
 

    

 

Resmi Anand 

 

Spectroscopic studies on Cyclodextrin and 

Metal Organic Framework based  

potential nanovectors for delivery of 

Anticancer and Antiviral drugs 

 



  

    



AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  

 
 

 

DOTTORATO DI RICERCA IN 
 

Scienze Chimiche 
 

Ciclo XXV 

 
Settore Concorsuale di afferenza: 03/A2 MODELLI E METODOLOGIE PER LE 

SCIENZE CHIMICA 
 
Settore Scientifico disciplinare: CHIM/02 CHIMICA FISICA 

 
 
 

SPECTROSCOPIC STUDIES ON CYCLODEXTRIN AND METAL ORGANIC 
FRAMEWORK BASED POTENTIAL NANOVECTORS FOR DELIVERY OF 

ANTICANCER AND ANTIVIRAL DRUGS 

 
 

 
 
 

Presentata da: Resmi ANAND 
 
 
 
Coordinatore Dottorato     Relatore 
 

 
Prof. Adriana Bigi      Dr. Luca Prodi 
 
 
         Correlatore 
 
          

Dr. Sandra Monti 
 

Esame finale anno 2013 
 



 

 



Acknowledgements 

 

Foremost, I sincerely thank Dr.Sandra Monti, my supervisor, for her expert guidance, continuous support, 

extraordinary patience and constant encouragement through out my research period. She is the reason for 

all the good things happened during my research work. I also owe her a special debt of gratitude for helping 

me a lot to set my life in Bologna. I would also like to thank Dr. Ilse Manet, who shared her experience to 

make me familiar with different analytical techniques. Also, I extend my thanks for her help to accomplish a 

lot of offical formaliities while I began my research life in Bologna. I also thank Dr.Francesco Manoli, a man 

with running legs and passion towards cycling, for his training on lab techniques and a variety of 

instruments.  Of course, his attitude and perspective towards life and research and the jokes that he 

cracked were those helped me during a many difficult situations. 

 I also thank my supervisor at the university Prof. Luca Prodi for his constant support to complete all 

the formalities at the university, throughout my research work. 

 This work could have not been possible without the materials from the group of Dr. Ruxandra Gref. 

I am also grateful to Dr. Gref for giving me an opportunity to work in her lab for a short time and to explore 

a different and interesting field of research. I’m sure that the techniques I learned there will remain 

significant in my research experience. My special thanks go to Valentina Agostoni for providing me 

sufficient quantity of MOF material without any hesitation. Also her company during my stay in France is 

unforgettable and kept me happy, and I owe her always for that. I also thank Samia Daoud-Mahammed for 

the polymeric nanoparticles samples. Many thanks are due to Dr. Violeta Rodriguez Ruiz for her assistance 

and training to work with cytotoxic and radio labbelled samples, during my stay in France. I thank Dr. 

Andrei Maksimenko, biologist, who prepared a plenty of cell samples for me and also helped me in 

understanding the biological process behind that. 

 My thanks are due to Dr. Stefano Ottani from ISOF-CNR for his fruitful collaboration and support. I 

would like to thank Dr. Eva Fenyvesi, Milo Malanga, Prof. Antonio Vargas-Berenguel, for providing me 

countless samples during my research activity. 

 Thanks to Prof. Pierluigi Reschiglian and Francesco Borghi for introducing me a new and powerful 

technique AF4-MALS and for their experimental results. 

 I would like to thank all the members of ISOF family especially Dr.Lucia Flamigni, Dr. Andrea 

Barbieri, Dr. Barbara Ventura, Dr. Nicola Armaroli, Dr. Nadia Camioni, Dr. Valeria Fatori, Dr. Massimo 

Cocchi, Dr. Francesca Tinti and Dr. Gianluca Accorsi for their support. Also I am grateful to Dr. Roberto 



Zamboni, Roberta Chiodini and Illaria Giuliodori for their assistance and unparallel support in managing 

official things. 

I give my special thanks to John Mohanraj, who was a friend in need and a friend indeed. I thank 

him for his support and encouragement during my research time. 

Thanks to Adina Ciuciu, who has been maintaining a friendly atmosphere in my working 

environment and also to Filipo Monti, Dr. Yoosaf Karuvath, Joanna Malicka, Eleanora Pavoni, Maria-Pia and 

Dr. Praveen Vakayil Karthikeyan for their friendship and support. 

Thanks to Nadia, Nadege, Zoltan, Ahmet, friends I own from Paris, for their extraordinary care and 

concern, which turned my stay in France as a pleasant and a memorable one. 

A special thanks to the CYCLON team, Dr. Konstantina Yannakopoulou, Prof. Thorsteinn Loftsson, 

Prof. Salvatore Sortino, Prof. Abderrazzak Douhal, Prof. Marica B. Ericsson, Noufal, Vladimir, Ricardo, 

Aurore, Linda, Maria who have been supporting me always and have provided a platform to gain 

experience in presenting scientific results and discussions.  

I immensely thank all my teachers, who have transferred their valuable knowledge. Special thanks 

go to Dr. Jaya Kannan who inspired me to take the research as my carrier and also for his fundamental 

lessons on research activities. 

  Last but not least, my special thanks go to my beloved husband, Anand, for allowing me to pursue 

research even after my marriage that too in Europe. Without his love, concern and support, for sure, these 

3 years would have been so difficult to me. I owe him a lot throughout my life. I’m also in debted to my 

beloved parents and my sister who have been assisting, supporting, and caring me all through these years. 

It is their love and support that encouraged me to overcome many difficulties during my research period. 

 

 

Resmi Anand 

 

 
 

  



ABSTRACT ............................................................................................................................................... i 

1. INTRODUCTION .............................................................................................................................................. 1 

1.1 Main types of drug carriers ...................................................................................................................... 1 

      1.1.1 Polymer based carrier systems ..................................................................................................... 2 

     1.1.2 Polymeric micelles ........................................................................................................................ 4 

      1.1.3 Liposomes ..................................................................................................................................... 5 

 1.1.4 Cyclodextrin based carriers .......................................................................................................... 7 

 1.1.5 Metal Organic Frameworks ........................................................................................................ 10 

1.2 Scope of this Ph.D dissertation ................................................................................................................... 11 

References ........................................................................................................................................................ 12  

2. SPECTROSCOPIC STUDIES ON DOXORUBICIN ASSOCIATION TO CYCLODEXTRIN BASED SYSTEMS .......... 16 

    2.1 Self association of doxorubicin ............................................................................................................... 17 

     2.1.1 UV-visible absorption studies ..................................................................................................... 18

 2.1.2 Circular dichroism studies .......................................................................................................... 19 

2.1.3 summary ..................................................................................................................................... 20 

     2.2 Association of doxorubicin to -cyclodextrin ........................................................................................ 20 

     2.2.1 UV-visible absorption and circular dichroism titrations ............................................................. 21 

 2.2.2 Fluorescence studies .................................................................................................................. 27 

 2.2.3 Triplet state of CyD:DOX complexes........................................................................................... 30 

 2.2.4 Analysis of molecular dynamics trajectories for g-CyD:DOX 1:1 association ............................. 31 

 2.2.5 Concluding remarks .................................................................................................................... 36 

    2.3 ASSOCIATION OF DOXORUBICIN TO -CYCLODEXTRIN POLYMER ......................................................... 37 

2.3.1 Synthesis of p-CyD .................................................................................................................... 38 

      2.3.2 UV-visible absorption and circular dichroism............................................................................. 38 

 2.3.3 Fluorescence ............................................................................................................................... 41 

 2.3.4 Summary ..................................................................................................................................... 43 

    2.4 ASSOCIATION OF DOXORUBICIN TO -CYCLODEXTRIN POLYMER .......................................................... 44 

 2.4.1 Synthesis of p-CyD .................................................................................................................... 44 

 2.4.2 UV-visible absorption and circular dichroism............................................................................. 45 

 2.4.3 Fluorescence ............................................................................................................................... 46 



2.4.4 Global analysis of spectroscopic data ......................................................................................... 47 

2.4.5 The binding process and the spectroscopic properties of the complexes ................................. 49 

2.4.6 Uptake and distribution of DOX-p-CyD complex within MCF-7 tumor cells ............................. 52 

2.4.7 Summary ..................................................................................................................................... 54 

2.5 Conclusion .................................................................................................................................................. 55 

References ........................................................................................................................................................ 55 

3. SPECTROSCOPIC STUDIES ON DRUG ASSOCIATION TO METAL ORGANIC FRAMEWORK BASED       

SYSTEMS ........................................................................................................................................................... 61 

3.1 Interaction of doxorubicin with MIL-100(Fe) nanoparticles .................................................................. 62 

      3.1.1 Synthesis of MIL-100(Fe) ............................................................................................................ 63 

     3.1.2 Preparation of MIL-100 (Fe) stock solution ................................................................................ 64 

      3.1.3 UV-visible absorption ................................................................................................................. 64 

3.1.4 Circular dichroism ....................................................................................................................... 67 

 3.1.5 Fluorescence ............................................................................................................................... 68 

 3.1.6 Chemical stability of MOF-DOX complex.................................................................................... 69 

 3.1.7 Summary ..................................................................................................................................... 70 

    3.2 Interaction of azidothymidine derivatives with MIL-100 (Fe) nanoparticles.......................................... 70 

     3.2.1 UV-visible absorption ................................................................................................................. 71 

      3.2.2 Circular dichroism ....................................................................................................................... 73 

 3.2.3 Determination of the association constant ................................................................................ 74 

 3.2.4 Asymmetric flow field flow fractionation with multiangle light scattering ............................... 75 

 3.2.5 Summary ..................................................................................................................................... 78 

References ........................................................................................................................................................ 78 

4. SPECTROSCOPIC STUDIES ON ARTEMISININ ASSOCIATION TO CYCLODEXTRIN BASED SYSTEMS ........... 84  

    4.1 Binding of artemisinin to b-cyclodextrin polymer .................................................................................. 85 

4.1.1 UV-visible absorption and circulardichroism  ............................................................................. 85 

      4.1.2 Summary ..................................................................................................................................... 86 

4.2 Photocontrolled binding of artemisinin to a bis(b-cyclodextrin) bearing azobenzene on the primary   

face ............................................................................................................................................................... 87 

     4.2.1 UV-visible absorption and circular dichroism............................................................................. 88 

      4.2.2 Summary  .................................................................................................................................... 92 

 References ....................................................................................................................................................... 92 



5. EXPERIMENTAL SECTION ............................................................................................................................. 94 

5.1 Materials ................................................................................................................................................. 94 

    5.2 MIL-100(Fe) sample preparation  ........................................................................................................... 94 

    5.3 Instrumentation ...................................................................................................................................... 95 

      5.3.1 UV-visible absorption spectroscopy ........................................................................................... 95 

5.3.2 Circular dichroism spectroscopy ................................................................................................. 95 

      5.3.3 Fluorescence spectroscopy ........................................................................................................ 96 

 5.3.4 Time resolved emission measurements ..................................................................................... 96 

 5.3.5 Nano second laser flash photolysis ............................................................................................ 97 

 5.3.6 Confocal microscopy .................................................................................................................. 97 

 5.3.7 Asymmetric flow field flow fractionation with multi angle light scattering ............................... 98 

    5.4 Global analysis of equilibrium spectroscopic data by SPECFIT/32 ......................................................... 99 

    References .................................................................................................................................................. 102 

6. CONCLUSIONS ............................................................................................................................................ 103 

List of publications and presentations ................................................................................................. 105 

 

  



  



i 
 

    ABSTRACT 
 

The aim of this dissertation work is the development of new multifunctional nanocarriers for the 

enhanced encapsulation and delivery of several anticancer and antiviral drugs.  The work focused 

mainly on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new 

family of biodegradable nanocarriers made of porous metal-organic frameworks (nanoMOFs) and 

studied their interaction with several antitumoral agents with various spectroscopic techniques 

and analysis of association equilibria. The entire thesis is divided into 6 chapters based on the 

types of carriers and drugs. The content of each chapter is briefly described below. 

In Chapter 1, as general introduction the main drug carrier systems (DDS), such as 

polymers, micelles, liposomes, cyclodextrins, metal organic frameworks etc, are briefly 

overviewed. Following this, a short description about the scope of this thesis work is given. 

Chapter 2 is divided into four sections. The first section describes the self-aggreagation and 

associated pharmacological drawback of the anticancer drug, doxorubicin. Development of 

carriers able to inhibit self-association is of great relevance to drug delivery optimization. The 

subsequent sections describe the binding modes of DOX to biocompatible CyD derivatives, 

showing that -cyclodextrin polymeric nanoparticles are able to inhibit drug dimerization, whereas 

the natural -CyD does not provide very stable complexes and the natural cyclodextrin is unable 

to disrupt the DOX dimer (collaboration with Dr. Ruxandra Gref, UMR-CNRS, France and with Dr. 

Stefano Ottani, ISOF-CNR, Bologna). A citric acid crosslinked cyclodextrin polymer, revealed to 

be very promising, because it is able to form very stable complexes as well as disrupt the 

doxorubicin dimer (collaboration with Dr. Milo Malanga, CYCLOLAB, Budapest and Prof. Vargas-

Berenguel, Univ of Almeria, Spain and Dr. Ruxandra Gref, UMR-CNRS, France). 

The studies of metal organic frameworks (MOFs) for biological application is a new field for 

MOF researchers and recent reports  in this area reveal these materials can be very promising  as a 

novel platform for drug delivery applications. In Chapter 3 the non-covalent interaction with MOF 

nanoparticles based on iron(III)-trimesate is examined for  a series of anticancer and antiviral 

drugs (Doxorubicin (DOX), 3’-Azido-3’-deoxythymidine (AZT), 3’-Azido-3’-deoxy-thymidine-5’-

monophosphate (AZTMP), 3´-Azido-3´- deoxythymidine-5´- triphosphate (AZTTP)) with nanoMOF 

(collaboration with Dr. Ruxandra Gref, UMR-CNRS, France). The nanoMOF systems were also  size 

separated and characterized by using asymmetric flow filed flow fractionation with multi angle 



ii 
 

light scattering (AF4-MALS) technique (collaboration with Prof. P. Reschiglian, Univ. of Bologna).  

The results of in depth physico-chemical studies on all these systems, involving UV visible 

absorption, circular dichroism, fluorescence spectroscopies and binding analysis, are presented. It 

has been established that the interaction of DOX and nanoMOFs is through coordination of 

dihydroxyanthraquinone deprotonated hydroxyl groups to Fe centers in the pores. Doxorubicin 

fluorescence is completely quenched in the MOF complex. The spectroscopic study indicates a 

very weak interaction between AZT and MOF.  On the contrary the phosphorilated azidothymidine 

derivatives show that both the azidothymidine and the phosphate moieties can be involved in the 

binding to the MOF frame, with the phosphate coordination predominating in the binding of 

AZTTP. These results allow to envisage this highly versatile and “green” carrier system can be 

applied to delivery other anti-cancer and anti-viral phosphorylated nucleosides analogues.    

Chapter 4 describes the interaction of an important antimalarial drug, artemisinin, with 

two cyclodextrin-based carriers. This drug is the parent molecule of the most effective class of 

drugs, nowadays in the clinical practice against multidrug resistant forms of Plasmodium 

falciparum. Scarce solubility in aqueous medium, resulting in poor absorption upon oral 

administration, is a serious drawback for the use of ART. Cyclodextrins proved to be potentially 

useful also for ART delivery. It has been shown that the cyclodextrin polymer (p-CyD) is able to 

improve the water solubility of ART by associating it to the -cyclodextrin cavities embedded 

within the nanoparticle polymeric frame.  Further, a light responsive bis(-CyD) host with an  

azobenzene 6-6’ linker has been shown to possess a binding affinity controllable by light for ART as 

guest. This model system let to envisage to use such photoactive hosts as tools for  

photocontrolled  capture and release of  guests. 

Chapter 5, describes the materials used for the present study and gives a brief description 

of the instruments and methods used.  Moreover a general description of the multivariate global 

analysis method used by the SPECFIT/32 commercial program to extract binding constants and 

spectra of components from multiwavelength equilibrium data is given. Finally, some general 

remarks and conclusion are given in Chapter 6. 
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The steadily growing pharmaceutical industry demands highly efficient and sophisticated system 

for the delivery of drugs in order to increase bioavailability, improve efficacy, prevent harmful 

side-effects and reduce treatment cost. The bioavailability of some drugs is limited due to their 

poor membrane permeability and low water solubility. Around 70% of the human body is made up 

of water; therefore, a drug must have certain hydrophilicity or polarity to be water soluble. At the 

same time these drugs must exhibit a certain lipophilicity to be able to cross lipophilic cell 

membranes. These requirements led to continuous research on different mechanisms to 

introduce therapeutic agents into the body, called drug delivery systems (DDS).1  

Conventional drug delivery methods generally depend on oral administration (solid pills 

and liquids), creams, ointments, eye drops, gels and intravenous solutions. But they exhibit certain 

limitations in terms of limited therapeutic effects, partial degradation of drugs before reaching the 

target, requirement of higher dosage, toxicity and adverse side effects. A number of drug delivery 

systems are currently developed or under investigation, by taking advantage from the world of 

micro- and nanotechnology, to circumvent these limitations and improve the potential of 

respective drug. As a result, these new technologies have prompted the old concept of the “magic 

bullet” proposed by Paul Ehrlich’s vision.2  

The recent novel drug delivery approaches include drug modification by chemical means, drug 

entrapment into suitable carriers and inject them into the bloodstream, and drug entrapment 

within pumps or polymeric materials that are placed in desired bodily compartments etc. These 

techniques have already led to delivery systems that enhance drug targeting specificity, lowering 

systemic drug toxicity and improve human health, and continuous research in this area may lead 

to the improved delivery of several drugs.3 
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Among the various drug delivery approaches, carrier-based drug delivery is the most 

widely studied one because while improving the bioavailability of drugs (degree to which a drug 

reaches the desired cite) it provides necessary protection to the drug molecules. Also, the release 

profile of associated drugs can be tailored to the respective medical needs by choosing an 

appropriate host material. Some of the most studied carrier systems are soluble polymers,3-5  

biodegradable polymers,6,7  polymeric micelles,8-12 hydrogels, 13 dendrimers,14-16 microsponges, 

17,18 , nanosponges, 19,20 liposomes,21-25  cyclodextrins,6,26 nanoparticles27-30 and most recently 

metal organic frameworks.6,31-33 Each of these carrier types offers its own advantages and 

disadvantages; thus, the choice of a certain carrier for a particular drug can be made only by 

considering the relevant properties of the latter. 

The application of polymers for biomedical purposes is growing very fast because of easy 

workability, low cost and control of physico-chemical properties. For more than 5 decades 

polymers have been investigated as carriers to control  the drug dosage, 34  to deliver drugs to the 

selective target and thereby increase the efficacy of treatment, to protect the drug from 

physiological environment, reduce the side effects and increase the bioavailability to the patients. 

This delivery method becomes important for toxic drugs which induce various systemic side 

effects. From the drug delivery point of view, polymer-based devices can be classified as diffusion 

controlled, solvent activated, chemically controlled or externally triggered systems,3which are 

discussed below. 

Diffusion controlled drug delivery systems (Figure 1.1 (A) and (B)) involve either dispersion 

of therapeutic agent within a non-degradable polymer matrix (matrix systems) or drug is 

surrounded by a polymer membrane to form a micro capsule (reservoir systems). The sustained 

release of therapeutic agents is driven by diffusion and the drug is released either by transmission 

through the pores or between polymer chains, such processes controlling the release rate.  Drugs 

can also be released by chemical degradation of the polymer matrix or cleavage of the drug from a 

polymer backbone (Figure 1.1 (C) and (D)).3 

Another classification defines the solvent activated systems (Figure 1.1 (E) and (F)); in this 

kind of systems water is the main agent which controls the release of drug. The drug is 

incorporated in a hydrophilic polymer that is stiff or glassy when dry, but swells when exposed to 
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an aqueous environment and this property of the polymer allows the drug to move outward. In 

some other systems water may permeate into a drug polymer matrix due to osmotic pressure and 

create some micro pores and which can cause the drug release. A typical oral capsule or pill is 

usually a swelling-controlled device. These devices are easy to manufacture but the control of the 

drug release rate is not stable.35 

Responsive drug delivery systems are another class of delivery systems, already available 

commercially, which can control the rate of drug release by chemical signals (solvent, pH, and 

temperature) or external forces (magnetism, ultrasound). Some examples of these kind of systems 

are poly(N-isopropylacrylamide), copolymers of poly(ethylene glycol) and poly(propylene glycol), 

copolymers of poly(lactic acid) and poly(glycolic acid).36  

 

Figure 1.1 Different mechanism for the release of drug from the polymer-drug conjugates, (A) diffusion 
occurs through a reservoir; (B) diffusion occurs through a matrix. Drug release due to degradation of (C) 
polymer matrix or (D) polymer backbone, (E) swelling and (F) osmotic pressure 

Biodegradable polymers are another important class of polymeric drug delivery systems, 

most commonly favored to target specific areas of the body such as inflammation or tumors. The 

biodegradable polymers when exposed to chemicals (water, enzymes, or microbial) disintegrate 

into biocompatible compounds which subsequently release the incorporated therapeutic agent 

due to erosion either in bulk or at the polymer’s surface. The degradation process basically 
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involves the breakdown of polymers into biologically acceptable compounds which are further 

reduced by the Kreb’s cycle to carbondioxide and water. Additionally, the biodegradability of these 

polymers can be easily manipulated by incorporating a variety of labile groups such as ester, 

amide, anhydride, carbonate, urea, and urethane in their backbone. Examples of such polymers 

include poly(caprolactone), poly(lactic acid), polyacrylic acids, polyanhydrides, polyesters, 

poly(methyl methacrylates), and polyurethanes.37  

Polymeric micelles (Figure 1.2) are supramolecular networks, composed of cross-linked 

combinations of hydrophilic and hydrophobic monomers. They form spontaneously by self-

assembly in water, with their hydrophilic and hydrophobic ligands aligned on opposing sides, 

when the concentration of the amphiphilic block copolymer is above the critical micellar 

concentration (CMC).  

The polymeric micelles are 10-50 nm in diameter (similar size of viruses, lipoproteins and 

other naturally transporting systems) with a narrow size distribution and can retain the loaded 

drug for longer period of time. The size of the micelle is generally determined by thermodynamic 

parameters, but partial control over the size is possible by varying the block length of the polymer.  

Further, their hydrophilic outer shells help to protect the cores and the encapsulated drug 

from chemical attack by the aqueous medium. The spontaneous formation of core-shell 

architecture is further controlled by the polarity and functionality of each block copolymer. The 

terminal functionalities on the outer block (the shell) control biocompatibility and may incorporate 

potential targeting properties; the inner block (core) of such nanocarriers can be used to complex 

or covalently couple the active drug molecules.4   Finally, drug release is achieved via common 

polymer degradation mechanisms, with the specificity of the delivery controlled by the synthetic 

design.  
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Figure 1.2 Formation and architecture of a block-copolymer micelle 

Recently, Japanese researchers have developed a doxorubicin copolymer conjugate which 

can form micelles in water, and exhibits in vitro cytotoxicity against human small-cell lung cancer 

cell line (SBC-3). This is the first example of an antitumor drug formulation based on polymeric 

micelles which has entered into phase1 clinical trial.10  

Table 1.1 Examples of polymeric micelles used in drug delivery application  
(Adapted from Reference 12) 

Block copolymers Drug 

Pluronics Doxorubicin, cisplatin, haloperidol 

Polycaprolactone-b-PEG FK506, L-685, 818 

Polycaprolactone-b-methoxy-PEG Indomethacin 

Poly(aspartic acid)-b-PEG Doxorubicin, cisplatin, lysozyme 

Poly(g-benzyl-L-glutamate)-b-PEG Clonazepam 

Poly(D,L-lactide)-b-methoxy-PEG Paclitaxel, testosterone 

Poly(b-benzyl-L-aspartate)-b-PEG Indomethacin, amphotericin B 

Poly(L-lysine)-b-PEG DNA 

 

Liposomes are tiny vesicles consisting of an aqueous core entrapped within one or more natural 

phospholipids forming closed bilayered structures. Initially liposomes were utilized as  model 

systems for biological membranes. Phospholipids and other amphiphilic molecules self-assemble 

in water to form bilayer lipid membranes, separating the aqueous inner core of the liposome from 

the bulk aqueous phase (Figure 1.3). This lipid bilayer structure mimics the barrier properties of 
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biomembranes and, therefore, offers the possibility of modeling the behavior of these 

membranes.  

 

Figure 1.3 Formation and architecture of liposome 

Liposomes have been extensively used as potential delivery systems for a variety of 

compounds primarily due to their high degree of biocompatibility and the enormous diversity of 

structures and compositions.  Liposomes are biphasic, i.e., they have the ability to act as carriers 

for both lipophilic and hydrophilic drugs. The lipophilic drug molecules can locate in the lipid 

bilayers of liposomes while hydrophilic drugs may either be entrapped inside the aqueous cores of 

liposomes or be located in the external water phase. The percentage of hydrophilic drug 

encapsulation in the liposomes strongly depends on the bilayer composition and preparation 

procedure of the liposomes 

Table 1.2 Examples of liposome formulation used in drug delivery application38  

Trade name Drug Class 

Epaxal Berna Vaccine 

AmBisome Amphotericin B 

ABELCET Amphotericin B 

DaunoXome Daunorubicin 

Doxil Doxorubicin 

Myocet Doxorubicin 

Visudyne Verteporfin 



              Chapter 1  
 

7 
 

Cyclodextrins (CyDs) are a family of biocompatible cyclic oligosaccharides, derived from starch, 

consisting of six or more -D-glucopyranose units joined by (1-4) glucosidic bonds that form a 

macrocycle with a hydrophilic exterior and a hydrophobic cavity)(Figure 1.4). 39-41   Natural CyDs, 

-, -, - CyDs contains 6, 7, or 8 glucose units respectively, differ in their ring diameter (Table 1.3) 

and solubility but each have a height of ca. 7.8 Å. CyDs with less than 6 units cannot be formed 

due to steric hindrance, and those with 9 or more glucose units are difficult to purify. But recently 

there are some reports for the isolation and purification of large ring cyclodextrins.42  

Table 1.3 Characteristics of -, -, and -CyD39 

Type of CyD Cavity 

           
 
) 

Molecular 

Weight 

Solubility 

(g/100 mL) 

-CyD 4.7 - 5.3 972 14.5 

-CyD 6.0 - 6.5 1135 1.85 

-CyD 7.5 - 8.3 1297 23.2 

 

Due to the 4C1 conformation of the glucopyranose units, the 3D structure of CyD exhibiting 

all primary hydroxyl groups on one rim and the secondary hydroxyl groups on the other rim. 41 The 

ring of CyD has a conical cylinder shape and the cavity is lined by the the glycosidic oxygen bridges 

and hydrogen atoms. The nonbonding electron pairs of the glycosidic oxygen bridges are directed 

toward the inside of the cavity, producing a high electron density there and leading it to some 

Lewis-base character.41 

The cavity of the torus-shaped CyD is capable of interacting with a wide variety of guest 

molecules to form noncovalent inclusion complexes. The driving forces for the formation of 

inclusion complex between CyD cavity and the guest molecule include geometric compatibility, 

van der Waals forces, London, Debye and hydrophobic interactions. The stability of the inclusion 

complex may depend on the formation of hydrogen bonding between the CyD and the guest 

molecule and between the hydroxyl groups on the rims of neighboring CyDs. Due to their highly 

polar exteriors and less polar interiors, CyDs are best known for their ability to increase the 

solubility of low polarity guest molecules in water as the encapsulated molecule is shielded from 
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the aqueous solvent. CyDs are used to encapsulate hydrophobic drugs in drug delivery systems, to 

enhance the efficiency of low polarity volatile organic compounds, and to mask toxic substances 

by converting them into nontoxic inclusion complexes.  

 

Figure 1.4 Chemical structure of (a) -D-glucopyranose unit (b) and  cyclodextrin (c) toroidal shape of a 
cyclodextrin molecule 

Numerous cyclodextrin derivatives have been synthesized for a number of purposes, 

including increasing aqueous solubility, increasing selectivity of host/guest combinations or 

controlling the release rate and bioavailability of a drug. For example, modification of hydroxyl 

groups to hydroxylpropyl, sulfopropyl, carboxymethyl  or silyl  groups increases the water 

solubility of natural cyclodextrins39. Another possible approach is the production of CyD polymeric 

nanoparticles and these systems can increase the local concentration of CyD units. Crosslinkers 

such as epichlorohydrin, citric acid, hexamethylene diisocyanate etc have been used to prepare -

CyD and -CyD based polymers.43,44 

Each year CyDs are the subject of more than 1000 research articles, and most of them deal 

with drugs and drug-related products. In addition numerous inventions have been described 

which include CyDs (over 1000 patents or patent applications in the past 5 years). Some examples 

of approved and marketed drug/CyD formulations are shown in Table 1.4. 
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Table 1.4 Some examples of approved and marketed drug/CyD formulations (Adapted from Reference 41) 
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Metal Organic Frameworks (MOFs)45 are a class of crystalline hybrid materials which are 

constructed by metal or metal oxide “nodes” connected by organic “linker” compounds forming 

supramolecular structures with ultrahigh porosity and enormous internal surface areas. The metal 

nodes serve as connecting points and the organic ligands serve as bridging molecules to 

coordinatively connect metal nodes forming a two- or three-dimensional framework (Figure 5). 

The enormous possibility to choose the metal nodes and the organic linkers help to tune the 

physicochemical properties and biodegradable character of the material. 

 

Figure 1.5 A schematic representation of Metal Organic Framework 

The most important properties of MOFs is their ultra high porosity (up to 90% of the crystal 

volume) and high internal surface area. However, the use of these porous materials for biomedical 

application requires a biologically friendly composition. So it is important to do the toxicity 

evaluation of the metal ions and linkers individually. At first glance, most appropriate metals are 

Ca, Mg, Zn, Fe, Ti and Zr, whose toxicity is determined by their oral lethal dose 50 (LD50) and metal 

daily dose (Table 1.4).  

The most commonly used linkers are exogenous compounds. They can be either synthetic 

or derived from natural compounds which do not interfere in the body cycles. Some examples of 

exogenous MOFs for bioapplications are magnesium 2, 5 dihydroxoterephthalate CPO-27 (Mg) 

(CPO stands for Coordination Polymer from Oslo), iron (III)polycarboxylates, such as MIL-
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100(Fe)(MIL stands for Material from Institut Lavoisier) and zinc adeninate-4,4’ 

biphenyldicarboxylate BioMOF-1. 

Table 1.4 Oral LD50 (Rats) and Daily requirements (Humans) of Selected Metals (Adapted from Ref 48)  

Metal LD50 (g/kg) Daily dose 

(mg) 

Zr 4.1 0.05 

Ti 25 0.8 

Cu 0.025 2 

Mn 1.5 5 

Fe 0.45 15 

Fe
0
 30 - 

Zn 0.35 15 

Mg 8.1 350 

Ca 1 1000 

 

Another possible choice for the linkers is the endogenous organic ligands, i.e. molecules 

that are constitutive part of the body composition. This is the best option for the biomedical 

applications of MOFs, because one can strongly decrease the risk of adverse effects due to the 

possibility of re-use of the linker when administered in the body. . A significant number of MOFs 

based on endogenous linkers have been reported so far. For example, the iron(III)gallate, fumarate 

or muconate MOFs exhibit either a rigid small pores structure or a highly flexible porous matrix. A 

porous zinc aminoacid based MOF has also been reported that exhibit a flexible framework. 

Cyclodextrin based MOFs with rather large pore volumes have also been synthesized.46,47 Finally, 

only a few of them are really porous and/or stable, i.e. capable of loading biological molecules of 

interest and there is still a need to develop new synthetic methods to produce endogenous porous 

and stable MOFs in near future. 

The ultimate goal of the research work presented in this thesis is to develop new multifunctional 

nanocarriers for drug encapsulation and delivery, as a strategy to overcome current therapeutic 

drawbacks of anticancer/antiviral drugs.    The research work mainly focused on nanocarriers like 

(i) water soluble and biocompatible oligosaccharides, cyclodextrins (CyDs) and their derivatives 
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and (ii) a new family of biodegradable nanocarriers made of porous metal-organic frameworks 

(nanoMOFs). It was examined in particular the non covalent binding of an antitumoral 

(doxorubicin) and several antiviral   (phosphorilated azidothymidines) agents with the 

nanocarriers, characterizing the host-guest systems with spectroscopic techniques and addressing 

the association equilibria and the nature of the interactions. Some attention was dedicated also to 

the antimalarial and antitumoral artemisinin. 

The thesis is divided into two main chapters based on the type of drug-carrier system, 

doxorubicin-cyclodextrin-based conjugates (Ch. 2) and phosphorilated azidothymidine-MOF and 

doxorubicin-MOF conjugates (Ch. 3).  A further chapter (Ch.4) is dedicated to other drug-

cyclodextrin carrier systems.  
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Anthracyclines represent an extremely important class of anticancer drugs, ranking top among the 

most potent ones ever developed.1 They are usually employed in the treatment of leukaemia, 

aggressive lymphomas and various solid tumors, in particular breast cancer and soft tissue 

sarcoma.2 The mechanism of action of these drugs mainly consists in the inhibition of 

topoisomerase II activity. Topoisomerase II enzymes bind to DNA and allow its cleavage managing 

and controlling its topological state during transcription and replication.  This covalent complex is 

trapped in the presence of anthracycline drugs  so that DNA re-ligation is inhibited, and 

consequently transcription and replication are blocked.3-5 The first anthracyclines were isolated 

from a pigment producing bacterium, called Streptomyces peucetius in the 1960s and were named 

doxorubicin (DOX, also known as Adriamycin, Scheme 2.1) and daunorubicin (DNR, also known as 

daunomycin). These two derivatives have been continuously used in the clinical practice due to 

their high efficacy, but they have been manifesting serious drawbacks such as development of 

resistance by cancer cells, severe side effects related to low cardiac tolerability and necrotic action 

at the injection site.6 In the last two decades, more than 2000 anthracycline analogs were 

developed but only a few of them (eg. Epirubicin, idarubicin)7 have reached the clinical stage.8 Also 

numerous studies have focused on the development of improved delivery techniques for existing 

drugs such as DOX and DNR based on the employment of biocompatible carriers, like micelles,  

liposomes,9 polymeric architectures,10-12 and nanoparticles.13-16 An example of such formulation is 

Doxil, a pegylated liposome encapsulated form of DOX.17 
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Scheme 2.1 Chemical structure of doxorubicin (DOX) 

Such strategy may help to face problems related to drug aggregation, solubility, multi drug 

resistance and drug toxicity. 

In this chapter, we first analyse the self-association behaviour of DOX in aqueous solution 

(Chapter 2.1), which is very important from the pharmacological point of view. The subsequent 

sections (Chapter 2.2, 2.3 and 2.4) are dedicated to the study of the association of DOX to various 

CyD-based systems such as -cyclodextrin, and two CyD-based polymers (an epichlorohydrin 

crosslinked -cyclodextrin polymer (p-CyD) and a citric acid crosslinked -cyclodextrin (p-CyD) 

polymer) which could represent the starting point for the development of new carriers for 

anthracyclines.  

One of the problems in the application of DOX is self-aggregation in aqueous media.  The process, 

that   was evidenced by UV-vis absorption,18    circular dichroism (CD)18    and NMR spectroscopy, 18    

mainly consists in formation of the DOX dimer at typical clinical concentrations, and represents a 

serious drawback because it may effectively compete with DNA binding ,  thereby limiting the drug 

pharmacological activity.19 It has been recently suggested by Agrawal et al.18  on the basis of 2D 

NOESY spectra that the geometrical arrangement of the two DOX units in the DOX dimer consists  

in the stacking of the aglycone moieties in either parallel or antiparallel orientation, with the 

methoxy substituent of D ring pointing toward the exterior or the interior of the interplanar space, 

respectively (Scheme 2.2).  
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Scheme 2.2 Self association of DOX in aqueous solution: (A) DOX parallel and (B) DOX antiparallel units18 

The knowledge of the dimerization constant (Kd)   and of the spectroscopic features of DOX 

monomer and dimer is a prerequisite for the investigation of the drug association to carrier 

systems.  Values for Kd reported in literature somewhat depend on the medium.20     Its value   was 

therefore redetermined from the dependence of the UV-Visible absorption spectrum on the 

concentration in the conditions of our spectroscopic experiments.   

 The UV-visible absorption (see Experimental section, Chapter 5) spectrum of DOX in phosphate 

buffer (Figure 2.1) at pH 7.4 displays bands at 288 and 480-500 nm relevant to the two allowed 1A 

 1La and 1A  1Lb -* transitions, polarized along the short and long axis, respectively.21 A 

shoulder around 320-380 nm is associated to n-* transitions of the three C=O groups in the 

molecule, partially forbidden by electric dipole.22 Self-aggregation of DOX affects the band shapes 

and the molar absorption coefficients that tend to decrease at increasing drug concentrations. The 

spectral profile in the visible region is strongly influenced by the protonation state of the aglycone 

moiety, but is practically insensitive to the protonation of the daunosamine moiety. At pH 7.4 the 

aglycone part is neutral, whereas the daunosamine is protonated.21,22 The absorption bands at 252 

and 233 nm are stemming from aglycone moiety,23 with some contribution of the daunosamine 

unit.18 At concentration below 510-3 M a simple dimerization model is sufficient to describe DOX 

aggregation.18  A set of absorption spectra obtained upon DOX dilution in the range 5.010-5 M – 

1.010-7M (Figure 2.1) was analysed adopting a dimerization equilibrium model with a global 

analysis method (SPECFIT/32 program) based on Singular Value Decomposition (SVD) and 

nonlinear regression methods (see Experimental Section, Chapter 5). According to the 

literature18,24 the experimental absorption spectrum at concentration 1 x 10-6 M (max = 500 nm, 



              Chapter 2  
 

19 
 

  12000 M-1 cm-1) was assigned to the monomer. This spectrum was fixed in the calculation. A 

dimerization constant with log(Kd/M-1) = 4.8±0.1 was determined, which is in reasonable 

agreement with literature data.20,24,25 The spectrum of the DOX dimer in solution was also 

extracted and is reported together with that of monomer in the inset of Figure 2.1  

 

Figure 2.1 Absorption spectra of DOX upon dilution in the range of 5.0x10-5M-1 – 1.0x10-7M in 0.01M 
phosphate bu er at p   .4 at     C. Cells of different paths were used to register the spectra that are 
represented after being normalized to cell path of 1 cm. Inset: absolute spectra of DOX monomer (red) and 
dimer (green). 

 The circular dichroism (CD) of DOX also depends on the concentration. Anthracyclines are 

endowed with an intrinsic CD (see Experimental Section, Chapter 5) due to several asymmetric 

carbon centers. The C7 and C9 configuration are of particular importance in the explored 

wavelength region (Scheme 2.1).21,22 The CD spectrum of DOX 1.610-4 M (Figure 2.2A) is 

characterized by negative bands at  293 nm and 516-547 nm and positive bands at 252 nm, 352 

nm and 453 nm. The positive-negative split dichroic signal at 420-580 nm region is due to the 

presence of DOX in dimeric form . The presence of the amino sugar affects the for the band 

corresponding to the * transition polarized along the long axis, due to the enhancement of the 

DOX molecular dissymmetry.21 At DOX concentration  1.010-5 M (Figure 2.2B) the CD spectrum 

does not exhibit a prominent negative signal at 530-550 nm and thus suggests the predominance 

of the monomer over the dimer. 
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Figure 2.2 (A)CD spectrum of DOX 1.6 x 10-4 M, cell pathlength 0.5 cm (B) CD spectrum of DOX 1 x 10-5M, 
cell pathlength 4 cm, in 0.01 M phosphate buffer at pH 7.4 and 22 °C 

In this section, the formation of DOX dimer was analyzed  by spectroscopic techniques such as UV-

vis absortion and circular dichroism. Global analysis of equilibrium spectroscopic data provided the 

absolute spectrum of DOX monomer, DOX dimer and a dimerization constant of log(Kd/M-1) = 

4.8±0.1, which is in reasonable agreement with literature data.  The CD features  of DOX monomer 

and DOX dimer were also examined by comparing  ellipticity   profiles at  “low” and “high” DOX 

concentrations. 



As we described in Chapter 1 cyclodextrins (CyDs) are biocompatible cyclic oligosaccharides, made 

of -D-glucopyranose units joined by (1-4) linkages (Figure 1.4), that possess a hydrophilic 

exterior surface and a hydrophobic cavity, able to host lipophilic guests. Natural -, -, - CyDs 

contain 6, 7, 8 glucose units, respectively.  Since   long time they have received considerable 

attention as drug complexing agents .26  

The binding of DOX to CyDs has been addressed since the 1990’s. At that time it was 

reported that methyl--CyD enhances the activity of DOX on both sensitive and multidrug-

resistant cell lines.27-31 Since then, the interest for this topic has been continuously growing. Self-

aggregation of DOX (evidenced in aqueous solution by UV-vis absorption,20 circular dichroism 

(CD)21 and NMR spectroscopy18 )  is likely perturbed by inclusion of the drug in a CyD cavity or a 

CyD nanoassembly. Therefore, gaining insights into the binding modes of DOX to CyD systems is of 

direct relevance to the optimization of the use of this drug.  



              Chapter 2  
 

21 
 

Among the natural CyDs, DOX binds significantly to -CyD, whereas it possesses lower 

affinity for -CyD and -CyD.32-35 Formation of a -CyD-DOX complex with 1:1 stoichiometry is 

known since a long time.32-36  This chapter contains the results of a detailed   study of the 

complexation of DOX with -CyD in aqueous medium, performed via accurate titrations at 

different DOX concentrations with circular dichroism (CD), UV-vis absorption and fluorescence 

monitoring.      CD  in particular yielded valuable information about the influence of complexation 

on the monomer-dimer equilibrium, thanks to the markedly different shape of the dichroic signal 

of DOX monomer and dimer in the 500 nm absorption region, and the sensitivity of this technique 

to the  interaction of DOX  with chiral  receptors.22,37 The presence of several CyD complexes was 

evidenced. Stability constants and spectroscopic characterization of them were obtained.  Laser 

flash photolysis afforded information on the environment experienced by DOX in the complexes. 

We also studied the association of DOX with -CyD in the 1:1 stoichiometry from the structural 

point of view by Molecular Dynamics Simulations, with explicit solvent and examined the 

interaction of either the aglycone or the daunosamine moiety with the CyD cavity. 

“High” DOX concentration. A solution of DOX 1.610-4 M in phosphate buffer at pH 7.4 was 

prepared. In these conditions ca. 81% of DOX exists as dimer.  Increasing concentrations of -CyD in 

the range 2.010-4 M - 1.6 10-2 M induced rather small UV-Vis absorption variations: a 2-3 nm 

blue-shift of the visible band, small increase of absorbance at 288 nm and 233 nm and decrease at 

252 nm (Figure 2.3). Differently, the presence of the chiral CyD host greatly increased the optical 

asymmetry of the drug electronic transitions. In fact, the CD changes were very large: i) an overall 

increase of the signal accompanied by a red shift of ca. 5-7 nm, ii) formation of a new intense 

negative band at 264 nm, concomitant with a blue shift of the peak at 293 nm to 288 nm and 

appearance of a shoulder at 306 nm and iii) a small shift of the positive peak from 352 to 362 nm, 

the only one not displaying an intensity increase (Figure 2.4A and 2.4B). The persistence of the 

positive-negative splitting in the visible region indicated that -CyD is not able to disrupt the DOX 

dimer, the predominant form at this DOX concentration, but associates with it as such.18,20,24 
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Figure 2.3 Absorption spectra of DOX 1.610-4 M in phosphate buffer at pH 7.4 at 22 °C upon titration with 

-CyD from 2.010-4 M up to 1.6 10-2 M. Cell path 0.5 cm. Inset: absolute spectra of DOX monomer (red); 

dimer (green); 2:2 -CyD:DOX complex (blue). 

 

The sets of spectra of Figure 2.4A and 2.4B were globally analyzed with the SPECFIT/32 

program. Several complexation models, involving 1:1, 2:1, 1:2 and 2:2 -CyD:DOX complexes in 

various combinations were tried. The DOX dimerization equilibrium with a fixed constant of log (Kd 

/M-1) = 4.8 was included. The CD spectrum of DOX alone at concentration 5×10-6 M was measured 

in a 10 cm cell and was assigned to the DOX monomer and also fixed in the calculation. A good fit 

over the whole 200-600 nm range was found for a model with a single 2:2 CyD:DOX complex with 

association constant log(K22/M-3) = 10.8 ± 0.2, Durbin Watson (DW) factor of 1.5 (relative error of 

fit 3.1%) in the 200-280 nm range and DW =1.9 (relative error of fit 6.2%) in the 250-600 nm range. 

Global analysis of the set of absorption spectra shown in Figure 2.3 with the same model afforded 

log(K22/M-3)=10.8±0.1 (Durbin Watson factor 2.0) in excellent agreement with the CD result. The 

individual absolute absorption spectra of all the components are reported in the inset of Figure 

2.3.  

To confirm the stoichiometry of complexation a continuous variation experiment38 was 

performed at 1.0 10-3 M total -CyD + DOX concentration, a compromise between the drug 

limited solubility/aggregation tendency and the need to have distinctive signals from complexes in 

the 10-4-10-3 M -CyD concentration range. The absolute value of the ellipticity at 264 nm 

associated to the complexation progression (Figure 2.4B) was corrected subtracting the DOX 

intrinsic signal, (|264|) and was plotted against the DOX molar fraction (Figure 2.4E). 
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Figure 2.4 Ellipticity changes of DOX 1.610-4 M in 0.01 M phosphate buffer at pH 7.4 and 22 °C, titrated 

with -CyD in the concentration range 2.010-4 M - 1.6 10-2 M: ( A) cell path 0.2 cm; (B) cell path 0.5 cm. 

The signal of -CyD alone was subtracted. (C), (D) Absolute CD spectra of DOX dimer (green), 1:2 -CyD:DOX 

complex (magenta) and 2:2 -CyD:DOX complex (blue) for log Kd/M-1= 4.8 and log(K12/M
-2

) = 7.80  and 

log(K22/M
-3

) = 10.48. The spectrum of free DOX monomer (red) was fixed in the calculations. (E) Modified 

Job plot of absolute value of ellipticity of -CyD–DOX mixtures at 264 nm, ( |264| ), subtracting the signal 

of DOX alone  vs. DOX molar fraction, total concentration of DOX and -CyD =10-3 M. (F) Comparison of 

experimental () and calculated (line) ellipticity at 290 nm for the model with 2:2 complex only (red, 
log(K22/M

-3
) = 10.8) and 1:2+2:2 complexes (blue). 

 The plot is characterized by a broad asymmetric bell-shape profile with a maximum at ca. 

0.6 molar fraction. This indicates a significant, but not exclusive, presence of 1:2 complexes in the 

equilibrium mixture (exclusive presence of 1:2 stoichiometry would give a maximum at 0.7 molar 

fraction). Likely the contemporary presence of both 1:2 and 2:2 stoichiometries is the best model 
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to describe the -CyD complexation at “high” DOX concentrations. Indeed assuming such model 

the global analysis of the data of Figure 2.4A and 2.4B afforded satisfactory fits with log (K12/M-2) = 

7.80 ± 0.04 and log (K22/M-3) = 10.48 ± 0.21 (DW = 1.8 and relative error of fit 1.04 % in the UV and 

DW = 2.4 and error of fit 5.42% in the UV-vis). The extracted spectra of the 1:2 and 2:2 complexes 

are represented in Figure 2.4C and 2.4D. In the UV region the spectra appear similar to each other, 

both being characterized by negative peaks at 207 and 264 nm with   -40 and -10 M-1cm-1, 

respectively, and an intense positive peak at 234 nm of   70 M-1cm-1. Also in the UV-vis range 

the CD spectra of the 1:2 and 2:2 complexes are similar to each other with positive/negative 

splitting of the lowest energy band and negative peaks of different relative size at 264, 288, 306 

nm. In Figure 2.4F the comparison between experimental and calculated ellipticity values is shown 

at 290 nm a wavelength in a critical region, for the model with a 2:2 complex only and the model 

with both 1:2 and 2:2 complexes. On the basis of the above analysis of the complexation 

equilibrium we can safely conclude that -CyD is not able to disrupt the DOX dimer when the latter 

is the predominant DOX form in solution, rather forming complexes of 1:2 and 2:2 stoichiometry.  

pH titration. In order to gain information about which moiety (either the aglycone or the 

daunosamine) interact with the -CyD macrocycle, an acid-base titration monitoring the 

absorption of DOX in the pH 6-11 interval was carried out. Deprotonation of the daunosamine-

NH3
+ and of one of the phenolic OH groups of the aglycone ring B in aqueous medium occurs with 

pKa values of ca. 8.15 and 10.16, respectively39,40 and produces large changes in both UV (252 and 

233 nm bands) and visible regions (Figure 2.5A). Encapsulation of the sugar or the aglycone 

moieties in the CyD cavity was expected to perturb the relevant deprotonation process. Actually in 

the presence of -CyD 1.2 10-2 M (ca. 99 % DOX complexed in either 1:2 or 2:2 stoichiometry with 

a large predominance of the latter one) the pH induced spectral modifications were much smaller 

over the whole 230-600 nm spectral range. This indicates higher pKa’s in the CyD environment for 

both the deprotonation steps and suggested the likely interaction of both the aglycone and the 

daunosamine moieties with the -CyD cavity.  



              Chapter 2  
 

25 
 

Figure 2.5 (A) Absorption spectra of DOX 1.7×10-4 M in 0.01 M phosphate buffer in the range of pH 6-11, 

reference water, 22 °C; (B) The same in presence of -CyD 1.2×10-2 M; reference -CyD solutions. Cell 0.5 
cm. Insets: detail of the 210-270 nm range. 

 

“Low” DOX concentration. The complexation of the DOX monomer was investigated at drug 

concentration of 1.010-5 M, with CyD concentration varying from 5.010-5 M to 1.2 10-2 M 

(Figure 2.6A and 2.6B). In these conditions the monomer:dimer concentration ratio is ca. 3:1 in 

the absence of CyD (58 % of DOX is present in monomeric form). Increasing CyD 

concentrations induced intensity increase of both the positive band at 470 nm and the negative 

one at 288 nm; the signals at 252 nm, 233 nm and 202-205 nm also gained intensity but no new 

bands appeared in the visible region. The sets of CD spectra in Figure 2.6A and 2.6B were analysed 

again with various complexation models with 1:1, 2:1, 1:2 and 2:2 CyD:DOX complexes in 

various combinations, all including the DOX monomer-dimer equilibrium. In no case the 

calculation attained convergence; to attain convergence we neglected the DOX monomer-dimer 

equilibrium. The best model over the whole spectral window (200 - 600 nm) was that involving 

contemporary presence of 1:1 and 2:1 CyD:DOX complexes. The relevant optimized binding 

constants were log (K11/M-1) = 2.7 ± 0.2 and log (K21/M-2) = 4.4 ± 0.5, with DW parameters in the 

1.7-2.4 range. The individual spectra of the various species are reported in Figure 2.6C and 2.6D 

and the agreement between experimental and calculated ellipticity in Figure 2.6 E. The calculated 

binding constant for the 1:1 complex is in good agreement with values previously reported in 

literature35,36 and the extracted spectrum for the free DOX monomer is very close to that 

experimentally measured at 5x10-6 M. Global analysis of the UV-vis absorption titration data 

performed upon fixing the 1:1 association constant confirmed the magnitude of the 2:1 
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association constant (Table 2.1) and afforded the absolute absorption spectra of the 1:1 and 2:1 

complexes (Figure 2.6 F). 

 

 

Figure 2.6 Ellipticity changes of DOX 1.010-5 M in 0.01 M phosphate buffer at pH 7.4 and 22 °C, titrated 

with CyD in the concentration range 5.010-5 M - 1.2 10-2 M: (A) cell path 2 cm; (B) cell path 4 cm. The 

signal of CyD alone was subtracted. (C), (D) Absolute spectra of DOX monomer (red), 1:1 (cyano) and 2:1 

(blue) CyD:DOX complexes, for log (K11/M-1) = 2.7 ± 0.2 and log (K21/M-2) = 4.4 ± 0.5; (E) ellipticity () at 

key wavelengths. (F) Absorption spectra of DOX 1.010-5 M in phosphate buffer at pH 7.4 at 22 °C upon 

titration with -CyD from 5.010-5 M up to 1.2 10-2 M. Cell path 5 cm. Inset: absolute absorption spectra of 

1:1 (cyano ) and 2:1 (blue) -CyD:DOX complexes and DOX monomer (red). 
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 The complexation process was also investigated by detecting the emission of DOX. The method 

which has to be applied at low DOX concentrations, afforded information on the monomer 

complexation, because  a recent study of the time resolved fluorescence of DOX by fs- techniques, 

showed the DOX dimer has an ultrashort lifetime and a very low emission quantum yield and does 

not practically contribute to the steady state fluorescence intensity.18,41  

 A DOX 1.010-5 M solution in phosphate buffer at pH 7.4 exhibited a structured 

fluorescence spectrum with max = 590 nm. In the presence of increasing concentrations of CyD 

from 1.010-4 to 1.610-2 M, for exc = 510 nm both a progressive increase of the main peak at 590 

nm and a modification of the vibronic features of the spectrum were observed (Figure 2.7A). 

Global analysis of the whole set of emission spectra confirmed the binding model of the CD and 

UV-Vis analysis and afforded the 1:1 and 2:1 complexes log (K11/M-1) = 2.3 ± 0.3 and log(K21/M-2) = 

4.9 ± 0.1 (Durbin Watson parameter 2.2). The individual fluorescence contribution of each species 

in solution is reported in Figure 2.7B. 

 

Figure 2.7 (A)-Fluorescence intensity changes of DOX 1.010-5 M in 0.01 M phosphate buffer at pH 7.4 and 

22 °C, upon titration with -CyD in the range 1.010-4 M - 1.6 10-2 M; (B)- Separated emission spectra of 

DOX monomer (red); 1:1 (cyano); 2:1 (blue) -CyD:DOX complexes, corresponding to log (K11/M-1) = 2.3 ± 
0.3 and log (K21/M-2) = 4.9 ± 0.1 

The area under each of the spectral profiles of Figure 2.7B is proportional to the 

corresponding emission quantum yield f Using for the DOX monomer the value of f = 0.039 

for DOX 1.010-5 M in phosphate buffer at 22° C (Chapter 5, Experimental), we obtained a value of 

f
11= 0.032 for the 1:1 and f

21= 0.048 for the 2:1 complex. (Note: these values maybe somewhat 

underestimated because a fraction of the excitation light is absorbed by the dimer, which does not 

contribute to the steady state emission spectra). The 550 nm/590 nm intensity ratio (I/II) in the 
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emission spectrum of DOX is a parameter probing the environment of the 

dihydroxyanthraquinone–centered emitting state, because from a value of ca. 0.80 for water, the 

ratio progressively diminishes in protic solvents of decreasing polarity (e.g. 0.57 in ethanol, 0.51 in 

1-heptanol).42 In the spectra of Figure 2.7B I/II changes from 0.73 in pure buffer to 0.60 in the 1:1 

complex and 0.51 in the 2:1 complex. Thus the I/II values in the complexes tend to those of DOX in 

alcoholic solvents, indicating the excited state of the drug experiences close proximity with the 

hydroxyl groups of the CyD rim and feels a decrease in the environmental polarity.   

The DOX fluorescence decay was detected by time correlated single photon counting 

(Chapter 5, Experimental). It was little affected by the presence of CyD. The decay kinetics was 

monoexponential with f = 1.02 ns in buffer and 1.13 ns in presence of CyD 5.010-3 M (DOX  

80 % complexed in 1:1 or 2:1 CyD:DOX stoichiometries).43 Considering the relation of f and f 

with the radiative (kr) and non radiative (knr) rate constants (Eqn 2.1): 

 

f = krf = kr /( kr + knr )   (2.1) 

 

We observed that kr and knr do not substantially change in the CyD complexes compared 

to buffer (kr  3-4107 s-1 and knr  9108 s-1).  

We collect in Table 2.1 the binding constants of the various DOX complexes and in Table 

2.2 their photophysical parameters compared to those in aqueous buffer and in ethanol. 
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Table 2.1 Association constants of DOX:CyD complexes in aqueous media at pH 7.4, determined with 
various spectroscopic techniques at 22 °C by  global analysis of titration experiments with the SPECFIT/32 
program. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2 Photophysical parameters of DOX in various media at pH 7.4, 22 °C 

            Photophysical parameters 

 T/10-6 s f/10-9 s f kr/107s-1 knr /108s-1 

DOX in buffer  1.7 1.0 0.039 

 

 

3.9 

 

9.6 

 DOX in EtOH 3.9 1.4 0.069 4.8 6.5 

-CyD:DOX  
1:2 or 2:2 complex  
 

CyD:DOX  
1:1 complex  
 

CyD:DOX  
2:1 complex  
 

4.1 
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DOX complexes Binding constants  Technique  

 
DOX2  
(DOX dimerization) 

 
log (Kd/M-1) = 4.8± 0.1 

 
UV-vis absorption 

 -CyD:DOX 2:2 

 

 
log(K22/M-3)=10.48± 0.21  
 

 
CD 

 



-CyD:DOX 1:2 
 

 
log(K12/M-2)= 7.80± 0.04  
 

 
CD 

  

-CyD:DOX 1:1 log(K11/M-1)= 2.7 ± 0.2  
log(K11/M-1)= 2.3 ± 0.3 

CD 
Fluorescence 



-CyD:DOX 2:1 

 
log (K21/M-2) = 4.4 ± 0.5  
log(K21/M-2) = 4.9 ± 0.1 
log(K21/M-2) = 4.9 ± 0.4 

 
CD 
Fluorescence 
UV-vis absorption 
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The triplet state properties are generally useful to gain information on drug environment in CyD 

complexes.44 Flash photolysis of a 1.610-4 M DOX solution in Ar-saturated phosphate buffer of pH 

7.4 in the presence of 1.610-2 M CyD was therefore carried out with 532 nm laser excitation. In 

these conditions > 96 % of DOX is associated in 1:2 or 2:2 stoichiometry. A weak differential 

absorption with bands at 350, 420 and 480 nm was observed (Figure 2.8A). Its decay appeared as 

monoexponential with time constant 4.1±0.1 s. It was assigned to the population of the DOX 

triplet state.45 Given the adopted experimental conditions the actual assignment was to the triplet 

of the DOX dimer in the CyD complex(es). Unfortunately, detection of the triplet absorption at 

DOX concentrations  1 10-5 M was not possible in our laser flash photolysis apparatus. Thus we 

could not directly reveal the triplet features of monomeric DOXin the CyD complexes. 

However, the spectral profile and the lifetime of the transient species shown in Figure 2.8A are 

similar to those observed in EtOH (see Figure 2.8B), where the drug is monomeric. Thus, it can be 

inferred that the triplet state absorption is not significantly affected by the DOX pairing in the 

dimer (at least in its qualitative features) and probes an alcoholic environment, as expected on the 

basis of the excited singlet properties of the monomeric DOX complexes. It is worth noticing that 

the triplet lifetime of DOX in water is sensibly shorter 1.7 s) than that in EtOH and in CyD, 

see also Table 2.2 45 

 

Figure 2.8 Difference absorption spectra observed 300 ns after excitation with a 20 ns laser pulse, cell path 

1 cm, at 22 °C: (A) 1.610-4 M DOX in Ar-saturated 0.01 M phosphate buffer at pH 7.4 in the presence of 

1.610-2 M -CyD, laser pulse 532 nm,  3 mJ. (B) 7.0 ×10-5 M DOX in EtOH,  laser pulse 266 nm, 2 mJ. Insets: 
decay profiles at 350 nm. 

 



              Chapter 2  
 

31 
 



( by Stefano Ottani, CNR-ISOF) 

This part is included for the sake of completeness. The interaction between -CyD and DOX was 

also studied by MM and MD modelling. The main purpose of this study was to investigate the 

ability of the DOX molecule to interact with the -CyD cavity with different molecular portion, (A, 

B, C, D)-rings and the sugar moiety. Some tentative MD runs showed that, in a water box of 

appropriate size, the -CyD/DOX complex forms rather rapidly and, under constant pressure and 

temperature, the reciprocal arrangements of the partners are quite persistent in their main 

geometrical parameters, even for long MD runs. Table 2.3 reports some relevant data obtained 

from the analysis of the MD trajectories. All the averages in this table are computed by the values 

obtained at fixed time intervals along the trajectories. Average values of the total energies are all 

negative and their standard deviations are less than 1%. The mass-weighted radius of gyration, r-

gyr, has been obtained for the -CyD, the DOX and the complex by the Eqn 2.2 
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where wi is the mass of atom i, ri its position and rmean is the position of the center of mass. 

Moreover, the visual inspection of the results obtained from MD simulation shows that all the 

initial geometries reported in Scheme 2.3 lead to stable complexes. As reported in Table 2.3, after 

the equilibration stage, for the given temperature, pressure and number of molecules of the MD 

runs, values of energies and geometrical parameters display small standard deviations from their 

average values. The same trend applies to values of the Root Mean Square Deviations (RMSD) of 

the complex conformation from a common reference frame, after a simulation run-time > 2ns. 

Thus, after the equilibration stage, the -CyD and DOX molecules reach rapidly a stable reciprocal 

structural arrangement. The relative placements of the DOX aglycone and daunosamine moieties 

with respect to the -CyD cavity are substantially preserved for MD runs of 10 ns, while the -CyD 

and DOX molecules undergo minor conformational rearrangements. The degree of 

interpenetration of the two components can be estimated by the values of rgyr of the complex, 
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which is systematically lower than the sum of the two components and quite similar to the 

corresponding rgyr of the -CyD molecule. 

 

Scheme 2.3 Initial geometries for -CyD/DOX system assumed for Molecular Mechanics (MM) and 

Molecular Dynamics (MD) calculations: I and II, aglycone and daunosamine units facing secondary -CyD 

rim, respectively; Ib and IIb, aglycone and daunosamine units facing the primary -CyD rim, respectively. 

The stability of the complexes along the trajectories is consistently confirmed by their 

negative interaction energies and by the small standard deviations in the values of energy and 

radius of gyration. Figure 2.9 reports some relevant structures extracted from the MD trajectories. 
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The labels correspond to the initial geometries of the complexes in Scheme 2.3 As far as 

simulation conditions are concerned, these geometries should be regarded as illustrative of stable 

structures, since temperature fluctuations and collisions with solvent molecules are not able to 

separate molecules and convert to different complexes. Comparison of geometries in Figure 2.9 

with data in Table 2.3 shows that the Ib+ initial setting leads to the more stable complex, as 

confirmed by the lowest values of the Energy, Interaction Energy and rgyr. This final geometry 

corresponds to the one reported in the literature33and it is achieved quite early (< 1ns) in the MD 

trajectory, by insertion of the D-ring into the -CyD cavity through the primary (narrow) rim. Table 

2.3 shows that interaction of DOX with the -CyD primary rim is energetically more favored, 

probably by stabilization with the solvent molecules since the interaction energies are not 

consistently lower as compared to complexes interacting on the secondary (large) rim. 

Table 2.3 Average values of energies and mass-weighted radius of gyration computed from the Molecular 
Dynamics trajectories for the starting geometries in Scheme 2.3 

Initial 

Geometry 

Energy 

Average 

[kcal mol
-1

] 

Interaction 

Energy 

Average 

[kcal mol
-1

] 

rgyr (complex) 

Average 

[Å] 

rgyr (-CyD) 

Average 

[Å] 

rgyr (DOX) 

Average 

[Å] 

I -16347 ± 114 -38 ± 5 6.17 ± 0.08 6.00 ± 0.08 4.75 ± 0.08 

II -15129 ± 110 -41 ± 6 6.26 ± 0.08 6.55 ± 0.22 4.36 ± 0.07 

I+ -17365 ± 118 -46 ± 7 6.12 ± 0.08 6.00 ± 0.07 4.77 ± 0.07 

II+ -15623 ± 111 -31 ± 5 6.44 ± 0.17 6.24 ± 0.13 4.56 ± 0.06 

Ib -17586 ± 120 -28 ± 3 6.32 ± 0.14 5.93 ± 0.20 4.78 ± 0.06 

IIb -17671 ± 120 -28 ± 3 6.37 ± 0.10 6.09 ± 0.09 4.78 ± 0.10 

Ib+ -19962 ± 122 -47 ± 3 6.14 ± 0.05 6.51 ± 0.09 4.82 ± 0.04 

IIb+ -17787 ± 118 -22 ± 4 6.80 ± 0.17 6.08 ± 0.07 4.77 ± 0.07 

 

Actually, rgyr of the I and I+ complexes show that a good packing can be achieved even by 

interaction on the secondary rim and that especially the I+ structure can be of significance in the 

complex formation. Inspection of Figure 2.9 suggests that hydroxyl groups on the -CyD rims 

interact preferably with the conjugated ring system of the DOX, particularly with rings B and C. 

This is confirmed by comparing the distribution of distances between the -CyD center of mass 

and the B or D-ring, respectively. The B-ring is consistently closer to the -CyD center of mass than 
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the peripheral D-ring, a trend which is even more pronounced in the Ib+ complex. Figure 2.9 

shows that insertion of the DOX daunosamine moiety into the -CyD cavity gives rise to stable 

complexes too. The –NH2 group can cross from the secondary to the primary rim in complex II, 

while the positively charged –NH3
+ is confined outside the secondary rim in complex II+. NOESY 

experiments performed by Bekers et al. 33showed that the distance between hydrogen atoms H2 

of the -CyD and H4’ of the daunosamine is about 3Å for a stable complex. However, the same 

investigators couldn’t obtain optimized molecular models consistent with this result. This point 

has been investigated in the present work by computing the radial pair distribution function, g(r), 

for all possible pairs of the DOX H4’ atom with the H2 atoms of the -CyD along the trajectories of 

the eight studied complexes. The pair distribution function is defined as the probability of finding a 

second particle as a function of distance from an initial particle and its values for the investigated 

complexes are reported in Figure 2.10.  Data in this figure show that only complex II+, with the 

daunosamine moiety into the -CyD cavity, comes close to the NOESY experimental constraint. All 

other complexes, even the most stable Ib+, display probabilities that become significant only at 

larger distances. Results in Figure 2.10 are also consistent with the distance of 5.7 Å for the neutral 

DOX-(S)-isomer obtained previously by molecular modelling. 33According to the geometries in 

Figure 2.9 and data in Figure 2.10, it can be concluded that a distance of 3Å is not compatible with 

the daunosamine H4’ atom interacting with the exterior of the -CyD molecule33, which would 

correspond to larger distances. Instead, it should stem from contributions of structures similar to 

complex II+, where the daunosamine moiety is inside the -CyD cavity. The structure of these 

complexes suggests a possible rationale for the interaction of the DOX molecule with two γ-CyD 

units (2:1 complex) as well as for the interaction of the DOX dimer with two -CyD units (2:2 

complex). Higher order complexes will be the object of further molecular modelling investigations. 
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Figure 2.9 Typical geometric arrangements obtained in the MD simulations. The labels correspond to the 
initial settings in Scheme 2.3 

 

Figure 2.10 Radial pair distribution function, g(r), of the possible pairs between the DOX H4’ atom with the 

H2 atoms of the -CyD. Values corresponding to interactions with the secondary and the primary rim of the 

-CyD are reported in the left and right plot, respectively.  
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The CyD-DOX complexation in aqueous buffer is a process characterized by a great intrinsic 

complexity, mainly due to the DOX self-aggregation. In the present study the complexation 

equilibria were analysed by taking into account the DOX monomer-dimer equilibrium, but did not 

consider the existence of DOX dimer as parallel or antiparallel stacked structures, each of them 

expected to have a peculiar affinity for CyD. So, our analysis yields a single spectrum for a given 

stoichiometry even though it may represent different conformations. In spite of this 

approximation, UV-vis absorption, CD and fluorescence measurements clearly proved the 

formation of multiple CyD:DOX complexes. 1:1, 2:1, 1:2 and 2:2 association stoichiometries 

were evidenced for -CyD  1.610-2 M. The accurate study of the CD allowed to demonstrate that 

the complexes of monomeric DOX with one (1:1) or two CyD units (2:1) prevail at DOX 

concentrations 10-5 M, whereas complexes of dimeric DOX with one (1:2) or two CyD units 

(2:2) dominate at DOX concentrations > 10-4 M. The formation of higher order CyD:DOX 

complexes was not reported in the earlier study.33 The stability constants of all the complexes, 

determined by global analysis of titration data from several spectroscopic techniques, showed 

good self-consistency (Table 2.1), which reinforces the reliability of the individual CD, fluorescence 

and UV-Vis absorption spectra for a given stoichiometry  

 

 The CD spectra of the 1:1 and 2:1 complexes in the UV region, when compared to each 

other, point to opposite dichroic contributions for the association of the first and the second 

CyD unit to monomeric DOX; the corresponding profiles in the visible indicate that the CD 

feature is increased in intensity and blue shifted in the 1:1 complex and somewhat decreased in 

intensity and red-shifted in the 2:1 complex. These changes suggest that the aglycone moiety 

interacts with CyD in the first complexation step while the daunosamine unit interacts in the 

second one.46 

 

 The MM and MD trajectories support the CD interpretation. Geometries in Figure 2.9 (Ib+) 

and data in Table 2.3 show that the most favourable interaction is that with DOX aglycone part 

approaching the CyD primary rim. The complex geometry is characterized by the dihydroxy-

anthraquinone core (ring C and B) embedded in the cavity with long axis parallel to the CyD axis 

and ring D protruding out of the CyD secondary rim. A further possible complex geometry is that 
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represented in Figure 2.9 (I+) where the flexible CyD macrocycle folds to embrace the aglycone 

part. The shape of the fluorescence spectra (Figure 2.7B) is consistent with both Ib+ and I+ 

structures. The quantum yields and the lifetimes in both 1:1 and 2:1 complexes appear to be little 

modified with respect to those of the free molecule in agreement with the existence of structures 

with a large exposure of the dihydroxy-anthraquinone part to solvent. MM and MD simulations 

evidence the daunosamine moiety can also interact favourably with the CyD macrocycle from 

the secondary rim side. The sugar unit penetrates more deeply into the cavity when the amino 

group is not protonated (compare structure II and II+ in Figure 2.9). Thus the calculations support 

that two CyD units can be associated to the aglycone and the daunosamine moieties in the 2:1 

complex.  

 The positive-negative split dichroic signal in the 420-580 nm region, due to  

transitions of the DOX dimer, is maintained in the 1:2 and 2:2 complexes, indicating CyD is not 

capable of disrupting the stacking interaction of the aromatic chromophores of DOX in either 

parallel or antiparallel arrangement. The pH effects on the UV-Vis absorption spectrum (Figure 

2.5) demonstrate that the CyD strongly perturbs the acid–base equilibria of DOX in the “dimer” 

concentration regime,  both those of the aglycone moiety more clearly reflected in the spectral 

changes at  > 500 nm, and likely also that of the daunosamine.  Considering the experimental 

conditions, where the 2:2 complex largely predominates, and the geometries proposed for the 

DOX dimer (Scheme 2.3)18 CyD might  access  both the aglycone pair and the amino sugar tails.  

The possibility for the latter complexation mode is supported by the structures II and II+ in Figure 

2.9. 

 Finally, CD spectra of the higher order CyD complexes, molecular modeling results and 

pH effects on electronic absorption consistently support the conclusion that primary binding 

involves the aglycone part whereas secondary binding involves the daunosamine moiety. 

 

In the last section we have seen that -CyD is able to form stable inclusion complexes with both 

DOX monomer and dimer but failed to disrupt the dimer when it is the predominant form in 

solution. In this context, we analyzed the complexation behavior of DOX with a -CyD polymer 

(p-CyD), that can spontaneously form nanoparticles of ca. 15 nm diameter in aqueous solution.47-

51 These kind of CyD derivatives are capable of dramatically enhancing the apparent solubility of 

several guests, compared to natural cyclodextrins. For the evaluation of p-CyD as delivery 
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platform for DOX the incorporation of the drug within the polymer nanoparticles was investigated, 

performing accurate CD and UV-vis absorption titrations, and fluorescence measurements. 



-Cyclodextrin polymer (p-CyD) was prepared by reacting -cyclodextrin (-CyD) with 

epichlorohydrin (EP) under strong alkaline conditions (Scheme 2.4) 52,53. Synthetic procedure is as 

follows: 100 g of anhydrous -CyD were dissolved in 160 mL aqueous NaOH (33% w/w) solution 

and kept under mechanical stirring for overnight. Then, 81.52 g of EP (molar ratio -CyD/ EP = 10) 

were rapidly added to the solution heated to 30°C. In order to obtain a high molecular weight 

polymer, the reaction was stopped in the vicinity of the gelation point by addition of acetone. The 

aqueous phase was heated to 50°C overnight, neutralized with 6N HCl and ultrafiltered using 

membranes with a cut-off of 30,000 g/mol. The p-CyD, which has a branched structure as shown 

in Scheme 2.4, was finally recovered by freeze-drying. 

The p-CyD was characterized by a -CyD weight ratio of 70% (w/w), which was 

determined by 1H NMR spectroscopy. The average molecular weight of the polymer, 2.1x105 

g/mol, was determined by size exclusion chromatography.  

  

Scheme 2.4 Synthesis of p-CyD 

The entrapment of DOX into p-CyD was studied by titrating DOX with the polymer (maximum 

used polymer conc. is 50 mg/ml ie., 2.410-4 M p-CyD which corresponds to a concentration  

3.110-2 M in terms of CyD units). The addition of p-CyD (conc. 5 - 50 mg/ml) into DOX solution 
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(1.7 x 10-4M) causes negligible change in the UV-vis absorption spectra (Figure 2.11F), whereas the 

changes were well evidenced by circular dichroism spectroscopy. The positive-negative CD 

splitting corresponding to the DOX longer wavelength transition tends to cancel with 

increasing polymer concentration (Figure 2.11A and 2.11B). The sets of CD profiles from 200 to 

275 nm and from 250 to 600 nm were globally analyzed with the SPECFIT/32 program for the 

determination of the equilibrium constant. A simplified approach was used in which the host 

concentration is expressed in -CyD units, according to the known -CyD/p-CyD content of 70 % 

w/w. The DOX dimerization equilibrium, log (Kd/M-1) = 4.8 was included in the analysis and a 1:1 

complexation stoichiometry was assumed. The best fit was found for an apparent association 

constant log(K11/M-1) = 2.2 ± 0.1 (Durbin Watson factor 2.2 and 2.5, relative error of fit 2.3 % and 

2.7 % over the data of Figure 2.11A and 2.11B, respectively). A fair agreement between 

experimental and calculated data can be appreciated in Figure 2.11E and is testified also by the 

fair statistical parameters of the fit. Thus the assumed equilibrium model appears to be 

acceptable.  

The absolute CD spectrum of the complex, extracted in the analysis and reported in Figure 

2.11C and 2.11D, does not exhibit any exciton splitting of the visible band and is very similar to 

that of the DOX monomer in aqueous solution, measured at 510-6 M DOX concentration and 

fixed in the calculations. These results support the effective disruption of the DOX dimer on drug 

association to the polymer nanoparticles.  

In the previous section it was shown that -CyD up to 1.610-2 M is not able to disrupt the 

DOX dimer at DOX concentration of 1.710-4 M at 22 °C, but forms 1:2 and 2:2 -CyD:DOX 

complexes (log(K12/M-2) = 7.80 and log (K22/M-3) = 10.48). In addition, a 1:1 complex was evidenced 

at a lower DOX concentration (10-5 M) with a constant log(K11/M-1) = 2.3-2.7, slightly higher than 

that of p-CyD. The question arises: why the -CyD polymer is able to disrupt the DOX dimer 

whereas -CyD is not, when DOX is present mainly in its dimeric form? A rationale can be found 

considering various factors. 
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Figure 2.11 Ellipticity changes of DOX 1.710-4 M in 0.01 M Tris Buffer at pH 7.4 and 22 °C, titrated with p-
CyD from 5 mg/mL up to 50 mg/mL. (A) Cell pathlength 0.2 cm; (B) Cell pathlength 0.5 cm. (C and D) 

Absolute spectra of DOX dimer (green) and 1:1 -CyD:DOX complex (grey), corresponding to log(K11/M
-3

) = 

2.2 ± 0.1. In the calculation the spectrum of free DOX monomer (red) was fixed and the titrant 

concentrations were expressed in -CyD units. (E) Comparison of experimental (squared symbols) and 
calculated (lines) ellipticities at key wavelengths of spectra A and B.  

 

 The binding constants with -CyD and p-CyD cannot be compared to each other, because 

the first one is based on the actual concentration of host in solution, while the second one is based 

on the average -CyD-unit concentration and neglects the actual organization of the -CyD-units 

in nanoparticles. Moreover the binding constant for the -CyD unit within the nanoparticle may be 

underestimated since not all the -CyD units (for example those in the core of the nanoparticle) 

are equally accessible to DOX. This possibility has been already highlighted in the case of p-CyD 

loaded with other molecules of interest in the biomedical or cosmetic fields. 47-51 The local 

concentration of -CyD in the nanoparticles may be much higher than the average concentration 
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in solution and the close vicinity of -CyD units may facilitate cooperative effects in DOX 

complexation. In these conditions monomeric DOX may be preferentially complexed since 

penetration of the DOX dimer into the particle frame may be prevented by steric hindrance. All 

these facts can favour the binding of DOX as monomer, despite the apparently low stability 

constant of the complex. Finally it is worth observing that the CD spectrum for DOX in the p-CyD 

frame is almost identical to the one observed in homogeneous solution and no significant CyD-

induced circular dichroism (ICD) contributions adding to the intrinsic signal are observed.  It is 

likely that DOX is not deeply inserted in the cavity of the -CyD unit of the polymer.   

 As already pointed out in the previous section, DOX in aqueous buffer exhibits a structured 

fluorescence spectrum with max = 590 nm (see Figure 2.12); the emission decay, monitored at 590 

nm with excitation at 465 nm, is mono-exponential with 1 = 1.0 ns (2 = 1.02); the kinetics and 

the lifetime do not depend on the DOX concentration. These features are consistent with 

fluorescence being mainly contributed by the DOX monomer.18,41 Addition of p-CyD in various 

amounts determines an increase of the fluorescence intensity  with no change in the spectral 

shape (see Figure 2.12)  and a modification of the decay kinetics.   Bi-exponential decay analysis 

applies fairly well. With one lifetime fixed as 1 = 1.0 ns for DOX in buffer, the second lifetime is 2 

= 1.5 ns (2 = 0.8). The relative amplitudes (Eqn 2.3) of the two components are reasonably 

consistent with the binding progression, with f1 = 58% and f2=42% at 15 mg/ml and f1 = 36% and f2 

=64% at 50 mg/ml polymer content. The 2 component was therefore attributed to DOX 

embedded in the p-CyD nanoparticle.  

fi =   (aii)/ j(ajj)          (2.3) 

The approximate quantum yield 2 of complexed DOX was estimated from the integrated 

fluorescence spectra of DOX (5x10-5M) in the absence and in the presence of p-CyD at different 

concentrations, obtained with excitations at 550 nm in an isosbetic region of the absorption (see 

Figure 2.11F). A value of 2  0.13 was calculated upon subtraction of the background and 

consideration of the fractions of free and bound DOX for either 15 mg/ml (0.61 and 0.39, 

respectively) or 50 mg/ml (0.25 and 0.75, respectively), assuming DOX in buffer as reference with 

quantum yield 1 = 0.039. Good consistency between the two polymer concentrations was found. 
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Considering the relation between  and  (Eqn 2.4): 

 = krkr/(kr+knr)   (2.4) 

 

The radiative (kr) and nonradiative (knr) rate constants were derived and compared in different 

media (Table 2.5). Interestingly, the photophysical parameters of DOX in the nanoparticles differ 

from those in the -CyD environment and in protic solvents. A substantial increase of the radiative 

rate is observed in the pCyD complexed DOX. This effect might be correlated to changes in the 

H-bonding features of the DOX excited state within the nanoparticle frame, where intramolecular 

quinone-hydroquinone H-bonded conformations could be favoured, leading to emission from a 

more extended conjugated system.54 

 
Figure 2.12  Fluorescence intensity of DOX 510-5 M in 0.01 M phosphate buffer at pH 7.4 and 22 °C, alone 

(black) and in presence of pCyD  15 mg/mL  (red) and  50 mg/mL (blue), excitation was at 465 nm with 
45o incidence onto a triangular cell and the detection was at right angle.   
 

Interestingly the photophysical parameters of DOX in the polymer differ from those in the -CyD 

cavity and in buffer and are similar to those in ethanol. This fact indicates that pCyD offers a 

hydrophobic alcohol-like environment to DOX.  
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Table 2.4 Dimerization constant of DOX and association constants of DOX:CyD 1:1 complexes in aqueous 
media at pH 7.4, determined with various spectroscopic techniques at 22 °C. 

 

DOX complexes Binding constants  
at 22 °C 

Technique  

DOX2 (DOX dimerization) log (Kd/M-1) = 4.8± 0.1 UV-vis absorption 

 

-CyD:DOX 1:1 complex log (K11/M-1) = 2.3/2.7 Fluorescence/CD 
 

-CyD unit:DOX 1:1 

in p-CyD nanoparticles 
 

log (K11/M-1) = 2.2 ± 0.1 CD 

 

 

Table 2.5 Photophysical parameters of DOX singlet excited state S1 in various media at pH 7.4 , at 22 °C. 

 

Samples  S1 photophysical parameters 

 /10-9 s kr/107s-1 knr /108s-1 

DOX in buffer  0.039 1.0a 3.9 9.6 

DOX in EtOH 0.069 1.4a 4.8 6.5 

-CyD:DOX  
1:1 complex  

0.032  1.1b  2.9  8.8 

-CyD:DOX 
2:1 complex  

0.048  1.1b  4.4  8.7 

DOX within  

p-CyD nanoparticles 
 0.13 1.5c  8.7  5.8

 

a Monoexponential decay. b Decays remain mono-exponential in presence of -CyD. The apparent  lifetime 

was assigned  to the complex.c Lifetime 2 in the bi-exponential decay analysis performed in presence of 

pCyD at various concentrations. 

 

This study highlights the interest of using highly water soluble CyD polymers as carriers for drugs 

such as DOX. In particular the study evidenced the ability of the pCyD nanoparticles to disrupt 

the DOX dimers in solution, a fact relevant to the optimal administration of this important drug.  

The photophysical parameters point to a modification of the inherent emission ability in the 



              Chapter 2  
 

44 
 

hydrophobic interior of the polymer nanoparticles. The apparent binding constant is rather low, 

but this is most likely a consequence of the neglect of actual nanostructured organization of the 

polymer and of the inherently low binding ability of the -CyD cavity for the large DOX molecule. 

Crosslinked CyD polymers proved to be more effective in including DOX inside the CyD cavity.  

The next section of this chapter will address the interaction of a -CyD-based polymer system with 

DOX. 

 

 

Considering the results on the interaction of DOX to CyD and pCyD (Chapter 2.2 and 2.3) it 

was envisaged that crosslinked CyD polymers may promote monomerization through the 

polymer spatial organization as well as effective binding of the drug by inclusion in the large CyD 

cavities. In this context, a citric acid- CyD crosslinked polymer (pCyD, see Scheme 2.5) has 

been synthesized and its interaction with DOX in neutral TRIS buffer, has been investigated by 

means of various spectroscopic techniques. Binding and stability constants have been explored in 

the DOX concentration range 1x10-5-210-4M with both DOX monomer and dimer existing in 

solution. The uptake and biodistribution of the pCyD-DOX conjugate within breast tumor cell 

line (MCF-7) was studied by confocal fluorescence microscopy.  

 



To a solution of 9.6 g citric acid (50 mmol) and 2.1 g of NaH2PO4 ∙  2O (13 mmol) in 100 mL 

distilled water, 12.97 g of -CyD  (10 mmol) were dissolved and the obtained solution was 

evaporated under reduced pressure at 90°C till complete dryness. The powdered mixture was then 

put in a paraffin oil bath pre-heated at 140°C for 30 min. To the yellowish material 50 mL of 

distilled water were added and an insoluble gel-like structure immediately formed. The crude was 

filtered to separate the insoluble fraction from the soluble one. The water phase was neutralized 

with 0.5 N HCl, concentrated under reduced pressure and then dialyzed overnight (12 kDa 

cellulosic membrane). The solution was finally dried under reduced pressure to yield 13.5 g of 

slightly yellow powder. 
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Scheme 2.5 Synthesis of p-CyD 

The UV-vis absorption spectra of DOX 1.610-4 M alone and in the presence of increasing 

concentration of pCyD in TRIS buffer (0.01M at pH 7.4) are shown in Figure 2.13A. pCyD does 

not show any characteristic absorption band in the visible region. The intense tail observed at high 

polymer concentrations (pCyD > 10-3M) is likely due to a contribution of scattering. Assuming 

the dimerization constant measured in phosphate buffer (log Kd/M-1 = 4.8)  81% of DOX exist as 

dimer. Upon addition of pCyD at low concentration (< 4.810-5 M) the absorption band at 480 

nm shows a decrease in intensity with red shift in the maximum (10 nm). Increase in the polymer 

concentration causes a progressive increment of the absorption intensity accompanied by a blue 

shift of the whole band. A fairly good isosbestic region can be recognized at ca. 530 nm.  

 Further insight into the association of DOX to pCyD was gained from circular dichroism. 

The ellipticity of DOX 1.610-4 M in neutral TRIS buffer exhibits a negative band at 293 nm, a 

positive band at 352 nm and a positive-negative splitting in the visible band (positive component 

at ca. 460 nm and weaker negative component in the 510-540 nm region). The latter feature 

indicates the presence of dimers in solution. 21 Indeed no negative component in the visible region 

is present at concentrations of DOX < 1.010-5 M, in agreement with the predominance of the 

monomer. The ellipticity of the DOX solution modifies upon titration with p-CyD in the polymer 

concentration range from 6.110-6 M to 3.610-3 M (Figure 2.13B). At low polymer concentration 

the spectral profile appears to be very different from that of DOX alone in both the UV and the 

visible region: the positive band at 460 nm increases in intensity and shifts to the red of ca. 6 nm; 

below 380 nm a negative band with minimum at 310 nm appears, instead of the positive one at 

352 nm observed in the absence of polymer. At polymer concentrations  4.810-5 M the positive 

CD band in the visible region tends to decrease, further shifting to the red, and the dimer negative 

CD component at 510-540 nm tends to disappear; below 380 nm a re-shaping of the signal toward 
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the initial profile occurs. Along with the titration two quasi-isoelliptic points are maintained at 493 

nm and 365 nm. These features reasonably point to (i) formation of DOX multimolecular 

aggregates associated to p-CyD at low polymer concentration and (ii) establishment of an 

equilibrium of different DOX complexes, likely with lower stoichiometries, at higher polymer 

concentrations. Global analysis of the CD titration data of Figure 2.15B actually demonstrated a 

progressive monomerization of DOX at increasing pCyD concentrations (see section 2.4.4).  

 

Figure 2.13 DOX 1.610-4 M in TRIS buffer 0.01M, pH7.4, in presence of pCyD from 6.110-6 M to 3.610-3 

M (concentrations in p-CyD_unit from 8.810-5 M to 5.310-2 M). Cell pathlength 0.2 cm, T= 295 K. (A) UV-

Vis absorption spectra of pCyD solutions (short-dashed thin lines) and DOX- p-CyD mixtures (solid lines 

and dashed thick lines) (B) CD spectra. References are pCyD solutions in TRIS buffer for the spectra of the 

mixtures, TRIS buffer for the spectra of DOX alone and pCyD alone. 

Figure 2.14 shows the fluorescence spectra of DOX 110-5 M in neutral TRIS buffer at 22°C in the 

absence and presence of different concentrations of the pCyD polymer (from 3.0310-6 M up to 

9.310-4 M), with excitation at 530 nm. At this DOX concentration, in the absence of the polymer, 

58 % of DOX is present in monomeric form.  As we have already pointed out, the DOX dimer has 

an ultrashort lifetime and a very low emission quantum yield and does not practically contribute 

to the steady state fluorescence intensity.41 Accordingly the fluorescence spectrum shows the 

characteristic features of the DOX monomer with vibronic bands at 590, 560 and 630 nm. 

55Addition of pCyD at the lowest concentration drastically decreased the fluorescence intensity. 

This effect can be understood with the formation of non emissive multimolecular aggregated 

species of DOX associated to pCyD. Further increase in the pCyD concentration led to a 

progressive increment of the DOX fluorescence intensity, reasonably associated to 
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monomerization of the drug with increase of overall emission quantum yield. Inclusion in the 

pCyD unit and/or the 3D frame of the polymer can be hypothesized.  

 

Figure 2.14 (A) Fluorescence titration of DOX 110-5M in TRIS buffer (0.01M, pH 7.4) with pCyD 

(concentration in pCyD unit from 3.0810-5 to 9.310-3M). Excitation was at 530 nm, the spectra were 
corrected. (B) Molar amplitude of emission for DOX monomeric species extracted by global analysis (red-
DOX monomer, black-1:1 pg-CyD unit:DOX complex) with log (K11/M-1) = 4.4, log (K12/M-2) = 11.1; the 1:2 
complex was assumed as being not emissive. 

The decay of DOX fluorescence was monitored at 590 nm with excitation at 465 nm on the 

nanosecond scale. In the DOX alone solution the lifetime, assigned to the monomer, was found to 

be 1.02 ns 2 = 1.03). Addition of pCyD at various concentrations tends to slow down a little the 

decay rate but a monoexponential law still applies. In the presence of the polymer pCyD (710-3 

M in pCyD_units) the measured lifetime is  1.3 ns 2 = 1.0), assigned to the complexed 

monomer, the dominant species in solution according to the  binding  analysis described below. 

Global analysis based on SPECFIT/32 was applied to CD titration data of Figure 2.13B. The host 

concentration was expressed as pCyD_unit concentration, the excess of the latter over the DOX 

concentration being > 4 in the whole range.   Moreover the analysis assumed the DOX 

dimerization equilibrium with fixed constant, log (Kd/M-1) = 4.8, and absolute CD spectra of the 

free DOX monomer and dimer species as determined in aqueous neutral buffer. The best fit 

corresponds to a complexation model with 1:1 and 1:2 pCyD unit:DOX complexes in equilibrium 

with free DOX monomer, free DOX dimer and free pCyD_unit. The optimized association 

constants were derived as log (K11/M-1)= 3.30.2 and log(K12/M-2) = 8.70.3 (Durbin-Watson factor 

= 1.6). The individual CD spectra of the complexes are reported in Figure 2.15A together with the 
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spectra of the free DOX components. The concentration profiles of all the DOX species in solution 

are reported in Figure 2.15B. In Figure 2.16A the agreement between calculated and experimental 

ellipticity at key wavelengths can be appreciated. 

 

Figure 2.15 (A) CD absolute spectra of pCyD unit:DOX complexes corresponding to log (K11/M-1) = 3.3 and 
log (K12/M-2) = 8.7 and of free species (B) concentration profiles of DOX species in solution.  

 

Figure2.16 (A) Comparison of experimental (symbols) and calculated (line) data at representative 
wavelengths, corresponding to log (K11/M-1) = 3.3 and log (K12/M-2) = 8.7.  (B) Comparison of spectra of 

pCyD unit:DOX complexes with spectra ofCyD:DOX complexes. 

A confirmation of the goodness of the binding model was obtained from global analysis of 

the fluorescence titration data in Figure 2.14A.  We assumed that emission comes exclusively from 

monomeric DOX, either free or complexed, and again included the DOX dimerization equilibrium 

with fixed constant log Kd= 4.8. In the concentration range explored the excess of pCyD unit 

over DOX  is > 3.  The association constants were optimized as log (K11/M-1)= 4.40.1 and 

log(K12/M-2) = 11.10.1 (DW 1.1). The corresponding individual amplitudes for the free DOX 

monomer and the 1:1 pCyD unit:DOX complex are shown in Figure 2.14B. In Table 2.6 we 
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collect the association constants of DOX species with various CyD hosts, from this work and 

previous literature. 

With  pCyD unit/DOX molar ratios < 3-4 we  evidenced a massive association of the hydrophobic 

drug   to the polymeric material  to form multimolecular, possibly non specific, aggregates, 

characterized by “distorted” CD spectra (Figure 2.13B, orange and cyano dashed spectra) and no 

or very weak fluorescence (Figure 2.14A, orange solid spectrum). We omitted this phase of the 

binding process in our global analysis. At higher molar ratios    a more simple equilibrium model 

was shown to apply fairly well, with formation of pCyD unit:DOX complexes of 1:1 and 1:2 

stoichiometry, in equilibrium with free DOX monomer and dimer. The concentration profiles of all 

species in solution represented in Figure 2.15B indicate that DOX associates very efficiently to 

pCyD both as monomer and as dimer. At increasing host concentrations a progressive decrease 

of the 1:2 complex concentration occurs, with the 1:1 complex becoming more and more favoured 

and finally resulting to be largely dominant (ca. 71% of DOX is associated as monomer and ca. 29% 

as dimer with pCyD unit 5.310-2 M (pCyD 3.610-3 M)). The locally high CyD concentration 

and the polymer 3D organization likely play a role in this effect, as already observed in the 

epichlorohydrin crosslinked β-CyD polymer (pCyD), where the three-dimensional nanoparticle 

structure proved to be able to disrupt the free DOX dimers present in solution converting them 

into polymer-bound monomers.  

 Note that of the natural CyDs, only CyD forms inclusion complexes of significant stability 

with DOX. Consistently comparison of the association constants of the two polymeric hosts for 

monomeric DOX (Table 2.6) shows that the binding ability of the polymeric CyD is larger than 

that of the polymeric CyD, reasonably due to inclusion of the bulky aglycone nucleus of DOX in 

the larger cavity. 32,56 Further, the electrostatic interactions between the positively charged DOX 

daunosamine moiety and the negatively charged carboxyl groups of the citric acid crosslinker may 

effectively contribute to the complex stability in the CyD polymer. An informative comparison is 

also that with the association constants of the DOX complexes with natural CyD. Clearly the 

polymeric structure considerably improves the binding ability of the pCyD unit for both DOX 

monomer and dimer.  Finally, for the pCyD system it is worth comparing the association 

constants determined from CD and FL data. The values obtained with the latter technique are 
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higher by ca. 1-2  orders of magnitude. This result   may be related to the lower DOX concentration 

used in the FL titration, resulting in higher monomer/dimer molar ratio in solution (19/81 in CD vs. 

58/42 in FL).  It may be reasonably hypothesized that the initial formation of the multimolecular 

polymer-DOX aggregates observed at low polymer concentrations   makes the two experimental 

conditions to be not completely equivalent for the complexation equilibria to be further 

established.  

Table 2.6 Association constants of DOX:CyD complexes in aqueous media at pH 7.4, at 22 °C, determined by 
global analysis of titration spectroscopic data with the SPCFIT/32 program, and   relevant literature data .  

a
 Range of values are relevant to different batches  of the pCyD host material. 

DOX complexes Log K   Units 
of K 

Technique  Ref. 

 
DOX2  

(DOX dimerization) 
 

 
4.8 ± 0.1  

 
M-1 

 
UV-vis 

 

 

pCyD_unit:DOX 1:1 
  
 

 
(3.3-3.4) ± 0.2 
(4.0-4.4) ± 0.1 

 
M-1 

 

 
CD 
FL 

 
This work 

(Batch 1-batch 2)a 

 

pCyD_unit:DOX 1:2 
 

 
(8.5-8.7) ± 0.3 

(10.4-11.1) ± 0.1 

 
M-2 

 
CD 
FL 
 

 
This work 

(Batch 1-batch 2)a  

 

pCyD_unit:DOX 1:1 
 

 
2.2 ± 0.1 

 
M-1 

 
CD 

 
 

 

CD:DOX 1:1 

 

2.1± 0.1 
2.3 ± 0.1 

 
M-1 

 

UV-vis  
FL 

 

 
32 

 

CyD:DOX 1:1 

 
2.7 ± 0.2  
2.3 ± 0.3 

 
M-1 

 

 

 
CD 
FL 

 
 

 

CyD:DOX 1:2 
 

 
7.80± 0.04  

 

 
M-2 

 
CD 

  

 
 

 

CyD:DOX 2:1 

 
4.4 ± 0.5  
4.9 ± 0.1 
4.9 ± 0.4 

 
M-2 

 

 
CD 
FL 

UV-vis   
 

 
 

  

CyD:DOX 2:2 
 

 
10.48 ± 0.21  

 

 
M-3 

 
CD 
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 The CD spectra of the pCyD-DOX complexes are compared to those of the free species 

and the complexes with natural CyD in Figure 2.15A and 2.16B, respectively. The CD of the 1:2 

pCyD unit:DOX complex is qualitatively similar to that of the 1:2 -CyD:DOX complex in the 

visible region and exhibits common structure features at 265, 287 and 306 nm. The relative 

intensities of such UV negative bands are not the same in the two systems, possibly because of 

slightly different complexation mode of DOX within the two CyD hosts. However it is worth 

observing that the binding model used to describe the association of DOX to the CyD unit of the 

polymer neglects complexes higher order than 1:2, like for example the 2:2 complex which 

markedly shapes the CD in the UV region in the CyD-DOX system. It is also interesting to notice 

that the CD spectrum of the 1:1 pCyD unit:DOX complex is somewhat different from that of the 

DOX monomer in buffer and from that of the 1:1 CyD:DOX complex, whereas is practically 

identical to the CD spectrum of the 2:1 CyD:DOX complex. This suggests that DOX in the CyD 

polymer is effectively protected from contact with bulk buffer at both the aglycone and the 

daunosamine moieties, similarly to the 2:1 CyD:DOX species, which on the basis of Molecular 

Dynamics, was suggested to have both molecular moieties interacting with CyD host units. It can 

be reasonably concluded that the 3D organization of the polymer provides a non aqueous 

character to the surroundings of most of the DOX units.  

 The fluorescence molar amplitudes (Figure 2.14B) give direct information on the 

environment experienced by DOX in the 1:1 complex. The 560 nm/595 nm intensity ratio probes 

the polarity of the environment of the emitting state. 42 The value decreases considerably from 

buffer (0.62) to the 1:1 complex (0.44), indicating the excited state of the drug in the polymer 

frame experiences a polarity similar to that of alcoholic media. As for the CyD:DOX 1:1 complex, 

the proximity of the dihydroxyanthraquinone chromophore to the hydroxyl groups of the CyD 

rim is inferred. As regards the emissive ability, the area under the molar amplitude profiles in 

Figure 2.14B is proportional to the emission quantum yield of the free f) and complexed DOX 

monomer b). 

Free monomer and 1:1 complex appear to have quite similar emission quantum yield. 

Actually, using the value of  = 0.039 for DOX 110-5 M in neutral buffer at 22°C (see chapter 5, 

Experimental) and considering (i) the fractions of excitation light absorbed by the monomer and 

the dimer in buffer and the negligible contribution of the dimer to the steady state emission,41 we 

calculated a value f = 0.058 for the free DOX monomer and b = 0.054 for the 1:1 
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pCyD_unit:DOX complex.  In Table 2.7 the photophysical parameters of DOX species in various 

CyD media are resumed. We observe that neither kr nor knr substantially change in any of the 

CyD complexes compared to buffer (kr  3-4107 s-1 and knr  7-10108 s-1). 

Table 2.7 Photophysical parameters of DOX in various media at pH 7.4, 22 °C 

Samples f/10-9 S Φf kr/107 S-1 knr/108 S-1 

DOX 110-5 M in 
neutral buffer 

1.0a 0.039 3.9 9.6 

CyD:DOX  
1:1 complex 

1.1a 0.032 2.9 8.8 

pCyD_unit:DOX  
1:1 complex 

1.5b 0.13 8.7 5.8 

pCyD_unit:DOX  
1:1 complex 

1.3a 0.054 4.1 7.3 

aMono-exponential decay. b Second lifetime component in a biexponential decay. 

 



Cell uptake of p-CyD-DOX complexes has been studied with time-resolved fluorescence confocal 

microscopy. The autofluorescence of DOX was used for this scope. Figure 2.17A and 2.17B  shows 

an intensity-based  image for a MCF-7 cell line incubated for 1 hour with DOX 10 M alone and 

with p-CyD (1.4 mg/ml, 98% DOX is associated to the polymer) in buffer. In the images obtained 

collecting fluorescence in the 500-550 nm range we can envisage the entire cell while in the 

orange and red image we only observe the nucleus. The confocal spectra (Figure 2.17C) obtained 

in correspondence of ROI located in the nucleus clearly evidence the presence of DOX in the 

nucleus, while in the cytoplasm autofluorescence mixes with DOX fluorescence. It can be 

concluded that in both conditions DOX enters the cell nuclei, where the spectral features of the 

drug emission are clearly recognizable. 55 This fact indicates preservation of the DOX molecular 

structure during both the uptake and the monitoring processes, irrespectively of the incubation 

conditions.  For the sake of comparison we registered  the fluorescence spectrum of a DOX 

aqueous solution on the confocal system (Figure 2.17C) . Even though there seems to be a more 

pronounced vibrational structure for DOX in cellular context, the differences are too small to draw 

conclusions on the location of DOX in the nucleus.   We also performed time-resolved fluorescence 
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imaging exciting the DOX and DOX/ p-CyD incubated cells at 405 nm, the only pulsed laser source 

available on the system. We have to consider that in these conditions we cannot avoid excitation 

of intrinsic cell fluorophores. Time-resolved fluorescence detection was performed in the 565-605 

nm range corresponding to the DOX maximum intensity in the fluorescence spectrum.  Careful 

analysis started from the fit of the fluorescence decay of a ROI located in the nucleus with a 

biexponential function and yielded in all cases two lifetimes of 1.0 (25%) and 2.4 ns (75%) with 2 

values of ca 1.0. We then calculated the histogram for the complete image and a four-exponential 

function was necessary to fit the decay with good 2 values fixing the 1.0 and 2.4 ns lifetimes 

(Figure 2.17D). Two more lifetimes of less importance were found, one shorter  (ca. 250 ps)  and 

one longer,  both with negligible weight in the nucleus. The lifetime of 1 ns is the same as in buffer 

and  can be ascribed to aqueous environments, whereas the lifetime of 2.4 ns is likely due to DOX 

associated to a biomolecule.   The known mode of interaction of anthracyclines with DNA is 

intercalation of the dihydroxyanthraquinone moiety between  two base pairs, with location of the 

sugar residue in minor groove.57  This binding mode is associated to an hypochromic effect 55, 

decrease of the emission ability 24 and drastic shortening of the emission lifetime which becomes 

of a few ps. 21  So  the longer-lived emission component of 2.4 ns cannot be attributed to DOX 

intercalated on DNA.  We suggest it may pertain to the drug located in a hydrophobic pocket of a 

nuclear protein, where the lifetime is expected to be longer than in water, according to data 

reported in Table 2.7 for DOX incorporated in p-CyD nanoparticles. 
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Figure 2.17 Confocal images of MCF-7 cells incubated for 1 h with (A)  free DOX (10 M) and (B) DOX (10 

M) + p-CyD (1.4 mg/ml);(top left) overlay of the images collecting fluorescence in the range 500-550, 

570-620 and 665-735 nm. (C) Fluorescence spectra of DOX and p-CyD loaded DOX in MCF-7 cell line and  
DOX free in water, resolution of 6 nm per channel, DC2 used reflecting 488 nm. D and E are fitted decay 
and frequency histogram for the entire image in A and B. 

In this study citric acid cross linked -cyclodextrin polymer (pCyD) was successfully synthesized 

for the improved delivery of doxorubicin. Spectroscopic techniques of UV-Visible absorption, 

circular dichroism and fluorescence with multivariate global analysis of multiwavelength titration 

data revealed to be powerful tools to determine stability constants, ascertain the nature of the 
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interactions and probe the environment through the spectroscopic features of the bound drug. 

The complexation equilibria of p-CyD-DOX were analysed by taking into account of monomer-

dimer equilibrium. The CD and fluorescence data clearly proved the formation of 1:1 and 1:2 pg-

CyD unit:DOX complex with a very good association constants of log(K11/M-1) from 3.3 to 4 and 

log(K12/M-2) from 8.5 to 11. The concentration profiles provide evidence for the progressive 

monomerization of DOX at higher polymer concentrations. Confocal fluorescence imaging and 

spectral imaging of DOX-loaded p-CyD and free DOX, incubated in a MCF-7 cell line culture 

showed similar behaviour. In both cases DOX is uptaken into the nucleus without any degradation.  

The results described in this chapter suggest that CyD-based polymeric systems hold great 

potential for the delivery of anthracycline anticancer drugs for enhanced therapeutic efficacy.  

These studies open up a new field of investigation aimed at adapting the synthetic strategies 

toward novel CyD polymers and/or copolymers endowed with suitable nanostructure for even 

more efficient interaction with DOX.  In this context the application of spectroscopic techniques of 

UV-Visible absorption, circular dichroism and fluorescence with multivariate global analysis of 

multiwavelength titration data revealed to be powerful tools to determine stability constants, 

ascertain the nature of the interactions and probe the environment through the spectroscopic 

features of the bound drug.  
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As we have outlined in the introductory Chapter 1 nanocarrier-drug combinations represent 

nowadays a promising approach to overcome pharmacological drawbacks of drugs, like low target 

specificity, rapid clearance, poor pharmacokinetics, severe side effects, low target susceptibility at 

the origin of multidrug resistance phenomena. A large variety of systems has been investigated, 

including polymeric nanoparticles, micelles, liposomes and various metal-based nanoassemblies.1,2 

This strategy has received particular attention for the delivery of anticancer drugs.3,4  

Among the metal-based nanoassemblies, an innovative class of hybrid porous materials is 

represented by Metal Organic Frameworks (MOFs).5 They are composed of metal ions or clusters 

(1D, 2D, or 3D) connected by multidendate organic ligands to form one-, two-, or three- 

dimensional arrays (See Chapter 1, Figure 1.5) and exhibit a crystalline structure with very high 

porosity and an enormous surface area. MOFs are highly tunable in terms of chemical composition 

eventually determining their crystal structure and dimensions of the pores as well as their 

physicochemical properties.6 Because of their unique properties they found applications in a large 

variety of scientific and technological areas, mainly relevant to catalysis, separation, gas storage, 

imaging, sensing and magnetic and electrooptical materials.7-10  

 MOFs are presently receiving great attention also for biomedical applications.8,11-16 In this 

frame, a new family of biodegradable and non cytotoxic materials, based on Fe(III) clusters and 

polycarboxylate ligands, has recently been synthesized with a “green” technology.11,13,16-18 Thanks 

to their crystalline organization with large pores, these materials act as efficient “molecular 

sponges”, rapidly soaking important amounts of hydrophilic and hydrophobic drugs directly from 

aqueous solution. Outstanding loading capability for a wide range of challenging drugs were 
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observed for some of them potentially opening the way to application in drug transport and 

delivery.3  

  Development of nanosized carriers for DOX (Chapter 2, Scheme 2.1) has attracted a lot of 

interest in the last decade as an approach to overcome the problems related to cardiotoxicity, 

cytotoxicity, selfaggregation and cell resistance.  Cardiotoxicity is one the most serious side effects 

of  anthracyclines  in their clinical application.19-22 Although the mechanisms of the toxic effects on 

cardiomyocytes are not fully understood, they are not the result of inhibition of DNA synthesis, 

because these cells do not replicate. A number of observations suggest that the interaction of 

anthracyclines with iron ions is of great importance. The redox state of iron ions can be converted 

between iron (II) and iron (III), with consequent generation of toxic reactive oxygen species (ROS) 

(Scheme 3.1), which cause DNA damage and induce apoptosis.  

 

Scheme 3.1. Schematic illustration of molecular transformation of doxorubicin (adapted from ref 25) . 

 

Cardiac tissue is vulnerable to free radical damage because of the low activity of antioxidant 

enzyme systems in cardiomyocytes.23 A strategy  which has been proposed to decrease the redox 
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activity of anthracyclines is the delivery of them as metal complexes, especially as Fe(III) 

complexes.24  In this context and, in general, for development of optimized carrier systems for 

anthracyclines, DOX has been successfully entrapped in MIL-100(Fe) (see Scheme 3.2).  This hybrid 

material in aqueous medium is dispersed in particles of ca. 200 nm diameter (nanoMOFs). DOX 

was shown to be incorporated within the nanoMOF pores up to ca. 9 wt%. Release of the drug 

occurs over several days. 3 

  In order to gain insights into the molecular recognition process that is at the basis of the 

DOX entrapment within the MIL-100(Fe) matrix, a characterization of nanoMOF-DOX complexes in 

aqueous medium via UV-Vis absorption, circular dichroism and fluorescence was performed.  

MIL-100 (Fe) was obtained by microwave-assisted hydrothermal synthesis from a mixture of iron 

chloride (8.97 mmol) and 1,3,5-benzenetricarboxylic acid (4.02 mmol) in 20 mL of deionized water, 

heating 6 min at 130oC under stirring. The power applied was 400 Watt (Mars-5, CEM, US: Power 

maximum output 1600 ± 240 Watts, Frequency at full power 2450 MHz). The as-synthesized 

nanoparticles were recovered by centrifugation (10 min, 10000 g). To remove the residual non 

reacted organic acid, they were washed in 50 mL of absolute ethanol and recovered by 

centrifugation (10 min, 10000 g). This activation step was repeated 6 times.  

 The obtained nano MOF architecture is as follows: the oxocentered trimers of Fe(III) 

octahedra is linked by benzene-1,3,5-tricarboxylate ligands (1,3,5 BTC) to form a hybrid 

supertetrahedra (ST) which assemble in a zeotype architecture (Scheme 3.2). This frame delimits 

very large pores (free diameters of 25 and 29 Å) accessible through pentagonal and hexagonal 

microporous windows (of ca. 5.5 and 8.6 Å). The mesoporous cages exhibit large surface area and 

pore volume (SBET up to 2400 m2g-1 and Vp1.2 cm3g-1). Fe(III) trimers in MIL-100 possess 

accessible coordinatively unsaturated sites (CUS), up to two per trimer (see Scheme 3.3), able to 

coordinate a wide range of polar species and drugs. 3,26 Molar absorption coefficients and binding 

constants in the present work are referred to the trimeric Fe(III) unit of MIL-100 (Fe) with 

structure formula Fe3O (OH) (H2O)2 [(CO2)3 (C6H3)]3 (in the dehydrated form).  
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Scheme 3.2 Coordination between Fe(III) trimers and benzene-1,3,5-tricarboxylate ligands (1,3,5 BTC) leads 
to the formation of hybrid supertetrahedra (ST) that further assemble into a zeotypic architecture provided 
with two types of mesoporous cages with free diameters of 25 and 29 Å, accessible through pentagonal 
and hexagonal microporous windows of ca. 5.5 and 8.6 Å. From ref. 18 

MIL-100 (Fe) was stored in the dark at room temperature as EtOH wet material. An aliquot of it 

was dispersed in a few milliliters of ethanol. The suspension was centrifuged (10 min, 10000 rpm) 

and washed two times with tridistilled water and one time with TRIS buffer (10-2 M, pH 7.4) to 

remove traces of ethanol. Aliquots of the resulting centrifugate was suitably dispersed in TRIS 

buffer and used for the preparation of individual samples. MOF alone suspensions and mixtures 

with DOX were gently stirred for 30 min to attain a steady condition before use and were kept 

under stirring during the time span of all the experiments.  

 The absorption spectra of the MIL-100 (Fe) MOF suspensions at various concentrations in TRIS 

buffer 0.01 M at pH 7.4 are shown in Figure 3.1A. The Fe-trimesate coordination band appears in 

the region 300-400 nm. An apparent molar absorption coefficient of 2900 M-1cm-1 was calculated 

at 330 nm from the linear dependence of the absorbance on the Fe(III) trimer content (mw 653). 

This value is in agreement with reported absorption coefficients of Fe-carboxylate LMCT 

absorption bands.27 Figure 3.1B shows the absorption changes observed in a solution of DOX 

110-4 M in TRIS buffer upon titration with the MOFs. On increasing the MOF content the 

absorbances increase in the 300-430 nm region and decrease at 430-520 nm shifting to the red, 

while a structured band arises in the 520-750 nm region.  
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Figure 3.1  Absorption spectra of (A) MIL-100 (Fe), conc. 0.02-0.3 mg/ml(B) and MIL-100(Fe) in presence of 
DOX 1x10-4M, in TRIS buffer, cell path length 0.5 cm and reference is TRIS buffer for MOF free and DOX 

free,  MOF of same concentration for DOX-MOF mixture. Temperature 22  C        

In order to properly interpret these spectral changes it is worth recalling the spectrum of 

DOX alone in buffer (From Chapter 2.1). DOX displays bands at 288 and 480-500 nm, relevant to 

the two allowed 1A  1La and 1A  1Lb -* transitions polarized along the short and long axis of 

the dihydroxyanthraquinone moiety, respectively. The shoulder around 320-380 nm is associated 

to n-* transitions of the three C=O groups in the molecule, partially forbidden by electric dipole. 

At neutral pH the aglycone part is neutral, whereas the daunosamine moiety is protonated.28 

Deprotonation of the phenolic OH groups of the aglycone ring B upon pH increase (pK values of ca. 

10 for C11-OH and >13 for C6-OH),29 produces changes in the UV-visible absorption quite similar to 

those of Figure 3.1B. Thus the spectral changes suggest that DOX incorporation into the MOF 

frame likely involves deprotonation of the drug molecule at the dihydroxyanthraquinone moiety. 

The absorption features of the DOX-MOF complexes are in complete agreement with those of DOX 

complexes and free Fe(III) ions, which bind to the dihydroxyanthraquinone moiety with release of 

one proton per bound molecule.5,24 Another site for Fe(III) binding to DOX is the -ketol group of 

the drug, suggested on basis of molecular modelling and the chemical degradation of the system. 

30-32 On basis of the spectroscopic features and findings on the complex stability (see below) we 

safely conclude that most likely DOX coordinates to the Fe(III) centers of MOFs at the oxygen 

atoms in the positions 11 and 12 and/or 5 and 6 of the C and B rings (see Chapter 2.1, Scheme 

2.1). Close inspection of Figure 3.1B evidences the presence of isosbestic points at 420 and 530 

nm that are lost at MOF content > 0.1 mg/ml. This points to an incorporation process involving 

formation of more than one type of complexes. 
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Determination  of the association constant. In order to estimate an apparent association constant 

(Kass), we centrifuged several DOX-MOF mixtures for 20 min at 10000 rpm. Upon centrifugation  

free and complexed MOFs precipitated, whereas free DOX remained in the supernatant and was 

quantified by UV-Vis absorption using a molar absorption coefficient of 10800 M-1 cm-1 at 480 nm. 

A 1:1 stoichiometry was assumed and Eqn 3.1 was used to calculate the dissociation constant Kdiss 

= 1/Kass, 

 

[bound DOX] = ½ (Kdiss + x + c – ((Kdiss+ x + c)2 – 4 x c) ½)  (3.1) 

 

where and x and c are the total concentrations of Fe(III) trimeric unit and DOX, respectively. 

The experiment was carried out for DOX 110-4 M keeping the Fe(III) trimer concentration below 

1.110-3 M (various MOF contents < 0.7 mg/ml, Figure 3.2A) .  Quantification of the free DOX in 

the supernatant was performed (see Figure 3.2B). From the plot in the inset a value Kass = (1.8 

0.1)104 M-1 was extracted. The quality of the best fit and the small error indicates that the 

assumed 1:1 model (one DOX molecule bound on average to one Fe(III) trimer) fairly well applies 

in the conditions of the experiment. The association constant is by 6-7 orders of magnitude lower 

than those reported for binding of free Fe(III) ions to DOX.5 This is reasonably due to reduced DOX 

accessibility to Fe(III) trimers inside MOF pores considering the small dimension of 5.5 or 8.6 Å of 

the pore windows. 

 

Figure 3.2 UV-vis absorption spectra of DOX (1x10-4M) - MOF (0.02 to 0.7 mg/ml) mixtures in TRIS buffer (A) 
before centrifugation (B) after centrifugation (20 min, 10000 rpm), cell path length 0.5 cm, reference TRIS 
buffer, Temperature 22 °C.  Inset of (B) is the plot for binding constant analysis with Eqn 3.1. 
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Circular dichroism further supports the described mode of DOX binding.  The asymmetric carbon 

centers C7 and C9 configurations are of particular importance for the electronic transitions in the 

UV-Vis region (Chapter 2, Scheme 2.1).28 The CD spectrum of DOX 1.010-4 M solution in neutral 

TRIS buffer is characterized by negative bands at ca. 290 nm and 500-550 nm and positive bands at 

ca. 250 nm, 350 nm and 450 nm. A positive-negative splitting of the dichroic signal in the 400-600 

nm region is due to the presence of DOX in dimeric form. The negative component is weaker than 

the positive one and is barely observable in the present experimental conditions, despite dimer-

like DOX should be predominant (a pKd/M-1 = 4.8 was measured in neutral phosphate buffer, see  

Chapter 2, section  2.1.1).    

 The formation of the DOX-MOF complexes modifies the CD spectrum (Figure 3.3). On 

increasing the MOF content the bands at 250 nm and 350 nm decrease in intensity and a new 

positive, broad CD band arises at ca. 600-630 nm; the positive band at 450 nm shifts to red while 

the signal at 500-550 nm clearly becomes positive. These changes are similar to those observed for 

the association of DOX to free Fe (III) ions in aqueous medium5 and confirm the formation of 

coordination bonds between the Fe(III) trimer and C and B rings of DOX. Since in the conditions of 

the experiments DOX is predominantly dimeric, the binding process can be represented according 

to Scheme 3.3, where the DOX2 dimer dissociates and up to two monomer molecules access CUS 

of Fe(III) centers, replacing previously coordinated water molecules. This result is somehow 

expected since the DOX dimer is likely too large to pass the pore windows with the 5.5 and 8.6 Å 

dimensions. 

 

Figure 3.3 Circular dichroism spectra of DOX (1x10-4M)-MOF(0.03-0.7 mg/ml) mixtures inTRIS buffer, cell 
path length 0.2cm, Temperature 22 °C. 
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Scheme 3.3 Schematic representation of the MIL-100(Fe) structure and the DOX interaction. DOX2 dimer 
dissociates and up to two monomeric molecules efficiently interact with the matrix by coordination to CUS, 
replacing the previously coordinated water molecules.  

 

The binding of DOX to MOFs was also studied by fluorescence. A DOX 2.010-5 M solution in TRIS 

buffer at pH 7.4 exhibits a structured fluorescence spectrum with max = 590 nm (Figure 3.4). As 

we have previously mentioned, the emission comes from the DOX monomer and the decay is 

monoexponential with = 1.0 ns (2 = 1.02) and.  Addition of increasing amounts of MOFs 

determines a progressive decrease of the fluorescence intensity with no change in either spectral 

shape or decay kinetics and points to a quenching process due to ground state complex formation. 

These findings are consistent with existing literature on the non fluorescent nature of Fe(III)-DOX 

conjugates, where DOX is in an essentially basic form, and further support that binding occurs on 

deprotonation of the hydroxyanthraquinone moiety. The operative mechanism for the DOX 

fluorescence quenching might in principle involve an electron transfer with formation of radicals in 

the system or efficient intersystem crossing to the triplet manifold in the excited complex.  These 

hypotheses were not supported by nanosecond laser flash photolysis at exc = 532 nm, which did 

not reveal any transient  in the MIL-100 (Fe) suspension either alone or in mixtures with DOX.  

Back electron transfer on a subnanosecond time scale or population of an intrinsically non 

fluorescent excited state may be at the basis of the observed behaviour. 

 The decrease of the DOX fluorescence intensity on titration with the nanoMOFs can be 

used to determine an association constant. By applying Eqn 3.2 to the data of Figure 3.4, 

corrected for the variation of the DOX absorbance at the non isosbestic excitation wavelength of 

480 nm (plot of Figure 3.4B), a value Kass=1/Kdiss = (1.1 0.1)104 M-1 was extracted. This value is in 

2 DOX or 

DOX2 

DOX 

DOX 



              Chapter 3  
 

69 
 

a reasonably good agreement with that obtained by the direct method based on UV-Visible 

absorption data, described in Figure 3.4  

 

F/F0 = (F/F0)max x / (Kd + x)     (3.2) 

 

 

Figure 3.4 (A) Fluorescence spectra of DOX (2x10-6M) in absence and presence of MOF (0.06 - 0.3mg/ml) in 
TRIS buffer, excitation at 480nm, cell path length 1cm, temperature 22 °C(B) Determination  of binding 
constant by using Eqn.3.2.  

  

The chemical stability of the MIL-100(Fe)-DOX complexes was checked by inspecting at the 

spectroscopic features after 24 h. Both the UV-Vis absorption and the CD spectra remained 

essentially unchanged, indicating absence of any appreciable degradation. Controversial data exist 

in literature on the stability of Fe(III)-DOX complexes in aqueous media. A selfreduction process 

resulting in a Fe(II)-DOX+ species was proposed to occur at the -ketol group with a rate constant 

of 0.076 min-1 in experimental conditions similar to those adopted in our experiments. This 

reaction was suggested to mediate mutagenic and cytotoxic effects in living cells through Fe based 

free radical-induced oxidative stress.30-32 Although the importance of Fe(III) binding and related 

chemistry for DOX under pharmacological conditions was questioned,5  Fe(III) complexes bearing 

three DOX molecules were shown to undergo chemical modification of one bound drug molecule 

out of three.33 The fact that the MIL-100(Fe) matrix does not compromise the chemical stability of 

DOX represents a positive premise for the use of these MOFs as DOX carriers. Actually literatures 

on DOX release from the MOFs indicated that it occurs over several days by diffusion of the drug 

out of the pores. 3 
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The spectroscopic data provided evidence for DOX entrapment upon disruption of drug 

selfassociated species, shed light on the binding mechanism and afforded the association 

constants for the formation of MOF unit-DOX 1:1 complex. The establishment of highly stable 

coordination bonds to Fe(III) at the hydroxyanthraquinone DOX sites was demonstrated. The 

present findings support positive perspectives for the use of porous Fe(III)-carboxylate MOFs as 

nanocarriers for DOX delivery.  

3’-azido-3’-deoxythymidine (AZT, zidovudine, Scheme 3.4) is the first antiretroviral agent approved 

for the treatment of HIV/AIDS. It belongs to the class of the Nucleoside Reverse  Transcriptase 

Inhibitors, prodrugs that convert into their pharmacologically active triphosphate form34 by the 

action of cellular kinases and inhibit reverse transcriptase (RT), the key enzyme of HIV, responsible 

for the synthesis of proviral DNA.35 One of the main problems of these drugs is their inefficient 

intracellular conversion, which limits their therapeutic efficacy and leads to the development of 

drug resistance and systemic toxicity.36-38 Besides, direct administration of active 

triphosphorylated nucleoside analogs (NAs) is hampered by their poor stability and very low 

cellular uptake due to their highly hydrophilic character.5,37,39 Over the past years, intensive 

research has been carried out to circumvent these drawbacks using nanocarriers to protect the 

active NAs triphosphate towards degradation and deliver them inside cells.40-47  

 

Scheme 3.4 Chemical structure of 3’-azido-3´- deoxythymidine (AZT) and 3´-azido-3´- deoxythymidine-5´- 

triphosphate (AZT-TP) 
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More recently, the nanoscale iron-trimesate  MOF  material MIL-100(Fe) showed very high 

azidothymidine triphosphate (AZT-TP) loading capability (up to 24 wt%) together with controlled 

release abilities.3 In this chapter, we studied the mechanism of the complex interactions between 

AZT and its phosphate derivatives (azidothymidine monophosphate (AZT-MP) and azidothymidine 

triphospate (AZT-TP)) with MIL-100(Fe) nanoparticles (indicated in the following as “nanoMOFs”, 

see also section 3.1) by using various spectroscopic techniques such as UV-vis absorption, circular 

dichroism (CD) and asymmetric flow field flow fractionation with multiangle light scattering (AF4-

MALS). 

The UV-Vis absorption spectra of nanoMOFs (0.15 mg/mL, see section 3.1.2 for preparation of the 

suspensions), azidothymidine drugs (AZT, AZT-MP and AZT-TP (1 10-4 M)) and MOF-drug 

conjugated  systems in water and in TRIS buffer, taken within one hour after preparation of the 

mixtures, are presented in Figure 3.5A and 3.5B. In water, the absorption spectrum of empty 

nanoMOFs exhibited a maximum centered at ca. 240 nm, ascribed to transitions  of the 

trimesate  ligands, whereas the broad absorption band at ca. 330 nm, extending into the visible 

region, is relevant to ligand-to-metal charge transfer transitions (LMCT) from trimesate ions to 

Fe(III) centres (Figure 3.5A).48,49 In TRIS buffer at pH 7.4, the LMCT band of MOF appears to be red-

shifted and weaker in intensity, features that may be due to change in polarity and/or specific 

interaction with the coordinating buffer molecules (Figure 3.5B). The azidothymidine derivatives, 

in both water and TRIS buffer, display an absorption band with maximum at 267 nm, assigned to 

the B2u transition of the base conjugated ring.50  

The interaction of the AZT derivatives with nanoMOFs can be understood by comparing the 

sum of the UV spectra of the individual components with the spectrum of the mixtures. The 

possible sites available for MOF binding are predominantly the carbonyl groups of the thymine 

moiety and the phosphate groups. Their role can be appreciated in the absorption bands of the 

mixtures at 267 nm and 330 nm, respectively. In the AZT-MOF system, both in water and in TRIS 

buffer, the sum of the individual spectra exactly matches the spectrum of the mixture. This fact 

points to a very weak interaction between AZT and MOF in both media as mentioned above.  In 

contrast, the AZT phosphate derivatives in presence of MOFs exhibit non additive spectra with 

different features in water and in TRIS buffer. In water, the AZT-MP/MOF system shows an 



              Chapter 3  
 

72 
 

absorption at 267 nm weaker than that of the sum of individual spectra, whereas no such 

difference is observed at 330 nm, in agreement with prevailing interaction of the azidothymidine 

moiety with MOF; on the other hand the AZT-TP/MOF system shows an intensified absorbance at 

330 nm, but no change at 267 nm, consistent with a preferential interaction of the phosphate 

group with MOF. 

 

Figure 3.5 UV- vis absorption of MOF alone (0.15 mg/ml), drugs (AZT, AZT-MP and AZT-TP (1  10-4M)) 
alone and in the mixtures with MOF (within 1hr from preparation), cell pathlength  0.5 cm: (A)  in water; (B) 

in TRIS buffer (10-2 M, pH 7.4). (C) Circular dichroism spectra of drug (AZT, AZT-MP and AZT-TP (1  10-4M) 
alone and in the mixtures with MOF in TRIS buffer (10-2M, pH 7.4), cell pathlength 0.2 cm. Temp 22 °C. 

 

Both AZT-MP and AZT-TP replace one water molecule to interact with the iron CUS. Our 

results show that the exchange is more favourable in the case of AZT-TP than for AZT-MP. In TRIS 

buffer, both the AZT-MP-MOF and the AZT-TP-MOF systems exhibit intensified absorption at 267 

nm and at 330 nm, suggesting the interaction with MOF occurs via both the azidothymidine 

moiety and the phosphate groups. The differences in the binding mode observed in water 

between the two phosphorylated drugs tend to reduce with elapsing time, as shown by the 

absorption spectra of AZT-MP/MOF and AZT-TP/MOF systems after 24 hours in Figure 3.6. 
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Possibly, the displacement of one water molecule bound to iron CUS by AZT-TP and AZT-MP 

molecules is a kinetically controlled phenomenon. 

 

 

 
Figure 3.6 UV- vis absorption titration of (A) AZT-MP and (B) AZT-TP with MOF 0.07-0.2 mg/ml, in water, 
cell pathlength 0.5 cm; circular dichroism titration of (C) AZT-MP and (D) AZT-TP with MOF 0.07-0.2 mg/ml 
in water, cell pathlength  0.2 cm. T= 22 °C, after 24 hr from preparation. CD spectra have been smoothed.  

 

The CD spectra of AZT, AZT-MP and AZT-TP (1 10-4 M) in TRIS buffer, are presented in Figure 3.5C. 

The ellipticity profiles of the free drugs are all characterized by a positive band at ca. 270 nm, 

assigned to the B2u transition of the pyrimidine nucleoside moiety.  In the presence of 0.15 mg/mL 

nanoMOFs the intensity of this band is markedly lower in the case of AZT-MP and only slightly 

lower in the case of AZT-TP, whereas it does not modify in the case of AZT.  These findings can be 

understood by considering the dominant mechanism operative in the generation of the CD, i.e. the 

coupled oscillator mechanism, in which there is electric dipole-dipole coupling of the transition 

moments of the base chromophore with those of the ribose unit.  Both the sign and the 
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magnitude of a CD band depend on the nature and orientation of the sugar moieties relative to 

the transition dipole moment which pertains to the optical transition under consideration.51,52 It is 

the overall conformation of the nucleoside to be responsible of the observed signal. In the case of 

the pyrimidine nucleosides the CD signal in the region of 270 nm   depends on the ratio between 

the of syn and anti conformations of the thymine base in the nucleoside at the equilibrium: a 

positive signal demonstrates the prevalence of the anti conformation, a negative band the 

prevalence of the syn conformation.51  The CD spectra of the free azidothymidine derivatives in 

Figure 3.5C demonstrate the prevalence of an anti conformation. The changes observed when 

they are complexed with nanoMOFs   can be explained by a modification in the ratio of syn and 

anti populations.  Upon binding of AZT-MP and AZT-TP to nanoMOF the conformation of the sugar 

unit and, more likely, the torsion angle between the sugar and the thymine base may change 

favouring syn conformations. In the case of the AZT-MOF system, no change in the CD spectra was 

observed, in agreement with the lack of interaction between AZT and MOF revealed by the UV 

absorption spectra. 

 

Rough AZT-MP/AZT-TP-nanoMOF binding constants were estimated from UV absorption and CD 

titrations carried out at fixed concentration of the drug (1  10-4 M) varying the MOF solution 

content (from 0.02 mg/ml to 0.2 mg/ml). Expressing the MOF content in terms of Fe(III) trimer 

concentration (unit of mw 653) and assuming that there is only  a  1:1 complex   involving  AZT-

MP/AZT-TP and the Fe (III) trimer in aqueous solutions, Eqn 3.3 can be established. 

 

drug +  Fe(III) trimer                                 drug: Fe(III) trimer             K     (3.3) 

 

The association constant for the above equilibrium is represented by Eqn  3.4 

 

K = [drug : Fe(III) trimer]/[drug] [Fe(III) trimer]                                          (3.4) 

 

According to the Benesi-Hildebrand method 53 a double reciprocal plot of 1/A330 vs. 1/ 

[Fe(III) trimer]tot  is linear and the apparent binding constant can be obtained from the ratio of the 

intercept to the slope, in the hypothesis of excess of Fe(III) trimer over drug concentration.   This 

condition is not strictly fulfilled in the present case. However the double reciprocal plots always 



              Chapter 3  
 

75 
 

have fairly good linearity (Figure 3.7), and, we believe, a rough estimation of the relative affinity of 

the two phosphorilated derivatives for the nanoMOF frame in water was obtained. A list of the 

apparent K values from different titration experiments are shown in Table 3.1. The values 

obtained from UV-visible absorption and circular dichroism data agree each other.   

 

Figure 3.7  Plot of reciprocal at max vs. reciprocal iron(III) trimer concentration after 24 h   from 

preparation of the mixtures of AZT-TP (black) or  AZT-MP (red) 110-4 M and MIL-100 nanoMOFs from 0.02 
to 0.20 mg/mL, in water, cell path 0.2 cm, T = 22°C.  

Table 3.1 Apparent binding constants (K, M-1) for MOF-AZT-MP/AZT-TP complexes measured in water at 

22°C. 

Samples 
K in water, after 24 hours 

(M-1) 

AZT-TP 
3100 a 

2930 b 

AZT-MP 1340 b 

a From UV-visible absorption data. 
b From circular dichroism data. 

 

Asymmetric Flow Field Flow Fractionation (AF4, See chapter 5, Experimental) is a promising 

technique for the size-separation of macromolecular solutions and particle suspensions over a 

broad dynamic range (1 nm-50 m). The principle of this technique is based on the simultaneous 
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action of a flow stream of dispersing medium along a capillary channel and of a hydrodynamic 

field generated by a second stream of dispersing medium across the channel.  In an AF4 run, 

scattered light from size separated nanoparticles is on-line delivered to the Multi Angle Light 

Scattering (MALS) detector, which records the signal at 18° different angles as a function of elution 

time. From the angular dependence of scattered light, the Root Mean Square (rms) radius (rg) is 

then calculated. This quantity is defined as the average mean distance of the particle mass units 

from the center of gravity of the particle itself and represents the mass distribution of the particle 

from its center of gravity:     

 

 

(3.5) 

 

Data are reported as fractograms, i.e. the signal intensity at 90° with respect to the laser beam 

source plotted as a function of elution time. Small particles are eluted first, big particles are eluted 

last. The scattered dots represent the rms radius distribution, expressed in nm (right axis). A void 

peak due to unretained species, such as small molecules or very large (micron) particles can 

usually be observed (Figure 3.8) . This is an ideal methodology for the size-separation and 

characterization of complex nanoparticle samples.54
 

 

Figure 3.8  Schematic output of an AF4-MALS experiment 

  The AF4-MALS technique was applied to nanoMOFs alone (0.15mg/ml) and nanoMOF-

drug conjugates (MOF 0.15 mg/ml+AZT/AZT-MP/AZT-TP 1x10-4M) both after one hour (fractogram 

rg
2

222 
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in Figure 3.9) and after 24 hours from preparation. The  resulting particle size distribution is 

reported in Table 3.2.  In the table the Zeta-potential  of the nanoparticles is also reported. It can 

be noticed that the rms radius is the same both in absence and presence of AZT confirming this 

drug does not interact appreciably with the nanoMOF frame.  With AZT-MP and AZT-TP there is 

increase of the rms radius with respect to the nude nanoMOF, indicating that binding of these 

drugs to the nanoMOFs occurs. With AZT-TP the increase of the rms radius is larger than with AZT-

MP (ca. 16 nm vs. 10 nm).  After 24 hours the rms radius of the drug loaded nanoMOFs remains 

constant indicating the loaded nanoparticles possess good stability over time and do not 

appreciably release the bound drugs. 

 From the AF4 fractogram (Figure 3.9), it can be noticed that, the retention behaviour is 

inverted, the bigger particles (nanoMOF/AZT-TP) eluted first. This could be attributed to the 

change in the Zeta potential of the loaded nanoMOFs due to drug binding (Table 3.2). 

NanoMOF/AZT-MP and nanoMOF/AZT-TP have a higher negative charge compared to nude 

nanoMOF and nanoMOF/AZT.  Because the channel membrane has a negative charge, 

nanoMOF/AZT-TP and nanoMOF/AZT-MP particles experienced more repulsion from the 

membrane and travelled closer to the centre of the parabolic flow, compared to nanoMOF and 

nanoMOF/AZT systems. 

 

Figure 3.9 AF4-MALS fractogram of nude nanoMOF and nano MOF/drug conjugated systems within one 
hour from preparation. 
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Table 3.2 Root mean square radius distribution and zeta potential of nanoMOF free and nanoMOF/drug 
conjugates  

Sample rms (nm)  Zeta potential 
(mV) 

 

1 hour 24 hours 

MOF  80.79 ± 2.16  85.59 ± 2.22  +10 

MOF/AZT  80.78 ± 2.19  80.37 ± 3.11  - 

MOF/AZT-MP  90.19 ± 2.03  89.75 ± 2.22  -15 

MOF/AZT-TP  96.78 ± 2.38  96.37 ± 2.21  -40 

 

This study clearly evidenced the key role of the phosphate groups of nucleoside analogues for 

their effective encapsulation within MIL-100 (Fe). Indeed, in the absence of phosphate groups, as 

in the case of AZT, no significant interaction takes place with the MOF nanoparticles. After 

incubation with AZT-MP and AZT-TP in aqueous solutions an intensified absorption is observed in 

the system at around 330 nm, relevant to LMCT transitions. However, AZT-MP, bearing a single 

phosphate groups, showed lower nanoMOFs binding affinity as compared to the 

triphosphorylated AZT compound (K =1340 M-1 vs 2930 M-1). The interaction with the nanoMOFs 

was ensured in both cases by the formation of iono-covalent bonds between the drugs phosphate 

groups and the nanoparticles available iron sites. AF4-MALS experiments provided information 

about homogeneity and stability of the system. An increased rms radius distribution is observed in 

drug-loaded nanoparticles keeping stable over 24 hours.  
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Artemisinin (ART, Scheme 4.1), the parent term of the trioxane drug family, is the most effective 

antimalarial drug currently available to treat multidrug resistant forms of Plasmodium 

falciparum.1-3 For this drug  an  anticancer activity has also been documented.2 Besides its 

promising results such as high efficacy and rapid action, ART suffers a lot of technological and 

biopharmaceutical issues, mainly poor bioavailability and low solubility both in aqueous media and 

oils. In addition, this drug has short half-life and it easily decomposes, most probably by the 

opening of the lactone ring. One of the strategies to avoid these problems is the development of a 

suitable carrier system.4-7  Different reports have shown an increase in the solubility of ART by 

using using CyD as carrier.4-7  Moreover,  a study of the interaction of ART with -CyD by circular 

dichroism has shown the peroxidic group keeps well outside the cavity in the complex, thus the 

CyD may be believed not to interfere with the pharmacological action related to this molecular 

functionality.8  This chapter deals with the interaction of ART with the p-CyD-epichlorohydrin 

crosslinked polymer (see also Chapter 2 ).  In addition, a study of photocontrolled guest binding to 

a bis(-CyD) bearing  an azobenzene as the linker was carried out with ART as model system.  

 

Scheme 4.1 Chemical structure of artemisinin (ART) 
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 

Synthesis of the p-CyD-epichlorohydrin crosslinked polymer (p-CyD) is briefly explained in 

Chapter 2. The -CyD content of the polymer is 77 % w/w and the average molecular weight is 

2.1105 g/mol. This material is highly soluble in water (more than 100 mg/mL) where it exists in 

the form of nanoparticles of < 15 nm diameter (see Chapter 2 for literature relevant to polymer 

synthesis and characterization).  

 For the evaluation of p-CyD as delivery platform for ART we have investigated the 

incorporation of the drug within the polymer nanoparticles, performing accurate UV-vis 

absorption and circular dichroism (CD) titrations. We have evidenced association of ART to the -

CyD units of the polymer network and determined apparent binding constants by global analysis 

of multiwavelength CD data. In the discussion  of the present results   previous data by  G. Marconi 

et al. were considered.8  

The absorption spectrum of ART 110-5 M in aqueous solution (5% MeOH) is characterized by an 

intense absorption band with maximum below 200 nm (not accessible) and a long tail extending 

beyond 300 nm, with shoulders at ca. 230 (log  2.3) and ca. 260 nm (log  2).  

The intrinsic circular dichroism (CD) spectrum of ART is very weak and is characterized by 

two bands, one positive with a maximum at 260 nm (0.2 M-1cm-1
) and one negative with max 

= 230 nm (0.4 M-1cm-1). Noticeably the presence of p-CyD in water makes ART able to 

solubilise easily up to concentrations of ca. 10-3 M. Figure 4.1A shows the CD spectra obtained 

from a series of samples corresponding to different ART concentrations in presence of 25 mg/mL 

p-CyD, corresponding to a maximum concentration 1.5510-2 M in -CyD units. Global analysis 

based on SPECFIT/32 was applied. A formal 1:1 stoichiometry with the -CyD unit of the polymer 

was assumed and an association constant log (K11/M-1)  2 (DW factor 1.7) was derived. The 

absolute CD spectrum of the complex is reported in Figure 4.1B together with the spectra 

reported  by Marconi et al. for ART in  some alcoholic solvents and in the -CyD complex.8 It is 

worth noticing that the shape of the CD spectra of ART in p-CyD is not qualitatively different from 

those in homogeneous solvents. This effect was observed also with  CyD and  was attributed to 

an induced chirality just  superposed to the intrinsic one without  negative interferences; it was 

also shown8 that the intensity of the 230 nm  CD band is in fair linear correlation with the 
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Reichardt’s ET(30) parameter9 (a measure of the ionising power of a solvent) of the medium.   The 

size of  at 230 nm in the p-CyD complex (see Figure 4.1C) formally corresponds to a medium of 

ET(30)  51.2, very different from water (ET(30) = 63.1) and the -CyD complex (ET (30)  60)8 and 

similar to ethanol (ET(30) = 51.9), methanol (ET(30) = 55.4) and n-butanol (ET(30) = 49.7). It can be 

therefore concluded that ART penetrates in the interior of the p-CyD nanoparticle, where it 

experiences an alcohol-like environment, considerably less hydrophilic than in the -CyD complex, 

where ART accomodates close to the secondary rim of the macrocycle and is largely exposed to 

water.8  

 

Figure 4.1 (A) Induced circular dichroism of ART 510-6, 110-5, 210-5, 510-5, 110-4, 210-4, 510-4, 810-4 

in presence of 25 mg/mL p-CyD in water at 22 °C. Cell pathlength 1 cm, reference is the p-CyD solution. 

(B) Absolute CD spectrum of the ART: p-CyD complex (red) compared to those in other media, taken from 
ref. 6 (C) Circular dichroism signal at 230 nm of ART vs. ET(30) of various media at 22 °C. Data for 

homogeneous solvents andCyD complex are taken from ref. 8 

 

The polymericCyD-based nanoparticles revealed to be able to load the strongly hydrophobic 

and bulky ART, which was likely incorporated deeply into the nanoparticle frame. The apparent 
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binding constants with pCyD determined for ART is rather low, but this is most likely a 

consequence of the assumption of a simplified model for the structure of the host in the analysis 

of the equilibrium, neglecting its nanostructured organization. In spite of this approximation, 

multivariate global analysis of multiwavelength CD titration data revealed to be a powerful tool to 

extract the spectroscopic features of the bound drug and probe the environment. Spectroscopic 

and photophysical data with ART consistently indicated an alcohol-like character for the interior of 

the polymer nanoparticles. 

 



In the drug delivery field the achievement of efficient encapsulation of drugs into a stable carrier 

and release under control is still a challenge. The possibility to control guest association and 

release from a supramolecular device  is also of large interest for other nanotechnological 

applications.  Among the external stimuli which can be employed to drive these systems, light is 

one of the most useful. Thus photoswitchable hosts are expected to find application in light driven 

functional materials and, possibly, become part of photocontrolled drug delivery vehicles. 

 Azobenzene is extensively used in photoresponsive supramolecular devices because of its 

high chemical stability, absorption in the visible wavelength region and efficient reversible cis-

trans photoisomerisation.  bis(-CyD) derivatives bearing a covalently linked azobenzene moiety   

have been recently prepared. 10     Gaining insight into the modes of guest association in these 

systems and checking for the possibility of light control of guest release appears to be of 

significance.  

 In this section, we present a study of the association of artemisinin  (ART) to a  bis(-CyD) 

derivative  with an  azobenzene 6-6’ linker in aqueous solution (CyD2-AB, Scheme 4.2)10 by circular 

dichroism (CD) and discuss about  the effect of light irradiation on this process. ART does not 

absorb significantly above 300 nm, thus the choice of it as guest in the present study allowed 

selective optical monitoring of the bis(CyD) host in the 300-600 nm absorption range of the linker.  

The use of CD spectroscopy also revealed to be particularly useful for detecting  the light induced 

conformational changes  in the host, at low concentrations, because the asymmetric CyD 

environment is able to induce an optical activity in the azobenzene linker, that is not chiral itself, 

and the induced CD signal is sensitive to  the trans or cis configuration of the chromophore. 
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Scheme 4.2 Schematic structure of 4,4’-bis(6’-O-cyclomaltoheptaosyl)azobenzene (CyD2-AB, received from 
Prof. Antonio Vargas-Berenguel, University of Almeria, Spain.)  

 

Spectroscopic measurements were recorded at constant CyD2-AB host concentration and varying 

the ART concentration. The solubility of ART in pure water is rather poor (solubility limit is 4.3 x 10-

3M at 37 oC).11 In order to study the CyD2-AB complexation equilibrium in TRIS buffer, we 

performed CD titration experiments by varying the ART concentration in the range 110-4 - 110-

3M and keeping the CyD2-AB concentration fixed at 10-4M or 10-3M.   A concentrated solution of 

ART in ethanol was prepared and known aliquots were introduced in suitable flasks, the solvent 

was removed by evaporation, then a known volume of the CyD2-AB aqueous solution was added 

to each flask to obtain the required ART concentration.   

Figure 4.2A shows the absorption spectrum of the CyD2-AB host 10-4 M in TRIS buffer 0.01 

M pH 7.4. The n* S0S1 band, formally forbidden and due to promotion of lone pair electrons of 

the trans-azobenzene linker, appears as a shoulder at ca. 430 nm (log   3.3-3.5), the * band 

relevant to the allowed S0S2 transition is the most intense and has max = 360 nm (log = 4.2), 

whereas a lower intensity band is present at 244 nm (log = 3.9). A reasonable model for CyD2-AB 

is  trans-4,4’-dimethoxyazobenzene whose spectral features have been reported to be similar,12 

although somewhat higher molar absorption coefficients in the * S0S2 band have also been 

reported for the same molecule. 13  For this reason we cannot exclude to have some cis form in 

solution and safely consider the given molar absorption coefficients (Figure 4.2A) as apparent 

values for the trans form. The CD spectrum of CyD2-AB is (Figure 4.2A) characterized by positive 

peaks at 252 and 364 nm and negative peaks at 320 and 416 nm. They are approximately located 

in correspondence of maxima/shoulders in the absorption spectrum and are assigned to the 

azobenzene linker. The two CyD moieties themselves may contribute somewhat below 230 nm. 
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Figure 4.2 Apparent molar absorption coefficients (solid line) and CD (symbol) calculated for the 
CyD2-AB host in TRIS buffer 0.01M at pH 7.4: (A) for a 10-4 M solution prepared in the dark (mainly trans). 
(B) for the same solution irradiated at 363 nm up to the photostationary state (mainly cis).The reference 
was TRIS buffer. 

The spectroscopic features of CyD2-AB in the cis configuration can be qualitatively 

appreciated upon photoirradiation of a solution of the trans form at 363 nm, until the 

establishment of the stationary state for the trans-cis photochemical equilibrium. It is well known 

that in azobenzenes the photostationary state (pss) for irradiation at irr close to the  

absorptionmax of the * S0S2 band of the trans isomer, contains the cis isomer as largely 

predominant form.  For example, for azobenzene the pss for irradiation at 317 nm in aqueous 

medium is [cis]/[trans]  5.14,15 Because methoxysubstituted azobenzenes are not expected to 

behave much differently from azobenzene, we can safely assume to have the cis-CyD2-AB as the 

predominant form in the irradiated solution. Thus  we attribute the absorption and CD spectra in 

Figure 4.2B mainly to the azobenzene linker in  cis configuration, with an intense positive band at 

440 nm, due to the n* S0S1 electronic transition, an intense 324 nm negative band, due to the 

S0S2  * transition,  and a positive band peaked at 252 nm. In this case the coincidence 

between the maxima/minima of the CD and the maxima of the absorption bands is very good. 

Figure 4.3A shows the CD spectra obtained from a series of samples corresponding to 

different ART concentrations from 510-5 M to 110-3 M in presence of a constant 10-4 M 

concentration of trans CyD2-AB.  Analysis of the complexation equilibrium was performed in the 

300-600 nm range using the whole set of CD spectra with a multivariate, multiwavelength, global 

fitting procedure based on SPECFIT/32 (see chapter 5, Experimental).  In this spectral window 

guest binding can be followed selectively inspecting at the linker CD modifications. The best fit was 

found for formation of a 1:1 stoichiometry complex with log (K11/M-1) = 4.1  0.1 (DW 1.5). The 

absolute CD spectrum of the complex was also retrieved from the analysis (Figure 4.3B).    
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Compared to that of the free host it appears much more intense both in the positive peak at 363 

nm (* transition) and in the negative peak at 426 nm (n,* transition). The latter is red shifted 

by 10 nm.  

Figure 4.3C shows a titration experiment in which the 10-4 M trans CyD2-AB solution was 

previously  irradiated at 363 nm up to the pss,  in order to obtain the cis CyD2-AB as predominant 

host form in solution (see spectra in Figure 4.2B); then titration with ART was carried out.  In this 

case the CD spectra did not change on increasing the ART concentration, clearly showing that the 

cis CyD2-AB host does not appreciably interact with the drug.  ART displays complete selectivity for 

the trans host configuration.  The latter, interestingly, is not affected by ART association as regards 

the efficiency of photoconversion to the cis form. Indeed the same CD intensity is measured upon 

irradiation of trans host followed by addition of ART  or irradiation of the trans host-ART mixture ( 

Figure 4.3D).   

The irradiated CyD2-AB-ART mixtures stored in the dark at 22°C  (for 2 days) showed partial 

recovery of the absorption at 363 nm and CD evolution, consistent with thermal conversion of the 

cis host back to the trans configuration. The process can be accelerated by visible light, using a irr  

at which the absorption coefficients of the cis  are higher than those of the trans host.  These 

results suggest that control of ART uptake/release in solution is feasible through the trans-cis  

isomerization of the azobenzene linker. 

Comparing the association constant of ART  to  trans CyD2-AB with  that to natural -CyD  in 

1:1 stoichiometry (log (K11/M-1)= 2.4)8 we see the affinity is much higher for the present host.  ART 

is not able to penetrate deeply into the -CyD cavity but, as shown by molecular modelling8, 

locates close to the secondary  rim. In the present case ART reasonably locates in the inner space 

between the primary rims of the two CyD moieties, where cooperative effects between the two 

CyD macrocycles and a direct interaction with the azobenzene linker, in particular with the N=N 

bond lone pairs,  may take place.  Consistently the CD bands corresponding to the electronic 

transitions of the azobenzene chromophore acquire an important induced contribution from the 

chiral  ART centers in close proximity (Figure 4.3B). The observation that CyD2-AB in the cis 

configuration is not capable of binding ART suggests a large scale change in the conformation,   

leading to loss of cooperativity between the two CyD moieties.  
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Figure 4.3 (A) Ellipticity changes of trans CyD2-AB 1.010-4 M in Tris buffer 0.01M at pH 7.4, titrated with 

RT in the concentration range 5.010-5 M - 1.0 10-3 M, cell pathlength  0.1 cm; (B) Absolute CD spectra of 
ART (dashed line, from ref.8, free trans CyD2-AB (black solid line),  1:1 complex (grey solid line).  (C) In the 

same conditions, ellipticity changes of cis-enriched CyD2-AB 1.010-4 M solution irradiated at 363 nm and 

then titrated with ART, cell pathlength 0.2 cm. (D) trans CyD2-AB 2.010-4 M, ART 2.010-4 M, cell 

pathlength 0.2 cm: mixture prepared in the dark then irradiated with light at> 295 nm up to pss (black 
solid line);  trans CyD2-AB alone irradiated similarly and then mixed with ART. Temperature was 22 °C in all 
experiments. 

The system shows a more complex binding behaviour at higher host concentrations. A CD 

titration of 10-3 M trans CyD2-AB with ART (data not shown) indicated formation of a complex with 

2:1 CyD2-AB:ART stoichiometry  and  log (K21/M-2) =  6.7  0.3 (DW 1.98). The existence of such 

complex was also confirmed by a continuous variation experiment (Figure 4.4A),16 performed at 

10-3 M total CyD2-AB+ART concentration. The absolute value of the ellipticity at 426 and 362 nm, 

associated to the complexation progression, was corrected subtracting the CyD2-AB intrinsic 

signaland || was plotted vs. the host molar fraction. The plots are characterized by a broad 

asymmetric bell-shape profile with maximum at ca. 0.6 molar fraction of host. This indicates a 

significant presence of 2:1 complexes in the equilibrium mixture. Work is in progress to study the 
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ART complexation process in cis-enriched CyD2-AB concentrated solutions and check for the 

possibility of photocontrolled ART release from the 2:1 complex. 

 

Figure 4.4 (A) Ellipticity changes in a continous variation experiment for [trs CyD2-AB + ART]  = 1.010-3 M, 
cell pathlength 0.1 cm, 22°C; (B)  Modified Job plot of absolute value of ellipticity change at 426 and 362 

nm, after subtraction of the signal of host alone.   

We have shown that a light responsive bis(-CyD) derivative  with an  azobenzene 6-6’ linker 

(CyD2-AB, Scheme 4.2) has a binding affinity controllable by light.  This host is able to form a 

strong 1:1 complex with artemisinin (ART) when the Azobenzene bridge is in the trans 

configuration.  Irradiation with light at 363 nm switches the linker from the trans to the cis 

configuration and the latter shows a complete loss of affinity for ART.   The difference in the 

binding ability between the two geometrical isomers of CyD2-AB suggests that light induced 

uptake/release of ART in aqueous solution is feasible through the photoisomerization reaction.   

This model system demonstrates that azobenzene linked bis(-CyD)s carriers may represent  

useful tools for  photocontrolled  capture and release of guests. 

1. Li, J.; Zhou, B. Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies. 

Molecules 2010, 15, 1378-1397. 

2. Chaturvedi, D.; Goswami, A.; Saikia, P. P.; Barua, N. C.; Rao, P. G. Artemisinin and Its Derivatives: A 

Novel Class of Anti-Malarial and Anti-Cancer Agents. Chem. Soc. Rev. 2010, 39, 435-454. 



              Chapter 4  
 

93 
 

3. Kumar, N.; Sharma, M.; Rawat, D. S. Medicinal Chemistry Perspectives of Trioxanes and 

Tetraoxanes. Curr. Med. Chem. 2011, 18, 3889-3928. 

4. Wong, J. W.; Yuen, K. H. Improved Oral Bioavailability of Artemisinin through Inclusion 

Complexation with Beta- and Gamma-Cyclodextrins. Int. J. Pharm. 2001, 227, 177-185. 

5. Zime-Diawara, H.; Dive, G.; Piel, G.; Moudachirou, M.; Frederich, M.; Quetin-Leclercq, J.; Evrard, B. 

Understanding the Interactions between Artemisinin and Cyclodextrins: Spectroscopic Studies and 

Molecular Modeling. J. Inclusion Phenom. Macrocyclic Chem. 2012, 74, 305-315. 

6. Marconi, G.; Monti, S.; Manoli, F.; Degli Esposti, A.; Guerrini, A. Circular-Dichroism Studies on 

Artemisinin and Epiartemisinin and Their Beta-Cyclodextrin Complexes in Solution. Helv. Chim. Acta 

2004, 87, 2368-2377. 

7. Isacchi, B.; Bergonzi, M. C.; Grazioso, M.; Righeschi, C.; Pietretti, A.; Severini, C.; Bilia, A. R. 

Artemisinin and Artemisinin Plus Curcumin Liposomal Formulations: Enhanced Antimalarial Efficacy 

against Plasmodium Berghei-Infected Mice. European Journal of Pharmaceutics and 

Biopharmaceutics 2012, 80, 528-534. 

8. Marconi, G.; Monti, S.; Manoli, F.; Degli Esposti, A.; Mayer, B. A Circular Dichroism and Structural 

Study of the Inclusion Complex Artemisinin-Beta-Cyclodextrin. Chem. Phys. Lett. 2004, 383, 566-

571. 

9. Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319-2358. 

10. Casas-Solvas, J. M.; Martos-Maldonado, M. C.; Vargas-Berenguel, A. Synthesis of Beta-Cydodextrin 

Derivatives Functionalized with Azobenzene. Tetrahedron 2008, 64, 10919-10923. 

11. Jung, M. K.; Lee, K.; Kendrick, H.; Robinson, B. L.; Croft, S. L. Synthesis, Stability, and Antimalarial 

Activity of New Hydrolytically Stable and Water-Soluble (+)-Deoxoartelinic Acid. J. Med. Chem. 

2002, 45, 4940-4944. 

12. Gore, P. H.; Wheeler, O. H. Absorption Spectra of Aromatic Azo and Related Compounds. Iii. 

Substituted Azobenzenes. J. Org. Chem. 1961, 26, 3295-3298. 

13. Fabian, J.; Hartmann, H., Light Absorption of Organic Colorants. Springer Verlag: Berlin - Heidelberg, 

1980; Vol. 12. 

14. Bortolus, P.; Monti, S. Cis-Trans Photoisomerization of Azobenzene - Solvent and Triplet Donor 

Effects. J. Phys. Chem. 1979, 83, 648-652. 

15. Siampiringue, N.; Guyot, G.; Monti, S.; Bortolus, P. The Cis-]Trans Photoisomerization of 

Azobenzene - an Experimental Reexamination. J. Photochem. 1987, 37, 185-188. 

16. Job, P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chim. 1928, 9, 113-203. 

 



              Chapter 6  
 

94 
 

Doxorubicin (DOX,  ALEXIS Biochemicals), -Cyclodextrin (-CyD, Fluka), Artemisinin (ART, Aldrich), 

Azido 3’-deoxythymidine (AZT, Moravek),  Azido-3’-deoxythymidine-5’-monophosphate (AZT-MP, 

Carbosynth) and  Azido-3´-deoxythymidine-5´-triphosphate (AZT-TP, TriLink) were used without 

further purification. Water was purified by passage through a Millipore MilliQ system. PBS buffer 

(0.01M, pH 7.4) and TRIS buffer (0.01M, pH 7.4) were prepared in the laboratory. 

Several materials for my studies were obtained from CYCLON community network program. The 

epichlorohydrin--CyD  copolymer (p-CyD) and iron trimasate nano MOF were prepared by the 

group of Dr. Ruxandra Gref, UMR-CNRS,France and some detail of preparation is in Chapter2 and 

Chapter3. The citric-acid--CyD polymer was prepared by Milo Malanga (CYCLOLAB) in 

collaboration with the group of Prof. Antonio Vargas-Berenguel and some detail of preparation is 

in Chapter2.The azobenzene-linked bis -cyclodextrin (CyD2-AB) was given byProf. Antonio Vargas-

Berenguel and details of preparation are in ref.10 of Chapter4 

MIL-100 (Fe) was stored in the dark at room temperature as ethanol wet material. An aliquot of it 

was dispersed in a few milliliters of ethanol. The suspension was centrifuged (10 min, 10000 rpm) 

and washed two times with tridistilled water and one time with TRIS buffer (10-2 M, pH 7.4) to 

remove traces of ethanol. Aliquots of the resulting centrifugate was suitably dispersed in TRIS 

buffer and used for the preparation of individual samples. MOF alone suspensions and mixtures 

with DOX and azidothymidine derivatives were gently stirred for 30 min to attain a steady 

condition before use and were kept under stirring during the time span of all the experiments.  
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UV-Visible absorption spectra of CyD’s and CyD-drug samples were recorded on Perkin-Elmer 

Lambda 650 or Lambda 950 spectrophotometers. All the measuremets were done in 1 cm, 0.5 cm 

or 0.2 cm pathlength cells at intervals of 1nm using water, TRIS, PBS or CyD as the reference 

UV-visible absorption spectra of nano MOF and nano MOF-drug mixtures were measured 

on Perkin-Elmer Lambda 9 spectrophotometer equipped with an integrating sphere to measure 

the true absorption spectra free from light scattering contribution of nano MOFs. All the 

measurements were done in 0.5 cm path length cell at intervals of 1 nm, using water, TRIS buffer 

or nano MOF as the reference. 

 

The circular dichroism (CD) spectropolarimeter measures the differential absorption of left and 

right circularly polarized light (A = AL - AR) and generally reports it in terms of ellipticity.1  

 

Scheme 5.1 Schematic representation of differential absorption of left-and right hand polarized 
components leads to ellipticity 

When circular dichroism occurs, the two circularly polarized components emerging from the 

sample possess not only a phase difference but also different amplitudes. The polarization of the 

radiation corresponding to their composition is no longer circular but elliptical, the tip of the 

electric field vector, projected in a plane perpendicular to the travelling direction of the wave, 
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describes an ellipse. The different absorption experienced by the two circularly polarized 

components is expressed by means of the ellipticity θ, defined as the angle whose tangent is equal 

to the ratio between the minor (m) and the major (M) axes of the ellipse 

            (5.1) 

A CD signal will be observed when the chromophore is optically active due to intrinsic chirality or is 

placed in an asymmetric environment.   

The CD spectra of the drug-host mixture were measured by means of a Jasco J-715 

dichrograph. The spectra were registered in 0.5 or 0.2 cm pathlength quartz cuvettes, with 3-5 

accumulations at a scan speed of 50 nm/min to improve signal to noise ratio. The signal of the 

medium (TRIS buffer 0.01 M, pH 7.4 for drug free, CyD or MOF solutions of same concentrations 

for drug-host mixtures), were subtracted.  

 

Steady state fluorescence experiments of -CyD and MOF-drug samples were registered in air-

equilibrated solutions in 1 cm standard cells on a SPEX Fluorolog 111 spectrofluorimeter. 

The p-CyD-DOX and p-CyD-DOX samples were registered in cells with triangular section. 

The excitation beam was incident at 45 °C onto the “diagonal” cell surface and the emission was 

collected at a right angle; suitable filters were used to cut the excitation light. No polarizers were 

used. Fluorescence quantum yields were measured with excitation at 550 nm in solutions with 

absorbance of 0.09 for 1 cm pathlength. A fluorescence quantum yield of 0.039 was determined 

for DOX 110-5 M in neutral phosphate buffer at 22 °C with Ru(bpy)3Cl2 as reference = 0.028, in 

air equilibrated solution). The quantum yields of DOX emission in the various complexes or in 

different environments were determined using the quantum yield of DOX 110-5 M in buffer as 

reference. 

 

Fluorescence lifetimes in air-saturated solutions were measured with a time correlated single 

photon counting system (IBH Consultants Ltd.). A nanosecond LED at 465 nm was used as the 

excitation source and the emission was collected at a right angle at 590 nm. The software package 
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for analysis of emission decays was provided by IBH Consultants Ltd. Decay profiles were fitted 

using a multiexponential function and deconvolution of the instrumental response. 

 

I(t) = i aiexp(-t/i)       (5.2) 

 

fi = (aii)/ j(ajj)        (5.3) 

 

The pulse of a Nd-YAG laser, operating at 532 or 266 nm (20 ns FWHM, 2 Hz), was suitably shaped 

passing through a rectangular, 3 mm high and 10 mm wide window, and providing a fairly uniform 

energy density, incident onto the sample cell (a pulse of 3.5 mJ at 266 nm corresponds to 12 

mJ/cm2). A front portion of 2 mm of the excited solution was probed at right angle, the useful 

optical path for analyzing light being 10 mm. A266 was ~ 0.5-1 over 1 cm. Ar-saturated solutions 

were used. The sample was renewed after few laser shots. Temperature was 295 K. 

Confocal fluorescence imaging was performed on an inverted Nikon A1 laser scanning confocal 

microscope equipped with a CW argon ion laser for excitation at 457, 488 and 514 nm (Melles 

Griot, 40 mW), and a diode laser for excitation at 405 nm (LDH-D-C-405 of Picoquant GmbH Berlin, 

Germany) operating both in continuous mode (50 mW) and pulsed at 40 MHz (1.0 mW average 

power for pulse FWHM of 70 ps). Confocal fluorescence imaging was carried out on the samples at 

room temperature. The images were collected using a Nikon PLAN APO VC 60× NA 1.40 oil 

immersion objective. Images of 512 X 512 or 1024 X 1024 pixels have been acquired applying scan 

speed of 1 frame in 2-8 s and pixel dimension of the xy plane falls in the range 0.1-0.4 m. 

Hexagonal pinhole dimension was set to 0.8-1.0 au corresponding to 25-38 m and optical 

thickness of 330-440 nm. Two dichroic mirrors reflecting either 405, 488, 541 and 640 nm or 457 

and 514 nm were used. Bandpass filters in front of the PMT selected fluorescence in the ranges 

425-475 nm, 500-550 nm and 570-615 nm. Spectral imaging was done with Nikon 32-PMT array 

detector with resolution varying from 6 to 10 nm per channel and a 20/80 beam splitter instead of 

dichroic mirror. For fluorescence lifetime imaging a time-correlated single photon counting 

(TCSPC) system of Picoquant GmbH Berlin was used exciting at 405 nm. Photons were detected in 
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TTTR mode with two Single Photon Avalanche Diodes manufactured by Micro Photon Devices 

(MPD), Bolzano, Italy. Fluorescence was filtered with the opportune fluorescence SEMROCK 

bandpass filters 520/40 nm, and 585/40 nm. PicoHarp 300 photon processor completes the TCSPC 

system. SymPhoTime v. 5.1 analysis software was used for image processing and lifetime fitting. A 

tail fit with multi-exponential functions was performed to analyze fluorescence decays of selected 

ROI. The system allowed measurement of fluorescence lifetimes from 300 ps up to several 

nanoseconds. 

AF4-MALS is an effective technique for the size separation and detection of nano sized analytes. 

The separation system consists of two plates, separated by a spacer foil and the plates are bolted 

together. The upper channel plate is impermeable and the bottom plate is permeable and is made 

of a porous frit material.  An ultrafiltration membrane with a typical size barrier of 10 kD, covers 

the bottom plate to prevent the sample from penetrating the channel.  First, the sample is 

introduced into a solvent stream which is injected into the channel and is focused in the channel 

region near the injection port. This is achieved by splitting the channel flow into two components, 

each of which enters the channel from opposite ends. The flows are adjusted so that they meet 

close to the injection port and at this point the flow direction is perpendicular towards the porous 

bottom of the channel. The sample is driven towards the bottom wall and concentrated close to 

the membrane. Diffusion associated with Brownian motion creates a counteracting motion. 

Within a couple of minutes a stationary equilibrium is established, in which the two forces balance 

out for each particle size at a different distance from the bottom wall. Smaller particles, which 

have higher diffusion rates and are subject to lower friction force, reach an equilibrium position 

further away from the bottom wall. Bigger particles or molecules will be driven closer to the 

bottom wall.2 This is exactly the opposite of a size exclusion (SEC) separation in which the large 

molecules elute first.2 
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Scheme 5.2 Schematic representation of AF4 (Adapted from Ref 3) 

AF4 measurement was performed using an Agilent 1100 liquid chromatography system 

(Agilent Technologies, Palo Alto, CA) equipped with an Eclipse 3 separation system (Wyatt 

Technology, Europe, Dernbach, Germany). Polyethersulfone (PES) membranes with 10 KDa 

molarmass cut-off were used as accumulation wall. Online detection of the eluted species was 

performed with DAWN HELEOS MALS (Wyatt technology Corporation, Santa Barbara, CA) and an 

Optilab rEX RI detector (Wyatt Technology Corporation). The software package Wyatt Eclipse @ 

ChemStation Version B.03.01 (Wyatt Technology Europe) was used to set and control the flow rate 

values and the PDA detectors.4 All the measurements were performed using water as dispersant 

medium for nano MOF and as carrier liquid. 

 

The receptor-ligand complexation equilibria were investigated by performing spectroscopic 

titrations.  The best complexation model and the association constants were determined by 

multivariate global analysis of multiwavelength data from a series of 9-11 spectra (UV-vis  

absorption, CD or FL titration data) corresponding to different mixtures, using the commercial 

SPECFIT/32 (v.3.0.40, TgK Scientific) program.5,6 Multiwavelength spectroscopic data sets 

(absorbances, ellipticities, fluorescence intensities) are arranged in matrix form Y, where a number 

Nw of wavelengths and a number Nm of corresponding measured spectroscopic signals are 

ordered in columns, whereas ligand and receptor concentrations are inserted in rows. Thus each 

element of the data matrix Yij corresponds to a wavelength j and an experimental quantity 
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(absorbance, circular dichroism, fluorescence intensity) for a given couple of concentrations i of 

ligand and receptor (typically in our experiments one of them is kept constant). A least square best 

estimator Y’ of the original data Y is reconstructed as the eigenvector representation Y’ = USV, 

where S is a vector that contains the relative weights of the significant eigenvectors (Ne, number 

of significant eigenvectors), U is a matrix (NmNe) of concentration eigenvectors (UT
U=1, 

orthonormal) and V (NeNw) is a matrix of spectroscopic eigenvectors (VVT, orthonormal). This 

Y’ matrix contains less noise than Y because the SVD procedure can factor random noise from the 

principal components. This reconstructed data matrix Y’ is utilized in the global fitting instead of 

the original data matrix Y. Complexation equilibria are solved assuming a complexation model (i.e. 

contemporary presence of a number of complexes of given stoichiometries in equilibrium with 

free species in solution) and optimizing the numeric combination of all the spectroscopic 

contributions to best reproduce the Y’ signals.  The analysis relies mainly to absorption data, but 

also CD and fluorescence data may be analysed, in the latter case provided they are relevant to 

optically thin samples (linear dependence of fluorescence signal on concentration for all the 

species involved).  Given the direct linearity between experimental signal and concentration and 

the relation that must exist between the concentrations of the various species in the postulated 

simultaneous equilibria, the program calculates the conditional association constants and the 

spectra of the complexes based on a non linear least square fit, using the Levenberg-Marquardt 

algorithm,   to best reproduce the experimental data for all the explored wavelengths and ligand-

receptor concentration couples. The quality of the fits was evaluated on the basis of their Durbin-

Watson (DW) factor and the relative error of fit. The DW test is very useful to check for the 

presence of auto-correlation in the residuals. This method is recommended for systematic misfit 

errors that can arise in titration experiments. It examines the tendency of successive residual 

errors to be correlated. The Durbin-Watson statistics ranges from 0.0 to 4.0, with an optimal mid-

point value of 2.0 for uncorrelated residuals (i.e. no systematic misfit). In contrast to the 2 (Chi-

squared) statistics, which requires the noise in the experimental data is random and normally 

distributed, the DW factor is meaningful even when the noise level in the data set is low. Since the 

factorized data usually have a significantly lower noise level than the original data, DW test is ideal 

for the present type of data. 

We applied this method to analyze UV-visible absorption, CD and FL titration experiments. 

Below as an example we describe the analysis of the titration of DOX with p-CyD with CD 
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monitoring in the region 250-600 nm (Figure 2.11B). In the calculation the dimerization constant 

of DOX has been fixed as log(Kdim/M-1)= 4.84 and the formation of a 1:1 complex was  assumed. 

 [FACTOR ANALYSIS] 

Tolerance = 1.000E-09 

Max.Factors = 10 

Num.Factors = 5 

Significant = 2 

Eigen Noise = 3.220E-01 

Exp't Noise = 1.610E-01 

 #   Eigenvalue  Square Sum  Residual    Prediction 

 1   1.383E+05   3.115E+03   1.217E+00   Data Vector 

 2   2.897E+03   2.181E+02   3.220E-01   Data Vector 

 3   1.532E+02   6.488E+01   1.756E-01   Possibly Data 

 4   3.258E+01   3.230E+01   1.240E-01   Probably Noise 

 5   1.741E+01   1.489E+01   8.418E-02   Probably Noise 

 

[MODEL] 

Species = 4 

Parameters = 4 

 

[SPECIES]         [COLORED]           [FIXED]      [SPECTRUM]  Notes 

1 0 0                      False           False                                 CyD unit  

0 1 0                      True           True           FIXED   DOX monomer 

1 1 0                      True           False                                 1:1 complex 

0 2 0                      True           False                                 DOX Dimer 

 

[SPECIES]          [FIXED]         [PARAMETER]      [ERROR] 

1 0 0                      True           0.00000E+00   +/-  0.00000E+00 

0 1 0                      True           0.00000E+00   +/-  0.00000E+00 

1 1 0                      False           2.25747E+00   +/-  1.54188E-01 

0 2 0                      True           4.84000E+00   +/-  0.00000E+00 

 

[CONVERGENCE] 

Iterations = 3 
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Sum(Y-y)^2 Residuals = 1.71089E+01 

Std. Deviation of Fit(Y) = 9.01540E-02 

[STATISTICS] 

Experimental Noise = 9.754E-02 

Relative Error of Fit = 2.7188% 

Durbin-Watson Factor = 2.7187 

Goodness of Fit, Chi^2 = 8.542E-01 

[COVARIANCE] 

1.817E-01 

[CORRELATION] 

1.000E+00 
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This thesis work mainly deals with the application of electronic UV–vis absorption, circular 

dichroism and fluorescence to the study of the non covalent interaction between some drugs and 

some nanostructured hosts, to be evaluated as potential carriers in pharmacological applications. 

Two host systems have been examined in aqueous media, cyclodextrin-based polymers and 

nanoparticles of Metal Organic Frameworks (MOFs), provided by partners in the EU-ITN-CYCLON 

network. The drugs taken into consideration have been the anticancer doxorubicin and some anti-

HIV phosporilated azidothymidine derivatives. Some attention has been also dedicated to 

artemisinin, an antimalarial and anticancer agent.  

Equilibrium data from titration experiments, suitably analysed (when possible with global 

multivariate methods based on singular value decomposition and non linear regression 

modelling), have provided  valuable information on the stoichiometry, apparent stability constants 

and spectral features of the most stable drug-nanocarrier complexes. In spite of the use of a rough 

description of the nanocarrier concentration in terms of the average concentration of the 

complexing units, i.e   with disregard of the actual nanostructured organization, the nature of the 

interactions and the binding modes of the drugs to the 3D host frame could be elucidated.  This 

information represent an important step in the evaluation and further optimization of the 

examined host systems as potential nanocarriers for drug delivery.  In this respect it is important 

to notice that the spectroscopic characterization of the drug-nanocarrier systems has been carried 

out in parallel with the investigation of other properties, more closely related to the biomedical 

applications and performed by other EU-ITN-CYCLON network partners, such as morphology of the 

drug-loaded nano-objects, encapsulation and release kinetics, biodegradability and stability, cell 

uploading and intracellular distribution, in vitro activity. 



              Chapter 6  
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 It has been shown that the water soluble cyclodextrin-based copolymers with 

epichlohydrin or citric acid crosslinkers are able to bind and monomerize doxorubicin, holding 

great potential for improved delivery of this drug. Moreover, the results obtained with artemisinin 

suggest further evaluation of CyD-based polymeric carriers for controlled release and improved 

bioavailability of artemisinin derivatives, able to contrast the tendency of this class of drugs to be 

rapidly eliminated from the body. Novel CyD polymers and/or copolymers endowed with suitable 

nanostructure, for more efficient interaction with anthracyclines and other drugs can be 

envisaged. 

  The nanoMOFs with MIL-100 structure, based on iron(III)-trimesate coordination, were 

shown  to possess positive features for loading  doxorubicin and phosphorilated nucleoside 

analogues by formation of strong ionocovalent bonds between the accessible Lewis acid 

unsaturated iron sites and the negatively charged sites of these drugs, confirming that nanoMOFs 

may represent an important and novel platform for drug delivery.   In the case of doxorubicin 

further research work is in progress, such as nanoMOF surface modification, study of the 

degradation mechanism, cellular uptake and in vivo activity and pharmacokinetics of drug-loaded 

nanoMOFs. In the case of the anti-HIV active agents, i.e. the  azidothymidine phosphorilated 

derivatives, the studies are in a more advanced state.  New perspectives for HIV treatment can be 

envisaged, considering that AZT-TP loaded MOF nanoparticles are able to penetrate inside HIV-

target cells and to intracellularly deliver the active AZT-TP form, overcoming drawbacks due to 

drug  hydrophilicity, poor stability  and low bioavailability (paper accepted for publication in Adv. 

Healthcare Mat.). 
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