of harmful substances via 

activation of neuronal and endocrine pathways. We showed that (a) Gαtran cells are 

distributed throughout the GI tract in the pig, a commonly used animal model for studies of 

human GI physiology and ingestive behaviour, with the exception of the oesophagus and 

the oxyntic mucosa, (b) most Gαtran cells are EEC of the ‘open’ type, (c) many Gαtran cells 

contain GHR in the stomach and CCK in the small intestine, whereas a few contain SOM in 

the upper bowel, (d) some Gαtran cells contained Gαgust, and (e) fasting and refeeding 

changed the density of Gatran-IR cells, effect that was statistically significant versus 

controls in most, but not all gut regions. These findings support the concept that TRs 

participate to chemosensing processes controlling multiple GI functions, including food 

intake 

and metabolism. Our results expand previous reports of Gαtran or Gαgust t in the rodent [3, 8–

11, 17], pig [12, 13] and human [14] GI mucosa by showing a systematic analysis and 

characterization of mucosal cells expressing Gαtran in the pig intestine, an animal model 

closer to human than rodents, and providing evidence that the expression of this taste-

related signalling molecule is modified by feeding and fasting. Gαtran -IR was 

predominantly in EECs, but the colocalization with CgA was not complete suggesting that 

Gαtran -IR is also in non-EECs (likely brush cells), as it has been shown for Gαtran in the 

mouse [10]. On the other hand, in the human colon [14] and pig small intestine [13], Gαtran 

has been reported exclusively in EECs. Gαtran -IR cells had a different density throughout 

the gut, which was high in the stomach, decreased from the duodenum to the ileum, then 

increased from the caecum to the rectum. These findings are consistent with species and 

region differences and suggest that TRs exert distinct functions according to the gut region. 

Like Gαgust, Gαtran mediates signals initiated by tastants acting at T1Rs and the T2Rs [7, 18, 

19]. Thus, Gαtran cells are likely to serve different chemosensitive modalities depending 

upon the luminal content and the TR stimulated [19]. The colocalization of Gαtran with GHR 

in the stomach, and CCK and SOM in the small intestine is in agreement with previous 

studies in rodents and human [8, 9, 11, 14], and in EECs lines [20]. GHR is an orexigenic 

peptide regulating energy balance homeostasis [21], GI motility and secretion [22], and 

feeding behaviour [23], in several species including pigs [24]. CCK exerts a prominent role 
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in satiety conveying signals elicited by nutrients (e.g. fats and proteins) via sensory nerve 

pathways to the brain [25]. SOM inhibits gastric acid secretion, gastric emptying and 

smooth muscle contraction and GI hormone release [26]. Thus, the colocalization of Gαtran 

with these peptides is consistent with an involvement of TRs in the control of satiety and 

food intake, energy balance metabolism and GI secretion and motility. Food deprivation 

and refeeding alter the morphology of the weaned pig GI tract mucosa with fasting 

inducing mucosa atrophy in the upper small intestine and refeeding partially restoring it 

[27]. We demonstrated that 24 h fasting and 24 h refeeding modified the number of Gαtran -

IR cells in most regions of the pig gut. The number of CgA-IR cells was not modified by 

fasting and refeeding in most regions with the exception of the caecum and descending 

colon, therefore it is unlikely that the reduction in Gαtran -IR cells observed in fasted and in 

some regions also in refed animals is due to mucosa atrophy or lack of mucosal restoration 

following refeeding, although this possibility cannot be excluded. Fasting induces multiple 

changes in the EEC system such as increasing GHR and lowering GAS/CCK [28, 29] 

peptides that influence feeding behaviour and colocalize with Gαtran -IR. Our results 

indicated 

that in the cardiac and pyloric mucosa, the number of Gαtran /GHR cells is greater in 

normally fed compared with 24 h fasted piglets; similarly, the overall density of GHR-IR 

cells was lower in fasted than fed or refed animals. However, the increased Gαtran /GHR-IR 

cell expression, as observed during refeeding state in our model, may not necessarily 

correspond to increased GHR plasma levels during fasting. A significant increase in plasma 

GHR was reported [30] in weaning pigs following 36 h fasting, with a decrease with 12 h 

fasting, indicating that the length of food deprivation affects GHR response. Animal ages 

might also affect hormonal responsesto fasting, as young animals possess fewer energy 

reserves and less body fat, while having higher energy requirements in relation to rapid 

body growth [31]. Our data showed a significant reduction in Gαtran /CCK-IR cells and in 

CCK-IR cells overall in fasted and refed pigs compared with controls. This is in agreement 

with previous reports of a decrease in CCK plasma concentrations and mRNA expression 

during fasting, while returning to pre-fasting values after either 24 h refeeding in the rat 

small intestine [32] and 1 h refeeding in lactating sows [33]. However, the reasons why in 

this study we did not detect an increase in Gatran/CCK-IR cells during refeeding remain to 

be elucidated. It is possible that factors such as caloric intake, type of diet and slaughter 

time after refeeding may contribute to explain why CCK cells do not return to prefasting 

values. 
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In summary, TRs and downstream molecules might exert a variety of functions ranging 

from sensing beneficial nutrients (e.g. sweet and umami), thus inducing secretion and 

motility to facilitate digestion, absorption and food intake, to detection of bitter, potentially 

harmful substances, thus inducing a defensive response. The latter could be in the form of 

inhibition of gastric emptying to reduce absorption, increase in intestinal secretion to 

facilitate elimination, vomiting or avoidance. Taste-related molecules in the distal colon 

and rectum could also serve as a line of defence against bacteria, which are particularly 

abundant in these regions. This is supported 

by the findings that quorum-sensing molecules produced by Gramnegative bacteria activate 

a GPCR-mediated signalling cascade in EEC lines, which is likely to involve T2R (Sternini 

C and Rozengurt E, unpublished). Further studies are required to better understand TR 

functions in the GI tract in response to feeding, including their regulation with specific 

dietary components in relationship to peptide release in different regions of the GI tract. 

 

 

 

 

 

 

 

 

 

Table 3. Mean number and percentage of the colocalized Gαtrans / total GHR-IR cells in the 
cardiac and pyloric mucosa. 
 
 
 

 
 
 
 
 
 
 
 
 
Values with different superscripts within the same column indicate statistical significance (P < 0.05). 
 
 
 

 
Cardiac mucosa Pyloric mucosa 

Control 84.8 ± 1.6a 
46% 

(339/735) 168.8 ± 2.6a 
60.6% 

(675/1113) 

Fasted 26.8 ± 0.8b 
23.3% 

(107/459) 97.5 ± 1.7b 
46.9% 

(390/831) 

Refed 49.8 ± 1a 
23.2.7% 
(199/857 107.5 ± 1.8a, b 

41.5% 
(430/1036) 
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Table 4. Mean number and percentage of the colocalized Gαtran / total CCK-IR cells in the 
jejunum. 
 
 
 
 
 
 
Values with different superscripts within the 
same column indicate statistical significance (P 
< 0.05). 
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Control 13.5 ± 0.3a     70% (54/77) 

Fasted 8.8 ± 0.2b 85.4% (35/41) 

Refed 9.5 ± 0.2b 71.7% (38/53) 
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FIGURES 
 
 
Figure 1 

 

Localization of Gαtran-IR in the pig GI tract. A-D show images of Gαtran-IR cells in the 

pyloric (A), jejunum (B), caecum (C) and rectum (D) mucosa (arrowheads). Gαtran-IR cells 

have the morphology of open-type enteroendocrine cells in the top of the villi of the 

duodenum (E, arrowhead) and of closed-type enteroendocrine cells in the pyloric mucosa 

(F, arrowheads). The bottom images show a Gαtran-IR enteroendocrine cell expressing 

chromogranin A (CgA) (G and H, respectively; arrowheads); the arrow in G and H 

indicates a Gαtran-IR cell (G) not containing CgA-IR (H). A, C, E and F: scale bars = 50µm; 

B, D, G and H: scale bars = 100µm. 
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Figure 2 

 

Graphs in A and B indicate the mean number of Gαtran-IR cells in the different segments of 

the pig GI tract. Controls, fasted and refed are denoted as black, white and gray bars, 

respectively. Different letters indicate a significant (P < 0.05) statistical difference among 

groups. Values are expressed as mean ± SD. 
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Figure 3 

 

Colocalization of Gαtran-IR (A, C, E and G, arrowheads) with ghrelin (GHR) in the pyloric 

mucosa (B and D, arrowheads) and cholecystokinin (CCK) in the jejunum (F and H, 

arrowheads). Generally the Gαtran / GHR labeled cells were found lying close to the basal 

lamina of the glands (typical closed-type morphology) (A and B, arrowheads); the arrows 

in A and B indicate a GHR-IR cell (B) not containing Gαtran-IR (A). In some cases, Gαtran / 

GHR-IR cells were observed in the surface epithelium (typical open-type morphology) (C 

and D, arrowheads). The Gαtran / CCK immunopositive cells were observed in the villi (E 

and F, arrowheads) and in the intestinal gland of the jejunum (G and H, arrowheads). A, B, 

C, D, G and H: scale bars = 50µm; E and F: scale bars = 30µm. 
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Figure 4 

 

Enteroendocrine cells of the duodenum co-expressing Gαtran and SOM-IR (A and B, 

arrowheads). Some cells co-expressing Gαtran / Gαgust-IRs (C and D, arrows) (in green) were 

observed in the pyloric mucosa; these cells were negative for gastrin (GAS-IR) (in red). 

Photomicrographs E and F showed co-expressing Gαtran- and Gαgust-IR enteroendocrine cells 

(in green) (arrows) in serial sections of the duodenum. The Gαtran and Gαgust colocalization is 

readily visible in G and H (merged images) with chromogranin A (CgA) (arrows) labeled 

by the red fluorochrome (arrowheads). A-H: scale bars = 50µm. 
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Supplementary data 

 

 

Expression and regulation of α-transducin in the pig gastrointestinal tract 

 

Western blot 
 
Pig stomach (pyloric mucosa), and small intestine (duodenum, jejunum) were collected, 

frozen in liquid nitrogen, and stored at −80°C. Tissues were later thawed and homogenized 

directly into a sodium dodecyl sulfate (SDS) lysis solution (Tris-HCl 62.5 mM, pH 6.8; 

SDS 2%, 5% glycerol) with 0.1 mM phenylmethylsulfonylfluoride. Protein content of 

cellular lysates was determined by a Protein Assay Kit (TP0300; Sigma-Aldrich, St. Louis, 

MO). 

For Gαgust and Gαtrans antibodies specificity studies, aliquots containing 20 µg of proteins 

from tissue extracts were separated on NuPage 4-12% bis-Tris Gel (Gibco-Invitrogen, 

Paisley, UK) for 50 minutes at 200V. Proteins were then electrophoretically transferred 

onto a nitrocellulose membrane. Blots were washed in PBS and protein transfer was 

checked by staining the nitrocellulose membranes with 0.2% Ponceau Red.  Following 

blocking treatment, the membranes were incubated at 4°C overnight with the respective 

antibodies in Tris-buffered saline-T20 (TBS-T20 20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 

0.1% T-20): anti-Gαgust rabbit polyclonal antibody at 1:300; anti- Gαtrans rabbit polyclonal 

antibody  at 1:500.  

For GAS/CCK antibody specificity studies, aliquots containing 30 µg of proteins from 

tissue extracts were separated on Novex 18% Tris-Glycine Gel (Gibco-Invitrogen, Paisley, 

UK) for 90 minutes at 125V. Proteins were then electrophoretically transferred onto a 

nitrocellulose membrane. Blots were washed in PBS and protein transfer was checked by 

staining the nitrocellulose membranes with 0.2% Ponceau Red. Following blocking 

treatment, the membranes were incubated at 4°C overnight with anti-GAS/CCK mouse 

monoclonal antibody at1:1,000.  

Following several washings with PBS-T20, the membranes were incubated with the 

secondary biotin-conjugated antibody and then with a 1:1,000 dilution of an anti-biotin 

horseradish peroxidase linked antibody. Western Blots were developed using 

chemiluminescent substrate (Super Signal West Pico Chemiluminescent Substrate, Pierce 

Biotechnology, Rockford, IL) according to the manufacturer's instructions. The intensity of 
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luminescent signal of the  bands was acquired by Fluor-STM Multimager using the 

Quantity One Software (Bio-Rad Laboratories, Hercules, CA). 

For Gαtrans antibody, a major band of ≈45 kDa (theoretical molecular weight 40 kDa in 

human) was present in extracts from the stomach and intestine (Fig. 1). As positive control 

tissue we used mouse brain.  

For Gαgust antibody, a major band of ≈40 kDa (theoretical molecular weight 40 kDa in 

human) was present in extracts from the stomach and intestine (Fig. 2). As positive control 

tissue we used mouse brain. 

Different molecular forms of CCK have been described deriving from enzymatic cleavage 

of a precursor peptide of 115 AA (UNIPROT P06307) so the expected molecular weight of 

CCK is between 4 and 20 kDa.  Fig. 3 shows a major band showing with a molecular 

weight of ≈15 Da in the intestine. The smallest form of CCK (10 different chains from 58 

to 5 AA) could not be identified probably due to the very low amount of each component 

present in the tissue.  
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Fig. 1 Western Blot of Gαtrans 
antibody shows a major band close to 
the theoretical molecular weight (~45 
kDa). Right lane: Molecular Weight 
Marker; the numbers inside this lane 
indicate the molecular weight. The 
images were slightly adjusted in 
brightness and contrast to match 
background. Lane 1 Mouse brain  
(positive control); lane 2 pig stomach; 
lane 3 pig intestine). 
 

Fig. 2 Western Blot of Gαgust antibody 
shows a major band close to the 
theoretical molecular weight (~40 
KDa). Right lane: Molecular Weight 
Marker; the numbers inside this lane 
indicate the molecular weight. The 
images were slightly adjusted in 
brightness and contrast to match 
background. Lane 1, mouse brain 
(positive control); lane 2 pig intestine; 
lane 3 pig stomach. 
 

Fig. 3 Western Blot of GAS/CCK antibody 
shows a  major band close to the theoretical 
molecular weight (~15) in the pig intestine. 
Left lane: Molecular Weight Marker; the 
numbers inside this lane indicate the 
molecular weight. The images were slightly 
adjusted in brightness and contrast to match 
background.  
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CHAPTER 3 

 

 

 

 

Activation of Enteroendocrine STC-1 Cell Signaling By Bitter 

Compounds and Bacteria Quorum Sensing Molecules (N-Acyl 

Homoserine Lactone) 
 

 

Abstract 

 

STC-1 enteroendocrine cell lines from the mouse small intestine are a well established 

model for studies of the enteroendocrine cell function. Enteroendocrine cells play a key role 

in the detection of luminal contents which range from nutrients to non-nutrient chemicals, 

including harmful substances, and perhaps bacteria, which are abundant in the gut lumen. 

STC-1 cells contain all the different types of hormones and peptides produced and released 

by eneteroendocrine cells in situ and the receptors for these signaling molecules. Recent 

studies have shown that STC-1 cells as eneteroendocine cells express taste receptors (TR), 

including bitter taste receptors and their signaling molecules, supporting the concept that 

TR represent the initial molecular mechanisms in the detection of luminal contents, 

including molecules producded by bacteria. Specifically, we were interested in exploring 

the possibility that N-acyl homoserine lactone (AHL), a quorum sensing (QS) molecule 

produced by Gram-negative bacteria activate enteroendocrine cells through the same 

pathway activated by bitter TR, T2Rs. The reasoning behind this idea is twofold: a T2R 

subtype, the T2R138 is upregulated by long-term high fat diet inducing obesity, which is 

known to increase the proporption of Gram-negative bacteria in the gut lumen, which has 

ben proposed as a mechanism responsible for the chronic inflammation developing in 

obesity. In addition, AHL has been reported to activate T2Rs in the respiratory system, 

where it has been proposed as a mechanism of defense against bacteria. In this study, we 

compared the effect of increasing concentrations of phenylthiocarbamide (PTC), a T2R138 

agonist, denatonium benzoate (DB), a T2R108 agonist, and AHL and measured 
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phosphorylation of MAPKp44/42 as outocome of cellular activation in the presence or 

absence of nitrendipine, a L-type voltage-sensitive Ca2+ channel blocker, and the 

bisindolylmaleimide I (GF-1), an inhibitor of protein kinase C and Probenecid an inhibitor 

of some T2Rs to characterize the MAPKp44/42 signaling pathway. The study was carried out 

with a dose responce experiment, tracting the STC-1 cells with different bitter agonist and 

antagonist substances, and we measured MAPKp44/42 phosphorylation as outcome of 

receptor activation using Western blotting and MAPk44/42/tERK1/2 antibodies. The results 

obtained show that PTC, DB, and AHL activate the MAPKp44/42 cascade in a dose-

dependent and time dependent manner. Nitrendipine blocked the DB-induced MAPKp44/42 

phosphorylation, wheras it did not affect the PTC and AHL-induced MAPKp44/42 activation. 

By contrast, protein kinase C inhibitor markedly reduced the PTC and AHL-induced 

MAPKp44/42 phosphorylation, but did not modified the DB-induced activation of 

MAPKp44/42, Probenecid blocked the DB, PTC and AHL-induced MAPKp44/42 

phosphorylation. Moreover calcium imaging experiments carried out in STC-1 cells shown 

an increase of intracellular calcium under AHL and PTC stimulation. These studies show 

that T2R agonist and QS molecule activate MAPKp44/42 signaling in STC-1 cells, through 

distinct pathways and that QS molecule activate the same pathway as T2R138. This 

suggests that STC-1 cells are activated by molecules produced by bacteria through a G-

protein mediated pathway that might involve T2R138.  

 

 

 

Introduction 

 

 

a. Intestinal STC-1 cells and bitter taste compounds 

 

The gustatory system detects nutrient compounds but also harmful and toxic compounds [1] 

[2]. The chemosensory information received during the phase of the gastric and intestinal 

digestion are critical for the regulation of various aspects of gastrointestinal functions such 

as the secretion of intestinal glands, nutrient absorption and digestion, motility, blood 

supply and satiety [3]. The enteroendocrine cells (ECCs) are specialized transducers of 

luminal factors, and they are very important for the control of digestion and food intake. 

EECs are 1% of the total number of cells in the gastrointestinal tract and represent the 
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largest endocrine organ of our body. These cells contain secretory granules and produce a 

variety of signaling molecules when they detect signals from the luminal content, which 

they translate to the sensory nerve terminals in the subepithelial space by releasing their 

secretory products [3] [4] [5]. The mediators are different according to the different types of 

ECCs and the same ECCs produce and release different mediators according to the stimuli 

[6] [7]. ECCs are present throughout the gastrointestinal wall, but they are scattered with 

irregular localization, and are difficult to isolate, for this reason many researchers prefer to 

use the endocrine cell line STC-1, which are well characterized and contain the same 

signaling molecules as the EECs in situ, thus representing a good model for studying 

chemisensing mechanisms in the gastrointestinal tract. STC1 cell lines derive from an 

endocrine tumor that developed in the small intestine of a double transgenic mouse 

expressing the rat insulin promoters linked to SV40 large T antigen and to the 

polyomavirus small T antiger [8]. STC-1 cells have been extensively used to study the 

mechanisms regulating peptide release in response to bombesin / gastrin [9], free fatty acids 

[10], leptin [11], orexin [12] and aminoacids [13]. Recently, Wu et all (2002) have shown 

that STC-1 cells express T2R family members and respond to bitter compounds. It was also 

demonstrated that not only the numerous T2RS genes but also taste signaling molecule α-

gustducina and α-transducin are expressed in STC-1 cells [14] [15] [16]. Bitter tastants 

cause an increase in intracellular calcium via the activation of L-type voltage-sensitive 

calcium channels [16] as monitored by functional calcium imaging aproaches, indicating 

the presence of functional receptors in these cells. Enteroendocrine STC-1 cells release 

gastrointestinalpeptides, such as CCK, in response to stimulation with bitter substances 

(DB) [16]. Saitoh and colleagues (2007) have shown that STC-1 cells respond not only to 

bitter compounds, but to all five basic taste stimuli [16] [17] [18]. Recently it has been 

shown that the ECCs express toll-like receptors (TLR), which are molecules that recognize 

bacterial breakdown products, such as lipopolysaccharide (LPS), bacterial lipoproteins, 

double stranded DNA and flagellin. Using RT-PCR and Western Blot TRL4, 5 and 9 

mRNA and proteins have been found in STC-1 cells. Moreover, the activation of these 

receptors by LPS induced secretion of CCK [19] [20]. These findings suggest that the 

ECCs are likely involved in the perception of tastants and bacterial secretions and thus 

might participate in the defense of intestinal mucosa. There is now increasing evidence 

supporting the concept that alterations of intestinal microflora and bacterial secretions may 

preceed the inflammatory processes that develop in obesity [22] [23] [24]. STC-1 cells are 

a good experimental model to test the hypothesis that bitter ligands and bacteria activate gut 
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ECCs. Therefore, we used STC-1 cells to explore the possibility that T2Rs might serve as a 

defense mechanism againt bacteria. 

 

B Role of mitogen-activated protein kinase (pMAPkp44/42) in bitter signaling 

 

A large group of integral membrane receptors (G-protein coupled receptors) transmit from 

a diverse array of external stimuli, including neurotransmitters, hormones, phospholipids, 

photon, odorant and taste ligands. In response to binding ligand, the GPCRs activate 

diverse downstream signaling pathways, such as mitogen-activated protein kinase cascade 

(MAPK), including extracellular signal-related kinase (ERK), Jun N-terminal kinase (JNK), 

p38MAPk and big MAPK (BMK). MAPK signaling results in stimulus-dependent nuclear 

translocation of kinases , which in turn regulate gene expression and the cytoplasmatic 

acute response to mitogenic, differentiation, proliferation, stress related, apoptotic and 

survival stimuli [25] [26] [27] [28] [29]. MAPK pathways work through sequential 

phosphorylation events (known as MAPK cascade), and MAPK is the terminal enzyme in 

this three-kinase cascade: MAP kinase, MAP kinase kinase (MKK, MEK, or MAP2K) and 

MAP kinase kinase kinase (MKKK, MEKK or MAP3K), which are activated in series, as 

shown in (Fig 1).  
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Fig 1. Different Mapk pathways, in all of them MAPKKK is activated by extracellular stimuli, and 

phosphorilates a MAPKK and this MAPK activate a MAP Kinase trought another phosphorilation leading to 

a biological responces (Cell signaling technology, 

http//:www.cellsignal.com/reference//pathway/MAPK_cascades.html). 
 

The down regulation of MAPKs is via dephosphorylation by a class of proteins, such as 

serine / threonine phosphatases, tyrosine phosphatases, or dual-specificity phosphatases and 

via feedback inhibitors involving the phosphorylation of upstream molecules. In mammals, 

four distinct MAPK cascades are known to date (see above), but the most extensively 

studied are MAPK/ERK (including ERK1; ERK2; ERK3/ERK4, ERK5, ERK 7/8), 

SAPK/JNK (including JNK1, JNK2 and JNK3) and the p38 MAPK (including p38alpha, 

p38beta2, p38gamma and p38delta). ERK1 and ERK2, also known as classical MAPKp44/42 

signaling pathway, are expressed almost in every tissue and were the first of the 

ERK/MAPK subfamily to be cloned and they represent the best characterized pathway for 

MAPKs. For this reason we chose ERK1/2 as a target to measure. The ERK1/2 pathway is 

activated by growth factors and phorbol ester (a tumor promoter) and regulates cell 

proliferation and cell differentiation. Phosphorylation of MAPKp44/42 has been used to study 

the activation of the intracellular pathway in response to various ligands for G protein-
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coupled receptors. In this study, we evaluated pMAPKp44/42 in relation to total expression of 

ERK1/2 in STC-1 cell to determine whether AHL phosphorylated MAPKp44/42 and whether 

it activates the same pathway as T2R ligands. 

 

 

c Quorum sensing molecule: N-Acyl-Homoserine Lactone 

 

Cell to cell signaling with small chemical molecules is a process shared by many living 

organisms; mammals produce hormones, insects produce pheromones, and bacteria 

produce autoinducers. It conveys important information about the status of the cells and 

about the extracellular environment. In bacteria cell to cell communication at a specific 

threshold is crucial for symbiotic and pathogenic interaction with plants and animals, and 

host immune responses are important mechanisms to develop the infection process. Thus 

bacterial quorum sensing (QS) is a sophisticated prokaryotic method for coordinating their 

behavior with the secretion of chemical or peptide signal [30]. In fact, bacterial cells sense 

their population density by QS signaling and regulate the expression of some genes only 

when the cell density reaches a specific threshold [31] [32]. The exoproteases, 

siderophores, exotoxins and lipases are virulence bacterial factors controlled by QS, and QS 

is fundamental for the pathogen to be successful [33] [34] [35]. N-Acyl Homoserine 

Lactone is the most studied QS signaling system used by a large number of gram negative 

bacteria. The host immune response is modulated by different pathogens using different 

strategies and with different structural varieties between AHLs from different bacteria and 

even between AHLs synthesized by the same bacterium; most modifications are in the Acyl 

rings. AHLs regulate different genes, and have different regulatory mechanisms [35] [36] 

[37]. Many of these mechanisms are regulated by proteins related to LuxR and LuxI; at low 

cell density, the AHL is at low concentration, but at high cell density the production of 

autoinducer is high and it can accumulate to sufficient concentrations to activate lux 

genes.[38]. Probably the receptor for AHLs signal is a member of LUXR transcriptional 

regulator family, these family members have two domains, a C-terminal DNA-binding 

domain, and an N-terminal AHL-binding domain [39] (fig 2). Recently, Tizzano and 

colleagues [40] have shown that airways epithelial cells may be able to respond to AHLs 

produced by gram-negative bacteria with a mechanism involving taste receptors. Other 

studies showed how different lactones such as sesquiterpene, are natural bitter substances 
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that have the ability to activate bitter taste receptors, these lactones are found in vegetables 

and culinary herbs as well as in aromatic and medicinal plants [41]. 

 
Fig 2. Mechanisms mediating AHL effects of mammalian cells. 1.AHL induced apoptosis with increasing 

intacellular Ca2+  levels. 2. Intracellular damage inhibits the protective effects of BCL-2 on mitochondria, 

resulting in membrane damage and apoptosis. 3. NF-kB has been demonstrated to be a key trascriptional 

factor. 4. The nuclear hormone receptor PPAR� was the first eukaryotic receptor shown to directly interact 

with an AHL (Teplitski M. et al 2011 Chem Rev.). 
 

Previous results obtained from the lab of Professor Catia Sternini showed up-regulation of 

mT2R138 and Gust in the colon of mice fed long-term high fat diet inducing obesity, which 

is known to be associated with alterations of bacteria levels in the gut lumen suggesting that 

T2R activation might play a role in the inflammatory processes developing in obesity as 

result of changes in the intestinal bacterial population. In this study we used N-(3-

Oxodecanoyl)-L-homoserine lactone, which is used as an autoinducer of quorum signaling 

by Pseudomonas putida, Yersinia enterocolitica and other gram-negative bacteria, to 

investigate whether AHL signaling activates small intestinal enteroendocrine cells in 

millimolar concentrations, and whether T2Rs are involved in this process 

We measured MAPkp44/42 phosphorylation as outcome of receptor activation using western 

botting and MAPK44/42/tERK1/2 antibodies to establish whether QS produced by Gram-

negative bacteria activate STC-1 cells in comparison with agonist acting at selective T2Rs. 

How positive control for AHL function we used Probenecid that is an antagonist for bitter 

taste receptor. 

Probenecid is FDA approved inhibitor of the organic anion transporter Multidrug 

Resistence Protein 1 (MRP1) [42] [43], and is clinically used to treat gout in humans [44], 
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in lab probenecid is commonly used as a substances that prevent the efflux of calcium-

sensitive fluorescent dyes during experiment of cellular calcium mobilization [45]. Greene 

and colleagues (2011) during the course of their studies of bitter taste receptor signaling, 

accidentally discovered that the probenecid inhibited the activation of different bitter taste 

receptors as hT2R16 , hT2R38 and other in response to its cognate ligand salicilin and PTC 

respectively [46]. The activation was rapid and was independent of probenecid’s activity as 

a transport inhibitor, suggesting that probenecid interacts with the receptor rather than 

modulating downstream signaling processes [46]. Using probenecid as selective blockers of 

T2Rs we suppose that AHL have to be blocked by probenecid and so show the involment 

of T2R in AHL activation of MAPkp44/42 in STC-1 cells.  

Further study have to be done about the relationship between AHL and T2R., our next step 

is to use siRNA to silence T2R138 to confirm that AHL acts through this receptors 

 

 

Material and Method 

 

 

a. Reagents 

 

Denatonium Benzoate (DB, D5765), Phenylthiocarbamide (PTC, P7629), N-(3-

Oxodecanoyl)-L-homoserine lactone (AHL, O9014), GF-1, (B3306), nitrendipine (N144) 

and Probenecid (P-8761), were purchased from Sigma. 

DB and PTC were dissolved at 30 mM in water and used at final concentrations of 0.5mM, 

1mM, 2.5mM and 5mM for 3 minutes, AHL was dissolved at 50 mM in DMSO and used at 

final concentrations of 0.005mM, 0.025mM, 0.1mM and 0.25mM, each containing 0.2 % 

DMO, which was not toxic to cells for the time of the experiment (10 min).  

GF-1 and nitrendipine were dissolved in DMSO for a stock solution of 2 mM and 0.1 mM 

respectively and used at a final concentration of 5µM and 1 µM in DMEM. Probenecid was 

dissolved at 500 mM in 1N NaOH and titrated to pH 7.0 and used at final concentration of 

2.5mM in DMEM. 
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b. Cell lines and treatments 

 

STC-1 mouse cell lines were a gift from Dr. Rozengurt, CURE Digestive Diseases 

Research Center, Division of Digestive Diseases, David Geffen School of Medicine, 

UCLA, Los Angeles, CA. STC-1 cell line was cultured in DMEM + GlutaMax + 10% FBS 

and 1xPenStrep (GIBCO 15140-122). The culture was kept at 37°C in 5% CO2 atmosphere. 

Cells were starved 1h before the experiments with media without FBS and treated with 

bitter agonists (DB and PTC 0.5 to 5mM per 3min) or AHL (0.05 to 0.25mM per 10 min) 

with or without 1h pre-incubation with either Probenecid (2.5mM), GF-1 (5 µM) or 

nitrendipine (1 µM). 

We show that probenecid specifically inhibits the cellular response mediated by the bitter 

taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct 

interaction with this GPCR using a non-competitive (allosteric) mechanism. 

 

 

c. Western Blot 

 

Cells were lysed in 2× SDS-polyacrylamide gel electrophoresis sample buffer (20 mM Tris-

HCl, pH 6.8, 6% SDS, 2 mM EDTA, 4% 2-mercaptoethanol, 10% glycerol) on ice and 

boiled for 10 min. After SDS/PAGE, proteins were transferred on PVDF membranes. The 

membranes were blocked for 1h at room temperature in blocking buffer (LI-COR®), 

incubated at 4°C overnight with antibodies specifically recognizing pMAPK p44/42 (9106, 

dil 1:1000, Cell Signaling) and ERK-2 (sc-154, dil 1:500, Santa Cruz Biotechnologies). 

Immunoreactive bands were visualized by using infrared fluorescent secondary antibodies 

(IRDye 800 Goat anti Mouse, dil 1:10000, and IRDye 680 Goat anti Rabbit, dil 1:10000; 

LI-COR Biosciences). Images were collected using the LI-COR Odyssey infrared imaging 

system and analyzed with the 3.0 associated software. 
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Calcium Imaging 

 

STC-1 cells were plated and cultured on 12mm coverslips in 2.0cm2 wells in Dulbecco’s 

Modified Eagle Medium (DMEM, Gibco®) supplemented with 10% FBS and antibiotics 

(100 U/ml penicillin and 100 µM/ml streptomycin). STC-1 cells were washed twice with 

Hank’s Balanced Stock Solution (HBSS, Gibco®) (composition in table 1) containing 20 

mM HEPES, adjusted to pH 7.4 with NaOH, before loading with 1.5µM fura-4AM (0.3µl 

of 1mM stock in DMSO, Life Technology Corporation, Invitrogen, USA) in Hibernate®A 

for 7 minutes at room temperature in the dark.  

The coverslips were then transferred to a microscope chamber mounted onto a Zeiss 

Axioplan 2 upright microscope that used an eight channel gravity driven fast flow 

superfusion system (ALA Scientific, Farmingdale, NY, USA) to deliver the solutions.  

Coverslips were superfused with HBSS+HEPES for 20 minutes at room temperature before 

imaging.  STC-1 cells were monitored at 20 second intervals for 10 minutes prior to drug 

application. The application of PTC (3mM and 5mM) and AHL (0.5mM and 1mM) was 

superfused for a duration of 25 seconds with images taken at 1 second intervals. Images 

were acquired on a Zeiss LSM 5 Pascal using a water-immersion Axoplan 40x (NA 0.8) 

objective. The excitation was provided by the 488 nm line of the argon laser, while the 

photomultiplier tube collected the emission through a 505 nm LP filter. Fluorescence 

intensity values were collected by setting regions of interest (ROIs) on the STC-1 cell 

bodies.  

 
Components  Molecular Weight  Concentration (mg/L)  mM  

Inorganic Salts 
Calcium Chloride (CaCl2) (anhyd.) 111 140 1.26 
Magnesium Chloride (MgCl2-6H2O) 203 100 0.493 
Magnesium Sulfate (MgSO4-7H2O) 246 100 0.407 
Potassium Chloride (KCl) 75 400 5.33 
Potassium Phosphate monobasic (KH2PO4) 136 60 0.441 
Sodium Bicarbonate (NaHCO3) 84 350 4.17 
Sodium Chloride (NaCl) 58 8000 137.93 
Sodium Phosphate dibasic (Na2HPO4) anhydrous 142 48 0.338 
 
Table 1. Molecular composition of HBSS solution. 
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Results 

 

a. Bitter stimuli induce a rapid dose-dependent MAPKp44/42 phosphorylation in 

STC-1 cells 

 

WB analysis showed that STC-1 cells responded to bitter ligands DB and PTC with MAPK 

p44/42 phosphorylation. The activation is dose dependent. DB induced a significant 

phosphorylation of MAPK44/42 at 2.5 mM (723.79% ± 149; P ≤ 0.05) (Fig 3a) and PTC at 

2.5mM (345.40% ± 91,65 P ≤ 0.05) (Fig 3b) In a parallel experiment carried out in the lab 

of Professor Catia Sternini, IEC-18 cells, a mouse small intestine cell line not expressing 

TRs, were not activated by either PTC and DB.  

 

 

 

 

 
Fig 3a. WB results showing the % of phosphorylation for MAPKp44/42 on STC-1 after 3’incubation with 

increasing PTC concentration. * P ≤ 0.02 vs PTC CTR, ** P≤ 0.01 vs PTC CTR. Representative WB 

membranes showing pMAPK p44/42 after PTC stimulation. 
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Fig 3b. WB results showing the % of phosphorylation for MAPKp44/42 on STC-1 after 3’incubation with 

increasing DB concentration. * P ≤ 0.02 vs DB CTR. Representative WB membranes showing pMAPK p44/42 

after DB stimulation. 

 

 

b. Different T2Rs subtypes show different pathways leading to MAPKp44/42 activation 

 

To further investigate the signaling pathway following T2Rs activation we used GF-1, a 

protein kinase C inhibitor, and nitrendipine, an L-type voltage-sensitive Ca2+ channels 

blocker, a probenecid an inhibitor of many T2Rs and measured pMAPK following PTC, 

DB or AHL stimulation with or without these drugs treatment. When STC-1 cells were 

treated with increasing concentrations of PTC or DB in the presence of GF-1, PTC induced 

phosphorylation of MAPK was markedly reduced (fig 4a) whereas DB effect was not 

modified (Fig 4b). By contrast, nitrendipine blocked DB induced MAPK phosphorylation 

(Fig 4c), but did not affect PTC activation of MAPK (Fig 4d). 
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Fig 4a. PTC induces MAPkp44/42 phosphorilation, is blocked by GF1 in a dose dependent manner in STC-1 

cells. Representative WB membranes showing pMAPKp44/42 after PTC stimulation,in presence of GF-1. 

 

 

 

 

 

 

 
Fig 4b. DB induces MAPKp44/42 phosphorilation, it is not blocked by GF1 in STC-1 cells. Representative WB 

membranes showing pMAPK p44/42 after DB stimulation, in presence of GF-1. 
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Fig 4c. DB induces MAPKp44/42 phosphorilation, is blocked by Nitrendipine in a dose dependent manner in 

STC-1 cells. Representative WB membranes showing pMAPKp44/42 after DB stimulation, in presence of 

nitrendipine. 

 

 

 

 

 
Fig 4d. PTC induces MAPKp42/44 phosphorilation, it is not blocked by Nitrendipine in STC-1 cells. 

Representative WB membranes showing MAPKp44/42 after PTC stimulation, in presence of nitrendipine. 
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c. STC-1 cell lines expressing T2Rs are activated by N-(3-Oxodecanoyl)-L-homoserine 

lactone, possibly through T2R138/T2R38? 

 

STC-1 cell lines responded with MAPKp44/42 phosphorylation when challenged with AHL 

at increasing mM concentrations (Fig 5a). Cells died with ≥0.25mM concentration. 

Preliminary data shows that both PTC and AHL induced MAPK phosphorilation, which is 

markedly reduced by GF-1 (Fig 5b) but it is not reduced by nitrendipine in STC-1 cells 

(Fig 5c), whereas DB-induced MAPK phosphorilation is blocked by nitrendipine but not by 

GF-1. Increasing mM concentration of AHL PTC and DB give MAPkp44/42 

phosphorylation, but when the cells are pretreated with Probenecid an inhibitor of T2Rs, 

the MAPkp42/44 phosphorilation is blocked (Fig 6a/6b) this result demonstrate that AHL 

may use T2Rs for activate the transcription in STC-1 cells. 

 

 

 

 

 
Fig 5a. WB results showing the % of phosphorylation for MAPKp44/42 on STC-1 after 10’ incubation with 

increasing AHL concentration. * P ≤ 0.01 vs AHL CTR, ** P≤ 0.03 vs AHL CTR. Representative WB 

membranes showing MAPK p44/42 after AHL stimulation.  
 

 

 

* 

** 

  *P≤ 0.01 
**P≤ 0.03 
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Fig 5b. AHL induces MAPKp42/44 phosphorilation, is blocked by GF-1 in a dose dependent manner in STC-1 

cells. Representative WB membranes showing MAPKp44/42 after AHL stimulation, in presence of GF-1. 
 

 

 

 

 

 
Fig5c. AHL induces MAPKp44/42 phosphorilation, it is not blocked by Nitrendipine in STC-1 cells. 

Representative WB membranes showing MAPK p44/42 after AHL stimulation, in presence of nitrendipine. 
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Fig 6a. PTC induces MAPKp44/42 phosphorilation, is blocked by Probenecid in a dose dependent manner in 

STC-1 cells. Representative WB membranes showing MAPKp44/42 after PTC stimulation, in presence of 

Probenecid. 

 

 

 

 

 
Fig 6b. AHL induces MAPKp44/42 phosphorilation, is blocked by Probenecid in a dose dependent manner in 

STC-1 cells. Representative WB membranes showing MAPKp44/42 after AHL stimulation, in presence of 

Probenecid. 
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PTC and AHL elicit rapid increase in [ca2+]i in STC-1 Cells 

 

We used a phenylthiocarbamide (PTC) a ligand that selectively binds the bitter taste 

receptor T2R38/138 and bacteria QS molecule (AHL) to evaluate their effect on Ca2+ 

signaling in STC-1. 

Preliminary date showed that the stimulation of STC-1 cells with PTC at a concentration of 

3.0mM or 5.0mM (Fig 7) induces a rapid increase in [ca2+]I. Interestingly, stimulation of 

STC-1 cells with a QS molecule AHL, at a concentration of 0.05 mM or 0.1mM also 

induces a rapid increase in [ca2+]I (Fig 7), supporting the data obtaining with MAPKp44/42 as 

second effector system, and further supporting the concept that AHL act on effector 

systems activated by bitter taste receptors, including T2R38/138. 
 

  

  
Fig 7. The bitter stimuli PTC, and the QS molecule AHL rapidly increase intracellular [Ca2+]I in STC-1 cells.  

 

 

Discussion and Conclusion 

 

There is increasing evidence that taste receptors are expressed in the mice ECCs and other 

mammals [14] [47]. mRNAs for mT2R138, mT2R108 and their signaling molecule α-

gustducin, are expressed in the endocrine cells and non-endocrine cells in the 

gastrointestinal tract, but also in enteroendocrin cell line STC-1. In accordance with what 

was previously stated, by the stimulation of STC-1 with two specific agonists of T2R108 
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(DB) and T2R138 (PTC) in mice, we obtain MAPK activations; this evidence suggests that 

STC-1 cell line has several functional T2Rs in its cellular membrane. These results were 

confirmed by calcium imaging, treating the cells with DB and PTC provokes an increase of 

intracellular levels of Ca2+. We have shown that T2Rs subtypes are expressed in different 

species and different gastrointestinal cell types (enteroendocrine cells, brush cells), with 

differential distributions throughout the GI tract. To date, we know that different diets and, 

therefore different nutrients, are taken in by different species, which may lead to think that 

not only do T2Rs have a high homology among species, but they can also be modulated 

based on different food behavior and so this may lead to a different distribution and a 

different receptor type spectrum depending on the species. Indeed, throughout evolution 

rodents developed a significantly higher number of T2R genes compared to humans [15] 

and different animals show a different number and pattern of many sense receptors, 

including T2Rs [48]. Moreover the pathways of the T2Rs activations seem to involve 

MAPKp44/42; in fact this protein was phosphorylated following dose response PTC and DB 

treatments as previously published by Wu et al. (2002) [14]. However, using antagonist of 

PKC (GF-1) and Ca2+ channel blocker (nitrendipine) we obtain no response of MAPKp44/42, 

and so this helps us to characterize the pathways of T2Rs activations. Our data suggested 

that selected T2Rs ligands activate different pathways and different mechanisms of action 

for various types of T2R ligands. FIG. 

In recent years, many researchers have been interested by the link between inflammation or 

obesity and gut microbiota [21] [22] [23] [24]; it is hypothesized that the gut endocrine 

cells detect pathogenic bacteria and more in general intestinal microflora. TRL are bacterial 

recognition receptors or receptors for bacterial product, such as short chain fatty acids [44]. 

AHL activate of MAPKp44/42 cascade in STC-1 cell line expressing T2Rs through a PKC-

depedent pathway, which is similar to the MAPKp44/42 activation induced by PTC. This 

evidence is supported by the calcium imaging technique, which shows how treating STC-1 

cells with AHL provokes an increased level of intracellular Ca2+. We hypothesized that 

subpopulations of ECCs cells might detect bacterial stimuli, such as QS molecules like 

AHLs through T2Rs, which is in line with previous observations in the airways [40]. 

Overall, our findings, together with previous observations, suggest that bacteria might 

activate T2Rs to initiate an inflammatory process in response to pathogens such as gram-

negative bacteria, and further support a functional role for T2Rs in chemosensing in the GI 

tract. 
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CHAPTER 4 
 

 

 

 

MODULATION OF THE T2R38 (BITTER TASTE RECEPTOR) IN HEALTHY 

HUMAN SUBJECTS BY DIET  

 

Abstract 

 

 

Taste receptors for complex tastes such as bitter taste receptors (T2Rs) or receptors for the 

sweet and umami tastes (T1R) are located in the taste buds of the tongue, but also in the 

upper respiratory tract and throughout the gastrointestinal tract. The T2Rs perceive bitter 

nutrients, but also potentially toxic and harmful substances, thus they are likely to play a 

very important role in defending the body from the external environment. T2R subtypes 

and signaling molecules are regulated by feeding and changes in the luminal content in 

animal models. The aim of this study was to test whether two distinct T2Rs, T2R4 and 

T2R38, which are activated by distinct tastants, are altered in the mucosa of overweight or 

obese compared to lean individuals. Colonic biopsies obtained from 30 healthy subjects but 

with different BMI (15 normal weight and 15 overweight/obese) were collected and RNA 

extracted for quantitative RT-PCR. Immunohistochemical analysis was also carried out in 

colonic specimens of 7 normal weight and 7 overweight/obese individuals to assess the 

distribution of hT2R38 immunoreactivity. This study showed a marked increase in the level 

of expression hT2R38 RNA in the mucosa of individuals with increased BMI (normal 

weight, 1.68 ± 0.5; overweight/obese 4.20 ± 0.9), whereas there were no changes in the 

expression of T2R4 mRNA. The immunohistochemical data confirm these results by 

showing an increased numbers of T2R38 immunoreactive cells in the overweight/obese 

group compared to normal weight subjects (1.9 ± 0.2 and 3.3 ± 0.1 cells in 0.42mm2 

respectively). 

We can speculate that intraluminal changes induced by increased dietary consumption that 

is likley to be responsible for the increased BMI induce upregulation of T2R subtypes and 

an involvement of T2Rs in obesity or pre-obesity conditions could be suggested. 

Introduction 
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The bitter taste receptors (T2Rs) are part of a large family of G protein-coupled receptors 

(GPCRs) activated by a multitude of bitter substances and they use α-gustducin and α-

transducin as signalin molecules. T2Rs are found in the oral cavity on the taste buds [1] [2] 

[3], but also in extra oral sites such as the respiratory system [4] [5 ] [6], brain [7], testis [8] 

and throughout the gastrointestinal tract, from the stomach to the rectum [9] [10] [11]. In 

the tongue, T2Rs have evolved as a warning signal against toxic substances, typically bitter, 

by inducing avoidance or rejection. In the gut, T2Rs might function as a second tier of 

defense by detecting potentially dangerous or harmful substances, plant alkaloid and 

microorganisms [12] [13] [14], but might also be involved in physiological processes by 

affecting energy homeostasis, food intake, absorption and satiety. In the gastrointestinal 

tract (GI), taste related molecules are predominantly expressed in enteroendcorine cells and 

brush cells [9] [11] [15] [16]. The enteroendocrine cells contain secretory granules, which 

degranulate and release signaling molecules, many of which are peptides, which act as 

classic hormones or modulators/transmitters [13] [17] [18] [19] [20] [21]. Both 

anorexigenic and orexigenic peptides (Cholecystokinin, Glucagon Like Peptide-1, 

Pholypeptide YY3-36 and Ghrelin respectively) are released from the gut mucosa as a result 

of a fed or fasted state, and play a crucial role in regulating food intake [22]. Several studies 

have linked taste receptors and their signaling molecules to the release of various 

hormones. Indeed the stimulation of different TAS2Rs expressed in the murine cell line 

STC-1 with bitter ligands increased the release of the Cholecystokinin (CCK) and 

Glucagone like peptide-1 (GLP-1) hormones, two of the major satiety hormones [23] [24]. 

Since STC 1 cells are a major model system for enteroendocrine cells, this is an indirect 

evidence that T2Rs expressed by enteroendocrine cells are functional. Intragastric 

administration of bitter agonists provokes the activation of c-fos in the nucleus tractus 

solitaries likely acting on CCK1Rs and Y2 receptors on vagal afferents through the release 

of Polypeptide YY (PYY3-36) or CCK from enteroendocrine cells, which have been shown 

to express taste receptor signaling molecules [25]. Furthermore, the intragastric 

administration of bitter agonists induces the secretion of the hunger hormone ghrelin, 

leading to a short term increase in food intake [26]. Ghrelin release leads to a temporary 

stimulation of appetite, but this is promptly followed by a profound decrease in food intake 

correlating with a decrease in gastric emptying, a possible mechanism to prevent overeating 

[26]. This is consistent with recent findings from Janssen P. et all (2011) that intragastric 
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administration of the bitter agonist Denatonium Benzoate (DB) in healthy volunteers 

resulted in an increase in satiation and reduced the volume of nutrients ingested [27].  

All together, these observations support the concept that bitter agonists induce the release 

of different gastrointestinal hormones (satiety and hunger hormones) from enteroendocrine 

cells, thus regulating food intake and participating to the control of energy balance and 

obesity. Studies from our laboratories have shown that different diets induce changes in the 

level of taste signaling molecules [28] and T2R subtypes [29] and that long-term high fat 

diet resulting in obesity induced significant increase in the expression of T2R138 (the 

mouse T2R corresponding to hT2R38) in the mouse colon [29].  

In our study, we have measured the levels of T2R38 and T2R4 mRNA in colonic biopsies 

obtained from healthy human subjects with different Body Max Index (BMI) to determine 

whether there was a correlation between body weight and hT2R38 and hT2R4 mRNA 

expression, which could support a role of these receptors in feeding alterations. Moreover, 

we characterized the types of cells expressing T2R38 in the human colon using 

immunohistochemistry with a Chromogranin A antibody (pan marker for endocrine cells), 

and markers for CCK and GLP-1  

 

 

Material and Method 

 

RT-PCR 

 

Total RNA was isolated from colonic biopsy using Qiagen RNeasy Minikit (74104, 

Qiagen, Valencia, CA) and a DNase treatment was performed to eliminate genomic DNA 

contamination. RNA quality was estimated by absorbance at 260 nm and 280 nm ratio 

(OD260nm/OD280nm>1.8). Complementary DNA was generated using superscript III 

reverse transcriptase kit according to the manifacturer’s instructions on a DNA Thermal 

Cycler Engine, BIO-RAD. Quantitative real-time reverse transcription polymerase chain 

reaction (qRT-PCR) was performed using Taqman Gene expression assays hT2R38 

(Applied Biosystem Hs00604294_s1,), hT2R4 (Applied Biosystem Hs00249946_s1) 

Standard thermal cycles (50 cycles) for Taqman Gene assays were run on a Mx3000P Real-

time PCR DetectionSystem (Stratagene) and data were analyzed with Mx Pro 1000 

software. 18S RNA (18S RNA, Applied Biosystem Hs03928990_g1) was used as 

housekeeping gene and the relative abundance of mRNA expression was calculated using 
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the Delta delta Ct method (User Bulletin #2, ABI Prism 7700 Sequence Detection System). 

Samples were run in duplicate in separate experiments and No-RT and distilled RNAse-free 

water controls were always included. qRT-PCR products were checked by 4% agarose gel 

horizontal electrophoresis and specific bands of the same base pair sizes as the expected 

sizes were detected. 

 

 

IMMUNOHISTOCHEMISTRY 

 

5µ-thick paraffin-embedded, formaldehyde-fixed specimens were cut, serially mounted on 

glasses and then deparaffinazed in xylene. To unmask the antigenic sites, slides were heated 

in 10mmol/L sodium citrate buffer (pH 6.0) for three times of 5 minutes each in a 

microwawe oven at 600W. After treatment, slides were allowed to cool to room 

temperature (RT) for 35 minutes. Sections were washed in double-distilled water and then 

incubated in 10% normal donkey serum for 1 hour at RT in humid chamber. Sections were 

then incubated for indirect double-labelling immufluorescence at 4°C overnight in a 

mixture/solution containing T2R38 in combination with a primary antibody direct against 

Chromogranin A (ChrA), Cholecystokinin (CCK), or Glucagon Like Peptide-1 (GLP-1). 

All of the antibodies and dilutions used in this study are listed in table 1. 

Following several washes in phosphate buffered saline, pH 7.4 (PBS, 3 x10 min), sections 

were incubated with a mixture of secondary antibodies (Do anti-Rabbit Alexa 488, Do anti 

Goat/Mouse Alexa 594) in the dark and in a humid chamber for 1 hour at RT. After 

washing in PBS (3x10 min) sections were cover-slipped with aqua-poly/mount 

(Polysciences Inc). 

Images were scanned with a confocal microscope (ZEISS 510 laser scanning confocal 

microscope, Carl Zeiss Inc, Thornwood, NY) running LSM5 software. 
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Primary antisera Species Code Diluition Supplier 

hT2R38 Rabbit ab65509 1:2000 Abcam 

ChrA Goat Sc-18232 1:600 Santa Cruz 

CCK Mouse 9303 1:600 CURE/DDRC 

GLP-1 Mouse 9369 1:1000 CURE/DDRC 

 

Secondary antisera Code Diluition Supplier 

Donkey Anti-Rabbit Alexa 488 A21206 1:1000 Invitrogen 

Donkey Anti-Goat Alexa 594 A11058 1:900 Invitrogen 

Donkey Anti-Mouse Alexa 594 A21203 1:1000 Invitrogen 

Table 1. list of primary and secondary antibodies used in this study. 

 

CELL COUNTING AND STATISTICAL ANALYSIS 

 

Cell counting was carried out with a 40X objective lens using a ZEISS 510 laser scanning 

confocal microscope equipped with appropriate filter to discriminate between FITC and 

Alexa 594 fluorescent. The objective 40X has a field of view of 0.028mm2, 15 fields per 

sample were evaluated to obtain the number of cells positive for the hT2R38, ChrA, in an 

area of 0.42 mm2. Data were analyzed using the student’s t-test. (Graph Prism 4, GraphPad 

Softwere, Inc., La Jolla, CA, USA). 

 

 

RESULTS 

 

 

hT2R38 mRNA LEVELS IN HEALTHY LEAN AND OVERWEIGHT HUMAN 

SUBJECTS  

 

The body mass index (BMI) is a measure for human body shape based on an individual's 

weight and height. A different BMI is likely due to a different caloric intake corresponding 

to increased weight. qRT-PCR analysis showed that hT2R38mRNA was of 1.68 ± 0.5 in 

lean subjects (N° 15 including males and females, ranging between 22-59 years old), 
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whereas it was 4.20 ± 0.9 in overweight/obese subjects (N° 15 males and females, ranging 

between 22-55 years old) (Fig1), which is two and a half fold for the value in lean subjects 

(p< 0.05); there was no significant different in the expression of T2R4 mRNA in lean and 

overweight subjects. We did not detect sex-specific difference in hT2R38 RNA levels in 

either normal weight or overweight/obese groups (data not show). These results suggest 

that hT2R38 is regulated by feeding since it was increased in overweight/obese people. 

 

 
Fig 1. Effect of a different BMI on mT2R38 expression. qRT-PCR analysis shows that mT2R38 mRNA 
levels are significantly (P ≤ 0.05) up-regulated in overweight/obese group compared with normal weight 
group. 
 

 

hT2R38/ ChrA IN HUMAN COLONIC BIOPSIES 

 

In the colon,T2R38-IR cells were generally located in the surface and glandular epithelium. 

T2R38-IR cells showed homogenously labelled cytoplasm, with an unlabelled nucleus and 

with an elongated shape. Some T2R38-IR cells were confined toward the basal lamina and 

few cells were characterised by two thin cytoplasmic prolongations, the first extending up 

to the endoluminal surface of the mucosa and the second projecting down to the basal 

lamina. All of the hT2R38-IR cells co-expressed ChrA (Fig 2), demonstrating that hT2R38 

cells are enteroendocrine cells; this complete co-localization was observed in human colon 

of both normal weight and overweight/obese subjects. Immunohistochemistry experiments 

showed an increased numbers of T2R38-IR cells in the overweight/obese group compared 

to normal weight subjects (3.3 ± 0.1 and 1.9 ± 0.2 cells in 0.42mm2 respectively). Some 

T2R38-IR cells were co-localized with GLP-1 (Fig 3). These cells are located in the basal 

part of the glandular epithelium and some GLP1-IR cells have cytoplasmatic prolongations 

* 
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extending up to the endoluminal surface of the mucosa and down to the basal lamina, 

suggesting that these cells are “open cells type”. Many T2R38-IR cells are co-localized 

with CCK (Fig4) in the basal part of glandular epithelium; CCK cells are numerous with 

homogenously labelled cytoplasm and elongated shape. 

 

 

 

 

 
Fig 2. Representative image of human colonic mucosa. hT2R38 immunoreactivity colocalised with ChrA in 

normal weight (A) and overweight/obese group (B,C). The arrows indicate the T2R38-IRcells are not 

colocalised with ChrA 
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Fig 3. Representative image of human colonic mucosa. hT2R38-immunoreactivity colocalised with CCK. 

The arrows indicate the T2R38-IRcells are not colocalised with GLP-1 
 

 

 
Fig 4. Rapresentative image of human colonic mucosa. hT2R38-immunoreactivity colocalised with CCK. 

The arrows indicate the T2R38-IRcells are not colocalised with CCK. 
 

 

DISCUSSION AND CONCLUSION 

 

Using colonic biopsies from healthy control patients with a different BMI, we have shown 

a positive correlation between weight and increased expression of the hT2R38 mRNA 

levels and T2R38-IR cells number.  

Weight increase and obesity are widespread not only in populations of industrialized 

countries, but also among those with a low socio-economic-cultural level. They are the 

result of the protracted imbalance between calorie intake and expenditure which can lead to 

a negative effect on the health. 
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The underlying causes are numerous: genetic predisposition, socio-economic, 

environmental, cultural, psychological, behavioral, metabolic, or neuroendocrine factors.  

Recently, high attention has been given to the role of gut microbiota in obesity [30] [31]; 

our study was performed on human distal colon, one of the gut regions with highest 

bacterial density of the whole body, which is estimated at 1011 to 1012 per milliliter [32]. 

There are several bacterial populations in the colon of mammals. The first evidence of 

different populations in obesity derives from studies in leptin (ob/ob) deficent mice 

showing a different proportion of the phyla of cecal bacteria compared to lean wilt type, 

(WT) (ob/+) mice. This study showed an increase in Firmicutes and a decrease in 

Bacteriodetes in the obese mice [33]. Similarly, in the gut of obese humans there was 

decrease of Bacteriodetes and an overall decrease in bacterial diversity [34] [35]. Moreover, 

“low grade chronic” inflammation is present in obese patients and is associated with leptin 

and insulin resistance [36]. This chronic inflammation in obesity is probably due to the 

production and release of inflammatory mediators from the adipose tissue, which can affect 

other tissues, such as muscle, liver, pancreas and the central nervous system. Furthermore, 

an increase of bacterial endotoxin, Lypopolysaccharide (LPS), has been reported in the 

plasma in humans fed with high fat meal [37]. LPS is released into the gut lumen when the 

gram negative bacteria died, and it can cross the epithelial barrier and establish an 

inflammatory process. One possible mechanism through which bacteria communicate with 

and produce damage to the host cell, is the production of substances of bacterial origin such 

as Homoserine Lactones (AHL), which serve as a quorum sensing molecule for Gram-

negative pathogens [38].  

AHL-induced MAPKp44/42 activation was reduced by pre-treatment with probenecid, a T2R 

inhibitor [39]. The GPCR-mediated pathway activated by AHL in STC 1 cells is similar to 

the pathway utilized by ligands selectively binding the T2R138 (the mouse T2R 

corresponding to the hT2R38). Indeed, AHL-induced MAPKp44/42 phosphorylation is 

markedly reduced by GF1, a protein kinase C inhibitor, whereas it is not inhibited by 

nitrendipine, a calcium blocker, as the T2R38-induced MAPK-phosphorylation. This 

differs from MAPKp44/42 activation mediated by T2R108 (the mouse T2R corresponding to 

hT2R4), which is blocked by nitrendipine, but not by GF1. This suggests that the bitter 

taste receptor downstream signaling effector activated by AHL involves T2R138 or other 

T2Rs activating this transduction pathway. Furthermore, AHL, induces increase in 

intracellulal Ca2+ and CCK release from STC 1 similary to T2R ligands including T2R138 

(Chapter 3). These data, together with the findings of increased expression of T2R38 
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mRNA and increased number of T2R38 immunoreactive cells, suggest that one of the 

fucntion of these T2Rs is detecting bacteria in the intestinal lumen. Since bacterial 

populations are altered by obesity-inducing diets with prevalence of Gram-negative 

bacteria, we can hypothesize that T2R exert a protective function against bacteria by 

detecting their quorumn sensing molecule and mounting an inflammatory response to 

reduce bacteria danage to host cells. This is consistent with data from the respiratory 

system, where T2Rs have been shown to be actiavted by AHL produced by Gram-negative 

bacteria and have been proposed as a defense mechanism against irritants invading the 

respiratory tract [40]. Additional studies are required to test this hypothesis, including 

studies in animal models with germ-free mice and antibiotic to reduce the luminal content 

of bacteria as well as studies in vitro silencing different T2Rs in STC 1 cells and intestinal 

epithelial cells following stimulation with AHL and selective T2R agonists. 

In conclusion, the increased expression of hT2R38 mRNA levels and the increased number 

of T2R38-IR cells in overweight/obese individuals compared to lean subjects, combined 

with the observation that hT2R38 co-localizes with GLP-1 and CCK, signaling molecules 

regulating feeding behavior and the findings that T2R38 ligands trigger the release of CCK 

and GLP-1 in enteroendocrine cell lines support the hypothesis that T2R38 plays a role in 

food intake regulation, metabolic dysfunctions and homeostasis. This is further supported 

by studies in mice showing that mT2R138 is upregulated by different diets which varies 

with the gut segment investigated [29]. In addition, the findings that Gram-negative 

bacteria molecules, such as AHLs and bitter ligands activate the same downstream 

signaling effectors and that T2R138 mRNA is upregulated by long-term high fat diet 

inducing obesity in mice[29] and rats (data unpublished), which has been shown to be 

associated with increased Gram-negative bacteria in the colon lumen [41], as well as in 

colonic biopsies from overweight and obese subjects (this study), support the concept that 

T2R might function as bacteria detectors and protect from further cellular damage by 

bacteria. 
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