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1. Summary 

Apple scab caused by Venturia inaequalis (Cke.) Wint. is one of the diseases with the 

highest economic importance both in Italy and in Turkey as in other countries and requires a 

high number of fungicide applications. The introduction, in the late 1990s, of strobilurin 

fungicides led to an improvement in disease control. These fungicides specifically inhibit 

cell respiration by binding at the ubiquinol oxidation centre (Qo site) of the mitochondrial 

cytochrome bc1 complex. After a few years of excellent protection, several cases of reduced 

scab control caused by pathogen resistance to strobilurins (QoI) were reported in many 

countries. Resistance is caused by a mutation which results in a change of Glycine to 

Alanine at position 143 of cytochrome b (G143A substitution). 

This study was aimed to correlate the results of relative germination from in vitro 

tests with those of qPCR on sixty-four V. inaequalis populations and sixty monoconidial 

isolates. Samples were collected in Italian and Turkish distinct locations from orchards with 

different scab management. 

 In vitro assays were carried out in petri dishes and concerned the conidial 

germination for the populations and monoconidial isolates. Also, the mycelial growth was 

evaluated for the monoconidial isolates. Trifloxystrobin was used as active material to 

achieve the following concentrations: 0.0001, 0.001, 0.01, 2 mg L-1. According to test results 

EC50 values and relative germination (RG) were calculated.   

In molecular analysis, genomic fungal DNA of populations was extracted directly 

from the infected leaves by a CTAB-based method. In order to obtain the genomic fungal 

DNA of monoconidial isolates, spores were used as extraction material utilizing Chelex 100 

chelating resin. CAPS analysis were performed on all samples by two specific primers  ANK 

10 and ANK 283 to amplify a 413 bp fragment of cytochrome b of V. inaequalis and this 

fragment include the G143A position. Then PCR products were digested with the Tse 1 

restriction enzyme which is able to recognise the mutation causing G143A substition. In this 
13 

 



study, an allele-specific qPCR with primer sets designed was successfully developed to 

determine the frequency of QoI-resistant allele (A143) by SybrGreen. The forward primers 

FwS5418 and R5548 were used respectively for sensitive and resistant allele, while reverse 

common primer, R5548, was used. With the aim to verify the qPCR efficiency (E) and 

specificity of each primer pair, different percentage of referent sensitive and resistant 

plasmidial DNA were analyzed. The ratio of the two alleles presence in samples was 

calculated using ΔCq method. 

The correlation between the results of two assessment methods showed that 

quantitative assessments using qPCR followed a similar pattern to that obtained using in 

vitro conidial germination test in very sensitive and very resistant populations. In fact, in 

most cases, it was observed when RG was < 10%, mutated allele frequency was < 10% and 

when RG was > 70%, very high mutated allele (>80%) was detected. Some variability 

between two test results was observed in hetereogenous populations. Therefore, the results of 

correlations between in vitro and qPCR showed a positive but not very high correlation for 

Venturia inaequalis populations (R2=0.70). On the contrary, this correlation between two 

assessment methods was very high for monoconidial isolates (R2=0.92). qPCR assessment 

was highly representative of the results obtained by in vitro assay for monoconial isolates.  

The method developed here was designed as alternative to traditional methods and 

qualitative tests and showed a better sensitivity than the CAPS method and in vitro tests. 

However, not a very high correlation between biological and molecular data was observed in 

hetereogenous populations. It was observed that using qPCR method makes it possible to 

measure the mutation level in DNA isolated from viable and non-viable fungal material. 

Therefore, results obtained in quantitative PCR and from traditional spore germination assay 

differed for the same fungal population and in some cases it is difficult to assess the 

resistance in the field by only qPCR. Moreover, the mutation does not always explain the 

QoI-resistant phenotype. 
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qPCR allows a rapid detection of mutation with known resistance mechanisms, at 

low frequencies, and even if it is not possible to have a precise correlation between 

biological and molecular data, it is possible to observe that populations classified as sensitive 

in vitro tests have generally a rather precise range of percentage of mutated alleles, and the 

same can be observed on resistant populations where the percentage of mutated alleles is 

generally superior to certain values. However, it is not  always possible to correlate the 

frequency of detection of the mutation with biological assessment.  

In conclusion, in such situations monitoring by molecular techniques must be 

supported by standard in-vitro resistance assessments and observation of field performance 

in order to have a more reliable conclusion on sensitivity of each V. inaequalis population to 

strobilurins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 
 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
16 

 



2.     Introduction  

Apple scab, caused by the ascomycete Venturia inaequalis (Cke.) Wint, is the most 

important disease of apple (Malus x domestica Borkh.) worldwide in terms of economic cost 

of control. However, the disease is more severe in cool, moist climates during early spring 

(MacHardy, 1996; Manktelow et al., 1996). It is not known when scab first appeared in 

orchards. The first report on scab was published by Fries in Sweden in 1819 (Fries, 1819). V. 

inaequalis has a wide geographical range and is found in almost all areas in which apples are 

grown commercially. The disease can affect 70 % or more of the yield if control measures 

are not applied well (Agrios, 2005). 

Taxonomy of apple scab is as follows;  

Teleomorph: Venturia inaequalis Cooke (Wint.) 

Kingdom: Fungi 

Phylum: Ascomycota 

Subphylum: Euascomycota 

Class: Dothideomycetes 

Family: Venturiaceae 

Genus: Venturia 

Species: inaequalis 

Anamorph: Fusicladium pomi (Fr.) Lind or Spilocaea pomi (Fr.) (Bowen et al., 2011) 
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2.1  Biology and life cycle of apple scab 

 

Venturia inaequalis Cooke (Wint) is a hemibiotrophic fungus and has two phases 

characterized by a saprophytic phase or the perfect state (sexual) in autumn-winter and a 

parasitic phase or the imperfect state (asexual) in spring-summer. 

V. inaequalis survives the winter primarily in diseased apple leaves on the ground as 

immature pseudothecia (fruting body) (Fig1) but also the fungus can survive in infected bud 

scales and on twigs, as mycelium or conidia on some cultivars and in certain regions (Holb 

et al., 2005). Pseudothecium is seen as black pin-point heads on the over-wintering apple 

leaves. Pseudothecia and ascospores develop in these leaves. In spring meiosis and mitosis 

take place and the diploid pseudothecium is forming numerous asci containing 8 ascospores 

(12-15 x 6-8 μm) each (Sivanesan and Waller, 1974). Each pseudothecium contains 50 to 

100 asci (Agrios, 2005). Ascospores are the primary source of inoculums and infection is 

initiated in spring and early summer. Apple scab ascosopores are the one-septate green, 

yellowish, or olivaceous-brown (Barr, 1968) and consist of two cells of unequal size (Agrios, 

2005) (Fig 2). These ascospores are discharged in rain, and leaf wetness and they are carried 

by the wind to the developing fruit and shoot buds where they cause primary infections that 

can lead to lesions and production of conidia. Most spores (90-95%) are discharged during 

daylight between the pink bud to petal fall stages. The 5-10% of ascospores discharged at 

night is enough to start an epidemic (Rosenberger, 2012).  

 In spring, only the youngest 2-3 leaves are susceptible to infection. Early in the 

season, scab spots first appear on the underside, later in the season, lesions are more likely to 

appear on the upper surface of leaves. 
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Fig.1. Pseudothecium of Venturia inaequalis containing asci and ascospores 
(http://www.apsnet.org/edcenter/illglossary/Article%20Images/Forms/DispForm.aspx?ID=643) 

 
 

                          

Fig. 2. Ascospores of Venturia inaequalis in asci (Brunelli)  

 

The length of time required for ascosopore’s germination and penetration on leaves, 

or fruits depends on the number of hours of continuous wetness and the temperature during 

the wet period. The most famous and complete relationship published by Mills and 

Laplantec (1951) (Fig 3). 

 During germination, ascosopore germination tube goes into the cuticle of leaf or fruit 

and grows between outer cell wall of epidermis and the cuticle. A fungal mycelium forms 

here and pushes up through the leaf cuticle and ruptures it. The mycelium of V. inaequalis is 
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septate, and the nuclei are haploid Mycelium is the mass of conidia and conidiophores and 

they cause the olive-green, velvety scab lesions (MacHardy, 1996). 

 

 

 

 

 

 

 

 

 

                                        Temperature (oC) 

Fig. 3. Relationship of temperature and duration of leaf wetness to the severity of apple scab      
          (Agrios, 2005). 
   

The conidia are single-celled, uninucleate and measure between 6 and 12 µm wide 

and between 12 and 22 µm long (Fig 4). Infection is highly influenced by the susceptibility 

of the cultivar, weather conditions and the quantity of conidia. Up to 100,000 conidia can be 

produced by a single lesion (Vaillancourt and Hartman, 2005). 

In summer, conidia (asexual spores) can be carried throughout the orchard onto other 

leaves and fruit within the tree by water or wind, and cause numerous new, secondary 

infections. These infections produce more conidia and continue the disease cycle. Secondary 

infections continue during cool, wet periods of spring, early summer and autumn until the 

leaves and fruit fall from the tree. 
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Fig. 4. Conidia of V.inaequalis (Brunelli) 

 

V. inaequalis go through sexual reproduction on fallen infected leaves over winter 

and pseudothecia are formed. They will mature during winter and develop a new generation 

of ascospores for the following spring to start a new cycle (Fig 5).  

 

2.2 Symptoms of apple scab 

The Apple Scab fungus does not kill the tree, but infection results in leaf and fruit 

loss. Apple scab infects leaves, fruit, petioles, blossoms, flowers, sepals, pedicels, young 

shoots, and budscales. The symptoms are generally most noticeable and serious on leaves 

and fruit.  

The first visible lesions on the leaves are often found on the lower surfaces of leaves 

in the spring and they are small, discrete, and olive to greenish-black. The spots can be seen 

on upper side later in the season. Symptoms on the upper surface are more distinguished (Fig 

6).  Initially, infections appear as olive-green spots with indefinite borders. In time, spots 

become larger and velvety olive-green collared by the numerous conidia. Olive green lesions 

turn gray brown with distinct margin and lesions are raised.  
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 Fig. 5. The life cycle of Venturia inaequalis (This diagram was published in Agrios, Plant     
            Pathology, p. 506. Copyright Elsevier2005.) 

 

The lesions on the fruits are similar to those on the leaves. A young fruit infections 

result in deformation and cracking. Spots on the apple fruits are superficial, darker-colored 

and enlarge more slowly than on leaves (Fig 6). Lesions become brown, corky and scabby. 

Fruit infections that occur in late summer or early fall may not be visible until the fruit are in 

storage (Pin-point scab lesion) (MacHardy, 1996). 
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Fig. 6. Scab symptoms on the upper surface of leave and on the fruit (Brunelli) 

 

2.3 Fungicides used to control apple scab 

 

Apple scab management is based on fungicide applications. Fungicide spray 

programmes are required in most apple-growing regions during spring and summer. A 

variety of fungicides with differing modes of action are available. Scab is currently 

controlled by up to 15–20 applications of protective and curative fungicides during the 

growing season (Jamar et al, 2007).  

Apple scab first became an important problem in Europe in the 1880’s. Bordeaux 

mixture was the main chemical control of scab before 1920 (MacHardy, 1996). Then 

sulphur-based products were started to use and became popular in the mid-1930’s 

(MacHardy, 1996) together with other inorganic fungicides (copper, mercury). Due to some 

of negative properties of sulphur and copper materials (injuries to the foliage and fruit, 

difficulty of preparing, required numerous applications, etc.), the new organic fungicides 

entered in the market. The origin of fully synthetic fungicides can be dated to 1950s when 

the dithiocarbamates were discovered. Dithiocarbamates as protectant fungicides were the 

first organic fungicides that controlled apple scab, especially mancozeb. Chlorothalonil was 

introduced in 1963-64 and widely used for apple scab control (Morton and Staub, 2008). In 
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1960s, dodine was entered to market as an effective protectant and eradicant fungicide. 

Dodine was used as the first local systemic organic fungicide. Although dodine can be active 

when applied in pre- and postsymptom, its efficacy is weak in after-infection applications for 

scab control (Köller et al, 1999). Dithianon was an another important protectant fungicide in 

1960s against apple scab.  

From the nineteen-sixties, synthetic fungicides with several new modes of action 

came on the market. In the late 1960s and 1970s, more new fungicides with novel structure 

and mostly with systemic activity like benzimidazoles were introduced. Since their 

introduction, systemic fungicides have gradually replaced the older non-systemic products. 

During these years, research and development enlarged rapidly along with growth of the 

fungicide markets and many of the fungicides were registered after introduction of benomyl. 

The single-site inhibitor benomyl was introduced to the market as the first systemic 

fungicide in 1967. The type of activity of fungicides allowed establishing different treatment 

application: protection, after infection, presymptom and postsymptom (Szkolnik, 1978). 

Apple scab since 1980 has been controlled by systemic sterol biosynthesis inhibitor 

fungicides (DMIs), anilinopyrimidines, strobilurins and guanidines. DMIs represent one of 

the largest groups of systemic fungicides that have been used to control fungal pathogens 

(Zhan et al., 2006) and DMIs are most active for apple scab in an after-infection mode of 

application (Köller et al., 1999). In the beginning of 90s a new class of fungicides, 

strobilurins became important to be effective, protective and eradicant. 

 These systemic fungicides all have very specific modes of action that allow for the 

development of resistance.  
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2.4 Fungicide resistance in Venturia inaequalis 

With the introduction and widespread use of single-site fungicides, the evolution of 

resistant strains of pathogens has been rapid and fungicide resistance has become an 

increasingly serious worldwide problem in the agrochemical industry. During the past years, 

important problems of fungicide resistance development have been reported. Resistance is a 

stable and inheritable adjustment by a fungus that results in reduced sensitivity to a 

fungicide. This means, that fungicides don’t affect or less affect on resistant isolates and they 

can become dominant in local pathogen populations under the selection pressure of fungicide 

use. The resistant isolates can reproduce and spread to large areas and this can cause 

epidemics and economic losses. 

All fungicides with a single-site mode of action (MOA) have an high potential to 

cause fungal resistance. Many types of resistance mechanism are known and the most 

common resistance mechanism is an alteration of amino acids of the biochemical target site 

of the fungicides. 

 Fungicide resistance in V. inaequalis is first occured for dodine in the late 1960s 

(Gilpatrick, 1982) and dodine resistance became widespread during the 1970s (Köller et al, 

1999). V. inaequalis has successively developed resistance to benzimidazole (benomyl) and 

resulted in specific mutations in the gene encoding the target protein β-tubulin that modify 

amino acid 198 (from glutamate to alanine, lysine or glycine) (Koenraadt et al., 1992).  

Resistance has already been acquired to anilinopyrimidines (Küng et al., 1999) and the mode 

of action includes inhibition of methionine biosynthesis and secretion of hydrolytic enzymes. 

 There is also increasing evidence of DMI and strobilurins. V.inaequalis sensitivity 

reduction to demethylation inhibitors (DMIs) has been documented by Sholberg and Haag in 

1993 and Köller et al., in 1997. The mechanism of resistance to the DMI fungicides is 
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known the overexpression of the target-site CYP51A1 gene (14a-demethylase gene) from 

V.inaequalis (efflux mechanism) (Schnabel and Jones, 2000). 

Not long after the introduction of strobilurins in the market, strobilurin resistant 

isolates of V.inaequalis were detected for the first time in 1997 in European field (Fontaine 

et. al, 2008) (More details are  in mechanisms of resistance to QoI fungicides section). 

2.5 Fungicides resistance in Venturia inaequalis in Italy and Turkey 

A key role in apple scab control has traditionally been played by mobile products 

such as dodine, benzimidazoles and DMIs, also thanks to their curative activity. Since the 

late nineties, further improvements have been possible thanks to new anilinopyrimidines and 

strobilurins that respectively assured a good curative activity in both country and made it 

possible to extend spray intervals even up to ten days between treatments (Delen, 2008; 

Brunelli et al., 2002).  

Italy 

Apple scab is the main disease of apple in Italy and requires numerous fungicide 

applications, especially in northern areas because of frequent rains and fairly high 

temperatures in first growth stages. In the early seventies, the key products, benzimidazoles 

were dramatically involved in resistance development after few years of introduction to the 

market. This led to a return to the use of dodine until the late seventies, when fenarimol 

started the SBI period. These fungicides predominated for many years with triazoles 

(bitertanol, myclobutanil, penconazole, etc.) but were progressively affected by resistance in 

the middle of the 80s (Fiaccadori et al., 1987). After some years of excellent performances, 

apple scab control difficulties have been reported since 2000 and 2001 in Northern areas of 

Italy with programmes based on strobilurins (Table 1)  and/or anilinopyrimidines (Fiaccadori 

et al, 2005). The field control complaints have in the last few years in Italy led to reconsider 
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the use of these fungicides that in the late nineties became the key products against apple 

scab. Strobilurins were abandoned in some areas, especially where control failures were 

rather frequent, or utilized only in low risk periods, while in others areas they continue to be 

applied with usual antiresistance recommendations. On the contrary, anilinopyrimidines 

continue to be used in most Italian apple areas, often mixed with products characterized by 

other mechanisms of action. 

In the last few years, the reduction of effectiveness reported in some areas for 

strobilurins and anilinopyrimidines led to a strong increase of the use of other fungicides in 

V. inaequalis control in Italy, mainly dithianon among contact products and difenoconazole 

among systemic ones. Complaints of reduced control have recently been reported also for 

these fungicides and a survey was started. The first results obtained by in vitro sensitivity 

tests of V. inaequalis to dithianon did not confirm the suspicion of resistance, leading to the 

conclusion that control complaints could be caused by an unsuitable timing of applications 

of this fungicide in high infective periods (Fiaccadori et al., 2012). 

Table 1. Authorized strobilurins on apple scab in Italy 

Strobilurins Dose Formulation Authorization 
Date 

kresoxim-methyl 10-14g/100L WG 27.03.1997 

trifloxystrobin 10-15g/100L WG 06.12.2002 

pyraclostrobin (12.8%) 
+boscalid (25.2%) 55g/100L WG 13.07.2006 

 

Turkey 

Apples can be grown in almost all parts of the country and fungicides are widely used 

to control scab disease. In Central Anatolian Region, especially in Egirdir (Isparta) where 

apple production is high and a lot of fungicides are applied (Fig 7). 
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Fig.7. Map of Isparta region in Turkey 

Failure to control disease has been observed in some orchards and fungicide 

resistance was claimed to be the main reason. There are some unpublished studies from the 

chemical industry testing the sensitivity of the pathogen’s local isolates to commonly used 

fungicides. Fungicide resistance in V. inaequalis is well known in Turkey for old fungicides 

such as dodine, benzimidazole, demethylation inhibitors (DMIs) and newer fungicides such 

as strobilurins.  

The sensitivity reduction of V. inaequlis isolates, collected from west and south 

Turkey, to benzimidazoles, DMIs and dodine were reported in 90s (Benlioğlu and Kılıç, 

1994). In another study, the effectiveness of different doses of 14 fungicides licenced against 

apple scab were tested in vitro and in vivo in 2008-2009 years. Among the tested fungicides 

in vitro,  the mycelium development of apple scab was full inhibited at 10 ppm concentration 

for mancozeb, 50 ppm for dodine and captan, and 100 ppm for pyraclostrobin+dithianon and 

pyrimethanil. Other active ingredients effected the development at the different levels. In 

field trials, the differences between replications, months and years were found unimportant 
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statistically. The most effective fungicides were determined as dodine (84.63%), 

pyraclostrobin+dithianon (66.07%), captan (64.62%) and mancozeb (60.85%) in the mean of 

2008 and 2009 years (Kaymak et.al, 2011).   

Strobilurins, due to their efficacy against several important plant diseases and wide 

working range in different weather conditions, constitute the most attractive group of 

fungicides among fungicides used in Turkey. Strobilurins have been used here since 1998 

(Table 2). After few of intensive treatment (up to 4–5 applications per season), the 

appearance of V. inaequalis forms with reduced sensitivity to strobilurins were seen in apple 

orchards. Strobilurins continue to be used in most Turkish apple orchards, often with mixed 

with products characterized by other mechanisms of action. However, the molecular 

mechanism responsible for QoI resistance in Turkish orchards has not been studied yet. 

Table 2. Authorized strobilurins on apple scab in Turkey 

Strobilurins Dose Formulation Authorization 
Date 

kresoxim-methyl  15g/100 L   WG   13.03.1998 

trifloxystrobin   15g/100L  WG 15.02.2000 

pyraclostrobin (12.8%) 
+boscalid (25.2%) 30g/100L  WG   17.03.2006 

metominostrobin                  
(200g/L)  60ml/100L  SC  23.05.2006 

pyraclostrobin (4%) + 
 dithianon (12%) 100g/100L  WG  14.06.2007 

 

2.6 Strobilurins 

Since strobilurin’s first launched in 1996, sales of strobilurin fungicides have enjoyed 

an average annual growth of 15.7% in five years (Fig 8). Registrations have been obtained 

on a wide range of crops throughout the world and reached to $1.636 billion in 2007 as a 

result of widespread use (Morton and Staub, 2008). The success story of strobilurins as 
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fungicides is due to their characteristics, which are broad-spectrum activity, control of fungal 

isolates resistant to other fungicides modes of action, low use-rates, and excellent yield and 

quality benefits (Sauter et al. 1999). They have been used as foliar fungicides, for seed 

treatment, as well as in-furrow treatments for soil-borne diseases. 

 

Fig.8. Percentage of fungicides in the world market of fungicides for 2005. (Phillips  
McDougall, 2006) 
 
The first development azoxystrobin and kresoxim- methyl were announced, 

respectively, in 1992 and they were sold the first time in 1996 for the control of diseases in 

cereals (Margot et al., 1998; Barlett et al., 2002) and then few years later metominostrobin 

and trifloxystrobin were sold in 1999. Picoxystrobin and pyraclostrobin were announced and 

sold in 2002. During the 1990s also famoxadone and fenamidone were discovered. 

Famoxadone and fenamidone are two additional fungicides that are chemically distinct but 

share the same crossresistance group with the strobilurins. 

Other QoI fungicides, coumoxystrobin, dimoxystrobin, enoxastrobin, 

fenaminostrobin, fluoxastrobin, flufenoxystrobin, orysastrobin, pyraoxystrobin, 

pyrametastrobin, pyribencarb, triclopyricarb are also in the same cross-resistance group 

(FRAC, 2011). 

30 
 



2.6.1 Mode of action of QoI Fungicides 

Strobilurin fungicides were created by a group of natural fungicidal derivatives of β-

methoxyacrylate acid (Becker et al., 1981). They are developed from the natural compound 

strobilurin A, oudemansin A and myxothiazol A. These natural products are a secondary 

metabolite of the Basidiomycete wood-rotting fungi, such as Qudemansiella mucida (Schrad 

ex Fr) Hoehn, Strobilurus tenacellus (Pers ex Fr) Singer and, in the case of myxothiazol A, 

the gliding bacterium Myxococcus fulvus (Barlett, 2002). 

Strobilurins have a single-site mode of action that inhibit fungal respiration by 

binding to cytochrome b of complex III at the Q
o 

site in the mitochondrial respiration chain 

(Fig 9). Therefore they are known as Qo inhibitors (QoIs) (Sauter et al., 1999). This results 

in the disruption of adenosine triphosphate (ATP) production resulting in energy deficiency 

in the fungus. Since they disrupt ATP/energy production in phytopathogenic fungi, they 

greatly affect the fungal stages that require large amounts of energy. These stages are spore 

germination and zoospore motility (Bartlett et al., 2002). They have also been observed to 

inhibit the formation of mature cleistothecia in Erysiphe necator and formation of mature 

oospores of Plasmopora viticola and to reduce their viability (Bartlett et al. 2002). 

 

Fig. 9. The mitochondrial respiratory chain. (from http://pages.slu.edu/faculty/kennellj/) 
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Field application of the natural compounds of strobilurins was not possible because 

of their relative volatility and photochemical instability. Also they beak down rapidly in light 

and are therefore not reliable for disease control. 

Therefore, efforts were directed at chemical optimization and a knowledge of their 

structures and physical properties provided to develop the synthetic analogues, QoI 

fungicides (Sauter et al., 1999). The various QoI fungicides have very different 

physicochemical properties which confer different behaviors in the plant. 

Table 3. Properties of strobilurins 

 Azoxystrobin Trifloxystrobin Kresoxim
-methyl Metominostrobin Pyraclostrobin Picoxystrobin 

Movement into 
leaf low Very low low high Very low Medium 

Vapour active no yes yes no no Yes 

Metabolic 
stability in leaf yes low low n.d.* yes Yes 

Translaminar 
movement yes low low yes low Yes 

Xylem 
systemic yes no no yes no Yes 

Systemic 
movement to 
new groth in 

creals 

yes no no yes no Yes 

Phloem mobile no no no no no No 

Source Syngenta; *n.d. = no data (Bartlett et al. 2002). 

 Azoxystrobin and picoxystrobin retain the methyl β-methoxyacrylate group of the 

natural fungicides, while the others contain modified toxophores. The fungicide azoxystrobin 

and picoxystrobin move translaminarly as well as systemically. The fungicides kresoxim 

methyl, trifloxystrobin and pyraclostrobin move translaminarly but not systemically. 

Azoxystrobin, picoxystrobin and metominostrobin are xylem-systemic (Table 3). In 

addition, picoxystrobin is the most rapidly absorbed into plant tissue. 30-45% of material 
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applied to the foliar surface is absorbed into the cells of the leaf of wheat and barley within 

24h of application. Also kresoxim-methyl, picoxystrobin and trifloxystrobin deliver disease 

control in the vapour phase, but azoxystrobin and pyraclostrobin can not be redistributed in 

the same way (Bartlett et al., 2002). 

2.6.2 Spectrum of disease control 

QoIs control plant diseases caused by pathogens from all groups of fungi: 

Oomycetes, Ascomycetes and Basidiomycetes. They are used on a wide variety of crops, 

including cereals, field crops, fruits, tree nuts, vegetables, turfgrasses, and ornamentals 

against pathogens such as Venturia inaequalis, Podosphaera leucotricha, Mycosphaerella 

fijiensis, Phytophthora infestans, Alternaria solani, Pythium spp., Rhizoctonia solani, 

Microdochium nivale. QoIs are recommended for the foliar diseases of cereals and rice, such 

as Mycosphaerella graminicola, Pyrenophora teres, Erysiphe graminis, Puccinia recondita, 

Puccinia hordei, Rhynchosporium secalis and Pyricularia grisea. 

Azoxystrobin is recommended for use as a foliar, submerged, seed or soil treatment, 

Azoxystrobin controls blast (Pyriculuria oryzae) and sheath blight (Corticium sasakii) on 

rice. It has a very good activity against grape downy mildew (P. viticola) and powdery 

mildew (E. necator), and Alternaria mali, and potato late blight (P. infestans). Also it is 

commercialized for the control of brown patch (Rhizoctonia solani), Pythium blight 

(Pythium spp.) and pink snow mould (Microdochium nivale) of turfgrass (Gullino et al., 

2000). 

Trifloxystrobin has a very broad spectrum of activity, such as against powdery 

mildews on cucurbits and grapevines and leaf spot diseases like V. inaequalis, V.pirina. It 

also significantly controls of rusts, downy mildews and alternaria diseases. 
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Kresoxim-methyl has also some efficacy on a broad range of pathogens and is 

registered mostly on cereals, especially for powdery mildew (E. graminis), net blotch 

(Drechslera teres), and Septoria nodorum. It also shows excellent eradicant properties 

against E. graminis and E. necator. Generally, kresoxim-methyl is more effective against 

spore germination than mycelial growth because of the spore’s dependency on mitochondrial 

respiration during germination especially for V.inaequalis, P. oryzae and R. secalis (Sauter et 

al., 1995).  

Metominostrobin has excellent activity against rice blast and sheath blight, powdery 

mildew of vegetables and cereals, scab and rust of apple and pear, grey mould and 

Sclerotinia rot of vegetables.  

Picoxystrobin is recommended for a range of cereal diseases. 

Strobilurins are best used in pre infection period or in the early stages of disease 

development because of the their potent effects on spore germination and zoospore mobility 

(Godwin et al., 1994; Godwin et al., 1997; Stierl et al., 2000). However, curative activity has 

also been observed. This has been found with azoxystrobin, trifloxystrobin, kresoxim-

methyl, pyraclostrobin and picoxystrobin (Barlett et al., 2002). In addition, some studies 

have been demonstrated that azoxystrobin inhibits the formation of mature cleistothecia of 

grapevine powdery mildew (E. necator) and the production of visible ascosopores (Godwin 

et al., 1999; Bartlett et al., 2002). 

2.6.3 Mechanisms of resistance to QoI Fungicides 

Soon after introducing QoI inhibitors to the market in 1996, the development of 

resistant forms in field populations of several important plant pathogens has been reported in 

different countries (Barlett et al., 2002; Gisi et al., 2000).  
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In 1998, wheat powdery mildew (E. graminis f.sp. tritici) resistant isolates to QoI 

fungicides were first detected in Northern Germany (Felsenstein, 1999). QoI resistance has 

been also detected in other pathogens, including Sphaerotheca fuliginea in Asia and parts of 

southern Europe (Heaney, 2000) and Pseudoperonospora cubensis on cucumber in Spain 

and Japan (Ishii et al., 1999), P. viticola on grape in Italy and France, and Mycosphaerella 

fijiensis on banana in Costa Rica (Heaney, 2000; Gisi et al. 2002).  

QoI resistance in V. inaequalis was first reported in 1997 in European field and 

experimental trials in Switzerland and Northern Germany (Fontaine et al, 2008; Farber et al., 

2002; Steinfeld et al., 2002). Also several cases of reduced apple scab control by strobilurins 

were reported in Chile (Sallato et al. 2006), in Italy (Fiaccadori et.al, 2005, 2011), in Poland 

(Broniarek-Niemiec and Bielenin, 2008) and in other European countries (Fig 10) (Frac, 

2011).  

A commonly observed mechanism of resistance in many phytopathological fungi is 

single-nucleotide mutation in the cytochrome b gene, leading to amino acid exchange and 

preventing the inhibitor from binding to the respective gene product (Lesemann et al., 2006). 

There are three most common among amino acid substitutions in several phytopathogenic 

fungi and oomycetes resistant to QoIs: from glycine to alanine at position 143 (G143A), 

from phenylalanine to leucine at position 129 (F129L) (Gisi et al., 2002) and from glycine to 

arginine at position 137 (G137R) (Sierotzki et al., 2006). 

The QoI-targeted cytochrome b protein is encoded by mitochondrial DNA (mtDNA). 

This DNA generally is thought to mutate at a higher frequency than that of nuclear DNA 

(Ishii et al., 2007). This genetic trait must have greatly influenced the rapid development of 

resistance to QoI fungicides. 
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Fig.10. The first appearance of QoI resistance in V. inaequalis in European countries 

In 2000, Sierotzki et al. (2000a) detected for the first time the presence of G143A 

substitution in cytochrome b gene in QoI-resistant field isolates of plant pathogens such as 

Blumeria (Erysiphe) graminis f.sp. tritici on wheat and Mycosphaerella fijiensis on banana 

(Sierotzki et al., 2000b). This target site mutation has been identified in more than twenty 

species, including phytopathogenic Ascomycetes and oomycetes such as V. inaequalis 

(Zheng et al., 2000), Botrytis cinerea on strawberries, several powdery mildews and 

Alternaria species, major Mycosphaerella pathogens (Fungicide Resistance Action 

Committee, FRAC, QoI Working Group)[www.frac.info].  

In V. inaequalis, the G143A mutation was detected for the first time in Northern 

Germany in 1999, and in the following years also in Poland (Barlett, 2002), and Northern 

Italy in 2002 (Fiaccadori et al., 2005, 2011). 

In addition to the G143A mutation, a QoI-resistant mutant of Magnaporthe grisea 

created in a laboratory had a G143S (glycine to serine) mutation at the cyt b gene. Both 
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G143A and G143S mutations remained stable during four consecutive disease cylces in the 

absence of axozystrobin (Ma and Michailides, 2005). 

The F129L mutation confers a lower resistance level than G143A (Bartlett et al., 

2002; Sirven and Beffa 2003), often occurs at lower frequencies in a sample when both 

mutations are present (Sierotski et al., 2005). This second mutation was detected in 

Pyricularia grisea and Pythium aphanidermatum which are turfgrass pathogens (Bartlett et 

al., 2002; Grasso et al., 2006), Rhizoctonia solani AG1.1A on rice (FRAC, 2011), Alternaria 

solani (Sierotski et al., 2005),  Pyrenophora teres and P. viticola. 

Recently, the G137R mutation has been identified only in Pyrenophora tritici-

repentis (Tan Spot) on wheat. A complete and updated list of plant pathogens that developed 

resistance to strobilurins can be found in the FRAC website (Fungicide Resistance Action 

Committee, FRAC, QoI Working Group)[www.frac.info], 2011). 

The sequences of the two regions of cytochrome b spanning the Qo site from 

Strobilurin-producing fungi, such as Strobilurus tenacellus, Mycena galopoda, was 

compared to understand the molecular basis of natural resistance to strobilurins. Five amino 

acid changes in cytochrome b were found. These substitutions are: T127I (threonine changes 

to isoleucine), A153S (alanine changes to serine), S255Q (serine changes to glutamine), 

N262D (asparagine changes to aspartic acid), and G143A (glycine changes to alanine). 

That’s why it is not surprising that the main point mutation (G143A) developed by 

phytopathogenic fungi which confers field resistance to QoI (Fernandez-Ortuno, 2008). 

The second resistance mechanism involves the activation of the alternative 

respiration pathway in the electron transport chain of the mitochondria by means of 

expression of an alternative oxidase (AOX) gene. With this rescue mechanism, 

mitochondrial electron transfer is diverted by circumventing the inhibitory site of QoI, the 

cytochrome bc1complex. This alternative has been found to be active in mycelial growth and 
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conidia germination in vitro in the presence of strobilurins, but this activity has been 

considered of little importance under field conditions. Also AOX is less efficient in 

oxidation than the Qo site of the mitochondrial complex III and this pathway provides only 

40% of the normal efficiency for energy conservation (Fernandez-Ortuno, 2008). That’s why 

when the Qo site has been blocked by a strobilurin, AOX is probably insufficient for fungal 

survival during periods of high metabolic activity, such as spore germination and plant 

infection. The second reason of ineffectiveness of alternative respiration is plant 

antioxidants. During infections, they are released and interfere with the induction of 

alterative respiration (Fernandez-Ortuno, 2008). Salicylhydroxamic acid (SHAM) has used 

to inhibit the activity of AOX during strobilurin resistance testing studies (Olaya and Köller 

1999a, 1999b; Steinfeld et al., 2001).  

Jabs et al. (2001) reported that the partial loss of control of kresoxim- methyl had 

been caused by an external esterase that was able to metabolise the fungicide. Studies 

showed that the esterase was specifically effective to cleave the ester bond in the toxophore 

of kresoxim- methyl but was much less effective in the case of other strobilurins. In 

plantations where kresoxim-methyl showed some efficacy losses due to metabolisation, tri- 

floxystrobin always showed a perfect control. So, this resistance mechanism seems to be 

specific for kresoxim-methyl (Kuck and Mehl, 2003). 

2.7 New approaches for sensibility monitoring studies towards QoI Fungicides  

Monitoring the presence of QoI-resistant isolates and the level of mutated allele in 

field pathogen populations is important for studying resistant evolution and the practical 

evaluation of strobilurin efficiency in the corresponding orchards. However, detection of V. 

inaequalis QoI-resistant isolates relies on in vitro test systems based on spore germination on 

fungicide-amended media. Biological assays are widely used for resistance screening among 

fungal populations. Unfortunately, they can be labor-intensive and time-consuming if large 
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numbers of isolates are to be tested and also the viability of V. inaequalis conidia recovered 

from commercial orchards treated with pesticides is usually low. 

Once, the resistance mechanism is known, it is often faster to use molecular methods. 

The development of molecular methods has provided to detect rapidly fungicide resistant 

genotype, therefore classical methodology is often supplemented with new molecular tools, 

which can be used in parallel or even instead of bioassays in various application fields 

(Michalecka et al., 2011). 

PCR–RFLP, DHPLC hybridization (Baumler et al. 2003), AS-PCR (Allele-Specific 

PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) assay (Fontaine et al. 2008; 

Fiaccadori et al., 2005, 2011) have been used successfully to detect V. inaequalis resistance 

genotypes. 

The recent development of quantitative Real-Time PCR (q-PCR) allows to detect the 

frequency of a resistant allele in a DNA sample. qPCR allows for detection of the mutation 

even when it is present at very low frequencies. qPCR is a very powerful, cultivation-

independent, rapid, sensitive and useful tool, it has been used to detect several organism in a 

wide range of research fields.This method can help growers to control or manage diseases 

effectively. qPCR method has also been used to quantify the G143A substitution that confers 

QoI resistance in Alternaria populations, B. graminis, P. viticola and E. necator (Ma and 

Michailides, 2005; Dufour et al., 2010).  

Recently, quantification of QoI resistant allele in V. inaequalis populations has been 

developed (Nanni et a.l, 2011; Michalecka et al., 2011). 
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2.8 Aim of the study 

The monitoring of QoI resistant populations through biological tests and the 

molecular analysis is important to demonstrate the efficacy of strobilurins application and 

the evolution of resistance. 

The main goal of this study was to correlate the results of in vitro tests with those of 

q-PCR on a wide range of V. inaequalis populations and monoconidial isolates. They were 

collected in Italian and Turkish distinct locations from orchards with different scab 

management. 

The other goals of the research conducted for this thesis were: 

-  to determine the sensitivity to trifloxystrobin of populations and monoconidial 

isolates using conidial germination assays and mycelium growth assay on fungicide 

amended agar plates; 

- to determine the presence of G143A substitution by Cleaved Amplified 

Polymorphic Sequence (CAPS); 

- to develop a method that is able to quantify the percenteage of mutated allele 

determined by a substitution G143A and to apply this method on V. inaequalis field 

populations and their monoconidial isolates. 
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3. Materials and methods 

 

3.1. Collection and maintenance of fungal population and monoconidial isolates 

 

 Populations 

55 bulk Venturia inaequalis populations in northern Italy orchards during 2002-2011 

and 9 bulk populations in western and southern Turkey orchards in 2011 were sampled. V. 

inaequalis populations were sampled in apple trees with different origin and scab 

management: wild-types, untreated and ones treated with several groups of fungicides, 

comprehending often strobilurins both with good or poor exit control (Table 4). Samples 

consisted in 40-50 scabbed leaves randomly collected in each orchard in May, June and July. 

Upon arrival in the laboratory, samples were immediately examined using a dissecting 

microscope to determine the germinability of sporulating V.inaequalis conidia. 

In order to obtain populations with high germinative energy, a drop of sterile water 

was put on each of 30- 40 scab lesions and conidia were harvested by rinsing with sterile 

water. The conidial concentration was adjusted to 1-3 x 105 spores mL and inoculated on 

potted apple seedlings in greenhouse. Inoculated seedlings were incubated for a further 15-

20 days at 21 oC in greenhouse. Scabbed seedling leaves were then conserved in silica gel at 

4 oC for sensitivity tests. Also 15-20 scab leaf discs were prepared by a sterile cork borer 

(9mm diameter) for each population to use in molecular analysis and stored at -20 oC until 

DNA extraction. 
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Table 4. Sampled Venturia inaequalis populations with different apple scab control in Italy 
and in Turkey 
 

Origin of 
population 

Sample 
year 

Population 
ID 

Strobilurin 
Management1  Origin of 

population 
Sample 

year 
Population 

ID 
Strobilurin 

Management1 

Italy 

2002 1202 WT  

Italy 
 

2009 506 PC 
2003 12III WT  2009 507 PC 
2003 62 WT  2009 508 PC 
2003 96 GC  2009 512 PC 
2003 87 PC  2009 523 PC 
2003 88 PC  2009 533 PC 
2004 102 PC  2009 535 PC 
2004 115 UNT  2009 543 PC 
2005 122 WT  2009 546 PC 
2005 130 BIO  2009 549 PC 
2005 136 WT  2009 550 PC 
2005 138 PC  2009 551 PC 
2005 144 PC  2010 600 NOS 
2005 156 GC  2010 602 PC 
2005 158 WT  2010 605 PC 
2005 161 PC  2010 611 PC 
2006 201 NOS  2010 612 ND 
2006 202 GC  2010 616 PC 
2006 225 PC  2010 BA3 NOS 
2006 226 WT  

Turkey 
 

2011 700 WT 
2006 228 I WT  2011 701 PC 
2006 229 PC  2011 702 PC 
2007 302 PC  2011 703 PC 
2007 307 PC  Italy 

 

2011 706 PC 
2007 319 PC  2011 707 PC 
2008 408 PC  2011 708 PC 
2008 411 PC  

Turkey 
 

2011 709 UNT 
2008 412 PC  2011 710 UNT 
2008 426 WT  2011 711 UNT 
2008 427 GC  2011 712 UNT 
2009 503 PC  2011 713 UNT 
2009 504 PC  Italy 2011 714 PC 

1 WT: wild-type, UNT: untreated, GC: good control of strobilurins, PC: poor control of strobilurins, 
NOS: no strobilurin used, BIO: biological orchard, ND: information not available 
 

 

 Monoconidial isolates 

On the basis of in vitro results of populations and their origin, some populations (62, 

1202, 156, 202, 102, 503) were chosen to obtain their monoconidial isolates. Conidia were 

harvested from about 20 lesions per sample by rinsing with sterile water; the suspension was 

diluted to 20–30 conidia/microscope field (100×). Suspension aliquots of 0.2mL were 
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streaked on petri dishes of water agar (2% agar grade A; Becton, Dickinson and Company, 

Sparks,MD) amended with 400 mgL−1 of streptomycin sulfate. After 24 h incubation at 20 

◦C, single germinated spores were selected under stereomicroscope, drawn and placed on 

PDA (3,9%; Becton, Dickinson and Company) amended with 300 mg L−1 of streptomycin 

sulfate, chlortetracycline, chloramphenicol. After 60 days, the colonies were ready for 

conidial production, in vitro sensitivity assays and molecular analysis (Fig 11). 

 

 

Fig. 11. Single germinated spore of V. inaequalis after 60 days 

 

 3.2     Biological assays 
 

 In vitro assays were carried out in petri dishes and concerned the conidial 

germination for the populations and monoconidial isolates. Also, the mycelial growth test 

was evaluated for the monoconidial isolates. 

 

 3.2.1 In vitro sensitivity assays of populations 

Trifloxystrobin (Sigma-Aldich, St Louis,MO) was used as active material. The stage 

of conidia germination was chosen because trifloxystrobin was described as primarily active 

in a protective mode of apple scab control (Olaya and Koller, 1999b).  

Trifloxystrobin was solubilized in acetone (concentration in final solution <0.01 mL 

mL-1) and added to water-agar (2% agar grade A; Becton, Dickinson and Company) to 

44 
 



achieve the following concentrations: 0.0001, 0.001, 0.01, 2 mg L-1. The antibiotic 

streptomycin sulfate was added to water agar at a final concentration of 200 mg L-1.  

In each in vitro test, pieces of scabbed leaves (0.012-0.020 g) were randomly 

collected from each sample and introduced in micro tubes with 1 mL of sterile water. After 

shaking, the conidial concentration was adjusted to 1-3 x 105 spores mL-1. Two drops of 20 

µL of spore suspension for every fungicide concentration were placed on agar plates and 

incubated for 24 hours at 20 °C. For every concentration two or three replicates were 

prepared. 150 conidia for replicate were visually assessed at the microscope, counting those 

that had germinated.  

Data were trasformed in EC50 value by probit analysis. Generally, 2-3 in vitro tests 

were performed for each population, and mean EC50 values (the concentration that inhibits 

50% of spore germination compared with an unamended control) of every population were 

calculated. Furthermore, according to test results, percentage of germination at the highest 

concentration (2 mg L-1) and relative germination (RG) (percentage of germination at 

maximum concentration/percentage of germination in nontreated x 100) were also calculated 

to correlate with percentages of mutated alleles by qPCR. The correlation was assessed with 

analysis of variance (P value, coefficient of correlation, confidence level and r2)  by 

Statgraphics Plus v.1 program. 

The same data analyses were used for all in vitro tests. 

At the beginning of strobilurin resistance tests, the alternative respiration inhibitor 

salicylhydroxamic acid (SHAM) at 100 mg L−1 was added to trifloxystrobin at different 

concentrations to inhibit the activity of alternative oxidase (AOX). However, the addition of 

SHAM didn’t increase the activity of trofloxystrobin for populations and moonoconidial 

isolates (Table 6 and 9). Therefore, based on these results, fungicide sensitivity assays for 

populations and monoconidial isolates with trifloxystrobin were conducted without adding 

SHAM. 
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3.2.2       In vitro sensitivity assays of monoconidial isolates 

In vitro sensitivity assays of monoconidial isolates were carried out by mycelium 

growth and conidial germination test. From 8 to 13 monoconidial isolates were tested for 

some of the populations with a higher sensitivity (n.1202, 62), less sensitivity (n.202, 156) 

and reduced sensitivity (n.102, 503) in conidial germination tests. 

 

 Mycelium growth test 

For every isolate, a 4mm mycelium plug was placed on PDA (3.9%; Becton, 

Dickinson and Company) amended with different concentrations of trifloxystrobin according 

to the methodology previously described (Fig 12). The mycelial growth was measured 20 

days later as colony diameters (minus the diameter of the plug). The EC50 values were 

calculated using probit analysis. 

 

 

Fig. 12. 4mm mycelium plug of monoconidal isolates on PDA amended with trifloxystrobin 
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 Conidial germination tests of monoconidial isolates 

 Conidial production method of Venturia inaequalis 
 

Conidia were produced from mycelia of monoconidal isolates. Cellophane-covered 

surfaces of PDA were used for high yields of conidia of V. inaequalis. (Parker et al. 1995).   

 Cellophane Preparation:  
 
 Cellophane membranes were cut in 8.0cm disks and soaked in 3L of water (HPLC 

Grade) for 12 h.  Soaked disks were layered between 9.0cm diameter filter paper and placed 

in a glass petri dish. The dish was filled with water (HPLC grade) and autoclaved for 15 min 

at 120◦C. Then the sterile cellophanes were layered onto PDA (3,9%; Becton, Dickinson and 

Company) avoiding the formation of air spaces. 

Mycelium of monoconidial isolates was derived from fungal cultures grown on PDA 

for 8-9 week (20-40 mm colony diameter). Mycelium of one colony was removed from the 

agar surface and placed in a sterile tube with 6 ml sterile water.  The tube was centrifuged 

with vortex for 10x10x10x10 s with pauses (5 s). Suspension of blended mycelium was 

transferred to the sterile container by sterile filter. Generally, the conidial concentration was 

observed 1-10 x 105 spores mL-1. A suspension of conidia was transferred to the cellophane-

covered agar surface. The surface is seeded with a suspension of conidia at various densities 

(0.8 ml-1 ml for one Petri dish). The dish was tripped until the suspension was evenly 

distributed across the surface and was sealed with parafilm and incubated in the light were 

placed in a single layer at a distance of 25cm from a continuous light source.  

After incubation for 2 to 4 week (Fig 13), the cellophane was removed from the agar 

surface and placed in a 150 ml beaker containing 50 ml water. The beaker was stirred rapidly 

for approximately 5 minutes to remove the conidia from the cellophane. The conidial 

suspension was poured through filter in another beaker in order to remove residual 

mycelium. The number of conidia was determined with Thoma counting chamber and the 

conidial concentration was adjusted to 1-3 x 105 spores mL-1 for in vitro test. Before their 
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insemination on amended petri dishes, germinated conidia were observed but the number of 

germinated conidia did not exceed 10%. Spore suspensions for every fungicide concentration 

were placed on agar plates. The sensitivity of germinating conidia was tested and results 

were calculated as described in in vitro test of populations.  

 

 

Fig. 13. The cellophane covered with V. inaequalis conidia and mycelium 

 

Same spore suspensions were used for inoculation on apple seedlings to evaluate the 

conidial germination test after obtained conidia on leaves. 

 Same spore suspensions were also stored at -80 ◦C until molecular analysis. 

 

 In vitro tests with inoculated leaves by monoconidial isolates  

 Same spore suspensions of some monoconidial isolates which were used for conidial 

germination tests inoculated on apple seedlings to test the sensitivity of germinating conidia 

in order to conserve the sporulation in dried ambient and avoid the anticipated germination. 

Inoculations were realized by obtaining conidia suspensions of 1-3x105 spores mL-1, 

spraying 1.2 ml per young apple seedlings with no more than 5-6 leaves. Inoculated 

seedlings were incubated for a further 15-20 days at 21oC in greenhouse. In each in vitro test, 
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pieces of scabbed leaves (0.012-0.020 g) were randomly collected from each sample and 

introduced in micro tubes with 1 mL of sterile water. After shaking, the conidial 

concentration was adjusted to 1-3 x 105 spores mL-1. The sensitivity of germinating conidia 

was tested and results were calculated as described in in vitro test of populations. 

 

 3.3 Molecular analysis of populations and monoconidial isolates 

 

 3.3.1 DNA extraction of population and monoconidial isolates 

15-20 scab leaf discs were prepared by a sterile cork borer (9mm diameter) for each 

population to use in molecular analysis and stored at -20oC until DNA extraction. The 

genomic fungal DNA was extracted directly from the scabbed leaves which were ground in 

liquid nitrogen by a CTAB - based method (Murray and Thompson, 1980) and then purified 

through a Sepharose (Sigma-Aldrich, St Louis, MO). Amount, purity and integrity of DNA 

samples were assessed on the basis of an absorbance ratio of 1.80 -1.90 at 260/280 nm and 

of 1.90-2.30 at 260/230 nm using NanoDrop ND1000. 

In order to obtain the genomic fungal DNA of monoconidial isolates, spore 

suspensions of monoconidal isolates that tested in in vitro tests were used as extraction 

material utilizing Chelex 100 chelating resin (Sigma). The Chelex extraction method has 

been developed for extracting DNA from forensic-type samples for use with the PCR. 

(Walsh et al., 1991). Some monoconidal isolates were extracted also by a CTAB - based 

method to compare the effectiveness of Chelex method. DNA of monoconidial isolates 

obtained using the two different extraction methods were identical for all samples tested. 

Finally, chelex method was chosen because it is a fast, cheap, involve no organic solvents 

and effective method for less DNA material.  

It is a new exctraction method for V. inaequalis DNA material which is developed by 

our research group. 
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Chelex 100 Protocol  

Preparation of 10% Chelex 100 Aliquots stock solution : 

1) Obtain a new 50 mL polyethylene conical tube 

2) Fill the conical tube to the 40mL mark with dH2O 

3) Weight out 4 grams of Chelex 100. Pour into falcon tube 

 

• 1-3 x 105 spores mL-1 were added to aliquot 300 μl of 10% Chelex (Sigma) 

solution in a 1.5-ml microcentrifuge tube 

•  Samples were vortexed for 2 minutes and spinned briefly at 12.000rpm in a 

micro centrifuge for 10-15 seconds 

• Samples were incubated at 90°C for half an hours, vortexed for 2 minutes and 

spinned at 12.000rpm again. 

• Samples were incubated again at 90°C for 15 minutes. 

• The supernatant DNA was transferred to another tube and purified through a 

Sepharose (Sigma-Aldrich, St Louis, MO) and stored at -20oC until molecular analysis. 

Amount, purity and integrity of DNA samples were assessed on the basis of an 

absorbance ratio of 1.80 -1.90 at 260/280 and of 1.90-2.30 at 260/230 nm using NanoDrop 

ND1000.  

 

 3.4 Qualitative Analysis  

 

 3.4.1 Cleaved amplified polymorphic sequence (CAPS) Analysis 

The molecular analyses were performed after DNA extraction of all populations and 

monoconidal isolates. A 413 bp fragment of cytochrome b of V. inaequalis, including the 

region codifying the G143A site, was then amplified using the primers ANK 10 reverse (5’-

CTG TTG TTA GGC TCT TCA ATG -3‘) and ANK 283 forward (5‘-CTG TAG TTG AAA 
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GGC TAT TAG -3‘). These primers were specific for V. inaequalis, as no amplification was 

observed with DNA of other fungi such as Venturia pyrina Aderh. and Alternaria species [A. 

Mali Roberts, A. alternata (Fr.) Keissler]. PCR amplifications were performed in a ICycler 

(Bio-Rad, Hercules,CA) in 50 μL of mix reaction containing 5 μL of reaction buffer 

10×(Takara, BIO INC,Japan), 0.2 mM of dNTPs, 0.25 μM of each primer, 1 μl of total DNA 

(20ng/ μl ) and 1.25 units of rTaq DNA polymerase (Takara, BIO INC.Japan). The reaction 

started at 94°C for 2 min and continued for 40 cycles at 94°C for 45 s, 57°C for 45 s and 

72°C for 45 s. The final extension was at 72°C for 7 min. PCR products were then digested 

with Tse I restriction enzyme (New England BioLabs, Ipswich, MA) which is able to 

recognise its target site only when the mutation causing G143A substitution is present. After 

electrophoresis, the agarose gel (1.5%) was stained with ethidium bromide, and the sizes of 

DNA fragments were determined by comparison with the 100 bp DNA ladder (New England 

BioLabs).  

 

 3.5 Quantitative Analysis  

 

 3.5.1 Cloning of sensitive and resistant strains of Venturia inaequalis 

With the aim to obtain both, the resistant and sensitive strains a CAPS PCR with 

monoconidial isolates of V. inaequalis was performed. Sequencing reactions were done by 

Sanger methods using gene-specific primers (BMR Service, Italy). A BLASTN search was 

carried out in the NCBI database to identify correct strains. After PCR, excess primers were 

removed using GenElute PCR Clean-up kit (Sigma-Aldrich) and the specie-specific PCR 

product ligated directly into the pGEM-T easy vector (Promega Corporation, Madison, WI, 

USA). Plasmids were transformed into Eschirichia Coli JM109 cells (Promega, Madison 

WI,USA) according to a standard protocol, and plasmid DNA was extracted using Quick 
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Plasmid Miniprep Kit,( Invitrogen, Carlsbad, CA) according to a manufacturer protocol.  For 

further confirmation direct sequencing of sensitive and resistant clones was done. 

 

 3.5.2 Quantitative qPCR analysis 

Primers set-up - The G143A mutation in Venturia inaequalis population and 

monoconidial isolates were performed using a qPCR method. A specific primers set were 

set-up. The forward primers FwS5418 and R5548 were used respectively for sensitive and 

resistant allele, while reverse common primer, R5548, was used (Table 5). With the aim to 

verify the qPCR efficiency (E) and specificity of each primer pair, different percentage of 

referent sensitive and resistant plasmidial DNA were analyzed: 100 % Senstive (S), 1 % 

Sensitive (S) + 99 resistant (R), 5 % Sensitive + 95 % Resistant (R), 10 % Sensitive (S) + 90 

% Resistant (R),50 % Sensitive (S) + 50 % Resistant (R), 99 % Sensitive (S) + 1 % Resistant 

(R),100 % Resistant (R). 

 % The ratio of the two alleles presence in samples was calculated using ΔCq method 

( Bustin et al., 2009) according the equation: 

 

10^ (Cq sensitive – Cq resistent)/slope), = R (R/1+R) x 100 = R allele; 

 

Where Cq is the quantification cycle and reflects the cycle number at which the 

fluorescence generated within the reaction of each sample crosses the threshold and the slope 

was calculated according to the standard curves, which were specific for each allele. The 

data was expressed as percentage of resistant of sensitive allele. 

Standard curves development - Standard curves were obtained using sensitive and 

resistant, mixed strains (50% sensitive and 50% resistant) 10-fold serial dilutions ranging 

from 20 ng x10-3 to 20 ng x10-6 of plasmid DNA. The standard curve efficiencies were; 

sensitive E= 101.9%, resistant E= 100.1%.  
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The high efficiency for each gene allowed the assumption that the genes are 

amplified with the same efficiency, and an average slope of – 3.298 was used in the 

equation. 

Quantitative qPCR conditions 

The qPCR analysis of 64 V. inaequalis populations and 60 monoconidial isolates was 

performed using ICycler (Bio-Rad, Hercules,CA)  The reaction mixture was prepared in a 

final volume of 20 μl, including 12 μl of 2 × SYBR Green I (Bio-Rad), 1 μl of forward and 

reverse primers (12.5 μM each), and 8 μl of diluted DNA (1/5). 

Amplifications were performed in 96-well Hard-shell PCR plates (Bio-Rad, 

Hercules, CA,USA) The following thermal cycling conditions were used: one cycle at 95°C 

for 3 min followed by 40 cycles at 95°C for 18 s, 55°C 12 s, and 72°C for 18 s. 

To verify the specificity of the product obtained, a melting curve was performed at 

the end of the PCR reaction with an increase of the temperature specificity of 0.05°C/s, from 

55 to 95°C. The assays are carried out in duplicate, and each experiment was repeated two or 

three times. Data are calculated using the supplied Real-Time Detection System software 

version 3.0 for Windows (BioRad) according to the manufacturer’s instructions. 

 

Table 5. Primers sets used for qPCR  

Primer Name Orientation 5’ -3’ Primer Sequence 

5418 S Forward ggtcaaatgagcctatgggg 

5418 R Forward ggtcaaatgagcctatgggc 

5548 Reverse CTGTTGTTAGGCTCTTCAATG 
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4. RESULTS 

 

 4.1.  In vitro sensitivity assays of  Italian and Turkish populations 

 Italian populations 

 Trifloxystrobin sensitivities of 55 populations (1 untreated, 9 wild type, 4 good field 

performance, 36 poor control by strobilurins, 1 biological orchard, 3 treated without use of 

strobilurin and 1 orchard with unknown field management) collected from Northern Italy 

between 2002 and 2011 were established. The in vitro sensitivity assays were concerned the 

conidial germination. The maximum EC50 and other in vitro results of the populations are 

shown in Table 7. 

 Assays to evaluate the effect of SHAM on spore germination showed that including 

SHAM in fungicide solutions did not significantly change the estimated EC50. The addition 

of SHAM didn’t increase the activity of trifloxystrobin on two resistant populations (n.150, 

609). Mean EC50 value for both populations were >10 mg L-1 in germination assay with 

SHAM and without SHAM.  Slightly influence of SHAM in combination with 

trifloxystrobin was detected on one sensitive population (n.156) (Table 6). Mean EC50 value 

was 0.0015 mg L-1 and 0.0007 mg L-1, without SHAM and with SHAM, respectively. 

 

Table 6. Results of in vitro sensitivity tests mixed with SHAM  

 Germination test 
trifloxystrobin +  SHAM 

Germination test 
trifloxystrobin 

Isolate ID 

 
Relative 

germination 
(RG) 
mean 

% 
 

EC50 mean 
(mg/L) 

 
Relative 

germination 
(RG) 
mean 

% 
 

EC50 mean 
(mg/L) 

611 59.87 >10 72.87 >10 

551 70.87 >10 79.45 >10 

115 0 0.0007 0 0.0017 
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  Populations were categorized with mean EC50 < 0.049  mg L-1  and max EC50 < 

0.065 mg L-1 as sensitive and EC50 max > 0.169 mg L-1 as resistant according with 

Fiaccadori et al., 2005. 

Trifloxystrobin was highly active against to the wild type populations and untreated 

populations. Wild type populations showed a very wide range of sensitivity and had highly 

low EC50 values. Wild type populations can be considered very sensitive to trifloxystrobin. 

They showed maximum EC50 values ranging from 0.000079 to 0.03 mg L-1
 and the mean 

RG values ranged from 0 to 9.2%. There were no germinated spores at maximum 

concentration (2mg L-1) in six out of ten populations.  

As regards four populations collected in orchards with good field performance of 

strobilurins showed a low maximum EC50 ranging from 0.0037 to 0.076 mg L-1 and RG 

ranging from 0 to14.6 %. They showed often slightly low sensitivity respect to wild types 

and they are considered sensitive according to sensitivity classification mentioned above. 

Populations sampled mainly in orchards with poor control by strobilurins, showed a 

very low sensitiviy to trifloxystrobin in vitro.  The results demonstrated that they were found 

to have higher EC50 values towards trifloxytrobin than wild type populations. The maximum 

EC50 values ranged from 0.17 to >10 mg L-1 and RG values of resistant populations were 

almost always higher than 23.3%. In one case (n.225), RG was observed with a lower value 

(11.4%) (Table 7). According to the results, they can be considered resistant. 

The other five populations presented one from a biological orchard (n.130), three 

from treated without use of strobilurin (201, 600, BA3) in the year of assesment and one 

from an orchard with unknown field management were defined as resistant. Their maximum 

EC50 values ranged from 0.19 to >10 mg L-1 and the mean RG values ranged from 14.6 to 

71.8%. So they can be considered as resistant. 
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Table 7. Results of in vitro sensitivity tests on conidial germination on Venturia inaequalis 
populations with different scab management from Italy 

 

Strobilurin 
Managementa 

Population 
ID 

EC 50 mean 
(mg/L) 

EC 50 max 
(mg/L) 

 
Relative 

germination 
mean (RG) 

%  

Sensitivity 
classificationb 

WT and UNT 

62 0.000051 0.000079 0 

S 
 

122 0.0007 0.0009 0 
426 0.0004 0.0007 0 
12III 0.0001 0.0013 0 
158 0.001 0.0018 0 
115 0.0017 0.0044 0 

228 I 0.0077 0.01 0.6 
226 0.0077 0.012 2.4 
1202 0.009 0.01 0.8 
136 0.013 0.03 9.2 

      

GC 
 

202   0.003 0.0037 0 
S 
 

96 0.023 0.03 6.1 
156 0.012 0.034 14.6 

427 d 0.015 0.076d 12.5 
 

PC 

319 0.097 0.17 42 

R 

408 0.056 0.17 24.5 
229 0.09 0.18 29 
225 0.23 0.25 11.4 
714 0.25 0.3 35.54 
144  0.3 0.38 35,03 
302 0.092 0.85 23,3 
533 0.086 1.24 39.76 
523 0.38 1.46 44.5 
161 0.098 2.56 31.4 
602 1.1 5.4 50.3 
412 4.2 5.4 55.5 
102 4.2 >10 51.6 
88 7.9 > 10 46.5 

307 1.7 >10 49.3 
411 2.7 >10 53.8 
138 1.49 >10 56.0 
507 7.35 >10 56.5 
508 3.68 >10 58.14 
707 6.86 >10 65.3 
504 >10 >10 66.45 
535 >10 >10 66.71 
616 >10 >10 67.02 
605 >10 >10 68.17 
512 >10 >10 68.19 
611 >10 >10 72.87 
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Strobilurin 
Managementa 

Population 
ID 

EC 50 mean 
(mg/L) 

EC 50 max 
(mg/L) 

 
Relative 

germination 
mean (RG) 

%  

Sensitivity 
classificationb 

PC 

708 >10 >10 74.56 

R 

506 3.41 >10 76.29 
503 >10 >10 76.43 
550 >10 >10 77.6 
551 >10 >10 79.45 
546 >10 >10 84.9 
543 >10 >10 87.97 
549 >10 >10 88.0 
87 >10 >10 97.3 

706 NDc NDc NDc NDc 
      

NOS 
 

201 0.12 0.19 14.6 
R 
 600 0.21 2.22 34.33 

BA3 >10 >10 68.8 
      

BIO 130 0.16 2.6 23.9 R 
ND 612 >10 >10 71.8 R 

a Wt: wild-type; UNT: untreated, NOS: no strobilurins used; GC: good control by strobilurins; PC: poor 
control by strobilurins; ND: Informations not available        
b S= sensitive EC50 max < 0.065mg/L;   R= resistant EC50 max > 0.169 mg/L 
c ND; no data because of less conidia germination in in vitro test 

      d EC 50 max is slightly superior than higher value for sensitive population 
 

 

Turkish populations 

A total of 9 populations from western and southern Turkey were tested with the in 

vitro test. The maximum EC50 values ranged from 0.0008 to 0.05 mg L-1 and the mean RG 

values ranged from 0 to 8.65% (Table 8). They can be considered very sensitive to 

trifloxystrobin. 

 The data couldn’t obtain for populations collected in orchards with poor field 

performance of strobilurins because of the less germination or non vital spores in conidial 

germination tests. 
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Table 8. Results of in vitro sensitivity tests on conidial germination on Venturia inaequalis 
populations with different origins from Turkey 
      

     S= sensitive EC50 max < 0.065mg/L;   R= resistant EC50 max > 0.169 mg/L 
     ND; no data because of less conidia germination or non vital spores in vitro test 
     * Log EC50 mean 

 

4.2       Results of In vitro sensitivity assays of monoconidial isolates 

 A total of 60 monoconidal isolates; 24 monoconidial spores from 2 wild type 

populations (n.62 and n.1202), 21 monoconidial spores from populations sampled in orchard 

well controlled by strobilurins (n.202 and n.156), 15 monoconidial spores from populations 

sampled from orchards where strobilurins showed control failures (n.102 and n.503) were 

tested for trifloxystrobin sensitivity tests in laboratory. Conidial germination and mycelial 

growth inhibition on growth medium with trifloxystrobin were assessed and sensitivity 

parameters (EC50 values) were determined using probit analysis and relative germination 

was calculated. 

It was observed that the addition of SHAM didn’t increase the activity of 

trifloxystrobin on sensitive isolates (Table 9).  

 

 

 

Origin of 
populations 

Population 
ID 

EC 50 mean 
(mg/L) 

EC 50 max 
(mg/L) 

 
Relative 

germination 
mean (RG) 

% 
 

Sensitiviy 
classification 

Wild type and 
untreated 

700  0.00001 0.0008 0 

S 
709  0.009 0.01 0 
711  0.004 0.01 0.35 
713  0.015 0.015 0 
712  0.04 0.05 8.65 

  

Poor control 

701 
ND 

 
ND 

 
ND 

 

 
702  
703  
710  
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Table 9. Results of in vitro sensitivity tests mixed with SHAM  

 Germination test 
 trifloxystrobin +  SHAM 

Germination test  
trifloxystrobin 

Isolate ID 

 
Relative 

germination (RG) 
mean   

% 
 

EC50 mean 
(mg/L) 

 
Relative 

germination (RG)  
mean  

% 
  

EC50 mean 
(mg/L) 

1202-56 3.6 0.02 11.17 0.02 

1202-75 17.3 0.02 16.8 0.06 

1202-100 18.95 0.002 24.79 0.004 

  

 Examing the sensitivity results of wild-types, 12 monoconidial isolates of population 

(n.62) showed a high sensitivity. From the results shown in Table 10, mean EC50 values 

ranged from 0.0003 to 0.003 mg L-1 (mean=0.001 mg L-1). RG of 9 monoconidial isolates 

was < 1% and the other three (62-36, 62-38, 62-39) had RG from 1.78 to 6.05%. In mycelial 

growth assay, mean EC50 values ranged from 0.0002 to 0.01 mg L-1 (mean=0.0037 mg L-1) 

and the relative growth ranged from 0 to 9.09%. Mean EC50 values of all monoconidal 

isolates from mycelial growth assays were found slightly higher than mean EC50 values of 

germination assays. 

Two monoconidial isolates (62-4, 62-38) were inoculated on seedlings and conidial 

germination test with obtained conidia from infected leaves results showed EC50 0.00003 mg 

L-1 and RG was 0% for both, while slightly low sensitivity found in germination assay after 

cellophane (EC50 0.001 mg L-1  and 0.0008 mg L-1  with 0%  and 6.05% RG, respectively). 
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Table 10. Results of in vitro sensitivity tests on conidial germination and mycelial growth on 
monoconidial isolates of wild type population (62) 
 

 
conidial germination mycelial growth 

conidial 
germination from 
inoculated leaves EC50                

Population 
(mg/L) Population 

ID and 
origin 

Isolate 
ID 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

Relative 
growth 
Mean 

% 

EC50 
mean 

(mg/L) 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

 62 
 
 

Wild type  

62-1 0.9 0.003 0 0.001 nd1 nd1
 

0.00005 

62-4 0a 0.001a 5.5 0.004 0 0.00003 

62-8 0.5 0.001 9.52 0.01  -  - 

62-10 0 0.001 0 0.002  -  - 

62-15 0.5 0.002 0 0.005 - - 

62-26 0.4 0.0007 0 0.03 - - 

62-30 0.9 0.001 0 0.002 -   - 

62-33 0 0.001 nd nd  - -  

62-35 0.8 0.0008 0 0.0002  -  - 

62-36 1.78 0.0015 0 0.007  - -  

62-38 6.05a 0.0008a 9.09 0.008 0 0.00003 

62-39 2.43 0.0003 9.09 0.006  - -  

Mean 
value  1.18 0.001* 3.01 0.0037*  

Mean 
valuea  2.01 0.0009   0 0.00003  

* Geometric mean (Log EC50 mean) 

1 nd= no data 
 

 

 For monoconidial isolates of the other wild-type population (n.1202), mean EC50 

values ranged from 0.004 to 0.11 mg L-1 (mean=0.02 mg L-1) and RG showed ranging from 0 

to 24.79% (Table 11). In mycelial growth assay, they showed mean EC50 ranging from 0.001 

to 0.1 mg L-1 (mean=0.01 mg L-1) and relative growth was <23%. The mean EC50 values of 

all monoconidal isolates tested in germination and mycelial growth tests were higher than 

that of correspondings populations (EC50 0.009 mg L-1), nevertheless, they were found in a 

range of high sensitivity. The four isolates tested after cellophane methodology were also 

evaluated the sensitivity after inoculation on seedlings and showed lower EC50  values 

respect to those results after cellophane methodology.  
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Table 11. Results of in vitro sensitivity tests on conidial germination and mycelial growth on 
monoconidial isolates of wild type population (1202) 
 

 
  conidial germination mycelial growth 

conidial 
germination from 
inoculated leaves EC50 mean                

Population 
(mg/L) Population 

ID and 
origin 

Isolate 
ID 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

Relative 
growth 
Mean 

% 

EC50 
mean 

(mg/L) 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

1202 
 
 
 

Wild type 

1202 - 
27 nd nd 4.0 0.09 - - 

  
0.009 

 

1202 - 
29 9.12 0.05 10.0 0.001 - - 

1202 - 
42 9.9 0.07 0 0.003 - - 

1202 - 
46 8.83a 0.01a 5.0 0.08 0 0.00006 

1202 - 
47 11.71a 0.11a 3.5 0.005 0.96 0.0025 

1202 - 
56 11.17a 0.02a 10.0 0.03 6.46 0.06 

1202 - 
64 10.3 0.02 0 0.01 - - 

1202 - 
72 3.5a 0.009a 0 0.1 0 0.00045 

1202 - 
75 16.8 0.06 4.0 0.01 - - 

1202 - 
77 0 0.007 23.07 0.02 - - 

1202 - 
83 0 0.009 9.09 0.004 - - 

1202- 
100 24.79 0.004 4.1 0.009 - - 

Mean 
value  8.84 0.02* 6.06 0.01*  

Mean 
valuea  8.80 0.02*   1.85 0.0014*  

* Geometric mean ( Log EC50 mean) 

1 nd= no data 
 

8 monoconidial isolates of population (n.202) collected from orchards with good scab 

control by strobilurins showed mean EC50 values ranging from 0.015 to 0.04 mg L-1 

(mean=0.029 mg L-1) and RG showed ranging from 0.8 to 8.5% (Table 12). According to the 

mycelium growth assay,  their sensitiviy were slightly lower than conidial germination test 

and mean EC50 values ranged from 0.01 to 0.25 mg L-1 (mean=0.07 mg L-1). The relative 

growth ranged from 9.09 to 25%. The mean EC50 of all monoconidial isolates was slightly 

higher than those populations’s EC50 (0.0037 mg L-1) in both assays but they were found still 

high sensitive to trifloxystrobin.  
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Isolates n.202-62 and n.202-89 showed high sensitivity with EC50 values 0.0002, 

0.002 mg L-1 and RG 0 %, 8.07 %, respectively, in conidial germination test with conidia 

obtained from inoculated leaves respect to conidial germination test after cellophane 

methodology (EC50 0.02 and 0.0015 mg L-1, respectively) (Table 12).  

 

Table 12. Results of in vitro sensitivity tests on conidial germination and mycelial growth on 
monoconidial isolates of population (202) from orchards with good scab control by strobilurins  
 

  conidial germination  mycelial growth  
conidial 

germination from 
inoculated leaves EC50                

Population 
(mg/L) 

 
Population 

ID and 
origin 

Isolate 
ID 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

Relative 
growth 
Mean 

% 

EC50 
mean 

(mg/L) 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

202 
 

Orchards 
with good 

scab 
control by 
strobilurins 

202-7 7.1 0.04 9.09 0.02 - - 

0.0037  
 

202-31 2.43 0.038 11.1 0.067 - - 

202-35 8.5 0.05 9.09 0.01 - - 

202-62 3.8a 0.02a 10.5 0.102 0 0.0002 

202-66 2.06 0.016 - - - - 

202-76 0.8 0.023 11.1 0.06 - - 

202-77 3.83 0.03 13.65 0.01 - - 

202-89 3.98a 0.015a 25.0 0.25 8.07 0.002 

Mean value  4.06 0.029 12.79 0.07*  

Mean aluea  3.89 0.01   4.03 0.0006*  
* Geometric mean ( Log EC50 mean) 

 

 In most cases, trifloxystrobin sensitivity of monoconidial isolates of population n.156 

sampled in well controlled by strobilurins, was lower than sensitivity of those population 

(EC50 0.01 mg L-1) in conidal germination test. The range of the EC50 of monoconidial 

isolates was from 0.009 to 0.3 mg L-1 (mean=0.04) (Table 13). RG showed ranging from 1.9 

to 45.47% (mean=11.85%). 
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Table 13. Results of in vitro sensitivity tests on conidial germination on monoconidial isolates of 
population (156) from orchards with good scab control by strobilurins  
 

* Geometric mean ( Log EC50 mean)   

 Mean EC50 values (mostly EC50 >10 mg L-1)  ranged for monoconidial isolates of 

population n. 102 and 503 collected from orchards where strobilurins showed control 

failures showed the highest EC50 for trifloxystrobin (Table 14 and Table 15). In conidial 

germination assay, all monocondial isolates of population n.102 and 5 out of the 6 

monoconidial isolates of n. 503 had mean EC50 >10 mg L-1 and RG was >71 %. Only one 

monoconidial isolate (n.503-6) was slightly less resistant with mean EC50 6.07 mg L-1and 

RG 53.1%.  

 In mycelial growth assay, the results obtained for 4 monoconidal isolates out of 9 for 

n.102 and for 2 monoconidial isolates out of 6 for n.503. For monocondial isolates of n.102, 

mean EC50 ranged from 1.14 to >10 mg L-1 and RG was from 37.5 to 100%.  For 

 conidial germination  mycelial growth  
conidial 

germination from 
inoculated leaves EC50                

Population 
(mg/L) 

 
Population 

ID and 
origin 

Isolate 
ID 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

Relative 
growth 
Mean 

% 

EC50 
mean 

(mg/L) 

Relative 
germination 

mean 
% 

EC50 
mean 

(mg/L) 

156 
 
 
 

Orchard 
with good 

scab 
control by 
strobilurins 

156-1 5.4 0.039 - - - - 

  
0.012  

 
 
 
 

156-2 16.50 0.067 - - - - 

156-3 6.6 0.017 - - - - 

156-4  23.3 0.033 - - - - 

156-5 5.78 0.032 - - - - 

156-6 4.21 0.017 - - - - 

156-7 14.8 0.037 - - - - 

156-8 1.9 0.009 - - - - 

156-9 45.47 0.387 - - - - 

156-12 11.7 0.015 - - - - 

156-13 3.47 0.012 - - - - 

156-16 11.1 0.019 - - - - 

156-17 3.83 0.025 - - - - 

Mean value  11.85 0.04*      
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monocondial isolates of population 503, mean EC50 ranged from 1.68 to >10 mg L-1 and RG 

was > 60% (mean EC50 9.12 mg L-1). All monoconidal isolates of the resistant bulk 

populations (n.102 and n.503) were strongly less sensitive to trifloxystrobin in both assays, 

resulting in very high EC50 values. Trifloxystrobin showed lower activity against resistant 

isolates compared to wild-types.  

 

Table 14. Results of in vitro sensitivity tests on conidial germination and mycelial growth on 
monoconidial isolates of population (102) from orchards with poor scab control by strobilurins  
 

 

After cellophane methodology, conidial suspension of two monoconidial isolates 

(n.102-10 and n.102-13) were inoculated on seedlings to test conidial germination assay with 

conidia obtained from inoculated leaves. Examing the data referred to EC50 parameters, it 

was observed a similar trend. They had high resistant values with mean EC50 14.1 mg L-1 

and EC50 3.9 mg L-1 and their RG were 62.55% and 50.8%, respectively. 

 
 

  conidial germination  mycelial growth  
conidial 

germination from 
inoculated leaves 

EC50                 
Population 

(mg/L) 

 
Population 

ID and 
origin 

 
Isolate 

ID 

 
Relative 

germination 
mean 

% 
 

 
EC50 
mean 

(mg/L) 

 
Relative 
growth 
Mean 

% 
 

 
EC50 
mean 

(mg/L) 

 
Relative 

germination 
mean 

% 
 

 
EC50 
mean 
(mg/L) 

102 
 
 
 

Orchard 
with 

control 
failures by 
strobilurins 

102-5 73.78 >10 72.72 1.28 - - 

  
>10 

102-9 84.64 >10 91.6 Nd - - 

102-10 81.99a >10a 50 2.74 62.55 >10 

102-13 71.95a >10a 75 >10 50.8 3.9 

102-44 79.06 >10 37.5 1.14 - - 

102-55 77.47 >10 83.3 Nd - - 

102-68 77.45 >10 100 Nd - - 

102-1 71.3 >10 nd Nd - - 

102-3 78.1 >10 75.0 >10 - - 
Mean 
value  77.30 >10 73.14     

Mean 
valuea  76.97 >10   56.67   
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Table 15. Results of in vitro sensitivity tests on conidial germination and mycelial growth on 
monoconidial isolates of population (503) from orchards with poor scab control by strobilurins  
 

 

 4.3. Molecular results  

   
 Real Time analyses were performed with SybrGreen, with the primer set both for 

wild-type and for mutant allele to evaluate the percentage of mutated allele through Delta Ct 

method (Fig 14). The melting curve analyses of qPCR for all populations and monoconidial 

isolates showed a single peak, and no non specific products or primer-dimer formation was 

detected. The standard curves obtained using, mixed strains (50%S-50%R) sensitive and 

resistant in 10-fold serial diluition showed a good efficiency (E) with this primer sets 

(5548Rev+5418S), (5548Rev+5418R) for qPCR ranging from E=100.1% to E=101.9%, with 

a linear correlation coefficient (R2) ranging from 0.999 to 1.000  (Fig 15 and 16). The high 

efficiency for each gene allowed the assumption that the genes are amplified with the same 

efficiency, and an average slope of – 3.298 was used in the equation. 

 conidial germination mycelial growth 
conidial 

germination from 
inoculated leaves 

EC50                 
Population 

(mg/L) Population 
ID and 
origin 

Isolate 
ID 

 
Relative 

germination 
Mean 

% 
 

EC50 
mean 

(mg/L) 

Relative 
growth 
Mean 

% 

EC50 
mean 

(mg/L) 

 
Relative 

germination 
Mean 

% 
 
 

EC50 
mean 
(mg/L) 

503 
 
 

Orchard 
with 

control 
failures by 
strobilurins 

503-6 53.1 6.07 nd Nd - - 

 
>10 

503-10 89.5 >10 nd Nd - - 

503-13 71.8 >10 66.7 1.68 - - 

503-18 92.3 >10 60.0 >10 - - 

503-19 88.6 >10 nd Nd - - 

503-23 88.3 >10 nd Nd - - 

Mean value  80.6  63.35     
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    Fig.15. Standard curves with sensitive primer 
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Fig.14. Example of amplification profiles of resistant population 
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Fig.16. Standard curves with resistant primer 

 

From 2002 to 2011, infected leaves of 64 populations were sampled in different 

origin from Italy and Turkey. Bulk population samples extracted from V. inaequalis–infected 

apple leaves collected in orchards and monoconidial isolates extracted from conidia to detect 

the mutation in cytochrome b gene causing the G143A substitution in the protein by CAPS 

analysis. To quantify the G143 and A143 alleles in population and monoconidial isolates, 

real-time allele-specific PCR assays were performed using the fluorescent dsDNA-specific 

dye SYBR Green I. The analyses were repeated two or three times for all populations and 

monoconidial isolates. 

 
 4.3.1 Molecular results of italian populations 

 

According to qualitative analysis (CAPS PCR) results, G143A substitution was not 

found in 6 out of total 9 wild-type and 1 untreated populations and their frequency of 

mutated alleles (R-allele) was found from 0.02 to 5.5% by qPCR (Table 16). G143A 
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E=100.1% 
R2=1.000 

Slope=-3.319 y-int= 10 

                                 Log of standard curve (50%S+50%R) with resistant primers 
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substitution and high mutated allele frequency were surprisingly found in four wild-type 

populations (n.426, 158, 226, 228I). 

 It was observed a partial digestion in CAPS analysis (a showing two fragments of 

400 and 300bp), which means that sensitive and resistant strains were present both in these 4 

populations. CAPS method is able to detect a percentage of mutated allele greater than about 

10% (evaluated according to the methodology used by Baumler et al., 2003). But a fragment 

of 300bp was detected lighter than fragment of 400bp for these wild type populations (Fig 

17). Their R-allele frequencies between 17.55% and 21.32% were measured by qPCR.  

 

 

 

 

 

 

 

 

 

Fig.17. Digestion of PCR products with TseI enzyme 

 

G143A substitution detected in one of the 4 populations (n.427) sampled in well 

controlled orchard by strobilurins by the observation of mixtures of G143 and A143 alleles. 

The R-allele frequency was found very high (84.5%). The G143A substitution wasn’t 

detected in other three populations by CAPS analysis and their R-allele frequency found < 

0.6% (Table 16). 

S 400bp 
R 300bp 

ne
ga

tiv
e 

62
 

po
si

tiv
e 

12
02

 

15
8 

 S     R    S    M R 100bp 

69 
 



In 35 populations out of 36 populations sampled from orchards where strobilurins 

showed control failures, G143A substitution was found. In vitro results couldn’t obtain for 

population 706 but G143A substitution was detected with molecular analysis.  

 

          

Fig.18. Digestion of PCR products with TseI enzyme  
 

. 
In figure 18, TseI enzyme does not cut the wildtype 400bp cytochrome b fragment, 

but produces a 300bp fragment from isolates carrying the G143A substitution. 

The mixture of sensitive and resistant strains was observed in 8 of out of 36 resistant 

population by CAPS and their R-allele frequencies ranged from 23.01 to 78.29 %. Only 

resistant strains found in 27 populations with the high R-allele frequency (>91%). G143A 

substitution was not detected in only one population (161) and the R-allele frequency was 

quite low (5.97%) (Table 16). Three populations sampled from orchards where non 

strobilurin used and G143A substitution was found in two of them with the R-allele 

frequency ranged from 54.87 to 56.77%. The other population had 0.015% R-allele 

frequency.  

87
 

42
7 

22
6 

40
8 

14
4 

50
3 

53
5 

60
2 

41
2 

31
9 

po
sit

iv
e 

R   M  M  M   R   R  M  M  R  M   R 
R 300bp 

S 400bp 

R 100bp 

70 
 



 G143A substitution detected in one population sampled in biological orchard by the 

observation of mixtures of G143 and A143 alleles and the R-allele frequency found 61.21%. 

  

Table 16. Molecular analysis results of Italian Populations 

Population 
ID 

Management 
characteristics1 

CAPS 
interpretation2 

Mean 
percentage 
of  A143 

allele 

 
Population 

ID 
Management 
characteristics 

CAPS 
interpretation2 

Mean 
percentage 
of  A143 

allele 
62 WT S 0.7  412 PC R 98.61 

1202 WT S 0.5  102 PC R 99.5 
122 WT S 0.07  88 PC R 99.09 
426 WT M  18.93  307 PC R 99.21 
202 GC S 0.015  411 PC R 99.49 
12III WT S 0.02  138 PC R 99.54 
158 WT M  21.32  507 PC R 99.15 
115 UNT S 2.28  508 PC R 98.51 

228 I WT M  21.11  707 PC M 78.29 
226 WT M  17.55  504 PC R 99.4 
96 GC S 0.55  535 PC M 72.73 

136 WT S 5.5  616 PC R 99.26 
156 GC S 0.02  605 PC R 93.35 
427 GC M 84.5  512 PC R 99.24 
319 PC M  31.01  BA3 NOS M 54.87 
408 PC M 68.2  612 ND M 89.63 
229 PC R 91.68  708 PC R 95.9 
201 NOS S 0.015  611 PC R 98.29 
225 PC M 32.8  506 PC R 91.74 
144 PC R 99.27  503 PC R 99.54 
714 PC R 96.88  550 PC R 99.32 
302 PC M 76.1  551 PC R 95.2 
533 PC M  23.01  546 PC R 99.29 
523 PC R 99.51  543 PC R 99.21 
161 PC S 5.97  549 PC R 97.8 
600 NOS M 56.77  87 PC R 99.07 
130 BIO M 61.21  706 PC R 98.59 
602 PC M 56.79      

1Wt: wild-type; UNT: untreated, NOS: no strobilurins used; GC: good control by strobilurins; PC: 
poor control by strobilurins  
2S= Sensitive, R= Resistant, M= mixed 
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4.3.2 Molecular results of Turkish populations 

The G143A substitution was not found in any of wild type and untreated Turkish 

populations by CAPS analysis and the frequency of mutated allele was found <3.61%.  

Five populations sampled from orchards where strobilurins showed control failures, a 

mutation resulting in the replacement of a glycine by an alanine residue at codon 143 

(G143A) in the mitochondrial cytochrome b gene was found (Fig 19).  

The mixture of sensitive and resistant strains was observed in three populations by 

CAPS and their R-allele frequencies ranged from 46.62% to 83.36%. Much higher R-allele 

frequency (>95%) found in other two populations.  In vitro results couldn’t obtain for 

population 701, 702, 703 and 710 because of the less germination conidia but resistance to 

strobilurin was detected with not vital conidia by molecular analysis (Table 17). 

 

 

 

 

 

 

 

Fig. 19. Digestion of PCR products with TseI enzyme 
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 Table 17. Molecular analysis results of Turkish populations 

Population 
ID 

Management 
characteristics 

CAPS 
interpretation 

Mean 
percentage 

of A143 
allele 

700 WT S 0.1 
709 UNT S 3.61 
713 UNT S 0.25 
711 UNT S 0.3 
712 UNT S 0.6 
707 PC M 78.29 

701 PC R 99.76 

702 PC M 46.62 

703 PC M 83.36 

710 PC R 95.99 
 

4.3.3. Molecular results of monoconidal isolates 

 A total of 24 monoconidial isolates from 2 wild type populations (62 and 1202), 21 

monoconidial isolates from populations sampled in orchard well controlled by strobilurins 

(202 and 156), 15 monoconidial isolates from populations sampled from orchards where 

strobilurins showed control failures (102 and 503) were tested. To determine the frequency 

of mutant G143A allele in samples, tests were conducted using spore suspensions utilizing 

Chelex 100. Some monoconidal isolates (156-2, 156-3, 156-4, 156-6, 156-7, 156-9 and 503-

18) were extracted also by a CTAB - based method to compare the effectiveness of Chelex 

method. DNA of monoconidial isolates obtained using the two different extraction methods 

were identical for all samples tested (Table 19 and 20). 
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Fig. 20. Digestion of PCR products of sensitive monoconidial isolates with TseI enzyme 

 

The G143A substitution was not found in any of monoconidial isolates of wild type 

and populations sampled in orchard well controlled by CAPS PCR (Fig.20). The percentage 

of resistant alleles in monoconidial V. inaequalis isolates of two wild type populations 

ranged from 0.01 to 1.66% (Table 18).  

Percentage of R-allele for monoconidal isolates of populations with good scab 

control found between 0.04 to 1.04% (Table 19).  

 

Table 18. Molecular results of monoconidial isolates obtained from wild type populations 

Monoconidial 
Isolates  

No 

 
CAPS 

interpretation 

Mean 
percentage of  

A143 allele 
 

Monoconidial 
Isolates  

No 

CAPS 
interpretation 

Mean 
percentage of  

A143 allele 

62-1  
 

 
 

S 

0.25   1202-27 
 
 
 
 

S 
 
 
 
 
 
 
 

0.28 
62-4 0.35   1202-29 0.54 
62-8 0.52   1202-42 0.01 

62-10 0.25   1202-46 0.15 
62-15 0.72   1202-47 0.59 
62-26 0.57   1202-56 0.03 
62-30 0.23   1202-64 0.96 
62-33 0.23   1202-72 1.66 
62-35 0.13   1202-75 1.58 
62-36 0.3   1202-77 0.19 
62-38 0.2   1202-83 0.01 
62-39 0.3   1202-100 0.03 
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Table 19. Molecular results of monoconidial isolates obtained from populations sampled in well 
controlled orchard by strobilurins 
 
Monoconidial 

Isolates 
No 

CAPS 
interpretation 

Mean 
percentage of  

A143 allele 
 

Monoconidial 
Isolates 

No 

CAPS 
interpretation 

Mean 
percentage of  

A143 allele 
156-1 

  
  
  
S 
  
  
  
  
  
  
  

0.11  202-7   0.06 
156-2 0.32a / 0.51b  202-31   0.16 
156-3 0.31 a / 0.04 b  202-35   0.04 
156-4  0.25 a / 0.16 b  202-62   0.3 
156-5 0.18  202-66 S 0.04 
156-6 0.13 a / 0.17 b  202-76   0.04 
156-7 0.08 a / 0.12 b  202-77   0.16 
156-8 0.10  202-89   0.04 
156-9 0.10 a / 0.07 b     
156-12 0.8     
156-13 1.04     
156-16 0.6     
156-17 1.09      

a Results obtained from extraction by Chelex 100. 
bResults obtained from extraction by a CTAB - based method 
 
 
 
 

Mixtures of G143 (S) and A143 (R) - alleles were never found in resistant 

monoconidal V. inaequalis isolates of resistant populations by CAPS PCR and their high R-

allele frequencies were detected between 98.43 to 99.9% (Table 20).  

 
Table 20. Molecular results of monoconidial isolates obtained from populations sampled where 
strobilurins showed control failures 
 
Monoconidial 

Isolates 
No 

CAPS 
interpretation 

Mean 
percentage of  

A143 allele 
 

Monoconidial 
Isolates 

No 

CAPS 
interpretation 

Mean percentage 
of  A143 allele 

102-5   99.7  503-6   98.81 
102-9   99.7  503-10   99.1 
102-10   99.7  503-13   98.46 
102-13 R 99.9  503-18 R  98.43 a  / 96.59 b  
102-44   99.5  503-19   99.26 
102-55   99.6  503-23   99.21 
102-68   99.5     
102-1   98.92     
102-3   99.16        

a Results obtained from extraction by Chelex 100  
bResults obtained from extraction by a CTAB - based method 
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4.3.4 Correlation between qPCR assays and biological tests 

 

Total 64 V. inaequalis populations and 60 monoconidal isolates were tested in order 

to compare the conventional method with the qPCR assay for quantifying mutated allele. 

The results couldn’t obtain in vitro for five population and one monoconidial isolate because 

of the very low germination or not vital conidia. The frequency of mutated allele of all 

populations and monoconidial isolates was detected by qPCR. The percentage of relative 

germination and percentage of mutated allele of total 59 bulk populations and 59 

monoconidal isolates were correlated.  

 

V. inaequalis populations 

All results from biological and molecular assays are shown in Table 21. Populations 

are classified as sensitive or resistant according to EC50 values (Column A) obtained from in 

vitro sensitivity tests. It was observed that the populations classified as sensitive (EC 50 max 

ranged from 0.000079 to 0.076 mg L-1)  with  RG <14.6 presented the percentages of 

mutated alleles from 0.015 to 21.32% in 18 cases, while in only one population sampled 

from well control orchard by strobilurin had high R-allele frequency (84.5%) (Table 21). 

With referring to wild-type populations, when the relative germination is 0 %, the mutated 

alleles were generally ranged from 0% to 3.7%, only in three cases the R-allele frequency is 

reaching 21.32% (n.426, 158, 228). Totally in four wild-type populations, G143A was 

present an higher frequency (from 17.55 to 21.32% ) than the other wild types. 

Starting from n.319, according to the fungicide sensitivity in vitro test were defined 

as resistant and showed progressively high levels of  EC50 max value (from 0.17 to >10 mg 

L-1) and RG (from 11.4 to 97.3 %) in 40 populations of V. inaequalis. They were associated 

with the presence of G143A substitution with high R-alleles frequency (from 23.01 to 
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99.54%) for 38 out of 40 populations. Only two cases were out of this range and, in this 

case, the R-allele frequency was much lower (0.015 and 5.97%).  

Table 21. In vitro and molecular test results of the 64 V. inaequalis populations from Italy and             
                Turkey 
 

 
In vitro assay results Molecular analysis results 

  A B C D E 

Population 
n° 

Management 
characteristics 1  

EC 50 max 
(mg/L) 

Sensitivity 
classification 

2  

Mean 
percentage 
of relative 

germination 
% 

Mean 
percentage of  

A143 allele 

CAPS 
interpretation 

62 WT 0.000079 S 0 0.7 S 
426 WT 0.0007 S 0 18.93 M 
700 WT 0.0008 S 0 0.1 S 
122 WT 0.0009 S 0 0.07 S 
12-3 WT 0.0013 S 0 0.02 S 
158 WT 0.0018 S 0 21.32 M  
202 GC 0.0037 S 0 0.015 S 
115 UNT 0.0044 S 0 2.28 S 
1202 WT 0.01 S 0.8 0.5 S 
709 UNT 0.01 S 0 3.61 S 
713 UNT 0.015 S 0 0.25 S 
711 UNT 0.01 S 0.35 0.3 S 

228 I WT 0.01 S 0.6 21.11 M  
226 WT 0.012 S 2.4 17.55 M  
96 GC 0.03 S 6.1 0.55 S 

136 WT 0.03 S 9.2 5.5 S 
156 GC 0.034 S 14.6 0.02 S 
712 UNT 0.05 S 8.65 0.6 S 
427 GC 0.076 S 12.5 84.5 M 
319 PC 0.17 R 42.0 31.01 M 
408 PC 0.17 R 24.5 68.2 M 
229 PC 0.18 R 29.0 91.68 R 
201 NOS 0.19 R 14.6 0.015 S 
225 PC 0.25 R 11.4 32.8 M 
144 PC 0.38 R 35.03 99.27 R 
714 PC 0.3 R 35.54 96.88 R 
302 PC 0.85 R 23.3 76.1 M 
533 PC 1.24 R 39.76 23.01 M 
523 PC 1.46 R 44.5 99.51 R 
161 PC 2.56 R 31.4 5.97 S 
600 NOS 2,22 R 34.33 56.77 M 
130 BIO 2.6 R 23.9 61.21 M 
602 PC 5.4 R 50.3 56.79 M 
412 PC 5.4 R 55.5 98.61 M 
102 PC >10 R 51.6 99.5 R 
88 PC > 10  R 46.5 99.09 R 

307 PC >10 R 49.3 99.21 R 
411 PC >10 R 53.8 99.49 R 
138 PC >10  R 56.0 99.54 R 
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 In vitro assay results Molecular analysis results 

  A B C D E 

Population 
n° 

Management 
characteristics 1 

EC 50 max 
(mg/L) 

Sensitivity 
classification 

2 

Mean 
percentage 
of relative 

germination 
% 

Mean 
percentage of  

A143 allele 

CAPS 
interpretation 

507 PC >10 R 56.5 99.15 R 
508 PC >10 R 58.14 98.51 R 
707 PC >10 R 65.3 78.29 M 
504 PC >10 R 66.45 99.4 R 
535 PC >10 R 66.71 72.73 M 
616 PC >10 R 67.02 99.26 R 
605 PC >10 R 68.17 93.35 R 
512 PC >10 R 68.19 99.24 R 
BA3 NOS >10 R 68.8 54.87 M 
612 ND >10 R 71,8 89.63 M 
708 PC >10 R 74.56 95.9 R 
611 PC >10 R 72.87 98.29 R 
506 PC >10 R 76.29 91.74 R 
503 PC >10 R 76.43 99.54 R 
550 PC >10 R 77.6 99.32 R 
551 PC >10 R 79.45 95.2 R 
546 PC >10 R 84.9 99.29 R 
543 PC >10 R 87.97 99.21 R 
549 PC >10 R 88.0 97.8 R 
87 PC >10 R 97.3 99.07 R 

706 PC ND3 ND ND 98.59 R 
701 PC ND ND ND 99.76 R 
702 PC ND ND ND 46.62 M 
703 PC ND ND ND 83.36 M 
710 PC ND ND ND 95.99 R 
1 Wt: wild-type; UNT: untreated, NOS: no strobilurins used; GC: good control by strobilurins; PC: poor 
control by strobilurins; ND: Informations not available        
2 S= sensitive EC50 max < 0.065mg/L;   R= resistant EC50 max > 0.169 mg/L 
3 ND; no data because of less conidia germination in in vitro test 

 

Five populations collected from orchards with poor control by strobilurin showed 

high R-allele frequency (> 46.62%) by qPCR, while the data couldn’t obtain by in vitro. 

The correlation between relative germination (Column C) and percentage of mutated alleles 

(Column D) is significant (P:0.05) with a strong relationship between the two parameters as 

evidenced by “correlation coefficient” (0.84), while the R-squared is not very high. The 

results of the study showed that the correlation between % of mutated allele and relative 

germination is R2 = 0.70 (Fig 21).  
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Fig. 21.Correlation between % of mutated allele and % of germinated conidia at 2mg/L of 
trifloxystrobin relative to the untreated control on population of V. inaequalis 

 

Monoconidial isolates 

As shown in Column A, all trifloxystrobin-resistant monoconidial isolates tested, 

with RG > 53.1%  (EC50 > 6.07  mg L-1) presented A143 cytochrome b alleles detected by 

CAPS PCR. Examing the frequency of mutated alleles, they had high R-allele frequencies 

between 98.43 to 99.9 % (Table 22). 

Only S-alleles (G143) detected by CAPS PCR were found in all sensitive 

monoconidal isolates with low EC50 values. In almost all cases, monoconidal isolates from 

wild type and good control had relative germination values ranged from 0 to 11.17% while 

mutated allele frequency was detected lower than 1.66%. It was found that the relative 

germination was ranged from 11.17 to 24.79% (EC50 value < 0.1 mg L-1) in only four single 

spore isolates of wild type population (n.1202) with low R-allele frequency (between 0 to 

1.58%) and in only one single spore isolate from populations collected in well-controlled 

orchard  (n.156-9), RG was found high (45.47%) (EC50 value 0.3 mg L-1) with a very low 

mutated allele frequency (0.1%).   
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Table 22. In vitro and molecular test results of the monoconidal isolates of V. inaequalis population 
with differen scab management 
 

 
In vitro assay results Molecular analysis 

results 

   A B C D E 

Monocondial 
isolates n° 

Management 
characteristics 

1  

EC 50 
(mg/L) 

Sensitivity 
classification 

2  

Mean 
percentage 
of  relative 

germination 
%  

Mean 
percentage 

of  A143 
allele 

CAPS 
interpretation 

62-1 
  
  
  
  

WT 
  
  
  
  
  
  

0.003 
  
  
  
  
S 
  
  
  
  
  
  

0.9 0.25   
62-4 0.001 0 0.35   
62-8 0.001 0.5 0.52   
62-10 0.001 0 0.25   
62-15 0.002 0.5 0.72   
62-26 0.0007 0.4 0.57 S 
62-30 0.001 0.9 0.23   
62-33 0.001 0 0.23   
62-35 0.0008 0.8 0.13   
62-36 0.0015 1.78 0.3   
62-38 0.0008 6.05 0.2   
62-39 0.0003 2.43 0.3   

1202 - 27    Nd3    nd 0.28   
1202 - 29   0.05   9.12 0.54   
1202 - 42   0.07   9.9 0.01   
1202 - 46   0.01   8.83 0.15   
1202 - 47  0.11   11.71 0.59   
1202 - 56 WT  0.02 S 11.17 0.03 S 
1202 - 64   0.02   10.3 0.96   
1202 - 72   0.009   3.5 1.66   
1202 - 75   0.06   16.8 1.58   
1202 - 77   0.007   0 0.19   
1202 - 83   0.009   0 0.01   
1202- 100   0.004   24.79 0.03   

202-7   0.04   7.1 0.06   
202-31   0.038   2.43 0.16   
202-35   0.05   8.5 0.04   
202-62   0.02   3.8 0.3   
202-66 GC 0.016 S 2.06 0.04 S 
202-76   0.023   0.8 0.04   
202-77   0.03   3.83 0.16   
202-89   0.015   3.98 0.04   
156-1 

GC 

0.039  5.4 0.11  
156-2 0.067   16.5 0.32   
156-3 0.017   6.6 0.31   
156-4  0.033   23.3 0.25   
156-5 0.032   5.78 0.18   
156-6 0.017 S  4.21 0.13 S  
156-7 0.037  14.8 0.08  
156-8 0.009   1.9 0.1   
156-9 0.387   45.47 0.1   

156-12 0.015   11.7 0.8   
156-17 0.025   3.83 1.09  

       

80 
 



 In vitro assay results Molecular analysis 
results 

  A B C D E 

Monocondial 
isolates n° 

Management 
characteristics  

EC 50 
(mg/L) 

Sensitivity 
classification  

Mean 
percentage 
of  relative 

germination 
%  

Mean 
percentage 

of  A143 
allele 

CAPS 
interpretation 

102-5   >10   73.78 99.7   
102-9   >10   84.64 99.7   

102-10   >10   81.99 99.7   
102-13  >10   71.95 99.9   
102-44 PC >10 R 79.06 99.5 R 
102-55   >10   77.47 99.6   
102-68   >10   77.45 99.5   
102-1   >10   71.3 98.92   
102-3   >10   78.1 99.16   
503-6   6.07   53.1 98.81   

503-10   >10   89.5 99.1   
503-13 PC >10 R 71.8 98.46 R 
503-18   >10   92.3 98.43   
503-19   >10   88.6 99.26   
503-23   >10   88.3 99.21   

1 Wt: wild-type; UNT: untreated, NOS: no strobilurins used; GC: good control by strobilurins; PC: poor 
control by strobilurins; ND: Informations not available        
2 S= sensitive EC50 max < 0.065mg/L;   R= resistant EC50 max > 0.169 mg/L 
3 ND; no data because of less conidia germination in in vitro test 

 

 

The correlation between relative germination and percentage of mutated alleles is 

highly significant (P:0.001) with a strong relationship between the two parameters as 

evidenced by “correlation coefficient” (0.96) and  the R-squared is very high (R2 = 0.92) 

(Fig. 22). 
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Fig. 22. Correlation between % of mutated allele and % of germinated conidia at 2mg/L of 
trifloxystrobin relative to the untreated control 
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5. Discussion 
 

Venturia inaequalis is the most economically important fungal pathogen of apple in 

Italy and Turkey. Protectant and systemic fungicides have been developed, and many of 

these have been used against V. inaequalis. This fungus however, has developed resistance 

to several major fungicide groups and continues to be a problem in apple production. 

Belonging to the group of quinone outside inhibitors (QoI), were highly effective against a 

wide range of fungal pathogens. They are widely used for selective controlling of apple scab 

in orchards. However, the development of resistance mechanisms in pathogen populations 

was observed as a consequence of extensive application of strobilurins. G143A substitution 

in cytochrome b, suggested to be the major mechanism of QoI resistance, was described for 

a number of species of phytopathogenic fungi including V. inaequalis populations. This SNP 

was also detected in cytochrome b gene sequence, in QoI-resistant isolates in Italy 

(Fiaccadori et al., 2005; 2011).  

Up to now, all screenings for resistant forms of V. inaequalis in the orchards in 

Turkey were conducted on the basis of in vitro assays. According to our knowledge, this 

study represents the first report on the detection and quantification of G143A mutation level 

in V. inaequalis fungus using qPCR assay in Turkey. 

When the molecular mechanisms of resistance are known and particularly when the 

underlying DNA polymorphisms (single-nucleotide polymorphism [SNPs], deletions, or 

insertions) have been defined, various molecular methods can be used to monitor 

antimicrobial resistance (Fraaije, et al., 2002; Ma, et al., 2004; 2005). The principle methods 

for quantifying resistance are based on real-time PCR technology. 

The allele-specific qPCR assay was successfully applied for the detection of QoI-

resistant alleles in response to strobilurin applications (Fraaije et al. 2002; Collina et al. 

2005; Kianianmomeni et al., 2007; Michalecka, et al., 2011; Nanni, et al., 2011). 
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In this study, an allele-specific qPCR with primer sets designed was successfully 

developed to quantitatively determine the frequency of QoI-resistant allele 143A in 

populations of V. inaequalis. It was noticed that qPCR detects the frequency of strobilurin-

resistant allele under the 10% detection limit of the CAPS method. The CAPS method well 

recognized the highly sensitive and resistant populations while it did not discriminate those 

characterised by intermediate frequencies of mutated allele.  The qualitative evaluation by 

the CAPS PCR is certainly less useful because of its poor ability to show differences among 

V. inaequalis  populations, that are often characterised by intermediate frequencies of 

mutated allele. 

The main goal of this research was to correlate the molecular test results with in vitro 

test results, therefore percentage of mutated alleles must be compared with an in vitro 

parameter. Our previous study (Nanni et al., 2011), reported as a result of sensitivity 

evaluation of populations, among the considered biological parameters (relative 

germination, % of germination at the highest concentration, EC50), relative germination 

(RG) gave the best correlation with the percentage of mutated alleles (frequency of G143A 

substitution) detected by qPCR. The “EC50” value showed the lowest correlation with qPCR 

data because it has a limited range of values (0-2 mg L-1) that is not able to assess the higher 

levels of resistance. Moreover we considered that the “% of conidia germinated at max 

concentration” had a limited validity because it presented an inferior level of correlation with 

% of mutated alleles. Therefore, it was decided to correlate the RG values with the 

percentage of mutated alleles. 

The results in this research have shown that the conidial germination assays 

demonstrated differences in sensitivity to strobilurins among populations of different origin 

in Italy and Turkey.  
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In sensitive populations, the relative germination (RG) detected within wild-type and 

well-controlled populations was lower than < 14.6% (maximum EC50 < 0.07 mg L-1), while 

the relative germination is 0 %, R-allele frequency was generally lower than 3.7 %.   

It was noticed, in some cases, high reduced in vitro sensitivity with low EC50 and low 

relative germination corresponded to moderately high detection of R-allele frequency for 

four wild type (n.426, 158, 226, 228) and one well-controlled (n. 427) populations. Detected 

high R-allele in wild type poopulation may be explained by the natural flow of spores from 

strobilurin-treated orchards to wild-type, which may travel up to 15 kilometres (Aylor et al., 

1992). The resistant individuals can reproduce and spread over the sensitive population, this 

can lead to increase the resistant isolates. This indicates, as suggested by Fraaije et al., 

(2005), that isolates with A143 alleles might play an important role in long-distance 

dispersal of QoI-resistant genotypes.  Furthermore, other important biological factors, such 

as the tendency of fungal species to spontaneous mutations, also affect the development and 

spread of resistance. Therefore, strains containing mutation conferring resistance might 

emerge independently in each type of orchard. Subsequent fungicide application conduce an 

increase in resistant individuals (Michalecka et al., 2011). Moreover, Fungicide Resistance 

Action Committee (FRAC) has also shown that it is possible to detect G143A mutations in 

fungal populations never exposed to QoI fungicides. It would thus appear that the mutation 

is naturally occurring in fungal populations, albeit at low frequencies. It can also be found, 

again at low, but variable, frequencies, in situations where the use of QoI based products is 

giving perfectly acceptable disease control (Rusell, 2002). 

It should be clarified why the moderate frequency of mutated allele especially in wild 

types is not reflected in vitro sensitivity test. This case can be explained in V. inaequalis 

quantity of the samples that could not be always enough for a precious assesment of the 

population especially in situation of heterogeneity. Moreover, the material used in in vitro 

and molecular analysis were different and could cause diversity in evaluation. And also, 
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there could be non viable conidia in in vitro test, while qPCR can also detect mutated alleles 

with non viable fungal material. 

The populations collected from orchards where strobilurin used and a poor control 

noticed, showed lower sensitivity to trifloxystrobin and they were classified as resistant. 

They presented EC50 max from 0.17 to >10 mg L−1 and RG from 11.4 to 97.3%  and  

generally high R-alleles frequency was found ranging from 23.01 to 99.54 %.  It was 

observed that in populations defined as resistant in vitro test  have almost  always have high 

mutated allele frequency. However, in spite of the relatively low frequency of the mutation 

(5.97% and 0.015%), reduction of the efficacy of trifloxystrobin was observed in only two 

samples, n.161 and 201 (EC50 max 2.56, RG 31.4% and EC50 max 0.19 mg L−1, RG 14.6%, 

respectively). This difference can be indicated the presence of other mechanisms causing 

reduced sensitivies. Indeed, the mutation does not always explain the QoI-resistant 

phenotype. It may be due to the alternative respiration pathway. Although it was not 

observed an influence in this respiration pathway by adding SHAM for testing the sensitivity 

of some populations and monoconidal isolates in this study, even if a moderate in vitro 

action of SHAM was sometimes noted (Olaya et al., 1998) but this activity has been 

considered of little importance under field conditions (Fernandez-Ortuno et al, 2008). 

Moreover, the other effective mechanisms responsible for QoI resistance remain to be 

characterized (Steinfield et al., 2001; Fernandez-Ortuno et al, 2008) and it could be clarified 

with studies on biochemical and genetic aspects. Many basic aspects on QoI resistance (e.g. 

genetic stability, segregation) are still not well understood (Gisi and Sierotzki, 2008). 

Therefore, further experiments to identify additional mechanisms of resistance may also be 

needed in the future. 

Also in all samples collected from orchards with poor scab control probably caused 

by strobilurins in Turkey in 2011, molecular assays demonstrated the presence of G143A 

subsititution conferring resistance at a very high level (46.62-99.76%)  
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Sensitivities of monoconidial isolates of V. inaequalis, originated from locations with 

different history of fungicide usage, were tested to evaluate the sensitivity to QoI. The results 

showed that the sensitivity of conidial germination of monoconidial isolates from the wild-

type and the well controlled populations was also considerably higher than that of the 

isolates obtained from the populations of the orchards with control failures probably by 

strobilurins confirmed by high values in percentages of mutyated alleles.  

All QoI-sensitive apple scab monoconidial isolates tested was showed very low 

mutated allele frequency (<1.66 %). In only very few monoconidial isolates obtained from 

well-controlled populations and wild type population, moderatley high germination at 

maximum concentration were observed with very low percentage of R-allele. Cellophane 

method has been used by many researchers for conidial production and to evaluate the spore 

germination assay of monoconial isolates. However, in this work, EC50 values of 

monoconidial isolates of sensitive populations (especially wild type) were found higher than 

EC50 values obtained by their population in conidial germination test. It is possible that part 

of these differences is due to cellophane method; indeed  in some isolates a part of conidia 

(from 1 to 10%) were pre-germinated on cellophane plate. However, also in these situations , 

the sensitivity to trifloxystrobin of monoconidial isolates obtained from sensitive populations 

were still high (mean EC50 value < 0.04 mg L-1). Furtermore, germination (from 1 to 10%) 

was observed before their insemination on amended petri dishes, also Steinfeld et al., 

observed the germinated conidia (<10%) when starting the experiments (2001). So their 

EC50 values after insemination were clearly higher respect to the ones of correspondent 

populations. The conidial suspensions of some tested isolates were inoculated on apple 

seedlings to test the sensitivity of germinating conidia in order to conserve the sporulation in 

dried ambient and avoid the anticipated germination. In tested these isolates, sensitivity to 

trifloxystrobin was found higher in in vitro tests with conidia obtained from inoculated 
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leaves. However, all isolates were not inoculated on seedlings because of low germination 

capacity and conidia production of monoconidial isolates on seedlings and besides that such 

a procedure is extremely time and labor consuming, especially when a high number of 

isolates need to be assessed and the tests need to be repeated. Moreover, fungicide testing 

also requires a sufficient amount of sporulating fungal material. In addition, it was detected 

high RG 23.3% and 45.47% (EC50 0.03 and 0.38 mg L-1, respectively) in only two 

monoconidal isolates from well controlled population and 24.79% RG (EC50 0.004 mg L-1) 

in one wild type monoconidial isolate with almost 0% mutated allele (<0.1%). This high 

relative germination value can be also explained by other resistance mechanisms which 

mentioned above. 

The results obtained in vitro demonstrated that trifloxystrobin, showed very low 

sensitivity against all resistant isolates used in the study. Fungicide sensitivity testing linked 

with cytochrome b sequence analysis showed that high levels of QoI resistance in resistant 

monoocnidal isolates of V. inaequalis always associated with the presence of a specific 

mutation in the mitochondrial cytochrome b gene with high mutated allele frequency 

(>98.43). The activity of trifloxystrobin against mutant isolates was noticeably lower 

compared to wild-type isolates. It was concluded that there is strong evidence that the point 

mutation found in single resistant isolates of V.inaequalis is a major cause of resistance to 

trifloxystrobin. 

Results from these studies showed that trifloxystrobin is sometimes more effective 

against conidia than mycelial growth in vitro, in some cases the activity is similar. It is 

recommended that sensitivity studies be conducted on conidia rather than mycelia, because 

the activity of strobilurins is mainly based on germination (Olaya and Koller, 1999b; Barlet 

et al., 2002). 

It was noted that there were no significant variations in allele frequencies within a 

tested single spore iolates of populations. 
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 It was decided to use the same material in biological assays and in molecular assays 

to evaluate the sensitivity and detect the mutated allele of monoconidial isolates. Therefore, 

we have established an efficient method utilizing Chelex 100 for extraction DNA from 

Venturia inaequalis spores of monoconidial isolates tested in biological assay. Sometimes, it 

was difficult to get amplifications from PCR at the first time with a Chelex extract, second 

extraction of extracted product was needed to be done twice. We were able to obtain good 

yield of DNA from Venturia inaequalis spores by Chelex 100. Thus, this extraction method 

developed in this study is feasible and quick to obtain DNA from monoconial isolates and to 

use in molecular analysis. To analyse the presence and detection of point mutation of V. 

inaequalis monoconidial isolates, mycelial extraction has been used by many researchers 

using CTAB based method. However, this procedure is very time consuming comparing 

Chelex 100 extarction done in 2-3 hours. 

A comparison was made between conventional and qPCR assessment of fungicide 

activities. The study confirmed the applicability of qPCR assay to efficiently determine the 

strobilurin-resistance level in apple orchards by comparing it with the conventional method.  

In this study, quantitative assessments using qPCR followed a similar pattern to that 

obtained using in vitro conidial germination test in very sensitive and very resistant 

populations. In fact, in most cases, it was noticed when RG was < 10%, mutated allele 

frequency was < 10% and when RG was > 70%, very high mutated allele (>80%) was 

detected. However, some variability between two test results was observed in hetereogenous 

populations. Therefore, the results of correlations between in vitro and qPCR showed a 

positive but not very high correlation for Venturia inaequalis populations (R2=0.70). On the 

contrary, this correlation between two assessment methods was very high for monoconidial 

isolates (R2=0.92). qPCR assessment was highly representative of the results obtained by in 

vitro assay for monoconial isolates. Because almost all monoconidal isolates showed a very 

high sensitivity or very low sensitivity to trifloxystrobin in both assays. Detecting high 
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correlation value between both assessments confirmed the accuracy of qPCR assessment for 

very resistant populations and also often for very sensitive populations. 

The method developed here was designed as alternative to tradional methods and 

qualitative tests and showed a better sensitivity than the CAPS method and in vitro tests. 

However, not a very high correlation between biological and molecular data was observed in 

intermediate frequency values, as represented by hetereogenous populations. Moreover, 

examing the only a rather small part of the whole fungal material which present in an 

orchard or on apple tree, in some cases, can cause different results on populations between 

the two methodologies and an imprecise evaluation. Michalecka et al., 2011, advised to 

increase the number of repetitions of every samples in qPCR to obtain a reliable assesment 

of the allele ratio in field populations. Also in vitro tests with more multiplicated conidia 

could be useful for examination. Moreover, it should be remembered that qPCR can also 

detect the mutation from non-viable conidia with viable ones while in vitro tests is relied 

only on viable conidia. 

Also these differences in examined material by the two methodologies, in some 

cases, may cause differences in results on populations, while the problem seems to have a 

much lower importance on monoconidial isolates. The  hetereogenicity of population can be 

the main factor that can cause differences between methodologies.  

Therefore, in some cases it is difficult to assess the resistance in the field by only 

qPCR.  The results of this study suggest that in vitro tests combined with qPCR assay are 

suitable for assessing the risk of V. inaequalis at the field level. 
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6. Conclusion 

 

A method to determine the development of fungicide resistance in apple scab 

populations is a basic step in being able to predict possible trends in fungicide resistance on a 

large scale. The qPCR assay described in this study is applicable for high-throughput 

detection of the resistant A143 allele in more than 60 populations. Often it is necessary to 

detect the presence of a pathogen early and quickly, and to determine the frequencies of 

resistant and sensitive fungal pathogen isolates in one ore more regions. The most commonly 

used test for determining QoI sensitivity of V. inaequalis was a biological tests conducted at 

several concentrations and was very fastidious. Also, conventional methods to detect 

resistance are time-consuming and labor-intensive. Once, the resistance mechanism is 

known, it is often faster to use molecular detection. The main advantage of molecular real-

time methods over pre-existing, is their high sensitivity and qPCR allows for the detection of 

small amounts of the desired allele in bulk samples, thus eliminating the need to maintain 

pure cultures of the pathogens. This is definitely less time-consuming than in vitro 

sensitivity growth testing and more useful, especially when traditional tests are impossible to 

conduct. 

This study confirmed the applicability of qPCR assay to efficiently determine the 

strobilurin-resistance level in apple orchards by comparing it with the conventional method. 

The results generally demonstrated a good correlation between the allele-specific gene 

frequencies determined by qPCR and the well-established quantitative biological tests such 

as conidial germination. However, it was observed that using qPCR method makes it 

possible to measure the mutation level in DNA isolated from viable and non-viable fungal 

material. Therefore, results obtained in quantitative PCR and from traditional spore 

germination assay can differ for the same fungal population. Moreover, the mutation does 
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not always explain the QoI-resistant phenotype. They may be due to other mechanisms 

causing reduced sensitivies which is necessearry to be characterized. 

 qPCR allows a rapid detection of mutation with known resistance mechanisms, at 

low frequencies, and even if it is not possible to have a precise correlation between 

biological and molecular data, it is possible to observe that populations classified as sensitive 

in vitro tests have generally a rather precise range of percentage of mutated alleles, and the 

same can be observed on resistant populations where the percentage of mutated alleles is 

generally superior to certain values. However, it is not always possible to correlate the 

frequency of detection of the mutation with biological assessment.  

In conclusion, in such situations monitoring by molecular techniques must be 

supported by standard in-vitro resistance assessments and observation of field performance 

in order to have a more reliable conclusion on sensitivity of each V. inaequalis population to 

strobilurins. 
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