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Introduction

Shape comparison is probably one of the most challenging issues in shape

recognition, classification and retrieval, which are very lively research top-

ics for the disciplines of Cognitive Sciences, Pattern Recognition, Computer

Vision and Computer Graphics. Shape models carry a high value of infor-

mation with them, and search engines able to match, classify and retrieve

such information would be useful to speed-up content design, processing and

re-use. Keyword-based annotation is not sufficient to achieve the necessary

capability of resource exploration for shape models. Therefore, a variety of

methods has been proposed in the literature to tackle the problem of content-

based shape analysis and retrieval.

The theoretical aspects underlying these questions have captured the atten-

tion of several research groups: In past years many papers have been devoted

to these subjects and new mathematical techniques have been developed to

deal with these problems. Recently, there has been an increasing interest

towards geometrical-topological methods for shape comparison, whose main

idea is to perform a topological exploration of the shape according to some

quantitative geometric properties provided by a real function defined on the

shape [5, 7, 15, 28]: That is to say, the real function plays the role of a lens

through which we look at the properties of the shape.

In this context, Size Theory was proposed in the early 90’s as a geometri-

cal/topological approach to shape discrimination: The main idea is that the
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ii INTRODUCTION

comparison of two objects in a dataset (e.g. 3D-models, images or sounds)

can be translated into the comparison of two suitable topological spacesM
and N , endowed with two continuous real functions ϕ :M→ R, ψ : N → R.

These functions are called measuring functions and are chosen according to

the application. In other words, they can be seen as descriptors of the prop-

erties considered relevant for the comparison. The pairs (M, ϕ), (N , ψ) are
said to be size pairs. In this setting, the definition of the natural pseudo-

distance d between the size pairs (M, ϕ), (N , ψ) was introduced (cf. [21]),

setting d ((M, ϕ), (N , ψ)) equal to the infimum of the change of the measur-

ing function, induced by composition with all the homeomorphisms fromM
to N .

However, a common scenario in applications is to have two or more func-

tions defined on the same shape, carrying information on different features

of the phenomenon under study: Indeed, the shape of an object can be more

thoroughly characterized by means of a set of real functions, each one in-

vestigating specific features of the shape under study. Examples arise in the

context of computational biology, in medical environments, as well as in sci-

entific simulations of natural phenomena. Therefore, a great challenge is to

develop and define tools to extract knowledge from high-dimensional data,

by means of the concurrent analysis of different properties conveyed by dif-

ferent real functions.

These considerations have quite early led, in [31], to the extension of the

natural pseudo-distance, in order to approach the problem of shape discrim-

ination by considering topological spaces endowed with continuous functions

taking values in Rk, modeling the shapes under study. According to this mul-

tidimensional setting, the natural pseudo distance d between two size pairs

(M, ~ϕ), (N , ~ψ), where ~ϕ :M→ Rk, ~ψ : N → Rk, is defined as

d((M, ~ϕ), (N , ~ψ)) = inf
f
max
P∈M

‖~ϕ(P )− ~ψ(f(P ))‖∞,
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where ‖~ϕ(P )− ~ψ(f(P ))‖∞ = max1≤i≤k |ϕi(P )−ψi(f(P ))| and f varies among
all the homeomorphisms betweenM and N .

Unfortunately, the study of d is quite difficult, even for k = 1, although

strong properties can be proved in this case. Size Theory tackles this prob-

lem by introducing a mathematical tool that allows us to easily obtain lower

bounds for d, named k-dimensional size function. The idea is to study the

pairs (M〈~ϕ � ~x 〉,M〈~ϕ � ~y 〉), where M〈~ϕ � ~t 〉 is defined by setting

M〈~ϕ � ~t 〉 = {P ∈ M : ϕi(P ) ≤ ti, i = 1, . . . , k} for ~t = (t1, . . . , tk) ∈ Rk:

k-dimensional size functions count the number of connected components in

M〈~ϕ � ~y 〉 that meetM〈~ϕ � ~x 〉.

More recently, similar research lines led Edelsbrunner et al. to the defini-

tion of Persistent Homology (cf. [22]), and Allili et al. to the definition of

the Morse Homology Descriptor (cf. [1]), presenting some links with the

concepts expressed by Size Theory.

From the beginning of the 90’s, size functions have been studied and applied

in the case of measuring functions taking values in R (namely in the case of

1-dimensional size functions) (cf., e.g., [20, 23, 24, 25, 26, 33, 36, 37, 38, 39]).

The multidimensional case presented more severe difficulties, since a concise,

complete and stable description of k-dimensional size functions was not avail-

able before the results reported in this thesis, differently from what happens

for the 1-dimensional case (cf., e.g., [17, 29]).

The first result of this thesis is the proof that in Size Theory the comparison

of multidimensional size functions can be reduced to the 1-dimensional case

by a suitable change of variables (Theorem 2.1.2). The key idea is to show

that a foliation in half-planes can be given, such that the restriction of a k-

dimensional size function to these half-planes turns out to be a 1-dimensional

size function. Our approach implies that each size function, with respect to
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a measuring function taking values in Rk, can be completely and compactly

described by a parameterized family of discrete descriptors (Remark 9). This

follows from the results reported in [19, 27, 29] about the representation of

1-dimensional size functions by means of formal series of points and lines,

applied to each plane in our foliation. An important consequence is that we

can easily prove the stability of this new descriptor (and hence of the corre-

sponding k-dimensional size function) also in higher dimensions (Proposition

2.2.2 and Proposition 2.2.3), by using a recent result of stability proved for 1-

dimensional size functions (cf. [17, 18]). Moreover, we show that a matching

distance between size functions, with respect to measuring functions taking

values in Rk, can easily be introduced (Definition 2.2), providing a lower

bound for the natural pseudo-distance (Theorem 2.2.4). All these results

open the way to the use of Multidimensional Size Theory in real applications.

Outline. This thesis contains the results of our research activity carried

out in the last years in order to face the problem of the extension to the

multidimensional case of Size Theory (cf. [12, 13]). In Chapter 1 we give

preliminary definitions for k-dimensional size functions, and the main results

for the particular case k = 1. In Chapter 2 the foliation we use is presented,

and the reduction to the 1-dimensional case is proved. Moreover, we show

the stability of our computational method, implying a lower bound for the

natural pseudo-distance. Additionally, a new distance between multidimen-

sional size functions is introduced. Chapter 3 is devoted to present some

computational techniques for computing k-dimensional size functions in ap-

plications. Some discussion and proposals for future research conclude the

thesis.
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Chapter 1

Preliminary definitions and

results

This chapter is devoted to the introduction of preliminary definitions

and results about natural pseudo-distance and k-dimensional size functions.

Particular attention will be given to the special case of 1-dimensional size

functions: Indeed, this is the most well-studied instance, showing a certain

number of interesting features. For more details about properties of natural

pseudo-distance and 1-dimensional size functions, the reader is referred to

[17, 18, 28, 29, 33, 39].

1.1 Preliminary definitions

LetM be a non-empty, compact, connected and locally connected Haus-

dorff space.

The assumption on the connectedness of M can easily be weakened to any

finite number of connected components without much affecting the follow-

ing results. More serious problems would derive from considering an infinite

number of connected components.

1
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Let also ~ϕ = (ϕ1, . . . , ϕk) : M → Rk be a continuous function. We shall

call any pair (M, ~ϕ) a size pair. The function ~ϕ is said to be a k-dimensional

measuring function, and can be seen like a descriptor of those features that

are considered to be relevant in comparing (M, ~ϕ) with other size pairs. We

shall call Size the collection of all size pairs (M, ~ϕ).

The following relations �, ≺ are defined in Rk: for ~x = (x1, . . . , xk) and

~y = (y1, . . . , yk), we shall say ~x � ~y (resp ~x ≺ ~y) if and only if xi ≤ yi (resp.

xi < yi) for every index i = 1, . . . , k. Moreover, Rk is endowed with the usual

max-norm: ||(x1, . . . , xk)||∞ = max1≤i≤k |xi|.

Given two size pairs (M, ~ϕ), (N , ~ψ), let H(M,N ) be the set of all homeo-

morphisms fromM to N .

Definition 1.1. We shall call natural pseudo-distance the pseudo-distance

d : Size× Size→ R ∪ {+∞} defined as

d
(

(M, ~ϕ), (N , ~ψ)
)

= inf
f∈H(M,N )

max
P∈M

||~ϕ(P )− ~ψ(f(P ))||∞ (1.1)

if H(M,N ) 6= ∅, and +∞ otherwise.

Remark 1. We observe that the term pseudo-distance means that d can van-

ish even if the size pairs do not coincide.

Remark 2. In other words, the natural pseudo-distance d between two size

pairs (M, ~ϕ), (N , ~ψ) is equal to the infimum of the change of the measuring

functions ~ϕ, ~ψ, induced by each homeomorphism fromM to N .

Unfortunately, the computation of the natural pseudo-distance d is quite

difficult, since it involves the study of all the homeomorphisms between two

topological spaces. Moreover, the infimum in (1.1) is not always a minimum,

i.e. there does not always exist a homeomorphism h realizing the equality

d
(

(M, ~ϕ), (N , ~ψ)
)

= maxP∈M ||~ϕ(P )− ~ψ(h(P ))||∞. These problems justify
the introduction of the concept of k-dimensional size functions, a mathemat-

ical tool simpler to deal than natural pseudo-distance, allowing us to obtain
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information about d without computing it.

In what follows, Rk × Rk and R2k will be identified. We shall use the fol-

lowing notations: ∆+ will be the open set {(~x, ~y) ∈ Rk × Rk : ~x ≺ ~y}, while
∆ = ∂∆+. For every k-tuple ~x = (x1, . . . , xk) ∈ Rk, let M〈~ϕ � ~x 〉 be the
set {P ∈M : ϕi(P ) ≤ xi, i = 1, . . . , k}.

Definition 1.2. For every k-tuple ~y = (y1, . . . , yk) ∈ Rk, we shall say that

two points P,Q ∈M are 〈~ϕ � ~y 〉-connected if and only if a connected subset

of M〈~ϕ � ~y 〉 exists, containing P and Q.

Remark 3. Obviously, the relation of 〈~ϕ � ~y 〉-connectedness is an equivalence
relation.

Definition 1.3. We shall call k-dimensional size function associated with the

size pair (M, ~ϕ) the function ℓ(M,~ϕ) : ∆
+ → N, defined by setting ℓ(M,~ϕ)(~x, ~y)

equal to the number of equivalence classes in which the set M〈~ϕ � ~x 〉 is

divided by the 〈~ϕ � ~y 〉-connectedness relation.

Remark 4. In other words, ℓ(M,~ϕ)(~x, ~y) counts the connected components in

M〈~ϕ � ~y 〉 containing at least one point ofM〈~ϕ � ~x 〉.

Remark 5. In definition 1.3, the case ℓ(M,~ϕ)(~x, ~y) = +∞ is not considered:

Indeed, under our assumption on M and ~ϕ it is possible to prove that

ℓ(M,~ϕ)(~x, ~y) is finite for every (~x, ~y) ∈ ∆+.

1.2 Special case: 1-dimensional size functions

In this section we introduce 1-dimensional size functions, in order to make

the previous definitions and concepts clearer. Furthermore, the case k = 1

has been extensively studied in recent past years (cf., e.g., [20, 23, 24, 25, 26,

29, 33, 36, 37, 38, 39]) and presents a certain number of interesting properties

that turn out to be useful in our approach to the k-dimensional problem.
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As the term “1-dimensional” suggests, in this case we have to deal with topo-

logical spaces endowed with continuous functions taking value in R: This is

why, in the sequel of the chapter, the symbol ~ϕ, representing a k-dimensional

measuring function, will be replaced, when k = 1, by the more natural ϕ.
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Figure 1.1: A size pair and the associated 1-dimensional size function.

Figure 1.1(left) shows an example of a size pair (M, ϕ), where M is a

closed curve and the chosen measuring function ϕ is defined as the Euclidean

distance from the point P . Figure 1.1(right) represents the 1-dimensional size

function associated to (M, ϕ). Since ϕ takes value in R, the domain ∆+ of

ℓ(M,ϕ) is the subset of the real plane defined as {(x, y) ∈ R2 : x < y}. For
k = 1, ∆+ is divided by solid lines, representing the discontinuity points of

the 1-dimensional size function, into triangular regions. In all these regions

the value of ℓ(M,ϕ) is constant, and equal to the numbers displayed in figure.

Two of the most interesting features of 1-dimensional size functions are their

resistance to noise (useful especially in applications) and their modularity:

in particular, 1-dimensional size functions inherit their invariance properties
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directly from the chosen measuring functions. As an example, we observe

that it would be possible to apply rotations around P to the closed curve in

figure 1.1, being sure that no changing occurs in the related 1-dimensional

size function.

Other interesting properties, showing that 1-dimensional size function have

a very simple structure, are the following: if (M, ϕ) is a size pair, with

ϕ :M → R, then (i) ℓ(M,ϕ)(x, y) is non-decreasing in x and non-increasing

in y, (ii) ℓ(M,ϕ)(x, y) is finite for every (x, y) ∈ ∆+, (iii) ℓ(M,ϕ)(x, y) = 0 for

every x < minP∈M ϕ(P ).

In what follows some results about 1-dimensional size functions will be shown,

useful to describe their capability in discriminating size pairs. For the sake

of conciseness, proofs will be omitted. For more details, the reader is referred

to [17, 18, 26, 28, 29].

1.3 Algebraic representation of 1-dimensional

size functions

In order to compare size pairs, discontinuity points of 1-dimensional size

functions play an important role: indeed, they divide the domain ∆+ into

triangular regions, in which the value of the 1-dimensional size function is

constant. More precisely, these triangular regions may overlap, with a side

on the diagonal of the real plane, and may have finite or infinite area. As an

example, in figure 1.1 one can see three overlapping triangles: Two of them

are bounded, and each one has a unique vertex lying in ∆+, with coordinates

respectively (a, b) and (b, c). The last triangle is unbounded, with a side on

the diagonal and another vertical side on the line x = a.

The key idea is to make use of this property of 1-dimensional size functions

in order to describe them in a simpler way. This can be done by identifying

a bounded triangular region with its vertex not lying onto the diagonal, and
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a triangular region of infinite area with its unbounded vertical side.

The following definitions formalize this idea:

Definition 1.4. (Proper cornerpoint) For every point p = (x, y) ∈ ∆+ and

for every positive real number ǫ with x+ ǫ < y − ǫ, let us define the number

µǫ(p) as

ℓ(M,ϕ)(x+ǫ, y−ǫ)−ℓ(M,ϕ)(x−ǫ, y−ǫ)−ℓ(M,ϕ)(x+ǫ, y+ǫ)+ℓ(M,ϕ)(x−ǫ, y+ǫ).

The finite number µ(p) := min{µǫ(p) : ǫ > 0, x + ǫ < y − ǫ} will be called

multiplicity of p for ℓ(M,ϕ). Moreover, we shall call proper cornerpoint for

ℓ(M,ϕ) any point p ∈ ∆+ such that the number µ(p) is strictly positive.

Definition 1.5. (Cornerpoint at infinity) For every vertical line r, with equa-

tion x = k, and for every positive real number ǫ with k + ǫ < 1/ǫ, let us

identify r with the pair (k,∞), and define the number µǫ(r) as

ℓ(M,ϕ)(k + ǫ, 1/ǫ)− ℓ(M,ϕ)(k − ǫ, 1/ǫ).

When the finite number µ(r) := min{µǫ(r) : ǫ > 0, k + ǫ < 1/ǫ}, called

multiplicity of r for ℓ(M,ϕ), is strictly positive, we shall call the line r a

cornerpoint at infinity for the 1-dimensional size function.

Remark 6. Obviously, the numbers µǫ(p), µǫ(r) in definitions 1.4 and 1.5

are integer numbers. Moreover, it is possible to prove that they are always

non-negative. Hence, it follows that the multiplicity of points and vertical

lines is well-defined and non-negative.

Remark 7. Under our assumptions on M, µ(r) can only take the values

0 and 1, but the definition can easily be extended to spaces with any finite

number of connected components, so that µ(r) can equal any natural number.

Moreover, the connectedness assumption also implies that there is exactly one

cornerpoint at infinity.

As an example, in Figure 1.1 the only proper cornerpoints for ℓ(M,ϕ)

are the points with coordinates (a, b) and (b, c), with µ((a, b)) = 1 and
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µ((b, c)) = 2, while the unique cornerpoint at infinity is the line r : x = a

and it has multiplicity µ(r) = µ((a,∞)) = 1.

Therefore, proper cornerpoints and cornerpoints at infinity of a 1-dimensional

size function allow us to univocally identify the (bounded and unbounded)

overlapping triangular regions splitting the domain ∆+. The sides lying on

∆+ of such triangles represent the discontinuity point of the 1-dimensional

size function, “created” by cornerpoints and spreading downwards and right-

wards to ∆ = {(x, y) ∈ R2 : x = y}, as the next proposition states.

Proposition 1.3.1. (Propagation of discontinuities) If p̄ = (x̄, ȳ) is a proper

cornerpoint for ℓ(M,ϕ), then the following statements hold:

i) If x̄ ≤ x < ȳ, then ȳ is a discontinuity point for ℓ(M,ϕ)(x, ·);

ii) If x̄ < y < ȳ, then x̄ is a discontinuity point for ℓ(M,ϕ)(·, y).

If r̄ = (x̄,∞) is the cornerpoint at infinity for ℓ(M,ϕ), then the following

statement holds:

iii) If x̄ < y, then x̄ is a discontinuity point for ℓ(M,ϕ)(·, y).

The position of cornerpoints in ∆+ is related to the extrema of the mea-

suring function as the next proposition states, immediately following from

the definitions.

Proposition 1.3.2. (Localization of cornerpoints) If p̄ = (x̄, ȳ) is a proper

cornerpoint for ℓ(M,ϕ), then

p̄ ∈ {(x, y) ∈ R2 : minϕ ≤ x < y ≤ maxϕ}.

If r̄ = (x̄,∞) is the cornerpoint at infinity for ℓ(M,ϕ), then x̄ = minϕ.

Proposition 1.3.1 and Proposition 1.3.2 imply that the number of corner-

points is either finite or countably infinite. In fact, the following result can

be proved.



8 1. Preliminary definitions and results

Proposition 1.3.3. (Local finiteness of cornerpoints) For each strictly posi-

tive real number ǫ, 1-dimensional size functions have, at most, a finite number

of cornerpoints in {(x, y) ∈ R2 : x+ ǫ < y}.

Therefore, if the set of cornerpoints of a 1-dimensional size function has

an accumulation point, it necessarily belongs to the diagonal ∆. The next

result shows that cornerpoints, with their multiplicities, uniquely determine

1-dimensional size functions. The open (resp. closed) half-plane ∆+ (resp.

∆̄+) extended by the points at infinity of the kind (k,∞) will be denoted by

∆∗ (resp. ∆̄∗), i.e. ∆∗ := ∆+ ∪ {(k,∞) : k ∈ R}, ∆̄∗ := ∆̄+ ∪ {(k,∞) : k ∈
R}.

Theorem 1.3.4. (Representation Theorem) For every (x̄, ȳ) ∈ ∆+ we have

ℓ(M,ϕ)(x̄, ȳ) =
∑

(x,y)∈∆∗

x≤x̄,y>ȳ

µ((x, y)).

In the previous summation, only finitely many terms are different from

zero because of Proposition 1.3.3 (Local finiteness of cornerpoints).

The Representation Theorem 1.3.4 shows the importance of proper corner-

points and cornerpoints at infinity, since the value of a 1-dimensional size

function at a point p of its domain can be obtained as the sum of the mul-

tiplicities of proper cornerpoints and cornerpoints at infinity representing

those triangular regions containing p. As an example, consider once more

Figure 1.1: The value taken by the 1-dimensional size function at a point

(x, y) of ∆+, with b < x < y < c, is equal to 3, and it is given by the sum

µ((b, c)) + µ((a,∞)).

According to these last considerations, it follows that it is possible to rep-

resent any 1-dimensional size function by a formal series of points and lines

of the real plane, i.e. by means of its proper cornerpoints and cornerpoints

at infinity, counted with their multiplicities. In this way, the hard problem

of comparing topological spaces endowed with continuous real functions can
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be translated, by means of 1-dimensional size functions and their compact

representation based on proper cornerpoints and cornerpoints at infinity, into

the much simpler problem of comparing formal series.

1.4 Matching distance between 1-dimensional

size functions

In this section a matching distance between 1-dimensional size functions

will be introduced. The idea is to compare 1-dimensional size functions by

measuring the cost of transporting the cornerpoints of a 1-dimensional size

function to those of the other one, with the property that the longest of the

transportations should be as short as possible. Since, in general, the number

of cornerpoints of two 1-dimensional size functions is different, it will be

possible to transport the cornerpoints onto the points of ∆: In other words,

it will be possible to “destroy them”.

3

3

2

2

3 2
0 0 11

x

r’+a’+c’

y y

r+a+b+c

a
b

c

r r’
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x x

y r r’
a

b

a’ c’
coptimal

matching

Figure 1.2: An example of optimal matching between two 1-dimensional size

functions.

It is important to underline that the number of cornerpoints representing

a 1-dimensional size function may be finite or countably infinite: Neverthe-

less, it is possible to prove that there always exists an optimal matching

between two 1-dimensional size functions. Figure 1.2 shows an example of

optimal matching between 1-dimensional size functions.
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The matching distance is not the only metric between 1-dimensional size

functions: Other metrics for size functions have been considered in the past

([19, 27]). However, the matching distance is of particular interest since it

allows for a connection with the natural pseudo-distance between size pairs:

In particular, it has been proved that the matching distance provides the

best estimate for the natural pseudo-distance. Moreover, it has already been

successfully tested in [6]. For a detailed treatment about matching distance,

see [17, 18].

In order to introduce the matching distance between 1-dimensional size func-

tions we need some new definitions.

Definition 1.6. (Representative sequence) Let ℓ be a 1-dimensional size

function. We shall call representative sequence for ℓ any sequence of points

a : N → ∆̄∗, (briefly denoted by (ai)), with the following properties:

(1) a0 is the cornerpoint at infinity for ℓ;

(2) For each i > 0, either ai is a proper cornerpoint for ℓ, or ai belongs to

∆;

(3) If p is a proper cornerpoint for ℓ with multiplicity µ(p), then the cardi-

nality of the set {i ∈ N : ai = p} is equal to µ(p);

(4) The set of indexes for which ai is in ∆ is countably infinite.

We now consider the following pseudo-distance dM on ∆̄∗ in order to

assign a cost to each deformation of 1-dimensional size functions:

dM((x, y), (x
′, y′)) := min

{

max{|x− x′|, |y − y′|},max
{

y − x

2
,
y′ − x′

2

}}

,

with the convention about ∞ that ∞ − y = y − ∞ = ∞ for y 6= ∞,

∞−∞ = 0, ∞
2
= ∞, |∞| = ∞, min{∞, c} = c, max{∞, c} = ∞. In other

words, the pseudo-distance dM between two points p and p′ compares the
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cost of moving p to p′ and the cost of moving p and p′ onto the diagonal

and takes the smaller. Costs are computed using the distance induced by

the max-norm. In particular, the pseudo-distance dM between two points

p and p′ on the diagonal is always 0; the pseudo-distance dM between two

points p and p′, with p above the diagonal and p′ on the diagonal, is equal to

the distance, induced by the max-norm, between p and the diagonal. Points

at infinity have a finite distance only to other points at infinity, and their

distance depends on their abscissas. Therefore, dM(p, p
′) can be considered

a measure of the minimum of the costs of moving p to p′ along two different

paths (i.e. the path that takes p directly to p′ and the path that passes

through ∆). This observation easily yields that dM is actually a pseudo-

distance.

Definition 1.7. (Matching distance) Let ℓ1 and ℓ2 be two 1-dimensional

size functions. If (ai) and (bi) are two representative sequences for ℓ1 and ℓ2

respectively, then the matching distance between ℓ1 and ℓ2 is the number

dmatch(ℓ1, ℓ2) := inf
σ
sup
i

dM(ai, bσ(i)),

where i varies in N and σ varies among all the bijections from N to N.

Proposition 1.4.1. dmatch is a distance between 1-dimensional size func-

tions.

1.4.1 Stability of the matching distance

This subsection is devoted to show that the matching distance between 1-

dimensional size functions is stable, i.e. that if ϕ and ψ are two 1-dimensional

measuring functions onM whose difference at the points ofM is controlled

by ǫ (namely maxP∈M ||ϕ(P ) − ψ(P )||∞ = maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ),

then the matching distance between ℓ(M,ϕ) and ℓ(M,ψ) is also controlled by

ǫ (namely dmatch(ℓ(M,ϕ), ℓ(M,ψ)) ≤ ǫ). Moreover, two results stating that

the matching distance between 1-dimensional size functions furnishes the

best lower bound for the natural pseudo-distance between size pairs will be

provided.
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Theorem 1.4.2. (Matching Stability Theorem) Let (M, ϕ) be a size pair.

For every real number ǫ ≥ 0 and for every measuring function ψ :M→ R,

such that maxP∈M |ϕ(P )− ψ(P )| ≤ ǫ, the matching distance between ℓ(M,ϕ)

and ℓ(M,ψ) is smaller than or equal to ǫ.

The next theorem states that the inf and the sup in the definition of

matching distance are actually attained, that is to say, a matching σ exists

for which dmatch(ℓ1, ℓ2) = minσmaxi dM(ai, bσ(i)). Every such matching will

henceforth be called optimal.

Theorem 1.4.3. (Optimal Matching Theorem) Let (ai) and (bi) be two rep-

resentative sequences of points for the 1-dimensional size functions ℓ1 and ℓ2

respectively. Then the matching distance between ℓ1 and ℓ2 is equal to the

number minσmaxi dM(ai, bσ(i)), where i varies in N and σ varies among all

the bijections from N to N.

The next theorem shows that the matching distance between the 1-

dimensional size functions associated to two size pairs (M, ϕ), (N , ψ) is
a lower bound for the natural pseudo-distance d((M, ϕ), (N , ψ)).

Theorem 1.4.4. Let ǫ ≥ 0 be a real number and let (M, ϕ) and (N , ψ) be

two size pairs with M and N homeomorphic. Then

dmatch
(

ℓ(M,ϕ), ℓ(N ,ψ)

)

≤ inf
f
max
P∈M

|ϕ(P )− ψ(f(P ))| = d((M, ϕ), (N , ψ)),

where f ranges among all the homeomorphisms from M to N and d is the

natural pseudo-distance between (M, ϕ) and (N , ψ).

Thanks to this last result, we are able to by-pass the hard problem of

comparing size pairs by means of the natural pseudo-distance, introducing

and dealing with 1-dimensional size functions and their compact representa-

tions by formal series, that are simpler tools: Indeed, theorem 1.4.4 states

that it is possible to obtain information about the dissimilarity of two size

pairs without computing the related natural pseudo-distance d, but directly

from the matching distance between the associated 1-dimensional size func-

tions, that provides a lower bound for d.
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As mentioned at the beginning of this section, the matching distance is not

the only metric between 1-dimensional size functions. However, it would be

not so useful considering other distances, since the lower bound for natural

pseudo-distance provided by dmatch is the best we can obtain, as the next

proposition shows.

Proposition 1.4.5. Let δ be a distance between 1-dimensional size functions,

such that

δ(ℓ(M,ϕ), ℓ(N ,ψ)) ≤ inf
f∈H(M,N )

max
P∈M

|ϕ(P )− ψ(f(P ))|,

for any two size pairs (M, ϕ) and (N , ψ) with M and N homeomorphic.

Then,

δ(ℓ(M,ϕ), ℓ(N ,ψ)) ≤ dmatch(ℓ(M,ϕ), ℓ(N ,ψ)).
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Chapter 2

Stability in Multidimensional

Size Theory

In this chapter, the extension of size functions to the multidimensional

case will be faced.

Figure 2.1 shows an example aimed to introduce the problem we want to

tackle by generalizing the concepts expressed in Chapter 1: In R3 consider

the set Q = [1, 1]× [1, 1]× [1, 1] and the sphere S of equation x2+y2+z2 = 1.

Let also Φ : R3 → R be the continuous function defined as Φ(x, y, z) = |x|.
In this setting, consider the size pairs (M, ϕ) and (N , ψ) where M = ∂Q,
N = S, and ϕ and ψ are respectively the restrictions of Φ toM and N . The

1-dimensional size functions associated to (M, ϕ) and (N , ψ) are displayed:
as we can see, it results that ℓ(M,ϕ) ≡ ℓ(N ,ψ).
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Figure 2.1: A critical example.
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In other words, the 1-dimensional size functions, with respect to ϕ, ψ, are

not able to discriminate the cube and the sphere, that is to say, we cannot de-

duce any information about the natural pseudo-distance d((M, ϕ), (N , ψ)).

The example shown in Figure 2.1 is more than a particular case due to a crit-

ical choice of ϕ and ψ: In general, the 1-dimensional size functions associated

to different size pairs may coincide. In previous works ([10, 11, 20, 32, 34, 37]),

this problem has been faced by increasing the number of 1-dimensional mea-

suring functions describing specific features of the topological spaces under

study: According to this approach, in order to evaluate the dissimilarity

between two topological spacesM, N , we could consider two families of 1-

dimensional measuring functions {ϕi : i = 1, . . . , k}, {ψi : i = 1, . . . , k}, and
merge the information arising from the associated 1-dimensional size func-

tions by computing, e.g, the distance given by 1
k

∑k
i=1 dmatch(ℓ(M,ϕi), ℓ(M,ψi)).

However, this technique is not always an optimal solution: As an example,

consider once more the spacesM andN displayed in Figure 2.1, and the con-

tinuous functions Φ1,Φ2 : R3 → R defined as Φ1(x, y, z) = |x|, Φ2(x, y, z) =

|z|. In this setting, consider the size pairs (M, ϕ1), (M, ϕ2), (N , ψ1), (N , ψ2),

where ϕ1, ϕ2, ψ1, ψ2 are respectively the restrictions of Φ1 and Φ2 to M
and N . As previously shown it holds that ℓ(M,ϕ1) ≡ ℓ(N ,ψ1). Moreover, it

is easy to verify that ℓ(M,ϕ2) ≡ ℓ(N ,ψ2). Hence 1
2
(dmatch(ℓ(M,ϕ1), ℓ(M,ψ1)) +

dmatch(ℓ(M,ϕ2), ℓ(M,ψ2))) = 0, i.e. this approach is not useful to distinguish

the cube and the sphere when considering the two families of 1-dimensional

measuring functions {ϕ1, ϕ2}, {ψ1, ψ2}.

According to all these consideration, the introduction of the concept of k-

dimensional size function seems to represent the right direction to follow,

since it allows us to consider, at the same time, different features that turn

out to be useful in the comparison of size pairs. Moreover, in general the size

function with respect to a k-dimensional measuring function ϕ = (ϕ1, . . . , ϕk)
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contains more information than the set of all 1-dimensional size functions

with respect to ϕ1, . . . , ϕk, considered independently.

As a confirmation of this last statement, in Example 2.1 we will show that

the problem of discriminating the spaces M and N displayed in Figure 2.1

can be solved by comparing the 2-dimensional size functions associated to

the size pairs (M, ~ϕ), (N , ~ψ), where ~ϕ and ~ψ are respectively the restric-

tions to M and N of the function ~Φ = (Φ1,Φ2) : R3 → R2, defined as

~Φ(x, y, z) = (|x|, |z|).

2.1 Reduction to the 1-dimensional case

In dealing with k-dimensional size functions, we have to face some prob-

lems: (i) a satisfactory representation by formal series seems not to exist:

In particular, the most natural extension of the definition of multiplicity to

points, lines, planes and hyperplanes of R2k, leads to objects with negative

multiplicities; moreover, these structures, together with the ones with posi-

tive multiplicity, are not localized in the domain ∆+, differently from what

happens for cornerpoints and cornerpoints at infinity of 1-dimensional size

functions (see prop. 1.3.2); (ii) a direct approach to the multidimensional

case enforces us to work in subsets of R2k, implying higher computational

costs in evaluating k-dimensional size functions and, due to the absence of a

representation by means of formal series, in comparing them.

All these problems can be by-passed by means of a suitable change of vari-

ables, that allows us to reduce k-dimensional size functions to the 1-dimen-

sional case: Indeed, we have proved that a foliation of ∆+ in half-planes can

be given, such that the restriction of a k-dimensional size function to these

half-planes turns out to be a classical size function in two scalar variables.

Our approach implies that each size function, with respect to a k-dimensional

measuring function, can be completely and compactly described by a parame-
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terized family of discrete descriptors. This follows from the results of chapter

1 about the representation of classical size functions by means of formal series

of points and lines, applied to each plane in our foliation.

The following definition fixes in a formal way the concept of foliation in

half-planes of ∆+:

Definition 2.1. For every unit vector ~l = (l1, . . . , lk) of Rk such that li > 0

for every i = 1, . . . , k, and for every vector ~b = (b1, . . . , bk) of Rk such that
∑k

i=1 bi = 0, we shall say that the pair (~l,~b) is admissible. We shall denote

the set of all admissible pairs in Rk×Rk by Admk. Given an admissible pair

(~l,~b), we define the half-plane π(~l,~b) of Rk × Rk by the following parametric

equations:

π(~l,~b) :

{

~x = s~l +~b

~y = t~l +~b

for s, t ∈ R, with s < t.

Remark 8. The restriction on the choice of the vectors ~l and ~b guarantees a

unique linear parametric representation for each half-plane π(~l,~b).

Proposition 2.1.1. For every (~x, ~y) ∈ ∆+ there exists one and only one

admissible pair (~l,~b) such that (~x, ~y) ∈ π(~l,~b).

Proof. The claim immediately follows by taking, for i = 1, . . . , k,

li =
yi − xi

√

∑k
j=1(yj − xj)2

, bi =
xi

∑k
j=1 yj − yi

∑k
j=1 xj

∑k
j=1(yj − xj)

.

Then, ~x = s~l +~b, ~y = t~l +~b, with

s =

∑k
j=1 xj

∑k

j=1 lj
=

∑k
j=1 xj

√

∑k
j=1(yj − xj)2

∑k

j=1(yj − xj)

t =

∑k
j=1 yj

∑k

j=1 lj
=

∑k
j=1 yj

√

∑k
j=1(yj − xj)2

∑k

j=1(yj − xj)
.
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Proposition 2.1.1 imply that the family {π(~l,~b) : (
~l,~b) ∈ Admk} is actually

a foliation.

Now we can prove the reduction to the 1-dimensional case.

Theorem 2.1.2. Let (~l,~b) be an admissible pair, and F ~ϕ

(~l,~b)
: M → R be

defined by setting

F ~ϕ

(~l,~b)
(P ) = max

i=1,...,k

{

ϕi(P )− bi
li

}

.

Then, for every (~x, ~y) = (s~l +~b, t~l +~b) ∈ π(~l,~b) the following equality holds:

ℓ(M,~ϕ)(~x, ~y) = ℓ
(M,F

~ϕ

(~l,~b)
)
(s, t) .

Proof. For every ~x = (x1, . . . , xk) ∈ Rk, with xi = sli + bi, i = 1, . . . , k, it

holds thatM〈~ϕ � ~x 〉 =M〈F ~ϕ

(~l,~b)
≤ s〉. This is true because

M〈~ϕ � ~x 〉 = {P ∈M : ϕi(P ) ≤ xi, i = 1, . . . , k} =
= {P ∈M : ϕi(P ) ≤ sli + bi, i = 1, . . . , k} =

=

{

P ∈M :
ϕi(P )− bi

li
≤ s, i = 1, . . . , k

}

=M〈F ~ϕ

(~l,~b)
≤ s〉.

Analogously, for every ~y = (y1, . . . , yk) ∈ Rk, with yi = tli + bi, i = 1, . . . , k,

it holds that M〈~ϕ � ~y 〉 = M〈F ~ϕ

(~l,~b)
≤ t〉. Therefore Remark 4 implies the

claim.

In the following, we shall use the symbol F ~ϕ

(~l,~b)
in the sense of Theorem

2.1.2.

Remark 9. Theorem 2.1.2 allows us to represent each k-dimensional size

function as a parameterized family of formal series of points and lines, on

the basis of the description introduced in Chapter 1 for the 1-dimensional

case. Indeed, we can associate a formal series σ(~l,~b) with each admissible pair

(~l,~b), with σ(~l,~b) describing the 1-dimensional size function ℓ
(M,F

~ϕ

(~l,~b)
)
. The

family {σ(~l,~b) : (
~l,~b) ∈ Admk} is a new complete descriptor for ℓ(M,~ϕ), in

the sense that two k-dimensional size functions coincide if and only if the

corresponding parameterized families of formal series coincide.
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2.2 Lower bounds for the k-dimensional nat-

ural pseudo-distance

In Chapter 1, it has been shown that 1-dimensional size functions can be

compared by means of the matching distance. We recall that this distance

is based on the observation that each 1-dimensional size function is the sum

of characteristic functions of triangles. The matching distance is computed

by finding an optimal matching between the sets of triangles describing two

size functions. In the sequel, we shall denote by dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
)

the matching distance between the 1-dimensional size functions ℓ
(M,F

~ϕ

(~l,~b)
)
and

ℓ
(N ,F ~ψ

(~l,~b)
)
.

The following result is an immediate consequence of Theorem 2.1.2 and Re-

mark 9.

Corollary 2.2.1. Let us consider the size pairs (M, ~ϕ), (N , ~ψ). Then, the

identity ℓ(M,~ϕ) ≡ ℓ(N , ~ψ) holds if and only if dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
) = 0,

for every admissible pair (~l,~b).

The next result proves that small enough changes in ~ϕ with respect to

the max-norm induce small changes of ℓ
(M,F

~ϕ

(~l,~b)
)
with respect to the matching

distance.

Proposition 2.2.2. If (M, ~ϕ), (M, ~χ) are size pairs and maxP∈M ‖~ϕ(P )−
~χ(P )‖∞ ≤ ǫ, then for each admissible pair (~l,~b), it holds that

dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(M,F
~χ

(~l,~b)
)
) ≤ ǫ

mini=1,...,k li
.

Proof. From the Matching Stability Theorem 1.4.2, we obtain that

dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(M,F
~χ

(~l,~b)
)
) ≤ max

P∈M
|F ~ϕ

(~l,~b)
(P )− F ~χ

(~l,~b)
(P )|.

Let us now fix P ∈M. Then, denoting by ι̂ the index for which maxi
ϕi(P )−bi

li
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is attained, by the definition of F ~ϕ

(~l,~b)
and F ~χ

(~l,~b)
we have that

F ~ϕ

(~l,~b)
(P )− F ~χ

(~l,~b)
(P ) = max

i

ϕi(P )− bi
li

−max
i

χi(P )− bi
li

=

=
ϕι̂(P )− bι̂

lι̂
−max

i

χi(P )− bi
li

≤ ϕι̂(P )− b̂i
lι̂

− χι̂(P )− bι̂
lι̂

=

=
ϕι̂(P )− χι̂(P )

lι̂
≤ ‖~ϕ(P )− ~χ(P )‖∞

mini=1,...,k li
.

In the same way, we obtain F ~χ

(~l,~b)
(P )− F ~ϕ

(~l,~b)
(P ) ≤ ‖~ϕ(P )−~χ(P )‖∞

mini=1,...,k li
. Therefore, if

maxP∈M ‖~ϕ(P )− ~χ(P )‖∞ ≤ ǫ,

max
P∈M

∣

∣

∣
F ~ϕ

(~l,~b)
(P )− F ~χ

(~l,~b)
(P )

∣

∣

∣
≤ max

P∈M

‖~ϕ(P )− ~χ(P )‖∞
mini=1,...,k li

≤ ǫ

mini=1,...,k li
.

Analogously, small enough changes in (~l,~b) with respect to the max-norm

induce small changes of ℓ
(M,F

~ϕ

(~l,~b)
)
with respect to the matching distance, as

the next proposition states.

Proposition 2.2.3. If (M, ~ϕ) is a size pair and (~l,~b), (~l′,~b′) are admissible

pairs with ‖~l −~l′‖∞ ≤ ǫ, ‖~b−~b′‖∞ ≤ ǫ and ǫ < mini=1,...,k{li}, it holds that

dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(M,F
~ϕ

(~l′,~b′)
)
) ≤ ǫ · maxP∈M ‖~ϕ(P )‖∞+‖

~l‖∞+‖~b‖∞
mini=1,...,k{li(li − ǫ)} .

Proof. From the Matching Stability Theorem 1.4.2, we obtain that

dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(M,F
~ϕ

(~l′,~b′)
)
) ≤ max

P∈M
|F ~ϕ

(~l,~b)
(P )− F ~ϕ

(~l′,~b′)
(P )|.

Let us now fix P ∈M. Then, denoting by ι̂ the index for which maxi
ϕi(P )−bi

li
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is attained, by the definition of F ~ϕ

(~l,~b)
and F ~ϕ

(~l′,~b′)
we have that

F ~ϕ

(~l,~b)
(P )− F ~ϕ

(~l′,~b′)
(P ) = max

i

ϕi(P )− bi
li

−max
i

ϕi(P )− b′i
l′i

=

=
ϕι̂(P )− bι̂

lι̂
−max

i

ϕi(P )− b′i
l′i

≤ ϕι̂(P )− bι̂
lι̂

− ϕι̂(P )− b′ι̂
l′ι̂

=

=
(l′ι̂ − lι̂)ϕι̂(P )− l′ι̂bι̂ + lι̂b

′
ι̂

lι̂l′ι̂
=
(l′ι̂ − lι̂)ϕι̂(P ) + lι̂(b

′
ι̂ − bι̂) + bι̂(lι̂ − l′ι̂)

lι̂l′ι̂
≤

≤ |l′ι̂ − lι̂||ϕι̂(P )|+ |lι̂||b′ι̂ − bι̂|+ |bι̂||lι̂ − l′ι̂|
lι̂l′ι̂

≤ ǫ(‖~ϕ(P )‖∞+‖~l‖∞+‖~b‖∞)
lι̂(lι̂ − ǫ)

≤ ǫ(‖~ϕ(P )‖∞ + ‖~l‖∞ + ‖~b‖∞)
mini=1,...,k{li(li − ǫ)} .

Analogously, we can prove that F ~ϕ

(~l′,~b′)
(P ) − F ~ϕ

(~l,~b)
(P ) ≤ ǫ(‖~ϕ(P )‖∞+‖~l‖∞+‖~b‖∞)

mini=1,...,k{li(li−ǫ)} .

Therefore,

max
P∈M

∣

∣

∣
F ~ϕ

(~l,~b)
(P )− F ~ϕ

(~l′,~b′)
(P )

∣

∣

∣
≤ ǫ · maxP∈M ‖~ϕ(P )‖∞+‖

~l‖∞+‖~b‖∞
mini=1,...,k{li(li − ǫ)} .

Proposition 2.2.2 and Proposition 2.2.3 prove the stability of our compu-

tational approach.

Now we are able to prove our next result, showing that a lower bound for the

natural pseudo-distance exists, provided by the restrictions of k-dimensional

size functions to the half-planes of the foliation.

Theorem 2.2.4. Let (M, ~ϕ) and (N , ~ψ) be two size pairs, withM, N home-

omorphic. Setting d((M, ~ϕ), (N , ~ψ)) = inff maxP∈M ‖~ϕ(P ) − ~ψ(f(P ))‖∞,

where f varies among all the homeomorphisms between M and N , it holds

that

sup
(~l,~b)∈Admk

min
i=1,...,k

li · dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
) ≤ d((M, ~ϕ), (N , ~ψ)).
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Proof. For any homeomorphism f betweenM andN , it holds that ℓ
(N ,F ~ψ

(~l,~b)
)
≡

ℓ
(M,F

~ψ

(~l,~b)
◦f)
. Moreover, by applying Proposition 2.2.2 with ǫ = maxP∈M ‖~ϕ(P )−

~ψ(f(P ))‖∞ and ~χ = ~ψ ◦ f , and observing that F ~ψ

(~l,~b)
◦ f ≡ F

~ψ◦f
(~l,~b)

, we have

min
i=1,...,k

li · dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
) ≤ max

P∈M
‖~ϕ(P )− ~ψ(f(P ))‖∞

for every admissible (~l,~b). Since this is true for each homeomorphism f

between M and N , the claim immediately follows.

Remark 10. We observe that the left side of the inequality in Theorem 2.2.4

defines a distance between k-dimensional size functions associated with home-

omorphic spaces. When the spaces are not assumed to be homeomorphic, it

still verifies all the properties of a distance, except for the fact that it may

take the value +∞. In other words, it defines an extended distance.

Definition 2.2. Let (M, ~ϕ) and (N , ~ψ) be two size pairs. We shall call

multidimensional matching distance the extended distance defined by setting

Dmatch(ℓ(M,~ϕ), ℓ(N , ~ψ)) = sup
(~l,~b)∈Admk

min
i=1,...,k

li · dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
).

Remark 11. If we choose a non-empty subset A ⊆ Admk and we substitute

sup(~l,~b)∈Admk with sup(~l,~b)∈A in Definition 2.2, we obtain an (extended) pseudo-

distance between k-dimensional size functions. If A = {(~lj, ~bj) : j = 1, . . . , n}
is finite, this pseudo-distance appears to be particularly suitable for ap-

plications, from a computational point of view; another interesting choice

for applications seems to be the weighted mean pseudo-distance defined as
∑n

j=1w
j · mini=1,...,k l

j
i · dmatch(ℓ(M,F

~ϕ

(
~
lj,
~
bj )

)
, ℓ

(N ,F ~ψ
(
~
lj,
~
bj)

)
) (assuming that wj are

real numbers with wj > 0, for every j = 1, . . . , n, and
∑n

j=1w
j = 1), that

takes into account the information conveyed from each leaf (~lj , ~bj) ∈ A. It is
easy to verify that also this pseudo-distance furnishes a lower bound for the

natural pseudo-distance.

Example 2.1. We want to show that the critical example introduced at the

beginning of this chapter, i.e. the discrimination of the cube and the sphere,
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can be successfully approached by means of k-dimensional size functions.

Consider once more the topological spaces M = ∂Q and N = S, where

Q = [−1, 1]×[−1, 1]×[−1, 1] and S is the sphere of equation x2+y2+z2 = 1.

Let also ~Φ = (Φ1,Φ2) : R3 → R2 be the continuous function defined as

~Φ(x, y, z) = (|x|, |z|). Our goal is to obtain a meaningful lower bound for the

natural pseudo-distance between the size pairs (M, ~ϕ) and (N , ~ψ), where ~ϕ

and ~ψ are respectively the restrictions of ~Φ to M and N .

In order to compare the k-dimensional size functions ℓ(M,~ϕ) and ℓ(N , ~ψ), we are

interested in studying the foliation in half-planes π(~l,~b), where ~l = (cos θ, sin θ)

with θ ∈ (0, π
2
), and ~b = (a,−a) with a ∈ R. Any such half-plane is repre-

sented by






















x1 = s cos θ + a

x2 = s sin θ − a

y1 = t cos θ + a

y2 = t sin θ − a

,

with s, t ∈ R, s < t. Figure 2.2 shows the 1-dimensional size functions

ℓ
(M,F

~ϕ

(~l,~b)
)
and ℓ

(N ,F ~ψ
(~l,~b)

)
, for θ = π

4
and a = 0, i.e. ~l =

(√
2

2
,
√

2
2

)

and ~b = (0, 0).

With this choice, we obtain that F ~ϕ

(~l,~b)
=
√
2max{ϕ1, ϕ2} =

√
2max{|x|, |z|}

and F
~ψ

(~l,~b)
=
√
2max{ψ1, ψ2} =

√
2max{|x|, |z|}. Therefore, Theorem 2.1.2

implies that, for every (x1, x2, y1, y2) ∈ π(~l,~b)

ℓ(M,~ϕ)(x1, x2, y1, y2) = ℓ(M,~ϕ)

(

s√
2
,
s√
2
,
t√
2
,
t√
2

)

= ℓ
(M,F

~ϕ

(~l,~b)
)
(s, t)

ℓ(N , ~ψ)(x1, x2, y1, y2) = ℓ(N , ~ψ)

(

s√
2
,
s√
2
,
t√
2
,
t√
2

)

= ℓ
(N ,F ~ψ

(~l,~b)
)
(s, t) .

In this case, by Theorem 2.2.4 and Remark 11 (applied for A containing

just the admissible pair that we have chosen), a lower bound for the natural

pseudo-distance d((M, ~ϕ), (N , ~ψ)) is given by

√
2

2
dmatch(ℓ(M,F

~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
) =

√
2

2
(
√
2− 1) = 1−

√
2

2
.
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ℓ
(M,F

~ϕ

(~l,~b)
)

ℓ
(N ,F ~ψ

(~l,~b)
)

~ϕ(x, y, z) = (|x|, |y|) ~ψ(x, y, z) = (|x|, |y|)

Figure 2.2: The topological spacesM and N and the size functions ℓ
(M,F

~ϕ

(~l,~b)
)
,

ℓ
(N ,F ~ψ

(~l,~b)
)
associated with the half-plane π(~l,~b), for

~l = (
√

2
2
,
√

2
2
) and ~b = (0, 0).

Indeed, the matching distance dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F ~ψ
(~l,~b)

)
) is equal to the cost

of moving the point of coordinates (0,
√
2) onto the point of coordinates (0, 1),

computed with respect to the max-norm. The points (0,
√
2) and (0, 1) are

representative of the characteristic triangles of the size functions ℓ
(M,F

~ϕ

(~l,~b)
)

and ℓ
(N ,F ~ψ

(~l,~b)
)
, respectively.

We want to underline that ℓ(M,ϕ1) ≡ ℓ(N ,ψ1), and ℓ(M,ϕ2) ≡ ℓ(N ,ψ2) (as

shown in the example at the beginning of this chapter). In other words, the

k-dimensional size functions, with respect to ~ϕ, ~ψ, are able to discriminate

the cube and the sphere, while both the 1-dimensional size functions, with re-

spect to ϕ1, ϕ2 and ψ1, ψ2, cannot do that. The higher discriminatory power

of k-dimensional size functions motivates their definition and use.

Remark 12. In a recent paper [14], Cohen-Steiner et al. have introduced

the concept of vineyard, that is a 1-parameter family of persistence diagrams

associated with the homotopy ft, interpolating between f0 and f1. We recall

that dimension p persistence diagrams are a concise representation of the

function rank Hx,y
p , where Hx,y

p denotes the dimension p persistent homology

group computed at point (x, y) (cf. [14]). These authors assume that the

topological space under study is homeomorphic to the body of a simplicial

complex, and that the measuring functions are tame, i.e. they have only

finitely many homological critical values and the homology groups of their
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sublevel sets all have finite rank. In [13] we have proved that, under the same

assumptions, there exist some links between k-dimensional size functions and

dimension 0 vineyards, i.e. vineyards associated to 0 persistence diagrams.

However, although some links exist, the concept of k-dimensional size func-

tion has quite different purposes than that of vineyard: In particular, [14]

does not aim to identify distances for the comparison of vineyards, while

we are interested in quantitative methods for comparing k-dimensional size

functions.



Chapter 3

Computation in

Multidimensional Size Theory

The approach suggested by Multidimensional Size Theory in studying

and comparing topological spaces endowed with continuous functions has

been developed also from a computational point of view, in order to use k-

dimensional size functions in shape discrimination applied problems. Our ef-

forts are encouraged by the promising results obtained for the particular case

k = 1: Indeed, it has been extensively studied, and applying 1-dimensional

size functions has revealed to be particularly useful for quite a lot of applica-

tions, especially in the field of Computer Vision, where the considered shapes

are images ([8, 9, 10, 11]), and in Computer Graphics, comparing, e.g., 3D-

models ([2, 4]). This is due to the fact that size functions show resistance to

noise and invariance properties ([28]).

Obviously, dealing with applications involves the development of a discrete

counterpart of the theory. From this point of view, a shape is modeled

by a graph G = (V (G), E(G)) whose vertices are labeled by a function

~ϕ : V (G)→ Rk, representing the feature considered relevant for shape char-

acterization ([28]). This leads to considering pairs of the type (G, ~ϕ), called

size graphs. In this mathematical setting, discrete k-dimensional size func-

27
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tions count the number of connected components in G〈~ϕ � ~y 〉 containing
at least one vertex of G〈~ϕ � ~x 〉 where, for ~t ∈ Rk, G〈~ϕ � ~t 〉 is defined as

the subgraph of G obtained by erasing all vertices of G at which ϕi takes a

value strictly greater than ti, for at least one index i ∈ {1, . . . , k}, and all

the edges connecting those vertices to others.

Therefore, in computing discrete k-dimensional size functions, we have to

count the connected components of particular subgraphs of a size graph. As

stressed in Chapter 2, the greater the dimension k, the higher the discrimi-

natory power of k-dimensional size functions. On the other hand, the smaller

the graph, the faster the computation. Moreover, in applications we often

have to deal with big graphs, implying high computational costs. According

to these considerations, it follows that the problem of reducing a size graph

without changing the associated discrete k-dimensional size function is im-

portant for our purposes.

In previous works ([16, 30]), it has been proved that, in the case k = 1,

a size graph can be reduced by means of a global method (its application

requires the knowledge of all the size graph) and a local method (it requires

only a local knowledge of a size graph), obtaining a very simple structure.

In this chapter, the extension of the global reduction method to the mul-

tidimensional case will be shown, together with a theorem stating that dis-

crete k-dimensional size functions are invariant with respect to this reduction

method (cf. [12]).

3.1 Basic definitions

In this section we provide some basic definitions about discrete k-dimen-

sional size functions. According to the notations introduced in Section 1.1,

for every ~x = (x1, . . . , xk) and ~y = (y1, . . . , yk), we shall say ~x � ~y (resp.
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~x � ~y) if and only if xi ≤ yi (resp. xi ≥ yi) for every index i = 1, . . . , k.

Moreover, we shall write ~x � ~y (resp. ~x � ~y) when the relation between

~x and ~y expressed by the operator � (resp. �) is not verified. Finally, we
recall that ∆+ is defined as the open set {(~x, ~y) ∈ Rk ×Rk : ~x ≺ ~y}.

Definition 3.1. Let G = (V (G), E(G)) be a finite ordered graph with V (G)

set of vertices and E(G) set of edges. Assume that a function ~ϕ = (ϕ1, . . . , ϕk) :

V (G)→ Rk is given. Then, the pair (G, ~ϕ) will be called a size graph.

Definition 3.2. For every ~y = (y1, . . . , yk) ∈ Rk, we denote by G〈~ϕ � ~y 〉 the

subgraph of G obtained by erasing all vertices v ∈ V (G) such that ~ϕ(v) � ~y,

and all the edges connecting those vertices to others. If va, vb ∈ V (G) belong

to the same connected component of G〈~ϕ � ~y 〉, we shall write va ∼=G〈~ϕ�~y 〉 vb.

Definition 3.3. We shall call discrete k-dimensional size function of the size

graph (G, ~ϕ) the function ℓ(G,~ϕ) : ∆
+ → N defined by setting ℓ(G,~ϕ)(~x, ~y) equal

to the number of connected components in G〈~ϕ � ~y 〉 containing at least one

vertex of G〈~ϕ � ~x 〉.

Example 3.1. Figure 3.1 represents a possible discretization of the size pair

shown in Figure 1.1, together with the related discrete 1-dimensional size

function: We recall that in the case k = 1 the symbols ~ϕ, ~x, ~y are replaced by

ϕ, x, y respectively. For example, for a ≤ x < b, the subgraph G〈ϕ � x 〉 con-

sists of two connected components, contained in different connected compo-

nents of the subgraph G〈ϕ � y 〉 when x < y < b. Therefore, ℓ(G,ϕ)(x, y) = 2

for a ≤ x < y < b. When a ≤ x < b and y ≥ b, the two connected components

in G〈ϕ � x 〉 are contained in the same connected component of G〈ϕ � y 〉,
so ℓ(G,ϕ)(x, y) = 1.

In what follows, we will assume that the set of vertices V (G) of the graph

G is a subset of a Euclidean space.
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y

Figure 3.1: A size graph and the associated discrete size function.

3.2 A global method for reducing (G, ~ϕ): the

L-reduction

Now we are ready to introduce the global method for reducing a size

graph.

As stressed at the beginning of this chapter, our goal is to reduce a size

graph (G, ~ϕ) without changing the related discrete k-dimensional size func-

tion: This can be done by erasing all those vertices of G that do not contain,

in terms of discrete k-dimensional size functions, “meaningful information”.

Indeed, in order to compute the discrete k-dimensional size function of (G, ~ϕ),

we are only interested in capturing the “birth” of new connected components

and the “death”, i.e. the merging, of the existing ones: As will be shown,

these events are strongly related to particular vertices of G, that can be seen,

in some sense, as “critical points” of the function ~ϕ with respect to the re-

lation �. According to these considerations, we first need to detect such

vertices.
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In what follows, we assume that a size graph (G, ~ϕ) is given. Moreover,

for every vi ∈ V (G) we define Ai as the set {vj : (vi, vj) ∈ E(G), ~ϕ(vj) �
~ϕ(vi)} ∪ {vi}.

Definition 3.4. Let L : V (G)→ V (G) be a function defined in this way: for

every vi ∈ V (G) let Bi ⊆ Ai be the set whose elements are the vertices w ∈ Ai
for which the Euclidean norm ‖~ϕ(w)− ~ϕ(vi)‖ takes the largest value. Finally,

we choose the vertex vk ∈ Bi for which the index k is minimum. Then, we

set L(vi) = vk. We shall call L the single step descent flow operator.

Remark 13. From the definition of L and the finiteness of V (G), if follows

that for every v ∈ V (G) there must exist a minimum index m(v) ≤ |V (G)|
such that Lm(v)(v) = Lm(v)+1(v) (if L(v) = v we will set m(v) = 0).

Definition 3.5. For every v ∈ V (G) we set L(v) = Lm(v)(v). We shall call

the function L : V (G)→ V (G) the descent flow operator.

Remark 14. In other words, the descent flow operator takes each vertex

vi ∈ V (G) to a sort of “local minimum” vj = L(vi) of the function ~ϕ, with

respect to the relation �. This implies that, starting from vj we are not able

to reach a vertex w adjacent to it with ~ϕ(w) � ~ϕ(vj), strictly decreasing the

value of at least one component of ~ϕ.

During the descent, indexes are used to univocally decide the path in case

the set Bi contains more than one vertex.

Example 3.2. Figure 3.2 shows some possible cases arising from the action

of the operators L and L when ~ϕ = (ϕ1, ϕ2). As can be seen, the vertex v1

is taken by the operator L to v4 = L5(v1). Since it is not possible to reach

another vertex from v4 decreasing the values of both ϕ1 and ϕ2, we shall set

v4 = L(v1). Analogously, we have v5 = L(v2). The last considered case is

represented by the vertex v3: it can be seen as a fixed point with respect to

the operator L, i.e. it holds that L(v3) = v3, so we shall set L(v3) = v3.
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v1

L(v1)

v4 = L(v1)

v2

v5 = L(v2)

v3 = L(v3)

ϕ1

ϕ2

Figure 3.2: Some possible cases arising from the action of the operators L

and L when ~ϕ = (ϕ1, ϕ2).

Definition 3.6. Each vertex v for which L(v) = v will be called a minimum

vertex of (G, ~ϕ). Call M the set of minimum vertices of (G, ~ϕ).

We point out that M is the set of all those vertices representing the

“birth” of new connected components in (G, ~ϕ): Indeed, by increasing the

values of ϕ1, . . . , ϕk, such an event occurs only when the values labeling a

minimum vertex are reached.

The following two definitions characterize the “death-points” of existing con-

nected components of (G, ~ϕ).

Definition 3.7. Assume that vj1, vj2 ∈ V (G) are two distinct minimum ver-

tices of (G, ~ϕ). Suppose vi1, vi2 are two adjacent vertices of G, such that

{L(vi1),L(vi2)} = {vj1, vj2}; we shall call {vi1, vi2} a ridge pair adjacent to

the minimum vertices vj1 and vj2.

Definition 3.8. Assume that vj1, vj2 ∈ V (G) are two distinct minimum ver-

tices of (G, ~ϕ). Suppose {vi1, vi2} is a ridge pair adjacent to the minimum

vertices vj1 , vj2 such that the following statements hold:
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1. there does not exists another ridge pair {vi3 , vi4} adjacent to the minimum

vertices vj1 , vj2 with

{

max{ϕh(vi3), ϕh(vi4)} ≤ max{ϕh(vi1), ϕh(vi2)}, h = 1, . . . , k

∃h̄ : max{ϕh̄(vi3), ϕh̄(vi4)} < max{ϕh̄(vi1), ϕh̄(vi2)}, h̄ ∈ {1, . . . , k};

2. if {vi3, vi4} is another ridge pair adjacent to the minimum vertices vj1 , vj2

with

max{ϕh(vi3), ϕh(vi4)} = max{ϕh(vi1), ϕh(vi2)}, h = 1, . . . , k,

then (i1, i2) precedes (i3, i4) in the lexicographic order.

We shall call the set {vi1 , vi2} the main saddle adjacent to the minimum

vertices vj1, vj2. Call S the set of main saddles of (G, ~ϕ).

Remark 15. In other words, the set of ridge pairs of (G, ~ϕ) can be partially

ordered by means of the relation �. In this sense, the main saddles will be
the lowest ridge pairs.

Example 3.3. Figure 3.3(a), 3.3(b), 3.3(c) shows some examples of ridge

pairs and main saddles, when function ~ϕ takes values in R2.

G′ G′′ G′′′

ϕ1ϕ1 ϕ1

ϕ2 ϕ2ϕ2

vj1vj1
vj2vj2

vj1
vj2

vi1vi1

vi2vi2
vi1

vi2
vi3

vi4

vi3

vi4

(a) (b) (c)

Figure 3.3: Some examples of ridge pairs and main saddles.

In order to clarify the role of main saddles, we are interested in study-

ing the changing in the number of connected components of the subgraphs

G′〈~ϕ � ~y 〉, G′′〈~ϕ � ~y 〉 and G′′′〈~ϕ � ~y 〉, with ~y ∈ R2, just for ~y �
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(max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}): Indeed, we want to capture

the merging of the connected components arising from the minimum vertices

vj1 and vj2 in the three instances. According to this consideration, by means

of the chosen assumption on ~y we ensure that both vj1 and vj2 belong to the

subgraphs G′〈~ϕ � ~y 〉, G′′〈~ϕ � ~y 〉 and G′′′〈~ϕ � ~y 〉.

In figure 3.3(a) a main saddle adjacent to the minimum vertices vj1 and vj2

is displayed. In this setting, by varying the values taken by ~y under the as-

sumption ~y � (max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}), it holds that for

~y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) the subgraph G′〈~ϕ � ~y 〉
consists of the two connected components arising from vj1 and vj2, reducing

to a unique one when ~y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}).

Figure 3.3(b) represents two ridge pairs that can be considered “uncompa-

rable”, due to the fact that max{ϕ1(vi1), ϕ1(vi2)} < max{ϕ1(vi3), ϕ1(vi4)},
while max{ϕ2(vi1), ϕ2(vi2)} > max{ϕ2(vi3), ϕ2(vi4)}. Thus, both {vi1, vi2}
and {vi3, vi4} will be main saddles. In this case, when ~y varies under the

assumption ~y � (max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}), the number

of the connected components in the subgraph G′′〈~ϕ � ~y 〉 decreases (from 2 to

1) when the relation ~y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) (or,

alternatively, the relation ~y � (max{ϕ1(vi3), ϕ1(vi4)},max{ϕ2(vi3), ϕ2(vi4)}))
becomes true.

Finally, figure 3.3(c) shows two comparable ridge pairs, hence the “lower”

one, that is {vi1 , vi2}, will be a main saddle, while the other will be not.

Consider G′′′〈~ϕ � ~y 〉, assuming that ~y varies under the restriction ~y �
(max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}): It consists of two connected

components arising from vj1 and vj2, merging into a unique one when the

relation ~y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) becomes true. In

particular, for ~y = (max{ϕ1(vi3), ϕ1(vi4)},max{ϕ2(vi3), ϕ2(vi4)}) the number

of the connected components in G′′′〈~ϕ � ~y 〉 is equal to 1, since the merging
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of the existing ones has already occurred.

As example 3.3 suggests, S is the set of all those couples of vertices rep-

resenting the “death”, i.e. the merging, of existing connected components in

the given size graph (G, ~ϕ).

We are now ready to introduce the concept of L-reduced size graph:

Definition 3.9. Let GL = (V (GL), E(GL)) be the graph with V (GL) =M∪S
and E(GL) defined as follows: u, v ∈ V (GL) are adjacent if and only if

one of them is a minimum vertex and the other is a main saddle adja-

cent to it (in the sense of Definition 3.8). Let also ~ϕL : V (GL) → Rk

be a function defined in this way: ~ϕL(v) = ~ϕ(v) if v ∈ M and ~ϕL(u) =

(max{ϕ1(vi1), ϕ1(vi2)}, . . . ,max{ϕk(vi1), ϕk(vi2)}) if u = {vi1 , vi2} ∈ S. The

size graph (GL, ~ϕL) will be called the L-reduction of (G, ~ϕ).

Remark 16. We stress that each main saddle {v, w} of a size graph (G, ~ϕ)

will be represented, in the L-reduced size graph, by a unique vertex labeled

by the k-tuple (max{ϕ1(v), ϕ1(w)}, . . . ,max{ϕk(v), ϕk(w)}).
Remark 17. The global reduction method we have just defined is strongly

related to the concept of Pareto-Optimality, a well-known topic in Economy,

especially in the field of Multi-Objective Optimization. Anyway, we think

that this thesis is not the suitable context to deepen this subject. For a

detailed treatment about Pareto-Optimality, the reader is referred to [35].

The importance of the L-reduction is shown by the main result of this

chapter, stating that discrete k-dimensional size functions are invariant with

respect to this global reduction method.

Theorem 3.2.1. For every (~x, ~y) ∈ ∆+, the equality ℓ(G,~ϕ)(~x, ~y) = ℓ(GL,~ϕL)(~x, ~y)

holds.

In order to prove Theorem 3.2.1, we need the following lemma.

Lemma 3.2.2. Let v1, v2 be two minimum vertices of (G, ~ϕ). Then, for

every ~y ∈ Rk, it holds that v1
∼=G〈~ϕ�~y〉 v2 if and only if v1

∼=GL〈~ϕL�~y〉 v2.
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Proof. Suppose that v1
∼=G〈~ϕ�~y〉 v2. Then, by definition there exists a se-

quence (v1 = vj1, vj2, . . . , vjm−1 , vjm = v2) such that (vjk , vjk+1
) ∈ E(G) for

every k = 1, . . . , m − 1, and vjk ∈ G〈~ϕ � ~y〉 for every k = 1, . . . , m. Con-

sider the sequence (L(v1) = v1,L(vj2), . . . ,L(vjm−1),L(v2) = v2) of minimum

vertices. By substituting each subsequence of equal consecutive vertices by a

unique vertex representing such a subsequence, we obtain a new sequence

(v1 = w1, w2, . . . , ws−1, ws = v2) (In other words, we substitute the se-

quence (u1, u1, . . . , u1, u2, u2 . . . , u2, . . . , uk, uk, . . . , uk) with (u1, u2, . . . , uk)).

It is easy to prove that, for every index j < s, there exists at least one main

saddle σj adjacent to wj and wj+1, such that σj ∈ G〈~ϕ � ~y〉. Then, consider
the sequence (w1, σ1, v2, σ2, . . . , ws−1, σs−1, ws): such a sequence proves that

v1
∼=GL〈~ϕL�~y〉 v2.

On the other side, suppose that v1
∼=GL〈~ϕL�~y〉 v2. By definition there exists a

sequence (v1 = w1, σ1, w2, σ2, . . . , ws−1, σs−1, ws = v2) of vertices of GL〈~ϕL �
~y〉 such that every vertex wj is a minimum vertex and every σj is a main

saddle adjacent to wj and wj+1. Therefore, we can modify such a sequence in

order to obtain the following one: for every index j < s, between wj and σj =

{vij , vkj} insert the sequence (Lm(vij )−1(vij ), L
m(vij )−2(vij), . . . , L

2(vij), L(vij )),

while between σj e wj+1 insert the sequence (L(vkj ), L
2(vkj ), . . . , L

m(vkj )−2(vkj),

Lm(vkj )−1(vkj )) (we are assuming wj = L(vij ) and wj+1 = L(vkj)). Finally, by
substituting the vertices vij e vkj (taken in this order) for every main saddle

σj , we obtain a new sequence proving that v1
∼=G〈~ϕ�~y〉 v2.

Now we are ready to prove Theorem 3.2.1.

Proof. Let (~x, ~y) ∈ ∆+. We have to prove that there exists a bijection F :

G〈~ϕ � ~x〉/ ∼=G〈~ϕ�~y〉→ GL〈~ϕL � ~x〉/ ∼=GL〈~ϕL�~y〉. For every equivalence class

C ∈ G〈~ϕ � ~x〉/ ∼=G〈~ϕ�~y〉 we choose a minimum vertex vC ∈ C. Obviously, vC
is also a vertex of GL〈~ϕL � ~x〉. Therefore in GL〈~ϕL � ~x〉/ ∼=GL〈~ϕL�~y〉 there

exists an equivalence class D containing vC . We shall set F (C)
def
= D. From

Lemma 3.2.2 it follows that F is injective. The surjectivity of F is trivial,
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since each equivalence class in GL〈~ϕL � ~x〉/ ∼=GL〈~ϕL�~y〉 contains at least one

minimum vertex of G〈~ϕ � ~x〉.

Remark 18. The L-reduction of a size graph (G, ~ϕ) is not unique. In par-

ticular, changing the ordering of the set V (G) can produce different, non-

isomorphic L-reduced size graphs. On the other hand, Theorem 3.2.1 shows

that we will always obtain L-reductions of (G, ~ϕ) with the same associated
discrete k-dimensional size function.

Therefore, Theorem 3.2.1 allows us to evaluate the discrete k-dimensional

size function of a size graph (G, ~ϕ) directly dealing with one of its L-reductions.
This implies a faster and easier computation for ℓ(G,~ϕ), since a L-reduction
of (G, ~ϕ) offers a decrease in the number of vertices, preserving the same

information in terms of discrete k-dimensional size functions.

Example 3.4. In figure 3.4 an example of L-reduction is displayed. In R3

M G (GL, ~ϕL)

(a) (c)(b)

1

1 x

y
z

(0, 1) (1, 0)

(0, 0)(0, 0)

Figure 3.4: An example of L-reduction.

consider the set Q = [−1, 1] × [−1, 1] × [−1, 1]. Let also ~Φ = (Φ1,Φ2) :

R3 → R2 be the continuous function defined as ~Φ(x, y, z) = (|x|, |z|). In

this setting, we define M = ∂Q (figure 3.4(a)) and ~ϕ = ~Φ|M. Figure 3.4(b)

shows a possible discretization G of M (the chosen ordering of vertices is

not displayed for obvious graphical reasons). We are interested in reducing

the size graph (G, ~ϕ) (we use the symbol “~ϕ” also to denote the restriction of

the function ~ϕ to the set V (G)). In figure 3.4(c) the L-reduction of (G, ~ϕ)
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is displayed, showing a strong reduction in the number of vertices and a very

simple structure.

As a final remark, we point out that the reduction of k-dimensional

size functions to the 1-dimensional case, described in Section 2.1, allows

us to exploit the existing computational methods for calculating discrete

1-dimensional size functions also in the multidimensional setting (cf. [3]).

However, since the L-reduction allows us to decrease the numbers of vertices
of a given size graph, it could be used for a fruitful merge with the available

techniques in the 1-dimensional case, in order to easily and fast compute

discrete k-dimensional size functions for applications.



Conclusions and future work

In this thesis we have proved that the theory concerning k-dimensional

size functions can be reduced to the 1-dimensional case by a suitable change of

variables. This equivalence implies that multidimensional size functions are

stable, with respect to the new distance Dmatch. Moreover, we have proposed

a global method for reducing size graphs, i.e. particular graphs modeling

size pairs in the discrete counterpart of the theory, and a theorem, stating

that discrete k-dimensional size functions are invariant with respect to this

reduction method, allowing us to easily and fast compute k-dimensional size

functions in applications.

Many theoretical problems deserve further investigation, among them we

list a few here.

• Choice of the foliation. Other foliations, different from the one we

propose are possible. In general, we can choose a family Γ of continuous

curves ~γ~α : R → Rk such that (i) for s < t, ~γ~α(s) ≺ ~γ~α(t), (ii) for

every (~x, ~y) ∈ ∆+ there is one and only one ~γ~α ∈ Γ through ~x, ~y and

(iii) the curve γ~α depends continuously on the parameter ~α (this last

hypothesis is important in computation for stability reasons). It would

be interesting to study the dependence of our results on the choice of

the foliation.

• Choice of the planes inside the foliation. The comparison tech-

nique expressed by Remark 11 requires the choice of a finite set of folia-

tion leaves, on which we compute the reduction from multidimensional

39
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to 1-dimensional size functions. It would be interesting to determine a

method to make this choice optimal.

• Existence of size pairs having assigned k-dimensional size func-

tions. At this time we do not know if any link exists between the 1-

dimensional size functions associated with the planes π(~l,~b), apart from

continuity. A question naturally arises about the conditions of existence

of size pairs having an assigned continuous family of size functions on

the planes of our foliation.

• Existence of a local reduction method for size graphs in the

k-dimensional case. In previous works ([16, 30]), it has been proved

that, in the 1-dimensional case, a size graph can be reduced, without

changing the associate discrete size function, by means of a global and

a local method. Presently we do not have developed a meaningful local

method for reducing size graphs in the multidimensional case, and we

think it would be useful looking for such a reduction technique, in

order to improve, from a computational point of view, the evaluation

of discrete k-dimensional size functions.

• Merging of available methods for reducing size graphs. At

the end of Chapter 2.1.2 it has been mentioned the chance of merging

the reduction method developed for the multidimensional case with

the available techniques for reducing size graphs in the 1-dimensional

setting. However, an exhaustive analysis of such an approach has not

yet occurred.
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