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Abstract

DI Diesel engine are widely used both for industrial and automotive applications due
to their durability and fuel economy. Nonetheless, increasing environmental concerns
force that type of engine to comply with increasingly demanding emission limits, so
that, it has become mandatory to develop a robust design methodology of the DI
Diesel combustion system focused on reduction of soot and NOx simultaneously
while maintaining a reasonable fuel economy. In recent years, genetic algorithms
and CFD three-dimensional combustion simulations have been successfully applied
to that kind of problem. However, combining GAs optimization with actual CFD
three-dimensional combustion simulations can be too onerous since a large number
of calculations is usually needed for the genetic algorithm to converge, resulting
in a high computational cost and, thus, limiting the suitability of this method for
industrial processes. In order to make the optimization process less time-consuming,
CFD simulations can be more conveniently used to generate a training set for the
learning process of an artifical neural network which, once correctly trained, can be
used to forecast the engine outputs as a function of the design parameters during a
GA optimization performing a so-called virtual optimization.
In the current work, a numerical methodology for the multi-objective virtual optimi-
zation of the combustion of an automotive DI Diesel engine, which relies on artificial
neural networks and genetic algorithms, was developed.
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Chapter 1

Introduction

DI Diesel engine are widely used both for industrial and automotive applications
due to their durability and fuel economy.

However, increasing environmental concerns force that type of engine to comply with
increasingly demanding emission limits. From Euro2 emission standard through Eu-
ro5 emission standard, both NOx and soot emission have been drastically decreased
and the upcoming Euro6 emission standard is even more pressing, so that, although
Diesel engine are more and more equipped with one or more after-treatment de-
vices, a significant combustion improvement is needed to meet the latest emission
standards.

In such a scenario, it has become mandatory to develop a robust design metho-
dology of the DI Diesel combustion system focused on reduction of soot and NOx
simultaneously while mantaining a reasonable fuel economy.

With the current status of CPU speed and model development, combustion modeling
of the DI Diesel engine by means of a CFD code is becoming a necessary tool in
order to optimize the Diesel combustion system, both in terms of emissions and
performance, allowing to investigate a large number of possible configurations in
a very short time, thus, overcoming limitations and drawbacks of experimentally
executed parametric searches which need huge expenses and huge time.

However, since there are trade-off relationships between engine performance, NOx
and soot emissions numerically executed parametric searches can not find a unique
solution which optimizes all the objectives of a good design at the same time but
rather there will exist different solutions, all representing an efficient allocation of
resources, known as Pareto optimal solutions.

In other words, the design process of the DI Diesel engine should be handled as
multi-objective optimization problem.
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1 – Introduction

1.1 Diesel combustion and its optimization

In 1998 Renner proposed a phenomenological model, which is widely accepted, for
Diesel injection and combustion (fig. 1.1).

Figure 1.1. Renner’s phenomenological model of Diesel combustion

According to Renner’s phenomenological model DI Diesel combustion is the result
of very complex interactions between spray penetration, spray-wall interaction, dif-
ferent charge motions and turbulence which are appointed to promote a proper
mixture formation and, then, a clean and efficient combustion. Mixture formation
and charge motions also affect pollutant and oxydation.
Spray penetration, spray-wall interaction, charge motions and turbulence are in
turn the result of very complex interactions between the input variables which are
categorized in:

• variables related to the engine architecture (piston motion, intake ports, bowl
geometry)

• variables related to the injection system (injection nozzle, injection system)

Injection nozzle and injection system affect the primary break-up. Piston motion
and primary break-up affect the spray penetration. Injection nozzle, piston motion,

6



1 – Introduction

intake ports, bowl geometry influence spray-wall interaction. Intake ports and bowl
geometry influence the in-cylinder charge motions.

Renner’s model can also be useful to clarify which are the main issues in developing
an efficient low-emission/high performance combustion inside the DI Diesel engine:

• a large number of input variables has to be considered, some of those are
related to geometrical parameters of the engine and, thus, can be experimen-
tally investigeted with difficulty since they need to build different intake ports,
pistons and so on

• it is not trivial to evaluate how each input variable affects air/fuel mixing,
ignition, heat release rate and, thus, emissions and performance of the engine

• it is even more difficult to evaluate how the input variables interact each others
and how that interaction affects the combustion development

• typically there are trade-off relationships between NOx, soot and engine per-
formance and, thus, it is not possible to find a unique set of input variables
which optimizes all the engine outputs simoultaneously

To overcome these issues, the design of an efficient DI Diesel combustion system
can no longer rely exclusively upon experience, but rather should be mathemati-
cally represented as a multi-objective optimization problem, the objectives being
the minimization of NOx and soot emissions and the maximization of engine per-
formance, for which multi-objective genetic algorithms and CFD calculations have
been successfully applied in recent years.

1.2 Review of research activities

1.2.1 University of Wisconsin-Madison, USA

At University of Wisconsin-Madison several studies on Diesel optimization have been
conducted.

In [25] a computational methodology for engine design using multi-dimensional spray
and combustion modeling was established. The KIVA-GA code incorporates an im-
proved KIVA-3V CFD model within the framework of a µGA optimization techni-
que. The design factors were: boost pressure, EGR level, start of injection, injection
duration, mass in the first pulse, dwell between pulses The µGA efficiently determi-
ned a set of input parameters resulting in significantly lower soot and Nox emissions
compared to the baseline case.
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1 – Introduction

In [27] a non-dominated sorting algorithm (NSGA-II) was coupled the KIVA CFD
code, as well as with an automated grid generation tecnique to conduct the multi-
objective optimization with goals of low emissions and improved fuel economy. The
study identifies the aspects of the combustion and pollutant formation that are
affected by mixing, and offers guidance for better matching of the piston geometry
with the spray plume for enhanced mixing.

1.2.2 Doshisha University, Japan

Doshisha University has focused on the multi-objective optimization of the Diesel
engine using genetic algorithms and a phenomenological model [19]. SFC, NOx
and soot are minimized by changing the rate of fuel injection. The HIDECS mo-
del [18], which is based on the phenomenological model, was used. An extended
GA that is called the Neighborhood Cultivation Genetic Algorithm (NCGA) was
used. The NCGA has the neighborhood crossover mechanism besides the mechani-
sm of NSGA-II [24]. By this work, the NCGA can successfully derive the Pareto
optimum solutions, altough, many iterations are needed. Therefore, the phenome-
nological model is suitable for optimization by the GAs since it does not need a high
calculation cost.

1.2.3 University of Salento, Italy

Research activities at University of Salento cover the multi-objective GA optimiza-
tion of the DI Diesel engine combustion chamber and of the common rail injector. In
[16] a GA optimization of some geometric features of the combustion chamber was
performed. For all the investigated chambers, bowl volume and squish-to-volume
ratio were kept constant in order to ensure the same compression ratio. The eva-
luation phase of the genetic algorithm was performed by simulating the behaviour
of each chamber with a modified version of the KIVA-3V code. The optimization
method was based on the use of genetic programming, a search procedure developed
at the University of Michigan. The study also offered a comparison between the
standard-GA procedure and the so called µGA procedure proposed in [25]
In [15] the same optimization method was applied to the optimization of a com-
mon rail injector. Three different methods, based on variable weights combination,
distance from the global optimum and individuals’ rank respectively, were imple-
mented for the calculation of the overall fitness. The evaluation phase of the genetic
algorithm was performed by running the fluid dynamic code PROFLUID, which
is able to simulate the injection event according to the common rail operationg
conditions and injector geometrical data. The optimization aimed at identifying
the values of seven geometrical parameters which gave a needle lift law as close as
possible to the current impulse governing the injection event.
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1 – Introduction

1.3 Motivation and objectives of the present work

For the DI Diesel engine to comply with the upcoming emission limits a robust
design methodology is needed since, in order to achieve a significant combustion
improvement, the designer must fully master a deep understanding of how each
input variable affects engine emissions and performance. Altough their usefulness,
experimental investigations face serious limitations. In fact, only a small number of
different combustion chambers and/or intake ports can be simultaneously compared
with experimental studies while a wide parametric study can be easily performed
with the use of CFD code, and, thus, the development of a numerical methodology
for engine design would significantly aid in the pursuit of cleaner and more efficient
engines.
To that purpose, since there are trade-off relationships between NOx, soot and gross-
IMEP, several authors (see 1.2.1, 1.2.2, 1.2.3) have proposed different methodologies
relying upon multi-objective genetic algorithms for the optimization of the DI Diesel
engine and have shown the effectiveness of that mathematical approach. However,
in the studies proposed by the University of Wisconsin-Madison and the University
of Salento the evaluation phase of the multi-objective genetic algorithm is entirely
demanded to CFD calculations making the optimization procedure time-expensive
since a large number of calculations is needed for the genetic algorithms to con-
verge. On the contrary, in the studies proposed by the Doshisha University the
evaluation phase of the genetic algorithm relies upon the HIDECS Diesel injection
and combustion phenomenological model since it does not need a high computatio-
nal cost. Nonetheless, a phenomenological model presents serious limitations while
investigating piston bowl change-in-shape.
The aim of the current study was to develop and validate a hydrid approach for
the multi-objective optimization of the DI Diesel engine which was, at the same
time, fast and accurate. At the base of the methodology, three-dimensional CFD
calculations were used to generate a valid training set for the learning process of
an artificial neural network. Artificial neural neutwork were chosen amongst other
statistical modeling tools due to their ability to model complex relationships between
inputs and outputs like those which tie up design parameters and objectives inside
the DI Diesel engine (see 1.1). Then, once properly trained, the artificial neural
networks were used during the evaluation phase of the genetic algorithm to foresee
NOx, soot and gross-IMEP as a function of the input parameters. The NSGA-II
genetic algorithm [24] was used due to its ability to find Pareto optimal solutions
in one single run with a low computational cost. At the final stage, only the best
individuals were verified through actual three-dimensional CFD simulations and a
deep investigation of their combustion development was carried out.
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Chapter 2

Subject of investigation

In the present study, the numerical methodology for the multi-objective optimization
was used to aid the design process of a DI Diesel engine targeted for automotive
applications. The investigated engine was a 4-cylinders/4-valve for cylinder engine
with a total displacement of 2.4 liters (fig. 2.1).

Figure 2.1. Investigated engine
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2 – Subject of investigation

During the development process of the engine, three different piston bowls (figg.
2.2, 2.3, 2.4) were tested. All the piston bowls had the same volume resulting in a
compression ratio of 15.5. Nonetheless, they were quite different in shape in order
to develop different combustion concepts which need different operating conditions
to be optimized.
Thus, it was to mandatory, in order to correctly evaluate the piston bowls perfor-
mances, to investigate the three piston bowls under a range of operating conditions
as wide as possible.

Figure 2.2. Piston bowl G012
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2 – Subject of investigation

Figure 2.3. Piston bowl VHP011

Figure 2.4. Piston bowl NE
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2 – Subject of investigation

2.1 Engine specifications

In table 2.1 are reported the main engine specifications:

Bore [mm] 92
Stroke [mm] 92

Connecting rod [mm] 159
Squish height [mm] 0.7
IVC [deg. ATDC] -130
EVO [deg. ATDC] 114

Maximum power regime[rpm] 4000

Table 2.1. Engine specifications

2.2 Investigated input parameters

Input parameters were chosen, as reported in table 2.2, in order to focus the opti-
mization on the engine on the variables which were more strongly related to design
choice. Pboost represented the in-cylinder pressure at intake valve closure. SR was
the swirl ratio at intake valve closure. EGR was the in-cylinder exhaust gas mass
fraction at intake valve closure. SOI was referred to the hydraulic start of injection.
The range of each input variable was chosen to ensure a wide exploration of the
design space.

Pboost [ bar] 3.25 3.32 3.39
SR 1.0 1.5 2.0

EGR [%] 5.0 10.0 15.0
SOI [ CA deg. ATDC] -12.0 -9.0 6.0

Table 2.2. Input parameters ranges

2.3 Investigated operating point

In the current study, input variables were optimized at the maximum power opera-
ting condition of the investigated engine since such a condition is usually the more
challenging to achieve a good trade-off between engine emissions and performance.
In fact, when working under that operating condition the high rotational velocity of
the engine and the high fuel delivery per stroke, needed to meet the desired power
target, severely limit the use of multiple injection per cycle which can be useful at
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2 – Subject of investigation

lower working regime. Moreover, due to the high rotational velocity of the engine
and the high injection pressure the squish motion, the reverse squish motion , the
swirl motion and motions aerodynamically generated by the air/spray interaction
become the driving force in the combustion development [3].
In table 2.3 is reported the reference injection strategy used in the current work.
Particularly, the injector was a 7 holes injector with a delivery rate of 400cm3/30s.
Starting from the reported values the injection profile shown in figure 2.5 was ge-
nerated using a phenomenogical model for Common rail injections developed at the
University of Bologna.

HSOI [deg. ATDC] -9.0
Injection duration [deg. ATDC] 40.0

Rail pressure [bar] 2000
Injected mass [mg/stroke] 76.5

Fuel temperature [K] 360
Spray angle [deg.] 74

Actual injection area [cm2] 0.138E-03
Sauter mean ratio [cm] 0.663E-02

Injector holes 7

Table 2.3. Injection strategy
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Chapter 3

The 3D CFD model

Fluid dynamics of internal combustion engines have to be considered as unsteady,
compressible, turbulent and reactive species flows. In order to describe temporal and
spatial evolution of density, temperature, velocity and mass fraction of the reacting
species three-dimensional combustion calculations have to be performed.

In the present work, the CFD code KIVA-3D, a modified version of the KIVA-3
code [2], developed at the University of Bologna since 1996, was used to describe
the physical problem.

3.1 The CFD code KIVA-3D

Over the past several years, computational fluid dynamics (CFD) has been increa-
singly accepted as an adjunct to experimentation in the design and understanding
of practical combustion system.

The original KIVA program was publicly released in 1985, and was replaced by
the improved KIVA-II in 1989. These earlier version of KIVA lend themselves well
to confined in-cylinder flows and a variety of open combustion systems, but can
become quite inefficient to use in complex geometries that contain such features as
inlet ports and valves, diesel prechambers and entire transfer ports.

KIVA-3 was specifically developed to overcome this inefficiency by employing a
block-structured mesh that eliminates the necessity of mantaining large regions of
deactivated cells and results in a reduction of both storage and computer time for
complex geometries.

Since 1996 the CFD code KIVA-3 has been modified at the University of Bologna,
following the work of several researchers. The turbulence RNG k-eps linear model
model was updated following the work of Han and Reitz [17], and Bianchi et al.
[9]. The fuel liquid dispersed phase was treated according to a Lagrangian approach
using the hybrid spray breakup model proposed and validated by Bianchi et al.
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3 – The 3D CFD model

[6]. The latter accounts for both the atomization of the liquid jet and the droplet
secondary breakup. The spray-wall interaction was modelled according to Cazzoli
et al. [12]. The fuel auto-ignition was simulated using the Shell model in the
implementation proposed by Kong et al. [20]. The high-temperature combustion
part follows the characteristic-time combustion model developed by Abraham et al.
[1], with the correction proposed by Bianchi et al. [8] to account for non-equilibrium
turbulence effects of the energy cascade and thus on the turbulence time scales.
Finally the extended Zeldovich mechanism is used to model NOx formation while
the Hiroyasu’s formation model [18] and the Strickland-Constable’s model for the
oxidation [22] have been used to predict in-cylinder soot.

3.1.1 Governing equations

The numerical simulation of combustion phenomena is an extremely complex pro-
blem. In this kind of problem there are essentially three separate (but coupled)
systems evolving during the combustion process: the fluid, which is described by
the conservation equations of continuum mechanics; the interaction of the various
chemical species making up the fluid, which react both at equilibrium and kinetically;
the interaction between the injected fluid droplets and the reactiong fluid.
The fully coupled system of governing equations consists of:

• the equation of compressible fluid dynamics

• kinetic and equilibrium chemical reactions

• spray droplet interactions

The following are the governing equations in KIVA-III for chemically reacting fluid
flow in three-dimension.
Conservation of mass:

∂ρ

∂t
+∇ · (ρu) = ρ̇s (3.1)

Conservation of momentum:

∂(ρu)

∂t
+∇ · (ρuu) = ρg + F s − 1

α2
∇p+∇ · σ̄ − A0∇(

2

3
ρκ) (3.2)

Conservation of energy:

∂(ρI)

∂t
+∇ · (ρuI) = −∇ · J + Q̇c + Q̇s − p∇ ·u + (1− A0)σ̄ : ∇u + A0ρε (3.3)
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Turbulent kinetic energy:

∂(ρκ)

∂t
+∇ · (ρuκ) = −2

3
ρκ∇ ·u + σ̄ : ∇u +∇ ·

[(
µ

Prκ

)
∇κ
]
− ρε+ Ẇ s (3.4)

Turbulent kinetic energy dissipation:

∂(ρε)

∂t
+∇ · (ρuε) = −

(
2

3
cε1 − cε2

)
ρε∇ ·u+∇ ·

[(
µ

Prε

)
∇ε
]
+
ε

κ

(
cε1σ̄ : ∇u− cε2ρε+ csẆ

s
)

(3.5)
Heat flux:

J = −K∇T − ρD
∑
m

hm∇
(
ρm
ρ

)
(3.6)

Equations of state:

p = R0T
∑
m

(
ρm
ρ

)
(3.7)

I(T ) =
∑
m

(
ρm
ρ

)
Im(T ) (3.8)

cp(T ) =
∑
m

(
ρm
ρ

)
cpm(T ) (3.9)

hm(T ) = Im(T ) +
R0T

Wm

(3.10)

Mass consistency:

Nc∑
m=1

ρm
ρ

= 1 (3.11)

Conservation of mass for chemical species m (one equation for each of theNc species):

∂(ρm)

∂t
+∇ · (ρmu) = ∇ ·

[
ρD∇

(
ρm
ρ

)]
+ ρ̇cm + ρ̇smδm1 (3.12)

The eleven equation from 3.1 through 3.11 andNc occurrences of equation 3.11 forNc

chemical species yieldsNc+11 equations for theNc+10 unknowns ρ,u,I,κ,ε,J,p,T,ρ1, . . . ,ρNc .
Since one of the mass equations is redundant due to the consistency equation, it is
discarded, leaving Nc + 10 equations and unknowns.
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3.1.2 Source terms due to chemical reactions

The following source terms appear due to the chemical reactions:

• ρ̇cm, mass density source term species m due to chemical reactions

• Q̇c, chemical heat release due to kinetic reaction

The mass density source terms ρ̇cm depend on the reaction rates ω̇r as follows:

ρ̇cm = Wm

∑
r

(bmr − amr) ω̇r (3.13)

where reaction r is in the form:∑
m

amrxm ⇀↽
∑
m

bmrxm (3.14)

where xm represents one mole of chemical species m and amr, bmr represent integer
stoicometric coefficients for species m in reaction r. For mass to be conserved, we
must haveforeach reaction r that:∑

m

(amr − bmr)Wm = 0 (3.15)

where Wm is the molecular weight of species m.
For equilibrium reactions, the reaction rates ω̇r are determined implicitly by the
constraint that the mass densities ρm of all the chemical species satisfy the following
relationship at all the times:

∏
m

(
ρm
Wm

)bmr−amr

= Kr
c (T ) (3.16)

where the concentration equilibrium constant Kr
c for reaction r takes the form:

Kr
c = e[Ar lnTa+(Br

Ta
)+Cr+DrTa+ErT 2

A] (3.17)

For kinetic reactions, the reaction rate ω̇r for reaction r is defined as:

ω̇r = κfr
∏
m

(
ρm
Wm

)a′mr

− κbr
∏
m

(
ρm
Wm

)b′mr

(3.18)

where the coefficients involved are Arrhenius in form:

κfr = AfrT
ξfre−

Efr
T (3.19)
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κbr = AbrT
ξbre−

Ebr
T (3.20)

The constants Afr,Abr,T
ξfr and T ξbr are defined for each reaction and assumed

given. The values Efr and Ebr are activation temperatures for reaction r. The
stoichiometric coefficients a′mr and b′mr are allowed to vary from amr and bmr to
allow the use of empirically determined reaction coefficients.

In the case of kinetic reactions, chemical heat is released. The relationship
between the heat source term Q̇c and the reaction rate ω̇r is:

Q̇c =
∑
r

Qrω̇r (3.21)

where Qr is the negative of the heat of rection at absolute zero for reaction r:

Qr =
∑
m

(amr − bmr)
(
∆h

◦

f

)
m

(3.22)

where the given parameter
(
∆h

◦

f

)
m

is the heat of formation of species m at T = 0.

3.1.3 Source terms due to the spray

The following source terms appear due to the spray:

• ρ̇sm, mass density source term due to sprayed species m

• F s, rate of momentum gain per unit volume due to the spray

• Q̇s, heat source due to spray interactions

• Ẇ s, negative rate at which turbulent eddies do work dispersing spray droplets

3.1.4 Physical models

Atomizzation and Break-Up: Hybrid model (Bianchi e Pelloni)

Wall-spray interaction: Evaporating wall-film (Forte e Cazzoli)

Turbulence: RNG k− ε Linear with wall function

Ignition: Shell model for diesel motors (Kong)

Combustion: Abraham modified (Bianchi et al.)

Soot: Hiroyasu + Nagle and Strickland-Constable

Nox: Zeldovich
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3.2 Computational meshes

Due to the axi-symmetry of both geometry and flow each computational domain
was composed of a 51.43◦ sector of the whole combustion chamber allowing to
significantly decrease the computational costs of the calculations.
For each investigated piston bowl a block-structured mesh of about 30000 hexahedral
cells was generated.

Figure 3.1. G012 piston bowl mesh
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3 – The 3D CFD model

Figure 3.2. NE piston bowl mesh

Figure 3.3. VHP011 piston bowl mesh
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3.3 Initial conditions

The KIVA-3D performes in-cylinder combustion simulations between intake valve
closure and exhaust valve opening. In the current work, species mass initialization
for different values of in-cylinder pressure at intake valve closure (Pboost) and EGR
rate was generated as follows:

1. total trapped mass was calculated according the the requested in-cylinder
pressure at intake valve closure for the given initial temperature (427 K)

2. air mass and EGR mass were calculated according to the requested EGR
percentage

3. overall λ was calculated

4. exhaust gas composition was calculated knowing the EGR mass and the overall
lambda

In tables 3.1, 3.2, 3.3 are shown the initial species at intake valve closure resulting
from the chosen design of experiment:

Species Mass [g]

O2 0.33354
N2 1.15412
CO2 0.01194
H2O 0.00524

Species Mass [g]

O2 0.34107
N2 1.17921
CO2 0.01195
H2O 0.00524

Species Mass [g]

O2 0.34695
N2 1.19880
CO2 0.01196
H2O 0.00525

Table 3.1. EGR 5%, Pboost from 3.25 through 3.39: Species mass initialization

Species Mass [g]

O2 0.31796
N2 1.15067
CO2 0.02513
H2O 0.01102

Species Mass [g]

O2 0.32551
N2 1.17586
CO2 0.02516
H2O 0.01103

Species Mass [g]

O2 0.33136
N2 1.19542
CO2 0.02518
H2O 0.01104

Table 3.2. EGR 10%, Pboost from 3.25 through 3.39: Species mass initialization
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Species Mass [g]

O2 0.30066
N2 1.14693
CO2 0.03978
H2O 0.01745

Species Mass [g]

O2 0.30816
N2 1.17206
CO2 0.03983
H2O 0.01747

Species Mass [g]

O2 0.31401
N2 1.19159
CO2 0.03987
H2O 0.01748

Table 3.3. EGR 15%, Pboost from 3.25 through 3.39: Species mass initialization
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Chapter 4

The artificial neural network

Artificial neural networks are non-linear statistical data modeling tools and can be
used to model complex relationships between inputs and outputs or to find patterns
in a dataset.
Since the end of the 1980’s, neural networks have been successfully employed for
analiyzing data. Over the years, several models of neural networks have been pro-
posed, among which, the multilayer perceptron and the radial basis function neural
network are some of the most widely used. However, though its popularity, multi
layer perceptron exhibits serious drawbacks and limitations such as the slow conver-
gence of the learning algorithm, the potential convergence to a local minimum and
the common chaotic behavior of nonlinear systems.
On the contrary, RBF neural networks can overcome some of these problems by
relying on a rapid training phase, avoiding a chaotic behavior, and presenting sy-
stematic low responses to input patterns that have fallen into regions of the input
space where there are no training samples and, thus, have attracted considerable
attention and they have been widely applied in many science and engineering fields.
Due to their characteristic RBF neural networks were used in current work as a
fundamental tool for the meta-modeling of the engine combustion development as a
function of the input variables.
Starting from the theoretical background of the radial basis functions neural net-
works, briefly described in section 4.1, and the learning strategy described in section
4.2 a specific software, written in Matlab/Octave language, was developed in order
to train a RBF neural network from a set of CFD combustion calculations.
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4 – The artificial neural network

4.1 RBF neural networks

A radial basis function (RBF) network is a special type of feedforward neural network
that uses a radial basis function as its activation function and is composed of three
layer:

• the input layer

• the hidden layer

• the output layer

as shown in fig.4.1.

Figure 4.1. RBF neural network lay-out

The input layer relies on as many neurons as input features. Input neurons just
propagate input features to the next layer.
The hidden layer is composed of a number of neurons m1 which must be lower
or equal to N, where N is the number of training set data. Each neuron in the
hidden layer is associated with a kernel function, in our case a Gaussian radial basis
function, defined as:
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4 – The artificial neural network

G(x,xi) = exp(− 1

2σ2
i

||x− xi||2) (4.1)

where xi is the center of the kernel function and σi its width.
The family of the hidden layer functions Φi(x)|i = 1,2,...,m1 can be represented as:

Φi(x) = G(||x− ti||) (4.2)

where ti|i = 1,2,...,m1 are the center of the radial basis functions defined in 4.1.
When the number of training data can be easily worked those centers can be con-
sidered coincident with the training set input data. In other words, ti = xi for
i = 1,2,...,N .
The output layer is composed of as many neurons as the output of the observed
system. Each output neuron is the weighted sum of the hidden layer functions and
is given by:

F (x) =

m1∑
i=1

wijG(x,ti) (4.3)

where wij—i = 1,2,...,m1 are the weights of of each hidden neuron.

4.2 Learning strategy

According to scientific literature [10], in the current work, the learning strategy of
the RBF neural network was performed in two steps:

1. the hidden layer is trained by selecting the centers and widths of the kernel
functions associated with the hidden neurons

2. the weights corresponding to the connections between the hidden neurons and
the output neurons are defined by solving the equation 4.11.

4.2.1 Centers selection

For relatively small training a neuron is generated for each data of the training set
and the center xi of each neuron is chosen randomly between the data of the training
set. When the training set is composed of too many data, generating a neuron for
each data of the training set might result in a too time-consuming articial neural
network. In that case, the number of generated hidden neuron might be lower
than the number of training set data and the xi of each neuron is chosen using the
K-means clustering tecnique.
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K-means clustering [28] is a method commonly used to automatically partition a
dataset into κ groups. It proceeds by selecting κ initial cluster centers and, then,
iteratively refining them as follows:

1. Each instance di is assigned to its closest cluster center

2. Each cluster center is updated to be the mean of its constituent instances

The algorithm converges when there is no further change in assignment of instances
to cluster.

Figure 4.2. An example of K-means clustering
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4.2.2 Widths selection

The width of a certain hidden neuron can be chosen as the standard deviation
computed over all the training samples. However, this strategy may lead to the
generation of narrow, not overlapping, radial basis functions and affect the genera-
lization ability of the network. In order to overcome this problem, in the current
study, the p-nearest neighbor (p-nn) tecnique was used [21].

The p-nearest neighbor algorithm finds, for each center xi of the neural neural, the
p-nearest centers (in our case p=4) according to Euclidean norm. Then, the mean
distance between xi and the p-nearest centers is taken as the width σi of the i− th
hidden neuron. This allows some overlapping between the hidden neurons and aims
at increasing the generalization capabilities of the neural network.

Figure 4.3. p-nearest neighbor
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4.2.3 Weight selection

The weights wi = 1,2,...,m1 must be found in order to minimize the cost function:

ξ(F ) =
N∑
i=1

(
di −

m1∑
j=1

wiG(||x− ti||)

)2

+ λ||DF ||2 (4.4)

The first term on the right of the equal sign can be expressed as the Euclidean norm
of ||d−Gw||2, being:

d =
[
d1 d2 ... dN

]
(4.5)

G =


G(x1,t1) G(x1,t2) ... G(x1,tm1)
G(x2,t1) G(x2,t2) ... G(x2,tm1)

...
...

...
...

G(xN ,t1) G(xN ,t2) ... G(xN ,tm1)

 (4.6)

w =
[
w1 w2 ... wm1

]
(4.7)

which, overlooking some middle passages, becomes:

||DF ||2 = wTG0w (4.8)

where G0 is a symmetrical m1Xm1 matrix defined as:

G0 =


G(t1,t1) G(t1,t2) ... G(t1,tm1)
G(t2,t1) G(t2,t2) ... G(t2,tm1)

...
...

...
...

G(tN ,t1) G(tN ,t2) ... G(tN ,tm1)

 (4.9)

Finally, minimizing the equation 4.4 in respect to the weights vector w we arrive at:

(GTG+ λG0)w = GTd (4.10)

which, when λ→ 0, becomes:

w = G+d (4.11)

which solves the learning of the neural network weights. G+ is the pseudo-inverse
matrix of G defined as:

G+ = (GTG)−1GT (4.12)
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Chapter 5

The genetic algorithm

Several engineering problems have a multi-objetive formulation for which is not
possible to find a single solution which simultaneously optimizes all the objectives
but rather alternative solutions lying on or near the Pareto optimal front.
For that reason, during the past decade, several multi-objective genetic algorithms
have been proposed due to their ability to find multiple Pareto-optimal solutions in
one single run as they mimic the evolutionary processes of ecosystems, which obey
the Darwinian idea of survival of the fittest, moving the Pareto front towards the
ideal optimal set of solutions as the optimization process evolves.
The non dominated sorting genetic algorithm NSGA-II [24], whose theoretical back-
ground is described in section 5.1, was used in current study since the optimal solu-
tions of the DI Diesel combustion engine are the non dominated ones, being NOx,
soot and gross-IMEP linked together by trade-off relationships.
Starting from the NSGA-II genetic algorithm, a specific software (in Matlab/Octave
language) was developed in order to manage a main loop which relies upon RBF
neural networks for the evaluation phase of the genetic algorithm while the deter-
mination of the fittest individuals, generation after generation, is demanded to the
NSGA-II genetic algorithm.
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5.1 The NSGA-II genetic algorithm

In order to sort a population of size N according to the level of non-domination ,
each solution must be compared with every other solution in the population to find
if it is dominated. This requires O(mN) comparison for each solution, where m is
the number of objectives. When this process is continued to find the members of
the first non-dominated class for all population member , the total complexity is
O(mN2). Then, the procedure must be repeated to find the subsequent fronts. In
worst case the complexity of this algorithm is O(mN3).

The non-dominated sorting genetic algorithm (NSGA-II) proposed by Deb. et al. is
a multi-objective genetic algorithm characterized by a fast non-dominated sorting
approach which requires at most O(mN2) and when applied on a population P
returns a list of the non-dominated fronts F .

5.1.1 Sorting algorithm

First, for each solution two entities are calculated:

1. ni the number of solutions which dominate the solution i

2. Si a set of solution which the solution i dominates

The calculation of these two entities requires O(mN2) comparisons. Then, all those
points having n1 = 0 are identified and put in a list F1 which forms the current front.
Then, for each solution in the current front each member j in its Si is visited and
its nj count is reduced by one. During this process, if for any member j the count
becomes 0, this one is put in a separate list H. Then, the process continues using the
newly identified front H as current front while the members in the list F1 are declared
member of the first front. these iterations require O(N) computations. Finally , the
process ends when all fronts are identified. The worst case complexity of this loop
is 0(N2) and, thus, the overall complexity of the algorithm is O(mN2) + O(N2) or
O(mN2).

A synthetic representation of the fast non dominated sorting algorithm is shown
below:
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for each p ∈ P
for each q ∈ P
if (p < q) then

Sp = SpUq

else if (q < p) then

np = np + 1

if np = 0 then

F1 = F1Up

i = 1

while Fi 6= 0H = 0

for each p ∈ F1

for each q ∈ Sp
nq = np + 1

if nq = 0 then H = HUq

i = i+ 1

Fi = H

(5.1)

5.1.2 Density estimation

To get an estimate of the density of solutions surrounding a certain point in the
population the average distance of the two points on either side of this point along
each of the objectives is taken. The entity idistance is taken as an estimate of the
largest cuboid enclosing the point i without including any other point in the po-
pulation and is called crowding distance. In fig. 5.1 the crowding distance of the
i − th solution in its front (marked with solid circles) is the average side-length of
the cuboid(represented by a dashed box).

In order to calculate the crowding distance of each point in the set I the following
algorithm is used:
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Figure 5.1. Crowding distance

l = |I|
for each iset I[i]distance

for each objective m

I = sort(I,m)

I[1]distance = I[l] = inf

for i = 2 to (l − 1)

I[1]distance = I[1]distance + (I[i+ 1].m− I[i− 1].m)

(5.2)

where I[i].m refers to the m − th objective function value of the i − th individual
in the set I. The complexity of this procedure is governed by the sorting algorithm.
In the worst case, the sorting requires O(mNlogN) computations.
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5.1.3 Crowded comparison operator

The crowded comparison operator (≥n) the selection process at varoius stages of
the algorithm towards a uniformly spread out Pareto-optimal front.
Each individual i in the population has two attributes:

• the non-domination rank (irank)

• the local crowding distance (idistance)

Thus, a partial order ≥n can be defined as:

i ≥n j

if (irank < jrank) or ((irank = jrank) and (idistance > jdistance))
(5.3)

which means that between two solutions with difffering non-dominating rank the
point with the lower rank is preferred. Otherwise, if both the points belong to the
same front the point which is located in a region with lesser number of points is
preferred(the highest crowding distance).

5.1.4 The main loop

Firstly, a parent population P0 is created. This population is sorted based on the
non-domination. Each solution is assigned a fitness equal to its non-domination
level. A non-domination level of 1 represents the best level, thus, minimization of
fitness is assumed. Then, evolutionary operators such as binary tournament selection
and mutation are used to to create a child population Q0 of size N. From the first
generation onward, in order to ensure elitism, the procedure is changed as follows:

Rt = Pt U Qt

F = fast− nondominated− sort (Rt)

until |Pt+1| < N

crowding − distance− assignment (Fi)

Pt+1 = Pt+1 U Fi

Sort(Pt+ 1, ≥n)

Pt+ 1 = Pt+ 1[0 : N ]

Qt+1 = make− new − pop (Pt+1)

t = t+ 1

(5.4)
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First, a combined population Rt = Pt U Qt (where Rt is composed of 2N mem-
bers). Then, the population Rt is sorted according to non-domination. A new
population Pt+1 is formed by adding solutions from the first from till the the size
exceeds N. Thereafter, the solution of the last accepted front are sorted according
to ≥n and the first N members are picked. This procedure builds the population
Pt+1 of size N which is used to create a new population Qt+1 of size N by means of
selection, crossover and mutation operators.
The basic operations being performed and the worst case complexities associated
with are as follows:

• non-dominated sort is O(mN2)

• crowding distance assignment is O(mNlogN)

• sort on ≥n is O(2Nlog(2N))

thus, the overall complexity of the algorithm is O(mN2).
The diversity among non dominated solutions is ensured by using the crowding
comparison procedure.
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Chapter 6

RBF neural networks training

Starting from the values of the input variables Pboost, SR, EGR SOI reported in table
2.2 a full factorial design of experiment of 81 CFD three-dimensional combustion
calculations was generated for each investigated piston bowl in order to provide an
adequate training set for the learning processes of the radial basis functions neural
networks, resulting in a total of 243 CFD simulations. Training sets of the piston
bowls G012, NE, VHP011 were kept separeted to train different neural networks
for each piston bowl. Proceeding in that way, each neural network was used as a
meta-model of the combustion development inside a specific piston bowl allowing
to clearly separate the influence of the piston shape, which affect the spray/wall
interaction, from the influences of the input variables.
A full factorial design of experiment was chosen so that the input variables were
non correlated each others which made it suitable for a statistical analysis of the
influence of the input variables of the engine outputs.
Before the neural network training process, a Student test was used to verify that
the chosen input variables could actually affect NOx, soot and gross-IMEP of the
engine and, eventually, discard those variables having a small influence on engine
outputs. Moreover, Student charts can provide an insight of how the combustion
development inside each piston bowl react to a variation of the input variables in
terms of emissions and performance.

37



6 – RBF neural networks training

6.1 Influence of the input variables on engine gross-

IMEP

Figures 6.1, 6.2, 6.3 show the influence of the input variables on engine gross-IMEP
for the piston bowls G012, VHP011 NE respectively.
All the three investigated piston bowls are affected, on a quality level, in the same
way by a variation of the input variables:

• an increase of the boost pressure results in an increase of enigne performance

• an increase of the swirl ratio results in a significant decrease of engine gross-
IMEP

• an increase of the exhaust gas recirculation leads to a decrease of performance

• a variation of the start of injection has a small influence on gross-IMEP

However, gross-IMEP of the piston bowl NE is definitely less influenced by a varia-
tion of the swirl ratio (-0.8 bar) than the one of the piston bowls G012 and VHP011
(-2 bar,-2.6 bar respectively).
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Figure 6.1. G012: influence of the input variables on gross-IMEP
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Figure 6.2. VHP011: influence of the input variables on gross-IMEP
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Figure 6.3. NE: influence of the input variables on gross-IMEP
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6.2 Influence of the input variables on engine NOx

emission

Figures 6.4, 6.5, 6.6 show the influence of the input variables on engine gross-IMEP
for the piston bowls G012, VHP011 NE.
All the three investigated piston bowls show the approximately the same influence
of the input variables on NOx emission:

• an increase of boost pressure has a small influence on enigne NOx emission

• an increase of swirl ratio results in a decrease of NOx emission due to a less
efficient combustion development

• an increase of exhaust gas recirculation allows a strong reduction of engine
NOx emission

• An increase of start of injection (i.e. postponing the main injection) also allows
a significant decrease of NOx emission

As far as NOx emission are concerned, the main differences between the investigated
piston bowls responses were recorded for variation of the swirl ratio. Particularly,
the effect of the swirl ratio on the piston bowl VHP011 was -1.4 g/kWh while the
piston bowls G012 and NE recorded a decrease of -0.3 g/kWh and -0.5 g/kWh
respectively.
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Figure 6.4. G012: influence of the input variables on NOx
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Figure 6.5. VHP011: influence of the input variables on NOx
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Figure 6.6. NE: influence of the input variables on NOx
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6.3 Influence of the input variables on engine soot

emission

Figures 6.7, 6.8, 6.9 show the influence of the input variables on engine gross-IMEP
for the piston bowls G012, VHP011 NE.
Soot emission of the three piston bowls is affected in a similar way by a variation of
the input variables:

• a variation of the boost pressure has a small influence on engine soot emission

• an increase of swirl ratio results in an increase of engine soot emission for the
piston bowls G012 and VHP011 while the piston bowl NE react to an increase
of swirl ratio with a decrease of soot emission

• an increase of exhaust gas recirculation leads to an increase of soot emission

• by postponing the start of injection a reduction of soot emission is recorded

As far as soot emission are concerned, the main differences between the responses
of different piston bowls to a variation of the input parameters were recorded for
variation of the swirl ratio. Particularly, the swirl ratio effect on the piston bowl
VHP011 was +0.25 g/kWh while the piston bowls G012 and NE which show lower
effects (+0.1 g/kWH, -0.02 g/kWh respectively).
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6.4 RBF neural networks validation

In order to validate the neural networks and to verify their capability to forecast
engine performance and emissions as a function of the input variables, the training
sets of 81 CFD three-dimensional calculations of each piston bowl were divided into
two different parts:

• the first part of each training set, composed of 78 data, was used to train the
related neural network

• the remaining part of each training set, composed of 3 data, was instead use
to validate the related neural network

Figures 6.10, 6.11, 6.12 show the relative error between the forecasted values of NOx,
soot and gross-IMEP of the neural networks and the actual ones of the validation
sets.
As it can be seen, all the trained neural networks evaluate the engine gross-IMEP
with a very good precision (the highest relative error was 1.5%) while the evaluation
of engine emissions records highest relative errors varying from about 2% through
about 8%.
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Figure 6.11. VHP011 neural network validation
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Chapter 7

Multi-objective optimization of
the piston bowls

Once that three different neural networks were adequately trained, a multi-objective
genetic algorithm optimization was performed for each piston bowl separately. For
each optimization an initial population of seventy two individuals was randomly
generated in order to provide the first generation which was needed as the beginning
point for the optimization. Then, the evolutionary process advanced for one hundred
generations aiming at the simoultaneously reduction of soot and NOx emissions
while increasing the engine gross-IMEP. Overall, seven thousands and two hundreds
individuals, for each piston bowl, were virtually examined by means of the RBF
neural networks, drastically cutting computational time.

In figures 7.1, 7.3, 7.5, which show the emissions in the soot-NOx plane, of each
investigated individual for the piston bowls G012, VH011 and NE respectively, can
be seen one of the main result of the genetic algorithm multi-objective optimization:
the definition of the Pareto frontier of all the three piston bowls. In the current
work, since the optimization had three different objectives (minimizing NOx and
soot emissions and maximizing the gross-IMEP) the geometrical locus of the Pareto
optimal solutions was actually a two dimensional surface, however, it was chosen to
represent the Pareto frontier in the soot-NOx plane due to the fact that in industrial
applications emissions are usually a more pressing commitment than the achievement
of the power target of the engine which is, though, still desirable. Thus, during the
evolutionary process, virtual inviduals were advanced through generations according
also to their gross-IMEP, as shown in 7.2, 7.4, 7.6.

Amongst the Pareto optimal solutions it is also possible to identify the minimum
NOx individuals, the minimum soot individuals and the trade-off individuals whose
input parameters and outputs are reported in tables 7.1, 7.2 , 7.3. It worth notice
how, while the minimum NOx inviduals of all the three invistigated piston bowls
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presented the same input parameters, trade-off individuals and minimum soot indi-
viduals were obtained with different input parameters for each piston bowls justifing
the need of a wide range investigation in order to compare properly different bo-
wl. Particularly, the piston bowl NE showed the tendency to require a higher swirl
ratio (1.6 for the trade-off individual, 1.54 for the minimum soot individual) than
the other two piston bowls. On the contrary, the piston bowl VHP011 trade-off
and minimum soot individuals requiered a lower swirl ratio (1.3 for the trade-off
individual, 1.2 for the minimum soot individual).

Bowl Pboost SR EGR [%] SOI [deg. ATDC] NOx [g/kWh] Soot [g/kWh] IMEP [bar]

G012 3.25 2.0 15.0 -6.0 1.32 0.30 15.9
VHP011 3.25 2.0 15.0 -6.0 1.00 0.43 14.8

NE 3.25 2.0 15.0 -6.0 0.88 0.17 16.4

Table 7.1. Minimum NOx individuals

Bowl Pboost SR EGR [%] SOI [deg. ATDC] NOx [g/kWh] Soot [g/kWh] IMEP [bar]

G012 3.39 1.5 13.0 -6.6 1.9 0.11 18.5
VHP011 3.33 1.3 12.0 -6.0 2.0 0.13 17.7

NE 3.39 1.6 10.0 -6.0 2.0 0.07 18.6

Table 7.2. Trade-off individuals

Bowl Pboost SR EGR [%] SOI [deg. ATDC] NOx [g/kWh] Soot [g/kWh] IMEP [bar]

G012 3.39 1.3 5.1 -11.4 9.6 0.04 20.0
VHP011 3.39 1.2 5.0 -9.6 6.9 0.06 19.0

NE 3.39 1.54 5.0 -9.0 5.0 0.05 19.6

Table 7.3. Minimum soot individuals
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7 – Multi-objective optimization of the piston bowls

7.1 Comparison between the Pareto frontiers

Since it exists a trade-off relationship between NOx and soot emissions the opti-
mization of the combustion development inside a DI Diesel does not have a unique
solution but rather different Pareto optimal solutions which might represent an
equally valid choice for the engine depending on the chosen after-treatment devices.
For that the reason, the definition of the Pareto frontier of each piston bowl by
means of genetic algorithm multi-objective optimizations is of great practical value
allowing to compare emissions and performance of the investigated piston bowls
under a range of operating conditions as wide as possible and, eventually, to choose
the best invidual for each piston once that the after treatment strategy is defined.

Figure 7.7 shows a comparison between the Pareto frontiers of the piston bowl G012,
VHP011 and NE in the soot-NOx plane. As it can be seen, the piston bowl NE is
definitely better, in term of emissions, as its Pareto frontier lies south-west than
the other ones which means that comparing individuals of the three Pareto frontiers
having the same NOx emission, the one of the NE Pareto frontier will record a lower
soot emission, otherwise, comparing individuals of the three Pareto frontiers having
the same soot emission, the one of the NE Pareto frontier will record a lower NOx
emission.
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7 – Multi-objective optimization of the piston bowls

In figure 7.7 are also visible the NOx-soot trade-off individuals, pointed out by black
dots. In the current study, these individuals were chosen in order to present a NOx
under 2 g/kWh allowing to fullfil euro 5 NOx emission limit without the need of
a specific DeNOx after-treatment device. The best individuals, one for each piston
bowl were, then, validated by means of actual CFD three-dimensional combustion
simulations.
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Figure 7.8. Pareto frontiers: NOx-IMEP

In tables 7.4, 7.5, 7.6 are reported the comparisons between the values of NOx,
soot and gross-IMEP foreseen by means of the RBF neural networks and the actual
values, resulting from CFD calculations of the best individuals. For all the three
investigated piston bowls, the greatest relative error (about 10%) was made evalua-
ting NOx emissions. Particularly, as far as NOx emissions were concerned, all the
trade-off individuals recorded a lower emission than the one foreseen by the RBF
neural network. On the contrary, a very good agreement between neural networks
and CFD results was found both for soot emission, where a maximum relative error
of 7.7% was recorded, and gross-IMEP, for which a maximum error of 2.8% was
recorded.

52



7 – Multi-objective optimization of the piston bowls

Results NOx [g/kWh] Soot [g/kWh] IMEP [bar]

Virtual 1.9 0.11 18.5
Simulated 1.7 (-10.5%) 0.11 (-0.0%) 18.9 (+2.2%)

Table 7.4. G012 trade-off individual validation

Results NOx [g/kWh] Soot [g/kWh] IMEP [bar]

Virtual 2.0 0.13 17.7
Simulated 1.8 (-10.0%) 0.12 (-7.7%) 18.2 (+2.8%)

Table 7.5. VHP011 trade-off individual validation

Results NOx [g/kWh] Soot [g/kWh] IMEP [bar]

Virtual 2.0 0.07 18.6
Simulated 1.8 (-10.0%) 0.07 (-0.0%) 18.9 (+1.6%)

Table 7.6. NE trade-off individual validation
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Chapter 8

Combustion analysis of the
optimal solutions

The genetic algorithm NSGA-II, coupled to with radial basis functions neural net-
works, allowed to define the best individuals of the piston bowls G012, VHP011 and
NE with a small number of CFD calculations performing a multi-objective virtual
optimization. Seven thousands and two hundreds inviduals, for each piston bowl,
were investigated during the evolutionary process allowing the definition of the Pa-
reto frontier of the piston bowl G012, VHP011 and NE. Amongst Pareto optimal
solutions, three individuals, one for each piston bowl, were chosen as the NOx-soot
trade-off. Then, the best individuals were validated by actual CFD calculations so
that, at the final stage of the work, it was possible to compare the obtained resul-
ts and investigate deeply the combustion development and the emissions of these
solutions with the typical post-processing instruments of a CFD analysis.
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8.1 Emissions and performance

In tables 8.1 are reported the values of NOx, soot and gross-IMEP of the NOx-
soot trade-off individuals of each investigated piston bowl along with their input
parameters.
As it can be seen, the combustion chamber NE can meet the NOx emission limit
with a lower exhaust gas recirculation (10.0%) than the one needed by the other two
piston bowls (13.0% for the piston bowl G012, 12.0% for the piston bowl VHP011)
and a higher swirl ratio (1.6), allowing a significant decrease of soot emission (-36%)
while mantaining a good performance and approximately the same NOx emission.

Bowls Pboost SR EGR [%] SOI [deg. ATDC] NOx [g/kWh] Soot [g/kWh] IMEP [bar]

G012 3.39 1.5 13.0 -6.6 1.7 0.11 18.9
VHP011 3.33 1.3 12.0 -6.0 1.8 (+5%) 0.12 (+9%) 18.2 (-4%)

NE 3.39 1.6 10.0 -6.0 1.8 (+5%) 0.07 (-36%) 18.9 (-0%)

Table 8.1. Comparison between the real trade-off individuals

8.2 Combustion development

Figure 8.1 shows the in-cylinder pressure evolution between intake valve closure and
exhaust valve opening.
Figure 8.2 shows the net rate of heat release calculated from the pressure curve.
Figures from 8.3 through 8.9 show an isosurface having equivalence ratio equals to
one, coloured by temperature, for different crank angle.
All the three investigated piston bowls show a similar combustion development from
the start of injection till approximately top dead center (see figures 8.1 and 8.2).
During this time, the fuel spray inside the piston bowl G012, VHP011, NE is covering
the free path between the point of injection and the piston bowl lip as shown in
figures 8.3 and 8.4. As the fuel plume reaches the piston bowl lip, it begin to
interact with the chamber walls (figure 8.5) and the combustion development inside
the investigated piston bowls begin to differ due to different spray/walls interactions
(figures from 8.5 through 8.9) originated by different piston shapes. Between 0
Ca deg. ATDC and 20 CA deg. ATDC, as a result of a better interaction, the
combustion development inside the piston bowl G012 is enhanced resulting in higher
net rate of heat release (figure 8.2) and in a higher in-cylinder pressure (figure 8.1).
It worth notice that the SOI of the chamber G012 is slightly advanced (see table
8.1) easeing the propagation of the combustion inside the piston bowl. However,
starting from about 20 CA deg. ATDC, the piston bowl NE shows (figures 8.8,
8.9) a better diffusion of the fuel spray inside the squish volume, due to the swirl
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motion, resulting in a better combustion as proved by the higher net rate of heat
release during the tail of combustion (figure 8.2). As a result, starting from about 30
CA deg. ATDC the combustion chamber NE records a higher in-cylinder pressure.
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.3. Isosurface of φ = 1 coloured by temperature at -4.0 CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.4. Isosurface of φ = 1 coloured by temperature at -1.5 CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.5. Isosurface of φ = 1 coloured by temperature at 1.0 CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.6. Isosurface of φ = 1 coloured by temperature at 6.0 CA deg. ATDC

60



8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.7. Isosurface of φ = 1 coloured by temperature at 11.0 CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.8. Isosurface of φ = 1 coloured by temperature at 21.0 CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.9. Isosurface of φ = 1 coloured by temperature at 26.0 CA deg. ATDC
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8.3 NOx emission

Figure 8.10 shows the evolution of NOx emission in ppm.
Figure 8.11 shows the mean chamber temperature.
Figure 8.12 shows the percentage of the computational domain having a temperature
above 2200 K.
Figures from 8.13 through 8.15 show an isosurface of T = 2200 K coloured by oxygen
mass fraction.
As a result of a better combustion between 0 CA deg. ATDC and 20 CA deg. ATDC
(see 8.2), the piston bowl G012 records a higher mean chamber temperature (figure
8.11) and a higher percentage of the fluid domain having a temperature above 2200
K (figure 8.12). Then, starting from about 25 CA deg. ATDC, the piston bowl NE
recorded a better combustion efficiency (see 8.2)and, thus, as could be seen in figures
8.11 and 8.12, show a higher mean chamber temperature and a higher percentage of
hot spots during the tail of combustion. Particularly, during this interval, the piston
bowl NE shows a higher percentage of hot spots inside the bowl volume due to a
different combustion development (figure 8.15). In fact, while Piston bowls G012
and VHP011 present a more pronounced central tip which inhibits the combustion
development inside the piston bowl, the central tip of the piston bowl NE allows the
propagation of the combustion towards the center of the bowl (figure 8.15).
Overall, the piston bowl NE records a higher NOx concentration in ppm (figure
8.10).
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.13. Isosurface of T = 2200K coloured by oxygen mass fraction at 11.0
CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.14. Isosurface of T = 2200K coloured by oxygen mass fraction at 21.0
CA deg. ATDC
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.15. Isosurface of T = 2200K coloured by oxygen mass fraction at 31.0
CA deg. ATDC
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8.4 Soot emission

Figure 8.16 shows the evolution of soot emission during the combustion development.
Figure 8.17 shows of the computational domain having an equivalence ratio above
2.
Figure 8.18 shows the in-cylinder oxygen mass fraction evoultion.
Figures from 8.19 through 8.19 show an isosurface of equvalence ratio equals to 3 at
different crank angles.
Between the start of injection and 20 CA deg. ATDC, all the three investigated
piston bowls shows approximately the same fuel/air mixing, as could be seen in
figure 8.17, and the same soot concentration (figure 8.16). However, during the tail
of combustion, the piston bowl NE records a lower percentage of fuel rich zones which
results in a lower maximum soot concentration. During this interval, the shape of
the bowl lip of the piston NE allows (figures 8.19, 8.20, 8.21) a better conservation of
the fuel spray momentum which helps in decrasing the fuel rich zones near the point
of injection and inside the piston bowl. The ability to meet the NOx euro 5 emission
limit with a lower exhaust recirculation of the piston bowl NE (see table 8.1) also
plays a role allowing to work with higher overall λ and increasing the disposable
oxygen for the fuel/air mixing.
Moreover, piston bowls G012 and VHP011 show a certain overlap between neigh-
bouring fuel plumes which limits the swirl ratio inside these piston bowls (figure
8.21). Infact, it was seen in table 8.1 that the piston bowl NE was optimized by a
swirl ratio of 1.6 while the piston bowls G012 and VHP011 required a swirl ratio of
1.5 and 1.3 respectively. After the combustion end, all the three investigated piston
bowls show no significant differences in soot oxydation, as testified by the trend of
oxygen consuption between 40 CA deg. ATDC and exhaust valve opening (figures
8.18, 8.19, 8.20, 8.21). Overall, the piston bowl NE records a lower soot emission,
at exhaust valve opening, due mainly to a better fuel/air mixing.
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(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.19. Isosurface of φ = 3 coloured by temperature at 21.0 CA deg. ATDC
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8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.20. Isosurface of φ = 3 coloured by temperature at 26.0 CA deg. ATDC
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8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.21. Isosurface of φ = 3 coloured by temperature at 31.0 CA deg. ATDC
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8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.22. Isosurface of φ = 3 coloured by temperature at 36.0 CA deg. ATDC
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8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.23. Isosurface of φ = 3 coloured by temperature at 41.0 CA deg. ATDC
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8 – Combustion analysis of the optimal solutions

(a) G012: Isometric view (b) G012: Top view

(c) VHP011: Isometric view (d) VHP011: Top view

(e) NE: Isometric view (f) NE: Top view

Figure 8.24. Isosurface of φ = 3 coloured by temperature at 46.0 CA deg. ATDC
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Chapter 9

Conclusion

In order to achieve a significant combustion improvement it is mandatory, for the
future DI Diesel engine, to develop a robust design methodology focused on decrea-
sing NOx and soot emissions simoultaneously while mantaining a reasonable fuel
economy. However, since there are trade-off relationships between engine perfor-
mance, NOx and soot emissions, numerically executed parametric searches can not
find a unique solution which optimizes all the objectives of a good design at the
same time.

For this kind of problem, multi-objective genetic algorithms have been successfully
used, over the last few years, due to their ability to find multiple Pareto-optimal
solutions in one single run as they mimic the evolutionary processes of ecosystems,
which obey the Darwinian idea of survival of the fittest, moving the Pareto front
towards the ideal optimal set of solutions as the optimization process evolves.

Nonetheless, combining GAs optimization with actual CFD three-dimensional com-
bustion simulations can be too onerous since a large number of calculations is usually
needed for the genetic algorithm to converge, resulting in a high computational cost
and, thus, limiting the suitability of this method for industrial processes.

In the current work, a numerical methodology for the multi-objective virtual optimi-
zation of the combustion of an automotive DI Diesel engine, which relies on artificial
neural networks and genetic algorithms, was developed.

At the base of the methodology, three-dimensional CFD calculations were used to
generate valid training sets for the learning process of artificial neural networks.
Artificial neural neutworks were chosen amongst other statistical modeling tools
due to their ability to model complex relationships between inputs and outputs like
those which tie up design parameters and objectives inside the DI Diesel engine.
Then, once properly trained, the artificial neural networks were used during the
evaluation phase of the genetic algorithm to foresee NOx, soot and gross-IMEP as a
function of the input parameters. The NSGA-II genetic algorithm was used due to
its ability to find Pareto optimal solutions in one single run with a low computational
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9 – Conclusion

cost. All the needed software for the RBF neural learning process and the multi-
objective virtual optimization was written in Matlab/Octave language starting from
the algorithm described in chapters 4 and 5.
The proposed methodology was used to aid the development process of a 4-cylinders/4-
valve for cylinder engine with a total displacement of 2.4 liters targeted for automo-
tive applications allowing to evaluate three different piston bowls under a wide range
of operating conditions and to find out, for each piston bowl, the Pareto-optimal
individuals with a small number of calculations. At the final stage of the work, the
best solutions were validated through actual CFD three-dimensional calculations
and their own combustion developments were deeply investigated by means of the
typical CFD post-processing instruments.
The developed numerical methodology proved to be both fast and accurate and is
currently successfully employed to aid the design of several DI Diesel engine.
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