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ABSTRACT

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the
huge amount of data produced. Obtained the complete sequence of a genome, the major
problem of knowing as much as possible of its coding regions, is crucial. Protein
sequence annotation is challenging and, due to the size of the problem, only
computational approaches can provide a feasible solution. As it has been recently pointed
out by the Critical Assessment of Function Annotations (CAFA), most accurate methods
are those based on the transfer-by-homology approach and the most incisive contribution
is given by cross-genome comparisons. In the present thesis it is described a non-
hierarchical sequence clustering method for protein automatic large-scale annotation,
called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-
against-all alignment of more than 13 millions protein sequences characterized by a very
stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam
terms) inside clusters by means of a statistical validation, even in the case of multi-
domain proteins. Within BAR+ clusters it is also possible to transfer the three
dimensional structure (when a template is available). This is possible by the way of
cluster-specific HMM profiles that can be used to calculate reliable template-to-target
alignments even in the case of distantly related proteins (sequence identity < 30%).

Other BAR+ based applications have been developed during my doctorate including the
prediction of Magnesium binding sites in human proteins, the ABC transporters
superfamily classification and the functional prediction (GO terms) of the CAFA targets.
Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate
methods. At present, as a web server for the functional and structural protein sequence

annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.


http://bar.biocomp.unibo.it/bar2.0

1. INTRODUCTION

Life science and biology are now living a flourishing period. We have now a great
opportunity to deeply understand the living machinery thanks to the recent progresses in
the genomic field and the integration of modern sequencing techniques as the Next
Generation Sequencing (NGS) [1].

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the
huge amount of data produced, first of all for the need to annotate the DNA, intended as
the process of localizing coding sequences along genomes and secondly to understand the
role of translated genes in living cells. Proven that genomic data, and in particular
sequences of coding genes, are reliable by means of the accuracy of modern sequencing
machines, life science has to deal now with tens of millions of sequences coming from
thousands of different organisms.

When the complete sequence of an entire genome becomes available the problem of
localizing genes along the sequence poses. Depending on the organism, and so on the
experimental data available this process can be automatic, based on computational
methods, or manually curated by specialists.

All primary DNA data, the sequences, are publicly available in few well organised
databases. The first to be published and the most important is GenBank [2], this database
maintains and merges data from three different organisations that exchange their content:
the DNA DataBank of Japan (DDBJ) [3], the European Molecular Biology Laboratory
(EMBL) [4], and GenBank at NCBI.

In the early stage, before the advent of ultra rapid sequencing machines, GenBank
included only prokaryote genomes data, now eukaryotic genomes are available as well,
and all the data are organized in two principal divisions including sequences from

complete and incomplete genomes, the GenBank and the Whole Genome Shotgun
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division (WGS) respectively [2]. According to the statistics in the website, at the moment
of writing (February 2013), the total number of sequences available is about 150 millions
for the canonical GenBank division and about 100 millions for the WGS. In figure 1, it is
possible to appreciate the exponential growth of the number of sequences in the two

divisions since the GenBank birth date.
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Figure 1 GenBank number of sequences growth.
GenBank collects both complete and incomplete genomes. The WGS indicates the Whole
Genome Shotgun sequencing project data coming from incomplete genomes and are
collected  separately.  (Figure  obtained from the GenBank  website

http://www.ncbi.nlm.nih.gov/genbank).

Another database for the collection of genome data is Ensembl [5]. The website was born
in the 2000 from a project with the aim to provide annotation for newly sequenced
genomes based on automatic pipelines. The database than was expanded including
comparative genomics, variation and regulatory data. The Ensembl project is a European
collaboration between the European Bioinformatics Institute (EBI) and the Wellcome

Trust Sanger Institute (WTSI). The database includes 61 eukaryote organisms (February
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2013) some of which, like the human and mouse genomes, are manually annotated
meaning that transcribed regions are defined after the evaluation of each single
experimental evidence by a human curator.

The automatic annotation pipeline in Ensembl, namely Genbuild [6][7], consists in four
principal steps. The first one is the localization of all already known specie-specific
proteins. The second one is a similarity search of proteins coming from related organisms
in the remaining un-annotated regions of the genome, the third stage is the mapping of
cDNA and EST data available for that organism to support the predictions made at the
preceding stages and to identify the UTRs. The last step is the collection and
identification of transcripts that map to the same gene, to remove redundancy.

This genome annotation, intended as the identification of the coding regions, is a nonstop
process since new experimental evidences can modify substantially the predicted
positions of gene boundaries. Each genome in fact is continuously revised and new
annotated versions, also for well-studied genomes, are periodically released. The
Genbuild results for the Human genome at the moment of writing were last updated in
January 2013.

The availability of protein sequences has made a great difference in the numerous
scientific studies of important biological molecules, noticeable are the great advances in
the discovery of new associations between DNA mutations in coding regions and diseases
[8][9]. However, a comprehensive vision of the complete repertoire of functions
performed by all genome regions is still missing and a reliable outline of all biological
protein roles is needed to take advantage of the huge amount of sequence data available
[10][11].

The amount of protein structures determined by time consuming and expensive

experimental methods is significantly smaller when compared to the data produced by



large-scale DNA sequencing methods [12]. For example, the number of proteins with
trusted and safe manual curated annotations in the UniProtKB [13] database is about
540,000 (release 2013 02) that is 1:55 of the total number of included proteins,
considering also automatically annotated proteins.

The experimental data associated with manual curated proteins is the source for
computational techniques aiming to fill the gap between the experimental manual protein
characterization and the large-scale automatic sequence/structure/function annotation
[14][15]. The challenging problem of a reliable large-scale functional annotation has
become so important in the last few years that attracted the attention of a large part of the
scientific community involved in the development of function predictors [16][17]. To
help science to keep pace with this flow of knowledge, bioinformatics continuously
develops tools for the management and the integration of many different resources

[18][19].

The work described in this thesis is a method for the automatic transfer of structural and
functional features from well-annotated proteins to newly un-reviewed targets. The
method, called “The Bologna Annotation Resource Plus” (BAR+), relies on a non-
hierarchical sequence clustering for protein automatic large-scale annotation. The method
is based on an all-against-all alignment of more than 13 millions protein sequences
characterized by a very stringent metric that allows a safe transferring of functional and
structural features (Gene Ontology functional terms, Pfam domains and PDB structures)
by means of a statistical validation and the development of cluster-specific sequence
profiles.

During my doctorate BAR+ and many useful related applications have been published

and described in some scientific articles (see list of publications section and appendix).



There is also an article describing the results of an evaluation of the state-of-the-art in the
field of automatic functional prediction [16]. BAR+ participated in this competition and
was judged to be among the best ten prediction methods. This evaluation, called the
Critical Assessment of Function Annotations (CAFA) [16], involved more than fifty

research groups from all over the world.

1.1 Protein function annotation

Given the entire sequence of a genome, after the identification of coding regions, it is
fundamental to understand the specific role of the translated sequences in the living cell.
Annotating proteins means to map specific biological functions to sequences. This task
unfortunately is one of the most difficult for several reasons, first because is very
complicated for experimentalist to test biological functions in living organisms and
second because finding the proper definition of a specific biological function for a protein
is not trivial [20].

Even if not all proteins are enzymes, the best-known and studied role of proteins is
considering them as enzymes. By this, many efforts has been done to classify them by the
type of reactions they can catalyze. An example of an available resource for such
classification is the Enzyme Commission number (EC number) [21] that organize all
reactions in a hierarchical way by an identification code of four digits corresponding to
four different levels of increasing specificity.

Of course, to fully understand the biological role of a protein inside the cell considering
only the reaction it catalyzes is not enough satisfactory. For example, looking at
membrane receptors, knowing that they can phosphorilate a substrate do not tell us so

much about their role in signals transduction.



Moreover, it is well known that a large amount of proteins responsible for all biological
processes in the cell can perform more than one function per protein and that a single
protein can perform different functions depending on the sub-cellular localization or on
the type of tissue where it is expressed. This type of proteins are called “moonlight
proteins” [22].

As the knowledge about all possible functions performed by proteins is increasing and it
is already really extended, a standard and organised ontology has been created, the Gene

Ontology [23].

1.2  Gene Ontology

The Gene Ontology (GO) [23] is a controlled vocabulary of functional terms subdivided
into three main divisions, namely: i) molecular function (MF); ii) cellular component
(CC) and biological process (BP). All GO terms are organized in a directed acyclic graph
(DAG), where nodes (terms) represent functional definitions and links represent
relationships among terms. It is a directed graph because there is a hierarchy, this means
that some terms are more general than other terms and that there is a root term. It is
acyclic because it is not possible to have paths that starting from a node point back to the
same node. In figure 2 there is an example of a little portion of the gene ontology graph
including all the ancestors of two GO terms: “fibroblast growth factor receptor signalling
pathway” (GO:0008543) and “transcription corepressor activity” (GO:0003714) with 26
and 4 ancestors respectively. These two terms (and some others not listed here) are
associated to the same protein “14-3-3 protein beta/alpha” from Homo Sapiens (P31946

in UniProtKB), an adapter protein involved in many signalling pathways.
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Figure 2. A portion of the Gene Ontology graph.

In this example the ““fibroblast growth factor receptor signalling pathway” (GO:0008543
red circle) and the ““transcription corepressor activity” (GO:0003714 blue circle) are
shown. These two terms for example can be associated to the same protein “14-3-3

protein beta/alpha’, an adapter protein involved in many signalling pathways.

The three ontologies are quite different considering both the size (the number of terms)
and the level of specificity reached in the three main branches. The specificity of a single
term is measured as the length of the shortest path that separates that term from the
ontology root, and in particular the length (distance) is calculated as the number of nodes
traversed along that path. In table 1 there is a statistic on the number of terms and the
maximum specificity reached in the Gene Ontology vocabulary calculated for the three
main branches separately. When a term is not connected with any children, it is a leaf.

Leaf terms are the deepest terms that can be found for each branch of the graph and when



a protein is already associated with a leaf term describing a specific function is not
possible to obtain further information about that function. Ideally, each protein should be
associated only by leaves terms but experimental limitations, very often, allow only a
more general annotation. The Biological Process (BP) sub-ontology is the more
characterized by considering the number of terms included (24,697 terms) and also the
deepest, reaching a maximum depth of 13 nodes. This is a consequence of the much more
difficult problem of defining biological processes properly. In fact, the number of
biological processes is much larger than the sum of all biochemical reactions carried out

by enzyme proteins.

BP* CC* MF*
Terms 24,697 3,146 9,547
Leaves 13,095 2,439 7,646

Obsolete terms® 686 148 894

Max terms depth” 13 9 11
Average terms depth” 6.24 4.21 5.34
Average leaves depth” 6.48 4.28 5.42

Table 1. Statistic of the terms included in the Gene Ontology in the three main sub-
ontologies.

* the three main ontologies: BP = Biological Process; CC = Cellular Component; MF =
Molecular Function. * the term depth is calculated as the minimum number of nodes that
separates that term from the root of the ontology. ° obsolete terms are those that were
eliminated or substituted in new releases of the Gene Ontology vocabulary. All data refer

to the Gene Ontology release of February 2013.
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1.3 Sequence, structure and function relationships in proteins

Encoded in the sequence of a genome there is all information needed to develop a living
organism, but the realization of that extremely complex machinery pass through proteins.
Proteins are the effective magic tools that carry out almost all biochemical functions in
living organisms and participate in all processes inside the cell.

Proteins can be classified in families when sharing similar features at the sequence or
structural level and when an evolutionary relationship is established. The basic concept is
that if two sequences coming from two different organisms share a certain level of
similarity at the sequence or structure level they could be evolutionary related and they
could perform an identical or similar function. In such cases, the two proteins are called
homologous [24].

The protein function is the key feature that at the end is really subjected to the
evolutionary pressure [25] and so as new mutations are collected during evolution the
divergence between two proteins is much more extended at the sequence level than for
their structures since structures are strictly related to the biological function [25].
Consequently, similarities in protein structures can be more reliable than sequence
similarities but when two proteins share similar structures having very different
sequences can be considered distantly related homologous proteins [26][27].

However, distinguishing between paralogous and homologous proteins is very important
for the correct attribution of the biological function [28]. This specification requires the
construction of phylogenetic trees that depends on the challenging ability to identify
evolutionary relationships starting from sequence data [29] and on the ability to
discriminate between speciation and duplication events. A fundamental resource

capturing this distinction for similar proteins is COG (Clusters of Orthologous Groups)
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[30], an evolutionary classification that identifies orthologous proteins by means of a
large-scale comparative analysis of genomic sequence data.

It is well established that biological functional units can be smaller than an entire protein
and that all the functions performed by the protein universe is the sum of different
combinations of small units called domains [31]. Many resources actually define families
and functions on a domain-based point of view [31].

Sequence similarity search allows clustering procedures to define sets of similar
sequences, that can be achieved using similarity-detection tools such as BLAST [32] or
profiling tools based on multiple sequence alignments, for example, PSI-BLAST [33].
However, not negligible problems related to this approach are the definition of a
similarity threshold for separating families from each other and that is very difficult to

safely detect very distantly related proteins based solely on their sequence identity [26].

1.4  Structure-based classification of proteins

The reference resource for protein structures is the Protein Data Bank (PDB) now
including some 88,512 structures (February 26, 2013). Even if some researches
demonstrated that the number of possible folds is not so extended, the representation of
the entire protein structural space is well away to be satisfactory [34].

Different metrics and methods were used to classify proteins and domains on a structural
basis. By this point of view the most important projects are the Structural Classification
Of Proteins (SCOP) [35] and the CATH Protein Structure Classification (CATH) [36].
Both methods use a hierarchical classification based on structural common properties.
The hierarchy levels for the first method, SCOP, are: Class, Fold, Superfamily and
Family; for the second, CATH, are: Class, Architecture, Topology and Homologous

superfamily.
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The two projects differ principally by the method of classification, whereas SCOP is
manually curated, CATH involves both automatic and manual classification procedures.
Even if they are based on structural features, they differ principally in the identification of
domain boundaries inside the same protein.

The analysis of subfamily in SCOP or CATH allows inspecting the functional divergence
with respect to structure. Many function prediction methods as SUPERFAMILY [37] and
Gene3D [38] take advantage of these data to associate functions to sequence profiles

corresponding to the structural classification.

1.5 Classification of proteins by means of sequence clustering

Automatic annotation methods take advantage of clustering techniques to deal with large
amount of data. Clustering procedures can be classified as hierarchical and non-
hierarchical ones. Hierarchical clusters are based on the construction of a tree
representation of similarity between sequences. This approach allows to explore different
families at different levels of similarity from closely related homologous to remote distant
relationships. CluSTr [39], SYSTERS [40] and ProtoNet [41] are examples of this
approach that build their similarity trees starting from a matrix of similarity built upon an
all-against-all sequence alignment.

ProtoNet and CluSTr use different linkage criterion to define clusters and different
approaches to detect similarity. CluSTr uses the single-linkage clustering where clusters,
considering that a cluster is formed by more than one element, are defined on the
minimum distance between their members. ProtoNet instead uses the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) where is calculated the average distance

between all members of two clusters.
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Eventually it can be said that hierarchical clustering does not provide a single partitioning
of the data set, but instead it provides an extensive hierarchy of clusters that merge with
each other at certain distances, moreover methods based on this approach lead to different
results based on the way distances are computed and on the linkage criterion chosen.
Non-hierarchical methods instead provide clusters without any hierarchical relationship
between them; these approaches classify proteins by means of an unambiguous partition
of the data set generating non-overlapping groups.

ProtoMap [42] takes advantage in generating sequence similarity graphs. TribeMCL [43]
applies the Markov clustering approach (MCL). This method operates on a graph that
contains similarity information obtained by pair wise alignments of sequences and is

rather independent of the presence of multi domain proteins.

1.6 Domain-based classification of proteins

As it has already been commented earlier function is often associated with domains, so
the problem of the identification of functional domains from sequence alone poses and
solutions provided by current methods are not completely satisfactory [44].

Knowledge of function at the domain level is very useful to increase the accuracy for
function prediction methods [31]. Novel functions can arise from different combinations
of single domains and an exhaustive library of all possible functional domains is a
fundamental resource to inspect the role of unknown proteins.

A great value is given when domains are defined based on the structural classification as
Gene3d [38] and SUPERFAMILY [45] do starting respectively from CATH [36] and
SCOP [35] domain definitions.

Family domains can be identified by means of multiple sequence alignments (MSA),

resources based on MSAs are PROSITE [46] and Pfam [47]. The first, PROSITE,
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transforms information coming from the MSA in patterns that can be seen as statistical
signature profiles family-specific. Pfam similarly uses manually curated MSA, but they
are processed to build Hidden Markov Models (HMM), a sophisticated way to create a
profile representation that is able to detect specific sequence patterns even in distantly
related proteins [48].

Pfam was last updated in November 2011 and contains more than 13,000 families. The
library of HMM profiles covers about the 71% of UniProtKB [13] sequences. InterPro
[49][50] instead is a consensus method (including also Pfam profiles) that increases the
UniProtKB coverage up to 77% thanks to the combination of 11 different resources

containing different domain definitions.
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2. BAR+

Improvements in bioinformatics gave rise to a noticeable growth in the field of automatic
protein annotation. That happened thanks to the computational power reached nowadays
and the development of new effective tools for large-scale comparisons of available
complete genomes and proteomes sequences.

Based on the notion that similar sequences share similar functions and structures the
largest part of current automatic methods just perform a more or less sophisticated
homology-based transfer of annotation [16].

A common accepted identity threshold for a safe functional transfer based solely on
sequence similarity is about 40-50% [26]. Nevertheless, considering that proteins can
contain multiple domains and that different combinations of shared domains can lead to
different functions [51], the overlap extent between two aligned sequences (coverage)

should be considered to avoid erroneous predictions.

BAR+, is an updated version of the previously developed method BAR (The Bologna
Annotation Resource [52]) that is described in [53]. The method relies on a non-
hierarchical clustering of the protein sequence universe based on a all-against-all large-
scale similarity search. Clustering in BAR+ is characterized by a very stringent metric
that ensures a reliable detection of evolutionary relationships among pair of sequences
even in the case of multi domain proteins.

Many improvements have been achieved after the first published version of the method
[52], firstly by considering the increased size of the sequence space explored and
secondly by looking at the quality of annotation transferred. Following there is a brief
description of BAR+, further details and the presentation of the last release of the web
server are included in this paper [53] (also printed in the appendix).
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2.1 Data set

BAR+ includes 988 complete genomes from both prokaryotic and eukaryotic organisms.
Bacterial genomes were downloaded from the NCBI
(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) while eukaryotic ones from both NCBI
(ftp://Mftp.ncbi.nih.gov/refseg/release/) and Ensembl [5] (ftp://ftp.ensembl.org/pub/).
Summing up were obtained complete proteomes sequences from 925 prokaryotes and 63
eukaryotes including 4,096,673 sequences.

Another 9,399,063 sequences were retrieved from the UniProtKB (release 05 2010)
excluding fragments. UniProtKB is one of the databases of the Universal Protein
Resource (UniProt) [54]. It collects all available proteins with experimental annotations
(Swiss-Prot [55] division) and all predicted proteins from genomic data (TrEMBL

division). In TrTEMBL almost all annotations are assigned with computational procedures.

2.2 Sequence alignments

The first step to compare sequences is an all-against-all pair wise comparison of the entire
dataset (13,495,736 sequences) with the BLAST (Basic Local Alignment Search Tool)
program [32]. Pitfalls of BLAST are that it performs only local alignments and that it is
based on a heuristic algorithm so the optimal solution (the optimal alignment) is not
guaranteed. On the contrary, it is much faster than any other alignment algorithm and it is
a key feature considering that an all-against-all comparison given this dataset means
about 10™ alignments. Even if BLAST is very fast in a single desktop computer to
perform all these alignments it would have taken about 7 years long, so the program was
run in parallel by means of a GRID computing environment [52] where, exploiting

distributed resources (500 CPU), the process time was reduced to few months.
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Each single alignment was run with some fixed parameters to obtain statistically
comparable results. The database size parameter was settled to 100,000 and the E-value
threshold to 10™°. Some other BLAST parameters were left unchanged with their default
values (gap opening penalty = -11, gap extension penalty = -1, substitution matrix =

BLOSUM62).

2.3 BARH+ clustering

After the alignments the similarity relationships between sequences was represented by
an undirected graph where nodes are protein sequences and links are similarity
relationships between proteins. The similarity between proteins is evaluated considering
two specific parameters of the pair wise alignment: sequence identity and coverage.
The identity was calculated on the aligned sequences as the percentage of identical
residues in the same position. This value was taken as it is in the BLAST output. The
coverage instead was calculated as the ratio between the overlap of the two sequences
over the total length of the alignment. By this, two proteins were connected in the graph if
and only if the following constraints were respected simultaneously:

Sequence identity > 40%

Coverage > 90%

With these stringent criteria the detection of evolutionary relationships is more reliable
and it is guaranteed also for multi-domain proteins thanks to the high coverage threshold.
Clusters were defined as the connected components of the graph. This means that all
members of a cluster are connected through at least a path and that all clusters are
disjoined. This type of clustering ensures a unique partitioning of the sequence space
independently from any arbitrary decision on the detection level of evolutionary

relationships. As a result, with this approach it is possible to have members of the same
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cluster that are not directly connected. Moreover, in large clusters coexist pairs of
proteins with low sequence identity (< 30%) implying that remote homologous proteins
can be grouped together. All sequences without any link with other proteins are called

singletons.

2.4  Statistical validation of cluster specific annotations

Given that clusters members are mostly derived from UniProtKB [13] entries, it is
possible to collect all annotations associated to these proteins. However, when very
different sequences are included in the same BAR+ cluster, it is difficult to assess which
pool of annotations can really fit all sequences inside the cluster, and it is true in
particular for big clusters. In other words, it is fundamental to define a set of annotations
that can be safely transferred to all un-annotated sequences inside the same cluster. The
selection of cluster specific annotations is then performed by a statistical validation
already described in [52]. This procedure consists of a calculation for each annotation of a
P-value representing the probability that a specific annotation can be found in a specific
cluster by chance. This procedure was applied for both Gene Ontology and Pfam terms.

For each term inside a cluster the P-value was calculated as:

P value (term) =

Where N is the number of sequences in a given cluster endowed with the same specific

term, D is the number of sequences with at least an annotation, Z is number of sequences
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with at least an annotation inside the cluster, M is the number of sequences with the same
annotation in the entire database. To each calculated value was then applied the
Bonferroni correction considering that a cluster can contain more than one term.

In order to assess if a term is statistically significant a bootstrapping procedure was
applied to find a P-value threshold. The bootstrapping was performed by reshuffling
randomly go terms among clusters but maintaining the specific number of annotations for
each cluster. Repeating this procedure for 100 times, it was possible to compare the
distribution of the random generated P-values with the observed ones. A P-value
threshold of 0.01 was found to maximize the difference between the two distributions and

it guarantees that terms under that value are cluster-specific.

2.5  Structural modelling through HMM cluster profiles

Structural modelling is a quite simple task when it is possible to find a template that share
at least 30% of sequence identity with the target protein. When it is not the case, but some
information relating the target fold are known, homology modelling is still possible. In
the worst case, when any suitable template cannot be found, the only un-trusted “ab-
initio” prediction methods are feasible. In any case, a good structural model depends
directly on the quality and reliability of the template/target sequence alignment [56].
BAR+ offers a powerful solution for modelling targets that fall into clusters containing
structural templates. This is particularly interesting when distantly related target/template
pairs coexist in the same cluster [53]. Reliable target/template alignments in a BAR+
cluster endowed with a template are possible by means of a HMM model, that is
calculated from the multiple sequence alignment (MSA) of the template (or multiple
templates if it is the case) and the corresponding neighbours. The neighbours are

sequences directly linked with the template and so sharing at least 40% of sequence
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identity and a coverage > 90%. To increase accuracy of the cluster-specific HMM
profiles, when multiple templates coexist in the same cluster, the MSA of the neighbours
is refined based on the structural alignment of the templates. The total number of clusters

including templates and so endowed with an HMM in BAR+ is 10,858 [53].
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3. BAR+ APPLICATIONS

3.1 Protein classification in BAR+

The following three paragraphs refer to a paper accepted by the editor but not printed yet
and so not included in the appendix.

The definition of the term “family” is very complex when speaking about proteins; it
depends on the metric we consider to group them. If the basic concept is that proteins
belonging to the same family share a common ancestor, it is very difficult to determine
boundaries between similar families and detect the complete set of proteins belonging to a
particular family. Two proteins with very similar structure but with very low sequence
identity (for example lower than 20%) are probably remote homologues [25] but it is very
difficult to discriminate between ortologous and paralogous proteins or exclude an event
of convergent evolution [30][57]. In recent years a number of different classification
systems have been developed to organize proteins, both at the sequence and structural
level [58].

Among all classification schemes, the most noticeable are those based on: (1) hierarchical
families of proteins, such as super-families/families; (2) families of protein domains, such
as those in Pfam [47]; (3) sequence motifs or conserved regions, like in PROSITE [46];
(4) structural classes, such as in SCOP [35] and CATH [36]. As a case study of the
discriminative power of identifying protein families here an analysis of the biggest cluster
in BAR+ is reported. The cluster includes the ATP-binding domain of the ABC (ATP
Binding Cassette) transporters.

In the following analysis the Transporter Classification Data Base (TCDB) [59] was
considered as reference because its classification scheme is completely manually curated

and it classifies proteins based on their main function and source organism.
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3.2  ATP-binding cassette cluster in BAR+

The ABC-transporters are members of a protein superfamily that contains both uptake
and efflux transport systems. These transporters couple the P-P-bond-hydrolysis of the
ATP to drive transport of various substrates across membranes and also to participate in
processes of DNA and RNA repair [60][61]. These fundamental roles explain also why
these proteins can be found and are extremely conserved over all organisms in every
kingdom [62][63].

Members of the family can be found in living cells as complexed subunits where a
dimeric Nucleotide Binding Domain (NBD) is coupled with a dimeric Transmembrane
Domain (TMD) formed by alfa-helices, and as dimers where the NBD plus the TMD are
fused together, the dimeric organization is the one adopted in particular by exporters.
Some complexes are also more complicated. There are examples where an accessory
subunit is necessary for the recruitment of a specific substrate acting as a receptor, and
there are also particular transporters spanning from the interior of the mitochondrion to

the cell cytoplasm allowing substrate translocation across two membranes.

In BAR+ the biggest cluster (the cluster number 1) includes the NDB domain of the
ABC-transporters. The cluster contains 87,893 proteins mostly from prokaryotes and with
an average length of 281 residues. This cluster well represents a typical situation in which
structural features and functional annotation can be safely transferred from well-annotated
SwissProt entries. The cluster indeed contains 22 PDB from Prokaryotes that remain,
after the superimposition, in a RMSD range of 1.89 + 0.39 A and 77 validated GO terms
that are safely transferred to about 37% of the cluster sequences never annotated before

(figure 3).
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Figure 3. Annotation transfer of the ATP binding domain of the ABC transporters.

In the cluster number 1 it is possible to transfer annotations at the structural and
functional level. 22 PDB are available as templates and 73 GO terms and 6 Pfam
domains can be safely transferred to un-annotated sequences. Percentage refers to
UniProtKB already annotated entries compared to un-annotated sequences. Interestingly
more than 53,000 sequences can be modelled by means of the cluster HMM profile with

low homology with all templates (sequence identity < 30%).
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3.3 Extending the TCDB with BAR+

Similarly to the Enzyme Classification (EC) [21], proteins in the TCDB are associated
with a 5 digits code. The first 3 digits of every ABC-transporter is “3.A.1” where “3” is
for “Primary Active Transporters”, “A” stays for “P-P-bond-hydrolysis-driven
transporters” and “1” indicates the “ATP-binding Cassette (ABC) Superfamily”. The
other 2 digits specify the substrate and the organism, for example “3.A.1.1.4” is the
lactose porter (“1”) of the Agrobacterium Radiobacter (“4”). At the end, 422 different

ABC-transporters can transport 88 different substrates.

For each transporter for each organism the corresponding subunits (multiple chains or just
one for fused domains) are mapped in UniProtKB and are labelled based on their role in
the complex and their localization in the cell. Because of this, labels correspond to:
cytoplasmic proteins (C), transmembrane proteins (TM), receptor proteins (R), proteins
where the membrane and the cytoplasmic portion are fused together (MC); proteins with
joined membrane and receptor subunits (MR), altogether there is a total of 1,073 chains
mapped into UniProtKB sequences.

In figure 4 it is represented the percentage of sequences that inherit TCDB
annotation/labelling in BAR+, the most populated cell compartments are the cytoplasm

(C), membrane (TM) and outside cell with receptor proteins (R).
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Figure 4. Annotated sequences in BAR+ annotated accordingly to the TCDB
classification.

Cytoplasmic proteins (C), transmembrane proteins (TM), receptor proteins (R), proteins
with fused membrane and cytoplasmic chains (MC); proteins comprising a membrane

and an extra cytoplasmic portion (MR).

In BAR+, these 1,073 sequences map to 396 clusters, containing 256,866 other
sequences. This procedure allows to confirm the sub-cellular localization specificity of
BAR+ clusters. In fact, TCDB subunits belonging to different organisms that fall in the
same cluster are always annotated in agreement with BAR+ validated terms. By
exploiting the BAR+ power of transferring annotations, we can extend the size of the
TCDB of about 256 times. In particular, considering all clusters containing ABC
transporters subunits are transferred: 124 Molecular Function, 201 Biological process and
41 Cellular Component terms to 243,364, 237,657 and 214,558 sequences respectively.

70 Pfam domains are inherited by 256,349 sequences (figure 4).
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3.4 Ligands and binding sites in BAR+: the “human magnesome”

When a cluster in BAR+ is endowed with a PDB template, it also includes an HMM
profile that allows a reliable target/template alignment. The ability of modelling structures
in BAR+ also implies the transferring of all other structural features associated to PDB
templates including substrates binding sites.

Following there is a description of the BAR+ ability to transfer magnesium binding sites
in proteins. The choice of studying this cation was based on the fact that magnesium
binding sites are less conserved through evolution compared to others divalent cations
and their detection is very difficult [64]. The work described here was published in [65]
and it is also included in the appendix.

Magnesium covers a large amount of different roles in living organisms both at the
structural and functional level. It is fundamental as cofactor for more than 300 reactions
in cells and it is involved in the stabilization of membranes and nucleic acids thanks to its
high positive charge [64].

Magnesium is a divalent cation with a small radius, a great charge density and it is
coordinated with an octahedral geometry. In proteins it usually binds no more than three
residues (it binds carbonyl oxygen in the backbone or charged side chains atoms) and
water molecules to satisfy the total of six bonds of its coordination [66]. Magnesium
concentration in living cells is very high (0.5-1mM, [67]), it is the most abundant alkaline
cation and its concentration seems to drive the association with proteins.

The only bioinformatics resources available for the magnesium binding sites analysis are
the PROCOGNATE [68] web server that maps ligands from PDB to cognate enzymes in
SCOP [35] and CATH [36] and PROSITE [46] that defines just few patterns useful to

retrieve only very specific domains. Moreover, it has been recently implemented a
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method to retrieve magnesium binding sites in structures by implementing a structural

alphabet [69], but it is relevant for only already structurally solved proteins.

The first step in BAR+ to transfer binding sites among sequences was to map PDB
residues that bind Mg into the corresponding template sequence. To identify atoms
interactions on known three-dimensional structures it is sufficient to set a cut-off distance
based on the type of interaction that has to be detected. To avoid arbitrary choices the Mg
interactions with protein atoms have been identified parsing both the “LINK” and “SITE”
fields on the PDB files. When multiple PDB refer to the same sequence and different
magnesium is bound by different amino acids, all the sequence positions corresponding to
the magnesium binding residues were collected.

Binding positions were transferred from the template(s) to the target after a pair-wise
alignment calculated by means of the cluster specific HMM with the Hmmalign [48] tool.
The set of human sequences that fall into clusters containing magnesium binding
templates was defined as the “human magnesome” [65]. The total number of humans
sequences that bind magnesium in BAR+ is 3,751. The number of clusters containing the
1,341 PDB involved in the magnesium binding sites transfer is 251. These clusters were
also manually checked for the presence of structures without any published evidence
supporting any observed functional or structural role of Mg?* in the cell so far. This was
the case for only 119 structures falling into 21 clusters, for these templates a functional
role of the magnesium cation is not supported yet by literature.

The number of human sequences that inherited annotation from human templates is
2,688. Other 1,063 sequences inherited magnesium binding sites from structures of other

organisms.
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4. CONCLUSIONS

Automatic protein annotation is a major challenge for bioinformatics. Many tools and
resources have been developed so far, but the computational approaches for predicting
protein functions given the sequence are not satisfactory yet. BAR+ is among the most
accurate methods for functional automatic annotation, as demonstrated by a recent
international benchmark [16]. However, room for improvements still remains. Given the
stringent criteria adopted to identify evolutionary relationships, most of the clusters in
BAR+ contain only strictly related proteins. Sometimes this detection based on sequence
similarity is not sensitive enough and two related proteins could remain in separated
clusters. On the other side, there are also clusters so large that proteins with different
functions are grouped together. That happens in clusters containing proteins with very
strongly conserved domains, like the ATP binding cassette. This domain is so important
for life that it is present in all living organisms and many proteins are combinations of this
domain and other short sub-domains that are responsible for different secondary specific
functions. In such cases, an additional sub-clustering could be necessary.

Summing-up BAR+ clustering procedure can be improved adopting different clustering
approaches for different type of families by developing a metric to explore clusters and
detect these situations.

Another problem is related to the quality of the source data associated to proteins that are
sequences and sequence annotations. The impressive growth rate of available sequences
in UniProtKB has already been discussed previously in the introduction. In BAR+, this
problem convey