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ABSTRACT 

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the 

huge amount of data produced. Obtained the complete sequence of a genome, the major 

problem of knowing as much as possible of its coding regions, is crucial. Protein 

sequence annotation is challenging and, due to the size of the problem, only 

computational approaches can provide a feasible solution. As it has been recently pointed 

out by the Critical Assessment of Function Annotations (CAFA), most accurate methods 

are those based on the transfer-by-homology approach and the most incisive contribution 

is given by cross-genome comparisons. In the present thesis it is described a non-

hierarchical sequence clustering method for protein automatic large-scale annotation, 

called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-

against-all alignment of more than 13 millions protein sequences characterized by a very 

stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam 

terms) inside clusters by means of a statistical validation, even in the case of multi-

domain proteins. Within BAR+ clusters it is also possible to transfer the three 

dimensional structure (when a template is available). This is possible by the way of 

cluster-specific HMM profiles that can be used to calculate reliable template-to-target 

alignments even in the case of distantly related proteins (sequence identity < 30%).  

Other BAR+ based applications have been developed during my doctorate including the 

prediction of Magnesium binding sites in human proteins, the ABC transporters 

superfamily classification and the functional prediction (GO terms) of the CAFA targets. 

Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate 

methods. At present, as a web server for the functional and structural protein sequence 

annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.  
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1. INTRODUCTION 

Life science and biology are now living a flourishing period. We have now a great 

opportunity to deeply understand the living machinery thanks to the recent progresses in 

the genomic field and the integration of modern sequencing techniques as the Next 

Generation Sequencing (NGS) [1]. 

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the 

huge amount of data produced, first of all for the  need to annotate the DNA,  intended as 

the process of localizing coding sequences along genomes and secondly to understand the 

role of translated genes in living cells. Proven that genomic data, and in particular 

sequences of coding genes, are reliable by means of the accuracy of modern sequencing 

machines, life science has to deal now with tens of millions of sequences coming from 

thousands of different organisms.   

When the complete sequence of an entire genome becomes available the problem of 

localizing genes along the sequence poses. Depending on the organism, and so on the 

experimental data available this process can be automatic, based on computational 

methods, or manually curated by specialists. 

All primary DNA data, the sequences, are publicly available in few well organised 

databases. The first to be published and the most important is GenBank [2], this database 

maintains and merges data from three different organisations that exchange their content: 

the DNA DataBank of Japan (DDBJ) [3], the European Molecular Biology Laboratory 

(EMBL) [4], and GenBank at NCBI. 

In the early stage, before the advent of ultra rapid sequencing machines, GenBank 

included only prokaryote genomes data, now eukaryotic genomes are available as well, 

and all the data are organized in two principal divisions including sequences from 

complete and incomplete genomes, the GenBank and the Whole Genome Shotgun 
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division (WGS) respectively [2]. According to the statistics in the website, at the moment 

of writing (February 2013), the total number of sequences available is about 150 millions 

for the canonical GenBank division and about 100 millions for the WGS. In figure 1, it is 

possible to appreciate the exponential growth of the number of sequences in the two 

divisions since the GenBank birth date.  

 

 

Figure 1 GenBank number of sequences growth.  

GenBank collects both complete and incomplete genomes. The WGS indicates the Whole 

Genome Shotgun sequencing project data coming from incomplete genomes and are 

collected separately. (Figure obtained from the GenBank website 

http://www.ncbi.nlm.nih.gov/genbank).  

 

Another database for the collection of genome data is Ensembl [5]. The website was born 

in the 2000 from a project with the aim to provide annotation for newly sequenced 

genomes based on automatic pipelines. The database than was expanded including 

comparative genomics, variation and regulatory data. The Ensembl project is a European 

collaboration between the European Bioinformatics Institute (EBI) and the Wellcome 

Trust Sanger Institute (WTSI). The database includes 61 eukaryote organisms (February 
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2013) some of which, like the human and mouse genomes, are manually annotated 

meaning that transcribed regions are defined after the evaluation of each single 

experimental evidence by a human curator.  

The automatic annotation pipeline in Ensembl, namely Genbuild [6][7], consists in four 

principal steps. The first one is the localization of all already known specie-specific 

proteins. The second one is a similarity search of proteins coming from related organisms 

in the remaining un-annotated regions of the genome, the third stage is the mapping of 

cDNA and EST data available for that organism to support the predictions made at the 

preceding stages and to identify the UTRs. The last step is the collection and 

identification of transcripts that map to the same gene, to remove redundancy.     

This genome annotation, intended as the identification of the coding regions, is a nonstop 

process since new experimental evidences can modify substantially the predicted 

positions of gene boundaries. Each genome in fact is continuously revised and new 

annotated versions, also for well-studied genomes, are periodically released. The 

Genbuild results for the Human genome at the moment of writing were last updated in 

January 2013. 

The availability of protein sequences has made a great difference in the numerous 

scientific studies of important biological molecules, noticeable are the great advances in 

the discovery of new associations between DNA mutations in coding regions and diseases 

[8][9]. However, a comprehensive vision of the complete repertoire of functions 

performed by all genome regions is still missing and a reliable outline of all biological 

protein roles is needed to take advantage of the huge amount of sequence data available 

[10][11]. 

The amount of protein structures determined by time consuming and expensive 

experimental methods is significantly smaller when compared to the data produced by 
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large-scale DNA sequencing methods [12]. For example, the number of proteins with 

trusted and safe manual curated annotations in the UniProtKB [13] database is about 

540,000 (release 2013_02) that is 1:55 of the total number of included proteins, 

considering also automatically annotated proteins. 

The experimental data associated with manual curated proteins is the source for 

computational techniques aiming to fill the gap between the experimental manual protein 

characterization and the large-scale automatic sequence/structure/function annotation 

[14][15]. The challenging problem of a reliable large-scale functional annotation has 

become so important in the last few years that attracted the attention of a large part of the 

scientific community involved in the development of function predictors [16][17]. To 

help science to keep pace with this flow of knowledge, bioinformatics continuously 

develops tools for the management and the integration of many different resources 

[18][19].   

 

The work described in this thesis is a method for the automatic transfer of structural and 

functional features from well-annotated proteins to newly un-reviewed targets. The 

method, called “The Bologna Annotation Resource Plus” (BAR+), relies on a non-

hierarchical sequence clustering for protein automatic large-scale annotation. The method 

is based on an all-against-all alignment of more than 13 millions protein sequences 

characterized by a very stringent metric that allows a safe transferring of functional and 

structural features (Gene Ontology functional terms, Pfam domains and PDB structures) 

by means of a statistical validation and the development of cluster-specific sequence 

profiles. 

During my doctorate BAR+ and many useful related applications have been published 

and described in some scientific articles (see list of publications section and appendix). 
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There is also an article describing the results of an evaluation of the state-of-the-art in the 

field of automatic functional prediction [16]. BAR+ participated in this competition and 

was judged to be among the best ten prediction methods. This evaluation, called the 

Critical Assessment of Function Annotations (CAFA) [16], involved more than fifty 

research groups from all over the world. 

 

1.1 Protein function annotation 

Given the entire sequence of a genome, after the identification of coding regions, it is 

fundamental to understand the specific role of the translated sequences in the living cell. 

Annotating proteins means to map specific biological functions to sequences. This task 

unfortunately is one of the most difficult for several reasons, first because is very 

complicated for experimentalist to test biological functions in living organisms and 

second because finding the proper definition of a specific biological function for a protein 

is not trivial [20].  

Even if not all proteins are enzymes, the best-known and studied role of proteins is 

considering them as enzymes. By this, many efforts has been done to classify them by the 

type of reactions they can catalyze. An example of an available resource for such 

classification is the Enzyme Commission number (EC number) [21] that organize all 

reactions in a hierarchical way by an identification code of four digits corresponding to 

four different levels of increasing specificity.  

Of course, to fully understand the biological role of a protein inside the cell considering 

only the reaction it catalyzes is not enough satisfactory. For example, looking at 

membrane receptors, knowing that they can phosphorilate a substrate do not tell us so 

much about their role in signals transduction. 
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Moreover, it is well known that a large amount of proteins responsible for all biological 

processes in the cell can perform more than one function per protein and that a single 

protein can perform different functions depending on the sub-cellular localization or on 

the type of tissue where it is expressed. This type of proteins are called “moonlight 

proteins” [22].     

As the knowledge about all possible functions performed by proteins is increasing and it 

is already really extended, a standard and organised ontology has been created, the Gene 

Ontology [23]. 

 

1.2 Gene Ontology 

The Gene Ontology (GO) [23] is a controlled vocabulary of functional terms subdivided 

into three main divisions, namely: i) molecular function (MF); ii) cellular component 

(CC) and biological process (BP). All GO terms are organized in a directed acyclic graph 

(DAG), where nodes (terms) represent functional definitions and links represent 

relationships among terms. It is a directed graph because there is a hierarchy, this means 

that some terms are more general than other terms and that there is a root term. It is 

acyclic because it is not possible to have paths that starting from a node point back to the 

same node. In figure 2 there is an example of a little portion of the gene ontology graph 

including all the ancestors of two GO terms: “fibroblast growth factor receptor signalling 

pathway” (GO:0008543) and “transcription corepressor activity” (GO:0003714) with 26 

and 4 ancestors respectively. These two terms (and some others not listed here) are 

associated to the same protein “14-3-3 protein beta/alpha” from Homo Sapiens (P31946 

in UniProtKB), an adapter protein involved in many signalling pathways.  
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Figure 2. A portion of the Gene Ontology graph.  

In this example the “fibroblast growth factor receptor signalling pathway” (GO:0008543 

red circle) and the “transcription corepressor activity” (GO:0003714 blue circle) are 

shown. These two terms for example can be associated to the same protein “14-3-3 

protein beta/alpha”, an adapter protein involved in many signalling pathways.  

 

The three ontologies are quite different considering both the size (the number of terms) 

and the level of specificity reached in the three main branches. The specificity of a single 

term is measured as the length of the shortest path that separates that term from the 

ontology root, and in particular the length (distance) is calculated as the number of nodes 

traversed along that path. In table 1 there is a statistic on the number of terms and the 

maximum specificity reached in the Gene Ontology vocabulary calculated for the three 

main branches separately. When a term is not connected with any children, it is a leaf. 

Leaf terms are the deepest terms that can be found for each branch of the graph and when 
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a protein is already associated with a leaf term describing a specific function is not 

possible to obtain further information about that function. Ideally, each protein should be 

associated only by leaves terms but experimental limitations, very often, allow only a 

more general annotation. The Biological Process (BP) sub-ontology is the more 

characterized by considering the number of terms included (24,697 terms) and also the 

deepest, reaching a maximum depth of 13 nodes. This is a consequence of the much more 

difficult problem of defining biological processes properly. In fact, the number of 

biological processes is much larger than the sum of all biochemical reactions carried out 

by enzyme proteins.  

 

 
BP* CC* MF* 

Terms 24,697 3,146 9,547 
Leaves 13,095 2,439 7,646 

Obsolete terms° 686 148 894 
Max terms depth^ 13 9 11 

Average terms depth^ 6.24 4.21 5.34 
Average leaves depth^ 6.48 4.28 5.42 

 

Table 1. Statistic of the terms included in the Gene Ontology in the three main sub-

ontologies.   

* the three main ontologies: BP = Biological Process; CC = Cellular Component; MF = 

Molecular Function. ^ the term depth is calculated as the minimum number of nodes that 

separates that term from the root of the ontology. ° obsolete terms are those that were 

eliminated or substituted in new releases of the Gene Ontology vocabulary. All data refer 

to the Gene Ontology release of February 2013. 
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1.3 Sequence, structure and function relationships in proteins 

Encoded in the sequence of a genome there is all information needed to develop a living 

organism, but the realization of that extremely complex machinery pass through proteins. 

Proteins are the effective magic tools that carry out almost all biochemical functions in 

living organisms and participate in all processes inside the cell. 

Proteins can be classified in families when sharing similar features at the sequence or 

structural level and when an evolutionary relationship is established. The basic concept is 

that if two sequences coming from two different organisms share a certain level of 

similarity at the sequence or structure level they could be evolutionary related and they 

could perform an identical or similar function. In such cases, the two proteins are called 

homologous [24]. 

The protein function is the key feature that at the end is really subjected to the 

evolutionary pressure [25] and so as new mutations are collected during evolution the 

divergence between two proteins is much more extended at the sequence level than for 

their structures since structures are strictly related to the biological function [25]. 

Consequently, similarities in protein structures can be more reliable than sequence 

similarities but when two proteins share similar structures having very different 

sequences can be considered distantly related homologous proteins [26][27]. 

However, distinguishing between paralogous and homologous proteins is very important 

for the correct attribution of the biological function [28]. This specification requires the 

construction of phylogenetic trees that depends on the challenging ability to identify 

evolutionary relationships starting from sequence data [29] and on the ability to 

discriminate between speciation and duplication events. A fundamental resource 

capturing this distinction for similar proteins is COG (Clusters of Orthologous Groups) 
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[30], an evolutionary classification that identifies orthologous proteins by means of a 

large-scale comparative analysis of genomic sequence data. 

It is well established that biological functional units can be smaller than an entire protein 

and that all the functions performed by the protein universe is the sum of different 

combinations of small units called domains [31]. Many resources actually define families 

and functions on a domain-based point of view [31]. 

Sequence similarity search allows clustering procedures to define sets of similar 

sequences, that can be achieved using similarity-detection tools such as BLAST [32] or 

profiling tools based on multiple sequence alignments, for example, PSI-BLAST [33]. 

However, not negligible problems related to this approach are the definition of a 

similarity threshold for separating families from each other and that is very difficult to 

safely detect very distantly related proteins based solely on their sequence identity [26]. 

 

1.4 Structure-based classification of proteins  

The reference resource for protein structures is the Protein Data Bank (PDB) now 

including some 88,512 structures (February 26, 2013). Even if some researches 

demonstrated that the number of possible folds is not so extended, the representation of 

the entire protein structural space is well away to be satisfactory [34].  

Different metrics and methods were used to classify proteins and domains on a structural 

basis. By this point of view the most important projects are the Structural Classification 

Of Proteins (SCOP) [35] and the CATH Protein Structure Classification (CATH) [36]. 

Both methods use a hierarchical classification based on structural common properties. 

The hierarchy levels for the first method, SCOP, are: Class, Fold, Superfamily and 

Family; for the second, CATH, are: Class, Architecture, Topology and Homologous 

superfamily.  
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The two projects differ principally by the method of classification, whereas SCOP is 

manually curated, CATH involves both automatic and manual classification procedures. 

Even if they are based on structural features, they differ principally in the identification of 

domain boundaries inside the same protein. 

The analysis of subfamily in SCOP or CATH allows inspecting the functional divergence 

with respect to structure. Many function prediction methods as SUPERFAMILY [37] and 

Gene3D [38] take advantage of these data to associate functions to sequence profiles 

corresponding to the structural classification. 

 

1.5 Classification of proteins by means of sequence clustering 

Automatic annotation methods take advantage of clustering techniques to deal with large 

amount of data. Clustering procedures can be classified as hierarchical and non-

hierarchical ones. Hierarchical clusters are based on the construction of a tree 

representation of similarity between sequences. This approach allows to explore different 

families at different levels of similarity from closely related homologous to remote distant 

relationships. CluSTr [39], SYSTERS [40] and ProtoNet [41] are examples of this 

approach that build their similarity trees starting from a matrix of similarity built upon an 

all-against-all sequence alignment. 

ProtoNet and CluSTr use different linkage criterion to define clusters and different 

approaches to detect similarity. CluSTr uses the single-linkage clustering where clusters, 

considering that a cluster is formed by more than one element, are defined on the 

minimum distance between their members. ProtoNet instead uses the Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) where is calculated the average distance 

between all members of two clusters. 
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Eventually it can be said that hierarchical clustering does not provide a single partitioning 

of the data set, but instead it provides an extensive hierarchy of clusters that merge with 

each other at certain distances, moreover methods based on this approach lead to different 

results based on the way distances are computed and on the linkage criterion chosen. 

Non-hierarchical methods instead provide clusters without any hierarchical relationship 

between them; these approaches classify proteins by means of an unambiguous partition 

of the data set generating non-overlapping groups. 

ProtoMap [42] takes advantage in generating sequence similarity graphs. TribeMCL [43] 

applies the Markov clustering approach (MCL). This method operates on a graph that 

contains similarity information obtained by pair wise alignments of sequences and is 

rather independent of the presence of multi domain proteins.  

 

1.6 Domain-based classification of proteins 

As it has already been commented earlier function is often associated with domains, so 

the problem of the identification of functional domains from sequence alone poses and 

solutions provided by current methods are not completely satisfactory [44]. 

Knowledge of function at the domain level is very useful to increase the accuracy for 

function prediction methods [31]. Novel functions can arise from different combinations 

of single domains and an exhaustive library of all possible functional domains is a 

fundamental resource to inspect the role of unknown proteins. 

A great value is given when domains are defined based on the structural classification as 

Gene3d [38] and SUPERFAMILY [45] do starting respectively from CATH [36] and 

SCOP [35] domain definitions. 

Family domains can be identified by means of multiple sequence alignments (MSA), 

resources based on MSAs are PROSITE [46] and Pfam [47]. The first, PROSITE, 
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transforms information coming from the MSA in patterns that can be seen as statistical 

signature profiles family-specific. Pfam similarly uses manually curated MSA, but they 

are processed to build Hidden Markov Models (HMM), a sophisticated way to create a 

profile representation that is able to detect specific sequence patterns even in distantly 

related proteins [48].  

Pfam was last updated in November 2011 and contains more than 13,000 families. The 

library of HMM profiles covers about the 71% of UniProtKB [13] sequences. InterPro 

[49][50] instead is a consensus method (including also Pfam profiles) that increases the 

UniProtKB coverage up to 77% thanks to the combination of 11 different resources 

containing different domain definitions. 
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2. BAR+ 

Improvements in bioinformatics gave rise to a noticeable growth in the field of automatic 

protein annotation. That happened thanks to the computational power reached nowadays 

and the development of new effective tools for large-scale comparisons of available 

complete genomes and proteomes sequences.  

Based on the notion that similar sequences share similar functions and structures the 

largest part of current automatic methods just perform a more or less sophisticated 

homology-based transfer of annotation [16]. 

A common accepted identity threshold for a safe functional transfer based solely on 

sequence similarity is about 40-50% [26]. Nevertheless, considering that proteins can 

contain multiple domains and that different combinations of shared domains can lead to 

different functions [51], the overlap extent between two aligned sequences (coverage) 

should be considered to avoid erroneous predictions. 

 

BAR+, is an updated version of the previously developed method BAR (The Bologna 

Annotation Resource [52]) that is described in [53]. The method relies on a non-

hierarchical clustering of the protein sequence universe based on a all-against-all large-

scale similarity search. Clustering in BAR+ is characterized by a very stringent metric 

that ensures a reliable detection of evolutionary relationships among pair of sequences 

even in the case of multi domain proteins. 

Many improvements have been achieved after the first published version of the method 

[52], firstly by considering the increased size of the sequence space explored and 

secondly by looking at the quality of annotation transferred. Following there is a brief 

description of BAR+, further details and the presentation of the last release of the web 

server are included in this paper [53] (also printed in the appendix).   
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2.1 Data set 

BAR+ includes 988 complete genomes from both prokaryotic and eukaryotic organisms. 

Bacterial genomes were downloaded from the NCBI 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) while eukaryotic ones from both NCBI 

(ftp://ftp.ncbi.nih.gov/refseq/release/) and Ensembl [5] (ftp://ftp.ensembl.org/pub/). 

Summing up were obtained complete proteomes sequences from 925 prokaryotes and 63 

eukaryotes including 4,096,673 sequences.  

Another 9,399,063 sequences were retrieved from the UniProtKB (release 05_2010) 

excluding fragments. UniProtKB is one of the databases of the Universal Protein 

Resource (UniProt) [54]. It collects all available proteins with experimental annotations 

(Swiss-Prot [55] division) and all predicted proteins from genomic data (TrEMBL 

division). In TrEMBL almost all annotations are assigned with computational procedures. 

 

2.2 Sequence alignments 

The first step to compare sequences is an all-against-all pair wise comparison of the entire 

dataset (13,495,736 sequences) with the BLAST (Basic Local Alignment Search Tool) 

program [32]. Pitfalls of BLAST are that it performs only local alignments and that it is 

based on a heuristic algorithm so the optimal solution (the optimal alignment) is not 

guaranteed. On the contrary, it is much faster than any other alignment algorithm and it is 

a key feature considering that an all-against-all comparison given this dataset means 

about 1014 alignments. Even if BLAST is very fast in a single desktop computer to 

perform all these alignments it would have taken about 7 years long, so the program was 

run in parallel by means of a GRID computing environment [52] where, exploiting 

distributed resources (500 CPU), the process time was reduced to few months. 
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Each single alignment was run with some fixed parameters to obtain statistically 

comparable results. The database size parameter was settled to 100,000 and the E-value 

threshold to 10-10. Some other BLAST parameters were left unchanged with their default 

values (gap opening penalty = -11, gap extension penalty = -1, substitution matrix = 

BLOSUM62). 

 

2.3 BAR+ clustering 

After the alignments the similarity relationships between sequences was represented by 

an undirected graph where nodes are protein sequences and links are similarity 

relationships between proteins. The similarity between proteins is evaluated considering 

two specific parameters of the pair wise alignment: sequence identity and coverage.  

The identity was calculated on the aligned sequences as the percentage of identical 

residues in the same position. This value was taken as it is in the BLAST output. The 

coverage instead was calculated as the ratio between the overlap of the two sequences 

over the total length of the alignment. By this, two proteins were connected in the graph if 

and only if the following constraints were respected simultaneously: 

Sequence identity ≥ 40% 

Coverage ≥ 90% 

With these stringent criteria the detection of evolutionary relationships is more reliable 

and it is guaranteed also for multi-domain proteins thanks to the high coverage threshold.   

Clusters were defined as the connected components of the graph. This means that all 

members of a cluster are connected through at least a path and that all clusters are 

disjoined. This type of clustering ensures a unique partitioning of the sequence space 

independently from any arbitrary decision on the detection level of evolutionary 

relationships. As a result, with this approach it is possible to have members of the same 
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cluster that are not directly connected. Moreover, in large clusters coexist pairs of 

proteins with low sequence identity (< 30%) implying that remote homologous proteins 

can be grouped together. All sequences without any link with other proteins are called 

singletons.  

 

2.4 Statistical validation of cluster specific annotations 

Given that clusters members are mostly derived from UniProtKB [13] entries, it is 

possible to collect all annotations associated to these proteins. However, when very 

different sequences are included in the same BAR+ cluster, it is difficult to assess which 

pool of annotations can really fit all sequences inside the cluster, and it is true in 

particular for big clusters. In other words, it is fundamental to define a set of annotations 

that can be safely transferred to all un-annotated sequences inside the same cluster. The 

selection of cluster specific annotations is then performed by a statistical validation 

already described in [52]. This procedure consists of a calculation for each annotation of a 

P-value representing the probability that a specific annotation can be found in a specific 

cluster by chance. This procedure was applied for both Gene Ontology and Pfam terms. 

For each term inside a cluster the P-value was calculated as: 

 

 

 

Where N is the number of sequences in a given cluster endowed with the same specific 

term, D is the number of sequences with at least an annotation, Z is number of sequences 
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with at least an annotation inside the cluster, M is the number of sequences with the same 

annotation in the entire database. To each calculated value was then applied the 

Bonferroni correction considering that a cluster can contain more than one term. 

In order to assess if a term is statistically significant a bootstrapping procedure was 

applied to find a P-value threshold. The bootstrapping was performed by reshuffling 

randomly go terms among clusters but maintaining the specific number of annotations for 

each cluster. Repeating this procedure for 100 times, it was possible to compare the 

distribution of the random generated P-values with the observed ones. A P-value 

threshold of 0.01 was found to maximize the difference between the two distributions and 

it guarantees that terms under that value are cluster-specific. 

 

2.5 Structural modelling through HMM cluster profiles 

Structural modelling is a quite simple task when it is possible to find a template that share 

at least 30% of sequence identity with the target protein. When it is not the case, but some 

information relating the target fold are known, homology modelling is still possible. In 

the worst case, when any suitable template cannot be found, the only un-trusted “ab-

initio” prediction methods are feasible. In any case, a good structural model depends 

directly on the quality and reliability of the template/target sequence alignment [56]. 

BAR+ offers a powerful solution for modelling targets that fall into clusters containing 

structural templates. This is particularly interesting when distantly related target/template 

pairs coexist in the same cluster [53]. Reliable target/template alignments in a BAR+ 

cluster endowed with a template are possible by means of a HMM model, that is 

calculated from the multiple sequence alignment (MSA) of the template (or multiple 

templates if it is the case) and the corresponding neighbours. The neighbours are 

sequences directly linked with the template and so sharing at least 40% of sequence 
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identity and a coverage ≥ 90%. To increase accuracy of the cluster-specific HMM 

profiles, when multiple templates coexist in the same cluster, the MSA of the neighbours 

is refined based on the structural alignment of the templates. The total number of clusters 

including templates and so endowed with an HMM in BAR+ is 10,858 [53]. 

  

21 
 



3. BAR+ APPLICATIONS 

3.1 Protein classification in BAR+ 

The following three paragraphs refer to a paper accepted by the editor but not printed yet 

and so not included in the appendix. 

The definition of the term “family” is very complex when speaking about proteins; it 

depends on the metric we consider to group them. If the basic concept is that proteins 

belonging to the same family share a common ancestor, it is very difficult to determine 

boundaries between similar families and detect the complete set of proteins belonging to a 

particular family. Two proteins with very similar structure but with very low sequence 

identity (for example lower than 20%) are probably remote homologues [25] but it is very 

difficult to discriminate between ortologous and paralogous proteins or exclude an event 

of convergent evolution [30][57]. In recent years a number of different classification 

systems have been developed to organize proteins, both at the sequence and structural 

level [58].  

Among all classification schemes, the most noticeable are those based on: (1) hierarchical 

families of proteins, such as super-families/families; (2) families of protein domains, such 

as those in Pfam [47]; (3) sequence motifs or conserved regions, like in PROSITE [46]; 

(4) structural classes, such as in SCOP [35] and CATH [36]. As a case study of the 

discriminative power of identifying protein families here an analysis of the biggest cluster 

in BAR+ is reported. The cluster includes the ATP-binding domain of the ABC (ATP 

Binding Cassette) transporters.  

In the following analysis the Transporter Classification Data Base (TCDB) [59] was 

considered as reference because its classification scheme is completely manually curated 

and it classifies proteins based on their main function and source organism.  
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3.2 ATP-binding cassette cluster in BAR+ 

The ABC-transporters are members of a protein superfamily that contains both uptake 

and efflux transport systems. These transporters couple the P-P-bond-hydrolysis of the 

ATP to drive transport of various substrates across membranes and also to participate in 

processes of DNA and RNA repair [60][61]. These fundamental roles explain also why 

these proteins can be found and are extremely conserved over all organisms in every 

kingdom [62][63]. 

Members of the family can be found in living cells as complexed subunits where a 

dimeric Nucleotide Binding Domain (NBD) is coupled with a dimeric Transmembrane 

Domain (TMD) formed by alfa-helices, and as dimers where the NBD plus the TMD are 

fused together, the dimeric organization is the one adopted in particular by exporters. 

Some complexes are also more complicated. There are examples where an accessory 

subunit is necessary for the recruitment of a specific substrate acting as a receptor, and 

there are also particular transporters spanning from the interior of the mitochondrion to 

the cell cytoplasm allowing substrate translocation across two membranes.   

 

In BAR+ the biggest cluster (the cluster number 1) includes the NDB domain of the 

ABC-transporters. The cluster contains 87,893 proteins mostly from prokaryotes and with 

an average length of 281 residues. This cluster well represents a typical situation in which 

structural features and functional annotation can be safely transferred from well-annotated 

SwissProt entries. The cluster indeed contains 22 PDB from Prokaryotes that remain, 

after the superimposition, in a RMSD range of 1.89 ± 0.39 Å and 77 validated GO terms 

that are safely transferred to about 37% of the cluster sequences never annotated before 

(figure 3).  
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Figure 3. Annotation transfer of the ATP binding domain of the ABC transporters. 

In the cluster number 1 it is possible to transfer annotations at the structural and 

functional level. 22 PDB are available as templates and 73 GO terms and 6 Pfam 

domains can be safely transferred to un-annotated sequences. Percentage refers to 

UniProtKB already annotated entries compared to un-annotated sequences. Interestingly 

more than 53,000 sequences can be modelled by means of the cluster HMM profile with 

low homology with all templates (sequence identity < 30%). 
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3.3 Extending the TCDB with BAR+ 

Similarly to the Enzyme Classification (EC) [21], proteins in the TCDB are associated 

with a 5 digits code. The first 3 digits of every ABC-transporter is “3.A.1” where “3” is 

for “Primary Active Transporters”, “A” stays for “P-P-bond-hydrolysis-driven 

transporters” and “1” indicates the “ATP-binding Cassette (ABC) Superfamily”. The 

other 2 digits specify the substrate and the organism, for example “3.A.1.1.4” is the 

lactose porter (“1”) of the  Agrobacterium Radiobacter (“4”). At the end, 422 different 

ABC-transporters can transport 88 different substrates. 

 

For each transporter for each organism the corresponding subunits (multiple chains or just 

one for fused domains) are mapped in UniProtKB and are labelled based on their role in 

the complex and their localization in the cell. Because of this, labels correspond to: 

cytoplasmic proteins (C), transmembrane proteins (TM), receptor proteins (R), proteins 

where the membrane and the cytoplasmic portion are fused together (MC); proteins with 

joined membrane and  receptor subunits (MR), altogether there is a total of 1,073 chains 

mapped into UniProtKB sequences. 

In figure 4 it is represented the percentage of sequences that inherit TCDB 

annotation/labelling in BAR+, the most populated cell compartments are the cytoplasm 

(C), membrane (TM) and outside cell with receptor proteins (R). 
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Figure 4. Annotated sequences in BAR+ annotated accordingly to the TCDB 

classification. 

Cytoplasmic proteins (C), transmembrane proteins (TM), receptor proteins (R), proteins 

with fused membrane and cytoplasmic chains (MC); proteins comprising a membrane 

and an extra cytoplasmic portion (MR).  

 

In BAR+, these 1,073 sequences map to 396 clusters, containing 256,866 other 

sequences. This procedure allows to confirm the sub-cellular localization specificity of 

BAR+ clusters. In fact, TCDB subunits belonging to different organisms that fall in the 

same cluster are always annotated in agreement with BAR+ validated terms. By 

exploiting the BAR+ power of transferring annotations, we can extend the size of the 

TCDB of about 256 times. In particular, considering all clusters containing ABC 

transporters subunits are transferred: 124 Molecular Function, 201 Biological process and 

41 Cellular Component terms to 243,364, 237,657 and 214,558 sequences respectively. 

70 Pfam domains are inherited by 256,349 sequences (figure 4).  

 

 

C
Direct 0.11%

Inherited 42.9%
R

Direct 0.08%
Inherited 15.7%

TM
Direct 0.15%

Inherited 34.0%
MR

Direct 0.01%
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Direct 0.05%

Inherited 6.0%
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3.4 Ligands and binding sites in BAR+: the “human magnesome” 

When a cluster in BAR+ is endowed with a PDB template, it also includes an HMM 

profile that allows a reliable target/template alignment. The ability of modelling structures 

in BAR+ also implies the transferring of all other structural features associated to PDB 

templates including substrates binding sites. 

Following there is a description of the BAR+ ability to transfer magnesium binding sites 

in proteins. The choice of studying this cation was based on the fact that magnesium 

binding sites are less conserved through evolution compared to others divalent cations 

and their detection is very difficult [64]. The work described here was published in [65]  

and it is also included in the appendix. 

Magnesium covers a large amount of different roles in living organisms both at the 

structural and functional level. It is fundamental as cofactor for more than 300 reactions 

in cells and it is involved in the stabilization of membranes and nucleic acids thanks to its 

high positive charge [64]. 

Magnesium is a divalent cation with a small radius, a great charge density and it is 

coordinated with an octahedral geometry. In proteins it usually binds no more than three 

residues (it binds carbonyl oxygen in the backbone or charged side chains atoms) and 

water molecules to satisfy the total of six bonds of its coordination [66]. Magnesium 

concentration in living cells is very high (0.5-1mM, [67]), it is the most abundant alkaline 

cation and its concentration seems to drive the association with proteins.  

The only bioinformatics resources available for the magnesium binding sites analysis are 

the PROCOGNATE [68] web server that maps ligands from PDB to cognate enzymes in 

SCOP [35] and CATH [36] and PROSITE [46] that defines just few patterns useful to 

retrieve only very specific domains. Moreover, it has been recently implemented a 
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method to retrieve magnesium binding sites in structures by implementing a structural 

alphabet [69], but it is relevant for only already structurally solved proteins. 

 

The first step in BAR+ to transfer binding sites among sequences was to map PDB 

residues that bind Mg into the corresponding template sequence. To identify atoms 

interactions on known three-dimensional structures it is sufficient to set a cut-off distance 

based on the type of interaction that has to be detected. To avoid arbitrary choices the Mg 

interactions with protein atoms have been identified parsing both the “LINK” and “SITE” 

fields on the PDB files. When multiple PDB refer to the same sequence and different 

magnesium is bound by different amino acids, all the sequence positions corresponding to 

the magnesium binding residues were collected.  

Binding positions were transferred from the template(s) to the target after a pair-wise 

alignment calculated by means of the cluster specific HMM with the Hmmalign [48] tool. 

The set of human sequences that fall into clusters containing magnesium binding 

templates was defined as the “human magnesome” [65]. The total number of humans 

sequences that bind magnesium in BAR+ is 3,751. The number of clusters containing the 

1,341 PDB involved in the magnesium binding sites transfer is 251. These clusters were 

also manually checked for the presence of structures without any published evidence 

supporting any observed functional or structural role of Mg2+ in the cell so far. This was 

the case for only 119 structures falling into 21 clusters, for these templates a functional 

role of the magnesium cation is not supported yet by literature. 

The number of human sequences that inherited annotation from human templates is 

2,688. Other 1,063 sequences inherited magnesium binding sites from structures of other 

organisms. 
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4. CONCLUSIONS 

Automatic protein annotation is a major challenge for bioinformatics. Many tools and 

resources have been developed so far, but the computational approaches for predicting 

protein functions given the sequence are not satisfactory yet. BAR+ is among the most 

accurate methods for functional automatic annotation, as demonstrated by a recent 

international benchmark [16]. However, room for improvements still remains. Given the 

stringent criteria adopted to identify evolutionary relationships, most of the clusters in 

BAR+ contain only strictly related proteins. Sometimes this detection based on sequence 

similarity is not sensitive enough and two related proteins could remain in separated 

clusters. On the other side, there are also clusters so large that proteins with different 

functions are grouped together. That happens in clusters containing proteins with very 

strongly conserved domains, like the ATP binding cassette. This domain is so important 

for life that it is present in all living organisms and many proteins are combinations of this 

domain and other short sub-domains that are responsible for different secondary specific 

functions. In such cases, an additional sub-clustering could be necessary. 

Summing-up BAR+ clustering procedure can be improved adopting different clustering 

approaches for different type of families by developing a metric to explore clusters and 

detect these situations. 

Another problem is related to the quality of the source data associated to proteins that are 

sequences and sequence annotations. The impressive growth rate of available sequences 

in UniProtKB has already been discussed previously in the introduction. In BAR+, this 

problem conveys in the all-against-all sequence comparison necessary for the clustering 

that is the only computational bottleneck of the entire pipeline. The UniProtKB database 

now contains about twice the number of sequences already included in BAR+, and so the 
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number of new alignments needed is enormous considering that it is proportional to the 

square of the number of sequences. 

On the other hand, annotations associated to sequences are frequently updated and 

consistently modified even in the case of manually curated proteins. For example, the 

Gene Ontology functional term “protein binding” has been recently removed from all 

entries in SwissProt, the UniProtKB division that is supposed to contain only trusted 

experimental annotations. So even BAR+, that is based on a statistical validation for the 

annotation transferring, is sensible to systematic errors included in source annotation 

databases, as all other homology-based methods are. This entails that the BAR+ pool of 

annotations and the corresponding P-values need to be frequently updated and 

recalculated.  

Presently BAR+ ranges among the most accurate methods for sequence to function and/or 

sequence to structure and function prediction [16]. It is freely available on the web 

(http://bar.biocomp.unibo.it/bar2.0) and it represents a unique source of information for 

protein families. 
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ABSTRACT

We introduce BAR-PLUS (BAR+), a web server for
functional and structural annotation of protein se-
quences. BAR+ is based on a large-scale genome
cross comparison and a non-hierarchical clustering
procedure characterized by a metric that ensures a
reliable transfer of features within clusters. In this
version, the method takes advantage of a large-
scale pairwise sequence comparison of 13 495 736
protein chains also including 988 complete prote-
omes. Available sequence annotation is derived
from UniProtKB, GO, Pfam and PDB. When PDB
templates are present within a cluster (with or
without their SCOP classification), profile Hidden
Markov Models (HMMs) are computed on the basis
of sequence to structure alignment and are
cluster-associated (Cluster-HMM). Therefrom, a
library of 10 858 HMMs is made available for
aligning even distantly related sequences for struc-
tural modelling. The server also provides pairwise
query sequence–structural target alignments
computed from the correspondent Cluster-HMM.
BAR+ in its present version allows three main
categories of annotation: PDB [with or without
SCOP (*)] and GO and/or Pfam; PDB (*) without GO
and/or Pfam; GO and/or Pfam without PDB (*) and
no annotation. Each category can further comprise
clusters where GO and Pfam functional annotations
are or are not statistically significant. BAR+ is avail-
able at http://bar.biocomp.unibo.it/bar2.0.

INTRODUCTION

In the post-genomic era, with the advent of rapid
sequencing techniques, reliable and efficient functional
annotation methods are needed. Routinely, a translated

protein sequence is aligned towards a data base of
already annotated sequences and by this it is endowed
with different features depending on the level of
sequence identity (SI). This similarity search is the basis
for transfer of annotation by homology. The UniProt
Knowledgebase (UniProtKB; http://www.UniProtKB
.org/) is presently our major resource of information of
protein sequences and of corresponding functions and
structures, when available. It provides links also to other
resources/data bases, allowing a comprehensive know-
ledge of experimental and computational characteristics
of known/putative proteins and genes. However, only
4.4% of the all protein universe that presently
(UniProtKB release 2011_03; 8 March 2011) includes
some 14 million of sequences has evidence at the protein
and at the transcript level. With this scenario, inference of
function and structure among related sequences requires
the definition of rules to increase the reliability of anno-
tation. This is routinely obtained with clustering methods
by which sequences are included into sets of similarity.
Clustering can be hierarchical and non-hierarchical.
Hierarchical clustering categorizes sequences into a
tree-structure. Examples of hierarchical clustering
include SYSTERS (1), Picasso (2) and iProClass (3).
CluSTr (4,5) and ProtoNet (6,7) are the only web servers
that comprise the large number of sequences made avail-
able by fully sequenced genomes and the entire
UniProtKB. Both CluSTr and ProtoNet cluster sequences
according to different levels of SI, as set by different
E-value thresholds, and with different hierarchical
algorithms. Alternatively, non-hierarchical clustering
partitions a sequence data set into disjoint clusters (8,9).
However, neither hierarchical nor non-hierarchical
methods consider explicitly proteins containing multiple
domains or proteins that sharing common domains do
not necessarily have the same function. Proteins with
different combinations of shared domains can have
different molecular and biological functions, as recently
re-discussed (10). In order to address these problems, we
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developed BAR (11), an annotation procedure that relies
on a non-hierarchical clustering method and a large-scale
genome comparison where pairs of sequences are selected
with very strict criteria of similarity and overlapping of the
alignment as described in the next section. We provided
statistical validation that BAR allows reliable functional
and structural annotation in addition to that given by
commonly used databases (11). Here, we introduce
BAR+, an updated and extended version of BAR that
includes: (i) a 5-fold increase in sequences; (ii) GO
terms from the three main roots (molecular function, bio-
logical process and cellular localization; http://www
.geneontology.org/); (iii) Pfam domains (http://pfam
.sanger.ac.uk/); (iv) known ligands and (v) for clusters
containing PDB structure/s, a Cluster HMM model and
the corresponding alignment of the target sequence to the
optimal template in the cluster for computing its 3D
structure.

BAR+ IMPLEMENTATION

BAR+ is constructed by performing an all-against-all
pairwise alignment of all protein sequences (collected
from the entire UniProtKB 05_2010, with the exclusion
of fragments (9 399 063 sequences), and from the
proteome of complete sequenced genomes available on
the same date at the National Center for Biotechnology
Information (NCBI) [www.ncbi.nlm.nih.gov/genomes/
lproks.cgi (Prokaryotes); www.ncbi.nlm.nih.gov/
genomes/leuks.cgi (Eukaryotes)] and at Ensembl (http://
www.ensembl.org/info/data/ftp/index.html) for a total of
988 complete proteomes (the list of the species is available
at BAR+web site). For the sake of comparison, we also
used the entire SwissProt 03_2011 (8 March). Similarly to
BAR (11), BAR+ is also a non-hierarchical clustering
method relying on a comparative large-scale genome
analysis. The method relies on a non-hierarchical cluster-
ing procedure characterized by a stringent metric that
ensures a reliable transfer of features within clusters. In
this new version, the method takes advantage of a larger
scale pairwise sequence comparison than BAR, including
13 495 736 protein sequences. Alignment is performed with
BLAST (12) in a GRID environment (11). From this we
compute for each pair both the SI and the Coverage
(COV) defined as the ratio of the length of the intersection
of the aligned regions on the two sequences and the overall
length of the alignment (namely the sum of the lengths of
the two sequences minus the intersection length). Each
protein is then taken as a node and a graph is built
allowing links among nodes only when the following simi-
larity constraints are found among two proteins: their SI is
�40% and COV is �90%. By this, clusters are simply the
connected components of the graph (11). A workflow of
the method is shown in Figure 1. Seventy percent of the
whole data set (9 401 223 sequences) falls into 913 962
clusters. Noticeably, 55% of the clusters include 84% of
the cluster-included sequences. The number of sequence
in the clusters ranges from two up to 87 893 in the most
populated (Molecular Function: ABC transporter).
Given our stringent criteria, 87% of the clusters contain

sequences whose standard deviation (SD) of the protein
length is �5 residues. The remaining sequences (30% of
the total) originate singletons (containing just one
sequence). Well annotated sequences are characterized
by functional and structural annotations derived from
UniProtKB entries (Figure 1). These include GO, Pfam,
PDB and SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/)
(when available). To assess whether GO and Pfam terms
are significant in a cluster, we compute P-values and given
the multiplicity of the terms, we applied the Bonferroni
correction (11). We evaluated the cumulative distribution
of Bonferroni corrected P-values by adopting a
bootstrapping procedure. From this we set the threshold
P-value at 0.01 in order to discriminate among random
and significant (cluster associated) features (11). Validated
features (significant for the cluster) are those endowed
with P� 0.01. According to our procedure when hypo-
thetical and or putative proteins fall into an annotated
and validated cluster, they can safely inherit GO terms
and Pfam domain/s even in the case of very low SI with
the most annotated proteins. These sequences can

Figure 1. BAR+ implementation. Our method collects sequences from
the protein universe (UniProtKB) including also some 988 genomes. By
this, all the features [PDB (±SCOP classification) (red circles), GO
terms (including Molecular Function, Biological Process and Cellular
Localization) and Pfam models (blue circles) are also included. An ex-
tensive BLAST alignment is performed of all the 13 495 736 sequences
in a GRID environment. The sequence similarity network is built by
connecting two sequences only if their SI is �40% with an overlapping
COV� 90%. About 913 762 clusters are obtained by splitting of the
connected components. By this, any cluster may contain from 2 up
to 87 893 sequences (one cluster containing ABC transporters from
Prokaryotes, Eukaryotes and Archaea). Stand alone sequences are
called Singletons (30.4% of the total protein universe). Sequences
inherit the annotations within a cluster. When clusters are endowed
with PDB template/s, a Cluster-HMM is generated by considering all
the sequences that have an identity� 40% and a COV� 90% with the
structure/s (pink subset). The Cluster-HMM can be used to align all the
other sequences in the cluster to template/s.
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therefore be labelled as distantly related homologues and
inherit function and structure (when available) in a
validated manner. We previously discussed that this pro-
cedure can increase the level of annotation of UniProtKB
(11). Here we increase the level of structural and function-
al annotations of cluster-included sequences by 54%
(Figure 2A). When sequences are standing alone (accord-
ing to our criteria) they are singletons. They can anyway
carry along information (Figure 2B), provided that each
singleton is endowed with PDB and/or Pfam and/or GO
annotation.

CLUSTER-HMMs

In BAR+, when PDB templates are present within a
cluster (with or without their SCOP classification),
profile HMMs are computed on the basis of sequence
to structure alignment and are cluster associated
(Cluster-HMM) (Figure 1). When different templates are
present in a cluster the structural alignment among them is
computed with MUSTANG (13). Multiple alignments
comprising all the overlapping templates and the se-
quences similar to them (with SI� 40% and COV
� 90%) are computed with MUSCLE (14) and fed to
HMMER 2.3 (15) in order to train the profile-HMM.
By this, a library of 10 858 HMMs is made available for
aligning even distantly related sequences to a given PDB
template/s. The server also provides the pairwise query
sequence–structural target alignment computed with the
Viterbi decoding implemented in HMMER from the cor-
respondent Cluster-HMM and useful for further process-
ing and/or computing the corresponding 3D structure.

DIFFERENT ANNOTATIONS with BAR+

BAR+ allows 35 possible fine grain types of annotations
(plus no annotation) (Table 1). The most complete type of
annotation is the one with PDB (with and without SCOP
annotation) and GO terms and Pfam domains with
P� 0.01 (validated) (first row in Table 1). Interestingly,
enough 0.11% of the total sequences in our database are
sufficient to annotate in a validated manner and with the
most complete annotation another 21.99% sharing
common clusters (8251; 0.90% of the total), with an an-
notation gain factor higher than 200. Summing up (along
the first row of Table 1), we can conclude that validated
functional annotation is possible within 10% of the
clusters. Eleven percent of the sequences remains
without annotation and are included in 45% of the
clusters. About 57% of singletons (corresponding to
17% of the total set) are annotated with different
features (Figure 2B and Table 1).

SUBMITTING A PROTEIN SEQUENCE TO BAR+

When a query sequence is submitted, there are three
possible outcomes (Figure 3). The sequence can match a
sequence already present in the cluster (or in a singleton).
By this, non-annotated proteins can inherit functional and
structural annotation from other proteins within the same
cluster. Validated annotations are inherited when clusters
are endowed with validated GO and Pfam (P< 0.01).
Alternatively a BLAST alignment starts. The query
sequence may then align with any other sequence in
BAR+ with the stringent criteria of our procedure and,
therefore, find a cluster from where it can safely inherit
all the corresponding structural and functional features.

Figure 2. Different types of annotations are possible with BAR+. After clustering and depending on the features (structure, domains and function)
annotated in the cluster, sequences within a cluster can inherit different types of annotation. The percentage of sequences endowed with a given
annotation type and inheriting validated annotation (P< 0.01) is indicated. (A) Sequences within clusters. Percentage is computed with respect to
9 401 223 comprised in 913 762 clusters. Inherited: sequences that inherit annotations by falling into a cluster. Without validated annotation: the slice
comprises sequences with no annotation and not validated annotations. (B) Singletons (stand alone sequences). Percentage is computed with respect
to 4 091 908 singleton sequences.
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Alternatively, when the criteria are not met, all the
BLAST matches are returned. This allows anyway
locating the sequence within a cluster. However, in this
case, annotation through inheritance should be manually
curated. Singletons may be or not source of information
depending on their annotation.

BAR+ UPDATE

BAR+ collects sequences and their features from
UniProtKB and genome repositories. Our re-clustering is
programmed on a yearly base. BAR+ cluster annotation

will be updated every 6 months. This is based on the
notion that indeed the BAR+annotation system increases
its capacity only when we add information. This is
achieved when proteins with evidence at the transcript
and protein level (e.g.: PDB new files and/or proteins
with GO/Pfam terms) are included in the system. For
example, by comparing UniprotKB 05_2010 with
SwissProt 03_2011, we collected some 2445 sequences
carrying information according to our criteria (evidence
at protein/transcript level). By aligning this set towards
BAR+ clusters, we find that 62% of the sequences fall
into already validated clusters. About 8% aligns with
singletons and only 0.03% of the total number of BAR+

Table 1. The fine grain types of annotation with BAR+

PDB (%) SCOP Mono SCOP Multi Without PDB

GO validated
Pfam validated

Clusters 8251 (0.90) 3613 (0.40) 1461 (0.16) 83 266 (9.11)
Sequences 2 982 449 (22.10) 1 408 542 (10.44) 1 028 565 (7.62) 2 903 431 (21.51)
Inherited 2 967 743 (21.99) 1 404 011 (10.40) 1 026 154 (7.60) 1 382 310 (10.24)

Pfam
Clusters 8334 (0.91) 3647 (0.40) 1463 (0.16) 85 886 (9.40)
Sequences 2 984 057 (22.11) 1 409 647 (10.45) 1 028 569 (7.62) 2 922 876 (21.66)
Inherited 2 969 285 (22.00) 1 405 095 (10.41) 1 026 156 (7.60) 1 398 603 (10.36)

Without Pfam
Clusters 320 (0.04) 123 (0.01) 25a 6251 (0.68)
Sequences 42 202 (0.31) 15 415 (0.11) 7363 (0.05) 143 533 (1.06)
Inherited 41 825 (0.31) 15 303 (0.11) 7331 (0.05) 93 568 (0.69)

GO
Pfam validated

Clusters 8938 (0.98) 3887 (0.43) 1504 (0.16) 133 895 (14.65)
Sequences 3 042 649 (22.55) 1 450 437 (10.75) 1 029 707 (7.63) 3 311 421 (24.54)
Inherited 3 026 916 (22.43) 1 445 521 (10.71) 1 027 219 (7.61) 1 617 763 (11.99)

Pfam
Clusters 9357 (1.02) 4033 (0.44) 1526 (0.17) 322 937 (35.34)
Sequences 3 045 465 (22.57) 1 451 928 (10.76) 1 029 755 (7.63) 3 739 076 (27.71)
Inherited 3 029 337 (22.45) 1 446 890 (10.72) 1 027 247 (7.61) 1 852 223 (13.72)

Singletons 2608 (0.02) 10a 5a 1 515 720 (11.23)
Without Pfam

Clusters 452 (0.05) 176 (0.02) 30a 45 539 (4.98)
Sequences 46 311 (0.34) 17 020 (0.13) 7400 (0.05) 330 354 (2.45)
Inherited 45 803 (0.34) 16 862 (0.12) 7362 (0.05) 226 500 (1.68)

Singletons 279a 2a 2a 129 212 (0.96)
Without GO
Pfam validated

Clusters 679 (0.07) 345 (0.04) 15a 54 314 (5.94)
Sequences 44 172 (0.33) 27 775 (0.21) 654a 547 459 (4.06)
Inherited 43 416 (0.32) 27 410 (0.20) 633

a
221 585 (1.64)

Pfam
Clusters 779 (0.09) 377 (0.04) 16a 122 236 (13.38)
Sequences 44 582 (0.33) 27 983 (0.21) 656a 695 684 (5.15)
Inherited 43 735 (0.32) 27 592 (0.20) 634a 301 792 (2.24)

Singletons 205a 1a 0a 702 834 (5.21)
Without Pfam

Clusters 270 (0.03) 83 (0.01) 5a 412 192 (45.11)
Sequences 5308 (0.04) 1771 (0.01) 154a 1 494 443 (11.07)
Inherited 5023 (0.04) 1689 (0.01) 149a

Singletons 129a 1a 0a 1 743 526 (12.92)

Percentage is evaluated with respect to the total number of sequences in the data base (13 495 736 sequences). Bold character: sequences that inherit
the annotation type
aValues are negligible. Validated: P� 0.01 (See text for details, 11). Within BAR+ clusters, 35 different types of annotations are possible:
(i) +GO+Pfam+PDB [with or without SCOP (Monodomain, Multidomain)*]; GO and Pfam are or not validated (no. of levels=12).
(ii) +Pfam+PDB (with or without SCOP)* (no. of levels=6). (iii) +GO+PDB (with or without SCOP)* (number of levels=6). (iv) +Pfam+GO
(no. of levels=4). (v)+PDB (with or without SCOP)* (number of levels=3). (vi)+GO (no. of levels=2). (vii)+Pfam (no. of levels=2). Seventy
percent of the initial set fall into clusters (913 962) and 53% in validated clusters. Some 6% of the sequences are annotated without validation and
the remaining 11% are not annotated (rightmost bottom cell). About 17 and 13% of the sequences are singletons with and without annotations,
respectively.
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singletons become new clusters (with two protein se-
quences). Another 7% fall into non-validated clusters
without affecting the statistical significance of the
cluster-specific annotation. The remaining 23% originate
new singletons. We are currently planning to include other
annotation resources in order to extend our annotation
process with more protein domains and their interactions.
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Figure 3. BAR+ at work. A query sequence has been submitted. Provided that the sequence after running BLAST has a level of SI� 40% with a
COV� 90% to any sequence of BAR+, it is included into a cluster. In the above example, the cluster is well annotated and the sequence inherits all
the possible annotations from the cluster including GO terms (203), PDB/s, ligands, SCOP and Pfam annotations and the Cluster-HMM.
Furthermore in PIR format alignment/alignments of the query sequence to the cluster template/s with Cluster HMM is/are also provided. All
the sequences that align with the query are returned. (���) Only the top and bottom portions of the page are shown.
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Abstract

Background: Magnesium research is increasing in molecular medicine due to the relevance of this ion in several
important biological processes and associated molecular pathogeneses. It is still difficult to predict from the protein
covalent structure whether a human chain is or not involved in magnesium binding. This is mainly due to little
information on the structural characteristics of magnesium binding sites in proteins and protein complexes. Magnesium
binding features, differently from those of other divalent cations such as calcium and zinc, are elusive. Here we address
a question that is relevant in protein annotation: how many human proteins can bind Mg2+? Our analysis is performed
taking advantage of the recently implemented Bologna Annotation Resource (BAR-PLUS), a non hierarchical clustering
method that relies on the pair wise sequence comparison of about 14 millions proteins from over 300.000 species and
their grouping into clusters where annotation can safely be inherited after statistical validation.

Results: After cluster assignment of the latest version of the human proteome, the total number of human
proteins for which we can assign putative Mg binding sites is 3,751. Among these proteins, 2,688 inherit
annotation directly from human templates and 1,063 inherit annotation from templates of other organisms. Protein
structures are highly conserved inside a given cluster. Transfer of structural properties is possible after alignment of
a given sequence with the protein structures that characterise a given cluster as obtained with a Hidden Markov
Model (HMM) based procedure. Interestingly a set of 370 human sequences inherit Mg2+ binding sites from
templates sharing less than 30% sequence identity with the template.

Conclusion: We describe and deliver the “human magnesome”, a set of proteins of the human proteome that
inherit putative binding of magnesium ions. With our BAR-hMG, 251 clusters including 1,341 magnesium binding
protein structures corresponding to 387 sequences are sufficient to annotate some 13,689 residues in 3,751 human
sequences as “magnesium binding”. Protein structures act therefore as three dimensional seeds for structural and
functional annotation of human sequences. The data base collects specifically all the human proteins that can be
annotated according to our procedure as “magnesium binding”, the corresponding structures and BAR+ clusters
from where they derive the annotation (http://bar.biocomp.unibo.it/mg).

Background
Magnesium is the most abundant divalent alkaline ion in
living cells and it is an indispensable element for many
biological processes. Magnesium deficiency in humans is
responsible for many diseases including osteoporosis [1]
or metabolic syndrome (MetS), a combination of different

metabolic disorders that increase the risk of developing
cardiovascular diseases and diabetes [2]. Magnesium is
characterised by specific chemico-physical properties: it is
redox inert, it has a small ionic radius and is consequently
endowed with a high charge density [3,4]. In cells magne-
sium ions have both structural and functional roles. Mag-
nesium plays a key role in stabilising protein structures,
phosphate groups of membrane lipids and negatively
charged phosphates of nucleic acids. Concomitantly, it is
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also involved in catalytic roles, such as the activation/inhi-
bition of many enzymes [3,4].
Observations on the structural geometry of Mg2+

binding sites in proteins known with atomic resolution
may be derived from PROCOGNATE, a cognate ligand
domain mapping for enzymes [5] and from the Protein
Data Bank [PDB, http://www.rcsb.org]. Typical magne-
sium binding sites on proteins show three or fewer
direct binding contacts with carbonyl oxygen atoms of
the backbone and/or protein side chains, with a ten-
dency to bind water molecules given the octahedral
coordination geometry of the divalent cation [3,6]. It is
known that Mg2+ binding sites are less specific than
those of other divalent cations such as Zn2+ and Ca2+,
and that in particular conditions, Zn2+ can dislocate
Mg2+ from its pocket [3,7]. Apparently metal binding
sites on proteins seem to satisfy constraints related to
the physiological availability of the ions [4]. Magnesium
binds weakly to proteins and enzymes (Ka≤ 105 M-1) [8]
and its binding affinity appears to be dependent on its
high cellular concentration. Free Mg2+ concentration is
higher than that of any other ion (0.5-1mM, [4]). As a
consequence magnesium binding sites are less conserved
through evolution than those of others divalent cations
[4] and their detection is therefore difficult. Mg2+ bind-
ing sequence motifs have been described to be con-
served in similar RNA and DNA polymerases [9,10].
Three dimensional Mg2+ binding pockets derived from
70 Mg2+ binding proteins solved at atomic resolution
were recognised in protein structures by implementing a
structural alphabet [11].
In this work we describe how to assign putative Mg2+

binding sites to human proteins that lack structural infor-
mation and also to proteins that share less than 30%
sequence identity with any available Mg2+ binding pro-
tein template. This is possible within our BAR-PLUS
annotation resource (BAR+), a non hierarchical cluster-
ing method that has been recently described and relies
on the pair wise sequence comparison of about 14 mil-
lions proteins, including 998 complete proteomes of dif-
ferent species and Homo sapiens [12,13]. This paper to
our knowledge describes the first large scale investigation
of magnesium binding sites at the human proteome level.
The results highlight that residues involved in magne-
sium binding in protein structures (derived from the
PDB) falling into the same BAR+ cluster are conserved
and can be transferred to all the human sequences shar-
ing the same cluster on the basis of structure to sequence
alignment with a cluster specific hidden Markov model
(HMM). Magnesium binding sites within a given cluster
are also conserved when pair-wise sequence identity
among the target and the template/s is less than 30%. A
data base (BAR-hMG) is made available from where for a
given human input sequence the predicted magnesium

binding site/s can be retrieved with the corresponding
structural template/s and the annotating BAR+ cluster.

Methods
The dataset of Mg2+ binding protein structures
A list of 4,710 magnesium binding protein structures was
retrieved from the Ligand-Expo database [14] by search-
ing “MG” as Mg2+ ligand identifier. The Expo database is
a data warehouse that integrates databases, services and
tools related to small molecules bound to macromole-
cules and based on PDB. It allows users to extract ligand
information directly from the PDB, to perform chemical
substructure searches of PDB ligands using a graphical
interface and also to browse other relevant small mole-
cule resources on the Web. It is updated daily and there-
fore provides the most current information on small
molecules present in the PDB. Its reliability is based on
the reliability of the structures from where information is
derived and ultimately on the resolution of the electron
density map of the molecule. Our set includes PDBs with
an average Resolution (R) factor of 0.23 nm. The list of
magnesium binding residues and corresponding positions
in the sequence for each PDB was obtained parsing both
the “LINK” and “SITE” fields on the coordinate files [15].
In order to guarantee that magnesium is part of a biologi-
cally significant PDB structure, we filtered out fragments
and chimeric structures by constraining the coverage of
the template PDB structure to its UniProtKB correspond-
ing sequence (without signal peptide, when present) to be
≥70%. This bound guarantees a satisfactory overlapping
of the sequence to its structure and this is essential in
building by homology procedures. Applying this criter-
ion, we ended up with 1,341 PDB templates. For each
PDB structure the reference sequence and the corre-
sponding UniProtKB [16] accession are obtained from
the Sifts web server [17]. In case of multiple PDBs con-
taining different magnesium binding sites and referring
to the same sequence, all the sites are mapped into the
protein sequence. Human sequences are collected from
UniProtKB (release 2011_02), including also splicing iso-
forms, for a total of 110,464 sequences. Most of these
sequences are annotated in UniProtKB in an automatic
way and lack any experimental evidence. When frag-
ments are filtered out, the total number of human
sequences adopted for our analysis is 84,520.

The BAR-PLUS annotation resource
BAR+ is an annotation resource based on the notion that
sequences with high identity value to a counterpart can
inherit from this the same function/s and structure, if
available (http://bar.biocomp.unibo.it/bar2.0/). The
method has been recently described [13]. Briefly, an
extensive BLAST alignment [18] was performed for some
13,495,736 sequences in a GRID environment [13]. The
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sequence similarity network was built by connecting two
proteins only if their sequence identity is ≥40% with an
overlap (Coverage, COV) ≥90%. 913,762 clusters were
obtained by splitting of the connected components of the
similarity network. Mapping of PDB, Pfam functional
domains (http://pfam.sanger.ac.uk/) and GO terms (Gene
Ontology terms, http://www.geneontology.org/) as listed
in the UniProtKB protein files allows different annotation
types within each cluster. Enrichment of Pfam domains
[http://www.sanger.ac.uk/resources/databases/pfam.html]
and GO terms [http://www.geneontology.org/] for each
cluster was statistically validated (by computing a Bonfer-
roni corrected P-value and by selecting its significance
threshold with a bootstrapping procedure) [13]. Only
when P<0.01, terms are transferred from one protein to
another one in the same cluster and annotation is inher-
ited by all the sequences in the cluster. When a sequence
falls into a validated cluster it can inherit in a validated
manner functional and structural annotation (PDB
+/SCOP +/Pfam +/GOterms +/). Stand alone sequences
are called Singletons (30.4% of the total protein universe).
Clusters can contain distantly related proteins that by
this procedure can be annotated with high confidence.
We verified that the magnesium containing 1,341 PDB
structures were in BAR+ clusters and when not present,
we included them in the corresponding cluster. In any
case we verified that backbone structure was conserved
in the same cluster (average Root Mean Square Deviation
(RMSD) was about 2.0±0.2 Å) (for the definition of
RSMD see: http://cnx.org/content/m11608/latest/). The
human sequences were then aligned against BAR+ clus-
ters and only those satisfying the BAR+ constraints
(ID≥40% and COV≥90%) were retained. Out of the
84,520 human sequences aligned towards BAR+ with the
required criteria, some 61,106 fell into 22,858 clusters
and some 2,791 aligned with singletons. The remaining
portion of the human proteome (aligned with sequences
contained in BAR+ clusters with lower sequence identity
and coverage than those required for a validated transfer
of annotation) is not considered in the present analysis.
In BAR+, each cluster endowed with structure/s is char-
acterised by a computed cluster Hidden Markov Model
(HMM) that is derived from a structure-to-sequence
alignment within the cluster and can be adopted to
model the cluster sequences on the structure template/s
of the cluster [12]. We took advantage of the cluster
HMM both for structural alignments of the newly intro-
duced PDB structures and for sequence-to-structure
alignment.

Selection of the “human magnesome”
Out of the above selected 61,106 human sequences, we
focused on the subset that comprises all the chains
included in 251 clusters endowed with magnesium

containing PDB structures. In our clusters, we deal with
1,341 PDBs. We therefore checked all the PDB files, the
corresponding UniProtKB files and the related literature.
From this effort we were able to verify that for only 119
structures (9% of the total) in 21 clusters there is no
published observation supporting so far any functional
or structural role of MG. Within the clusters, sequences
could also safely inherit validated Pfam functional
domains and GO functional terms (Molecular Function,
Biological Process and Cellular Component, http://www.
geneontology.org/).
Binding positions were transferred from the template/s

to the target after pair-wise alignment/s based on the
cluster HMM. 251 clusters contain Mg binding templates
and there from an equivalent number of HMM models
were used to transfer Mg binding position/s to the
human sequences in the clusters. 141 clusters contain
827 magnesium binding protein structures derived from
non human species (25 different Eukaryota, 42 different
bacteria, 9 different Archaea and 1 virus). 110 clusters
contain 514 human templates.

Results and discussion
Finding Magnesium binding sites with BAR+
When a human sequence has a counterpart in BAR+
with sequence identity ≥ 40% over at least 90% of the
alignment length, it falls into the same cluster of the
similar chain. In the example of Figure 1, when human
sequence P09936 is aligned towards the BAR+ data base,
the result web page identifies cluster #4791 that com-
prises 213 sequences from Eukaryotes with an average
length of 232 residues (Standard Deviation (SD)=4.8%)
and 3 PDB structures with magnesium and chloride ions
as ligands (1CMX_A from Saccharomyces cerivisiae;
2ETL_A and 1XD3_A from Homo sapiens). The three
templates are however highly similar (the average root
mean square deviation is 1.62+/-0.35Å). Here we focus
only on magnesium binding sites and for clarity we show
only the structure of the human Ubiquitin hydrolase
UCH-L3 (1XD3_A). As shown, the structure contains 3
Mg ions. The Site field of the corresponding PDB file
indicates that of the three Magnesium ions one is coordi-
nated only by water molecules and it is not considered in
our analysis. The remaining two are coordinated by four
and two residues, respectively (the remaining coordina-
tion sites are probably occupied by water). With the clus-
ter HMM based alignment only the coordination sites
including residues of the template/s are transferred to
the human sequences falling into the cluster. From the
cluster, the human sequence inherited all the validated
features that are reported in the corresponding web page:
validated GO terms, the SCOP classification, and the
Pfam domain PF01088 (Ubiquitin carboxyl-terminal
hydrolase, family 1). BAR+ gives the HMM based target/
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Figure 1 A BAR+ cluster with a magnesium binding template. The BAR+ output. When the query is the UniProtKB accession code P15374,
the corresponding annotation cluster comprises 213 sequences from Eukaryotes with an average length of 232 residues and 3 PDB structures.
Only one of them (human Ubiquitin hydrolase UCH-L3, PDB:1XD3_A) is shown using PyMol (http://www.pymol.org) with the three Mg ions. Of
the three ions (as shown in the inset where the PDB SITE fields are reported) only two are coordinated by lateral side chains (in red in the
protein structure representation). The cluster contains 26 validated GO terms and 1 validated Pfam term (PF01088, Ubiquitin carboxyl-terminal
hydrolase, family 1) that are also inherited by the human query sequence. See text for details.
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template alignment for computational modelling of the
3D structure of all the other sequences in the cluster.
Among these, 4 are from Homo sapiens and inherit all
the cluster specific annotation, including the Mg binding
sites.
Bound Mg in this structure is not as yet supported by

any experimental observation highlighting a specific
functional role. The whole BAR-hMG data base contains
21 out of 251 clusters with templates binding Mg with-
out any experimental (still) determined functional or
structural role. This information can be retrieved for
each template from the corresponding PDB and Uni-
ProtKB files and the quoted literature therein. It should
be considered that Mg ions may play a role on protein
stability still not fully described or even a role in pro-
tein-protein interaction that is at the basis of many rele-
vant biological processes. In many instances the
formation of protein complexes has not yet been recog-
nized due to its transient characteristics. Therefore the
question is still open and we therefore included also
these cases in our data set for a comprehensive analysis
of putative Mg binding sites. Clusters containing tem-
plates where Mg has a documented structural and func-
tional role are labelled with a yellow star, and a yellow
star and the corresponding EC number, respectively. For
this reason no label is present in the figure.

Annotation of Mg2+ binding sites in human proteins
A structural analysis of the magnesium containing 1,341
PDB templates indicates that the ion can be present in
different ways. For this reason we list our annotation
results considering that the ion co-crystallises with the
protein chain either alone (Mg) or concomitantly with
other ions (Mg and Ions) or ligands (Mg and Ligands)
or with other ions and ligands (MG, Ions and Ligands).
In some instances PDB structures can combine two or

more of the binding modes (Mixed). Results are listed
by splitting human sequences that inherited annotation
from human templates (2,688) from those that inherit
annotation from structures of other organisms (1,063).
The results are shown in Table 1 and 2, respectively,
where the number of sequences with low sequence iden-
tity to the cluster templates is also reported. Clusters are
split depending on the role of bound Mg ion: functional,
structural, not yet determined.
The number of PDB human protein structures with

bound magnesium (514) univocally identifies 172 tem-
plate sequences; within the BAR+ environment this
number reaches 2,688 (Annotation inherited from
human templates). Some other 1,063 human sequences
inherit annotation within BAR+ clusters where the
structural templates are from other organisms (Table 2)
(Annotation inherited from other organisms).
When more PDB structures fall into the same cluster

(Table 1 and 2) their RMSDs are very low (<1 Å) for all
the groups. This indicates that the BAR+ clusters pre-
serve the structural specificity. Therefore when a target
sequence falls into a cluster characterised by Mg bind-
ing, the corresponding site annotation can be safely
inherited. This is so also for very distantly related
sequences (sequence identity <30%, last column) that
are in the same cluster.
In BAR-hMG some 3,751 human sequences are anno-

tated as Mg binding. About 98% of this set is annotated
for the first time. For these sequences the corresponding
UniProtKB entry neither has any information on Mg
binding nor contains any GO term related to Mg
binding.
Characteristics of Mg2+ binding sites can be detected

from a simple counting on the retrieved 1,341 PDB
structures contained in the 251 clusters of the BAR-
hMG data base. Results (shown in Figure 2) are split

Table 1 Human sequences annotated with human structural templates

Cluster
(#)

PDB
(#)

Cluster RMSD
(Å)

Template
sequence

(#)

Annotated
sequence

(#)

Newly annotated
sequence (#)

Annotated sequence
(ID<30%)*

$ ^ °

Mg 8 1 0 9 - 9 55 54 1

Mg and Ions 7 1 0 9 0.30 8 53 52 6

Mg and Ligands 24 4 2 73 0.77 32 159 158 33

Mg , Ions and
Ligands

22 5 4 57 0.52 31 1948 1947 19

Mixed 22 6 4 366 0.68 92 473 455 120

Total 83 17 10 514 172 2688 2666 179

Human sequences that inherit annotation from human structural templates are listed as a function of the different typologies of magnesium binding in the PDB
files. The table lists the number of clusters, of structural templates, of annotated sequences (sequences that inherit Mg binding positions) according to our
procedure, of sequences never annotated before as Mg binding proteins according to UniProtKB and of *sequences annotated when the target/template identity
is below the 30%. Three different types of clusters are identified and listed in the first column: $ cluster with structures binding MG with a recognized functional
role and whit an EC number, ^ clusters with structures binding MG with a recognized structural role (without an EC number), ° cluster containing structures (119
out of 1,341) binding MG without recognized physiological role.
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into binding sites stabilised by lateral side chains and by
backbone carbonyl groups. The highest frequency is
observed for Asp and Glu residues. Similar frequency
distribution is obtained when counting is done on the
newly annotated human sequences (Figure 2). Here
binding is referred only to the residue type.

Localising the human Mg2+ binding sequences
In Table 3 we list the most populated cellular localiza-
tions (Cellular Component of the Gene Ontology) of the
human sequences (the “human magnesome”) sorted out
according to the different magnesium binding modes.
For each GO term, the number of human sequences is
reported. The selected terms are those that are the most
distant from the ontology root in the corresponding
BAR+ cluster of each sequence. Similarly GO terms of
biological process and molecular function can be
obtained for each sequence (data not shown; the data

can be retrieved when a sequence falls into a validated
cluster).

The “Human Magnesome” database
The “Human Magnesome” is a data base of human
sequences generated after annotation with the procedure
here described. The main page allows a sequence search
either with a UniprotKB accession code or the FASTA
format of the sequence. When the sequence is present
in the database it is returned with the putative magne-
sium binding sites, the structural templates from where
it inherits magnesium binding and the number of mag-
nesium ions present in the structural templates. Differ-
ent colors are displayed when the binding residues are
identical, similar or different to the template reference/s.
Residue substitution is scored with Blosum62 matrix. In
Figure 3 a typical output is shown. The data base is
available at http://bar.biocomp.unibo.it/mg.

Table 2 Human sequences annotated with structural templates from other organisms

Cluster
(#)

PDB
(#)

Cluster RMSD
(Å)

Template
sequence

(#)

Annotated
sequence

(#)

Newly annotated
sequence (#)

Annotated sequence
(ID<30%)*

$ ^ °

Mg 12 10 0 75 0.73 33 105 105 24

Mg and Ions 5 5 0 160 0.38 10 51 50 22

Mg and Ligands 20 22 3 81 0.86 54 359 352 51

Mg , Ions and
Ligands

12 6 2 66 0.52 23 278 276 28

Mixed 21 17 6 445 0.83 95 270 243 66

Total 70 60 11 827 215 1063 1026 191

Table legend is as in Table 1.

Figure 2 Frequency distribution of Magnesium binding residues in PDB templates and in annotated human sequences. Distribution of
the frequency of residues coordinating magnesium ions in the PDB structures (1,341, blue color: Mg is coordinated by the backbone carbonyl
oxygen, red color: Mg is coordinated by the lateral side chain) and in the putatively annotated human sequences (3,751, yellow color).
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Conclusion
In this work we address the problem of annotating mag-
nesium binding sites in proteins starting from their
sequence. We take advantage of an annotation resource
recently introduced (BAR+, [13]), where functional and
structural features derived from PDB structures are
implemented into HMM models that allows sequence to
template alignment even when sequence identity is

below 30%. This procedure is based on the notion of
“cluster”, a set of sequences retrieved as connected com-
ponents of a graph where two proteins are linked
together when they share a sequence identity greater or
equal than 40% in at least 90% of the pair wise align-
ment length. By restricting our analysis to clusters con-
taining human sequences and magnesium binding PDB
structures, we align with the cluster HMMs some 3,751

Table 3 Localising the human magnesium binding sequences

Sequence (#) GO terms (Cellular Component) Sequence (#) GO terms (Cellular Component)

Mg Mg + Ions + Ligands

23 endoplasmic reticulum lumen 1817 cell surface

21 cell body 117 endoplasmic reticulum part

Mg + Ions 92 dendrite cytoplasm

33 site of polarized growth 56 mitochondrial matrix

13 membrane-bounded organelle 48 cell division site

Mg + Ligands 47 ruffle

118 azurophil granule 44 cell septum

37 cytoplasmic mRNA processing body 44 membrane raft

19 cytoplasmic membrane-bounded vesicle 37 endoplasmic reticulum

16 intracellular 24 cell leading edge

15 intracellular membrane-bounded organelle 23 plasma membrane enriched fraction

14 mitochondrion 22 internal side of plasma membrane

11 neuron projection 15 cell cortex

11 cell part 15 intracellular membrane-bounded organelle

For explanation see text.

Figure 3 The Human Magnesome output. A typical output of the human magnesome site (BAR-hMG). The test sequence inherits, after cluster
based HMM alignment to the corresponding templates (listed in the inset), five binding residues (K 21, S 22, T 40, D 63 and T 64). The residues
are color coded depending on the BLOSUM 62 alignment scoring matrix. From the result page is also possible to retrieve the matching BAR+
cluster page and the corresponding UniProtKB page of the target entry. The green color in the output indicates residues identical to the original
template/s. Similar residues are highlighted in yellow. The yellow star indicates that the protein is located in a cluster where Mg binds to PDB
templates (listed) in a documented structural way. Cluster HMM can be downloaded.
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human sequences that fall in the same clusters and
inherit by this the magnesium binding feature. Some
370 human sequences share an identity to the template
less than 30%.
We therefore prove feasible that magnesium binding

sites can be inherited from a given template when the
sequence falls inside a well annotated cluster from
where it derives also validated Pfam functional domains
and GO functional terms. Presently we can annotate
some 5% of the human genome as inheriting the cap-
ability of binding magnesium ions. All the analysed
sequences, their binding sites, and the corresponding
clusters from where they derive annotation are included
in the Human Magnesome data set (BAR-hMG), freely
available at http://bar.biocomp.unibo.it/mg.
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Abstract

Background: In the genomic era a key issue is protein annotation, namely how to endow protein sequences,
upon translation from the corresponding genes, with structural and functional features. Routinely this operation is
electronically done by deriving and integrating information from previous knowledge. The reference database for
protein sequences is UniProtKB divided into two sections, UniProtKB/TrEMBL which is automatically annotated and
not reviewed and UniProtKB/Swiss-Prot which is manually annotated and reviewed. The annotation process is
essentially based on sequence similarity search. The question therefore arises as to which extent annotation based
on transfer by inheritance is valuable and specifically if it is possible to statistically validate inherited features when
little homology exists among the target sequence and its template(s).

Results: In this paper we address the problem of annotating protein sequences in a statistically validated manner
considering as a reference annotation resource UniProtKB. The test case is the set of 48,298 proteins recently
released by the Critical Assessment of Function Annotations (CAFA) organization. We show that we can transfer
after validation, Gene Ontology (GO) terms of the three main categories and Pfam domains to about 68% and 72%
of the sequences, respectively. This is possible after alignment of the CAFA sequences towards BAR+, our
annotation resource that allows discriminating among statistically validated and not statistically validated
annotation. By comparing with a direct UniProtKB annotation, we find that besides validating annotation of some
78% of the CAFA set, we assign new and statistically validated annotation to 14.8% of the sequences and find new
structural templates for about 25% of the chains, half of which share less than 30% sequence identity to the
corresponding template/s.

Conclusion: Inheritance of annotation by transfer generally requires a careful selection of the identity value among
the target and the template in order to transfer structural and/or functional features. Here we prove that even
distantly remote homologs can be safely endowed with structural templates and GO and/or Pfam terms provided
that annotation is done within clusters collecting cluster-related protein sequences and where a statistical
validation of the shared structural and functional features is possible.

Background
When a new protein sequence becomes available the pro-
blem of its annotation poses. Most of our expertise in try-
ing to endow the new sequence with structural and
functional features is based on similarity search [1-4].

Methods are mainly based on the knowledge that struc-
ture is more conserved than sequence through evolution
and that structural alignment is conserved as long as
sequence identity (SI) is ≥ 30% over the alignment length.
This was observed originally by Chothia and Lesk [5] and
once in a while revisited at increasing number of proteins
solved with atomic resolution and deposited in the Protein
Data Bank (PDB) [6]. The observation is at the basis of
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one of the most popular method for computing the three
dimensional structure of the target on a template, when
found, after a sequence similarity search against the PDB
[7]. Recently maps of the protein structure space have
revealed fundamental relationship between protein struc-
ture and function [8]. When a target sequence well aligns
with a template of known structure, its functional proper-
ties can be derived on the basis of structural conservation.
Proteins sharing some 40-60% of sequence identity are
likely to share also similar function [9,10].
However a problem is at hand: how to recognize struc-

tural and functional templates when sequence identity is
below 30%. In this case proteins are categorized to be dis-
tantly related to their homologous counterparts, since
they may perform the same function, and possibly be
endowed with the same structure although sharing very
little sequence homology [11,12]. To this purpose meth-
ods have developed trying to grasp local sequence con-
servation by modeling protein conserved structural and
functional domains. The most popular is Pfam ([13],
http://pfam.sanger.ac.uk). In this case function can be
inferred when a protein is significantly retained by a spe-
cific Pfam model that is again based on a local sequence-
to-profile alignment and its scoring. SUPERFAMILY
(http://supfam.cs.bris.ac.uk/SUPERFAMILY), based on
hidden Markov models as Pfam, has been recently modi-
fied to address specifically the problem of function
assignment by including a domain-based Gene Ontology
[14].
When function is to be assigned only on the basis of

sequence, the problem still remains unsolved, since very
little is known on the relationship among sequence simi-
larity and transfer of function [1,9]. Functions can be
described with specific terms following the Gene Ontol-
ogy vocabulary and comprising three main functional
branches: Molecular Function (MFO), Biological Process
(BPO), and Cellular Component (CCO) [15]. UniProtKB,
the largest resource of protein sequences curates automa-
tically annotated protein records ([16], http://www.uni-
prot.org/help/biocuration). Here annotation integrates
previous knowledge on protein structure and function
from various sources, when available, again mainly based
on sequence similarity search (UniProtKB/TrEMBL).
Eventually the records are manually curated (UniProtKB/
SwissProt). However out of the over 18 millions sequence
entries presently available (Release 2011_12 of 14-Dec-
2011), 75% are proteins inferred by homology or pre-
dicted whose features in most instances are far from
being attributed even with computational methods.
Several methods have been developed to predict protein

function from structures and sequences trying to infer fea-
tures from selected and well annotated sets of proteins by
mean of different computational approaches, including
machine learning, and generally aiming at integrating

different source of information (see for recent reviews
[17,18]).
Here we take advantage of the recently released set of

proteins selected by CAFA (http://biofunctionprediction.
org/) for function prediction in order to discuss how
inheritance of annotation can be statistically validated.
Validation is indeed an added value to the annotation pro-
cess, when possible. For this we developed BAR+ [19,20],
a non hierarchical clustering annotation procedure that
allows different types of annotation by means of a cluster-
mediated transfer of annotation. We also show that our
method allows a gain of annotation over a direct Pfam
prediction and GOA electronic annotation (http://www.
ebi.ac.uk/GOA/).

Databases and methods
Databases
The test set includes 48,298 sequences made available
during the 2011 CAFA experiment (CAFA set, http://
biofunctionprediction.org). 41,003 sequences of this set
(85% of the CAFA set) could be mapped towards Uni-
ProtKB Release 2010_05 (CAFA/UniProtKB set); 96% of the
CAFA/UniProtKB set were manually curated (UniProtKB/
SwissProt) and 2,047 proteins have also a PDB structure;
13,684 of the set are proteins inferred from homology and
predicted. We found that 44,495 sequences of the CAFA set
(92% of the CAFA set) could be mapped into BAR+
(CAFA/BAR+ set).

BAR+
BAR+, the Bologna Annotation Resource, is our annota-
tion system (BAR+ is available at http://bar.biocomp.
unibo.it/bar2.0/). BAR+ allows transfer of validated anno-
tation [19,20]. The method relies on the concept that
sequences can inherit the same function/s and structure
from their counterparts, provided that they fall into a clus-
ter endowed with validated annotations. BAR+ is based on
a clustering procedure with the constraint that sequence
identity (SI) is ≥ 40% on at least 90% of the pairwise align-
ment overlapping (Coverage, Cov). Clusters in BAR+, as
previously reported [20], allow three main categories of
annotation: PDB [with or without SCOP (*)] and GO and/
or Pfam; PDB (*) without GO and/or Pfam; GO and/or
Pfam without PDB (*) and no annotation. Each category
can further comprise clusters where GO and Pfam func-
tional annotations are or are not statistically significant
(see below). Depending on the categories of annotation in
the cluster and provided that they are statistically vali-
dated, all new targets that fall into a cluster can inherit sta-
tistically validated annotations by transfer.
For generating BAR+ clusters we analyzed a total of over

13 million protein sequences from 988 genomes and
UniProtKB release 2010_05. The BAR+ cluster building
pipeline starts with an all-against-all sequence comparison
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with BLAST in a GRID environment [19]. The alignment
results are then regarded as an undirected graph where
nodes are proteins and links are allowed only among
chains that are 40% identical over at least 90% of the align-
ment length. All the connected nodes fall within the same
cluster; when a cluster incorporates a UniProtKB entry,
it inherits its annotations (GO and Pfam terms, PDB struc-
tures, SCOP classifications). Within a cluster GO and
Pfam terms are statistically validated by means of a proce-
dure that includes P-value evaluation with a Bonferroni
correction and estimate of the significance threshold value
after a bootstrapping procedure [19]; validated terms
are those endowed with P-values< 0.01[19]. Clusters can
contain distantly related proteins that therefore can be
annotated with high confidence and eventually can also
inherit a structural template, if present. In BAR+, when
PDB templates are present within a cluster profile HMMs
(Hidden Markov Models) are computed on the basis of
sequence-to-structure alignment and are cluster associated
(Cluster-HMM) [20].

Results and discussion
BAR+ contains clusters with statistically validated
annotation
70% of the 13,495,736 sequences of BAR+ are collected
in 913,762 clusters (the number of sequences in a cluster

ranges from 2 to 87,893). Interestingly 87% of the clusters
contain sequences whose standard deviation of the pro-
tein length is ≤ 5 residues. 1.2% of the clusters, contain-
ing 23% of the whole set, contains also PDB structures
and is endowed with a cluster specific structural HMM
[20]. 30% of the sequences are singletons that eventually
can carry along structural and/or functional information.
A cluster collects specific Pfam and GO terms directly

from the corresponding UniProtKB protein sequence files.
Validation of the terms within a cluster is based on a Bon-
ferroni corrected P-value analysis [19]. We performed a
statistical evaluation of the P-values by computing the sta-
tistical significance of Pfam and GO terms associated to
each cluster and by adopting a bootstrapping procedure.
By this procedure we determine the threshold at which
significance is different from random and we define a
P-value equal to 0.01 as the discriminative value for a sin-
gle term to be validated or not (see also [19]). In Figure 1
the number of clusters is reported as a function of the cor-
responding Bonferroni corrected P-value for Pfam and the
GO terms of the three main roots. The threshold level dis-
criminates among clusters with statistically validated and
not validated annotation. 11% of the clusters have one vali-
dated GO term allowing in the present version of BAR+
45% of the total number of sequences (13,495,736) to be
included in clusters endowed with validated terms.

Figure 1 Discriminating among validated and not validated BAR+ clusters. The number of clusters containing GO terms of three main roots and
Pfam terms is reported as a function of the Bonferroni-corrected P-value. The black vertical line sets the boundary among validated and not validated
terms. It can be proven (data not shown) that that a P-value ≤ 0.01 is a discriminative value good enough to discriminate among the real and the
random distribution of each type of GO and Pfam terms (for mathematical details see [15]. Green colour: Pfam terms; Blue colour: Molecular Function
(MFO); Red colour: Biological Process (BPO); Pale blue: Cellular Component (CCO). For the different curves the number of validated clusters as
compared to the total number of BAR+ clusters is: Pfam 197,826/455,309; MFO 84,506/321,748; BPO 75,147/265,164; CCO 31,042/145,677. The total
number of cluster with at least a GO validated term is 100,791.
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Within BAR+, inheritance of validated annotation is
possible only when a given sequence after alignment
towards BAR+ finds a counterpart whose Sequence Iden-
tity (SI) is ≥ 40% over at least 90% of the pairwise align-
ment overlapping (Coverage, Cov).

Inheritance of statistically validated annotation
We aligned all the CAFA target sequences against BAR
+clusters. More than 92% of the CAFA set was retained by
BAR+ (CAFA/BAR+ set), including singletons (stand alone
sequences in BAR+). The statistically validated annotations
transferred within BAR+ clusters, including Pfam terms
and PDB templates (SI≥ 40% and Cov≥ 90%) of the CAFA/
BAR+ set are detailed in Table 1. The set of CAFA
sequences that received a statistically validated annotation
(ALL-O OR Pfam in Table 1) includes 37,516 sequences
(77.7% of the CAFA set). The list of predicted proteins is
grouped by different target sets including sequences from
Eukaryotes, Prokaryotes and “Unknown” organisms. In
Table 1 annotations are sorted out by the three different
types of GO ontologies and Pfam terms. Values relative to
sequences endowed with the union of different ontologies
is also shown (MFO OR BPO; ALL-O).
For sake of exploring the relevance of the alignment

length on the annotation system, we decreased the Cov
value to ≥ 70%) while keeping SI≥ 40%. In this case the
number of annotated CAFA targets increased by only 3%
(Table 1), suggesting that the original 90% Cov value
together with SI≥ 40% ensures that most of the CAFA set
is already retained within validated clusters.
With our method it is also possible to model distantly

related targets that fall into a cluster by aligning them to
the template/s in the cluster by means of a cluster HMM,
as previously described [20]. By this about 25% of the
CAFA set inherits also a PDB structural template/s
(11,935 sequences, Table 1) and about 50% of these

targets share a sequence identity with the template struc-
ture of the cluster lower than 30% (12.5% of the CAFA
set). Concomitantly the sequence also inherits validated
Pfam domains and GO ontologies and this allows a vali-
dation of the functional annotation directly on the pro-
tein computed structure.
Statistically validated GO ontologies of the three main

roots (MFO, BPO and CCO) are differently distributed
among Prokaryotic and Eukaryotic sequences of the
CAFA/BAR+ set (Figure 2). Here for sake of simplicity we
group all the predicted GO ontologies under the first
branches of each principal root. In “Binding” main cate-
gory “Nucleotide binding” (GO:0000166) and “Protein
binding” (GO:0005515) are the most represented in Pro-
karyotes and Eukaryotes, respectively. In “CatalyticActiv-
ity”, “Transferase activity” (GO:0016740) and “Hydrolase
activity” (GO:0016787) are the most represented in Pro-
karyotes and Eukaryotes, respectively. The most frequently
predicted BPO main category is “Cellular process”, with
“Cellular biosynthetic process” (GO:0044249) for Prokar-
yotes and “Cellular macromolecule metabolic process”
(GO:0044260) for Eukaryotes. Finally for CCO, the most
abundant term both in Prokaryotes and Eukaryotes is
“Intracellular” (GO:0005622). The data confirm the variety
of statistically validated functional annotations that can be
retrieved by adopting BAR+ as an annotation resource
and also highlight the main functional features that char-
acterize the proteins of the CAFA set sorted out according
to Prokaryotes and Eukaryotes.
In Figure 3 the different validated and inherited Pfam

terms are grouped into clans, a collection of Pfam similar
entries [12] and shown as a function of the number of
sequences from Eukaryotes and Prokaryotes. The most
populated clan is “P-loop containing nucleoside tripho-
sphate hydrolase superfamily” (CL0023). Within the clan,
the most frequent Pfam domains are Ras family (PF00071)

Table 1 Annotating the CAFA set with BAR+

Cov MFO OR BPO MFO BPO CCO ALL-O Pfam ALL-O OR Pfam PDB°

Eukaryotes 90% 20,532 17,389 17,131 16,430 22,733 24,038 26,378 8,054

[32,143]^ 70% 1,448

Prokaryotes 90% 9,660 8,915 8,202 4,723 9,843 10,772 11,088 5,924

[12,295]^ 70% 224

Unknown 90% 36 32 32 10 36 50 50 4

[57]^ 70% 4

Total 30,228 26,336 25,365 21,163 32,612 34,860 37,516 13,982

[44,495]^ 2,047*

Cov: Coverage, the ratio of the length of the intersection of the aligned regions on the two sequences and the overall length of the alignment (namely the sum
of the lengths of the two sequences minus the intersection length). For both Cov values Sequence Identity (SI) is ≥ 40%. MFO: Molecular Function Ontology;
BPO: Biological Process Ontology; CCO: Cellular Component Ontology. ALL-O: number of sequences with predicted MFO OR BPO ORCCO. Pfam terms. ALL-O OR
Pfam: the union of ALL-O and Pfam. °PDB: sequences that inherit a structural template from a cluster HMM within BAR+ [20]. ^ CAFA/BAR+ set sequences from
Eukaryotes, Prokaryotes, and Unknown organisms. *Sequences with a corresponding PDB structure.
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Figure 2 Statistically validated GO ontologies of the CAFA/BAR+ set. Histograms of the main statistically validated GO Molecular Functions
(MFO), Biological Processes (BPO), Cellular Component (CCO) ontologies are shown after annotation within validated BAR+ clusters. GO terms
are included in main categories and listed with respect to Eukaryotes and Prokaryotes.
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Figure 3 Statistically validated Pfam terms of the CAFA/BAR+ set. Histograms of the most populated clans of Pfam terms are shown after
annotation within validated BAR+ clusters. A clan is a collection of Pfam-A entries that are judged likely to be homologous [12]. Clans are sorted
out discriminating among Prokaryotes (a) and Eukaryotes (b).
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and ABC transporter (PF00005) in Eukaryotes and Prokar-
yotes, respectively.

Comparison with direct UniProtKB annotation
34,065 sequences of CAFA/UniProtKB set found a match
in 14,747 BAR+ clusters where their annotation is vali-
dated (about 71% of the CAFA set) and for 3,659
sequences the number of validated and annotated terms
also increases (Table 2: BAR+ validated). The remaining
CAFA/UniProtKB sequences (6,938 sequences of which
54% are not annotated) find a counterpart in BAR+ clus-
ters without a statistically validated annotation and are
not considered in Table 2. Furthermore, some 15% of the
CAFA set (7,295 sequences) does not have a counterpart
in UniproKB and they can be aligned towards BAR+ to
receive annotation. Out of these, 3,451 sequences receive
a statistically validated annotation (Table 2).
5,215 clusters are also endowed with a cluster HMM,

suitable for sequence alignment of the target with the
corresponding template/s of 11,935 sequences that by
this can inherit also a structure (Table 2). Interestingly
50% of these sequences have a sequence identity to the
corresponding template lower than 30%.

BAR+ web site
For the present analysis, BAR+ was updated by distin-
guishing two sets of clusters: those that are endowed
with a statistically validated annotation (labeled with a
yellow star), and those that are not statistically validated.
A sequence can inherit annotation from a cluster in a
statistically validated manner when upon alignment it
falls into a statistically validated cluster; however at the
web site for a sequence falling into BAR+ clusters we
also provide all the cluster-associated and not validated
terms. This is so also when the target aligns towards
BAR+ singletons. Each cluster endowed with PDB tem-
plates is also endowed with a cluster HMM based align-
ment that for each sequence falling in the cluster allows
building of the corresponding three dimensional protein

structure. BAR+ is freely available at http://bar.biocomp.
unibo.it/bar2.0/.

Conclusion
Functional annotation of protein sequences is one of the
most important issues in annotation processes. When
annotation is done electronically, mainly based on
sequence similarity search, a robust validation process can
help in the inheritance of Pfam and GO terms by transfer
of annotation. Using our cluster-centric BAR+ annotation
system and adopting as a test case the recently released
CAFA set of sequences, we can annotate 84.9% of the
CAFA set, 77.7% of which in a validated manner.
As compared with UniProtKB that annotates with GO

and Pfam terms 77.1% of the CAFA set (Table 2), we
validate 10,628 terms for 62.9% of the sequences, we
increase the annotation for 7.6% of the set with some
additional and validated 2,930 terms and annotate with-
out validation the remaining 6.6% of the set.
Considering also that 7.2% of the CAFA set is newly

annotated with validation, the gain in annotation within
BAR+ is 14.8% with respect to UniProtKB, suggesting
again that cluster specificity for a sequence is a necessary
filter to inherit functional and structural features from
well known proteins.
Furthermore we can endow with structural models

some 25% of the whole CAFA set. At least 50% of the
proteins that in BAR+ inherit a structural model share a
sequence similarity with the template/s less than 30%,
indicating that with our procedure also distantly related
homologs can be safely annotated.
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Table 2 Comparing UniProtKB direct annotation with BAR+ annotation

CAFA/UniProtKB* BAR+ Validated°

Sequences Terms Sequences with validated annotation Validated Terms Sequences with new validated annotation

Total° 34,065 10,628 34,065 13,558 3,659§

Pfam^ 30,767 5,293 31,190 5,365 423§

MFO^ 20,790 2,048 21,758 2,698 968§

BPO^ 19,739 2,719 21,585 4,879 1,846§

CCO^ 16,503 568 17,589 616 1,086§

- - - 3,451# 5,886# 3,451#

PDB+ 2,047+ - 13,084+ - 11,935+

*The CAFA/UniProt KB set (the CAFA sequences that have a UniprotKB file) comprises 41,003 sequences, 3,767 of which do not contain any GO ontology and
Pfam terms. °Here the CAFA/UniProtKB subset that can be validated in BAR+ is considered (BAR+validated). The number of sequences and the number of Pfam
and GO terms are listed. Sequences that receive new validated terms are also listed according to Pfam, MFO, BPO and CCO. # Sequences of the CAFA set, out of
a total of 7,295 that are not present in UniProtKB and are annotated in BAR+. +Number of sequences that have and also receive in BAR+ a PDB template.
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Automated annotation of protein function is challenging. 
As the number of sequenced genomes rapidly grows, the 
overwhelming majority of protein products can only be 
annotated computationally. If computational predictions 
are to be relied upon, it is crucial that the accuracy of these 
methods be high. Here we report the results from the first 
large-scale community-based critical assessment of protein 
function annotation (CAFA) experiment. Fifty-four methods 
representing the state of the art for protein function prediction 
were evaluated on a target set of 866 proteins from 11 
organisms. Two findings stand out: (i) today’s best protein 
function prediction algorithms substantially outperform widely 
used first-generation methods, with large gains on all types 
of targets; and (ii) although the top methods perform well 
enough to guide experiments, there is considerable need for 
improvement of currently available tools.

The accurate annotation of protein function is key to understand-
ing life at the molecular level and has great biomedical and phar-
maceutical implications. However, with its inherent difficulty and 
expense, experimental characterization of function cannot scale 
up to accommodate the vast amount of sequence data already 

A large-scale evaluation of computational protein 
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available1. The computational annotation of protein function has 
therefore emerged as a problem at the forefront of computational 
and molecular biology.

Many solutions have been proposed in the last four decades2–10, 
yet the task of computational functional inference in a labora-
tory often relies on traditional approaches such as identifying 
domains or finding Basic Local Alignment Search Tool (BLAST)11 
hits among proteins with experimentally determined function. 
Recently, the availability of genomic-level sequence information 
for thousands of species, coupled with massive high-throughput 
experimental data, has created new opportunities for function 
prediction. A large number of methods have been proposed to 
exploit these data, including function prediction from amino acid 
sequence12–16, inferred evolutionary relationships and genomic 
context17–21, protein-protein interaction networks22–25, pro-
tein structure data26–28, microarrays29 or a combination of data 
types30–34. An unbiased evaluation of these different methods can 
provide insight into their ability to characterize proteins func-
tionally and can guide biological experiments. So far, however, a 
comprehensive assessment incorporating a large and diverse set 
of target sequences has not been conducted because of practical 
difficulties in providing an accurately annotated target set.
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In this report, we present the results of the first CAFA experi-
ment, a worldwide effort aimed at analyzing and evaluating pro-
tein function prediction methods. Although protein function can 
be described in multiple ways, we focus on classification schemes 
provided by the Gene Ontology (GO) Consortium35. Over the 
course of 15 months, 30 teams associated with 23 research 
groups participated in the effort, testing 54 function annota-
tion algorithms. Short descriptions of published methods and 
detailed descriptions of unpublished methods can be found in the 
Supplementary Note. These methods were evaluated on a target 
set of 866 protein sequences from 11 species.

RESULTS
Protein function is a concept that can have different interpreta-
tions in different biological contexts. Generally, it describes bio-
chemical, cellular and phenotypic aspects of the molecular events 
that involve the protein, including how the protein interacts with 
the environment (such as with small compounds or pathogens). 
From the various classification schemes developed to standard-
ize descriptions of protein function, we chose the “Molecular 
Function” and “Biological Process” categories from GO. Each cat-
egory in GO is a hierarchical set of terms and relationships among 
them that capture functional information; such a system facilitates 
computation, and its outputs can be interpreted by humans. GO’s 
consistency across species and its widespread adoption make it 
suitable for large-scale computational studies. In CAFA, given a 
new protein sequence, the task of a protein function prediction 
method is to provide a set of terms in GO along with the confi-
dence scores associated with each term.

The experiment was organized as follows. A set of 48,298 pro-
teins lacking experimentally validated functional annotation 
was provided to the community 4 months before the submis-
sion deadline for predictions (Fig. 1). Proteins were annotated 
by the predicting groups, and these annotations were submitted 
to the assessors. After the submission deadline, GO experimen-
tal annotations for those sequences were allowed to accumulate 
over a period of 11 months. Methods were then evaluated on 866 

targets from 11 species that had accumulated functional annota-
tions during the waiting period (Supplementary Table 1). The 
Swiss-Prot database36 was selected as the gold standard because 
of its relatively high reliability37.

The selection of proteins was ineluctably biased owing to 
experimenter and annotator choice during the evaluation time 
frame. Thus, the set of targets was first analyzed to establish that 
it was representative of those sequences experimentally annotated 
before the submission deadline. In terms of organismal repre-
sentation, the eukaryotic targets provided reasonable coverage 
of taxa (Fig. 1). In contrast, the set of prokaryotic targets was 
heavily biased toward Escherichia coli K-12. The distribution of 
terms over the target sequences was representative of the annota-
tions in Swiss-Prot (data not shown); however, we note that in the 
Molecular Function category a large fraction of target sequences 
(38%) were associated with “protein binding” as their most spe-
cific term. The distribution of term depths over all targets is 
shown in Supplementary Figure 1 for both ontologies.

Overall predictor performance
The quality of protein function prediction can be measured in 
different ways that reflect differing motivations for understanding 
function. In some cases, imprecise experimental characteriza-
tion means that it is not entirely clear whether a prediction is 
correct. For CAFA, we principally report a simple metric, the 
maximum F-measure (Fmax; Online Methods), which considers 
predictions across the full spectrum from high to low sensitivity. 
This approach, however, has limitations, such as penalization of 
specific predictions (see Discussion). We note that the choice of 
evaluation metric differentially affects different prediction meth-
ods, depending on their application objectives.

Top predictor performance, based on maximum F-measure 
and calculated over all targets, is shown in Figure 2 (precision-
recall curves are shown in Supplementary Fig. 2; the performance 
evaluation for the Molecular Function ontology when proteins 
annotated with only the “protein binding” term were included is 
shown in Supplementary Fig. 3). All methods were compared with 

two baseline tools: (i) BLAST, in which all 
GO terms of an experimentally annotated 
sequence (template) from Swiss-Prot were 
transferred to the target sequence such that 
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Figure 1 | Experiment timeline and target 
analysis. (a) Timeline for the CAFA experiment. 
(b) Number of target sequences per organism. 
The graph shows the number of target 
sequences for each of the ontologies (Molecular 
Function and Biological Process) as well as the 
total number of targets, obtained as a union 
between sequences in the two ontologies. 
Of 866 proteins, 531 had Molecular Function 
annotations and 587 had Biological Process 
annotations. (c) Distribution of target 
sequences in each ontology according to 
the number of leaf terms available for each 
protein sequence. For example, in the Molecular 
Function category, 79% of proteins had one 
leaf term, 16% had two leaf terms, and so on. 
A term is considered a leaf term for a particular 
target if no other GO term associated with that 
sequence is its descendant. 
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the scores equaled pairwise sequence identity between the tem-
plate and the target (terms with multiple hits retained the highest 
score), and (ii) a naive method (Naive), in which each GO term for 
each target was scored with the relative frequency of this term in 
Swiss-Prot over all annotated proteins (Online Methods). We also 
evaluated the quality of position-specific iterated (PSI)-BLAST 
predictions, but we found that it did not provide any advantage 
over BLAST: specifically, Fmax(PSI-BLAST) = Fmax(BLAST) 
= 0.38 for Molecular Function; Fmax(PSI-BLAST) = 0.24 and 
Fmax(BLAST) = 0.26 for Biological Process. We believe that the 
improved ability of PSI-BLAST to identify remote homologs has 
been canceled out by its reranking of close hits.

We observed a substantial performance difference in the abil-
ity to predict the two GO categories (Molecular Function versus 
Biological Process). This can be partly explained by the topo-
logical differences between the ontologies (respectively: number 
of terms, 8,728 and 18,982; branching factor, 5.9 and 6.4; maxi-
mum depth, 11 and 10; number of leaf terms, 7,003 and 8,125). 
However, more fundamentally, terms in the Biological Process 
ontology were associated with a more abstract level of function. 
Such terms were less likely to be predictable solely from amino 
acid sequence, which was the data source used by most methods 
in this experiment and may critically depend on the cellular and 
organismal context.

Predictor performance on categories of targets
We divided the target sequences into a variety of different catego-
ries to compare predictor performance across each category. The 
first division was between easy and difficult targets. A target was 
considered easy if it had a 60% or higher sequence identity with 
any experimentally annotated protein. We manually chose the 
threshold of 60% after plotting the distribution of sequence iden-
tities between targets and annotated proteins (Supplementary 
Fig. 4). This resulted in 188 easy and 343 difficult targets in the 
Molecular Function category and 247 easy and 340 difficult tar-
gets in the Biological Process category. Supplementary Figure 5 
shows the precision-recall curves for both categories. Perhaps 
unsurprisingly, whereas BLAST outperformed Naive in the easy 
target category, their performance was similar for the difficult 
targets. However, because of the similar performance among top-
ranked predictors over easy and difficult targets, the sequence 
identity–based classification of targets does not seem to accurately 

reflect the uncertainty associated with a protein’s true function 
(except for with BLAST). This may be because the methods can 
compensate for the differences in sequence similarity of the best 
hit by using multiple sequence hits as well as other data sources.

Next we compared prediction performance on eukaryotic ver-
sus prokaryotic targets (Supplementary Fig. 6). Performance was 
generally similar in the Molecular Function category, but in the 
Biological Process category we observed high prediction accuracy 
for prokaryotic targets. We believe this is because most prokaryo-
tic targets came from E. coli, for which reliable experimental data 
are available, whereas the data for eukaryotic targets came from 
sources with highly variable coverage and quality. It is impor-
tant to note that the particular calculation of precision and recall 
(Online Methods) adversely affected methods that predicted on 
only eukaryotic targets (BMRF, ConFunc, GOstruct and Tian 
Lab) and resulted in lower overall performance for these methods. 
Detailed results for eukaryotic and prokaryotic targets, as well 
as several individual organisms, are shown in Supplementary 
Figures 6 and 7.

Finally we separated targets into sequences containing a 
single domain versus sequences containing multiple protein 
domains, with domains defined according to Pfam-A clas-
sification38 (targets without any Pfam-A hits were grouped 
together with single-domain proteins). Multidomain proteins 
were generally longer; however, they were not associated with 
more functional terms than single-domain proteins. By analyz-
ing the performance of the top ten methods in each category, we 
found that although the overall accuracy was higher on single-
domain proteins, results were significant in only the Molecular 
Function category and for eukaryotic targets (P = 1.4 × 10−5,  
n = 10, paired t-test; Fig. 3). Though generally expected, the 
higher performance on single-domain proteins further empha-
sizes the need for developing methods that can optimally combine 
sequence information from multiple domains along with other 
information to produce a relatively small set of predicted terms.

Predictor performance on functional terms
We assessed the ability of methods to predict individual GO terms 
by calculating the area under the receiver operating characteristic 
(ROC) curve (AUC; Online Methods). To more confidently 
assess the performance in predicting individual terms, we con-
sidered only terms for which at least 15 targets were annotated.  

Figure 2 | Overall performance evaluation.  
(a,b) The maximum F-measure for the  
top-performing methods for Molecular Function 
ontology (a) and Biological Process ontology (b).  
All panels show the top ten participating 
methods in each category as well as the  
BLAST and Naive baseline methods. Note 
that 33 models outperformed BLAST in the 
Molecular Function category, whereas 26 models 
outperformed BLAST in the Biological Process 
category (cutoff scores below which methods 
were excluded from the panels were 0.468 and 
0.300 for the Molecular Function and Biological 
Process categories, respectively). In the Molecular Function category, proteins with “protein binding” as their only leaf term were excluded from the analysis 
because the protein binding term was not considered informative (results that include those proteins are presented in Supplementary Fig. 3). A perfect 
predictor would be characterized with Fmax = 1. Confidence intervals (95%) were determined using bootstrapping with n = 10,000 iterations on the set of 
target sequences. For cases in which a principal investigator participated in multiple teams, only the results of the best-scoring method are presented.
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Average AUC values were then calculated from the five top-
performing models in each ontology, excluding those models 
that provide only single-score predictions.

Using the above criteria, we were able to calculate average AUC 
values for 28 Molecular Function and 223 Biological Process terms 
(Supplementary Table 2). We found a clear distinction between 
the average AUC of Molecular Function terms generally associ-
ated with catalytic and transporter activity and those associated 
with binding. In general, the prediction of terms associated with 
binding showed lower AUC values, even though proteins were 
biased toward being annotated with binding terms. Among the 
Biological Process terms, we found, as expected, low AUC values 
associated with less specific terms such as “locomotion”, “cellular  
process” and “response to stress.” We also found that prediction 
of terms associated with “cell adhesion”, “metabolic process”, 
“transcription” and “regulation of gene expression” showed high 
performance. We tested whether a high predictor AUC value on 
individual terms was due to high levels of sequence similarity 
among sequences experimentally annotated with those terms, and 
we found a moderate level of correlation (data not shown).

Case study
Here we illustrate some challenges associated with computa-
tional protein function prediction. We provide a detailed analy-
sis of the human mitochondrial polynucleotide phosphorylase 1  
(hPNPase, encoded by PNPT1), a large (783-amino-acid) protein 
with seven Pfam domains (Fig. 4a). Human PNPase is charac-
terized by several experimentally determined functions, which 
makes it an attractive target with which to evaluate the perform-
ance of prediction methods. hPNPase belongs to a family of 

exoribonucleases, which hydrolyze single-stranded RNA in the 
3′-to-5′ direction. In complex with other components of the mito-
chondrial degradasome, hPNPase mediates the translocation of 
small RNAs into the mitochondrial matrix39. It is also proposed 
to be involved in several biological processes including cell-cycle 
arrest40, cellular senescence and response to oxidative stress41.

Owing to its involvement in several molecular functions and 
biological processes, the comprehensive and accurate listing of 
functions of hPNPase is a challenging task. Furthermore, though 
PNPase is prevalent in bacteria and eukarya, it has accumulated 
several lineage-specific functions. Specifically, whereas bacterial  
and chloroplast PNPase have demonstrated exoRNase and 
polyadenylation activities, hPNPase functions predominantly as 
an RNA importer39, showing exoRNase activity only in vitro42. 
Finally, hPNPase is a mitochondrial protein found in the inter-
membrane matrix. Taken together with its involvement in the 
rRNA import process, this suggests the need to predict the  
cellular compartment as part of a comprehensive understanding 
of function.

Figure 4b shows the experimental GO-term annotation of 
hPNPase as well as the terms predicted by a representative set of 
the ten top-performing methods. Within the Molecular Function 
terms, none of the methods predicted poly(U) or poly(G) RNA 
binding43 or microRNA binding. However, most methods that did 
predict function correctly predicted 3′-to-5′ exoRNase activity 
and polyribonucleotide nucleotidyltransferase activity. It should 
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be noted that poly(U) and poly(G) binding and microRNA bind-
ing are uncommon throughout the PNPase lineage. This may be 
the reason why none of the programs predicted these terms.

In the Biological Process category, the most prominent  
function of hPNPase in the literature is the import of nuclear 
5S rRNA into the mitochondrion39; indeed, it is hypothesized 
that this is the reason for hPNPase’s location in the intermem-
brane matrix. However, this function, along with other important 
terms, such as cellular senescence, was not predicted by any of the  
top-performing methods at the optimal threshold levels. 
Generally, the Biological Process predictions were highly non-
specific for most models. In sum, the multidomain architecture 
of hPNPase, its pleiotropy and the different functions it assumes  
in different taxa all contribute to the challenge of correctly  
predicting hPNPase function.

DISCUSSION
Protein function is difficult to predict for several reasons. First, 
function is studied from various aspects and at multiple levels: for 
example, it describes the biochemical events involving the protein 
and also how each protein affects pathways, cells, tissues and the 
entire organism. Second, protein function and its experimental 
characterization are context dependent: a particular experiment 
is unlikely to determine a protein’s entire functional repertoire 
under all conditions (such as temperature, pH or the presence of 
interacting partners). Third, proteins are often multifunctional44 
and promiscuous45; in fact, of the experimentally annotated pro-
teins in Swiss-Prot, 30% have more than one leaf term in the 
Molecular Function ontology, as do 60% in the Biological Process 
ontology16. Fourth, in addition to being incomplete, available 
functional annotations are error prone because of experiment 
interpretation or curation issues37,46. Finally, current efforts 
largely map protein function to gene names, thus confounding 
the functions of potentially diverse isoforms. Despite these chal-
lenges, the CAFA experiment revealed progress in automated 
function annotation over the past decade.

Top algorithms are useful and outperform BLAST considerably. 
The first generation of function prediction methods performed 
a simple function transfer via pairwise sequence similarity: that 
is, the most similar annotated hit was used as the basis of func-
tion prediction47. Several studies have been aimed at character-
izing performance of these methods3,16,48. The CAFA experiment 
provides evidence that the best algorithms universally outper-
form simple functional transfer. The experiment also showed 
that BLAST is largely ineffective at predicting functional terms 
related to the Biological Process ontology. This is possibly due to 
homologs assuming different biological roles in different tissues 
and organisms49.

Principles underlying best methods. The methods evaluated in 
CAFA used a variety of biological and computational concepts. 
Most methods used sequence alignments with an underlying 
hypothesis that sequence similarity is correlated with functional 
similarity. Recent studies have shown that this correlation is weak 
when applied to pairs of proteins16 and that domain assignments 
alone are not sufficient to resolve function50. Therefore, the main 
challenge for the alignment-based methods was to devise ways 
of combining multiple hits or identified domains into a single 

prediction score. More than half the methods used data beyond 
sequence similarity, such as types of evolutionary relationships, 
protein structure, protein-protein interactions or gene expression 
data. The challenge for these methods was finding ways to inte-
grate disparate data sources and properly handle incomplete and 
noisy data. For example, the protein-protein interaction network 
for yeast is nearly complete (although noisy), whereas the sets of 
available interactions for Arabidopsis thaliana and Xenopus laevis 
are rather sparse (but less noisy, given a smaller fraction of high-
throughput data). Finally, some methods used literature mining, 
which could also be related to the task of retrieving the correct 
function rather than predicting it from the set of textual descrip-
tions about a protein. As information retrieval is still a challenging 
research problem, it was useful to evaluate performance accuracy 
of the methods that exploited literature searching.

On the computational side, most methods used machine 
learning principles: that is, they typically found combinations of 
sequence-based or other features that correlated with a specific 
function in a training set of experimentally annotated proteins. 
Although these methods automate the task of learning and infer-
ence, they also require experience in selecting classification mod-
els (for example, a support vector machine), learning parameters, 
features or the training data that would result in good perform-
ance. In addition, the sets of rules according to which these meth-
ods score new proteins may be difficult to interpret. Despite the 
added layer of complexity, machine learning generally played a 
positive role in increasing prediction accuracy. Thus, it may be 
expected that top-performing methods in the future will be based 
on well-founded principles of statistical learning and inference.

With few exceptions, the same methods that performed well 
for the Molecular Function category also performed well in the 
Biological Process category; however, their overall performance 
in the latter category was inferior. We believe that this is because 
homologs may perform their biochemical roles in different path-
ways, and prediction methods are less able to discern those differ-
ences at this time. Because sequence similarity is less predictive of 
the biological roles of proteins, a key to improving the prediction 
of a protein’s biological function will be our ability to generate 
better-quality systems data and to develop computational tools 
that exploit them.

Evaluation metrics. The choice of evaluation metrics was another 
interesting aspect of the experiment. We decided to use simple 
and easily interpretable metrics (Online Methods), although sim-
ple measures based on precision and recall have limitations in 
this domain. First, such metrics are sensitive to problems related 
to the nonuniform distribution of proteins over GO terms due to 
the equal weight given to all terms. Second, proteins are weighted 
equally regardless of the depth of their experimental annotation: 
that is, a correct prediction on a protein annotated with a shal-
low term (and its ancestors) is considered as good as a correct 
prediction on a protein annotated with a deep term. Third, a 
method that reports only high-confidence deep annotations for 
a small number of proteins will be penalized (in terms of recall) 
compared to a method that annotates all proteins with frequently 
occurring general terms. Finally, in some cases, it is not clear 
whether to consider a prediction correct or erroneous; with our 
current approach, we consider only the experimental annotation 
and more general predictions to be correct. As such, correct and 
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highly specific predictions will be penalized if the protein has 
been experimentally annotated only in a more generic way. For 
those reasons, we encourage the development of a diverse set 
of metrics to understand better the strengths and weaknesses of 
function prediction in different application contexts.

Summary. The CAFA experiment was designed to enable the 
community to periodically reassess the performance of com-
putational methods as experimental evidence accumulates. In 
addition, the large set of targets released to the community pro-
vided us with prediction scores for most proteins across multiple 
methods. If the experiment is repeated, we expect to be able to 
evaluate future methods against those that deposited predictions 
in the first CAFA experiment and therefore monitor progress in 
the field over time.

Though the CAFA experiment has seen positive outcomes, it 
is also clear that there is significant room for the improvement 
of protein function prediction. In the Molecular Function cat-
egory, performance may be considered accurate. However, in the 
Biological Process category, the overall performance of the top-
scoring methods was below our expectations. This was true for 
any subset of targets. Another area in need of improvement is the 
availability of tools that can easily be used by experimental scien-
tists and that can be maintained and upgraded on a regular basis. 
As the community moves beyond the initial algorithm develop-
ment stage, there is a need to provide stand-alone tools (similar 
to the BLAST package) capable of predicting protein function at 
several different levels.

Given its significance, its intellectual challenge and the growing 
need for accurate functional annotations, protein function predic-
tion is likely to remain an active and expanding research field. As 
the quality of data improves and the number of experimentally 
annotated proteins grows, we expect that computational predic-
tion will become more accurate. On the basis of the CAFA experi-
ment, it seems that the most powerful methods will be those that 
will devise principled ways to integrate a variety of experimental 
evidence and weigh different data appropriately and separately 
for each functional term. Novel ideas and approaches are neces-
sary as well.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Experiment design. The CAFA experiment was conceived 
in the fall of 2009. The Organizing, Steering and Assessment 
Committees were designated by March 2010. During the same 
period a feasibility study was conducted to determine the rate 
at which experimental annotations accumulated in Swiss-Prot 
between 2007 and 2010. We concluded that a period of 6 months 
or more would result in annotations of at least 300–500 proteins, 
which would be sufficient for statistically reliable comparisons 
between algorithms. The experiment was announced in July 
2010 and subsequently heavily advertised. The set of targets was 
announced on 15 September 2010 with a prediction submission 
deadline of 18 January 2011 (Fig. 1).

Predictors were asked to submit predictions for each target 
along with scores ranging between 0 and 1 that would indicate 
the strength of the prediction (ideally, posterior probabilities). To 
reduce the amount of data submitted, we allowed no more than 
1,000 term annotations for each target. Prediction algorithms were 
also associated with keywords from a predetermined set, which 
were used to provide insight into the types of approaches that 
performed well. A list of all participating teams, principal inves-
tigators and methods is provided in Supplementary Table 3.

Initial comparative evaluation of models was conducted in July 
2011 during the Automated Function Prediction (AFP) Special 
Interest Group (SIG) meeting associated with the ISMB 2011 con-
ference. This study provides the analysis on a set of targets from 
the Swiss-Prot database from 14 December 2011.

Target proteins. A set of 48,298 target amino acid sequences 
was announced in September 2010. Because our feasibility study 
showed that only a handful of species were steadily accumulating 
experimental annotations, target proteins were selected from pre-
dominantly those species. The targets contained all the sequences 
in Swiss-Prot from 7 eukaryotic and 11 prokaryotic species that 
were not associated with any experimental GO terms. A protein 
was considered experimentally annotated if it was associated with 
GO terms having EXP, IDA, IMP, IGI, IEP, TAS or IC evidence 
codes. An additional set of targets was announced consisting of 
1,301 enzymes from multiple species and metagenomic studies 
that were the focus of the Enzyme Function Initiative project51.

18 January 2011 was set as the deadline for the submission of 
function predictions. To exclude targets that had accumulated 
annotations before the submission deadline, we obtained anno-
tated proteins from the January version of Swiss-Prot, GO35 and 
UniProt-GOA52 databases. We refer to those sets of proteins as 
Swiss-Prot(t0), GO(t0) and GOA(t0), respectively.

We later determined the evaluation set of target proteins by 
downloading a newer version of the Swiss-Prot database, denoted 
as Swiss-Prot(t). The set of target proteins for the CAFA experi-
ment was then selected using the following scheme

Targets Swiss-Prot Swiss-Prot GO GOA( ) ( ) ( ) ( ) ( )t t t t t= − − −0 0 0

Note that this experiment was designed to allow for reassessment 
of algorithm performance at some later point in time.

Evaluation metrics. Algorithms were evaluated in two scenarios: 
(i) protein centric and (ii) term centric. These two types of evalu-
ations were chosen to address the following related questions:  

(i) what is the function of a particular protein? and (ii) what are 
the proteins associated with a particular functional term?

1. Protein-centric metrics. The main evaluation metric in CAFA 
was the precision-recall curve. For a given target protein i and 
some decision threshold t ∈ [0, 1], the precision and recall were 
calculated as

pri
i if

if
t

I f P t f T

I f P t
( )

( )

( )
=

∈ ∧ ∈( )
∈( )

∑
∑
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t

I f P t f T

I f T
( )

( )
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∈ ∧ ∈( )
∈( )

∑
∑

where f is a functional term in the ontology, Ti is a set of experi
mentally determined (true) nodes for protein i, and Pi(t) is a 
set of predicted terms for protein i with score greater than or 
equal to t. Note that f ranges over the entire ontology (separately 
for Molecular Function and Biological Process), excluding the 
root. Function I(·) is the standard indicator function. For a fixed 
threshold t, a point in the precision-recall space is then created by 
averaging precision and recall across targets. Precision at thresh-
old t is calculated as 

pr pr( )
( )

( )
( )

t
m t

ti
i

m t
= ⋅

=
∑1

1

where m(t) is the number of proteins on which at least one pre-
diction was made above threshold t. On the other hand, recall is 
calculated over all n proteins in a target set, i.e.,

rc rc( ) ( )t
n

ti
i

n
= ⋅

=
∑1

1

regardless of the prediction threshold. The maximum ratio 
between m(t) and n (over all thresholds t) is referred to as the 
prediction coverage. If a particular algorithm outputs only a fixed 
score (for example, 1), its performance will be described by a  
single point in the precision-recall space instead of by a curve.

For submissions with unpropagated functional annotations, 
the organizers recursively propagated all scores toward the root 
of the ontology such that each parent term received the high-
est score among its children. The annotations were propagated 
regardless of the type of relationship between terms. We note 
that it may be useful to associate different weights with different 
ontological terms and therefore reward algorithms that are better 
at predicting more difficult or less frequent terms. However, for 
simplicity, in our main evaluation, each term was associated with 
an equal weight of 1 (weighted precision-recall curves are shown 
in Supplementary Fig. 8).

The main appeal of the precision-recall evaluation stems from 
its interpretability: if, for a particular threshold, a method has a 
precision of 0.7 at a recall of 0.5, this indicates that on average 70% 
of the predicted terms will be correct and that about 50% of the 
true annotations will be revealed for a previously unseen protein. 
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On the other hand, a limitation of this evaluation method is that 
the terms are not independent because of ontological relation-
ships, and the unequal level of specificity of functional terms at 
the same depth in the ontology was not taken into account.

To provide a single number for comparisons between methods, 
we calculated the F-measure (a harmonic mean between precision 
and recall) for each threshold and calculated its maximum value 
over all thresholds. More specifically, we used 

F t t
t tt

max max ( ) ( )
( ) ( )

= ⋅ ⋅
+









2 pr rc
pr rc

2. Term-centric metrics. For each functional term f, we calculated 
the area under the ROC curve (AUC) using a sliding threshold 
approach. The ROC curve is a plot of sensitivity (or recall) for a 
given false positive rate (or 1 − specificity). The sensitivity and 
specificity for a particular functional term f and threshold t were 
calculated as 

sn f
i ii

ii
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where Pi(t) is the set of predicted terms for protein i with a score 
greater than or equal to threshold t, and Ti is the set of true terms 
for protein i. Once the sensitivity and specificity for a particular  
functional term were determined over all proteins for different val-
ues of the prediction threshold, the AUC was calculated using the 
trapezoid rule. The AUC has a useful probabilistic interpretation: 
given a randomly selected protein associated with functional 

term f and a randomly selected protein not associated with f,  
the AUC is the probability that the former protein will receive a 
higher score than the latter protein53.

Baseline methods. In addition to the methods implemented by 
the community, we used two additional methods as baselines. 
The first such method is based on BLAST11 hits to the database 
of proteins with experimentally annotated functions (roughly 
37,000 proteins). The score for a particular term was calculated 
as the maximum sequence identity between the target protein 
and any protein experimentally annotated with that term. More 
specifically, if a particular protein was hit with the local sequence 
identity 75%, all its functional terms were transferred to the target 
sequence with the score of 0.75. If a term was hit with multiple 
sequence identity scores, the highest one was retained. BLAST 
was selected as a baseline method because of its ubiquitous use. 
We note that the same method was tested using the BLAST bit 
scores, which resulted in slightly better performance. In addition 
to BLAST, we also tested PSI-BLAST11, in which the profiles were 
created using the most recent “nr” database and −j 3 −h 0.0001 
parameters. These profiles were then searched against a database 
of experimentally annotated proteins with E-values used to rank 
the hits. The second baseline method, referred to as Naive, used 
the prior probability of each term in the database of experimen-
tally annotated proteins as the prediction score for that term. If a 
term “protein binding” occurs with relative frequency 0.25, each 
target protein was associated with score 0.25 for that term. Thus, 
the Naive method assigned the same predictions to all targets.

51.	 Gerlt, J.A. et al. The Enzyme Function Initiative. Biochemistry 50,  
9950–9962 (2011).

52.	 Barrell, D. et al. The GOA database in 2009—an integrated Gene Ontology 
Annotation resource. Nucleic Acids Res. 37, D396–D403 (2009).

53.	 Hanley, J.A. & McNeil, B.J. The meaning and use of the area under a 
receiver operating characteristic (ROC) curve. Radiology 143, 29–36 
(1982).
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