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There are these two young fish swimming along, and they happen to meet an older fish 
swimming the other way, who nods at them and says, ‘Morning, boys, how's the water?’ 
And the two young fish swim on for a bit, and then eventually one of them looks over at 
the other and goes, ‘What the hell is water?’ 

[…] 

The real value of a real education […] has almost nothing to do with knowledge, and 
everything to do with simple awareness. Awareness of what is so real and essential, so 
hidden in plain sight all around us, all the time, that we have to keep reminding ourselves 
over and over: ‘This is water. This is water.’ 

David Foster Wallace, commencement speech to a graduating class at Kenyon College, 
Ohio, May 21 2005. 
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We are at the very beginning of time for the 
human race. It is not unreasonable that we 
grapple with problems. But there are tens of 
thousands of years in the future.  

Our responsibility is to do what we can, learn 
what we can, improve the solutions, and pass 
them on. 

Richard P. Feynman 
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ABSTRACT 

The research field of the Thesis is the evaluation of motor variability and the analysis of 
motor stability for the assessment of fall risk. Since many falls occur during walking, a 
better understanding of motor stability could lead to the definition of a reliable fall risk 
index aiming at measuring and assessing the risk of fall in the elderly, in the attempt to 
prevent traumatic events. Several motor variability and stability measures are proposed in 
the literature, but still a proper methodological characterization is lacking. Moreover, the 
relationship between many of these measures and fall history or fall risk is still unknown, 
or not completely clear. 

The aim of this thesis is hence to: i) analyze the influence of experimental implementation 
parameters on variability/stability measures and understand how variations in these 
parameters affect the outputs; ii) assess the relationship between variability/stability 
measures and long- short-term fall history.  

Several implementation issues have been addressed. Following the need for a 
methodological standardization of gait variability/stability measures, highlighted in 
particular for orbital stability analysis through a systematic review, general indications 
about implementation of orbital stability analysis have been showed, together with an 
analysis of the number of strides and the test-retest reliability of several 
variability/stability numbers. Indications about the influence of directional changes on 
measures have also been provided. Association between measures and long/short-term 
fall history has also been assessed. Of all the analyzed variability/stability measures, 
Multiscale entropy and Recurrence quantification analysis demonstrated particularly good 
results in terms of reliability, applicability and association with fall history. Therefore, 
these measures should be taken in consideration for the definition of a fall risk index. 
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I. INTRODUCTION 

I.1. FALLS IN THE ELDERLY 

 

“A fall […] is an event which results in a person coming to rest unintentionally on the 
ground or lower level, not as a result of a major intrinsic event (such as a stroke) or 

overwhelming hazard.” [1] 

 

Considered to be one of the so-called geriatric giants, falls place a heavy economic 
burden on society, and are also responsible for a considerable loss of life quality. In 2009 
alone, falls led to costs ranging between 0.85 and 1.5 per cent of the total healthcare 
expenses within the USA, Australia, EU and the UK [2]. Falls also have a critical 
influence on health status, with approximately 81-98% of hip fractures caused by falls 
[3,4], and are the leading cause of injury-related visits to emergency departments in the 
USA [5]. 

Risk of a falling increases with age [6,7]; falls are and the primary etiology of accidental 
deaths in persons over the age of 65 years. The mortality rate for falls increases 
dramatically with age, with falls accounting for 70 percent of accidental deaths in persons 
75 years of age and older [5]. The main associated costs therefore tend to occur in higher 
age groups and in the wake of fractures, a problem that is further exacerbated by the 
increasing proportion of elderly among the population [8].  

There are currently over 400 known risk factors for falls [9], classified into extrinsic (or 
environmental), intrinsic (or personal) and task-related factors [10,11]. Extrinsic factors 
comprise all external influences and might include factors such as poor lighting, surface 
elevation, surface roughness, obstacles, clothing/footwear, lack of equipment or aids, or 
external perturbations. Task-related factors include task complexity and speed, fatigue, 
load handling. Intrinsic factors reflect individual differences in, among others, age and 
gender, muscular strength, reaction time, visual impairment (e.g. glaucoma, macular 
degeneration, retinopathy), ethnicity, use of drugs and medications (e.g. polypharmacy, 
sedatives, cardiovascular medications), living alone, sedentary behavior, psychological 
status, impaired cognition (e.g. dementia), cardiovascular issues and foot problems. In 
addition, history of falls as well as impaired stability and mobility (e.g. as a result of 
stroke, parkinsonism, arthritic changes, neuropathy, neuromuscular disease or vestibular 
disease) can be considered as higher level factors owing to their interdependency with 
both intrinsic and extrinsic factors. While knowledge of the environment is known to play 
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a role in minimizing the effect of intrinsic and task-related factors on instability, extrinsic 
factors cannot generally be controlled, tested or accounted for in clinical assessment. 
Intrinsic factors have also been identified as major risk factors for falling. In particular, 
gait instability is considered to be a major fall risk factor, particularly in geriatric patients 
[12–14]; however, the quantification of gait stability is still an issue [8]. 

Several interventions to prevent falling (and associate injuries) have been proposed [15], 
but in order to correctly select individuals to which prescribe appropriate interventions, a 
reliable identification of individuals at risk of falling is needed [16]. Since many falls in 
the elderly occur during walking [17,18], assessment of gait stability represents a 
fundamental aspect. 

I.2. ASSESSMENT OF GAIT STABILITY 

The most established techniques to quantify fall risk are (i) motor function tests, (ii) 
questionnaires, and (iii) biomechanical laboratory-based measurements. However, since 
motor function tests and questionnaires are generally not capable of providing a 
quantitative predictive assessment of gait stability or fall risk [19,20], biomechanical 
laboratory-based measurements can help defining subject-specific methods with high 
sensitivity and specificity for gait stability assessment [8]. 

As said above, assessment of gait stability can allow the identification of subjects at risk 
of falling, being an important and necessary precondition for walking without falling. 
However, while stability is a well-defined concept in mechanics, there still is no complete 
consensus on how to measure stability of gait. Several methods are currently available, 
each one having advantages and disadvantages.  

The term gait stability is comprehensive of both indirect as well as direct biomechanical 
aspects of stability during gait. These aspects can be measured and quantified, and hence 
could contribute to the definition of a subject-specific fall risk index. Indirect assessment 
of gait stability is represented by kinematic variability measures; when error corrections 
during a motor task become less effective, variability increases. It can therefore be 
assumed that variability is related to fall risk, because increased variability may bring the 
dynamic state of the person closer to the limit of stability [8]. On the other hand, direct 
stability measures not only provide information regarding the disturbances in the motor 
task performance, but also explicitly quantify the performance of the dynamic error 
correction. In addition, other stability-related measures have been recently associated 
with gait stability. 

Mathematical details about indirect, direct and stability-related measures can be found in 
Chapter IX (Appendix). 

I.2.1. Indirect assessment of gait stability 

Kinematic variability measures represent the magnitude of variability of a certain 
kinematic parameter over strides during gait. One of the most established variability 
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measure is stride time variability, expressed in terms of Standard deviation (SD) or 
Coefficient of variation (CV) [17]. 

Somehow complementary measures of stride-to-stride variability are the Inconsistency of 
the variance of the stride time (IV) and the Nonstationary index (NI) [21], which measure 
the fluctuation dynamics of the stride time. 

The Poincaré plot is a widely accepted method for the analysis of 2-D dynamic systems 
[22]; it has been extensively applied in the study of heart rate variability as a qualitative 
visualization tool, but can also be applied to other physiological signals (for example 
stride time). Stride time data plots between successive gait cycles show variability of 
stride time. Plots are used to extract indices, such as length (PSD2) and width (PSD1) of 
the long and the short axes describing the elliptical nature of the plots. 

Whereas variability measures have been shown to be positively correlated with the 
probability of falling in the elderly [17,23], decreased variability has also been reported 
for mobility-impaired subjects, suggesting that these subjects are less stable due to a less 
flexible system [24,25]. Moreover, analyzing the effects of walking speed on stability and 
variability, no relationship between variability and the time needed to recover from a 
perturbation has been found, leading to the conclusion that locomotion variability 
measures may not be dependable indicators of locomotion stability [26] and are not able 
to quantify how the locomotor system responds to perturbations [27]. Hence, the 
relationship between gait variability and stability is not as straightforward as it may seem. 

I.2.2. Direct assessment of gait stability 

Human locomotion is, in all respects, a dynamical system. To test the stability of a 
dynamical system, several tools have been developed, since dynamical systems are often 
nonlinear and complex, and human locomotion definitely is. For this reason, some 
authors applied methods coming from stability analysis of nonlinear dynamic systems to 
biomechanics [8]. 

In theoretical mechanics, stability is defined by how the system state responds to 
perturbations [28]; similarly, an appropriate definition for the stability of a motor task 
should be based on the quantification of the tendency of a subject to recover from small 
(natural or artificial) perturbations occurring during the execution of a structurally cyclic 
task (e.g. gait [29]). However, in mechanics and robotics a state variable is deterministic 
and can predict the future state of the mechanical system: while the behaviour of walking 
robots under perturbation conditions can quite easily be predicted [30], dealing with 
biomechanical time series of human locomotion variables is not as straightforward as in 
robotics. In fact, when dealing with human locomotion the equations of the system are not 
known, and such nonlinear techniques have to be applied in a numerical (rather than 
analytical) fashion. 

A motor task can hence be treated as a nonlinear dynamic system: biomechanical 
variables (e.g. joint angles, angular velocities or accelerations, marker positions, muscle 
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activations and others) vary during the temporal evolution of the task, defining a system 
that continuously changes over time. In a repetitive task, like walking, biomechanical 
variables have a cyclic behavior and recur iteratively with almost the same pattern; this 
pseudo-periodic behavior can be exploited for nonlinear analysis. For example, plotting 
the temporal evolution of knee angle against hip angle will design an orbit, which will 
vary dynamically in time but will maintain almost the same trend. In mechanical 
dynamics, the set of the variables that describe this orbit (two or more) is called state 
space, which can be defined as a vector space where the dynamical system can be defined 
at any point [31]. The number of task cycles (e.g. strides, commonly defined as the 
interval of time that starts at the heel strike of one foot and ends at the following heel 
strike of the same foot [32,33]) will determine how many times the variables will travel 
around the orbit. The locomotor pattern will force those variables to roughly travel around 
a fixed orbit, in a sort of limit cycle behavior. If a perturbation occurs during the motor 
task, the orbit will instantaneously move away from the limit cycle; in case of stability, 
the orbit will then tend back to the limit orbit, otherwise will diverge from it. For 
example, if a significant variation in knee angle occurs during walking (because of an 
obstacle), a coherent variation in hip angle will take place: simply observing the trend of 
one of these variables during the task could bring to misleading conclusions regarding 
stability, whereas embedding the two in the state space gives a more complete 
characterization of the system behavior. If a measure of only one of these time series is 
available, a proper way to obtain a characterization of the system is to embed in the state 
space the variable (e.g. knee angle) and its time-delayed copies; again, if an obstacle 
causes a sudden variation of knee angle, the orbits will reveal if the subject recovered 
stability after getting ahead of the obstacle, getting back to the limit cycle orbit after the 
destabilizing time event. Techniques of nonlinear stability analysis consist then in the 
quantification of the tendency of an orbit to diverge from or converge to the previous one 
or to an attracting limit cycle. Two main approaches for nonlinear stability analysis are 
present in literature: local and orbital stability analysis. These measures of orbital and 
local dynamic stability quantify different properties of system dynamics [34]. 

Local stability is used for systems that do not necessarily exhibit a discernable periodic 
structure, and therefore does not exploit the previously described pseudo-periodicity of 
some motor tasks. It is defined using short-term (sLE) and long-term (lLE) local 
divergence exponents (Lyapunov exponents). These indicators quantify how the system 
state responds to very small (local) perturbations continuously in real time [34]; many 
studies using this approach are present in literature [14,24,27,35–38]. Recently, an 
association between local stability and fall history have been found [39]. 

Orbital stability is defined for periodic systems with a limit cycle behavior, and can then 
be applied to cyclic motor tasks. This approach is extensively used in the study of passive 
dynamic walking robots [30], and in the last years it has been applied also to 
biomechanics [40]. Orbital stability analysis can be applied under the hypothesis of 
periodicity and assuming that motor dynamics (e.g. walking dynamics) are governed by 
central pattern generator processes yielding repetitive limit cycle behavior [41]. 
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Fundamental indicators of orbital stability are Floquet multipliers (FM) which quantify, 
discretely from one cycle to the next, the tendency of the system state to return to the 
periodic limit cycle orbit after small perturbations [34]. If maximum Floquet Multipliers 
(maxFM) have magnitude < 1, perturbations tend to shrink by the next repetition, and the 
system remains stable. Every point on the orbit represents an instant of the task cycle. To 
calculate FM, a section must be defined in some point along the orbit (Poincaré section). 
In theory, the orbital stability of a deterministic limit cycle process should be the same, 
regardless of where along the trajectory the Poincaré section is made; however, human 
walking is not strictly periodic and people respond to perturbations differently during 
different phases of the gait cycle [34]. Hence, many authors put the Poincaré section in 
the most significant phases of the motor task (e.g., for gait, maximum sagittal knee 
flexion, toe off etc.) along the orbit, in order to obtain information about stability in the 
task phases that are more likely affected by perturbations. According to the literature, 
orbital stability analysis seems a promising approach for the definition of a reliable motor 
stability index; it can represent a novel way to predict risk of fall and to identify the most 
unstable phases of a motor task, in order to plan appropriate rehabilitation therapies. The 
most interesting feature of this method is the possibility to account for the whole task 
cycle dynamics, including more variables in the state space characterising the system. 
With a proper choice of Poincaré section, that is a proper choice of interesting instants 
during the task, the stability of every phase of the task cycle can be calculated. However, 
still the use of maxFM as a fall risk index is deemed to be controversial [8]. 

I.2.3. Stability-related measures 

Other measures are present in literature that, whereas not representing a direct assessment 
of gait stability per se, are considered to be related with gait stability as they quantify 
strictly gait-correlated characteristics (such as smoothness, complexity, recurrence). 

Some measures, such as the Index of Harmonicity (IH) and Harmonic Ratio (HR), 
involve decomposing signals into harmonics by means of Discrete Fourier Transform and 
then analyze their spectral components [42,43], in order to obtain a measure of 
smoothness and rhythm of the gait pattern.  

HR, derived from trunk acceleration signals and based on amplitudes in frequency 
spectra, is an indication of smoothness of acceleration patterns and provides information 
on how smoothly subjects control their trunk during walking and gives an indication of 
whole body balance and coordination [42,44].  

Similarly to HR, IH assesses the contribution of the oscillating components to the 
observed coordination patterns by means of spectral analysis [43]. It quantifies the 
contribution of the stride frequency to the signal power relative to higher harmonics. 

Other methods that have been associated with gait stability are Multiscale Entropy (MSE) 
[45,46] and Recurrence Quantification Analysis (RQA) [47,48].  
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MSE quantifies the complexity or irregularity of a time series. Time series derived from 
complex systems, like biological systems, are likely to present structures on multiple 
spatio-temporal scales [45], and MSE has been introduced to this aim.  

RQA is a nonlinear technique that has been applied recently to various biological time 
series, including walking [47]. Based on local recurrence of data points in the 
reconstructed phase space, it provides a characterization of a variety of features of a given 
time series, including a quantification of deterministic structure and non-stationarity [48]. 

I.3. AIM OF THE THESIS 

In the last paragraph, several measures of gait variability and stability proposed in the 
literature have been illustrated; the aim of such measures is quantifying subject specific 
gait characteristics such as gait impairment, degree of neuromotor control and balance 
disorders, in both pathologic and healthy subjects.  

However, still there is no methodological standardization on how to properly implement 
variability/stability analysis measures. These measures often come from the analysis of 
dynamical systems, and depend on many input parameters. The implementation in 
movement analysis is hence not straightforward, and a methodological standardization is 
needed in order to obtain reliable, repeatable and easily interpretable outcomes for a fall 
risk index definition. 

Moreover, the relationship between many of these measures and fall history or fall risk is 
still unknown, or not completely clear. Loss of dynamic stability during gait may be 
caused by structural changes in gait patterns or by temporary modifications in balance 
control that could not be displayed while the subject is being tested. An assessment of the 
association between these measures and the two aforementioned conditions is hence 
needed, in order to define the capability of the measures to detect long- and short-term 
stability modification in relation to fall risk. 

The aim of this thesis is hence to:  

i) analyze the influence of experimental implementation parameters on 
variability/stability measures and understand how variations in these parameters affect the 
outputs; 

ii) assess the relationship between variability/stability measures and long/short-term 
fall history.  
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OUTLINE OF THE THESIS 

In Chapter II, a systematic review of orbital stability analysis in biomechanics [49] is 
presented, to provide an overview of the state of the art and of the questions raised by this 
relatively new approach. In Chapter III a model- and experimental-based study on the 
influence of the experimental input of orbital stability analysis is presented, with the aim 
to analyze the influence of experimental noise and of several implementation parameters 
on the outputs of orbital stability applied to human gait. Chapter IV is dedicated to the 
assessment of the number of required strides and the test-retest reliability of 
variability/stability measures proposed in the literature. In Chapter V an assessment of the 
association between fall history and several step detection independent nonlinear 
measures is presented. Chapter VI is dedicated to the influence of directional changes 
during gait on variability/stability measures. Chapter VII are dedicated to and the 
association between such measures with long/short-term fall risk. Finally, in Chapter VIII 
a general conclusion is drawn, and directions for future research are explored. 
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II. ORBITAL STABILITY ANALYSIS IN 
BIOMECHANICS: A SYSTEMATIC REVIEW 

OF A NONLINEAR TECHNIQUE TO DETECT 
INSTABILITY OF MOTOR TASKS1 

II.1. INTRODUCTION 

The use of maxFM in the assessment of fall risk has been deemed controversial [8], 
because of some discrepancy and incoherence in the results found in the literature. A 
possible cause of this controversy could lie in the lack of a “standard” implementation of 
this technique, being the technique relatively novel in biomechanics. Considering the 
motor task as a dynamic nonlinear system, orbital stability analysis implies the definition 
of a state space characterising the system. No unique way of defining the state space of a 
given motor task (e.g. gait) has been shown in the literature; the most crucial point seems 
to be the choice of which and how many biomechanical variables (e.g. joint angles, trunk 
accelerations) have to be inserted into the space. Even the choice of the position of the 
Poincaré section represents a critical issue when trying to obtain reliable information 
about orbital stability of a motor task. Another criticality is represented by the minimum 
and optimum number of task cycles that should be included in the analysis to obtain 
reliable stability results. 

With the aim to summarize the various applications of this approach in biomechanics and 
to analyse the solution proposed in the literature about the methodological issues stated 
above, in this paper a systematic review and a critical evaluation of the literature on the 
application of orbital stability analysis in biomechanics are provided, with particular 
focus to its application in gait analysis. 

II.2. METHODS 

II.2.1. Search strategy 

In October 2011 an electronic search was performed by one reviewer to find all articles 
on the topic of orbital stability analysis in biomechanics. The databases included 
MEDLINE (1966 - October 2011), ISI Web of Knowledge (1986 - October 2011), and 
Scopus (2004 - October 2011). Keywords used in the search strategy included "orbital 
stability", "floquet", "biomechanics" and "movement". "And" and "Or" conjunction were 
                                                
1 Published. Riva F, Bisi MC, Stagni R. Orbital stability analysis in biomechanics: A systematic review of a 
nonlinear technique to detect instability of motor tasks. Gait & Posture 2013; 37: 1–11. 
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used. Only English language article were considered. Some articles investigated other 
forms of stability in addition to orbital stability; only details from orbital stability analysis 
were considered. A manual, targeted search of reference lists of relevant studies and other 
publications from the authors of the electronically found articles was also performed. 

II.2.2. Inclusion and exclusion criteria 

A single reviewer assessed the titles and abstract of the articles. The articles included in 
the study satisfied the following criteria: i) investigation of gait, locomotor or functional 
tasks, ii) clear and documented purpose of the application of orbital stability analysis and 
iii) full scientific papers. Since this study focused on the application of orbital stability 
analysis to biomechanics, reports related to robotics were excluded. Studies published 
only as conference proceedings were excluded from the review. 

II.2.3. Data extraction 

A customised data extraction form was developed, based on previous systematic reviews 
on associated areas [50–53]. The data extraction themes were selected to give an 
exhaustive overview of each article for analysis and assessment of the quality of the 
scientific literature. Data extraction themes included the description of the sample, details 
of the experimental and analytical protocol and the key results of the study (Table II.1). 
Data were obtained independently by three reviewers. In order to compare results from 
different articles, 95% confidence intervals for each maxFM calculation in 
preferred/normal gait condition were extracted (when available). 
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Table II.1 – Data extraction results 
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II.2.4. Quality 

Quality assessment was performed to limit bias, minimise errors and improve reliability 
of findings [74]. The quality of a study relates to aspects of the study's design, methods of 
sample recruitment, the execution of the tests, and the completeness of the study report. It 
is essential that the quality of the studies included in the review is assessed and reported, 
so that appropriately cautious inferences can be drawn [75]. Quality can be described as 
"the extent to which all aspects of a study’s design and conduct can be shown to protect 
against systematic bias, non-systematic bias, and inferential error" [76]. Some checklists 
which assist in the assessment of the quality of studies are present in literature [75,77], 
but no quality assessment tool existed for the evaluation of articles in this field. 
Therefore, a customised quality assessment tool was developed (Table II.2), based upon 
general systematic reviews principles and guidelines from other systematic reviews 
[50,51,77,78]. The tool consisted of 16 questions that concerned the major research 
purposes. A scoring system was developed to perform an overall evaluation of each 
article. Each question coming from the questionnaire was scored as follows: 2 = Yes; 1 = 
Limited detail; 0 = No. Three reviewers (FR, MCB and RS) scored each paper 
independently. 

 

Table II.2 – Quality analysis form 

Question       

1. Is the aim of the study clearly described?   
2. Is the design of the study clearly described?  
3. Are participant characteristics adequately described?  
4. Is sampling methodology appropriately described?  
5. Is sample size used justified?   
6. Are state space definitions accurately described?  
7. Is the choice of the variables set justified?  
8. Are equipment and setup clearly described?  
9. Are motor tasks clearly defined?   
10. Is the analytical technique clearly described?  
11. Are appropriate statistical analysis methods used?  
12. Are the main findings of the study clearly described?  
13. Are key findings supported by the results?  
14. Are limitations of the study clearly described?  
15. Are key findings supported by other literature?  
16. Are conclusions drawn from the study clearly stated?   
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II.3. RESULTS 

II.3.1. Search yield 

The initial search of the databases, containing all the keywords, yielded 46 results. Eight 
more articles [13,54,60,63,64,67,71,72] were identified from the manual targeted search. 
After the application of the inclusion and exclusion criteria, 23 articles related to orbital 
stability analysis in biomechanics were selected for review. Details of reviewed articles 
are summarized in Table II.1 and Table II.5. 

II.3.2. Quality 

Table II.3 summarizes the quality of the reviewed articles. The overall quality of the 
articles was high, particularly in the areas of aim and design of the study, equipment and 
setup description, motor task description, reporting of main findings and the drawn 
conclusions. Participant characteristics were generally well reported, but in many cases 
information about body mass index (BMI) were not available. Methods for participant 
sampling were rarely reported. Many articles had limited details about the choice of the 
variable set and the analytical technique. Also, many articles had limited statistical 
analysis. Meta-analysis was not performed in this review. 

Table II.3 – Quality analysis results. Each question coming from the questionnaire (Table II.2) was scored as follows: 
2 = Yes; 1 = Limited detail; 0 = No. Three reviewers (FR, MCB and RS) scored each paper independently. 

Ref Article Question number                          

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

[54] Arellano et al. 2 2 1,3
3 

0,3
3 

0,3
3 

2 1,3
3 

2 2 1,3
3 

2 1,3
3 

2 1,3
3 

2 1,6
7 [55] Arellano et al. 2 2 2 1 0,6

7 
2 1,3

3 
2 2 1,3

3 
2 1,6

7 
2 2 1,3

3 
1,3
3 [56] Bruijn et al. 1,3

3 
2 1,3

3 
1 0,6

7 
2 1 2 2 1,3

3 
1,3
3 

2 1,3
3 

2 1,6
7 

2 

[57] Bruijn et al. 2 1,3
3 

1,3
3 

0,3
3 

0,3
3 

1,6
7 

1 2 2 1,6
7 

2 2 2 1,3
3 

1,3
3 

1,3
3 [34] Dingwell and Kang 2 2 1,6

7 
0,6
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0,3
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1,3
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1,3
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2 2 1,6
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1,6
7 

2 2 2 1,6
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[58] Dingwell et al. 2 2 1 0,3
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0,6
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[13] Granata et al. 2 2 2 1 0,6
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[62] Hidler and Rymer 2 2 2 1,6
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1 1,6
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[67] Marghitu and Hobatho 1 1 1 0,3

3 
0,6
7 
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3 

1 1 1,6
7 

0 1 1,3
3 

0,3
3 

0,3
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1 
[68] Marghitu et al. 1,3
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1,3
3 

1 1 0,3
3 

1,6
7 

1,3
3 

2 0,6
7 

1,3
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3 [69] McAndrew et al. 2 2 1,3
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0,6
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[72] Scott-Pandorf et al. 2 2 2 1,6
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2 2 2 2 2 2 
[73] van Schooten et al. 2 2 1,6
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0,6
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1 2 
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II.3.3. Participants 

The reviewed articles tested participants with different ages and physical characteristics. 
Some articles provided insufficient data regarding the physical characteristics of tested 
participants. The reviewed articles tested different sized groups of participants; the largest 
group consisted of 37 [58] participants, the smallest group of four participants [62]. Ten 
articles tested ten subjects or less. Age was mostly restricted to young (mean age 25.4 
years) or old adults (mean age 71.7). One article involved children (aged 7-9, [67]), 
another one dogs [68]. Some articles involved pathologic subjects [58,62]. BMI was used 
to estimate the body composition of participants. The majority of participants had a BMI 
value lower than 25, indicating that they had a healthy weight in respect to their height. 
Where not explicitly reported, mean BMI of the participants was calculated. 

II.3.4. Orbital stability analysis 

All the subjects analyzed in the articles showed orbitally stable motor patterns (maxFM < 
1). Hurmuzlu & Basdogan [40] found that normal individuals possess stability measures 
that are substantially less than unity, confirming the theory regarding the stability of 
normal gait. Hurmuzlu et al. analyzed gait of post-polio patients [63]; their gait resulted 
significantly less stable than the gait of normal individuals. Pathologic subjects were 
involved also in a study by Hidler & Rymer [62]: they examined ankle clonus in spastic 
subjects, concluding that the periodic motion exhibited during clonus is in fact a stable 
limit cycle. In two studies orbital dynamic stability was found to be unaffected by small 
changes in walking velocity, and the authors stated that slowing down does not lead to a 
higher orbital stability [13,58]. Conversely, a study [64] reported that both younger and 
older adults exhibited decreased instability by walking slower, in spite of increased 
variability. Schablowski & Gerner [70] reported a not very strong, yet nevertheless 
significant, dependence of orbital stability on walking speed, with a weak local minimum 
at intermediate speeds. One of these studies [13] indicated also that fall-prone elderly 
show poorer stability of dynamic walking than young adults and healthy old adults. Of 
the four articles that confronted orbital stability of walking in young and old adults, three 
concluded that healthy active older adults exhibit significantly increased orbital dynamic 
instability (kinematic and muscular), independent of walking speed [64–66]. The other 
one found no significant difference between the healthy old and young adult groups in 
terms of maxFM [13]. One study [59] showed that performing an attention demanding 
task while walking on a treadmill does not affect dynamic stability. One study [66] 
analyzed muscle activation during walking, and found that maxFM measures were only 
slightly correlated between electromyography (EMG) and kinematics. However, older 
adults exhibited greater inter-stride dynamic instability of muscle activation patterns. Two 
studies analyzed sawing task [60,61], concluding that muscle fatigue does not lead to 
instability of movement. Some works analyzed the orbital stability of walking with an 
added mass, with contradictory results: one article concluded that walking with an 
external load of 30% body weight does not influence the stability of the gait pattern in the 
sagittal plane [54], while the other one stated that increasing body mass alone would lead 
to a decrease in the stability of the sagittal plane leg kinematics during steady-state 
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walking [55]. Scott-Pandorf et al. [71,72] concluded that added load have little effect on 
the sagittal dynamic stability while in simulated Martian gravity, but the gait pattern is 
more dynamically stable with loads (e.g. Portable Life Support Systems) at the side of the 
torso and low on the body.  

Trunk motion dynamics appeared to provide a more sensitive marker of the decline in gait 
function in healthy older adults compared to other body segments [65]. Trunk segment is 
known to play a critical role in regulating gait-related oscillations in all directions [79], 
hence it might also be responsible for major compensation mechanisms aimed to maintain 
stability of gait. 

One study [69] had the purpose to determine if exposing subjects to different types of 
continuous perturbations would evoke changes in orbital stability; subjects exhibited 
direction-specific responses perturbations. A study [73] tested whether (combinations of) 
measures of variability, and local and orbital dynamic stability were sensitive to 
experimentally induced impaired gait stability, during treadmill walking at several 
different speeds, concluding that FM cannot be used to assess balance control in gait. In 
the opinion of the authors this may be due to compensatory changes, and this claim would 
require additional research. Orbital stability results for young subjects walking at normal 
or preferred speed are reported in a forest plot (Figure II.1). 

Different methods and instruments of movement analysis lead to the acquisition of 
different locomotor variables; hence, the composition of the state space strongly depends 
from the chosen method of movement analysis. Different movement analysis techniques 
were used in the manuscripts. For kinematic measures, 15 articles used 3d 
stereophotogrammetry [13,54–59,64,65,70–72], two articles used 2d video motion 
analysis [67,68], four used electrogoniometer systems [34,40,59,63], three articles used 
tri-axial accelerometers [34,57,73], one article used surface electromyography [66], one 
used potentiometers and tachometers [62]. Some articles used two or more techniques. 

Orbital stability analysis in literature has been applied to different kinds of cyclic motor 
tasks. Almost every reviewed article involved overground or treadmill walking, at 
different speeds with/without carrying loads. One article analyzed subjects walking in a 
Computer Assisted Rehabilitation ENvironment (CAREN) system (Motek, Amsterdam, 
Netherlands) and exposed to continuous, pseudo-random oscillations of the support 
surface or visual field [69]. Two articles analyzed sewing task [60,61], one analyzed 
lifting task [60]. One article was about dogs trotting [68], another one analyzed a  subject 
who was seating while clonus was stimulated [62]. Although the conclusions drawn by 
these study are hardly exploitable outside their specific research field, we decided to 
include them in the review as an application example, as some author might want to apply 
the technique to different biomechanical-related research areas. 
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Figure II.1 - maxFM for young healthy subjects walking at preferred (or normal) walking speed. Error bars represent 
95% of confidence interval. 

 

All the reviewed articles used the same numerical method for maxFM calculation from 
time series, referring to the established method by Hurmuzlu et al. [63]. Some articles 
calculated the dependence on speed of maxFM. 

maxFM

Trunk accelerations

Lower extremity sagittal planes joint angles

0.
8

0.
750.
7

0.
650.
6

0.
550.
5

0.
450.
4

0.
350.
3

Arellano et al., 2008

Arellano et al., 2009

Bruijn et al., 2009

Bruijn et al., 2010

Dingwell & Kang, 2007

Dingwell & Kang, 2007

Dingwell et al., 2008

Dingwell et al., 2007

Granata et al., 2007

Hurmuzlu & Basdogan, 1994

Hurmuzlu et al., 1996

Kang and Dingwell, 2009

Kang and Dingwell, 2008

Kang and Dingwell, 2009

Schablowski & Gerner, 2006

Scott-Pandorf et al., 2009

van Schooten et al., 2011



31 
 

Different state spaces were used in reviewed articles. Many articles included in the state 
space different combinations of joint angles and their derivatives, including or not their 
time-delayed copies. Some articles used virtual marker positions, velocities and/or 
accelerations instead of physical markers [13,64,65]. One article included EMG signals in 
the state space, and their time derivatives [66]. Articles involving tri-axial accelerometers 
included in the state space linear acceleration data [34,57,73]. Some articles included in 
the state space variables coming from both sides, some others just from the dominant 
side. 

Different choices of Poincaré sections were made in the studies. Four articles 
[63,67,71,72] used maximum sagittal knee flexion to mark the first return data. Two 
articles [13,40] put Poincaré section at the instant of different foot strike events (left-step, 
right-step, stride [13] and heel strike, foot flat, heel off, toe off [40]). Two articles [34,58] 
analyzed the values of maxFM all over the gait cycles, while one [70] took the average 
values of the maxFM over all the points of the gait cycle. Three articles calculated 
multipliers at different percentage of the gait cycle [59,64,66]. Five articles calculated all 
the multipliers in the task cycle; four [56,57,61,69] considered for statistical analysis only 
the largest FM across all different phases in the cycle, two [69,73] considered the average 
maxFM value across the cycle. Two articles [54,55] computed maxFM in the instances of 
heel strike and maximum knee flexion. One article involving spasticity [62] choose the 
point in the clonus cycle where the ankle acceleration is zero. One article involving dogs 
trotting [68] put Poincaré maps at the instant of paw strike. Some authors [40] stated that 
the stability measures are fairly insensitive to the choice of Poincaré section, while other 
authors stated that the magnitudes of maxFM vary across the gait cycle [34]. 

Just a few articles [56,63,67,69] stated explicitly the number of cycles upon which the 
analysis was conducted (Table II.4). The number of cycles analyzed in the articles varied 
from 4 [63] to 300 [56]. The majority of the articles only indicated the time duration of 
the trials. One article about precision and sensitivity of orbital stability measures [56] 
stated that an acceptable value of maxFM for human walking can be estimated within 300 
strides; viewing the multiplier as a measure of convergence towards an attractor, using 
less data could lead to less accurate estimates of the true attractor. 
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Table II.4 – Number of analyzed cycles 

Reference Article Cycles number 

[54] Arellano et al. 6 mins walking 

[55] Arellano et al.  6 mins walking 

[56] Bruijn et al. from 30 to 300 strides 

[57] Bruijn et al. 5 mins walking 

[34] Dingwell and Kang 200 m walkway (overground), 10 mins walking (treadmill) 

[58] Dingwell et al. 10 minutes walking 

[59] Dingwell et al. 3 mins walking 

[60] Gates & Dingwell - 

[61] Gates & Dingwell - 

[13] Granata et al. 50s walking (minimum of 35 consecutive steps) 

[62] Hidler and Rymer _ 

[40] Hurmuzlu and Basdogan pass on a twenty meter walkway (all the gait cycles) 

[63] Hurmuzlu et al. first 4 gait cycles 

[64] Kang and Dingwell 5 mins walking 

[65] Kang and Dingwell 5 mins walking 

[66] Kang and Dingwell 5 mins walking 

[67] Marghitu and Hobatho a minimum of 5 gait cycles 

[68] Marghitu et al. _ 

[69] McAndrew et al. 150 continuous strides 

[70] Schablowski and Gerner 90 seconds walking 

[71] Scott-Pandorf et al. 3 mins walking 

[72] Scott-Pandorf et al. 3 mins walking 

[73] van Schooten et al. 2.5 mins / 3 mins / 3.5 mins walking 
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Table II.5 – Limitations and conclusions reported by the authors 

Ref Article Limitations Conclusions 

[54] Arellano et al. _ Walking with an external load of 30% body weight about 
the waist did not influence the stability of the gait pattern in 
the sagittal plane. 

[55] Arellano et al. The vest may have assisted with 
the stability of the leg dynamics by 
providing additional torso control. 
It is also possible that small 
horizontal forces were introduced 
if the subject did not stay directly 
below the fixed pulley. Potentially, 
these horizontal forces may have 
influenced our measures of 
stability. The vertical lifting forces 
were more variable as additional 
mass was added to the subject. 

Added mass reduces the stability of the leg kinematics 
during steady state walking. These results indicate that the 
inertial state of the body plays a role in the stability of the 
leg kinematics and may be related to how the body is 
redirected and accelerated during walking. 

[56] Bruijn et al. Fatigue and/or boredom may have 
affected the walking patterns; we 
cannot exclude the possibility that 
the observed increase in precision 
reported was, at least in part, due 
to the increase in overlap in the 
samples.  

The dependence of the estimates of local and orbital 
dynamic stability upon the number of strides included in 
the analysis implies that when estimating stability at 
different walking speeds, or in different patient groups, a 
fixed number of strides should be analyzed. The increase in 
precision with increasing data series length indicates the 
need to use long data series. The gain in precision tends to 
be limited when using more than 150 strides. 

[57] Bruijn et al. The poincaré sections were not 
sampled at exactly the same time. 

The two measurement methods lead to comparable results 
and thus may be used interchangeably. Inertial sensors may 
be used as a viable and valid alternative for optoelectronic 
measurement systems. 

[34] Dingwell and Kang The additional "states" created 
were not aligned during the same 
"phase" of the gait cycle. It is 
possible this may have led to 
"averaging out" of differences at 
individual phases of the gait cycle.  

All subjects exhibited orbitally stable walking kinematics 
during both overground and treadmill walking; the 
variability inherent in human walking, which manifests 
itself as local instability, does not significantly adversely 
affect the orbital stability of walking. 

[58] Dingwell et al. _ All subjects exhibited orbitally stable walking kinematics, 
even though these same kinematics were previously shown 
to be locally unstable. Neuropathic patients do not gain 
improved orbital stability as a result of slowing down. 

[59] Dingwell et al. Subjects walked on a motorized 
treadmill; treadmill walking can 
reduce the natural variability and 
enhance the local and orbital 
stability. 

The decreased movement variability associated with the 
stroop task did not translate to greater dynamic stability. 
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Table II.5 – (Continued) 

Ref Article Limitations Conclusions 

[60] Gates & 
Dingwell 

Despite our attempt to make the tasks as 
similar as possible for the different 
subjects, significant differences in their 
responses remained, particularly for the 
MVC measures. As this task was 
inherently redundant, subjects could 
compensate for fatigue by using different 
muscles or strategies that might allow 
them to maintain their stability. Different 
subjects fatigued to different degrees. 

When performing multijoint redundant tasks, humans can 
compensate for muscle fatigue in ways that maintain task 
precision while increasing movement stability. 

[61] Gates & 
Dingwell 

It was not possible to perform maximum 
voluntary contractions during this test 
due to the continuous nature of the task. 
As such, we were not able to directly 
quantify decreased force-generating-
capacity of subjects’ muscles using this 
protocol. In this paper, we quantified a 
large number of parameters. It is likely 
that not all of these were parameters are 
independent. As such, some caution is 
likely warranted in interpreting the 
degree of statistical significance present 
in some cases. 

Subjects significantly altered their kinematic patterns in 
response to muscle fatigue. These changes were more 
pronounced when the task was performed at a higher 
height. Subjects also exhibited increased variability of their 
movements post-fatigue. Increases in variability and altered 
coordination did not lead to changes in local or orbital 
dynamic stability, however. Local stability of the shoulder 
was lower when movements were performed at a lower 
height. In contrast, orbital stability of the shoulder and 
elbow was lower for movements at the higher height. This 
research showed that people continuously adapt their 
strategies in multi-joint redundant tasks and maintain 
stability in doing so. 

[13] Granata et al. The data represent a pilot study with a 
small sample size; data were collected 
while walking on a treadmill; analyses 
were limited to kinematics of foot-strike 
with respect to the CoM. 

The fall-prone group demonstrated poorer stability of 
dynamic walking than the other groups. 

[62] Hidler and 
Rymer 

_ The involuntary rhythmic oscillatory movements 
commonly observed in spastic subjects are driven by 
peripheral stretch reflexes rather than by a central pattern 
generator, and the system under these conditions is acting 
as a stable limit cycle. 

[40] Hurmuzlu and 
Basdogan 

Fewer number joint measurements can be 
made compared to more advanced optical 
data acquisition system; it was assumed 
that the human body is composed of 
seven segments. 

Normal individuals possess stability measures that are 
substantially less than unity. 

[63] Hurmuzlu et al. _ With the measure of dynamic stability the gait of post-polio 
patients is seen to be significantly less stable than the gait 
of normal individuals. 

[64] Kang and 
Dingwell 

Since muscle activations measured using 
EMG do not represent muscle forces, it is 
not yet clear how these muscle activation 
dynamics result in the muscle forces that 
lead to the observed kinematics. 

Older adults exhibited greater inter-stride variability of 
muscle activation patterns during gait; multi-dimensional 
dynamics of muscle activations are reflected in that of 
kinematics. 
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Table II.5 – (Continued) 

Ref Article Limitations Conclusions 

[65] Kang and 
Dingwell 

This study only quantified responses to 
local perturbations. These results may or 
may not extend to global stability, where 
responses to large perturbations, like 
tripping or slipping would be assessed. 
The motorized treadmill may not 
properly reflect overground walking. 

Even active older adults who walk at the same preferred 
speeds as younger adults still exhibit significantly increased 
orbital dynamic stability, independent of walking speed. 

[66] Kang and 
Dingwell 

_ Superior segments exhibited less local instability but 
greater orbital instability compared to inferior segments. 
The superior segments are less sensitive to very small 
initial perturbations and thus its motion is initially less 
affected by these small perturbations, compared to inferior 
segments. Trunk motion dynamics appears to provide a 
more sensitive marker of the decline in gait function in 
healthy older adults compared to other body segments. 

[67] Marghitu and 
Hobatho 

_ The techniques of nonlinear dynamics used in this study 
provide an analytical tool that is easy to use in the clinical 
diagnosis of human gait abnormalities. 

[68] Marghitu et al. The 3-angle model for the animal body is 
a highly simplified model. 

The stability index and the measures used will help to 
clarify and localize the source of the instability and serve to 
document changes in severity of the condition. 

[69] McAndrew et 
al. 

- Subjects experienced decreased orbital and short- term 
local dynamic stability in a direction-specific manner when 
walking during the continuous pseudo-random 
perturbations applied in the present study 

[70] Schablowski 
and Gerner 

_ Two different mechanisms regarding dynamic stability of 
locomotion seem to exist. The increasing instability ad 
higher speeds may be one reason for the transition from 
walking to running. 

[71] Scott-Pandorf 
et al. 

True martian gravity cannot be created on 
the earth's surface; offloading the center 
of mass of an individual is not likely to 
be the same as true reduced gravity. 
Additionally, the body weight suspension 
system may supply some stabilizing 
forces. 

Adding weight to the walking system while walking in 
simulated Martian gravity had no effect on the sagittal 
dynamic stability of the walking pattern. 

[72] Scott-Pandorf 
et al. 

It is possible that the body weight support 
system may have provided additional 
stabilizing forces in the frontal plane. 

Portable life support system loads at the side of the torso 
and low on the body improve dynamic stability of the gait 
pattern in simulated martian gravity.  

[73] van Schooten et 
al. 

The time-normalization that was used 
was different between the walking 
speeds. A treadmill was used to control 
walking speed. 

Variability and FM of trunk kinematics cannot be used to 
assess balance control in gait. 

 



36 
 

II.4. DISCUSSION 

Although the problem of falls in the elderly is gaining increasing clinical and economical 
attention, assessment methods designed to identify fall-prone individuals remain 
controversial; biomechanical approaches for assessing gait stability seem to be able to 
quantify the dynamic stability of locomotion, but they have not been taken up as routine 
procedures in clinical settings [8]. In particular, orbital stability analysis via FM revealed 
effective identification of fall-related and age-related differences, but its use in the 
assessment of fall risk remains controversial [8]. A possible cause of this controversy 
could be the lack of a “standard” procedure for implementing this kind of analysis in 
experimental trials; different implementations could in fact lead to different results, and 
introduce difficulties in their interpretation. 

This paper provides a systematic review of the literature in the field of orbital stability 
analysis application in biomechanics, with particular focus to methodological aspects. 15 
articles out of 23 were of very high quality, proving the excellent level of the literature in 
the field.  

MaxFM resulted < 1 for all the analyzed motor tasks (human gait, sewing, dog trotting); 
hence, those tasks were demonstrated to be orbitally stable. These results showed that the 
analyzed periodic motor tasks reached a stable condition when equilibrium was attained. 
MaxFM resulting for young subjects walking at preferred or normal speed, showed in 
Figure 1, confirm this aspect. Gait of pathologic subjects like post-polio patients, fall-
prone elderly, or children with torsional anomalies of the lower limb joints have also been 
demonstrated to be orbitally stable, even if less stable than gait of healthy young subjects 
[13,63,67]. On the contrary, subjects with diabetic peripheral neuropathy did not 
experience any loss of orbital stability as a result of their sensory loss [58]. The increase 
in risk of falling of these patients may be due to their inability to develop and execute 
appropriate avoidance and/or response strategies when subjected to large-scale 
perturbations while walking [58].  Several studies showed how slowing down while 
walking does not improve orbital stability [13,58] but can eventually worsen it [70]. Only 
one study reported that older adults exhibited decreased instability by walking slower, in 
spite of increased variability [64]. These results suggest that the reduction of walking 
velocity, commonly observed in the elderly, may not be caused by the need to enhance 
orbital stability [13]. Comparison between orbital stability of gait in young and elderly 
subjects seems to confirm that old adults tend to be less stable while walking, partially 
explaining the tendency to fall. The incoherence in the results about walking with added 
mass does not allow drawing clear conclusions. 

In general, a lack of uniformity in the methodological approaches used by the authors was 
found; this could also explain the different results reported by different authors for 
basically the same task (Figure 1). Methodological quality of the studies included in this 
review was in general sufficient, but articles included in the review implemented orbital 
stability analysis in different manners. Three main factors suffered a general lack of 
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homogeneity between the analyzed studies: state space definition, Poincaré section 
location and number of cycles analyzed (Tables 3, 4).  

Whereas state space composition have been satisfactorily described by most of the 
manuscripts, the choice of the variables for the state space definition often lacked 
justification. All the state space defined in the articles seemed appropriate to adequately 
describe the analyzed dynamical systems; however, an "optimal" set of variables for the 
definition of state space for orbital stability analysis purposes have not emerged from the 
analyzed literature. A standardization of the variable set to be used for orbital stability 
analysis purposes would contribute to the interpretation of stability results and would 
allow to better compare stability results under different motor conditions.  

As stated in the introduction, the orbital stability of a deterministic limit cycle process 
should be theoretically the same, regardless of the position of Poincaré section along the 
trajectory. This is not verified when dealing with human cyclic tasks: human cyclic 
movements are not strictly periodic, and consequently the response to perturbations 
during different phases of the task is different [34]. This aspect was confirmed by 
experimental results: different choices for Poincaré section position led to different values 
of maxFM. All the authors seem to agree that positioning the section in different instants 
over the task cycle allows to obtain information about orbital stability of the different 
phases of the task, and that mean value of maxFM across the task cycle give global 
information about the stability of the task.  

One of the most critical issues regarding orbital stability analysis of human locomotion 
was found to be the number of task cycles necessary to obtain reliable orbital stability 
results. One article [56] stated that the "true" value of maxFM for human walking could 
be estimated within 300 strides; most of the articles did not report the number of cycles 
analyzed, or performed the analysis on a number of task cycles inferior to 300 (Table 4). 
When dealing with human locomotion (e.g. gait) in a movement analysis laboratory, it is 
possible to reach a similar number of cycles only by treadmill walking; however, whereas 
the use of motorized treadmill is generally justified, treadmill walking differs 
significantly from overground walking [80] and it is also known to enhance orbital 
stability [58]. Hence, conclusions obtained from treadmill walking, whereas they can be 
significant and useful in some context, cannot directly be transferred to overground 
walking. 

One of the main goals of research about stability of motor tasks is to understand the 
mechanisms that underlie motion, particularly in case of falls. Studies included in this 
review showed the state-of-art in the application of orbital stability analysis via FM 
calculations in biomechanics.  

In summary, the main explanation to the incoherence between some of the results and to 
the differences in the implementation of the method is believed to be the absence of a 
generalized methodological procedure to perform orbital stability analysis on 
biomechanical time series data.  This kind of analysis could have a major impact in the 
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prevention of falls. Future research should look for a standardized methodological 
procedure to implement this kind of analysis, identifying the best experimental setup and 
analytical procedure to obtain maxFM. In order to obtain more insights on the magnitude 
of maxFM during human gait, analytical orbital stability analysis of the equations of a full 
human rigid body model can also represent a promising approach. Another fundamental 
issue will be the evaluation of the capability of maxFM to predict falls in the elderly. 
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III. INFLUENCE OF INPUT PARAMETERS ON 
DYNAMIC ORBITAL STABILITY OF 

WALKING: IN-SILICO AND EXPERIMENTAL 
EVALUATION2 

III.1. INTRODUCTION 

The analysis of modelled physiological signals of gait (accelerations, joint angles) could 
contribute to the assessment of the influence of implementation parameters on FM, in 
relation to experimental results also. Given the similarity of the signals, influences of 
different implementations on the stability results are likely to be analogous between 
model and experimental data analysis. In order to compare model and experimental 
results, stability in both conditions must be assured. Signals extracted from a stable 
walking model are hence required. 

Some authors performed simulation studies on orbital stability of 1- or 2-link walking 
models related to fall risk [81–83]. However, these models are rather simple and simulate 
very peculiar walking condition. Simplicity is both the strength and the limitation of these 
models: their walking conditions can be easily manipulated, but they generate signals that 
are far from physiologic conditions of human walking. Stability analysis on a more 
complex model can give better insight on the orbital stability conditions of human 
walking, allowing the comparison between model and experimental results. In order to 
allow adequate comparison, stability condition must be assured for the walking model. 
The required conditions for the model are hence a continuous walk and the absence of 
falls or stumbles, in order for the model to produce kinematics as similar as possible to 
stable human gait. 

The aim of the present study was to analyse, from an applicative point of view, the 
influence on the final results of orbital stability analysis applied to walking of: 1) number 
of analyzed cycles; 2) selection of the variables for the reconstruction of the state space; 
3) experimental measurement noise on a 2-dimensional 5-link walking model [84], 
providing walking patterns of known stability. Results of in-silico analysis were 
compared to those obtained experimentally on 10 subjects performing long overground 
walks. 

                                                
2 Under review. Riva F, Bisi MC, Stagni R. Influence of Input Parameters on Dynamic Orbital Stability of 
Walking: In-silico and Experimental Evaluation. Submitted to Journal of Biomechanical Engineering. 
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III.2. MATERIALS AND METHODS 

III.2.1. Overview 

In-silico orbital stability analysis of a 5-link stable walking model [84] was performed. 
The model showed continuous walking, free of falls or stumbles, for all the simulation 
period (300 strides). This was also assured by a check on step variability, which was 
minimal following visual inspection of the phase portraits. The analysis was performed 
for increasing number of cycles (from 10 to 300), based on differently composed state 
spaces (including different joint angles and/or accelerations). Simulated experimental 
error and noise were added to the segmental kinematics of the model and the sensitivity 
of orbital stability analysis was evaluated. Orbital stability analysis was also performed 
on data collected experimentally on 10 subjects; given the impossibility to use a 
stereophotogrammetry system on a long outdoor road, only acceleration data were 
acquired experimentally. Orbital stability was calculated using an established technique 
[63]. 

III.2.2. In-silico data 

The 2-dimensional, five-link biped walking model analyzed [84] consisted of a trunk, two 
thigh and two shank segments (Figure III.1). The model orientation was described by 
supporting and swinging knee angles, supporting and swinging hip angles and upper body 
angle (φk,sw, φk,st, φh,st, φh,sw, φub, all referred to gravity direction). 

 

Figure III.1 - Schematic representation of the 5-link 2-dimensional model (Solomon et al., 2010). 
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In addition to the mentioned joint angles, the model included also the corresponding joint 
angular velocities. The model was adapted to perform 315 consecutive strides. The first 
15 strides of the simulation were discarded in order to assure stable walking condition. 
The simulation was performed using a MATLAB’s (Mathworks, Natwick, NA) fourth- 
and fifth- order variable time-step Runge-Kutta solver (ode45, with relative error 
tolerance set to 10-12). Accelerations of the trunk segment at the level of the fifth lumbar 
vertebra (L5) were obtained as the second derivative of the time history of the position of 
a point located at 1/8 of the length of the trunk segment. 

Segmental kinematics data obtained from the model were processed to simulate 
experimental data from a stereophotogrammetry system (joint angles) and a single inertial 
sensor located on the trunk (accelerations). Simulated experimental noise and errors were 
superimposed to segmental kinematics signals obtained from the model. 

Clusters of 4 markers were virtually applied to all the segments of the model (trunk, 
thighs and shanks, for a total of 20 markers) and simulated instrumental normally 
distributed noise with a standard deviation of 0.2 mm was added to the marker trajectories 
(or coordinate time histories) in 2-D space. Technical reference frames were calculated 
from the cluster positions, and the position of the segment extremities relative to these 
frames was measured. A mislocation error of anatomical landmark positions (Table III.1) 
was also added to the estimate of the position of segment extremities [85]. Joint angles 
were then calculated from the relative orientation of the anatomical reference frames [86].  

Instrumentation noise (white noise with an SNR of 10 dB and alignment errors with a 
normal distribution and a standard deviation of 0.1 degrees), compatible with the use of 
commercial accelerometers, was added to the acceleration signals of the trunk segment at 
the level of L5. Analyses on lower amounts of noise were also performed, which led to 
comparable results; hence, we chose to show results in the most potentially critical 
condition. 

Table III.1 – Precision of the palpable anatomical landmark position (in millimeters) in the relevant mean anatomical 
frame obtained by Della Croce et al., 1999. For ME, LE and MM, LM the mean value between the two was used in the 

analysis. 

Anatomical landmark x y 

   

Greater trochanter (GT) 12.2 11.1 

Medial Epicondyle (ME) 5.1 5.0 

Lateral Epicondyle (LE) 3.9 4.9 

Medial Malleolus (MM) 2.2 2.6 

Lateral Malleolus (LM) 2.6 2.4 
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III.2.3. Experimental data 

10 healthy participants [28 ± 3 years, 174 ± 11 cm, 67 ± 13 kg] were included in the 
study. Subjects gave informed consent before participating. Two synchronized tri-axial 
inertial sensors (Opal, APDM, Portland, OR, USA) were placed on the participants at the 
level of L5 and of the right shank. The range of the accelerometers was ±2g and sample 
rate was 128 Hz. The participants were instructed to walk straight at self-selected speed 
on a 250 m dead-end long road. 

III.2.4. Data processing 

For both model and experimental data, stride cycles were considered as the time between 
consecutive right heel strikes and were resampled to be 101 samples long, because 
Floquet theory assumes that the system is strictly periodic. For experimental data, right 
heel strike instants were estimated from the angular velocity of the lower limb with a 
method based on wavelet analysis [87]. Angular velocity of the lower limb was measured 
with the inertial sensor placed on the right shank. Experimental data were analyzed 
without filtering, in order to avoid the complications associated with the application of 
linear filtering to nonlinear signals [88]. Orbital stability analysis on model data was 
performed on six different state spaces (Table III.2). The analysis was conducted for both 
noise-free and noisy condition. The same analysis was conducted on experimental data. 
Mean values of maxFM across the gait cycle were calculated on increasing number of 
strides (from 10 to 300 for model data, from 10 to 160 for experimental data).  

III.3. RESULTS 

The presence of noise resulted to be critical for state spaces composed by joint angles 
(WMhk, WMk and WMh). Analysis on WMhk in noise-free conditions led to mean 
values of maxFM across the gait cycle that decay with the increase of the analyzed stride 
cycles, until reaching the value 0.3 (for about 250 stride cycles). Standard deviation 
decreased with the increase of stride cycles. WMk and WMh led to values of 0.34, with 
low standard deviation (about 0.07), independent of the number of cycles upon which the 
analysis was conducted (Figure III.2); values of mean maxFM remained stable from 10 to 
300 cycles. State spaces composed by noise-affected signals showed a different behavior. 
For WMhk, maxFM values increased until reaching the value of about 0.7, for 100 stride 
cycles. For WMk and WMh, mean maxFM value slowly decayed towards zero instead of 
stabilizing around a fixed value (Figure III.3). 
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Table III.2- Description of the state spaces. ϕk,st and ϕk,sw are flexion/extension knee angles for supporting and 
swinging limb; similarly, ϕh,st and ϕh,sw are flexion/extension hip angles. ϕt is flexion/extension trunk angle. aAP and aV 
are accelerations of the trunk at the level of L5 in anterior-posterior and vertical directions. For delay-embedded state 

spaces, τ is time delay and dE is the embedding dimension (τ = 10, dE = 5). 

Acronym Description Composition 

   WMk Swinging+supporting 
knee flexion/extension 
joint angles (model) 

𝑊𝑀𝑘 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ∈ ℜ! 

 

WMh Swinging+supporting 
hip flexion/extension 
joint angles (model) 

𝑊𝑀ℎ 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ∈ ℜ! 

WMhk Knees, hips and trunk 
flexion/extension joint 
angles (model) 

𝑊𝑀ℎ𝑘 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙! 𝑡 ∈ ℜ! 

 
WMaAP 5-dimensional delay 

embedding of AP 
accelerations of L5 
(model) 

𝑊𝑀𝑎𝐴𝑃 𝑡 = 𝑎!" 𝑡 , 𝑎!" 𝑡 + 𝜏 ,… , 𝑎!" 𝑡 + 𝑑! − 1 𝜏 ∈ ℜ! 

 

 WMaV 5-dimensional delay 
embedding of V 
accelerations of l5 
(model) 

𝑊𝑀𝑎𝑉 𝑡 = 𝑎! 𝑡 , 𝑎! 𝑡 + 𝜏 ,… , 𝑎! 𝑡 + 𝑑! − 1 𝜏 ∈ ℜ! 

 

 

 

WMa Accelerations in the 
AP and V direction of 
L5 (model) 

𝑊𝑀𝑎 𝑡 = 𝑎!" 𝑡 , 𝑎! 𝑡 ∈ ℜ! 

 
EXPa Accelerations in the 

AP and V direction of 
L5 (experimental) 

𝐸𝑋𝑃𝑎 𝑡 = 𝑎!" 𝑡 , 𝑎! 𝑡 ∈ ℜ! 

 
 



44 
 

 

Figure III.2 - Mean maxFM values across the stride cycle calculated on state spaces WMhk, WMk and WMh (clean 
signals) for increasing number of stride cycles. 

 

Figure III.3 - Mean maxFM values across the stride cycle calculated on state spaces WMhk, WMk and WMh (noisy 
signals) for increasing number of stride cycles. 
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MaxFM calculated on noise-free acceleration state spaces, both 2 and 5 dimensional 
(WMa, WMaAP and WMaV), behaved similarly: for less than 30 cycles, values of 
maxFM gradually decreased, starting from values near (or above) one. Starting from 
about 30 cycles, values of maxFM stabilized around the value previously found for joint 
angle state spaces (0.34 – 0.4) with a standard deviation of about 0.09 (Figure III.4). 
Results coming from analysis of noisy accelerations signals were very similar to those 
obtained from noise-free signals (Figure III.5). 

 

 

Figure III.4 - Mean maxFM values across the stride cycle calculated on state spaces WMa, WmaAP and WMaV (clean 
signals) for increasing number of stride cycles. 
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Figure III.5 - Mean maxFM values across the stride cycle calculated on state spaces WMa, WmaAP and WMaV (noisy 
signals) for increasing number of stride cycles. 

 

MaxFM calculated on experimental acceleration state space (EXPa) showed decreasing 
value for increasing number of cycles analyzed, reaching values close to 0.4 from 80 
cycles on, with a standard deviation of about 0.1 (Figure III.6). 
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Figure III.6 - Mean maxFM values across the stride cycle calculated on state space EXPa for increasing number of 
stride cycles. 

 

III.4. DISCUSSION 

The possibility to have a reliable locomotor stability index is of fundamental importance 
in early identification and treatment of older adults with high predisposition to fall, and 
possibly in real-time gait instability detection also. However, still there is no unique 
definition of locomotor stability in literature. 

Orbital stability analysis via maxFM seems promising for the analysis of cyclic locomotor 
tasks. When dealing with biomechanical time series, the equations of motion are 
obviously unknown, thus excluding the possibility to calculate maxFM in an analytical or 
semi-analytical way. Numerical calculation of maxFM from experimental time series is 
hence required, but still it is not clear how different implementations of this analysis can 
influence the stability measure. 

Beyond the mathematical implications, it is however important to highlight that applying 
this analysis to human gait implies several assumptions. Human gait is an inherently 
stochastic system, while Floquet theory applies to deterministic limit cycle systems. 
Walking trajectories are continuously being "re-perturbed" by stochastic perturbations, 
which often are internal to the system. In order to overcome this, the average trajectory is 
considered to be the limit cycle, but given the likely asymmetrical nature of the basin of 
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attraction of human walking, this is obviously an assumption. However, orbital stability 
analysis was found to detect gait instability [13,69], hence proving usefulness despite the 
many theoretical assumptions that must be made. 

In this explorative study, orbital stability analysis was applied to a 5-link stable walking 
model. The walking model was used in order to produce signals (joint angles and trunk 
accelerations) as similar as possible to real human gait signals. Stability was assumed, 
since the model didn’t show any fall or stumble during the simulation period. Different 
implementations of numerical orbital stability analysis were then performed on the 
biomechanical signals obtained from the model. The aim was to better understand the 
influence of number of analyzed cycles, state space composition and experimental noise 
on the stability outputs. Given the similarity between model signals and real human gait 
data, relationships between implementations and stability results are likely to be 
transferrable to experimental analysis. As a comparison, experimental data of trunk 
accelerations during gait have also been analyzed. 

The magnitude of maxFM obtained in this study was lower than values obtained in 
simulation studies present in literature [81–83]. Whereas those studies analyzed the 
behavior of 1- or 2-link walking models in presence of external/internal perturbations, in 
our study unperturbed walking of a 5-link was analyzed. These two aspects (the absence 
of perturbations and the higher complexity of the model) are likely to be the major cause 
of differences in the results. However, as also explicitly stated by Roos and Dingwell 
[82], the main aim of the cited articles was to show the general relationship between fall 
risk and stability measures, and not to give exact numerical values. 

According to the results of the present study, the number of cycles included in the 
analysis played a fundamental role when trying to obtain a reliable orbital stability 
measure from differently composed state spaces. This influence is also correct from a 
theoretical point of view: for example the number of analyzed cycles cannot be lower 
than the dimension of the state space otherwise the set of equations would be 
underdetermined. A possible explanation might be that analyzing more data leads to a 
better estimate of the true attractor [56]. Orbital stability analysis performed on noise-free 
signals from the stable walking model resulted in maxFM values that tended to the value 
of about 0.34 for state spaces composed by joint angles and L5 accelerations. The 
coherence between these results is encouraging, as it seems to lead to indicate that a 
repeatable value of the maxFM can be obtained analyzing different state spaces. The main 
difference between these results was the dependence from the number of cycles 
considered: a limited number of cycles (about 10) was sufficient to obtain the value 0.34 
with WMh and WMk, but at least 30 cycles were necessary to obtain the same result with 
WMa, WmaAP and WMaV. Using these state spaces for less than 30 cycles, maxFM 
values resulted to be high (close to or even above 1) and inconsistent, and hence are not 
believed to be reliable. The number of stride cycles needed to reach the value 0.34 was 
even higher when analyzing WMhk; it is possible that including a higher number of 
variables in the joint angle state space introduced redundancy, negatively influencing the 
results, instead of leading to a better characterization of the system. Whereas a 2-
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dimensional representation of a complex system may seem insufficient in order to provide 
a proper characterization, it may serve the applicative purpose of obtaining a repeatable 
index of stability. The relationship with the stability index obtained with this 
implementation and the actual fall risk is, however, still to be determined. 

Results coming from the analysis of noisy signals showed again a strong influence of 
number of cycles and state space composition on the maxFM, with different results 
between acceleration and kinematic data. Analysis of noisy accelerations of L5 led 
basically to the same results obtained for noise-free signals, for all the state spaces: 
simulated experimental noise on inertial sensor data did not influence maxFM calculation. 
This can lead to the conclusion that orbital stability analysis performed on state spaces 
composed by accelerations coming from inertial sensors is robust to noise, and that a high 
dimensional (5) reconstruction of the state space may not be necessary, as a lower 
dimension (2) state space led basically to the same results for the maxFM. WMk and 
WMh showed a very different behavior: maxFM tended to gradually decrease towards 
zero for increasing number of cycles, suggesting that stereophotogrammetric 
experimental noise and misplacement errors could dramatically influence maxFM 
calculation, significantly affecting their reliability. Analysis of WMhk led to the same 
conclusion, even though maxFM showed a different trend: maxFM values seemed to 
settle around the value 0.7 in about 100 strides. This value indicates very poor stability 
and is not coherent with results obtained from the analysis of clean signals. This suggests 
that the influence of noise may have had a negative impact on this result. 

A possible explanation for this could be that the peculiar simulated 
stereophotogrammetric noise characteristics may contribute in hiding the information 
relative to the distance between the orbits, due to close proximity of the orbits to the limit 
cycle. This might not happen in an experimental trial, as the orbits defined by joint angles 
are likely to be less repeatable than those obtained from the model; further experimental 
analysis on state spaces composed by joint angles obtained from different data acquisition 
techniques (e.g. inertial sensors) are needed to clarify this aspect. These results are in 
agreement with Bruijn et al. [57], who found a correlation of 0.66 (defined “low” by the 
authors) between maxFM obtained from two measurement systems (accelerometers and 
optoelectronics). 

Experimental trial results on the accelerations-based state space showed a similar trend 
with respect to the ones obtained from the analysis of the same variables derived from the 
model; nevertheless, the value of maxFM obtained was slightly higher, and so the 
standard deviation. A limitation of this experimental session was the relatively short 
length of the walks (160 strides) with respect to the model data; given the high handiness 
and portability of inertial sensor, however, future studies can analyze orbital stability of 
very long overground walks. On the other hand, 160 strides seem to be sufficient to reach 
a steady value for the maxFM. 

Based on these results, a reliable implementation of orbital stability analysis could be 
obtained from an acceleration-based state space (reconstructed with delay-embedding or 
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including in the state space accelerations in different directions) and a number of stride 
cycles not inferior to 30. 

In conclusion, the exploration of the influence of experimental input parameters in orbital 
stability analysis led to interesting results. One of the main issues relative to this 
technique is the necessity to properly describe the dynamical system, in order to obtain a 
reliable orbital stability index; hence, the definition of the state space is of crucial 
importance for the outputs. The coherence between the results obtained with differently 
composed state spaces showed that the same stability output can be obtained with 
different implementations and experimental setup, despite the fact that different numbers 
of gait cycles are necessary. On the other hand, the number of gait cycles necessary to 
obtain this result is different among these setups; in particular, analysis conducted on 
accelerometer data required more gait cycles with respect to analysis conducted on joint 
angles obtained from stereophotogrammetric data.  

Experimental noise and operator errors could represent a critical issue when using orbital 
stability analysis based on joint angles obtained from stereophotogrammetric systems. 
Further studies are needed to determine if the stability measures obtained from analysis 
on these state spaces are really capable to discriminate between known stability 
conditions. Experimental noise on accelerometer data showed no particular influence on 
the stability results. 

Experimental results were also coherent with the model results supporting the validity of 
the stability outcomes. This result confirms the possibility to obtain reliable orbital 
stability measures with a single inertial sensor and could lead to advantages in the 
development of a simple and fast data acquisition protocol, confirming what was found in 
literature for treadmill walking [57]. 

III.5. ACKNOWLEDGMENTS 

The authors gratefully thank Dr. Martijn Wisse for his contribution in the implementation 
of the model. 

 



51 
 

IV. RELIABILITY OF STABILITY AND 
VARIABILITY MEASURES3 

IV.1. INTRODUCTION 

In order to perform a proper evaluation of gait variability and stability, standardization of 
implementation parameters is necessary, as outputs can be influenced by implementation 
differences (e.g. number of strides). Moreover, the consistency of results in the same 
experimental conditions between the measures must be ensured. The aim of this study is 
to assess the minimum number of required strides and the test-retest reliability of 11 
temporal variability/stability measures proposed in the literature. Analysis was performed 
on trunk accelerations acquired on a sample of 10 healthy young participants performing 
an overground walking task. In general, the overall number of strides necessary to obtain 
a reliable measure was larger than those conventionally used. For some measures (lLE 
and RQA max/diverg in the vertical direction) 150 strides were not sufficient to obtain a 
steady value. MSE and RQA showed excellent reliability.  

IV.2. METHODS 

Ten healthy participants [28 ± 3 years, 174 ± 11 cm, 67 ± 13 kg] walked straight at self-
selected natural speed on a 250 m long dead-end road (about 180 strides), wearing two 
synchronized tri-axial inertial sensors (Opal, APDM, Portland, OR, USA), one on the 
trunk at the level of the fifth lumbar vertebra and one on the right ankle. The range of the 
accelerometers was ±6g and sampling rate 128 Hz. Right foot strikes were obtained from 
the angular velocity measured by the sensor on the ankle with wavelet analysis based 
method[87]. The first and the last ten strides (time intervals between two consecutive 
right heel strikes) were excluded from the analysis, in order to exclude gait initiation and 
termination phases. The Review Board Committee of the authors’ institution approved 
this study, and informed consent was obtained from the participants. 

The following variability measures were applied to stride time: 

i. SD [89]; 
ii. CV [89];  

iii. IV [21]; 
iv. NI [21]; 
v. PSD1, PSD2 [22]. 

                                                
3 Under review. Riva F, Bisi MC, Stagni R. Gait variability and stability measures: minimum number of 
strides and test-retest reliability. Submitted to Gait & Posture. 
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The following stability measures were calculated on trunk accelerations in vertical (V) 
medio-lateral (ML) and anterior-posterior (AP) directions. 

vi. maxFM [34,49]. Four different state spaces were constructed:  one 3-dimensional 
state space composed by acceleration signals in the V, ML and AP direction and 
three (one per direction) 5-dimensional state spaces composed by delay-
embedding of each acceleration component (delay = 10). 

vii. sLE, lLE [34]. The same state spaces constructed for maxFM were analyzed. 
viii. RQA [47]. Same state space construction as for maxFM and LE was used. 

Recurrence rate (rr), determinism (det), averaged diagonal line length (avg), 
maximum diagonal line length (max) and divergence (diverg) were calculated 
from the recurrence plot (radius = 40%). 

ix. MSE [45]. Sample entropy (consecutive data points m = 2, distance r = 0.2) was 
calculated on six consecutively more coarse-grained (scale factor τ = 1, …, 6) 
time series. 

x. HR [42]. HR was not calculated stride by stride, but decomposing the whole 
signal into its harmonics. 

xi. IH [43]. 

For the quantification of the minimum number of strides, measures were calculated on 
windows of decreasing length (from 150 to 10 strides, 1 stride resolution). Percent 
interquartile/median ratio (imr) was calculated for all the windows, starting from the 150 
strides window (which gave the lowest ratio) and proceeding backwards. Thresholds for 
the imr were fixed at 10%, 20%, 30%, 40% and 50%. The required number of strides was 
defined as the smallest one at which the ratio remained below the lowest possible 
threshold. The minimum number of strides was first calculated per index and per subject, 
then for each index the largest number of strides over subjects was selected. 

The assessment of test-retest reliability was performed calculating variability/stability 
measures on a window sliding (with 1 stride steps) along the trial. The sliding window 
was sized at 85 strides because this number of strides comprised the minimum number of 
strides for most measures (51 out of 57). lLE (tot, V, ML, AP) and RQA V (max, diverg) 
didn’t satisfy this criterion. Interquartile and median values of the measures over the 
windows were calculated, and the percent imr for each measure was calculated. Measures 
were grouped in five reliability categories, ranging from very poor (imr > 40%) to 
excellent (imr < 10%). The maximum inter-subject imr was considered for grouping. 

IV.3. RESULTS 

Measures reached steady values for different number of strides, depending on the 
threshold. For MSE V (τ = 1, …, 4) and RQA (AP rr, det, avg, ML rr and V rr, det, avg), 
10 strides were sufficient to reach a 10% threshold. MSE (AP, ML, V τ = 5,6), RQA (ML 
det, avg) and sLE V reached a 20% threshold within 10 strides. Other measures showed 
lower stride number requirement with the increasing of the threshold. lLE required a high 
number of strides (> 110) even for the 50% threshold. RQA (V max, diverg), never 
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reached steady values in the analyzed range (150 strides). Detailed results are shown in 
Table IV.1. 

 

Table IV.1 - Number of required strides for each measure at each threshold. 

 
Thresholds 

Variability/stability 
measures 

10% 20% 30% 40% 50% 
SD 125 59 20 15 10 
CV 127 59 49 15 10 
NI 143 97 89 78 70 
IV 143 91 44 35 29 

PSD1 127 52 16 15 10 
PSD2 120 106 74 25 19 

MSE AP τ = 1 19 10 10 10 10 
MSE AP τ = 2 19 10 10 10 10 
MSE AP τ = 3 18 10 10 10 10 
MSE AP τ = 4 15 10 10 10 10 
MSE AP τ = 5 35 10 10 10 10 
MSE AP τ = 6 17 10 10 10 10 
MSE ML τ = 1 10 10 10 10 10 
MSE ML τ = 2 30 10 10 10 10 
MSE ML τ = 3 63 10 10 10 10 
MSE ML τ = 4 31 10 10 10 10 
MSE ML τ = 5 10 10 10 10 10 
MSE ML τ = 6 32 10 10 10 10 

MSE V τ = 1 10 10 10 10 10 
MSE V τ = 2 10 10 10 10 10 
MSE V τ = 3 10 10 10 10 10 
MSE V τ = 4 10 10 10 10 10 
MSE V τ = 5 12 10 10 10 10 
MSE V τ = 6 15 10 10 10 10 
RQA AP (rr) 10 10 10 10 10 

RQA AP (det) 10 10 10 10 10 
RQA AP (avg) 10 10 10 10 10 

RQA AP (max) 121 75 74 37 36 
RQA AP (diverg) 107 95 74 74 74 

RQA ML (rr) 10 10 10 10 10 
RQA ML (det) 78 10 10 10 10 
RQA ML (avg) 55 10 10 10 10 

RQA ML (max) 136 129 73 29 29 
RQA ML (diverg) 136 135 79 29 29 

RQA V (rr) 10 10 10 10 10 
RQA V (det) 10 10 10 10 10 
RQA V (avg) 10 10 10 10 10 

RQA V (max) 150 150 150 150 150 
RQA V (diverg) 150 150 150 150 150 

HR AP 141 26 15 10 10 
HR ML 137 30 10 10 10 

HR V 66 29 10 10 10 
IH AP 143 141 137 75 10 
IH ML 145 141 49 10 10 

IH V 140 127 120 18 11 
maxFM tot 137 135 23 10 10 
maxFM AP 138 137 132 10 10 
maxFM ML 137 131 14 10 10 

maxFM V 137 51 20 10 10 
sLE tot 105 70 10 10 10 
sLE AP 90 17 10 10 10 
sLE ML 72 10 10 10 10 

sLE V 63 10 10 10 10 
lLE tot 139 132 130 128 124 
lLE AP 141 135 132 131 129 
lLE ML 146 125 119 114 110 

lLE V 138 123 121 116 113 
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Table IV.2 - Values of the maximum inter-subjects imr with corresponding reliability grouping. Measures have been 
grouped based on the maximum inter-subject percentage imr. Reliability has been labeled as Very poor (imr > 40%), 
Poor (imr = 30-40%), Average (imr = 20-30%), Good (imr = 10-20%), Excellent (imr < 10%). As an indication of 

reference values for the measures, median values of inter-subjects medians and interquartile ranges for 
variability/stability measures are also shown. 

 

Variability/stability 
measures 

Median inter-
subject value 

of the medians 

Median inter-
subject 

interquartile 
value 

Maximum 
inter-subject 

imr 
Ex

ce
lle

nt
 

MSE AP τ = 1 0.38 0.01 0.07 
MSE AP τ = 2 0.56 0.02 0.07 
MSE AP τ = 3 0.65 0.02 0.06 
MSE AP τ = 4 0.76 0.02 0.07 
MSE AP τ = 5 0.81 0.02 0.08 
MSE AP τ = 6 0.85 0.02 0.07 
MSE ML τ = 1 0.59 0.01 0.08 
MSE ML τ = 2 0.86 0.02 0.08 
MSE ML τ = 3 1.09 0.03 0.07 
MSE ML τ = 4 1.31 0.03 0.06 
MSE ML τ = 5 1.46 0.04 0.06 
MSE ML τ = 6 1.55 0.04 0.06 
MSE V τ = 1 0.46 0.01 0.05 
MSE V τ = 2 0.63 0.02 0.05 
MSE V τ = 3 0.74 0.02 0.07 
MSE V τ = 4 0.84 0.03 0.09 
MSE V τ = 5 0.92 0.03 0.07 
MSE V τ = 6 1.00 0.03 0.09 
RQA AP (rr) 15.65 0.06 0.07 

RQA AP (det) 69.3 1.1 0.05 
RQA AP (avg) 8.94 0.12 0.07 
RQA ML (rr) 8.50 0.12 0.03 

RQA ML (det) 49.7 0.8 0.09 
RQA ML (avg) 6.67 0.12 0.07 

RQA V (rr) 13.76 0.22 0.06 
RQA V (det) 81.9 0.5 0.03 
RQA V (avg) 13.58 0.28 0.08 

G
oo

d 

HR AP 3.70 0.14 0.15 
HR ML 2.21 0.11 0.13 
HR V 4.68 0.24 0.16 
PSD1 0.021 0.001 0.14 

A
ve

ra
ge

 sLE AP 0.67 0.14 0.26 
sLE ML 0.81 0.14 0.20 
sLE V 0.89 0.19 0.28 

SD 0.02 0.002 0.23 
CV 1.94 0.14 0.23 

Po
or

 

IH ML 0.15 0.02 0.37 
PSD2 0.021 0.002 0.34 

sLE tot 0.44 0.10 0.39 
NI 0.52 0.10 0.30 
IV 0.32 0.06 0.37 

V
er

y 
po

or
 

maxFM tot 0.36 0.09 0.57 
maxFM AP 0.43 0.08 0.45 
maxFM ML 0.39 0.06 0.44 
maxFM V 0.48 0.08 0.44 

IH AP 0.04 0.01 0.50 
IH V 0.022 0.003 0.55 

RQA AP (max) 399 51 0.66 
RQA AP (diverg) 0.0025 0.0003 1.64 
RQA ML (max) 281 39 0.88 

RQA ML (diverg) 0.0036 0.0004 0.69 
RQA V (max) 1986 481 0.96 

RQA V (diverg) 0.0005 0.0002 1.76 
lLE tot 0.035 0.007 0.89 
lLE AP 0.035 0.008 1.12 
lLE ML 0.014 0.004 0.52 
lLE V 0.041 0.007 0.57 
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MSE and RQA (rr, det, avg) showed excellent reliability. HR and sLE demonstrated 
average to good reliability, with the exception of sLE (tot) that performed poorly. 
Temporal variability measures (SD, CV, IV, NI and PSD) showed from poor to good 
reliability. IH showed poor reliability, particularly in AP and V directions. lLE, maxFM 
and RQA (max, diverg) showed very poor reliability. Reliability results are shown in 
Table IV.2. Median values of inter-subjects medians and interquartile ranges for 
variability/stability measures, together with maximum imr values, are also shown. These 
values are meant to give an indication of reference values for the measures. 

IV.4. DISCUSSION 

The aim of this study was to investigate the minimum number of strides required and the 
test-retest reliability of a number of gait variability/stability measures. In general, 
measures showed comparable performances between the reliability indication and the 
threshold reached for a corresponding number of strides (85). 

MSE (ML τ = 1, 5 and V τ = 1, …, 4) and RQA (AP rr, det, avg, ML rr and V rr, det, avg) 
reached a steady value for a 10% threshold within 10 strides. MSE and RQA (rr, det, avg) 
also showed excellent reliability. sLE (ML, V) showed that the 10% threshold could be 
reached for 85 strides, but inter-subject imr was slightly higher (0.20 and 0.28 
respectively); this is likely due to the influence of the inherent variability of the trial. SD 
and CV showed average reliability and a quite high number of strides (respectively 125 
and 127) to undergo the 10% threshold. This confirms findings from other studies stating 
that a few number of strides may not be sufficient to obtain reliable measures. While 
other studies in the past tested the reliability of variability gait parameters, the 
instrumentation used was different, making it hard to directly extrapolate results from 
those studies to other instruments. A high number of required strides was found for lLE 
and RQA (V max, diverg). The former measure required at least 110 strides to reach the 
50% threshold, while the latter never reached steady values in the analyzed range. IH, 
maxFM, sLE and RQA (max, diverg) showed poor or very poor reliability.  

In conclusion, of the 11 variability/stability measures that were tested, only MSE and 
RQA (rr, det, avg) showed excellent reliability. In general, the number of strides 
necessary to obtain a reliable measure was larger than those conventionally used.  
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V. ESTIMATING FALL RISK WITH INERTIAL 
SENSORS USING GAIT STABILITY 

MEASURES THAT DO NOT REQUIRE STEP 
DETECTION4 

V.1. INTRODUCTION 

Many gait stability measures proposed in the literature are based on the identification of 
gait cycles [17,22,34,90,91]. Several methods for step detection have been presented in 
the literature [87,92,93], based on different techniques and sensor positioning. Errors in 
step detection can, however, critically affect stability outcomes, making step detection a 
possible intrinsic source of error for stability calculations; examples are present in the 
literature of inability in the detection of gait events due to irregular acceleration patterns 
[94] and incorrect identification of acceleration peaks in correspondence of foot strike 
[95]. Other temporal parameters detection systems, such as foot switches or pressure 
sensors attached to the sole, suffer from difficulties in sensor attachment when assessing 
subjects with abnormal gait; even when correctly done, several problems limit their 
applicability [87]. Step detection can hence be invalidated by unexpected gait behaviour 
resulting in atypical signals, which can reflect possible informative gait characteristics or 
anomalies in the execution of the motor task, such as a shuffling gait. Assuming that such 
anomalies are more common among people with a high fall risk, such errors may even 
cause a bias when calculating gait stability measures. To overcome this possible source of 
error, nonlinear analysis techniques may offer a powerful tool. In particular, some of 
these stability related measures do not depend on step detection and can provide insights 
into the mechanisms underlying dynamic stability of walking. In this study the HR 
[42,44], the IH [43], MSE [45], and RQA measures [48] of trunk accelerations during gait 
were calculated [42–45,47,48]. The relationship between these measures and fall risk has 
not been analyzed and reported yet. 

The aim of the present study was to investigate the association between fall history and 
the aforementioned measures during treadmill walking in a large sample of older subjects. 
The data used have been described earlier in a paper on local dynamic stability and stride 
variability of gait [39]. Both of these measures were shown to be associated with fall risk, 
but do rely on step detection. 

                                                
4 In press. SIAMOC methodological award 2012. Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën 
JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. 
Gait & Posture, in press. 
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V.2. MATERIALS AND METHODS 

V.2.1. Participants 

A total of 131 healthy subjects (age 62.4 ± 6.1 years; height 171 ± 8 cm; body mass 74 ± 
10 kg) aged between 50 and 75 participated in the study, after giving informed written 
consent. Subjects were recruited and tested at a fair aimed at people of 50 years and older. 
Subjects were included if they were aged between 50 and 75 years and able to walk on a 
treadmill without aids. Additional details have been reported by Toebes et al. [39]. Three 
subjects from the original data set were excluded from the analysis due to technical 
problems during data acquisition. 

V.2.2. Protocol 

Participants walked on a treadmill at 4 km/h for 12-17 minutes, wearing an inertial sensor 
(Dynaport Hybrid, McRoberts B.V., The Hague, The Netherlands) located on the trunk, 
below the shoulder blades. Sensing range was ± 2g and sample frequency was 100 Hz. 
The first 5-10 minutes of walking were excluded from the data collection, to allow the 
subject to familiarize with treadmill walking. Data of the subsequent 3 minutes of 
walking were acquired. Fall history was obtained by self-report; a subject was classified 
as a faller if at least one fall had occurred in the 12 months prior to the measurements. 42 
subjects (32.1%) experienced at least one fall in the year previous to the experiment. To 
estimate the habitual physical activity in daily life, the Longitudinal Aging Study 
Amsterdam Physical Activity Questionnaire (LAPAQ) was used. The LAPAQ data were 
used to calculate the total physical activity score (in MET·minutes·per day) [96]. Subjects 
were classified as experienced treadmill walkers if they had walked on a treadmill at least 
two times previously. 

V.2.3. Data analysis 

Accelerations of the trunk in the anterior-posterior (AP) and medio-lateral (ML) 
directions were analyzed. Vertical acceleration signals showed clipping artefacts (on 
average 0.34% of the signal) in 52% of the subjects, and were therefore not considered in 
the analysis. HR, IH, MSE and RQA were calculated on AP and ML accelerations of the 
trunk. 

V.2.4. Statistical analysis 

To assess differences in demographics, treadmill experience and physical activity 
between fallers and non-fallers, Mann-Whitney U-test, independent samples t-test and 
chi-square test were used. SPSS Statistics 20.0 (IBM, Armonk, NY, USA) was used for 
all statistical tests. Statistical significance for all statistical tests was declared if p < 0.05. 

A factor analysis was performed to assess to what extent the resulting 24 different 
measures (HR, IH, MSE at 6 different scales and 4 RQA measures, both in AP and ML 
directions) reflect different properties of the dynamics. To correct for non-normality, all 
measures were log transformed and then used as input for factor analysis. The scree plot 
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was used to determine the number of extracted factors, and VariMax rotation was used to 
optimize the loading of variables onto factors. 

Log transformed measures were then used as inputs for univariate logistic regression 
models, to test if measures were able to classify subjects as fallers or non-fallers, 
considering self-report as the gold standard. The resulting regression models were then 
checked for confounders (demographic variables, treadmill experience and physical 
activity score). In addition, a multivariate, forward step-wise logistic regression model 
was constructed using the most representative variables of each factor as predictors, i.e. 
the variable with the highest factor loading for each factor. Potential confounders were 
added to the models one by one and retained when they changed the coefficients by more 
than 10%. 

V.3. RESULTS 

Factor analysis on the 24 log transformed measures led to 7 factors (Table 1), accounting 
for 89% of the variance (all eigenvalues > 0.8). In general, absolute factor loading values 
were > 0.5, with the exception of HR in AP direction, which had cross loading on 3 
factors and was considered non-specific to a factor. RQA parameters in AP direction 
showed quite high (absolute value > 0.4) loading on two factors. Parameters of MSE, IH, 
RQA in the ML direction and HR in the ML direction showed loadings on different 
factors, reflecting the description of different system dynamics. Furthermore, parameters 
for the trunk kinematics in the ML and AP were largely independent as reflected in the 
factor loadings. In summary, Factor 1 mainly reflected AP entropy and recurrence 
characteristics, Factor 2 reflected ML entropy, Factor 3 reflected ML recurrence 
characteristics, Factor 4 reflected ML harmonicity, Factor 5 reflected AP harmonic ratio, 
Factor 6 reflected AP harmonicity, and Factor reflected 7 ML harmonic ratio. 

Univariate associations with fall history were found for MSE and RQA measures in the 
AP direction (Table 2). The best classification results were obtained for MSE with scale 
factor τ = 2 (p < 0.001) and for maximum length of diagonals in RQA (p = 0.002), which 
correctly classified 72,5% (sensitivity 21.4%, specificity 96.6%) and 71% (sensitivity 
16.7%, specificity 96.6%) of cases, respectively. All MSE measures in AP direction 
showed correlations > 70%. Other measures showed no significant association with fall 
history (Figure V.1, Table V.2). The multivariate model retained only AP direction MSE 
with τ = 3, and this model yielded slightly worse classification than the model using MSE 
with τ = 2. All models were checked for possible confounders (demographics, physical 
activity score, treadmill experience); none of the variables changed the coefficients by 
more than 10%. 

As reported previously by Toebes et al. [39], no significant differences were found 
between fallers and non-fallers regarding demographic variables, physical activity score 
and treadmill experience. 
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Table V.1 - Loading of log transformed variables after factor analysis. Absolute loadings > 0.4 are shown. 

Stability measure Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

HR ML 
      

0.951 
HR AP -0.498 

   
0.790 

  
MSE ML (τ = 1) 

 
0.938 

     
MSE ML (τ = 2) 

 
0.946 

     
MSE ML (τ = 3) 

 
0.970 

     
MSE ML (τ = 4) 

 
0.961 

     
MSE ML (τ = 5) 

 
0.899 

     
MSE ML (τ = 6) 

 
0.823 

     
MSE AP (τ = 1) 0.913 

      
MSE AP (τ = 2) 0.960 

      
MSE AP (τ = 3) 0.968 

      
MSE AP (τ = 4) 0.960 

      
MSE AP (τ = 5) 0.947 

      
MSE AP (τ = 6) 0.919 

      
IH ML 

   
0.860 

   
IH AP 

     
0.901 

 
RQA ML rr 

   
0.884 

   
RQA ML det 

  
0.716 

    
RQA ML avg 

  
0.848 

    
RQA ML max 

  
0.764 

    
RQA AP rr -0.837 

      
RQA AP det -0.721 

      
RQA AP avg -0.725 

 
0.448 

    
RQA AP max -0.701 

 
0.437 

    
 

Figure V.1 – Classification results 
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V.4. DISCUSSION 

Nonlinear measures can provide useful insights in the dynamics of gait, and in particular 
of gait stability. Currently, fall risk is mainly inferred from fall incidence, but this method 
obviously provides information only after the fact and has proven to be unreliable, 
especially when dealing with subjects with memory impairments [97]. Alternative fall 
risk measures are hence needed, and quantitative nonlinear dynamic measures applied to 
acceleration signals could represent a viable alternative to more traditional fall risk 
assessment methods; accelerometric systems are very useful for clinical purposes, as they 
are small, light and portable. Some of these measures (HR, IH, MSE and RQA were 
analyzed in the present study) do not require stride detection, excluding a possible source 
of error. This study aimed to explore the relationship of such measures (HR, IH, MSE and 
RQA were analyzed in the present study) with fall history. 

In the literature, one study[39] assessed the association between ’linear and nonlinear 
measures (namely gait variability and Lyapunov exponents), concluding that these 

Table V.2 - Result of the univariate logistic regression models. Regression coefficient (β), p-value (p) and 95% 
confidence interval of β (95% CIβ) are shown. 

Stability measure β p 95% CIβ 

HR ML 3.135 0.113 -0.74 – 7.01 
HR AP -2.016 0.183 -4.98 – 0.95 
MSE ML (τ = 1) 1.579 0.689 -6.15 – 9.31 
MSE ML (τ = 2) 0.208 0.951 -6.44 – 6.86 
MSE ML (τ = 3) 1.119 0.75 -5.78 – 8.02 
MSE ML (τ = 4) 1.915 0.63 -5.87 – 9.70 
MSE ML (τ = 5) 3.861 0.376 -4.68 – 12.41 
MSE ML (τ = 6) 4.525 0.312 -4.25 – 13.30 
MSE AP (τ = 1) 8.994 0.002 3.34 – 14.65 
MSE AP (τ = 2) 9.138 0.001 3.68 – 14.60 
MSE AP (τ = 3) 9.191 0.001 3.82 – 14.56 
MSE AP (τ = 4) 8.594 0.001 3.39 – 13.80 
MSE AP (τ = 5) 7.750 0.002 2.80 – 12.70 
MSE AP (τ = 6) 7.010 0.004 2.26 – 11.76 
IH ML -3.102 0.105 -6.85 – 0.65 
IH AP -4.072 0.128 -9.32 – 1.17 
RQA ML rr -2.688 0.14 -6.26 – 0.89 
RQA ML det -0.470 0.843 -5.11 – 4.17 
RQA ML avg 0.106 0.959 -3.94 – 4.16 
RQA ML max -0.001 0.999 -0.94 – 0.94 
RQA AP rr -8.510 0.999 -13.12 – -3.61 
RQA AP det -4.197 0.001 -7.34 – -1.05 
RQA AP avg -6.485 0.009 -11.04 – -1.94 
RQA AP max -2.410 0.005 -3.90 – -0.92 
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parameters were, individually and combined, positively associated with fall history. 
Another study [14] investigated the association between Lyapunov exponents and 
tendency to fall in older adults, but on a significantly smaller sample. The nonlinear 
measures implemented in our study have already been applied to gait parameters 
[42,43,45,47], but their relationship with fall history has, to authors’ knowledge, not been 
investigated yet. 

The factor analysis on the analyzed measures highlighted a quite sharp separation (Table 
V.1), supporting the hypothesis that the techniques describe different aspects of the 
system dynamics; each one of these aspects can reflect different aspects of locomotion 
features, and could contribute information related to fall risk. 

Although previously effects of age were shown for HR in AP direction [98], HR and IH 
did not show any correlation with fall history in our sample. Harmonicity of oscillations 
and rhythmicity of the accelerations of the trunk hence seem not to provide useful 
information for fall risk assessment.  

Costa et al. found that the spontaneous output of the human locomotor system during 
usual walking is more complex than walking under slow, fast or metronome paced 
protocols [45]. The association between MSE and fall history found in the present study 
seems to suggest that complexity can also be related to fall risk. Modifications in 
complexity could reflect alterations in locomotor strategy that affect stability. In 
particular, MSE with a scale factor τ = 2 led to the best classification results, suggesting 
that frequencies in the band of 17-25 Hz contribute the most; in fact, operating two coarse 
graining procedures on gait acceleration signal would filter frequencies higher than 25 
Hz, while operating three would filter frequencies higher than 17 Hz. 

The present findings seem to suggest higher complexity of gait kinematics in subjects 
with a fall history, while previous studies have associated higher entropy with better 
health [46,99]. This is perhaps not surprising, since nonlinear time series analysis often 
showed contradictory results also when applied in the same context, as it has been 
demonstrated for FM [49]. Also, non-monotonic relationships could exist. Moreover, 
results of nonlinear time series analysis of gait accelerations also strongly depend on 
sensor placement [42]. 

A previous study [47] used RQA to differentiate healthy and hypovestibular subjects; our 
findings extend this result, showing that RQA can discriminate between healthy subjects 
and fall-prone subjects. In the present study, RQA measures, and in particular the 
maximum length of diagonal structures in recurrence plots, were found to correlate with 
fall history. RQA (max) is strictly related to the mechanical concept of stability in terms 
of Lyapunov exponents; in fact, its inverse (called divergence) can roughly reflect the 
largest Lyapunov exponent [48,100,101]. These results are in line with the existing 
literature showing an association between short term Lyapunov exponents and fall history 
[39]. Whereas these two measures express theoretically similar concepts, the calculation 
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process is different; in particular, as stated above, the RQA algorithm does not depend on 
stride detection.   

For all gait variables, specificity of the associations with fall history was low (maximally 
21.4%). This may imply that the present methods are not yet suitable to identify 
individuals at risk of falling and thus the target group for interventions. Combinations 
with other variables in a multivariate prediction model, e.g. variables that reflect physical 
capacity, may be necessary. On the other hand, fall history may comprise a substantial 
number of incidental falls in subjects, exposed to high-risk events, who may not 
necessarily have an increased risk due to intrinsic factors. 

A possible limitation of the present study is the fact that subjects walked on a treadmill; 
hence, conclusions cannot be directly transferred to over-ground walking, due to the 
differences between the two motor tasks [38,102]. Moreover, no procedure was applied to 
precisely standardize the acceleration signals direction, in terms of sensor placement; 
however, due to the intrinsic nature of the task and the instrumentation, straight walking 
was assured. Another limitation is the use of self-report as a gold standard for the 
classification; despite the disadvantages, this method represents the most established 
technique for fall risk assessment [8], and hence this choice is unavoidable. 

In the literature, a standard implementation for the measures studied here is lacking. Due 
to the lack of methodological studies, there is no consensus on how to deal with 
methodological aspects such as sample frequency of the signal, instrumentation noise and 
trial length. For this reason, comparison of results from different implementations of the 
same measures is not straightforward. With respect to the length of the trials, these 
measures, particularly RQA, have often been applied to short trials (a few steps). In the 
opinion of the authors, the analysis of longer trials is preferable for several reasons: 
effects of long range dynamics, acclimatization time and the probability that occasional 
gait anomalies show up during the acquisition. On the other hand, also transfer from our 
results to less controlled acceleration data obtained during daily activities, in which stride 
detection is a major problem, needs further exploration. 

Further research should address the physiological correlates of these measures; whereas 
the analysis of acceleration time series give useful information about gait dynamics and 
fall risk, the physiological conditions leading to differences in complexity or recurrence 
of locomotion acceleration signals are yet unknown. The identification of the 
physiological correlates could lead to the development of proper targets for therapies or 
rehabilitation programs aiming at fall prevention. 

In conclusion, nonlinear dynamic measures, in particular MSE and RQA are positively 
associated with fall history and could contribute to the selection of individuals at risk for 
participation in fall prevention programs.  
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VI. ARE GAIT VARIABILITY/STABILITY 
MEASURES INFLUENCED BY DIRECTIONAL 

CHANGES?5 

VI.1. INTRODUCTION 

Directional changes represent an essential aspect of gait, since 20-50% of steps performed 
during daily activity are reported to be turns [24]. As a methodological characterization, 
an assessment of the influence of directional changes on variability/stability measures is 
needed in order to evaluate the applicability of the measures, both in controlled laboratory 
trials and in daily life activity analysis. In this study, nine variability/stability measures 
were calculated on trunk acceleration data of a sample of healthy young subjects walking 
in straight walking condition and in presence of directional changes. Since large 
differences in sampling are believed to affect stability measures [37], the influence of 
sampling frequency of trunk acceleration data on the results was also analyzed. 

The aim of this study was to assess the influence of directional changes on 
variability/stability measures calculated on trunk acceleration data acquired at different 
sampling frequencies during gait. 

VI.2. METHODS 

Fifty-one healthy young adults (23 ± 3 years, 172 ± 11 cm, 68 ± 14 kg) volunteered for 
this study. All subjects were physically active and self-reported no musculoskeletal or 
neurological disorders that could affect their performance and/or behavior. 

Participants were asked to perform one 6-minute walk test [103]. In particular, they were 
asked to walk back and forth for 6 minutes along a 30m straight pathway, turning by 180 
deg at each end of the pathway, and to cover the maximum possible distance over the 6 
minutes and, thus, walking as fast as possible. A 180 deg turn was considered in order to 
test the limit condition, as it represents the most sharp and potentially hazardous 
directional change. The Review Board Committee of the authors’ institution approved 
this study, and informed consent was obtained from the participants. 

An inertial measurement unit (FreeSense, Sensorize s.r.l) was fixed to the lower trunk of 
the subjects. Only acceleration data was taken into consideration. 

                                                
5 Submitted. Riva F, Grimpampi E, Mazzà C, Stagni R. Are gait variability/stability measures influenced by 
directional changes?. Submitted to Gait & Posture. 
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Twenty-six trials were acquired with a sampling frequency equal to 100 Hz and twenty-
five trials were acquired at 200 Hz. A third set of data was then obtained from the second 
group, down-sampling acceleration signals from 200 Hz to 100 Hz, and added to the 100 
Hz group. Foot strikes were detected from the vertical acceleration using the algorithm 
proposed by McCamley et al. [104]. Two portions of signals (about 20 strides each) were 
extracted for each subject and divided in two groups: straight walking (SW) and walking 
with directional change (DCW). The number of strides was chosen as the maximum 
number of strides reachable by the subjects in completely straight walking conditions. 

Nine variability/stability measures were calculated. Three temporal variability measures 
were applied to stride time: SD [21], CV [21] and Poincaré plots (PSD1, PSD2) [22]. 
Stride times were obtained as the time intervals between two consecutive strikes of the 
same foot. Six stability measures were calculated on trunk acceleration signals in the 
vertical (V), medio-lateral (ML) and anterior-posterior (AP) directions: maxFM [34], sLE 
[34], RQA [47], MSE [45], HR [42] and IH [43]. IV [21], NI [21], lLE [34] and RQA 
(max, diverg) [47] were also considered, but 20 strides were not deemed to be sufficient 
to draw accurate conclusions having an intrinsic variability > 50%, based on the results 
illustrated in Chapter IV. Details on the implementation can be found in Chapter IX 
(Appendix). 

In order to assess the influence of directional changes on the measures, significant 
differences in results between SW and DCW conditions were calculated. Z-scores 
between the two conditions were calculated for each measure for the two sampling groups 
(100 Hz and 200 Hz). Bonferroni-corrected p-values for each measure at each sampling 
condition were then calculated based on the z-scores. Measures were selected based on 
the capability to discriminate between the two conditions (p < 0.05) for the majority (> 20 
for 200 Hz group, > 40 for 100 Hz group) of subjects. The increasing or decreasing effect 
of directional changes has also been assessed, based on the sign of the mean value of the 
difference between measures obtained in SW and DCT conditions. 

VI.3. RESULTS 

Only HR was found to be affected by directional changes, both at 200 Hz and at 100 Hz. 
HR decreased when a directional change was present in the task. HR was affected in the 
AP and V directions for the 200Hz, but only in AP direction for the 100Hz group. 

Other measures (SD, CV, PSD1, PSD2, MSE, RQA, maxFM and sLE) were not found to 
be affected by directional changes in the walk. 

VI.4. CONCLUSION 

Variability measures based on stride time were generally found to be not affected by 
directional changes. It is likely that the stride times suffered minor modifications during 
the 180 deg turn, hence not significantly influencing measures based on its variability. 
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HR was the only measure found to be affected by directional change. In particular, it was 
affected when applied to AP and V accelerations, but not when ML accelerations were 
analyzed. 

IH, maxFM, sLE and RQA were not found to be affected by directional changes. MSE, 
sLE and RQA also recently proved to be related to fall history in treadmill walking tests 
[39,105]. 

The sampling frequency had effects on the measures, but only related to the direction of 
the acceleration. At 100 Hz, only HR in the AP direction was found to be affected by 
directional change, while at 200 Hz AP and V directions were affected. This is likely 
caused by the loss of information induced by the lower sampling frequency. 

In conclusion, temporal variability measures were not affected by directional changes. IH, 
MSE, sLE and RQA were not affected by of directional changes. In particular, MSE, sLE 
and RQA could contribute to the definition of a fall risk index in free-walking conditions, 
based on their previously demonstrated association with fall history [39,105]. Further 
research is needed to assess the capability of these measures to identify fall-prone 
subjects in an overground walking task. 
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VII. STABILITY OF WALKING AND SHORT 
TERM FALL-HISTORY 

VII.1. INTRODUCTION 

The assessment of the association between variability/stability measures and fall history 
should highlight if these indicators are capable to detect any eventual structural alteration 
in gait patterns. The application of such measures to portions of acceleration signal that 
are located in the proximity of a fall should instead assess the capability of such 
indicators to detect if the gait pattern undergo a particular modification which may cause 
a critical loss of stability. The detection of this temporary modification may become 
particularly evident in the case of fall-prone pathological subjects, which can experience 
several falls even in a short period of time. 

Ten variability/stability measures were applied to a database of trunk acceleration data 
acquired during a 24 hour monitoring of 20 parkinsonian fall-prone subjects affected by 
progressive supranuclear palsy. The subjects experienced a fall during the monitoring, 
hence allowing to know the temporal distance from the fall episode and the analyzed 
walking window. The aim of the study was to test if variability/stability measures can i) 
discriminate between the close-to-a-fall and the far-from-a-fall conditions; ii) 
discriminate between unfrequent faller and frequent faller subjects; iii) discriminate 
between the pre-fall and the post-fall conditions. In addition, a case study was analyzed in 
order to iv) observe the behavior of variability/stability measures in the very proximity (< 
30 minutes) of a fall episode compared to a far-from-a-fall condition. 

VII.2. METHODS 

Twenty elderly subjects (7 unfrequent fallers, 13 frequent fallers) affected by Progressive 
supranuclear palsy (PSP) were monitored in daily activity for 24h, using an accelerometer 
located on the trunk (data were supplied by Bagalà et al., University of Bologna). A 
subject was classified as frequent faller if his fall rate was ≥ 1 fall/month. 

Five subjects fell during the registrations. For some subjects, more than one 24h 
registration was available, and thus were considered to be additional subjects. This led to 
a total of ten subjects who fell during the registrations that were considered for the 
analysis. Trunk acceleration signals relative to three windows containing only walking 
activity were extracted. Each window included a number of strides comprised between 30 
and 70. In order to obtain comparable results among the subjects, 30 strides for each 
window were used for the analysis. 
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Ten variability/stability measures were calculated on the three windows. Six temporal 
variability measures were applied to stride time: SD [21], CV [21], IV [21] and Poincaré 
plots (PSD1, PSD2) [22]. Stride times were obtained as the time intervals between two 
consecutive strikes of the same foot, detected from the AP trunk acceleration with a peak 
detection method [92]. Four stability measures were calculated on trunk acceleration 
signals in the vertical (V), medio-lateral (ML) and anterior-posterior (AP) directions: 
Recurrence quantification analysis (RQA) [47], Multiscale entropy (MSE) [45], 
Harmonic ratio (HR) [42] and Index of harmonicity (IH) [43]. NI [21], lLE [34] were also 
considered, but the number of strides included in the windows (30 strides) was not 
deemed to be sufficient to draw accurate conclusions, having an intrinsic variability > 
50% based on the results illustrated in Chapter IV. Based on the same results, for RQA 
(max, diverg) [47] only ML direction was considered. Details on the implementation can 
be found in Chapter IX (Appendix). 

Four different analyses were performed on the sample: i) a comparison between the close-
to-a-fall (CF) and the far-from-a-fall (FF) conditions; ii) a comparison between 
variability/stability measures calculated on unfrequent fallers (UnF) and frequent fallers 
(FrF); iii) an overall analysis on the pre-fall (PrF) and post-fall (PoF) condition; iv) a case 
study analysis on a subject for which the walking windows were extracted particularly 
close to a fall (< 30 minutes). 

VII.2.1. Close to a fall / Far from a fall 

In order to define the CF and FF conditions, a threshold equal to 8 hours was set, being 
the median of the time distances from the nearest fall of all the extracted windows. Two 
windows for each subject were considered, one close to the fall and one far from the fall, 
disregarding if the fall episode occurred before or after the extracted window. Three 
subjects satisfied this criterion, and hence were selected for the analysis. 

Z-scores for each subject were calculated between the results of the measures in the two 
conditions (CF and FF), using as variance the between-subjects median value of the 
interquartile obtain in a previous study (see Chapter IV). Bonferroni-corrected p-values 
were then obtained. 

VII.2.2. Unfrequent fallers / Frequent fallers 

Two groups were created. The first was composed by measures calculated on unfrequent 
fallers windows (UnF). The second was composed by measures calculated on the 
windows that were considered to be far from a fall (time distance > 8 hours) of frequent 
fallers that experienced a fall during the registrations (FrF). To assess the differences 
between the two groups, a t-test was performed. 

VII.2.3. Pre-fall / Post-fall 

Measures calculated on the windows for all the subjects were re-grouped, disregarding 
the information relative to the subjects, in two groups (PrF and PoF), based only on the 



71 
 

sign of the time distance from the nearest fall. To assess the differences between the two 
groups, a t-test was performed. 

VII.2.4. Single subject case study 

A single subject with a favorable location of the time windows with respect to the fall 
episode was analyzed. The three time windows extracted were located at 18m before the 
fall episode (PrF), 30m (PoF) and 20h after the fall episode (FF). 

Z-scores of measures between the PrF/PoF and the FF condition were calculated, using as 
variance the between-subjects median value of the interquartile obtain in a previous study 
(see Chapter IV). Bonferroni-corrected p-values of the two conditions in relation to the 
FF condition were then obtained. 

 

VII.3. PRELIMINARY RESULTS 

VII.3.1. Close to a fall / Far from a fall 

HR, MSE AP (τ = 2, …, 6), RQA ML (diverg) and IV didn’t highlight any difference 
between the CF and the FF condition for all the three subjects. SD, CV, IH (ML, V), 
PSD1, PSD2, MSE V (τ = 2, 3, 5), RQA AP (rr, det, avg), RQA ML (rr, det, avg) and 
RQA V (det) found statistically significant differences between the two conditions for all 
the three subjects. Results are illustrated in Table VII.1. 

VII.3.2. Unfrequent fallers / Frequent fallers 

HR (AP, V), IH (AP, V) and RQA (AP det, ML det, V diverg) found statistically 
significant differences between the UnF and the FrF groups. Other measures didn’t find 
any difference. 

VII.3.3. Pre-fall / Post-fall 

Only PSD1 was found to be significantly different between the PrF and the PoF 
condition. Other measures didn’t highlight any difference. 

VII.3.4. Single subject case study 

HR, MSE AP (τ = 4, …, 6) and RQA V (max) didn’t highlight any difference between the 
PrF/PoF and the FF condition. RQA V (avg, diverg) and NI didn’t find differences 
between the PrF condition and the FF condition. MSE AP (τ = 1, …, 3), RQA ML 
(diverg), RQA V (rr) and IV didn’t find any differences between the PoF condition and 
the FF condition. All other measures were found to be significantly different between the 
PrF/PoF and the FF condition. 
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VII.4. CONCLUSION 

A possible limitation of the studies i) and ii) is the large temporal threshold (8 hours) that 
had to be fixed in order to separate subjects in the CF and FF conditions. Temporal 
variability measures (SD, CV, PSD1, PSD2) were found to be different in proximity of a 
fall episode. In particular, PSD1 was also capable to highlight differences between the 
pre- and post-fall conditions. HR, IH and RQA showed to be sensitive to the frequency of 
the falls experienced by the subjects, being capable to discriminate between frequent and 
unfrequent fallers, although not for all acceleration directions. MSE and RQA showed 
different behaviors, highly influenced by the direction of the trunk acceleration. 
Particularly interesting is the result of MSE AP (τ = 1, …, 3), which performed poorly in 
discriminating between CF and FF when the threshold was high, but was able to discern 
between the two conditions in the very few minutes before a fall. Having been associated 
with fall history [105], this measure seems capable to reflect potentially critical changes 
in the gait pattern. However this result has been obtained from a single subject, and 
conclusions must hence be drawn carefully.  

 

Table VII.1 – Significance of measures between the CF and FF condition 

Significantly different for 
3/3 subjects 

Significantly different for 
2/3 subjects 

Significantly different for 
1/3 subjects 

Non significantly 
different 

IH (ML, V) IH (AP) MSE AP (τ = 1) HR (AP, ML, V) 

PSD1 MSE ML (τ = 1, .., 6) RQA ML (max) MSE AP (τ = 2, …, 6) 

PSD2 MSE V (τ = 1, 4, 6)   RQA ML (diverg) 

MSE V (τ = 2, 3, 5) RQA V (rr, avg)   IV 

RQA AP (rr, det, avg)     

 RQA ML (rr, det, avg)     

 RQA V (det)       

SD 	  	       

CV     	  	  
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VIII. CONCLUSIONS 

Falls in the elderly pose a serious problem in society, both clinically and economically. 
From a clinical point of view, falls are often associate with injuries (e.g., hip fractures) 
[4], and have a negative psychological impact on patients [106]. Moreover, older adults 
may restrict their activities in response to a fall, leading to a loss of independence and 
ability to carry out life’s routine tasks [107]. 

In this context, reliable methods for quantifying fall risk are needed, in order to 
adequately select subject to include in fall prevention programs. Since falls often occur 
during walking [17,18], assessment of gait stability represents a crucial indicator for fall 
risk. Many methods (direct, indirect and stability-related) to quantify gait stability are 
presented in literature; however, the relationship between many of these stability 
measures and fall history/fall risk is still unknown, and there is still no consensus in the 
literature on how to correctly interpret the stability indicators and how to effectively 
implement stability analysis methods to obtain reliable stability outcomes.  

The aim of this thesis was to analyze the influence of experimental implementation 
parameters on stability measures and to understand how variations in these parameters 
affect the outputs. The assessment of the relationship between dynamic stability measures 
and long/short-term fall risk was also an objective of this thesis. 

In Chapter II a systematic review of the literature on the topic of biomechanical 
applications of a nonlinear dynamic stability measure (namely orbital stability analysis 
via maximum Floquet multipliers) is presented. The review highlighted an incoherence 
among the results of the studies present in the literature, believed to be due mainly to the 
absence of a generalized methodological procedure to implement orbital stability analysis 
on biomechanical time series data [49] and confirming the uncertainty regarding how to 
properly apply stability measures in biomechanics and the association of these measures 
with risk of fall. 

As a consequence of the results obtained from the review, an experimental- and model-
based study on the influence of experimental input parameters in orbital stability analysis 
was performed. The results are presented in Chapter III. One of the main issues relative to 
this technique is the necessity to properly describe the dynamical system, in order to 
obtain a reliable orbital stability index; hence, the definition of the state space is of crucial 
importance for the outputs. The coherence between the results obtained with differently 
composed state spaces shows that the same stability output can be obtained with different 
implementations and experimental setup, despite the fact that different numbers of gait 
cycle are necessary. On the other hand, the number of gait cycles necessary to obtain this 
result is different among these techniques; in particular, analysis conducted on 
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accelerometer data requires more gait cycles. Experimental noise and operator errors 
could represent a critical issue when using orbital stability analysis based on joint angles 
obtained from stereophotogrammetric systems, while experimental noise on 
accelerometer data showed no particular influence on the stability results. Experimental 
results were also coherent with the model results, supporting the validity of the stability 
outcomes. 

In Chapter IV, an assessment of the minimum number of strides needed and a test-retest 
reliability analysis performed on several temporal variability/stability measures is 
presented. Multiscale entropy and Recurrence Quantification Analysis showed excellent 
reliability. In general, the number of strides necessary to obtain a reliable measure was 
larger than those conventionally used. 

An analysis of the association between nonlinear stability measures and fall history is 
presented in Chapter V. In particular, in this study measures independent from stride 
detection were tested, in order to avoid a potentially critical implementation process. 
Multiscale entropy and Recurrence Quantification Analysis were found to be positively 
associated with fall history. 

In Chapter VI, the influence of directional changes on variability/stability measures was 
assessed. Only Harmonic ratio was found to be influenced by directional changes, while 
measures such as short-term Lyapunov exponents, Multiscale entropy and Recurrence 
quantification analysis were not. 

In Chapter VII, the association of variability/stability measures with short-term risk of fall 
is presented. Preliminary results showed that Multiscale entropy in the AP direction 
seems to be able to detect modification in the gait pattern immediately before a fall 
episode. 

In conclusion, several implementation issues have been addressed. Following the need for 
a methodological standardization of gait variability/stability measures, highlighted in 
particular for orbital stability analysis through a systematic review, general indications 
about implementation of orbital stability analysis have been shown, together with an 
analysis of the number of strides and the test-retest reliability of several 
variability/stability numbers. Indications about the influence of directional changes on 
measures have also been provided. Association between measures and long/short-term 
fall history has also been assessed. Of all the analyzed variability/stability measures, 
Multiscale entropy and Recurrence quantification analysis demonstrated particularly good 
results in terms of reliability, applicability and association with fall history. Therefore, 
these measures should be taken in consideration for the definition of a fall risk index. 
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IX. APPENDIX 

IX.1. STANDARD DEVIATION 

Standard deviation (SD) of stride time was simply calculated as the standard deviation of 
the stride times in the analyzed time-window [17]. 

IX.2. COEFFICIENT OF VARIATION 

Coefficient of variation (CV) was calculated as the SD normalized to each subject’s mean 
stride time [21]: 

 

 CV =   
𝑆𝐷  ×  100

𝑚𝑒𝑎𝑛_𝑠𝑡𝑟𝑖𝑑𝑒_𝑡𝑖𝑚𝑒 IX.1  

 

IX.3. INCONSISTENCY OF THE VARIANCE 

Each time series was first normalized with respect to its mean and SD, yielding new time 
series each with mean = 0 and SD = 1, but with different dynamic properties. This 
normalized time series was then divided into blocks of five strides each, and in each 
segment the (local) average and (local) SD were computed. The inconsistency of the 
variance (IV) is the SD of the local SD [21]. 

IX.4. NONSTATIONARY INDEX 

Similarly to the IV, the nonstationary index (NI) is defined as the SD of the local 
averages of the normalized time series’s five strides blocks. The nonstationary index 
provides a measure of how the local average values change during the walk, independent 
of the overall variance (the fluctuation magnitude) of the original time series. A higher 
nonstationary index indicates greater range among the local averages [21]. 

IX.5. POINCARÉ PLOTS 

Stride time data plots between successive gait cycles, known as Poincaré plots, show 
variability of stride time data. Brennan et al. [108] provided mathematical expressions 
that relate each measure derived from Poincaré plot geometry to well-understood existing 
heart rate variability indexes. Using the method described by Brennan [108], these plots 
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were used to extract indices, such as length (PSD2) and width (PSD1) of the long and 
short axes describing the elliptical nature of the Poincaré plot images. Statistically, the 
plot displays the correlation between consecutive stride times data in a graphical manner. 
Points above the line-of-identity indicate strides that are longer than the preceding, and 
points below the line of identity indicate shorter strides than the previous ones. The 
Poincaré plot typically appears as an elongated cloud of points oriented along the line-of-
identity. The dispersion of points perpendicular to the line-of-identity reflects the level of 
short-term variability [108]. The dispersion of points along the line-of-identity is shown 
to indicate the level of long-term variability [22]. 

IX.6. ORBITAL STABILITY ANALYSIS 

The first step of orbital stability analysis via maximum Floquet multipliers (maxFM) is 
the state space reconstruction. Two approaches were used: direct inclusion of acquired 
variables (joint angles/acceleration time series) into the state space, delay-embedding 
reconstruction. Delay embedding is a technique to reconstruct a dynamical system from a 
sequence of observations. Standard embedding techniques were used [27,109]; an 
appropriate state space was reconstructed from each time series and its time delayed 
copies. An embedding dimension of dE = 5 was always chosen; many studies in literature 
agree in considering this to be an appropriate dimension for gait data [27,37,56]. A fixed 
time delay τ = 10 was always used [37,56]. 

Stride cycles were considered as the time between consecutive right heel strikes and were 
resampled to be 101 samples long, because Floquet theory assumes that the system is 
strictly periodic. A Poincaré section was defined at each percentage of the gait cycle (0% 
= right heel strike). 

The Poincaré map: 

 

 𝑆!!! =   F 𝑆!  IX.2  
 

defines the evolution of the state Sk to the state Sk+1 at each Poincaré section, for each 
stride k. 

The limit cycle trajectory was defined as the average trajectory across all strides. This 
produces a fixed point in each Poincaré section: 

 

 𝑆∗ =   F 𝑆∗  IX.3  
 

A linear approximation of Eq. IX.1: 
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 𝑆!!! − 𝑆∗ ≈   J 𝑆∗ 𝑆! − 𝑆∗  IX.4  
 

allows calculating how system states diverge from or converge to fixed points. The FM 
are the eigenvalues of the Jacobian matrix J(S*). The maximum FM (maxFM) is believed 
to govern the dynamics of the system, and hence to be the most representative in terms of 
instability. maxFM was calculated for each Poincaré section (0 – 100% of the gait cycle). 
If the maxFM have magnitude < 1, the system remains stable; otherwise, the system tends 
to diverge from the limit cycle and become unstable. The overall mean value of maxFM 
across the gait cycle was calculated and used in the analyses. 

IX.7. LOCAL STABILITY ANALYSIS 

The first step for local stability analysis is the state space reconstruction (see description 
in Section IX.6). Local dynamic stability of walking is quantified by estimating the 
average exponential rates of divergence of initially neighboring trajectories in state space 
as they evolve in real time. These local divergence exponents provide a direct measure of 
the sensitivity of the system to extremely small (i.e., local) perturbations. Positive 
exponents indicate local instability, with larger exponents indicating greater sensitivity to 
local perturbations. Nearest neighbor points on adjacent trajectories in the reconstructed 
state space represent the effects of small local perturbations to the system. Euclidean 
distances between neighboring trajectories in state space were computed as a function of 
time and averaged over all original pairs of initially nearest neighbors. Local divergence 
exponents were estimated from the slopes of linear fits to these exponential divergence 
curves: 

 

 y 𝑖 =   
1
∆𝑡 ln𝑑! 𝑖  IX.5  

 

where dj(i) is the Euclidean distance between the jth pair of initially nearest neighbors 
after i discrete time steps (i.e., iΔt seconds) and ⟨.⟩ denotes the average over all values of 
j. Since the intrinsic time scales were different for each subject (i.e., different average 
stride times), the time axes of these curves were rescaled by multiplying by the average 
stride frequency for each subject. Short-term exponents (sLE) were calculated from the 
slopes of linear fits to the divergence curve between 0 and 1 stride. Long-term exponents 
(lLE) were calculated as the slope between 4 and 10 strides [34]. 

IX.8. HARMONIC RATIO 

The Harmonic ratio (HR) was calculated by decomposing the AP and ML acceleration 
signals into harmonics using a discrete Fourier transform [42]; the summed amplitudes of 
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the first 10 even harmonics were then divided by the summed amplitudes of the first 10 
odd harmonics for the AP accelerations, and vice-versa for the ML accelerations. This 
difference is due to the fact that whereas the AP accelerations have two periods every 
stride, showing a dominance of the second harmonic, representing step frequency and 
subsequent even harmonics, ML accelerations have only one period per stride, reflecting 
a dominance of the first (and subsequent odd) harmonics [42]. In order to avoid errors 
that might be introduced by step-detection, HR was not calculated stride by stride, but 
decomposing the whole signal into its harmonics. A higher HR is an indication of 
increased smoothness of gait, which can be interpreted as increased stability. 

IX.9. INDEX OF HARMONICITY 

Index of harmonicity (IH) was calculated according to Lamoth et al. [43]. The power 
spectra of the AP and ML acceleration signals were estimated by means of  discrete 
Fourier transform. The peak power at the first six harmonics was estimated and IH was 
defined as: 

 IH =   
𝑃!
𝑃!!

!!!
 IX.5  

 

where P0 is the power spectral density of the first harmonic and Pi the cumulative sum of 
power spectral density of the fundamental frequency and the first five super-harmonics. 
Values close to 1 indicate high harmonicity (e.g. a sine wave has a power ratio of 1, 
indicating perfect harmonicity). Power spectral density of each peak was averaged over a 
range of [-0.1…+ 0.1] Hz around the peak frequency value  

IX.10. MULTISCALE ENTROPY 

Multiscale entropy (MSE) was implemented constructing consecutively more coarse-
grained time series; this procedure implies averaging increasing numbers of data points in 
non-overlapping windows of length τ. Sample entropy (SE) [110] was then calculated for 
each coarse-grained time series, in order to obtain entropy measures at different scales; 
SE quantifies the conditional probability that two sequences of m consecutive data points 
similar (distance of data points inferior to a fixed radius r) to each other will remain 
similar when one more consecutive point is included, thus reflecting the regularity of the 
time series [45]. SE at each time scale τ is hence a function of m and r and is expressed as 
the negative of the natural logarithm of the conditional probability C(r) that two 
sequences that are close within a tolerance rδ for m consecutive points remain close at the 
next point [111], where δ is the standard deviation of the original series: 

 

 
SE = −ln

𝐶!!! 𝑟
𝐶! 𝑟  IX.6  
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MSE was hence calculated for values of τ ranging from 1 to 6, m = 2 and r = 0.2, as 
suggested by Pincus [112] and later applied by Richman and Moorman to biological time 
series [110]. 

IX.11. RECURRENCE QUANTIFICATION ANALYSIS 

The first implementation step of Recurrence quantification analysis (RQA) is the 
reconstruction of the phase space by means of delay embedding [109]. In this study, an 
embedding dimension of 5 and a delay of 10 samples were used, based on previous 
studies [14,56,113]. A distance matrix based on Euclidean distances between normalized 
embedded vectors was then constructed; the recurrence plot was obtained by selecting a 
radius of 40% of the max distance, and all cells with values below this threshold were 
identified as recurrent points. A radius of 40% was chosen to make sure that recurrence 
rate (rr) responded smoothly and was not too high, and that determinism (det) did not 
saturate at the floor of 0 or the ceiling of 100, as approaching these limits would tend to 
suppress variance in the measure [48].  

A number of measures can then be obtained by RQA; in this study, rr, det, averaged 
diagonal line length (avg) and maximum diagonal line length (max) were calculated (Eq. 
IX.7, IX.8, IX.9, IX.10), reflecting different properties of the system. 

 
rr =

1
𝑁! 𝑅!,!

!

!,!!!

 IX.7  

 

where N is the number of points on the phase space trajectory; 

 

 
det =

𝑙𝑃!!
!!!

rr  IX.8  

 

where l is the length of diagonal lines, represented through a histogram (Pl); 

 

 
avg =   

𝑙𝑃!!
!!!

𝑃!!
!!!

 IX.9  

 

 max =    𝑙!; 𝑖 = 1…𝑁!  IX.10  
 

where Nl is the number of diagonal lines in the recurrence plot.  
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SE was calculated using MATLAB (Mathworks, Natick, MA) software available on 
Physionet [114]. All other measures were calculated through custom self-made MATLAB 
(Mathworks, Natick, MA) scripts. 

  



81 
 

X. REFERENCES 

[1]  Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based 
on number of chronic disabilities. The American Journal of Medicine 1986; 80: 429–34. 

[2]  Heinrich S, Rapp K, Rissmann U, Becker C, König H-H. Cost of falls in old age: 
a systematic review. Osteoporosis International 2009; 21: 891–902. 

[3]  Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, et al. Majority of 
Hip Fractures Occur as a Result of a Fall and Impact on the Greater Trochanter of the 
Femur: A Prospective Controlled Hip Fracture Study with 206 Consecutive Patients. 
Calcified Tissue International 1999; 65: 183–7. 

[4]  Tinetti ME. Preventing Falls in Elderly Persons. New England Journal of 
Medicine 2003; 348: 42–9. 

[5]  Fuller GF. Falls in the elderly. American Family Physician 2000; 61: 2159–68, 
2173–4. 

[6]  Alexander BH, Rivara FP, Wolf ME. The cost and frequency of hospitalization 
for fall-related injuries in older adults. American Journal of Public Health 1992; 82: 
1020–3. 

[7]  Mathers LJ, Weiss HB. Incidence and Characteristics of Fall-related Emergency 
Department Visits. Academic Emergency Medicine 1998; 5: 1064–70. 

[8]  Hamacher D, Singh NB, Dieën JH Van, Heller MO, Taylor WR. Kinematic 
measures for assessing gait stability in elderly individuals: a systematic review. Journal of 
The Royal Society Interface 2011; 8: 1682–98. 

[9]  Masud T, Morris RO. Epidemiology of falls. Age and Ageing 2001; 30: 3–7. 

[10]  American Geriatrics Society, British Geriatrics Society and American Academy 
of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the Prevention of Falls 
in Older Persons. Journal of the American Geriatrics Society 2001; 49: 664–72. 

[11]  Oliver D, Daly F, Martin FC, McMurdo MET. Risk factors and risk assessment 
tools for falls in hospital in-patients: a systematic review. Age and Ageing 2004; 33: 122–
30. 

[12]  Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics 
indicates aging affects variability during gait. Clinical Biomechanics 2003; 18: 435–43. 



82 
 

[13]  Granata KP, Lockhart TE. Dynamic stability differences in fall-prone and healthy 
adults. Journal of Electromyography and Kinesiology: Official Journal of the 
International Society of Electrophysiological Kinesiology 2008; 18: 172–8. 

[14]  Lockhart TE, Liu J. Differentiating fall-prone and healthy adults using local 
dynamic stability. Ergonomics 2008; 51: 1860–72. 

[15]  Costello E, Edelstein JE. Update on falls prevention for community-dwelling 
older adults: review of single and multifactorial intervention programs. Journal of 
Rehabilitation Research and Development 2008; 45: 1135–52. 

[16]  Bloem BR, Boers I, Cramer M, Westendorp RG, Gerschlager W. Falls in the 
elderly. I. Identification of risk factors. Wiener Klinische Wochenschrift 2001; 113: 352–
62. 

[17]  Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in 
community-living older adults: a 1-year prospective study. Archives of Physical Medicine 
and Rehabilitation 2001; 82: 1050–6. 

[18]  Berg WP, Alessio HM, Mills EM, Tong C. Circumstances and consequences of 
falls in independent community-dwelling older adults. Age and Ageing 1997; 26: 261–8. 

[19]  Laessoe U, Hoeck HC, Simonsen O, Sinkjaer T, Voigt M. Fall risk in an active 
elderly population – can it be assessed? Journal of Negative Results in BioMedicine 
2007; 6: 2. 

[20]  Furnham A. Response bias, social desirability and dissimulation. Personality and 
Individual Differences 1986; 7: 385–400. 

[21]  Hausdorff JM, Nelson ME, Kaliton D, Layne JE, Bernstein MJ, Nuernberger A, 
et al. Etiology and modification of gait instability in older adults: a randomized controlled 
trial of exercise. J Appl Physiol 2001; 90: 2117–29. 

[22]  Khandoker AH, Taylor SB, Karmakar CK, Begg RK, Palaniswami M. 
Investigating Scale Invariant Dynamics in Minimum Toe Clearance Variability of the 
Young and Elderly During Treadmill Walking. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering 2008; 16: 380–9. 

[23]  Maki BE. Gait changes in older adults: predictors of falls or indicators of fear. 
Journal of the American Geriatrics Society 1997; 45: 313–20. 

[24]  Segal AD, Orendurff MS, Czerniecki JM, Shofer JB, Klute GK. Local dynamic 
stability in turning and straight-line gait. Journal of Biomechanics 2008; 41: 1486–93. 

[25]  Horak FB, Nutt JG, Nashner LM. Postural inflexibility in parkinsonian subjects. 
Journal of the Neurological Sciences 1992; 111: 46–58. 

[26]  Li L, Haddad JM, Hamill J. Stability and variability may respond differently to 



83 
 

changes in walking speed. Human Movement Science 2005; 24: 257–67. 

[27]  Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and 
pathological human walking. Chaos (Woodbury, N.Y.) 2000; 10: 848–63. 

[28]  Nayfeh AH, Balachandran B. Applied Nonlinear Dynamics: Analytical, 
Computational, and Experimental Methods. Wiley-VCH; 1995. 

[29]  Pecoraro F, Mazzà C, Zok M, Cappozzo A. Assessment of level-walking 
aperiodicity. Journal of NeuroEngineering and Rehabilitation; 3: 28. 

[30]  McGeer T. Passive Dynamic Walking. The International Journal of Robotics 
Research 1990; 9: 62–82. 

[31]  Abarbanel HDI. Analysis of observed chaotic data. Springer; 1996. 

[32]  David A. W. Kinematic and kinetic patterns in human gait: Variability and 
compensating effects. Human Movement Science Marzo; 3: 51–76. 

[33]  Jacquelin Perry, Perry J. Gait Analysis: Normal and Pathological Function. 
[[Thorofare, New Jersey]]: SLACK Incorporated; 1992. 

[34]  Dingwell JB, Kang HG. Differences between local and orbital dynamic stability 
during human walking. Journal of Biomechanical Engineering 2007; 129: 586–93. 

[35]  Dingwell JB, Marin LC. Kinematic variability and local dynamic stability of 
upper body motions when walking at different speeds. Journal of Biomechanics 2006; 39: 
444–52. 

[36]  Granata KP, England SA. Stability of dynamic trunk movement. Spine 2006; 31: 
E271–276. 

[37]  England SA, Granata KP. The influence of gait speed on local dynamic stability 
of walking. Gait & Posture 2007; 25: 172–8. 

[38]  Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability 
versus kinematic variability of continuous overground and treadmill walking. Journal of 
Biomechanical Engineering 2001; 123: 27–32. 

[39]  Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, Dieën JH van. Local 
dynamic stability and variability of gait are associated with fall history in elderly subjects. 
Gait & Posture 2012; 36: 527–31. 

[40]  Hurmuzlu Y, Basdogan C. On the measurement of dynamic stability of human 
locomotion. Journal of Biomechanical Engineering 1994; 116: 30–6. 

[41]  Dingwell JB, John J, Cusumano JP. Do Humans Optimally Exploit Redundancy 
to Control Step Variability in Walking? PLoS Comput Biol 2010; 6: 

[42]  Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis 



84 
 

when walking on level and irregular surfaces. Gait & Posture 2003; 18: 35–46. 

[43]  Lamoth CJC, Beek PJ, Meijer OG. Pelvis–thorax coordination in the transverse 
plane during gait. Gait & Posture 2002; 16: 101–14. 

[44]  Lowry KA, Smiley-Oyen AL, Carrel AJ, Kerr JP. Walking stability using 
harmonic ratios in Parkinson’s disease. Movement Disorders 2009; 24: 261–7. 

[45]  Costa M, Peng C-K, Goldberger A L., Hausdorff JM. Multiscale entropy analysis 
of human gait dynamics. Physica A: Statistical Mechanics and Its Applications 2003; 
330: 53–60. 

[46]  Lamoth CJ, Deudekom FJ van, Campen JP van, Appels BA, Vries OJ de, 
Pijnappels M. Gait stability and variability measures show effects of impaired cognition 
and dual tasking in frail people. Journal of NeuroEngineering and Rehabilitation 2011; 8: 

[47]  Sylos Labini F, Meli A, Ivanenko YP, Tufarelli D. Recurrence quantification 
analysis of gait in normal and hypovestibular subjects. Gait & Posture 2012; 35: 48–55. 

[48]  Riley M., Balasubramaniam R, Turvey M. Recurrence quantification analysis of 
postural fluctuations. Gait & Posture 1999; 9: 65–78. 

[49]  Riva F, Bisi MC, Stagni R. Orbital stability analysis in biomechanics: A 
systematic review of a nonlinear technique to detect instability of motor tasks. Gait & 
Posture 2013; 37: 1–11. 

[50]  Peters A, Galna B, Sangeux M, Morris M, Baker R. Quantification of soft tissue 
artifact in lower limb human motion analysis: A systematic review. Gait & Posture 2010; 
31: 1–8. 

[51]  Galna B, Peters A, Murphy AT, Morris ME. Obstacle crossing deficits in older 
adults: a systematic review. Gait & Posture 2009; 30: 270–5. 

[52]  Piriyaprasarth P, Morris ME. Psychometric properties of measurement tools for 
quantifying knee joint position and movement: a systematic review. The Knee 2007; 14: 
2–8. 

[53]  McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional 
kinematic gait measurements: a systematic review. Gait & Posture 2009; 29: 360–9. 

[54]  Arellano CJ, Layne CS, O’Connor DP, Scott-Pandorf M, Kurz MJ. Does load 
carrying influence sagittal plane locomotive stability? Medicine and Science in Sports 
and Exercise 2009; 41: 620–7. 

[55]  Arellano CJ, O’Connor DP, Layne C, Kurz MJ. The independent effect of added 
mass on the stability of the sagittal plane leg kinematics during steady-state human 
walking. The Journal of Experimental Biology 2009; 212: 1965–70. 

[56]  Bruijn SM, Dieën JH van, Meijer OG, Beek PJ. Statistical precision and 



85 
 

sensitivity of measures of dynamic gait stability. Journal of Neuroscience Methods 2009; 
178: 327–33. 

[57]  Bruijn SM, Ten Kate WRT, Faber GS, Meijer OG, Beek PJ, Dieën JH van. 
Estimating dynamic gait stability using data from non-aligned inertial sensors. Annals of 
Biomedical Engineering 2010; 38: 2588–93. 

[58]  Dingwell JB, Kang HG, Marin LC. The effects of sensory loss and walking speed 
on the orbital dynamic stability of human walking. Journal of Biomechanics 2007; 40: 
1723–30. 

[59]  Dingwell JB, Robb RT, Troy KL, Grabiner MD. Effects of an attention 
demanding task on dynamic stability during treadmill walking. Journal of 
Neuroengineering and Rehabilitation 2008; 5: 

[60]  Gates DH, Dingwell JB. Muscle fatigue does not lead to increased instability of 
upper extremity repetitive movements. Journal of Biomechanics 2010; 43: 913–9. 

[61]  Gates DH, Dingwell JB. The effects of muscle fatigue and movement height on 
movement stability and variability. Experimental Brain Research. Experimentelle 
Hirnforschung. Expérimentation Cérébrale 2011; 209: 525–36. 

[62]  Hidler JM, Rymer WZ. Limit cycle behavior in spasticity: analysis and 
evaluation. IEEE Transactions on Bio-Medical Engineering 2000; 47: 1565–75. 

[63]  Hurmuzlu Y, Basdogan C, Stoianovici D. Kinematics and dynamic stability of the 
locomotion of post-polio patients. Journal of Biomechanical Engineering 1996; 118: 405–
11. 

[64]  Kang HG, Dingwell JB. Effects of walking speed, strength and range of motion 
on gait stability in healthy older adults. Journal of Biomechanics 2008; 41: 2899–905. 

[65]  Kang HG, Dingwell JB. Dynamic stability of superior vs. inferior segments 
during walking in young and older adults. Gait & Posture 2009; 30: 260–3. 

[66]  Kang HG, Dingwell JB. Dynamics and stability of muscle activations during 
walking in healthy young and older adults. Journal of Biomechanics 2009; 42: 2231–7. 

[67]  Marghitu DB, Hobatho M-C. Dynamics of children with torsional anomalies of 
the lower limb joints. Chaos, Solitons & Fractals 2001; 12: 2411–9. 

[68]  Marghitu DB, Kincaid SA, Rumph PF. Nonlinear dynamics stability 
measurements of locomotion in healthy greyhounds. American Journal of Veterinary 
Research 1996; 57: 1529–35. 

[69]  McAndrew PM, Wilken JM, Dingwell JB. Dynamic stability of human walking 
in visually and mechanically destabilizing environments. Journal of Biomechanics 2011; 
44: 644–9. 



86 
 

[70]  Schablowski M, Gerner HJ. Comparison of Two Measures of Dynamic Stability 
During Treadmill Walking. In: Fast Motions in Biomechanics and Robotics. Berlin, 
Heidelberg: Springer Berlin Heidelberg. p. 345–60. 

[71]  Scott-Pandorf MM, O’Connor DP, Layne CS, Josić K, Kurz MJ. Walking in 
simulated Martian gravity: influence of the portable life support system’s design on 
dynamic stability. Journal of Biomechanical Engineering 2009; 131: 

[72]  Scott-Pandorf MM, O’Connor DP, Layne CS, Josic K, Kurz MJ. Walking in 
simulated Martian gravity: Influence of added weight on sagittal dynamic stability. Acta 
Astronautica Maggio; 66: 1341–52. 

[73]  Schooten KS van, Sloot LH, Bruijn SM, Kingma H, Meijer OG, Pijnappels M, et 
al. Sensitivity of trunk variability and stability measures to balance impairments induced 
by galvanic vestibular stimulation during gait. Gait & Posture 2011; 33: 656–60. 

[74]  Higgins e Green. Cochrane Handbook for Systematic Reviews of Interventions. 

[75]  Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations of 
diagnostic and screening tests. BMJ 2001; 323: 157–62. 

[76]  Lohr KN, Carey TS. Assessing “best evidence”: issues in grading the quality of 
studies for systematic reviews. The Joint Commission Journal on Quality Improvement 
1999; 25: 470–9. 

[77]  Verhagen AP, Vet HC de, Bie RA de, Kessels AG, Boers M, Bouter LM, et al. 
The Delphi list: a criteria list for quality assessment of randomized clinical trials for 
conducting systematic reviews developed by Delphi consensus. Journal of Clinical 
Epidemiology 1998; 51: 1235–41. 

[78]  Vandenbroucke JP, Elm E von, Altman DG, Gøtzsche PC, Mulrow CD, Pocock 
SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE): Explanation and Elaboration. Annals of Internal Medicine 2007; 147: W–
163–W–194. 

[79]  Kavanagh J, Barrett R, Morrison S. The role of the neck and trunk in facilitating 
head stability during walking. Experimental Brain Research 2006; 172: 454–63. 

[80]  Alton F, Baldey L, Caplan S, Morrissey MC. A kinematic comparison of 
overground and treadmill walking. Clinical Biomechanics 1998; 13: 434–40. 

[81]  Su JL-S, Dingwell JB. Dynamic stability of passive dynamic walking on an 
irregular surface. Journal of Biomechanical Engineering 2007; 129: 802–10. 

[82]  Roos PE, Dingwell JB. Influence of simulated neuromuscular noise on the 
dynamic stability and fall risk of a 3D dynamic walking model. Journal of Biomechanics 
2011; 44: 1514–20. 



87 
 

[83]  Bruijn SM, Bregman DJJ, Meijer OG, Beek PJ, Dieën JH van. The validity of 
stability measures: A modelling approach. Journal of Biomechanics 2011; 44: 2401–8. 

[84]  Solomon JH, Wisse M, Hartmann MJ. Fully interconnected, linear control for 
limit cycle walking. Adaptive Behavior 2010; 18: 492–506. 

[85]  Croce U della, Cappozzo A, Kerrigan DC. Pelvis and lower limb anatomical 
landmark calibration precision and its propagation to bone geometry and joint angles. 
Medical & Biological Engineering & Computing 1999; 37: 155–61. 

[86]  Cappozzo A, Catani F, Croce UD, Leardini A. Position and orientation in space 
of bones during movement: anatomical frame definition and determination. Clinical 
Biomechanics (Bristol, Avon) 1995; 10: 171–8. 

[87]  Aminian K, Najafi B, Büla C, Leyvraz P-F, Robert P. Spatio-temporal parameters 
of gait measured by an ambulatory system using miniature gyroscopes. Journal of 
Biomechanics 2002; 35: 689–99. 

[88]  Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge University 
Press; 2004. 

[89]  Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, 
Goldberger AL. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. 
Journal of Applied Physiology 2000; 88: 2045–53. 

[90]  Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, et al. 
Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. Journal of 
Applied Physiology 2003; 95: 2248–56. 

[91]  Khandoker AH, Lai DTH, Begg RK, Palaniswami M. Wavelet-based feature 
extraction for support vector machines for screening balance impairments in the elderly. 
IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of 
the IEEE Engineering in Medicine and Biology Society 2007; 15: 587–97. 

[92]  Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk 
accelerations during human walking. Gait & Posture 2003; 18: 1–10. 

[93]  Willemsen ATM, Bloemhof F, Boom HBK. Automatic stance-swing phase 
detection from accelerometer data for peroneal nerve stimulation. IEEE Transactions on 
Biomedical Engineering 1990; 37: 1201–8. 

[94]  Lopez AM, Alvarez D, Gonzalez RC, Alvarez JC. Validity of four gait models to 
estimate walked distance from vertical COG acceleration. Journal of Applied 
Biomechanics 2008; 24: 360–7. 

[95]  González RC, López AM, Rodriguez-Uría J, Alvarez D, Alvarez JC. Real-time 
gait event detection for normal subjects from lower trunk accelerations. Gait & Posture 
2010; 31: 322–5. 



88 
 

[96]  Stel VS, Smit JH, Pluijm SM., Visser M, Deeg DJ., Lips P. Comparison of the 
LASA Physical Activity Questionnaire with a 7-day diary and pedometer. Journal of 
Clinical Epidemiology 2004; 57: 252–8. 

[97]  Ganz DA, Higashi T, Rubenstein LZ. Monitoring Falls in Cohort Studies of 
Community-Dwelling Older People: Effect of the Recall Interval. Journal of the 
American Geriatrics Society 2005; 53: 2190–4. 

[98]  Brach JS, McGurl D, Wert D, Vanswearingen JM, Perera S, Cham R, et al. 
Validation of a measure of smoothness of walking. The Journals of Gerontology. Series 
A, Biological Sciences and Medical Sciences 2011; 66: 136–41. 

[99]  Tochigi Y, Segal NA, Vaseenon T, Brown TD. Entropy analysis of tri-axial leg 
acceleration signal waveforms for measurement of decrease of physiological variability in 
human gait. Journal of Orthopaedic Research: Official Publication of the Orthopaedic 
Research Society 2012; 30: 897–904. 

[100]  Choi JM, Bae BH, Kim SY. Divergence in perpendicular recurrence plot; 
quantification of dynamical divergence from short chaotic time series. Physics Letters A 
1999; 263: 299–306. 

[101]  Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence Plots of Dynamical Systems. 
Europhysics Letters 1987; 4: 973–7. 

[102]  Savelberg HHC., Vorstenbosch MAT., Kamman EH, Weijer JG. van de, 
Schambardt HC. Intra-stride belt-speed variation affects treadmill locomotion. Gait & 
Posture 1998; 7: 26–34. 

[103]  Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, et 
al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart 
failure. Canadian Medical Association Journal 1985; 132: 919–23. 

[104]  McCamley J, Donati M, Grimpampi E, Mazzà C. An enhanced estimate of initial 
contact and final contact instants of time using lower trunk inertial sensor data. Gait & 
Posture 2012; 36: 316–8. 

[105]  Riva F, Toebes MJP, Pijnappels M, Stagni R, Dieen JH van. Estimating fall risk 
with inertial sensors using gait stability measures that do not require step detection. 
Article Submitted to Gait & Posture. 

[106]  Scheffer AC, Schuurmans MJ, Dijk N van, Hooft T van der, Rooij SE de. Fear of 
falling: measurement strategy, prevalence, risk factors and consequences among older 
persons. Age and Ageing 2008; 37: 19–24. 

[107]  Ganz DA, Yano EM, Saliba D, Shekelle PG. Design of a continuous quality 
improvement program to prevent falls among community-dwelling older adults in an 
integrated healthcare system. BMC Health Services Research 2009; 9: 206. 



89 
 

[108]  Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot 
geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Bio-
medical Engineering 2001; 48: 1342–7. 

[109]  Takens F. Detecting strange attractors in turbulence. In: Dynamical Systems and 
Turbulence, Warwick 1980. Springer Berlin / Heidelberg; 1981. p. 366–81. 

[110]  Richman JS, Moorman JR. Physiological Time-Series Analysis Using 
Approximate Entropy and Sample Entropy. American Journal of Physiology - Heart and 
Circulatory Physiology 2000; 278: H2039–H2049. 

[111]  Liao F, Wang J, He P. Multi-resolution entropy analysis of gait symmetry in 
neurological degenerative diseases and amyotrophic lateral sclerosis. Medical 
Engineering & Physics 2008; 30: 299–310. 

[112]  Pincus SM. Approximate entropy as a measure of system complexity. 
Proceedings of the National Academy of Sciences of the United States of America 1991; 
88: 2297–301. 

[113]  Bruijn SM, Dieën JH van, Meijer OG, Beek PJ. Is slow walking more stable? 
Journal of Biomechanics 2009; 42: 1506–12. 

[114]  Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et 
al. PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource 
for Complex Physiologic Signals. Circulation 2000; 101: e215–e220. 

 





91 
 

XI. SCIENTIFIC WRITING 

XI.1. PUBLICATIONS IN INTERNATIONAL JOURNALS 

1. Riva F, Bisi MC, Stagni R, “Orbital stability analysis in biomechanics: a systematic review of a 
nonlinear technique to detect instability of locomotor tasks”, Gait & Posture, 2013; 37(1): 1-11. 

2. Bisi MC, Stagni R, Riva F, “Biomechanical and metabolic responses to seat-tube angle variation 
during cycling in tri-athletes”, Journal of Electromyography and Kinesiology 2012; 22(6): 845-
51. 

3. Riva F, Bisi MC, Stagni R, “Influence of input parameters on dynamic orbital stability of walking: 
in-silico and experimental evaluation”, submitted to Journal of Biomechanical Engineering. 

4. Riva F, Bisi MC, Stagni R, “Reliability of stability and variability measures”, submitted to Gait & 
Posture. 

5. Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën JH, “Estimating fall risk with inertial 
sensors using gait stability measures that do not require step detection”, Gait & Posture, in press, 
SIAMOC methodological prize 2012. 

6. Riva F, Grimpampi E, Mazzà C, Stagni R, “Are gait variability/stability measures influenced by 
directional changes?”, submitted to Gait & Posture. 

7. Riva F et al. “Stability of walking and short-term fall history” to be submitted to Gait & Posture. 

XI.2. ABSTRACTS PUBLISHED IN PROCEEDINGS OF INTERNATIONAL 
CONFERENCES 

1. Bisi MC, Riva F, Stagni R, Gnudi G, “Energetics of movement: comparison of two different models 
for the estimation of muscular energy consumption”. Proceedings of GCMAS conference, May 
2010, Miami (Florida, USA). 

2. Bisi MC, Riva F, Stagni R, Gnudi G, “Energetics of movement: comparison of two different models 
for the estimation of muscular energy consumption”. Proceedings of the 17th congress of the 
European Society of Biomechanics (ESB), July 2010, Edinburgh (Scotland). 

3. Bisi MC, Riva F, Stagni R, Gnudi G, “Quantification of energy expended during movement starting 
from biomechanical information”. Proceedings of the IUTAM Symposium, September 2010, 
Leuven (Belgium). 

4. Riva F, Bisi MC, Stagni R, Cristofolini L, “Orbital stability of step climbing: analysis of muscle 
activations in young subjects ”. Proceedings of the VPH Conference, September/October 2010, 
Brussels (Belgium). 

5. Riva F, Stagni R, Cristofolini L, "Orbital stability analysis of human movement: in-silico 
preliminary evaluation for the definition of experimental trials". Proceedings of GCMAS 
conference, April 2011, Bethesda (Maryland, USA). 

6. Bisi MC, Riva F, Stagni R, “A non-invasive protocol to estimate muscle tendon lengths and moment 
arms through ultrasound images”. Proceedings of GCMAS conference, April 2011, Bethesda 
(Maryland, USA). 

7. Stagni R, Bisi MC, Riva F, ”Subject specific muscle tendon length and moment arm quantification 
for muscle-skeletal modeling: non-invasive estimate using direct and ultra-sound calibration”. 



92 
 

Proceedings of the XXIIIrd Congress of the International Society of Biomechanics (ISB), July 
2011, Brussels (Belgium). 

8. Riva F, Stagni R, Cristofolini L, “Orbital stability analysis of human movement: in-silico and 
experimental preliminary evaluation on a stair climbing task”. Proceedings of the XXIIIrd 
Congress of the International Society of Biomechanics (ISB), July 2011, Brussels (Belgium). 

XI.3. ABSTRACTS PUBLISHED IN PROCEEDINGS OF NATIONAL 
CONFERENCES 

1. Bisi MC, Riva F, Stagni R, Gnudi G. "Kinetics and energetics during exercise: A model evaluation”. 
Proceedings of the Secondo Congresso Nazionale di Bioingegneria (GNB), July 2010, Torino 
(Italy). 

2. Riva F, Bisi MC, Stagni R, Cristofolini L, “Orbital stability of muscle activations during step 
climbing in young subjects”. Proceedings of the Secondo Congresso Nazionale di Bioingegneria 
(GNB), July 2010, Torino (Italy). 

3. Riva F, Cristofolini L, Stagni R, “Orbital stability of walking: in-silico assessment of a walking 
model”, Proceedings of the Terzo Congresso Nazionale di Bioingegneria (GNB), June 2012, 
Roma (Italy). 

XI.4. ABSTRACTS PUBLISHED IN INTERNATIONAL JOURNALS 

1. Bisi MC, Riva F, Stagni R, Gnudi G. "Kinetics and energetics during exercise: A model evaluation". 
Proceedings of the SIAMOC conference, October 2009, Alghero (Italy), Gait & Posture, 30S1, 
pag. S50, 2009. 

2. Riva F, Bisi MC, Stagni R, Cristofolini L, “Kinematic orbital stability during step climbing in young 
subjects”. Proceedings of the XI SIAMOC conference, October 2010, Ferrara (Italy), 
Gait&Posture 33S1, pag. S47, 2011. 

3. Bisi MC, Riva F, Stagni R, “A non invasive protocol to estimate muscle tendon lengths and moment 
arms through ultrasound images”. Proceedings of the XI SIAMOC conference, October 2010, 
Ferrara (Italy), Gait&Posture 33S1, pagg. S28-S29, 2011. 

4. Riva F, Bisi MC, Stagni R, 2011. “Orbital stability analysis of voluntarily altered gait pattern”. 
Proceedings of the XII SIAMOC conference, September/October 2011, Bosisio Parini (Lecco, 
Italy), Gait & Posture 35S1, Pages S3-S4, 2012. 

5. Bisi MC, Ceccarelli M, Riva F, Stagni R, 2011. “Biomechanical and metabolic responses to seat-
tube angle variation during cycling in tri-athletes”. Proceedings of the XII SIAMOC conference, 
September/October 2011, Bosisio Parini (Lecco, Italy), Gait & Posture 35S1, Pages S25-S26, 2012. 

6. Riva F, Stagni R, “In-silico assessment of orbital stability analysis applied to walking”, 
Proceedings of the XVIII Congress of the European Society of Biomechanics (ESB), July 2012, 
Lisbona (Portogallo). Journal of Biomechanics 45S1, Page S226, 2012. 

7. Riva F, Mayberry K, Stagni R, “Comparison between model and experimental orbital stability 
analysis of gait”, Proceedings of the XVIII Congress of the European Society of Biomechanics 
(ESB), July 2012, Lisbona (Portogallo). Journal of Biomechanics 45S1, Page S227, 2012. 

8. Stagni R, Bisi MC, Riva F, “Quantification of subject specific muscle moment arm and muscle 
length: an issue for modeling”, Proceedings of the XVIII Congress of the European Society of 
Biomechanics (ESB), July 2012, Lisbona (Portogallo). Journal of Biomechanics 45S1, Page S242, 
2012. 

9. Bisi MC, Riva F, Stagni R, “Measures of gait stability: evaluation of the proposed methods 
comparing adults with infants at the beginning of independent walking”, Proceedings of the XVIII 
Congress of the European Society of Biomechanics (ESB), July 2012, Lisbona (Portogallo). 
Journal of Biomechanics 45S1, Page S230, 2012. 



93 
 

10. Riva F, Toebes MJP, Pijnapples M, Stagni R, van Dieën JH, “Fall history: is a minimum setup 
quantification possible?”, Proceedings of the XIII SIAMOC conference, September 2012, 
Bellaria (Rimini, Italy), to be published in Gait & Posture. 

XI.5. AWARDS 

1. SIAMOC Award 2012 for the best methodological work,“Fall history: is a minimum setup 
quantification possible?”, XIII SIAMOC conference, September 2012, Bellaria (Rimini, Italy) 


