
ALMA MATER STUDIORUM — UNIVERSITÀ DI BOLOGNA

DEIS - Department of Electronics, Computer Science and Systems
PhD Course in Electronics, Computer Science and Telecommunications

Cycle XXV
Concourse Sector: 09/H1

Disciplinary Sector: ING-INF/05

ENGINEERING AGENT-ORIENTED TECHNOLOGIES AND

PROGRAMMING LANGUAGES FOR COMPUTER

PROGRAMMING AND SOFTWARE DEVELOPMENT

Candidate

Dott. ANDREA SANTI

Ph.D Coordinator: Supervisor:

Chiar.mo Prof. Ing. ALESSANDRO VANELLI Chiar.mo Prof. Ing. ALESSANDRO RICCI
CORALLI

Tutor:

Chiar.mo Prof. Ing. ANTONIO NATALI

FINAL EXAMINATION YEAR 2013

Contents

Abstract vii

1 Introduction 1
1.1 Contributions . 4
1.2 Outline of the Dissertation . 6

I Setting The Stage 9

2 Background on the Actor Model 11
2.1 Overview of The Actor Model . 11
2.2 Programming Abstractions . 14

2.2.1 Request-Reply Messaging Pattern . 14
2.2.2 Local Synchronization Constraints . 15
2.2.3 Continuations and Promises . 17

2.3 Actor-Oriented Programming: The Next Big Thing is Already Here 18
2.4 Main Shortcomings and Limitations . 19

3 Background on Programming Multi-Agent Systems 21
3.1 Introduction . 21
3.2 Programming the Agent Dimension . 24

3.2.1 The Belief Desire Intention Agent Model 24
3.2.2 Agent-Oriented Programming Languages and Frameworks 26

3.3 Programming the Environment Dimension . 30
3.3.1 Programming the Environment Taking the AI Perspective 34
3.3.2 Programming the Environment Taking a Software Engineering Per-

spective . 36
3.4 Programming the Organization and Interaction Dimensions 43

3.4.1 Programming the Interaction Dimension 44
3.4.2 Programming the Organization Dimension 46

3.5 Concluding Remarks . 50

II Engineering Agent-Oriented Technologies for Programming Multi-
Agent Systems 53

4 The JaCa Platform 55
4.1 An Effective Action and Perception Model for BDI-based APLs Working with

Endogenous Environments . 55

iii

4.1.1 The Action Model . 56
4.1.2 The Perception Model . 58

4.2 Programming Multi-Agent Systems in JaCa 60
4.2.1 Programming the Agents . 62
4.2.2 Programming the Environment . 65
4.2.3 The Multi-Agent Program in the Overall 68

4.3 JaCa Programming: Focus on Further Features 69
4.3.1 Integrating Direct Communication and Mediated Interaction 69
4.3.2 Distributed and Open Systems Programming 73
4.3.3 Wrapping Existing Libraries and External Resources 74

4.4 JaCa-Android: Programming Smart Mobile Applications in JaCa 76
4.4.1 The JaCa-Android Platform . 77
4.4.2 A Concrete Case Study . 80

4.5 JaCa-WS: Programming Applications based on the Service-Oriented Architec-
ture and Web Services in JaCa . 84
4.5.1 The JaCa-WS Platform . 84
4.5.2 A Concrete Case Study . 86

4.6 JaCa-Web: Programming Rich Internet Applications in JaCa 92
4.6.1 The JaCa-Web Platform . 94
4.6.2 A Concrete Case Study . 95

4.7 Concluding Remarks . 99

5 The JaCaMo Platform 103
5.1 The JaCaMo Approach . 103

5.1.1 Overview of the JaCaMo Programming Meta-Model 105
5.1.2 Synergies Among the JaCaMo Programming Dimensions 106

5.2 Impact on Multi-Agent System Programming: The JaCaMo Programming
Model and Platform . 108
5.2.1 The Building-A-House Example . 111

5.3 Using JaCaMo for Real World Applications 116
5.3.1 Engineering Smart Co-Working Spaces 116
5.3.2 An Agent-Based Machine-To-Machine Management Infrastructure . . 119

5.4 Concluding Remarks . 121

6 AOP: Shifting from the Development of Intelligent Software Systems to General
Purpose Computing 123

III The simpAL Project 127

7 The simpAL Programming Language and Ecosystem 129
7.1 simpAL Overview . 129

iv

7.1.1 Background Metaphor: Human-Inspiered Computing 130
7.1.2 The Agent Model and Control Architecture 132
7.1.3 A Computational Model for Artifacts 135

7.2 The simpAL Programming Language . 136
7.2.1 Programming the Agents . 138
7.2.2 Programming the Environment . 150
7.2.3 Programming the Organization . 152

7.3 Focus on Main Features . 155
7.3.1 Integrating Autonomous and Event-Driven Behaviors 155
7.3.2 Typing Support . 164
7.3.3 Polymorphism . 171
7.3.4 Distributed Runtime Infrastructure . 172

7.4 Concrete Case Studies . 173
7.4.1 A Reactive File Searcher . 173
7.4.2 Implementation of the Ricart-Agrawala’s algorithm 178

7.5 The simpAL Integrated Development Environment 183
7.5.1 IDE Requirements . 183
7.5.2 IDE Overview . 184

7.6 Remarks on Performance . 187
7.7 Final Remarks . 190

7.7.1 Comparison with State-of-the-Art Agent-Oriented Programming Ap-
proaches . 190

7.7.2 Current Limitations . 191

IV Conclusion 193

8 Conclusion and Future Work 195

V Appendix 199

A EBNF Grammar of the simpAL Language 201

B Additional Sources 207
B.1 Reactive File Searcher Script . 207
B.2 Sources of the Test Programs . 209

Bibliography 220

v

vi

Abstract

Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every
home and in every pocket. As a consequence, in the last years software is having a fundamental
and epochal turn toward concurrency, decentralization, distribution, interaction which is pushed
by the evolution of hardware architectures and the growing of network availability. This is
having a strong impact on everyday programming: concurrent and distributed programming
– which are challenging – are no longer a matter of specific application domains, but are be-
coming more and more issues to take into the account in mainstream programming and related
languages.

This calls for introducing further abstraction layers on top of those provided by classical
mainstream programming paradigms, to tackle more effectively the new complexities that de-
velopers have to face in everyday programming.

Given the big tide on concurrency and the well-known difficulties and problems that af-
fect multi-threaded programming, a convergence it is recognizable in the mainstream toward
the adoption of the actor model and actor-related approaches as a mean to unite object-oriented
programming and concurrency. Nevertheless, we argue that the actor paradigm can only be con-
sidered a good starting point to provide a more comprehensive response to such a fundamental
and radical change in software development.

Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming
(AOP) as a high-level general purpose programming paradigm, natural evolution of actors and
finally objects, introducing a further level of human-inspired concepts for programming soft-
ware systems, meant to simplify the design and programming of concurrent, distributed, reactive
and interactive programs.

To this end, in the dissertation first we construct the required background by studying the
state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on
the engineering of integrated programming technologies for developing agent-based systems in
their classical application domains: artificial intelligence (AI) and distributed artificial intelli-
gence (DAI).

Then, we shift the perspective moving from the development of intelligent software systems,
toward general purpose computing and software development. Using the knowledge and expert-
ise maturated during the phase of background construction, we introduce a general-purpose pro-
gramming language, named simpAL, which founds its roots on general principles and practices
of software development, and at the same time provides an agent-oriented level of abstraction
for the engineering of general purpose software systems. Practical experience with relevant
case studies suggests that the proposed programming approach is effective for tackling some of
the main complexities that modern software development introduces.

Keywords: concurrent programming, distributed programming, event-driven programming,
programming languages, agents, actors.

vii

viii

1
Introduction

The fundamental turn of software toward concurrency, decentralization, distribution, interaction
that we are witnessing in recent years – pushed by the evolution of hardware architectures (e.g.,
multi-core, many-core, mobile platforms) and network availability – is having a strong impact
on everyday programming. Mainstream hardware is becoming parallel, heterogeneous, and
distributed on every desk, every home and in every pocket. 2011 in particular was special: it’s
when we completed the transition to parallel computing in all mainstream form factors, with
the arrival of multi-core tablets and smart-phones. These changes are permanent, and so will
permanently affect the way we have to write programs. There is no going back [Suta].

As stated by Herb Sutter, “The free lunch is over. Now welcome to the jungle.” [Sutb, Suta]1:
concurrent and distributed programming – which are challenging – are no more a matter of only
specific application domains (e.g., high-performance computing), but are more and more issues
to take into the account in mainstream programming and related languages. This caused a big
tide on concurrency, and the consequent development of libraries, frameworks and fine-grained
mechanisms on top of existing languages specifically tailored to harness the power of multi-
core, many-core and cloud-core architectures in our programs, sometimes also hiding concur-
rency, parallelism and decentralization as much as possible (e.g., automatic parallelization). So,
most of the research nowadays is focused on how to get a performance boost from the exploit-
ation of such powerful hardware, while sticking with current well-established paradigms—i.e.,
Object-Oriented Programming (OOP) in particular. This is evident by briefly analyzing the
contributions appeared in the last years in the main tracks of reference research conferences on
programming languages such as OOPSLA/SPLASH [LD12, LF11].

Besides this important viewpoint, we argue that the free lunch is over is also a matter of con-
ceptual modeling and abstraction, not only performance, that is to think about introducing and
experimenting in everyday programming novel programming paradigms, modeling and imple-
menting in a more natural and effective way than mainstream approaches concurrent, reactive,
adaptive and distributed software systems. Or, by using Sutter and Larus’ words in [SL05],

1The first part of the quote “The free lunch is over” refers to a famous 2005 article appeared on Dr Dobbs by
Herb Sutter, which led to a similar articles on the theme [SL05]. The “Now welcome to the jungle” part has been
added later on in a second online article by Sutter – which is the conceptual continuation of the first one – named
“Welcome to the Jungle” [Sutb].

1

2 CHAPTER 1. INTRODUCTION

approaches introducing effective programming abstractions that would “help build concurrent
programs, just as object-oriented abstractions help build large component-based programs”.

This calls for going back to research, e.g., on Object-Oriented Concurrent Programming
developed in the eighties and nineties in particular [SW87, BGL98], when we were still free
lunching so to say, and the context of such research was not really mainstream programming
but high-performance computing and parallel programming for super-computers. The actor
computing model [KA11, AMST97] and similar approaches (e.g., active objects [YT87]) were
among the main results and target of investigations, along with the development of several
new programming languages and frameworks based on the actor idea. Given the big tide on
concurrency and the well-known difficulties and problems that affect multi-threaded program-
ming, actors seem to get a momentum today, as far as one considers their injections in terms
of libraries and frameworks developed on top of existing programming languages [KSA09]
(e.g., Scala Actors[HS12], akka [Gup12], ActorFoundry [KA]), or directly supported by new
languages (e.g., DART [Incb], with isolates). Indeed, the injection is not without problems
given some basic fundamental incompatibilities at the conceptual level among the programming
models [HO08] that become particularly evident when trying to integrate different concurrency
models and programming styles—i.e., thread-based, event-based, actor-based.

Besides these integration problems, actor programming can be conceived nowadays as an
extension or evolution of OOP with decentralization and encapsulation of control and asyn-
chronous message passing [KA11, AMST97]. So, it is apparent that actors do not introduce
a huge change in the main abstractions featured by OOP, which is strongly based too on the
concept of message passing, as often reminded by Alan Kay [Kay96, Kay69]. Conversely, one
can argue that important features that are nowadays a well-defined part of OOP (e.g. inherit-
ance, sub-typing, polymorphism, etc.) have not found a corresponding easy settlement in the
context of actors [MY93]. So, getting back to the free lunch call, we argue that actors can be
seen as a strong foundation layer, but finally giving solely asynchronous message passing as
unique concept [Mit02], thus not significantly enhancing the set of abstractions that we can use
to simplify – in general – the development of software systems.

In that perspective, in this dissertation we propose Agent-Oriented Programming (AOP) as
a high-level general purpose programming paradigm, natural evolution of actors and finally
objects, specifically introducing a set of first-class abstractions that are meant to simplify the
design and programming of concurrent, distributed, reactive and interactive programs [RS11a].

Actually, the idea of Agent-Oriented Programming is not new. The first paper about
AOP is dated 1993 [Sho93], and since then many Agent Programming Languages (APLs)
and languages for programming Multi-Agent Systems (MASs) have been proposed in liter-
ature [BDDEFS11, BDDFS05a, BDEFSD09]. The original objective of AOP as introduced
in [Sho93] was the definition of a post object-oriented programming paradigm for developing
complex applications, providing higher-level features compared to existing paradigms. In spite
of this objective, it is apparent that agent-oriented programming has not had a significant im-
pact on mainstream research in programming languages and software development, so far. We
believe that this depends on the fact that – despite few exceptions – most of the efforts and

2

CHAPTER 1. INTRODUCTION 3

emphasis have been put on the study of architectures, theories and languages to program agents
and agent-based programs taking Artificial Intelligence (AI) and Distributed AI (DAI) as the
reference contexts.

Given the (D)AI background, current APLs in the state-of-the-art focus on features that are
especially important in that context – e.g., programming using mentalistic notions, basic reas-
oning capabilities, etc. – and are essentially exploited to develop intelligent software systems,
exhibiting some kind of individual or collective intelligent behavior [Jen01, Woo09, RN09]. So,
current APLs have not been intentionally designed with the aim of being adopted as general-
purpose programming approaches in mainstream software development—this is clear also by
checking the number of publications about agent-oriented programming in journals or con-
ferences about programming languages and software development. This is exactly the broad
objective of this thesis work, so as to explore and develop agent-oriented programming target-
ing general-purpose computing, taking as a reference context existing programming paradigms
and, in particular, the general principles and practices of software development. In particular
we are interested in:

• Identifying the essential concepts and features of the paradigm, and investigating how
such features could be effective in particular for tackling complexities of modern software
development.

• Investigating how well-known features and mechanisms that have been introduced and
developed in modern programming languages to support programming in the large and
good programing (but in the sequential case), could be injected and eventually re-framed
by adopting an agent-oriented level of abstraction. Main examples are typing, reuse,
inheritance and polymorphism.

• Investigating if and how the new abstraction level raised by agent-oriented programming
impacts on the design of tools supporting the development and deployment process, from
front-ends to debuggers and runtime infrastructures.

The method we chose to explore these points is the design and development of a new agent-
oriented programming language called simpAL, and its related ecosystems, composed by an
Integrated Development Environment (IDE) and a distributed runtime infrastructure.

For the achievement of the aforementioned research goals, a key point has been the con-
struction of a solid background in the context of the classical research on agent and multi-agent
systems, with the aim to take inspiration from the main models, abstractions and program-
ming languages that have been introduced in the state-of-the-art. In particular, this background
construction has purposefully been an active process—i.e., we have actively took part in the
study, improvement and engineering of integrated agent-oriented technologies and program-
ming frameworks for the development of intelligent software systems.

3

4 CHAPTER 1. INTRODUCTION

1.1 Contributions

This thesis work has produced several contributions that can be roughly divided in two main
macro-groups. The first macro-group of contributions is related to the achievements obtained
in the engineering of agent-oriented technologies for the (D)AI context. In detail these contri-
butions are:

• The definition of an effective action and perception model (Section 4.1) specifically con-
ceived to make BDI-based agents – i.e., agents rooted on the Belief Desire Intention
model [RG+95] (see Section 3.2.1) – work in endogenous environments (Section 3.3.2),
shifting from the classical models available in the state-of-the-art. Besides being imple-
mented and adopted in every agent-oriented technology that we contributed to realize
during the background construction of this thesis (see below), the model is general, i.e.
it can be possibly used in any BDI-based APL that needs to interact with endogenous
environments.

• The realization of both the JaCa programming approach and development platform
(Chapter 4), for developing MASs by synergistically exploiting both the agent and the
environment programming dimensions.

• The realization of several extensions of the JaCa platform for exploiting its program-
ming model in some of the most modern and relevant application domains. In details
these platforms are: JaCa-Android, for programming smart mobile applications on top of
the Android platform (Section 4.4); JaCa-Web, for programming Rich (client) Internet
Applications (RIAs) (Section 4.6); and finally JaCa-WS (Section 4.5) for programming
applications rooted on the Service Oriented Architecture (SOA).

• The concrete evaluation of both the JaCa platform and its various extensions through the
development of interesting case studies, with the objective to investigate both the benefits
and the limitations of the proposed programming approach (Section 4.4.2, Section 4.5.2,
Section 4.6.2).

• We collaborated to the realization of JaCaMo (Chapter 5), which provides both a concrete
programming approach and a related development platform/infrastructure for developing
multi-agent systems, taking into the account three different agent-oriented programming
dimensions in a synergistic manner, namely the agent, environment and the organization.

• We collaborated to the evaluation of the JaCaMo platform by studying its application
in some real-world projects (Section 5.3). As in the case of the JaCa platform, the main
objective of this concrete evaluation has been the investigation of the benefits and possible
shortcomings of the JaCaMo agent-oriented programming approach.

4

CHAPTER 1. INTRODUCTION 5

The second macro-group of contributions instead is strictly related to the results obtained
through the engineering and evaluation of simpAL and its ecosystem. In detail these contri-
butions are:

• The simpAL language itself (Chapter 7), which founds its roots on general principles
and practices of software development, and at the same time provides an agent-oriented
level of abstraction for the engineering of general purpose software systems, possibly
concurrent and distributed.

• The introduction of specific programming abstractions that ease the integration of
autonomous and reactive behaviors when programming active entities that need to exhibit
both thread-based and event-based forms of computations. This is a relevant problem in
the context of concurrent programming, and we argue that simpAL gives the opportun-
ity to solve this issue at the foundation level, in a quite seamless manner. This aspect is
discussed in details in Section 7.3.1.

• The definition of a notion of type for the main first-class abstractions of the simpAL pro-
gramming model. We argue that this is quite an important contribution, in particular for
what concerns the definition of an explicit and dedicated notion of type for active entit-
ies – i.e., the agents in our case – which is still missing in programming languages and
frameworks rooted on actors and active objects. In general, the introduction of typing,
first enables compile-time error checking, greatly reducing the cost of errors detection—
from both a temporal and economic point of view. Second, it provides developers a
conceptual tool for modeling generalization/specialization relationships among concepts
and abstractions, eventually specializing existing ones through the definition of proper
sub-types and making it possible to fully exploit the principle of substitutability [WZ88]
for supporting a safe extension and reuse in programming. Accordingly, we argue that it
is fundamental to introduce an explicit notion of type for active entities in order to provide
developers, besides static error checking controls, the adequate abstraction tools to model
and characterize the different active parts of a software systems.

• The introduction of types has given us also the opportunity to investigate and define some
basic forms of polymorphism in simpAL programs (Section 7.3.3).

• We concretely evaluated both the simpAL programming approach and its related devel-
opment platform through the implementation of relevant programming examples, which
have been purposely developed to stress the programming abstractions supporting the
integration of autonomous and event-driven behaviors.

• We engineered a suitable ecosystem around the simpAL programming language composed
by an integrated development environment and a distributed runtime infrastructure. The
final objective that has driven the development of such ecosystem was trying to provide
developers the best means for coding, deploying, executing and inspecting concurrent and
distributed simpAL applications.

5

6 CHAPTER 1. INTRODUCTION

1.2 Outline of the Dissertation
Besides this introductory chapter, this dissertation is organized in five macro-parts. In detail,
the remainder of this thesis is organized as follows.

• Part I: Setting The Stage — the role of this first part is introduce the background con-
text of the thesis, along with the presentation of the main related work. Accordingly,
Chapter 2 provides the required background on the actor model that, on the basis of cur-
rent trends experienced in the context of mainstream software development (Section 2.3),
is taken here as the reference forthcoming state-of-the-art programming paradigm for the
engineering of complex, concurrent and distributed applications. Chapter 3 provides in-
stead the fundamental background on agent and multi-agent systems, and in particular on
state-of-the-art programming languages and technologies that have been introduced for
their programming and development. This chapter is structured along the four main pro-
gramming dimensions that have been introduced for the practical development of MASs,
namely: the agent, environment, interaction and organization dimensions.

• Part II: Engineering Agent-Oriented Technologies for Programming Multi-Agent Sys-
tems — in this part of the thesis we describe the result of our efforts in the engineering of
integrated – i.e., concerning the synergistic use of multiple programming dimensions –
programming approaches and concrete technologies supporting the development of multi-
agent systems, in the (distributed) artificial intelligence context. In particular in Chapter 4
is presented the JaCa platform – along with its main extensions – integrating both the
agent and environment dimensions; in Chapter 5 instead is described the JaCaMo plat-
form, which provides a synergistic integration of the agent, environment and organization
programming dimensions. A concrete evaluation of both platforms, through the develop-
ment of real world applications, is provided in the dedicated chapters. Finally, Chapter 6
sets the stage for the next part of the dissertation, by providing a critical discussion about
the good points and the current limitations of both JaCa and JaCaMo – taken in the
chapter as reference examples of state-of-the-art technologies for developing MASs –
when moving from the distributed artificial intelligence context to general-purpose com-
puter programming and software development—the reference context for this thesis work.

• Part III: The simpAL Project — in this part is described the core contribution of the
dissertation, simpAL an agent-oriented programming language which has its foundations
rooted on the key concepts and features introduced and developed in the history of modern
mainstream programming languages (e.g., typing, polymorphism, etc.), properly revised
for an agent-oriented language. In Chapter 7 we first provide a general overview of the
simpAL language, then is given a description of the simpAL programming model along
with its main features, also making comparisons (when possible) with similar features
in object-oriented and actor-oriented approaches. Finally, the chapter is concluded by a
concrete evaluation of the language through the implementation of relevant programming
examples and by a discussion addressing performance tests and current limitations.

6

CHAPTER 1. INTRODUCTION 7

• Part IV: Conclusion — this part concludes the dissertation by presenting final remarks,
and discussing possible future work and research directions.

• Part V: Appendix — this appendix contains: (i) the EBNF (Extended BackusNaur Form)
grammar of the simpAL language, and (ii) additional sources related to performance tests
and applicative examples.

7

8 CHAPTER 1. INTRODUCTION

8

Part I

Setting The Stage

9

2
Background on the Actor Model

This chapter provides the required background on the actor model and on actor-oriented pro-
gramming. The chapter is structured as follows:

• Initially in Section 2.1 is given a general overview of the actor model, along with its main
features.

• Then in Section 2.2 are presented the main programming abstractions that have been
introduced in the state-of-the-art to facilitate the programming of actor-based systems.

• Finally, the chapter is concluded by presenting a discussion concerning both the growing
diffusion/adoption of the actor paradigm in mainstream programming (Section 2.3), and
current shortcomings and limitations of actors as a reference model of concurrent and
distributed computation (Section 2.4).

2.1 Overview of The Actor Model
The actor model has been firstly introduced by Hewitt in the 1973 [HBS73]1, and since then fur-
ther extensions an contributions to the model have been provided by Agha [Agh86, AMST97],
Yonezawa [YBS86, Yon90], and others [HB77, Cli81]. From the seventies, the actor concept
evolved as a result of more than twenty years of subsequent efforts, influencing a range of con-
current object-oriented systems [YT87]. As a result, there is no one language or framework that
embodies all of the concepts that have been developed in the literature [Mit02]. Following what
stated in [KA11], for the sake of the construction of this thesis’ background we will consider
the most commonly used definition of actors today, which follows the work of Agha [Agh86].

The actor model is a model of concurrent computation for developing parallel, distributed
and mobile systems [KA11]. An actor system (Figure 2.1) consists of a collection of actors
communicating by exchanging asynchronous messages, some of whom may send messages
to, or receive messages from, actors outside the system. The data exchanged in messages can

1Even if [HBS73] is generally referred as the first work introducing the actor computational model, the earliest
use of the term actors was in Hewitt’s early work on PLANNER [Hew69]. Here the term was coined for referring
to rule-based active entities which search a knowledge base for patterns to match, and in response, trigger actions.

11

12 CHAPTER 2. BACKGROUND ON THE ACTOR MODEL

Figure 2.1: Abstract view of an actor system [KA11].

range from primitive data types, to complex ad-hoc structured informations. Each actor is an
autonomous process that operates in a concurrent and asynchronous manner, receiving and
sending messages to other actors, creating new actors, and updating its own local state. Each
actor has:

• Its own mutable local state—actors do not share this local state with other actors, each
actor is responsible for updating its own local state. An actor may affect the state of
another actor only by sending the second actor a message.

• A mailbox in which incoming messages are stored. Messages can arrive in the mailbox
at any time and will be held there until the recipient is ready to process them. Due to the
different paths a message may take and unexpected network delays, the order of message
delivery is indeterminate. As a consequence, the order in which messages are processed
by an actor can not be determined in advance.

• A unique, immutable name which is required to send a message to that actor. An actor
name can not be guessed, but may be communicated to other actors.

The basic primitives available for programming the behavior of an actor are:

• create: to create a new actor starting from its behavior description and a set of input
parameters, possibly including the reference to existing actors.

12

CHAPTER 2. BACKGROUND ON THE ACTOR MODEL 13

• send: to asynchronously send a message to an actor.

• become: to designate the behavior (local state) to be used for the next message the
actor receives—i.e., the mechanism used by an actor to replace its own behavior with a
new one. This gives actors a history-sensitive behavior necessary for shared, mutable data
objects.

Several programming languages rooted on the actor model exist. Among these, Erlang [Arm10]
is arguably the best known. It was developed to program telecommunication switches at Eric-
sson about 20 years ago. Other languages worth to mention are: SALSA [VA01] (mainly target-
ing the Internet domain), ActorNet [KSMA06] (developed in the context of sensor networks),
E [MB], Axum [Micb] and Ptolemy [BHLM02].

Despite the development of a number of Actor languages, there continue to be efforts
to develop Actor frameworks based on familiar languages such as C/C++ (Act++ [Kaf90],
Thal [Kim97]), Smalltalk (Actalk [Bri89]), Python (Stackless Python [Chr], Parley [Jac]),
Ruby (Stage [Sil08]), .NET (Retlang [Mikb]) and Java (Scala Actors library [HS12, Typb],
akka [Gup12, Typa], Kilim [SM08], Jetlang [Mika], ActorFoundry [KA], AmbientTalk
[DVCM+06], Actors Guild [Tim]).

Depending on the concrete actor-oriented programming language or development frame-
work considered, the basic actor programming primitives described above can be directly avail-
able among the set of programming constructs provided by the language/framework or not. As
a concrete example, akka provides an explicit support for the become primitive, while Er-
lang does not—in Erlang the become is implemented manually by programmers, invoking a
function that encapsulates the new actor behavior.

Algorithm 1 Actor Event Loop
1: while true do
2: msg← PICKMSGFROMMSGQUEUE()
3: method← SELECTHANDLER(msg)
4: EXECUTE(method)
5: end while

From a behavioral point of view, actors – like objects2 – are based on reactivity and the reactivity
principle [Agh90, BGL98, Kay69]. Actors are reactive in the sense that they react to an event,
i.e. the receipt of a message. The only way to activate an actor is by sending a message. So
finally, actors can be conceived as processes continuously executing the above loop, called event
loop3 [MTS05].

2As often reminded by Alan Kay [Kay96], OOP was initially deeply rooted on the concept of message passing:
“The big idea is messaging – that is what the kernel of Smalltalk/Squeak is all about...” (this is a quote from a
Smalltalk discussion group [Kay98].

3Event loops are widely recognized to be part of the actor model by the research community work-
ing on actors but Carl Hewitt: “[...] In any case, ’event loop’ is confusing terminology because there can

13

14 CHAPTER 2. BACKGROUND ON THE ACTOR MODEL

All the extensions introduced in literature – presented in the next section – such as making
it explicit the receive primitive or providing a way to order the messages to receive, can be
finally translated into this basic loop [AMST97]. Two aspects are worth to be emphasized, in
particular for the background of this dissertation: (i) if no messages are available in the queue,
the loop is blocked (this is consistent with the reactivity principle); (ii) the method selected
for handling a message must be executed until completion, atomically, before fetching the next
message—this is called macro-step semantics [AMST97].

Some other important semantic properties of the pure Actor model are fairness and location
transparency. The former ensures that every actor makes progress if it has some computa-
tion to do, and that every message is eventually delivered to the destination actor, unless it is
permanently disabled (i.e., it has terminated its execution). It has been shown that this prop-
erty is particularly useful for simplifying the reasoning about liveness properties in actor pro-
grams [AMST97]. The latter instead makes communications among actors independent from
their actual physical location. Actors communicate by exchanging messages with other actors,
which could be on the same core, on the same CPU, or on another node in the network. Loca-
tion transparent naming also facilitates runtime migration of actors to different nodes. In turn,
migration can enable runtime optimizations for load-balancing and fault-tolerance.

Different languages and frameworks support the main properties of the actor model at dif-
ferent levels, in different ways. E.g., fault-tolerance is one of the key features of Erlang and
akka. For a more detailed comparison among some of the most relevant actor frameworks in
the state-of-the-art the interested reader can refer to [KSA09].

2.2 Programming Abstractions
Asynchronous communications are the only ones supported by the basic actor model. So, by
strictly following the basic model, complex forms of communication must be programmed by
hand, by defining the appropriate exchange of asynchronous messages between actors. It is
clear that such a basic approach could be problematic when developing real-world software
systems: most of the time not all the interactions among the different parts of an application can
be easily modeled as asynchronous communications.

Accordingly, over the years, several programming abstractions have been introduced to ease
the definition of complex forms of communication and synchronization in actor programs. In
the remainder of this section we introduce some of the mains ones.

2.2.1 Request-Reply Messaging Pattern
Synchronous communications rooted on the request-reply messaging pattern are one of the most
common used in the development of software systems—e.g., a client that requests a certain

be “holes in the cheese.” [HA79], which means code is just nested expressions (i.e., no loop)...” http:
//lambda-the-ultimate.org/node/4453

14

http://lambda-the-ultimate.org/node/4453
http://lambda-the-ultimate.org/node/4453

CHAPTER 2. BACKGROUND ON THE ACTOR MODEL 15

Figure 2.2: Request-reply messaging pattern blocks the sender of a request until it receives the
reply. All other incoming messages during this period are deferred for later processing [KA11].

functionality to a server and needs to inspect the server’s response message in order to decide
what are the next actions to do. In this pattern, the sender of a message blocks, waiting for the
reply to arrive before it can proceed. The actor model does not explicitly support synchronous
communications. So, without a high-level language abstraction programmers have to explicitly
implement the behavior of their client programs as follows: (i) send the request message; (ii)
wait for incoming messages; (iii) when a new message arrives it must be checked whether the
message is a reply to the request, or it is another message that happened to arrive between the
request and the reply, (iv) if the incoming message corresponds to the waited reply, take the
appropriate actions, otherwise, the message has to be buffered for further processing and the
client must continue to check messages for the reply.

To avoid the burden of programming by hands all these steps, ther request-reply messaging
pattern (Figure 2.2) is almost universally supported in actor languages and frameworks. For ex-
ample, is available as a basic language primitive in Scala Actors, akka, SALSA, ActorFoundry,
etc.

2.2.2 Local Synchronization Constraints

As mentioned in Section 2.1, the order in which messages are processed by an actor is non-
deterministic. However, sometimes it is needed to process messages in a specific order. A
classical example of this need is given by a bounded buffer actor which needs to defer the pro-

15

16 CHAPTER 2. BACKGROUND ON THE ACTOR MODEL

Figure 2.3: Implementation semantics of local synchronization constraints in Actor-
Foundry [KA11].

cessing of put and get messages on the basis of the current state of the buffer—i.e., put
messages can be processed only when the buffer is not full, get messages when the buffer is
not empty. To this end, the order in which messages are processed must be properly restricted
or regulated. Synchronization constraints simplify the task of programming such restrictions
on the order in which messages are processed. For example, they can allow the programmer to
declare that an actor postpones the processing of a message until it receives some sequence of
messages, or until a condition on the actor’s state is satisfied.

In the case of languages and frameworks with an explicit receive (e.g., Erlang and Scala
Actors) this can be obtained simply by doing pattern matching on incoming messages. In the
case of other languages instead, explicit first-class language constructs must be provided to this
end. The following code shows an example of synchronization constraint written in Actor-
Foundry.

1 public Boolean disablePut(Integer x) {
2 if (bufferReady) {
3 return (tail == bufferSize);
4 } else {
5 return true;
6 }}

Here, the Java annotation framework has been used to define a synchronization constraint for the
message put, whose condition is expressed by the method disablePut. In the above code,

16

CHAPTER 2. BACKGROUND ON THE ACTOR MODEL 17

the constraint returns true if the put message can not be processed in the actor’s current state.
At runtime, a message is processed if it is not disabled i.e., no constraint returns true for the
message. When a disabled message is received, it is placed in a queue called save queue for
later processing (see Figure 2.3). Whenever a message is processed successfully by an actor, it
is possible that a previously disabled message (a message in save queue) is no longer disabled.
This is because the state of the actor may change after processing a message, and this change of
state may enable other messages.

2.2.3 Continuations and Promises
In this sub-section we present two other programming constructs that have been introduced
in the state-of-the-art in oder to ease the exchange of messages among actors: (i) continu-
ations (join [AH87] and token-passing continuations [VA01]), and promises [MTS05] (often
also called futures). The first mechanism allows to define the continuation of actors’ behavior
in response to the reception of a set of user-defined messages. In particular, via join continu-
ations it is possible to define the set of messages that need to be received – in any sequence –
before the actor can execute a certain message handler—i.e., the actor continuation.

Token-passing continuations allow instead to write chained sequences of asynchronous
statements which can be connected as needed. The order of the asynchronous invocations is
determined by the passing of a token, which enables the sending of the next message. As a
concrete example we consider now an snippet of code written in SALSA:

1 a1 <- m1() @ a2 <- m2(token);

In the above code @ represents the token, while the notation msg recipient <- msg()
means that message msg is sent asynchronously to the msg recipient actor. In the example
m2 will be sent to actor a2 only when message m1 has been processed by actor a1: indeed, the
argument to m2 is the token that proves that a1 has finished the handling of m1. We consider
now an example, in SALSA, that involves both join and token-passing continuations:

1 join{ a1<- m1(); a2 <- m2(); } @ a <- m();

The above code will send messages m1 and m2 concurrently to actors a1 and a2. Then, mes-
sage m will be sent to actor a only when both m1 and m2 have been received and processed by
the respective recipients.

Finally, the last programming construct that we consider here are promises (or futures).
Generally speaking, in computer science futures/promises refer to a programming construct
that acts as a proxy for a result that is initially unknown, usually because the computation of its
value is yet incomplete [Wik]. Besides actor-oriented languages, this construct is also available
in many object-oriented ones such as Java [SUNa] and C# [Mica].

In an actor program, promises are useful in particular in the case of request-reply message
exchanges. Indeed, in some cases, we want the calling actor to return immediately after sending
a message, but we may also need access to the target actor’s reply at a later time. Using a

17

18 CHAPTER 2. BACKGROUND ON THE ACTOR MODEL

promise the calling actor can send the request message and then continue with its computation
immediately. Later on, when it needs the result, it can check the promise that was specified at
the time of the request transmission. If the result has been stored in the promise object, it can be
used. Given a promise reference, the calling actor can both: (i) check whether or not the result
is available, and (ii) if needed, block until the response is retrieved.

In addition, in some actor-oriented languages such as E [MB] promises can be also
pipelined [MTS05]. Promise pipelining brings two main benefits. On the one side, it enables
the definition of ad-hoc workflows concerning asynchronous message exchanges. This can be
particularly useful for handling and managing the reception of multiple futures, possibly in an
arbitrary order. The following code shows an example of use of promise pipelining in E:

1 def r3 := x <- a() <- c (y <-b())

Like in the case of SALSA, the notation x <- a() means sending the message a to actor x
asynchronously. Without using promise pipelining, one would have been forced to deal manu-
ally with the resolution of each promise, constructing step by step the previous workflow.

On the other side promise pipelining is also useful to reduce the number of round trips
involved in message exchanges, and in turn the overall latency of the system [MTS05]. Indeed,
when multiple messages are sent to the same actors, or even to multiple actors that however
reside on the same machine, such messages can be streamed together and sent in just one round
trip.

2.3 Actor-Oriented Programming: The Next Big Thing is
Already Here

As discussed in the introduction Chapter 1, the actor paradigm is becoming more and more one
of the reference programming paradigms for the development of modern software systems—
i.e., concurrent and distributed systems. It is recognizable in the mainstream a convergence
toward the adoption of the actor model and actor-related approaches as unification of object-
oriented programming and concurrency.

Moreover, in the last years there has been a proliferation of actor-oriented languages and
frameworks which are increasingly becoming more robust and mature, and are starting to be
applied outside the usual domain boundaries of massive parallel programming and related spe-
cific application contexts. Besides Erlang that mainly targets the specific domain of telecommu-
nications, there are several well known, recognized and adopted actor-oriented frameworks tar-
getting general purpose computing: Scala actors, akka, and ActorFoundry are main examples.
Eventually, these languages and frameworks are starting to be applied for programming in the
large, and particularly in some of the hottest and most relevant application domains such as
the web and the mobile context. E.g., it is well known that a core part of the current imple-
mentation of Twitter have been written exploiting the Scala actor library [Eri10]. Moreover,
DART [Incb], a recent programming language by Google for the development of fore-coming

18

CHAPTER 2. BACKGROUND ON THE ACTOR MODEL 19

web applications, comes along with an actor-based library [Inca]. For what concerns the mobile
context instead, it is possible to see that inside the Android SDK [Gooa], even if the term actor
is not explicitly mentioned, the Looper [Good], one of the key components of the programming
model, has been engineered strictly mimicking actors’ behavior.

Summing up, given the current trends in mainstream software development, we argue that
actor-oriented programming is fated to be the short-term answer for the free lunch is over call
in the near future.

2.4 Main Shortcomings and Limitations

It is undeniable that actors represent a step forward w.r.t. mainstream object-oriented pro-
gramming languages for the engineering of concurrent and distributed software systems as an
ensemble of autonomous computing entities communicating through asynchronous message
passing. Moreover, important features such as location transparency, fault tolerance etc. are
directly part of the actor model itself (Section 2.1).

Nevertheless, we argue that the actor paradigm can be only considered a good starting point
to provide a fully comprehensive response to the fundamental and radical challenges introduced
by the free lunch is over call. Accordingly, we describe here what are – in our opinion – the
main flaws and limitations that motivate such a strong assumption.

Firstly, one can argue that important features such as inheritance, sub-typing, polymorph-
ism, etc., which are nowadays a well-defined part of the object-oriented paradigm, and in turn
have become important aspects of the software engineering process, are either completely miss-
ing, or have not found a corresponding easy settlement in the context of actors. A main example
is given by the support for inheritance, which is still flawed by the inheritance anomaly prob-
lem [MY93] more than ten years after its first discovery [MS04]. A second example is given by
the absence of a well defined notion of type and related sub-typing relations for actors. To the
best of our knowledge, there is not strong or mature work that consider this issue. An exception
is given by the akka framework, which introduces the notion of typed actors [Gup12, Typa].
A typed actor in akka is given by a public interface – written in Java or Scala – and a con-
crete actor implementation. The interface is used to define the set of messages that an actor
implementing such an interface is able to understand. From the one side this is useful to check
programming errors related to message exchanges at compile time. On the other side this is
clearly a programming trick just to enable error checking, which does not address the issue of
typing and sub-typing at the conceptual and foundation levels. Questions such as “what does
it mean to define an actor sub-type?”, or “which kind of messages an actor sub-type is able to
understand?”, etc. still do not have a rigorous answer.

Secondly, from a conceptual viewpoint, being based on a pure reactivity principle [BGL98,
Kay69], actors – as objects as well – do not provide native means to effectively model and
structure the autonomous behavior of active entities, and in turn of an entire application. An
actor does something in response to the reception of a certain message. So, one is forced to

19

20 CHAPTER 2. BACKGROUND ON THE ACTOR MODEL

program the autonomous behavior of an active entity on a pure event-driven basis—i.e., on the
basis of the set of messages the active entity must be able to deal with.

Another issue, which is strictly related to the previous one, concerns the integration of
autonomous and reactive behaviors, which is in general a relevant problem in the context of
concurrent programming. A couple of proposals to solve this issue have been introduced in
literature in the context of actor-oriented programming [VCMDM09, HO08, HO09]. However,
we argue that they are not fully adequate to solve the problem. The same also applies for all the
programming abstractions and constructs described in Section 2.2. Indeed, the final objective
of these extensions is simply the management of complex chain of messages, thus, improving
the programming of the reactive part. A broader and more in depth discussion related to the
integration of autonomous and reactive behaviors will be described in detail in Section 7.3.1.

Finally, as often happens in computer science, the actor paradigm strives to provide a single
abstraction to model every component of a system: everything is an actor, i.e. an active element.
This has the merit of providing uniformity and simplicity. At the same time, the perspective in
which everything is an active, autonomous entity is not really always effective, at least from an
abstraction point of view. For instance – even if possible – it is not really natural to model as act-
ive entities either a shared bounded-buffer in producers/consumers architectures, a blackboard,
or a simple shared counter in concurrent programs. In traditional thread-based systems such en-
tities are designed as monitors, which are passive. More generally, we argue that in the context
of concurrent programs, the availability of first-class abstractions to effectively model shared-
memory avoiding interferences and related synchronization issues is still important today for
many problems like it was when monitors were devised.

To conclude this discussion, as well summarized by Mitchell in [Mit02]: “although the sim-
plicity of the actor model is appealing, the problems with message order, message delivery, and
coordination between sequences of concurrent actions also help us appreciate the programming
value of more complex concurrent languages”. So, getting back to the free lunch call we argue
that actors can be seen as a strong foundation layer, but giving finally solely asynchronous mes-
sage passing as unique concept, and so, not significantly enhancing the set of abstractions that
we can use to simplify the design and engineering of concurrent and distributed systems.

20

3
Background on Programming

Multi-Agent Systems

This chapter provides the fundamental background on agent and multi-agent systems, and par-
ticularly on state-of-the-art programming languages and technologies that have been introduced
for their programming and development. The overall structure of the chapter is organized on
the basis of the four main programming dimensions that have been introduced for the practical
development of MASs. In detail, this chapter is structured as follows:

• In Section 3.1 a brief overview of agent and multi-agent systems is provided.

• Agent models, architectures, theories, programming languages and frameworks focused
on the agent programming dimension are described in Section 3.2.

• The programming of the environment dimension, along with the main environment mod-
els and computational infrastructures introduced in the-state-of-the-art are presented in
Section 3.3.

• The programming of the interaction and organization dimensions and related communic-
ation and organizational models are discussed in Section 3.4.

3.1 Introduction
Multi-Agent Systems (MASs) are systems composed of multiple interacting computing ele-
ments, known as agents. An agent is a computer system that is situated in some environment,
and that is capable of autonomous actions in this environment in order to meet its design ob-
jectives [Woo97]. The main features of an agent are:

• Autonomy: agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state [Cas94].

• Situatedness: as already mentioned, agents are entities situated in some environment.
Agents are capable of sensing their environment (via sensors), and have a repertoire of

21

22 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

Figure 3.1: An agent in its environment [RN09]. The agent perceives sensory information from
the environment through its sensors – generating, if needed, internal percepts – and is able to
interact/inspect/affect the environment itself via a set of proper external/environment actions.

possible actions that they can perform (via effectors or actuators) in order to modify it
(see Figure 3.1).

• Pro-activeness: agents do not simply act in response to stimuli coming from their envir-
onment or other agents. They are able to decide for themselves what they need to do in
order to satisfy their design objectives.

• Social ability: agents interact with other agents (and possibly humans) via some kind of
agent-communication language [GK94].

• Reactivity: agents are able to react to both events coming from the environment and from
communications received from other agents, and respond in a timely fashion to them.

Multi-agent systems have been studied as a field in their own since about 1980, and the field
gained widespread recognition in the mids nineties. The research on MASs is not tied to a
single domain, since they seem to find currency in a host of different research domains [Woo09].
Some of the most important ones are: (i) (distributed) Artificial Intelligence (D)AI and Agent-
Oriented Software Engineering (AOSE), where theories, agent models/architectures and related
agent-oriented programming languages (APLs) and frameworks are defined with the purpose
of designing intelligent software entities, and finally intelligent software systems; (ii) social
science, where MASs are used as a tool to model and investigate the functioning of human

22

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 23

societies [GD94, Eps11]; (iii) game theory and economics, where agent-based theories, tech-
niques and tools are developed in order to study and predict forms of interaction and negoti-
ation among different parties, which may have different objectives [PW02, RZ94, NRTV07];
(iv) agent-based simulation, where models, theories and adequate software tools are studied and
developed in order to simulate the most disparate things [SCG98, AT07, BGJ11, VSMS12].

For what concerns this dissertation, we are mainly interested in the exploitation of agent
and multi-agent system as a programming paradigm for the development of intelligent soft-
ware systems. The idea of agent-oriented programming (AOP) was coined by Y. Sho-
ham [Sho93] as a new programming paradigm combining the use of mentalistic notions
(such as belief) for programming (individual) autonomous agents in a societal view of com-
putation. In the nineties, most of the work centered on a few agent models, architec-
tures and languages that had significant theoretical work but limited use in practice, and
mostly centered on developing individual agents whether for a multi-agent system context or
not [Tho95, Sho93, BFG+90, Fis94, LRL+97, DGLL00]. The work in this area in the two
thousands changed substantially this picture by producing many different APLs based on var-
ied underlying formalisms and inspired by various other programming paradigms. Furthermore,
many such languages were developed into serious programming approaches, with working plat-
forms and development tools (see Section 3.2). This led to some of these languages having now
growing user bases and being used in many AI and multi-agent systems university courses.

The important contribution of agent-oriented programming as a new paradigm was to
provide ways to help programmers to develop autonomous systems. For example, agent pro-
gramming languages typically have high-level programming constructs which facilitate (com-
pared to traditional programming languages) the development of systems that are continuously
running and reacting to events that characterize changes in the dynamic environments where
such autonomous systems usually operate. Not only agents need to take on new opportunities
or revise planned courses of action because of changes in the environment, agent programming
also facilitates programming agent behavior that is not only reactive but also pro-active in at-
tempting to achieve long-term goals. The features of agent programming also make it easier,
again compared to other paradigms, for programmers to ensure the agents behave in a way that
in the agents literature is referred to as “rational”. For example, if a course of action is taken in
order to achieve a particular goal (typically explicitly represented in the agent state), if the agent
realizes that the goal has not been achieved we would not expect the agent not to take further
actions to achieve that goal on behalf of its human designer, unless there is sufficient evidence
that the goal can no longer be achieved or is no longer needed.

Multi-agent systems are normally used to develop very complex systems, where not only
many autonomous entities are present, but they need to interact in complex ways and need
to have social structures and norms to regulate the overall social behavior that is expected
of them and, equally important, a shared environment can be a relevant and efficient source
of coordination means for autonomous agents. Accordingly, other researchers focused their
efforts in the study of social structures, interactions and environmental aspects of the devel-
opment of multi-agent systems. This has lead to the proliferation of what could appear to

23

24 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

be other (separate) programming paradigms, which are focused in one specific programming
dimension of MASs. These programming paradigms are: Organization-Oriented Program-
ming (OOP) [BHS07, PTCC99] to program the organization dimension, Interaction-Oriented
Programming (IOP) [Huh01] to program the interaction dimension, and finally Environment-
Oriented Programming (EOP) [RPV11, RPVO09] to program the environment dimension.

In the remainder of this background chapter, for each programming dimension, we present
the main models, programming languages and frameworks that have been developed in the
state-of-the-art.

3.2 Programming the Agent Dimension
Several agent models and architectures have been proposed over the years, many of them rooted
on logical theories of rational agency. Besides the firsts that have been introduced – firsts, from
a temporal point of view – and which have been already mentioned in the previous section, some
of the main ones are: the Belief Desire Intention (BDI) model [RG+95], the Knowledge Goals
and Plan (KGP) model [KMS+04], Minerva [LAP01], the Knowledge Abilities Results and
Opportunity (KARO) logic and theory [HLM94], and the Belief Obligations Intentions Desires
(BOID) architecture [BDH+01].

Among these, the BDI agent model is nowadays becoming more and more the reference
one used in state-of-the-art APLs for the development of intelligent agents. Accordingly, in the
remainder of this section first we provide a presentation of this model, which represents a key
part of the background for this dissertation—indeed: (i) it is the agent model used in both JaCa
(Chapter 4) and JaCaMo (Chapter 5), and (ii) it has been the starting point for the development
of the simpAL agent model Section 7.1.2. Then, we present some of the most relevant APLs in
the state-of-the-art, some of which not necessarily rooted on the BDI model.

3.2.1 The Belief Desire Intention Agent Model
The BDI model originated from studies on human behavior in the context of the Rational
Agency project at the Stanford Research Institute in the mid-eighties. The origins of the model
lie in the theory of human practical reasoning developed by the philosopher Michael Brat-
man [Bra87], which focuses particularly on the role of intentions in practical reasoning. The
conceptual framework of the BDI model was first presented in [BIP07], and then further im-
provements and contributions has been made by Rao and Georgeff [RG98, RG+95, GPP+99].

Following the BDI model, an agent is characterized by a mental state which is defined – not
surprisingly – on the basis of beliefs, desires and intentions. Roughly, these concepts can be
described as follows [BHW07]:

• Beliefs — are information the agent has about the world and other agents part of the MAS.
They can be considered analogous to the variables available in the context of classical
programing languages.

24

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 25

• Desires — are all the possible states of affairs that the agent might like to accomplish.
Having a desire, however, does not imply that an agent acts upon it: it is a potential
influencer of the agent’s actions. It is worth noting that it is perfectly reasonable for
a rational agent to have desires that are mutually incompatible with one another—i.e.,
desires can be considered as sort of options for an agent.

• Intentions — are the states of affairs that the agent has decided to bring about. Intentions
may be goals that are delegated to the agent, or may result from considering options.
Options that are selected become intentions. Therefore, we can imagine our agent starting
with some delegated goal, and then considering the possible options that are compatible
with this delegated goal; the options that it chooses are then intentions, which the agent
is committed to.

Practical Reasoning

How does an agent with beliefs, desires and intentions go from these to its actions? The answer
to this question is given by the practical reasoning. Practical reasoning is the decisional process
on top of which the functioning of a BDI agent is rooted. It can be defined as a reasoning process
directed toward actions.

The practical reasoning process is characterized by two distinct phases or activities: the
deliberation phase and the means-ends reasoning phase. During the deliberation phase the
agent decides from a set of available options which are the intentions it wants to achieve, on
the basis of its current representation of the world (expressed in terms of current beliefs, desires
and intentions). During the means-ends reasoning phase the agent decides how to achieve an
end (i.e., a chosen intention) using the available means (i.e., the actions it can perform in the
environment or the communicative actions that can be used to interact with other agents).

So, finally a BDI agent can be considered like a reactive planning system, whose computa-
tional behavior follows the practical reasoning, on the basis of the agent control loop described
in Figure 3.2: A brief description of the control loop follows. As it easy to suppose variables
B, D and I are introduced to represent respectively the agent’s beliefs, desires and intentions.
Firstly the agent gets new percepts either from the environment or from other agents through its
sensors (line 4). Then, the new obtained perceptual information is used, in conjunction with the
current beliefs, to obtain the new beliefs of the agent via the belief revision function (brf, line
5). Now the agent updates its own desires and intentions by exploiting the functions options
and filter (lines 6-7), then, using the plan function, (line 8) it searches for plans to achieve
the selected intentions. If all goes well, then the agent simply picks off each action in turn from
its plan and executes it, until the plan π is empty—i.e., all the actions in the plan have been
executed with success and the related intention achieved.

It is worth noting that, after executing an action from the plan (line 11), the agent: observes
again the environment (line 13), invokes the brf function to updates its beliefs (line 14), and,
if needed, it can also update the set of its desires and intentions (lines 16-17). So, after the
execution of each action and on the basis of its actual knowledge of the world, the agent has

25

26 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

Figure 3.2: The BDI Agent Control Loop [BHW07].

the opportunity to decide if continue to purse its current intentions or not. Such decision can
also lead to the premature termination of a plan and its related intention, which are no more
considered feasible (this check is performed by the function sound, line 19).

3.2.2 Agent-Oriented Programming Languages and Frameworks
In this sub-section we provide a brief survey of the main agent-oriented programming
languages and frameworks that have been introduced over the years in the state-of-

26

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 27

the-art [BBD+06]. Among the languages we consider: Jason [BHW07, BH06, Raf],
Agent Factory [RJOC11, Rem], CLAIM along with its distributed platform SyMPA [FSS05],
GOAL [Hin09], JACK [Age] and 2APL [DvRM05] / 3APL [Das08].

Jason [BHW07, BH06, Raf] — is a platform for the development of multi-agent systems that
incorporates a BDI-based agent-oriented programming language and a related Integrated Devel-
opment Environment (IDE). The language comes from an extended version of AgentSpeak(L), a
logic-based APL introduced by Rao in [Rao96], which has been later much extended in a series
of publications by Bordini, Hübner, and colleagues, so as to make it suitable as a practical agent
programming language.

Jason is available open-source under GNU LGPL from the Jason official website [Raf].
The interpreter has been developed in order to be modular and easily customizable. Indeed,
it is quite straightforward for MAS developers to implement their own customizations – e.g.,
custom belief base, custom belief-update and belief-retrieval functions, modifications to the
core functioning of the agent reasoning cycle, etc. – on top of an extensible architecture.

The Jason IDE provides a graphical interface for editing a multi-agent system configuration
file, as well as AgentSpeak code for the individual agents. Through the IDE, it is possible to
run and control the execution of multi-agent systems. The IDE also provides another tool,
called “Mind Inspector”, a sort of agent-oriented debugger which allows the user to inspect
agents’ internal states when the system is running in debugging mode.

The Agent Factory Framework [RJOC11, Rem] — is a cohesive framework for the devel-
opment and deployment of multi-agent systems. The development of the framework started in
the mid-nineties, but has gone through a significant redevelopment whereby several new ex-
tensions, revisions, and enhancements have been made. The first version of the Agent Factory
Agent Programming Language (AFAPL) was originally based on Agent-Oriented Programming
as first put forward by Shoham [Sho93], but was later revised and extended with BDI concepts,
such as beliefs and plans.

Today Agent Factory is an open framework for building agent-based systems, and as such,
does not enforce a single flavor of agent upon the developer. Instead, developers are free to
either use a pre-existing agent interpreter / architecture, or develop a custom solution that is
more suited to their specific needs. The framework provides a set of pre-written components
for building agent interpreters, together with a set of tools that can be easily adapted to differ-
ent APLs. Through this framework has been possible to rapidly prototype a range of differ-
ent APLs: (i) AFAPL2 a reimplementation of the original Agent Factory agent programming
language that is based on commitment rules; (ii) AF-AgentSpeak, an implementation of the
AgentSpeak language based on Jason; (iii) AF-TeleoReactive, an implementation of Nilsson’s
teleo-reactive programming model [Nil94]; (iv) AF-ASTR, an implementation of the integration
of AgentSpeak(L) with Teleo-Reactive Programs, known as AgentSpeak(TR).

The framework is distributed with an open-source license and provides a practical and

27

28 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

efficient approach to the development of intentional agent-oriented applications. This is
combined with a methodology, integrated development environment support, and a suite of
tools that aid the agent development process.

Computational Language for Autonomous, Intelligent and Mobile Agents (CLAIM) and
SyMPA [Sun05, FSS05, FSS03] — CLAIM is a high-level declarative agent-oriented program-
ming language. It is part of an unified framework called Himalaya [EFSS05] (Hierarchical
Intelligent Mobile Agents for building Large-scale and Adaptive sYstems based on Ambients).
It combines the main advantages of agent-oriented programming languages, for representing
cognitive aspects and reasoning, with those of concurrent languages based on process algebra,
for representing concurrency and agent mobility [BBD+06].

CLAIM is inspired by ambient calculus [CG98] and agents are hierarchically organized, thus
supporting the design of Mobile Multi Agent Systems (MMAS) – a set of connected hierarchies
of agents - to be deployed on a network of computers. Every agent (i.e., a node of a hierarchy)
contains cognitive elements (e.g., knowledge, goals, capabilities), processes, and sub-agents
and is also mobile as it can move within its hierarchy or to a remote one.

CLAIM comes along with a well defined operational semantics describing the multi-agent
system’s behavior, which has been presented in [SFS07]. As an MMAS within Himalaya is
deployed on a set of connected computers, the language CLAIM is supported by a distributed
platform called SyMPA [SFS04], which offers all the necessary mechanisms for the manage-
ment of agents, communication, mobility, security, fault-tolerance, and load balancing.

Goal-Oriented Agent Language (GOAL) [Hin09, Koe] — is a high-level language to program
rational agents that derive their choice of actions from their beliefs and goals. The language
provides a set of programming constructs that allow and facilitate the manipulation of an agent’s
beliefs and goals and to structure its decision-making. The beliefs and goals of a GOAL agent
are called its mental state. Various constraints are placed on the mental state of an agent, which
roughly correspond to constraints on their common sense counterparts. On top of the mental
attitudes a GOAL agent also has so-called action rules to guide the action selection mechanism.

The programming constructs available in the language have a well defined formal semantics,
which has been described in [Hin09]. The language comes with an integrated development
environment, which allows to edit and debug MASs written in GOAL.

JACK Intelligent Agents [Age] — is a commercial framework for developing multi-agent sys-
tems which has been developed by a company called Agent Oriented Software. JACK is based
on ideas of reactive planning systems resulting from the work on the BDI agent architecture and
is, in this respect, similar to hybrid languages such as Jason, 3APL / 2APL, and Jadex. How-
ever, instead of providing a logic-based language, JACK is an extension of Java, implementing
some features of logic languages such as logical variable. A number of syntactic constructs are
added to Java, allowing programmers to create plans and belief bases, all in a graphical manner

28

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 29

as JACK has a sophisticated IDE which provides a tool for such purpose. In JACK, plans can
be composed of reasoning methods and grouped into capabilities which, together, compose a
specific ability an agent is supposed to have, thus supporting a good degree of modularization.

Although JACK has no formal semantics, as a commercial platform, it has extensive
documentation and supporting tools. It has been used in a variety of industrial applications
as well as for research. For evaluation purposes, a free trial license can be obtained; more
information is available here [Age].

An Abstract Agent Programming Language (triple-a-p-l, 3APL) [DvRM05, Mehb] — is a
BDI-based programming language for implementing cognitive agents. The first version of 3APL
was designed by Hindriks et al. at Utrecht University [HDBVdHM99]. Since its initial design,
the 3APL programming language has been subject to continuous development [DvRM05]. One
of the main features of 3APL consists of programming constructs to implement an agent’s
mental attitudes as well as the deliberation process that manipulates them. In particular, 3APL
allows direct specification of mental attitudes such as beliefs, goals, plans, actions and reasoning
rules.

A dedicated IDE allows developers to load/edit 3APL programs that implement individual
agents, execute one or more agent programs in either a step-by-step or continuous fashion,
monitor the internal state of individual agents and monitor the exchange of messages through
the sniffer tool. The 3APL development environment, its user guide, and further documentation
can be found here [Mehb].

A Practical Agent Programming Language (double-a-p-l, 2APL) [Das08, Meha] — is a
BDI-based agent programming language, successor of 3APL. 2APL extends and modifies the
original version of 3APL in many different ways. While the original version of 3APL is ba-
sically a programming language for single agents, 2APL is designed to develop multi-agent
systems. 2APL includes all the 3APL programming constructs and adds new ones to implement
a set of agents, a set of external environments, the access relation between agents and environ-
ments, and a variety of different action types such as external actions, goal related actions, and
communication action.

The language comes along with two different IDEs. The first one is a standalone IDE, the
second instead is a basic Eclipse-based IDE built using the Xtext framework [Ite]. Both provide
the means to load, execute, and debug 2APL programs using different execution modes and
several debugging/observation tools.

Among the set of existing agent-oriented programming frameworks in the state-of-the-art, in
this background chapter we consider: JADE [BCG07, BPR99] and Jadex [PBL05].

Java Agent DEvelopment Framework (JADE) [BCG07, BPR99, Tel] — is a Java framework

29

30 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

for the development of distributed multi-agent systems. It represents an agent-oriented middle-
ware providing a set of available services and several graphical tools for debugging and testing.
One of the main objectives of the platform is to support interoperability by strictly adhering to
the FIPA [Foue] specifications concerning the platform architecture [Foub, Foud] as well as the
communication infrastructure [Fouc]. Moreover, JADE can be adapted to be used on devices
with limited resources such as Personal Digital Assistants (PDAs) and mobile phones. JADE
has been widely used over the last years by many academic and industrial organizations, ranging
from tutorials for teaching support in agent-related university courses to industrial prototyping.

The JADE platform is released as open-source software, distributed by TILAB (Telecom
Italia LABoratories) under the terms of the LGPL license and can be obtained here [Tel].

Jadex [PBL05, Aleb] — is a software framework for the creation of goal-oriented agents fol-
lowing the BDI model. The framework is realized as a rational agent layer that sits on top of the
JADE middleware agent infrastructure, and supports agent development with well established
technologies such as Java and XML. The Jadex reasoning engine introducing new concepts
such as explicit goals and goal deliberation mechanisms (see e.g. [BPML05]), making results
from goal-oriented analysis and design methods more easily transferable to the implementation
phase.

Jadex has been used to build applications in different domains such as simulation, schedul-
ing, and mobile computing. The Jadex platform, developed at the Distributed Systems and
Information Systems group at the University of Hamburg, is freely available under the LGPL
license and can be downloaded from here [Aleb]. Besides the framework and additional de-
velopment tools, the distribution contains an introductory tutorial, a user guide, and several
illustrative application examples with source code.

3.3 Programming the Environment Dimension
As introduced in Section 3.1, the notion of environment is a primary concept in the agent liter-
ature, being the place - either virtual or physical - where agents are situated, which agents are
capable of sensing through some kind of sensors, and modifying through a repertoire of actions
provided by some kind of effectors (Figure 3.1).

Actually two main different perspectives can be adopted when defining the concept of en-
vironment in MASs: a classical one born in an artificial intelligence context, and a more recent
one grown in the context of agent-oriented software engineering [OVDPFB03].

In the classical AI view [RN09], the notion of environment is used to identify the external
world (with respect to the system, being a single agent or a set of agents) that is perceived
and acted upon by the agents so as to fulfill their tasks. A canonical representation of this
perspective is shown in Figure 3.3 (adapted from [Jen01]). There, the environment is depicted
as the context shared by multiple agents, each one having some kind of sphere of influence
on it, i.e. that portion that they are able to (partially) control, and that could overlap with

30

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 31

ENVIRONMENT

Sphere of
visibility and
influence

MAS
organizational
relationship

interactions

agent

Figure 3.3: The canonical view of MAS as defined in [Jen01].

other agents sphere of influencemeaning that the environment is shared and could be jointly
controlled. This first perspective is reflected by existing agent programming languages and
platforms for programming MASs which typically provide some kind of API to define agent
actions and perceptions implementing the interaction with some kind of external system. Quite
frequently, the API also includes some kind of support for defining the structure and behavior
of the environment - besides the interface - so as to set up simulations of the overall system. So,
in this canonical view the environment is basically conceived as a black box, defining the set of
the possible agent moves and generating perceptions accordingly.

Besides this perspective, a new one has been introduced by more recent works that investig-
ated the important role that the environment can play in MAS engineering [WOO07]: by being
the enabler and mediator of agent interactions, the environment is no longer just the target of
agent actions and the container and generator of agent percepts, but a part of the MAS that can
be suitably designed so as to improve the overall development of the system. So, the envir-
onment should be conceived as something that can be designed to be a good place for agents
to live and work in. In other words, the idea is to design worlds in the agents’ world aimed
at the agents use. We refer to such a kind of world as work environment [RPVO09]. By re-
ferring to the MAS representation previously seen, work environments could be represented

31

32 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

Figure 3.4: First level of support: the environment enables agents to access the deployment
context.

Figure 3.5: Second level of support: the environment bridges the conceptual gap between the
agent abstraction and low-level details of the deployment context.

Figure 3.6: Third level of support, the environment : (i) regulates the access to shared resources
and (ii) mediates interaction between agents.

32

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 33

ENVIRONMENT

Sphere of
visibility and
influence

WORK ENVIRONMENT

MAS

Figure 3.7: A MAS view enriched with a work environment layer.

as an extra computational layer within the MAS, conceptually placed between agents and the
external environment, and mediating agent activities and interactions with the external environ-
ment (see Figure 3.7). So, the environment can be defined from the MAS and MAS engineers
point of view as endogenous, being part of the software system to be designed—in contrast to
classic AI environments which can be defined, dually, as exogenous.

The responsibilities and functionalities of endogenous environments can be summarized by
the following three different levels of support, identified in [WOO07]: (i) a basic level (Fig-
ure 3.4), where the environment is exploited to simply enable agents to access the deployment
context, i.e. the given external hardware/software resources which the MAS interacts with
(sensors and actuators, a printer, a network, a database, a Web service, etc.); (ii) abstraction
level (Figure 3.5), exploiting an environment abstraction layer to bridge the conceptual gap
between the agent abstraction and low level details of the deployment context, hiding such low
level aspects to the agent programmer; and (iii) interaction-mediation level (Figure 3.6), where
the environment is exploited to both regulate the access to shared resources, and mediate the
interaction between agents. These levels represent different degrees of functionality that agents
can use to achieve their goals.

33

34 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

3.3.1 Programming the Environment Taking the AI Perspective
As stated in the previous section, by adopting the classical AI perspective, the environment
is seen as a sort of black box defining the set of sensory information agents can perceive and
the actions they can use to inspect/affect it. So, in this case programming a MAS environment
basically means define the black box’s interface in terms of actions and perceptions. This seems
the most natural choice when dealing with either physically or simulated environment that are
outside the programmers control (Figure 3.8).

Figure 3.8: Abstract representation of the agents’ interaction with exogenous environment.

Then, when developing a MAS, developers also program the environment API by defining: (i)
the set of agents’ external actions along with their computational behavior, and (ii) the logic
behind the generation of perceptual information. Typically, such API is realized as a mono-
lithic block by extending a predefined “environment” class, which is programmed in some well
known mainstream object-oriented programming (OOP) language such as Java: (i) methods are
used to implement agents’ external actions—at runtime method invocation is meant to express
the computational behavior associated to the external actions executed by the agents, (ii) class
fields are used for storing the environment’s state, and finally (iii) other specific methods are

34

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 35

Figure 3.9: Environment definition in Jason for the “agents on MARS” example.

Figure 3.10: Abstract architecture of the Environment Interface Standard (EIS) in action, taken
from [BHD11].

used for generating percepts. This is the standard approach adopted by default by a big majority
of state-of-the-art APLs such as Jason, GOAL, 2APL, etc.

To make a concrete example, Figure 3.9 shows the definition of the environment for the
“agents on MARS” scenario, which is one of the basic examples available in the standard Jason

35

36 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

distribution. In Jason, to define a custom MAS environment, one needs to override three basic
methods provided by the base jason.environment.Environment class:

• init — this is the method that is invoked when the MAS is booted in order to create the
initial configuration of the environment.

• executeAction — this is method that defines the computational behavior of all the
agents’ external actions. It’s here that developers have to introduce the implementation of
the external actions they want to make available to the agents. In the example five different
external actions are provide by the MARS environment: next, move towards, pick,
drop and burn. External actions execution works as follow: the Jason interpreter stores
in an internal buffer the requests related to the execution of external actions and then, at
each cycle, the method executeAction is invoked by providing in input the request
on top of the buffer.

• updatePercepts — this is the method that defines how the environment state evolves
cycle by cycle. It is possible to see how in Figure 3.9 different percepts are generated on
the basis of the current position of the agents inside the simulated environment.

For what concerns the programming of environments rooted on the AI perspective, it is worth
mentioning the EIS (Environment Interface Standard) initiative [BHD11], whose aim is to
define a standard interface to allow agents developed using different programming languages
to share the same environment, independently of the specific model and technology adopted
for realizing it (Figure 3.10). So, agent platforms that support the interface can connect to any
environment that implements it. This significantly reduces the efforts required by agent and
environment programmers, as the environment code needed to implement the interface needs
to be written only once [BHD11]. EIS works as a bridge mediating the interaction among the
agents and the environment. To this end, the bridge: (i) introduces the notion of agent body
on the agent side, (ii) introduces the notion of controllable entity on the environment side, and
finally (iii) makes it possible to control environment entities by the agents via the interface.

3.3.2 Programming the Environment Taking a Software Engineering Per-
spective

By taking the software engineering perspective the environment is no longer some external com-
ponent or black-box completely out of the control of MAS programmers (AI case/perspective),
it becomes instead endogenous, part of the MAS itself. This perspective has led to the birth of
a new research field in the MAS community, whose results have been published as proceeding
of a workshop series named E4MAS [WPM05, WPM06, WPM07]. In these workshops several
themes and issues were raised. The main ones were related to: theories, models, mechanisms,
architectures and infrastructures for endogenous environments. The interested reader can find
in [VHR+07] a good survey of all these works. Instead, for what concerns the construction of

36

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 37

this thesis’s background we will only consider those works focusing on the study of the role of
the environment abstraction for MASs programming.

Considering endogenous MAS environments, the basic idea behind the programming of a
multi-agent system can now be summarized by the following equation:

programming MAS = programming Agents + programming Environment

where implicitly we refer to software MASs and endogenous environments. In this view, the
environment becomes a new programming dimension, orthogonal to – but strongly integrated
with – the agent one. Orthogonality means separation of concerns: on the one side, agents are
the basic abstraction to design and program the autonomous parts of the software system, i.e.
those parts that are designed to fulfill some goal/task – either individual or collective – encapsu-
lating the logic and the control of their action. On the other side, the environment can be used to
design and program the computational part of the system that is functional to agents’ work, i.e.
that agents can dynamically access and use to exploit some kind of functionality, and possibly
adapt to better fit their actual needs. As a simple example, we consider the implementation
inside a multi-agent program of a blackboard as a mechanism to enable uncoupled communic-
ation among agents. Without the above-mentioned separation of concerns, a blackboard must
be implemented as an agent, creating then a mismatch between the design and implementation,
since a blackboard is typically not designed to fulfill pro-actively and autonomously some goal,
but rather to be used by other agents to communicate and coordinate. By adopting environment
programming, the blackboard is implemented as an environment resource, accessed by agents
in terms of actions and percepts. The example can be generalized, considering any possible
computational entity properly designed to help agent work and interaction.

In the remainder of this section we provide a brief overview of the main frame-
works, platforms and infrastructures that have been introduced in the state-of-the-
art for programming endogenous environments. A first main example is given by
CArtAgO [RPV11, RPVO09, RVO07]. CArtAgO (Common ARtifact infrastructure for
AGent Open environments) is a framework and infrastructure for programming and executing
endogenous artifact-based environments for MAS. Due to its relevance for this dissertation
– CArtAgO is the environment framework exploited both in JaCa (Chapter 4) and JaCaMo
(Chapter 5) – CArtAgO and its underlying conceptual model will be presented in the next two
sub-sections. The other environment frameworks and platforms that we describe here are:
GOLEM [BS08], MadKit [GF01], AGRE / AGREEN / MASQ [FMBB04, SFT09].

GOLEM [BS08] — is a logic-based framework that allows for representing an agent environ-
ment declaratively, as a composite structure that evolves over time, including two main classes
of entities – agents and objects – organized in containers. Interactions between these entit-
ies inside a container are specified in term of events whose occurrence is governed by a set
of physical laws specifying the possible evolutions of the agents’ environment, including how
these evolutions are perceived by agents and affect objects and other agents in the environment.

37

38 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

GOLEM uses a particular architecture for objects, which are described in terms of the perceived
affordances—i.e., perceivable attributes of the object, and possible actions available to interact
with that particular object [BS08].

The framework allows the construction of distributed environments by spreading differ-
ent GOLEM containers over a network. To allow a container’s affordances to be discovered
within a distributed environment, the environment’s object representations are translated in
WSMO [RKL+05] ontologies and concepts.

MadKit [GF01] — has been one of the first general-purpose Java-based framework for develop-
ing multi-agent systems, implementing the influence-reaction model introduced by Ferber and
Müller [FM96]. Even if not explicitly introducing a computational and programming model for
the environment, in practice the framework allows for programming the environment in terms of
objects embedding some computational behavior. Actually, this programming support has been
exploited in particular for defining the behavior of the environment in MAS-based simulations,
implemented on top of MadKit.

MadKit supports the realization of distributed MASs by manually distributing and installing
the MadKit core kernel in the interested network nodes. Then, the platform provides services
such as distributed message passing, agent migration and agent monitoring, which are imple-
mented via dedicated platform agent.

AGRE / AGREEN / MASQ [FMBB04, SFT09] — these three platforms are strongly related.
The first to be introduced has been AGRE. It proposes the integrating of the AGR (Agent-
Group-Role) organizational model with an explicit notion of environment, which is used to
represent both the physical and social part of agents interactions. Then, with the introduction of
AGREEN and MASQ, AGRE has been extended toward a unified representation for physical,
social and institutional environments based on the MadKit platform. The integrated platform is
rooted on a model that defines four perspectives over an agent-based interaction according to
two axes: internal/external and individual/collective which govern the interaction among agents,
environments, organizations and institutions [SFT09].

In MASQ, distributed MASs can be developed by exploiting the functionalities of the un-
derlying MadKit platform.

The A&A Meta-Model

Agents & Artifacts (A&A) is a conceptual (or meta) model introducing the notions of arti-
fact and workspace, along with agents, as first-class abstractions for modeling and engineer-
ing multi-agent systems [ORV08, RVO08]. Its conceptual foundations lay upon theories and
results coming from computational sciences as well as from organizational and cognitive sci-
ences [CC95], psychology, Computer Supported Cooperative Work (CSCW) [Nar96], anthro-
pology [PRTG00, WHSA05], and ethology [Hew93].

38

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 39

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive
observe

Manual

has

consult

link

create
dispose
link

join
quit

Figure 3.11: Main concepts of the A&A meta-model, here expressed in UML-like notation.

However, the main inspiration of A&A comes from Activity Theory [Nar96] – a psycho-
sociological conceptual approach born in the Soviet Union at the beginning of the 20th century,
further developed in northern Europe in particular – today, a main reference for HCI (Human
Computer Interaction) and CSCW contexts. One of the main concepts put forward by Activity
Theory – along with Distributed Cognition and other movements within cognitive science – is
that, in human societies, properly designed artifacts and tools play a fundamental (mediation)
role in coping with the scaling up of complexity in human activities, in particular when social
activities are concerned, by simplifying the execution of tasks, improving problem-solving cap-
abilities, and enabling the efficient coordination and cooperation in social contexts [Nor91]. In
Activity Theory, the concept of tool is broad enough to embrace both technical tools, intended
to manipulate physical objects (e.g., a hammer), and psychological tools, used by humans to
influence other people or even themselves (e.g., the multiplication table or a calendar).

The A&A conceptual framework brings these ideas in the context of multi-agent systems, in
particular for designing and programming complex software systems based on MAS [ORV08].
According to this, a MAS is conceived, designed and developed in terms of an ensemble of
agents that play together within a common working environment not only by communicating
through some high-level Agent Communication Language (ACL) (see Section 3.4), but also
co-constructing and co-using using different kinds of artifacts organized in workspaces (see
Figure 3.12 for an abstract representation of an A&A working environment, Figure 3.11 for an
overview of the main concepts that characterize it). The environment is conceived as a dynamic

39

40 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

WHITEBOARD

ARCHIVE

COM. CHANNEL

TASK SCHEDULER

RESOURCE

CLOCK BAKERY
workspace

workers can join
dynamically the workspace

Figure 3.12: A metaphorical representation of a MAS according to the A&A meta-model.

set of computational entities called artifacts, representing in general resources and tools that
agents working in the same environment can share and exploit. The overall set of artifacts can
be organized in one or multiple workspaces, possibly distributed in different network nodes. A
workspace represents a place, the locus of one or multiple activities involving a set of agents
and artifacts.

From the MAS designer viewpoint, the notion of artifact is a first-class abstraction, the
basic module to structure and organize the environment, providing a general-purpose program-
ming and computational model to shape the functionalities available to agents. From the agent
viewpoint, artifacts are the first-class entities structuring, from a functional point of view, the
computational world where they are situated and that they can create, share, use, observe at
runtime.

To make its functionalities available and exploitable by agents, an artifact provides a usage
interface composed by a set of operations and observable properties (see Figure 3.13). Oper-
ations represent computational processes – possibly long-term – executed inside artifacts, that
can be triggered by agents or other artifacts. Observable properties represent state variables

40

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 41

UIControl

UIControl

...

ObsProp

ObsProp

...

ARTIFACT
MANUAL

OBSERVABLE
EVENTS
GENERATION

<NAME,PARAMS>

OPERATION X

LINK
INTERFACE

OPERATION Y

OBSERVABLE
PROPERTIES

USAGE
INTERFACE

USAGE INTERFACE
CONTROL

<NAME,VALUE>
OBS PROPERTY

Figure 3.13: The abstract representation of an artifact in the A&A meta-model. In evidence the
usage interface – i.e., artifact’s operations and observable properties – the link interface and the
manual.

whose value can be perceived by agents that are observing the artifact (see Figure 3.13); the
value of an observable property can change dynamically, as result of operation execution. The
execution of an operation can generate also signals, to be perceived by agents as well: dif-
ferently from observable properties, signals are useful to represent non-persistent observable
events occurred inside the artifact, carrying some kind of information. Besides the observable
state, artifacts can have also an hidden state, which can be necessary to implement artifact
functionalities.

From an agent viewpoint, artifact operations represent external actions provided to agents
by the environment: this is a main aspect of the model. So in artifact-based environments the
repertoire of external actions available to an agent – besides those related to direct commu-
nication – is defined by the set of artifacts that populate the environment. This implies that
the actions repertoire can be dynamic, since the set of artifacts can be changed dynamically

41

42 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

by agents themselves, instantiating new artifacts or disposing existing artifacts. Observable
properties and events constitute instead agent percepts.

As a principle of composition, artifacts can be linked together so as to enable one artifact to
trigger the execution of operations over another – possibly distributed – linked artifact. To this
purpose, an artifact can expose a link interface which, analogously to the usage interface for
agents, includes the set of operations that can be executed by other artifacts, once the artifacts
have been linked together by agents.

Finally, an artifact can be equipped with a manual, a machine-readable document to be con-
sulted by agents, containing a description of the functionalities provided by the artifact and how
to exploit such functionalities (that is, artifact operating instructions [VRO06]). Such a feature
has been conceived in particular for open systems composed by intelligent agents that dynamic-
ally decide which artifacts to use according to their goals and dynamically discover how to use
them. Actually, the notion of manual can be extended from artifacts to workspaces [RPV09]:
in that case manuals may contain the description of usage protocols that can involve multiple
kinds and instances of artifacts.

CArtAgO Technology

CArtAgO (Common ARtifact infrastructure for AGent Open environments) is a framework
and infrastructure for programming and executing artifact-based environments for MASs (Fig-
ure 3.14), implementing the A&A conceptual model described in the previous section. It has
been conceived so as to be orthogonal to the agent programming dimension, so it is – poten-
tially – integrable with any existing agent programming language and platform. In detail, the
platform includes:

• A Java-based API for programming artifacts, for defining (programming) new types of
artifacts following the A&A programming model.

• An agent API on the agent side for integrating agent-oriented programming languages
to CArtAgO work environments. This API provides the means to exploit all the actions
required for creating and interacting with artifacts, managing and joining both local and
remote workspaces, etc.

• A runtime environment and related tools, supporting the distribution and execution of
work environments, managing workspace and artifact life cycles.

CArtAgO is an open-source technology implemented on top of the Java platform and released
under GNU LGPL license. The full sources are freely available for download and modifications
from the CArtAgO official website [Alea].

Full details about the programming of endogenous environment in CArtAgO are presented
in Section 4.2.2.

42

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 43

Figure 3.14: A layered representation of a MAS in execution on top of CArtAgO.

3.4 Programming the Organization and Interaction Dimen-
sions

As introduced in Section 3.1, a key feature of agents is their social ability—i.e., their capability
to communicate with other agents in order to exchange information, delegate the achievement
of goals and tasks, take part in negotiation and interaction protocols, etc. Proper models and
programming abstractions are needed in order to effectively program MASs in which agents
need to interact in many complex ways, both via direct communication and possibly exploit-
ing different social structures – i.e., organizations, electronic institutions, etc. – and norms to
regulate the overall social behavior.

Accordingly, over the years there has been a proliferation of research work aiming at provid-
ing answers to these issues. In the remainder of this section we present a survey of the most
relevant work in the state-of-the-art that address the aforementioned themes, separating them
in work that address the programming of either the organization dimension or the interaction
dimension of MASs.

43

44 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

3.4.1 Programming the Interaction Dimension
In multi-agent systems communication between agents is typically managed by using Agent
Communication Languages (ACLs) [KSN00, LFP99a], which are based on speech-act theory,
in particular the work of Austin [AUS75] and Searle [Sea69]. Speech-act theory starts from
the principle that language is action—i.e., a rational agent makes an utterance in an attempt to
change the state of the world, in the same way that an agent performs physical actions to change
the state of the world. What distinguishes speech acts from other (non-speech) actions is that
the domain of a speech act – i.e., the part of the world that the agent wishes to modify through
the performance of the act – is typically limited to the mental state(s) of the hearer(s) of the
utterance.

Speech acts are generally classified according to their illocutionary force – the type of the
utterance (e.g., inform/tell, ask, achieve etc.). In natural language, illocutionary forces are
associated with utterances (or locutionary acts). The perlocutionary force represents instead
what the speaker of the utterance is attempting to obtain by performing the act. In making a
statement such as “open the door”, the perlocutionary force will generally be the state of affairs
that the speaker hopes to bring about by making the utterance; of course, the actual effects of
an utterance will be beyond the control of the speaker.

In the remainder of this sub-section are briefly described the two main ACLs in the
state-of-the-art: KQML [FFMM94] and FIPA ACL [Fouc].

Knowledge Query and Manipulation Language (KQML) [FFMM94] — was the first at-
tempt to define a practical agent communication language that included speech act-based com-
munication as considered in the distributed artificial intelligence literature. Conceptually, it is
possible to identify three layers in a KQML message: content, communication, and message.
The content layer bears the actual content of the message in the program’s own representation
language (KQML can carry any custom representation language). The communication layer
encodes a set of features to the message that describe the lower-level communication paramet-
ers, such as the identity of the sender and recipient, and a unique identifier associated with the
communication. Finally the message layer is the core of KQML: it encodes a message that one
agent would like to transmit to another. This layer determines the kinds of interactions one can
have with a KQML-speaking agent, by defining a set of available performatives.

The performative indicates whether the message sent by a sender S to a receiver R is an
assertion, a query, a command, or any other of a set of known performatives. Some of the most
important performatives are : (i) tell, used by S with the intention of changing (adding/up-
dating) a belief to R’s belief base; (ii) achieve, used by S with the intention of delegating to R
the achievement of a new goal; (iii) ask-one, used by S to ask R the current value of a certain
belief. A concrete example of KQML message follows:

1 (ask-one
2 :content (PRICE Google ?price)
3 :receiver stock-server

44

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 45

4 :language LProlog
5 :ontology NYSE-TICKS
6)

With this message the sender is asking about the current price of Google’s stock using the
ask-one performative. The various components of the message represent its attributes:
(i) :content specifies the message content—in this case, the content simply asks for the
price of Google’s stock; (ii) :receiver specifies the intended recipient of the message; (iii)
:language specifies that the language in which the content is expressed is called LProlog
(the recipient is assumed to understand LProlog), and finally (iv) :ontology defines the
terminology used in the message.

KQML has been used as the communication language in several agent-oriented
technologies—Jason is a main example.

FIPA Agent Communication Language (FIPA ACL) [Fouc] — the Foundation for Intelligent
Physical Agents (FIPA) [Foue] is an international organization that aims to develop a set of
generic agent standards with the contribution of several parties involved in agent technology.
In particular, the FIPA standard for ACL attempts to identify the practical components of inter-
agent communication and cooperation and define a concise formal semantics and supporting
communication protocols. FIPA ACL, like KQML, is based on speech act theory: messages are
actions or communicative acts, as they are intended to perform some action by virtue of being
sent. The FIPA ACL specification consists of a set of message types and the description of their
pragmatics—i.e., the effects on the mental attitudes of the sender and receiver agents.

The specification describes every communicative act with both a narrative form and a formal
semantics based on modal logic. It also provides the normative description of a set of high-level
interaction protocols, including requesting an action, contract net, and several kinds of auctions.
Some of the most important communicative actions available are: (i) request, to request a
receiver to perform some action; (ii) inform, to inform a receiver that a given proposition is
true; (iii) cfp, to make a cal for proposals to perform a given action; (iv) accept-proposal,
to accept a previously submitted proposal.

The FIPA ACL specification document claims that FIPA ACL (like KQML) does not make
any commitment to a particular content language. This claim holds true for most primitives.
However, to understand and process some FIPA ACL primitives, receiving agents must have
some understanding of Semantic Language, or SL.

Several APLs and agent-oriented frameworks use FIPA ACL as the reference communica-
tion language, by exploiting under the hood the JADE platform, which provides the reference
FIPA ACL compliant implementation. In detail these languages and frameworks are: GOAL,
3APL/2APL, Jadex.

Over the years, some limitations have been advocated to agent communication lan-
guages [Sin98]—e.g., too focused on the single agent perspective, lack of a clear and effect-

45

46 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

ive formal semantics, poor support for interoperability among agents from different vendors,
etc. Accordingly, researchers focused their efforts to push for a conceptual shift in the study
of agent interactions, moving from the individual agent perspective to a more social one. This
has lead to the definition of advanced forms of interaction protocols, also able to take into the
account: the social context in which a certain communication takes place, the role an agent
is playing inside a protocol, the set of commitments or obligations associated to a particu-
lar role, and many other aspects. For further details, the interested reader can refer to these
works [Huh01, Sin96, YS02, BBM10, CS11, Sin11].

3.4.2 Programming the Organization Dimension
The organization of a multi-agent system is the collection of roles, relationships, and authority
structures which govern its behavior. All multi-agent systems possess some or all of these
characteristics and therefore all have some form of organization, although it may be implicit and
informal. Just as with human organizations, such agent organizations guide how the members
of the population interact with one another, not necessarily on a moment-by-moment basis, but
over the potentially long-term course of a particular goal or set of goals [HL04]. This guidance
might influence authority relationships, data flow, resource allocation, coordination patterns or
any number of other system characteristics.

An organization can help groups of simple agents exhibit complex behaviors and help soph-
isticated agents reduce the complexity of their reasoning. Implicit in this concept is the assump-
tion that the organization serves some purpose—i.e., that the shape, size and characteristics of
the organizational structure can affect the behavior of the system. Organizations can be used
to limit the scope of interactions, provide strength in numbers, reduce or manage uncertainty,
reduce or explicitly increase redundancy or formalize high-level goals which no single agent
may be aware of. At the same time, organizations can also adversely affect computational or
communication overhead, reduce overall flexibility or reactivity, and add an additional layer of
complexity to the system. So, the space of organizational options must be mapped – e.g., the
different ways to redistribute agents’ goal, constraint agent communications, etc. – and their
relative benefits and costs understood [HL04].

A wide range of organizational models and related programming frameworks and infra-
structures have emerged, each with different strengths and weaknesses. Here we provide a brief
survey of the most relevant ones that have been introduced in the state-of-the-art. In particular
we will focus on M OISE – i.e., the organizational model adopted in JaCaMo (Chapter 5) –
which will be described in the next sub-section. Moreover, in the remainder of this sub-section
we consider two of the main other organizational models and infrastructures that have been
proposed: OperA [DDM04] and 2OPL [DGMT09].

Organization Oriented Programming Language (double-o-p-l, 2OPL) [DGMT09] — is a
norm-based language that allows the programming of multi-agent organizations in terms of so-
cial concepts such as norms and sanctions, monitor the actions performed by individual agents,

46

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 47

evaluate their effects, and impose sanctions if necessary. 2OPL is meant to be exploited in syn-
ergy with agent programming languages—2APL in particular. So far, the work has been given
solid theoretical foundations but lacks a clear description of how the approach integrates with
the agent level from a practical programming point of view [BBH+11].

2OPL makes distinction between the facts by which the environment is described and facts
by which institutional concepts such as a violation of norms are described. More specifically,
the environment where agents perform their actions is described with brute facts, whereas the
institutional concepts such as captured violations are described with institutional facts. A 2OPL
organization is defined by: (i) facts, referring to the brute facts; (ii) effects, which describe en-
vironment’s modifications related to the actions performed by the agents; (iii) counts-as rules,
which ascribe institutional facts (e.g., a violation has occurred); and (iv) sanctions rules, which
determine which brute facts will be brought about by the system as a consequence of the viol-
ation of some normative fact. The institutional facts instead are derived by the organizational
rules from the brute facts when the organization is running. They are never manually pro-
grammed beforehand by the organization programmer. Therefore, 2OPL organization model
gathers all the organizational and environmental information under five components, and every
component is either a collection of facts or a collection of rules. This information is used in a
control cycle to evaluate and manage every agent action.

In 2OPL, norm violations can be handled in two ways. Regimentation is making the
violation of norms impossible for agents. It means blocking the action that causes a regimented
violation completely. Enforcement is allowing the violation of norms first and then sanctioning
the actors of the violation. While regimentation makes agents less autonomous, enforcement
allows agents to get outside the boundaries of norms on their own will. It is not always possible
to use one instead of the other. They must both be employed carefully in order to preserve the
autonomy of agents and make them work together at the same time.

OperA [DDM04] — is a model for organizations that supports individual initiative and col-
laboration while prescribing a formal structure for organizational processes. The OperA model
integrates a top-down specification of society objectives and global structure, with a dynamic
fulfillment of roles and interactions by participants. The model separates the description of the
structure and global behavior of the domain from the specification of the individual entities that
populate the domain. On the one hand, coordination and interaction in multi-agent systems
are described in the context of the actions and mental states of individual agents. On the other
hand, society models designed from an organizational perspective reflect the desired behavior
of an agent society, as determined by the society owners. Once agents populate the society,
their own goals and behavior will affect the overall society behavior, that is, such social order
as envisioned by the society designer is in reality no more than conceptual; abstract behavior
seldom is realized exactly in practice [DDM04].

The OperA framework consists of three interrelated models. The organizational structure
of the society, as intended by the organizational stakeholders, is described in the organizational
model (OM). The way interaction occurs in a society depends on the aims and characteristics

47

48 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

of the application, and determines the way in which roles are related with each other, and
how role’s goals and norms are “passed” between related roles. The agent population of an
OM is specified in the social model (SM) in terms of social contracts that make explicit the
commitments regulating the enactment of roles by individual agents. Social contracts describe
the capabilities and responsibilities of an agent within the society, that is the desired way that
an agent will fulfill its role(s). Finally, given an agent population for a society, the interaction
model (IM) describes possible interactions between agents.

In order to support developers in designing and maintaining organization models, an
organization-oriented development environment named OperettA [OD08] is provided.

Programming Organizations in Moise

M OISE provides both an organizational model [HSB07], and a concrete framework/infrastruc-
ture for programming and executing MASs organizations [HBKR10]. The M OISE organiza-
tional model explicitly decomposes the specification of a multi-agent system organization into
structural, functional, and deontic dimensions (Figure 3.15). The structural dimension specifies
the roles, groups, and links of the organization. The definition of roles states that when an agent
decides to play some role in a group, it is accepting some behavioral constraints related to this
role. The functional dimension specifies how the global collective goals should be achieved,
i.e. how these goals are decomposed (in global plans), grouped in coherent sets (by missions)
to be distributed to the agents. The decomposition of global goals results in a goal-tree, called
scheme, where the leaf-goals can be achieved individually by the agents. The deontic dimension
is added in order to bind the structural dimension with the functional one by the specification of
the roles’ permissions and obligations for missions.

As an illustrative example of an organization specified using M OISE, we consider agents
that aim at writing a paper and therefore have an organizational specification to help them col-
laborate. The structure of this organization has only one group (wpgroup) with two roles
(editor and writer) that inherit all the properties defined for the role author. The cardin-
alities and links of this group are specified using the M OISE notation [HSB07] in Figure 3.16
(a): the group wpgroup can have from one to five agents playing writer and exactly one
playing editor; the editor has authority over writer and every agent playing author
(and by inheritance everyone playing writer or editor) has the possibility to communicate
with every agent playing author (there is a communication link from author to author).
In this example, the editor and the author roles are not compatible. To be compatible, a
compatibility relation must be explicitly added in the specification.

To coordinate the achievement of the goal of writing a paper, a scheme is defined in the
functional specification of the organization (Figure 3.16 (b)). In this scheme, a draft version of
the paper has to be initially defined (identified by the goal fdv in Figure 3.16 (b)). This goal is
decomposed into three sub-goals: write a title (wtitle), an abstract (wabstract), and the
section titles (wsectitle). The agents then have to “fill” the paper’s sections to get a submis-

48

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 49

sion version of the paper (identified by the goal sv). The goals of this scheme are distributed in
three missions which have specific cardinalities (Figure 3.16 (c)): the mission mMan is for the
general management of the process (one and only one agent can commit to it), mission mCol
is for the collaboration in writing the paper’s content (from one to five agents can commit to it),
and mission mBib is for getting the references for the paper (one and only one agent can com-
mit to it). A mission defines all goals an agent commits to when participating in the execution of
a scheme, for example, a commitment to the mission mMan is indeed a commitment to achieve
four goals of the scheme. Goals without an assigned mission are satisfied by the achievement
of their subgoals.

The deontic relation from roles to missions is specified in Figure 3.16 (d). For example,
any agent playing the role editor is permitted to commit to the mission mMan, while instead
agents playing the role writer are obliged to commit to mission mMan and mBib, following
the designated cardinalities.

The specification of an organization is written in a suitable language [Hüb03], that the agents
are supposed to interpret. The runtime execution, functioning and evolution of the organization
is managed by a dedicate organizational infrastructure [HBKR10].

Figure 3.15: An abstract representation of a M OISE organization with in evidence the func-
tional, structural and deontic dimensions [HSB07].

49

50 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

Figure 3.16: Graphical representation of the organizational specification for the writing paper
example: (a) structural specification, (b) functional specification, (c) mission cardinalities (part
of functional specification), (d) deontic specification, (e) legend for the symbols used in the
structural specification.

3.5 Concluding Remarks

As introduced in Section 3.1, at least four separate communities within the multi-agent research
community have been dealing with specific dimensions of MASs development, namely the re-
search communities interested in: agent-oriented programming languages [Sho93, BDDFS05b,
BDDFS09], interaction languages and protocols [Sin98, LFP99b, com00], environment archi-
tectures, frameworks and infrastructures [VHR+07], and multi-agent organization management
systems [GF01, HL04, ERARA04, HBKR10, DDM04, DGMT09].

The results produced by these communities have clearly demonstrated the importance of

50

CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS 51

each dimension for the development of multi-agent systems. Nevertheless, perhaps a bit sur-
prisingly, currently the engineering of such systems is still hampered by the usage of program-
ming approaches and related development platforms that are mainly focused in just one specific
dimension, fully orthogonal w.r.t. other ones. From the one side, providing full orthogonality
gives an undeniable advantage: once realized, a particular model or technology becomes po-
tentially exploitable or integrable with any other one. Moreover, as an indirect consequence, its
diffusion and adoption can be increased by giving other researchers the opportunity to exploit
it in combination with their own work.

On the other side, full orthogonality might severely reduce the opportunity to exploit the
synergies that can emerge from the integration of the different dimensions when programming
the MAS as a whole. In particular, this means that developers currently have only ad-hoc pro-
gramming solutions for the engineering of complex multi-agent systems – typically rooted on
low-level implementation mechanisms to integrate the different dimensions – without suitable
high-level abstractions and tools. We argue that such a kind of an ad-hoc integration could
be bothersome from an implementation – e.g., dealing with different implementation styles or
architectures – conceptual – e.g., dealing with abstractions clashes/mappings – and program-
ming point of views—e.g., need to take into the account integration issues when coding, hence
making MAS programming more difficult.

The benefits of adopting a comprehensive approach – integrating different dimensions –
have been recognized in the context of agent-oriented software engineering and MAS modeling
communities quite a long time ago [FG98, Dem95, SFT09]. Accordingly, in the next part of this
dissertation, we bring such a perspective down to the programming level, investigating concrete
programming models and platforms preserving a strong separation of concerns but, at the same
time, exploiting MASs programming dimensions in a synergistic way. As mentioned in the
introduction, this is one of the two main contributions of this thesis work.

51

52 CHAPTER 3. BACKGROUND ON PROGRAMMING MULTI-AGENT SYSTEMS

52

Part II

Engineering Agent-Oriented Technologies
for Programming Multi-Agent Systems

53

4
The JaCa Platform

In this chapter we present JaCa, a general-purpose programming platform that can be used for
developing MASs in general, by exploiting both the agent and the environment programming
dimensions in synergy. Actually, JaCa is not an entirely new platform, but the integration of two
existing agent programming technologies that have been already introduced in Chapter 3: (i)
the Jason agent programming language – for programming BDI agents – and (ii) the CArtAgO
framework—for programming and running the endogenous environments where agents work.
The main novelty of the platform – and also its main feature – is the synergistic integration of
the two agent technologies considered, and in particular the assumptions and simplifications
that this makes possible – both from the agent and environment side – when programming a
MAS. This chapter is organized as follows:

• First in Section 4.1 is presented the keystone on top of which the JaCa platform is rooted:
the new action and perception model [RSP12] that has specifically conceived to make
BDI agents work in endogenous environments, shifting from the classical models applied
in state-of-the-art APLs. The definition of this model, is part of the contributions of this
thesis work.

• Then are described both the JaCa platform and its underlying programming model (Sec-
tion 4.2 and Section 4.3).

• Finally, the chapter is concluded by discussing the concrete use of JaCa for programming
MASs in some of the most relevant application domains (Section 4.4, Section 4.5 and
Section 4.6).

4.1 An Effective Action and Perception Model for BDI-based
APLs Working with Endogenous Environments

In this section is described the new action and perception model that we have conceived for
making BDI agents work with endogenous environments, which has been presented in [RSP12].
To better motivate and clarify the needs and the benefits related to its adoption in the case of

55

56 CHAPTER 4. THE JACA PLATFORM

endogenous environments, in the description we also consider a comparison with the action and
perception models adopted in current BDI-based APLs, which are instead devised for dealing
with exogenous environments. The models adopted in Jason, 2APL and GOAL are taken as
reference case studies for the comparison.

By referring to existing formalizations, these languages follow the abstract reference ar-
chitecture for intelligent agents and the practical reasoning agent cycle reported by Wooldrige
in [Woo09], and which has been described in Section 3.2.1. Essentially such a control loop
can be summarized as a sense-plan-act cycle where the agent repeatedly: (i) observes the en-
vironment and updates its beliefs (sense stage), (ii) uses practical reasoning to deliberate what
intention achieve and how (plan stage), and (iii) executes a proper plan for fulfilling the selected
intention (act stage). The environment – software or hardware – here is fully exogenous. Actu-
ally, moving from formal models to concrete architectures and implementations, current APLs
adopt richer approaches and semantics which are explicitly oriented toward the integration with
forms of endogenous environments.

A comprehensive survey of the environment interface models adopted by mainstream APLs
and the APIs for interacting with them can be found in the EIS initiative report [BHD11]. In
the following we focus on the semantics underlying the action and perception model.

4.1.1 The Action Model
The action model concerns how agents affect the state of the environment – hence, the very
notion of external action – and includes what kind of semantics is adopted for defining action
success/failure and which action execution model is used. In the abstract agent architecture,
the action chosen by the agent action selection function is dispatched to effectors which will
eventually execute it (act stage) and the control cycle can start again (sense stage). Actions
are considered as options in agents repertoire which can be translated by moves enabled by the
environment. The success or failure of the action executed by the agent effectors is meant to be
determined by the agent itself, by analyzing the percepts that will eventually be observed from
the environment. From the execution model point of view, action execution is modeled then as
an atomic event, which corresponds to dispatching the action to effectors. This semantics is the
basic one adopted by a big majority of APLs formal models, concrete examples are Jason and
GOAL1.

We argue that the action model just presented is not the most effective one when consid-
ering endogenous environments because it leads to two main drawbacks. The first one is that,
by treating actions as events, it is not possible to implement concurrent actions – i.e., actions
overlapping in time, performed by different agents – which are an effective way to realize syn-
chronization and coordination mechanisms. E.g., a tuple space providing in and out coordin-
ation primitives as defined by the Linda language [Gel85]. In an agent perspective, we would
model such primitives directly as actions that the environment provides to agents to coordinate,

1Actually, the concrete implementations of these APLs adopt a bit more complex solutions than the one presen-
ted (however, the intended semantics is not modified), for full details see [RSP12].

56

CHAPTER 4. THE JACA PLATFORM 57

in which the execution of an in suspends the current agent plan – not the agent execution itself,
which must go on with the execution cycle – until, for instance, a tuple is inserted by another
agent executing an out. By treating actions as events, this is not possible and one is forced
to change the semantics of the in action, for instance assuming that the successful execution
of the action represents just the act of making the request, not the fact that a tuple has been
removed.

The second related drawback concerns, more generally, the success/failure semantics of ac-
tions. Having that an action has been correctly accepted by the environment does not imply
anything about its actual completion and effects, hence, the programmer is forced to check
manually in agents code percepts coming from the environment in order to determine if an
external action has been completed with success or not. This is burdensome, both from a pro-
gramming point of view and for the performances of the agent program.

2APL apparently adopts a stronger semantics for action success and failure, not only at the
implementation level but also in the formal model. Following [BHD11], executing an action-
method in 2APL can have two outcomes: either a return-value (an object) indicating success is
returned, that might be non-trivial (e.g., list of percepts in the case of a sense-action) or terminate
with an exception indicating action-failure. In this case success means that the action completed
with success—and so the effects of the action took place, so a stronger semantics with respect to
Jason and GOAL. However, analogously to Jason and GOAL formal models, action execution
is modeled and finally implemented as an atomic transition (so an event) coupling the agent and
the environment. This means that by executing an action, the agent cycle is blocked until the
completion of the action with success or failure occurs, and this can have drawbacks on agent
reactivity.

In the case of endogenous environments it is possible to define and exploit a richer action
model. The success (or failure) of an action on the agent side can be directly related to the
successful (or failed) completion of an operation executed on the environment side – which has
been designed by the MAS engineers – as a consequence of the agent action request. So, dif-
ferently from exogenous environments, in endogenous environments action success/failure can
be represented by an explicit action completion event generated by the environment, thereby an
explicit information related to the completion of operation execution (with success or failure).
Accordingly, from the APLs point of view the execution of an action does not mean that the
action has been simply accepted or recognized by the environment, but that the related envir-
onment operation has been executed up to completion. This means seeing the set of actions
as a sort of contract provided by the environment, including both the effects that can be as-
sumed with action completion and the action feedbacks, including further information related
to action success or failure. Action feedbacks are an effective way, in particular, to represent
results computed by the action—so information which are not suitably modeled as effects over
the environment. A simple example is given by actions performing just pure calculation.

By assuming this semantics, agent programs become – generally speaking – more terse
and efficient. Action completion events are meant to be automatically processed by the agent
architecture, in order to – for instance – reactivate the suspended plan where the action was

57

58 CHAPTER 4. THE JACA PLATFORM

executed, without the burden for the agent programmer to manage such percepts by hand. Also,
the contract makes it simpler for agents to reason about the state of the environment: agents can
appraise step by step their course of actions and by completing an action, an agent is sure that
the effects possibly specified for the action in its specification took place.

From the action execution model point of view, our action model promotes an action-as-
a-process semantics, where actions are not modeled as single atomic events but as processes
that can be long-term, whose completion is notified by action completion events. When adop-
ted in APLs, this semantics have two main benefits. First, it makes it possible to effectively
program agents that execute (long-term) actions without hampering their reactivity: the action-
as-process semantics makes it possible for an agent to start the execution of an action whose
completion occurs asynchronously – w.r.t. agent execution – by the reception of an explicit ac-
tion completion event. Second, the action-as-process semantics makes it possible to implement
efficient coordination mechanisms simply based on actions synchronization, designing envir-
onments which provide operations for that purpose. This because the action completion event
of an action performed by a certain agent can be generated as a consequence of the execution
of the action(s) of other agents in the same environment. Recalling the example of tuple spaces
and Linda, blocking actions like in or read can be implemented quite straightforwardly by ad-
opting an action-as-process semantics. In particular, an in action can start its execution before
the execution of an out action and then complete after the out completion.

4.1.2 The Perception Model

The perception model concerns how the environment can be perceived by agents, the definition
of the stimuli generated by the environment and the corresponding agent percepts as result of the
perception process. Along with actions, these can be considered part of the contract provided by
the environment as well. In the abstract intelligent agent architecture [Woo09], agent perception
is modeled by a see function: E→ Per. This function encapsulates the agent ability to obtain
information from the environment E in which it is situated. The output produced by this func-
tion is a percept Per, that is elaborated by the agent through appropriate belief-update/revision
functions, to keep its mental state consistent with the actual state of the environment.

Essentially, in literature two basic semantics can be adopted when defining the perception
model in exogenous environments, that we refer here as state-based and event-based. In the
former case, stimuli are information about the actual state of the environment and are gener-
ated when the agent is engaging the perception stage of its execution cycle. In the latter, stimuli
are information about changes occurred in the environment, dispatched to agents when such
changes occur, independently from agents execution state. Referring to concrete agent pro-
gramming languages and their formal operational semantics, a state-based approach is adopted
– for instance – in Jason and GOAL, while instead a concrete example of APL treating percepts
directly as events is 2APL.

Like in the case of the action model the chosen semantics for percepts and perception can
have a strong impact on the dynamics of MASs execution. In particular the state-based approach

58

CHAPTER 4. THE JACA PLATFORM 59

suffers of some problems that are particularly important when working with endogenous envir-
onments. A first problem concerns the possibility for an agent of losing – not perceiving –
environment states that could be relevant for agent reasoning and course of action. This can
occur due to environment dynamics, related to internal processes and also actions performed
by other agents, changing asynchronously the environment multiple times between two sub-
sequent perceive stages. A second problem is that retrieving perceptual information at each
cycle regarding the current observable state of the environment can be a task that requires high
computational complexity, in particular when considering non-naive environments, being either
centralized or, worst, distributed.

In endogenous environments, modeling percepts as events – carrying on information about
changes occurred in the environment – is more effective and efficient than modeling percepts as
facts about the actual state of the environment itself. At first it makes it possible – in principle
– to avoid the first problem described above. Referring to the abstract agent architecture, the
set of percepts returned by the see function represent a list of changes occurred in the envir-
onment during the last agent execution cycle and which are relevant for the observing agent.
Accordingly, the current internal state of the agent can be updated with respect to the whole set
of changes occurred inside the environment, thus eventually reconstructing all the intermediate
states that the environment assumed between a couple of see activities.

However, with this approach, in state-of-the-art APLs – e.g., 2APL and also in GOAL which
however adopts a state-based approach – in order to keep track of the observable state of the
environment, the programmer is forced to explicitly define the rules that specify how to change
the agent’s internal environment representation when a new percept is detected. This is a indeed
very important capability when dealing with exogenous environments; when adopting endogen-
ous environments – in particular complex ones – this can become burdensome. Actually, being
specifically designed by MAS engineers endogenous environments allow for a stronger assump-
tion on the relationships between percepts generated by the environment and the related agent
internal representation. Such assumption can be used then to define a mapping between percepts
and beliefs, to be applied by default by the agent architecture, so, on the one side avoiding the
burden to the agent programmers of necessarily specifying the percept rules, and on the other
side automatically keeping consistency between the actual state of the environment and the be-
lief base. Then, to support the automated reconstruction of such states it is useful to identify
the basic set of possible kinds of event that can occur inside an endogenous environment: (i)
an observable part of the environment has changed; (ii) an observable part of the environment
has been added or removed; (iii) a signal has been generated to acknowledge agents with some
information. In the latter case, signals are meant as information explicitly generated by the
environment – as designed by environment programmers – to carry on some data which can be
purposefully processed by agents situated in the environment and focusing that part which is
the source of the signals. By explicitly defining a model to represent environment observable
parts – e.g., observable properties in the case of artifact-based environments Section 3.3.2 – it
is possible then at the agent architecture level to automatically reconstruct a consistent snapshot
of the current observable state of the environment by processing a list of events updating the

59

60 CHAPTER 4. THE JACA PLATFORM

previous snapshot. In the APLs considered here this means introducing in the basic architecture
a support for: (i) representing the observable part of the endogenous environments as beliefs,
and (ii) automatically updating such beliefs as soon as such events are processed. In this per-
spective, there is no more the need for an agent programmer to explicitly define belief update
functions (such as in 2APL) or percept rules and post-condition in actions specification (such as
in GOAL): the belief base is automatically updated reflecting the perceived/reconstructed state
of the observed environment.

Recalling the second problem described above, due to concurrency and distribution, the cor-
rect and efficient reconstruction of the observable state of the environment from the individual
agent architecture perspective is an issue – both from the theoretical and practical point of view
– even when adopting an event-based perception model. First, by working with multi-agent
systems, we must assume that multiple agents can concurrently work in the same environment
and then events generated concern concurrent processes. Second, environments can be distrib-
uted, which means that it is not feasible to consider a priori the availability of a unique notion
of time – either physical or logical – and then a total order among events. In order to cope with
these two aspects, first it is useful to conceive a distributed endogenous environment as a set of
non-distributed sub-environments, eventually connected, and assume that each sub-environment
defines a spatial-temporal locality. For each sub-environment it is feasible then to assume that:
(i) a local logical notion of time can be defined, and (ii) observable events occurring the in the
sub-environment can be totally ordered using logical timestamps, even if they are generated by
concurrent processes. Given this assumption, agents perceive chains of events, which are totally
ordered if the source is a single sub-environment, partially ordered if more sub-environments are
involved. Then, some modularization strategy should be considered for structuring individual
sub-environments, so as to (i) allow multiple agents to work concurrently in different parts of
the overall structure, promoting as far as possible decentralization and parallelism; (ii) make it
possible to easily change structure at runtime, eventually changing/extending dynamically the
set of sub-environments available, so to better support openness, adaptation, etc.

4.2 Programming Multi-Agent Systems in JaCa

The JaCa programming model is rooted on the synergistic integration – supported by the action
and perception model presented in the previous section – of concepts defined in the A&A con-
ceptual model (Section 3.3.2) and the BDI agent model (Section 3.2.1). Accordingly, a JaCa
program is conceived as a dynamic set of autonomous BDI Jason agents working cooperatively
inside a shared CArtAgO working environment, whose topology is structured in terms of – pos-
sibly distributed – workspaces. The environment is composed by a dynamic set of artifacts, as
computational entities that agents can dynamically create and dispose, besides using and ob-
serving them. Programming the application means then programming the Jason agents on the
one side, encapsulating the logic of control of the tasks that must be executed, and the CArtAgO
working environment on the other side, as a first-class abstraction providing the actions and

60

CHAPTER 4. THE JACA PLATFORM 61

falsestopped

stop

PRODUCER
AGENTS

CONSUMER
AGENTS

100n_items_to_produce

put

get

EXTENDED BOUNDED BUFFER

HUMAN USER
TOY WORKSPACE

Figure 4.1: An abstract representation of the architecture of the producer-consumer example.
In evidence producer and consumer agents interacting by means of the ExtBBuffer artifact.

functionalities exploited by the agents to do their tasks. Agents cooperate and interact by means
of both direct verbal communication through the KQML agent communication language (Sec-
tion 3.4.1), and coordination artifacts available in the environment [ORV+04, ROD03] (e.g.,
tuple spaces, bound buffers, etc.).

In the remainder of this section we describe how a generic MAS can be developed in JaCa
using a concrete example, which is about the implementation of a slightly revised producer-
consumer architecture. Like in any usual producer-consumer scenario, we have a set of producer
agents that continuously and concurrently produce data items which must be consumed by
consumer agents (Figure 4.1). In addition, to make the example more interesting, we have
some further requirements: (i) the number of items to be produced is fixed, but the time for
producing each item (by the different producers) is not known a priori; (ii) the overall process
can be interrupted by the user anytime.

The task of producing items is divided upon multiple producer agents, acting concurrently—
the same holds for consumer agents. To interact and coordinate the work, agents share and
use an artifact, the ExtBBuffer (Extended Bounded Buffer) artifact, which functions both as a
bounded buffer to collect items inserted by producers and to be removed by consumers and

61

62 CHAPTER 4. THE JACA PLATFORM

as a tool to control the overall process by a human user. The artifact provides on the one
side operations (actions for the agent) to insert (put), remove (get) items and to stop the
overall activities (stop); on the other side, observable properties n items to produce and
stopped, keeping track of, respectively, the number of items still to be produced (which starts
from an initial value and is decremented by the artifact each time a new item is inserted) and
the stop flag (initially false and set to true when the stop operation is executed).

In the following, first we give some glances about agent programming in JaCa by discussing
the implementation of a Jason producer agent (Section 4.2.1), which must exhibit a pro-active
behavior - performing cooperatively the production of items, up to the specified number - but
also a reactive behavior: if the user stops the process, the agents must interrupt their activities.
Then we briefly consider the implementation of the ExtBBuffer artifact (Section 4.2.2), and
finally of the multi-agent system in the overall (Section 4.2.3).

4.2.1 Programming the Agents
Being inspired by the BDI architecture, the Jason language constructs that programmers can
use can be separated into three main categories: beliefs, goals and plans. An agent program is
defined by an initial set of beliefs, representing the agent initial knowledge about the world; a
set of goals, the objectives that the agent wants to bring about; and a set of plans that the agent
can dynamically compose, instantiate and execute to achieve such goals. All these information
are specified by the agent programmer. Logic programming is used to uniformly represent any
piece of data and knowledge inside the agent program, beliefs and goals in particular.

Beliefs are represented as Prolog [SSE86, CM03] like facts – that are atomic logical formu-
lae – and represent the agent knowledge about:

• Its internal state — an example is given by the n items produced(N) belief, which
is used by a producer agent to keep track of the number of items produced so far. Initially
N is zero, and then it is dynamically updated by the agent in plans, by means of specific
internal actions.

• The observable state of the artifacts that the agent is observing — in the example,
every producer agent observes the ExtBBuffer artifact (line 14, the meaning of the
focus operation will be clarified in the following), which has two observable proper-
ties: n items to produce, representing the number of items still to be produced, and
stopped, a flag which is set if/when the process needs to be stopped.

At design time the agent developer may want to define the agent initial belief base, by specifying
some initial beliefs: then, beliefs can be added or removed at runtime, according to the agent
changes to its state and – following the perception model described in Section 4.1.2 – to the
resources that the agent dynamically decides to observe.

An agent program may explicitly define the agent initial belief base and the initial goal (or
set of goals) that the agent has to perform, as soon as it is created. In Jason goals are represented

62

CHAPTER 4. THE JACA PLATFORM 63

1 /* Producer agent */
2

3 n_items_produced(0). /* initial belief */
4 !produce. /* initial goal */
5

6 /* plans */
7

8 +!produce
9 <- !setup;

10 !produce_items.
11

12 +!setup
13 <- makeArtifact("sharedBuffer","ExtBBuffer",[],Id);
14 focus(Id).
15

16 +!produce_items : not n_items_to_produce(0)
17 <- !produce_item(Item);
18 put(Item);
19 -n_items_produced(N);
20 +n_items_produced(N+1);
21 !produce_items.
22

23 +!produce_items : n_items_to_produce(0)
24 <- !finalize.
25

26 +!produce_item(Item) <- ...
27

28 +!finalize : n_items_produced(N)
29 <- println("completed - items produced: ",N).
30

31 -!produce_items
32 <- !finalize.
33

34 +stopped(true)
35 <- .drop_all_intentions;
36 !finalize.

Figure 4.2: Source code of the Jason producer agent used in the producer-consumer example.

by Prolog atomic formulae prefixed by an exclamation mark. Referring to the example, the
producer agent (Figure 4.2) has an initial goal, which is represented by the !produce atomic
formulae (line 04). Actually, goals can also be assigned at runtime, by sending to an agent
achieve-goal messages.

Then, the main body of an agent program is given by a set of plans, which define the
pro-active and reactive behavior of the agent. Agent plans are described by rules of the type
Event : Context <- Body. Event represents the specific event triggering the plan.
Context is a boolean expression on the belief base, indicating the conditions under which the
plan can be executed once it has been triggered. Finally, the plan Body specifies the sequence
of actions to perform, once the plan is executed. The actions contained in a plan body can be
split in three categories:

• Internal actions — that are actions affecting only the internal state of the agent. Examples
are actions to create sub-goals to be achieved (!g), to manage the execution of intentions

63

64 CHAPTER 4. THE JACA PLATFORM

(i.e., active goals) – for instance, to suspend or abort the execution of an intention – to up-
date agent inner state – such as adding a new belief (+b), removing beliefs (-b). Internal
actions include also a set of primitives that allow for managing Java objects – which is
the data model supported by CArtAgO – on the Jason side: so it is possible to create new
objects (cartago.new obj), invoke methods on objects (cartago.invoke obj),
etc.) and other related facilities (the prefix <lib-name>. in Jason is used to identify
the library to which the specific actions belong to).

• External actions — that are actions provided by the environment, to interact with
artifacts—as will be detailed in next section, these actions correspond to the operations
provided by artifacts and included in artifact usage interfaces: so, as described when in-
troduced the A&A meta-model, the repertoire of the actions of an agent working inside an
artifact-based environment is dynamic and depends on the number and type of artifacts
available in the environment.

• Communicative actions — which make it possible to communicate with other agents by
means of message passing based on KQML performatives (.send,.broadcast, etc.).

Referring to the example, the producer agent has a main plan (lines 08-10), which is triggered
by an event +!produce representing a new goal !produce to achieve. Since the agent has
an initial !produce goal (line 04), then this plan will be triggered as soon as the agent is
booted. By means of an internal action !g, the main plan generates two further sub-goals to be
achieved sequentially: !setup and !produce items.

The plan to handle the !setup goal (lines 12-14) creates a new instance called
sharedBuffer of type ExtBBuffer by means of a predefined action called makeArtifact
returning the logical id of the created artifact (see Section 4.2.3), and then starts observing
it by executing the predefined action focus specifying its identifier (see Section 4.2.3).
Then, two plans are specified for handling the goal !produce items. One (lines 16-
21) is executed if there are still items to produce—i.e., if the agent has not the belief
n items to produce(0). Note that the value of this belief depends on the current state
of the sharedBuffer artifact. This plan first produces a new item (subtask !produce item),
then inserts the item in the buffer by means of a put action, whose effect is to execute the
put operation on the artifact; if this action succeeds, the plan goes on by updating the belief
n items produced incrementing the number of items produced and generates a new sub-
goal !produce items to repeat the task. Actually, when executing an external action – such
as put – it is possible to explicitly denote the specific artifact providing that action, in order to
avoid ambiguities in case of multiple artifacts of the same type, by means of Jason annotations
as follows:

1 put(Item) [artifact_name("sharedBuffer")];
2 put(Item) [artifact_id(ArtId)]; /* ArtId must contain the Id of an existing artifact,
3 * returned by the makeArtifact operation */

64

CHAPTER 4. THE JACA PLATFORM 65

1 /* Consumer agent */
2

3 !consume.
4

5 +!consume: true
6 <- ?bufferReady;
7 !consumeItems.
8

9 +!consumeItems: true
10 <- get(Item);
11 !consumeItem(Item);
12 !consumeItems.
13

14 +!consumeItem(Item) <- ...
15

16 +?bufferReady : true
17 <- lookupArtifact("sharedBuffer",_).
18

19 -?bufferReady : true
20 <- .wait(50);
21 ?bufferReady.

Figure 4.3: Source code of the Jason consumer agent used in the producer-consumer example.
Section 4.2.1 does not provide a detailed description of the consumer agent implementation,
the source code is however reported for sake of completeness.

The other plan (lines 23-24) is executed if there are no more items to produce: in this case the
!finalize goal is executed, which prints on standard output the number of items produced
by the agent. In particular, the println action corresponds to the operation with the same
name provided by an artifact called console, which is available by default in every workspace.

The reactive behavior of an agent can be realized by plans triggered by a belief addi-
tion/change/removal – corresponding to changes in the state of the environment – and by the
failure of a plan in achieving some goal. In the example, the producer agent has a plan (lines
34-36) which is executed when the belief stopped about the observable property of the arti-
fact is updated to true. This means that the user wants to interrupt and stop the production.
So the plan stops and drops all the other possible plans in execution – using an internal action
.drop all intention – and the !finalize sub-goal is executed.

Finally, the producer agent has also a plan (lines 31-32) to react to the failure of the
!produce items goal, which is expressed by the event -!produce items. This can
happen when the agent, believing that there are still items to be produced, starts the plan to
produce a new item and tries to insert it in the buffer. However, the put action fails because
other agents produced in the meanwhile the missing items.

4.2.2 Programming the Environment

The implementation of the ExtBBuffer artifact used in the producer-consumer example is shown
in Figure 4.4. Being CArtAgO a framework on top of the Java platform, artifact-based envir-

65

66 CHAPTER 4. THE JACA PLATFORM

onments are implemented using a Java-based API, exploiting the annotation framework. Here
we do not go into the full details of such API, for more information, the interested reader can
refer to CArtAgO papers [RPV11, RPVO09] and the documents that are part of CArtAgO distri-
bution [Alea].

In CArtAgO, an artifact type can be defined by extending a base Artifact class. Artifacts are
characterized by a usage interface, containing a set of operations and observable properties.
In the example, the artifact ExtBBuffer has three operations: put, get and stop. The put
operation inserts a new element in the buffer – decrementing the number of items to be produced
– if the stopped flag has not been set, otherwise the operation (action) fails. The get operation
removes an item from the buffer, returning it as a feedback parameter of the action. The stop
operation sets the stopped observable property to true.

Operations are implemented by methods annotated with the @OPERATION annotation. The
init method is used as constructor of the artifact, getting the initial parameters and setting
up the initial artifact state. Inside an operation, guards can be specified (await primitive),
which suspend the execution of the operation until the specified condition over the artifact state
(represented by a boolean method annotated with @GUARD) holds. In the example, the put
operation can be completed only when the buffer is not full (bufferNotFull guard) and
the get one when the buffer is not empty (bufferNotEmpty guard). The execution of
operations inside an artifact is transactional. This implies that: (i) changes to the observable
state of the artifact are done atomically and only in case of operations executed with success,
and (ii) at runtime multiple operations can be invoked concurrently on an artifact but only one
operation can be in execution at a time–the other ones are suspended. On the agent side, by
adopting an action-as-a-process semantics (Section 4.1.1), when executing an external action
the agent plan is suspended until the corresponding artifact operation has completed (i.e., the
action completed). Then, the action succeeds or fails when (if) the corresponding operation has
completed with success or failure. It is worth noting that, in the meanwhile, the agent execution
cycle can go on, making it possible for the agent to get percepts and select and perform other
actions.

Besides operations, artifacts typically have also a set of observable properties
(n items to produce and stopped in the example), as data items that are automatic-
ally perceived by agents as environment state variables (as defined by the perception model
implemented by JaCa, see Section 4.1.2). Instance fields of the class – instead – are used to
implement the non observable state of the artifact—for instance, the list of items items in the
example. Observable properties can be defined, typically during artifact initialization, by means
of the defineObsProperty primitive, specifying the property name and initial value (lines
11-12). Inside operations, observable properties value can be inspected and changed dynamic-
ally by means of two basic primitives: getObsProperty to retrieve the current value of an
observable property (see, for instance, line 17 and 20) and updateObsProperty to update
the value (line 42). An artifact can make it observable also events occurring when executing
operations. This can be done by using a signal primitive, specifying the type of the event and
a list of actual parameters. For instance, signal("my event", "test",0) generates an

66

CHAPTER 4. THE JACA PLATFORM 67

1 import cartago.*;
2

3 public class ExtBBuffer extends Artifact {
4

5 private LinkedList<Object> items;
6 private int bufSize;
7

8 void init(int bufSize, int nItemsToProd){
9 items = new LinkedList<Object>();

10 this.bufSize = bufSize;
11 defineObsProperty("n_item_to_produce",nItemsToProd);
12 defineObsProperty("stopped",false);
13 }
14

15 @OPERATION void put(Object obj){
16 await("bufferNotFull");
17 ArtifactObsProperty stopped = getObsProperty("stopped");
18 if (!stopped.booleanValue()){
19 items.add(obj);
20 ArtifactObsProperty p = getObsProperty("n_item_to_produce");
21 p.updateValue(p.intValue() - 1);
22 } else {
23 failed("no_more_items_to_produce");
24 }
25 }
26

27 @GUARD boolean bufferNotFull(){
28 return items.size() < nmax;
29 }
30

31 @OPERATION void get(OpFeedbackParam<Object> result){
32 await("itemAvailable");
33 Object item = items.removeFirst();
34 result.set(item);
35 }
36

37 @GUARD boolean itemAvailable(){
38 return items.size() > 0;
39 }
40

41 @OPERATION void stop(){
42 updateObsProperty("stopped",true);
43 }
44 }

Figure 4.4: The implementation of the ExtBBuffer in CArtAgO used in the producer-consumer
example.

observable event my event("test",0). In the ExtBBuffer for example, to notify the stop
we could generate a stopped signal in the stop operation, instead of using an observable
property. Observable events are perceived by all agents observing the artifact—which could
react to them as in the case of observable property change. Java objects and primitive data types
are used as data model binding the agent and artifact layers, in particular to encode parameters
in operations, fields in observable properties and signals.

Following the action model presented in Section 4.1.1, operations are computational pro-

67

68 CHAPTER 4. THE JACA PLATFORM

cesses occurring inside the artifact, possibly changing the observable properties and generating
observable events, as environment signals that be relevant for agents using/observing the arti-
fact. An operation is executed as soon as an agent triggers its execution – by executing the
corresponding action. Given the transactional execution semantics adopted, only one operation
can be in execution at a time—so no interferences and no race conditions occur if multiple
agents use concurrently the same artifact. Like in the case of monitors, other operations that
are possibly and concurrently triggered are blocked (suspended). The conditions which can be
specified with the await command are conceptually similar to condition variables. Differently
from the monitor case (with threads or monitors), if an operation (action) is suspended, the
agent that executed it is not: its execution cycle goes on, to eventually react to percepts and/or
select and execute other actions from other plans.

Following the A&A meta-model, other features of the artifact model implemented in
CArtAgO include: (i) the capability of linking together artifacts, making it possible for an ar-
tifact to execute operations (called linked operations) on other artifacts; (ii) the capability of
triggering the execution of internal operations – i.e., operations not available in the artifact us-
age interface, hence not visible for agents – from other operations of the same artifact; and (iii)
the capability of specifying for each artifact type a manual – i.e. a machine readable document
containing the description of the functionalities provided by the artifacts of this type – and the
operating instructions—i.e. how to exploit such functionalities (this features is actually in its
early development stages).

4.2.3 The Multi-Agent Program in the Overall
Finally, the main or entry point of a JaCa multi-agent program is given by a Jason source
file – with extension .mas2j – describing the initial configuration of the system, in particular
the name of the MAS and the initial set of the agents that must be created and possibly some
information and attributes that concern environment and agent implementation.

The configuration file for the producer-consumer example is shown in Figure 4.5, where
ten instances of producer agents and ten instances of consumer agents are declared. To launch
multiple agents of the same type (e.g., ten producer agents) the cardinality can be specified as
a parameter in the declaration (#10); the unique name of the agent in this case is given by the
type and a progressive integer (in the example: producer1, producer2, etc).

1 MAS prodcons {
2

3 environment: c4jason.CartagoEnvironment
4

5 agents: producer agentArchClass c4jason.CAgentArch #10;
6 consumer agentArchClass c4jason.CAgentArch #10;
7 }

Figure 4.5: Source code of the main configuration file (prodcons.mas2j), describing the
initial configuration of the the producer-consumer MAS example.

68

CHAPTER 4. THE JACA PLATFORM 69

By default, a single workspace called default is created and the specified agents join this
workspace. Actually a JaCa program can be composed by multiple workspaces, and agents can
concurrently join and work in multiple workspaces, either locally or in remote JaCa nodes
(Section 4.3.2). Workspaces can be created dynamically by agents exploiting functionalit-
ies that are provided by a set of artifacts that are available, by default, in each workspace.
Among the others, such a set includes: (i) a console artifact, providing functionalities for print-
ing on standard output; (ii) a WorkspaceArtifact, providing functionalities for managing
the current workspace, including creating new artifacts (makeArtifact operation), dispos-
ing existing artifacts (disposeArtifact), discovering the identifier of existing artifacts
(lookupArtifact), starting and stopping artifact observation (focus and stopFocus),
setting the security policies ruling agent access to artifacts, etc.; and (iii) a blackboard arti-
fact, functioning as a blackboard – or better as a tuple space [Gel85] – providing functionalities
for enabling indirect communication and coordination among agents.

4.3 JaCa Programming: Focus on Further Features
In this section we focus on three of the main features among the others that are provided by
the JaCa platform, namely the capability of exploiting both direct communication based on
message passing and indirect interaction through artifacts (Section 4.3.1), the support for build-
ing distributed programs, and finally the capability of integrating existing libraries such as GUI
toolkits (Section 4.3.3). The interested reader can find the description of further features in
JaCa and CArtAgO technical documentation.

4.3.1 Integrating Direct Communication and Mediated Interaction

In JaCa agents can interact and communicate in two basic ways, either exchanging messages
through speech acts (Section 3.4.1) or by sharing and co-using artifacts functioning as interac-
tion and coordination media [ORV+04]. The first way is generally referred as direct commu-
nication, while the latter as indirect or mediated communication. Both types of communication
are important in programming concurrent and distributed programs, and we allow for exploiting
them together. As mentioned before, the direct communication model is the one provided by
the Jason language, based on a comprehensive subset of the KQML agent communication lan-
guage (Section 3.4.1). Among the available performatives, tell makes it possible to inform
an agent about some information (stored in the target agent as a belief), achieve to assign a
new goal to the receiver agent, and ask to request information. These performatives must be
included in the communication action .send that actually sends the message, along with the
specific parameters. An agent can react to the arrival of messages or, at a higher level, to the
effect that the speech acts have, which are uniformly modeled as belief addition (for the tell
performative) or goal addition (for the achieve performative).

To give a concrete taste of the approach, in the following we describe the realization of

69

70 CHAPTER 4. THE JACA PLATFORM

1 /* announcer agent */
2

3 !allocate_task("t0",2000).
4

5 +!allocate_task(Task,Deadline)
6 <- makeArtifact("cnp_board","ContractNetBoard",[]);
7 announce(Task);
8 .wait(Deadline);
9 close(Bids);

10 !select_bid(Bids,Bid);
11 award(Bid);
12 cartago.invoke_obj(Bid,getWho,Who);
13 println("Allocating the task to: ",Who);
14 .my_name(Me);
15 .send(Who,achieve,task_done(Task,Me)).
16

17 +!select_bid([Bid|_],Bid).
18

19 +task_result(Task,Result)
20 <- println("Got result ",Result," for task: ",Task).

Figure 4.6: Source code of the announcer agent.

1 /* bidder agent */
2

3 task_result("t0",303).
4 !look_for_tasks("t0").
5

6 +!look_for_tasks(Task)
7 <- +task_descr(Task);
8 focusWhenAvailable("cnp_board").
9

10 +task_todo(Task) : task_descr(Task)
11 <- !make_bid(Task).
12

13 +!make_bid(Task)
14 <- !create_bid(Task,Bid);
15 .my_name(Me);
16 bid(Bid,Me,BidId);
17 +my_bid(BidId);
18 println("Bid submitted: ",Bid," - id: ",BidId).
19

20 -!make_bid(Task)
21 <- println("Too late for submitting the bid.");
22 .drop_all_intentions.
23

24 +winner(BidId) : my_bid(BidId)
25 <- println("awarded!.").
26

27 +winner(BidId) : my_bid(X) & not my_bid(BidId)
28 <- println("not awarded.").
29

30 +!create_bid(Task,Bid)
31 <- .wait(math.random(3000));
32 .my_name(Name);
33 .concat("bid_",Name,Bid).
34

35 +!task_done(Task,ResultReceiver): task_result(Task,Res)
36 <- println("doing task: ",Task);
37 .send(ResultReceiver,tell,task_result(Task,303)).

Figure 4.7: Source code of bidder agents.

70

CHAPTER 4. THE JACA PLATFORM 71

1 /* Contract Net Board artifact */
2

3 public class ContractNetBoard extends Artifact {
4 private List<Bid> bids;
5 private int bidId;
6

7 void init(){
8 this.defineObsProperty("state","closed");
9 bids = new ArrayList<Bid>();

10 }
11

12 @OPERATION void announce(String taskDescr){
13 defineObsProperty("task_todo", taskDescr);
14 getObsProperty("state").updateValue("open");
15 bids.clear(); bidId = 0;
16 log("New task announced: "+taskDescr);
17 }
18

19 @OPERATION void bid(String bid, String who,
20 OpFeedbackParam<Integer> id){
21 if (getObsProperty("state").stringValue().equals("open")){
22 bidId++;
23 bids.add(new Bid(bidId,who,bid));
24 id.set(bidId);
25 } else {
26 this.failed("cnp_closed");
27 }
28 }
29

30 @OPERATION void close(OpFeedbackParam<Bid[]> bidList){
31 getObsProperty("state").updateValue("closed");
32 int nbids = bids.size();
33 Bid[] vect = new Bid[nbids]; bids.toArray(vect);
34 bidList.set(vect);
35 log("Auction closed: "+nbids+" bids arrived on time.");
36 }
37

38 @OPERATION void award(Bid prop){
39 signal("winner", prop.getId());
40 log("The winner is: "+prop.getId());
41 }
42

43 static public class Bid {
44 private int id;
45 private String who, descr;
46 public Bid(int id, String who, String descr){
47 this.descr = descr; this.id = id; this.who = who;
48 }
49 public String getWho(){ return who; }
50 public int getId(){ return id; }
51 public String getDescr(){ return descr; }
52 public String toString(){ return descr; }
53 }
54 }

Figure 4.8: Source code of the ContractNetBoard artifact.

1 MAS cnp_example {
2 environment: c4jason.CartagoEnvironment
3 agents:
4 announcer agentArchClass c4jason.CAgentArch;
5 bidder agentArchClass c4jason.CAgentArch #5;
6 }

Figure 4.9: Source code of the main configuration file of the CNP example, spawning one
announcer agent and five bidder agents.

71

72 CHAPTER 4. THE JACA PLATFORM

Figure 4.10: An execution trace of the CNP program, displayed on the JaCa output console.

simplified version of the Contract Net Protocol (CNP) [Smi80], in which both direct message
passing and artifacts are used. In the example, a ContractNetBoard artifact (Figure 4.8) named
cnp board is used by an announcer agent (code shown in Figure 4.6) and five bidder agents
(Figure 4.7) to help their coordination in choosing the agent to whom allocate a task to do; once
the agent has been chosen, direct communication is used between the allocator of the task and
the chosen agent to allocate the task and receive the results.

Some brief explanation of the program behavior follows. In the main configuration file
(Figure 4.9), one announcer agent and five bidder agents are launched. The announcer opens
the auction to allocate the task by performing a announce action over the cnp board artifact
(Figure 4.6, line 7). The artifact is observed and used also by a (possibly dynamic) set of
bidder agents (Figure 4.7), who are available for doing tasks. The announce action/operation
executed by the announcer creates a new observable property task todo, storing information
about the new task (Figure 4.8, line 12-17). As soon as each bidder perceives that there is a
new task to do, it reacts (Figure 4.7, line 10-22) by computing a new bid and issuing them on
the contract net board by performing a bid action. The action can fail if the auction has been
already closed by the announcer: in that case a message is printed on the console (lines 20-22).
On the artifact side, the bid operation (Figure 4.8, lines 19-28) just adds the new bid to the list
of bids received so far, if the auction is still opened, otherwise the operation fails (by executing
the failed artifact primitive). As a detail, the third parameter of the bid operation is an
action feedback parameter storing the id of the placed bid.

The announcer waits some amount of time (2 seconds in the example), and then close the
auction by invoking the close operation (Figure 4.6, lines 8-9), which results in changing
the state observable property of the artifact to "closed" and returns the list of informa-
tion about the received bids as an action feedback parameter (Figure 4.8, lines 30-36). Such
information are represented by instances of the Bid class. Then, the agent selects a bid (in the
example the first one) and awards the bidder by performing an award action (Figure 4.6, lines
10-11), which results in updating the content of the winner observable property in the artifact
(Figure 4.8, lines 38-41). This change is perceived by bidder agents, which react in a different
way depending on the fact that they are the winner or not (lines Figure 4.7 24-28). After award-

72

CHAPTER 4. THE JACA PLATFORM 73

ing, the announcer then communicates directly with the winner bidder by sending an achieve
message specifying the task to be done (Figure 4.6, line 15). To retrieve the identifier of the
bidder agent to whom sending the message, the method getWho is invoked on the selected bid
object by means of the cartago.invoke obj internal action.

Then, the awarded bidder reacts to the new goal to achieve (Figure 4.7 lines 35-37), just
printing a message and then sending a message to inform the announcer about the task result
(Figure 4.6, line 37). Finally the announcer reacts to the new belief communicated by the bidder
(Figure 4.6 lines 19-20) by printing the result on the console.

A possible execution trace that can be obtained by launching the program is reported in
Figure 4.10, which shows the content of the JaCa output console. In that specific execution,
four bidders were able to submit their bid on time and the winner was the bidder bidder2 (whose
bidder identifier assigned by the cnp board was 1).

4.3.2 Distributed and Open Systems Programming
JaCa directly supports distributed programming: an agent running on some node can join work-
spaces that are hosted on remote nodes, and then work with artifacts of the remote workspaces
transparently. A simple example is shown in Figure 4.11, in which an agent joins a remote
test workspace located in acme.org, and there, the agent prints some information on the
console, creates a new Counter artifact called c0 and uses it, by executing the inc operation
and reacting to changes to the count observable property.

While working on multiple workspaces, in JaCa a notion of current workspace is defined,
being it the workspace which is implicitly referred when the agent invokes an operation over an
artifact without specifying its full identifier. current wsp is a predefined agent belief keeping
track of the current workspace. When an agent starts its execution, the current workspace
is set by default to the default workspace. Then, it is automatically updated as soon as
the agent joins other workspaces (including remote ones) or the agent executes a predefined
set current wsp action. So, in the example, by joining the remote test workspace, this
becomes the current workspace, and then the println action acts on the console artifact there,
as well as the makeArtifact action that creates a new artifact there too. It is worth noting
that in the plan reacting to a change to the count observable property (mapped on count
belief), the agent prints a message on the console in the original workspace (lines 19-21): to
disambiguate what console to use, in the action an annotation reporting the workspace where
the artifact is stored is specified (line 21). The agent source code includes also a plan reacting
to a failure in the plan handling the !use remote goal, in the case in which a Counter artifact
called c0 was already present in the remote workspace.

So in the overall this facility makes it possible to implement open systems with dynamic
and distributed structure and behavior, given by the capability of agents of spawning other new
agents dynamically2, of joining dynamically existing workspaces or creating new ones, of cre-

2This is possible thanks to the .create agent Jason internal action, see [BHW07] for more details.

73

74 CHAPTER 4. THE JACA PLATFORM

1 !test_remote.
2

3 +!test_remote
4 <- ?current_wsp(Id,_,_);
5 +default_wsp(Id);
6 println("testing remote..");
7 joinRemoteWorkspace("test","acme.org",WspID2);
8 ?current_wsp(_,WName,_);
9 println("hello there ",WName);

10 !use_remote;
11 quitWorkspace.
12

13 +!use_remote
14 <- makeArtifact("c0","examples.Counter",[],Id);
15 focus(Id);
16 inc;
17 inc.
18

19 +count(V)
20 <- ?default_wsp(Id);
21 println("count changed: ",V)[wsp_id(Id)].
22

23 -!use_remote [makeArtifactFailure("artifact_already_present",_)]
24 <- ?default_wsp(WId);
25 println("artifact already created ")[wsp_id(WId)];
26 lookupArtifact("c0",Id);
27 focus(Id);
28 inc.

1 public class Counter extends Artifact {
2 void init(){
3 defineObsProperty("count",0);
4 }
5 @OPERATION void inc(){
6 ObsProperty prop = getObsProperty("count");
7 prop.updateValue(prop.intValue()+1);
8 }
9 }

Figure 4.11: An agent joining and working in a remote workspace (top), and the source code of
the counter used and observed remotely (bottom).

ating/disposing artifacts belonging to a workspace. Given the distributed programming facility,
a workspace can be joined by unknown agents of JaCa programs that have been spawned inde-
pendently from the program where the workspace has been defined. The possibility of explicitly
specifying security policies at a workspace level – by exploiting the functionalities provided by
the workspace artifact – makes it possible to govern such openness according to the need.

4.3.3 Wrapping Existing Libraries and External Resources

Specific kind of artifacts can be designed and used to wrap and reuse existing libraries – writ-
ten in Java but also in other languages, such as C and C++, exploiting the JNI [SUNb] (Java
Native Interface) mechanism – making their functionalities available to agents, with a clean and

74

CHAPTER 4. THE JACA PLATFORM 75

1 package c4jexamples;
2 ...
3 public class View extends GUIArtifact {
4 private MyFrame frame;
5

6 public void setup() {
7 frame = new MyFrame();
8 defineObsProperty("value",0);
9 linkActionEventToOp(frame.stopButton,"stop");

10 linkWindowClosingEventToOp(frame, "close");
11 frame.setVisible(true);
12 }
13

14 @INTERNAL_OPERATION void stop(ActionEvent ev){
15 signal("stopped");
16 }
17

18 @INTERNAL_OPERATION void close(WindowEvent ev){
19 signal("closed");
20 }
21

22 @OPERATION void setOutput(int value){
23 frame.updateOutput(""+value);
24 getObsProperty("value").updateValue(value);
25 }
26

27 class MyFrame extends JFrame {
28 private JButton stopButton;
29 private JTextField output;
30

31 public MyFrame(){
32 setTitle(".:: View ::.");
33 setSize(200,100);
34 JPanel panel = new JPanel();
35 setContentPane(panel);
36 stopButton = new JButton("stop");
37 stopButton.setSize(80,50);
38 output = new JTextField(10);
39 output.setText("0");
40 output.setEditable(true);
41 panel.add(output);
42 panel.add(stopButton);
43 }
44 public void updateOutput(String s){
45 output.setText(s);
46 }
47 }
48 }

1 count(0).
2 !do_task_with_view.
3

4 +!do_task_with_view
5 <- makeArtifact("gui",
6 "c4jexamples.View",[],Id);
7 focus(Id);
8 !do_task.
9

10 +!do_task
11 <- -count(C);
12 C1 = C + 1;
13 +count(C1);
14 setOutput(C1);
15 !do_task.
16

17 +stopped : value(V)
18 <- .drop_all_intentions;
19 println("stopped - value: ",V).
20

21 +closed
22 <- .my_name(Me);
23 .kill_agent(Me).

Figure 4.12: Implementing and using GUI in JaCa: the View artifact (left), the agent using the
GUI (right–top) and the output of the program (right–bottom).

uniform interface—which is the one provided by the artifact use and observation model.
A main example of a JaCa library wrapping and exploiting existing technologies is the one

that allows for building and exploiting graphical user interface (GUI) toolkits. GUIs inside a
JaCa program are modeled as artifacts mediating the interaction between humans and agents.
A basic abstract artifact GUIArtifact is provided to be extended – through the Java standard

75

76 CHAPTER 4. THE JACA PLATFORM

inheritance mechanism – in order to create concrete GUI. A GUI is designed then to make it
observable to interested agents the events generated by the components (buttons, edit fields,
list boxes,...) inside the GUI. Also, as an artifact, it provides operations that allows agents to
interact with the GUI itself, for instance to set the content of text fields.

Figure 4.12 shows a simple example, in which an agent uses a GUI to repeatedly display
the output of its work and to promptly react to user inputs. In particular, the agent creates a
GUI artifact called View, providing one stop button and one output edit text. The structure
of the GUI – based on Java Swing library – is defined by the MyFrame class, as it would be
in a traditional object-oriented program. An instance of this class is created inside the View
artifact and events generated by the GUI components are linked to internal operations of the
artifact by means of a set of predefined methods implemented in GUIArtifact. In particular an
action event generated by frame.stopButton causes the execution of the internal operation
stop, which generates an observable event stopped, and the window closing event is mapped
onto the close operation, which generates a closed event.

The agent first creates an instance called gui of the View artifact (Figure 4.12 top-right,
lines 5-6), and then repeatedly uses the view to display the results of its task, by means of the
setOutput operation (Figure 4.12 top-right, lines 10-15). While doing this task, the agent
also observes the GUI and as soon as a stopped event is perceived, the agent reacts by sus-
pending all its current ongoing activities (intentions) and printing in standard output a message
(Figure 4.12 top-right, lines 17-19). If a closed event is perceived, the agent terminates (Fig-
ure 4.12 top-right, lines 21-23).

4.4 JaCa-Android: Programming Smart Mobile Applica-
tions in JaCa

Mobile hardware (HW) technologies have witnessed an extraordinary development and pro-
gress in recent years. Starting from first devices with small processors (tens of Megahertzs) and
small memory (tens of Megabytes), no sensors and no Internet access, current smart-phones
have multi-cores Gigahertzs CPU and several hundreds of Megabytes of memory, different
kinds of sensors (camera, GPS, accelerometers, etc.) and full-fledge network connectivity
(given by High-Speed Downlink Packet Access (HSDPA), 3G, 4G, Long Term Evolution (LTE)
protocols, WIFI, Bluetooth).

This hardware development naturally leads to rethink the kind of software that could be
used on mobile devices, and related functionalities. First, the HW allows for running operating
systems (OSs) and applications that are similar – in functionalities and complexities – to the
ones adopted in desktop systems, from rich Internet applications to video-games. Furthermore,
it allows for conceiving applications that provide functionalities not typically found in desktop
systems, such as context-aware, pervasive computing and ambient intelligence applications.
So the new generation of mobile devices opens the way to a new generation of smart mobile
applications, integrating all these features [LJR09, Wri09].

76

CHAPTER 4. THE JACA PLATFORM 77

The systematic design and development of such mobile applications introduce a new level
of complexity. On the one side, such complexity is comparable to the one that we have when
engineering desktop applications: to this end, high-level programming languages and platforms
used for desktop environments become meaningful also for the mobile context, along with
specific middleware that allows for fully exploiting mobile device resources. The Android
platform is a main example [Gooa]. On the other side, the systematic development of smart
mobile applications accounts for dealing with aspects that make their programming quite chal-
lenging, even using mainstream high-level programming languages, such as: (i) reactiveness—
programming applications that must be reactive to events related to user inputs, sensors, the
network; (ii) pro-activeness—applications that must be able to integrate a task oriented beha-
vior with the capability to react to events, possibly taking autonomously some action (without
user intervention) by virtue of the goals of the application; (iii) flexibility—applications that
are capable to adapt their computational behavior according to the changes that dynamically
occur in the external environment – which can include the user context, the network context;
(iv) interaction-oriented-ness—applications that frequently need to interact with some remote
service or application, even mobile applications running on other mobiles devices. These fea-
tures can be easily recognized in most of the advanced application scenarios which are typically
ascribed to smart mobile applications [LJR09].

Given that, a relevant research issue is how to design these applications, and so looking
for high-level programming tools and development platforms that (i) would provide a proper
level of abstraction to deal with such complexities, (ii) would be general enough to be reused
in different application domains, and (iii) would make it possible to be integrated with existing
platforms and programming technologies (such as Android) to fully exploit their capabilities.

Accordingly, we extended JaCa and realized an agent-oriented mobile platform named
JaCa-Android [SGA10, SGR11, SR11a, Anda], providing an agent-oriented level of abstrac-
tion to design, program and execute smart mobile applications on top of the Android platform.
By adopting the JaCa programming model, a mobile Android application can be designed and
organized as a multi-agent system, composed by one or multiple workspaces in which Jason
agents are used to encapsulate the logic and the control of the tasks involved in the mobile
application, and artifacts are used as tools for agents to seamlessly exploit available Android
device/platform components and services.

4.4.1 The JaCa-Android Platform

JaCa-Android makes it possible to run JaCa applications on top of the Android platform.
The application and programming model adopted in JaCa-Android is entirely rooted on JaCa,
which here has been properly extended with a layer specialized for the mobile context. So, a
JaCa-Android application runs on top of a JaCa runtime/infrastructure, equipped with a layer
that makes it possible to access/control resources provided by the Android Framework (see Fig-
ure 4.13). Being fully developed in Java, the core JaCa runtime/infrastructure runs as a normal
Android application.

77

78 CHAPTER 4. THE JACA PLATFORM

JaCa
(Jason+CArtAgO)

Android Framework
(Dalvik Virtual Machine + Libraries)

Linux kernel

JaCa Android artifacts

JaCa-Services
shared workspace

JaCa-Android app

SMSService

CalendarService
GPSService

ApplicationGUI
MyArtifact

Figure 4.13: Abstract representation of the JaCa-Android platform – with in evidence the differ-
ent agent technologies upon which the platform is based – and of a generic application running
on top of it.

JaCa-Android has been realized with the aim to provide to developers a platform able to guar-
antee a seamless access and management of Android features thanks to artifacts, and to the
agent and artifact interaction model (Section 4.1). Indeed, the key part of the platform is a
proper set of artifacts encapsulating the main features provided by Android, allowing agents to
access and use the functionalities they need abstracting from low-level implementation details.
The platform guarantees direct access to the most common functionalities required by smart
mobile applications providing a shared workspace called JaCa-Services (see Figure 4.13) con-
taining a set of general-purpose artifacts. This workspace – being executed at each startup of

78

CHAPTER 4. THE JACA PLATFORM 79

the device and stored into a proper Android service3 installed with the JaCa-Android platform
– is shared among all the JaCa-Android applications. The artifacts in this workspace can be
seen like singletons in the context of object-oriented applications—i.e., is needed only one in-
stance of them, which is shared among all their users. In detail the artifacts contained in the
JaCa-Services workspace are:

• SMSService/MailService: providing functionalities related to SMSs/mails (send and re-
ceive SMSs/mails, retrieve stored SMSs/mails, etc.).

• GPSService: providing GPS-related functionalities (e.g., geolocalization of the device).

• AccelerometerSensorSevice/GyroscopeSensorService .. : providing information related
to device sensors (e.g., accelerometer, gyroscope..).

• CallService: providing functionalities to answer/reject phone calls.

• ConnectivityService: managing the access to the different kinds of connectivity supported
by the mobile device.

• CalendarService: for managing the built-in Google calendar.

• PhoneSettingsService: used for managing the device ringtone/vibration.

The platform also includes a set of predefined types of artifacts (GUIArtifact4,
BroadcastReceiverArtifact, ContentProviderArtifact, ServiceArtifact) specifically designed to
build compliant Android components. So, standard Android components can be used as ar-
tifacts that agents and developers can exploit without worrying and knowing about infrastruc-
tural issues related to the Android SDK. This makes it possible for developers to conceive and
realize mobile applications that are seamlessly integrated with the Android SDK, possibly re-
using components and applications developed using the standard SDK. Indeed these artifacts on
the one side allow developers to build – in terms of artifacts – classical Android components,
so directly usable also from standard Android applications; and on the other side they allow
JaCa-Android applications to interact with any existing Android components. This integration
is fundamental in order to guarantee to developers the re-use of existing legacy – i.e., the stand-
ard Android components and applications – and for avoiding the development of the entire set
of functionalities required by an application from scratch.

Besides the set of artifacts described so far, a developer designing a JaCa-Android applica-
tion can – and should – also develop a set of artifacts specific for the particular application she
is realizing—i.e., artifacts representing the external resources needed by agents to achieve their
goals in the context of that specific application (Figure 4.13 top left).

3A service is an Android application component exploited to do long-running operations while not interacting
with the user. See [Goob] for further details.

4This is a specialization of the GUIArtifact discussed in Section 4.3.3, specifically designed to be the basic
artifact for building Android GUIs.

79

80 CHAPTER 4. THE JACA PLATFORM

4.4.2 A Concrete Case Study
In this section we describe an example of mobile application developed with JaCa-Android,
featuring some of the complexities identified in the previous sub-section. In particular, the ex-
ample will focus on the management of asynchronous interactions with external resources, such
as – for example – Web Services and on the capability to express context-sensitive behaviors.
The application considered is a SmartNavigator (Figure 4.15 able to assist the user during her
trips in an “intelligent” way, taking into the account the current traffic conditions.

1 preferences([...]).
2 relevance_range(20).
3

4 !assist_user_trips.
5

6 +!assist_user_trips
7 <- focus("GPSService");
8 focus("GoogleMapsArtifact");
9 focus("SmartNavigatorGUI");

10 focus("TrafficConditionsNotifier").
11

12 +route(StartLocation, EndLocation)
13 <- !handle_navigation(StartLocation, EndLocation).
14

15 +!handle_navigation(StartLocation, EndLocation)
16 <- ?relevance_range(Range); ?current_position(Pos);
17 -+leaving(StartLocation);-+arriving(EndLocation);
18 calculateRoute(StartLocation, EndLocation, OutputRoute);
19 -+route(OutputRoute);
20 subscribeForTrafficCondition(OutputRoute, Range);
21 set_current_position(Pos);
22 updateMap.
23

24 +new_traffic_info(TrafficInfo)
25 <- ?preferences(Preferences);
26 ?leaving(StartLocation); ?arriving(EndLocation);
27 !check_info_relevance(TraffincInfo,Preferences);
28 !update_route(StartLocation, EndLocation, TrafficInfo, NewRoute);
29 !update_subscription(NewRoute);
30 updateMap.
31

32 +current_position(Pos)
33 <- ?route(Route);
34 !check_position_consistency(Pos, Route);
35 set_current_position(Pos);
36 updateMap.
37

38 -!check_position_consistency(Pos, Route)
39 : arriving(EndLocation)
40 <- !handle_navigation(Pos, EndLocation).

Figure 4.14: Source code snippet of the nav-manager Jason agent used in the SmartNavigator
example.

The application is realized using a single Jason agent (nav-manager) and four different ar-
tifacts: (i) the GPSService used for the smart-phone geolocalization (Figure 4.16), (ii) the

80

CHAPTER 4. THE JACA PLATFORM 81

Figure 4.15: A screenshot of the SmartNavigator application that integrates in its GUI some of
the Google Maps components for showing: (i) the user current position, (ii) the road directions,
and (iii) the route to the designed destination.

81

82 CHAPTER 4. THE JACA PLATFORM

1 public class GPSService extends LocationManagerArtifact {
2

3 /* Init */
4 public void init(int minTime, int minDistance) {
5 super.init(minTime, minDistance);
6

7 /* Link of events coming from the GPS to the internal
8 * operations responsible of their management */
9 linkOnLocationChangedEventToOp(LocationManager.GPS_PROVIDER, "onLocationChange");

10 linkOnProviderEnabledEventToOp(LocationManager.GPS_PROVIDER, "onProviderEnabled");
11 linkOnProviderDisabledEventToOp(LocationManager.GPS_PROVIDER, "onProviderDisabled");
12

13 Location location =
14 getLocationManager().getLastKnownLocation(LocationManager.GPS_PROVIDER);
15 defineObsProperty("current_position",
16 new Position (location.getLatitude(), location.getLongitude());
17 defineObsProperty("altitude", location.getAltitude());
18 defineObsProperty("accuracy", location.getAccuracy());
19 defineObsProperty("bearing", location.getBearing());
20 defineObsProperty("speed", location.getSpeed());
21 }
22

23 @INTERNAL_OPERATION void onLocationChange(Location arg0) {
24 getObsProperty("current_position").updateValue(
25 new Position (arg0.getLatitude(), arg0.getLongitude()));
26 getObsProperty("altitude").updateValue(arg0.getAltitude());
27 getObsProperty("accuracy").updateValue(arg0.getAccuracy());
28 getObsProperty("bearing").updateValue(arg0.getBearing());
29 getObsProperty("speed").updateValue(arg0.getSpeed());
30 }
31

32 @INTERNAL_OPERATION void onProviderEnabled(String provider) {
33 signal(ON_PROVIDER_ENABLED,provider);
34 }
35

36 @INTERNAL_OPERATION void onProviderDisabled(String provider) {
37 signal(ON_PROVIDER_DISABLED,provider);
38 }
39 }

Figure 4.16: Source code of the GPSService artifact used in the SmartNavigator example.

GoogleMapsArtifact, an artifact specifically developed for this application, used for encapsulat-
ing the functionalities provided by Google Maps (e.g., calculate a route, show points of interest
on a map, etc.), (iii) the SmartNavigatorGUI, an artifact developed on the basis of the GUIArtifact
and some other Google Maps components, used for realizing the GUI of the application, and
(iv) an artifact, TrafficConditionsNotifier, used for managing the interactions with a Web Service5

that provides real-time traffic information. Figure 4.14 shows a snippet of the agent source code.
The nav-manager has a set of initial beliefs (lines 1-2) storing user preferences about the trip

– e.g., consider/avoid highways – and the range of interest for traffic conditions updates—i.e.,
a 20 Kms radius from the current position in the case of this example. Terminated the initializ-
ation of the artifacts that will be used by the agent during its execution (lines 6-10), the agent

5http://www.stradeanas.it/traffico/

82

http://www.stradeanas.it/traffico/

CHAPTER 4. THE JACA PLATFORM 83

main goal !assist user trips is managed by a set of reactive plans that are structured in
a hierarchy of sub-goals, handled by a set of proper sub-plans. The first reactive plan, repor-
ted at lines 12-13, is executed after the reception of an event related to the modification of the
SmartNavigatorGUI route observable property—i.e., a property that contains both the start-
ing and arriving locations provided in input by the user. The handling of this event generates a
new sub-goal !handle navigation, managed by the plan at lines 15-22 that: (i) retrieves
(line 16) and updates the appropriate agent beliefs (lines 17 and 19), (ii) computes the route
for arriving to the target destination using an operation provided by the GoogleMapsArtifact
(calculateRoute, line 18), (iii) makes the subscription – for the route of interest – to the
Web Service that provides the traffic information using the TrafficConditionsNotifier artifact (line
20), and finally (iv) updates the map showed by the application (using the SmartNavigatorGUI
operations setCurrentPosition and updateMap, lines 21-22) with both the current po-
sition of the mobile device (provided by the observable property current position of the
GPSService) and the new route.

In the case in which no relevant changes occur in the traffic conditions and the user strictly
follows the indications provided by the SmartNavigator, the map displayed in the application
GUI will be updated until arriving to the designed destination, simply moving the current po-
sition of the mobile device using the plan reported at lines 32-36. This plan, activated by a
change of the observable property current position, simply considers (using the sub-plan
check position consistency instantiated at line 34, not reported here for simplicity)
if the new device position is consistent with the current route (retrieved from the agent beliefs
at line 33) before updating the map with the new geolocation information (line 35-36). In the
case in which the new position is not consistent – i.e., the user chose the wrong direction – the
sub-plan check position consistency fails. This failure is handled by a proper Jason
failure handling plan (lines 38-40) that simply re-instantiates the handle navigation plan
for computing a new route able to bring the user to the desired destination from her current
position (that was not considered in the previous route).

The +new traffic info plan (lines 24-30) is worth of particular attention since is the
one that makes it possible the integration of the application reactive behavior – i.e, the asyn-
chronous reception of traffic information from the Web Service – with its pro-active behavior—
i.e, assisting the user during her trips. The plan reacts to the reception of updates related to the
traffic conditions from the Web Service. If the new information are considered relevant w.r.t. the
user preferences (sub-plan check info relevance instantiated at line 27 and not shown)
then, on the basis of this information, the current route (sub-plan update route instantiated
at line 28), the Web Service subscription (sub-plan update subscription instantiated at
line 29), and finally the map displayed on the GUI (line 30) are updated.

83

84 CHAPTER 4. THE JACA PLATFORM

4.5 JaCa-WS: Programming Applications based on the
Service-Oriented Architecture and Web Services in JaCa

Agents and multi-agent systems are more and more recognized in the literature as a suitable
paradigm for engineering systems rooted on the Service Oriented Architecture (SOA) and Web
Services (WSs), since they provide a conceptual and engineering background that naturally
fits many complexities concerning such systems at a high abstraction level [Hun06, NHSB05,
GC04, Huh02]. Actually, this view is also promoted both by the official service-oriented model
described by the W3C [Wor04], and by the Object Management Group (OMG) initiative about
the definition of an agent meta-model and profile in the SOA perspective [Obj08].

Besides being an effective meta-model to design SOA, we argue that agent-oriented pro-
gramming languages and technologies can be effective tools for concretely programming SOA
and Web Services applications, in particular for those kind of service-oriented systems that need
to integrate advanced features such as autonomy, flexibility, reactiveness and asynchronous in-
teraction management [CFNS05, NHSB05].

In that perspective we devised a proper extension of the JaCa platform named
JaCa-WS [PRS09, PSR09], which has been engineered on the basis of our work in the context
of a CArtAgO extension named CArtAgO-WS [RDP10]. JaCa-WS enables the development
of service-oriented applications as JaCa multi-agent systems, in particular as CArtAgO work-
spaces in which BDI-based Jason agents work together, sharing and exploiting artifact-based
environment facilities:

• Agents encapsulate the logic and control of tasks, activities and business processes char-
acterizing the SOA-specific scenario.

• Artifacts instead are used – as usual – to represent specialized resources and tools in-
side the workspaces that agents can exploit. In this case they are useful in particular
to model and engineer those parts in the agent world that encapsulate Web Services as-
pects and functionalities – e.g., interaction with existing Web Services (agents as service
consumers), implementation of Web Services (agents as service providers) – possibly
wrapping existing non-agent-oriented code.

4.5.1 The JaCa-WS Platform
As depicted in Figure 4.17, the JaCa-WS platform is currently implemented on top of the
Axis2 [Foua] open-source application server, in order to conform to the Basic Profile specifica-
tion [WSI] of the Web Service Interoperability Organization (WS-I). Basically JaCa-WS relies
on the standard JaCa programming model and runtime infrastructure, which here have been
properly extended with a library composed by different kind of specialized artifacts aimed at
working with Web Services. In detail these artifacts are:

• Basic WS artifacts — aimed at enabling basic interactions between agents and WSs.

84

CHAPTER 4. THE JACA PLATFORM 85

• WS-* artifacts — aimed at supporting an enriched set of Web Service features (security,
distributed transactions, etc.), as the ones envisaged by advanced WS specifications.

• Business artifacts — they are application-specific and aimed at providing functions for
supporting agents in their business activities—e.g., storing information relevant for the
ongoing tasks in a database, wrapping an external resource, control a GUI, etc.

Below, is provided a description of the artifacts belonging to the first two groups, while ex-
amples of artifacts in the third group are given in the next sub-section. Artifacts of the basic
group allow, on the one side, agents to work with existing Web Services and, on the other side,
the construction and the deployment of new Web Services controlled by agents. To this end,
two configurable artifacts have been introduced: WSInterface and WSPanel.

To interact with an existing Web service, an agent instantiates a WSInterface artifact specify-
ing its WSDL [Wor07] document, which describes the service to interact with. Once created,
the WSInterface provides basic operations to interact with the specified Web Service: sending a
message to the service in the context of an operation (sendWSMsg, doRequestResponse)
or getting replies to messages previously sent during an operation (getWSReply). The cur-
rent implementation makes use of SOAP [256] messages for executing operations and to get
replies sent back by the service, according to message exchange patterns and quality of service
(e.g., security and reliability) defined in the WSDL. In future implementation of this artifact we
plan to add support for resource-oriented interaction with services, as promoted by the REST
architectural style [FT02].
For creating, configuring and controlling a new Web Service, a WSPanel artifact is provided.
Analogously to the previous case, a WSPanel artifact must be instantiated specifying a WSDL
document. Once created, the WSPanel provides basic functionalities to manage SOAP requests,
including receiving and sending messages according to the specific message-exchange pattern
(MEP) described in the WSDL, and basic controls to configure security and reliability policies.
As for the WSInterface, also for the WSPanel alternative transport mechanisms could be en-
visaged in the future (e.g., REST). Operations are available to retrieve or to be notified about
messages received by the Web Service exposed by the WSPanel, optionally specifying filters
to select messages on the basis of their content (getWSMsg, getWSMsgWithFilter and
subscribeWSMsgs), and to send replies accordingly (sendWSReply).

Besides the basic interactions promoted by the aforementioned artifacts, JaCa-WS intro-
duces an additional group of artifacts (WS-* artifacts). This group aims at supporting an extens-
ible set of Web Service specifications, particularly those appearing in the Web Services Interop-
erability Technologies (WSIT) set [Sund]. For doing this, two different artifacts are provided:
the WSRequestMediator and the Wallet. The WSRequestMediator (RM) artifact is meant to
be used by agents to retrieve (or create) dynamic information such as those required by com-
plex specifications WS-Coordination [osftis08b] (WS-C), WS-AtomicTransaction [osftis08a]
(WS-AT) or the ones included in the WS-Security framework [osftis06] (WS-SEC). For in-
stance, suppose that an agent needs to create a new distributed transaction following the WS-AT

85

86 CHAPTER 4. THE JACA PLATFORM

WSPanel

WSDL

SOAP / WS-I

WS consumers

web-services

wsp-1

SOAP / WS-I

WSInterface

WSDL

Web Service

SOAP / WS-I

WSInterface
WSDL

Web Service

web-services

wsp-0

Agents

Artifacts

use
observe

LEGEND

AXIS2+Tomcat

Java Platform

JaCa JaCa-WS artifacts

AXIS2+Tomcat

Java Platform

JaCa JaCa-WS artifacts

Figure 4.17: Abstract representation of the JaCa-WS platform. On the left side, a JaCa-WS
application composed by two workspaces: (i) web-services, and (ii) wsp-1. In
web-services workspace, an instance of WSPanel artifact is shared and used by two agents
to process requests and send replies. On the right side, a JaCa-WS application using existing
services through two instances of WSInterface artifact exploited by the same agent to interact
concurrently with two distinct Web Services.

specification: to this end, it can use a RM to automatically create and retrieve a specific coordin-
ation context, which has been properly configured following WS-C and WS-AT standards.

Besides RM, a Wallet artifact is introduced as a personal artifact for an agent, to support
the management of profile/context information related to some WS specifications. The Wallet
works in synergy with RM artifacts and its function is to dynamically store a portfolio of various
policies which are required to conform messages to Web Service protocols. This information
can range from security tokens (as required by WS-SEC) to dynamic coordination contexts (as
used in WS-C). In doing so, a user agent can completely externalize the management of the
required policies on the wallet. In a typical scenario, an agent using a Web Service firstly gets
profile information using a RM and stores it in its personal Wallet. Then, when needed, the
information is retrieved from the Wallet and used to properly configure the desired WSInterface
or WSPanel used for the communication.

So, generally speaking the WS-* artifacts allow programmers to build articulated applic-
ations abstracting as much as possible from low-level details that concern specific protocol
management (e.g., the management of the coordination contexts in WS-C), and to focus on the
high-level functionalities (e.g., distributed transactions) that agents may need to setup/exploit.

4.5.2 A Concrete Case Study

In this section we consider a concrete case study of a SOA/WS application realized with
JaCa-WS aiming at showing: (i) how the behavior of complex Web Services can be pro-

86

CHAPTER 4. THE JACA PLATFORM 87

grammed as business processes conceived as a complex chain of interleaved tasks expressed
in a goal-oriented format, and thus managed in terms of agent’s plans; and (ii) how Jason BDI
agents rooted on practical reasoning can suitably find a proper course of actions to achieve a
given goal given the current context conditions experienced in the specific SOA/WS scenario.

The case study is inspired by a typical example used in SOA/WS contexts: a user wants to
book an holiday for a given date by exploiting a series of web services providing the required
resources for hotel reservation, transport facilities and payment. As an additional element of the
scenario, we imagine for the client the possibility to be further notified when a selected range
of dates has become available for additional hotel reservations. This allows clients to express
an interest for a given date, and thus to re-try the booking activity when the hotel signals a last
minute availability (e.g., due to other reservations being canceled). The whole booking process
must be managed via a distributed atomic transaction (as specified by WS-AT) in order to ensure
that the entire booking operation is either performed correctly up to completion or aborted in
case of any problems (e.g., hotel full, insufficient funds available, etc.). On these basis, the
involved services need to shape their activities based on situated conditions:

• A transaction can have success or not, given the resources which are actually available.

• A new booking operation can be retried, based on changed contexts for which, at the
moment of the first attempt, the client could not finalize the task.

The application is centered on two main side: a server side and a client side (Figure 4.18). On
the server side we have three Web Services that the user needs to interact with in order to per-
form the holiday booking. The first one is the Hotel Manager (HM), a service that manages the
booking for the target hotel and also provides notification functionalities to subscribers. It has
been designed using two agents, the Hotel Basic Agent and the Hotel Notifier Agent, sharing and
exploiting an instance of WSPanel to expose the service (see Figure 4.18 right). To support their
tasks, the agents use two additional artifacts (i.e., business artifacts following the classification
given in Section 4.5.1): (i) the HotelBookingRegistry artifact, to manage the requests related to
bookings and cancellations, and (ii) the SubscribersMap artifact (Figure 4.20), used mainly by
the Hotel Notifier Agent in combination with the former one, to notify interested subscribers as
soon as changes regarding date availabilities are observed.

The other two services on the server side are the TransportManager service (TM) that man-
ages the booking for the transports used for arriving to (and leaving from) the specified destin-
ation, and the PaymentManager service (PM) which manages online payments.

On the client side we only have the Booking Service (BS), built around the role played by a
Booking Requestor Agent (BRA), whose final goal is to plan the required reservation related to
an holiday by interacting with the WSs on the server side.
Figure 4.19 shows the implementation of the BRA. For sake of simplicity, some of the agent’s
sub-goals concerning low level computations are not fully specified here (e.g., the sub-goal
!retrieve date at line 4 which is used to retrieve the date information provided by the
human user, and to store it in form of an agent belief date(Date)). The BRA initial

87

88 CHAPTER 4. THE JACA PLATFORM

proxyPayment

Hotel Basic
Agent

HOTEL MANAGER SERVICE
(HM)

WS/SOAP
messages

Hotel Notifier
Agent

BookingManager
WSDL

subscribeWSMsgs
sendWSReply

getWSMsgWithFilter

WSPanel

Subscribers
Map

addSubscriber
removeSubscriber
getSubscribers

Booking Requestor
Agent (BRA)

proxyHM

WSInterface

BookingManager
WSDL

bookingOperation
subscribeOperation
unscribeOperation

proxyTransport

bookingOperation

WSInterface

TransportManager
WSDL

WS-* LAYER

USE
PERCEPTION

SENSE

WS/SOAP
MESSAGES

payOperation

WSInterface

PaymentManager
WSDL

wsProxyCoord

WSInterface

WSAtomicTransaction
WSDL

commitOperation
rollbackOperation

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest
addInfo
resumeInfo

Wallet

HotelBooking
Registry

bookingCheck

finalizeBooking
unlockDates

bookingCancellation

WS-* LAYER

addInfo
resumeInfo

Wallet

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest

BOOKING SERVICE
(BS)

Figure 4.18: Structural architecture showing the services involved in the holiday book-
ing example scenario. On the left side, the Booking Service controlled by the
Booking Requestor Agent which manages the WSInterface artifacts for contacting the
Transport Manager, Payment Manager, Hotel Manager and WSAtomicTransaction. On the
right side, the Hotel Manager Service uses two agents (Hotel Notifier and Hotel Basic) and two
artifacts (SubscribersMap and HotelBookingRegistry) in order to provide the booking service
and the notification events exploitable by the clients. The two services make use of the WS-*
artifacts to coordinate the transactions according to WS-* protocols.

goal !start booking (line 1) is decomposed in a series of sub-goals. The initial one
!setup tools is used to retrieve and create the needed artifacts (artifact identifiers are stored
as beliefs in the form artifact id(a name, a id)). Then, the booking activity is per-
formed by the sub-goal !book an holiday. The plan for this sub-goal: (i) creates the
WS-AT context through the RequestMediator (line 12) and stores it in the Wallet for further
use (line 14), and then (ii) configures – with the WS-AT context just created – the WSInterfaces
used to interact with the HM, TM and PM (lines 16-18). Then the plan decomposes its behavior
by defining a workflow of further sub-goals, realized by dedicated plans, as they are specified
at lines 19-21.

The first sub-goal (!book hotel, line 19) manages the booking of the hotel for the given
dates: after retrieving the belief related to the proxyHM from the agent belief base, a request
message for the HM is prepared (line 25) and sent by means of the request-response MEP. This
is done by using the doRequestResponse operation of the WSInterface artifact (line 26).

We may assume that the hotel has already reached the maximum amount of reservations for
some of the dates in the requested period. In that case, the HM service replies to BS with a
message notifying the inability to finalize the reservation: this message is then analyzed by a
special inspect h response plan that can provide an available or not available

88

CHAPTER 4. THE JACA PLATFORM 89

1 !start_booking.
2

3 +!start_booking
4 <- !setup_tools; !retrieve_date; !book_an_holiday.
5

6 +!setup_tools : true
7 <- /* create and locate artifacts, not shown for sake of simplicity */
8

9 /* Top Level Goal */
10 +!book_an_holiday
11 : date(Dates) & artifact_id(proxyHM, ProxyID)
12 <- createWSATContext(ATContext);
13 //* add the related ATContext into the Wallet */
14 addWalletInfo(ATContext);
15 ?artifact_id(proxyHM, ProxyID);
16 configure(ATContext)[artifact_id(ProxyID)];
17 /* further WSInterface configurations are not
18 reported for sake of simplicity */
19 !book_hotel(Dates, Res_H);
20 !book_accessories(Dates, Res_A);
21 !finalize(Res_H, Res_A).
22

23 +!book_hotel(Dates, Res_A)
24 : artifact_id(proxyHM, ProxyID)
25 <- !createBookingMessage(hotelBooking, Dates, MsgBookHotel);
26 doRequestResponse(ProxyID, bookingOperation(MsgBookHotel), HotelResponse);
27 !inspect_h_response(HotelResponse, Res_H);
28 Res_H == "available". // fail if not available
29

30 +!book_accessories(Dates, Res_H)
31 : artifact_id(proxyTransport, TranID) & artifact_id(proxyPayment, PayID)
32 & hPrice(HotelPrice) & tPrice(TransportPrice) & bank_account_id(BankID)
33 <- !createBookingMessage(transportBooking, Dates, MsgTransport);
34 doRequestResponse(TranID, bookingOperation(MsgTransport), ResponseTransport);
35 !createPayMessage(BankID, (HotelPrice+TransportPrice), MsgPay);
36 doRequestResponse(PayID, payOperation(MsgPay), ResponsePayment);
37 !inspect_acc_responses(TransportResponse, PaymentResponse, Res_A);
38 Res_A == "available". // fail if not available
39

40 /* Fail Event Handling */
41 -!book_an_holiday
42 : artifact_id(proxyHM, ProxyID) & dates(Dates)
43 <- !createSubscribeMessage(Dates, MsgSubscription);
44 focus(ProxyID);
45 subscribeOperation(MsgSubscription)[artifact_id(ProxyID)];
46 !finalize("not_available", "").
47

48 /* Notification from HM */
49 +dateNotMoreFull(Dates) [source(proxyHM)]
50 : artifact_id(proxyHM, ProxyID) & dates(Dates)
51 <- stopFocusing(ProxyID);
52 !book_an_holiday;
53

54 /* Finalize */
55 +!finalize(Res_H, Res_A)
56 : Res_H == "available" & Res_H == "available"
57 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
58 <- !createCommitMessage(WS-AT-Context, MsgCommit);
59 doOneWay(CoordID, commitOperation(MsgCommit));
60

61 +!finalize(Res_H, Res_A)
62 : (Res_H =/= "available" | Res_A =/= "available")
63 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
64 <- createRollbackMessage(ATContext, MsgRollback);
65 doOneWay(CoordID, rollbackOperation(MsgRollback)).

Figure 4.19: Source code snippet of the Booking Requestor Agent (BRA) used in the holiday
booking example.

89

90 CHAPTER 4. THE JACA PLATFORM

1 public class SubscribersMap extends Artifact {
2

3 private HashMap<String, ArrayList<WSMsgInfo>> map;
4

5 /* Artifact initialization */
6 @OPERATION void init(){
7 map = new HashMap<String,ArrayList<WSMsgInfo>>();
8 }
9

10 /* Operation that add a subscriber for the dates given in input */
11 @OPERATION void addSubscriberForDates(ArrayList<String> dates, WSMsgInfo msg){
12 for(String date : dates){
13 if(!map.containsKey(date)){
14 map.put(date, new ArrayList<WSMsgInfo>());
15 }
16 map.get(date).add(msg);
17 }
18 }
19

20 /* Operation that removes a certain subscriber for the dates given in input */
21 @OPERATION(guard="checkDatesPresence")
22 void removeSubscriberForDates(ArrayList<String> dates, WSMsgInfo msg)
23 {
24 for(String date : dates){
25 map.get(date).remove(msg);
26 }
27 }
28

29 /* Operation that returns the list of the subscribers for a specified date */
30 @OPERATION(guard="checkDatePresence") void
31 getSubscribersForDate(String date, OpFeedbackParam<ArrayList<WSMsgInfo>> res)
32 {
33 ArrayList<WSMsgInfo> list = map.get(date);
34 if (list!=null){
35 signal("subscribers", list.clone());
36 res.set((ArrayList<WSMsgInfo>) list.clone());
37 } else {
38 res.set(new ArrayList<WSMsgInfo>());
39 }
40 }
41

42 /* Dates presence guard */
43 @GUARD boolean checkDatesPresence(ArrayList<String> dates, WSMsgInfo msg){
44 for(String date : dates){
45 if(!map.containsKey(date)){
46 return false;
47 }
48 }
49 return true;
50 }
51

52 /* Date presence guard */
53 @GUARD boolean checkDatePresence(String date,
54 OpFeedbackParam<ArrayList<WSMsgInfo>> res)
55 {
56 return map.containsKey(date);
57 }
58 }

Figure 4.20: Source code of the SubscribersMap artifact used in the holiday booking example.

90

CHAPTER 4. THE JACA PLATFORM 91

book_an_holiday

book_hotel book_accessories finalize

+dateNotMoreFull-!book_hotel

Booking Requestor Agent
(BRA)terminal goal

perceptfailure
event

HOTEL MANAGER SERVICE (HM)

subgoal(s)

subscribeOperation dateNotMoreFull

proxyHMWSInterface

WS/SOAP

Figure 4.21: Goal decomposition tree for the Booking Requestor Agent. The picture shows
the structure of the various plans related to each sub-activity needed to achieve the ter-
minal goal. Notice the interaction with proxyHM artifacts, in particular for the subscribe
operation, performed after a failure in the book hotel plan, and the execution of a new
book an holiday plan, once a new availability is signaled by the HM.

result. The returned literal is then matched to verify the success of the booking operation.
In so doing, a fail event will occur when the booking operation has failed and the Res H is
not available (line 28). Thanks to the Jason execution model, this fail event causes the
root plan to fail too. Hence, the failure can be handled by a -!book an holiday plan
(lines 40-46 and Figure 4.21), by which the agent can subscribe to the HM with the aim to
be notified when some new availability is signaled. In the hope that some client will cancel a
reservation for the desired date the agent: (i) focuses the HM proxy (WSInterface) and uses it
for self-subscribing to the notification of possibly further availabilities (lines 44-45), then (ii)
instantiates a sub-goal to rollback the current transaction (line 46), and (iii) finally waits for
possible HM notifications. The rollback of the WS-AT (managed by the plan at lines 61-65)
is managed through a Coordinator Service which is part of the runtime infrastructure of the
JaCa-WS platform, together with the set of Web Services required by WS-C specification.

Each BRA subscription is handled within the HM service by the Hotel Notifier Agent, which
stores the request in the SubscribersMap business artifact. Meanwhile, if some other agent
interacting with the HM cancels its reservation for the subscribed date, that change is signaled –

91

92 CHAPTER 4. THE JACA PLATFORM

within the HM side – to the HotelBookingRegistry artifact, which stores the reservations’ data.
In this case, the Hotel Notifier Agent is supposed to receive a percept from the registry: as soon
as a +data status changed signal is perceived, the Hotel Notifier Agent creates a new sub-
goal to process such information, by retrieving the subscribers matching the given date, and by
sending back a notification message to the BS who subscribed.

Once a new availability occurs – i.e., the message coming from the HM arrives to the BS
– is automatically translated by WSInterface, and is then signaled to the BRA agent. Also
in this case, the event is received in form of percept and it succeeds to awaken the focus-
ing BRA: the arriving percept +dateNotMoreFull(Dates)[source(proxyHM)] con-
tains a date identifier (Dates) by which the agent can match the event and thus recognize it
as a meaningful one, w.r.t. its goals (lines 49-52). In so doing, the BRA can now adopt a new
instance of the !book an holiday goal (line 52 and Figure 4.21), by which the activities
needed to achieve it are re-planned from scratch. Differently from what happened in the first
attempt, the BRA now finds the resources to succeed in booking the hotel for the requested
dates (HM response is, in this case, available). Given this, the BRA can now proceed with
the following activity (!book accessories, line 20). It contacts the TM and PM services
(lines 33-36), and, after having received the responses, it can control the results (line 37) and,
in so doing, achieve the terminal goal (!book an holiday). Finally, the WS-AT transac-
tion is committed by exploiting the Coordinator Service mentioned before (sub-goal
!finalize(Res H, Res A) at line 21, managed by the plan reported at lines 55-59).

4.6 JaCa-Web: Programming Rich Internet Applications in
JaCa

Due to the continuous growth of machine computational power and the overcoming of network
speed bottlenecks, the client-side of so-called Rich Internet Applications6 [FRSaF10] (RIAs) is
constantly evolving in terms of complexity. Moreover, thanks to the Web 2.0 transition and the
advent of cloud-computing, the gap between Web and traditional desktop applications is tailing
off. Web 2.0 applications are starting to share more and more features with desktop applications
in order to combine their better user experience with Web benefits, such as distribution, open-
ness and accessibility. One of the most important features of Web 2.0 is a new interaction model
between the client user interface of a Web browser and the server-side of the application. Such
rich Web applications allow the client to send multiple concurrent requests in an asynchronous
way, avoiding complete page reload and keeping the user interface live and responding. Periodic
activities within the client-side of the applications can be performed in the same fashion, with
clear advantages in terms of perceived performance, efficiency and interactivity [FRSaF10].

So, the more complex web applications are considered, the more the application logic put
on the client side becomes richer, eventually including asynchronous interactions – with the

6The term was first introduced in a white paper of March 2002 by Macromedia [All02].

92

CHAPTER 4. THE JACA PLATFORM 93

user, with remote services – and possibly also concurrency—due to the concurrent interaction
with multiple remote services. This situation is exemplified by well known applications such as
Gmail [Incc], Google Maps [Incd], etc.

The direction of decentralizing responsibilities to the client is also apparent by considering
the new HTML 5.0 standard [Worb], which enriches the set of APIs and features that can be
used by web applications on the client side. Among the others, some can have a strong impact
on the way an application is designed: this is the case of the Web Worker mechanism [Word],
which makes it possible to spawn background workers running scripts in parallel to their main
page, allowing for thread-like operations with message-passing as the coordination mechanism.
Another one is cross-document messaging [Worc], which defines mechanisms for communic-
ating between browsing contexts in HTML documents.

Besides devising enabling mechanisms, a main issue is then how to design and program
applications of this kind [FRSaF10]. A basic and standard way to realize the client side of RIAs
is to embed scripts in the page, written in some scripting language such as JavaScript [Wora].
Originally, such scripts were just meant to perform checks on the inputs and to create visual
effects. Now instead, due to the new requirements of RIAs, they are progressively becoming one
of the reference ways to engineer complex programs. Accordingly, in the last years a very big
amount of frameworks and libraries for developing the client side of RIAs have been developed.
Main examples are: jQuery [Theb], Ext JS [Sen], Dojo [Thea], etc. However the problem is that
scripting languages – like JavaScript or some of its more advanced extensions like the one just
cited – have not been designed for programming in the large, so using them to organize, design,
implement complex programs without principled software engineering approaches becomes –
in general – too complicated, expensive, and unmaintainable [FRSaF10].

To address the problems related to scripting languages, higher level approaches started to
proliferate in the very last years. A main example is Google Web Toolkit (GWT) [Gooc],
which allows to develop client-side applications with Java. A second example is given by
TypeScript [Cor12], a programming language recently introduced by Microsoft. Typescript
conceptually extends JavaScript by introducing explicit support for typing, classes, mod-
ules, and interfaces. All these features are available at design time for helping developers
building robust Web applications, but in the end TypeScript code is translated into plain old
JavaScript—i.e., this allows TypeScript code to be possibly executed in any browser, any host,
any OS [Cor12]. However, these solutions do not provide significant improvements in tack-
ling all those aspects that are still an issue for object-oriented programming languages, such as
concurrency, asynchronous events management, and so on.

We argue then that these aspects can be better captured and tackled by adopting an higher
level of abstraction and related programming approaches. This is actually the idea behind the
development of Google DART, a new programming language for developing structured web
applications [Incb]. Besides providing well know features and constructs of object-oriented
languages (e.g., typing, inheritance, classes and interfaces, etc.) DART comes along with an
actor-based library [Inca] in oder to provide developers better means to deal with issues such
as concurrency and asynchronous event management. In our opinion this is a clear evidence

93

94 CHAPTER 4. THE JACA PLATFORM

of the need to promote novel and higher level programming approaches for dealing with the
complexities introduced by RIAs.

Following this perspective, we realized a proper extension of the JaCa platform named
JaCa-Web [MRS11, MSR10] providing an agent-oriented level of abstraction to design, pro-
gram and execute the client-side of rich Internet applications. By exploiting the JaCa pro-
gramming model, we directly program the Web 2.0 application as a normal JaCa multi-agent
system, composed by a workspace with one or multiple Jason agents working with an artifact-
based CArtAgO environment, including a set of predefined artifact types specifically designed
for the Web domain. Generally speaking, agents are used to encapsulate the logic of control
and execution of the tasks that characterize Web 2.0 application, while artifacts are used to im-
plement the environment needed for executing the tasks, including those coordination artifacts
that can ease the coordination of the agents’ work.

4.6.1 The JaCa-Web Platform

JaCa-Web is an extension of the JaCa platform, specifically conceived for allowing developers
to build the client-side of Web 2.0 rich Internet applications as JaCa multi-agent systems. As
with the two JaCa extension presented before (JaCa-Android and JaCa-WS), the application
and programming model adopted in JaCa-Web are inherited from the JaCa platform, which
here has been properly enriched with a new layer composed of specific artifacts that enable the
development of RIAs. As depicted in Figure 4.17, the JaCa-Web platform is currently imple-
mented on top of existing technologies. Java applets are used as the enabling technology to
download and manage the execution of JaCa-Web applications inside the user’s browser. So,
as with any other Java applet, once the user points her browser to the URL of a JaCa-Web
application, a pop-up is displayed in order to ask the permission to run the targeted applica-
tion. If the user grants the permission, the browser starts downloading a signed Java applet
containing both the JaCa-Web runtime and the application sources. The LiveConnect [SUNc]
open-source library is exploited to enable JaCa-Web programs access DOM (Document Object
Model) elements – e.g., buttons, text fields, radio buttons, etc. – displayed in the application
Web page.

As soon as the page and the JaCa-Web applet are downloaded by the browser, the applica-
tion is launched–i.e., are created the workspaces, the initial set of agents and artifacts. Among
the predefined types of artifact that are available in the new layer introduced by the JaCa-Web
platform, two main ones are the Page artifact and the HTTPService artifact.

The former allows to: (i) access and change the application’s web page – internally ex-
ploiting the LiveConnect library – allowing for dynamically updating its content, structure, and
visualization style; (ii) make events related to user actions on the page observable to agents as
percepts. An application may either exploit directly the Page artifact or define its own extension
with operations and observable properties linked to the specific content of a web page.

The HTTPService provides instead basic functionalities to interact with a remote HTTP
service, hiding the use of sockets and low-level mechanisms. Analogously to the Page artifact, it

94

CHAPTER 4. THE JACA PLATFORM 95

Figure 4.22: Architecture of the JaCa-Web platform – with in evidence the different technolo-
gies upon which the platform is based – and of a generic application running on top of it.

can be used as it is – providing actions to do raw HTTP requests – or can be extended providing
an higher level application specific usage interface hiding the HTTP level.

4.6.2 A Concrete Case Study
To stress the features and test-drive the capabilities of the platform, in this section is presented
a relevant example of Web application developed with JaCa-Web. The example is useful in
particular to stress some of the keys complexities of RIAs identified in Section 4.6: (i) the man-
agement of concurrent behaviors, (ii) the management of asynchronous events coming either by
the user and external services, and (iii) the integration of the handling of such events with the
application autonomous behavior.

The application is about searching products and comparing prices from multiple services
(Figure 4.23). To this end, we imagine the existence of N REST services that offer a set of
product catalogs describing products features and prices, codified in some standard machine-
readable format (e.g., XML or JSON [Int]). The client-side in the Web application needs to
search all services for products that satisfy a set of user-defined constraints (e.g., a specific
product description, price lower than a certain threshold, etc.).

The application also needs to periodically monitor services so as to search for new offer-
ings of the same product. A new offering satisfying the constraints should be visualized only
when its price is more convenient than the current best price for that product. The client may
finish its search and monitoring activities when some user-defined conditions are met—e.g., a

95

96 CHAPTER 4. THE JACA PLATFORM

Figure 4.23: A screenshot of the JaCa-Web product search application in action. In evidence:
(i) the preferences specified for the search by the user (left), and (ii) the current search result
displayed by the application (right).

certain amount of time is elapsed, a product with a price less than a specified threshold has
been found, or the user interrupts the search with a click on a proper Stop Search button in the
page displayed by the browser (see Figure 4.23). Finally, if such an interruption took place, by
pressing again the Start Search button it must be possible to let the search continue from the
point where it was blocked. The characteristics of concurrency and periodicity of the activities
that the client-side needs to perform and the asynchronous events it needs to manages, make
this case study a significant prototype of a typical Web 2.0 rich Internet application.

The solution adopted to realized the described application includes two kinds of agents:
(i) a usr-assistant agent – which is responsible of setting up the application environment and
managing the interactions with the user – and (ii) multiple product-finder agents, which are re-
sponsible to periodically interact with remote product services to find the products satisfying the
user-defined parameters. To aggregate data retrieved from services and coordinate the activities
of the usr-assistant and product-finder agents we introduced a ProductDirectory artifact (Fig-
ure 4.26), while a MyPage artifact and multiple instances of Service artifacts (a specialization
of the HTTPService artifact) are used respectively by the usr-assistant and product-finders to

96

CHAPTER 4. THE JACA PLATFORM 97

Figure 4.24: Client-side architecture of the product search application in terms of agent, arti-
facts, and their interactions. UA is the usr-assistant agent, PFs are the product-finder agents, PD
is the ProductDirectory artifact and finally Services are the specialization of the HTTPService
artifact, used to communicate with the external product services.

interact with the user and with remote product services.
More in detail, the usr-assistant agent is the first agent booted on the client side, and it setups

the application environment by creating the ProductDirectory artifact and spawning a number of
product-finder agents, one for each service to monitor. Then, by observing the MyPage artifact,
the agent monitors user actions and inputs. In particular, the web page provides controls to start,
stop the searching process and to specify and change dynamically the preferences related to the
products to search, along with the conditions to possibly terminate the process (see Figure 4.23).
Button click events are mapped onto stateSearch(X) (where X can be either "start" or
"stop") observable events generated by the MyPage artifact, while other MyPage specific
observable properties – i.e., searchPreferences containing the user-defined preferences
for the search and terminationCondition specifying the search termination condition –
are used to make observable the input information specified by the user.

The usr-assistant reacts to changes to these observable properties, and interacts with
product-finder agents via message passing to coordinate the search process. The interac-
tion is also mediated by the ProductDirectory artifact, which is used and observed by both
the usr-assistant and product-finders. In particular, this artifact provides a usage interface
with operations to aggregate product information found by product-finders—in particular
addProducts, removeProducts to respectively add and remove products from the cur-
rent list. The artifact stores and makes observable the products found so far through the
matchingProducts observable property. Changes of this observable property are handled
by the usr-assistant agent which reacts in order to update the application GUI with current
search results.

97

98 CHAPTER 4. THE JACA PLATFORM

1 /* product-finder agent */
2 service_url("...").
3 monitoring_frequency(...).
4

5 +start_search
6 <- !setup_tools;
7 !search.
8

9 +!search: searchPreferences(Prefs) & monitoring_frequency(Delay)
10 <- !request_products(Prefs, ProductList);
11 !process_products(ProductList, ProductsToAdd, ProductsToRemove);
12 addProducts(ProductsToAdd);
13 removeProducts(ProductsToRemove);
14 .wait(Delay);
15 !search.
16

17 +!request_products(Prefs, ProductList) : art_id(proxy, ArtID) & service_url(SrvURL)
18 <- !prepare_http_request(Prefs, SrvURL, ReqURL);
19 send("GET", ReqURL, Response) [artifact_id(ArtID)];
20 !get_products_from_service_response(Response, ProductList).
21

22 +searchPreferences(Preferences)
23 <- .drop_intention(search);
24 !search.
25

26 +stop_search
27 <- .drop_intention(search).
28

29 +!setup_tools
30 <- makeArtifact("proxyHTTP","jacaweb.HTTPService",[],Id);
31 focus(Id);
32 +art_id(proxy, Id).
33

34 +!process_products
35 <- ...

Figure 4.25: Source code snippet of a product-finder agent used in the product search example.

The full source code of the application can be consulted on the JaCa-Web official web-
site [Andb], where the interested reader can also find a running instance of the application that
can be used for tests7. Here we just report a snippet of a product-finder agent source code (Fig-
ure 4.25), with in evidence: (i) the plans used by the agent to react to changes to the search state
(lines 5-7 and 26-27) communicated by the usr-assistant via tell messages—which cause the
addition or removal of a search goal, (ii) the plan used to achieve the !search goal (lines
9-15), periodically – on the basis of the monitoring frequency initial belief – getting the
product list by means of the !request products sub-goal (line 10) and then updating the
ProductDirectory accordingly by adding new products and removing products no more avail-
able (lines 12-13), and (iii) the plan used to adapt the search as soon as a change of the MyPage
artifact searchPreferences observable property is perceived (lines 22-24).

7http://jaca-web.sourceforge.net/?page_id=88

98

http://jaca-web.sourceforge.net/?page_id=88

CHAPTER 4. THE JACA PLATFORM 99

1 public class ProductDirectoryArtifact extends Artifact{
2

3 private ArrayList<Product> ProductsList;
4

5 void init(){
6 ProductsList=new ArrayList<Product>();
7 defineObsProperty("matchingProducts", new ArrayList<Product>());
8 }
9

10 /**
11 * Add products to the directory
12 * @param product An XML representation of the product
13 * @param serviceId
14 */
15 @OPERATION void addProducts(List<String> products, String serviceId){
16 List<Product> newProducts = new ArrayList<Product>();
17 for (String currProduct: products) {
18 /* Transforms the XML representation in a corresponding Product
19 * Java Object and add it to the newProducts list */
20 }
21 /* Private method that updates the matchingProducts observable property */
22 this.addNewProducts(newProducts);
23 }
24

25 /**
26 * Remove products from the directory
27 * @param product An XML representation of the product
28 * @param serviceId
29 */
30 @OPERATION void removeProducts(List<String> products,String serviceId){
31 List<Product> delProducts = new ArrayList<Product>();
32 for (String currProduct: products) {
33 /* Transforms the XML representation in a corresponding Product
34 * Java Object and add it to the delProducts list */
35 }
36 /* Private method that updates the matchingProducts observable property */
37 this.removeProducts(delProducts);
38 }
39

40 /* Private methods */
41 private void AddProducts(){...}
42 private void removeProducts(){...}
43 }

Figure 4.26: Source code snippet of the ProductDirectory artifact used in the product search
example.

4.7 Concluding Remarks

Following the discussion made in Section 3.5, in this chapter we presented JaCa, which is
both an agent-oriented development platform and programming approach targeting the gen-
eral purpose development of MASs. The platform is built upon the integration of two existing
agent-oriented technologies: the BDI-based Jason agent-oriented programming language (Sec-
tion 3.2.2), and the CArtAgO environment framework (Section 3.3.2).

The main feature/novelty of JaCa w.r.t. other state-of-the-art agent-oriented APLs/frame-

99

100 CHAPTER 4. THE JACA PLATFORM

works/platforms is its programming model, which relies on the synergistic integration of the
agent and the environment dimensions. Such an integration has been engineered on the basis of
a dedicated action and perception model (described in Section 4.1), which has been studied to
make BDI-based agents work effectively in endogenous environments, without the need to rely
on ad-hoc bridges/integration mechanisms between the two dimensions.

The first part of the chapter describes the general JaCa programming model (Section 4.2)
and puts the focus on some of its more relevant features (Section 4.3). Then have been presented
some of the most relevant extensions of the JaCa platform that we have developed in order
to exploit and stress the JaCa programming model in some of the most relevant and modern
application domains (Section 4.4, Section 4.5 and Section 4.6). For each application context
considered: (i) we provided an overall description of the domain and the motivations that lead
us to test/apply JaCa there, (ii) we introduced the extended version of the JaCa platform that
has been engineered in order to apply its programming model in the considered application
domain, and finally (iii) we presented and discussed a relevant case study.

The main objective of this chapter – and also of our work with JaCa – is not demonstrate/-
prove that a specific application/program – e.g., the different case studies discussed – or that all
the applications of a specific domain are best solved in general by using the JaCa technology.
Indeed, on the one side it is not possible – for many reasons – to provide an exact quantitative
evaluation and comparison among classic and JaCa-based solutions; moreover on the other side
both JaCa and all its extensions are still far beyond from being considered as robust and mature
as reference technologies available in the state-of-the-art for coding programs in the application
domains considered. On the contrary, our general aim is to study the effectiveness – and also
the limitations – of the JaCa programming model – and in particular the synergistic integration
of the agent and environment dimensions – for developing MASs in some of the most relevant
application domains, effectively tackling relevant programming issues for such domains such
as: (i) the management of asynchronous interactions/events, (ii) the integration of the handling
of such events with the application autonomous behavior, (iii) the implementation of context-
sensitive behaviors, and (iv) the programming and management of concurrent behaviors. The
examples described in this chapter show in detail how all these issues can be easily tackled in
JaCa.

Concluding, besides all the aspects already considered, the synergistic integration of the
agent and the environment dimensions on a unified programming model give developers the
opportunity to move from one application context to another in a quite straightforward manner.
Indeed, by knowing the JaCa programming model, they can continue to engineer the applic-
ations business logic by suitably defining the behavior of Jason agents, and they only need to
acquire the ability to work with the artifacts that are specific of the new application context,
which wrap and hide all the complexities and low-level technical aspects of the new domain.

A more comprehensive discussion about the good findings, the current weaknesses and lim-
itations of JaCa and its related extensions is postponed to Chapter 6. This is an intentional
choice. Indeed, given the strong connections with JaCaMo that will be presented only in the
next chapter (Chapter 5), we decided to provide only one general and comprehensive descrip-

100

CHAPTER 4. THE JACA PLATFORM 101

tion of these aspects after having presented both JaCa and JaCaMo, avoiding the repetition of
concepts and issues that are in common with the two platforms and programming approaches.

101

102 CHAPTER 4. THE JACA PLATFORM

102

5
The JaCaMo Platform

Following the path we started to delineate with JaCa, in this chapter we describe
JaCaMo [BBH+11]. JaCaMo is both a concrete programming approach and development plat-
form for the engineering of MASs, which is rooted on a comprehensive integration of three
multi-agent programming dimensions, namely the agent, environment, and organization. It has
been realized taking as a starting point three existing agent-oriented technologies: Jason for
programming agents (Section 3.2.2), CArtAgO (Section 3.3.2) for programming environments
– and in particular the previous work and the expertise maturated during the study of their
synergistic integration in JaCa (Chapter 4) – and M OISE (Section 3.4.2) for programming
organizations.

Then, beyond a simple technological integration, a key point has been the synergistic in-
tegration of the related programming (meta-)models so as to come up with an approach that
allows programmers to take advantage of such connections to simplify the development of
complex MASs. The result and main contribution of this integration is the JaCaMo conceptual
framework and platform, which provides high-level first-class support for developing MASs
exploiting the agent, environment and organization dimensions, preserving a strong separation
of concerns but, at the same time, exploiting such dimensions in a synergistic way. The chapter
is organized as follows:

• Initially is described the JaCaMo programming approach (Section 5.1).

• Then in Section 5.2, are described both the JaCaMo programming model – focusing in
particular on the synergies among the different programming dimension that emerged
during its definition – and the runtime infrastructure at its support.

• Finally, to provide a concrete evaluation, are described a couple of relevant real world
projects in which JaCaMo has been used with success (Section 5.3).

5.1 The JaCaMo Approach
A JaCaMo multi-agent system – i.e., a software system programmed in JaCaMo – is
given by an agent organization programmed in M OISE, organizing autonomous agents pro-

103

104 CHAPTER 5. THE JACAMO PLATFORM

role
organisation

mission

scheme

ORGANISATION
DIMENSION

AGENT
DIMENSION

ENVIRONMENT
DIMENSIONworkspace

artifact

network node

EXTERNAL
ENVIRONMENT

agent

Figure 5.1: Overview of a JaCaMo multi-agent system, highlighting its three dimensions.

grammed in Jason, working in a shared distributed artifact-based environment programmed in
CArtAgO (see Figure 5.1).

So, JaCaMo integrates these three platforms by defining in particular a semantic link among
concepts of the different programming dimensions – agent, environment and organization – at
the meta-model and programming levels, in order to obtain a uniform and consistent program-
ming model aimed at simplifying the combination of those dimensions when programming
multi-agent systems.

Even if it is not possible, for many reasons, to provide an exact quantitative evaluation, we
argue that the approach simplifies MAS programming, and makes it possible to have cleaner and
typically shorter programs. This is possible because of the reasoning/interpreting/monitoring
engines/infrastructures that are available in the three platforms incorporated into JaCaMo, and
the interfacing between them which also make automatic many things that programmers would
normally have to worry about themselves.

104

CHAPTER 5. THE JACAMO PLATFORM 105

5.1.1 Overview of the JaCaMo Programming Meta-Model
Figure 5.2 shows the integrated programming meta-model of JaCaMo. The abstractions strictly
related to each specific dimension are grouped by dashed lines. Being an integrated program-
ming meta-model – that is, a meta-model focused on programming abstractions and constructs
– it does not include concepts or abstractions which are not part of the programming languages
or frameworks—for instance, the concept of intention which is part of the Jason runtime but
not of the Jason programming language is not included. Besides presenting the main concept
of JaCaMo programming, the main objective of this meta-model is to show explicitly the de-
pendencies, connections and conceptual mappings between the abstractions belonging to the
different programming dimensions.

Artifact

Operation Agent

Workspace

Work Environment

Manual

has

use

generateupdate

create
dispose

link

consult

join
quit

Belief

Goal

Plan

External Action Internal Action

Mission
Role

Group
Social Scheme

create
delete

adopt
leave

create
delete

commit
leave

perceive

Trigger eventObservable Property

Norm

Goal

Action

Observable Event

Agent
dimension

Environment
dimension

Organisation
dimension

agent's actionscomposition
association
dependency concept mapping

dimension border

Le
ge

nd

Figure 5.2: JaCaMo Programming Meta-Model. For readability reasons cardinalities are not
reported.

The abstractions belonging to the agent dimension, related to the Jason meta-model, are mainly
inspired by the BDI architecture upon which Jason is rooted. Instead, the abstractions on the

105

106 CHAPTER 5. THE JACAMO PLATFORM

environment side refer to the A&A meta-model, which is at the basis of the CArtAgO environ-
ment framework. Both Jason and CArtAgO, along with their main programming abstractions
and features, have been described in detail in the previous chapter during the presentation of
the JaCa platform. Therefore the interested reader can refer to Chapter 4 for a comprehensive
description of the elements in Figure 5.2 that refer to the agent and environment dimensions.

Finally, the abstractions belonging to the organizational side are related to the M OISE or-
ganization model, which has been presented in Section 3.4.2. As in the previous case, the
interested reader can go back to the referenced section in order to have a complete view of the
abstractions shown in Figure 5.2 which belong to the organization dimension.

5.1.2 Synergies Among the JaCaMo Programming Dimensions

In Figure 5.2, the synergies among the three programming dimensions are represented by con-
nections terminating with a square (either filled or not). The connections terminating with a
filled square are the most important part of our integrated meta-model as they explicitly rep-
resent the synergies and the conceptual mappings we have identified during the definition of
our integrated programming approach: such connections provide for free (i.e., transparently
and without extra programming efforts) the integration between the different dimensions, an
integration that in other approaches must be programmed by users in an ad hoc manner.

The connection links between the Agent and Environment (A-E) dimensions are realized by
exploiting the action and perception model described in Section 4.1 and already implemented in
JaCa (Section 4.2). Basically, these links are given by semantically mapping agents’ external
actions into artifacts’ operations, and artifacts’ observable properties and events into agents’
percepts (leading to beliefs and triggering events). This means that – at runtime – in a JaCaMo
program an agent can do an action α if there is (at least) one artifact providing α as operation—
as usual, if more than one such artifact exist, the agent may contextualize the action explicitly
specifying the target artifact. On the perception side, set of observable properties of the artifacts
that an agent is observing are directly represented as (dynamic) beliefs in the agent’s belief
base—so, as soon as their values change, new percepts are generated for the agent that are then
automatically processed (within the agent reasoning cycle) and the belief base updated. So, in
programming an agent it is possible to write down plans that directly react to changes in the
observable state of an artifact or that are selected based on contextual conditions that include
the observable state of possibly multiple artifacts. Briefly recalling what already described with
more detail in Section 4.1, this mapping brings significant improvements w.r.t. the classical
action and perception model provided in general by agent programming languages:

• Dynamic action repertoire: the repertoire of an agent’s action is dynamic and can be ex-
tended/reshaped dynamically by agents themselves by creating/removing artifacts. This
is an improvement w.r.t. existing agent programming languages, where the set of (ex-
ternal) actions available to an agent is given by the set of actuators that are statically
defined for the agent, typically implemented in an ad-hoc way.

106

CHAPTER 5. THE JACAMO PLATFORM 107

• More expressive action model: by inheriting the action-as-a-process semantics of the op-
eration model defined for artifacts, the expressivity of the agent action model is increased
in various ways [RSP12].

• Well-defined success/failure semantics: there is no more the burden of understanding if
an action done by an agent succeeded or not by reasoning about the beliefs (percepts) in
the agent code. This in general simplifies agent programming and reduces agent program
size, although agents might still need to reason about beliefs to ensure successful action
execution in non-deterministic environments.

The connections that terminate with a non-filled square represent a set of predefined actions
that agents can perform and which are mapped into operations in a set of predefined artifacts
available in each JaCaMo application. These actions refer to the basic functionalities provided
by the overall infrastructure, including the environment and organization dimensions. This
makes it possible in particular to avoid the introduction of ad-hoc specific mechanisms to exploit
infrastructure services concerning organization and coordination, for instance to adopt a role or
to interact with a tuple space. Furthermore, since artifacts can be created and disposed of
dynamically, this makes it possible (also for agents) to update and adapt the infrastructure itself
at runtime.

This idea was explored to effectively connect the Organization and the Environment dimen-
sions (O-E), in particular by uniformly designing the organizational infrastructure as part of
the (artifact-based) environment in which agents are situated [HBKR10]. In such an approach,
the different concrete computational entities aimed at managing, outside the agents, the current
state of the organization in terms of groups, social schemes, and normative states are reified in
the environment by means of organizational artifacts, encapsulating and enacting the organiz-
ation behavior as described by the organization specifications. From an agent point of view,
such organizational artifacts provide those actions that can be used to pro-actively take part in
an organization (for example, to adopt and leave particular roles, to commit to missions, to
signal to the organization that some social goal has been achieved, etc.), and provide specific
observable properties dynamically to make the state of an organization perceivable along with
its evolution. Besides, they provide actions that can be used by organizational agents to manage
the organization itself. The specific concrete types of organizational artifacts introduced in the
JaCaMo programming model will be briefly described in Section 5.2.

Overall, the O-E mapping provides some important outcomes which are important from a
design and programming perspective:

• Uniformity: the same action and perception model is used also to enable the interaction
between agents and the organization, without the need for introducing specific ad-hoc
primitives and mechanisms concerning the organization.

• Distribution: the organization management infrastructure is distributed, in terms of col-
lections of (interconnected) artifacts possibly belonging to different workspaces running
on distinct network nodes.

107

108 CHAPTER 5. THE JACAMO PLATFORM

• Dynamism: organizational agents can change dynamically the shape of an organization
by acting on the set of organizational artifacts used by the agents to interact.

• Heterogeneity: the O-E mapping also opens the way for scenarios in which heterogeneous
agents – belonging to different platforms and programmed in different languages – could
easily take part in a JaCaMo organization, as soon as they have been equipped with the
capability to work within artifact-based environments.

• High-level reorganizing capabilities: the M OISE-based specifications of the organiza-
tion are part of the information made observable by organizational artifacts to agents.
This means that there is the potential for agents that understand the M OISE specification
formats to reason about the organizations in which they partake and therefore to change
them at runtime. This allows for complex on-the-fly re-structuring of computational sys-
tems to be done at very high level.

Finally, as part of the Agent and Organization (A-O) mapping, goals defined at the organization
dimension (those goals that are to be achieved by the organization, i.e., the overall system) are
mapped into individual agent goals (see Figure 5.2), which agents may decide to adopt or not.
This delegation of goals from the organization to the agents is expressed by obligations. The
state of goals from the organization dimension (which agents should fulfill them and when) is
maintained by an organizational artifact and is displayed as obligations for the agents (e.g., agent
a is obliged to fulfill goal x in one week). An obligation is fulfilled when the corresponding
goal is achieved by the agent before the deadline. At the agent side, when such obligations are
perceived, and the agent chooses to adopt it, a corresponding (individual) agent goal is created.
It should be noted that, besides being free to adopt or not the goals from the organization, the
agent is also free to decide which courses of action should be used to achieve each goal, and
that in turn might mean adopting further individual goals. As we can see, the mapping of goals
prescribed by the organization into agent individual goals is under the complete control of the
agent’s decision making process (so as to preserve its autonomy).

5.2 Impact on Multi-Agent System Programming: The
JaCaMo Programming Model and Platform

A main objective of the integration of the dimensions described in Section 5.1 is to simplify the
programming model adopted in the development of complex multi-agent systems. Accordingly,
in this section we concretely describe the impact of the dimension integration on programming,
by using a toy example called Building-a-House – included with the JaCaMo distribution avail-
able on JaCaMo website [Oli] – which is simple yet effective in showing the integration of the
dimensions at the programming level.
Before focusing on the example and on the programming model, first we give a brief overview
of the structure of a general JaCaMo application at runtime and of the supporting JaCaMo infra-

108

CHAPTER 5. THE JACAMO PLATFORM 109

Java Platform

CArtAgO, Jason, NOPL engine

Operating System

artifact(SB,SchemeBoard,ID1)
artifact(CONS,Console,ID2)
...

WorkspaceArtifact

linkArtifacts
lookupArtifact
(make/dispose)Artifact
quitWorkspace

workspace(WspName,ID)
...

NodeArtifact

createWorkspace
joinWorkspace
joinRemoteWorkspace
shutdownNode

Specification
Groups
Players
Goals
Obbligations

SchemeBoard

commintMission
leaveMission
setGoalAchieved

Console

print
println

Specification
Schemes
Goals

GroupBoard

leaveRole
addScheme
removeScheme

adoptRole

Agent

Plan

......

Agent dimension

Artifact

Operations

......

Environment dimension Organisation dimension

Mission

Goal

......

JaCaMo workspace

Platform
level

Execution
 level

Conceptual
level

Figure 5.3: The JaCaMo platform runtime, with the predefined set of artifacts available in all
JaCaMo applications.

structure. The overall picture of runtime support provided by JaCaMo is shown in Figure 5.3. A
JaCaMo (distributed) application runs on top of possibly multiple JaCaMo infrastructure nodes.
At the platform (infrastructure) level, each infrastructure node integrates the Jason, CArtAgO,
and M OISE platforms as well as the required interfacing technology, running on top of a Java
Virtual Machine which itself makes transparent the access to all resources of the operating
system. Then, at the execution level, a JaCaMo application is represented by an organization
composed by one or multiple workspaces, running on JaCaMo nodes. Agents running on a
JaCaMo node can join and work concurrently in multiple workspaces, including remote ones

109

110 CHAPTER 5. THE JACAMO PLATFORM

(i.e., workspaces not hosted by the same node where they are executing). Among the artifacts
that populate a JaCaMo workspace, a fundamental role is played by those encapsulating infra-
structural functionalities related to the agent, environment, and organization management. They
represent a direct reification of the concepts defined in the meta-model (the conceptual level in
the figure). These include artifacts used to manage/inspect the structure of the environment itself
– WorkspaceArtifact and NodeArtifact, providing functionalities to manage/inspect respect-
ively the set of artifacts inside a workspace and the set of workspaces inside the environment –
as well as organizational artifacts, introduced in the previous section.

In particular, the basic types of organizational artifacts adopted in a JaCaMo application
include:

• OrgBoard artifacts — used to keep track of the current state of deployment of the organ-
izational entities in the overall (one instance for each organization).

• GroupBoard artifacts — used to manage the life-cycle of specific groups of agents. For
instance, if an agent chooses to adopt a role in a particular group, it will perform the
adoptRole operation (action) on the GroupBoard artifact representing the group.

• SchemeBoard artifacts — used to support and manage the execution of social schemes.
As an example, an agent can commit to a mission or tell the organization it has achieved
one of the social goals it was assigned to in a particular mission by executing actions such
as commitMissions and setGoalAchieved on the specific SchemeBoard representing
the scheme.

Besides the actions, organizational artifacts have specific observable properties to make the
dynamic state of an organization observable. For example, the GroupBoard artifact has an ob-
servable property about the available roles in a group, therefore agents can find out the existing
roles and then reason about them so as to autonomously decide whether to adopt a role or not.

From a computational behavior point of view, organizational artifacts encapsulate and enact
the organizational behavior specified in M OISE. To this end, a specific language called NOPL
(Normative Organization Programming Language) is adopted as a target language into which
M OISE specifications are translated [HBB10]. So organizational artifacts embed a NOPL in-
terpreter to provide the organizational infrastructure needed to manage a M OISE organization
at runtime.

As a final remark, the set of organizational artifacts of the same organization are connected
together by means of the linkability features provided by CArtAgO Section 4.2.2, to execute
operations among artifacts. This is necessary, under the hood, to keep consistent the overall
state of an organization infrastructure that is distributed over various separate artifacts. Such a
distribution of a JaCaMo application over multiple workspaces and network nodes are essential
to scale with organization and application complexity.

110

CHAPTER 5. THE JACAMO PLATFORM 111

5.2.1 The Building-A-House Example
The example is about a multi-agent system representing the inter-organizational workflow in-
volved in the construction of a house. An agent called Giacomo owns a plot and wants to build
a house on it. In order to achieve this overall goal, first Giacomo will have to hire various spe-
cialized companies (the contracting phase), and then ensure that the contractors coordinate and
execute the various tasks required to build the house (the building phase). For each company,
there is a company agent – possibly running on a different network node – participating in the
contracting phase and then, possibly, in the building one.

In this simple example, the organization is composed of a single workspace called
HouseBuildingWsp. Giacomo is responsible for creating and setting up the workspace,
creating also the artifacts that will be used to interact with company agents. It is worth re-
marking that in larger applications – like the ones described in Section Section 5.3 – multiple
workspaces possibly distributed on multiple nodes are often used, implementing then a distrib-
uted environment and organization.

Contracting Stage: Agent-Environment Programming

In the contracting phase the objective for Giacomo is to hire one company (the one that offers
the cheapest service) for each of the several tasks involved in building the house, such as site
preparation, laying floors, building walls, building the roof, etc. The same company can be hired
for more than one task, if they have more than one working field and offer the cheapest service
in more than one of the required tasks. An auction-based mechanism is used by Giacomo to
select the best company from among the available ones for each of the tasks; one auction is run
concurrently for each of the tasks. The auction starts with the maximum price Giacomo can
pay for a given task, and companies that can do that kind of task may offer a lower price than
the current bid. After a given deadline (unknown to bidders), Giacomo clears the auctions and
selects the contractors to build its house based on the lowest bid by the time the auction closed.

To exemplify the Agent-Environment programming in JaCaMo, auctions are here realized
by means of an artifact providing auction functionalities. There will be one instance of such
artifact (created by Giacomo) for each of the house-building tasks, concurrently used by Gi-
acomo and the company agents. The left-hand side of Figure 5.4 shows the source code of
the auction artifact implemented using the CArtAgO API, and its right-hand side shows and
an excerpt of a company agent, implemented in Jason, that uses an instance of that artifact.
Auction artifacts have only a bid operation – used by company agents to submit a new bid –
and there are four observable properties: the task name (task), the maximum value the agent
that created the auction is willing to pay for the service (maxValue), the current lowest bid
(currentBid), the agent that placed that bid (currentWinner). The bidding operation –
which is seen on the agent side as a bid action – simply updates the current bid and winner if
a better bid is submitted, or it fails if the bid is higher than the current one.

On the agent side, the company agent has the initial goal
!discover art("auction for SitePreparation") to discover the auction for

111

112 CHAPTER 5. THE JACAMO PLATFORM

1 public class AuctionArt extends Artifact {
2

3 void init(String taskDs, int maxValue) {
4 defineObsProperty("task",taskDs);
5 defineObsProperty("maxValue",maxValue);
6 defineObsProperty("currentBid",maxValue);
7 defineObsProperty("currentWinner",
8 "no_winner");
9 }

10

11 @OPERATION void bid(double bidValue) {
12 ObsProperty cb =
13 getObsProperty("currentBid");
14 ObsProperty cw =
15 getObsProperty("currentWinner");
16 if (bidValue < cb.intValue()) {
17 cb.updateValue(bidValue);
18 cw.updateValue(getOpUserName());
19 } else {
20 failed("invalid_bid");
21 }
22 }
23 }

1 !discover_art("auction_for_SitePreparation").
2

3 my_price(1500).
4

5 i_am_winning(Art) :-
6 .my_name(Me) &
7 currentWinner(Me)[artifact_id(Art)].
8

9 +currentBid(V)[artifact_id(Art)]
10 : not i_am_winning(Art)
11 & my_price(P) & P < V
12 <- bid(math.max(V-150,P))[artifact_id(Art)].
13

14 +!discover_art(ToolName)
15 <- joinWorkspace("HouseBuildingWsp");
16 lookupArtifact(ToolName,ToolId);
17 focus(ToolId).
18

19 +!contract("SitePreparation",GroupBoardId)
20 <- adoptRole(site_prep_contractor)
21 focus(GroupBoardId).
22

23 +!site_prepared
24 <- ... // actions to prepare the site..

Figure 5.4: (left) Source code of the auction artifact. (right) Source code of a company agent.

preparing the site. To achieve this goal, the agent has a plan triggered by a new goal to achieve
event +!discover art(ToolName). In that plan, the agent first joins the workspace,
retrieves the unique identifier of the artifact with the specified name (lookupArtifact
action), and then uses it to start observing the artifact by executing the focus predefined
action. By doing that, the artifact’s observable properties are automatically mapped into the
agent’s belief base. Changes in the belief base produce events that can be handled by plans.

In this specific case, the company agent has a plan to react to changes in the currentBid
(the one with +!currentBid(V) triggering event), in order to place a new bid (bid ac-
tion execution in the plan body1) in case the agent is not the current winner2 and also the
current bid is higher than the minimum price this agent can offer (stored as the initial belief
my price(1500)).

1Recalling from Section 4.2.1, the annotation [artifact id(Art)] that appears next to plan triggering
events related to belief updates (e.g., +currentBid(V)) and to actions execution (e.g., bid) is used in general
to explicitly retrieve or specify information about the artifact which is the context of the observable property or the
operation. This is necessary when multiple artifacts with the same observable properties and operations are used
concurrently (as in this case).

2i am winning(Art) here is a Prolog-like rule which is specified initially as part of the belief base of the
agent. The conclusion of the rule is true if the current value of the currentWinner belief (acquired by the
agent through an observable property) coincides with the agent’s name (retrieved through the Jason internal action
.myName).

112

CHAPTER 5. THE JACAMO PLATFORM 113

Building Stage: Incorporating the Organization Dimension

After the companies have been hired, in the building phase the contractors have to execute their
own tasks on time and in coordination with each other. Some tasks depend on other tasks being
completed first, while some tasks can be done in parallel with some others, as represented by
the following workflow (where ’;’ is used for sequence and ’|’ for parallel composition):

a ; b ; c ; (d | e | f) ; (g | h | i) ; j

building company

plumber

1..1

window
fitter

painter

door
fitter

roofer

bricklayer

site prep
contractor

electrician

house
owner

1..1

1..2
1..1 1..1 1..1 1..1

1..1

house_group

compatibility link
authority link
communication link

group

role role cardinality

inheritance

le
ge

nd

1..1

house built

interior
painted

[4 days]

walls
built

[2 weeks]

floors
laid

[4 days]

site
prepared

[1 week]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

le
ge

nd goal
[TTF]

sequential
decomposition

parallel
decomposition

norm role mission / goals

n1 house owner house built
n2 site prep contractor site prepared
n3 bricklayer floors laid, walls built
n3 roofer roof built
n3 window fitter windows fitted
n3 door fitter doors fitted
n4 plumber plumbing installed
n3 electrician electrical system installed
n3 painter interior painted, exterior painted

Figure 5.5: Structural Specification (left), Functional Specification (right), and Normative Spe-
cification (bottom).

At this stage, the organization dimension is used to help the coordination and the monitoring
of the companies that will build the house. Companies that won the auction will join the or-
ganization playing specific roles and, by doing so, become responsible for some goals in the

113

114 CHAPTER 5. THE JACAMO PLATFORM

overall process of building the house. The roles and goals of this organization are specified
in Figure 5.5 using the M OISE notation [HSB07].

The structural specification defines a group (house group) where company agents will
play sub-roles of building company and the Giacomo agent plays house owner. The
organization constrains the number of role players in the group (cf. the role cardinality arrow).
In our application, most of the roles must have only one player, except bricklayer that can
have one or two players (the winner(s) of auctions for tasks “Floors” and “Walls” are supposed
to adopt this role). Agents however can play several roles as allowed by the compatibility link:
an agent can play more than one sub-role of building company, but the same agent can-
not play a company role and house owner at the same time. For instance, the agent that
won the auction for task “WindowsDoors” is supposed to adopt both the window fitter
and door fitter roles. The specification also includes a communication link from com-
panies to the owner, allowing them to communicate, and an authority link from the owner to the
companies.

The functional specification decomposes the organization goals into sub-goals, defines the
sequence in which each will be achieved, and gives a time-to-fulfill (TTF) for each sub-
goal. These goals are assigned to roles by norms as defined in the table that appears at
the bottom of Figure 5.5. For instance, norm n3 states that whenever an agent adopts the
role bricklayer, it is obliged to achieve goals floors laid and walls built. Of
course, this obligation is active only when the preceding goals have already been achieved
(site prepared, in this example).

1 !have_a_house. // initial goal
2

3 +!have_a_house // plan to achieve the have_a_house goal
4 <- !contract;
5 !execute.
6

7 +!contract <- ... // plan to manage the first stage (auction)
8

9 +!execute // create the artifact to manage the group
10 <- makeArtifact("hsh_group","GroupBoard", ["src/house-os.xml", ...], GrArtId);
11 adoptRole(house_owner)[artifact_id(GrArtId)];
12 !contract_winners("hsh_group");
13 ...
14

15 +!contract_winners(GroupBoard)
16 <- for (currentWinner(Ag)[artifact_id(ArtId)]) {
17 ?task(Task)[artifact_id(ArtId)];
18 .send(Ag, achieve, contract(Task,GroupBoard))
19 }.

Figure 5.6: Source code snippet of the Giacomo agent.

Once the auctions are finished, Giacomo adopts the role house owner in the group and asks
the auction winners to adopt the corresponding roles. The code excerpt in Figure 5.6 illus-
trates how these steps are programmed. Giacomo has the initial !have a house goal and

114

CHAPTER 5. THE JACAMO PLATFORM 115

plan to handle it, by instantiating two subgoals – !contract and !execute, corresponding
to the contracting stage and the building stage that are achieved sequentially. As soon as the
!contract goal is achieved, which means that the auctions are concluded, the plan managing
the building stage is executed, in which a GroupBoard called hsh group artifact is created
(specifying some parameters, including the M OISE specification in XML), the house owner
role is adopted by executing an adoptRole action and then a sub-goal is instantiated to con-
tract winners. In the plan handling that sub-goal, the agent asks (by means of an achieve
message) to all the company agents that won the auctions to sign the contract and finally ad-
opt the role corresponding to the specific task. The required information for all that is made
available as observable properties of the auction artifacts.

When the company agents receive the request sent by Giacomo, they adopt the roles by
acting on the group artifact. Back to the source code of the company agent (Figure 5.4), this is
done by the “+!contract("SitePreparation", GroupBoardId) <- ...” plan.
The group artifact ensures that the specified organization constraints are satisfied at all times.

The main purpose of the scheme artifact is to keep track of which goals are
ready to be pursued (those whose preceding goals in the functional specification
have already been achieved) and create obligations for the agents accordingly. Ini-
tially, only the site prepared goal can be pursued, thus only the obligation
obligation(companyB, achieved(s1, site prepared), "4/1/2013")
is created, where companyB is the agent playing the role site prep contractor, s1 is
the identification of the scheme instance, and 4/1/2013 is a week after the start of the building
work. Such obligations are observed by the agents and corresponding goals are automatically
created3. In the example, the goal !site prepared is created within the companyB
agent, which can then react by executing plan of the form !+site prepared <- ...
(see Figure 5.4). As soon as other goals become ready to be pursued, new obligations are
created and the agents can then work toward the goals at the right moment. In the case of
parallel goals, several obligations are created and the agents will work in parallel, as expected
from the specification.

A main advantage of this approach is that by simply changing the scheme specification –
which can be done by the designer or by the agents themselves – at very high level, say to
change the order or the dependencies among goals, we will change the overall behavior of the
agent team without changing a single line of their code. We can see the scheme specification as
the program for the social coordination and the scheme artifact as its interpreter. This artifact
also manages the state of the obligations, checking, for instance, their fulfillment or violations.
This feature is very useful for Giacomo who wants to monitor the execution of the scheme to
ensure that the house is built correctly and on time.

3This is done under the hood by predefined plans from a library made available with JaCaMo. This library
facilitates the programming of (specially norm-abiding) agents and in this application we provided such plans to
every agent

115

116 CHAPTER 5. THE JACAMO PLATFORM

5.3 Using JaCaMo for Real World Applications
In order to assess the applicability, advantages, and limitations of the approach, JaCaMo is being
used in various projects that involve the development of real world agent-based applications. In
this section we provide a brief overview of some of them. The interested reader can find at the
JaCaMo web site [Oli] an up-to-date list of the projects in which JaCaMo is being used, each
one described in detail. All these projects share some elements of complexity (distribution,
openness, dynamism, need of flexibility, autonomy) which make it possible to effectively stress
test JaCaMo’s different programming dimensions and the usefulness of the integration.

5.3.1 Engineering Smart Co-Working Spaces

The first project is about rooms management in smart co-working spaces (e.g., a school, an
office building, etc.); initial results can be found in [Sor11, SBPS11]. This is a fairly com-
mon Ambient Intelligence (AmI) scenario consisting in the management of a room allocation
problem in the context of a smart co-working space [Kam10] where people can book and use
rooms according to their needs and to the current occupancy schedule. Rooms are equipped
with different items – projectors, whiteboards, TV sets etc. – and are tagged by different usage
categories – meeting room, teaching room etc. – on the basis of user-defined room requirements
(e.g., number of seats, availability of specific equipments, etc.). Each room is augmented with
a proper set of sensors and actuators for managing room temperature, lights level, presence of
equipment and people, etc.

The application has to set an autonomous and adaptive room management behavior in ac-
cordance with: (i) the events that are currently held – e.g., regulating the room temperature in
accordance with the number of the event’s participants, automatically turning off the lights for
teaching events involving a projector etc. – and also (ii) on the basis of (re)allocation of the
rooms according to the user requests. Users – professors, engineers etc. – can: (i) demand
the scheduling of new events in the building, (ii) modify or cancel scheduled events, (iii) re-
gister themselves as an event’s participant, and (iv) inquire information about scheduled events.
According to the request details, made in term of room category, layout, number of seats and
required equipment, the event will be either allotted to the appropriate room, if any is available,
or discarded.

The frequent changes in the activity of people – e.g., deadlines approaching, start/end of
school courses etc. – coming in the co-working space, make it possible to have spikes of request
types – lectures, brainstorming sessions, meetings etc. – that must be correctly handled by the
system at the best of its capacity, (re)allocating rooms to host more constrained event types.
This application presents features such as distribution, openness, need of flexibility etc.

Figure 5.7 provides an overview of a JaCaMo solution to the problem. A virtual organiza-
tion is used to manage and coordinate the functioning of the whole system. The organization
structure, defined by the M OISE structural specification, defines a set of groups, sub-groups
and related roles for: (i) managing the rooms’ behavior (responsibility of the agents playing

116

CHAPTER 5. THE JACAMO PLATFORM 117

Environment Dimension (CArtAgO)

OrganizationWsp

...

 ...

GroupBoard(s)

...

 ...

SchemeBoard

...

 ...

 addPlanPhase
 ...

 reorgPlan

ReorgBoard

RoomWsp<X>

 regulateLights

state

LightManager

 regulateTemp

temperature

TempManager

 ensurePart

participants

ParticipantRegistry

 addEvent
 registerUser
 ...

currentEvent
roomEquipment
...

RoomState

ReceptionWsp

 scheduleEvent
 isSchedulePossible
...

 schedule
 ...

ScheduleManagement

 addRequest

requests

RequestNotification

 addItem
 moveItem

items

Inventory

 log
 signalChange

counters

Monitoring

Organization Dimension (MOISE)

BuildingGroup
Monitor

SchedulingGroup<EventKind>GroupRoomManageme
ntGroup

...<RoomKind>
Manager

...<EventKind>
<ParticiPantKind>

...<RoomKind>
Scheduler

1..NrRoomKinds 1..N1..NParticipants

Building
Manager ReorgGroup

OrgManager

Agent Dimension (Jason)

usr-ag schedule-agroom-mngr-ag

1.. NrRoomKinds

Functional Specification
Structural Specification

Normative Specification

Arduino sensors/
actuators

use/observe

group

role

composition
min..max

le
ge

nd

agent

 operations

attributes

Artefact

building-mngr-ag

play role

Light
Controller

Temp
Controller

Figure 5.7: Architecture of the JaCaMo application for the governance of room allocation in a
smart co-working space.

the <RoomKind>Manager role), (ii) monitoring spikes of incoming requests and changes
in the equipment position, adapting the functioning of the system accordingly (responsibility
of the agents playing the Monitor role), (iii) managing the current schedule on the basis of
incoming requests (responsibility of the agents playing one of the <RoomKind>Scheduler
roles), and (iv) managing user interactions with the system (responsibility of the agents playing
one of the <EventKind><ParticipantKind> roles).

The application has a main organizational goal (ManageBuilding) that has been decom-
posed through the M OISE functional specification in a proper hierarchy of sub-goals. Then,
through the M OISE normative specification, proper groups of goals – i.e., missions – defined
in the functional specification are assigned to agents’ roles by means of norms, hence mapping
organizational goals into agent goals. For sake of simplicity here we do not go into the details
of this mapping.

The whole application is distributed among several workspaces physically situated in dif-
ferent network nodes. A set of RoomWsp<X> – one for each room, where the X stands for
the room number/id inside the building – have been introduced for managing rooms behavior.

117

118 CHAPTER 5. THE JACAMO PLATFORM

Figure 5.8: Screenshot of the test environment showing requests dynamics (issued at top-left
and denied at bottom-left), roles allocation dynamics (top-right) and log info (bottom-right).

Each RoomWsp<X> workspace – deployed on a dedicated workstation machine located inside
the respective X room – contains a set of artifacts enabling the access to all the sensors and
actuators available inside the room4.

For each RoomWsp<X> a room-mngr-ag agent playing the <RoomKind>Manager role
is supposed to manage the room behavior – accordingly to the kind of events assigned to that
room – by properly exploiting the available artifacts that interact with sensors and actuators.
room-mngr-ag agents also play the Monitor role, thus allowing for the distribution of the
task of observing inadequate system states and adapting it accordingly. As soon as some known
trend is observed – e.g., the constant growth of the of brainstorming events during a fixed
period – these agents works cooperatively, using the ReorgBoard artifact for sharing and co-
ordinating a proper reorganization plan, trying to adapt – if possible – the system in accord-
ance with the current dynamics—e.g., increasing the cardinality of agents permitted to play the
BrainstormingRoomManager role.

Finally a ReceptionWsp workspace, physically deployed in a workstation machine at the
reception of the building, contains the artifacts used for: (i) managing incoming requests from
users (stored inside the RequestNotification artifact), (ii) providing the event scheduling ser-

4These artifacts – which have been realized in the context of another project [Alec] – wrap the access to
Arduino [Ard] sensors and actuators dislocated inside the rooms.

118

CHAPTER 5. THE JACAMO PLATFORM 119

vice (thanks to the ScheduleManagement artifact) , and (iii) managing information about the
equipment dislocation (stored inside the Inventory artifact). For what concerns the scheduling
service, the schedule information are stored inside the ScheduleManagement artifact observ-
able properties while the scheduling service functionalities are managed by a dynamic pool –
the pool size can vary on the basis of the current amount of incoming requests – of scheduler
agents, playing a specific <RoomKind>Scheduler role, working with both the Schedule-
Management and RequestNotification artifacts.

In order to evaluate the governance application described, a virtual test and monitoring
environment (see Figure 5.8) was designed, which allows to stress the adaptation capability
of the realized application. By carefully setting values for parameters of the test environment
that determine the request dynamics – i.e., distribution of requests for different event types
during a given period of time – a situation is created whereby during one day one event type
sees a strong increase in request numbers whereas other, compatible, types experience a normal
demand (e.g., a quickly augmenting number of meetings against a fair number of brainstorm
sessions or lectures). The expected outcome of this test scenario consists in a shift of agents’
roles from the management of a room hosting an unconstrained event type to that of a room
manager for event types under pressure.

Figure 5.8 shows an example of such adaptation dynamics. As can be seen from the mon-
itoring window output, the smart building application experiences a great increase in requests
for meetings, which leads to a considerable number of unsatisfied requests due to of the lack of
appropriate rooms (see Denied request dynamics in Figure 5.8). When the agents of the applic-
ation notice this, they trigger a reorganization. The results of such reorganization process can
be seen in the output presented in the log-window: a teaching room manager agent leaves its
old role and adopts the more constrained one, causing a decrease of the incoming requests.

5.3.2 An Agent-Based Machine-To-Machine Management Infrastructure

This project concerns the realization of an agile governance application for a Machine-To-
Machine (M2M) management infrastructure. M2M refers to technologies allowing the real-
ization of automated and advanced services and applications (e.g., smart metering, traffic redir-
ection, and parking management) that largely make use of smart devices (sensor and actuators
of different kinds, possibly connected through a Wireless Sensor and Actor Network (WSAN))
communicating without human intervention.

In this context, the Senscity FUI project [Ora] proposes an infrastructure to enable the de-
ployment of city-scale M2M applications that share a common set of devices and network ser-
vices. Implementing such an infrastructure raises the problem of providing an agile governance
with suitable scalability in different dimensions [Fir10]. In fact, it is hardly possible to define
all M2M requirements due to its heterogeneity and openness. For this purpose, in collabora-
tion with Orange Labs and based on the communication and IT infrastructure proposed in the
Senscity Project, a JaCaMo-based governance application has been developed in order to study
how to properly adapt and evolve the Senscity infrastructure without running into scalability

119

120 CHAPTER 5. THE JACAMO PLATFORM

M2M Infrastructure PlatformMngr

Device Domain Application
Domain

ApplicationRoleGatewayRoleDeviceRole

AreaXWsp

 performAction

status

Actuator

 performAction

status

 performAction

status setUpdateFrq

value

Sensor

 setUpdateFrq

value

 setUpdateFrq

value

device-mngr(s)
gateway

 sendData
 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

AntennaArtAreaXWsp

 performAction

status

Actuator

 performAction

status

 performAction

status setUpdateFrq

value

Sensor

 setUpdateFrq

value

 setUpdateFrq

value

device-mngr(s)
gateway

 sendData
 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

AntennaArtAreaXWsp

 performAction

status

Actuator

 performAction

status

 performAction

status setUpdateFrq

value

Sensor

 setUpdateFrq

value

 setUpdateFrq

value

device-mngr(i) gateway

 sendData
 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

Antenna

M2MCoreXWsp

...

 ...

GroupBoard(s)

...

 ...

SchemeBoard

...

 ...

 sendData
 receiveData sendData

 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

 ...
 ...

...

PlatformComponent

M2MCoreXWsp

...

 ...

GroupBoard(s)

...

 ...

SchemeBoard

...

 ...

 sendData
 receiveData sendData

 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

 ...
 ...

...

PlatformComponent

M2MCoreXWsp

...

 ...

GroupBoard(s)

...

 ...

SchemeBoard

...

 ...

platform-mngr(i)
 sendData
 receiveData

status

 sendData
 receiveData

status

 sendData
 receiveData

status

Antenna

 sendData
 receiveData

status

 sendData
 receiveData

status

 ...
 ...

...

PlatformComponent

Figure 5.9: Abstract architecture of the JaCaMo-based governance application for the Senscity
M2M infrastructure.

issues [PPR11]. The governance infrastructure is evaluated using a smart parking management
scenario, in which an M2M system monitors the parking occupation in order to reduce traffic
and to guide drivers through the streets.

The governance application developed in JaCaMo (see Figure 5.9) is designed in terms of
an organization that provides agents a global strategy to manage and coordinate the function-
ing of the whole system, distributed among several workspaces. Agent roles, to which proper
missions have been assigned, are introduced for covering all the required functionalities of the
governance application. In particular, we mention here some of the key roles:

• PlatformMngr role: for managing one of the M2M infrastructural core nodes
(as defined in the ETSI (European Telecommunications Standards Institute) specifica-
tion [ETS10]). Besides providing administration and management functionalities related
to the M2M node, agents playing this role are also responsible for interfacing end-user
applications to the physical world by communicating with agents playing the Gateway
role (see below).

• Device role: for managing a device in a WSAN area group.

• Gateway role: responsible for managing the communications between agents playing
the PlatformMngr role and Device role.

120

CHAPTER 5. THE JACAMO PLATFORM 121

• Application role: responsible for providing a service using sensors data and con-
trolling actuators.

The governance infrastructure is distributed among several workspaces. For each WSAN area
group we have a AreaXWspworkspace – the X stands for an area id – in which an agent playing
the Gateway role collects data sent from all the agents playing the Device role – data is sent
through the Antenna communication artifact – in that area. Agents playing the Device role
manage – via proper CArtAgO artifacts enabling the access to both sensors and actuators – a
M2M device which interacts with the physical world to realize the desired M2M function.

For each M2M infrastructural core node a M2MCoreXWsp has been introduced. A dynamic
pool of platform-mngr agents playing the PlatformMngr role regulate the functioning
of the node in accordance with the current workloads experimented in the M2M infrastructure,
by properly using a set of dedicated PlatformComponent artifacts. Such artifacts are used
to provide agents the access to all the functionalities related to a M2M core node such as: trans-
action management for both sensor reading and complex actuator commands, the possibility to
enable/disable the interfacing of applications to the managed WSAN, etc.

In the context of the considered smart parking scenario, the governance application allows
the adaptation of the M2M infrastructure in several situations: (i) steep increase/decrease in
requests coming from the different applications, (ii) changes in the WSAN topology covered
by applications (e.g., adjusting the area to monitor for the urban planning service from district-
scale to city-scale), and (iii) integration of new client applications (e.g., smart parking integrated
with a multi-modal transportation system). This is done by dynamically adapting the role car-
dinalities in the organization specification, thus changing the size of the agents pools playing
in the organization. Changes in the physical structure of the WSAN managed by the M2M
infrastructure are handled by dynamically deploying (destroying) a workspace for each WSAN
introduced (removed) and then adequately registering the new information in the governance
infrastructure.

5.4 Concluding Remarks
Following the discussion made in Section 3.5, in this chapter we presented JaCaMo, a concrete
programming approach and development platform for the engineering of MASs, which is the
natural evolution of JaCa (Chapter 4) since it is rooted on the synergistic integration of three
multi-agent programming dimensions: the agent, the environment – these first two are already
covered by JaCa – and the organization.

From a technological point of view, JaCaMo is built upon three existing agent-oriented tech-
nologies: Jason (Section 3.2.2), CArtAgO (Section 3.3.2) and M OISE (Section 3.4.2). Like in
the case of JaCa, the key novelty of the platform is its programming model. It has been de-
vised by defining in particular a semantic link among concepts of the different programming
dimensions at the meta-model and programming levels, in order to obtain a uniform and con-
sistent programming model aimed at simplifying the combined use of those dimensions when

121

122 CHAPTER 5. THE JACAMO PLATFORM

programming multi-agent systems.
The chapter first describes the JaCaMo programming approach Section 5.1, first present-

ing an overview of its integrated programming model (Section 5.1.1) and then focusing on its
main features (Section 5.1.2)—i.e., the semantic links and connections that have been devised
between the different programming dimensions. Then, in Section 5.2 has been discussed the
impact of the adoption of such programming approach in practice, through the use of a simple
guiding example (i.e., the building house example). Finally, the chapter is concluded by the
description of two relevant case studies in which JaCaMo has been successfully applied (Sec-
tion 5.3). To conclude, on the same line of the discussion made in Section 4.7:

• The general objective of the chapter – and of our work with JaCaMo – is to investigate
and stress the effectiveness – and also the weaknesses and limitations – of the platform
and its agent-oriented unified programming model for developing MASs able to deal with
issues and complexities that are relevant for the application domains considered. So, like
in the case of JaCa and for the same reasons – i.e., difficulty to provide a clear quantitative
evaluation, and technology still at the prototype level – we do not claim that a particular
problem or class of problems are generally best solved by using the JaCaMo technology.
However, we argue that both the description of the JaCaMo programming model and the
presented case studies demonstrate that the approach simplifies MASs programming, in
particular when there is the need to take into the account different programming dimen-
sions, hence finally making it possible to have cleaner and typically shorter programs. In
particular, in addition to the expertise and the findings matured with JaCa, the complex
scenarios considered (Section 5.3) – i.e., need to take into the account highly dynamic
domains, complex and interchangeable interaction dynamics – given us the opportunity
to appreciate the value of the organization dimension for MASs programming – which
was absent in JaCa – and especially the usefulness of its synergistic integration with the
agent and the environment dimensions.

• As already introduced in Section 4.7, a complete discussion about the good points, cur-
rent issues and limitations of both the JaCaMo framework and its programming model
will be done in the next chapter (Chapter 6). In this way we are able to make a compre-
hensive discussion of these aspects, covering and describing only in one place – and in an
organized manner – those that are in common between JaCa and JaCaMo.

122

6
Agent Oriented Programming:

Shifting from the Development of
Intelligent Software Systems to

General Purpose Computing

As already discussed in the introduction of this dissertation (Chapter 1), historically agent-
oriented programming has been mainly applied in distributed artificial intelligence contexts, as
a programming paradigm to develop intelligent software systems.

However, taking a broader perspective, we argue that the exploitation of both JaCa and
JaCaMo platforms in some of the most relevant application domains, allowed us to highlight,
in a concrete manner, how an agent-oriented level of abstraction can help tackling some of
the main complexities that arise in modern distributed and concurrent software development
(Chapter 1). In details:

• The BDI control architecture makes it possible to realize a basic form of integration
between pro-active and event-driven behaviors. As already mentioned in the introduc-
tion, this is a relevant programming issue in mainstream programming approaches since
it can lead to several problems such as: inversion of control, proliferation of callbacks,
fragmentation of the application business logic, etc. We showed concretely how to real-
ize this kind of integration in several of the examples that we have presented (e.g., the
producer-consumer (Section 4.2), the smart navigator (Section 4.4.2), the product search
example (Section 4.6.2), etc.). A detailed analysis concerning the integration of autonom-
ous and event-driven behaviors in JaCa and JaCaMo is postponed to Section 7.3.1. There,
we compare the support provided by simpAL to deal with this issue with both mainstream
approaches and the support provided by JaCa and JaCaMo.

• Autonomous behaviors can be explicitly mapped onto agents, possibly choosing different
kinds of concurrent architectures according to the needs—either using multiple agents to
concurrently execute tasks, or using a single agent to manage the interleaved execution of
multiple tasks.

123

124
CHAPTER 6. AOP: SHIFTING FROM THE DEVELOPMENT OF INTELLIGENT

SOFTWARE SYSTEMS TO GENERAL PURPOSE COMPUTING

• The capability to apply different courses of actions (plans) on the basis of current con-
text information can be used to easily code context-sensitive behaviors, and finally for
introducing a basic form of polymorphism in agent programs.

• Differently from mainstream programming paradigms – e.g., object-oriented program-
ming – and emerging ones – e.g., actor-oriented programming – different abstractions
are used to model conceptually different things—i.e., active entities can be modeled as
agents, passive resources can be modeled as artifacts. Moreover, a specific interaction
model Section 4.1 rooted on use and perception allows to ease the interactions among the
conceptually different parts of a program.

Despite the set of good points just listed, when moving from the distributed artificial intelligence
context to general-purpose computer programming and software development – the reference
context for this thesis work – several main weaknesses and limitations arise, in particular w.r.t.
the second macro-research objective identified in Chapter 1. This was well expected: JaCa
and JaCaMo, as well as the set of agent-oriented programming languages and technologies that
have been proposed in the state-of-the-art (Chapter 3), are not fully adequate when general-
purpose software development is of concern. Indeed, agent-oriented programming is lacking a
big majority of aspects and features that have been – and still are – foundational for mainstream
programming paradigms such as the object-oriented one, and which are also the key for software
engineering processes at their support.

A main example, as in the case of the actor paradigm, is the lack of an explicit notion of
type for what concerns the main programming abstractions introduced: agents, artifacts1 and
the overall organization. This causes two main drawbacks. First, the support for (static) error
detection in current state-of-the-art agent-oriented technologies is quite limited, much weaker
indeed compared to what we have e.g. in (statically) typed object-oriented programming lan-
guages. This is also the case in JaCa and JaCaMo where error checking controls are limited to
simply syntactical aspects. As a result, MAS developers are forced to deal at run-time with a
set of programming errors that should be detected statically instead, before running the MAS
program. This increases the cost of errors detection from both a temporal and economic point
of view, and causes complicated – and possibly long – debugging sessions for detecting errors
at run-time—e.g., an error that occurs only after several complex computations and long inter-
action dynamics. For sake of concreteness in Figure 6.1 is reported a snippet of a JaCa program
with some main examples of programming errors that is not possible detect statically, due to the
lack of an explicit notion of type. As already mentioned, analogous considerations also apply
for JaCaMo, in which in addition is not possible to statically check all the aspects related to
the interactions of agents with the organization—e.g., adoption of unknown roles, declaration
of plans for the achievement of wrong organizational goals, etc.

1Being CArtAgO based on Java, it is possible to define types for artifacts relying on the object-oriented layer,
however this approach is not expressive enough to characterize at a proper level of abstraction the features of
environment programming—i.e, operations, observable properties, etc.

124

CHAPTER 6. AOP: SHIFTING FROM THE DEVELOPMENT OF INTELLIGENT
SOFTWARE SYSTEMS TO GENERAL PURPOSE COMPUTING 125

1 // agent ag0
2 iterations("zero").
3

4 !do_job.
5

6 +!do_job
7 <- ...
8 /* error: wrong type
9 String vs int (N+1) */

10 -+iterations(N+1);
11 ...
12 /* error: the correct
13 belief is iterations(N) */
14 ?num_iterations(N).
15

16 /* error: the message sent by ag1
17 is msg_bel */
18 +msgbel
19 <- printf("Message received").
20

21 // agent ag1
22 !send_msg.
23

24 +!send_msg
25 <- .send(ag0, tell, msg_bel).

1 public class DummyArtifact extends Artifact{
2 void init(){
3 defineObsProperty("propA",10);
4 defineObsProperty("propB","value");
5 }
6 @OPERATION void actionA(int a, int b){..}
7 @OPERATION void actionB(String s){..}
8 @OPERATION void actionC(int a){..}
9 }

1 // agent ag2
2 !do_job.
3

4 +!do_job
5 <- /* error: unknown goal
6 floor_cleaned */
7 .send(ag3,achieve,floor_cleaned);
8 ...
9 /* typo: the right name is do_job */

10 !dojob.
11

12 //agent ag3
13 +!car_cleaned
14 <- ...

1 // agent a4
2 iterations("zero").
3

4 +envPerceptA(ValueA)
5 <- ...
6 actionA(10,20);
7 ?iterations(I)
8 /* error: wrong type provided for I */
9 actionA(10,I); f

10 actionB(I);
11 /* error: wrong type provided
12 int vs String */
13 actionB(10);
14 /* error: unknown observable property */
15 ?envPerceptC(ValueC);
16 /* error: unknown operation */
17 actionD.
18

19 /* error: unknown observable property */
20 +envPerceptC(Value)
21 <- ...

Figure 6.1: Source code of four Jason agents working in a cooperative manner sharing the
usage of a DummyArtifact. The picture shows a set of typical programming errors in JaCa
concerning: (i) belief-related errors (left), (ii) goal-related errors (top right), and (iii) agent-
environment interaction errors (bottom right).

As second main drawback, it deprives developers of a fundamental conceptual tool when pro-
gramming a system. Without typing support, it is not possible to model generalization/spe-
cialization relationships among concepts and abstractions, eventually specializing existing ones
through the definition of proper sub-types, and finally making it possible to fully exploit the
principle of substitutability [WZ88] for supporting a safe extension and reuse in programming.

Besides typing, in agent-oriented programming in general – and this is also the case in JaCa
and JaCaMo – are also lacking strong and well established mechanisms to support inheritance
and polymorphism. The former is the key to provide reuse and modularization in programs.
Providing good support for modularity is a main issue already recognized in the agent literat-
ure [BPL06, DMS08, Hin08], where constructs such as capabilities have been proposed to this

125

126
CHAPTER 6. AOP: SHIFTING FROM THE DEVELOPMENT OF INTELLIGENT

SOFTWARE SYSTEMS TO GENERAL PURPOSE COMPUTING

end. Jason still lacks of a construct to properly modularize and structure the set of plans defin-
ing an agent’s behavior—a recent proposal is described here [ML10] However, even if several
proposals do exist, up to now there is not a well established solution to the problem.

Similar considerations also apply to polymorphism. Previously we mentioned that both
JaCa and JaCaMo provide a first basic support for polymorphism by giving developers the
opportunity to write different plans that can be applied on the basis of the actual context con-
ditions. However, without the support for typing this can be considered only a very low level
mechanism to realize polymorphism – moreover only from the agent side – which is not related
to an explicit (possibly formal) characterization of the entity that provides it.

126

Part III

The simpAL Project

127

7
The simpAL Programming Language

and Ecosystem

This chapter represents the core of this thesis work. Here are presented both the
simpAL [RS11b] agent-oriented programming language and the ecosystem at its support,
composed by an Eclipse-based Integrated Development Environment (IDE) and a distributed
runtime infrastructure. The chapter is structured as follows:

• Section 7.1 provides an overview of simpAL, by presenting the vision and the background
metaphor on top of which the programming language is rooted and the specific computa-
tional models adopted for two of the main first-class abstractions of the language, agents
and artifacts.

• Section 7.2 describes the simpAL programming model. A concrete example is used to
guide the reader through the description of the programming of the main first-class ab-
stractions available in the language.

• Section 7.3 puts the focus on some of the most relevant features of simpAL, namely:
(i) the seamless integration of autonomous and event-driven behaviors (Section 7.3.1);
(ii) the support for typing (Section 7.3.2) and polymorphism (Section 7.3.3); and (iii) the
simpAL distributed runtime infrastructure (Section 7.3.4).

• Finally, the chapter is concluded by presenting the development of concrete case studies
(Section 7.4), the simpAL IDE (Section 7.5), and a discussion about the current perform-
ance (Section 7.6) and limitations of the language (Section 7.7).

7.1 simpAL Overview
simpAL is a strongly-typed programming language, extending a pure object-oriented layer –
based on Java – with an orthogonal high-level abstraction layer introducing agent-oriented ab-
stractions. Pure means that object-oriented programming (OOP) here is meant to be exploited
solely to define abstract data types, so data structures and related algorithmic computations

129

130 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

without any specific OS-related mechanisms for dealing with I/O, concurrency, etc. These as-
pects are meant to be fully captured by the new abstraction layer.

7.1.1 Background Metaphor: Human-Inspiered Computing

Quoting Lieberman [Lie06], “the history of object-oriented programming can be interpreted as
a continuing quest to capture the notion of abstraction—to create computational artifacts that
represent the essential nature of a situation, and to ignore irrelevant details”. Following this
perspective, agent-oriented programming as supported by simpAL can be framed as an evolution
of object-oriented and actor-oriented programming, by adding a human-inspired abstraction
layer integrating elements from the A&A conceptual model and the BDI agent architecture,
which have been described in detail respectively in Chapter 3 and Chapter 4.

In particular human organizations are taken as a natural high-level metaphor to define the
structure and behavior of (complex) programs, where articulated, concurrent and coordinated
activities take place, distributed in time and space. The complexity of work calls for some divi-
sion of labor among the members of the organization, who do their jobs eventually interacting
with other members and/or by exploiting the organization environment (e.g., resources, tools).
Analogously, a program in simpAL is conceived like a human organization where the members
are called agents. They are the main abstraction used to model those parts of the program that
are in charge of performing autonomously some tasks eventually interacting with other agents
and with the environment where they are situated (see Figure 7.1). Autonomously means in this
case that, given a task to do, they pro-actively decide what are the best actions to perform and
when to do them, promptly reacting to relevant events from their environment, fully encapsu-
lating the control of their behavior.

Compared to existing abstractions used to model active components – actors in particular
– the agent abstraction is characterized by the introduction of a further layer of first-class con-
cepts (besides pure message passing) aiming at easing the design and programming of complex
behaviors, integrating pro-activity and reactivity. Such first-class concepts include: (i) tasks, to
represent the description of the jobs that agents have to do; (ii) plans, encapsulating the pro-
cedural knowledge and recipes about how to accomplish the tasks; (iii) actions, which are the
moves that agents can do, depending on the environment in which they are situated, in order to
do their tasks; (iv) percepts, which are the events that agents asynchronously observe from the
environment to which they may need to react, in order to do their jobs.

As in the human case, in simpAL agents can interact by means of direct communication
based on message passing, in an actor-like style, revisited taking into account the expertise com-
ing from all the work that have been done in this field by the agent community (Section 3.4.1).
However, differently from actors, which are based on the reactivity-principle (Section 2.1),
agents do something not because they receive a message, but because they have some tasks to
do; indeed, it is often the case that in order to accomplish such tasks, they may need to react to
messages sent by other agents or by changes observed into their environment, as prescribed by
the plans. In that sense, recalling what stated in Section 3.1, we can say that they are based on

130

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 131

observe
use

communicate with
WORKSPACE B

ARTIFACTS

ARTIFACTS

WORKSPACE A

AGENTS

ORGANIZATION

Figure 7.1: An abstract representation of a simpAL program.

a pro-activity principle, autonomously choosing and executing actions in order to fulfill some
tasks.

The environment in human organizations play a key role, as the context mediating and then
supporting members’ individual and cooperative tasks, through the use of shared tools and
resources [Nar96]. So, if on the one side agents are the abstraction meant to model active,
task-oriented, autonomous behaviors, artifacts on the other side are meant to be effective for
modeling non-autonomous components encapsulating and modularizing functionalities that can
be suitably exploited by agents. Examples of artifacts are bounded buffers, a clock, or rather a
database, an external web service. Indeed, in some cases an entity of a program may be modeled
as an agent or as an artifact: it is a designer choice, depending on the fact that it is more effective
or appropriate to conceive it as an autonomous task-oriented entity or as a function-oriented
passive one. Analogously to artifacts in human organizations, artifacts in simpAL can play an
essential role to support indirect forms of communication and coordination. Main examples are
blackboards or tuple spaces, which in the case of simpAL are naturally modeled as artifacts.
Like artifacts in the human case, artifacts in simpAL can be dynamically created (by agents)
and disposed, and eventually can be designed to be composed, so as to create complex artifacts
by connecting simpler ones. The use of the environment as a first-class abstraction is a further
main difference with respect to the actor model, where actors – being the only abstraction – are
finally used to model both real autonomous entities but also those entities that are not meant to
exhibit any specific autonomous behavior.

So, the picture so far includes two main computational abstractions, agents and artifacts.
Agents can talk with other agents, and use and observe artifacts available (or created) in their
organizational environment. Then, a further concept is needed in order to explicitly define the
overall structure and topology of the program, which can be distributed. To this end, in simpAL
we introduce the notion of workspace. The overall set of agents and artifacts of an organization

131

132 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

may be partitioned into a set of workspaces as logical containers, possibly running on different
nodes of the Internet network. Actually, while being located into a specific workspace, an agent
can work concurrently and transparently also with artifacts of other workspaces belonging to
the same organization.

It is worth remarking that the notion of organization used in simpAL is not meant to be as
rich as the one that appears in MAS organization modeling (Section 3.4.2): here the main ob-
jective for introducing such a notion is to have a way to define rigorously the overall context and
structure of programs. This will be useful from a concrete programming perspective, in partic-
ular to check errors related to the implementation of the overall program structure at compile
time. These aspects will be described in detail in Section 7.2.3 and Section 7.3.2.

Finally, as already mentioned at the beginning of the section, pure objects – as defined in
modern OOP – are used to define the data model of programs. That is, agents and artifacts
are meant to be used as coarse grain abstractions to define the shape of the organization (i.e.,
of the program), in particular of the control part of it (decentralized, distributed). This layer
is fairly independent from the paradigm and language adopted to represent data structures and
purely transformational computation. In the case of simpAL to this end we adopted an object-
oriented programming language, in particular a subset of Java, that is the pure object-oriented
part of the language, excluding constructs and mechanisms introduced for concurrency, I/O
management, etc. Objects are then the basic data structures used inside agents, artifacts and
related communications and interactions.

Before getting into the simpAL language where these concepts are provided as first class
constructs, in the remainder of the section we provide some details about the specific computa-
tional model adopted for defining the structure and behavior of agents and artifacts.

7.1.2 The Agent Model and Control Architecture

A key aspect in simpAL is the agent control architecture, which allows for integrating both an
active, task-driven and reactive, event-driven behavior (this aspect is discussed with full details
in Section 7.3.1) and then the reasoning cycle (or agent control loop) that conceptually defines
such an integrated behavior. It is inspired by the BDI reasoning cycle (Section 3.2.1), and can
be framed here as an extension of the basic event loop found in actors Section 2.1.

Conceptually, a simpAL agent is a computational entity executing continuously a loop which
involves three distinct stages executed in sequence: (i) a sense stage, in which the agent fetches
percepts (inputs) coming both from the environment and other agents, updating its internal state;
(ii) a plan stage in which, given the current state and the set of current tasks that the agent is
actually pursuing, the set of actions to do is selected, and finally (iii) an act stage in which the
selected actions are executed. From a conceptual point of view, an agent is never blocked: it
is continuously looping on these stages, eventually without choosing any action to perform if
there are no active tasks or there is nothing to do in a specific moment in the tasks it is pursuing.
Figure 7.2 shows an abstract representation of the simpAL agent architecture along with an
indication of the dynamics of the execution cycle.

132

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 133

SENSE
stage

PLAN
stage

ACT
stage

actions

Belief
Base

Plan
Library

 Ongoing
Plans / Tasks

events
event queue

actions-todo

EXECUTION / CONTROL LOOP

Figure 7.2: An abstract representation of a simpAL agent’s control architecture.

The agent architecture is composed by:

• A belief base — which is the long term private memory of the agent, storing information
about agent’s private state, about the observable state of the artifacts the agent is using
and about information communicated by other agents.

• A plan library — storing the current set of plans available for doing the agent’s tasks.

• A tasks-todo list — containing the current list of tasks that need to be done.

• An ongoing-tasks list — each including the runtime structure related to the plans instan-
tiated and in execution to accomplish the tasks.

• A suspended-tasks list — including those tasks which have been intentionally suspended.

• An external event queue — where inputs from the environment / other agents are en-
queued.

• An actions-todo list — including a list of actions to execute.

133

134 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

Algorithm 2 simpAL Agent Control Loop
1: while true do
2: . SENSE stage
3: if external events queue not empty then
4: ev← PICKEXTEVENT()
5: UPDATEAGENTSTATE(ev)
6: end if
7: . PLAN stage
8: if new tasks todo then
9: for each new task to-do task do

10: plan← SELECTPLAN(task,belBase, planLib)
11: CREATENEWINTENTION(plan, task)
12: end for
13: end if
14: actList← []
15: for each ongoing intention i do
16: if TASKFULFILLED(i) then
17: DROPINTENTION(i)
18: end if
19: actList← actList +SELECTACTIONS(i,belBase)
20: end for
21: . ACT stage
22: for each action act in actList do
23: EXECUTE(act)
24: end for
25: end while

In the sense stage, the state of the agent is updated with what has been perceived from the
outside, fetching one event – if available – from the external event queue. Such a state includes
agent beliefs – i.e., the informational part of the state, composed by private state variables,
possibly keeping track of the observable state of the artifacts the agent is using – ongoing tasks
and tasks to do. The event can concern either some change in the observable state of artifacts,
or a new message sent by another agent, or the notification of the completion with success or
failure of an action executed by the agent on the environment.

In the plan stage, if there are new tasks to do, then for each one a plan is selected from
the agent plan library to handle the task and a new intention is instantiated—i.e., a new activ-
ity committed to the fulfillment of the task, keeping track of the plan in execution. Plans as
programming abstraction will be described in the next section: they are module of procedural
knowledge [RG+95], composed by a set of action rules that specify what to do and when to do
it. Then, for each ongoing intention, all the actions that can be executed – according to the plans
and current beliefs of the agent – are collected. Intentions that achieved their task are dropped.

Finally, in the act stage, all the collected actions are executed. Internal actions – i.e., actions

134

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 135

accessing/modifying the internal state of the agent – are executed atomically in this stage, in one
cycle. External actions instead – i.e., actions that correspond to the execution of an operation
provided by some artifact of the environment – are just started/triggered. Their completion will
be notified later on by proper action completion events, which may be perceived asynchronously
in the sense stage of future cycles.

Two main differences compared to the actor event loop are important here. First, an agent
can execute a cycle even if there are no external events to process. This happens when the agent
has one or more intentions about tasks to be executed – that have been previously assigned
– and following the related plans some actions must be selected pro-actively. For instance:
a plan stating that some action a must be continuously selected and executed, like a simple
non terminating process. This is consistent with the idea that an agent follows the pro-activity
principle. So, conceptually, an agent doing some task(s) is never blocked—always cycling until
the task(s) have been achieved or failed. At the same time, an agent is reactive and event-driven:
an event perceived in the sense stage can result in updating some agent beliefs and this could
trigger the selection of some actions in the plan stage.

Second, intentions – i.e., plans in execution – are not meant to be fully executed and com-
pleted in one cycle: typically their execution require multiple cycles, each one selecting zero or
one or multiple actions to be executed (depending on the plan). By doing an analogy between
methods in the actor case and plans, this means that in the agent case the macro-step semantics
(Section 2.1) is relaxed, or it has finer granularity, which is at the level of the actions composing
a plan.

These features together allow to tackle the integration of the autonomous and reactive be-
haviors directly at the foundation level—however possibly raising performance issues, that will
be discussed in Section 7.6.

7.1.3 A Computational Model for Artifacts

Artifacts have a simpler architecture w.r.t. agents’ one, more similar to monitors as introduced in
concurrent programming. The artifact model is inspired by our previous work on the CArtAgO
technology, properly extended by introducing aspects and features – e.g., typing, polymorph-
ism, etc. (see Section 7.3.2) – that are fundamental in the context of general purpose software
development. Figure 7.3 shows a pictorial representation of an artifact in simpAL. As usual,
similarly to artifacts used by humans, artifacts provide a usage interface which is exploited by
agents to use and observe them. Such interface includes (i) a set of operations, that correspond
to the set of actions available to agents for using artifacts; and (ii) observable properties, as
variable-like information items storing those properties of an artifact which may be perceived
and exploited by the agents using the artifact. Interactions among agents and artifacts are regu-
lated by means of the action and perception model introduced in Section 4.1.

Artifacts are meant to be observed and used concurrently by multiple agents, automatically
enforcing all the constraints that are necessary for avoiding interferences. To that purpose, op-
eration execution in artifacts is transactional, in the sense that they are executed in a mutually

135

136 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

100count

inc

reset

Figure 7.3: Abstract representation of a Counter artifact, with in evidence its usage interface:
the operations (inc and reset) and one observable property (count).

exclusive way and the changes to the observable state of the artifact (properties) are done atom-
ically. Changes are perceived by agents observing the artifact only when an operation completes
(with success). The execution of an operation can fail: this causes the failure of the action on
the agent side, while on the artifact side the observable state is rolled back to the value before
executing the operation.

Then, it is often useful to design artifacts with long-term operations, that may eventually
need to overlap in time. A main example is given by artifacts providing coordination function-
alities, which typically provide operations (actions) whose execution must overlap in time in
order to create the required synchronization. To that end, operations can be explicitly suspen-
ded waiting some conditions, allowing then other operations to be executed.

So artifacts strongly resemble monitors, with however some essential differences that are
related to the agent-oriented model. In particular: (i) they have observable properties represent-
ing an observable state whose changes can be perceived as events by agents using them; (ii) the
execution of operations triggered by agents (that are actions, from the agent viewpoint) is asyn-
chronous with respect to agent execution: agents are notified of action completion or failure in
terms of asynchronous events; (iii) on the agent side, by executing an operation over an artifact
which is already busy with the execution of an operation, or an operation which suspends its
execution, the agent cycle is not blocked but goes on regularly.

7.2 The simpAL Programming Language
After sketching the main features of the agent and artifact models, in this section we introduce
the key elements of the simpAL programming language using a concrete example (Figure 7.4).
We intentionally decided to use the same example rooted on the producer-consumer architecture

136

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 137

p1

Action
Communication
Perception

producers workspace

theGUI

stopPressed false

stop
p2

console

println (msg: String)monitor agent

main workspace

consumers workspace

theCounter

inc

count 100

theBuffer

put (it: int)
nItemsAvailable 3

get (it: int #out)

c1

c2

137.204.107.188:8000 67.104.7.88:8000

92.10.45.40:8000

SimpleProdCons

Figure 7.4: An abstract view of the producers-consumers example highlighting the agents and
artifacts involved.

exploited in Section 4.2. However, in order to better point out and highlight the main features
of simpAL, we introduced small modifications to the original example. The overall scenario,
unchanged from the previous instance, is: (i) a set of producer agents (p1 and p2) have the task
of continuously producing some items that must be consumed by a bunch of consumer agents
(c1 and c2); (ii) consumer agents must stop their activities as soon as the total number of items
processed is greater than a certain value; (iii) both consumer and producer agents must stop as
soon as the user presses the stop button available in a GUI (theGUI). Differently from the
previous example, here we have that:

• A monitor agent – observing the overall activities – may communicate directly to the
producer agents that more items need to be produced.

• Instead of using a single artifact, multiple ones are exploited to support agent work and
coordination: (i) a bounded buffer artifact (theBuffer), with the obvious functionality; (ii)
a counter (theCounter), used by consumers to keep track of the overall number of items
processed; and (iii) a GUI used by producers to observe user inputs (theGUI).

• The overall application must be physically distributed among three different network
nodes, as depicted in Figure 7.4.

In the following we proceed bottom-up, first introducing the programming of agents (Sec-
tion 7.2.1) and artifacts (Section 7.2.2) as basic components of a simpAL program, and then
presenting the programming of the organization, defining the overall structure of the system
(Section 7.2.3).

137

138 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

7.2.1 Programming the Agents
Following the basic principle of separation between interface and implementation, in simpAL
the agent programming model is characterized on the one side by the notion of role and on
the other side by the notion of agent script. The former is used to explicitly define an agent
type, by grouping together the types of tasks that all the agents that declare to play a certain
role are capable to do. The latter instead is the basic programming construct used to define the
implementation of concrete plans useful to accomplish the tasks related to a specific role.

Referring to our example, Figure 7.6 shows the definition of Producer and Consumer roles,
while Figure 7.7 and Figure 7.8 show the definition of the agent scripts SimpleProducer and
SimpleConsumer implementing such roles.

Defining Agent Types: Roles and Tasks

From a software engineering perspective, a type defines a contract about what one can expect by
some computational entity. In the case of objects, this concerns its interface, i.e. what methods
can be invoked (and with which parameters) or – in a more abstract view – what messages
can be handled by the object [Kay96, Kay69]. Conceptually, messages are the core concept of
objects: receiving a message is the reason why an object moves and computes something—i.e.,
the reactivity principle. This is also true for active objects and actors Section 2.1.

Differently from objects and actors, agents are not based on the reactivity principle, since
they do something not necessarily only when receiving a message, but because they have one
or multiple tasks to accomplish. In that sense, we can say that they are based on a pro-activity
principle, autonomously choosing and executing actions in order to fulfill some tasks. It is
quite intuitive then to define an agent’s type as its contract w.r.t. the organizational environment
where it is immersed. Following this idea we introduce: (i) the notion of task type to describe
a type of job that has to be done, and (ii) the notion of role to explicitly define the type of an
agent as the set of the possible types of tasks that any agent playing that role is able to do. So,
a role is the specification of what agents playing the role are capable of (not how they do it).
In Appendix A is reported the EBNF syntax of role and task definition in simpAL. A role is
identified by a name and includes the definition of a set of task types. A task type defines a
contract between the task assigner and the task assignee, which is defined in terms of:

• An input-params block, defining the information that must be specified when the
task is assigned to the assignee agent.

• An output-params block, defining the information that must be specified when the
task has been completed by the assignee agent.

• An understands block, containing the definition of messages that can be understood
by the task assignee, in the context of that particular task.

• A talks-about block, containing the definition of messages that can be sent by the
task assignee to the assigner, in the context of that particular task.

138

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 139

CREATED ACCOMPLI
SHEDASSIGNED

FAILED

Figure 7.5: The task life cycle in simpAL, with in evidence the different execution stages.

Tasks have a specific life cycle (Figure 7.5), including the following stages: created, assigned,
accomplished and failed. A task is first created by some agent (as an instance of some type of
task). The task is then assigned to some other agent (it could be also self-assigned or assigned
at boot by the programmer), that becomes the assignee of the task, while who assigned the task
becomes the assigner. Finally, a task can be completed with success or can fail, on the basis of
the outcome of the actions performed by the assignee for its achievement. Built-in predicates
are available to check the tasks states: (i) is-ongoing, which returns true if the specified task
is defined and it has been assigned but it is not completed; (ii) is-done, which returns true if
the specified task has been completed; and (iii) is-failed, which returns true if the specified
task is defined and its execution has failed.

In Figure 7.6, the roles Producer and Consumer have only one task type each, respectively
Producing and Consuming. The former has three input parameters: (i) the maximum number
of items to produce (numItems), (ii) the GUI that users can use to stop the production of new
items (gui), and (iii) the bounded buffer used to store produced items (buffer). While doing
the Producing task, Producer agents can be told about the value of the newItemsToProduce
belief. The Consuming task type instead is characterized by only input parameters: (i) the max-
imum number of items to consume (maxItemsToProcess), (ii) the bounded buffer artifact
used to retrieve items (buffer), and the artifact used to keep track of the items consumed so
far (counter).

139

140 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 role Producer {
2

3 task Producing {
4

5 input-params {
6 numItems: int;
7 gui: GUI;
8 buffer: Buffer;
9 }

10

11 output-params { }
12 understands {
13 newItemsToProduce: int;
14 }
15 talks-about { }
16 }
17 }

1 role Consumer {
2

3 task Consuming {
4

5 input-params {
6 maxItemsToProcess: int;
7 buffer: Buffer;
8 counter: Counter;
9 }

10

11 output-params { }
12 understands { }
13 talks-about { }
14 }
15 }

Figure 7.6: (left) Definition of the Producer role. (right) Definition of the Consumer role.

So, roles define the type of agents, to be used to define the type of an agent’s reference or
identifier in beliefs and task parameters on the agent side, in observable properties and variables
on the artifact side. This allows for doing a set of error checking controls at compile time, as
will be better clarified in Section 7.3.2.

Defining Agent Structure and Behavior: Scripts and Plans

A script represents a module of agent behavior, containing both the definition of a set of plans
useful to accomplish the tasks of the role declared to be implemented by the script, and a set
of beliefs that can be accessed by all the plans declared into that script. By loading a script, an
agent adds the declared beliefs into its belief base, and the script’s plans to its plan library. The
script SimpleProducer shown in Figure 7.7 has a global belief – item (line 4), used to keep
track of the current item produced by the agent – and a plan, for handling the Producing task.

Plan definition includes two basic parts: the definition of the plan’s attributes and body. The
set of plan’s attributes are:

• task: — to specify the task type for which the plan can be used.

• name: — to unambiguously identify the plan inside the script (optional, if omitted a
default value is generated).

• context: — to specify the precondition over the belief base that makes the plan ap-
plicable (optional, if omitted the context is true by default).

The plan body contains the specification of the procedural knowledge that agents can use in
order to accomplish the task associated to a plan. Such knowledge can be specified in terms of
action rules, that are ECA-like rules, each specifying an action to do, along with the event and
condition specifying when the action must be done. An action rule block – which constitutes

140

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 141

the body of a plan, denoted by {...} – is a set of action rules, possibly including the definition
of local beliefs, i.e. beliefs whose scope is the block, as a kind of short-term memory. Action
rule blocks can be nested, making it possible to structure the behavior inside a plan—this point
will be discussed extensively in next sub-sections.

Recalling the agent execution cycle described in Section 7.1.2, in the plan stage, when an
agent perceives that a new task has to be done, it selects from its plan library an applicable plan
given the type of the task and the context condition. Once a plan has been found, the agent
instantiates a new intention, representing the plan in execution. The intention is kept until the
task is accomplished or failed.

Action blocks can have attributes to declaratively specify aspects related to actions and their
execution inside the block. Among these, the main ones are:

• #using: — to specify the list of the artifact identifiers used inside the block (e.g.,
Figure 7.7 lines 9 and 21, and Figure 7.8 lines 8, 12 and 24). An artifact inside a block
can be used/observed only if explicitly declared. At runtime, when entering a block
where an artifact is used, the artifact’s observable properties are automatically perceived,
in a continuous fashion, and their value is stored in corresponding beliefs in the belief
base—updated in the sense stage of the agent execution cycle.

• #completed-when: — to specify the condition for which the action rule block ex-
ecution can be considered completed (e.g., Figure 7.7 line 8). As soon as the condition
holds, the block is terminated with success.

• #atomic — to specify that the action rule block must be executed as a single action,
without being interrupted or interleaved with blocks of other plans in execution (when
the agent is executing multiple tasks at a time).

Other attributes will be described in next sub-sections.

Actions Rules: Events, Conditions, Actions

The action rule model has been specifically devised to ease the definition of behavioral blocks
which may need to integrate and mix the execution of some workflow of actions, along with
the reactions to some events or conditions over the state of the agent (see Section 7.3.1 for
full details). An example of such behavior is given by the plan for the Producing task in the
SimpleProducer script (Figure 7.7, lines 7-37). It accounts for repeatedly generating and insert-
ing integer items in the buffer artifact by executing the put action – which is part of the Buffer
interface, as will be shown in Section 7.2.2 – until the number of items inserted in the buffer
is greater than the maximum specified. While doing this, the agent must also react to events
coming from the environment and other agents, in particular: when the stop button is pressed
in the GUI the agent must stop and successfully terminate the plan; every time the agent is
informed by other agents about new items to be produced, the number of items to produce must
be updated.

141

142 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 agent-script SimpleProducer implements Producer in ProdConsOrgModel {
2

3 /* global beliefs */
4 item: int = 0
5

6 /* plans */
7 plan-for Producing {
8 #completed-when: is-done jobDone || is-done stopNotified
9 #using: console@main, this-task.gui

10

11 /* plan’s beliefs */
12 noMoreItemsToProduce: boolean = false
13 nItemsProduced: int = 0
14 nItemsToProduce: int = numItems
15

16 println(msg: "num items to produce: "+nItemsToProduce) on console@main;
17 {
18 /* active/autonomous part */
19 #to-be-rep-until: nItemsProduced >= nItemsToProduce || stopPressed
20 #using: this-task.buffer
21

22 item = item + 1;
23 put(item: item) on this-task.buffer;
24 nItemsProduced = nItemsProduced + 1
25 };
26 println(msg: "job done") #act: jobDone
27

28 /* reactive part */
29 when changed stopPressed in this-task.gui=> {
30 println(msg:"stopped.")
31 } #act: stopNotified
32

33 every-time told this-task.newItemsToProduce => {
34 println(msg: "new items to produce: "+this-task.newItemsToProduce);
35 nItemsToProduce = nItemsToProduce + this-task.newItemsToProduce
36 }
37 }
38 }

Figure 7.7: Implementation of the SimpleProducer script used in the producer-consumer ex-
ample.

In the remainder of this sub-section we show how this behavior can be achieved, by describing
in detail the action rule model. The EBNF syntax that defines an action rule in simpAL is
reported in Appendix A. Practically, in the most general case an action rule is of the kind:

Ev : Cond => Act #act: Tag

Ev is an event template, specifying what kinds of event can trigger the rule; Cond is a boolean
expression, specifying the condition over the agent’s belief base that must hold for a triggered
rule to be applicable; finally Act is the action to be executed if the rule is triggered and is
applicable, and Tag is a label which may be optionally specified to identify the action executed
by the rule. So, informally, an action rule states that the specified action Act labeled as Tag
can be executed every time the event Ev occurs and the specified condition Cond holds.

142

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 143

Some syntactic sugar is provided then to ease the implementation of frequently used patterns
of actions. One example is the sequence of actions. A sequence or a chain of actions is defined
by a list of actions ai, where: (i) the action ak can be executed only when the completion
of action ak−1 is perceived, and (ii) any action ai must be executed only once. This can be
specified as a simple list of actions (with no event or condition specified) using ’;’ as separator.
The end of the sequence is then determined by the first rule without a semicolon. If the sequence
is composed by a single action, then the action can be selected and executed immediately, but
only once.

An example of sequence of actions is shown in the plan for the Producing task, in Figure 7.7.
The plan first prints a message on a console (line 16), then a nested block (lines 17-25) is
executed and when the block has been completed then a last message is printed (line 26). The
block (lines 17-25) contains a sequence (lines 22-24), in which first a new item is generated,
then the item is inserted in the buffer by means of the put action and only when the put
succeeds the number of items produced is incremented. A block can contain also multiple
independent sequences, that are executed conceptually in parallel.

Some syntactic sugar is provided also for coding reactions. Rules that need to be triggered
only once can be coded by specifying the when keyword at the beginning of the rule, before
the event/condition (that can be both specified or just one of them):

when Ev : Cond => Act #act: Tag
when Ev => Act #act: Tag
when Cond => Act #act: Tag

when rules are translated in flat ones by simply adding a further condition in cond at
compile time, which make the rule applicable only if the action Tag is still todo. An example
is shown in the plan for the Producing task of the SimpleProducer script (lines 29-31). When
a change of the observable property stopPressed in the GUI artifact is perceived, then the
agent must react, printing a message.

Besides when rules, rules which need to be triggered every-time some event/condition hold
can be implemented by using the keyword every-time:

every-time Ev : Cond => Act #act: Tag
every-time Ev => Act #act: Tag
every-time Cond => Act #act: Tag

An example is provided again in the plan for the Producing task (lines 33-36). Every-
time a message about the new threshold is told, the agent must react and update the total
number of items to produce.

Events — Events specified in ECA rules concern percepts related to either the environment,
or messages sent by other agents, or action execution. In any case, all events are uniformly

143

144 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

modeled as changes to some belief belonging to the agent belief base, given the fact that observ-
able properties, messages sent and action state variables are all represented as beliefs. The syn-
tax for specifying events related to a change of an observable property is changed ObsProp,
for instance (Figure 7.7, line 29):

1 when changed stopPressed in this-task.gui => {...}

In this case the rule is selected as soon as the belief about the current value of the observable
property stopPressed of the GUI artifact has changed. It is worth remarking that, thanks
to smart controls performed by the simpAL compiler, when referring to a general task element
(inputs/outputs/messages) the prefix this-task. can be omitted if there is no ambiguity
w.r.t. other beliefs declared in the script (e.g., in this case if the agent does not declare any
belief named newItemsToProduce).

The syntax provided to specify the update of a belief about an information told by another
agent in the context of a task is told this-task.what, for instance (e.g., Figure 7.7, line
33):

1 every-time told this-task.newItemsToProduce => {...}

In this case the action is selected every time the belief newItemsToProduce representing a
message sent by the task assigner in the context of the Producing task has been updated. Given
the simpAL task model, only the assignee can react to the reception of messages defined in the
understands block of a task type.

Other events are related to changes of beliefs used to keep track of the execution state of
those actions that have been explicitly labeled. In this case the event is syntactically represented
by one of the two following form:

1 when is-done actLabel => ...
2 when is-failed actLabel => ...

where actLabel is the label that has been previously used to tag an action rule.

Internal Actions — Actions can be either internal – i.e., affecting only the agent internal
state – or external—i.e., actions affecting the environment or other agents. Internal actions are
predefined, and include:

• Basic actions to work with beliefs (i.e., belief assignment, to update the value of a belief
(e.g., Figure 7.7 lines 12-14 and 24)).

• Actions to create a new task (new-task), and manage the current set of the agent’s on-
going tasks and plans included in the plan library: (i) assign-task myTaskBel
which succeeds as soon as the task is successfully self-assigned; (ii) do-task
myTaskBel (Figure 7.8, line 17) which instead waits for the completion of the self-
assigned task; (iii) drop-task, suspend-tasks and resume-task, with the ob-
vious functionalities; (iv) drop-all-tasks which drops all the agent’s ongoing tasks,

144

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 145

and related intentions, but the current one; and (v) forget-all-plans, which acts on
the current intention’s rule stack, removing all the action rule blocks but the top level one.

• Actions to work with and manipulate local (Java) objects, to instantiate local objects and
to invoke methods (adopting a Java-like syntax).

• Actions to realize classical control structures – e.g., if, for, etc. – which have as arguments
action rule blocks.

• Actions to support the nesting of action rule block ({...} and => {...}, the difference
among the two will be described in a following sub-section). An example is given by the
block of rules described in Figure 7.7, lines 17-25. The utility of nesting blocks is to
modularize the behavior of a plan in terms of parts, each specifying both what actions
and reactions the agent can do and specific execution attributes.

External Actions — External actions are of two main types. The first one is given by op-
erations provided of some artifact. The complete syntax for external action execution is
OpName(Params) on ArtifactId. For instance (Figure 7.7 line 23):

1 put(item: item) on this-task.buffer

triggers the execution of the put operation (action) on the artifact whose identifier is stored
in the this-task.buffer belief. The artifact identifier can be directly a literal, e.g.
console@main including the workspace name (see Appendix A). Recalling the agent ex-
ecution cycle, it is worth noting here that external actions are executed in the act stage without
blocking the control loop: the completion with success or failure of an action is eventually
perceived by an agent as an event, which will be enqueued in the event queue in the future.

The repertoire of actions that an agent can do is dynamic and depends on the set of ar-
tifacts available in the environment. Besides this dynamic set, three external actions are al-
ways available to the agents by means of a special syntax (Appendix A). These actions are
the new-artifact, dispose-artifact and new-agent, which are provided by the
WorkspaceArtifact, an artifact available by default in each workspace (see Section 7.2.3). The
former allows to create a new artifact. It requires in input the artifact’s template name, initial
parameters and a belief in which the artifact reference will be stored. To destroy an existing
artifact, the dispose-artifact operation is provided instead, which requires in input a be-
lief storing the id of the artifact to be disposed of. Usage examples of these two default external
actions follows:

1 newArt: CounterUI;
2 new-artifact Counter (startValue:0) ref: newArt;
3 ...
4 dispose-artifact newArt;

145

146 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

Finally, the last action (new-agent) can be used to create a new agent. The action requires in
input the script name, a belief in which will be stored the reference of the created agent and, if
needed, the agent initial task. An example of usage follows:

1 newAg: Producer;
2 new-agent SimpleProducer init-task: new-task Producing (...) ref: newAg;

Thanks to specific compiler controls, the explicit specification of an external action’s target
artifact (i.e., on artifact) can be omitted in agent code (as it happens in some points of the
SimpleProducer script shown in Figure 7.7 (e.g., line 30 and 34)) when there is no ambiguity
w.r.t. the artifacts that are currently used by the agent (i.e., there is only one artifact providing
the specified operation among the ones currently used).

The second type of external action is given by communicative actions, to support direct
communication among agents. In simpAL, direct communication is based on asynchronous
message passing plus a predefined set of communication actions with a built-in semantics, sim-
ilar to speech acts. These communication actions can be roughly separated in two main classes:

• The ones concerning the assignment and management of tasks execution of an external
assignee agent (assign-task, do-task, drop-task, suspend-task).

• The ones concerning pure exchange of information (tell).

The actions of the first group manage task assignment and execution when the task’s assignee
is an external agent. From a syntactical point of view, they are equals to the internal actions
that can be used in a script for managing agent’s ongoing tasks—i.e., those tasks that have been
assigned to the agent. However, when an explicit assignee is specified, the intended semantics
of these actions is different. In this case these are communicative actions meant to be used
by the assigner, to assign (as before assign-task succeeds as soon as the task is assigned,
do-task instead waits for task completion), suspend (suspend-task) or cause the abor-
tion of the execution (drop-task) of a task assigned to an external agent. Referring to our
example, the monitor agent (whose source code is not shown for sake of simplicity) assigns the
execution of two instances of the Producing task to producers p1 and p2 as follows:

1 ...
2 tForP1: Producing = new-task Producing (numItems:20000, gui:theGUI, buffer:theBuffer)
3 tForP2: Producing = new-task Producing (numItems:20000, gui:theGUI, buffer:theBuffer)
4 assign-task tForP1 to: p1AgRef;
5 assign-task tForP2 to: p2AgRef;
6 ...

The task’s input parameters are specified in a keyword-based fashion, in any order.
Exchanges of information are always contextualized to tasks. That is: if there are no tasks

in execution, no messages (but those for assigning tasks) can circulate; if an agent is not doing
any task, it does not make sense for it to receive any message (but those for assigning tasks).
So, an agent A can send an information to another agent B only referring to a task T, without
explicitly referring to B. To make a concrete example, let’s consider the case of a task instance
T, which has been assigned to B by agent A. Two cases hold:

146

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 147

• A can send an information in the context of the task T to B by issuing a tell action,
specifying one of the messages declared into the understands block of task T type
definition.

• Being B the assignee of the task T, it can send an information to the assigner (A) by
issuing a tell action, specifying one of the messages declared into the talks-about
block of task T type definition.

Going back to our example, being the monitor agent the assigner of the tForP1 and tForP2
Producing tasks, it can tell producers a message about new items to produce as follows:

1 ...
2 tell tForP1.newItemsToProduce = 100
3 tell tForP2.newItemsToProduce = 100
4 ...

This goes toward a more data-driven approach to message-passing, where communication ac-
counts for asserting news about task parameters (i.e., the task data). We believe that this ap-
proach will have some nice impacts also on how complex communication protocols will be
specified in simpAL.

Action Rule Block Management: Nesting, Interruption, Completion and Repetition

As already mentioned, internal actions include also the instantiation of a new action rule block,
to support nested blocks. At runtime, for each intention – i.e., plan in execution – a stack of
action rule blocks is managed. At the beginning, the stack contains only the body of the plan.
Then, as soon as an internal action instantiating a new sub-action rule block is executed, the
block is pushed on the top of the stack—i.e., it is nested over a current one, which becomes
its parent. That internal action is then considered completed as soon as the action rule block is
completed, and then the block is removed from the stack.

Besides being useful to structure the set of rules, block nesting makes it possible to realize
an interrupt behavior. For instance:

1 counter : Counter;
2 {
3 #using: counter
4 nInterrupts : int = 0
5 ...
6 println (msg : " this ");
7 println (msg : " can be");
8 println (msg : " interrupted ")
9

10 when changed count in counter => {
11 println (msg : " interruption !");
12 nInterrupts ++
13 }
14 }

In this example, the sequence of printing actions can be interrupted in any point as soon as the
agent perceives that the observable property count has changed. When (if) this occurs, the

147

148 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 agent-script SimpleConsumer implements Consumer in ProdConsOrgModel {
2

3 /* global beliefs */
4 consumed: int
5

6 /* plans */
7 plan-for Consuming {
8 #using: console@main
9

10 consumed = 0;
11 {
12 #using: this-task.counter, this-task.buffer, theGUI@producers
13 #to-be-rep-until: (count >= this-task.maxItemsToProcess) || stopPressed
14

15 item: int;
16 get(item: item);
17 do-task new-task ProcessItem(item: item);
18 inc()
19 };
20 println(msg: "consumer done - num items processed: "+consumed)
21 }
22

23 plan-for ProcessItem {
24 #using: console@main
25 consumed = consumed + 1;
26 if (consumed % 100 == 0){
27 println(msg: "processed "+item)
28 }
29 }
30

31 /* private task definition */
32 task ProcessItem {
33 input-params {
34 item: int;
35 }
36 }
37 }

Figure 7.8: Implementation of the SimpleConsumer script used in the producer-consumer ex-
ample.

block at lines 10-13 is pushed on the stack. Blocks pushed by reactions – like in this case – are
tagged by default as hard-blocks. This means that when selecting actions in the plan stage, if an
hard-block is at the top of the stack, only the rules of this block are considered, and the rules of
other blocks below in the stack are ignored. In other words, hard-blocks cannot be interrupted
by rules not belonging to the block.

Blocks pushed on the stack by pure actions (rules without the event/condition) are by default
tagged as soft-blocks. In that case, when selecting actions in the plan stage, if a soft-block is at
the top of the stack, also the other blocks in the stack are considered. For instance:

1 counter : Counter;
2 {
3 #using:counter
4 nInterripts : int = 0
5 condition : boolean

148

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 149

6 ...
7 println (msg : " this ");
8 if (condition){
9 println (msg : " can be");

10 println (msg : " interrupted ")
11 }
12

13 when changed count in counter => {
14 println (msg : " interruption !");
15 nInterrupts ++
16 }
17 }

Here if is a predefined simpAL internal action, pushing on the stack the block specified in the
“then” arm if the condition holds. In this case the block specified in lines 8-11 is soft and can
be interrupted. In the case of need, the attribute hard/soft can be explicitly specified using the
predefined #hard-block and #soft-block attributes.

As already mentioned, the completion of a block is defined by the #completed-when:
attribute. If this attribute is not explicitly specified by the programmer, then some different cases
are considered by default, depending on the content of the block. If the block contains only one
or multiple sequences of actions – i.e., no reactions – then the condition implicitly defined in
#completed-when: is the completion with success of the last action of every sequence. In
other words, the block completes when all the sequences of actions complete. Instead, if the
block contains at least one reaction, i.e. an action rule with the event/condition specified, then
the default value for #completed-when: is false. In this case the block is meant to be never
completed—this is useful, for instance, in maintenance tasks.

Finally, pro-active tasks typically account for repeatedly executing some set of actions. In
simpAL, besides while and for internal actions, this can be expressed declaratively, by means
of some attributes of an action rule block: #to-be-repeated and #to-be-rep-until:
Cond. The former says that once completed, the action rule block should be re-instantiated on
the stack. The latter is a variant in which the block is re-instantiated until the specified condition
holds. In the example, this attribute is used both in the plan for Producing and Consuming tasks.
In the former case (line 19), it is used to specify that the block should be repeated until all the
items have been produced or a stop command on the GUI has been issued. In the latter case
(line 13), the block is repeated until the count observable property of the counter shared by the
consumers achieved the desired value or, again, the GUI issued a stop.

Structuring Complex Plans

As a structuring mechanism, complex plans can be structured by breaking a task in internal
(private, not visible by other agents) sub-tasks, defined in the context of the script.

An example is reported in the SimpleConsumer script shown in Figure 7.8. The plan for the
Consuming task accounts for repeatedly consuming items from the buffer and process them,
until the total number of items processed by the overall set of consumers is greater than a
certain threshold (stored in the maxItemsToProcess belief, which is an input parameter of

149

150 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

the Consuming task) or the stop button has been pressed. A counter artifact is then used to keep
track of such total number, incremented by every consumer after an item has been processed.
So, the processing of the item is represented by a private task type (ProcessItem) defined in the
script (lines 32-36), as well as a plan for handling it (lines 23-29). The sub-task is assigned at
line 17, after having successfully retrieved an item from the buffer. Being this a simple sequence
of actions, every action is executed implicitly when the completion event related to the previous
one is received. So, the counter is incremented (line 18) only after the sub-task assigned by the
do-task action is completed.

7.2.2 Programming the Environment
The programming model of artifacts is definitely simpler than the agents’ one, more similar to
the model used for classic passive entities, such as monitors or objects. Artifacts are simple
modules encapsulating the implementation and execution of sets of operations as actions that
the artifact makes it available to agents, and a set of observable properties that agents using the
artifact may perceive. Besides observable properties, an artifact can contain also hidden (not
observable) state variables, useful for implementing artifact functionalities.

1 interface Buffer {
2

3 obs-prop nAvailItems: int;
4

5 operation put (item: int);
6 operation get (?item: int);
7 }

1 interface Counter {
2

3 obs-prop count: int;
4

5 operation inc();
6 operation reset();
7 }

Figure 7.9: Implementation of the artifact usage interfaces used in the in the producer-consumer
example: Buffer usage interface (left), and Counter usage interface (right).

Analogously to the agent case, also for artifact programming we separate the abstract descrip-
tion of the artifact functionalities from their concrete implementation, defining artifact structure
and behavior. The former is specified in usage interfaces. Figure 7.9 shows the source code of
both the Buffer and Counter usage interfaces. The definition of an usage interface includes the
name of the interface, a set of observable properties and the declaration of a set of operations.
Observable properties are similar to variables, characterized by a name, a value and a type.
The parameters declared by operations are keyword based—for instance, put has a parameter
called item. On the agent side when invoking the operation (i.e., executing an action), the
parameters must be specified with the keyword, in any order. A parameter can be declared to be
an action feedback – i.e., an output parameter which is computed by the operation and returned
to the agent when the action (operation) has completed – by prefixing a ? to its name (e.g.,
?item parameter in get operation). An operation can include multiple output parameters.

Usage interfaces define the type of artifacts, used for instance to type beliefs on the agent
side keeping track of the artifacts to be used. This allows for doing a set of error checking
controls at compile time, as will be better clarified in Section 7.3.2.

150

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 151

1 artifact SimpleBuffer implements Buffer {
2

3 /* hidden state variables */
4

5 int maxNumElems;
6 java.util.LinkedList<Integer> elems;
7

8 /* constructor */
9

10 init (maxElems: int) {
11 count = startValue;
12 nAvailItems = 0;
13 maxNumElems = maxElems;
14 elems = new java.util.LinkedList<Integer>();
15 }
16

17 /* operations implementation */
18

19 operation put (item: int) {
20 await nAvailItems < maxNumElems;
21 elems.add(item);
22 nAvailItems = nAvailableItems + 1;
23 }
24

25 operation get (?item: int) {
26 await nAvailItems > 0;
27 nAvailItems = nAvailableItems - 1;
28 item = elems.remove();
29 }
30 }

1 artifact SimpleCounter
2 implements Counter {
3

4 /* hidden state variables */
5

6 c0: int;
7

8 /* constructor */
9

10 init (startCount: int) {
11 count = startCount;
12 c0 = startCount;
13 }
14

15 /* operations */
16

17 operation inc() {
18 count = count + 1
19 }
20

21 operation reset(){
22 count = c0;
23 }
24 }

Figure 7.10: SimpleBuffer and SimpleCounter artifact templates implementing the usage inter-
faces shown in Figure 7.9.

The implementation of artifacts instead is defined in artifact templates. Figure 7.10 shows
the source code of the SimpleBuffer and SimpleCounter artifact templates implementing the
usage interfaces shown in Figure 7.9. Like classes in object-oriented programming, artifact
templates are a blueprint for creating instances of artifacts. On the agent side, a predefined
WorkspaceArtifact available by default in each workspace (see next sub-section) provides ac-
tions for artifact creation (new-artifact) and disposal (dispose-artifact). On the
environment side, when the new-artifact operation is executed, the init operation (Fig-
ure 7.10 on the left at lines 10-15, and on the right at lines 10-13) of the artifact template to be
created – i.e., the template’s constructor – is invoked. Such operation is responsible of getting
the initial parameters and setting up the initial artifact state.

The definition of an artifact template includes a name, the declaration of the implemen-
ted usage interface, the concrete implementation of operations and the definition of internal
variables (non observable) that can be accessed by operations. In templates, the observable
properties are not re-declared, being already declared in the usage interface.

Operation behavior is given by a simple sequence of statements, in pure imperative style,
using classic control flow constructs, assignment operators, etc. As previously mentioned, Java
is used as the language for defining data structures. So, objects as well as primitive values can be

151

152 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

used in expressions and as value of variables and observable properties, and method invocation
appears among the statement of the language. For instance, in the SimpleBuffer implementation,
a LinkedList Java class is used to keep track internally (elems variable) of the elements
stored in the buffer.

Besides classic statements, specific primitives are introduced to control operation execution.
For instance, the await statement – used in the get and put operations of the SimpleBuffer
(Figure 7.10) – allows for suspending an operation until the specified condition is met (allowing
then other operations to be executed). As in the case of monitors, only one operation can be in
execution: so if multiple suspended operations can be resumed a certain time, only one is selec-
ted for being executed. This feature is useful in particular to implement coordination artifacts,
i.e. artifacts explicitly designed to provide also coordinating/synchronizing functionalities to
the agents sharing and concurrently using them.

Operations may complete with success or fails. Correspondingly, the agent who issued the
operation will eventually receive an action completion event with success or an action failure
event.

7.2.3 Programming the Organization
The global structure of a simpAL program and its initial configuration are specified by the notion
of organization (recalling the human organization metaphor). Also for this aspect we separate
the model part from the concrete implementation one. To this end, on the one side we have
the notion of organization model, which is introduced for specifying the abstract structure of
the overall program. On the other side, the notion of concrete organization allows to define a
concrete application instance, referring to an existing organization model.

An organization model is identified by a name, and it is used to define the workspace-
based logic structure of the organization, in which, for each workspace, it is possible to define,
statically, the name (identifier) and the type of agents and artifacts that, for that workspace, will
be automatically instantiated and initialized at each launch of the organization. By default, each
workspace contains a predefined set of artifacts created at boot time:

• A console artifact, providing functionalities for printing on standard output.

• A WorkspaceArtifact artifact, providing functionalities for dynamically: (i) creating new
artifacts and disposing existing ones (new-artifact and dispose-artifact op-
erations), and (ii) spawning new agents (new-agent) operation.

Figure 7.11 shows the definition of the organization model used in our producer-consumer
example. As requested, the topology of the application has been structured in three work-
spaces: producers, consumers, and main. The workspace producers hosts the pro-
ducer agents (p1, p2) and the GUI artifact (theGUI). The workspace consumers hosts the
consumer agents (c1, c2), the counter and the buffer artifacts (theCounter, theBuffer). Finally,
the main workspace contains the monitor agent (monitor) and the console artifact that will be
used for purely logging functionalities (not declared since is available by default).

152

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 153

1 org-model ProdConsOrgModel {
2

3 workspace producers {
4 p1: Producer
5 p2: Producer
6 theGUI: GUI
7 }
8

9 workspace consumers {
10 c1: Consumer
11 c2: Consumer
12 theCounter: Counter
13 theBuffer: Buffer
14 }
15

16 workspace main {
17 monitor: Monitor
18 }}

Figure 7.11: Organization model for the producer-consumer example.

1 org SimpleProdCons implements ProdConsOrgModel {
2

3 workspace producers {
4 p1 = new-agent SimpleProducer()
5 p2 = new-agent SimpleProducer()
6 theGUI = new-artifact SimpleGUI (title: "Simple GUI")
7 }
8

9 workspace consumers {
10 c1 = new-agent SimpleConsumer()
11 init-task: new-task Consuming (maxItemsToProcess: 20000, buffer: theBuffer,
12 counter: theCounter)
13 c2 = new-agent SimpleConsumer()
14 init-task: new-task Consuming (maxItemsToProcess: 20000, buffer: theBuffer,
15 counter: theCounter)
16 theCounter = new-artifact SimpleCounter(startValue: 0)
17 theBuffer = new-artifact SimpleBuffer(maxElems: 10)
18 }
19

20 workspace main {
21 monitor = new-agent SimpleMonitor() init-task: new-task Monitoring()
22 }}

Figure 7.12: The SimpleProdCons concrete organization implementing the organization model
shown in Figure 7.11.

1 /* SimpleProdCons organization deployment file */
2 workspace-addresses {
3 main = 92.10.45.40:8000
4 producers = 67.104.7.88:8000
5 consumers = 137.204.107.188:8000
6 }

Figure 7.13: Deployment configuration file for the concrete organization shown in Figure 7.12.

153

154 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

An organization can contain further agents/artifacts instances besides those statically declared in
the organization model—since both agents and artifacts can be dynamically created by agents by
means of specific actions (see above). The static case is useful anyway to specify the identifier
of those components whose name and type must be known at the organization level, at compile
time. In other words to define global symbols – i.e., agents and artifacts literals – that can be
resolved and checked in scripts that explicitly declared to play a role inside an organization
of this type (e.g., SimpleProducer and SimpleConsumer scripts which declare to play their
role inside the ProdConsOrgModel). By doing so, the symbols and identifiers declared in the
organization model can be referred as literals also in the script (e.g., theGUI@producers in
Figure 7.8, line 12) and then checked at compile time.

Then, the definition of a concrete organization accounts for specifying the concrete instances
of agents and artifacts declared in the organization model. For artifacts, the artifact template’s
name is provided, also possibly including the value of some parameters required by the arti-
fact initialization operation. For agents, the initial script to be loaded must be specified, and,
if needed, could be also specified the initial task to do, along with its initial parameters. Fig-
ure 7.12 shows an example of a SimpleProdCons organization for the case of our producer-
consumer example, where the agents/artifacts declared into the ProdConsOrgModel organiza-
tion model are properly initialized in order to characterize the specific SimpleProdCons organ-
ization instance.

So, in simpAL a physically distributed multi-agent system is programmed as an organization
whose logical structure is defined in terms of workspaces distributed among different network
nodes. In this perspective, the notion of workspace represents the key to conceive and model
the logical structure of the MAS, by properly grouping, on the basis of both application re-
quirements and decisions made at design time, agents and artifacts in the set of workspaces
that define the organization. This grouping is meant to define only the logical structure of
the application, abstracting from all the details concerning its deployment, which is instead
managed by the simpAL distributed runtime infrastructure (Section 7.3.4), through the defini-
tion of run/deploy file configurations. Such files are used to specify the binding of the logical
workspace-based structure of an organization, into the proper set of simpAL nodes targeted for
hosting its execution. A simpAL node is a generic machine available on the network, on top of
which the simpAL kernel has been properly installed and launched. An example of configuration
file for the SimpleProdCons organization is reported in Figure 7.13. In this case we distribute
the organization on top of three different simpAL nodes (i.e., 137.204.107.188:8000,
92.10.45.40:8000 and 67.104.7.88:8000 (Figure 7.4)).

The model easily allows to swap one configuration file with another giving hence the oppor-
tunity to change, even radically, the whole deployment model of a distributed application—e.g.,
moving, for the same application, from a deployment configuration with all the workspaces
hosted on localhost, to another one in which each workspace is hosted on a different and re-
mote simpAL node. It is up to developers decide how to organize both the logical and physical
topology of the application, by taking into account both available hardware resources and ap-
plication requirements—e.g., an application in which a set of independent tasks are managed by

154

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 155

a group of agents and artifacts located in separated and dedicated workspaces can be deployed,
to exploits concurrency at its best, either on a set of normal desktops machines or on a server
with high computing capabilities.

Applications that do not require to be distributed over the network can simply avoid to
specify a deployment configuration file. In this case the simpAL runtime will execute the MAS
as a (local) standalone application.

7.3 Focus on Main Features
In this section we focus on some of the main features of simpAL, namely: (i) the seamless in-
tegration of both autonomous and event-driven behaviors (Section 7.3.1), thanks to the plan and
action rule models; (ii) the support for typing (Section 7.3.2) and polymorphism (Section 7.3.3);
and (iii) the simpAL distributed runtime infrastructure (Section 7.3.4).

7.3.1 Integrating Autonomous and Event-Driven Behaviors

The integration of autonomous and reactive behaviors is a relevant problem in the context of
concurrent programming, related to the integration of thread-based and event-driven program-
ming. Many interesting problems and applications call for developing software components
capable of integrating a process-oriented autonomous behavior with an event-driven, reactive
one. A simple example is a web crawler that has to search pro-actively information over the
Internet and at the same time must be able to react to asynchronous inputs generated by the user
through a GUI, either to interrupt the crawler or to dynamically refine its search.

Another example is given by cooperative distributed algorithms like Ricart-Agrawala (see
Section 7.4.2 for an implementation in simpAL of the Ricart-Agrawala’s algorithm) or Token-
Ring [RA81, BA05], for distributed mutual exclusion and critical section. In these algorithms,
the behavior of each distributed node/peer typically includes both an autonomous part (e.g.,
periodically entering in critical section (CS)), and a reactive part, which needs to receive and
send messages aside to the first one to ensure the correct coordination among the nodes. The
two parts then need to cooperate, since the behavior of the reactive part can depend on the state
of the pro-active one (e.g., being in CS or not). The same situation can be found in producers-
consumers architectures in which producers and consumers, while doing their job, need to be
reactive to some kind of asynchronous events—e.g., producers should stop producing as soon
as some condition occurs (we presented this example both in Section 4.2 and in Section 7.2).

In concurrent programming literature, the problem of integrating autonomous and react-
ive behaviors is strongly related to the one contrasting thread-based and event-based program-
ming [vBCB03, Ous96], and to those works that look for unifying the approaches [HO07,
CMM09]. Being based on a pure reactivity principle [BGL98, Kay69] (Section 2.1), actors
– as objects as well – do not provide native means to effectively integrate also pro-activity, so
actor-based solutions to this problem – as will be clarified in the next sub-section – suffer in

155

156 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

general of a weak abstraction and modularity.
Here, we discuss how in simpAL it is possible to integrate these two aspects at the con-

ceptual and foundation level, going beyond the reactivity principle found in actors [RS12a].
Such a synergistic integration is made possible thanks to both the the agent control architecture
(Section 7.1.2), and the specific plan and action rule models adopted in simpAL (Section 7.2.1).

Problem Statement

Both actors and objects are based on reactivity and the reactivity principle. As discussed in
Section 2.1, the only way to activate an object or an actor is by sending to it a message. In
[BGL98] this is opposed to the idea of a process, or a pure autonomous behavior, that starts
processing as soon as it is created.

The integration of object with process (the concept of active object) raises the issue of
whether reactivity will be preserved or shadowed by the autonomous behavior of the process.
Two broad families are identified[BGL98]: (i) reactive active objects – these approaches adhere
to the reactivity principle (such as actors); (ii) autonomous active objects – in these approaches
the active entity may compute before being sent a message. Although the models are opposite
they can easily simulate each other [BGL98]. On the one side, a reactive active object can have
a method whose body contains an endless loop, turning it into an autonomous active object
after receiving a corresponding message. On the other side, an autonomous active object whose
activity is to keep accepting messages actually models a reactive active object.

However, this is not useful when dealing with problems that call for exploiting both of them
in an integrated way. Abstracting from the details, all these problems have some kind of process
doing pro-actively actions to accomplish some (possibly long-running) task that requires also
to react to some asynchronous events from their environment. In the remainder we analyze the
problem by considering an abstract example that captures some core issues. We will use actors
as reference model and related state of the art programming technologies. Let’s consider a task
T which is supposed to be long-term, articulated in a sequence of three sub-tasks: Ta, Tb, Tc—
for sake of simplicity we suppose initially that these sub-tasks are fully computational, without
interactions. This constitutes the autonomous/pro-active part of the job. Then, the task requires
to promptly react to a message react that could be sent in any moment while doing T, and
upon receiving the message the actor must suspend the execution of T for printing in standard
output the react! message. As soon as the message has been printed, the execution of T can
be resumed.

Figure 7.14 on the left shows a first solution in ActorFoundry [KA], which we will consider
as the reference technology for implementing pure actor solutions. Note that we could use any
framework/language strictly implementing the actor model Section 2.1. The only peculiarity
that we exploited of ActorFoundry is the call primitive, which realizes a request-reply mes-
sage exchange pattern. The problem with this solution is that given the macro-step semantics
adopted by the actor model, the actor can react to the the react message only after fully ex-
ecuting the body of the method doTask executed when receiving the corresponding message.

156

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 157

1 public class TestActor0 extends Actor {
2 private int c = 0;
3

4 @message
5 public void doTaskT() {
6 ta();
7 tb();
8 tc();
9 }

10

11 @message
12 public void react() {
13 call(stdout,
14 "println","react! "+c);
15 }
16

17 private void ta(){ c = c + 1; }
18 private void tb(){ c = c + 1; }
19 private void tc(){ c = c + 1; }
20 }

1 public class TestActor1 extends Actor {
2 private int c = 0;
3

4 @message
5 public void doTaskT() {
6 send(self(), "doingTa");
7 }
8

9 @message
10 public void doingTa() {
11 send(self(), "doingTb");
12 ta();
13 }
14

15 @message
16 public void doingTb() {
17 send(self(), "doingTc");
18 tb();
19 }
20

21 @message
22 public void doingTc() { tc(); }
23

24 @message
25 public void react()
26 throws RemoteCodeException {
27 call(stdout, "println","react! "+c);
28 }
29 ...
30 }

Figure 7.14: Different solutions to the abstract problem used to investigate the integration of
active and event-driven behaviors in ActorFoundry. (left) A first solution that shadows reactiv-
ity, (right) a solution that does not.

So the message printed on standard output is always react! 3. In this case reactivity is
shadowed.

In order to be reactive while doing the tasks, the autonomous behavior of the actor must
necessarily be broken in sub-behaviors so as to allow the actor event loop to consider the receipt
of the react message. An example is shown in Figure 7.14 on the right. The problem in this
case is the fragmentation of the code in handlers, which does not necessarily corresponds to a
good modularization from the point of view of the organization of the autonomous behavior.
One is forced to artificially break the behavior so that the event loop can take the control and
check the availability of messages possibly sent by other actors. Besides, self-sending messages
is needed to proceed the computation, in the case that no messages are available, not to get
stucked. This is clearly a programming trick, decreasing the level of abstraction used to describe
the strategy identified at the design level.

No substantial improvements can be obtained if we consider actor approaches based on ex-
plicit acceptance of messages (following the classification discussed in [BGL98]), i.e. providing

157

158 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 test_actor() ->
2 self() ! doTaskT, loop(0).
3

4 loop(C) ->
5 receive
6 doTaskT ->
7 C1 = ta(C),
8 self() ! doingTb,
9 loop(C1);

10 doingTb ->
11 C1 = tb(C),
12 self() ! doingTc,
13 loop(C1);
14 doingTc ->
15 C1 = tc(C),
16 loop(C1);
17 react ->
18 io:format("react! ˜w˜n", [C]),
19 loop(C)
20 end.
21

22 ta(C) -> C+1.
23 tb(C) -> C+1.
24 tc(C) -> C+1.

1 controller() ->
2 ActA = spawn(test1, actorA, []),
3 ActB = spawn(test1, actorB, []),
4 ActC = spawn(test1, actorC, []),
5 self() ! doTaskT,
6 loop(0,ActA,ActB,ActC).
7

8 loop(C,ActA,ActB,ActC) ->
9 receive

10 doTaskT ->
11 ActA ! {doTa, C, self()},
12 loop(C,ActA,ActB,ActC);
13 {doneTa, C1} ->
14 ActB ! {doTb, C1, self()},
15 loop(C1,ActA,ActB,ActC);
16 {doneTb, C1} ->
17 ActC ! {doTc, C1, self()},
18 loop(C1,ActA,ActB,ActC);
19 {doneTc, C1} ->
20 loop(C1,ActA,ActB,ActC);
21 react ->
22 io:format("react! ˜w˜n", [C]),
23 loop(C,ActA,ActB,ActC)
24 end.
25

26 ta(C) -> C + 1.
27

28 actorA() ->
29 receive
30 {doTa, C, Controller} ->
31 C1 = ta(C),
32 Controller ! {doneTa, C1},
33 end.

Figure 7.15: Different solutions to the abstract problem used to investigate the integration of
active and event-driven behaviors in Erlang. (left) A first basic solution, (right) a solution based
on a network of cooperative actors for improving reactivity.

a receive primitive to explicitly retrieve messages from the mailbox (and not encapsulating then
the event-loop). Figure 7.15 on the left shows the solution in Erlang [Arm10], which is a main
representative case. Here the fragmentation occurs by splitting the autonomous behavior into
the arms of the receive primitive.

No improvements can be obtained neither if we consider the programming abstractions that
have been proposed in literature upon the basic actor model – e.g., local synchronization con-
straints, synchronizers (Section 2.2). This because all such extensions are finally targeted to ease
the management of messages, so improving the programming of the reactive part. The same
applies for extensions introducing mechanisms to overcome handler/callback fragmentation—
by means, for instance, of join continuations or promises (Section 2.2). These mechanisms are
effective to improve the organization of the callbacks handling asynchronous events, avoiding
obscure nesting.

158

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 159

A radically different approach to overcome the problem could be using a network of cooper-
ating actors instead of one. In particular, a controller actor can be used to delegate the execution
of the sub-tasks to other sub-actors. Figure 7.15 on the right shows an implementation of the
example in Erlang. The controller is responsible to receive the react message and print the
message, besides coordinating the sequential execution of the sub-tasks by interacting with the
other sub-actors. In the case that the react message should have an effect also on the ongoing
sub-tasks, then we would need to make also the sub-actors reactive to that message. For doing
so, we need to decompose sub-tasks further. Sub-actors become controllers themselves, creat-
ing a tree of controllers where the leaves represent actors executing atomic tasks, that cannot be
interrupted. Some specific message-based protocol must be introduced then among controllers
in order to coordinate their execution, in particular to propagate the react message. So in
this case we model pro-activity by a tree of purely reactive controllers, using in the leaves a set
of actors playing the roles of atomic uninterruptible tasks or actions. While this pattern can be
useful to deal with the problem from a pragmatic point of view starting from a pure actor model,
it is apparent that it enforces the programmer to manage a further level of accidental complexity
given by the set of controllers and their coordination.

Integrating Autonomous and Reactive Behaviors in simpAL

Figure 7.16 shows a simpAL implementation of the abstract example introduced in the previous
sub-section. In the solution, the plan for fulling the task TaskT breaks it in three private sub-
tasks Ta, Tb, Tc, to be fulfilled in sequence. The body of the plan is a sequence of do-task
actions, which self-assign the sub-tasks to the agent and complete as soon as the task instance
specified as parameter has been executed up to completion (Section 7.2.1). The script includes
also the plans to manage the private sub-tasks, where a global belief c is incremented.

Then, as usual, reactivity is managed by introducing an action rule that specifies the reaction
related to the specific event/condition of interest. The rule at lines 12-15 says that when the
agent receives a message about reacting, it eventually interrupts the sequential course of action
of the current intention and executes a new action rule block. In the reaction block the agent
prints the react message on standard output using the usual console artifact available in
the main workspace.

We argue that the solution showed in Figure 7.16 proofs in a concrete manner how it is pos-
sible to tackle the issue of integrating autonomous and reactive behaviors in simpAL programs,
directly at the foundation level, without resorting to programming tricks. This is made possible
on the one side by the specific plan model adopted in the language: through proper syntactical
sugar, developers can easily program any arbitrary combination of sequence of actions – i.e.,
a block of autonomous/pro-active behavior – mixed with reactions—i.e., actions that must be
taken if/when/every time some condition holds. On the other side, the agent control architecture
is the one that makes it possible the concrete execution of such combinations of action rules, as
it has been described in detail in Section 7.1.2.

159

160 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 agent-script TestScript implements RoleR {
2

3 c: int = 0;
4

5 plan-for TaskT {
6 #completed-when: is-done tc
7

8 do-task new-task Ta();
9 do-task new-task Tb();

10 do-task new-task Tc() #act: tc
11

12 when told this-task.react => {
13 #using: console@main
14 println(msg: "react! "+c);
15 }
16 }
17

18 plan-for Ta { c = c + 1 }
19 plan-for Tb { c = c + 1 }
20 plan-for Tc { c = c + 1 }
21

22 task Ta {}
23 task Tb {}
24 task Tc {}
25 }

1 role RoleR {
2 task TaskT {
3 input-params {
4 react: java.lang.String;
5 }
6 }
7 }

Figure 7.16: A solution to the abstract problem used to investigate the integration of active
and event-driven behaviors insimpAL: (left) the implementation of the TestScript which integ-
rates both autonomous and reactive behaviors as requested, and (right) definition of the RoleR
implemented by the script.

Managing Tasks as First-class Entities — The capability of managing tasks in execution flex-
ibly as first-class entity of the language is an important feature for programming more structured
and complex behaviors, in particular for those cases in which the reactive part can influence the
execution of the autonomous one. To this end, we consider here a simple extension of the pre-
vious example where the reaction is meant to produce a different future behavior depending on
what the agent was doing. In particular: if the react message is received when doing the Ta
sub-task, then the sub-task has to be interrupted and a task Td must be executed to complete
TaskT. instead, if the react message is received when doing Tb, then the sub-task must be
carried on until the end and after that, instead of doing a Tc sub-task, a new sub-task Te must be
executed. All the other cases are not relevant for the agent.

The solution in simpAL is depicted in Figure 7.17 and it is a good example to show: (i) what
kind of flexibility is possible by having tasks as first-class abstractions, and again (ii) the level
of abstraction and modularity provided by the simpAL plan and action rule models. Differently
from previous case, beliefs are used (ta, tb, tc, te) to track the tasks as soon as they are
instantiated and assigned. The rule reacting to the event (lines 14-30) is triggered only if either
the task ta or tb are ongoing. Then, by inspecting the state of the tasks, the future course
of action for the plan is decided. In particular, if the task ta is ongoing (lines 23-26), then it
is immediately dropped and a new task tc is assigned; otherwise, if the task tb is ongoing

160

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 161

1 agent-script TestScript implements RoleR {
2 c: int = 0;
3

4 plan-for TaskT {
5 #completed-when: is-done tc
6

7 ta: Ta = new-task Ta();
8 do-task ta;
9 tb: Tb = new-task Tb();

10 do-task tb;
11 tc: Tc = new-task Tc();
12 do-task tc
13

14 when told this-task.react : is-ongoing ta || is-ongoing tb => {
15 #using: console@main
16 #completed-when: is-done te || is-done newTc
17

18 te: Te; newTc: Tc;
19 forget-old-plans;
20 {
21 #atomic
22 println(msg: "react! "+c);
23 if (is-ongoing ta) {
24 drop-task ta;
25 newTc = new-task Tc();
26 assign-task newTc;
27 } else if (is-ongoing tb) {
28 te = new-task Te(prev: tb);
29 assign-task te;
30 }}}}
31

32 plan-for Te {
33 taskToWait: Tb = this-task.prev;
34 {
35 #completed-when: is-done te
36 when is-done taskToWait => using: console@main {
37 c = c * 100 ;
38 println(msg: "done te: "+c) ;
39 } #act: te
40 };
41 }
42

43 task Te {
44 input-params {
45 prev: Tb;
46 }}
47 ...
48 }

Figure 7.17: A more complex example of reactive behavior, that inspects ongoing tasks.

(line 27-29), a new sub-task te is instantiated, without dropping tb that can proceeds until
completion. The plan handling the task type Te (lines 32-41) waits for the completion of the
ongoing task tb – which has been passed as input parameter of the sub-task – before proceeding
and doing its job, which accounts to update c and print a message on the console.

It is worth remarking the use of the #atomic attribute in the block at line 21 (introduced
in Section 7.2.1) when the agent is reacting and deciding what to do, depending on the state of

161

162 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

the specific sub-task in execution. The attribute allows to specify that the agent must execute
the actions defined in the block as a single action, without interleaving with other plans in
execution that may interfere.

Event Handling Without Inversion of Control — A well-known problem in literature which
is strongly related to the one discussed in this sub-section is the capability of doing event-
oriented programming without the problems that typically are found when adopting callbacks
and inversion of control [HO08, MTS05]. In simpAL there is no inversion of control, since
events are managed by the agent control loop—which is a single control flow, from a conceptual
point of view.

As an example, Figure 7.18 shows a possible implementation in simpAL of the observer
pattern [GHJV95]. simpAL natively provides a support for publish/subscribe and observation-
based kind of interactions. Observed objects can be directly modeled as artifacts with some
specific observable properties. Observers can be modeled as agents, simply declaring to use
those artifacts. The example shows the script of an agent observing a counter, reacting each
time the observable property count changes, because of the execution of the inc operation
by some (other) user agents, and the source code of the artifact implementing such Counter
usage interface. Since this kind of interaction is part of the simpAL programming model, no
specific code for managing observer registration / notification is necessary.

1 role Observer {
2 task Observing {
3 input-params {
4 sharedCounter: CounterUI;
5 }}}

1 agent-script ObserverScript
2 implements Observer {
3 plan-for Observing {
4 #using: console@main, sharedCounter
5 println(msg: "start observing...");
6 every-time changed count => {
7 println(msg: "new count perceived!")
8 }
9 }}}

1 usage-interface CounterUI {
2

3 obs-prop count: int;
4

5 operation inc();
6 }

1 artifact Counter implements CounterUI {
2

3 init() { count = 0; }
4

5 operation inc () { count = count + 1; }
6 }

Figure 7.18: Role and script for observer agents (left). Usage interface and implementation of
an observed counter artifact (right).

Every time the agent perceives a change of the observable property count, it prints a message
on the console. The control flow executing this action is (conceptually) the agent control loop
one. No race conditions and concurrency problems can occur even with multiple observers
and users, thanks to the computation model of artifacts (in which the execution of operations is
mutually exclusive) and of agents.

It is worth remarking that also in JaCa and JaCaMo events can be handled in a similar
fashion, without introducing inversion of control.

162

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 163

Comparison with the support provided by BDI-based APLs — as introduced in Chapter 6
and showed in several concrete examples (e.g., see Section 4.2, Section 4.4.2, Section 4.6.2) the
BDI control architecture makes it possible to realize an integration between autonomous (pro-
active) and event-driven behaviors. However, this is just a first basic form of integration w.r.t. to
the one provided by simpAL. Indeed, BDI-based state-of-the-art APLs do not provide adequate
programming abstractions to seamlessly encapsulate inside a single computational block1 any
kind of possible behavior.

Taking Jason as a concrete example, it is not possible to mix, freely, a sequence of actions
with reactions to particular events inside the same plan. Each event must be handled in a separ-
ated manner by writing a top-level plan of the kind +my event <- do something, hence
breaking the overall encapsulation of the plan construct. To react to a particular event inside
a plan, we are forced to define a new top-level reactive plan – i.e., outside the context of the
original plan – that takes in charge the handling of the event of interest. Similar considerations
also apply to other state-of-the-art APLs, in which events are always handled by means of top-
level programming constructs. This could lead to several main drawbacks: (i) the main one
is, as already mentioned, the breaking of the encapsulation of the basic programming construct
provided by the language for coding agents’ behavior, (ii) weak modularization, and finally (iii)
poor code readability. All these issues in simpAL are solved thanks to the specific plan and
action rule models adopted, which allow to freely combine reactive and event-driven behaviors
with autonomous ones inside each action rule block.

To conclude the comparison, we consider now the capability of managing events without
introducing inversion of control. As already mentioned, this can be done also in JaCa and
JaCaMo thanks to the BDI agent control architecture and the specific action and perception
model adopted (Section 4.1). However, the action rule model used in simpAL allows to introduce
a set of important benefits when dealing with the management of asynchronous events:

• It is possible to do error checking on the rules that deal with events management. E.g.,
finding reactions to unknown events, type mismatch, etc.

• It is possible to make explicit, at the block level, the set of observable events of interest by
specifying with the #using: attribute the set of artifacts to observe. This is a much more
finer mechanism w.r.t the use of the explicit primitives focus and stopFocus available
in JaCa and JaCaMo (see Section 4.2.3). Indeed, these primitives work at the global
level, hence their use in the case of multiple active intentions could be troublesome—
e.g., a plan can invoke the stopFocus action concerning an artifact that is still used by
other parallel intentions.

1We intentionally used the term computational block in order to be general. Indeed, depending of the specific
APL considered, the basic construct to define an agent behavior can be a plan, an action block, a rule, etc.

163

164 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

7.3.2 Typing Support
The introduction of an explicit notion of type for agents, artifacts and the overall programs (the
organizations), give us the opportunity to: (i) conceptually characterize the different parts of
an application, and (ii) perform several error checking controls at compile time [RS12b]. In
Section 7.2 we introduced the definition and characterization of the types for the main first-
class abstractions of the language, here instead we describe in detail the set of error checking
controls available in simpAL, taking as a concrete example a SmartHome scenario.

A description of the example follows. An agent playing the role HomeAdmin manages the
bedroom temperature by interacting with a Thermostat agent, which in turn uses a set of utility
artifacts to do its job (see Figure 7.19 for an overview of the overall application).

1 org-model SmartHome{
2

3 workspace mainRoom {
4 majordomo: HomeAdmin
5 userView: UserView
6 }
7

8 workspace bedRoom {
9 thermostat: Thermostat

10 conditioner: Conditioner
11 thermometer: Thermometer
12 }
13 }

1 org ACMESmartHome implements SmartHome{
2

3 workspace mainRoom {
4 majordomo = Majordomo()
5 init-task: AdminHouse()
6 userView = ACMEControlPanel()
7 }
8

9 workspace bedRoom {
10 thermostat = ACMEThermostat()
11 conditioner = ACMEConditioner()
12 thermometer = ACMEThermometer()
13 }
14 }

Figure 7.19: Organization model (left) and concrete organization (right) related to the
SmartHome example.

Typing Agents

The concept of role defining the agent type allows us to do error checking on:

(a) The behavior of the agents implementing a role, checking that their implementation con-
tained in scripts (the how) conforms to the role definition (the what).

(b) The behavior of the agents that aim at interacting with agents implementing a particular
role, checking that: (i) they would request the accomplishment only of those tasks that
are specified by the role, and (ii) they would send only those messages that the tasks’
assignee can understand.

In simpAL, case (a) concerns performing two different checking controls when compiling agent
scripts. The first control is responsible of validating the script’s plans w.r.t. the task types
defined in the role implemented by the script. The error checking rule states informally:

• For an agent script S, for each type of task T defined in the role R implemented by S, it
must exist at least one plan P for T .

164

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 165

1 role Thermostat {
2

3 task AchieveTemperature {
4 input-params {
5 targetTemp: double;
6 threshold: double;
7 }
8 }
9

10 task KeepTemperature {
11 input-params {
12 inputView: UserView;
13 }
14 understands {
15 newThreshold: double;
16 }
17 }
18

19 task DoSelfTest {
20 talks-about {
21 malfunctionDescr: MalfunctionInfo;
22 }
23 }
24 }

1 usage-interface Conditioner {
2

3 obs-prop isHeating: boolean;
4 obs-prop isCooling: boolean;
5

6 operation startHeating(speed: double);
7 operation startCooling(speed: double);
8 operation stop();
9 }

1 interface Thermometer {
2 obs-prop currentTemp: double;
3 }

1 usage-interface UserView {
2 obs-prop desiredTemp: double;
3 obs-prop threshold: double;
4 obs-prop thermStatus:
5 acme.ThermostatStatus;
6 }

Figure 7.20: Definition of the Thermostat agent role (left) and artifact interfaces Conditioner,
UserView and Thermometer (right) related to the SmartHome example.

Given this rule, the ACMEThermostat script implementing the Thermostat role described in
Figure 7.21 is correct, while instead a script like the following one:

1 agent-script UncompleteThermostatImpl implements Thermostat {
2 plan-for AchieveTemperature { ... }
3 plan-for DoSelfTest { ... }
4 }

would report an error message about missing a plan for a declared task, i.e. KeepTemperature.
The second control concerns checking messages that an agent playing a certain role R can
tell to its tasks assigners. This can be done by checking the set of messages included in the
talks-about block of tasks definition. The checking rule in this case states:

• In a plan P related to a task type T , the messages sent by the assignee to the task assigner
can be only the ones listed in T ’s talks-about block. In addition, the type of the
messages sent must be compatible w.r.t. the message types defined in T .

Referring to our example, the only message that the thermostat agent can send to the majordomo
is the message malfunctionDescr in the context of the task DoSelfTest, a task that can be
assigned by the majordomo in order to check the correct functioning of the thermostat.

Case (b) concerns instead checking: (i) the assignment of tasks to agents playing a cer-
tain role R, and (ii) messages sent by a task assigner to the task assignee. As described in
Section 7.2.1, task assignment (as well as task self-assignment) can be done using either the
do-task or the assign-task action. In both cases, we can statically enforce that:

165

166 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 agent-script ACMEThermostat implements Thermostat in SmartHome {
2 savedThreshold: double
3 plan-for AchieveTemperature {
4 #using: console@mainRoom, thermometer@bedRoom, conditioner@bedRoom
5 println(msg: "Achieving temperature "
6 + this-task.targetTemp + " from " + currentTemp);
7 savedThreshold = this-task.threshold;
8 {
9 #completed-when:

10 java.lang.Math.abs(this-task.targetTemp - currentTemp) < savedThreshold
11

12 every-time currentTemp > (this-task.targetTemp + savedThreshold)
13 && !(isCooling in conditioner) => startCooling(speed: 1) on conditioner
14 every-time currentTemp < (this-task.targetTemp - savedThreshold)
15 && !(isHeating in conditioner) => startHeating(speed: 1) on conditioner
16 };
17 stop()
18 }
19

20 plan-for KeepTemperature {
21 #using: console@mainRoom, thermometer, conditioner, userView@mainRoom
22 quitPlan : boolean = false;
23 {
24 #completed-when: quitPlan
25

26 achiveTempTask: AchieveTemperature =
27 new-task AchieveTemperature(targetTemp: desiredTemp in userView,
28 threshold: threshold in userView);
29 assign-task achiveTempTask
30

31 every-time changed desiredTemp => {
32 drop-task achiveTempTask;
33 achiveTempTask = new-task AchieveTemperature(targetTemp: desiredTemp,
34 threshold: threshold);
35 assign-task achiveTempTask
36 }
37 every-time changed currentTemp : !is-doing-any AchieveTemperature => {
38 assign-task new-task AchieveTemperature(targetTemp: desiredTemp,
39 threshold: savedThreshold)
40 }
41 every-time changed thermStatus
42 : thermStatus.equals(acme.ThermostatStatus.OFF) => {
43 if (isCooling || isHeating){
44 stop()
45 };
46 drop-task achiveTempTask;
47 quitPlan = true
48 }
49 every-time told this-task.newThreshold => {
50 #atomic
51 savedThreshold = this-task.newThreshold
52 }}}
53

54 plan-for DoSelfTest {
55 ...
56 if (someCondition) {
57 tell this-task.malfunctionDescr = new MalfunctionInfo(...)
58 }
59 ...
60 }}

Figure 7.21: Source code of the ACMEThermostat script related to the SmartHome example.

166

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 167

• Given a belief Id of type R, storing the identifier of some agent playing the role R, then
for any action assign-task t to:Id or do-task t task-recipient:Id,
there must exist a task type T in R such that t is a value (instance) of T . In case of task
self-assignment the belief Id storing the agent identifier is implicit (it refers to the current
agent).

Then, given a script fragment with a belief myThermostat: Thermostat, we have the
following list of the main errors that can be caught at compile time:
1 /* compilation ok */
2 assign-task AchieveTemperature(targetTemp:21, threshold:2) to: myThermostat
3

4 /* error: no tasks matching CleanTheRoom in role Thermostat */
5 do-task CleanTheRoom() task-recipient: myThermostat
6

7 /* error: no targetT param in AchieveTemperature */
8 /* error: missing threshold param */
9 assign-task AchieveTemperature(targetT: 21) to: myThermostat

10

11 /* error: wrong type for the param value targetTemp */
12 /* error: missing threshold param */
13 do-task AchieveTemperature(targetTemp: "21") task-recipient: myThermostat

The definition of a task type T also includes the type of messages that the assigner can send to
the task assignee. Given that, we can then check in agent scripts that the beliefs specified in
the assigner’s tell actions – those in which the task instance identifier is not this-task.
– are among those listed in T ’s understands block, and that the types of the beliefs are
compatible. In the example, when doing the task KeepTemperature, the majordomo can tell
to the thermostat agent (playing the Thermostat role) a message about the new threshold to
adopt, which is represented by a belief newThreshold containing a value of type double
(Figure 7.20 on the left, line 15). Examples of checks follow:
1 keepTempTask: KeepTemperature
2 /* compilation ok */
3 tell keepTempTask.newThreshold = 2
4

5 /* error: aMsg is not listed in KeepTemperature understands block */
6 tell keepTempTask.aMsg = "hello"
7

8 /* error: wrong type for the belief newThreshold
9 * told to an agent playing the role Thermostat */

10 tell keepTempTask.newThreshold = "2"

Finally, some other kinds of errors can be checked in scripts at compile time thanks to the
explicit declaration of beliefs (and their types): finding errors in plans about beliefs that are not
declared neither as beliefs at the script level, nor as local beliefs of plans, nor as parameters of
the task; or about beliefs that are assigned with expressions of the wrong type.

Typing the Environment

The introduction of an explicit notion of type for artifacts allows us to define a way to address
two main issues:

167

168 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

(a) On the agent side, checking errors about the actions (i.e. artifacts operations) and percepts
(related to artifacts observable state).

(b) On the environment side, checking errors in artifact templates (i.e. the implementation),
controlling that they conform to the implemented usage interfaces (i.e the type specifica-
tion).

Referring to our example, Figure 7.20 on the right shows the definition of the artifacts types used
by the thermostat agent, namely: (i) Conditioner, representing the interface of a conditioner
device modeled as an artifact, used to heat or cool; (ii) Thermometer, used to be aware of
the current temperature; and (iii) UserView, representing the interface of a GUI artifact used to
interact with the human users, in particular to know what is the desired temperature. Figure 7.22
shows instead the skeleton of the definition of an artifact template implementing the Conditioner
interface.

The case (a) concerns checking the action (rules) in plan bodies, so that for each action
OpName(Params) on Target, specified in an action rule, meaning the execution of an
operation OpName over an artifact identifier Target whose type is I:

• There must exist an operation defined in the interface I matching the operation requested.

• The action rule must appear in an action rule block (or in any of its parent block)
where Target has been explicitly listed among the artifact used by the agent through
the #using: attribute.

Examples of checks, given a fragment of a script with e.g. a belief cond:Conditioner:

1 /* compilation ok */
2 startCooling (speed: 1) on cond
3

4 /* error: unknown operation switchOn */
5 switchOn () on cond
6

7 /* error: unknown parameter time in startCooling operation */
8 startCooling (speed: 2 time: 10) on cond
9

10 /* error: wrong type for the param value speed */
11 startCooling (speed: "fast") on cond

On the event/percept side, we can check beliefs representing artifact observable properties in
the event template of rules and in any expression appearing either in the context or in action
rule body, containing such beliefs. For what concerns event templates, given an action rule:
updated Prop in Target : Context => Action, where the event concerns the
update of the belief about an observable property Prop in the artifact of type I denoted by the
belief Target, then the following checks apply:

• There must exist an observable property defined in I which matches Prop.

168

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 169

1 artifact ACMEConditioner implements Conditioner {
2 nTimesUsed: int;
3

4 init(){
5 isCooling = false; isHeating = true; nTimesUsed = 0;
6 }
7

8 startCooling(speed: double){
9 nTimesUsed++;

10 isCooling = true; isHeating = false;
11 ...
12 }
13

14 startHeating(speed: double){...}
15

16 stop(){
17 isCooling = false; isHeating = false;
18 ...
19 }
20 }

Figure 7.22: Definition of the ACMEConditioner artifact template related to the SmartHome
example.

• The action rule must appear in an action rule block (or in any of its parent block)
where Target has been explicitly listed among the artifacts used by the agent through
the #using: attribute.

Examples of checks follow, supposing to have a fragment of a script with beliefs
cond:Conditioner and therm:Thermometer about a conditioner and thermometer ar-
tifact:

1 /* compilation ok */
2 changed currentTemp => println(msg: "the temperature has changed")
3 changed currentTemp : isHeating
4 => println(msg: "the temperature has changed while heating...")
5 sum: double = currentTemp in therm + 1
6

7 /* error: unknown obs property isHeating in Thermometer type */
8 changed isHeating in therm => ...
9

10 /* error: wrong type */
11 bak: boolean = currentTemp in therm

On the environment side (case (b)) the definition of the interface as a type allows for checking
the conformance of artifact templates that declare to implement that interface, so that:

• For each operation signature Op declared in the interface I implemented by the template,
the template must contain the implementation of the operation.

• For any observable property Prop that appears in expressions or assignments in opera-
tion implementation, then the declaration of the observable property must appear in the

169

170 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

interface implemented by the template and the corresponding type expression must be
compatible.

Finally, the explicit declaration of observable properties (in interfaces) and (hidden) state vari-
ables in artifact templates – the latter can be declared also as local variables in operations –
allow for checking errors in the implementation of operations about the use of unknown ob-
servable properties/variables or about the assignment of values with a wrong type. assignment
of values with a wrong type.

Typing the Organization

The notion of organization model, defining the type for a simpAL organization, allows us to::

(a) Perform additional error checking controls in scripts explicitly declared in the context of
an organization of a certain type.

(b) Control that an organization specification (i.e., the implementation) conforms to its type
specification (i.e., organization model).

The case (a) allows to check, in those scripts sources declared inside an organizational context
(e.g., Figure 7.21 line 1), that all the used literals refer to existing symbols defined in the related
organization model.

On the organization side (case (b)), the definition of the organization model OrgModel as a
type allows for checking the conformance of a concrete organization instance Org that declares
to implement that model, so that:

• Each workspace Wsp declared in OrgModel must be defined also in Org.

• Each artifact literal ArtLit of type I defined inside a workspace Wsp in OrgModel must
be correctly instantiated in the concrete organization Org. In particular such literal must
be instantiated in Wsp, specifying an artifact template ArtTempl implementing the usage
interface I and, if needed, providing the initial parameters required by ArtTempl.

• Each agent literal AgLit of type R defined inside a workspace Wsp in OrgModel must be
correctly instantiated in the concrete organization Org. In particular such literal must be
instantiated in Wsp, specifying an agent script AgScript implementing the type R and, if
needed, providing an initial task to the agent.

It is worth remarking that in the definition of a concrete organization Org implementing an
organization model OrgModel, additional workspaces and agent/artifact instances can be ad-
ded to the ones initially declared in OrgModel. Examples of static checks that can be done
are reported in Figure 7.23, supposing to have a fragment of an organization that declares to
implement the SmartHome organization model defined in Figure 7.19.

170

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 171

1 org DummyHome implements SmartHome {
2 /* compilation ok: new workspace */
3 workspace newWsp {
4 otherConsole = Console()
5 }
6 workspace bedRoom {
7 /* error: missing instantiation of thermostat agent */
8 conditioner = ACMEConditioner() /* compilation ok */
9 /* error: wrong type. ACMEConditioner does

10 not implement the required Thermometer role */
11 thermometer = ACMEConditioner()
12 }
13 }
14 /* error: missing mainRoom workspace */

Figure 7.23: Example of a concrete organization instance with several compilation errors.

7.3.3 Polymorphism

simpAL supports various forms of polymorphism, at the agent, environment and organization
level. This is possible thanks to the strong separation of concerns between the interface and the
implementation that we operated in the definition of the main programming abstractions of the
language.

On the agent side, we are able to support polymorphism at the role and at the script level. In
the former case, given a role R, we can have multiple scripts S1, S2, etc. that provide different
plans implementations to achieve R’s tasks. However, despite implementation differences, all
the scripts S1, S2, etc. must adhere to the contract defined by R, specified in terms of task types
definition. So, in order to interact with agents implementing a certain role R, an agent only
needs to know the expected behaviors of such agents as specified by R, abstracting from all the
implementation details related to the actual scripts used by the target agents to play the role R. In
the latter case instead, given a script S implementing a role R, in S it is possible to define different
plans implementations to achieve a certain task type T defined in R, which can be applied on
the basis of actual contextual conditions. Recalling the agent reasoning cycle, this selection is
done during the plan stage when searching for an applicable plan for T , by evaluating the plans’
context condition (#context: attribute, see Section 7.2.1). Like in BDI-based languages
(Chapter 6), this gives developers the opportunity to define different implementations – and
finally different behaviors – for the achievement of tasks, given the particular states in which an
agent can be.

Polymorphism can be exploited also on the environment side. That is: different artifact
templates ArtT 1, ArtT 2, etc. implementing the same artifact usage interface I, can provide
different implementations and finally behaviors for the same operations Pi defined in I. So, on
the agent side, different kind of artifacts implementing the same model are used in the same way,
without the need of knowing the specific implementation of the artifact, yet possibly obtaining
different specialized behaviors depending on the specific template.

Finally, on the organization side, polymorphism can be exploited thanks to the notion of or-

171

172 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

ganization model. An organization model OrgModel can be implemented by different concrete
organizations Org1, Org2, etc., which can add new workspaces, and new agents and artifacts
instances to the ones defined in OrgModel. On the one side, the definition of an organization
model gives the opportunity to define a sort of template for a specific kind of applications—i.e.,
by characterizing the application’s logic structure in terms of required workspaces and agent-
s/artifacts that have to reside in such workspaces. On the other side, it can be used then as the
blueprint to define concrete applications – i.e., organization instances – that can freely extend
the template on the basis of specific needs.

7.3.4 Distributed Runtime Infrastructure

The deployment, execution and life-cycle management of programs written in simpAL are in
charge of a distributed runtime infrastructure, developed in Java, which has been explicitly
devised for managing all these issues transparently with respect to distribution [SR12]. The
background idea that guided the development process of this infrastructure is: the execution and
management of distributed MASs should be, from a developer perspective, as simple as the case
of centralized, not distributed ones. To this end the notions of simpAL kernel and simpAL node
have been introduced. The former is in charge of the concrete execution of simpAL programs
or parts of them (in case of distributed execution). The latter instead is a generic network
node in which the simpAL kernel is installed and executed – typically like a demon running in
background, launched when the machine boots – used as the basic building block for providing
a robust and flexible distributed runtime infrastructure for executing MASs—i.e., a simpAL
node can be considered as a generic network node on top of which a user may want to host the
execution of simpAL programs, or parts of them.

Once the kernel is up and running in all the interested network nodes, a user can start the
execution of a simpAL application by launching it from a generic simpAL node that assumes
the role of launch manager. Once the launch starts, the manager, using the information spe-
cified into the application deployment configuration file (Section 7.2.3), properly distributes
the simpAL program, in its compiled version, among the other target nodes. It is worth re-
marking that the simpAL runtime infrastructure guarantees the consistency and the alignment
of programs’ sources either in the case of multiple local launches and in the case of distributed
ones—i.e., only the up-to-date version of the compiled sources is loaded or distributed among
the interested nodes. Since this phase does not involve any kind of logical dependency, it is done
in a concurrent manner to speed up the boot process. Then, when the simpAL kernels installed
in the interested nodes receive their part of the application, each one of them autonomously
starts the booting by properly initializing the workspaces that need to be hosted in that node.
During this process, the simpAL kernels communicate with each other by using a simple hand-
shake protocol in order to keep track of the current status of the application and to guarantee
a proper initialization of the MAS. Finally, only when all the workspaces have been deployed
and all the static artifacts contained in them properly created, the agents are spawned and then
the MAS can start its execution.

172

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 173

OS

simpAL OS
(JVM based)

MyApp1 MyApp2

OS

simpAL OS
(JVM based)

MyApp1

OS

simpAL OS
(JVM based)

MyApp1

ws1
MyApp1 org

ws2 ws3

Application-specific
structures

Runtime
Infrastructure

Application
logical view

agent processor

artifact processor
agent
artifact

Figure 7.24: Abstract representation of a distributed simpAL program in execution on top of the
simpAL distributed runtime infrastructure.

The termination of a running application can be triggered from any of the simpAL nodes in
which it is hosted. Once triggered, the termination is managed, exploiting a proper shutdown
protocol, in a coordinated manner by all the kernels involved in the shutdown process.

7.4 Concrete Case Studies

In this section we provide a concrete evaluation of the simpAL programming language through
the implementation of some relevant programming examples. In particular, the examples have
been purposely selected in order to stress, in real world case studies, the effectiveness of the
support provided by the simpAL plan and action rule models for integrating autonomous and
event-driven behaviors.

7.4.1 A Reactive File Searcher

This example concerns the realization of an active software component (or system) that searches
and then prints in standard output the list of all the files of a certain directory whose size is
greater than a threshold provided in input. The file size threshold can be changed dynamically

173

174 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

during the search process2.
Given the problem, we tried to express an algorithm in pseudo-code solving the problem in

the most “natural” manner (see below). The algorithm simply accounts for recursively check-
ing each file starting from the directory provided in input, keeping track of all those that have a
size which is greater than the reference threshold. While doing this, if a new threshold is com-
municated and it is greater than the previous one, then the search process must be interrupted
and the list of found files so far must be filtered, according to the new threshold. If instead the
new threshold is lower than the previous one, then the search process must restart from scratch.
When the search process is completed, the list of files is printed on standard output.

Algorithm 3 Description of the reactive file searcher behavior in abstract pseudo-code
1: dir←get inputPath from user
2: threshold←get inputSizeT hreshold from user
3: f ileList←[]
4: for-each element E found in dir do
5: if (ISFILE(E) && SIZE(E) > threshold) then
6: f ileList← E + f ileList
7: else if (ISDIR(E)) then
8: recursively perform the search in E
9: end if

10: end for
11: In the meanwhile,
12: every time a new threshold newT hr is communicated, do
13: suspend searching
14: if (newT hr > threshold) then
15: f ileList← FILTER(dir, threshold)
16: threshold← newT hr
17: resume searching
18: else if (newT hr < threshold) then
19: threshold← newT hr
20: restart from scratch the search process
21: end if
22: when the search process is finished, print the files in f ileList

The implementation of this strategy in simpAL is quite straightforward (Figure 7.25). For sake
of simplicity, the implementation reported here abstracts from non relevant technical details.
The interested reader can find the full sources of the Searcher script both in Section B.1 and in
the examples folder of the standard simpAL distribution.

The search process is triggered by an Assignator agent (Figure 7.26 (top)), which creates a
new Searcher agent and assigns to it the SearchFiles task with the designed input parameters

2For sake of simplicity threshold changes that occurs when printing in standard output the results, so when the
search process is already finished, are discarded—i.e., we consider the threshold updates arrived too late.

174

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 175

1 agent-script Searcher implements ReactiveSearcher {
2

3 foundFiles: java.util.List
4 currThr: int
5

6 plan-for SearchFiles {
7 #completed-when: is-done printRes
8

9 currThr = this-task.threshold;
10 searchTask: SearchFilesInDir = new-task SearchFilesInDir(dir: this-task.dir);
11 assign-task searchTask
12

13 when is-done searchTask => { /* print results */ } #act: printRes
14

15 every-time told this-task.newThr => {
16 #atomic
17 if (newThr > currThr){
18 currThr = newThr;
19 foundFiles = filter(foundFiles, currThr)
20 } else if (newThr < currThr) {
21 currThr = newThr;
22 drop-task searchTask;
23 foundFiles.clear();
24 searchTask = new-task SearchFilesInDir(dir: this-task.dir);
25 assign-task searchTask
26 }
27 }
28 }
29

30 plan-for SearchFilesInDir{
31 for-each (elem in this-task.dir) {
32 if (isDir(elem)) {
33 assign-task new-task SearchFilesInDir(dir: elem)
34 } else-if (size(elem)>currThr) {
35 #atomic
36 foundFiles.add(foundFiles)
37 }
38 }
39 }
40

41 task SearchFilesInDir {
42 input-params {
43 dir: String
44 }
45 }
46 }

Figure 7.25: Implementation of the reactive file searcher in simpAL.

(lines 4-10). Then, it exploits a clock artifact (line 12) for waiting a specified amount of time
(input parameter delay of task AssignDynamicSearch) before notifying to the Searcher agent
an update of the file threshold (line 14).

The implementation of the Searcher script is shown in Figure 7.25. Its role
(ReactiveSearcher, Figure 7.26 (center-right)) defines only one task type, the task SearchFiles.
This task is characterized by dir and threshold input parameters, and newThr represent-
ing the message(s) that can be told for notifying new thresholds. The plan for the task (lines

175

176 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 agent-script SearchAssignatorScript implements SearchAssignator in FileSearcherOrgModel {
2 plan-for AssignDynamicSearch {
3 #using: clock, console
4 searcher: ReactiveSearcher;
5 searchFiles: SearchFiles = new-task SearchFiles(dir: this-task.dirPath,
6 threshold: this-task.startThreshold);
7 println(msg: "[Assignator:] Assigning task: startThreshold "
8 + this-task.startThreshold + ", waitTime " + this-task.delay
9 + " ms, newThreshold " + this-task.newThreshold);

10 new-agent Searcher() init-task: searchFiles ref: searcher;
11 println(msg: "[Assignator:] Task assigned.. waiting for telling new threshold");
12 wait(howLong:this-task.delay);
13 println(msg: "[Assignator:] Wait done, telling new threshold");
14 tell searchFiles.newThr= this-task.newThreshold;
15 println(msg: "[Assignator:] New threshold told")
16 }
17 }

1 role SearchAssignator {
2 task AssignDynamicSearch {
3 input-params{
4 dirPath: String;
5 startThreshold: int;
6 delay: long;
7 newThreshold: long;
8 }
9 }

10 }

1 usage-interface ClockInterface {
2 obs-prop time: long;
3 operation switchOn();
4 operation switchOff();
5 operation setRate(rate: int);
6 operation tick(currentTime: long);
7 operation wait(howLong: long);
8 }

1 role ReactiveSearcher {
2 task SearchFiles{
3 input-params{
4 dir: String;
5 threshold: long;
6 }
7 understands{
8 newThr: long;
9 }

10 }
11 }

Figure 7.26: Some other relevant sources related to the reactive file searcher example: (top)
SearchAssignatorScript implementation, (center) ReactiveSearcher and SearchAssignator
roles definitions, (bottom) ClockInterface artifact usage interface.

1 org-model FileSearcherOrgModel{
2 workspace main{
3 Assignator: SearchAssignator;
4 Clock: ClockInterface;
5 }
6 }

1 org FileSearcherOrg implements FileSearcherOrgModel{
2 workspace main {
3 Clock = ClockArtifact()
4 Assignator = SearchAssignatorScript() init-task:
5 AssignDynamicSearch(dirPath: "...",
6 startThreshold:10000,
7 delay:60,
8 newThreshold: 1000)
9 }

10 }

Figure 7.27: (left) Definition of the FileSearcherOrgModel organization model, and (right) of
the concrete organization instance FileSearcherOrg implementing it.

176

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 177

[Assignator:] Assigning task: startThreshold 1000, waitTime 60 ms, newThreshold 10000
[Searcher:] Found relevant file: File1
[Searcher:] Found relevant file: File2
...
[Assignator:] Wait done, telling new threshold
[Searcher:] New threshold found. Was 1000 now is 10000 so far have been found 31 files
[Searcher:] Threshold greater than the previous one, we can simply filter the results...
[Searcher:] After filtering the files are 4
[Searcher:] Found relevant file: File56
...
[Searcher:] Search ended, the found files are:
- File1
- File56
- ...
[Searcher:] Found 12 files in total with the desired size

Figure 7.28: Execution trace of the reactive file searcher example with: startThreshold
1000 bytes, Assignator waitTime 60ms and newThreshold 10000 bytes. From the trace
it is possible to see how, once received the new threshold the Searcher – since it is the case
of a threshold increase – filters the list of files found so far (from 31 to 4) before resuming the
search process and printing on the console the result.

[Assignator:] Assigning task: startThreshold 10000, waitTime 60 ms, newThreshold 1000
[Searcher:] Found relevant file: File1
[Searcher:] Found relevant file: File2
...
[Assignator:] Wait done, telling new threshold
[Searcher:] New threshold found. Was 10000 now is 1000 so far have been found 3
[Searcher:] Threshold lower than the previous one, we need to restart from scratch...
[Searcher:] searchTask dropped
[Searcher:] searchTask re-assigned
[Searcher:] Found relevant file: File1
[Searcher:] Found relevant file: File2
[Searcher:] Found relevant file: File7
...
[Searcher:] Search ended, the found files are:
- File1
- File2
- File7
- ...
[Searcher:] Found 194 files in total with the desired size

Figure 7.29: Execution trace of the reactive file searcher example with: startThreshold
10000 bytes, Assignator waitTime 60ms and newThreshold 1000 bytes. From the trace
it is possible to see that, once received the new threshold the Searcher – since it is the case of
a threshold decrease – is forced to drop the current searchTask and re-instantiate a new one
with the new size threshold.

6-28) has an autonomous part and a reactive one. The autonomous behavior accounts for instan-
tiating and self-assigning the sub-task searchTask of type SearchFilesInDir (line 10) first,
providing as input parameter the starting directory which corresponds to the dir parameter of
the SearchFiles task, and then printing the results when the sub-task is completed (line 13).

177

178 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

The plan for handling the SearchFilesInDir private sub-task (lines 30-39) collects recursively,
instantiating a new SearchFilesInDir sub-task for each sub-directory found (lines 32-33), the set
of files that meet the desired size.

The reactive behavior is given by an action rule (lines 15-27) which handles the updates of
the threshold on the basis of the strategy described above. The threshold value can be updated
by the agent that has assigned the SearchFiles task to the ReactiveSearcher by sending to it a
newThr message. In the case of a threshold increase (lines 17-19) the action rule simply filters
the list of files found so far. In the case of a threshold decrease instead (lines 20-26), the task
searchTask is first dropped (line 22) and then re-instantiated (lines 24-25) in order to restart
the search from scratch since there is no guarantee that we have not already discarded files that
have become relevant given the new threshold. The action rule block is executed atomically so
that all the SearchFilesInDir sub-tasks and related intentions are suspended until the action rule
is executed up to completion, giving hence the opportunity to realize the required integration
between autonomous and reactive behaviors.

So, the solution in simpAL makes it possible to essentially keep the same structure of the
algorithm in pseudo-code. This has clear advantages in term of readability of the code, which
is not polluted by idiosyncrasies of the computing/programming model.

Launching the application specifying different values for the input paramet-
ers startThreshold, newThreshold and delay during the creation of the
AssignDynamicSearch task, it is possible to test the different reactive and adaptive beha-
viors of the searcher agent. Examples of execution traces are reported in Figure 7.28 and
Figure 7.29.

7.4.2 Implementation of the Ricart-Agrawala’s algorithm

In this section we describe a simpAL implementation of the Ricart-Agrawala’s al-
gorithm [RA81] for realizing distributed mutual exclusion among N peers. Like many other
concurrent and distributed algorithms that imply the coordination of independent processes, it
calls for superimposing to the autonomous behavior of the individual processes some behavior
which is functional to achieve some coordination objective.
A simple description of the Ricart-Agrawala’s algorithm follows, inspired by the one provided
in the original paper [RA81]. Each peer that takes part in the distributed coordination algorithm
has a unique ID. A peer enters its critical section (CS) only after all the other peers have been
notified of its request and have sent a reply granting their permission. A peer making an attempt
to invoke mutual exclusion sends a request message to all other peers. Upon receipt of the re-
quest message, the other peer either sends a reply immediately or defers a response until after it
leaves its own critical section. The algorithm is rooted on the fact that a peer receiving a request
message can immediately determine whether the requesting peer or itself should be allowed to
enter its critical section first. A reply message is returned immediately if the originator of the
request message has priority; otherwise, the reply is delayed. The priority order decision is
made by comparing a sequence number included in each request message. The numbers chosen

178

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 179

Algorithm 4 Implementation in pseudo-code of a process-based peer following the Ricart-
Agrawala’s algorithm adapted from [BA05]

1: . SHARED VARIABLES
2: myID← peerID
3: mySeqNum← 0
4: de f erredList← []
5: maxSeqNum← 0
6: reqCS← f alse
7: otherPeers← listO f OtherPeers
8:
9: . MAIN PROCESS

10: while true do
11: DOJOBINNCS()
12: reqCS← true
13: mySeqNum← maxSeqNum+1
14: for (each peer P in otherPeers) do
15: SEND(request, P,myID,mySeqNum)
16: end for
17: awaits replis from all otherPeers
18: DOJOBINCS()
19: reqCS← f alse
20: for (each peer P in de f erredList) do
21: SEND(reply, P,myID)
22: end for
23: de f erredList← []
24: end while
25:
26: . PROCESS MANAGING THE SENDING OF REPLIES
27: while true do
28: RECEIVE(request, source,reqID)
29: maxSeqNum←MAX(reqID,maxSeqNum)
30: if (reqCS && (reqID > mySeqNum
31: || (reqID == mySeqNum && peerID > myID))) then
32: de f erredList← de f erredList + peerID
33: else
34: SEND(reply, source,myID)
35: end if
36: end while

by the peers must be monotonic, in the sense that a peer will choose a number that is higher
than all other sequence numbers it knows about. Ties concerning sequence numbers are broken
by comparing the peers IDs: a peer with a lower ID has priority over a peer with a higher ID.

The algorithm in pseudo-code is reported above, inspired to the one described in [BA05]. It

179

180 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

requires the implementation of two different macro-behaviors for each peer, one for managing
the pro-active part – i.e., cyclically enter the CS once all the replies have been collected, do
some job in CS, then leave the CS and send deferred replies (if needed) – and another one for
managing the reactive part—i.e., handle the reception of incoming request messages. These
two parts need to interact in a synergistic manner in order to guarantee the correct functioning
of the algorithm.

To preserve the required level of reactivity while repeatedly entering/leaving the CS – i.e.,
reply in a timely fashion when is received a request for entering the CS from a peer that has
priority over the current one – classical solutions (see the pseudo-code above) require: (i) the in-
troduction of two active entities (processes/threads or actors) for every peer, which are in charge
of one macro-behavior each; and (ii) the coding of specific coordination protocols between such
computing entities, to guarantee their correct functioning w.r.t. the algorithm’s logic—e.g., in
process/thread based solutions is required the use of shared variables and locks to guarantee the
absence of race conditions. So, there is an apparent abstraction gap between the strategy upon
which the algorithm is rooted and the actual implementations.

The availability of abstractions integrating autonomy and reactivity makes it possible in this
case to provide a simpler solution. The solution in simpAL shown below is composed by a
single agent, which encapsulates both the pro-active and reactive parts.

1 agent-script SimplePeer implements Peer {
2

3 /* global beliefs */
4 myID: int; myCommManager: CommManager; othersCommManagers: CommManager[]; rd: ReqData;
5 reqCS: boolean = false; timesInCS: int = 0; maxSeqNum: int = 0; mySeqNum: int;
6 deferredList: ArrayList = new-object ArrayList(); nReplies: int = 0; numPeers: int;
7

8 plan-for DoJob {
9 #using: console@main, myCommManager, othersCommManagers

10 ... /* initialization of global beliefs */
11 {
12 #to-be-repeated
13 do-task new-task doJobInNCS();
14 do-task new-task Prologue();
15 do-task new-task doJobInCS();
16 do-task new-task Epilogue();
17 timesInCS++;
18 println(msg: "[Peer"+myID+"]" + timesInCS + " iteration(s) done")
19 }
20

21 every-time changed request in myCommManager as: rd => {
22 #atomic
23 if (rd.reqID> maxSeqNum) {
24 maxSeqNum = rd.reqID
25 };
26 if (reqCS && (rd.reqID > mySeqNum || (rd.reqID == mySeqNum && rd.peerID > myID))){
27 deferredList.add(rd.peerID); /* the peer has to wait */
28 } else {
29 placeReply() on othersCommManagers[rd.peerID] /* the peer can proceed */
30 }}}
31

32 plan-for doJobInNCS { ... }
33

34 plan-for Prologue {

180

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 181

35 #using: console, myCommManager, othersCommManagers
36 #completed-when: nReplies==numPeers-1
37

38 do-task new-task ChooseTicketForCS();
39 for-each (commManager in othersCommManagers) {
40 placeRequest(rd: new ReqData(myID, mySeqNum)) on commManager
41 }
42

43 every-time changed numReplyReceived in myCommManager => {
44 nReplies++
45 }}
46

47 plan-for doJobInCS { ... }
48

49 plan-for Epilogue {
50 #using: console@main, othersCommManagers
51 reqCS = false;
52 for-each (elem in deferredList) {
53 placeReply() on othersCommManagers[deferredList.get(elem)];
54 };
55 /* reset variables for the next iteration */
56 deferredList.clear(); nReplies = 0
57 }
58

59 plan-for ChooseTicketForCS {
60 #atomic requestCS = true; mySeqNum = highestSequenceNumber + 1
61 }
62

63 task doJobInNCS{}
64 task Prologue{}
65 task doJobInCS{}
66 task Epilogue{}
67 task ChooseTicketForCS{}
68 }

The peer behavior is managed by the plan reported at lines 8-30, related to the task DoJob. The
plan encapsulates both the pro-active and reactive behaviors described above. The pro-active
one is in charge of the soft action rule block reported at lines 11-19. Through this block the
agent cyclically executes the following steps: (i) firstly, it does some job outside the critical
section (doJobInNCS sub-task line 13, managed by the plan at line 32); (ii) then, as soon as
it requires to enter its CS, it executes a sub-task that manages the pre-protocol for entering it,
following what defined by the Ricart-Agrawala’s algorithm (Prologue task line 14, managed by
the plan at lines 34-45); (iii) when the Prologue task has been completed – i.e., all the other
peers’ replies have been received (line 36) – the agent enters its CS and executes some job
inside it (doJobInCS task line 15, managed by the plan at line 47); (iv) finally, it executes a
sub-task for managing the algorithm’s epilogue (Epilogue task line 16, managed by the plan at
lines 49-57) and prints a log message indicating the number of times it has been in CS so far
console (line 18).

Given the current limits of simpAL direct communication model3, a communication artifact
(Figure 7.30) is used for each agent, functioning as a message box. In particular communication

3Currently simpAL does not support peer-to-peer message passing. Being the communication protocols
specified on a task basis, messages can be exchanged only among the agent who assigned a task and the task
assignee.

181

182 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

1 usage-interface CommManager {
2

3 obs-prop request: ReqData;
4 obs-prop numReplyReceived: int;
5

6 operation placeRequest(req: ReqData);
7 operation placeReply();
8 }

1 public class ReqData {
2 public int reqID;
3 public int peerID;
4 public ReqData(int peerID, int reqID) {
5 this.reqID = reqID;
6 this.peerID = peerID;
7 }
8 }

1 artifact SimpleCommMngr
2 implements CommManager{
3

4 init(){
5 numReplyReceived = 0;
6 }
7

8 operation placeRequest(req: ReqData){
9 request = req;

10 }
11

12 operation placeReply(){
13 numReplyReceived++;
14 }
15 }

Figure 7.30: Implementation of: (i) the CommManager usage interface (top-left), (ii) the
SimpleCommMngr artifact implementing it (right), and (iii) the ReqData class used to model a
request for entering the distributed critical section (bottom-left).

artifacts are used to: (i) send to a peer a request for entering the CS (placeRequest oper-
ation, which updates the artifact’s request observable property with the request provided in
input), and (ii) to send a reply related to a previously received request (placeReply opera-
tion, which increments the artifact’s observable property numReplyReceived counting the
number of replies received so far). The request message is modeled via the Java class ReqData
(Figure 7.30, bottom-left), storing as public fields both the sequence number associated to the
request (reqID) and the ID of peer that has sent it (peerID).

The plans that manage the Prologue and the Epilogue sub-tasks are quite simple. The former
first computes a new ticket (sub-task ChooseTicketForCS, line 38), then it sends the requests
for entering the CS (lines 39-41). A reaction is used to count the number of replies received
(lines 43-45). The block completes when all the replies are received (line 36). The Epilogue
instead (lines 49-57), sends the replies related to request messages sent by other peers that have
been deferred (if any).

The reactive behavior in the main plan (reaction rule at 21-30) allows for managing
incoming requests following the strategy defined by the algorithm, through the help of a
CommManager artifact. For each request message received through the myCommManager
(line 21) – i.e., the personal communication artifact of the peer – a reply is either immediately
sent back (lines 28-29) or delayed (lines 26-27)—i.e., added to the deferredList and sent only
later on, when the agent is executing the Epilogue sub-task.

The action rule blocks of the reaction rule in the main plan and of the ChooseTicketForCS
sub-task must be tagged as atomic, since when executing those blocks of actions the agent can
not carry on other concurrent activities that could interfere with these ones.

Concrete solutions that adopt two processes/threads for each peer typically need to use low
level synchronization mechanisms to coordinate them, such as semaphores. This is not neces-

182

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 183

sary in the simpAL solution, which allows for keeping a structure quite similar to the abstract
one described in the beginning.

7.5 The simpAL Integrated Development Environment
The availability of an adequate set of tools – starting from a powerful Integrated Development
Environment (IDE) – able to support and help programmers during the entire development pro-
cess of an application is, in general, an important requirement in oder to make a programming
language usable and adopted outside the mere academics contexts. Accordingly, in the context
of this thesis, some efforts have been put in the engineering of an adequate IDE for simpAL. The
rationale that guided the engineering of the simpAL IDE is quite simple: trying to provide de-
velopers the best means for coding, debugging, executing and inspecting simpAL applications.

In the remainder of this sub-section we present the results of our efforts in exploiting the
Eclipse [Ecla] ecosystem for the realization of an Eclipse-based IDE for simpAL [SR11b]. First,
we outline the requirements of the IDE, and then we describe its architecture and main features,
w.r.t such requirements.

7.5.1 IDE Requirements

The requirements of the simpAL IDE can be split in two different groups. On the one side it
is possible to identify a first group of requirements related to features that can be found on a
big majority of modern integrated development environments: (i) creation and management of
multiple projects related to different applications and the opportunity to explore the content of
such projects; (ii) proper file editors providing features such as context-assist, code completion,
template proposals, cross-referencing, etc.; (iii) a set of useful views that help programmers
during their development experience—output views for inspecting the outputs produced by the
application, views for representing the outline of structured files, etc. We need at least all these
features in our simpAL IDE.

On the other side, being simpAL applications inherently concurrent, distributed and rooted
on specific agent-oriented abstractions, a set of more advanced and specific IDE requirements
are needed in order to give programmers a seamless development experience. The first one con-
cerns the definition of a proper organization of the sources inside a project in the IDE, given the
specific abstractions of the simpAL programming model (roles, agents, artifacts, workspaces,
etc.). There is the need to provide developers the best project organization in order to make
it easy and immediate the browsing among the different sources of the project, and the under-
standing of the overall structure of the application.

A second requirement concerns the transparent management of the deployment and execu-
tion of distributed applications on top of the simpAL distributed runtime infrastructure. To this
end, a properer integration between the IDE and the runtime infrastructure must be engineered.
Another requirement, which is related to the previous one, concerns the management of the

183

184 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

simpAL runtime infrastructure in the different network nodes in which it has been installed—
i.e., having proper means to start/stop/inspect the infrastructure in both local and remote nodes
directly from the IDE.

Finally, there is the need of a powerful debugger for inspecting and monitoring simpAL
applications. Such debugger should allow to: (i) inspect transparently both local and remote
agents/artifacts, (ii) inspect all the agents’ ongoing tasks, possibly choosing one of them for
step-by-step execution while other ones are carried out in background smoothly and without
side-effects, (iii) suspend one or more tasks assigned to an agent, (iv) debug on a step-by-step
basis the execution of artifact operations, etc.

7.5.2 IDE Overview
Starting from the requirements described in the previous section, we engineered a working pro-
totype of an Eclipse-based IDE for simpAL. The IDE has been engineered on top of the Eclipse
ecosystem by exploiting in synergy the Eclipse Plugin Development Environment (PDE) [Eclb],
part of the Eclipse SDK, and the Xtext language development framework [Ite]. For its realization
we used as a starting point our previous work concerning the development of an Eclipse-based
IDE for the JaCa platform, which has been presented in [SLNR11].

Figure 7.31 depicts the plugin-based IDE architecture, focusing on the dependencies among
the various plugins introduced for its realization. The simpal.ide plugin represents the core
of the IDE. It has been realized using PDE for defining a set of Eclipse extensions – relying
on existing Eclipse extension points4 – able to cover most of the requirements outlined in the
previous section.

In particular, this plugin covers almost entirely the first group of requirements by providing:

• A set of wizards for managing the creation of new simpAL projects, new agents and new
artifacts.

• The definition of a custom Eclipse nature and structure for simpAL projects (Figure 7.32
(a)).

• The definition of a specific Eclipse perspective for simpAL (Figure 7.32 (b)) that shows
a proper set of views: a custom outline view (Figure 7.32 (c)), a problems view (Fig-
ure 7.32 (d)) and a custom navigator (Figure 7.32 (e), see below for further details about
the navigator).

• The implementation of an incremental project builder (Figure 7.32 (f)) that is in charge
of invoking the simpAL compiler as soon as some relevant sources are changed. Possible
errors found during the compilation process are listed in the problem view contained in

4Extension and extensions points are two mechanisms introduced by the Eclipse platform to enable the cus-
tomization and the extension of functionalities provided by plugins. For more details about these mechanisms
see [CR08].

184

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 185

simpal.parser.ui

simpal.parser

simpal.ide

simpal.runtime

simpal.ide.updatesitesimpal.ide.feature

Figure 7.31: Plugin-based architecture of the simpAL IDE.

the simpAL perspective, by exploiting the usual support available in Eclipse for managing
error/warning markers.

• The implementation of the required integration between the IDE and the simpAL distrib-
uted runtime infrastructure for managing the execution of (possible distributed) simpAL
applications. Currently this integration only allows to run distributed applications on
top of an already up and running simpAL infrastructure—i.e., there is no support yet to
start/stop the simpAL kernel on remote nodes from the IDE.

• The implementation of a set of new commands and handlers for triggering the deploy/run-
/termination of simpAL applications (Figure 7.32 (g)).

• The implementation of a custom console view to show the output of running simpAL
programs (Figure 7.32 (h)).

Moreover, for what concerns the second group of requirements this plugin provides: (i) a cus-
tom debugger for inspecting both local and remote application parts (i.e., agents, artifacts, work-

185

186 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

Figure 7.32: simpAL IDE Overview.

spaces), and (ii) the definition of a custom navigator view which shows the content of simpAL
projects with the desired organization, hiding all the details that are not useful when coding a
simpAL application—i.e., the custom navigator defines proper filters to hide non-relevant re-
sources (e.g., the build folder in which the compiled sources are stored), and custom content
providers in order to display the most immediate and intuitive project organization.

As reported by Figure 7.31 the simpal.ide plugin logically depends from two other
plugins: the simpal.parser and the simpal.runtime. The former represents the Xtext-
based plugin used to describe the grammar that defines the syntax of the simpAL language.
Starting from the grammar specification, Xtext automatically generates an Eclipse-based file

186

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 187

editor that can be used for writing programs in the language defined by such a grammar. This
auto-generated file editor is implemented by the simpal.parser.ui plugin (since it is gen-
erated from the simpal.parser plugin it logically depends from it in Figure 7.31). The
editor exploits the full power of the Xtext language development framework, in synergy with
some slight ad-hoc customizations, in order to provide developers a full-blown file editor able
to ease their coding experience. Currently, it supports: syntax highlighting, code completion
and context assist.

The simpal.runtime plugin instead contains the implementation of both the simpAL
distributed runtime infrastructure and virtual machine. It is exploited by the simpal.ide
plugin to easily deploy and run, from the IDE, distributed simpAL applications on already up
and running simpAL infrastructural nodes.

The last two plugins simpal.feature and simpal.updatesite are used to manage
the distribution of the IDE. The former is used to define an Eclipse feature that keeps track of all
the plugins introduced for realizing the IDE (see the logical dependency in Figure 7.31). The
latter instead exploits the feature defined by the former plugin in order to configure a classic
Eclipse update site5 from which it is possible to download the simpAL IDE.

Besides being distributed through the update site, the simpAL IDE is also available as a
standalone Eclipse product for all the main platforms (Windows, Linux, Mac), which can be
downloaded from the reference simpAL website [Ric].

7.6 Remarks on Performance
The importance of abstraction in programming is well-known. However, often a higher-level of
abstraction comes along with a price in terms of performance, which could be either acceptable
or not depending on the specific application domain considered. In this perspective, in the
abstraction layer introduced by simpAL there are two aspects that could be critical for efficient
programs execution.

The first aspect concerns the strategy adopted for coupling agent and artifact execution w.r.t.
the physical level of concurrency provided by the Operating System (OS). It is apparent that the
simplest strategy in which there is one raw OS thread for each agent and each artifact does not
scale, as soon as the efficient execution of programs with hundreds/thousands of computing
entities is considered. This is also true in the case of actor-oriented technologies, in which
using one physical thread for managing the execution of each actor is not a feasible solution.
To solve this issue simpAL introduces a logical level of concurrency, as found in reference
implementation of state-of-the-art actor oriented framework and languages (e.g., Erlang and
Scala, in which thousands of actors can be in execution on the same machine). Then at runtime,
the execution of all the agents and artifacts on a simpAL node is managed by a pool of threads,
whose size is dimensioned on the basis of the number of processors available on that node. So,
programmers can freely write simpAL programs with hundreds/thousands of agents and artifacts

5http://simpal.sourceforge.net/update-site/

187

http://simpal.sourceforge.net/update-site/

188 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

which could be executed – with different performances, given the number of CPUs available –
on machines ranging from mono-processor PCs to highly-capable many-core servers. However,
also this logical level of concurrency has a price, which in this is related to the scheduling of
agents – so as to carry on their execution cycle – and the execution of operations over artifacts.

The second aspect is related to the overhead introduced by the agent control architecture.
We identified the following critical points:

• Useless cycling — the sense-plan-act cycle described in Section 7.1.2 is executed con-
tinuously even in the case of – for instance – a simple sequence of actions that must be
executed without reacting to any external events (e.g., Figure 7.25 lines 17-26). This
brings a penalty on performance when considering – in particular – the execution of pure
computational blocks compared to e.g. actor technologies implementing a macro-step
semantics, in which once a message is received the corresponding handler is executed up
to completion, without further involving the event control loop.

• The process of action selection at each agent cycle — currently, this process consists in
evaluating each action rule given the current set of blocks in each intention stack.

• The management of beliefs, observable properties and artifacts private variables — cur-
rently all these are managed through maps, accessed via a string-based key. This naive
strategy results in a severe overhead indeed, compared to e.g. classic techniques used in
compiled languages where access to variables is index-based.

To start investigating the performance issue related to this second aspect, we made two tests
comparing the performance of simpAL with reference representatives of both actor-oriented and
agent-oriented technologies. In particular, Erlang and ActorFoundry are considered on the actor
side. To the best of our knowledge, Erlang is the fastest actor based technologies available in
the state-of-the-art [Arm10]. Erlang virtual machine has been developed in C with a particular
clue on efficiency and scalability—in fact, it allows the concurrent execution of a very large
number of interacting processes (i.e., actors) that can exchange up to millions of messages per
second. ActorFoundry is a Java-based actor technology, i.e. the runtime runs on top of the
JVM – like simpAL – implementing a strict actor semantics. Recently, it was updated to include
optimizations that make it one of the fastest Java-based actor technologies [KSA09]. On the
agent side, we consider Jason [BHW07], which is one of the most well known and mature
BDI-based agent-oriented programming language available in the state-of-the-art.

These three platform provide then a good spectrum to understand where simpAL currently
is. On the one side, given simpAL computation model and its Java-based runtime, we expect
to have better performance in general with respect to Jason, which is Java-based too but it
strongly relies on logic programming. This because Jason has been primarily introduced to
tackle problems in distributed artificial intelligence contexts, and not for general-purpose com-
puter programming. On the other side, we expect to not be as efficient as ActorFoundry, given
the differences between the agent and actor computation model. But, being based on the JVM

188

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 189

Language N=10K N=100K N=1M N=10M
Erlang (V1) 0,31s 0,47s 2,1s 18,2s
Erlang (V2) 0,38s 1.13s 8,48s 81,24s

ActorFoundry (V1) 0,34s 0,95s 6.33s 59,36s
ActorFoundry (V2) 0,36s 1,72s 14,78s 145,88s

Jason (with tell) 7,93s 1185s >1h >1h
Jason (with achieve) 6,94s 1069s >1h >1h

simpAL 2,05s 9,33s 82,32s 804,46s

Table 7.1: Execution time in seconds of the first test program in Erlang, ActorFoundry, Jason
and simpAL. The time reported in each cell refers to the average of twenty different runs.

too, the performance of ActorFoundry could be for us a good target to look for. Erlang is useful
instead to understand what is the current upper bound of performance.

The benchmarks have been executed using Erlang version 5.8.3, ActorFoundry 1.0, Jason
1.3.8 and simpAL version 0.3, on a PC with a Intel Core 2 Duo P8400 2.26GHZ (dual core)
and 3GiB RAM. The full source code of the test programs have been included in the appendix
(Section B.2).

The first test program is a slightly extended version of the first example described in Sec-
tion 7.3.1, where the execution of the task T and the sending of the react message have been
repeated for 10K, 100K, 1M and 10M of times respectively. Each program has been executed
for twenty times. The average of the execution time experienced in the tests is reported in
Table 7.1. Two slightly different versions of the test program are considered for what concerns
Jason, Erlang and ActorFoundry. In actor-oriented solutions, the first version (V1) is based
on the first implementation of the example discussed in Section 7.3.1. The second one (V2) is
rooted on the solution in which a network of actors is introduced in order to obtain the same
level of reactivity available in agent-oriented implementations of the test. For what concern
Jason instead, the two versions considered differ on the way in which the react message is
sent. In the first version is used the tell performative – i.e., the performative for exchanging
information between agents in Jason. In the second version the achieve performative is used
instead—i.e., the performative that assigns a new goal to an agent. The first solution is the
correct one – from a conceptual point of view – w.r.t. the logic of the test—i.e., we want to
exchange some information (the react message) and not assign a new goal. However, it is
much slower compared to the second one, probably due to the different ways in which the Jason
runtime manages the access to the belief and goal base. So both are considered.

The second test program is the so called thread-ring test6. 503 workers linked in a ring,
have to pass a token through the ring for a fixed number of times (N). This is a quite well
known performance test in the context of actor-oriented languages [KSA09], in particular to

6http://benchmarksgame.alioth.debian.org/u32/performance.php?test=
threadring

189

http://benchmarksgame.alioth.debian.org/u32/performance.php?test=threadring
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=threadring

190 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

Language N=10K N=100K N=1M N=10M
Erlang 0,32s 0,41s 1,43s 10.59s

ActorFoundry 0,63s 0,68s 2.21s 16,87s
Jason (with tell) 2,55s 38,53 >1h >1h

Jason (with achieve) 2,1s 4,26s 26,2 244,92
simpAL 1,49s 3,37s 20,96s 202,29s

Table 7.2: Execution time in seconds of the thread-ring test in Erlang, ActorFoundry, Jason and
simpAL. The time reported in each cell refers to the average of twenty different runs.

measure the performances related to the exchange of messages (i.e., the test measures pure
reactivity). Table 7.2 shows the average execution time for N equals to 10K, 100K, 1M and
10M, with the same configuration described for the first test—i.e., same machine, same versions
of the programming languages/frameworks used and same number of runs. Also in this case we
developed two different versions of the test for Jason. One in which is used the tell primitive to
exchange the token among the workers, and another one in which the token is passed using the
achieve primitive.

As expected, the results reported in the tables show that simpAL is currently positioned in
the middle between Jason and actor technologies, however with a significance distance with
respect to both ActorFoundry and Erlang. In particular, the first test shows that simpAL is
currently about from 6 to 13 times slower than ActorFoundry (V2 and V1 versions) and from
10 to 45 times with respect to Erlang. In the second test, simpAL is about 12 times slower than
ActorFoundry and 20 times with respect to Erlang. Instead, it performs as expected compared
to Jason.

7.7 Final Remarks
This section concludes the chapter by presenting: (i) a comparison with state-of-the-art agent-
oriented programming approaches (Section 7.7.1), and (iii) a discussion about current weak-
nesses and limitations of the simpAL programming language (Section 7.7.2).

7.7.1 Comparison with State-of-the-Art Agent-Oriented Programming
Approaches

In this sub-section we provide a brief comparison between simpAL and state-of-the-art agent-
oriented programming approaches, focusing on the main similarities and differences among
them.

We remarked several times that the simpAL programming model takes strong inspiration
from previous work introduced in the context of the “classical” agent research community.

190

CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM 191

So, from a high-level point of view, conceptually the simpAL programming approach can be
considered quite similar to other approaches in the state-of-the-art, in particular to the ones pro-
moted by JaCa and JaCaMo: a software system is programmed by means of multiple agents
situated inside an environment, which need to suitably interact both with the environment’s
resources and among themselves in order to achieve the application’s objectives/goals. Never-
theless, there are several substantial differences. Besides being inspired by agent-oriented ab-
stractions and computational models, simpAL founds its roots on well known general purpose
features and programming principles that have been introduced in the context of mainstream
software development and related programming languages: e.g., typing, polymorphism, strong
separation of concerns between the “interface” and the implementation, etc. Along the chapter
we discussed in detail the benefits related to the introduction of these features in the context of
an agent-oriented programming language that targets general purpose computing.

In the literature it is possible to find few exceptions (e.g., [FSS05]) of APLs/frameworks
that, at least conceptually, try to shift the perspective from the development of intelligent soft-
ware systems in the distributed artificial intelligence context to programming in the large. How-
ever, we argue that besides sharing the same objectives, from a programming and software
engineering point of view, these proposals, differently from simpAL, have not fully investigated
the injection in the language/framework of those fundamental features that characterize, in our
opinion, general-purpose programming.

A final main difference concerns the support provided for programming complex interac-
tion protocols and social structures that norm and regulate the overall social behavior of a soft-
ware system. Differently from agent-oriented programming approaches in the state-of-the-art –
e.g., JaCaMo – for now simpAL does not provide first-class programming constructs to address
directly these issues. However, application-specific coordination and interaction mechanisms,
even if not regulated by underlying conceptual models (e.g., MAS organizational models Sec-
tion 3.4.2), can be freely implemented in simpAL through the engineering of proper coordination
artifacts.

7.7.2 Current Limitations

As already mentioned, the simpAL programming language is currently in its infancy. Therefore,
not surprisingly, there are limitations and aspects that still need to be addressed, which here we
logically divide in two main groups.

The first group is related to the current support for typing, polymorphism and inheritance.
In particular, for what concerns typing, simpAL introduces an explicit notion of type for agents,
artifacts and organizations, which are mainly used to: (i) properly characterize the different
elements of a program, and (ii) perform static error checking controls (Section 7.3.2). On the
one side, this is a clear advance w.r.t. what is available in state-of-the-art APLs. On the other
side, this is just a first level support (e.g., w.r.t. the one provided by object-oriented languages),
which still lacks an explicit formalization of both the type notions introduced and of the overall
simpAL type system. These absences also hamper the formal definition of sub-typing relations

191

192 CHAPTER 7. THE SIMPAL PROGRAMMING LANGUAGE AND ECOSYSTEM

for agents, artifacts and organizations. Actually, from a practical and implementation point of
view we discussed and investigated up to a good point the introduction of sub-typing relations
in simpAL. However, we intentionally decided to defer the introduction of such relations in the
language until their role and semantics are made clear by the study of proper formalizations, in
order to avoid (possibly) heavy modifications on the language—i.e., in the case in which our
“practical” implementation is not fully sound from a formal and semantic point of view.

Similar considerations to the ones just made for typing, also apply for the support provided
for inheritance and polymorphism. For now, simpAL does not provide an explicit support for
the former. Instead, basic forms of polymorphism are supported for agents, artifacts and or-
ganizations (see Section 7.3.3). As in the case of typing, from a practical point of view, we
started to study more advanced forms of polymorphism – i.e., agents implementing multiple
roles, artifacts implementing multiple interfaces – but we decided to defer their introduction in
the language, until we are able to validate them also from a more formal point of view.

The second main group concerns the synergistic integration and exploitation in simpAL of
the underlying object-oriented level. On the one side, as have been showed in various examples,
in simpAL programs Java objects are used to define the data model, and it is quite straightfor-
ward the use of Java code in both agent scripts and artifact templates. On the other side, there
are still some integration aspects that could be improved. In particular:

• The definition of arrays and collections (List, HashMaps, etc.) of agents and artifacts
(used e.g. in Section 7.4.2) is possible, but relies on low level implementation mechan-
isms.

• Events related to updates of artifacts’ observable properties bound to non-primitive Java
objects, are generated only when the reference of the object stored by an observable
property is changed—i.e., changes of the object’s inner state (e.g., changing an object
field) do not automatically generate an observable property update event. Indeed, method
execution in simpAL is implemented under the hood via Java reflection, hence there are
not explicit means to know when the execution of a method leads to the modification of an
object’s internal state. When needed, in artifacts implementation it is possible to use the
generateEvForObsProp ObsProp statement, to force the generation of an update
observable event, related to the specified observable property (ObsProp).

• Java generics are not supported in simpAL. As a consequence, there is still the need to
operate several cast operations in simpAL code, e.g. when working with Java collections.

192

Part IV

Conclusion

193

8
Conclusion and Future Work

In this thesis we investigated the application of agent-oriented programming as a high-level
general purpose programming paradigm, evolution of actor-oriented and object-oriented ones,
as a possible answer to the challenges and complexities introduced by “the free lunch is over
call” (Chapter 1). To this end, we first took active part in the study and definition of integrated
– i.e., concerning the synergistic use of multiple programming dimensions – programming ap-
proaches and concrete technologies at support of the engineering of multi-agent systems for
the (distributed) artificial intelligence context (part II of this thesis). The results obtained from
these studies are one of the two macro-groups of contributions of this dissertation (Chapter 1).

Then, starting from the background and the expertise built with the previous work, we
focused our efforts in the engineering of the simpAL programming language and its related
ecosystem (part III of this thesis). We argue that the obtained results – we referred to them
as the second macro-group of contributions of this dissertation in Chapter 1 – are promising.
simpAL is the first programming language that makes it possible to exploit an agent-oriented
level of abstraction for the development of concurrent and distributed software systems, which
has its foundations rooted on all that key concepts and features that have been introduced and
developed in the history of modern mainstream programming languages – e.g., typing, poly-
morphism, etc. – properly revisited for an agent-oriented language. In particular, we believe
that, even if some aspects have not been fully explored yet – e.g., inheritance, sub-typing re-
lations, etc. – with our work we have been able to delineate the backbone at the base of the
development of an agent-oriented language targeting general purpose computing, rooted on the
basic principles and practices of mainstream programming and software development.

The benefits of adopting of an agent-oriented level of abstraction for the development of
concurrent and distributed systems have been discussed in the thesis by presenting a set of pur-
posive examples. In particular, the main achievement has been the definition of proper abstrac-
tions – i.e., the simpAL agent architecture, the agent plan and action rule models – which allow
to integrate and unify in a seamless manner autonomous and reactive (event-driven) behaviors
(Section 7.3.1).

We envision several avenues for further research, divided in two main lines. The first one is
related to the engineering of agent-oriented technologies for the (D)AI context:

• A first future contribution would be the investigation of the synergistic integration of the

195

196 CHAPTER 8. CONCLUSION AND FUTURE WORK

interaction dimension in JaCaMo, with the other ones. Besides classical approaches, it
would be interesting to explore the use of environment abstractions also to make dir-
ect communication support more flexible by introducing, for instance, appropriate per-
sonal communication artifacts, to provide agents means for communicating using differ-
ent ACLs and managing complex conversations and ontologies.

• In JaCaMo, it would be possible to further explore the O-E (Organization-Environment)
connection to implement more advanced institutional mechanisms such as the count-as
relation [Sea69], thus providing, generally speaking, a direct semantic link between the
execution of actions (operations) on environment artifacts and their meaning and effect at
the organizational level. Initial investigations in this direction can be found in [PRBH09].

• There is a group of future work concerning both JaCa and JaCaMo:

– Improving the integration with the object-oriented layer on the agent side, either by
enriching the set of current Jason internal actions available to this end, or defining
some sort of “smart” and automated translation mechanism for moving from an
object-based representation to a logical one, and vice-versa.

– The implementation (in case of JaCaMo) and improvement (in the case of JaCa)
of integrated development environments that would facilitate the process of design,
development, and execution of JaCa and JaCaMo applications, potentially reusing
and integrating existing Jason, CArtAgO, and M OISE tools and technologies.

– Continuing the concrete evaluation of the two development platforms through the
realization of new applications in relevant domains.

The second line concerns simpAL, its ecosystem, and more in general the overall investigation
of the adoption of agent-oriented programming as a general purpose paradigm for developing
concurrent and distributed software systems:

• A first main future contribution would address the formalization of the operational se-
mantics of the language through the study of both proper formal models and a core cal-
culus to define the semantics of the main programming constructs in a rigorous manner,
and evaluate the main properties (and problems) of the language. To this end, these pre-
vious works [DGRV09, DGRV12] could be a good source of inspiration to start such
investigations.

• A group of future work strictly related to the formalization of the language, concerns
the formalization of the simpAL type system and in turn, once such a formalization has
been realized, the finalization of all those aspects not fully addressed yet in the language
(sub-typing relations, inheritance, etc.). We are confident that the injection of these new
aspects should be carried out quite seamlessly, by exploiting the backbone of the simpAL
programming language realized in the context of this thesis.

196

CHAPTER 8. CONCLUSION AND FUTURE WORK 197

• A main future (and already ongoing) investigation would be the study of an extension of
the current task model, in order to support also cooperative tasks besides individual ones.
Such an extension is fundamental in oder to give developers proper means to program
cooperative activities and also model the set of possible interactions among the different
agents that take part in such activities. For the study of this important extension, the
work concerning agent communication protocols [Sin11, CS11] and the recent studies on
session types [HYC08, GVR03, DCMYD06] could be both an important background and
source of inspiration.

• It would be possible to study optimizations of the language (at least) along the following
main directions:

– Minimize the time required to execute one sense-plan-act cycle. Given the centrality
of the agent control loop – it governs entirely agent execution and computation – this
is probably the most important optimization we have to work toward.

– Optimize the process of action selection, avoiding as much as possible to do unne-
cessary stages of the sense-plan-act cycle. Indeed, in all those cases in which there
are only actions that need to be executed in sequence – i.e., there are not rules with
the event or the condition part (or with both) specified in the stack’s active blocks –
the execution of a full sense-plan-act cycle is a unnecessary overhead: the next ac-
tions to be chosen will always be the next ones in the sequences considered. Hence,
such cases could be detected statically at compile time, giving the opportunity to
generate optimized compiled code that could become, eventually, as efficient as the
execution of message handlers in Java-based actor-oriented technologies.

– The study and the implementation of a strategy allowing the retrieval of beliefs,
observable properties and artifact private variables on the basis of an efficient index-
based mechanism.

• It would be worth to continue with the concrete evaluation of the simpAL programming
approach, by applying it for realizing applications in other relevant domains. It would
be particularly interesting to stress its application in those domains in which we already
exploited JaCa and JaCaMo, to investigate and compare the main benefits and drawbacks
of the two approaches. To this end, we are currently working on a simpAL extension
targeting the programming of Rich Internet Applications.

• To better stress and evaluate the performance of the language, a more advanced set of tests
and performance analysis should be carried out. Current tests have mainly focused on the
evaluation of the most critical aspect for the efficient execution of simpAL programs –
i.e., the impact of the agent control architecture that governs agents execution – however,
other kinds of tests are required as well, in order to evaluate other important aspects of the
language (e.g., the efficiency of the logic level of concurrency implemented in simpAL,
in particular w.r.t. the one available in actor-oriented languages and frameworks).

197

198 CHAPTER 8. CONCLUSION AND FUTURE WORK

• Another main group of future work concerns improving the exploitation of the underly-
ing object-oriented level in simpAL, in particular: (i) the engineering of a programming
support for defining arrays and collections of agents and artifacts, at the right conceptual
level, without resorting to low level implementation mechanisms; (ii) the engineering
of a programming support for the “smart” definition of arrays and collections of ob-
servable properties in artifacts, enabling the generation of observable properties update
events related to a single element of an array/collection (currently this is not possible
Section 7.7.2); and (iii) the introduction of the support for generics.

• Improvement to the current implementation of the simpAL distributed runtime infrastruc-
ture, to make it more robust and mature for the execution and management of distributed
applications. The seamless management of runtime faults – e.g., network delays, unex-
pected shutdown of network nodes, etc. – is a key issue in the general context of distrib-
uted systems and related infrastructures that support their execution. So far, in simpAL
the only support provided for dealing with faults at runtime is at the programming level,
where programmers can deal with the different kinds of network problems that can oc-
cur by properly reacting to action failures perceived by the agents. Future work would
aim at improving the current basic support for handling faults at runtime, trying to shield
programmers as much as possible from their management. The final objective of this
enhancement would be the realization of a fault-tolerant runtime infrastructure, as robust
as the ones available in reference actor-oriented frameworks and languages (e.g., akka
and Erlang), able to manage in a quite seamless manner: temporary nodes unreachability,
dynamic addition / shutdown of simpAL nodes, migration of workspaces, etc.

• Improvement to the current version of the simpAL IDE. A first improvement would be
the integration of our custom debugger, which allows to inspect both local and remote
agents/artifacts in execution, with the powerful Eclipse debugging framework, possibly
extending it for supporting the debugging of distributed applications. A second improve-
ment would be the enrichment of the current set of features provided by the IDE. E.g.,
enriching the current simpAL perspective with a proper view to show, besides file system
content, the logical topology of a simpAL application in terms of workspaces and agent-
s/artifacts contained in such workspaces; introducing the means to provide a full control
over the life-cycle of (possibly distributed) simpAL architectural nodes—i.e., starting/ter-
minating the simpAL kernel in such nodes directly from the IDE.

• Finally, we believe that this thesis could be a good source of inspiration for both those
researchers and practitioners that, at least in part, share our vision and main research ob-
jectives; and for those people that reading it have become convinced, or at least intrigued,
in the exploitation of a programming paradigm rooted on an agent-oriented level of ab-
straction for tackling the challenges and complexities introduced by “the free lunch is
over call” (Chapter 1).

198

Part V

Appendix

199

A
EBNF Grammar of the simpAL

Language

/*==*/
/* Top rule: manages simpaL compilation units */
/*==*/

CompilationUnit = (OrgModel | Org | UsageInterface | ArtifactTemplate | RoleDef
| AgentScript | LaunchConfig) ;

/*==*/
/* OrgModel Rules */
/*==*/

OrgModel = "org-model" ID "{" ("workspace" WorkspaceDecl)+ "}" ;

WorkspaceDecl = ID "{" (ArtifactOrAgentDecl)* "}" ;

ArtifactOrAgentDecl = ID ":" ID ";" ;

/*==*/
/* Org Rules */
/*==*/

Org = "org" ID "implements" ID "{" ("workspace" WorkspaceInstance)+ "}" ;

WorkspaceInstance = ID "{" (ArtifactOrAgentInstance)* "}" ;

ArtifactOrAgentInstance = ID "=" ID SimpalActualParameters
("init-task:" SimpalType SimpalActualParameters)? ;

/*==*/
/* Role Rules */
/*==*/

RoleDef = "role" ID "{" (BeliefDef | TaskDef)* "}" ;

TaskDef = "task" ID "{" ("input-params" "{" TaskFormalParameters "}")?
("output-params" "{" TaskFormalParameters "}")?
("undestands" "{" TaskFormalParameters "}")?
("talks-about" "{" TaskFormalParameters "}")?

"}" ;

TaskFormalParameters = (ID ":" SimpalType ";")* ;

201

202 APPENDIX A. EBNF GRAMMAR OF THE SIMPAL LANGUAGE

/*==*/
/* Agent Script Rules */
/*==*/

AgentScript = "agent-script" ID "implements" ID ("in" ID)? "{"
((BeliefDef) | TaskDef | PlanDef)*

"}";

BeliefDef = ID ":" SimpalType ("=" Expression)? ";"? ;

PlanDef = ("plan-for" | "plan" ID "task:") SimpalType
("context:" context=Expression)?
ActionRuleBlock ;

ActionRuleBlock = "=>"? "{"
(ActionBlockAttribute)*
(ActionRuleDef | BeliefDef)*

"}" ;

ActionBlockAttribute = (
| ("#completed-when:" Expression)
| ("#atomic")
| ("#hard-block")
| ("#soft-block")
| ("#to-be-repeated")
| ("#to-be-rep-until:" Expression)
| ("#using:" Expression ("," Expression)*)

) ;

ActionRuleDef = (
("when" | "every-time") EventTemplate (":" Expression)? "=>"

)?
AgentAction ";"? ;

EventTemplate = (
| ("done" IdentifierExpr)
| ("failed" IdentifierExpr)
| ("assigned" IdentifierExpr)
| ("told" Expression)
| ("changed" Expression ("as:" Expression))?

);

AgentAction = (
IfAction

| WhileAction
| TaskManagementAction
| PredefinedEnvAction
| EnvironmentAction
| AssignAction
| JavaAction
| ActionRuleBlock

)
(LabelActionAttribute)? ;

LabelActionAttribute = "#act:" ID ;

IfAction = "if" ParExpression ActionRuleBlock ("else-if" ParExpression ActionRuleBlock)*
("else" ActionRuleBlock)? ;

WhileAction = "while" ParExpression ActionRuleBlock ;

202

APPENDIX A. EBNF GRAMMAR OF THE SIMPAL LANGUAGE 203

TaskManagementAction = (
AssignTaskAction

| DropTaskAction
| SuspendTaskAction
| ResumeTaskAction
| DoTaskAction
| DropAllTasksAction
| SuspendAllTasksAction
| ResumeAllTasksAction
| ForgetOldPlansAction
) ;

AssignTaskAction = "assign-task" ("to:" Expression)? ;

DropTaskAction = "drop-task" IdentifierExpr ;

SuspendTaskAction = "suspend-task" IdentifierExpr ;

ResumeTaskAction = "resume-task" IdentifierExpr ;

DoTaskAction = "do-task" (IdentifierExpr | NewTaskExpr) ("task-recipient:" Expression)? ;

DropAllTasksAction = "drop-all-tasks" ;

SuspendAllTasksAction = "suspend-all-tasks" ;

ResumeAllTasksAction = "resume-all-tasks" ;

ForgetOldPlansAction = "forget-old-plans" ;

PredefinedEnvAction = (NewArtifactAction | DisposeArtifactAction
| SpawnAgentAction | TellAction) ;

NewArtifactAction = "new-artifact" ID SimpalActualParameters ("in" ID)? "ref:" Expression ;

DisposeArtifactAction = "dispose-artifact" Expression;

SpawnAgentAction = "new-agent" ID ("in" ID)? ("init-task:" Expression)? "ref:" Expression? ;

TellAction = "tell" (Expression "=" Expression) ;

EnvironmentAction = ID SimpalActualParameters ("on" res=Expression)? ;

JavaAction = Expression;

AssignAction = Expression "=" Expression ;

/*==*/
/* Launch Configuration Rules */
/*==*/

LaunchConfig = ("org" ID)
("org-id" orgId = ID)?
"workspace-addresses" "{" (WspAddress)+ "}" ;

WspAddress = ID "=" INT_NUM "." INT_NUM "."
INT_NUM "." INT_NUM ":" INT_NUM ;

/*==*/
/* Expression Rules: these rules are shared among agents and artifacts rules */
/*==*/

203

204 APPENDIX A. EBNF GRAMMAR OF THE SIMPAL LANGUAGE

ParExpression = "(" Expression ")" ;

Expression = ConditionalAndExpr ("||" ConditionalAndExpr)* ;

ConditionalAndExpr = OrExpr ("&&" OrExpr)* ;

OrExpr = ExOrExpr ("|" ExOrExpr)* ;

ExOrExpr = AndExpr ("ˆ" AndExpr)* ;

AndExpr = EqualityExpr ("&" EqualityExpr)* ;

EqualityExpr = InstanceOfExpr (("=="|"!=") InstanceOfExpr)? ;

InstanceOfExpr = RelationalExpr ("instanceof" SimpalTypeReference)? ;

RelationalExpr = ShiftExpr (("<" | "<=" | ">" | ">=") ShiftExpr)* ;

ShiftExpr = AdditiveExpr (("<<"|">>>"|">>") AdditiveExpr)* ;

AdditiveExpr = MultiplicativeExpr (("+"|"-") MultiplicativeExpr)* ;

MultiplicativeExpr = UnaryExpr (("*"|"/"|"%") UnaryExpr)* ;

UnaryExpr = (
(("+"|"-") UnaryExpr)

| UnaryExprNotPlusMinus
) ;

UnaryExprNotPlusMinus = (
CastExpr

| CompositePrimary ("++"|"--")?
) ;

CastExpr = "(" SimpalType ")" UnaryExprNotPlusMinus ;

CompositePrimary = Primary (
("." ID (JavaActualParameters)?)

| ("[" Expression "]")
| ("@" ID)
| ("in" CompositePrimary)

)* ;
Primary = (

ParExpression
| Creator
| IdentifierExpr
| Literal
| ("is-defined" IdentifierExpr ("." ID)?)
| ("is-doing-any" IdentifierExpr ("." ID)?)
| ("is-done" IdentifierExpr ("." ID)?)
| ("is-ongoing" IdentifierExpr ("." ID)?)
| ("is-todo" IdentifierExpr ("." ID)?)
| ("is-failed" IdentifierExpr ("." ID)?)

) ;

Creator = (
ObjCreator

| TaskCreator
| ArrayCreator

) ;

ObjCreator = "new-object" SimpalType JavaActualParameters ;

204

APPENDIX A. EBNF GRAMMAR OF THE SIMPAL LANGUAGE 205

TaskCreator = "new-task" SimpalType SimpalActualParameters ;

ArrayCreator = "new-array" SimpalType ("[" Expression "]")* ;

IdentifierExpr = (PredefinedLiterals | ID) ;

PredefinedLiterals = (
"this-task"

| "script"
| "plan"
| "agent"
| "artifact"
| "params"
| "op"

) ;

SimpalType = ((ID ("." ID)*)|PrimitiveType) ("[" "]")* ;

PrimitiveType = (
"boolean"

| "byte"
| "short"
| "int"
| "long"
| "float"
| "double"

) ;

Literal = (
INT_LITERAL

| LONG_LITERAL
| FLOAT_LITERAL
| DOUBLE_LITERAL
| CHAR_LITERAL
| STRING_LITERAL
| BOOLEAN_LITERAL
| NULL_LITERAL
| WS_LITERAL /* Whitespace */
| SL_COMMENT /* Single-line comment */
| ML_COMMENT /* Multi-line comment */

) ;

ID = ("a".."z"|"A".."Z"|"_") ("a".."z"|"A".."Z"|"_"|"0".."9")* ;

/*==*/
/* Usage Interface Rules */
/*==*/

UsageInterface = "usage-interface" ID "{" ((ObsPropDef | OperationDecl)";")* "}" ;

ObsPropDef = "obs-prop" ID ":" SimpalType ;

OperationDecl = "operation" ID FormalParameters ;

/*==*/
/* Artifact Template Rules */
/*==*/

ArtifactTemplate = "artifact" ID "implements" ID
"{" InitDef ((VarDef | OperationDef)";")* "}" ;

205

206 APPENDIX A. EBNF GRAMMAR OF THE SIMPAL LANGUAGE

InitDef = "init" FormalParameters OpBlock ;

OperationDef = "operation" ID FormalParameters OpBlock ;

OpBlock = "{" ((EnvStatement | (VarDef";")))* "}" ;

VarDef = ID ":" SimpalType ("=" Expression)? ;

EnvStatement = (IfStat | WhileStat | AwaitStat | AwaitTimeStat
FailStat | JavaStat| AssignStat | ForceObsEvent) ;

IfStat = "if" ParExpression OpBlock ("elseif" ParExpression OpBlock)* ("else" OpBlock)? ;

WhileStat = "while" ParExpression OpBlock ;

AwaitStat = "await" Expression ";" ;

AwaitTimeStat = "await-time" Expression ";" ;

FailStat = "fail" ID SimpalActualParameters ";" ;

JavaStat = Expression ";" ;

AssignStat = Expression "=" Expression ";" ;

ForceObsEvent = "generateEvForObsProp" Expression ";" ;

/*==*/
/* Actual/Formal Param Rules: these rules are shared among agents and artficats rules */
/*==*/

JavaActualParameters = "(" (Expression ("," Expression)*)? ")" ;

SimpalActualParameters = "(" (SimpalActualParameter (","? SimpalActualParameter)*)? ")" ;

SimpalActualParameter : ID ":" Expression ;

FormalParameters = "(" (FormalParameter (","? FormalParameter)*)? ")" ;

FormalParameter = ID ":" SimpalType ("#out")? ;

206

B
Additional Sources

B.1 Reactive File Searcher Script

Implementation of the ReactiveSearcherScript in the context of the reactive file searcher ex-
ample. This is the full source of the pseudo-implementation reported in Section 7.4.1.
1 agent-script ReactiveSearcherScript implements ReactiveSearcher in FileSearcherOrgModel{
2

3 filesFound: java.util.List = new java.util.ArrayList()
4 currThr: long
5

6 plan-for SearchFiles {
7 #using: console@main
8 #completed-when: is-done printRes
9

10 currThr = this-task.thr;
11 searchTask: SearchFilesInDir = new-task SearchFilesInDir(dir: this-task.dir);
12 assign-task searchTask;
13

14 /* Printing results when the searchTask is done*/
15 when is-done searchTask => {
16 println(msg: "Found " + filesFound.size() + " files with the desired size");
17 i: int = 0;
18 {
19 #to-be-rep-until: (i > filesFound.size()-1)
20 println(msg: " - " + ((java.io.File)filesFound.get(i)).getName());
21 i++
22 };
23 }#act: printRes
24

25 /* Reacts to threshold changes */
26 every-time told this-task.newThr => {
27 #atomic
28

29 newThr: int = this-task.newThr;
30 if (newThr > currThr){
31 /* We can filter the current results accordingly to the new threshold */
32 j: int=0;
33 {
34 #to-be-rep-until: (j> filesFound.size()-1)
35 currFile: java.io.File;
36 currFile = (java.io.File)filesFound.get(j);
37 if (currFile.length() < newThr){
38 /* The file is not ok considering the new threshold, we remove it */
39 filesFound.remove(j)

207

208 APPENDIX B. ADDITIONAL SOURCES

40 } else {
41 /* The file is ok also considering the new threshold, inspect the next one*/
42 j++
43 }
44 };
45 /* Set the currThr to the new one */
46 currThr = newThr
47 } else {
48 /* The threshold has been lowered, we have to restart from scratch */
49 /* The ongoing task is dropped */
50 drop-task searchTask;
51 /* The list of found files so far is cleared */
52 filesFound.clear();
53 searchTask = new-task SearchFilesInDir(dir: this-task.dir);
54 /* Set the currThr to the new one */
55 currThr = newThr;
56 assign-task searchTask
57 }
58 }
59 }
60

61 plan-for SearchFilesInDir {
62 #using: console@main
63 currFile: java.io.File;
64 files: java.util.List;
65 currDir: java.io.File = new java.io.File(this-task.dir);
66 if (currDir.isDirectory()){
67 files = java.util.Arrays.asList(currDir.listFiles());
68 i: int = 0;
69 {
70 #to-be-rep-until: (i >files.size()-1)
71 currFile = (java.io.File)files.get(i);
72 if (currFile.isDirectory()) {
73 /* New sub-dir, we span a new sub-task for searching the files recursively */
74 do-task new-task SearchFilesInDir(dir: currFile.getPath())
75 } else-if (currFile.length() > currThr) {
76 #atomic
77 filesFound.add(currFile)
78 };
79 i++
80 }
81 }
82 }
83

84 task SearchFilesInDir{
85 input-params{
86 dir: String;
87 }
88 }
89 }

208

APPENDIX B. ADDITIONAL SOURCES 209

B.2 Sources of the Test Programs

1 test_actor(N) ->
2 self() ! doTaskT,
3 loop(N,0,0).
4

5 loop(0,C,R) ->
6 trigger ! testDone;
7

8 loop(N,C,R) ->
9 receive

10 doTaskT ->
11 C1 = ta(C),
12 self() ! doingTb,
13 loop(N,C1,R);
14 doingTb ->
15 C1 = tb(C),
16 self() ! doingTc,
17 loop(N,C1,R);
18 doingTc ->
19 C1 = tc(C),
20 self() ! doTaskT,
21 loop(N-1,C1,R);
22 react ->
23 loop(N,C,R+1)
24 end.
25

26 ta(C) -> C+1.
27 tb(C) -> C+1.
28 tc(C) -> C+1.
29

30 trigger(Who,0) ->
31 receive
32 testDone ->
33 erlang:halt()
34 end;
35

36 trigger(Who,N) ->
37 Who ! react,
38 trigger(Who,N-1).
39

40 start() ->
41 PID = spawn(testloop, test_actor, [10000000]),
42 register(trigger, spawn(testloop, trigger, [PID, 10000000])).

Figure B.1: Implementation of the first version (V1) of the first test program in Erlang. The
test actor function has been used to implement the actor that has in charge the execution of
the task T, while the trigger function has been used to implement the actor that sends the react
messages.

209

210 APPENDIX B. ADDITIONAL SOURCES

1 controller(N, ActA, ActB, ActC) ->
2 self() ! doTaskT,
3 loop(N, 0, 0, ActA, ActB, ActC).
4

5 loop(0, _, 10000000, _, _, _) ->
6 trigger ! testDone;
7

8 loop(N, C, R, ActA, ActB, ActC) ->
9 receive

10 doTaskT ->
11 ActA ! {doTa, C, self()},
12 loop(N, C, R, ActA, ActB, ActC);
13 {doneTa, C1} ->
14 ActB ! {doTb, C1, self()},
15 loop(N, C1, R, ActA, ActB, ActC);
16 {doneTb, C1} ->
17 ActC ! {doTc, C1, self()},
18 loop(N, C1, R, ActA, ActB, ActC);
19 {doneTc, C1} ->
20 self() ! doTaskT,
21 loop(N-1, C1, R, ActA, ActB, ActC);
22 react ->
23 loop(N, C+1, R+1, ActA, ActB, ActC)
24 end.
25

26 actorA() ->
27 receive
28 {doTa, C, Controller} -> Controller ! {doneTa, C + 1}, actorA()
29 end.
30

31 actorB() ->
32 receive
33 {doTb, C, Controller} -> Controller ! {doneTb, C + 1}, actorB()
34 end.
35

36 actorC() ->
37 receive
38 {doTc, C, Controller} -> Controller ! {doneTc, C + 1}, actorC()
39 end.
40

41 trigger(_, 0) ->
42 receive
43 testDone ->
44 erlang:halt()
45 end;
46

47 trigger(Who, N) ->
48 Who ! react,
49 trigger(Who, N-1).
50

51 start() ->
52 PIDA = spawn(testloop, actorA, []), PIDB = spawn(testloop, actorB, []),
53 PIDC = spawn(testloop, actorC, []),
54 CONTR = spawn(testloop, controller, [10000000, PIDA, PIDB, PIDC]),
55 register(trigger, spawn(testloop, trigger, [CONTR, 10000000])).

Figure B.2: Implementation of the second version (V2) of the first test program in Erlang in
which a network of cooperative actors is used to obtain the same level of reactivity available in
agent-oriented implementations of the test.

210

APPENDIX B. ADDITIONAL SOURCES 211

1 public class TestActor extends Actor {
2 private int c = 0; private int nTimes = 0; private int maxTimes;
3 private int nReactions=0; private ActorName triggerActor;
4

5 @message
6 public void start(ActorName triggerActor, Integer maxTimes) throws RemoteCodeException {
7 this.triggerActor = triggerActor; this.maxTimes = maxTimes;
8 send(self(), "doTaskT");
9 }

10 @message
11 public void doTaskT() throws RemoteCodeException {
12 send(self(), "doingTa");
13 }
14 @message
15 public void doingTa() throws RemoteCodeException {
16 send(self(), "doingTb");
17 ta();
18 }
19 @message
20 public void doingTb() throws RemoteCodeException {
21 send(self(), "doingTc");
22 tb();
23 }
24 @message
25 public void doingTc() throws RemoteCodeException {
26 tc();
27 nTimes++;
28 if (nTimes < maxTimes){
29 send(self(),"doingTa");
30 } else {
31 send(triggerActor, "testDone");
32 }
33 }
34 @message
35 public void react() throws RemoteCodeException {
36 nReactions = nReactions + 1;
37 }
38 private void ta(){c = c + 1;}
39 private void tb(){c = c + 1;}
40 private void tc(){c = c + 1;}
41 }

1 public class TriggerActor extends Actor {
2

3 @message
4 public void start(ActorName testActor, Integer maxTimes) throws RemoteCodeException {
5 for (int i=0; i < maxTimes; i++){
6 send(testActor,"react");
7 }
8 }
9

10 @message
11 public void testDone() throws RemoteCodeException {
12 exit()
13 }
14 }

Figure B.3: Implementation of the first version (V1) of the first test in ActorFoundry. (top)
Implementation of the TestActor that has in charge the execution of the task T. (bottom) Imple-
mentation of the TriggerActor that has in charge the sending of react messages to the TestActor.

211

212 APPENDIX B. ADDITIONAL SOURCES

1 public class TestActor extends Actor {
2 private int nTimes = 0; private int maxTimes;
3 private int nReactions=0; private ActorName triggerActor;
4 private ActorName actorA; private ActorName actorB; private ActorName actorC;
5

6 @message
7 public void start(ActorName triggerActor, ActorName actorA, ActorName actorB,
8 ActorName actorC, Integer maxTimes) throws RemoteCodeException {
9 this.actorA = actorA; this.actorB = actorB; this.actorC = actorC;

10 this.triggerActor = triggerActor; this.maxTimes = maxTimes; send(self(), "doTaskT", 0);
11 }
12

13 @message
14 public void doTaskT(Integer c) throws RemoteCodeException { send(actorA, "doTa", c); }
15 @message
16 public void doneTa(Integer c) throws RemoteCodeException { send(actorB, "doTb", c); }
17 @message
18 public void doneTb(Integer c) throws RemoteCodeException { send(actorC, "doTc", c); }
19

20 @message
21 public void doneTc(Integer c) throws RemoteCodeException {
22 nTimes++;
23 if (nTimes < maxTimes){
24 send(self(), "doTaskT", c);
25 } else {
26 send(triggerActor, "testDone");
27 }
28 }
29

30 @message
31 public void react() throws RemoteCodeException {
32 nReactions = nReactions + 1;
33 }
34 }

1 public class TriggerActor extends Actor {
2 @message
3 public void start(ActorName testActor, Integer maxTimes) throws RemoteCodeException {
4 for (int i=0; i < maxTimes; i++){ send(testActor,"react"); }
5 }
6 @message
7 public void testDone() throws RemoteCodeException {
8 exit()
9 }

10 }

1 public class ActorA extends Actor {
2 private ActorName controller;
3 public ActorA(ActorName controller){ this.controller = controller; }
4 @message
5 public void doTa(Integer c) throws Exception { send(controller, "doneTa", c+1); }
6 }

Figure B.4: Implementation of the second version (V2) of the first test in ActorFoundry in
which a network of cooperative actors is used to obtain the same level of reactivity available in
agent-oriented implementations of the test. The missing implementation of ActorB and ActorC
can be easily deduced from the source code of ActorA.

212

APPENDIX B. ADDITIONAL SOURCES 213

1 c(0).
2 reactions(0).
3

4 !loop(10000000).
5

6 +!loop(0) : true
7 <- .send(trigger, tell, done).
8

9 +!loop(N)
10 <- !tA;
11 !tB;
12 !tC;
13 !!loop(N-1).
14

15 +!tA:c(Val)<--+c(Val+1).
16 +!tB:c(Val)<--+c(Val+1).
17 +!tC:c(Val)<--+c(Val+1).
18

19 @reactplan[atomic]
20 +react(N) : reactions(Val)
21 <- -+reactions(Val+1).

1 !loop(10000000).
2

3 +!loop(0).
4

5 +!loop(N)
6 <- .send(test, tell, react(N));
7 !!loop(N-1).
8

9 +done : true
10 <- .stopMAS.

Figure B.5: Implementation of the first test in Jason in which is used the tell performative.
(left) The test agent that has in charge the execution of the task T. (right) Implementation of the
trigger agent that sends the react messages to the test agent.

1 c(0).
2 reactions(0).
3

4 !loop(10000000).
5

6 +!loop(0) : true
7 <- .send(trigger, tell, done).
8

9 +!loop(N)
10 <- !tA;
11 !tB;
12 !tC;
13 !!loop(N-1).
14

15 +!tA:c(Val)<--+c(Val+1).
16 +!tB:c(Val)<--+c(Val+1).
17 +!tC:c(Val)<--+c(Val+1).
18

19 @reactplan[atomic]
20 +!react : reactions(Val)
21 <- -+reactions(Val+1).

1 !loop(10000000).
2

3 +!loop(0).
4

5 +!loop(N)
6 <- .send(test, achieve, react);
7 !!loop(N-1).
8

9 +done : true
10 <- .stopMAS.

Figure B.6: Implementation of the first test in Jason in which is used the achieve performat-
ive. (left) The test agent that has in charge the execution of the task T. (right) Implementation
of the trigger agent that sends the react messages to the test agent.

213

214 APPENDIX B. ADDITIONAL SOURCES

1 role RoleRLoop {
2 task TaskT {
3 input-params{
4 maxTimes: int;
5 }
6 understands {
7 react: boolean;
8 }
9 }

10 }

1 agent-script TestAgentScriptLoop implements RoleRLoop in agere12simpalOrgModel {
2

3 c: int = 0
4 maxTimes: int = 0
5

6 plan-for TaskT {
7 #using: console@main
8 #completed-when: is-done trep
9

10 nReactions: int = 0
11 script.maxTimes = this-task.maxTimes;
12 do-task new-task Trep() #act: trep
13

14 every-time told this-task.react => {
15 #atomic
16 nReactions = nReactions + 1
17 }
18 }
19

20 plan-for Trep {
21 nTimes: int = 0
22 while (nTimes < script.maxTimes) {
23 do-task new-task Ta();
24 do-task new-task Tb();
25 do-task new-task Tc();
26 nTimes = (nTimes + 1)
27 }
28 }
29

30 plan-for Ta { c = c + 1 }
31 plan-for Tb { c = c + 1 }
32 plan-for Tc { c = c + 1 }
33

34 task Ta {}
35 task Tb {}
36 task Tc {}
37 task Trep {}
38 }

Figure B.7: Implementation of the first test in simpAL. Role and script of the agent in charge
the execution of the task T in the context of the performance test.

214

APPENDIX B. ADDITIONAL SOURCES 215

1 role TriggerAgent {
2 task TriggerTest {
3 input-params{
4 maxTimes: int;
5 }
6 }
7 }

1 agent-script TriggerAgentScriptLoop implements TriggerAgent in agere12simpalOrgModel {
2

3 nTimes: int = 0
4 finished: boolean = false
5 testAgent: RoleRLoop
6 taskT: RoleRLoop.TaskT
7

8 plan-for TriggerTest {
9 #completed-when: finished

10 #using: console@main
11

12 new-agent TestAgentScriptLoop() ref: testAgent;
13 taskT = new-task RoleRLoop.TaskT(maxTimes: this-task.maxTimes);
14 assign-task taskT to: testAgent;
15 while (nTimes < this-task.maxTimes) {
16 tell taskT.react = true;
17 nTimes++
18 }
19

20 when is-done taskT => {
21 finished = true
22 } #act: doneT
23 }
24 }

Figure B.8: Implementation of the first test in simpAL. Role and script of the trigger agent
that has in charge the sending of react messages to the agent playing the role RoleRLoop in the
context of the performance test.

1 start(Token) ->
2 H = lists:foldl(
3 fun(Id, Pid) -> spawn(threadring, roundtrip, [Id, Pid]) end,
4 self(),
5 lists:seq(?RING, 2, -1)),
6 H ! Token,
7 roundtrip(1, H).
8

9 roundtrip(Id, Pid) ->
10 receive
11 1 ->
12 erlang:halt();
13 Token ->
14 Pid ! Token - 1,
15 roundtrip(Id, Pid)
16 end.
17

18 main() -> start(10000000).

Figure B.9: Implementation of the second test (the thred-ring test) in Erlang.

215

216 APPENDIX B. ADDITIONAL SOURCES

1 public class Worker extends Actor {
2

3 private ActorName next;
4

5 public Worker(){ }
6

7 public Worker(Integer id, ActorName next){
8 this.next = next;
9 }

10

11 @message
12 public void start(Integer token, ActorName next) throws Exception {
13 this.next = next;
14 send(next, "PassToken", token-1);
15 }
16

17 @message
18 public void PassToken(Integer token) throws Exception {
19 if (token==0){
20 System.out.exit(0);
21 } else {
22 send(next, "PassToken", token-1);
23 }
24 }
25 }

1 public class Initializator extends Actor {
2 @message
3 public void test() throws Exception {
4 int nTimes = 10000000;
5 int nWorkers = 503;
6 ActorName firstWorker = create(Worker.class);
7 ActorName nextWorker = firstWorker;
8 for (int i=0;i<nWorkers-1;i++){
9 System.currentTimeMillis();

10 nextWorker = create(Worker.class, nextWorker);
11 }
12 send(firstWorker,"start", new Integer(nTimes), nextWorker);
13 }
14 }

Figure B.10: Implementation of the second test (the thred-ring test) in ActorFoundry.

216

APPENDIX B. ADDITIONAL SOURCES 217

1 !init.
2

3 +!init : .my_name(M) & .delete("thread", M, NS) & .term2string(N,NS) &
4 Y = N mod 503 + 1 &
5 .concat("thread",Y,X) <- +next(X);
6 if (.my_name(thread503)) { .send(thread1, tell, token(1000000)) }.
7

8 +token(0) <- .stopMAS.
9

10 +token(N) : next(X) <- -token(N); .send(X, tell, token(N-1)).

1 !init.
2

3 +!init : .my_name(M) & .delete("thread", M, NS) & .term2string(N,NS) &
4 Y = N mod 503 + 1 &
5 .concat("thread",Y,X) <- +next(X);
6 if (.my_name(thread503)) { .send(thread1, achieve, token(10000)) }.
7

8 +!token(0) <- .stopMAS.
9

10 +!token(N) : next(X) <- .send(X, achieve, token(N-1)).

Figure B.11: Implementation of the second test (the thread-ring test) in Jason in which is used
the tell performative (top). Implementation of the second test (the thred-ring test) in Jason
in which is used the achieve performative (bottom).

217

218 APPENDIX B. ADDITIONAL SOURCES

1 role Initiator {
2 task Setup {
3 input-params{
4 numAgents: int;
5 nPasses: int;
6 }
7 }
8 task PassToken {
9 input-params {

10 agentId: int ;
11 }
12 understands{
13 token: int;
14 }
15 }
16 }

1 agent-script InitializatorScript implements Initializator in ThreadRingOrgModel {
2

3 next: Worker
4 totalPassToDo: int
5 passTokenTask: Worker.PassToken
6

7 plan-for Setup {
8 #using: console@main
9 totalPassToDo = nPasses;

10 passTokenTask = new-task Worker.PassToken(agentId:this-task.numAgents-1);
11 /* creating first worker */
12 new-agent WorkerScript ref: next;
13 /* task assignment to first worker */
14 assign-task passTokenTask to: next
15 }
16

17 plan-for PassToken {
18 #using: console@main
19 /* start passing the token */
20 tell passTokenTask.token=totalPassToDo-1;
21 {
22 every-time told this-task.token : this-task.token !=0 => {
23 /* the token has come back, if not = 0 we go for another round */
24 tell passTokenTask.token = this-task.token - 1
25 }
26 when told this-task.token : this-task.token ==0 => {
27 println(msg: "[Initializator+]I was the last");
28 exit()
29 }
30 }
31 }
32 }

Figure B.12: Implementation in simpAL of the role and script of the initiator agent used in the
second test (the thread-ring test).

218

APPENDIX B. ADDITIONAL SOURCES 219

1 role Worker {
2 task PassToken {
3 input-params {
4 agentId: int ;
5 }
6 understands{
7 token: int ;
8 }
9 }

10 }

1 agent-script WorkerScript implements Worker in ThreadRingOrgModel {
2

3 next: Worker
4 myId: int
5 plan-for PassToken {
6 #using: console
7 if (agentId!=1){
8 passTokenTask: PassToken;
9 passTokenTask = new-task PassToken(agentId:this-task.agentId-1);

10 new-agent WorkerScript ref: next;
11 assign-task passTokenTask to: next
12 every-time told this-task.token : this-task.token !=0 => {
13 tell passTokenTask.token = this-task.token - 1
14 }
15 when told this-task.token : this-task.token ==0 => {
16 println(msg: "["+agentId+"]I was the last")
17 exit()
18 }
19 } else {
20 /* last worker, it needs to interact with the initializator */
21 passTokenTask: Initiator.PassToken
22 passTokenTask = new-task Initiator.PassToken(agentId:this-task.agentId-1);
23 assign-task passTokenTask to: firstWorker
24 every-time told this-task.token : this-task.token !=0 => {
25 tell passTokenTask.token = this-task.token - 1
26 }
27 when told this-task.token : this-task.token ==0 => {
28 println(msg: "["+agentId+"]I was the last")
29 exit()
30 }
31 }
32 }
33 }

Figure B.13: Implementation in simpAL of the role and script of a generic worker agent used in
the second test (the thread-ring test).

219

220 APPENDIX B. ADDITIONAL SOURCES

220

Bibliography

[Age] Agent-Oriented Software Group. Official JACK Website. Online document, available
at: http://www.aosgrp.com.au/ – Last Retrieved: November 25, 2012.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1986.

[Agh90] Gul Agha. Concurrent object-oriented programming. Commun. ACM, 33(9):125–141,
September 1990.

[AH87] Gul Agha and Carl Hewitt. Concurrent programming using actors. In Akinori Yonez-
awa and Mario Tokoro, editors, Object-oriented concurrent programming, pages 37–
53. MIT Press, Cambridge, MA, USA, 1987.

[Alea] Alessandro, Ricci and Andrea, Santi. Official CArtAgO Website. Online document,
available at: http://cartago.sourcefoge.net/ – Last Retrieved: November
15, 2012.

[Aleb] Alexander Pokahr and Lars Braubach and Winfried Lamersdorf. Official Jadex Web-
site. Online document, available at: http://jadex.sourceforge.net – Last
Retrieved: November 15, 2012.

[Alec] Alexandru Sorici. Reference Documentation for the JaCa-Arduino Project. On-
line document, available at: https://docs.google.com/document/d/
1uIHHOk0DCXFIqWod05VrXMRZs4IFrj3pVz1fMeIKrNY – Last Retrieved:
November 28, 2012.

[All02] J. Allaire. Macromedia flash mxa next-generation rich client (white paper). Technical
report, Macromedia, 2002.

[AMST97] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for
actor computation. J. Funct. Program., 7(1):1–72, January 1997.

[Anda] Andrea Santi and Marco Guidi and Alessandro Ricci. JaCa-Android official website.
Online document, available at: http://jaca-android.sourceforge.net/
– Last Retrieved: November 21, 2012.

[Andb] Andrea Santi and Mattia Minotti and Alessandro Ricci. JaCa-Web official website.
Online document, available at: http://jaca-web.sourceforge.net/ – Last
Retrieved: November 21, 2012.

[Ard] Arduino Gruop. The Arduino Project Official Website. Online document, available at:
http://www.arduino.cc/ – Last Retrieved: November 28, 2012.

[Arm10] Joe Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010.

221

http://www.aosgrp.com.au/
http://cartago.sourcefoge.net/
http://jadex.sourceforge.net
https://docs.google.com/document/d/1uIHHOk0DCXFIqWod05VrXMRZs4IFrj3pVz1fMeIKrNY
https://docs.google.com/document/d/1uIHHOk0DCXFIqWod05VrXMRZs4IFrj3pVz1fMeIKrNY
http://jaca-android.sourceforge.net/
http://jaca-web.sourceforge.net/
http://www.arduino.cc/

222 BIBLIOGRAPHY

[AT07] Luis Antunes and Keiki Takadama, editors. Multi-Agent-Based Simulation VII, Inter-
national Workshop, MABS 2006, Hakodate, Japan, May 8, 2006, Revised and Invited
Papers, volume 4442 of Lecture Notes in Computer Science. Springer, 2007.

[AUS75] J.L. Austin, J.O. Urmson, and M. Sbisà. How to Do Things with Words: The Wil-
liam James Lectures Delivered at Harvard University in 1955. Harvard University.
Clarendon Press, 1975.

[BA05] Mordechai Ben-Ari. Principle of Concurrent and Distributed Programming. Addison-
Wesley Longman, 2005.

[BBD+06] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni,
Jorge J. Gómez-Sanz, João Leite, Gregory M. P. O’Hare, Alexander Pokahr, and Aless-
andro Ricci. A survey of programming languages and platforms for multi-agent sys-
tems. Informatica (Slovenia), 30(1):33–44, 2006.

[BBH+11] Olivier Boissier, Rafael H. Bordini, Jomi F. Hbner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with jacamo. Science of Computer Pro-
gramming, -(-):–, 2011.

[BBM10] Matteo Baldoni, Cristina Baroglio, and Elisa Marengo. Behavior-oriented
commitment-based protocols. In ECAI: European Conference on Artificial Intelli-
gence, pages 137–142, Amsterdam, The Netherlands, The Netherlands, 2010. IOS
Press.

[BCG07] F.L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems with
JADE. Wiley series in agent technology. John Wiley, 2007.

[BDDEFS11] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni. Spe-
cial Issue: Multi-Agent Programming, volume 23 (2). Springer Verlag, 2011.

[BDDFS05a] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni, ed-
itors. Multi-Agent Programming: Languages, Platforms and Applications - Vol. I,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer, 2005.

[BDDFS05b] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni, ed-
itors. Multi-Agent Programming: Languages, Platforms and Applications (Vol. I),
volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer, 2005.

[BDDFS09] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni, edit-
ors. Multi-Agent Programming: Languages, Tools and Applications (Vol. II). Springer,
2009.

[BDEFSD09] Rafael H. Bordini, Mehdi Dastani, Amal El Fallah Seghrouchni, and Jürgen Dix, ed-
itors. Multi-Agent Programming Languages, Platforms and Applications - Vol. II.
Springer, 2009.

222

BIBLIOGRAPHY 223

[BDH+01] Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert van der
Torre. The boid architecture - conflicts between beliefs, obligations, intentions and
desires. In Proceedings of the Fifth International Conference on Autonomous Agents,
pages 9–16. ACM Press, 2001.

[BFG+90] Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough, and Richard
Owens. Metatem: A framework for programming in temporal logic. In Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, REX Workshop,
pages 94–129, London, UK, UK, 1990. Springer-Verlag.

[BGJ11] Tibor Bosse, Armando Geller, and Catholijn M. Jonker, editors. Multi-Agent-Based
Simulation XI - International Workshop, MABS 2010, Toronto, Canada, May 11, 2010,
Revised Selected Papers, volume 6532 of Lecture Notes in Computer Science. Springer,
2011.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency and distribu-
tion in object-oriented programming. ACM Comput. Surv., 30(3):291–329, 1998.

[BH06] Rafael H. Bordini and Jomi F. Hübner. Bdi agent programming in agentspeak using
jason. In Proceedings of the 6th international conference on Computational Logic in
Multi-Agent Systems, CLIMA’05, pages 143–164, Berlin, Heidelberg, 2006. Springer-
Verlag.

[BHD11] Tristan M. Behrens, Koen V. Hindriks, and Jürgen Dix. Towards an environment inter-
face standard for agent platforms. Annals of Mathematics and Artificial Intelligence,
61(4):261–295, April 2011.

[BHLM02] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. In Giovanni
De Micheli, Rolf Ernst, and Wayne Wolf, editors, Readings in hardware/software co-
design, chapter Ptolemy: a framework for simulating and prototyping heterogeneous
systems, pages 527–543. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[BHS07] Olivier Boissier, Jomi F. Hübner, and Jaime S. Sichman. Organization oriented pro-
gramming: from closed to open organizations. In Gregory O’Hare, Oguz Dikenelli,
and Alessandro Ricci, editors, Engineering Societies in the Agents World VII (ESAW
06), volume 4457 of LNCS, pages 86–105. Springer Berlin / Heidelberg, 2007.

[BHW07] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming Multi-
Agent Systems in AgentSpeak Using Jason. Wiley Series in Agent Technology. John
Wiley & Sons, 2007.

[BIP07] M.E. Bratman, D.J. Israel, and M.E. Pollack. Plans and resource-bounded practical
reasoning. Computational intelligence, 4(3):349–355, 2007.

[BPL06] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability concept for
flexible bdi agent modularization. In Programming Multi-Agent Systems, pages 139–
155. Springer, 2006.

223

224 BIBLIOGRAPHY

[BPML05] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for bdi
agent systems. Programming Multi-Aent Systems, pages 44–65, 2005.

[BPR99] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant agent frame-
work. In Proceedings of the fourth conference on the practical application of intelli-
gent agents and multi-agent technology, pages 97–108, London, UK, April 1999.

[Bra87] M. Bratman. Intention, plans, and practical reason. Harvard University Press, 1987.

[Bri89] J.P. Briot. Actalk: A testbed for classifying and designing actor languages in the
smalltalk-80 environment. In ECOOP–European Conference on Object-Oriented Pro-
gramming, volume 89, pages 109–129, 1989.

[BS08] S. Bromuri and K. Stathis. Situating cognitive agents in golem. In International
Workshop on Engineering Environment-Mediated Multi-Agent Systems, pages 115–
134. Springer, 2008.

[Cas94] Cristiano Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In
ECAI Workshop on Agent Theories, Architectures, and Languages, pages 56–70, 1994.

[CC95] Rosaria Conte and C. Castelfranchi. Cognitive And Social Action. Taylor & Francis
Group, 1995.

[CFNS05] Francisco Curbera, Donald F. Ferguson, Martin Nally, and Marcia L. Stockton. Toward
a programming model for service-oriented computing. In Third International Confer-
ence on Service-Oriented Computing (ICSOC-05), volume 3826 of Lecture Notes in
Computer Science. Springer, 2005.

[CG98] L. Cardelli and A. Gordon. Mobile ambients. In Foundations of Software Science and
Computation Structures, pages 140–155. Springer, 1998.

[Chr] Christian Tismer. The stackless python framework official website. Online docu-
ment, available at: http://www.stackless.com/ – Last Retrieved: December
8, 2012.

[Cli81] William D Clinger. Foundations of actor semantics. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1981.

[CM03] W.F. Clocksin and C.S. Mellish. Programming in PROLOG. Springer, 2003.

[CMM09] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Linguistic symbiosis
between event loop actors and threads. Computer Languages, Systems & Structures,
35(1):80 – 98, 2009.

[com00] The state of the art in agent communication languages. Knowl. Inf. Syst., 2(3):259–284,
August 2000.

224

http://www.stackless.com/

BIBLIOGRAPHY 225

[Cor12] Microsoft Corporation. TypeScript Language Official Website, 2012. Online doc-
ument, available at: http://www.typescriptlang.org/ – Last Retrieved:
November 26, 2012.

[CR08] Eric Clayberg and Dan Rubel. Eclipse Plug-ins: Building Commercial-Quality Plug-
ins. Addison-Wesley Professional, 3 edition, 2008.

[CS11] A.K. Chopra and M.P. Singh. Specifying and applying commitment-based business
patterns. In The 10th International Conference on Autonomous Agents and Multiagent
Systems, pages 475–482, 2011.

[Das08] Mehdi Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

[DCMYD06] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session types
for object-oriented languages. In ECOOP–European Conference on Object-Oriented
Programming, pages 328–352. Springer, 2006.

[DDM04] Virginia Dignum, Frank Dignum, and John-Jules Meyer. An agent-mediated approach
to the support of knowledge sharing in organizations. Knowledge Engineering Review,
19(2):147–174, June 2004.

[Dem95] Yves Demazeau. From interactions to collective behaviour in agent-based systems.
In Proc. of the 1st European Conf. on Cognitive Science. Saint-Malo, pages 117–132,
1995.

[DGLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog, a con-
current programming language based on the situation calculus. Artif. Intell., 121(1-
2):109–169, August 2000.

[DGMT09] Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick Tinnemeier. Know-
ledge representation for agents and multi-agent systems. chapter Normative Multi-
agent Programs and Their Logics, pages 16–31. Springer-Verlag, Berlin, Heidelberg,
2009.

[DGRV09] Ferruccio Damiani, Paola Giannini, Alessandro Ricci, and Mirko Viroli. Featherweight
agent language - a core calculus for agents and artifacts. In ICSOFT (1), pages 218–
225, 2009.

[DGRV12] F. Damiani, P. Giannini, A. Ricci, and M. Viroli. Standard type soundness for agents
and artifacts. Scientific Annals of Computer Science, 22(2):267–326, 2012.

[DMS08] M. Dastani, C. Mol, and B. Steunebrink. Modularity in agent programming languages.
Intelligent Agents and Multi-Agent Systems, pages 139–152, 2008.

[DVCM+06] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. DHondt, and W. De Meuter. Ambient-
oriented programming in ambienttalk. ECOOP–European Conference on Object-
Oriented Programming, pages 230–254, 2006.

225

http://www.typescriptlang.org/

226 BIBLIOGRAPHY

[DvRM05] Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Programming
multi-agent systems in 3apl. In Multi-Agent Programming: Languages, Platforms and
Applications (Vol. I), pages 39–67. 2005.

[Ecla] Eclipse Software Foundations. Eclipse Official Website. Online document, available
at: http://www.eclipse.org/ – Last Retrieved: November 28, 2012.

[Eclb] Eclipse Software Foundations. Plugin Development Environment (PDE) Official Web-
site. Online document, available at: http://www.eclipse.org/pde/ – Last
Retrieved: November 28, 2012.

[EFSS05] A. El Fallah Seghrouchni and A. Suna. Himalaya framework: Hierarchical intelli-
gent mobile agents for building large-scale and adaptive systems based on ambients.
Massively Multi-Agent Systems I, pages 575–575, 2005.

[Eps11] J.M. Epstein. Generative social science: Studies in agent-based computational mod-
eling. Princeton University Press, 2011.

[ERARA04] Marc Esteva, Juan A. Rodrı́guez-Aguilar, Bruno Rosell, and Josep L. Arcos. AMELI:
An agent-based middleware for electronic institutions. In Prog. of the 3rd Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’2004), pages 236–
243, New York, 2004. ACM.

[Eri10] Marius Eriksen. Scaling scala at twitter. In ACM SIGPLAN Commercial Users of Func-
tional Programming, CUFP ’10, pages 8:1–8:1, New York, NY, USA, 2010. ACM.

[ETS10] ETSI. Machine-to-machine communications (m2m), functional architecture. 2010.

[FFMM94] T. Finin, R. Fritzson, D. McKay, and R. McEntire. Kqml as an agent communication
language. In Proceedings of the third international conference on Information and
knowledge management, pages 456–463. ACM, 1994.

[FG98] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of
organizations in multi-agents systems. In Proc. of the 3rd Int. Conf. on Multi-Agent
Systems (ICMAS’98), pages 128–135. IEEE Press, 1998.

[Fir10] D. Firesmith. Profiling Systems Using the Defining Characteristics of Systems of Sys-
tems (SoS). Technical Report Technical Note CMU/SEI-2010-TN-001, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2010.

[Fis94] Michael Fisher. A survey of concurrent metatem - the language and its applications.
In Proceedings of the First International Conference on Temporal Logic, ICTL ’94,
pages 480–505, London, UK, UK, 1994. Springer-Verlag.

[FM96] J. Ferber and J.P. Müller. Influences and reaction: a model of situated multiagent
systems. In Proceedings of Second International Conference on Multi-Agent Systems
(ICMAS-96), pages 72–79, 1996.

226

http://www.eclipse.org/
http://www.eclipse.org/pde/

BIBLIOGRAPHY 227

[FMBB04] Jacques Ferber, Fabien Michel, and José-Antonio Báez-Barranco. AGRE: Integrating
environments with organizations. In Environments for Multi-Agent Systems (E4MAS),
pages 48–56, 2004.

[Foua] Apache Software Foundation. Axis2 Platform Official Website. Online document,
available at: http://axis.apache.org/axis2/java/core/ – Last Re-
trieved: November 18, 2012.

[Foub] Foundation of Intelligent Physical Agent. Fipa abstract architecture specifica-
tion. Online document, available at: http://www.fipa.org/repository/
architecturespecs.html – Last Retrieved: November 15, 2012.

[Fouc] Foundation of Intelligent Physical Agent. Fipa agent communication lan-
guage specification. Online document, available at: http://www.fipa.org/
repository/aclspecs.html – Last Retrieved: November 15, 2012.

[Foud] Foundation of Intelligent Physical Agent. Fipa agent management specifica-
tion. Online document, available at: http://www.fipa.org/repository/
managementspecs..html – Last Retrieved: November 15, 2012.

[Foue] Foundation of Intelligent Physical Agent. Fipa official website. Online document,
available at: http://www.fipa.org/ – Last Retrieved: November 8, 2012.

[FRSaF10] Piero Fraternali, Gustavo Rossi, and Fernando S andnchez Figueroa. Rich internet
applications. IEEE Internet Computing, 14(3):9 –12, may-june 2010.

[FSS03] Amal El Fallah-Seghrouchni and Alexandru Suna. Claim: A computational language
for autonomous, intelligent and mobile agents. In Programming Multi-Agent Systems,
pages 90–110, 2003.

[FSS05] Amal El Fallah-Seghrouchni and Alexandru Suna. Claim and sympa: A program-
ming environment for intelligent and mobile agents. In Multi-Agent Programming:
Languages, Platforms and Applications (Vol. I), pages 95–122. 2005.

[FT02] Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web architec-
ture. ACM Transactions on Internet Technology, 2(2):115–150, May 2002.

[GC04] D. Greenwood and M. Calisti. Engineering web service-agent integration. In Proc. of
IEEE Conf. on Systems, Man and Cybernetics, 2004.

[GD94] G. Nigel Gilbert and J. Doran. Simulating societies: the computer simulation of social
phenomena. UCL Press, 1994.

[Gel85] D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1):80–112, 1985.

227

http://axis.apache.org/axis2/java/core/
http://www.fipa.org/repository/architecturespecs.html
http://www.fipa.org/repository/architecturespecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/managementspecs..html
http://www.fipa.org/repository/managementspecs..html
http://www.fipa.org/

228 BIBLIOGRAPHY

[GF01] Olivier Gutknecht and Jacques Ferber. The madkit agent platform architecture. In
Revised Papers from the International Workshop on Infrastructure for Multi-Agent
Systems: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, pages 48–55, London, UK, UK, 2001. Springer-Verlag.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pattens.
Addison Wesley, 1995.

[GK94] M.R. Genesereth and S.P. Ketchpel. Software agents. Communication of ACM,
37(7):48–53, 1994.

[Gooa] Google Inc. Android Official Website. Online document, available at: http://
code.google.com/android – Last Retrieved: November 18, 2012.

[Goob] Google Inc. Android Services Reference Documentation. Online document, available
at: http://developer.android.com/guide/components/services.
html – Last Retrieved: November 18, 2012.

[Gooc] Google Inc. Google Web Toolkit Official Website. Online document, available at:
http://code.google.com/webtoolkit/ – Last Retrieved: November 25,
2012.

[Good] Google Inc. The Looper API. Online document, available at: http://developer.
android.com/reference/android/os/Looper.html – Last Retrieved:
December 2, 2012.

[GPP+99] Michael P. Georgeff, Barney Pell, Martha E. Pollack, Milind Tambe, and Michael
Wooldridge. The belief-desire-intention model of agency. In Proceedings of the 5th
International Workshop on Intelligent Agents, Agent Theories, Architectures, and Lan-
guages, ATAL ’98, pages 1–10, London, UK, UK, 1999. Springer-Verlag.

[Gup12] M.K. Gupta. Akka Essentials. Packt, 2012.

[GVR03] Simon Gay, Vasco T. Vasconcelos, and António Ravara. Session types for inter-process
communication. TR 2003–133, Department of Computing, University of Glasgow,
March 2003.

[HA79] Carl E Hewitt and Russell R. Atkinson. Specification and proof techniques for serial-
izers. IEEE Transactions on Software Engineering, 5(1):10–23, 1979.

[HB77] Carl Hewitt and Henry G. Baker. Laws for communicating parallel processes. In IFIP
Congress, pages 987–992, 1977.

[HBB10] Jomi Fred Hübner, Olivier Boissier, and Rafael H. Bordini. From organisation spe-
cification to normative programming in multi-agent organisations. In CLIMA XI, pages
117–134, 2010.

228

http://code.google.com/android
http://code.google.com/android
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://code.google.com/webtoolkit/
http://developer.android.com/reference/android/os/Looper.html
http://developer.android.com/reference/android/os/Looper.html

BIBLIOGRAPHY 229

[HBKR10] Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. Instrumenting
multi-agent organisations with organisational artifacts and agents. Autonomous Agents
and Multi-Agent Systems, 20:369–400, May 2010.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd international joint conference
on Artificial intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[HDBVdHM99] K.V. Hindriks, F.S. De Boer, W. Van der Hoek, and J.J.C. Meyer. Agent programming
in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[Hew69] Carl Hewitt. Planner: a language for proving theorems in robots. In Proceedings of the
1st international joint conference on Artificial intelligence, IJCAI’69, pages 295–301,
San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers Inc.

[Hew93] G.W. Hewes. A history of speculation on the relation between tools and language.
Tools, language and cognition in human evolution, pages 20–31, 1993.

[Hin08] K. Hindriks. Modules as policy-based intentions: Modular agent programming in goal.
In Programming Multi-Agent Systems, pages 156–171. Springer, 2008.

[Hin09] Koen V. Hindriks. Programming rational agents in GOAL. In R. H. Bordini, M. Dast-
ani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications (Vol. II), pages 3–37. Springer-Verlag, 2009.

[HL04] Bryan Horling and Victor Lesser. A survey of multi-agent organizational paradigms.
The Knowledge Engineering Review, 19(4):281–316, December 2004.

[HLM94] Wiebe van der Hoek, Bernd van Linder, and John-Jules Ch. Meyer. A logic of capab-
ilities. In Proceedings of the Third International Symposium on Logical Foundations
of Computer Science, LFCS ’94, pages 366–378, London, UK, UK, 1994. Springer-
Verlag.

[HO07] Philipp Haller and Martin Odersky. Actors that unify threads and events. In Pro-
ceedings of the 9th international conference on Coordination models and languages,
COORDINATION’07, pages 171–190, Berlin, Heidelberg, 2007. Springer-Verlag.

[HO08] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-
based programming. Theoretical Computer Science, 2008.

[HO09] P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science, 410(2-3):202–220, 2009.

[HS12] P. Haller and F. Sommers. Actors in Scala. Artima Incorporation, 2012.

229

230 BIBLIOGRAPHY

[HSB07] Jomi F. Hubner, Jaime S. Sichman, and Olivier Boissier. Developing organised mul-
tiagent systems using the moise+ model: programming issues at the system and agent
levels. Int. J. Agent-Oriented Softw. Eng., 1(3):370–395, December 2007.

[Hüb03] J.F. Hübner. Um modelo de reorganização de sistemas multiagentes. PhD thesis,
Universidade de ão Paulo, Escola Politcnica, 2003.

[Huh01] Michael N. Huhns. Interaction-oriented programming. In First international workshop
on Agent-oriented software engineering (AOSE 2000), pages 29–44, Secaucus, NJ,
USA, 2001. Springer-Verlag New York, Inc.

[Huh02] Michael N. Huhns. Agents as web services. IEEE Internet Computing, 6(4):93–95,
2002.

[Hun06] Michael N. Hunhs. A research agenda for agent-based Service-Oriented Architectures.
In Matthias Klusch, Michael Rovatsos, and Terry Payne, editors, CIA 2006, volume
4149 of LNA, pages 8–22. Springer-Verlag Berlin Heidelberg, 2006.

[HYC08] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. ACM
SIGPLAN NOTICES, 43(1):273, 2008.

[Inca] Google Inc. Dart isolates api official website. Online document, available at: http:
//api.dartlang.org/docs/bleeding_edge/dart_isolate.html –
Last Retrieved: November 26, 2012.

[Incb] Google Inc. Dart language official website. Online document, available at: http:
//www.dartlang.org/ – Last Retrieved: November 26, 2012.

[Incc] Google Inc. Gmail Official Website. Online document, available at: http://mail.
google.com/ – Last Retrieved: November 23, 2012.

[Incd] Google Inc. Google Maps Official Website. Online document, available at: http:
//maps.google.com/ – Last Retrieved: November 25, 2012.

[Int] Internet Engineering Task Force. JavaScript Object Notation RFC. Online document,
available at: http://www.json.org/ – Last Retrieved: November 25, 2012.

[Ite] Itemis. Xtext Language Development Framework Official Website. Online document,
available at: http://www.eclipse.org/Xtext/ – Last Retrieved: November
28, 2012.

[Jac] Jacob Lee. The parley framework official website. Online document, available at:
http://osl.cs.uiuc.edu/parley/ – Last Retrieved: December 8, 2012.

[Jen01] Nicholas R. Jennings. An agent-based approach for building complex software sys-
tems. Commun. ACM, 44(4):35–41, 2001.

230

http://api.dartlang.org/docs/bleeding_edge/dart_isolate.html
http://api.dartlang.org/docs/bleeding_edge/dart_isolate.html
http://www.dartlang.org/
http://www.dartlang.org/
http://mail.google.com/
http://mail.google.com/
http://maps.google.com/
http://maps.google.com/
http://www.json.org/
http://www.eclipse.org/Xtext/
http://osl.cs.uiuc.edu/parley/

BIBLIOGRAPHY 231

[KA] Rajesh Kumar Karmani and Gul Agha. The ActorFoundry Programming Language
Official Website. Online document, available at: http://osl.cs.uiuc.edu/
af/ – Last Retrieved: December 8, 2012.

[KA11] Rajesh Kumar Karmani and Gul Agha. Actors. In Springer’s Encyclopedia of Parallel
Computing, 2011.

[Kaf90] Dennis Kafura. Act++: building a concurrent c++ with actors. J. Object Oriented
Program., 3(1):25–37, April 1990.

[Kam10] A. Kameas. Towards the next generation of ambient intelligent environments. In En-
abling Technologies: Infrastructures for Collaborative Enterprises (WETICE), 2010
19th IEEE Int. Workshop on, pages 1 –6, june 2010.

[Kay69] Alan Curtis Kay. The reactive engine. PhD thesis, The University of Utah, 1969.
AAI7003806.

[Kay96] Alan C. Kay. History of programming languages—ii. chapter The early history of
Smalltalk, pages 511–598. ACM, New York, NY, USA, 1996.

[Kay98] Alan Curtis Kay. An email on messaging in Smalltalk/Squeak, 1998. Online docu-
ment, available at: http://lists.squeakfoundation.org/pipermail/
squeak-dev/1998-October/017019.html – Last Retrieved: November 28,
2012.

[Kim97] W. Kim. ThAL: An actor system for efficient and scalable concurrent computing. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

[KMS+04] Antonis Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis, and Francesca Toni.
The kgp model of agency. In ECAI: European Conference on Artificial Intelligence,
pages 33–37. IOS Press, 2004.

[Koe] Koen V. Hindriks. Official GOAL Website. Online document, available at: http:
//mmi.tudelft.nl/trac/goal – Last Retrieved: November 15, 2012.

[KSA09] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks for the jvm plat-
form: a comparative analysis. In PPPJ–International Conference on the Principles and
Practice of Programming in Java, pages 11–20, New York, NY, USA, 2009. ACM.

[KSMA06] Y.M. Kwon, S. Sundresh, K. Mechitov, and G. Agha. Actornet: An actor platform for
wireless sensor networks. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 1297–1300. ACM, 2006.

[KSN00] M.T. Kone, A. Shimazu, and T. Nakajima. The state of the art in agent communication
languages. Knowledge and Information Systems, 2(3):259–284, 2000.

231

http://osl.cs.uiuc.edu/af/
http://osl.cs.uiuc.edu/af/
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://mmi.tudelft.nl/trac/goal
http://mmi.tudelft.nl/trac/goal

232 BIBLIOGRAPHY

[LAP01] João Alexandre Leite, José Júlio Alferes, and Luı́s Moniz Pereira. Multi-dimensional
dynamic knowledge representation. In Proceedings of the 6th International Conference
on Logic Programming and Non-monotonic Reasoning, LPNMR ’01, pages 365–378,
London, UK, UK, 2001. Springer-Verlag.

[LD12] Gary T. Leavens and Matthew B. Dwyer, editors. Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October
21-25, 2012. ACM, 2012.

[LF11] Cristina Videira Lopes and Kathleen Fisher, editors. Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October
22 - 27, 2011. ACM, 2011.

[LFP99a] Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The current land-
scape. Intelligent Systems and Their Applications, IEEE, 14(2):45–52, 1999.

[LFP99b] Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: The cur-
rent landscape. IEEE Intelligent Systems, 14(2):45–52, March 1999.

[Lie06] Henry Lieberman. The continuing quest for abstraction. In ECOOP–European Confer-
ence on Object-Oriented Programming, volume 4067/2006, pages 192–197. Springer
Berlin / Heidelberg, 2006.

[LJR09] James A. Landay, Anthony D. Joseph, and Franklin Reynolds. Guest editors’ introduc-
tion: Smarter phones. IEEE Pervasive Computing, 8:12–13, April 2009.

[LRL+97] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B. Scherl. Golog: A logic
programming language for dynamic domains. The Journal of Logic Programming,
31(1):59–83, 1997.

[MB] Mark Miller and Dan Bornstein. The E language Official Website. Online doc-
ument, available at: http://erights.org/elang/index.html – Last Re-
trieved: December 8, 2012.

[Meha] Mehdi Dastani. Official 2APL Website. Online document, available at: http://
apapl.sourceforge.net/ – Last Retrieved: November 25, 2012.

[Mehb] Mehdi Dastani and M. Birna van Riemsdijk and John-Jules Ch. Meyer. Official 3APL
Website. Online document, available at: http://www.cs.uu.nl/3apl – Last
Retrieved: November 25, 2012.

[Mica] Microsoft Corportaion. Await API Specification. Online document, available at:
http://msdn.microsoft.com/en-us/library/vstudio/hh156528.
aspx – Last Retrieved: December 8, 2012.

232

http://erights.org/elang/index.html
http://apapl.sourceforge.net/
http://apapl.sourceforge.net/
http://www.cs.uu.nl/3apl
http://msdn.microsoft.com/en-us/library/vstudio/hh156528.aspx
http://msdn.microsoft.com/en-us/library/vstudio/hh156528.aspx

BIBLIOGRAPHY 233

[Micb] Microsoft Corportaion. The axum programming language official website. Online
document, available at: http://msdn.microsoft.com/en-us/devlabs/
dd795202.aspx – Last Retrieved: December 8, 2012.

[Mika] Mike Rettig. The jetlang framework official website. Online document, available
at: http://code.google.com/p/jetlang/ – Last Retrieved: December 8,
2012.

[Mikb] Mike Rettig. The retlang framework official website. Online document, available
at: http://code.google.com/p/retlang/ – Last Retrieved: December 8,
2012.

[Mit02] J.C. Mitchell. Concepts in programming languages. Cambridge University Press,
2002.

[ML10] N. Madden and B. Logan. Modularity and compositionality in jason. In Programming
Multi-Agent Systems, pages 237–253. Springer, 2010.

[MRS11] M. Minotti, A. Ricci, and A. Santi. Exploiting agent-oriented programming for de-
veloping future internet applications based on the web: the jaca-web framework. Lan-
guages, Methodologies, and Development Tools for Multi-Agent Systems, pages 76–94,
2011.

[MS04] G. Milicia and V. Sassone. The inheritance anomaly: ten years after. In Proceedings
of the 2004 ACM symposium on Applied computing, pages 1267–1274. ACM, 2004.

[MSR10] M. Minotti, A. Santi, and A. Ricci. Exploiting Agent-Oriented Programming for Build-
ing Advanced Web 2.0 Applications. In Omicini Andrea and Viroli Mirko, editors,
Proceedings of the 11th Workshop on Objects and Agents (WOA 2010), volume 621 of
CEUR Workshop Proceedings. Sun SITE Central Europe, RWTH Aachen University,
2010.

[MTS05] Mark Miller, E. Tribble, and Jonathan Shapiro. Concurrency among strangers. In
Rocco De Nicola and Davide Sangiorgi, editors, 1st international conference on Trust-
worthy global computing, volume 3705 of Lecture Notes in Computer Science, pages
195–229. Springer Berlin / Heidelberg, 2005.

[MY93] Satoshi Matsuoka and Akinori Yonezawa. In Gul Agha, Peter Wegner, and Akinori
Yonezawa, editors, Research directions in concurrent object-oriented programming,
chapter Analysis of inheritance anomaly in object-oriented concurrent programming
languages, pages 107–150. MIT Press, Cambridge, MA, USA, 1993.

[Nar96] Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[NHSB05] Michael N. Huhns, Munindar P. Singh, and Mark et al. Burstein. Research direc-
tions for service-oriented multiagent systems. IEEE Internet Computing, 9(6):69–70,
November 2005.

233

http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://code.google.com/p/jetlang/
http://code.google.com/p/retlang/

234 BIBLIOGRAPHY

[Nil94] Nils J. Nilsson. Teleo-reactive programs for agent control. J. Artif. Int. Res., 1(1):139–
158, January 1994.

[Nor91] Donald A. Norman. Cognitive artifacts. In John M. Carroll, editor, Designing Inter-
action: Psychology at the Human-Computer Interface, Cambridge Series On Human-
Computer Interaction, pages 17–38. Cambridge University Press, New York, 1991.

[NRTV07] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

[Obj08] Object Management Group. Agent Meta-model and Profile (AMP) RFP, 2008.
Online document, available at: http://www.omg.org/cgi-bin/doc?ad/
2008-09-05 – Last Retrieved: November 18, 2012.

[OD08] Daniel Okouya and Virginia Dignum. Operetta: a prototype tool for the design, ana-
lysis and development of multi-agent organizations. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems: demo pa-
pers, AAMAS ’08, pages 1677–1678, Richland, SC, 2008. International Foundation
for Autonomous Agents and Multiagent Systems.

[Oli] Olivier Boissier and Rafael H. Bordini and Jomi F. Hbner and Alessandro Ricci and
Andrea Santi. Official JaCaMo Website. Online document, available at: http://
jacamo.sourceforge.net/ – Last Retrieved: November 25, 2012.

[Ora] Orange Labs. Senscity Project Official Website. Online document, available at: http:
//www.senscity-grenoble.com/ – Last Retrieved: November 28, 2012.

[ORV+04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS’04), volume 1, pages 286–293, New York, USA, 19–23July 2004.
ACM.

[ORV08] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456,
December 2008.

[osftis06] OASIS (Advancing open standards for the information society). The WS-
Security Specification, 2006. Online document, available at: https:
//www.oasis-open.org/committees/download.php/16790/
wss-v1.1-spec-os-SOAPMessageSecurity.pdf – Last Retrieved:
November 26, 2012.

[osftis08a] OASIS (Advancing open standards for the information society). Official Web-
site of the WS-AtomicTransaction Specification, 2008. Online document, available
at: http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cd-02/wstx-wsat-1.2-spec-cd-
02.html – Last Retrieved: November 26, 2012.

234

http://www.omg.org/cgi-bin/doc?ad/2008-09-05
http://www.omg.org/cgi-bin/doc?ad/2008-09-05
http://jacamo.sourceforge.net/
http://jacamo.sourceforge.net/
http://www.senscity-grenoble.com/
http://www.senscity-grenoble.com/
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

BIBLIOGRAPHY 235

[osftis08b] OASIS (Advancing open standards for the information society). WS-
Coordination Specification version 1.2, 2008. Online document, avail-
able at: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.
2-spec-cd-02/wstx-wscoor-1.2-spec-cd-02.html – Last Retrieved:
November 26, 2012.

[Ous96] John Ousterhout. Why Threads Are A Bad Idea (for most purposes), 1996. Presented
at USENIX Technical Conference.

[OVDPFB03] J. Odell, H. Van Dyke Parunak, M. Fleischer, and S. Brueckner. Modeling agents
and their environment. In AOSE–Agent-oriented Software Engineering, pages 16–31.
Springer, 2003.

[PBL05] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A bdi reasoning
engine. In Multi-Agent Programming: Languages, Platforms and Applications (Vol.
I), pages 149–174. 2005.

[PPR11] C. Persson, G. Picard, and F. Ramparany. A multi-agent organization for the gov-
ernance of machine-to-machine systems. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 2,
pages 421–424. IEEE, 2011.

[PRBH09] M. Piunti, A. Ricci, O. Boissier, and J.F. Hübner. Embodying organisations in multi-
agent work environments. In IEEE/WIC/ACM Int. Conf. on Web Intelligence and In-
telligent Agent Technology (WI-IAT 2009), Milan, Italy., 2009.

[PRS09] Michele Piunti, Alessandro Ricci, and Andrea Santi. SOA/WS Applications using
Cognitive Agents working in CArtAgO Environments. In Proceedings of the 10th
Workshop on Objects and Agents (WOA 2009), 2009.

[PRTG00] D.J. Povinelli, J.E. Reaux, L.A. Theall, and S. Giambrone. Folk physics for apes:
The chimpanzee’s theory of how the world works. Oxford University Press New York,
2000.

[PSR09] M. Piunti, A. Santi, and A. Ricci. Programming SOA/WS systems with BDI agents and
artifact-based environments. In Proceedings of MALLOW-AWESOME Joint Workshop
on Agents, Web Services and Ontologies, Integrated Methodologies., Turin, Italy, 2009.

[PTCC99] David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. Toward
team-oriented programming. In Agent Theories, Architectures, and Languages (ATAL),
pages 233–247, 1999.

[PW02] S. Parsons and M. Wooldridge. Game theory and decision theory in multi-agent sys-
tems. Autonomous Agents and Multi-Agent Systems, 5(3):243–254, 2002.

[RA81] G. Ricart and A.K. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9–17, 1981.

235

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cd-02/wstx-wscoor-1.2-spec-cd-02.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cd-02/wstx-wscoor-1.2-spec-cd-02.html

236 BIBLIOGRAPHY

[Raf] Rafael H. Bordini and Jomi F. Hubner. Official Jason Website. Online document,
available at: http://jason.sourcefoge.net/ – Last Retrieved: November
15, 2012.

[Rao96] Anand S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language.
In Proceedings of the 7th European workshop on Modelling autonomous agents in a
multi-agent world : agents breaking away: agents breaking away, MAAMAW ’96,
pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

[RDP10] A. Ricci, E. Denti, and M. Piunti. A platform for developing soa/ws applications as
open and heterogeneous multi-agent systems. Multiagent and Grid Systems, 6(2):105–
132, 2010.

[Rem] Rem W. Collier. Official Agent Factory Framework Website. Online document, avail-
able at: http://www.agentfactory.com/index.php/Main_Page – Last
Retrieved: November 25, 2012.

[RG+95] A.S. Rao, M.P. Georgeff, et al. Bdi agents: From theory to practice. In Proceedings of
the first international conference on multi-agent systems (ICMAS-95), pages 312–319,
1995.

[RG98] Anand S. Rao and Michael P. Georgeff. Readings in agents. chapter Modeling rational
agents with a BDI-architecture, pages 317–328. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1998.

[Ric] Ricci, Alessandro and Santi, Andrea. simpAL Official Website. Online document,
available at: http://simpal.sourceforge.net/ – Last Retrieved: November
28, 2012.

[RJOC11] Sean Edward Russell, Howell R. Jordan, Gregory M. P. O’Hare, and Rem W. Collier.
Agent factory: A framework for prototyping logic-based aop languages. In Multiagent
System Technologies (MATES), pages 125–136, 2011.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web
service modeling ontology. Applied Ontology, 1(1):77–106, January 2005.

[RN09] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice hall
Englewood Cliffs, NJ, 3rd edition, 2009.

[ROD03] Alessandro Ricci, Andrea Omicini, and Enrico Denti. Activity Theory as a framework
for MAS coordination. In Paolo Petta, Robert Tolksdorf, and Franco Zambonelli, ed-
itors, Engineering Societies in the Agents World III, volume 2577 of LNCS, pages
96–110. Springer Berlin / Heidelberg, April 2003.

236

http://jason.sourcefoge.net/
http://www.agentfactory.com/index.php/Main_Page
http://simpal.sourceforge.net/

BIBLIOGRAPHY 237

[RPV09] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Externalisation and internaliza-
tion: A new perspective on agent modularisation in multi-agent systems programming.
In Mehdi Dastani, Amal El Fallah Seghrouchni, Joo Leite, and Paolo Torroni, editors,
Proceedings of MALLOW 2009 federated workshops: LAnguages, methodologies and
Development tools for multi-agent systemS (LADS 2009), September 2009.

[RPV11] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming in
multi-agent systems – an artifact-based perspective. Autonomous Agents and Multi-
Agent Systems, 23(2):158–192, September 2011. Special Issue: Multi-Agent Program-
ming.

[RPVO09] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. Environment
programming in CArtAgO. In Rafael P. Bordini, Mehdi Dastani, Jurgen Dix, and
Amal El Fallah Seghrouchni, editors, Multi-Agent Programming II: Languages, Plat-
forms and Applications, Multiagent Systems, Artificial Societies, and Simulated Or-
ganizations, chapter 8, pages 259–288. Springer, June 2009.

[RS11a] Alessandro Ricci and Andrea Santi. Agent-oriented computing: Agents as a paradigm
for computer programming and software development. In Proc. of the 3rd Int. Conf. on
Future Computational Technologies and Applications (Future Computing ’11), pages
42–51, Rome, Italy, 2011. IARIA.

[RS11b] Alessandro Ricci and Andrea Santi. Designing a general-purpose programming lan-
guage based on agent-oriented abstractions: the simpal project. In Proceedings
of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops, pages 159–170, New
York, NY, USA, 2011. ACM.

[RS12a] Alessandro Ricci and Andrea Santi. From actors to agent-oriented programming ab-
stractions in simpal. In Proceedings of the 3rd annual conference on Systems, pro-
gramming, and applications: software for humanity, SPLASH ’12, pages 73–74, New
York, NY, USA, 2012. ACM.

[RS12b] Alessandro Ricci and Andrea Santi. Typing multi-agent programs in simpAL. In
Programming Multi-Agent Systems, Valencia, Spain, 2012.

[RSP12] Alessandro Ricci, Andrea Santi, and Michele Piunti. Action and perception in agent
programming languages: from exogenous to endogenous environments. In Program-
ming Multi-Agent Systems, ProMAS’10, pages 119–138, Berlin, Heidelberg, 2012.
Springer-Verlag.

[RVO07] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: A framework for pro-
totyping artifact-based environments in MAS. In Danny Weyns, H. Van Dyke Parunak,
and Fabien Michel, editors, Environments for MultiAgent Systems III, volume 4389 of
LNAI, pages 67–86. Springer, May 2007. 3rd International Workshop (E4MAS 2006),
Hakodate, Japan, 8 May 2006. Selected Revised and Invited Papers.

237

238 BIBLIOGRAPHY

[RVO08] A. Ricci, M. Viroli, and A. Omicini. The A&A Programming Model and Technology
for Developing Agent Environments in MAS. In Programming Multi-Agent Systems,
pages 89–106. Springer, 2008.

[RZ94] J.S. Rosenschein and G. Zlotkin. Rules of encounter: designing conventions for auto-
mated negotiation among computers. MIT press, 1994.

[SBPS11] A. Sorici, O. Boissier, G. Picard, and A. Santi. Exploiting the jacamo framework
for realising an adaptive room governance application. In Proceedings of the compil-
ation of the co-located workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11,
NEAT’11, & VMIL’11, pages 239–242. ACM, 2011.

[SCG98] Jaime Simão Sichman, Rosaria Conte, and Nigel Gilbert, editors. Multi-Agent Sys-
tems and Agent-Based Simulation, First International Workshop, MABS ’98, Paris,
France, July 4-6, 1998, Proceedings, volume 1534 of Lecture Notes in Computer Sci-
ence. Springer, 1998.

[Sea69] J.R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge Uni-
versity Press, 1969.

[Sen] Sencha Inc. Ext JS Official Website. Online document, available at: http://www.
sencha.com/products/extjs/ – Last Retrieved: November 25, 2012.

[SFS04] Alexandru Suna and Amal El Fallah-Seghrouchni. A mobile agents platform: Archi-
tecture, mobility and security elements. In Programming Multi-Agent Systems, pages
126–146, 2004.

[SFS07] Alexandru Suna and Amal El Fallah-Seghrouchni. Programming mobile intelligent
agents: An operational semantics. Web Intelligence and Agent Systems, 5(1):47–67,
2007.

[SFT09] Tiberiu Stratulat, Jacques Ferber, and John Tranier. MASQ: towards an integral ap-
proach to interaction. In International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 813–820, 2009.

[SGA10] Andrea Santi, Marco Guidi, and Ricci Alessandro. Exploiting Agent-Oriented Pro-
gramming for Developing Android Applications. In Omicini Andrea and Viroli Mirko,
editors, Proceedings of the 11th Workshop on Objects and Agents (WOA 2010), volume
621 of CEUR Workshop Proceedings. Sun SITE Central Europe, RWTH Aachen Uni-
versity, 2010.

[SGR11] A. Santi, M. Guidi, and A. Ricci. Jaca-android: an agent-based platform for building
smart mobile applications. Languages, Methodologies, and Development Tools for
Multi-Agent Systems, pages 95–114, 2011.

[Sho93] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

238

http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/

BIBLIOGRAPHY 239

[Sil08] Jonathan Sillito. Stage: exploring erlang style concurrency in ruby. In Proceedings of
the 1st international workshop on Multicore software engineering, IWMSE ’08, pages
33–40, New York, NY, USA, 2008. ACM.

[Sin96] Munindar P. Singh. Toward interaction-oriented programming. Technical report, North
Carolina State University at Raleigh, Raleigh, NC, USA, 1996.

[Sin98] Munindar P. Singh. Agent communication languages: Rethinking the principles. Com-
puter, 31(12):40–47, December 1998.

[Sin11] Munindar P. Singh. Information-driven interaction-oriented programming: Bspl,
the blindingly simple protocol language. In The 10th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’11, pages 491–498, Richland,
SC, 2011. International Foundation for Autonomous Agents and Multiagent Systems.

[SL05] Herb Sutter and James Larus. Software and the concurrency revolution. ACM Queue:
Tomorrow’s Computing Today, 3(7):54–62, September 2005.

[SLNR11] Andrea Santi, Andrea Leardini, Antonio Natali, and Alessandro Ricci. Exploiting the
eclipse ecosystem for agent-oriented programming. In Proc. of The Sixth Workshop of
the Italian Eclipse Community, Milan, Italy, 2011.

[SM08] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. ECOOP–
European Conference on Object-Oriented Programming, pages 104–128, 2008.

[Smi80] R. G. Smith. The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transsactions on Computer, 29:1104–1113, December
1980.

[Sor11] Alexandru Sorici. Agile governance in an AmI environment. Master’s thesis, Univer-
sity ”Politehnica” of Bucharest, September 2011.

[SR11a] A. Santi and A. Ricci. Exploiting intelligent agent-based technologies for program-
ming smart mobile applications. In Proceedings of the compilation of the co-located
workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11,
pages 231–234. ACM, 2011.

[SR11b] Andrea Santi and Alessandro Ricci. Exploiting the eclipse ecosystem for agent-
oriented programming. In Proc. of The Seventh Workshop of the Italian Eclipse Com-
munity, Milan, Italy, 2011.

[SR12] Andrea Santi and Alessandro Ricci. Programming distributed multi-agent systems
in simpAL. In De Paoli Flavio and Vizzari Giuseppe, editors, Proceedings of the
13th Workshop on Objects and Agents (WOA 2012), volume 892 of CEUR Workshop
Proceedings. Sun SITE Central Europe, RWTH Aachen University, 2012.

[SSE86] L. Sterling, E. Shapiro, and M. Eytan. The art of Prolog, volume 94. Wiley Online
Library, 1986.

239

240 BIBLIOGRAPHY

[SUNa] SUN/ORACLE. Future API Specification. Online document, available
at: http://docs.oracle.com/javase/6/docs/api/java/util/
concurrent/Future.html – Last Retrieved: December 8, 2012.

[SUNb] SUN/ORACLE. Java Native Interface Specification. Online document, available
at: http://docs.oracle.com/javase/7/docs/technotes/guides/
jni/spec/jniTOC.html – Last Retrieved: November 16, 2012.

[SUNc] SUN/ORACLE. LiveConnect Library Official Website. Online document, available
at: http://jdk6.java.net/plugin2/liveconnect/ – Last Retrieved:
November 25, 2012.

[Sund] Sun/ORACLE. Official Website of Web Services Interoperability Technologies. Online
document, available at: http://wsit.java.net – Last Retrieved: November 20,
2012.

[Sun05] Alexandru Suna. CLAIM et SyMPA : Un environnement pour la programmation
d’agents intelligents et mobiles. PhD thesis, Universit Pierre et Marie Curie, 2005.

[Suta] Herb Sutter. The Free Lunch Is Over. Online document, available at:
http://www.gotw.ca/publications/concurrency-ddj.htm – Last Retrieved: December 8,
2012.

[Sutb] Herb Sutter. Welcome to the Jungle. Online document, available at: http:
//herbsutter.com/welcome-to-the-jungle/ – Last Retrieved: Decem-
ber 8, 2012.

[SW87] Bruce Shriver and Peter Wegner, editors. Research Directions in Object-Oriented Pro-
gramming. MIT Press, 1987.

[Tel] Telecom Italia Labs. Official JADE Website. [Online; accessed 25-November-2012].

[Thea] The Dojo Foundation. Dojo Official Website. Online document, available at: http:
//dojotoolkit.org/ – Last Retrieved: November 25, 2012.

[Theb] The jQuery Foundation. jQuery Official Website. Online document, available at:
http://jquery.com/ – Last Retrieved: November 25, 2012.

[Tho95] S. Rebecca Thomas. The placa agent programming language. In ECAI Workshop on
Agent Theories, Architectures, and Languages, ECAI-94, pages 355–370, New York,
NY, USA, 1995. Springer-Verlag New York, Inc.

[Tim] Tim Jansen. The actor guild framework official website. Online document, available at:
http://actorsguildframework.org/ – Last Retrieved: December 8, 2012.

[Typa] Typesafe. The akka framework official website. Online document, available at: http:
//akka.io/ – Last Retrieved: December 8, 2012.

240

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://jdk6.java.net/plugin2/liveconnect/
http://wsit.java.net
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://dojotoolkit.org/
http://dojotoolkit.org/
http://jquery.com/
http://actorsguildframework.org/
http://akka.io/
http://akka.io/

BIBLIOGRAPHY 241

[Typb] Typesafe. The scala programming language official website. Online document, avail-
able at: http://scala-lang.org/ – Last Retrieved: December 8, 2012.

[VA01] C.A. Varela and G. Agha. Programming dynamically reconfigurable open systems with
salsa. SIGPLAN Notices, 36(12):20–34, 2001.

[vBCB03] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad idea (for
high-concurrency servers). In Proc. of HOTOS’03, pages 4–4, Berkeley, CA, USA,
2003. USENIX Association.

[VCMDM09] T. Van Cutsem, S. Mostinckx, and W. De Meuter. Linguistic symbiosis between event
loop actors and threads. Computer Languages, Systems & Structures, 35(1):80–98,
2009.

[VHR+07] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco Zambon-
elli. Infrastructures for the environment of multiagent systems. Autonomous Agents
and Multi-Agent Systems, 14(1):49–60, jul 2007. Special Issue: Environment for
Multi-Agent Systems.

[VRO06] Mirko Viroli, Alessandro Ricci, and Andrea Omicini. Operating instructions for intel-
ligent agent coordination. The Knowledge Engineering Review, 21(1):49–69, March
2006.

[VSMS12] Daniel Villatoro, Jordi Sabater-Mir, and Jaime Simão Sichman, editors. Multi-Agent-
Based Simulation XII - International Workshop, MABS 2011, Taipei, Taiwan, May 2-6,
2011, Revised Selected Papers, volume 7124 of Lecture Notes in Computer Science.
Springer, 2012.

[256] World Wide Web Consortium (W3C). Official Website of the Simple Object Access
Protocol (SOAP) Specification, 2007. Online document, available at: http://www.
w3.org/TR/soap/ – Last Retrieved: November 23, 2012.

[WHSA05] A.B. Wood, T.E. Horton, and R. St Amant. Effective tool use in a habile agent. In
Systems and Information Engineering Design Symposium 2005, pages 75–81. IEEE,
2005.

[Wik] Wikimedia Foundation. Promise pipelining article on wikipedia. Online document,
available at: http://en.wikipedia.org/wiki/Promise_pipelining –
Last Retrieved: December 8, 2012.

[Woo97] M. Wooldridge. Agent-based software engineering. In IEE Proceedings - Software,
volume 144, pages 26–37. IET, 1997.

[WOO07] D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction in multia-
gent systems. Autonomous agents and multi-agent systems, 14(1):5–30, 2007.

[Woo09] Michael Wooldridge. An Introduction to Multiagent Systems (second edition). Wiley,
2. edition, 2009.

241

http://scala-lang.org/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://en.wikipedia.org/wiki/Promise_pipelining

242 BIBLIOGRAPHY

[Wora] World Wide Web Consortium (W3C). The ECMAScript Language Specification, Ver-
sion 5.1. Online document, available at: http://www.ecma-international.
org/publications/standards/Ecma-262.htm – Last Retrieved: Novem-
ber 25, 2012.

[Worb] World Wide Web Consortium (W3C). The HTML5 Specification. Online document,
available at: http://dev.w3.org/html5/spec/ – Last Retrieved: November
25, 2012.

[Worc] World Wide Web Consortium (W3C). The HTML5 Web Messaging Specification.
Online document, available at: http://dev.w3.org/html5/postmsg/ – Last
Retrieved: November 25, 2012.

[Word] World Wide Web Consortium (W3C). The Web Workers Specification. Online
document, available at: http://www.w3.org/TR/workers/ – Last Retrieved:
November 25, 2012.

[Wor04] World Wide Web Consortium (W3C). Web Services Architecture, 2004. Online
document, available at: http://www.w3.org/TR/ws-arch/ – Last Retrieved:
November 18, 2012.

[Wor07] World Wide Web Consortium (W3C). Official Website of the Simple Object Access
Protocol (SOAP) Specification, 2007. Online document, available at: http://www.
w3.org/TR/wsdl20/ – Last Retrieved: November 23, 2012.

[WPM05] Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environments for
Multi-Agent Systems, First International Workshop, E4MAS 2004, New York, NY, USA,
July 19, 2004, Revised Selected Papers, volume 3374 of Lecture Notes in Computer
Science. Springer, 2005.

[WPM06] Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environments for
Multi-Agent Systems II, Second International Workshop, E4MAS 2005, Utrecht, The
Netherlands, July 25, 2005, Selected Revised and Invited Papers, volume 3830 of Lec-
ture Notes in Computer Science. Springer, 2006.

[WPM07] Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environments for
Multi-Agent Systems III, Third International Workshop, E4MAS 2006, Hakodate, Ja-
pan, May 8, 2006, Selected Revised and Invited Papers, volume 4389 of Lecture Notes
in Computer Science. Springer, 2007.

[Wri09] Alex Wright. Get smart. Communication of ACM, 52:15–16, January 2009.

[WSI] WSI Group (Web Service Interoperability Organization). Deliverables from the Ba-
sic Profile Working Group. Online document, available at: http://www.ws-i.
org/deliverables/workinggroup.aspx?wg=basicprofile – Last Re-
trieved: November 18, 2012.

242

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://dev.w3.org/html5/spec/
http://dev.w3.org/html5/postmsg/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

BIBLIOGRAPHY 243

[WZ88] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modification mech-
anism or what like is and isn’t like. In ECOOP–European Conference on Object-
Oriented Programming, pages 55–77, London, UK, UK, 1988. Springer-Verlag.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concur-
rent programming abcl/1. SIGPLAN Not., 21(11):258–268, June 1986.

[Yon90] Akinori Yonezawa, editor. ABCL: an object-oriented concurrent system. MIT Press,
Cambridge, MA, USA, 1990.

[YS02] Pinar Yolum and Munindar P. Singh. Commitment machines. In Revised Papers from
the 8th International Workshop on Intelligent Agents VIII, ATAL ’01, pages 235–247,
London, UK, UK, 2002. Springer-Verlag.

[YT87] A. Yonezawa and M. Tokoro. Object-oriented concurrent programming. MIT Press
series in computer systems. MIT Press, 1987.

243

	Abstract
	Introduction
	Contributions
	Outline of the Dissertation

	I Setting The Stage
	Background on the Actor Model
	Overview of The Actor Model
	Programming Abstractions
	Request-Reply Messaging Pattern
	Local Synchronization Constraints
	Continuations and Promises

	Actor-Oriented Programming: The Next Big Thing is Already Here
	Main Shortcomings and Limitations

	Background on Programming Multi-Agent Systems
	Introduction
	Programming the Agent Dimension
	The Belief Desire Intention Agent Model
	Agent-Oriented Programming Languages and Frameworks

	Programming the Environment Dimension
	Programming the Environment Taking the AI Perspective
	Programming the Environment Taking a Software Engineering Perspective

	Programming the Organization and Interaction Dimensions
	Programming the Interaction Dimension
	Programming the Organization Dimension

	Concluding Remarks

	II Engineering Agent-Oriented Technologies for Programming Multi-Agent Systems
	The JaCa Platform
	An Effective Action and Perception Model for BDI-based APLs Working with Endogenous Environments
	The Action Model
	The Perception Model

	Programming Multi-Agent Systems in JaCa
	Programming the Agents
	Programming the Environment
	The Multi-Agent Program in the Overall

	JaCa Programming: Focus on Further Features
	Integrating Direct Communication and Mediated Interaction
	Distributed and Open Systems Programming
	Wrapping Existing Libraries and External Resources

	JaCa-Android: Programming Smart Mobile Applications in JaCa
	The JaCa-Android Platform
	A Concrete Case Study

	JaCa-WS: Programming Applications based on the Service-Oriented Architecture and Web Services in JaCa
	The JaCa-WS Platform
	A Concrete Case Study

	JaCa-Web: Programming Rich Internet Applications in JaCa
	The JaCa-Web Platform
	A Concrete Case Study

	Concluding Remarks

	The JaCaMo Platform
	The JaCaMo Approach
	Overview of the JaCaMo Programming Meta-Model
	Synergies Among the JaCaMo Programming Dimensions

	Impact on Multi-Agent System Programming: The JaCaMo Programming Model and Platform
	The Building-A-House Example

	Using JaCaMo for Real World Applications
	Engineering Smart Co-Working Spaces
	An Agent-Based Machine-To-Machine Management Infrastructure

	Concluding Remarks

	AOP: Shifting from the Development of Intelligent Software Systems to General Purpose Computing

	III The simpAL Project
	The simpAL Programming Language and Ecosystem
	simpAL Overview
	Background Metaphor: Human-Inspiered Computing
	The Agent Model and Control Architecture
	A Computational Model for Artifacts

	The simpAL Programming Language
	Programming the Agents
	Programming the Environment
	Programming the Organization

	Focus on Main Features
	Integrating Autonomous and Event-Driven Behaviors
	Typing Support
	Polymorphism
	Distributed Runtime Infrastructure

	Concrete Case Studies
	A Reactive File Searcher
	Implementation of the Ricart-Agrawala's algorithm

	The simpAL Integrated Development Environment
	IDE Requirements
	IDE Overview

	Remarks on Performance
	Final Remarks
	Comparison with State-of-the-Art Agent-Oriented Programming Approaches
	Current Limitations

	IV Conclusion
	Conclusion and Future Work

	V Appendix
	EBNF Grammar of the simpAL Language
	Additional Sources
	Reactive File Searcher Script
	Sources of the Test Programs

	Bibliography

