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BACKGROUND 

Several mucosal routes, including nasal, buccal, rectal, ocular, pulmonary and vaginal 

routes,  have been investigated over the last decades as alternatives to oral and parenteral 

drug administration (Banga and Chien, 1988; Zhou and Li Wan Po, 1991b). With respect 

to the oral route, their major advantagesis the circumvention of the hepatic first pass 

metabolism and of chemical and enzymatic degradations that generally occur in stomach. 

Moreover, transmucosal drug administration can allow to avoid pain or discomfort 

caused by injections, when drugs are administered through parenteral routes and  

especially if multiple daily injections are required, thus increasing patient compliance.  

On the other side, the major disadvantage of transmucosal drug administration is 

represented by the presence of biological fluids and mucus that can remove drug systems 

from the application site, thus reducing the contact time between drug and mucosa and 

consequently, decreasing drug bioavailability. For this reason, in the recent years new 

muycoadhesive polymers (Peppas and Sahlin, 1996) were employed for the formulation 

of drug delivery systems able to increase their residence time and to improve drug 

bioavailability. Among these polymers, chitosancan adhere to mucosal surface thanks to 

its positive charge that can interact with negatively charged mucus. Moreover, chitosan 

can promote drug permeation through opening the thigh junction of mucosal membrane. 

These properties, in addition to other characteristics like biocompatibility, 

biodegradability and non- toxicity, allow to use this material for the formulation of 

several transmucosal drug formulations (Luppi, et al., 2010b).  
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SUMMARY 

In this project thesis, chitosan based mucoadhesive systems for buccal, vaginal and nasal 

drug administration were formulated and characterized in order to study their chemical-

physical properties and their ability to release drugs. 

In the paper 1, buccal films based on chitosan-gelatin complexes were prepared and 

loaded with propranolol hydrochloride. The complexes preapared with different amount 

of chitosan and gelatin, were characterized and studied in order to evaluate their physical-

chemical properties and their ability to release the drugand to allow its permeation 

through buccal mucosa. 

In the paper 2, vaginal inserts based on chitosan/alginate complexes were formulated for 

local delivery of chlorhexidine digluconate. Tests to evaluate the interaction between the 

polymers and to study drug release properties were performed, as well as the 

determination of antimicrobial activity against the patogens responsible of vaginitis and 

candidosis.  

In the project 3, chitosan based nanoparticles containing cyclodextrin and other 

excipients, with the capacity to modify insulin bioavailabity were formulated for insulin 

nasal delivery. Nanoparticles were characterized in terms of size, stability and drug 

release. Moreover,in vivo tests were performed in order to study the hypoglycemic 

reduction in rats blood samples.  
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1. ADMINISTRATION ROUTES 

Drugs can be introduced into the body by several routes, according to the physical-

chemical properties of drugs, the existence of preparations appropriate for their uses and 

the patient state (Fig. 1.1). In particular, they may be: 

 taken by mouth (orally); 

 given by injection into a vein (intravenously), into a muscle (intramuscularly), 

into the space around the spinal cord (intrathecally), or beneath the skin 

(subcutaneously); 

 placed under the tongue (sublingually); 

 inserted in the rectum (rectally) or in the vagina (vaginally); 

 placed in the eye (by the ocular route); 

 sprayed into the nose and absorbed through the nasal membrane (nasally); 

 breathed into the lungs, usually through the mouth (by inhalation); 

 applied to the skin (cutaneously) for a local (topical) or bodywide (systemic) 

effect; 

 delivered through the skin by a patch (transdermally) for a systemic effect. 

 

Fig 1.1 Schematic representation of several administration routes. 
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Each route has specific purposes, advantages, and disadvantages. 

1.1 Oral Route.The oral route is the most often used route, because it is convenient, safe 

and not expensive. Drugs can be administered orally as liquids, capsules, tablets, or 

chewable tablets and can be absorbed from the mouth until the intestine. Drugs, 

administered through oral route, pass through the intestinal wall and travels to the liver 

before they are transported via the bloodstream to its target site. The transit of drugs 

through the stomach and the liver can alter their physical-chemical structure, due to the 

presence of acidic medium in the stomach and of enzymatic process in the 

gastrointestinal tract and in the liver (first pass effect) that can metabolize or destroy 

many drugs. Consequently, a decreased amount of drugs reaches the bloodstream and  an 

increase in daily administration is often necessary to obtain the pharmacological effect, 

with a consequent decrease in patient compliance.  Moreover, in oral administration, food 

and other drugs in the digestive tract may affect the drug amount that is absorbed and the 

absorption velocity. For this reason, many drugs should be taken on an empty stomach, 

others should be taken with food, others should not be taken with certain other drugs. 

Some orally administered drugs, such as aspirin or non steroidal anti-inflammatory drugs,  

irritate the digestive tract and cause or aggravate preexisting ulcers. Finally, the oral route 

is not usable if the patient refuses to take it or vomits. 

 

The oral route can be used for a local or general treatment:  

 Local treatment: for the treatment of  intestinal infection or a parasitosis. In this 

case, drugs will not be absorbed or only poorly absorbed.  

 General treatment: it is the usual route of administration of drugs and in this case, 

drugs are absorbed and reach the bloodstream.  

 

At the stomach level, drugs absorption is favored by the great absorption area (about 

1m
2
), but the pH, approximately around 1-2,  can destroy drugs, especially peptide and 

proteins or drugs that are unstable under acidic conditions. Generally, only neutral 

molecules and not ionized acids in an acid pH are absorbed from the stomach.  

The majority of drugs are absorbed through intestinal mucosa, that is characterized by an 

high area surface (from 200 to 300m
2
), alkaline pH (from 6 to 8) and an  important blood 

irrigation (1 L/minute). In the portion of digestive tract, including the rectum, drug 

absorption is very variable.  
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Generally, neutral and liposoluble molecules, but not those completely insoluble in water, 

can be adsorbed by passive diffusion through the lipid bilayer; amino acids, sugars and 

certain peptides by secondary active transport; elements in the form of ions, cations and 

anions by complex mechanisms. 

Other routes of administration are required when the oral route cannot be used: for 

example, when a person cannot take anything by mouth, when a drug must be 

administered rapidly or in a precise or very high dose, or when a drug is poorly or 

erratically absorbed from the digestive tract(G.D. Anderson and  Russell P. Saneto 2012). 

 

1.2 Injection Routes: Administration by injection (parenteral administration) includes the 

subcutaneous, intramuscular, intravenous, and intrathecal routes. These routes are 

characterized by a low patient compliance due to the use of needles and the consequent 

discomfort caused by the injections.  

The subcutaneous route is used for many protein and peptidic drugs, for example insulin 

and heparin,that can be destroyed in the digestive tract if they aretaken orally. In this 

case, drug is administered through a needle, inserted into the fatty tissue beneath the skin. 

After the injection, drug moves directly into small blood vessels (capillaries) and carried 

away by the bloodstream or reaches the bloodstream through the lymphatic vessels. 

Certain drugs may be given by inserting plastic capsules under the skin (implantation), 

thus providing a long-term therapeutic effect (for example, etonogestrel that is implanted 

for contraception may last up to 3 years). 

For the intramuscular routedrugs are usually injected into the muscle of the upper arm, 

thigh, or buttock. This route is preferred to the subcutaneous route when larger volumes 

of a drug product are needed or when it is necessary to inject aqueous or oily solutions. 

Generally,a longer needle is used because the muscles lie below the skin and fatty tissues. 

Drug absorption depends primarily on the tissue vascularization. Recently, delayed 

preparations that gradually release forover one or many weeks the drugs from the 

anatomic site of injection into the circulation,have beenproduced. The intramuscular 

injection should not be made in a vessel, or in contact with a nerve. It is contra-indicated 

if the patient is undergoing anticoagulant therapy. 

For the intravenous route, a needle is inserted directly into a vein. A solution containing 

the drug may be given in a single dose or by continuous infusion, that is moved by 

gravity (from a collapsible plastic bag) or, more commonly, by an infusion pump through 
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thin flexible tubing to a tube (catheter) inserted in a vein, usually in the forearm. With an 

intravenous administration it is possible to deliver a precise dose quickly and in a well-

controlled manner throughout the body. It is also used for irritating solutions, which 

would cause pain and damage tissues if given by subcutaneous or intramuscular injection.  

It is very important to control the speed of administration to avoid the risks of severe 

reactions or to ensure the effective therapeutic concentration. Moreover,  the intravenous 

injection can be more difficult in obese person and in patient that refuses the needle. 

When given intravenously, a drug, delivered immediately to the bloodstream, tends to 

take effect more quickly than when given by any other route.  

For the intrathecal route, a needle is inserted between two vertebrae in the lower spine 

and into the space around the spinal cord. The drug is then injected into the spinal canal 

to produce rapid or local effects on the brain, spinal cord, or the layers of tissue covering 

them (meninges)-for example, to treat infections of these structures. A small amount of 

local anesthetic is often used to numb the injection site. Anesthetics and analgesics (such 

as morphine) are sometimes given by this way. 

1.3 Cutaneous Route. This route is often used to treat some superficial skin disorders, 

such as psoriasis, eczema, skin infections (viral, bacterial, and fungal), itching and dry 

skin.  

1.4 Transdermal Route: Some drugs are delivered bodywide through a patch on the skin 

without any injection. Through a patch, the drug can be delivered slowly and 

continuously for many hours or days or even longer, thus maintaining the levels of a drug 

in the blood relatively constant. Patches are particularly useful for drugs that are quickly 

eliminated from the body. However, patches may irritate the skin of some people and are 

limited by how quickly the drug can penetrate the skin.  
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2. TRANSMUCOSAL ROUTES 

 

Transmucosal routes involve the delivery of the drug through the mucosal linings of the 

nasal, rectal, vaginal, ocular and oral sites.  

Traditionally drugs are administered by oral and by parenteral routes. Although generally 

convenient, both routes have a number of disadvantages. In fact, in the case of oral 

administration drugs are exposed to the  harsh environment of the gastrointestinal tract 

and they are subject to the chemical and enzymatic degradation. Moreover, after 

gastrointestinal absorption the drug has to pass the liver, where, dependent on the nature 

of the drug, extensive first pass metabolism can take place with subsequent rapid 

clearance from the blood stream (Lalka et al., 1993; Taki et al., 1998). For 

macromolecular drugs  a low permeability across the gastrointestinal mucosa is also often 

encountered (Yamamoto et al., 2001; Pauletti et al., 1997). Parenteral administration 

avoids drug degradation in the gastrointestinal tract and hepatic first pass clearance but, 

due to pain or discomfort during injection, patient compliance is poor, particularly if 

multiple daily injections are required (Hinchcliffe and Illum, 1999). The  injections are 

responsible of several side effects like tissue necrosis and thrombophlebitis,leading to 

low patient acceptability (Zhou, 1994).  

For these reasons, several mucosal routes,including nasal, buccal, rectal, ocular, 

pulmonary and vaginal,have been investigated over the last decades as alternatives to oral 

and parenteral drug administration (Banga and Chien, 1988; Zhou and Li Wan Po, 

1991b). Their major advantage is the easy accessibility and circumvention of the hepatic 

first pass metabolism. In the following, a short overview over the different alternative 

mucosal drug delivery routes is given. 

 

2.1 Buccal route. The oral cavity is lined by a stratified squamous epithelium that is non-

keratinized in the buccal, lingual, and sublingual mucosa regions (Chien, 1995; 

Hoogstraate and Wertz, 1998). Although non-keratinized, the buccal mucosa contains 

intercellular lipids which are responsible for its physical barrier properties (Hoogstraate 

and Wertz, 1998; Shojaei, 1998), resulting in poor permeability for larger drugs, 

especially for peptides and proteins (Junginger et al., 1999; Veuillez et al., 2001). A more 

extended discussion on buccal mucosa as administration route will be madein the 

following chapters. 
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The sublingual epithelium is more permeable than the buccal one but the presence of 

saliva and the region motility can remove formulations from the absorption site (Shojaei, 

1998). The sublingual route is especially used to obtain a fast and immediate effect 

because drugs can be adsorbed directly into the small blood vessels that lie beneath the 

tongue, without first passing through the intestinal wall and liver.  

Dosage forms for buccal drug delivery include tablets, patches, films, lozenges, sprays, 

hydrogels, lollypops, chewing gums, powders, solutions (Hoogstraate and Wertz, 1998) 

and liposomal formulations (Veuillez et al., 2001). In order to enhance their permeation 

or to protect drugs from enzymatic degradations, absorption enhancer (Merkle et al., 

1992) and proteases (Bird et al., 2001; Veuillez et al., 2001; Walzer et al., 2002) can be 

used, while the use of bioadhesive formulations can improve the residence time inside the 

oral cavity (Shojaei, 1998; Veuillez et al., 2001; Langoth et al., 2003).  

 

2.2 Rectal Route. This route is preferable when people cannot swallow or have nausea or 

restrictions on eating. It is safe and convenient, especially for children, but the acceptance 

is low particularly among adults. The drugs are readily absorbed thanks the high 

vascularization of rectum tract and the thin wall. Moreover, the presence of a  

considerable protease activity and of bacterial flora (Lewin et al., 1986; Hacker et al., 

1991; Zhouand Li Wan Po, 1991b) can alter drug activity and additionally, the 

circumvention of the hepatic first pass metabolismby rectal administration is only partial 

and depends on the positioning and/or spreading ofthe drug formulation (de Boer and 

Breimer, 1997; Kurosawa et al., 1998).Generally, drugs are administered with a 

substances that dissolve or liquefy after it is inserted into the rectum (Lejus et al., 1997; 

Jensen and Matsson, 2002). Traditional rectal dosage forms are suppositories, unguents 

and creams, as well as enemas.More recent studies have evaluated thermogelling dosage 

forms (Miyazaki et al., 1998), gels(de Leede et al., 1986), osmotic mini pumps 

(Teunissen et al., 1985) and hard gelatincapsules (Eerikainen et al., 1996) as rectal drug 

delivery systems.  

 

2.3 Vaginal Route. This route can be used for local delivery of some drugs, such as 

antibacterial, antifungal, antiprotozoal, antiviral, labor-inducing, spermicidal agents, 

prostaglandins and steroids (Vermani and Garg, 2000) or to obtain a systemic drug 

absorption. In fact, vagina is characterized by a large surface area with high permeability 

and a high vascularization, so that can be used for administration of  steroids (Ho et al., 
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1976; Alvarez et al., 1983). The vaginal route has also the potential for uterine targeting 

of active agents such as progesterone and danazol (Bulletti et al., 1997; Cicinelli et al., 

1998). However, changes of vaginal characteristics with age, stage of menstrual cycle, 

infections, and sexual arousal (Vermani and Garg, 2000) can influence the drug 

absorption. Moreover, vaginal flora can potentially contribute to enzymatic drug 

degradation in addition to the membrane-bound enzymes of the vaginal mucosa (Chien, 

1995; Vermani and Garg, 2000). Limitations of systemic vaginal drug delivery next to the 

physiological barriers are also the gender specificity and the relatively low 

convenience.Drugs may be administered vaginally to women as creams, gels, tablets, 

capsules, pessaries, foams, films, tampons, vaginal rings and douches (Vermani and 

Garg, 2000). A more extended discussion on vaginal mucosa as administration route will 

be madein the following chapters. 

 

2.4 Ocular Route. This route is typically used for a local drug delivery, especially for the 

treatment of glaucoma or ocular infection and inflammation. Drugs are mixed with 

excipients in order to obtain several formulations, such as  liquid, gel or ointment. Liquid 

eye drops are relatively easy to use but may run off the eye too quickly to be absorbed 

well. Gels and ointment formulations keep the drug in contact with the eye surface longer 

but they may blur vision. Solid inserts, which release the drug continuously and slowly, 

are also available, but they may be hard to put in and keep in place.  Fluids, introduced 

into the eye, arerapidly drained from the precorneal area to the nasal cavity and throat; a 

consequence of this mechanism is the low bioavailability. For this reason, in order to 

increase drug absorption, inactive substance that increase fluid viscosity or mucoadhesive 

polymers can be used. Novel formulations include drops, suspensions, oily drops, 

unguents and mucoadhesive ocular delivery systems such as solutions and microparticle 

suspensions, in-situ gelling systems triggered by pH, temperature or ions, colloidal 

delivery systems such as liposomes and nanoparticles and ocular inserts (Le Bourlais et 

al., 1995). Ocular inserts can be divided into non-erodible (Chetoni et al., 1998; 

Kawakami et al., 2001) and erodible inserts. Erodible ocular inserts, which do not need to 

be removed mechanically from the eye, have been prepared by powder compression from 

poly(ethylene oxide) (Di Colo et al., 2001), from bioadhesive mixtures of poly(ethylene 

oxide) with chitosan hydrochloride (Di Colo et al., 2002), and from mixtures of 

Carbopol® 974P with drum dried waxy maize starch (Ceulemans et al., 2001; 

Weyenberg et al., 2003). Finally, ocular inserts have also been prepared by freeze-drying 
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aqueous solutions of water soluble polymers such as HPMC resulting in a sponge-like 

structure (Diestelhorst et al., 1999; Lux et al., 2003). 

Recently, this route has been investigated for the systemic delivery of peptides and 

proteins. Already in 1931, ocular administration of insulin produced sustainedlowering of 

the blood glucose level in proportion to the dose instilled (Christie and Hanzal,1931). 

However, systemic drug absorption afterocular instillation takes place across the nasal 

mucosa after drainage via the nasolachrymalduct (Lee et al., 2002). In addition, 

drugabsorption via the cornea is relatively low due to the lipophilicity of the corneal 

epithelium,dilution of the drug in the tear fluid (reflex tearing and reflex blinking) and 

drug binding toproteins in tear fluid and the presence of enzymes can alter drug activity 

(Zhou and Li Wan Po,1991b).  

 

2.5 Nasal Route. The nasal route of administration has received a great deal of attention 

in recent years as a convenient and reliable method not only for local but also for 

systemic administration of drugs (Schipper et al., 1991; Sakar, 1992; Merkus and 

Verhoef, 1994; Kublik and Vidgren, 1998; Marttin et al., 1998; Davis, 1999; Hinchcliffe 

and Illum, 1999; Martini et al., 2000; Chow et al., 2001; Illum, 2003). Drug is absorbed 

through nasal mucosa, that show a large surface area and a great vascularization, and 

directly enters the blood stream.The nasal cavity offers a number of unique advantages 

such as easy accessibility, good permeability especially for lipophilic, low molecular 

weight drugs, avoidance of harsh environmental conditions and hepatic first pass 

metabolism, potential direct delivery to the brain. The ciliary movement and the 

considerable enzyme activity can remove the formulation from the site absorption and 

can destroy the drug. Nevertheless, a number of approaches have been used to 

overcomethese limitations such as the use of bioadhesive formulations to increase the 

nasal residencetime of dosage forms (Morimoto et al., 1991; Soane et al., 2001), addition 

of absorptionenhancers to increase the membrane permeability (De Ponti, 1991; Merkus 

et al., 1993; Illum,1999, Natsume et al., 1999), and the use of protease/peptidase 

inhibitors to avoid enzymaticdegradation of peptide and protein drugs in the nasal cavity 

(Morimoto et al., 1995; Dondetiet al., 1996). Several nasal dosage forms are under 

investigation including solutions (drops or sprays), gels, suspensions and emulsions, 

liposomal preparations, powders and microspheres,as well as inserts. A more extended 

discussion on nasal mucosa as administration route will be madein the following 

chapters. 
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2.6 Inhalation. Usually, this route is used to administer drugs that act specifically on the 

lungs, such as aerosolized antiasthmatic drugs in metered-dose containers, and to 

administer gases used for general anesthesia. The interesting properties of the lung, such 

as the large surface area of about 150 m
2
 and an extremely well vascularized thin 

epithelium, lead many authors to study this route for the systemic drug delivery lung (Qiu 

et al., 1997; Adjei and Gupta,1998; Edwards et al., 1998).Drugs administered by 

inhalation through the mouth must be atomized into smaller particles than those 

administered by the nasal route, so that the drug can pass through the windpipe (trachea) 

and into the lungs. How deeply into the lungs they go depends on the size of the droplets 

and smaller droplets go deeper. Moreover, the particle size should be in the aerodynamic 

diameter window of 0.5 - 5 μm, ideally 2 - 3 μm, for deep lung delivery to avoid loss of 

delivered particles by impaction onto the mucus lined epithelia. The aerodynamic 

diameter relates the geometric particle diameter and the particle mass density. Thus, large 

porous particles are effective means for drug delivery to the alveolar region (Edwards et 

al., 1997; Vanbever et al., 1999; Crowder et al., 2002). In addition, the high humidity in 

the airways furthers particle agglomeration, thus decreasing the delivery efficiency due to 

hygroscopic growth (Malcolmson and Embleton, 1998; Crowder et al., 2002).  

Drug administration through this route must be carefully monitored to ensure that a 

person receives the right amount of drug within a specified time. In addition, specialized 

equipment may be needed to give the drug by this route.  

A number of technologies for the delivery of drug formulationshave been developed 

(Martini et al., 2000): (i) pressurized metered dose inhalers usingpropellants to deliver 

micronized drug suspensions (Autohaler®, Spacehaler®), (ii) dry powderinhalers which 

dispense micronized drug particles with/without carrier (lactose) byinhalation activation 

(Spinhaler®, Rotohaler®, Diskhaler®), and (iii) nebulizers and aqueousmist inhalers 

which aerosolize drug solutions using compressed air or ultrasound 

(AERx®,Respimat®).  

A prolonged drug delivery can be obtained using polymeric particle 

formulations(Kawashima et al., 1999; Zhang et al., 2001) and mucoadhesive formulations 

(Takeuchi et al.,2001) but the accumulation of polymeric material in the alveoli has to be 

taken into consideration as well asthe possible delivery related development of fibrosis. 

Finally, the lungs contain high levels ofhydrolytic and other enzymes, which can become 

significant absorption barriers to drugs,although the metabolic activity of the lung is 

much lower than in the gastrointestinal tract (Adjei, 1997). 
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3. BUCCAL ROUTE 

 

Delivery of drugs to the oral cavityhas attracted particular attention due to its potential for 

high patientcompliance and unique physiological features. 

Within the oral mucosalcavity, the delivery of drugs is classified into two categories: (i) 

localdelivery,which is drug delivery into the oral cavityand (ii) systemic delivery either 

via the buccal mucosa,through the mucosal membranes lining the cheeks or 

sublingualmucosa, through the mucosal membranes lining the floor of the mouth. The 

sublingual mucosa is more permeable because more thin than the buccal mucosa and 

because it shows a considerable surface are and a high blood flow. It is used when a rapid 

onset is desired; in particular, for the treatment of acute disorders. It  is not always useful, 

because the constant washing effect of saliva, the tongue activity and the lack of an 

expanse immobile mucosa limit the permanence of the dosage form at the administration 

site.  

The buccal mucosa offers many advantages: 

a) a smooth and relatively immobile surface, 

b) suitability for the placement and removal of controlled-release systems, 

c) high patient compliance, 

d) relatively permeable in comparison to the other mucosal tissues, 

e) drugs can be administered to unconscious and trauma patients, 

f) avoidance of first-pass effect that leads to significant reduction in dose. 

However, buccal drug delivery shows the following limitations: 

a) drug chemical modification due to saliva enzymes activity, 

b)  involuntary swallowing and constant salivary scavenging canresult in drug loss 

fromthe site ofabsorption, 

c) relatively small absorption area and the barrier property of the buccalmucosa 

contribute to the inherent limitations of this delivery route, 

d) drug selection for oral transmucosal delivery is limited by thephysico-chemical 

properties of the drugs themselves and only few milligrams of drug can cross the 

oral mucosa (Harris and Robinson, 1992; Junginger et al., 1999; N. Salamat-

Miller et al., 2005; Shojaei A.H, 1998, Viralkumar F. et al., 2011 and Ghandi et 

al., 1994). 
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3.1 Anatomy and nature of oral cavity 

The oral cavity may be divided in two regions: the outer oral vestibule, boundedby the 

lips and cheeks; the oral cavity itself, the border being formed by the hard andsoft palates, 

the floor of the mouth and tonsils (Shojaei A.H, 1998; Satheesh Madhav et al., 2009; 

Salamat-Miller et al., 2005 and Ghandi et al., 1994). 

 

 

Fig. 3.1 Anatomy of oral cavity.  

(http://www.cancer.gov/cancertopics/pdq/treatment/lip-and-oral-

cavity/Patient/page1/AllPages) 

 

The oral cavity comprises lips, cheek, tongue, hard palate, soft palate and floor of the 

mouth (Fig. 3.1) and its lining, referred to as the oral mucosa(including buccal, 

sublingual, gingival, palatal and labial mucosa).  

http://www.cancer.gov/cancertopics/pdq/treatment/lip-and-oral-cavity/Patient/page1/AllPages
http://www.cancer.gov/cancertopics/pdq/treatment/lip-and-oral-cavity/Patient/page1/AllPages
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Fig. 3.2 Oral mucosa (Viralkumar F. et al., 2011) 

The oral mucosa is made up of a layer of stratified squamous epithelium with closely 

compacted epithelial cells; their function is to protect the underlying tissue against 

potential harmful agents in the oral environment and from fluid loss (Fig. 3.2). Beneath 

the epithelium are the basement membrane, lamina propria and submucosa.  

Three types of oral mucosa can be found in the oral cavity: the lining mucosa, the 

masticatory mucosa and the specialized mucosa approximately 60%, 25% and 15% of the 

total oral mucosal surface, respectively. The lining mucosa is found in the outer oral 

vestibule (buccalmucosa) and the sublingual region (floor of the mouth) and it has a non-

keratinized epithelium, which sits on a thin and elastic lamina propria and a submucosa. 

The masticatory mucosa is found on the hard palate (the upper surface of the mouth) and 

the gingiva (gums) that are particularly susceptible to the stress and it consist of an 

epithelium with keratinized cells, a thick lamina propria and the underlying periosteum. 

In the dorsum of the tongue there is a  specialized gustatorymucosa, with both keratinized 

and some non-keratinized cells. The keratinized epithelia contain neutral lipids like 

ceramides and acylceramides which have been associated with the barrier function. These 

epithelia are relatively impermeable to water. In contrast, non-keratinized epithelia, such 

as the floor of the mouth and the buccal epithelia do not contain acylceramides and only 

have small amounts of ceramide. 

The most important sites for drug delivery are the buccal and the sublingual membranes 

that show a total area of 5.02cm
2
 and 26.5cm

2
, respectively. 

The oral mucosal thickness varies depending on the site: thebuccalmucosameasures at 

500-800 μm,while themucosal thickness ofthe hard and soft palates, the floor of the 

mouth, the ventral tongue andthe gingivae measure at about 100-200 μm.  
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3.1.1 Composition of Mucus Layer : 

The epithelial surface is covered by a thin, continuous layer gel, called mucus that shows 

a mean thickness from about 50-450 μm(Satheesh Madhav et al., 2009). It is secreted by 

the goblet cells lining the epithelia or by special excessive glands with mucus cell acni. 

Mucus is composed of water (95%),glycoproteins,known as mucins,lipids (0.5-3.00%), 

mineral salts (1%) and free proteins (0.5-1.0%). Mucus protects and hydrates the oral 

cavity and plays an important role in bioadhesion of mucoadhesive drug delivery 

systems. At physiological pH, the mucus network carries a negative charge (due to the 

sialic acid and sulfate residues) and can form a strongly cohesive gel structure with the 

bioadhesive system.  

3.1.2 Salivary secretion : 

Saliva protects all tissues of oral cavity fromabrasion by rough materialsand from 

chemicals,aids the digestion of foods, lubricates the food for mastication and swallowing.  

Saliva is an aqueous fluid with 1% organic and inorganic materials and is secreted by 

perotid, sublingual and sub-mandibularglands. The salivary pH rangesfrom 5.5 to 7 

depending on the flow rate. The amount of saliva in the oral cavity is around 1.1 ml, 

although the daily salivary production is between 0.5 and 2 l .  

Saliva provides a water rich environment of the oral cavity where the pharmaceutical 

formulations must be dissolved to provide drug release. However, the presence of saliva 

can dilute the drug and remove the formulation form the site absorption before effective 

absorption occurs through the oral mucosa, thus also reducing the amount of permeated 

drug.  

3.1.3 Blood Supply to Oral Mucosa: 

The blood supply to the oral cavity tissue is delivered via the external carotid artery 

which branches into the maxillary, lingual and facial arteries. Blood from the capillary 

beds is collected by three main veins that finally flow into the internal jugular vein. Thus 

delivery of drugs via the oral mucosa drains directly to the systemic circulation and the 

hepatic first passmetabolism is avoided. 

3.2 Oral drug delivery 

Buccal cavity can be used for local and systemic drug delivery. 

Local drug delivery. Buccal local administration is used for the treatment of topical 

pathologies such oral infections, dental caries, mouth ulcers andstomatitis. 
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Systemic delivery. Buccal administration is an effective way to systemically delivery of 

drugs as an alternative to oral and intravascular routes, thanks to interesting buccal 

mucosa properties. 

3.2.1 Mechanism of drug absorption 

Drugs can cross the oral mucosa through different routes.One route involves the 

paracellular pathway(also called extracellular route) and consist in drug passage through 

the inter-cellular space; while the other route, the transcellular (also called intracellular 

route),  involvesits passage into and across the cell. 

The hydrophilic nature of the paracellular spaces and cytoplasmprovides a permeability 

barrier to lipophilic drugs but can be favorable for hydrophilic drugs. In contrast, the 

lipophilic cell membrane offers a preferable route for lipophilic drugs compared to 

hydrophilic compounds (Fig. 3.3).  

 

 

Fig. 3.3 Buccal mucosa and mechanism of drug absorption 

3.2.2 Barriers to drug absorption 

Drug permeability is influenced by the structure and the function of the several oral 

cavity regions. In particular, the permeability of the oral mucosa decreases in this order: 

sublingual greater than buccal and buccal greater than palatal (Satheesh Madhav et al., 

2009); this behavior is due to the different mucosa thickness and degree of keratinization. 

Generally, the permeability decreases with the increase of thickness and keratinization 

degree.  Moreover, the most important barrier to drug absorption is represented by the 
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intercellular lipid materials derived from the so-called membrane coating granules 

(MCGs),  spherical or oval organelles, 100–300 nm in diameter, that migrate to the apical 

surface of the cell where their membranes fuse with the cell membranes and the lipid 

content is extruded in the extracellular space.  

The membrane coating granules of keratinized epithelium are composed of lamellar lipid 

stacks, whereas the non-keratinized epithelium contains membrane coating granules that 

are non-lamellar. The membranecoating granule lipids of keratinized epithelia include 

sphingomyelin,glucosylceramides, ceramides and other non-polar lipids. However, 

fornon-keratinized epithelia, the major membrane coating granule lipidcomponents are 

cholesterol esters, cholesterol and glycosphingolipids.  

3.2.3 Crucial factors for buccal drug delivery 

For buccal administration, the design of a dosage form is influenced by several aspects, 

such as the physical-chemical and organoleptic drug properties, formulation 

characteristics and physiological conditions(Shojaei A.H, 1998; Satheesh Madhav et al., 

2009).  

Drug and system characteristics: 

Molecular size and weight influence the diffusivity of the drug through theepithelial layer 

and generally, the larger the molecule the more difficult it is to moveabout, and the lower 

will be the diffusivity. Hydrophilic drugs andsmall molecules (<75-100 Da) appear to 

cross oral mucosa rapidly, althoughpermeability falls off rapidly as molecular size 

increases. The pKa of the drug plays also an important role in its absorption across the 

lipid membranes of the oral mucosa; in fact, drugs ionized at the oral cavity pH (around 

6.8) can difficulty cross the oral mucosa.  

The organoleptic properties of a drug and the type of delivery system can influence the 

patient compliance or the acceptance of the product. The design of a drug delivery system 

is also influenced by the area surface in contact with the formulation (about 2cm
2
); for 

this reason a drug delivery system for buccal administration, that is  easily applied, can 

deliver only small amount of drug (10-20 mg).Therefore, buccal drug delivery is suitable 

only for drugs whose daily dose is in the orderof a few mg. 

Finally, idealformulation and its degradation products should be non-toxic, nonirritant 

and free from leachable impurities.  

Physiological conditions.The formulation of a drug delivery system must take into 

account that the presence of saliva and the swallowing can remove the formulation from 

the absorption site; moreover, the buccal mucosa is relatively permeable due to the 
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presence of MCGs. For this reason, generally mucoadhesive polymers and absorption 

enhancers can be used in order to increase residence time formulation and drug 

absorption (Mizrahi and Domb, 2008). Thebioadhesion performance should not be 

impacted by surroundingenvironmental pH(Sudhakar et al., 2009). 

Another barrier to the drug permeability across buccal epithelium is enzymatic 

degradation due to esterases, carbohydrases and phosphatases contained in saliva.  

 

3.3 Oral transmucosal dosage forms 

Several buccal drug delivery devices have been developed by many researchers either for 

local or systemic actions(Satheesh Madhav et al., 2009 and Viralkumar F. et al., 2011). 

They are broadly classified into (i) Solid dosage forms (ii) Semi-solid dosage forms (iii) 

Liquid dosage forms.  

3.3.1 Solid buccal adhesive dosage forms 

They are dry formulations which achieve bioadhesion via dehydration of the local 

mucosal surface. 

Buccal Tablets and lozenges 

Tablets and lozengeshave been the most commonly investigated dosage forms for buccal 

drug delivery (Llablot at., 2002); these dosage forms, when exposed to saliva rapidly 

dissolve and  the total amount of the drug that can be delivered is limited. For this reason,  

mucoadhesive polymers can be used in order to increase the residence time of the 

formulation inside the oral cavity.Buccal mucoadhesive dosage forms can also be 

categorized into three types on the basis of geometry. Type I is a single layer device with 

multidirectional drug release that is characterized by a great loss of drug in the oral cavity 

due to the saliva washing effect and swallowing (Fig. 3.4 a,d). In the type II devices, an 

impermeable backing layer is superimposed on top of the drug-loaded bioadhesive layer, 

creating a double-layered device, preventingdrug loss from the top surface of the dosage 

form into the oral cavity (Fig. 3.4b, c). Type III is a unidirectional release device, from 

which drug loss is minimal, since the drug is released from the side adjacent to the buccal 

mucosa(Fig. 3.4e and f). This can be achieved by coating every face of the dosage form, 

except the one that is in contact with the buccal mucosa(Rossi et al., 2005).The 

bioadhesive polymers can be incorporated into a matrix containing the active agent and 

excipients and perhaps a second impermeable layer to allow unidirectional drug delivery. 
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The most important disadvantage of solid dosage forms is the poor patient compliance 

especially for children.  

 

Fig. 3.4 Schematic representation representation of different types of matrix tablets 

designed for buccaldrug delivery system (Rossi et al., 2005) 

 

Bioadhesive micro/nanoparticles 

Recently, different studies have demonstrated the interesting properties of micro and 

nanoparticulate systems in buccal drug delivery (Kockisch et al., 2004 and 2003; 

Holpuch et al., 2010).Bioadhesive micro/nanoparticles have the advantage of being 

relatively small and more likely to be acceptable by the patients but their physical 

properties enable them to make intimate contact with a lager mucosal surface area. These 

are typically delivered as an aqueous suspension or are incorporated into a paste or 

ointment or applied in the form of aerosols  

3.3.2 Semi-solid dosage forms 

Medicated chewing gums 

Chewing gum is one of the modern approaches to oral transmucosal drug delivery and is 

a useful means for systemic drug delivery. These formulation are convenient and can 

deliver the drug for an extended period of time, increasing drug bioavailability. Some 

commercial products are available in the market, such as the caffeine chewing gum (Stay 
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Alert®) that was developed for alleviation of sleepiness and nicotine chewing gums (e.g., 

Nicorette® and Nicotinelle®) for smoking cessation. 

Adhesive Gels 

Various adhesive gels may be used to deliver drugs via the buccal mucosa and allow 

sustained release. They may deliver variable amount of drug in comparison with a unit 

dosage formand as a result have limited uses for drugs with narrow therapeutic window; 

another limitation of semisolid dosage forms is the low retention time into the oral cavity. 

Gel forming bioadhesive polymers has been used to adhere to the mucosal surfaces for 

extended periods of time and provide controlled release of drug at the site of absorption 

(Perioli et al., 2008).  

3.3.3 Buccal patches/films 

Patches are laminates, 1-3 cm
2
 in size, consisting of an impermeable backing layer, a 

drug-containing reservoir layer from which the drug is released in a controlled manner, 

and a bioadhesive surface for mucosal attachment. Flexible films/patches have been 

prepared either by solvent casting or hot melt extrusion technique to deliver drugs 

directly to a mucosal membrane. Compared to semisolid dosage forms, they offer 

advantages in delivering a measured dose of drug to the site.In general, oral mucosal 

patches can be classifiedinto three categories: patches with a dissolvable matrix, patches 

with anon-dissolvable backing and patches with a dissolvable backing.Patches with a 

dissolvable matrix are designed to release drug into theoral cavity. They work similarly 

to, and share many of the limitationsof, the solid dose form. The mucoadhesive layer, 

either in the drugmatrix or attached to drug matrix as an additional layer, prolongs 

theduration of drug matrix in the oral cavity. Therefore, compared withother open dosage 

forms, these types of patches are longer acting andcan potentially deliver more drug. 

Patches with non-dissolvablebacking are usually designed for systemic delivery. Since 

they areclosed systems and the formulations are protected from saliva, thedrug 

concentration is controlled and drug is continuously deliveredfor 10 to 15 h (Viralkumar 

F. et al., 2011). Recently, different authors have investigated buccal patch/film properties 

for drug delivery and a great attention has been focused on the possibility to deliver drugs 

through buccal route (Burgalassi et al., 1996; Cheng, et al., 1997 and 1993; Reinhold & 

Hans, 1989; Peh, et al., 1999; Kohda et al., 1997; Remuñán-et al., 1998and 1996). 
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3.3.5 Liquid formulations 

Liquids have been investigated primarily to coat the mucosaand act as a protectant or a 

vehicle for drug delivery in the treatment oflocal disorders, including motility 

dysfunction and fungal infections. The major limitation of these preparations is thelow 

residence time in buccal cavity due to washing effect of saliva.   
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4. VAGINAL ROUTE 

 

Vagina represents an interesting site of drug delivery thanks its unique features that can 

be exploited in order toachieve desirable therapeutic effect (Woolfson, et al., 

2000).Traditionally,vaginal route is used mainlyfor the local pharmacological effect and 

for the treatment of infections pathologies and inflammations. Recently, vagina was also 

considered tobe an organ capable to ensure a systemic drug absorption thanks to mucous 

permeability anddense network of blood vessels. Moreover, systemic drug administration 

can allow to avoid the first pass metabolism, gastrointestinal irritation and side effect at 

gastrointestinal tract and is characterized by an easily administrationand the possibility to 

rapidly remove the drug delivery system. 

However drug delivery through this route having several disadvantages like  

a) low bioavailability,  

b) gender specificity, 

c) culture sensitivity, 

d) personal hygiene, 

e) local irritation and  influence of sexual inter course, 

f) changes of physiological conditionand estrogen concentration . 

 

4.1 Anatomy and physiology of vagina 

Vagina is an important organ of the reproductive tract with a major role in reproduction. 

As reported in literature(Alamdar H. and Fakhrul A, 2005;Richardson et al., 1992;J. 

Paavonen, 1983), vagina is a slightly S-shaped fibromuscular collapsible tubes between 6 

and 10 cm long extending from cervix of the uterus to thevestibule.It presents two 

distinctpositions; a lower convex portion and a wider upperportion that lies in an almost 

horizontal plane atstanding position of subject. The angle betweenupper and lower axes is 

about 130 degree. As the vagina enters the pelvis, it passes through two diaphragms: the 

urogenital and the pelvic diaphragms. The women ofreproductive age having numerous 

folds in vagina,named ―rugae‖, which provide distensibility, supportas well as increase 

surface area of vaginal wall (Fig. 4.1). 
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Fig. 4.1 Vagina anatomy 

 

The vaginal histology is mainly consisting of four distinct layers. The superficial layer 

consists of anon-secretory stratified squamous epithelium and protects vaginal cavity 

from organisms that can invade or access the basement membrane/capillary bed; its 

thickness varies with age, menstrual cycles and several hormonal activities. The next is 

lamina propria or tunica, made of collagen and elastin, which contains a rich supply of 

vascular and lymphatic channels. The muscular layer is based on smooth muscle fibers 

running in both circular and longitudinal directions. The final layer consists of areolar 

connective tissue and a large plexus of blood vessels. An estimated cell turnover of 

vagina is about 10-15 layer in order of 7 days. 

Vaginal tissue does not contain fat cells, glands or hair follicles, but it secrets a large 

amount of fluid containing transudates through the epithelium, cervical mucus, 

exfoliating epithelial cells, secretions of the Bartholin‘s and Skene‘s glands, leukocytes, 

endometrial and tubal fluids. The cervical mucus contains inorganic and organic salts, 

mucins, proteins, carbohydrates, urea and fatty acids (lactic and acetic acids). Vaginal 

secretions are influenced by the estrogens amount, menstrual cycle and the sexual 

stimulation; generally, they increase with the increase of hormones and sexual activity. 

Women of reproductive age produce fluid at a rate of 3-4 g/4 h, while the discharge 

produced by postmenopausal women is reduced by 50%. Lactic acid, present in the 

cervical mucus, is produced from glycogen by the Lactobacillus acidophilusand is 

responsible component able to maintain the vaginal pH between 3.8 and 4.8. Moreover, 

the vaginal pH is influenced by menstruation and acts of coitus, so that menstrual cycle 
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and sexual activity, as well as the high activity of enzymes, can potentially affect short- 

and long-term stability of intravaginal delivery systems and devices. 

4.1.1 Innervation and blood supply. 

Vagina is mainly consisting of two type of nervesupply. The peripheral nerve is the most 

important and supply to the lower quarter of the vagina making it ahighly sensible area. 

The other one is an autonomic fiber that isnot very sensitive topain or temperature. In 

addition, there are few sensory fibers in the upper vagina, making it a relatively 

insensitive area. For this reason, women rarely feel localized sensations or any 

discomfort when using vaginal products such as tampons, suppositories or vaginal rings. 

Moreover, the presence of smooth elastic fibers in the muscular coat vagina makes it a 

site with an excellent elasticity.  

As regard the vascular supply of vagina, the uterine artery, the pudendal artery and the 

middle and inferior hemorrhoidal arteries cover the vagina. The vaginal, uterine, 

vescical, and rectosigmoid veins from the middle and upper vagina provide drainage to 

the inferior vena cava, which bypasses the hepatic portal system. In this way, drugs 

absorbed from the vagina do not undergo first-pass metabolism because blood leaving 

the vagina enters the peripheral circulation via a rich venous plexus, which empties 

primarily into the internal iliac veins. Moreover, the presence of an extensive vascular 

connections between the vagina and uterus allows to hypotize a ―first uterine pass 

effect‖ when hormones are administered vaginally (Bulletti et al., 1997; Cicinelli et al, 

1998).  

4.1.2 Vaginal pH 

The vaginal pH of healthy women of reproductiveage is acidic (pH 3.8-4.8); this value is 

maintainedby lactobacilli that convert glycogen ofexfoliated epithelial cells into lactic 

acid(Richardson et al., 1992). The pHchanges with age, stages of menstrual cycle, 

infectionsand sexual arousal. Menstrual, cervicaland uterine secretions, and semen act as 

alkalizingagents and increase pHto levels, where protective lactobacilli cannot survive 

(Sjorberg, et al., 1988).Female hygiene products and douches wash away a variety of the 

vaginal defenses and can promote colonization of bacteria or alter vaginal pH, allowing 

pathogenic bacteria and yeast to proliferate. Tampons or any absorbent material become 

media for bacterial colonization and growth. 
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4.1.3 Microflora 

The vaginal flora is a dynamic system and is influencedby factors such as the glycogen 

contentof epithelial cells, glucose, pH, hormonal levels,trauma during sexual 

intercourse, birth-controlmethod, age and antimicrobial treatment.Lactobacillus is the 

mostprevalent organism in the vaginal environmenttogether with many other facultative 

and obligateaerobes and anaerobes; they are beneficial for vaginal health becausethey 

compete with exogenous microbes for nutrients. Moreover, they produce  lactic acid and 

hydrogen peroxide from glycogen thus maintaining pH to acidic values thus protecting 

vagina from bacteria and yeast proliferation. In fact, hydrogen peroxide is toxic to 

othermicroorganisms that produce little or no hydrogen peroxide and its production 

make the environment less hospitable toother microbes such as Escherichia coli (E. 

coli), Group BStreptococcus and even human immunodeficiency virus(HIV). 

The vaginal microflora alteration leads to a decrease of hydrogen peroxide and to an 

increase of bacterial vaginosis or candidosis onset. Generally, the alteration of 

microflora depends on the estrogen production, sexual activity and hygiene products 

use. For example, high levels of estrogen during pregnancy result in athick epithelium, 

high levels of lactobacilli and a low pH. 

4.2 Vaginal drug delivery 

The vagina has been studied as a favorable site for the local andsystemic delivery of 

drugs, specifically for female-related conditions. 

4.2.1 Local delivery. Traditionally, the vaginal cavity has been used for the delivery of 

locally acting drugs such as antibacterial, antifungal, antiprotozoal, antiviral, labor-

inducing and spermicidal agents, prostaglandins and steroids. In particular, local drug 

delivery was used for the treatment of vaginal candidiasis that is the most common 

gynaecological infections, caused by the presence ofCandida albicans (Nyririesy et 

al.,2001; Sobel, 1988; Das Neves et al, 2008) and for the treatment of aerobic vaginitis 

that is accompanied by the presence of enteric commensals or pathogens,especially 

Escherichia coli and Streptococcus galactiae (Donders et al., 2002; Donders etal., 2011). 

Several drug delivery systems were studied for local drug delivery (Dobaria et al.m 2009, 

Kast et al., 2002; Shaaban et al., 2011; Garg et al., 2010; Furneri et al., 2008).In this 

thesis project, a pharmaceutical formulation for local drug delivery was formulated and 

more details will be discuss in the experimental section.  
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4.2.2 Systemic drug delivery. Becauseof its large surface area, rich blood supply and 

permeabilityto a wide range of compounds including peptides andproteins, the vagina has 

great potential alsofor systemic delivery (Benziger and Edelson, 1983). It offers a 

favorable alternative to the parenteralroute for some drugs such as bromocriptine 

(Varmesh et al., 1988), propranolol (Patel et al., 1984), oxytocin, calcitonin (Sayani and 

Chien, 1996), human growth hormone (Dezarnaulds and Fraser, 2003),insulin (Ning et 

al., 2005).However, despite all these advantages,the vagina has not been extensively 

explored for systemicdelivery because of gender specificity and cyclic variations. 

The vaginal route has also potential for the uterine targeting ofactive agents such as 

progesterone and danazol (Cicinellli et al., 1998). 

4.2.3 Mechanism of drug absorption 

The drug transport across vaginal membrane mainly takes place by three major ways: 

transcellularly, via concentration dependent diffusion through the cells; paracellularly, 

mediated via tight junctions; vesicular or receptor mediated transport(Alamdar H. and 

Fakhrul A, 2005). 

Drug absorption from vaginaldelivery systemtakes place in two mainsteps: drug 

dissolution in vaginal lumen and membranepenetration (in the case of systemic 

absorption). Any factors related to physiology orformulation that affects the above 

mentioned steps canpotentially alter the release and the absorption profile. Some of the 

factors which influence the drugabsorption are discuss in the following portion. 

4.2.4 Factors Affecting Vaginal Absorption of Drugs 

Physico-chemical Factors 

The physico-chemical properties of drugs and polymers like lipophilicity, ionization, 

molecular weight, surface charge and chemical nature can influence the vaginal drug 

absorption.  

Physiological Factors 

Physiological factors like changes in thethickness of epithelium layer, cyclic changes,  

hormones, volume of vaginalfluid, alteration of vaginal pH and sexual arousal, asdescribe 

earlier, can potentially affect drug release fromany intravaginal delivery system and also 

alter its rateof absorption(Alamdar H. and Fakhrul A, 2005). The high volume of 

vaginalfluid may remove drug from the vaginal cavitywithsubsequent reduction of drug 

absorption. Changes in the pH ofvagina canalter degree of ionization of weakelectrolytic 

drugs and affect the release profile of pHsensitive drugs. 
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4.3 Vaginal dosage forms 

For local action, a vaginal drug delivery system should distribute uniformly throughout 

the vaginal cavity. Several delivery systems can be used for local treatment; in particular, 

dosage forms can be classified into solid, semisolid and liquid dosage forms.  Recently, 

new formulations such as  vaginal rings have been studied especially for a systemic drug 

absorption. 

4.3.1Tablets and Suppositories 

A large number of intravaginal delivery systems are also available in the form of tablets 

and suppositories. Vaginal tablets contain components as like conventional oral tablets 

and are easy to manufacture and insert. Generally, mucoadhesive polymers are sometimes 

used in order to increase the vaginal residence time. These formulations can be used for 

local delivery of drug such as miconazole for vaginal candiasis and progesterone for 

hormonal replacementtherapy (Vukovic et al., 1977; Cicinelli et al, 1988). Inserts can be 

also used for vaginal drug delivery, thanks to their interesting properties such as the 

unique dosage form and the accurate dosage (Luppi et al., 2010a; Rabl et al., 2002). 

4.3.2 Creams and Gels 

They aremainly used for topical delivery of contraceptives andantibacterial drugs. These 

delivery systems are messyto use, uncomfortable, may not provide an exact dosebecause 

of non-uniformity and leakage. The desirable properties of vaginally administered creams 

or gels are acceptability and feasibility. They must be non-toxic and non irritating to the 

mucus membrane.  

Several studies investigated creams and gels for local drug delivery (DuBouchel et al., 

1998; Cruz and Uckun, 2001; Shettly et al., 2001; Rabl et al., 2002). Most of these 

conventional vaginal formulationsare associated with several disadvantages such as the 

low retention to the vaginal epithelium, leakage and messiness and poor patient 

compliance.  

4.3.3 Vaginal Ring 

Vaginal rings are circular ring type drug deliverydevices designed to release drug in a 

controlled releasefashion after insertion in the vagina(Alamdar H. and Fakhrul A, 2005). 

This type ofdosage forms can becontrolled by the user, does not interfere with coitusand 

allows continuous delivery of microbicidalcompounds. They are 5.5 cm in diameter with 

acircular cross section diameter of 4-9 mm. Drugs can be homogeneously dispersed, only 

on the surface ring or in the total area of the system in order to obtain a faster and 
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immediate release or a controlled drug release over time. Moreover, a vaginal ring 

sandwich or reservoir types of system have been developed in order to obtain a constant 

release of drug. Sandwich type devices consistof a narrow drug containing layer located 

below thesurface of the ring and positioned between a nonmedicatedcentral core and a 

non-medicated outerband. In reservoir type of rings, drugs are dispersed ina central core, 

which is than encapsulated by a drugfree layer. In a single ring, it is possible to have 

several cores of different drugs and thereby allowing administration of several drugs from 

the same device. Rate of drug release can be modified by changing the core diameter or 

thickness of the non-medicated coating. Several rings havebeen studied in recent years 

with different polymers such as ethylene vinyl acetate that provides increased flexibility, 

improved optical properties,  greater adhesion and increased impact and puncture 

resistance (Roumen and Dieben, 1999; Laarhoven et al., 2002; Harwood and Mishell, 

2001;Ballagh,2001).  

Vaginal rings are mainly used forcontraceptive and hormonal replacement therapy. 

Formost contraceptive application the ring is placed invagina for 21 days followed by a 

week of ring freeperiod. Nuvaring is one of the example ofcontraceptive ring available in 

US market(Nova´k et al., 2003).  
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5.NASAL ROUTE 

5.1 Introduction 

 

The nose as drug delivery site has a number of unique features related to its anatomy 

andphysiology. Conventionally, the nasal  route has been used for local delivery of drugs 

for treating nasal allergy, nasal congestion or nasal infections. However, the interesting 

properties of nasal mucosa, such as the large surface area, the avoidance of the first pass 

effect, the high permeability and vascularization lead to take into account the nasal route 

as a potential route for the systemic drug delivery(Hinchcliffe and Illum, 1999). 

Moreover, the concentration-time profiles achieved after nasal administration are often 

similar to those after intravenous administration, resulting in a rapid onset of 

pharmacological activity.  

The advantages of nasal drug delivery can be summarized as follow:  

a) large nasal mucosal surface area for drug absorption, 

b) rapid drug absorption via highly vascularized mucosa, 

c) rapid onset of action, 

d) ease of administration, 

e) avoidance of the gastrointestinal tract and first pass metabolism, 

f) possible transport directly into systemic circulation and CNS, 

g) lower dose/reduced side effects, 

h) improved convenience and compliance, 

i) self-administration. 

Moreover, nasal drug delivery shows the following limitations: 

a) volume that can be delivered into nasal cavity is restricted to 25-200 μl, 

b) not feasible for high molecular weight more than 1kDa, 

c) adversely affected by pathological conditions, 

d) ciliary movement and enzymatic inhibition can limit drug permeability, 

e) nasal irritants drugs cannot be administered through this route. 

The following sections will therefore give an introduction to the anatomyand physiology 

of the human nose. 
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5.2 Anatomy and physiology of nose 

Human nasal cavity fills the space between the base of the skull and the roof  of the 

mouth; above, it is supported by the ethmoid bones and, laterally, by the ethmoid, 

maxillary and inferior conchae bones. The lateral walls of the nasal cavity include a 

folded structure which enlarges the surface area in the nose to about 150 cm
2
. This folded 

structure includes three turbinates, the superior, the median and the inferior (Gizurarson, 

1990; Illum, 1996). The human nasal cavity is divided by middle (or nasal) septum into 

two symmetrical halves, each one opening at the face through nostrils and extending 

posterior to the nasopharynx (Fig. 5.1). Both symmetrical halves consist of four areas 

(nasal vestibule, atrium, respiratory region and olfactory region) that are distinguished 

according to their anatomic and histological characteristics (Merkus andVerhoef, 

1994Mygind and  Dahl, 1998 andMerkus andVerhoef, 1998). 

 

Fig. 5.1 Structure of nose(http://www.pharmainfo.net/pharma-student-magazine/drug-

delivery-nasal-route) 

 

Nasal vestibule is the most anterior part of the nasal cavity, just inside the nostrils, 

covered by a stratified squamous and keratinized epithelium with sebaceous glands. Here, 

there are nasal hairs, also called vibrissae, which filter the inhaled particles.   

Atrium is the intermediate area between nasal vestibule and respiratory region. Its 

anteriorsection is constituted by a stratified squamous epithelium and the posterior area 

by pseudostratified columnar cells presenting microvilli. 

The Respiratory Region  

http://www.pharmainfo.net/pharma-student-magazine/drug-delivery-nasal-route
http://www.pharmainfo.net/pharma-student-magazine/drug-delivery-nasal-route
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The nasal respiratory region, also called conchae, is the largest part of the nasal cavity 

and it isdivided in superior, middle and inferior turbinates which are projected from the 

lateral wall. These specialized structures are responsible for humidification and 

temperature regulation ofinhaled air.  

The nasal respiratory mucosa (Merkus and Verhoef, 1994, Mygind and Dahl, 1998), 

considered the most important section for delivering drugssystemically, is constituted by 

the epithelium, basement membrane and lamina propria (Fig. 5.2).  

 

 

Fig. 5.2 Representation of nasal mucosa. (http://www.nozami.com/what.php) 

 

The respiratory epithelium, 100µm in thickness, is composed of four types of cells, 

namely basal cells, non-ciliated and ciliated columnar cells and goblet cells.  

Basal cells, which are progenitors of the other cell types, lie on the basement membrane 

and do not reach the airway lumen. 

All columnar cells are covered on their apical surface with 300 microvilli, expansions 

that enhance the respiratory surface area, thus  promoting exchange processes across the 

epithelium and that prevent drying surface, retaining moisture. Columnar cells are 

divided intociliated and non-ciliated cells. The ciliated cells are covered by fine 

projections, called cilia, 0.2 - 0.3 μm wide and 5 μm in length (100-300 cilia for every 

ciliated cells). Below the respiratory epithelium is a thick lamina propria, composed of a 

loose mesh of fibroelastic tissue with many blood vessels, nerves and glands. These 

submucosal glands possess both serous and mucous secretory cells and release directly 

onto the surface of the epithelium. 

http://www.nozami.com/what.php
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The globet cells secrete granules filled with mucin, a glycoprotein that determine the 

viscosity of the mucus. Mucus (or nasal secretion) is a complex mixture of materials, 

consisting of approximately 95% water, 2% mucin, 1% salts, 1% of other proteins such as 

albumin, immunoglobulins, lysozymes, lactoferrin and <1% lipids (Kaliner et al., 1984). 

Mucus is present in two layers (5 µm in thickness) on the epithelium, a viscous and dense 

gel layer, the ‗mucus blanket‘ (gel layer, 2-4 mm thickness) that floats on the serous fluid 

layer (‗sol layer‘, 3-5 mm thickness). The viscous gel layer is moved along by the hook 

shaped cilia termini during the energy dependent ‗effective stroke‘ phase of the ciliary 

motion. Cilia are up to 7mm in length when fully extended but can fold to half this length 

during the recovery stroke where the hook terminus detaches from the gel layer and 

moves immersed in the sol layer in the opposite direction to the gel layer movement. The 

cilia of the columnar cells move with regular and symmetric beats at a frequency of about 

10 Hz in the lower sol phase (Sleigh et al., 1988, Duchateau et al., 1985).Hence the 

mucus moves only in one direction from the anterior to the posterior part of the nasal 

cavity to the nasopharynx (Fig. 5.3). 

The velocity of mucous transport is approximately 5- 8 mm/min (Procter et al., 1973; 

Andersen and Procter, 1983), thus renewing the nasal mucus layer every 10 - 20 min. 

The combined action of mucus layer and cilia is called mucociliary clearance, that is an 

important nonspecific physiological defense mechanism of the respiratory tract to 

protect the body against noxious inhaled materials. On the other hand, the mucociliary 

clearance is responsible for the generally observed rapid clearance of nasally 

administered drugs from the nasal cavity to the nasopharynx. To overcome the rapid 

removal of nasally administered drugs, the concept of bioadhesion can be applied. 

Thebaseline pH in the human nasal cavity is approximately 6.3, ranging from 5.2 - 

8.1(Washington et al., 2000a). 
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Fig. 5.3 Nasal clearance mechanism 

(http://wwwtest.valois.com/pharma/en/publication/illustration.php) 

 

5.2.1 Vasculature and innervation. The lamina propria under the nasal epithelium and the 

basement membrane are rich in blood vessels and have an extensive blood supply (about 

40 ml/min/100g, Bende et al., 1983) as well as a large lymph drainage system, 

particularly inthe respiratory region of the nasal cavity (Hinchcliffe and Illum, 1999). 

Three types of blood vesselscan be distinguished(Mygind and Dahl,1998): 

(i) Cavernous venous sinusoids are specialized vessels adapted to the functional 

demandsof the nose with respect to heating and humidification of inhaledair.  

(ii) Arterio-venous anastomoses allow the blood to bypass the capillaries. Their role 

is probably related to the temperature and water control. At least 50% of the blood flow is 

normally shunted through arterio-venous anastomoses (Anggard, 1974). 

(iii) Nasal vasculature shows cyclic changes of congestion (nasal cycle, every 3- 7 

h). Different to the gastrointestinal tract, the venous blood draining from the nose passes 

directlyinto the systemic circulation, thereby circumventing hepatic first pass elimination. 

The lamina propria of the nasal mucosa embeds also nerves. Afferent nerve fibers run in 

thetrigeminal nerve. Stimulation of the trigeminus in the nasal mucosa results in the 

sneezing reflex (Faller, 1988). There is a rich parasympathetic innervation of the glands. 

Nervous stimulation of the glandular cholinoceptors causes marked hypersecretion and is 

often part ofthe reflex arc. Nasal blood vessels are both sympathetically and 

parasympathetically innervated, but are mainly controlled by sympathetic fibers (Mygind 

and Dahl, 1998). 

http://wwwtest.valois.com/pharma/en/publication/illustration.php
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5.2.2 The Olfactory Region. It islocated on the roof of the nasal cavities, just below the 

cribriform plate of the ethmoid bone, which separates the nasal cavities from the cranial 

cavity. The olfactory epithelial layer predominantly contains three cell types: the 

olfactory neural cells, the subtentacular (also known as supporting) cells and the basal 

cellsthat are progenitor cells (of supporting cells) and also provide mechanical support 

via anchorage to other cells. The olfactory epithelium is a gateway for the non-invasive 

delivery of therapeutic agents to CNS thanks to a neuronal connection between the nasal 

mucosa and brain, thus providing a provide a unique pathway. The intraneuronal pathway 

involves axonal transport and require to hours or days for drugs to reach different brain 

regions, while the extraneuronal pathway probably relies on the bulk flow transport 

through perineural channelsand allows therapeutic agents to reach the CNS within 

minutes.  

In this area there are also small serous glands (glands of Bowman) producers of 

secretions acting as a solvent for odorous substances (Fig. 5.4). 

 

 

 

Fig. 5.4 Nose to brain delivery 

(http://www.medicalook.com/human_anatomy/organs/Olfactory_sense.html) 

 

 

http://www.medicalook.com/human_anatomy/organs/Olfactory_sense.html
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5.3 Intranasal drug delivery 

In the nasal drug delivery, several  factors, such as the nature of pathologic condition 

(acute or chronic) and intended effects of drug treatment (local, systemic or at CNS), can 

be taken into account.  

5.3.1Local delivery 

Intranasal local administration of medicines is thenatural choice for the treatment of some 

topical nasal disorders, such as rhinosinusitis. In these cases, intranasalroute is the 

primary option for drug deliverybecause it allows a rapid symptom relief with amore 

favorable adverse-event profile than oral or parenteral routes (Salib et al 2003).  

5.3.2Systemic delivery 

The intranasal administration is an effective wayto systemically delivery of drugs as an 

alternativeto oral and intravascular routes. Actually, it seemsto present fast and extended 

drug absorption and it has been supported by many studiesplanned to compare intranasal 

drug deliveryagainst oral and parenteral administration. Consequently, the number of 

drugsadministered as nasal formulations intended toachieve systemic effects has widely 

increased (Illum 2002; Leonard et al., 2007; Illum 2004; Heidari et al., 2006; Ugwoke et 

al.,2000; Wang et al., 2006; Yu et al., 2004). 

5.3.3 Mechanism of drug absorption through nose 

The first step in the absorption of drug from the nasal cavity is passage through the 

mucus; generally, small unchanged particles easily pass through this layer. Subsequently, 

there are several mechanisms for absorption through the mucosa (Fig. 5.5). These include 

transcellular or simple diffusion across the membrane, responsible for the transport of 

lipophilic drugs, paracellular transport via movement between cell and transcytosis by 

vesicle carriers. Drugs also cross cell membranes by an active transport route via carrier-

mediated means or transport through the opening of tight junctions (Illum, 2003; Arora et 

al., 2002). 
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Fig. 5.5 Drug absorption through nasal mucosa. 

(http://wwwtest.valois.com/pharma/en/publication/illustration.php) 

 

5.3.4Barriers for nasal delivery 

Low bioavailability. Bioavailability of polar drugs is generally low, about 10% for low 

molecular weight drugs and not above 1% for peptides such as calcitonin and insulin due 

to the low membrane permeability. Polar drugs with molecular weights below 1000 Da 

generally pass the membrane using the paracellular route. Although tight junctions are 

dynamic structures and can open and close to a certain degree when needed, the mean 

size of these channels is of the order of less than 10 Å and the transport of larger 

molecules is considerably more limited. Larger peptides and proteins are able to pass the 

nasal membrane using an endocytotic transport process but only in low amounts (Illum, 

2003). Nasal absorption of such polar drugs can be greatly improved by co administration 

of absorption enhancing agents (see chapter 7). 

Mucociliary clearanceThe mucociliary clearance can remove formulation form the 

absorption site, thus decreasing drug bioavailability, especially in the case of liquid 

formulations or formulations without mucoadhesive polymers. In fact,it has been shown 

that for both liquids and powder formulations, which are not bioadhesive, the half life for 

clearance is of the order of 15- 30 min (Pires et al., 2009). For this reason, the use of 

bioadhesive excipients in the formulations can be an approach to overcome the rapid 

mucociliary clearance.  

Enzymatic Degradation. The enzymatic degradation due to the presencein the lumen of 

the nasal cavity ofexo-peptidases, such as mono and diaminopeptidases and endo-

http://wwwtest.valois.com/pharma/en/publication/illustration.php
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peptidases,can degrade drugs leading to their  low bioavailability The use of enzyme 

inhibitors may be an approach to overcome this barrier (Illum, 2033).  

 

5.4 Crucial factors for nasal formulations 

Drug absorption through nasal mucosa must take into account the deposition of drug and, 

consequently, the deposition area, that is mainly dependent on the delivery system and 

the delivery device. The selection of delivery system depends upon the drug used, 

therapeutic indication, patient population and, last but not least, marketing preferences. 

Moreover, some of the physico-chemical characteristics of the drug formulation and 

physiological factors must be considered prior to designing an intranasal delivery system 

(Pires et al., 2009). 

5.4.1 Physicochemical properties of drugs and delivery systems 

Physicochemical properties are one of the important aspects in design of nasal 

formulation. In particular,  increasing drug lipophilicity, the nasal absoption of the 

compound normally increases. In fact, lipophilic compounds tend to readily cross 

biological membranes via the transcellular route and diffuse into and traverse the cell in 

the cell cytoplasm.Unionized forms of drug are well absorbed compared with ionized 

forms of drug. Moreover, absorption decreases significantly if the molecular weight is 

greater than 1,000 Daltons except with the use of absorption enhancers (Illum, 2003). 

It has been reported that particles greater than 10 μm in size are deposited in the nasal 

cavity. Particles that are 2 to 10 μm can be retained in the lungs, and particles of less than 

1 μm are exhaled.  

Additionally, drug delivery systems deposited in the nasal cavity need to dissolve in order 

to release the drug and to increase drug bioavailability (Pires et al., 2009). 

Generally,solvents or co-solvents such as glycols or small quantities of alcohol can be 

used in order to increase drug solubility. 

The delivery volume is limited by the size of the nasal cavity. An upper limit of 25 

mg/dose and a volume of 0.1-0.2 ml/nostril have been suggested.  

Drug formulation should be isotonic in order to avoid cilliary activity inhibition. 

Deposition of the formulation in the anterior portion of the nose provides a longer nasal 

residence time and better absorption, while a rapid elimination of the formulation occurs 

if the dosage form is deposited in posterior chamber of nasal cavity. The site of 

deposition is dependent on the delivery device mode of administration andphysico-
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chemical properties of drug molecule. Drug absorption depends upon the vasoconstriction 

and vasodilatation of these blood vessels. 

5.4.2 Physiological factors 

The absorption of drugs is influenced by the residence time of drug formulation inside the 

nasal cavity. The mucociliary clearance removes the formulation from the absorption site 

and generally bioadhesive polymers can be used in the formulation in order to increase 

the residence time in the nasal cavity.  

Several enzymes that are present in the nasal mucosa might affect the stability of drugs. 

For example, proteins and peptides are subjected to degradation by proteases and amino-

peptidase at the mucosal membrane. 

Finally,intranasal pathologies such as allergic rhinitis, infections or previous nasal 

surgery may affect the nasal mucociliary transport process and/or capacity for nasal 

absorption. During the common cold, the efficiency of an intranasal medication is often 

compromised. Nasal pathology can also alter mucosal pH and thus affect absorption of 

drugs.  

 

5.5 Nasal formulations 

5.5.1 Liquid dosage forms. Liquid dosage forms either in form of soluble, suspended or 

colloidal systems are normally used for formulating nasal delivery systems and included 

drops, sprays, nano and microemulsions and nanoparticles. They are rapidly removed 

from the nasal cavity due to the clearance mucociliary and are characterized by a lack of 

dose precision, even if innovative and precise dispositive for the systems deposition are 

used. Liquid formulation show also a low stability and generally, preservatives must be 

used.  

5.5.2 Semisolid dosage forms. Semi-solid systems, including ointments and liquids 

containing polymers able to gel at particular pH changes, are usually employed for 

designing the nasal drug delivery systems. These systemsshow a greater viscosity with 

respect to liquid formulations and can remain inside the nasal cavity for a greater time.  

5.5.3Solid dosage forms 

Nasal powders  

The advantages of a nasal powder dosage form are the absence of preservative and 

superior stability of the drug in the formulation. However, the suitability of the powder 
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formulation is dependent on the solubility, particle size, aerodynamic properties and nasal 

irritancy of the active drug and/or excipients. An additional advantage of this system is 

local application of drug, but nasal mucosa irritancy and metered dose delivery are some 

of the aspects that must be taken into account. 

5.5.4 Novel drug formulations 

Novel drug formulation for intranasal drug delivery include liposomes, microspheres and 

nanoparticles. These systems canbe formulated incorporating inside the system  

enzymatic inhibitors,nasal absorption enhancers or/and mucoadhesivepolymers in order 

to improve the stability,membrane penetration and retention time in nasalcavity.  

Liposomes 

Liposomes are phospholipids vesicles composedby lipid bilayers enclosing one or more 

aqueouscompartments and wherein drugs and othersubstances can be included. 

Liposomal drugdelivery systems present various advantages suchas the effective 

encapsulation of small and largemolecules with a wide range of hydrophilicity and pKa 

values (Law et al., 2001; Wyas et al., 1995). 

Microspheres 

Microsphere technology has been widely appliedin designing formulations for nasal drug 

delivery. Microspheres are usuallybased on mucoadhesive polymers (chitosan,alginate), 

which present advantages for intranasaldrug delivery. Furthermore, microspheres 

mayalso protect the drug from enzymatic metabolismand sustain drug release, prolonging 

its effect (Gavini et al., 2006). 

Nanoparticles 

Recently, much attention has been given tonanotechnology in many areas. Nanoparticle 

systems are being investigated to improve drugdelivery and intranasal drug 

administration.Nanoparticles are solid colloidal particles withdiameters ranging from 1-

1000 nm. Theyconsist of macromolecular materials in which the active substance 

isdissolved, entrapped, encapsulated, adsorbed orchemically attach. Nanoparticles may 

offer several advantages due to their small size,but only the smallest nanoparticles 

penetrate themucosal membrane by paracellular route and in alimited quantity because 

the tight junctions are inthe order of 3.9-8.4 Å (Fernandez- Urrusuno et al., 1999a and 

1999b). 



THEORETICAL SECTION-NASAL ROUTE 

Angela Abruzzo-University of Bologna Pag. 54 
 

5.6 Delivery of Peptide and Non-Peptide Drugs for Systemic Effect through Nasal 

Route 

Most peptides and proteins, being hydrophilic polar molecules of relatively high 

molecular weight, are poorly absorbed across biological membranes with bio-availability 

obtained in the region of 1–2% when administered as simple solutions. But for certain 

peptide drugs such as insulin which does not have the luxury of wide therapeutic index it 

is essential to develop the novel formulation strategies. Different studies have been 

performed to evaluate the possibility to deliver insulin through nasal route. In particular, 

several drug delivery systemwere formulated and their delivery properties were evaluated 

from different point of view (Pillion et al., 1994; Bechgaard et al., 1996; Leary et al., 

2005; Leary et al., 2006; Khafagy et al., 2009; Callens et al., 2003). 
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6. CHITOSAN 

6.1 Chitosan and chitin 

Chitosan is currently receiving a great deal of attention for medical and pharmaceutical 

applications due to itsinteresting properties. Indeed, chitosan is known for its 

biocompatibility allowing its use in various medicalapplications such as topical ocular 

application (Felt et al., 1999), implantation (Patashnik et al., 1997) or injection (Song et 

al., 2001). Moreover, chitosan can be considered as biodegradable because it is 

metabolized by certain human enzymes, e.g. lysozyme (Muzzarelli, 1997; Koga and 

Chen, 1998) and it can act as a penetration enhancer by opening epithelial tight-junctions  

(Junginger and Verhoef,1998; Kotze et al., 1998). Due to its positive charges at 

physiological pH, chitosan is also bioadhesive, thus increasing retention time at the site of 

application  (He et al., 1998; Calvo et al., 1997) and has bacteriostatic effects (Liu et al., 

2001). Finally, chitosan is abundantin nature and its production is of low cost and is 

ecologically interesting (Peter, 1995). In medical and pharmaceutical applications, 

chitosan is used as a component for the preparation of several drug delivery systems; in 

particular, our research group have investigated chitosan properties when it is formulated 

as hydrogels and in different dosage forms (Cerchiara et al., 2003a; 2003b; 2008; Bigucci 

et al., 2008a; 2008b; Luppi et al.,2009; 2010a; 2010b). 

Chitosan (Fig. 6.1) is a polysaccharide formed primarily of repeating units of β-(1→4)-2-

amino-2-deoxy-D-glucose (or D-glucosamine).  
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Fig. 6.1 Chitosan structure 

Chitosan is the N-deacetylated derivative of chitin (Fig. 6.2), the most ubiquitous natural 

polysaccharide after cellulose,which is the main component of the exoskeleton of 

crustaceans, such as shrimps (Muzzarelli, 1973). 
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Fig. 6.2 Deacetylation process of chitin to obtain chitosan 

 

Chitin is composed of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4) linkage and 

can be degraded by chitinase (Dutta et al., 2002). It may be regarded as cellulose with 

hydroxyl at position C-2 replaced by an acetamido group and like cellulose, it functions 

naturally as a structural polysaccharide. Chitin is a white, hard, inelastic, nitrogenous 

polysaccharide. Chitin is present as ordered crystalline microfibrils forming a complex 

structure with proteins, minerals, and lipids and possesses three polymorphic forms (R, β, 

λ), where R is the most common structure, corresponding to a tightly compacted 

orthorhombic cell of alternate sheets of parallel and antiparallel chains. Commercial 

chitin is effectively isolated from crustacean shells after chemical treatments that lead to 

reduction in chitin molecular weights; but these methodologies do not allow the recovery 

of products such as protein hydrolyzates and pigments and can generate undesirable 

corrosive side products. Alternatively, biological approaches for chitin recovery have 

been proposed and among them, lactic acid fermentations (LAFs) are promising because 

minerals (calcium carbonate) are solubilized in situ and endogenous proteases are 

adequately activated for deproteinization.  

Generally, alkali are used to simultaneously remove the protein and deacetylates chitin 

and allow to dissolve calcium carbonate which is present in crab shells in high 

concentrations. Then, chitin is deacetylated in order to obtain chitosan. Chitosan 

parameters such as molecular weight (MW) and degree of deacetylation (DD), 

representing the proportion of deacetylated units, are determined by theconditions 

selected during its preparation and are responsible of chitosan properties.The conditions 

employed for deacetylation of chitin, such as temperature, alkali concentration, time and 

the acidic depolymerisation can decrease the DD (Sorlier et al., 2001) and theMW (Dong 
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et al., 2001). For example, chitin is deacetylated in 40% sodium hydroxide at 120°C for 

1–3 h,leading to 70% deacetylated chitosan.Moreover, chemical deacetylation conducted 

under heterogeneous conditions at high temperature during a short period of time is faster 

in amorphous regions, whereas homogeneous deacetylation, at relatively low 

temperatures and extended time, results in random distribution of deacetylated residues in 

the polymer backbone. In both cases, high deacetylation can be successfully achieved but 

with remarkable reduction in molecular weight. It has been suggested that the initial 

crystalline structure of the chitin is an important parameter during deacetylation and 

affects final chitosan structure as well as molecular mass and the DA. Therefore, this will 

influence its solubility, reactivity for chemical modification as well as biological, 

mechanical and rheological properties.  

6.1.1 Chitosan solubilization 

The solubilization occurs by protonation of the -NH2 function on the C-2 position of the 

d-glucosamine repeat unit, whereby the polysaccharide is converted to a polyelectrolyte 

in acidic media (chitosan pKb= 6.3; Lee et al., 1999).This characteristic can allow to use 

chitosan in different applications; in particular, it can be used as flocculants for protein 

recovery, as components to obtain solutions, gels, or films and fibers.  

Chitosan solubility dependson its average DA, molecular weight, distribution of the 

acetyl groups and on pH and ionic concentration of solution used to chitosan dissolution. 

Generally, chitosan is characterized by typical degrees of deacetylation between 70 and 

95% and molecular weights between 10 and 1,000 kDa and a low molecular weight can 

allow to obtain a fast chitosan dissolution. Moreover, chitosan can be dissolved in acetic 

acid or hydrochloric acid, pH and the pK of the acid influencing chitosan solubility. 

Finally, a salting-out effect was observed in excess of HCl (1 M HCl), making it possible 

to prepare the chlorhydrate form of chitosan.  

6.2 Chitosan hydrogels 

Peppas (Peppas, 1986) defined hydrogels as ―macromolecular networks swollen in water 

or biological fluids‖. Hydrogels are often divided intothree classes depending on the 

nature of their network,namely entangled networks, covalently crosslinked networksand 

networks formed by physical interactions. Thelatter class contains all the intermediary 

cases situatedbetween the two other classes representing the extremes(Ross-Murphy, 

1994). However, with respect to chitosan hydrogels, thisclassification is not entirely 

suitable and it can be suggested the following modified classification for 
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chitosanhydrogels; i.e. a separation of chemical and physicalhydrogels. Chemical 

hydrogels are formed by irreversiblecovalent links, as in covalently crosslinked 

chitosanhydrogels. Hydrogels formed by the addition of acrosslinker, namely covalently 

and ionically crosslinkedhydrogels are characterized by apotential toxicity of free 

unreacted covalent crosslinkers thatrequired a purification step during the manufacturing 

ofhydrogels. For this reason the development of alternative types of hydrogelswas 

desirable (Berger et al., 2004); in particular,hydrogels formed by directinteraction 

between polymeric chains without the additionof crosslinkers is  advantageous. In 

physical hydrogels, chitosan can form reversible links such as ionic interactions, as 

inionically crosslinked hydrogels and polyelectrolyte complexes(PEC), or secondary 

interactions as in chitosan/polyvinyl alcohol (PVA) complexed hydrogels, 

graftedchitosan hydrogels and entangled hydrogels. The entangledchitosan hydrogels 

show a limited use due to their lack ofmechanical strength and their tendency to 

dissolve.Moreover, they do not exhibit characteristics that allow anefficient control of 

drug delivery or the modification ofproperties in response to changes in their physico-

chemicalenvironment, such as pH or temperature. 

6.3 Polyelectrolyte complexed hydrogels 

As described before, polyelectrolyte complex networks are formed mixing oppositely 

charged polyelectrolytesthat can interact in solution thanks to the formation of ionic 

interactionsand without the use of covalent cross-linkers. The reaction isgenerally 

performed in aqueous solution, thus favoring biocompatibility and avoiding 

purificationbefore administration. For this reason, in general, these polymeric networks or 

hydrogels are well tolerated, biocompatible and are more sensitive to changes in 

environmental conditions (Long et al., 1996; Wang et al., 1997; Takahashi et al., 1990; 

Berger et al., 2004). They are characterized by a hydrophilic microenvironment with a 

high water content and electrical charge density and exhibit interesting swelling 

characteristics. 

The formation and stability of these polyelectrolyte complexes depend on many factors 

such as the degree of ionization, the density of the charges, the charge distribution of the 

oppositely charged polyelectrolytes, the concentration of the polyelectrolytes, their 

mixing ratio, the mixing order, the duration of the interaction, the nature of the ionic 

groups, the position of the ionic groups on the polymeric chains, the molecular weight of 

the polyelectrolytes, the polymer chain flexibility as well as the temperature, ionic 
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strength and pH of the reaction medium. When the polyelectrolyte complex contains 

equal amounts of each opposite charge, it is usually insoluble and precipitate out of 

solution upon formation (Berger et al., 2004), due to its zero net charge. On the other 

hand, when in the mixed solution there is an excess of one charge (either positive or 

negative), a non-stoichiometric complex is formed that are usually soluble.  

Chitosan can easily form polyelectrolyte complexes through the electrostatic attraction 

between the cationic amino groups on the C2 position of the repeating glucopyranose 

units of chitosan and the anionic groups of the other polyelectrolyte, even if other 

secondary binding interactions (Lee et al., 1999) can be occurred. In this way, chitosan 

that normally is dissolved in the stomach can be used for formulation of new drug 

delivery systems and it is also possible to maintain its interesting properties of 

biocompatibility and biodegradability. Generally, the formation of PEC can induce a 

conformational change of chitosan that  has a rigid, stereo-regular structure containing 

(Berger et al., 2004).  

The most commonly used polyanions are polysaccharides bearing carboxylic groups such 

as alginate (Kim et al., 1999), pectin (Bigucci et al, 2008b; Luppi et al., 2010a; Yao et al., 

1997)or xanthan (Dumitriu and Chournet, 2000). Proteins, such as collagen (Taravel and 

Domard, 1996) and synthetic polymers, such as PAA (Wang et al., 1997) or even DNA 

(Borchard, 2001)have also been investigated.  

In order to form a PEC, the pH solution values must be in the vicinity of the pKa interval 

ofthe two polymers, thus obtaining a great ionization of the two polymers. During 

complexation, polyelectrolytes can either coacervate or form a more or less compact 

hydrogel or precipitate. Precipitation can beavoided if electrostatic attraction is weakened 

by the addition of salts, such as NaCl, that reducestheattraction between the oppositely 

charged polyelectrolytes. 

6.3.1 Properties and medical applications 

As PEC hydrogels are formed by ionic interactions, theyexhibit pH- and, to a minor 

extent, ion-sensitive swelling. Inaddition, they have a high water content and 

electricalcharge density and allow the diffusion of water and/or drugmolecules (Berger et 

al., 2004). Therefore,chitosan hydrogels formed by PEC are well toleratedsystems and 

can be used in various applicationssuch as drug delivery systems, in cell culture and 

enzymeimmobilization or for tissue reconstruction and woundhealingmanagement. 

PEC exhibit pH-sensitive swelling not onlyin acidic but also in basic conditions. pH of 

physiological fluids can modify the charge balance inside the gel andtherefore the degree 
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of interaction between the two polymers and the swelling properties. In particular, in 

acidic medium, the polyacid is neutralized and due to the free ammonium groups of 

chitosan, freepositive charges appear inside the gel and the consequent entry of water 

causes swelling(Fig. 6.3). On the other hand, in basic medium themechanism is the same 

but swelling is induced by the freenegative charges of the polyacid. If swelling 

becomestoo important, dissolution of the complex can occur at certainpH values if the 

global charge density of one of the polymersis no longer sufficiently high to ensure 

complexation (Berger et al., 2004). 

 

Fig. 6.3 Swelling properties of PEC in mediawith different pH (Berger et al., 2004). 

6.4 Polyelectrolyte Complexes Chitosan/gelatin and Chitosan/alginate 

As described before, chitosan can ionically interact with different polymers, natural and 

synthetic. In particular, in this thesis project chitosan/gelatin and chitosan/alginate were 

taken into account in order to obtain drug delivery system. These complexes were  

studied in terms of chemical-physical properties and of their ability to control drug 

release. 
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6.4.1 Chitosan-gelatin polyelectrolyte complex 

Gelatin is a heterogeneous mixture of protein fractions consisting of single or multi-

stranded polypeptides (Fig. 6.4), obtained by partial hydrolysis of animal collagen 

derived from skin, white connective tissues and bones. In nature there are two types of 

gelatin: type A gelatin, derived from pig skin by means of acid hydrolysis and type B 

gelatin, obtained from alkaline hydrolysis of cattle hides and bones [49]. The isoelectric 

point of gelatin is around a pH value of 4.7 and the formation of polyelectrolyte 

complexes is obtained in pH interval between this value and 6.3 that correspond to 

chitosan pKb (Yin et al., 2005). Chitosan-gelatin polyelectrolyte complex was used to 

obtain sponges containing tramadol hydrochloride; these formulations allow to obtain a 

control of drug release which followed Higuchi‘s diffusion mechanism over a 12 h 

periodand showed improved mechanical properties compared to sponges containing 

chitosan alone (Foda et al., 2007).  

 

Fig. 6.4 Gelatin structure. 

 

6.4.2 Chitosan-alginate polyelectrolyte complex 

Alginates are natural polysaccharide polymers isolated from brown seaweed such as 

Laminaria hyperborea, Ascophyllum nodosum and Macrocystis pyrifera(Oliveira et al., 

2009; Sankalia et al., 2007). The seaweed is extracted with a dilute alkalinesolution 

which solubilizes the alginic acid.Free alginic acid is obtained on treatment ofthe 

resulting thick and viscous mass with mineral acids and then converted to asalt, such as 

sodium alginate, that is the major form currentlyused. 
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Fig. 6.5 Alginate structure 

 

Alginic acid (Fig. 6.5) is a linear polymer consistingof D-mannuronicacid (M) and L-

guluronic acid (G) residues that are arranged in the polymer chain in blocks, M and G 

blocks. In particular, M and G residues in alginatesare joined together in a blockwise 

fashion-homopolymeric M blocks (MMMMM) and Gblocks (GGGGG) or 

heteropolymeric blocks of altering M and G (MGMGMG).In the polymerchain the 

monomers tends to find their most energetically favorable structure. For G-G itis the 1C4 

chair form linked together with an α-(1→4) glycosidic bond. For M-M it is the 4C1chair 

form linked together with a β-(1→4) glycosidic bond. The rather bulky carboxylic 

groupis responsible for an equatorial/equatorial glycosidic bond in M-M and an 

axial/axial glycosidicbond in G-G and an equatorial/axial glycosidic bond in M-G. The 

result of this is a buckledand stiff polymer in the G-block regions and a flexible, ribbon-

like polymer in the M-block andMG-block regions (Fig. 6.6).  
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Fig. 6.6 Alginate block types 

 

The proportion and distribution of these blocks (Fig. 6.6) determine the chemicaland 

physical properties of the alginate molecules. 

The chemical composition of alginates varies accordingto seaweed species and even 

within different parts of the same plant, even if a selection of manufacture process allows 

to obtain alginates with constant properties in a wide range of grades.The block structure 

distribution of an alginate extracted from brown algae is determinedby alginate 

biosynthesis in the brown algae and its genetical and environmental control. Thepathway 

of alginate biosynthesis in brown algae ends up with poly(mannuronate), the 

homopolymerof M, as an obligate intermediate. An epimerase is then acting on the 

polymer level andworks along the polymer chain in controlling the epimerization from M 

to G in certain regionsof the polymer. As a rule of the thumb, one can say that the 

transformation from M to G willbe more and more complete as the plant tissue grows 

older.  

Hydration of alginic acid leadsto the formation of a high-viscosity ‗‗acid gel‘‘ due to 

intermolecular binding; water molecules are physically entrapped inside thealginate 

matrix, but are still free to migrate. Moreover, monovalent metal ions form soluble salts 
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withalginate whereas divalent and multivalent cations(except Mg
2+

) form gels or 

precipitates(Tønnesen and Karlsen, 2002). The variouscations show different affinity for 

alginate andselective ion binding is the basis for the ability ofalginate to form ionotropic 

hydrogels (Fig. 6.7). Alginateswith a high content of guluronic acid blocks givegels of 

considerably higher strength compared toalginates rich in mannuronate, as the G 

residuesexhibit a stronger affinity for divalent ions than the M residues. 

 

Fig. 6.7Binding mode between Ca
2+

 ions and alginate 

 

Calcium and sodium alginate are the most extensively studied due to their properties such 

as the non-toxicity and biocompatibility (Tønnesen and Karlsen, 2002). In particular, 

sodium alginate can be used as a bindingand disintegrating agent in tablets, as 

asuspending and thickening agent in water-misciblegels, lotions and creams, and as a 

stabilizer foremulsions.  

 

An important characteristic of alginate is represented by the presence of carboxylic acid 

groups of manuronic and guluronic acid units that can be present under ionized form and 

can interact electrostatically with the positively charged amino groups of chitosan to form 

a polyelectrolyte complex (Hamman, 2010). Alginate is one of the most studied anionic 

polyelectrolytes in complexation with chitosan. The polyelectrolyte complex formed 

between these two polymers is still biodegradable and biocompatible, but mechanically 

stronger at lower pH values where chitosan dissolves (Hein et al., 2008). Moreover, 

chitosan-alginate polyelectrolyte complexes are less degraded by lysozymes with respect 

chitosan alone (Li et al., 2009) and they can be used in tissue engineering for scaffolds 

and support materials (Li et al., 2009). It has been shown that charge ratio, molecular 

weight, ionic strength, pH, mixing order, as well as speed and diameter of the dispersing 

element, influence the particle size, particle surface charge (zeta potential) and stability of 

alginate-chitosan polyelectrolyte complexes (Sætheret al., 2008). 

 



THEORETICAL SECTION-CHITOSAN AND OTHER MATERIALS 

Angela Abruzzo-University of Bologna Pag. 65 
 

6.5 Cyclodextrins 

CDs are useful pharmaceutically because they can interact with drug molecules to form 

inclusion complexes (1:1), thus improving their physicochemical and biological 

properties. In particular, the complex formation can enhance drug solubility, physical and 

chemical stability, thus resulting in greater biological performance (Uekama et al., 1994; 

Loftsson, 1995; Albers and Muller, 1995; Loftsson and Brewster, 1996;  Challa et al., 

2005). The complex formation is already widely used in many industrial products, 

technologies and analytical methods as well as in pharmaceutical fields. Cyclodextrin 

complexation with drugs can protect them against oxidation, light induced reactions, 

decomposition and thermal decomposition; it can also improve their solubility and 

stability.  Moreover, it was demonstrated that they can increase dramatically the loading 

capacity of carriers such as liposomes, nanospheres and microspheres (Dunchene and 

Ponchel, 1999; Duchene et al., 1999). Cyclodextrins are used in food formulations for 

flavour protection and delivery. Artificial flavours are volatile oils or liquids and 

complexation with cyclodextrins provide a promising alternative to the conventional 

encapsulation technologies used for flavour protection. In cosmetic field, the major 

benefits of cyclodextrins in this sector are stabilization, odour control and improvement 

upon conversion of a liquid ingredient to a solid form. It is also possible to eliminate or 

reduce undesired tastes or odours and microbiological contaminations.  

The CDs of biomedical and pharmaceutical interest are cyclic oligosaccharides made up 

of six to eight dextrose units joined through one to four bonds. They are crystalline, 

homogeneous, non-hygroscopic substances, which are torus-like macro-rings built up 

from glucopyranose units.The α-cyclodextrin comprises 6 glucopyranose units, β-CD 

comprises 7 such units and γ-CD comprises 8 such units(Fig. 7.1).  

 

Fig. 6.8Cyclodextrin structure 
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As a consequence of the 4C1 conformation of the glucopyranose units, all secondary 

hydroxyl groups are situated on one of the two edges of the ring, whereas all the primary 

ones are placed on the other edge. Cyclodextrin rings are amphipathic with the wider rim 

displaying the 2- and 3-OH groups and the narrower rim displaying 6-OH group on its 

flexible arm. These hydrophilic groups are on the outside of the molecular cavity whereas 

the inner surface is hydrophobic lined with the ether-like anomeric oxygen atoms and the 

C3-H and C5-H hydrogen atoms. 

The C-2-OH group of one glucopyranoside unit can form a hydrogen bond with the C-3-

OH group of the adjacent glucopyranose unit. In the βCD molecule, a complete 

secondary belt is formed by these H-bonds, therefore the βCD is a rather rigid structure. 

This intramolecular hydrogen bond formation is probably the explanation for the 

observation that βCD has the lowest water solubility of all CDs. 

 

6.5.1 Cyclodextrin derivates 

In the cyclodextrins every glucopyranose unit has three free hydroxyl groups which all 

differ in their functions and reactivity. The relative reactivities of C(2) and C(3) 

secondary, and the C(6) primary hydroxyls depend on the reaction conditions (pH, 

temperature, reagents). In β-CD 21 hydroxyl groups can be modified substituting the 

hydrogen atom or the hydroxyl group with a large variety of substituting groups like 

alkyl-, hydroxyalkyl-, carboxyalkyl-, amino-, thio-, tosyl-, glucosyl-, maltosyl-, etc. 

groups, thousands of ethers, esters, anhydro- deoxy-, acidic, basic, etc. derivatives can 

be prepared by chemical or enzymatic reactions. The aim of such derivatizations may 

be: 

 to improve the solubilityof the CD derivative (and itscomplexes) 

 to improve the fitting, and/or the association between the CD and its guest, with 

concomitant stabilization of the guest. 

 

6.5.2 Cyclodextrin inclusion complexes 

In an aqueous solution, the slightly apolar cyclodextrin cavity is occupied by water 

molecules which are energetically unfavored (polar-apolar interaction), and therefore 

can be readily substituted by appropriate ―guest molecules‖ which are less polar than 

water. The dissolved cyclodextrin is the ―host‖ molecule, and part of the ―driving force‖ 

of the complex formation is the substitution of the high-enthalpy water molecules by an 
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appropriate ―guest‖ molecule. Most frequently the host:guest ratio is 1:1, however 2:1, 

1:2, 2:2, or even more complicated associations and higher order equilibria exist, almost 

always simultaneously. The inclusion complexes formed can be isolated as stable 

amorphous or microcrystalline substances. The association of the CD and guest (D) 

molecules and the dissociation of the CD/guest complex formed, is governed by a 

thermodynamic equilibrium. Upon dissolving these complexes, an equilibrium is 

established very rapidly between dissociated and associated species, and this is expressed 

by the complex stability constant Ka. The most important primary consequences of 

stirring a poorly soluble guest with an aqueous CD solution are as follows: 

a) The concentration of the guest in the dissolved phase increases significantly, while the 

concentration of the dissolved free CD-decreases. This latter point is not always true, 

because ionized guests or hydrogen-bond establishing (e.g. phenolic) compounds may 

enhance the solubility of the CD. 

b) The spectral properties of the guest are modified. For example, the chemical shifts of 

the anisotropically shielded atoms are modified in the NMR spectra. Also when achiral 

guests are inserted into the chiral CD cavity, they become optically active, and show 

strong induced Cotton effects on the circular dichroism spectra. Sometimes the maximum 

of the UV spectra are shifted by several nm. 

c) The reactivity of the included molecule is modified. In most cases the reactivity 

decreases, i.e. the guest is stabilized, but in many cases the CD behaves as an artificial 

enzyme, accelerating various reactions and modifying the reaction pathway. 

d) The diffusion and volatility (in case of volatile substances) of the included guest 

decrease strongly. 

e) The complexed substance is effectively protected against any type of reaction, except 

that with the CD-hydroxyls, or reactions catalyzed by them. 

f) Sublimation and volatility are reduced to a very low level. 

g) The complex is hydrophilic, easily wettable and rapidly soluble. 
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6.6Kinetics of Hydrogel Swelling 

 

The favorable property of these hydrogels is their ability to swell when put in contact 

with an aqueous solution. The water attacks the hydrogel surface and penetrates into the 

polymeric network. Regularly, the meshes of the network in the rubbery phase start 

expanding, allowing other solvent molecules to penetrate within the hydrogel network. 

Therefore, the unsolvated glassy phase is separated from rubbery hydrogel region with a 

moving front.  

One of the very important features of hydrogel swelling is the rate of swelling or swelling 

kinetics, that aredetermined by the  sample/particle size, porosity extent and the type of 

the porous structure. In particular, hydrogels may be divided into four main classes: a) 

non-porous that have molecular size pores equal to the macromolecular correlation length 

(10-100 Å); micro-porous (100-1000 Å); macro-porous (0.1-1 μm) and super-porous 

hydrogels (SPHs) that is usually in the range of several hundred micrometers, 

characterized by a rapid uptake of water into the porous structure.  

The most important parameters that define the structure and properties of swollen 

hydrogels are the polymer volume fraction in the swollen state, ν2,s, the effective 

molecular weight of the polymer chain between cross-linking points, Mc, and the 

correlation distance between two adjacent cross-links, ξ. The polymer volume fraction in 

the swollen state (ν2,s) describes the amount of liquid that can be imbibed in hydrogels 

and is defined as a ratio of the polymer volume (Vp) to the swollen gel volume (Vg).  

 

ν2,s = Vp / Vg 

 

Swelling is a continuous process of transition from unsolvated glassy or partially rubbery 

state to a relaxed rubbery region. Although penetrant sorption by rubbery polymers may 

be described by Fickian transport with a concentration dependent diffusion coefficient, 

this description usually is not successful for glassy polymers that are influenced by the 

glass transition temperature (Tg) in the delivery process. In particular, it is possible to 

distinguish the Fickian or Case I transport, which appears when the Tg of polymer is well 

below the medium temperature and a non-Fickian diffusion, which appears when the Tg 

of polymer is well above the experimental temperature. 

In the first case, the polymer chains have a high mobility and the water penetrates easily 

in the rubbery network. Therefore, the solvent diffusion rate, Rdiff, is clearly slower than 
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the polymer chain relaxation rate, Rrelax, (Rdiff << Rrelax). In the second  situation, the 

polymer chains are not adequately mobile to permit urgent penetration of water into the 

polymer core. Depending on the relative rates of chain relaxation and diffusion, they 

commonly classified the non- Fickian diffusion to two subsections: "Case II transport" 

and "anomalous transport". Case II transport is dominated when the diffusion is very 

rapid compared to relaxation (Rdiff >> Rrelax), with relaxation occurring at an 

observable rate. The anomalous transport is observed when the diffusion and relaxation 

rates are comparable (Rdiff ≈ Rrelax). Since most polymers swell when they are in 

contact with certain solvents, Fick's laws can be used. 

 

A simple and useful empirical equation is commonly used to determine the mechanism of 

diffusion in polymeric networks: 

(Mt/M =͚k*t 
n
)   

The constants k and n are characteristics of the solvent-polymer system. The diffusional 

exponent (n) is dependent on the geometry of the device as well as the physical 

mechanism of solute uptake or drug release.  

By determining the diffusional exponent, information about the physical mechanism 

controlling solute uptake or about drug release from a particular device can be obtained 

(Table 1). For a film, n = 0.5 indicates Fickian diffusion, n > 0.5 indicates anomalous 

transport and n = 1 implies case II (relaxation-controlled) transport.  

 

Table 1 Drug transport mechanisms and diffusional exponents for hydrogel slabs 

 

The Fickian diffusion, actually, refers to a situation where water penetration rate in the 

gels is less than the polymer chain relaxation rate. Therefore, n = 0.5 indicates a perfect 

drug transport mechanisms and diffusional exponents for hydrogel slabs. Nevertheless, 

when the water penetration rate is much below the polymer chain relaxation rate, it is 

Type of 

transport 

Diffusional 

exponent (n)  

Time 

dependence 

Fickian 

diffusion 

n= 0.5 t 
1/2

 

Anomalous 

transport 

0.5 < n < 1 t 
n-1

 

Case II transport  n= 1 Time 

dependent 
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possible to record the n values below 0.5. This situation, which is still regarded as Fickian 

diffusion, is named as "Less Fickian" behaviour. 

The previously discussed power law equation , even though effectively describes the 

major portion of the swelling behaviour , fails to give a precise analysis above Mt /M͚ = 

0.60. To obtain a better model beyond 60%, the Berens-Hopfenberg proposed the 

following differential equation: 

 

dMt/ dt = k2 (M  ͚  –Mt) 

 

where k2 (min-1) is the relaxation rate constant. 

 

For the case of anomalous transport, Peppas et al. developed the following model to 

describe the release behavior of dynamically swelling hydrogels 

 

Mt/ M  ͚ = k1t+k2t ½  

 

This expression describes the release rates in terms of relaxation-controlled transport 

process (k1t) and the diffusion-controlled process (k2 t 
1/2

). 

The exponent  (n) is also influenced by the matrix geometry of the delivery systems 

(Table 2).  

 

Table 2 Matrix geometry influence on diffusional exponent 

 

The diffusional Deborah number (De), which relates water motion to the rate of polymer 

relaxation, and the swelling interface number (Sw), which measures water penetration 

into a network relative to diffusion of a dispersed drug out of the polymer, are the two 

dimensionless parameters that describe the dominant behavior of swelling-controlled 

systems. 

Matrix 

Geometry 

Diffusion-

controlled delivery 

system (Case I) 

Swelling-controlled 

delivery system 

(Case II) 

Slab n= 0.5 n= 1 

Cylinder n= 0.45 n= 0.89 

Spere n= 0.43 n= 85 
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Deborah number, De(δr), is used to relate the relaxation time of polymeric chains and the 

drug diffusion time. δr is the gel layer thickness which is defined as δ(t)- δg(t), where δ(t) 

is the distance from the gel/water edge to the centre of the hydrogel, and δg(t) is the 

distance from the centre of the hydrogel to the interface between glassy and rubbery 

regions of the material 

De = λ/t = λD/ δ(t)
2
 

The swelling interface number  

Sw = V δ(t) /D  

where V is the velocity of swelling process and D is the drug diffusion. 

If the swelling process is subjected by water diffusion (De<<1 or Sw>>1) the Fickian 

diffusion dominates the drug release process. If the swelling process is controlled by the 

relaxation time (De>>1 or Sw<<1), the Case II transport is dominated and results in zero-

order release kinetics.  

During the swelling process, it is possible to distinguish three front: the diffusion front, 

that is characterized by the movement of drug inside the gel system; the swelling front 

that is the limit between the polymers in the glass state and rubbery state; the erosion 

front that is represented by the limit where polymer, after reaching the critic water 

concentration (disentanglement concentration), start to disaggregate (Fig. 6.8) 

 

 

Fig. 6.9Schematic illustration of a swellable tablet during radial drug release.
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8. BIOADHESION 

 

Conventional formulations are characterized by a low retention time at the absorption site 

due to the biological fluids that rapidly remove the systems or reduce their contact time 

with biological surface, with the consequent decrease of drug bioavailability. For this 

reason, the recent research is increasinglyfocused on the use of bioadhesive/ 

mucoadhesive polymers that can increase the residence time of the formulations, thus 

allowing a greater contact with the mucous membrane and improving drug 

bioavailability. This feature can allow to decrease the drug administration frequency and 

to increase patient compliance.  

Bioadhesion can be defined as the state in which two materials, at least one of which is 

biological in nature, are maintained together for a prolonged time period by means of 

interfacial forces (Smart, 2005). It is also defined as the ability of a material (synthetic or 

biological) to adhere to a biological tissue for an extended period of time, thereby 

increasing drug bioavailability and promoting local or systemic effects (Woodley, 2001).  

Bioadhesive systems applied to mucous membrane are frequently defined as 

mucoadhesive, but the terms are interchangeable (Leung, Robinson, 1990). Mucosal 

membranes of human organism are characterized by an epithelial layer whose surface is 

covered by mucus. The mucus contains glycoproteins, lipids, inorganic salts and 95% 

water by mass, making it a highly hydrated system. Mucin is the most important 

glycoprotein of mucus and its main functions are protecting and lubricating the 

epithelium. Mucus thickness can vary from 50-450 μm in the stomach to less than 1 μm 

in the oral cavity (Smart, 2005). Different dosage forms can interact with mucin and the 

mucus component, for example with ionic interaction, or they can be hydrated by mucus 

thus allowing an entanglement process between the formulation and mucin chains.  

 

8.1 Mechanism of mucoadhesion 

When a drug delivery system comes into contact the mucosal surface, attraction and 

repulsion force are established, but  for a mucoadhesive to be successful, the attraction 

forces must dominate. 

It was possible to consider the  mucoadhesion as a process based on different stages: 
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Stage-1 Involves an intimate contact between a bioadhesive system and a mucosal 

membrane; this depend by the bioadhesive and membrane wetting and by the swelling of 

bioadhesive. 

Stage-2: After contact is established, penetration of the bio-adhesive into the surface of 

the tissue takes place. These two stage represent the contact step. In some cases, such as 

for ocular or vaginal formulations, the delivery system is mechanically attached over the 

membrane. In other cases, the deposition is promoted by the aerodynamics of the organ to 

which the system is administered, such as for the nasal route. 

Stage-3: Inter penetration of the chains of the bioadhesive with those of the mucous takes 

place. In this step there was a consolidation of linkage between drug delivery system and 

mucosal surface(Fig. 8.1). 

 

 

Fig. 8.1 Steps of mucoadhesion process (Carvalho et al., 2010) 

 

Essentially, there are two theories explaining the consolidation step: the diffusion theory 

and the dehydration theory. According to diffusion theory, the mucoadhesive molecules 

and the glycoproteins of the mucus mutually interact by means of interpenetration of their 

chains and the building of secondary bonds (Smart, 2005). In particular, polymers with 

hydrogen bonds building groups (–OH, –COOH), with an anionic surface charge, high 

molecular weight, flexible chains and surface-active properties can establish a chemical 

and mechanical contact with mucus thus increasing mucoadhesion process.  

According to dehydration theory, materials that are able to readily gelify in an aqueous 

environment, when placed in contact with the mucus can cause its dehydration due to the 

difference of osmotic pressure. In fact the difference in concentration gradient can favor 

the entry of water into the formulation until the osmotic balance is reached, promoting the 
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mixture of formulation and mucus and consequently ensuring the consolidation step. 

However, the dehydration theory is not applicable for solid formulations or highly 

hydrated forms (Smart, 2005).  

8.2 Mucoadhesion theories 

There are six classical theories adapted from studies on the performance of several 

materials and polymer-polymer adhesion which explain the phenomenon (Hägerström, 

2003; Huang et al., 2000; Smart, 2005).  

8.2.1 Electronic theory 

This theory is used when mucoadhesive material possesses electrical charges that are 

opposed to those of biological membrane; in this case, both materials come into contact 

and transfer electrons leading to the building of a double electronic layer at the interface, 

where the attractive forces within this electronic double layer determines the 

mucoadhesive strength.  

8.2.2 Adsorption theory 

According to this theory, after an initial contact between two surfaces, the materials 

adhere because of two types of chemical bonds. In particular, it is possible to distinguish 

primary and secondary chemical bonds. The first are covalent in nature and  undesirable 

in bioadhesion because their high strength may result in permanent bonds, while the 

secondary chemical bonds  include electrostatic forces, Vander Waals forces and 

hydrogen and hydrophobic bonds. 

8.2.3 Wetting theory 

Wetting theory is predominantly applicable to liquid bioadhesive systems and analyses 

adhesive and contact behavior in terms of a liquid or a paste to spread over a biological 

system (Smart, 2005). 

8.2.4 Diffusion theory 

According to this theory, the polymer chains and the mucus mix to a sufficient depth, to 

create a semipermanent adhesive bond(Fig. 8.2). In particular, the polymer chains 

penetrate the mucous; the exact depth of penetration depends on the diffusion co-

efficient, time of contact and flexibility and nature of the mucoadhesive chains, mobility 

and contact time (Huang et al., 2000; Lee, Park, Robinson, 2000; Smart, 2005).  
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Fig. 8.2 Diffusion theory 

 

According to the literature, the depth of interpenetration required to produce an efficient 

bioadhesive bond lies in the range 0.2-0.5 μm. This interpenetration depth of polymer and 

mucin chains can be estimated by equation 

L = (t* Db)
1/2 

where t is the contact time, and Dbis the diffusion coefficient of the mucoadhesive 

material in the mucus. The adhesion strength for a polymer is reached when the depth of 

penetration is approximately equivalent to the polymer chain size.  

8.2.5 Fracture theory 

This theory is the most-used theory in studies on the mechanical measurement of 

mucoadhesion. It analyses the force, Sm, required to separate two surfaces after adhesion 

is established (Smart, 2005) that is  calculated by the ratio of the maximal detachment 

force, Fm, and the total surface area, A0, involved in the adhesive interaction. 

Sm  = Fm/A0 . 

It has been demonstrated that the rupture rarely occurs at the surface, but near it or at the 

weakest point, which can be the interface itself, the mucus layer or the hydrated region of 

the mucus, as illustrated in Figure (Smart, 2005).  

Since the fracture theory is concerned only with the force required to separate the parts, it 

does not take into account the interpenetration or diffusion of polymer chains. 

Consequently, it is appropriate for use in the calculations for rigid or semi-rigid 

bioadhesive materials, in which the polymer chains do not penetrate into the mucus layer.  

8.2.6 Mechanical theory 

Mechanical theory considers adhesion to be due to the filling of the irregularities on a 

rough surface by a mucoadhesive liquid. Moreover, such roughness increases the 

interfacial area available to interactions thereby aiding dissipating energy and can be 



THEORETICAL SECTION-BIOADHESION 

Angela Abruzzo-University of Bologna Pag. 76 
 

considered the most important phenomenon of the process (Peppas, Sahlin, 1996; Smart, 

2005).  

 

It is unlikely that the mucoadhesion process is the same for all cases and therefore it 

cannot be described by a single theory. In fact, all theories are relevant to identify the 

important process variables (Lee, Park, Robinson, 2000). 

8.3 Factors affecting muco/ bioadhesion 

Mucoadhesion can be influenced by several factors affecting the polymers or the 

environment or the physiological properties.  

In particular, polymers related factors regard the molecular weight, its flexibility and 

spatial conformation. High molecular weight polymers are generally used for 

mucoadhesion and it seems that the bioadhesive force increases with molecular weight of 

the bioadhesive polymer, up to 10,000 and that beyond this level there is no much effect. 

Hydrogen bonding due to presence of hydrophilic groups such as -COOH or -OH, plays a 

significant role in mucoadhesion.  

The polymer nature influences the degree of swelling in water which in turn determines 

interpenetration of polymeric molecules within the mucus. To allow chain 

interpenetration, the polymeric molecule must have an adequate length. Size and 

configuration of the polymer molecules are also important factors. 

Flexibility is an important factor for interpenetration and entlanglement. As water soluble 

polymers become cross-linked, the mobility of individual polymer chain decreases. As 

the cross-linking density increases, the effective length of the chain which can penetrate 

into the mucous layer decreases and mucoadhesive strength is reduced. 

The pH of the environment influences the charge on the surface of both mucus and the 

polymers. In particular, mucus contains sialic acid and sulphate residues of the 

glycoprotein that are negatively charged under physiological conditions; these negatively 

charges can interact with polymers through several strengths.   

The physiological factors are principally related to the natural turnover of mucin 

molecules from the mucus layer. The mucin turnover limit the residence time of the 

mucoadhesives on the mucus layer, but mucin turnover also results in substantial 

amounts of soluble mucin molecules. These molecules interact with mucoadhesives 

before they have chance to interact with the mucus layer. 



THEORETICAL SECTION-BIOADHESION 

Angela Abruzzo-University of Bologna Pag. 77 
 

Moreover, the physicochemical properties of mucus are known to change during diseased 

states such as common cold, gastric ulcers, ulcerative colitis, cystic fibrosis, bacterial and 

fungal infections of the female reproductive tract and inflammatory conditions of the eye. 

If the mucoadhesives are to be used in the diseased states, the mucoadhesive property 

needs to be evaluated under the same conditions. 

 

8.4 Mucoadhesive materials 

Mucoadhesive materials interact with the mucus layer covering the mucosal epithelial 

surface and the main molecules constituting a major part of mucus. They can be synthetic 

or natural polymers and can be water-soluble and water insoluble polymers. Water 

insoluble polymers are swellable networks, jointed by cross-linking agents, or highly 

polar to ensure a good hydration and consequently an optimal fluidity that permits the 

mutual adsorption and interpenetration of polymer and mucus to take place.  

An ideal mucoadhesive polymer has the following characteristics: 

1. The polymer and its degradation products should be nontoxic  

2. It should be non-irritant to the mucous membrane. 

3. It should preferably form a strong non-covalent bond with the mucin-epithelial 

cell surfaces. 

4. It should adhere quickly to most tissue and should possess some site-specificity. 

5. The polymer must not decompose on storage or during the shelf life of the 

dosage form. 

6. The cost of polymer should not be high so that the prepared dosage form 

remains competitive. 

 

Generally, mucoadhesive materials can be divided into first and second generation 

materials.  

The first generation mucoadhesive materialsare natural or synthetic hydrophilic 

molecules containing numerous organic functions that generate hydrogen bonds such as 

carboxyl, hydroxyl and amino groups, which do not adhere specifically onto several 

surfaces and the most known examples are carbomers, chitosans, alginates and cellulose 

derivatives. These polymers can be subdivided into three classes: cationic, anionic and 

nonionic. Cationic molecules, such as chitosan, are positively charged at physiological 

pH and can interact with the mucus surface. In particular, an electrostatic interactions of 
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the amino groups (or positive charge) with the sialic groups of mucin in the mucus layer 

can occur. Chitosan has been extensively investigated as a drug delivery mucoadhesive 

systems (Woodley, 2001; Bravo-Osuna et al., 2007; Luppi et al., 2010b).  

In the case of anionic molecules, mucoadhesion results from physical-chemical 

processes, such as hydrophobic interactions, hydrogen and van der Waals bonds, which 

are controlled by pH and ionic composition (Woodley, 2001) and from  interpenetration  

of polymers chains (Luppi et al., 2010a).  

Nonionic polymers, including hydroxypropylmethylcellulose, hydroxyethylcellulose and 

methylcellulose, present weaker mucoadhesion force compared to anionic polymers 

(Mortazavi, Moghimi, 2003).  

 

Studies on novel mucoadhesive systems involve the use of multifunctional materials.  

These novel multifunctional mucoadhesive systems are classified as second generation 

polymers (Lee, Park, Robinson, 2000). They are an alternative to non-specific 

bioadhesives (Smart, 2005) because they bind or adhere to specific chemical structures on 

the cell or mucus surface. Good examples of these molecules are lectins, invasins, 

fimbrial proteins (Woodley, 2001), and those obtained by the addition of thiol groups to 

known molecules (Bravo-Osuna et al., 2007).  

 

8.5 Methods of analyzing mucoadhesion 

No technology has still been developed specifically to analyze mucoadhesion. Most of 

the tests available were adapted from other preexisting techniques but are useful and 

necessary for selecting the promising candidates as mucoadhesives as well as in 

elucidating their mechanisms of action.  

8.5.1 Tests measuring mucoadhesive strength 

Most in vitro/ex vivo methodologies found in the literature are based on the evaluation of 

mucoadhesive strength, that is, the force required to break the binding between the model 

membrane and the mucoadhesive. Depending on the direction in which the mucoadhesive 

is separated from the substrate, is it possible to obtain the detachment, shear and rupture 

tensile strengths (Carvalho et al., 2010).  

The force most frequently evaluated in such tests is rupture tensile strength (Bromberg et 

al., 2004; Bruschi et al., 2007; Luppi et al., 2010 a). Generally, the equipment used is a 

texture analyzer or a universal testing machine that measure the force required to remove 
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the formulation from a model membrane. The model membrane can be a disc composed 

of mucin (Bruschi et al., 2007), a piece of animal mucous membrane, generally porcine 

nasal mucus (Luppi et al., 2010a) or intestinal mucus from rats (Bromberg et al., 2004).  

8.5.2 Rheological methods 

This category of methods are all carried out in vitro and were first proposed by Hassan 

and Gallo (1990), who used viscosimetric assays to macroscopically analyze the 

formulation-mucin interaction. From this test, it is possible to obtain the mucoadhesion 

force by monitoring the viscosimetric changes of the system constituted by the mixture of 

the polymer chosen and mucin. The energy of the physical and chemical bonds of the 

mucin-polymer interaction can be transformed into mechanical energy or work. This 

work, which causes the rearrangements of the macromolecules, is the basis of the change 

in viscosity.  

Rheological tests are performed totally in vitro and consequently are conducted in 

combination with the rupture tensile strength test, most frequently used in studies on 

mucoadhesion. Moreover, it is applicable to semi-solids and liquids. 

8.5.3 Tests analyzing molecular interactions involved in mucoadhesion 

In order to study mucoadhesion process form a microscopical point of view, several tests 

analyzing the molecular interactions involved in mucoadesion are used.   

The use of low frequency dielectric spectroscopy represents an attempt to study gel-

mucus interactions near the molecular level. It evaluates the possible physic-chemical 

interactions between molecules and glycoproteins of the mucus at the interface, which is 

considered the step preceding the formation of bonds during the mucoadhesion process. 

This technique involves the study of material response to the application of an electrical 

field. A sinusoidal voltage is applied throughout the sample and the response is measured 

in function of the frequency. From the responses, the impedance or permittivity of the 

sample is obtained and the property of charges changing in the system can be determined 

(carvalho et al., 2010). This technique can provide information about the compatibility 

between mucus and mucoadhesive system by means of the evaluation of the movement of 

the charged particles.  

Another test was applied for the analysis of mucoadhesion by Takeuchi et al. (2005). 

This test is based on the passage of a mucin suspension through a sensor containing the 

immobilized polymer. When a mucin particle binds to the polymer at the sensor, both the 

solute concentration and the refraction index on this surface undergo changes, where the 
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interaction is quantitatively evaluated and reproduced on a diagram. The sensor is a chip 

with a glass surface covered in a fine gold layer, where functional groups are introduced 

and the polymer is attached (Takeuchi et al., 2005).  

8.5.4 In vivo tests 

Säkkinen et al. (2006) applied gamma scintigraphy to analyze mucoadhesion in vivo of 

chitosan within the gastrointestinal tract. Gamma scintigraphy allows the immediate 

visualization of all the formulation transit, with low exposure of the subjects to radiation. 

The study emphasized the importance of in vivo studies, because although chitosan 

exhibits an outstanding mucoadhesion capacity in vitro, the retention time at the 

absorption site in the human gastrointestinal tract was relatively short and not sufficiently 

reproducible (Säkkinen et al., 2006). The gastrointestinal transit time in animals can also 

be evaluated in a non-invasive way, in which the release systems can be formulated with 

opaque radioisotopes and signals can be followed by X-rays, without affecting normal 

gastrointestinal motility (Chowdary, Rao, 2004).  
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AIM OF THE THESIS 

 

The aim of this thesis was the formulation of new chitosan based delivery systems for 

transmucosal drug administration. With respect to the oral route, the transmucosal route, 

such as buccal, vaginal and nasal routes, allowsthe circumvention of the hepatic first pass 

metabolism and of chemical and enzymatic degradations that generally occur in the 

stomach. Moreover, transmucosal drug administration can allow to avoid pain or 

discomfort caused by injections, when drugs are administered through parenteral routes 

and  especially if multiple daily injections are required, thus increasing patient 

compliance. On the other side, the major disadvantage of transmucosal drug 

administration is represented by the presence of biological fluids and mucus that can 

remove drug systems from the application site, thus reducing the contact time between 

drug and mucosa and consequently, decreasing drug bioavailability. For this reason, in 

this study, the investigation of chitosan delivery systems as mucoadhesive formulations 

able to increase drugs residence time and to improve their bioavailability, was taken into 

account. 

Polyelectrolyte complexes were prepared with chitosan and polyanions such as gelatin 

and alginate. Several parameters of production process were evaluated in order to obtain 

a final drug delivery system (buccal films and vaginal inserts) able to interact with 

water,to adhere with mucosal surface and to deliver the selected drugsover the time. 

Results related to these aims are shown in the following papers (N°1 and 2): 

 

Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. 

Carbohydrate Polymers, 2012, 87, 581-588. 

Reproduced with permission. License number: 3042490426245; Carbohydrate polymers;  

Elsevier 

 

Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate. Original 

Research Article. 2013, 91(2), 651-658. DOI information: 10.1016j. 

carbopol.2012.08.074.  

Reproduced with permission. License number: 3042500670157, Carbohydrate polymers; 

Elsevier. 
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Finally, chitosan was employed for the preparation of nanoparticles intended for insulin 

nasal delivery. This research was conducted in Santiago di Compostela under the 

supervision ofProf. Marcos-García Fuentes and Prof. Maria José Alonso. In particular, 

nanoparticles were prepared with chitosan and cyclodextrin including different amount of 

two excipients with the capacity to modify insulin bioavailabity. I will disclose the names 

of these formulation components due to IP issues and I will call them with the codenames 

C1 and C2. Nanoparticles were characterized in terms of size, PDI, zeta potential and 

stability and the influence of these excipients on drug release and permeation were 

evaluated. These results are shown in the paper N°3: 

 

4. Chitosan-cyclodextrin nanoparticles containing two excipients with the capacity 

to modify insulin bioavailabity. In preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTAL SECTION 

Angela Abruzzo-University of Bologna Pag. 108 
 

 

 

 

 

 

 

 

 

 

 

EXPERIMENTAL SECTION 

 

 

 

 

 

 

 

 

 



EXPERIMENTAL SECTION-PAPER N°1 

Angela Abruzzo-University of Bologna Pag. 109 
 

MUCOADHESIVE CHITOSAN/GELATIN FILMS FOR 

BUCCAL DELIVERY OF PROPRANOLOL 

HYDROCHLORIDE 

 

 

 

 

 

 

 

 

Abruzzo A., Bigucci F., Cerchiara T., Cruciani F., Vitali B., Luppi B. Mucoadhesive 

chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydrate 

Polymers, 2012, 87, 581– 588 

 

 

License number: 3042490426245; Carbohydrate polymers, Elsevier 
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Abstract 

 

The aim of this work was to develop and characterize chitosan/gelatin films as innovative 

mucoadhesive system for buccal delivery of propranolol hydrochloride. FT-IR and TGA 

analysis confirmed the interaction between chitosan and gelatin. The presence of higher 

chitosan amounts in chitosan/gelatin films allowed the lowest percent water-uptake 

ability (235.1±5.3%) and the highest in vivo residence time in the buccal cavity (240±13 

minutes). Moreover, the presence of mannitol in the formulation allowed 80% drug 

permeation through porcine buccal mucosa in 5 hours. This behaviour suggests that the 

application of four and two films containing 5 mg of propranolol hydrochloride could be 

suitable for achieving the proposed daily dose for hypertension and atrial fibrillation 

treatment, respectively. Another interesting aspect of chitosan/gelatin films was their 

compatibility with buccal microflora in the absence of drug and their ability to determine 

growth inhibition for pathogen bacteria, but not for probiotic species, when loaded with 

drug. 

 

Keywords: Chitosan/gelatin complexes; Buccal delivery; Mucoadhesive films; 

Propranolol hydrochloride. 
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1. Introduction 

 

Buccal route offers several advantages than oral route (Harris and Robinson, 1992) due 

tothe high total blood flow which ensures systemic bioavailability, avoiding first-pass 

hepatic metabolism and gastrointestinal drug degradation (Junginger et al., 1999; 

Salamat-Miller et al., 2005). Moreover, it is easily accessible for self-medication and 

suitable for dosage forms administration and removal. However, the accidental 

swallowing of delivery systems and the continuous dilution of the released drug by saliva 

could determine a low residence time of formulation in buccal cavity and, consequently, a 

low drug bioavailability (Shojaei, 1998).For this reason, various bioadhesive buccal 

formulations (Sudhakar et al., 2006), such as tablets(Llabot et al., 2002), gels (Pelin et al., 

2004; Mortazavi, 2002), patches (Burgalassi et al., 1996; Reinhold and Hans, 1989; 

Cheng et al., 1997; Wong et al., 1999), and films (Kohda et al., 1997;Remuñán-López, 

1998), have been developed using mucoadhesive polymers which can establish a strong 

adhesive contact with the buccal mucosa, allowing to increase residence time of delivery 

systems and to optimize drug bioavailability. In particular, mucoadhesive buccal films 

can ensure an accurate drug dosing with respect to liquid formulations and gels, which 

can be easily washed away by saliva, and can be more comfortable with respect to 

conventional solid formulations. In fact, films are flexible and elastic, so that patient 

compliance is increased and also adequately strong to withstand breakage, caused from 

mouth movements (Peh and Wong, 1999). 

In this study the properties of films based on chitosan/gelatin polyelectrolyte complexes 

were investigated. Chitosan, a N-deacetylated product of the polysaccharide chitin, shows 

interesting biological properties, including biocompatibility, non-toxicity, 

biodegradability and mucoadhesivity (Koga, 1998; He et al., 1998; Muzzarelli, 1997; 

Luppi et al., 2010a). Chitosan is also a promising matrix carrier for sustained drug release 

and it possesses excellent film-forming properties (Remuñán-López and Bodmeier, 

1996). At pH below its pKa, chitosan is a polycation and has been used extensively to 

prepare ionically crosslinked hydrogels with anionic polymers (Hamman, 2010, Berger et 

al., 2004; Meshali and Gabr, 1993). In this study, type B gelatin was used as anionic 

polymer. Type B gelatin is a heterogeneous mixture of protein fractions consisting of 

single or multi-stranded polypeptides and it is derived from alkaline hydrolysis of cattle 

hides and bones (Hamman, 2010).  
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Propranolol hydrochloride is a β-blocker almost completely absorbed although it shows a 

low bioavailability due to extensive first-pass metabolism, so that only 25% 

approximately reaches systemic circulation (Reiter, 2004). It is used clinically for 

hypertension, angina, postinfarction, sinus tachycardia, arrhythmias, and obstructive 

cardiomyopathy. Because of differences in clearance and variation in drug binding there 

is a wide range of effective oral dosage. In particular, for hypertension treatment, the 

initial average daily dose of propranolol hydrochloride is 40 mg twice daily, while for 

atrial fibrillation, the initial usual dose is 10 mg three or four times daily. Considering 

drug oral bioavailability of approximately 25%, for hypertension treatment and for atrial 

fibrillation, the anticipated buccal doses of drug are 10 mg twice daily and 7.5-10 mg 

daily, respectively. 

The aim of this work was to develop mucoadhesive chitosan/gelatin films able to easily 

administer propranolol hydrochloride by buccal route, allowing suitable drug permeation. 

In particular, their use for chronic treatment can be suggested due to their tolerability and 

compatibility with buccal mucosa. 

 

2. Materials and methods 

 

2.1 Materials 

Type B gelatin from bovine skin (~225 Bloom, isoelectric point in the range of pH 4.5-

5.5) was obtained commercially from Sigma-Aldrich (USA); chitosan (Mr. 150,000; 

deacetylation degree 84%; pKa 6.3) and propranolol hydrochloride were obtained 

commercially from Fluka (Milan, Italy). All other chemicals and solvents were of 

analytical grade and purchased from Carlo Erba (Milan, Italy). Water-uptake, 

mucoadhesion, release and permeation studies were carried out in aqueous buffers with 

the following compositions (g) per liter of distilled water: 2.38 Na2HPO4·10H2O, 0.19 

KH2PO4, 8.0 NaCl for buffer solution pH 7.4; 4.609 KH2PO4, 16.748 Na2HPO4·12H2O 

adjusted with hydrochloric acid to pH 6.8. 

 

2.2 Preparation of chitosan/gelatin complex buccal films 

As described in Cheng M. et al., (2003), known amounts of chitosan and gelatin were 

dissolved separately in 1% w/v acetic acid and water, respectively. Then chitosan 
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solution and gelatin solution were mixed obtaining two final polymeric concentrations, 

F1 (1% w/v) and F2 (2% w/v) and different weight mixing ratios. The mixing ratio r (i.e. 

the percentage of gelatin in the mixture) was defined as: 

r = Wg/(Wc+Wg); 

where Wc and Wg were the weights of chitosan and gelatin, respectively.  

 

50 mL of the final mixture were cast into a petri dish (11 cm in diameter) and dried at 50 

°C for 24 h through casting-solvent evaporation method. Loaded films were prepared by 

the same procedure, adding a known amount of propranolol hydrochloride into the 

polymeric solutions, in order to obtain films containing 1.67 mg/cm
2
. 

Mannitol, a hydrophilic absorbing material, was added to F1 polymeric solutions 

obtaining Fm films (1.55 mg/cm
2
 of mannitol). 

Films were washed with 80% ethanol until neutrality (pH=7), cut into appropriate sizes, 

packed in aluminium foil and stored at 4°C for further studies. 

 

2.3 FT-IR spectroscopy, Thermogravimetric analysis (TGA) and Differential Scanning 

Calorimetry (DSC) 

To verify interactions between chitosan and gelatin, FT-IR spectroscopy (FT-IR-4100 

spectrophotometer recorded with a Jasco, 650-4000 cm
−1

) and TGA (Mettler TA 4000 

apparatus equipped with a TG 50 cell on 8-10 mg samples; β=10 K min
−1

, static air 

atmosphere, 30-400°C temperature range) of unloaded films, chitosan and gelatin 

powders and their physical mixture were performed. Measurements were carried out at 

least in triplicate (relative standard deviation ± 5%). To verify the absence of crystal drug 

in films, thermal analysis were performed using a thermocryostat (Mettler 821e/800/847) 

connected to the thermal analyzer (Mettler- Toledo S.p.a., Novate Milanese, 

Italy).Samples of loaded films and propranolol hydrochloride powder (about 5 mg) were 

sealed in a 30 μL aluminium pan and were scanned between 30°C and 340°C at a heating 

rate of 10°C/min.  

 

2.4  Characterization of buccal films 

In order to determine film thickness, three circles of 3 cm
2
 were cut from each film. The 

average thickness of the buccal films was determined using a Mitutoyo pocket thickness 

gauge; Mitutoyo Mfc. Co. Ltd, Tokyo, Japan.  
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For determination of weight uniformity, circles of 3 cm
2
 of each film were randomly 

selected and accurately weighted using an electronic balance. The results are expressed as 

the mean values of three determinations. 

Drug content was calculated as follows: three circles of 3 cm
2
 were dissolved in 10 mL of 

phosphate buffer (pH 7.4) containing 2 mL of HCl 0.1M solution, in order to determine 

the amount of propranolol hydrochloride in the films. The amount of drug was 

determined with chromatographic system, composed of a Shimadzu (Milan, Italy) LC-

10ATVP chromatographic pump and a Shimadzu SPD-10AVP UV-Vis detector set at 

254 nm. Separation was obtained on a Phenomenex (Torrance, CA, USA) Sinergy 

Fusion-RP 80A (150 x 4.6 mm I.D., 5 µm) coupled to a Phenomenex (Torrance, CA, 

USA) SecurityGuard C18 guard cartridge (4 x 3.0 mm I.D., 5 µm). The mobile phase was 

composed of a mixture of acetonitrile-pH 3.0 solution of triethylamine (0.5%) 30:70 

(v/v). The flow rate was 0.4 mL/min and manual injections were made using a Rheodyne 

7125 injector with a 50 μL sample loop. Data processing was handled by means of a 

CromatoPlus computerised integration system (Shimadzu Italia, Milan, Italy). Calibration 

curve of concentration versus peak area ratio was plotted at concentration range of 

0.1μg/mL-10μg/mL; good linearity was found (r
2
 = 0.9998). Repeatability assays were 

carried out on propranolol hydrochloride standard solutions, at concentrations 

corresponding to the lower and upper limit and the middle point of the calibration curve. 

Method precision was satisfactory: RSD% values of 3.1, 3.0 and 1.3 were obtained for 

propanolol hydrochloride concentrations of 0.1, 1.0 and 10.0 μg mL
−1

, respectively. 

The results were expressed as milligrams of drug for square centimetre (mg/cm
2
). All 

determinations were carried out in triplicate. 

 

2.5   Scanning electron microscopy (SEM) 

The morphological structure of buccal films was studied by SEM analysis. Buccal films 

were fixed on supports and coated with gold-palladium under an argon atmosphere using 

a gold sputter module in a high-vacuum evaporator. Samples were then observed with 

LEO 420 (LEO Electron Microscopy Ltd, England) using secondary electron imaging at 

15 kV in order to examine the structure of the films. 
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2.6  In vitro water-uptake studies 

In vitro water-uptake studies were performed in phosphate buffer at pH 6.8 that simulated 

human saliva and measuring the increase of weight for predetermined periods of time. 

Circles of 3 cm
2
 of each films were weighted (W1) and dipped in simulated saliva fluid 

for predetermined periods of time. Then, the circles were wiped off from the excess 

surface water using filter paper and weighted (W2). Water-uptake (WU) ability was 

determined as a weight increase of the films after 5 h, according to the follow equation:  

WU (%) = [(W2-W1) x 100/W1 ], 

where W1 was the initial weight of dry film and W2 is the weight of hydrated films. 

 

2.7 In vitro and in vivo mucoadhesion properties 

For these studies porcine buccal mucosa was used as biological membrane due to the 

similarity to the human buccal tissue (Shojaei, 1998; Hoogstraate et al., 1992).Porcine 

buccal mucosa was removed from a freshly killed male pig obtained from a local 

slaughter house. The buccal cavity was placed in phosphate buffer at pH 7.4; then buccal 

mucosa was surgically removed from the oral cavity using fine-point forceps and surgical 

scissors to turn away the connective tissue. Finally, buccal mucosa was cleaned in 

phosphate buffer at pH 7.4 and immediately used for tests. 

The in vitro mucoadhesion was measured in terms of the force needed to pull out a 

freshly excised buccal mucosa (surface area 1 mm
2
) from a film with an adapted 

tensiometer (Krüss 132869; Hamburg, Germany). As reported in Luppi et al. (2010b), the 

mucosa was fixed to a support with cyanoacrylate adhesive and then suspended from the 

tensiometer spring. The mucosa was lowered until it just contacted the surface of the 

film, previously hydrated with phosphate buffer at pH 6.8 for 5 minutes. A 20 dyne force, 

measured by the torsion balance of the instrument as a negative force, was applied to the 

films for 60 seconds. Then the mucosa was raised until it was separated from the film. 

The assay was performed for three different circles from each film and it was calculated 

the average. 

The in vivo mucoadhesion properties of buccal unloaded films were tested in five healthy 

volunteers aged 25–40 years. The volunteers were instructed to press the films against the 

gingival mucosa above the canine tooth for 60 seconds (Perioli et al., 2004; Yehia et al., 

2008).The films were observed for 5 h. The volunteers were refrained from food and 

drinks during the test and were asked to monitor for irritation and to record the residence 

time which was taken as the time for the film to dislodge completely. 
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2.8 In vitro release of propranolol hydrochloride from buccal films 

The release studies of propranolol hydrochloride were performed in 10 mL of phosphate 

buffer at pH 7.4 at 37±0.5°C under magnetic stirring. Aliquots of 0.2 mL were withdrawn 

at different time intervals, filtered through cellulose acetate membrane (0.45 μm), and 

replaced by fresh medium. The studies were carried on for 5 h. The release studies were 

conducted in triplicates and the mean values were plotted versus time.  

 

2.9 In vitro permeation studies 

In vitro permeation studies through buccal porcine mucosa were conducted in a Franz-

type permeation cell with a diffusional area of 1.76 cm
2
. At time zero, films were placed 

in the donor compartment and 20 µL of phosphate buffer at pH 6.8 simulating human 

saliva were placed on mucosa. The receiver phase (6.0 mL of a phosphate buffer solution, 

pH 7.4, maintained at 37 °C by means of a surrounding jacket) was stirred constantly and, 

at predetermined time intervals, samples of 100 µL were taken and replaced by fresh 

medium, in order to assess the amount of drug permeated. As control formulation, the 

permeation study of propranolol hydrochloride from 50 µL of solution containing 5 mg 

of drug was performed. The studies were carried on for 6 h. The permeability coefficient 

(P) was calculated using the following equation: P = (dM/dt)/(M0A), where dM/dt 

represents the permeability rate and M0 stands for the initial concentration in the donor 

chamber, while A is the effective surface area of the mucosa. 

 

2.10 Antimicrobial activity assay 

The antimicrobial activity was evaluated against Gram-positive bacteria (Lactobacillus 

acidophilus LA14, Bifidobacterium infantis BI07, Bacillus subtilis ATCC 6633 and 

Staphylococcus aureus ATCC 29213), Gram-negative bacteria (Escherichia coli ATCC 

11105, Pseudomonas aeruginosa ATCC 9027) and yeasts (Candida albicans ATCC 

10231). L. acidophilus LA14 and B. infantis BI07 are probiotic strains purchased by 

Danisco Inc. (Madison, WI). B. subtilis, S. aureus, E. coli and P. aeruginosa were grown 

aerobically in LB medium (Difco, Detroit, MI) at 37°C for 24 h. L. acidophilus and B. 

infantis were cultured in MRS medium (Difco) supplemented with 0.05% L-cysteine at 

37°C for 18-36 h under an anaerobic atmosphere by using Anaerocult A (Merck, 

Darmstadt, Germany). C. albicans was grown aerobically in SD medium (Difco) at 30°C 
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for 48 h.  The disc-agar diffusion method was used to test the antimicrobial activities of 

unloaded and loaded films (6 mm diameter) containing different concentrations of 

chitosan and gelatin (r=0.2, r=0.4, r=0.6). In parallel, the antimicrobial activity was 

evaluated for: (i) chitosan solutions (1%, w/v), without and with propranolol 

hydrochloride (25 mg/mL) in order to simulate polymer and drug amounts in the films; 

(ii) chitosan/gelatin (1%, w/v) solutions, without and with drug. Suspensions of the test 

microorganisms (10
8
 colony-forming units [CFU]/mL) were spread on the agar plates 

containing the appropriate culture media (LB, MRS or SD). Sterile paper discs of 6 mm 

diameter (Schleicher and Schuell, Dassel, Germany) were impregnated with 20 μL of 

each solution. These paper discs and the circular films with the same diameter were 

placed on the surface of the agar plates. Plates were incubated at the appropriate 

conditions and the diameter of the inhibition zone around the paper discs and films were 

measured. The experiments were performed in triplicate.  

The minimal inhibitory concentration (MIC) of propranolol hydrochloride was 

determined by the agar dilution method. A stock solution of 20 mg/mL of drug in water 

was used to prepare agar plates containing scalar concentrations of the drug (3.75–120 

μg/mL). Pure propranolol hydrochloride was used to obtain agar plates containing 25 

mg/mL of the drug. Microbial suspensions of 10
5
–10

6
 CFU/mL, prepared from broth 

cultures in log phase growth, were used to inoculate plates containing propranolol 

hydrochloride. Plates were made in triplicate and incubated at the appropriate conditions.  

 

2.11 Statistical analysis 

All the experiments were done in triplicate. Results are expressed as mean ± SD. 

Kruskal–Wallis and Anova tests were used to determine statistical significance of 

permeation studies and of all other studies, respectively. Differences were considered to 

be significant for values of P < 0.05. 
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3. Results and discussion 

 

3.1FT-IR spectroscopy, Thermogravimetric analysis (TGA) and Differential Scanning 

Calorimetry (DSC) 

 

 

 

Fig. 1. FT-IR of chitosan (a), gelatin (b), chitosan/gelatin physical mixture (c), F1 film 

r=0.6 (d). 

 

Fig. 1 shows the FT-IR spectra of chitosan (a), gelatin (b), chitosan/gelatin physical 

mixture (c) and F1 film, r=0.6 (d).  

The FT-IR spectra of chitosan showed bands at 1654 cm
-1

 relative to the vibration of the 

carbonyl group of acetylated amide and at 1580 cm
-1

 relative to stretching of the free 

amino group. Gelatin showed the bands at 1654 cm
-1

 and 1535 cm
-1

 relative to the 

vibration of the amide carbonyl and stretching of the free amino groups, respectively; it 
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also showed band at 1704 cm
-1

 relative to undissociated carboxyl group. These 

characteristics bands were also in the FT-IR spectra of physical mixture of chitosan and 

gelatin. The FT-IR of film showed the shift in amide carbonyl group to 1640 cm
-1

 and the 

shift in amino group of chitosan to 1564 cm
-1

, confirming the interaction between 

chitosan and gelatin, also reported in Yin et al. (1999). 

 

 
Fig. 2. Thermogravimetric analysis of gelatin (a), chitosan (b), chitosan/gelatin physical 

mixture (c), F1 film r=0.6 (d). 

 

Fig. 2 shows the thermograms of chitosan (a), gelatin (b), chitosan/gelatin physical 

mixture (c) and F1 film, r=0.6 (d).  

Chitosan and gelatin degraded at about 285 °C (inflection point temperatures). The 

degradation of polyelectrolyte complex film showed one event at 250 °C that can be 

considered as a proof of chitosan and gelatin complexation. The shift to a lower 

temperature in the thermal degradation of the complex indicated a loss of organization, 

probably due to the formation of ionic bonds between chitosan and gelatin. 

As can be seen from the Fig. 3, propranolol hydrochloride showed a melting point at 

165.6  0.2 °C. DSC analysis of all films showed the absence of exothermic melting peak 

of propranolol hydrochloride and consequently the absence of crystal drug in the films. 
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Fig. 3. DSC of propanolol hydrochloride and F1 films. 

 

3.2  Characterization of buccal films 

Table 1 reports drug content, thickness and weight of loaded and unloaded films.  
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Formulation type 

 

 

Drug content 

(mg/cm
2
) 

 

 

Film thickness 

(µm) 

 

 

Weight films 

(mg/cm
2
) 

 

 

F1 unloaded 

 

 

- 

 

50 ± 3 

 

7.08 ± 0.06 

 

 

F2 unloaded 

 

 

- 

 

70 ± 5 

 

 

10.12 ± 0.13 

 

Fm unloaded 

 

 

- 

 

62 ± 3 

 

10.01 ± 0.02 

 

 

F1 loaded 

 

 

1.67 ± 0.05 

 

 

70 ± 8 

 

 

8.53 ± 0.32 

 

F2 loaded 

 

 

1.68 ± 0.03 

 

100 ± 9 

 

 

11.73 ± 0.36 

 

Fm loaded 

 

 

1.70 ± 0.04 

 

82 ± 7 

 

 

11.48 ± 0.33 

 

 

Table 1. Characteristics of the different films (mean ± S.D., n = 3). 

 

All loaded films consisting exclusively of chitosan did not show uniformity of drug 

content, weight and thickness (data not reported) and they were not considered for the 

subsequent tests. The others films showed weight uniformity and different thickness that 

can be related to the different polymeric concentration (for F1 and F2) and to the 

presence of mannitol in the Fm formulations.  

Moreover, the experimental drug content of loaded films was close to the theoretical one 

(1.67 mg/cm
2
 for all films) with low standard deviation, suggesting that the method 

employed for their preparation was capable of giving an uniform drug distribution.  
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3.3  Scanning electron microscopy (SEM) 

Fig. 4 show the morphology of unloaded F1 film (r=0.6, a) and all loaded F1 films (r= 

0.2, b; r=0.4, c; r= 0.6, d; r=0.8, e; r=1, f) which showed a homogeneous structure and 

devoid of crystals.  

Moreover, loaded films containing an excess of gelatin (d, e, f) did not show a continue 

structure but an increasingly evident convex pattern on the top surface. 

 

 

 

b 

c d 

f e 

a 
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Fig. 4 Scanning electron micrographs of unloaded F1 film r=0.6 (a) and of loaded F1 

films: r= 0.2 (b), r=0.4 (c),  r=0.6 (d), r=0.8 (e), r=1 (f).  

 

3.4 In vitro water-uptake studies 

In vitro water-uptake studies, performed at pH 6.8 on unloaded F1 films, showed the 

highest water-uptake ability % at 30 minutes.  

In particular, film consisting exclusively of gelatin completely solubilised in the medium 

in 10 minutes, while in the complex based films, the presence of a greater amount of 

gelatin provided a higher water-uptake ability % than films with an excess of chitosan (P 

<0.05). In fact, for films with r=0, r=0.2, r=0.4, r=0.6 and r=0.8 the water-uptake ability 

% values were 190.0±7.9, 235.1±5.3, 254.1±4.3, 286.5±6.4, 352.7±8.7, respectively. This 

behaviour can be correlated to the presence of a great number of ionized amino acids in 

gelatin structure and consequently to the presence of free charges favouring the entry of 

water.  

This trend was also observed for loaded F1 films. However, the presence of propranolol 

hydrochloride provided the formation of loaded films characterized by a lower water-

uptake ability % than unloaded films (P<0.05). In particular, water-uptake ability % was 

as follows: 193.8± 8.4 for film r=0.2; 209.3± 7.0 for film r=0.4; 237.5±8.3 for film r=0.6; 

295.3±4.5 for film r=0.8. We must consider that at pH 6.8 propranolol hydrochloride is 

present in its ionized form (pKa 9.5) and its positive charge can interact with free 

negative charges of acidic amino acids of gelatin. These possible drug/protein ionic 

interactions can reduce free charges on gelatin structure thus determining the lower 

tendency of film hydration.  

Fig. 5 showed the water-uptake ability after 60 minutes for all loaded films (F1, F2 and 

Fm).  
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Fig. 5 Water-uptake ability after 60 minutes of different film formulation (F1, F2 and 

Fm) at pH 6.8 (n = 5, the SD did not exceed the 5%). 

 

 As can be seen, the presence of a higher amount of polymer (F2 films) increased water-

uptake ability % respect to F1 films. As previously described the presence of free charges 

in the formulations is extremely important for film hydration and greater amount of 

polymers in the films can improve water-uptake ability % (P< 0.05). 

As can be expected, films with the addition of mannitol (Fm) showed a greater water-

uptake ability % than F1 and F2 films (P< 0.05), due to the presence of a hydrophilic 

molecule able to favour a major entry of water in the system. 

 

3.5 In vitro and in vivo mucoadhesion properties 

Table 2 reports the results of in vitro and in vivo mucoadhesion testsfor unloaded and 

loaded F1 films.  

 

r 0 0.2 0.4 0.6 0.8 1 

 

In vitro force detachment (dyne) 

 

 

18.7  0.4 

 

 

15.8  0.3 

 

 

14.6  0.5 

 

13.8  0.3 

 

11.4  0.5 

 

10.3  0.2 

 

 

In vivo residence time (min) 

 

 

270  15 

 

240  13 

 

230  12 

 

 

220  11 

 

 

150  7 

 

 

50  4 

 

Table.2 In vitro mucoadhesive capacity (expressed as detachment force, mean ± SD, n = 

3) and in vivo residence time in buccal cavity (mean ± SD, n = 3) of unloaded films (F1).  
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As can be seen, films with an excess amount of chitosan showed the bestin vitro 

mucoadhesive properties among all films. In fact, amino groups of chitosan chains were 

positively charged and could interact with sialic acid (pKa 2.6) and sulphate residues of 

mucin glycoprotein, that, at pH 6.8, were negatively charged (Peppas and Sahlin, 1996).  

F2 films showed higher mucoadhesion values than F1 films; in fact, for film with r=0, for 

example, the detachment force increased until a value of 22.8±0.5 (other data were not 

reported). This behaviour can be explained with the presence of a greater amount of 

polymer respect F1 film and consequently, with a greater presence of positively charged 

amino groups.  

Moreover, Fm films, containing mannitol, showed the best mucoadhesion properties 

(30.7±0.9 for film with r=0); in fact, in addiction to ionic interaction, mannitol promoted 

the entry of water, a more efficient chain mobility and physical entanglement with mucus. 

Despite loaded films showed a lower significant water-uptake ability than unloaded films, 

as a consequence of interaction between drug and gelatin (see section 3.5), the ionic 

interaction between chitosan and mucus provided not significantly different 

mucoadhesion properties respect mucoadhesion of unloaded films. 

In vivo mucoadhesive tests were performed to assess the ability of films, without drug, to 

adhere to the gingivae and to study the potential irritant effect. Films did not have 

irritating effects on the buccal mucosa; in fact, after the removal of the film, buccal tissue 

revealed no signs of damage to the mucosa. Volunteers reported no irritation during or 

after the study. 

Moreover, films with an excess of chitosan showed the best in vivo mucoadhesive 

properties, confirming in vitro mucoadhesion studies, while films with an excess of 

gelatin showed a lower residence time respect to films with an excess of chitosan 

(p<0.05). For F1 and Fm films (r=0) the residence times were 300±12 minutes and 320±5 

minutes, respectively (other data were not reported). 

 

3.6  In vitro release of propranolol hydrochloride from buccal films 

In vitro release studies showed that propranolol hydrochloride release stopped in the first 

30 minutes for all films analysed.  

In particular, only film based on gelatin alone (r=1) provided complete drug release due 

to its dissolution. Films with an excess of chitosan (r=0.2 and r=0.4) showed a higher 

release of drug with respect to films with a greater amount of gelatin (P<0.05) allowing 



EXPERIMENTAL SECTION-PAPER N°1 

Angela Abruzzo-University of Bologna Pag. 126 
 

83% and 66% of drug released in 30 minutes, respectively. On the contrary, films 

containing an excess of gelatin, r=0.6 and r=0.8, provided a percentage drug release of 

54% and 48% respectively in 30 min.  

Propranolol hydrochloride was not completely released from all the formulations 

containing chitosan/gelatin complexes; this behaviour can be related to the presence of 

possible interactions between drug and gelatin, which, proportionally to gelatin increase 

in the films, limit drug diffusion through the chitosan/gelatin polymeric network.  

Differently, all films containing mannitol provided a complete drug release (100%) in 30 

minutes, due to a greater entry of water favouring polymeric chain mobility and thus drug 

diffusion through the hydrated films. 

 

3.7 In vitro permeation studies 

Fig. 6 showed the permeation profiles and permeability coefficients P (cm/min) of 

propranolol hydrochloride across porcine buccal mucosa, after application of loaded F1 

films.  

 

 

 

 

Fig. 6. Permeation profiles (mean ± SD, n = 3) and permeability coefficients P (cm/min) 

of  propranolol hydrochloride across the porcine buccal mucosa from F1 films. 
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As can be seen from the figure, control formulation provided the complete permeation of 

the drug in 90 minutes. Films consisting exclusively of gelatin provided the greater 

amount of permeated drug, due to its rapid dissolution. Instead, films containing 

chitosan/gelatin complexes provided a lower amount of permeated drug; in particular, 

films with a higher content of gelatin provided the lower amount of permeated drug. 

This behaviour can be correlated with drug release profiles from buccal films, which 

influenced drug availability at the absorption site.  

While control formulation was rapidly removed from buccal cavity by saliva and 

swallowing, mucoadhesive films, in particular films containing an excess of chitosan 

(r=0.2 and r=0.4), provided a higher buccal residence times, optimizing drug 

bioavailability. 

As can be seen from the Fig. 6, these films provided the permeation of only 46% and 

35% (P= 14*10
-4

 cm/minand P= 12*10
-4

 cm/min) of drug, respectively. Differently, 

permeation studies relative to films (r=0.2 and r=0.4) containing mannitol showed an 

amount of permeated drug around 80% and 68% (P= 28*10
-4

 cm/min), respectively. 

As underlined in section 1, considering drug oral bioavailability of approximately 25%, 

for hypertension treatment and for atrial fibrillation the anticipated buccal doses of 

propranolol hydrochloride are 10 mg twice daily and 7.5-10 mg daily, respectively. The 

application of four and two films containing mannitol and an excess of chitosan could 

allow achieving the proposed daily dose for hypertension treatment and for atrial 

fibrillation, respectively.  

3.8 Antimicrobial activity assay 

Buccal preparations intended for chronic treatment should guarantee the adequate dosing 

regimen avoiding any potential undesirable side effects related to their prolonged 

residence at the administration site. An interesting characteristic of chitosan/gelatin films 

was their compatibility with buccal microflora.  

The disc-agar diffusion test showed an antibacterial activity associated with propranolol 

hydrochloride. Loaded films (r=0.2, r=0.4, r=0.6), chitosan/drug and 

chitosan/gelatin/drug solutions determined growth inhibition zones for the pathogen 

bacteria B. subtilis, S. aureus, E. coli and P. aeruginosa with diameters ranging from 8 to 

28 mm. No growth inhibitory effect was observed against the probiotic species L. 

acidophilus and B. infantis and against the yeast C. albicans.  

Differently, unloaded films, chitosan and chitosan/gelatin solutions did not show any 

noticeable inhibition zone for the microorganisms tested, indicating the absence of 
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antimicrobial activity for chitosan and gelatin at the concentrations used in the 

preparation of the films.  

The MIC of propranolol hydrochloride was evaluated by the agar dilution method. MIC 

resulted > 120 μg/mL, indicating that propranolol hydrochloride can not be considered a 

strong antimicrobial agent. Since drug concentration in the films was 25 mg/mL, the 

antimicrobial activity of this concentration was also evaluated. The antimicrobial effects 

of propranolol hydrochloride at 25 mg/mL was demonstrated for all the microorganisms 

tested, confirming the data related to the inhibitory zones. Notably, the formulation of 

propranolol hydrochloride in the polymeric films counteracted the antibacterial effects of 

this drug against the probiotic species L. acidophilus and B. infantis, suggesting a 

selectiveaction against pathogen bacteria.  

4. Conclusion 

Polyelectrolyte complexes based on chitosan and gelatin can be successfully employed 

for the formulation of buccal films.  

The selection of the appropriate chitosan/gelatin ratio and polymer concentration in the 

film, as well as the addition of mannitol, supports the goalof ensuring the necessary 

dosefor treatment of hypertension and atrial fibrillation.  

Moreover, along with adequate drug release and permeation, desirable film 

characteristics such as suitable hydration and mucoadhesion, were obtained. Finally, film 

tolerability and compatibility with buccal mucosa suggests their possible use as 

formulations intended for treatment of chronic diseases. 
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Abstract 

 

Chitosan/alginate complexes were prepared at different polycation/polyanion molar ratios 

and freeze-dried vaginal inserts were obtained for chlorhexidine digluconate local 

delivery in genital infections. Complex yield, FT-IR spectra and TGA thermograms were 

studied to confirm the interaction between the two polyions. The influence of different 

complexes on physical handling, morphology and drug distribution in the samples were 

evaluated by friability test, scanning electron microscopy (SEM) and energy dispersive 

X-ray spectroscopy (EDS), respectively. In vitro water-uptake, mucoadhesion and release 

tests were performed as well as microbiological tests towards pathogenic vaginal 

microorganisms. The results showed that the selection of suitable chitosan/alginate molar 

ratio and drug loading allowed modulate insert ability to hydrate, adhere to the mucosa 

and release chlorhexidine digluconate. The insert containing an excess of alginate was 

found to be the best performing formulation and showed good antimicrobial activity 

towards the pathogens Candida albicans and Escherichia coli.     

 

 

 

 

 

Keywords: chitosan/alginate complex, chlorhexidine digluconate, vaginal delivery, 

mucoadhesive inserts. 
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1. Introduction 

 

Disturbances in the vaginal environment due to abnormal vaginal flora and vaginal 

infections are highly prevalent among reproductive-aged women. Vaginal candidiasis is 

ranked as one of the most common gynaecological infections, and it has been estimated 

that about 75% of women experience an acute episode once in their lifetime. It has been 

reported that 30-35% of vaginitis episodes are due to Candida albicans (Nyririesy et al., 

2001; Sobel, 1988; Nitin et al., 2009; Das Neves et al, 2008). Aerobic vaginitis is another 

frequent form of abnormal vaginal flora which has been considered an important cause of 

pregnancy complications, such as ascending chorioamnionitis, preterm rupture of the 

membranes and preterm delivery. Aerobic vaginitis is defined as a disruption of the 

lactobacillary flora, accompanied by signs of inflammation and the presence of a 

predominantly aerobic microflora, composed of enteric commensals or pathogens, 

especially Escherichia coli and Streptococcus agalactiae (Donders et al., 2002; Donders 

et al., 2011). 

Topical imidazoles are considered standard treatments of candidiasis, while kanamycin or 

quinolones are a good choice for the therapy of aerobic vaginitis (Tempera and Furneri, 

2010). In the case of mixed vaginitis, the use of a monotherapy becomes ineffective, 

whereas treatment with a wide-spectrum antibacterial and antifungal substance, such as 

chlorhexidine digluconate, may be promising for a more rapid healing (Molteni et al., 

2004).  

Several drug delivery systems are used for treatment of vaginal infections (Alamdar et al., 

2005). Indeed, conventional vaginal formulations (suspensions, pessaries, cream and 

solutions) are characterized by short residence time at the site of administration, due to 

washing action of physiological secretions of vaginal fluids. Bioadhesive vaginal drug 

delivery systems, such as tablet, inserts and gels, may adhere to vaginal mucosa in order 

to bring drug in contact with target tissues for sufficient period of time and prevent 

expulsion of formulation (Ceschel et al., 2001; Dobaria et al., 2007; Kast et al., 2002; 

Valenta, 2005, Woodley, 2001). Tablets and some gel-based vaginal delivery systems are 

associated with problems like messiness and leakage of formulations causing 

inconvenience to users and leading to poor patient compliance (Dobaria et al., 2007). For 

this reason, in this study we focused the attention on the possibility to formulate a new 

suitable delivery system, able to overcome these limitations and characterized by a 

convenient application and easy handling. To achieve this goal, the vaginal insert was 
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chosen as final dosage form, easily applicable and able to deliver a unique dose of drug in 

the vaginal cavity, while chitosan and sodium alginate were selected in order to obtain 

good insert mucoadhesion ability. Furthermore, different chitosan/alginate molar ratios 

were tested in order to obtain a system releasing the suitable chlorhexidine digluconate 

amount, accordingly to the therapeutic needs and providing the complete inhibition of 

pathogens, such as Candida albicans and Escherichia coli. 

Chitosan, a N-deacetylated product of the polysaccharide chitin, shows interesting 

biological properties, including biocompatibility, non-toxicity, biodegradability and 

mucoadhesivity (Koga, D., 1998; Kumar Ravi, M., 2000; Dutta et al., 2004; Muzzarelli 

R.A.A,  1997 and 2010). It was also widely used for different type drug delivery systems 

(Dodane et al., 1998, Luppi et al., 2010a) and largely employed to prepare vaginal 

mucoadhesive dosage forms (Bonferoni et al., 2008, Perioli et al., 2008, Valenta, 

2005, Rossi et al., 2003). Chitosan can also interact with anionic polymers in order to 

prepare ionically crosslinked hydrogels (Remuñán-López and Bodmeier, 1996; Hamman, 

2010; Berger et al., 2004; Meshali and Gabr, 1993). Sodium alginate, an anionic, 

biocompatible, hydrophilic and biodegradable polymer, derived primarily from brown 

seaweed and bacteria, is a linear polysaccharide that consists of β-D-mannuronic acid and 

α-L-guluronic acid repeating units in various ratios (Hanne and Jan, 2002). 

Chitosan/alginate complexes were obtained mixing polymeric solutions with different 

molar ratios of chitosan and alginate and then freeze-drying the precipitates. Complex 

yield, FT-IR analysis, TGA thermograms were studied to investigate the interaction 

between the two polyions.  The complexes were used to prepare vaginal inserts loaded 

with chlorhexidine digluconate.Physical handling, morphology and drug distribution in 

the samples were studied by friability test, scanning electron microscopy (SEM) and 

energy dispersive X-ray spectroscopy (EDS) analysis. In vitro water-uptake, 

mucoadhesion, release and microbiological tests were performed in order to investigate 

the polyelectrolyte complexes ability to adhere to mucosa, to release chlorhexidine 

digluconate and to study the antimicrobial activity towards Candida albicans and 

Escherichia coli. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S037851730900307X#bib3
http://www.sciencedirect.com/science/article/pii/S037851730900307X#bib27
http://www.sciencedirect.com/science/article/pii/S037851730900307X#bib27
http://www.sciencedirect.com/science/article/pii/S037851730900307X#bib27
http://www.sciencedirect.com/science/article/pii/S037851730900307X#bib25
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2. Materials and methods 

 

2.1 Materials 

Sodium alginate low viscosity (Mw ≈140000 Da, viscosity 100-300 cP, 2 %),chitosan 

low molecular weight (Mw ≈ 150000 Da, viscosity 20-300 cP, T=20°C, 1% in 1% acetic 

acid; deacetylation degree 97%) and chlorhexidine digluconate used for this study were 

obtained commercially from Sigma-Aldrich (Milan, Italy). All other chemicals and 

solvents were of analytical grade and purchased from Carlo Erba (Milan, Italy). Complex 

preparation, water-uptake, mucoadhesion and release studies were carried out in aqueous 

buffers with the following compositions per liter of distilled water: 8.99 mL CH3COOH 

2N and 2.62g CH3COONa for acetate buffer at pH 5.0; 13.61g KH2PO4, adjusted with 

hydrochloric acid to pH 4.5, for buffer simulating vaginal secretions. 

 

2.2 Preparation of chitosan/alginate complex and solid complex weight measurement 

Chitosan/alginate was prepared according to a method reported in a previous work 

(Bigucci et al.,  2008) with some modifications. Briefly, chitosan(1.50 mmol of monomer 

in 200 ml) and alginate (1.50 mmol of monomer in 200 ml)were separately dissolved in 

acetate buffers at pH 5.0 at the same ionic strength (50 mM). Different volumes of 

chitosan solutions were added to alginate solutions and stirred at room temperature for 24 

h, in order to obtain different chitosan/alginate molar ratios (1:9, 3:7, 1:1, 7:3 and 9:1). 

The precipitate was separated by ultracentrifugation at 10,000 rpm for 10 min (ALC 

4239R centrifuge; Milan, Italy). Then it was washed with deionized water and 

homogenized at 17,500 rev min
-1

 for 5 min (Ultra-Turrax, T 25 basic homogenizer; IKA, 

Dresden, Germany) for three times in order to eliminate sodium acetate. Finally, the 

precipitate was suspended again in deionized water and freeze-dried (Christ Freeze Dryer 

ALPHA 1-2, Milan, Italy), obtaining five different chitosan/alginate complexes: 

CH/ALG(1:9), CH/ALG(3:7), CH/ALG(1:1), CH/ALG(7:3) and CH/ALG(9:1).  

Each precipitate was weighted for the determination of solid complex weight. 

 

2.3 FT-IR spectroscopy and thermogravimetric analysis (TGA) 

To verify interactions between chitosan and alginate, FT-IR spectroscopy (FT-IR-4100 

spectrophotometer recorded with a Jasco, 650-4000 cm
−1

) and TGA (STA 409 PC Luxx® 

Netzsch, temperature range: 5-1700 °C, heating and cooling rates: 0.01 K/min-50 K/min, 
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inert atmospheres) of unloaded complex, chitosan and alginate powders and their 

physical mixture were performed. The IR spectra for the test samples were obtained using 

KBr disk method. Measurements were carried out at least in triplicate (relative standard 

deviation ± 5%). 

 

2.4 Preparation of chitosan/alginate complex vaginal inserts 

The freeze-dried chitosan/alginate complexes were used to prepare vaginal inserts. For 

unloaded inserts (average diameter 0.6 cm, height 1.0 cm) 200 µl of phosphate buffer at 

pH 4.5 were added to 20 mg of different complex/mannitol mixtures (9:1; w/w). Mannitol 

was added, as a bulking agent in order to improve mechanical strength of lyophilized 

vaginal inserts when handled (Luppi at al., 2009; McInnes et al., 2005). Loaded 

insertswere prepared in the same way adding 200 µl of chlorhexidine digluconate 

solutions (in phosphate buffer at pH 4.5) at different concentration in order to obtain three 

different complex/drug weight ratios (2:0.5, 2:1 and 2:2) for every type of complex. The 

resultant suspensions, filled into polypropylene microcentrifuge tubes, were allowed to 

settle to swell and remove air and finally lyophilized, obtaining cone-like shaped solid 

inserts. The inserts were stored in a desiccator until use (Luppi et al., 2010b). 

Moreover, control formulations were prepared, without chitosan/alginate complexes, 

using 20 mg of mannitol and 200 µl of chlorhexidine digluconate solutions at different 

concentration (mannitol/drug weight ratio 2:0.5, 2:1 and 2:2). 

 

2.5 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS) 

The morphology of vaginal inserts was studied by SEM analysis. Inserts were cut with a 

razor blade to expose the inner structure, fixed on supports and coated with gold–

palladium under an argon atmosphere using a gold sputter module in a high-vacuum 

evaporator. Samples were then observed with LEO 420 (LEO Electron Microscopy Ltd., 

England) using secondary electron imaging at 15 kV in order to examine the surface 

morphology and structure of the inserts. 

Moreover, drug distribution in the samples was evaluated by energy dispersive X-ray 

spectroscopy (EDS).     
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2.6 Friability studies 

Friability tests were conducted by subjecting at least 10 inserts to repeat revolutions using 

a friability tester. Inserts were weighted before and after the testing and % friability was 

measured as a percentage of weight lost during a standardized abrasion.  

 

2.7 Water-uptake ability 

Water-uptake studies were performed in phosphate buffer at pH 4.5 that simulate vaginal 

fluids and with the procedure reported in our previous work (Luppi et al., 2010b).  

The water-uptake behavior of loaded inserts with different complex/drug weight ratios: 

2:0.5, 2:1 and 2:2 was also investigated. 

 

2.8 Insert mucoadhesion properties 

For these studies, vaginal mucosa obtained from freshly slaughtered pig was used. In fact, 

porcine vaginal mucosa was found to be very similar to human one in many 

characteristics, such as lipid compositions and histological properties (Kremer et al., 2001 

and Van Eyk AD, 2005).The in-vitro mucoadhesion was measured in terms of the force 

needed to pull out a freshly excised porcine vaginal mucosa (surface area 1 mm
2
) from 

the inserts with an adapted tensiometer (Krüss 132869; Hamburg, Germany) as reported 

in a previous work (Luppi et al., 2010c).  

The mucosa, suspended from the tensiometer spring, was lowered until it just contacted 

the surface of the insert, previously immersed in phosphate buffers at pH 4.5 for 15 

min.A 500 µN force, measured by the torsion balance of the instrument as a negative 

force, was applied to the inserts for 30 s. Then, the vaginal mucosa was raised until it was 

separated from the formulations. This point represents the adhesive bond strength 

between these elements and is expressed as a positive force in dyne.  

 

2.9 In-vitro release studies 

In-vitro release studies were performed as reported in Luppi et al., 2010b. Briefly, loaded 

inserts were placed on the sintered-glass filter plate of a Borosil glass filter crucible and 

the whole system was closed with Parafilm to avoid evaporation of release medium 

(filled with 10 ml of pH 4.5 phosphate buffer) and adjusted exactly to the height of the 

release medium surface so that the porous glass membrane was wetted but not 

submersed. The experiments were performed at 37 °C under magnetic stirring. Samples 

http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Eyk%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=16226413
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of 200 µl were taken at predetermined time points and replaced by fresh medium and 

analyzed using UV- spectrophotometer set at 254 nm. 

 

2.10  Microbiological assays 

The antimicrobial activity was evaluated against Escherichia coli ATCC 11105 and 

Candida albicans ATCC 10231. E. coli was grown aerobically in LB medium (Difco, 

Detroit, MI) at 37°C for 24 h. C. albicans was grown aerobically in SD medium (Difco) 

at 30°C for 48 h.   

Viability of E. coli and C. albicans in phosphate buffer (pH 4.5) was compared with 

viability of the respective bacterium and yeast cultured in the presence of vaginal insert 

based on CH/ALG (1:9) complex and containing chlorhexidine digluconate 

(complex/drug weight ratio 2:1). A microbial suspension, prepared from a broth culture 

in log phase growth of E. coli or C. albicans, was used to inoculate the Erlenmeyer flasks 

containing 120 ml of phosphate buffer. The initial concentration of E. coli and C. 

albicans was about 6 log of colony forming unit (CFU) per ml of experimental medium, 

corresponding to the physiological amounts in cases of infection. Counts of viable E. coli 

and C. albicans were carried on LB and SD agar plates, respectively, at the inoculum 

time (T0) and after 6 h (T6), and 24 h (T24) of incubation at 37°C (physiological 

temperature). LB plates were incubated aerobically at 37°C for 24 h. SD plates were 

incubated aerobically at 30°C for 48 h. All plates were made in triplicate. Microbial 

concentration was expressed as a mean of log CFU/ml ± standard deviation (SD).   

 

2.11 Statistical analysis 

All the experiments were done in triplicate. Results are expressed as mean ± SD. Anova 

tests were used to determine statistical significance of studies, respectively. Differences 

were considered to be significant for values of P < 0.05. 

 

3. Results and discussion 

 

3.1 Chitosan/alginate polyelectrolyte complex weight measurement 

Fig. 1shows the effect of chitosan/alginate molar ratio on complex formation at pH 5.0.  
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Fig. 1. Solid complex weights as a function of chitosan/alginate molar ratio at pH 5.0 

obtained from 400 mlof final polymeric solutions. 

 

The molar ratio for maximum insoluble complex formation at pH 5.0 was 1:1. In fact, at 

pH 5.0 most of the chitosan amino groups and alginate carboxylic groups were charged 

(pKb value of chitosan= 6.3 and pKa value of alginate= 3.5), thus providing the greater 

interaction between the polymers. Moreover, the amount of precipitated complexes 

CH/ALG(7:3) and CH/ALG(9:1) was lower with respect to that of CH/ALG(3:7) and 

CH/ALG(1:9), respectively (P<0.05); this suggest that greater moles of alginate were 

charged with respect to chitosan and that the presence of greater amount of alginate 

provided the formation of major amount of complex. For this reason, the amount of 

positively and negatively charges was evaluated. In particular, NH3
+
 and COO

-
 

theoretical concentration (mM) was calculated considering a complexation reaction 

between chitosan (5mM) and alginate (5mM) as a function of pKa values of the two 

polysaccharides and molar ratio chitosan/alginate at pH 5.0. NH3
+
  and COO

-
  theoretical 

concentration (mM) was 4.28 and 0.49 for CH/ALG(9:1), 3.33 and 1.45 CH/ALG(7:3), 

2.38 and 2.42 for CH/ALG(1:1), 1.43 and 3.39 CH/ALG(3:7), 0.48 and 3.36 for 

CH/ALG(1:9), respectively, thus demonstrating the greater ionization of alginate with 

respect to chitosan. 
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3.2. FT-IR spectroscopy and thermogravimetric analysis (TGA) 

Fig. 2 showed the FT-IR spectra of chitosan and alginate powders, physical mixture and 

CH/ALG(1:1) complex. 

 

 

 

Fig. 2. FT-IR of chitosan (a), alginate (b), chitosan/alginate physical mixture (c) and 

complex CH/ALG (1:1) (d) 

 

The FT-IR spectra of chitosan showed bands at 1654 cm
-1

 relative to the vibration of the 

carbonyl group of acetylated amide and at 1580 cm
-1

 relative to stretching of the free 

amino group. Alginate showed the typical band at 1620 cm
-1

relative to the vibration of 

C=O group. These characteristics bands were also in the FT-IR spectra of physical 

mixture of chitosan and alginate.The FT-IR of complex CH/ALG(1:1) showed the shift in 

amide carbonyl group to 1626 cm
-1

 and the shift in amino group of chitosan to 1554cm
-1

, 
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confirming the interaction between chitosan and alginate, also reported in Muzzarelli C., 

2003. 

Fig. 3shows thermograms of chitosan, alginate, physical mixture and CH/ALG(1:1) 

complex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Thermogravimetric analysis of chitosan (a), alginate (b), chitosan/alginate 

physical mixture (c), CH/ALG (1:1)  (d). 

 

Chitosan and alginate degraded at 293 and 238 °C, respectively. In the physical mixture  

there were two peaks at 238 and 293 °C that could be related to the weight loss of 

alginate and chitosan, respectively. The complex CH/ALG(1:1) showed one event at 202 

°C that can be considered as a proof of chitosan and alginate complexation. The shift in a 

lower temperature in the thermal degradation of the complex indicates that there was a 

loss of organization, due to the formation of ionic bonds between chitosan and alginate. 

 

3.3 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS) 

The structure of the inserts, observed by scanning electron microscopy (SEM), depends 

on the composition of chitosan/alginate complexes.  
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Fig. 4.  Scanning electron micrographs/EDS of the different chitosan/alginate complexes: 

A/1: CH/ALG (9:1), B/2: CH/ALG (7:3), C/3: CH/ALG (1:1), D/4: CH/ALG (3:7), E/5: 

CH/ALG (1:9) with complex/drug molar ratio 2:1. F/6: CH/ALG (1:9) with 

complex/drug molar ratio 2:0.5, G/7: CH/ALG (1:9) with complex/drug molar ratio 2:1, 

H/8: CH/ALG (1:9) with complex/drug molar ratio 2:2. 

 

Fig 4(A-E)show the morphology of vaginal inserts based on the different complexes with 

10 mg of chlorhexidine digluconate (complex/drug weight ratio 2:1). The presence of 

drug in the complexes produced a rough and less porous surface rather than smooth as 

unloaded complexes (images of unloaded complexes are not reported). 

Moreover, the complexes structure was more rough with the increase of the content of 

alginate in the complexes (Fig. 4D e 4E), probably due to the interaction between alginate 

and chlorhexidine digluconate. This interaction was studied measuring the turbidity (UV 
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spectrophotometer set at 500 nm) of alginate solutions (2% w/w) with increasing 

chorhexidine digluconate content (Bertram and Bodmeier, 2006). The drug concentration, 

at which precipitation started, was determined by extrapolating the linear correlation of 

the measured data points to an absorption of zero. Drug polymer interaction was observed 

as precipitation in polymeric solutions at concentration >0.06mg/ml.   

Fig. 4 (F-H) show the influence of different amount of drug on CH/ALG(1:9) complex. 

As can be seen, inserts based on complex/drug weight ratio 2:0.5 provided a more smooth 

surface with respect to inserts based on complex/drug weight ratio 2:1 and 2:2. 

Fig. 4 (1-8) shows the drug distribution in the inserts. As can be seen, the drug was 

homogeneously distributed in all the inserts based on the different complexes and also in 

the case of CH/ALG(1:9) inserts with complex/drug weight ratios 2:0.5,  2:1 and 2:2.     

 

3.4 Friability Studies 

Inserts should be hard enough to be easily removed from their packaging and to be placed 

intact into the vaginal cavity. Friability is a function of the hardness of a solid form and 

was measured in order to assess insert tendency to chip, crack or crumble due to friction 

and abrasion resulting from physical handling. The lower the friability, the more resistant 

the solid dosage form is to handling. In general, friability is affected by factors such as 

the size, shape and weight of the dosage form, as well as the formulation. In particular, 

friability values of loaded inserts based on CH/ALG(1:9), CH/ALG(3:7), CH/ALG(7:3) 

and CH/ALG(9:1) were 9.3±0.6, 10.1±0.3, 9.5±0.5, 9.8±0.4 %, while complex 

CH/ALG(1:1) provided a friability of 80±1.7%. All loaded inserts, except CH/ALG(1:1), 

were handled without damage and can be considered as promising formulations for 

vaginal application. 

 

3.4 Water-uptake ability 

Water-uptake was influenced by the medium (phosphate buffer pH 4.5) and by 

chitosan/alginate molar ratio. All the complexes showed the highest water-uptake ability 

at 120 minutes. In particular, the complex CH/ALG(1:1) showed the lower water-uptake 

ability among all the complexes (404.4 ± 11.2); while a large excess of chitosan and 

alginate allowed a greater water-uptake ability. In fact, water-uptake ability % of  

CH/ALG(9:1), CH/ALG(1:9), CH/ALG(7:3) and CH/ALG(3:7) were 686.2 ± 9.5, 767.9 

± 10.2, 484.9 ± 7.1, 548.7 ± 7.6 . This behavior is due to the presence of major charges in 
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the complexes CH/ALG(9:1) and CH/ALG(1:9)  that provided the entry of major amount 

of water in the systems. Moreover, in the complex CH/ALG (1:1), the ionization of the 

same amounts of polymers provided a system with a major interaction between chitosan 

and alginate and a minor amount of charges, thus limiting water-uptake ability. 

Furthermore, the complexes CH/ALG(1:9) and CH/ALG(3:7) showed a major water-

uptake ability (P<0.05) with respect to CH/ALG(9:1) and CH/ALG(7:3), due to the major 

ionization of alginate at pH 4.5 (see section 3.1).  

The influence of chlorhexidine digluconate on the water-uptake ability of the insert was 

also investigated (Fig. 5).  

 

 

 

 

Fig. 5. Water uptake ability after 120 minutes of differently loaded (complex/drug weight 

ratios: 2:0.5, 2:1, 2:2 and 2:4) complexes at pH 4.5 (n = 3, the SD did not exceed the 5%).  

 

As can be seen,  the presence of the drug in the vaginal inserts gradually reduced water-

uptake. In fact, for the preparation of loaded inserts, the drug was dissolved in phosphate 

buffer at pH 4.5 and the amino group of chlorhexidine (pKb 10.3) and the carboxylic 

groups of gluconic acid (pKa 3.6) were positively and negatively, charged, respectively. 

When drug solution was added to complex/mannitol mixture, these groups can interact 

with negative (alginate carboxylic groups) and positive (chitosan amino groups) charges, 

respectively, thus reducing the amount of free charges in the inserts.  
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3.5 Insert mucoadhesion properties 

The presence of different amounts of chitosan or alginate in the formulations influenced 

significantly theinsertsmucoadhesion properties. In particular, chitosan hydrochloride 

insert showed a higher detachment force value with respect to that of alginate insert (150 

± 7 µN and 55±3 µN, respectively). This behaviour can be due to the presence of chitosan 

amino groups that at pH 4.5, were positively charged and could interact with the 

negatively charge of sialic acid (pKa 2.6) and sulphate residues of mucin glycoprotein 

(Peppas and Sahlin, 1996). For the same reason, a decrease in the mucoadhesion values 

was observed with reduction of chitosan amount in the inserts. In fact, the detachment 

force for CH/ALG(9:1) and CH/ALG(7:3) was higher with respect to that for 

CH/ALG(1:9) and CH/ALG(3:7) inserts (88±4, 70±6, 55±3, 57±4 µN, respectively). 

Moreover, in the complex CH/ALG(1:1) the high interaction between chitosan and 

alginate limited the presence of the positively charges, and, consequently, the detachment 

force (27±2 µN). There was no significant difference in mucoadhesion results between 

loaded and unloaded inserts (P>0.05). 

 

3.6 In-vitro release studies 

Release profiles from loaded vaginal inserts (complex/drug weight ratio 2:1) at pH 4.5 

are shown in Fig. 6.  

 

 

 

Fig. 6. Fractional amount of chlorhexidine digluconate released over time at pH 4.5 from 

the different chitosan/alginate complexes (Mt drug amount released over time, M0 drug 
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amount in the formulation at t=0). Each datum represents the average of three 

determinations ± SD. 

 

 

 

 

Fig. 7. Fractional amount of chlorhexidine digluconate released after 6 h from differently 

loaded (complex/drug weight ratios: 2:0.5, 2:1 and 2:2) chitosan/alginate complexes at 

pH 4.5. Each datum represents the average of three determinations ± SD. 

 

In the case of the control formulation, the total amount of loaded drug was released after 

30 minutes, due to the fast dissolution of the mannitol insert (data not reported in Fig. 6). 

On the other side, a sustained drug release can be observed for all the complex based 

formulations, due to the interaction of chlorhexidine digluconate with alginate and 

chitosan. Among all the inserts based on the different complexes, CH/ALG(1:1) showed 

the higher drug release due to the higher degree of interaction between chitosan and 

alginate in the complex and the lower free charges amount able to interact with 

chlorhexidine digluconate. Surprisingly, despite the comprovate interaction between 

alginate and chlorhexidine digluconate suggesting a major sustained release, 

CH/ALG(1:9) insert allowed higher drug release with respect to CH/ALG(9:1) insert. 

As previously described, drug-complex interaction provided a decreased water-uptake. 

However the same interaction determined a decrease of density from unloaded to loaded 

inserts, indicating the capability of the hydrogel network to extend the polymeric chains 

in a greater way in presence of drug. In particular, the density values for unloaded and 
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loaded (complex/drug weight ratio 2:1) inserts based on CH/ALG(1:9) and CH/ALG(9:1) 

were 0.54 ± 0.02 g/cm
3
, 0.65 ± 0.03 g/cm

3
, 0.45 ± 0.02 g/cm

3
 and 0.52± 0.03 g/cm

3
, 

respectively.From these data we can also observed that the decrease in density was more 

evident for the insert with the excess of alginate, thus resulting in a major drug release 

from the polymer matrix, due to a greater drug diffusion ability. Finally in the case of the 

complex/drug ratio 2:2 the all inserts were unable to control drug release (Fig. 7).   

 

3.7 Antimicrobial activity of the vaginal insert containing chlorhexidine digluconate 

Viability of E. coli and C. albicans in phosphate buffer at pH 4.5 in the absence and 

presence of unloaded and loaded vaginal insert based on CH/ALG(1:9) complex 

(complex /drug weight ratio 2:1) is shown in Table 1. 

 

a
 Counts of viable E. coli and C. albicans were carried at the inoculum time (T0) and 

after 6h (T6) and 24h (T24) of incubation at 37°C. 

b 
Microbial concentration was expressed as a mean of log CFU/ml ± SD. 

 

Table 1. Viability of Escherichia coli and Candida albicans in phosphate buffer at pH 4.5 

with and without the vaginal insert containing chlorhexidine digluconate. 

 

Cell concentration of E. coli decreased after 6 h (T6: 4.38 log CFU/ml) and 24 h (T24: 

3.15 log CFU/ml) of incubation at 37°C, compared to the baseline value (T0: 6.15 log 

CFU/ml), with a survival of 71.2% and 51.2% at T6 and T24, respectively. Loaded insert 

exerted a strong antibacterial activity against E. coli as evidenced by the bacterial 

concentrations that were below the detection limit (< 2 log CFU/ml) at the time points T6 

and T24.  

A good viability in phosphate buffer was demonstrated by C. albicans, as its 

concentration remained approximately constant after 6 h (T6: 5.85 log CFU/ml) and 

 Microbial concentration (log CFU/ml ± SD)
b 

 Escherichia coli Candida albicans 

Time point 

(h)
a 

Unloaded insert  Loaded insert Unloaded insert  Loaded insert 

T0 6.15 ± 0.24 6.18 ± 0.15 5.90 ± 0.19 5.90 ± 0.23 

T6 4.38 ± 0.28 < 2 5.85 ± 0.20 5.00 ± 0.31 

T24 3.15 ± 0.19 < 2 4.86 ± 0.16 < 2 
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decreased about one logarithmic unit after 24 h (T24: 4.86 log CFU/ml) of incubation, 

compared to the baseline value (5.90 log CFU/ml). The survival of the yeast was found to 

be 99.2% and 82.4% at T6 and T24, respectively. The addition of the loaded vaginal 

insert to the experimental medium caused the loss of almost one logarithmic unit in the 

viability of C. albicans at T6 (5.00 log CFU/ml; survival: 84.7%) and a strong reduction 

of the yeast count at T24 (< 2 log CFU/ml). 

The present microbiological data demonstrated the inhibitory activity of the 

chlorhexidine digluconate formulated in vaginal insert against the principal pathogens 

which are responsible for aerobic vaginitis and candidiasis. 

 

Conclusions 

This investigation verified the formation of polyelectrolyte complexes between chitosan 

and sodium alginate in the vicinity of the pKa interval of the two polymers and confirmed 

the potential of these complexes, able to hydrate and adhere to vaginal mucosa. 

Moreover, these complexes can be used to prepare new suitable carrier system capable to 

overcome limits of the conventional delivery formulations, such as messiness and leakage 

of formulations, thus increasing patient compliance. The selection of the appropriate 

chitosan/sodium alginate molar ratio as well as the drug amount allowed the modulation 

of insert water-uptake behavior and chlorhexidine digluconate release. In particular, 

inserts based on the complex CH/ALG(1:9) provided the higher amount of released drug 

and microbiological data demonstrated that chlorhexidine digluconate released from this 

insert can inhibit the principal pathogens responsible of aerobic vaginitis and candidiasis.  
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Abstract 

The purpose of this work was to investigate the potential of a new chitosan nanocarrier 

composed of cyclodextrins and two excipients (C) with the capacity to modify insulin 

bioavailabity. In particular, the selected excipients, C1 and C2, were included in the 

chitosan/cyclodextrins nanocarriers in order to study their influence on nanoparticles 

physico-chemical properties and on insulin bioavailability upon nasal administration. 

Nanoparticles were obtained with the ionic gelation method, adding cyclodextrin/C 

solutions, with or without TPP, to the chitosan phase. The size of the resulting 

nanoparticles,ranging between 260 and 398 nm, was affected by the nature and the 

amount of the cyclodextrins and Cwhereas the zeta potential of the NPs was always 

positive.Nanoparticles in vitro stability was evaluated in different media and the 

empirical amount of C in nanoparticles was quantified using a kit. Finally, in vitro release 

and in vivo studies were performed in order to evaluate loaded nanoparticles ability to 

release insulin and to modify its bioavailability. Results showed good nanoparticle 

stability and capacity to decrease blood glucose levels in rats after nasal administration. 

 

 

 

 

 

Keiwords: nanoparticles, chitosan, cyclodextrin, insulin nasal delivery. 
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1.Introduction 

 

Peptides and proteins administration through oral route is characterized by a low drug 

absorption and bioavailability, due to the gastrointestinal environment and first-pass 

metabolism that lead to chemical and enzymatic drug degradations (Woodley, 1994; 

Saffran et al., 1997; Ram et al., 2003; Singh et al., 2008, Sood and Panchagnula, 2001; 

Chen et al., 2011). Other conventional administration routes, such as the intravenous 

route, are no convenient and show a poor patient compliance, due to the repetitive 

injections, generally necessary for a chronic treatment. In the recent years, nasal route has 

been studied as an alternative administration route thanks to the interesting properties of 

nasal mucosa. In fact, the large surface area, the porous endothelial membrane, the 

avoidance of first-pass metabolism and the ready accessibility of the nasal cavity can 

allow to obtain faster and higher level of drug absorption and a good patient compliance 

(Ugwoke et al., 2005; Costantino et al., 2007; Prego et al., 2005a). On the other hand, the 

mucociliary clearance mechanism removes rapidly the formulations from the nasal 

cavity, thus determining their low residence time and, consequently, low drug 

permeability and bioavailability (Merkus et al., 1998; Illum, 2003; Andersen and Proctor, 

1983; Inagaki et al., 1985; Harris et al., 1986). In order to overcome this limitation, in the 

past years many mucoadhesive materials were analyzed to evaluate their ability to adhere 

to nasal surface and to increase the contact time of drug systems with the nasal mucosa 

(Duchene et al., 1988). Different studies have shown that chitosan nanocarriers can 

facilitate the interaction of the drug with mucosa (Csaba et al., 2006; Felt et al., 1998; 

Prego et al., 2005b; Luppi et al., 2010), thanks to the interactions between positively 

charged chitosan amino groups and the sialic acid and sulphate aminoacidic residues of 

the mucus layer, thus providing a longer contact time for drug absorption (Lehr et al., 

1992). Moreover, another limitation with nasal route administration is the low 

permeability of polar and large molecular weight drugs, that generally cross the epithelial 

cell membrane by the paracellular route through the tight junctions between the cells. 

Although the tight junctions are dynamic structures, their mean size channels limit the 

transport of large molecules (Illum, 2003). Recent studies have demonstrated that 

chitosan can transiently open the tight junctions of the human barrier thus increasing drug 

permeability (Smith et al., 2004; Garcia- Fuentes and Alonso, 2012).  

In this study, in order to improve insulin bioavailability through nasal route, two 

excipients were used (C1 and C2) for nanoparticles formulation. Nanoparticles (NPs) 
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were obtained with the nanoprecipitation technique and were characterized with regard to 

their size, surface charge, C1/C2 experimental amount and stability in different media. 

Finally, in vitro release and in vivo studies were performed in order to study nanoparticles 

ability to drug deliver and to modify insulin bioavailability.  

 

2.Materials and methods 

 

2.1. Materials 

The following chemicals were obtained from commercial sources and used as received. 

Ultrapure chitosan (CS) hydrochloride salt (Protasan UP CL 113, Mw = 110 KDa and 

deacetylation degree = 86%) was purchased from FMC Biopolymers (Norway). 2-

hydroxypropyl-β-cyclodextrin (HP-β-CD, Mw = 1540, substitution degree = 4.69), 

pentasodium tripolyphospate (TPP), C1 and C2 were all purchased from Sigma-Aldrich 

(Spain). Sulphobutyl ether-β-cyclodextrin sodium salt (SBE-β-CD, Mw = 2163, 

substitution degree = 6.40) was obtained from CyDex, Inc. (USA). Recombinant human 

free Zn insulin (27.4 units/mg, isoelectric point = 5.8) was kindly donated by Novo 

Nordisk A/S (Målov, Denmark). The kit for xcipients C1 and C2 amount determination 

was purchased from Cayman Chemical (Michigan, USA). All other chemicals were 

reagent grade or higher. 

 

2.2 Preparation of cyclodextrin/C 

The two selected excipients (C) and CDs (CD/C molar ratio of 1:1) were solubilized in an 

ethanol/water mixture (1:11 v/v) with the adding of an equimolar amount of NaOH with 

respect to C. We obtained HP-β-CD/C1, SBE-β-CD/C1, HP-β-CD/C2 and SBE-β-CD/C2 

solutions with different C concentrations. In particular, for C1 and C2the concentrations 

ranges were 0.01-2mg/ml and0.01-1mg/ml, respectively. These solutions were 

evaporated with rotavapor until a volume reduction of tree times. In order to obtain 

control formulations, solutions without C were prepared with the same procedure.  

 

2.3 Preparation of NPs 

NPs were prepared according to the procedure previously described by our group (Calvo 

et al., 1997a; Calvo et al., 1997b). CS/TPP nanoparticleswere spontaneously formed upon 
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addition of 1 ml of TPP aqueous solution (0.15% w/v, polyanionic phase) to 3 ml of the 

CS solution (0.20% w/v, polycationic phase) under stirring. For CS/CD/C NPs, different 

volumes of CD/C1 andCD/C2 solutions, prepared as described above, were added to the 

polycationic phase, with or without TPP, obtaining NPs with different components 

weight ratio (table 1a, 1b and 2).In particular, in the case of nanoparticles based on HP-β-

CD, TPP was added maintaining a CS/TPP weight ratio of 4/1; while in the case of SBE-

β-CD NPs, the weight ratio CS/TPP was 4/0 or 4/0.5. Using the same procedure, CS/CD 

control NPs were obtained using solutions composed of only CD. 

The resulting NPs were isolated by ultracentrifugation (16000 × g, 30 min, 15°C; 

Beckmann Avanti 30, Beckmann, USA) and resuspended in ultrapure water. For loaded 

NPs, human insulin was added to the anionic phase until a final concentration in 

nanoparticles suspension of 0.25 mg/mL.  

 

2.4 Physicochemical and morphological characterization of NPs 

The mean particle size and the size distribution (PDI) of the NPs were determined by 

photon correlation spectroscopy (PCS) using a Zetasizer 3000 HS (Malvern W 

Instruments, Malvern, UK). The ζ-potential determination was performed by laser 

Doppler anemometry (Zetasizer 3000 HS, Malvern Instruments, Malvern, UK) after 

dilution with KCl 1 mM.  

The morphological examination of NPs was performed by transmission electron 

microscopy (TEM) (CM12 Philips, Eindhoven, Netherlands). All samples were stained 

with 2% (w/v) phosphotungstic acid and placed on copper grids with Formvar
®

 film for 

TEM observation. 

 

2.5 Stability in different media 

Unloaded and insulin loaded nanoparticles were tested for their stability in different 

media: water, phosphate buffer at pH 6.8 and at pH 6.0, simulating nasal secretions. 

Nanoparticles stability was evaluated taking into account the change of nanoparticles size 

and their possible precipitation. Aliquots of fresh suspensions of nanoparticles were 

diluted in these media reaching a concentration of 1 mg/mL, and the evolution of size 

was assessed using photon correlation spectroscopy (Zetasizer 3000HS, Malvern 

Instruments, UK) for 2 h at 37°C (n=3). The size and PDI of the nanoparticles in the 

fluids were measured after 30, 60 and 120 min by photon correlation spectroscopy.  
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2.6  Determination of Process Yield 

For the calculation of the nanoparticles production yields, the nanoparticles suspensions 

were centrifuged (30000g, 15 °C, 40 min), and the supernatant was discarded. The 

sediments were dried at 50°C until constant weight, and the difference of the theoretical 

solid weights and the actual dried nanoparticles weights were obtained (n = 3). The yield 

of the process was calculated as follows: process yield (%) = nanoparticles weight x 100/ 

total solids weight. 

 

2.7. Determination of excipients (C)experimentalamount 

The Cexperimental amount was investigated using a kit. First, nanoparticles composed of 

CD/C and of CDs (used as control formulations) were isolated as described in section 2.2 

and resuspended in ultrapure water. Then, chitosanase-RD was added to NPs suspensions 

(1:2 chitosanase-RD/NPs w/w ratio, 1 h, 37°C) in order to promote chitosan degradation. 

Following this process, the experimental amount of C in the nanoparticles were 

calculated using a kit.  

 

2.8 Loading and encapsulation efficiency of nanoparticles 

For the calculation of loading % and encapsulation efficiency, loaded nanoparticles were 

isolated by centrifugation as described in Section 2.2. The amount of unbound insulin 

was determined in the supernatant by HPLC analyses (Agilent1100 Series, Santa Clara, 

CA, USA), with a method described by Marsüchtz, M.K. and Bernkop-Schnürch (2000) 

that was thereby modified. Briefly, 20 µL of the supernatant was injected into HPLC. 

Insulin and/or degradation products were separated on a protein and peptide C18 column 

(Grace Vydac, W.R. Grace & Co., Columbia, MD, USA) at room temperature. Gradient 

elution was performed as follows: flow rate 1.0 mL/min, 0-10 min; linear gradient from 

70% A/30% B to 39% A/61% B (eluent A: 0.1% trifluoroacetic acid in water; eluent B: 

80% of acetonitrile and 20% of eluent A). Insulin and/or degradation products were 

detected by absorbance at 220 nm with a diode array absorbance detector. Insulin 

concentration was quantified from integrated peak areas and calculated by interpolation 

from an according standard curve. 

The loading % and the encapsulation efficiency of insulin, respectively, were calculated 

as follows: 
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Loading % = (Total amount of drug −Amount of unbound drug) x 100/ Nanoparticles 

weight 

Encapsulation efficiency (EE) = (Total amount of drug −Amount of unbound drug)x 100/ 

Total amount of drug 

 

2.9 In vitro release studies 

Insulin release studies were performed by incubating 0.1 mg insulin-loaded nanoparticles 

in 1mL of phosphate buffer at pH 6.0, simulating nasal secretions, at 37 °C. At 

appropriate intervals, the samples were filtered and the amount of released insulin was 

evaluated by HPLC analysis. Insulin concentrations were quantified and calculated by 

interpolation from an according standard curve. 

 

2.10 In Vivo Studies 

Male Sprague-Dawley rats (160-190 g) from the Central Animals House of the 

University of Santiago de Compostela (Spain) were fasted for 12 h before experiments 

but allowed water ad libitum. Animals were kept conscious during the experiments. The 

following formulations were administered intranasally to rats: (1) insulin aqueous 

solution, (2) CS/SBE-β-CD/C1/TPP (4/2/0.17/0.5) and (3) CS/SBE-β-CD/TPP (4/2/0.5) 

NPs. In all cases the insulin dose administered was 5 UI/kg and the volumes of 

formulations used were 40 µl (20 μL/nostril). Formulations were intranasally 

administered using a polyethylene tubing inserted about 1 cm into the nostril. Blood 

samples were collected from the tail vein 30 min prior the nasal administration (t) -30 

min, in order to establish the baseline glucose levels, and at different times after dosing 

(t) 0, 30, 60, 120, 180, 240 and 300 min. Glycaemia was determined in plasma samples 

by the glucose-oxidase method (Glucose-TR, Spinreact S.A, Spain). Results are shown as 

the mean values of plasma glucose levels % of initial level of six animals. 

 

2.11 Statistics 

Pairs of groups were compared by performing one-tailed Student‘s t-test and multiple 

group comparison was conducted by one-way analysis of variance (ANOVA). All data 

are presented as a mean value with its standard deviation (mean ± SD). p-Values less than 

0.05 were considered to be statistically significant.  
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3. Results and discussion 

 

3.1 Preparation of NPs 

In previous works, we have demonstrated the interesting properties of nanoparticles 

based on chitosan and cyclodextrins for insulin delivery (Fernandez-Urrusuno et al., 

1999; Maestrelli et al., 2006; Trapani et al., 2008; Teijeiro- Osorio et al., 2009). These 

nanocarriers combine the enhancement effect and the mucoadhesion properties of 

chitosan and the cyclodextrins capacity to load molecules with high efficiency, to protect 

drugs from enzymatic degradation and to promote their transport across mucosal 

surfaces. In the present work, in order to improve insulin bioavalability, we designed 

CS/CDs nanocarriers containing two excipients (C),C1 and C2, with the capacity to 

modify insulin bioavailabity. Moreover, for this study, we selected a neutral and a 

polyanionic cyclodextrin, HP-β-CD and SBE-β-CD. 

 

3.1.1. Conditions for NPs formation. 

First of all, we prepared CDs/C solutions with different C concentrations and then we 

formulated CS/CD/C/TPP nanoparticles with the ionic gelation technique, developed in 

our laboratory (Calvo et al., 1997a; Calvo et al., 1997b). 

CDs/C solutions were prepared with 1:1 molar ratio between cyclodextrins and C and in 

order to increase C solubility, an equimolar amount of NaOH was added in the solutions. 

Transparent solutions with the higher amount of C were selected for the preparation of 

nanoparticles. In particular, in the case of C1, Cconcentrations were 1.0 and 0.25 mg/ml 

for HP-β–CD/C1 and SBE-β-CD/C1 solutions, respectively. For solutions based on C2, 

C2concentration was lower (0.1 mg/ml) due to its lower solubility. These concentrations 

allowed us to evaluate the optimal conditions, in terms of components amount, for 

nanoparticle formulations. In fact, as reported in previous studies (Trapani et al., 2008), 

the formation of the different types of CS/CDs NPs were clearly influenced not only by 

the TPP and CS concentrations, but also by the nature of CDs and their amount added 

during the preparation process.  

3.2 Physicochemical and morphological characterization of NPs 

Tables 1a, 1b and 2 show the physicochemical properties of the different NPs: CS/TPP 

NPs, CS/CD/C/TPP NPs and CS/CD/TPP NPs, for every cyclodextrin and C. 
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Ratio  

CS/CD/C/TPP 

(w/w/w) 

Size (nm) Polydispersity δ (mV) 

CS/TPP 

4/1 
361 ± 20 0.36-0.44 +35.1 ± 0.3 

CS/ HP-β-CD-C1/ TPP 

4/ 3/ 0.33/ 1.0 
340 ± 4 0.30-0.35 +27.8 ± 1.4 

CS/ HP-β-CD / TPP 

4/ 3/ 1.0 
398  ± 2 0.28-0.31 +32.8  ± 0.4 

CS/ HP-β-CD- C1/ TPP 

4/ 6/ 0.67/ 1.0 
291  ± 5 0.26-0.29 +27.4 ± 0.3 

CS/ HP-β-CD / TPP 

4/ 6/ 1.0 
383  ± 5 0.30-0.33 +33.6  ± 1.2 

CS/ HP-β-CD- C1/ TPP 

4/ 12/ 1.34/ 1.0 
260  ± 5 0.29-0.34 +35.5 ± 1.0 

CS/ HP-β-CD/ TPP 

4/ 12/ 1.0 
360  ± 4 0.28-0.32 +31.0  ± 0.5 

Table 1a. Physicochemical properties of CS/HP-β-CD/C1/TPP NPs and their respective 

control formulations (NPs without C1), means ± S.D., n = 3. 

 

Ratio  

CS/CD/C/TPP 

(w/w/w) 

Size (nm) Polydispersity δ (mV) 

CS/TPP 

4/1 
361 ± 20 0.36-0.44 +35.1 ± 0.3 

CS/ HP-β-CD-C2/ TPP 

4/ 0.76/ 0.13/ 1.0 
322  ± 9 0.34-0.38 +34.3 ± 0.3 

CS/ HP-β-CD / TPP 

4/ 0.76/ 1.0 
335  ± 7 0.27-0.39 

+31.0  ± 1.8 

 

CS/ SBE-β-CD-C2/ TPP 

4/ 1/ 0.13/ 0.5  
375  ± 19 0.23-0.28 +33.9  ± 2.9 

CS/ SBE-β-CD/ TPP 

4/ 1/ 0.5 
b - - 

b = transparent solution 

 

Table 1b. Physicochemical properties of CS/HP-β-CD/C2/TPP and CS/SBE-β-

CD/C2/TPP NPs and their respective control formulations (NPs without C2), means ± 

S.D., n = 3. 
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Ratio  

CS/CD/C/TPP 

(w/w/w) 

Size (nm) Polydispersity δ (mV) 

CS/TPP 

4/1 
361 ± 20 0.36-0.44 +35.1 ± 0.3 

CS/ SBE-β-CD- C1/ TPP 

4/ 1/ 0.08/ 0.5 
381  ± 5 0.23-0.30 +31.5  ± 1.7 

CS/ SBE-β-CD / TPP 

4/ 1/ 0.5  
b - - 

CS/ SBE-β-CD- C1/ TPP 

4/ 2/ 0.17/ 0.5 
290 ± 7 0.22-0.28 +33.6  ± 1.6 

CS/ SBE-β-CD / TPP 

4/ 2/ 0.5 
337 ± 6 0.37-0.39 +31.4  ± 1.0 

b = transparent solution  

 

Table 2. Physicochemical properties of CS/SBE-β-CD/C1/TPP NPs and their respective 

control formulations (NPs without C1), means ± S.D., n = 3. 

 

It is well known that the NPs size largely depends on the cyclodextrins nature (Maestrelli 

et al., 2006; Trapani et al., 2008).  

In particular, data reported in the tables confirmed that the presence of HP-β-CD has no 

critical impact in the NP formation process and, therefore, no particular limit of CD 

amount needs to be respected for the preparation of these NPs, while SBE-β-CD can 

readily interact with CS, and an excess of cyclodextrin can lead to aggregates formation 

(data were not reported). In the case of nanoparticles based on HP-β-CD, the sizes 

decreased with the increase of the cylcodextrin amount, probably due to the formation of 

a more compact structure. For SBE-β-CD nanoparticles a reduction in size was also 

evident; this behavior can be explained with the formation of ionic interaction between 

chitosan and the anionic cyclodextrin that lead to smaller particles size, as demonstrated 

in our previous work (Trapani et al., 2008). 

Tables 1a and 2 report the sizes, polydispersity and potential zeta of nanoparticles with 

C1, in which it was possible to relate CS/CDs/C1/TPP NPs with the respective control 

NPs. In particular, for nanoparticles based on HP-β-CD, a decrease in size (p < 0.05) 

from CS/CDs/TPP to CS/CDs/C1/TPP was observed. This behavior has been attributed 

mainly to the presence of C1 that in the nanoparticles suspensions, was negatively 

charged and could interact with the positively charged amino group of chitosan; this ionic 

interaction could lead to the formation of a more compact structure. For SBE-β-CD 
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nanoparticles, CS/CDs/C1/TPP also showed a lower size than the control nanoparticles 

(without C1). In this case, the reduction in size of CS/CDs/C1/TPP was mainly attributed 

to the presence of the anionic cyclodextrin that can interact with chitosan, thus reducing 

nanoparticle size in a greater way with respect to HP-β-CD that weakly interacts with 

chitosan. 

In the case of NPs containing HP-β-CD and C2 (table 1b), the low amount of C2 

contained in the formulation did not provide a significant reduction in nanoparticles size. 

On the other hand, nanoparticles based on SBE-β-CD and C2 showed size in the 

nanometer range, but control preparations lead to transparent solutions. 

NPs composed of SBE-β-CD can be prepared also without TPP by direct incorporation of 

the SBE-β-CD/C solutions into the CS phase; in this case it was possible to incorporate a 

greater amount of cyclodextrin, because the cyclodextrin/TPP cooperative effect in the 

ionic interaction was absent. Moreover, we also observed a reduction of nanoparticles 

size with the increase of cyclodextrin and C amounts (data not showed).  

With respect to the zeta potential of the four series of NPs, it was interesting to observe 

that all the series exhibited positive charge values (tables 1a, 1b and 2). The fact that all 

the NPs showed positive zeta potential suggests that CDs and also the excipients C are 

mainly entrapped inside the NP matrix and do not mask the inherent charge of CS on the 

surface. Moreover, for NPs containing HP-β-CD/C1 a reduction of zeta potential was 

observed with respect to control formulations, probably due to the presence of the 

negative charges of C1 that, interacting with chitosan, reduced the positive charge of the 

surface. 

In all cases, the size, ranging between 260 and 398 nm, can allow nasal administration 

and promote an efficient drug transport through biological barriers, while the presence of 

a positive surface can improve the interaction between the formulations and the mucosal 

surface, ensuring a good mucoadhesion properties. 

Loaded NPs (table 3) showed a higher size with respect to unloaded NPs probably due to 

the incorporation of insulin inside the NPs, while a zeta potential decrease was observed. 

This zeta potential reduction could be explained by the interaction between CS and 

insulin that leads to a positive charge reduction in the NPs surface. 
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Ratio  

CS/CD/C/TPP 

(w/w/w) 

Size (nm) Polydispersity δ (mV) EE% Loading % 

CS/ HP-β-CD- C1/ TPP 

4/ 12/ 1.34/ 1.0 
308 ± 2 0.28-0.33 +27.6 ± 0.6 89.5 ± 1.1 25.3 ± 1.1  

CS/ HP-β-CD-C2/ TPP 

4/ 0.76/ 0.13/ 1.0 
340 ± 3 0.29-0.32 +30.7 ± 0.6 71.5 ± 5.2 19.3 ± 0.7 

CS/ SBE-β-CD-C1/ TPP 

4/ 2/ 0.17/ 0.5 
370 ± 4 0.19-0.27 +29.7  ± 0.9 46.7 ± 4.3 6.1 ± 0.4 

CS/ SBE-β-CD-C2/ TPP 

4/ 1/ 0.13/ 0.5  
387 ± 7 0.23-0.29 +30.5  ± 1.0 21.0 ± 1.1 7.1 ± 0.3 

Table 3. Physicochemical properties, EE% and Loading % of loaded nanoparticles 

(means±S.D., n=3). 

 

 

 

Fig. 1. Morphological Characterization performed by transmission electron microscopy  

of  blank NPs: CS/ HP-β-CD/C1/TPP (4/12/1.34/1) (a/c) and CS/SBE- β-CD/C1/TPP 

(4/2/0.17/0.5) (b/d). 

 

Fig. 1 shows the morphological appearance of CS/CD/C1/TPP NPs.In general, particles 

size measured by TEM is smaller than that determined by photon correlation 
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spectroscopy, which is attributed to the loss of water during the drying step prior to 

electron microscopy. It can also be observed that NPs containing HP-β-CD showed an 

irregular morphology (figure 1(a/c)), whereas those containing SBE-β-CD exhibits a 

round shape (figure 1(b/d)). 

 

3.3  Stability in different media 

In order to evaluate whether nanoparticles size changed in the different tested media and 

to predict their suitability for administration, NPs stability was investigated. Fig. 2 shows 

the stability of the following nanoparticles composed of C1: CS/HP-β-CD/C1/TPP 

4/12/1.34/1.0, CS/SBE-β-CD/C1/TPP 4/2/0.17/0.5, CS/SBE-β-CD/C1/TPP 4/4.3/0.33/0. 

 

 

 

 

Fig. 2. Stability of nanoparticles composed of C1  in different media (mean ±SD., n=3) 

 

As can be seen, all NPs were stable in water with small changes in size and DI values 

(PDI values are not reported). Furthermore, NPs with TPP were also stable in phosphate 

buffer at pH 6.8 and 6.0, while NPs without TPP aggregate and cannot be used for nasal 

administration. For this reason, for the next studies we selected NPs with the higher 

amount of C and with TPP. 
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3.4 Determination of Process Yield 

In order to study the influence of C on drug absorption through nasal mucosa, we selected 

the formulations with the higher amount of C. In table 4 we report the selected 

nanoparticles and the results of the process yield determination. 

 

Ratio  

CS/CD/C/TPP 

(w/w/w) 

Process yield (%) Theoretical C 

content(%) 

Experimental C content 

(%) 

CS/ HP-β-CD-C1/ TPP 

4/ 12/ 1.34/ 1.0 
11 ± 1 7.29 2.89 ± 0.14 

CS/ HP-β-CD-C2/ TPP 

4/ 0.76/ 0.13/ 1.0 
26 ± 2 2.28 0.17 ± 0.02 

CS/ SBE-β-CD-C1/ TPP 

4/ 2/ 0.17/ 0.5 
42 ± 2 2.56 3.53 ± 0.17 

CS/ SBE-β-CD-C2/ TPP 

4/ 1/ 0.13/ 0.5  
24 ± 1 2.36 0.58 ± 0.05 

 

Table 4.  Yield percentage for the prepared  nanoparticles and theoretical and 

experimental amount of C in nanoparticles (mean ± S.D., n = 3). 

 

As can be seen, for NPs containing HP-β-CD the yield was lower with respect to 

nanoparticles containing SBE-β-CD. In fact, HP-β-CD weakly interact with chitosan and 

its incorporation efficiency within the NPs was very low (about the 3% as demonstrated 

in another study (Trapani et al., 2008). In this work, we can also suppose that Cwere 

included in the hydrophobic cavity of the cyclodextrinandthat their  extremities,  

negatively charged, was located outside of the cyclodextrin andcan interact with chitosan. 

For this reason, we hypotized that also the incorporation efficiency of C was lower for 

NPs based on HP-β-CD with respect to SBE-β-CD nanoparticles. On the other side, the 

ionic interaction between chitosan and SBE-β-CD can lead to the formation of a great 

number of precipitation nuclei, increasing the incorporation efficiency of the cyclodextrin 

and consequently, of the excipients C, and leading to a greater process yield. 

3.5 Determination of excipients C experimental amount 

Table 4 reports the theoretical amount of C with respect to the total amount of 

nanoparticle components, while the C experimental amount was correlated to the weight 

of nanoparticles obtained after ultracentrifugation. As can be seen, in SBE-β-CD 
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nanoparticles, the amount of C was higher compared to that of HP-β-CD nanoparticles. 

As described in section 3.4, the incorporation efficiency of HP-β-CD was around the 3% 

and lead to a low process yield; for the same reason, the experimental amount of C, that 

was incorporated in the hydrophobic cavity of the cyclodextrin, was lower with respect to 

the theoretical amount. Moreover, the experimental content % of C1 was higher with 

respect to that of C2, although for Nps with HP-β-CD/C2 the process yield was higher 

than the yield of HP-β-CD/C1 NPs, thus demonstrating an higher incorporation capacity 

of C1. For the same reason, C1 was also mainly incorporated in nanoparticles with SBE-

β-CD with respect to C2; moreover, SBE-β-CD incorporation efficiency was very high 

through its interaction with chitosan and this aspect can allow to incorporate a great 

amount of C1 into nanoparticles. 

We concluded that the presence of the excipients in the formulations was influenced by 

the incorporation efficiency of cyclodextrin and by the capacity of the excipients to be 

included in the cyclodextrins and consequently, into the nanoparticles. In particular, data 

demonstrated that C1 can be incorporated in a higher amount inside the nanoparticles, 

with respect to C2. Moreover, in the case of SBE-β-CD/C1 nanoparticles, this aspect, 

together with the high incorporation efficiency of cyclodextrin, led to a greater C1 

experimental amount with respect to that theoretical. 

 

3.6  Loading and encapsulation efficiency of nanoparticles 

In the table 3 the loading % and the encapsulation efficiency of loaded nanoparticles were 

reported. As described in our previous study (Fernandez-Urrusuno et al., 1999), the 

association of insulin to chitosan nanoparticles is primarily based on electrostatic 

interaction such as hydrophobic interactions. As can be seen, nanoparticles with HP-β-

CD showed a very high encapsulation efficiency (>70%), leading to insulin loading 

values of 25%. Moreover, as discussed before, the incorporation efficiency of  

cyclodextrin and the C experimental amount were lower in the case of HP-β-CD based 

NPs than SBE-β-CD NPs; this aspect leads to a greater presence of chitosan in HP-β-CD 

NPsthat can interact with insulin. On the other hand, the insulin encapsulation efficiency 

in NPs composed of SBE-β-CD was lower; in fact, the anionic cyclodextrin and C, 

included in cylcodextrin, can interact with chitosan leading to a reduction of positive 

charges, able to bind insulin.  
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3.7. In vitro release studies 

In order to study the influence of the excipients C on drug release, we tested 

nanoparticles with and without C. In particular, fig. 3 shows the insulin amount released 

in phosphate buffer at pH 6.0 during 2 hours from CS/SBE-β-CD/C1/TPP (4/2/0.17/0.5) 

andCS/SBE-β-CD/TPP (4/2/0.5).  

 

 

Fig. 3. Insulin release from loaded nanoparticles CS/SBE-β-CD/CA/TPP (4/2/0.17/0.5) 

and CS/SBE- β-CD/TPP (4/2/0.5) in phosphate buffer, pH 6.0, 37 ◦C (means ± S.D., n = 

3). 

 

As can be seen, the 80 % of loaded insulin was rapidly released from nanoparticles, 

confirming that the insulin release depends on a simple dissociation mechanism based on 

the ionic interaction between the chitosan amino group and insulin negative charges. 

Significant difference between formulations with C1 and without C1 can not be found. 

 

3.8. In Vivo Studies 

Fig. 4 shows the reduction of plasma glucose concentration after intranasal administration 

of different formulations. In particular, the figure reports the plasma glucose levels 

achieved following administration of loaded CS/SBE-β-CD/C1/TPP andCS/SBE-β-

CD/TPP NPs, unloaded CS/SBE-β-CD/C1/TPP NPs as well as insulin solution instilled to 

conscious rats.  
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Fig. 4. Plasma glucose levels achieved in rats following nasal administration of: insulin 

solution, CS/SBE-β-CD/C1/TPP (4/2/0.17/0.5) unloaded nanoparticles and CS/SBE-β-

CD/C1/TPP (4/2/0.17/0.5) and CS/SBE- β-CD/TPP (4/2/0.5) loaded nanoparticles (mean 

± S.D, n=6).  

 

As shown in the figure 4, the administration of unloaded nanoparticles to rats did not 

provide any modification in plasma glucose levels during the experimental period, thus 

indicating the absence of stress that could be caused by the administration procedure or 

the blood sampling. The same figure shows that the administration of insulin control 

solution (5IU/Kg) resulted in a decrease blood levels less than 10 % at 30 min post 

administration. The blood glucose level fell to 87 % basal levels when insulin was 

associated with CS/SBE-β-CD/TPP NPs, confirming CS/CD nanoparticles properties to 

promote the nasal insulin absorption. In particular, chitosan ability to adhere to the 

mucosa and to transiently open the tight junctions and cyclodextrins properties to protect 

drugs from enzymatic degradation and to disrupt the epithelial membrane by extraction of 

phospholipids and proteins (Marttin et al., 1998; Fernandez-Urrusuno et al., 1999; 

Teijeiro- Osorio et al., 2009) can improve insulin absorption. Moreover, these results 

indicate that the nanoparticles preparation method not influenced insulin structure and 

activity.  



EXPERIMENTAL SECTION-PAPER N°3 

Angela Abruzzo-University of Bologna Pag. 173 
 

Interestingly, a greater response was achieved after the administration of insulin loaded 

CS/SBE-β-CD/C1/TPP NPs. In fact, the blood glucose concentration decreased to about 

72% respect to the baseline levels at 30 minutes post-administration. This plasma glucose 

concentration reduction was the maximum and it was significantly different from that 

induced by the insulin control solution at least 1 hour and from that induced by 

nanoparticles without C1 at least 30 minutes post-administration. Indeed, the presence of 

C1 in nanoparticles could improve the pharmacological effect of the formulation, 

probably due to the bioavailability enhancement effect of C1.  

It is also interesting to note that the decrease in plasma glucose level obtained in this 

study with the administration of CS/SBE-β-CD/TPP loaded nanoparticles was lower with 

respect to the decrease observed with a similar formulation (CS/SBE-β-CD/TPP4/3/0.25) 

in our previous study (Teijeiro- Osorio et al., 2009). These differences can be explained 

by the different experimental approach: different animal model  (rabbits vs. rats) and 

different insulin (insulin from bovine pancreas vs. Zn-free human insulin).  

According to our previous studies, we can summarize the interesting results obtained 

when insulin was associated with CS/CD and CS/CD/C/TPP nanoparticles. First, CS/CD 

nanoparticles can enhance the absorption of macromolecules, such as insulin, thanks to 

chitosan and cyclodextrin ability to adhere to the epithelium and to open the tight 

junctions, to disrupt the epithelial membrane, as well as to protect drug from enzymatic 

degradation. Second, as demonstrated in this study, the presence of C1 in the formulation 

can promote a systemic absorption of insulin, leading to a reduction in plasma glucose 

level that was significant different from that induced by the same formulation but without 

C1.  

On the other hand, in our previous works, we hypothesized another mechanism that can 

influence drug nasal absorption. In fact, these nanocarriers can act as a true 

macromolecule carriers, internalizing in the nasal epithelium (as shown in the CLSM 

cross section of a previous work, Teijeiro- Osorio et al., 2009), thus operating 

simultaneously with the mucoadhesion and penetration enhancements mechanisms.  
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4.Conclusions 

 

In this work, CS/CD nanoparticles containing two excipients, C1and C2, able to improve 

insulin bioavailabilitywere prepared. Nanoparticles showed size in the nano range and a 

positive charge due to the presence of chitosan, that allows the interaction with the nasal 

epithelium. Nanoparticles with SBE-β-CD and C1 showed the higher content of the 

excipient C1 and interesting properties in terms of encapsulation efficiency and drug 

release. In vivo studies showed that the presence of the C1 modify insulin bioavailability, 

as demonstrated by the significant glucose decrease in the plasma rats.  
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Concluding remarks 

Chitosan represents a multifunctional polymer, featuring both mucoadhesive and 

permeation-enhancing properties and therefore is a widely studied excipient for 

transmucosal drug delivery. Chitosan have been used for the preparation of gels, solid 

inserts, powders and nanoparticles in which ionic interactions with anionic molecules can 

be recognized. This thesis have contributed to a deeperinvestigation of the properties of 

some chitosan based formulations. 

In particular, the paper 1 have demonstrated that chitosan and gelatin can be successfully 

employed for the formulation of buccal films that ensure the necessary dosefor treatment 

of hypertension and atrial fibrillation.Moreover, along with adequate drug release and 

permeation, desirable film characteristics such as suitable hydration, film tolerability and 

compatibility with buccal mucosaand mucoadhesion, were obtained.  

In the paper 2, polyelectrolyte complexes between chitosan and sodium alginate were 

obtained in the vicinity of the pKa interval of the two polymers. The complexes were able 

to hydrate and adhere to vaginal mucosa and can be used  to prepare vaginal inserts for 

local deliver of chlorhexidine digluconate. The selection of the appropriate 

chitosan/sodium alginate molar ratio as well as the drug amount allowed the modulation 

of insert water-uptake behavior and chlorhexidine digluconate release and provided the 

inhibition of the principal pathogens responsible of aerobic vaginitis and candidiasis.  

In the last paper, CS/CD nanoparticles loaded with insulin and containing two excipinets 

with the capacity to modify the bioavailabity of drug, C1 and C2, were prepared and 

characterized. Results demonstrated that  nanoparticles with SBE-β-CD and C1 showed  

interesting properties in terms of encapsulation efficiency and drug release. In vivo 

studies showed that the presence of C1 improve insulin bioavailability, as demonstrated 

by the significant glucose decrease in the plasma rats.  

I hope that these works will stimulate further investigations in the fieldtransmucosal drug 

delivery using chitosan based formulations and thatresearchers will collect further data 

and concrete clinical perspectives for a real application in the pharmaceutical industry. 
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