Spectrum Sensing Algorithms for Cognitive Radio Applications

Mariani, Andrea (2013) Spectrum Sensing Algorithms for Cognitive Radio Applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria elettronica, informatica e delle telecomunicazioni, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5615.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (1MB) | Anteprima


Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies.

Tipologia del documento
Tesi di dottorato
Mariani, Andrea
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Settore disciplinare
Settore concorsuale
Parole chiave
Spectrum sensing, cognitive radio, signal detection, noise uncertainty
Data di discussione
17 Maggio 2013

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi