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Chapter 1 - Introduction 
 

INTRODUCTION 

 

Human reactions to vibration have been extensively investigated in the past. 

[Dickmann, 1958; Dennis, 1965; Griffin, 1975; Griffin and Whitham 1976]  

 

Vibration, as well as whole-body vibration, was commonly considered as an 

occupational hazard and it has been highlighted for its detrimental effects on 

human condition and comfort. It is normally associated with lower back 

disorders [Bovenzi and Hulshof, 1999], muscle and nerve tissue damage 

[Necking et al 1992], Raynaud’s Disease (vibration white finger) [Herrick, 

2005] and interference with cognitive processes such as that required for 

short-term memory. [Sherwood and Griffin, 1990]  

 

Although vibration may produce undesirable side-effects, different studies 

have shown the positive impacts of vibration upon the bone density of 

postmenopausal women and disabled children [Rubin et al, 2004; 

Verschueren et al, 2004; Ward et al, 2004], back pain [Rittweger et al, 

2002b], stroke [van Nes et al, 2004], multiple sclerosis [Schuhfried et al, 

2005] and muscle spasticity of cerebral palsy sufferers [Ahlborg et al, 2006]. 

Physiologists and physiotherapists have also been reported to use vibration 

as a therapeutic intervention such as for clearing the lungs and improving 

joint mobility. 

 



A great part of the literature is however dedicated to the positive effects of 

vibration when used as method for muscular stimulation and as an exercise 

intervention (muscular training). 

 

The aim of research has been the investigation on the positive effects that 

the use of vibrations, in particular the effects of specific whole body 

vibrations, may have on muscular activity. 

 

THE EFFECTS OF VIBRATION 

 

Vibration effects were initially investigated to study the actions of muscle 

spindles [De Gail et al, 1966; Desmedt and Godaux, 1978; Marsden et al, 

1969]. Indeed, localized, direct applications of vibratory stimuli to a single 

muscle or a tendon where found to produce reactions of muscle spindles.[De 

Gail et al, 1966; Marsden et al, 1969; Desmedt and Godaux, 1975 and 1978]  

 

Local tendon vibrations induce activity of the muscle spindle la fibers, 

mediated by monosynaptic and polysynaptic pathways and a reflex muscle 

contraction known as the Tonic Vibration Reflex (TVR) arises in response to 

such vibratory stimulus.[Roll et al, 1989; Bongiovanni and Hagbart, 1990; 

Romaiguére et al, 1991; Person and Kozina, 1992; Martin and Park, 1997].  

 

Whole body vibration training aims to mechanically activate muscles by 

eliciting stretch reflexes and was initially proposed as a possible application 

of the TVR to the entire body. [Torvinen et al, 2002]  



The impact of whole body vibration (WBV) treatments on muscular activity, 

neuromuscular, and postural control has been widely studied. The first 

application of vibration in this field was conducted by Nazarov, which 

demonstrated the efficacy of WBV in increasing muscle strength [Nazarov 

and Spivak, 1885]. Then, the effect of WBV treatments has been evaluated 

on subjects with different athletic conditions, age, sex, and according to 

different exercise protocols [Abercromby et al, 2007; Cardinale et al, 2003, 

Cesarelli et al, 2010; Hazel et al, 2007; Martin and Park, 1997; Petit et al, 

2010; Torvinen et al, 2002]. 

 

Other research activities showed that the vibration stimulus produced 

positive effects on bone mineral density [Belavý el al, 2011; Von Stengel et 

al, 2011a,b] and human hormones [Cardinale et al, 2010a,b; Erskine et al, 

2007; Kvorning et al, 2006]; whereas, its positive effect on patients with 

Parkinson’s disease is still doubtful [Arias et al, 2009; King et al, 2009; 

Turbanski et al, 2005]. Roelants [Roelants et al., 2006] studied the 

electromyographic (EMG) responses of the rectus femoris, vastus lateralis, 

and vastus medialis during static squat. They showed that EMG activity was 

higher in the presence of vibration in all the muscle groups and in all 

exercises. In agreement, Abercromby and colleagues [Abercromby et al, 

2007] analyzed electromyographic signals on subjects performing static and 

dynamic squat while on a vibration platform. They reported an increase in 

the neuromuscular activation of the muscles during WBV exercises. 

 

Other works have analyzed the rise in specific oxygen consumption (sVO2) in 

the last seconds of the exercise [Rittweger et al, 2001 and 2002], when a 



steady-state condition is reached, to provide an estimation of the 

cardiorespiratory system activity. These studies are based on the assumption 

that the sVO2 response is due to the increased number of muscle fibers (and 

thus the increased muscle activity) activated by the vibrations [Martin  et al, 

1997; Person and Kozhina, 1992; Roll et al, 1989; Romaiguére et al, 1991]. In 

fact, Rittweger et al. [Rittweger et al, 2001] reported that simple standing 

and dynamic squats performed on a WBV platform increased sVO2 compared 

to the same exercise without vibration. Later, Rittweger et al. [Rittweger et 

al, 2002] showed that the sVO2 was increased when vibration frequency and 

amplitude were increased. Similarly, after monitoring sVO2 and heart rate 

(HR) during and 24 hrs after a WBV exercise session and a second session 

without vibration (NoV), Hazell and Lemon [Hazell and Lemon, 2011] 

reported that sVO2 was 23% higher during WBV training session. 

 

MOTIVATIONS 

 

Despite many studies on the effects of the vibrations applied to the whole 

body (i.e. WBV), the findings in literature are not yet coherent. It is 

important to point out that the studies presented in literature investigated 

WBV effects only on muscular activity by recording electromyographic signal 

[Abercromby et al, 2007; Roelants et al, 2006] or on metabolic power by 

monitoring the sVO2 [Hazell and Lemon, 2011; Rittweger et al, 2001 and 

2002] without standard protocol and using different exercise parameters.  

The purpose of this study was to monitor simultaneously both signals in a 

novel approach. We investigated the differences due to WBV effects on VO2 

and EMG between static and dynamic squat exercises. This was done to 



identify the better exercise characteristics for improving neuromuscular 

activation and progress in training efficacy. Monitoring VO2 throughout the 

exercise and not just during the last seconds (sVO2) of the exercise (Rittweger 

et al, 2001 and 2002) allows for analyzing the curves from the beginning of 

the exercise in order to find out possible differences in the sVO2 trend and 

differences in how it is reached at steady-state. 



CHAPTER 2 - WHOLE BODY VIBRATIONS 
 

WHOLE BODY VIBRATIONS 

 

Vibratory stimulations were investigated for their positive action in eliciting 

muscle activity. Localized vibrations applied to tendons have been used for 

studying the tonic vibration reflex (TVR), a reflex muscle response induced by 

stretching action of the applied vibration. The change produced in the length 

of the muscle is detected by muscle spindles and induces reflex and adaptive 

responses. [Bongiovanni and Hagbarth, 1990]  

 

Training with vibration extended to the whole body, that is Whole Body 

Vibration  (WBV), was initially proposed as a possible application of the Tonic 

vibration reflex  occurrence to the entire body. [Bosco et al, 1999b] Indeed, if 

a localized vibratory stimulus produced elicited muscle activity, then whole 

body vibration, if properly delivered, could obtain similar muscular activity in 

all the body muscles. 

 

The aim of WBV training (WBVT) is to mechanically activate muscles by 

eliciting  similar stretch reflexes that occurred for localized application of 

vibration.  

 

Nasarov, a  Russian coach, was one of the first to apply vibratory stimulation 

to help athletes in physical training. Vibrations were applied to the distal 

muscles and then transmitted through the body chain to the proximal 



muscles. He used a special device to generate vibrations at a frequency of 

about 23Hz. Nasarov experiments highlighted the potential benefits of 

training with vibration to muscular development and peripheral circulation 

improvement. [Nazarov and Spivak, 1987]  

 

Although literature has largely analyzed and documented the effects of WBV 

in electing neuromuscular, metabolic and hormonal responses, the exact 

mechanisms that are accountable for those effects are still unclear. 

 

WBV training is clearly different from localized vibratory stimulation; rarely 

studies on WBVT monitored the local muscle stimulation (acceleration and 

displacement) and accounted for motion artifacts presence on EMG 

recordings. 

 

However, it is important to understand the neuro-physiological mechanisms 

involved in muscle activation under vibration stimulation in order to 

prescribe safe and effective WBVT programs. [Cardinale and Wakeling, 2005] 

 

PRODUCTION AND DELIVERY OF VIBRATION 

 

Several methods of vibratory stimulation have been reported within the 

literature, they can be divided by the nature of the vibratory stimulus: local 

applied stimulus or whole body extended vibration. 

Whole body vibration is the most common used method of delivering 

vibration in the fields of exercise physiology and sport medicine for 

enhancing human performance. 



For this type of vibration stimulation, subjects stand on an oscillating plate 

and vibratory stimulation can be applied by using vibrating platform with a 

vertical or a rotational (side-to-side alternating) direction (Figure 1). These 

two ways of applying the stimulus generate dissimilar mechanical behaviors 

and hence they lead to a different neuromuscular response [Pel et al, 2009]. 

 

  

Figure 1: Methods of whole body vibration stimulation: alternating rotation (left) and 

vertical oscillation (right) (Cardinale and Wakeling, 2005) 

 

HUMAN RESPONSE TO WHOLE BODY VIBRATION 

 

WBVT has been proposed in addition with classical resistance training for its 

ability to increase the strength in the lower limbs. 

 

Recent studies recommend WBVT as a possible therapeutic approach of 

sarcopenia and osteoporosis. Although in the past, vibrations have been 

studied largely for their possible harmful effects, recently it was highlighted 

that WBVT may achieve safe and effective outcomes on the musculoskeletal, 

endocrine-hormonal and cardiovascular system. 



 

However, the results depend strictly on the stimulation protocol, which is 

related to different parameters: the frequency and amplitude of the 

stimulus, the duration of WBVT session, the physical conditions of the 

subjects involved and the posture assumed on the platform. 

 

In the next paragraphs the main aspects on the mechanism and hypothesis 

on which these treatment are based are presented. 

 

TONIC VIBRATION REFLEX 

 

Within WBV literature, tonic vibration response and/or the tonic vibration 

reflex (TVR) are acronyms used to describe the neuromuscular effects of 

localized vibration.  

 

TVR is a sustained contraction of a muscle subjected to vibration. The 

application of mechanical vibration to the muscle or tendon elicits a reflexive 

contraction and the reciprocal inhibition of its antagonists [Eklund and 

Hagbarth, 1966] 

 

The TVR occurred when vibration is applied to the muscle belly or tendons 

and is closely related to the stretch reflex (figure 2); 30-100 Hz vibration 

activates receptors of the skin, tendons and, most importantly, muscle 

spindles. [Cardinale and Lim, 2003; lssurin et al, 1996; Lebdev and Polyakov, 

1992] 

 



 

Figure 2: Illustration of the stretch reflex 

Muscle spindle discharges are sent to the spinal cord through afferent nerve 

fibers, where they activate monosynaptic and polysynaptic reflex arcs 

(stretch reflex), causing the muscle to contract. 

 

Figure 3: Potential mechanisms for vibration-induced neuromuscular effects  (adopted from Cardinale 

and Bosco, 2003) 



 

In WBV other receptors are stimulated. In addition to the neuromuscular 

spindles and the Golgi tendon organs, skin, joints and ligaments receptors 

are also stimulated (Pacinian and Meissner corpuscles, type lll and IV nerve 

endings). (Figure 3) 

 

THE MUSCLE TUNING HYPOTHESIS 

 

There is evidence to suggest that the body is capable of tuning its muscle 

activity in order to reduce the vibrations that are passing through the soft 

tissue that may produce a detrimental effect [Nigg, 1997].  

 

The amount of muscle activity required is dependent on the level of 

vibration, where maximal muscle activation can reduce or purge oscillations 

within the tissues.  

 

Everyday activities such as walking, running and jumping result in impact 

forces, from the collision of the heel with the ground, producing vibrations of 

10–20 Hz to the lower limbs [Wakeling and Nigg, 2001], where an input 

signal from the impact force produces muscle activity or ‘tuning’ response to 

reduce soft tissue vibrations.  

 

This activation or tuning supposedly occurs shortly before the heel strikes 

the ground [Nigg, 1997]. Consequently, muscle tuning relies on three 

components: i) the frequency and amplitude of the input force, ii) the 

vibration resonance of the soft tissue and iii) the level of muscle activity.  



 

Therefore, damping vibration will depend on the individual’s neuromuscular 

(muscle spindle) response, the sensitivity of joint and skin receptors, the 

proportion of muscle fiber types and viscoelastic (stiffness) elements 

[Bazzett-Jones et al., 2008].  

 

In summary, impact forces create vibrations in the foot where the vibrations 

travel through the lower limb musculature. To prevent resonance, soft 

tissues damp the vibrations, which cause sensory organs to send impulses to 

the central nervous system to increase muscle activity and adjust joint 

stiffness.  

 

Evidence for muscle tuning was presented by increased gastrocnemius and 

biceps femoris activity along with corresponding muscle damping. [Wakeling 

et al., 2003]  

 

Vibration damping has also been highlighted during human walking. 

[Wakeling et al, 2003] 

 

ACUTE AND CHRONIC EFFECTS OF VIBRATIONS 

 

The effects of whole body vibration can be divided in two main categories: 

Acute and Chronic. Acute are named the effects that appear during the 

treatment (e.g. EMG increase) and after a short period of time (few days). 

Chronic effects are generally intended the outcomes of prolonged WBV 

exposures.   



 

Acute Effects 

The acute beneficial effects of WBV (that is, following a single session of 

WBV) are less convincing than long-term effects.  

 

It appears that strength, power and balance may be increased [Bosco et al., 

1999 and 2000; Torvinen et al., 2002a], decreased [deRuiter et al., 2003] or 

remain unchanged [deRuiter et al., 2003; Gerodimos et al., 2010; Torvinen et 

al., 2002b] depending on the exercise volume and intensity while flexibility 

may be improved [Gerodimos et al., 2010]. 

 

Surface EMG analyses in different studies demonstrate a significant increase 

in muscular activity; some study reports that the EMG increase is frequency 

dependent. [Bosco et al, 1999; Cardinale and Lim, 2003] 

 

Acute effects on muscular activity are also supported by increased metabolic 

activity, and even an improved circulation in the target muscles. [Bosco et al, 

2000; Rittweger et al, 2001] 

 

Even if metabolic activity is increased it appears to have little effect on fat 

mass.[Roelants et al, 2004] A study, combining squatting exercise with 

additional load of 35-40% of bodyweight and WBV stimulation, reported the 

oxygen consumption to increase up to 50% of maximal oxygen uptake 

[Rittweger et al., 2002a] 

 



Variation of frequency and/or amplitude have been found to vary oxygen 

consumption and in turn energy expenditure. [Rittwegeret al, 2001]  

 

These findings, however, have been contradicted by other work that 

exposed untrained individuals to five times one minute WBV exposures (30 

Hz; 8mm; 284.3 m s-2) and two minute rest periods.[de Ruiter et al, 2003]. 

This study also showed the knee extensors to have a reduced ability to 

perform maximal voluntary contractions up to 60 minutes after static squat 

WBV.[de Ruiter et al, 2003] Similarly, participants described as non-elite, 

failed to show acute improvements in vertical jump height after experiencing 

five times two minute exposures, separated by 40 second rest periods, at a 

frequency of 26 Hz and amplitude of 5.5 mm (maximum acceleration = 146.8 

m s-2) [Cochrane et al, 2004]. It is unclear why these differences occurred.  

 

As demonstrated, several studies have analyzed the acute effects of WBVT 

on neuromuscular performance; however it is difficult to find agreement in 

findings. EMG analysis, indeed, were often made only by the use of concise 

parameters (i.e. root mean square) a rarely accounted for the presence of 

motion artifact on surface electrodes. WBV amplitude also impacts upon the 

acute response. 

 

Chronic Effects 

As well as research on WBV acute effects, research on prolonged WBV 

treatments has shown opposite or inconsistent results. A repeated exposure 

to WBVT over 10 days produced increases in power output and vertical jump 

height, 6% and 12% respectively.[Bosco et al, 1998] 



 

Nevertheless, in another group of physically active individuals, six WBV 

sessions over two weeks do not have revealed improvements in knee 

extensor strength. [de Ruiter et al, 2003] 

 

Performing two months of static and light dynamic exercises while exposed 

to WBV, an untrained group, improved knee extensor strength and counter 

movement jump height by 7.8% and 2.5% respectively. However, the further 

two months of treatments, did not revealed differences between the WBV 

and control group for either performance measure [Torvinen et al, 2002a]. 

 

WBVT effects have been also incongruous in longer term research. 

 

A comparison between the combination of WBV with dynamic exercise and 

traditional resistance training alone was completed, in untrained individual 

groups, after a 12-week period. Results have shown similar improvements in 

knee extensor strength occurred for both groups but countermovement 

jump improved in the WBV group only. [Delecluse et al, 2003] 

 

In a study lasting eight-month period using the same exercise protocol, 

untrained individuals improved vertical jump height by 7.8% more than a 

control group, but failed to show any change in knee extensor strength. 

[Torvinen et al, 2003]. 

 



WBV exercise in the static squat position over 11-weeks has demonstrated 

no change in knee extensor strength and counter movement jump height. 

[de Ruiter et al, 2003] 

 

HORMONAL RESPONSE 

 

Among acute and chronic effects of training with WBV, some studies have 

also suggested significant effects on endocrine system. 

 

Applications of vibration to the whole body indeed have been found to 

change the production of testosterone, cortisol and growth hormone. [Bosco 

et al, 2000] 

 

Vibratory stimulation, making quick changes in the length of muscle and 

tendon leads to a complex reflex response. The activation of specific 

afferents has proved able to modulate growth hormone production. 

Experiments on rats have also shown how vibrations may be able to elevate 

serotonin levels (5HT) and 5-HIAA in the brain. 

 

NOMENCLATURE 

 

As evidenced in the text, although the consistent number of study on WVBT 

the effectiveness of vibration as a method for muscular stimulation seems to 

be still unclear. 

 



Among others, one possible reason has also been found in the lack of 

nomenclature standardization. [Lorentzen et al, 2008] The lack of 

standardization makes difficult to replicate experiments among researchers 

leading to misinterpretation of the phenomena. 

 

The main aspects on which the literature shows higher discrepancy are: 

nomenclature used for reporting vibration magnitude and the methods to 

compute the maximum acceleration impressed by the platform. Vibration 

frequency appears instead to be accurately and clearly reported in literature, 

measured in oscillation per second (Hz). 

 

Magnitude of Vibration 

Magnitude is one of the variables of the WBV treatment.  

 

As well as the other parameters it has to be reported clearly. Magnitude has 

been associated with displacement, amplitude, peak to peak displacement. 

[Lorentzen et al, 2008] As a paradox, in one study only the vibration 

frequency was reported making it impossible to replicate [Rønnestad, 2004]. 

 

In the case of vibration, amplitude is the maximum displacement of a 

vibrating point from a mean position, while peak-to-peak displacement is 

used to describe the total vibration excursion of a point between its positive 

and negative extremes (see Figure 4). 

 



 

Figure 4: Frequency, amplitude and peak to peak displacement of a vibrating object (adopted from 

CCOHS) 

 

The movement of tilting and vertical oscillating platform can be assumed 

sinusoidal: 

 

s(t) = A sin (2πft) 

 

where f is vibratory frequency, A is the amplitude. 

 

In vertical oscillating platforms all the points will move approximately at the 

same way; they will have the same peak to peak displacement and the same 

maximal amplitude. 

 

However, in tilting oscillating platform it is difficult to deduce the real 

acceleration or displacement to which the subject undergoes. As shown in 

figure 5 feet distance from the rotation axis vary the magnitude of the 



stimulus delivered to the patient as well as the acceleration. It can be 

computed as the double derivatives of s(t): 

 

 

 

 

Figure 5: Explanation of the variation in peak to peak displacement of fixed points of the 

platform depending on their distance from the axis 

 

Practices in reporting amplitude, displacement and peak-to-peak 

displacement vary so widely that it is really important to establish specific 

guidelines in an attempt to gain consistency across studies. [Lorentzen et al, 

2008] 

 

Acceleration 

As previously mentioned, in WBV literature the methods to report 

acceleration impressed by the platform have shown a similar range of 

inconsistency as that reported for amplitude. [Lorentz et al, 2008] 

 

Acceleration in not always reported as peak (maximal) acceleration. 



 

Acceleration depends on frequency and amplitude of the vibration (formula 

2) and the maximal value (peak) can be easily computed by: 

 

amax = A(2πf)2 

 

Gravitational forces then, can be obtained by dividing the maximal 

acceleration by gravity g (9,81[m][s-2]). 

 

Therefore, an amplitude of 2 mm and a frequency of 20 Hz will produce a 

peak acceleration of amax = 31.55 [m][s-2]. 

 

Table 1 shows some example of estimated maximal accelerations as a function of frequency and amplitude. 

 

Amplitude 

[mm] 

Frequency 

[Hz] 

Acceleration 

[m][s]
-2

 

1 10 3.94 

2 10 7.89 

1 20 15.78 

2 20 31.55 

1 30 35.49 

2 30 70.99 

1 40 63.10 

2 40 126.20 

 



Acceleration (maximum), amplitude and frequency are therefore the basic 

parameters to be reported in vibration studies. The use of the maximal 

acceleration will demonstrate to the reader the real vibration intensities that 

are applied to the individuals, making similarity in results to be accurately 

made. 

 

NOMENCLATURE RECOMMENDATION 

 

After a concise analysis of the terminology used to report all the variables 

characterizing vibratory treatment, Lorentzen et al. 2008 proposed a 

nomenclature recommendation. 

 

Recommendations suggest the amplitude to be reported as the maximum 

displacement from the plate's horizontal position (peak to peak 

displacement). 

 

In case of using tilting platforms precise position of anatomical landmark of 

the foot, such as the middle toe, should be measured. 

 

Clearly, each of the studies should report the amplitude, frequency and 

maximal acceleration. 

 

”Acceleration max or gravity more accurately indicate the forces being 

imposed on the human body during whole body vibration and should 

therefore be reported by all studies" [Lorentzen et al, 2008] 

 



HEALTH RISKS ASSOCIATED WITH WHOLE BODY VIBRATION EXPOSURE 

 

Whole body vibration exposure has often been associated with health risks. 

Prolonged exposure to vibration, increases the risk of cognitive changes, 

acrophobia, low back trouble, visual limitations and epilepsy, among other 

things. [Mester et al, 1999] 

 

Vibration is believed to be an occupational risk factor that may induce 

adverse effects in trucks drivers , fork-lift trucks, tractors, cranes, helicopter 

pilots [Bovenzi and Hulshof, 1999] and subjects who operate hand held 

machinery. [Bovenzi et al, 2000] Amplitude and frequency of the vibration 

also play a key role in the possible risks of prolonged exposure to vibration. 

The body’s strategy in response to such vibration frequencies is to attenuate 

the vibration as much as possible to prevent discomfort. ISO 2631 

establishes the discomfort level for vibration exposure of less than 30 

minutes, at 0.4 g at 30 Hz. It is worth mentioning that the resonance 

frequencies of vital organs range from 5 to 20 Hz. 

 

Nevertheless, whole body vibration research has typically used accelerative 

forces exceeding these loads (see table 1).  

 

The literature has documented some minor side-effects in response to WBV 

exposure. Erythema and edema of lower limbs were reported as common 

side-effects probably due to the occurrence of vessels 

vasodilatation.[Crewther et al, 2004; Rittweger et al, 2000; Kerschan-Schindl 

et al., 2001] Hip and knee pain, discomfort from the vibration induced head 



motion have also been reported. High amplitudes, such as 5-6 mm may 

induce severe accident to the participants. [Crewther et al, 2004; Roelants et 

al, 2004; Russo et al., 2003] 

 

We here remember that for such amplitude (5-6 mm) and a frequency of 30 

Hz stimulation the accelerations can reach values around 200 m s-2. 

 

Although, not only these studies utilized these intensities with untrained 

individuals, it was concluded that frequency and amplitude combinations 

that produce large g-forces should be cautiously applied. [Crewther et al, 

2004]. 

 

Other studies reported the effects at specific frequencies, such as faintness 

at 27 Hz and "sea-sickness” feeling at 17 Hz. [Rubin et al, 2004] 

 

In older adults, the most typical side effect has been transient itching, 

tingling and erythema of the feet and lower legs. [Bruyere et al, 2005; Russo 

et al, 2003] 

 

Reports of back and groin pain that has precluded participants from 

continuing the treatment. [Roelants et al, 2004; Bautmans et al, 2005] 

 

Knee pain has also been reported in participants with pre-existing 

osteoarthritis, subsiding after several days of rest. [Roelants et al, 2004; 

Russo et al, 2003] 

 



HUMAN RESONANCE 

 

When considering the adverse effects of WBV, human resonance should be 

considered. The complexity of the human structure, and the anthropometric 

human characteristics, implies that there are different resonant frequencies 

[Randall et al, 1997].  

 

Studies have reported varying resonant frequencies during standing posture 

ranging between 5.5 to 15.7 Hz [Matsumoto and Griffin, 1998; Randall et al, 

1997). Individuals may have one main resonant frequency [Harazin and 

Grzeik, 1998] but may also have resonant peaks at other frequencies 

[Matsumoto and Griffin, 1998]. Height, weight and gender have been 

demonstrated to bear no relationship with resonance [Randall et al, 1997]. 

 

Exposure to frequencies at human resonance increases the transmissibility of 

vibration, increasing the forces transmitted through some body parts and 

potentially causing a pathogenic response. In the erect and relaxed standing 

postures, transmissibility at the hip has been demonstrated to exceed 100% 

at frequencies lower than 20 Hz [Rubin et al, 2003]. Research with the 

elderly has been performed within the reported ranges of human resonance, 

without causing detrimental effects [Bruyere et al, 2005]. 

 

NATIONAL AND INTERNATIONAL GUIDELINES 

 

It is now widely accepted that prolonged and regular exposure to vibration 

can have a detrimental effect on an operator's health. 



 

Regulation and guidelines on vibration exposure have been therefore issued 

during years in a converging way among different countries. The main aims 

on which law concentrate are “Whole Body Vibration” and “Hand-Arm 

Vibration Syndrome”. 

 

As reported by Legislative Decree 187/05 we can define: 

• Whole body vibration: "the mechanical vibration that, when 

transmitted to the whole body, entails risks to the health and safety of 

workers, in particular lower- back morbiditiy and trauma of the spine"  

• Hand-arm vibration: "the mechanical vibration that, when transmitted 

to the human hand-arm system, entails risks to the health and safety 

of workers, in particular vascular, bone or joint, neurological or 

muscular disorders". 

 

Hand-arm vibration syndrome (HAV or vibration white finger) is a 

widespread hazard for employees in many industries and occupations. HAV 

exposure at work can arise from the use of hand-held power tools (such as 

grinders or hammer drills), hand-guided machinery (such as lawnmowers 

and plate compactors) and hand-fed machines (such as pedestal grinders). 

 

Since the risks of pathologies emerging from vibration exposure are evident, 

individuals can be reasonably protected from the health effects caused by 

vibration by reducing time to exposure. 

 



The ISO 2631 guidelines on the vibration exposure limit values suggest for 

hand-arm vibrations a maximal daily exposure value of about A(8) = 5 m/s2, 

while for whole-body vibration the daily exposure limit value is A(8) = 0.9 

m/s2. 

 

Where A(8) is also an indicator of risk assessment and is computed as 

follows: 

 

Hand-arm vibration 

 

The assessment of the level of exposure to hand-arm vibration is based on 

the calculation of the daily exposure value normalized to an eight-hour 

reference period, A(8) (m/s2), expressed as the square root of the sum of the 

squares (A(wsum)) of the R.M.S values of the frequency-weighted 

accelerations, determined on the orthogonal axes x, y, z, as defined in the 

ISO standard 5349-1: 2001. The mathematical formula to calculate A(8) is 

shown below. 

 

A(8) = A(wsum) (Te/8)1/2 

 

where Te represents the Total daily duration of vibration exposure (hours); 

A(wsum) is equal to (a2
wx+ a2

wy+ a2
wz)

1/2 and awx, awy, awz are the R.M.S values of 

frequency-weighted acceleration (in m/s2) on the orthogonal axes x, y, z (ISO 

5349-1: 2001) 

 

 



Whole-body vibration 

 

The assessment of the level of exposure to whole-body vibration is based on 

the calculation of the daily exposure over an eight-hour period, A(8) (m/s2), 

calculated as the highest R.M.S. value of the frequency-weighted 

accelerations, determined on three orthogonal axes: 

 

1.4 awx, 1.4 awy, awz 

 

using the formula shown below: 

 

A(8) = A(wmax) (Te/8)1/2 

 

where Te represents the total daily duration of vibration exposure (hours); 

A(wmax) is the highest value between 1.4 awx, 1.4 awy, awz (individual into a 

seated position) and awx; awv; awz, are the R.M.S. values of the frequency-

weighted acceleration (in m/s2) on the orthogonal axes x, y, z (ISO 2631-1: 

1997) 

 

 

 



CHAPTER 3 - NEUROMUSCULAR SYSTEM 
 

NEUROMUSCULAR SYSTEM 

 

Muscular system is the biological system of humans that produces 

movement. The combination of the nervous system and muscles, working 

together to permit movement, is known as the neuromuscular system. 

 

The muscular system, in vertebrates, is controlled through the nervous 

system, although some muscles, like cardiac muscle, can be completely 

autonomous. The brain controls the movements of skeletal (voluntary) 

muscles via specialized nerves. The electrical signal from the brain travels 

down the nerves and prompts the release of the chemical acetylcholine from 

the pre-synaptic terminals. This chemical is picked up by special receptors in 

the muscle tissue. If enough receptors are stimulated by acetylcholine, the 

result is muscular contraction. 

 

Muscle is contractile tissue and is derived from the mesodermal layer of 

embryonic germ cells. Its function is to produce force and cause motion, 

either locomotion or movement within internal organs. Much of muscle 

contraction occurs without conscious thought and is necessary for survival, 

like the contraction of the heart or peristalsis, which pushes food through 

the digestive system. Voluntary muscle contraction is used to move the body 

and can be finely controlled, such as movements of the finger or gross 

movements that of the biceps and triceps. 



 

Depending on their function, therefore, we can characterize three muscle 

types  

 

• smooth or "involuntary": it consists of spindle shaped muscle cells 

found within the walls of organs and structures such as the esophagus, 

stomach, intestines, bronchi, uterus, ureters, bladder, and blood 

vessels. Smooth muscle cells contains only one nucleus and no 

striations;  

• cardiac muscle: as well as smooth muscle it is also an "involuntary 

muscle" but it is striated in structure and appearance. Like smooth 

muscle, cardiac muscle cells contains only one nucleus. Cardiac muscle 

is found only within the heart; 

• skeletal or "voluntary muscle": it is anchored by tendons to the bone 

and is used to effect skeletal movement such as locomotion. Skeletal 

muscle cells are multinucleated with the nuclei peripherally located. 

Skeletal muscle is called ‘striated‘ because of the longitudinally striped 

appearance under light microscopy.  

 

Skeletal and cardiac muscle are types of striated muscle. Striations don't give 

the muscle its characteristics, but are the physical result of the overlapping 

patterns of actin and myosin filaments in those muscles. Although smooth 

muscle has actin and myosin filaments, it does not appear to be striated as 

these filaments are not arranged as orderly as they are in the other two 

types of muscle. Striated muscle is often used in short, intense bursts, 



whereas smooth muscle sustains longer or even near-permanent 

contractions. 

 

ANATOMY AND PHYSIOLOGY OF SKELETAL MUSCLES 

 

Body skeletal muscles consists of muscle tissue, connective tissue, nerves 

and blood vessels. A fibrous fascia called the epimysium covers each muscle 

and tendon. Tendons connect the muscle belly to bone and they attach to 

the bone periosteum – more connective tissue that covers all bones. 

Contraction of the muscle belly pulls on the tendon and in turn, the bone it is 

attached to. 

 

Limb muscles (such as the biceps brachii in the upper arm) have two 

attachments to bone. The proximal or origin is the attachment closest to the 

trunk. Distal or insertion is the attachment furthest from the trunk. Trunk 

muscles (such as the rectus abdominus in the stomach) also have two 

attachments: superior (closer to the head) and inferior (further from the 

head). 

 



 

Figure 6: Muscles of upper limb. in figure it is depicted the origin and insertion of biceps and triceps 

brachi muscle 

 

Muscles are composed by a great number of muscle cells or fibers. Muscle 

fibers are grouped into bundles (of up to 150 fibers) called fasciculi.  

 

Each fasiculus or bundle is surrounded by connective tissue called 

perimysium.  

 

Fibers within each bundle are surrounded by more connective tissue called 

endomysium. 

 

Each individual fiber consists of a membrane (sarcolemma) and can be 

further broken down into hundreds or even thousands of myofibrils. 

Myofibrils are surrounded by sarcoplasm and together they make up the 

contractile components of a muscle. See the diagram below: 



 

 

Figure 7:Muscle anatomy representation (Adopted from Wikimedia Commons) 

 

Sarcoplasm contains glycogen, fat particles, enzymes and the mitochondria. 

The myofibrils consist of two types of protein filaments or myofilaments, 

actin and myosin. 

 

Myosin and actin filaments run in parallel to each other along the length of 

the muscle fiber. Myosin has tiny globular heads protruding from it at 

regular intervals. These are named cross bridges and play a pivotal role in 

muscle action. 

 

Each myofibril is organized into sections along its length. Each section is 

called a sarcomere and they are repeated right along the length of a muscle 

fiber. It's similar to how a meter ruler is split into centimeters and 

millimeters. Just as the millimeter is the smallest function of a ruler, the 

sarcomere is the smallest contractile portion of a muscle fiber. 



 

Figura 8 :Sarcomere (Adopted from MCAT) 

 

The sarcomere is divided into different zones to show how it behaves during 

muscle action (figure 8). The Z-line separates each sarcomere. The H-zone is 

the center of the sarcomere and the M-line is where adjacent myosin 

filaments anchor on to each other.  

 

Skeletal muscle fibers 

Skeletal muscle fiber types can be characterized into two main types: slow 

twitch (Type I) muscle fibers and fast twitch (Type ll) muscle fibers. Fast 

twitch fibers can be further categorized: 

 

• Type I, slow oxidative, slow twitch, or "red" muscle is dense with 

capillaries and is rich in mitochondria and myoglobin, giving the 

muscle tissue its characteristic red color. It can carry more oxygen and 

sustain aerobic activity. 



• Type II,fast twitch, muscle has three major kinds that are, in order of 

increasing contractile speed: 

a) Type IIa, which, like slow muscle, is aerobic, rich in mitochondria and 

capillaries and appears red; 

b) Type IIx (also known as type lld), which is less dense in mitochondria 

and myoglobin. This is the fastest muscle type in humans. It can 

contract more quickly and with a greater amount of force than 

oxidative muscle, but can sustain only short, anaerobic bursts of 

activity before muscle contraction becomes painful (often attributed 

to a build-up of lactic acid). N.B. in some books and articles this 

muscle in humans was, confusingly, called type IIB; 

c) Type IIb, which is anaerobic, glycolytic, "white" muscle that is even 

less dense in mitochondria and myoglobin. In small animals like 

rodents or rabbits this is the major fast muscle type, explaining the 

pale color of their meat.  

 

For most muscles, contraction occurs as a result of conscious effort 

originating in the brain. The brain sends signals, in the form of action 

potentials, through the nervous system to the motor neuron that innervates 

the muscle fiber. However, some muscles (such as the heart) do not contract 

as a result of conscious effort. These are said to be autonomic. Also, it is not 

always necessary for the signals to originate from the brain.  

 

Reflexes are fast, unconscious muscular reactions that occur due to 

unexpected physical stimuli. The action potentials for reflexes originate in 

the spinal cord instead of the brain.  



 

The functions of the skeletal muscle include support of the body, aids in 

bone movement, helps maintain a constant temperature throughout the 

body, assists with the movement of cardiovascular and lymphatic vessels 

through contractions, protection of internal organs and contributing to joint 

stability  

 

ORGANIZATION OF SKELETAL MUSCLE FIBERS 

 

The muscle fibers in a single fasciculus are parallel, but the organization of 

fasciculi in the skeletal muscle can vary, as can the relationship between the 

fasciculi and the associated tendon. Four patterns of fasciculi organization 

form parallel muscles, convergent muscles, pennate muscles, and circular 

muscles. 

 

Parallel Muscles 

In a parallel muscle, the fasciculi are parallel to the long axis of the muscle. 

Most of the skeletal muscles in the body are parallel muscles. Some are flat 

bands with broad attachments (aponeuroses) at each end; others are plump 

and cylindrical with tendons at one or both ends. In the latter case, the 

muscle is spindle-shaped, with a central body, also known as the belly, or 

gaster. The biceps brachii muscle of the arm is a parallel muscle with a 

central body. When a parallel muscle contracts, it gets shorter and larger in 

diameter. You can see the bulge of the contracting biceps brachii on the 

anterior surface of your arm when you flex your elbow. 

 



A skeletal muscle cell can contract until it has shortened by roughly 30 

percent. Because the fibers in a parallel muscle are parallel to the long axis of 

the muscle, when the fibers contract together, the entire muscle shortens by 

the same amount. If the muscle is 10 cm long, the end of the tendon will 

move 3 cm when the muscle contracts. The tension developed during this 

contraction depends on the total number of myofibrils the muscle contains. 

Because the myofibrils are distributed evenly through the sarcoplasm of 

each cell, we can use the cross-sectional area of the resting muscle to 

estimate the tension. A parallel muscle 6.25 cm2 in cross-sectional area can 

develop approximately 23 kg of tension. 

 

Convergent Muscles 

In a convergent muscle, the muscle fibers are spread over a broad area, but 

all the fibers converge at one common attachment site. They may pull on a 

tendon, an aponeurosis (tendinous sheet), or a slender band of collagen 

fibers known as a raph. The muscle fibers typically spread out, like a fan or a 

broad triangle, with a tendon at the apex. The prominent chest muscles of 

the pectoralis group have this shape. A convergent muscle has versatility, 

because the stimulation of only one portion of the muscle can change the 

direction of pull. However, when the entire muscle contracts, the muscle 

fibers do not pull as hard on the attachment site as would a parallel muscle 

of the same size. The reason is that the convergent muscle fibers pull in 

different directions rather than all pulling in the same direction. 

 



Pennate Muscles 

In a pennate muscle, the fascicles form a common angle with the tendon. 

Because the muscle cells pull at an angle, contracting pennate muscles do 

not move their tendons as far as parallel muscles do. But a pennate muscle 

contains more muscle fibers and, as a result, produces more tension than 

does a parallel muscle of the same size. Tension production is proportional 

to the number of contracting sarcomeres; the more muscle fibers, the more 

myofibrils and sarcomeres. 

If all the muscle fibers are on the same side of the tendon, the pennate 

muscle is unipennate. The extensor digitorum muscle, a forearm muscle that 

extends the finger joints, is unipennate. More commonly, a pennate muscle 

has fibers on both sides of the tendon. Such a muscle is called bipennate. 

The rectusfemoris muscle, a prominent muscle that extends the knee, is 

bipennate If the tendon branches within a pennate muscle, the muscle is 

said to be multipennate. The triangular deltoid muscle of the shoulder is 

multipennate. 

 

Circular Muscles 

In a circular muscle, or sphincter, the fibers are concentrically arranged 

around an opening or a recess. When the muscle contracts, the diameter of 

the opening decreases. Circular muscles guard entrances and exits of 

internal passageways such as the digestive and urinary tracts. An example is 

the orbicularis oris muscle of the mouth. 

 

 



MUSCLE REFLEXES 

 

A stretch reflex is a muscle contraction in response to stretching within the 

muscle. It is a monosynaptic reflex which provides automatic regulation of 

skeletal muscle length. 

When muscle lengthens, the spindle is stretched and the activity increases. 

This increases alpha motoneuron activity. Therefore the muscle contracts 

and the length decrease as a result. The gamma co-activation is important in 

this reflex because this allows spindles in the muscles to remain taut, 

therefore sensitive, even during contraction. 

 

Function of this reflex is to maintain a constant length and has the shortest 

latency of all spinal reflexes including ‘Reflex mediated by the GTO (Golgi 

Tendon Organ)‘ and ‘Reflex mediated by pain and cutaneous receptors’. 

 

 

Figure 9: Illustration of the stretch reflex 

The mechanical action of vibrations produces short fast deformation of the 

muscle and tendon, stimulating the primary la afferents of muscle spindles 



[Burke et al, 1976a and 1976b]. Secondary muscle spindle endings and Golgi 

tendon organs also respond to vibration [Burke et al, 1976a and 1976b], but 

these receptors are not as responsive to vibration as the primary afferent 

endings [Brown et al, 1967; Trott, 1976]. Upon stimulation of the primary la 

afferents, afferent neurons transmit impulses to the spinal cord. From the 

spinal cord the sensory neurons synapse with the alpha motor neuron of the 

stretched muscle, exciting the muscle’s extra-fusal fibers producing a 

contraction. At the same time, the afferent neurons also connect with 

inhibitory motor neurons of the antagonist muscle inhibiting contraction of 

this muscle. 

Vibration stimulates both monosynaptic and polysynaptic reflex pathways 

[Burke and Schiller, 1976]. Monosynaptic reflex pathways are the simplest 

reflex pathways consisting of an afferent neuron, one synapse, and an 

efferent neuron. 

 

MUSCLE OF LOWER LIMBS 

 

Since, for our purpose we are focused on lower limb muscles, a brief 

description of quadriceps muscles will be provided to the reader.  

 

The quadriceps femoris, also called simply the quadriceps, is one of the 

largest muscle group in the body. 

 



 

Figure 2: Quadriceps muscle anatomy representation (Adopted from Wikimedia Commons) 

 

It includes the four prevailing muscles on the front of the thigh. Quadriceps 

femoris is the biggest extensor muscle of the knee, forming a large mass 

which covers the front and sides of the femur. 

Quadriceps muscle is divided into four separate portions or ‘heads’ (from the 

latin quadri-ceps four-head), which have received distinctive names: 

 

• Rectus femoris has a fusiform shape; its superficial fibers are disposed 

in a bipenniform arrangement, the deep fibers running straight down 

to the deep aponeurosis. It occupies the middle of the thigh, covering 

most of the other three quadriceps muscles. It originates on the ilium; 

 



• The other three lie deep to rectus femoris and originate from the 

femur body: 

a. Vastus Lateralis is on the lateral side of the femur (i.e. on the 

outer side of the thigh); 

b. Vastus Medialis is on the medial side of the femur (i.e. on the 

inner part thigh); 

c. Vastus intermedius lies between vastus lateralis and vastus 

medialis on the front of the femur (i.e. on the top or front of the 

thigh). 

 

All four parts of the quadriceps muscle attach to the patella (knee cap) via 

the quadriceps Tendon 

 

Quadriceps 

Femoris 

ORIGIN INSERTION NERVE 

SUPPLY 

ACTION(S) 

Rectus Femoris Anterior inferior iliac 

spine. Ilium superior to 

acetabulum 

Vastus Lateralis Greater trochanter. 

Lateral lip linea aspera 

Vastus Medius Intertrochanteric line. 

Medial lip linea aspera 

Vastus 

Intermedius 

Anterior and lateral 

surfaces of body femur 

Bass of patella and 

by patellar ligament 

to tibial tuberosity 

Femoral nerve 

Extends leg at 

knee joint. Rectus 

Femoris also 

steadies hip joint 

and helps 

iliopsoas to flex 

thigh 

 

Figure 11 : Short explanation of muscle origin, insertion innervation and action of quadriceps 

 

The action of quadriceps muscle is to extend the knee joint. Its four 

components are crucial in walking, running, jumping and squatting. 



Rectus Femoris attaches to the ilium, this cause this muscle to be also a 

flexor of the hip. This action is also crucial to walking or running as it swings 

the leg forward into the ensuing step. 

 

INNERVATION OF QUADRICEPS 

 

As we already mentioned in WBV studies there is a large use of surface EMG 

signal analysis as a tool to monitor the electrical activity and metabolic 

conditions including local fatigue of muscles. 

 

However, surface EMGs are affected by the electrode conditions, the 

characteristics of subcutaneous tissues and also affected by the position of 

recording electrodes with respect to the innervation zones and tendons. 

 

Placed the electrodes on the innervation zones will result in different mutual 

interferences of motor unit action potentials (MUAPs), leading to an 

incorrect estimation of the power spectra and muscle fiber conduction 

velocity (MFCV). 

 

These situations warrant advising the placing of electrodes between the 

innervation zones and tendons. 

MUAPs arise from the innervation zones and propagate directionally along 

the muscle fibers to both fiber ends. 

 

Since classical interference pattern is modified by the electrode positioning 

and by the innervation zones, the knowledge of the distribution of the 



innervation zones in the muscles concerned is important for correctly 

estimating the surface EMG. This would be desirable to understand were the 

muscles are innervated and how EMGs have been expected from that 

positioning. 

 

Some authors reported the innervation zones of different body muscles. A 

study of Saitou et al, 2000 reports the innervation zones of lower limbs and 

in particular the innervation of Quadiceps muscle, such as rectus femoris, 

vastus medialis and vastus lateralis. 

 

As reported from the study, the innervation zones of vastus lateralis and 

medialis were distributed in the middle of muscle fibers running upward 

from the common tendon of the quadriceps femoris. The muscles showed 

clear propagation of MUAPs. 

 

Clear propagation of MUAPs as shown in Figure 12 has been rarely seen in 

the rectus femoris. The innervation zones of this muscle were distributed 

around the muscle belly irregularly. 



 

Figure 32: Innervation zones of Quadriceps (Adopted from Saitou et al, 2000) 

 



CHAPTER 4 - EXPERIMENTAL SETUP 
 

EXPERIMENTAL SETUP 

 

The experimental setup used for the study is depicted in figure 13. 

 

 

Figure 13: Measurement setup used for the study 

 

The system is composed by: 

• the vibrating platform (TSEM S.p.A., Padova, ltaly); 

• a PC (IBM-compatible); 



• a data acquisition card (National Instruments NIDAQ-6251); 

• four MEMS tri-axial accelerometers (Freescale); 

• a Biosignal amplifier (Biomedica Mangoni BM-628) 

• Fitmate Pro (Cosmed S.r.l.) 

 

VIBRATING PLATFORM 

 

The device used to deliver vibration was made available from the 

manufacturer TSEM S.p.A. (Padova, Italy). The vibrating platform uses two 

motors to produce vibration stimulus and an inverter to change the 

frequency of the generated vibration. 

 

 

Figure 14: Vibration device 

 

The device is also able to produce two types of vibration: vertical (named 

"high" amplitude from manufacturer) and elliptical (named “low” from 



manufacturer) depending on the choice of the operator. Platform was 

accurately modified by the producer to allow the remote control of the 

device from a PC via the acquisition card and via the function generator. 

 

STIMULUS CONTROL AND DELIVERY 

 

The vibrating platform were controlled by a digital output of the NIDAQ card 

with a voltage signals corresponding to a frequency of 26 Hz, since it is close 

to the activation frequency of the quadriceps muscle group (Abercromby et 

al, 2007, Cardinale and Lim, 2003, Rittweger et al, 2001).  

 

The system platform/PC/NIDAQ card was calibrated in order to obtain a 

correct correspondence between voltage signal applied and frequency of 

vibratory stimulus. A linear function was found to be accurate for calibration:  

 

V = a * f + b 

 

where a was set equal to 0.0609 and b equal to -0.8296 (experimentally 

verified) 

 

The amplitude used in this study was set at "high" and measured. The 

amplitude of the measured vibration was 3 mm (peak to peak displacement). 

 

 

 



BIO-SIGNALS ACQUISITION 

 

A PC was used to acquire surface electromyography (SEMG) and acceleration 

signals and to drive the vibrating plate. The PC was equipped with a multi-

channel 16-bit data acquisition card (National Instruments DAQCard 6251 

(main specs are detailed below)  

 

National Instruments NIDAQ 6251 

Output 

� 2 channels: 2.00 MS/s 

� DAC resolution: 16bits 

� Output range: ±10V, ±5V 

� Output current drive: ±5mA  

Input 

� Number of channels: 8 differential or 16 single ended 

� ADC resolution: 16 bits 

� Sampling rate: Maximum 1.25 MS/s single channel, 1.00 MS/s multi-

channel 

� Input range: ±10±, ±5V, ±2V, ±1, ±0.5V, ±0.2V, ±0.1V 

� Input impedance: 10GΩ in parallel 100pF 

� Small signal bandwidth (~3dB): 1.7 MHz 

� Input FIFO size: 4.095 samples 

 

All signals were sampled at a specific frequency (2048 Hz), analyzed and 

processed at the time of the test and stored in the PC hard-disk for future 

investigations. 



 

SURFACE ELECTROMYOGRAPHY RECORDING 

Surface EMG signals were recorded using small disc Ag/AgCl electrodes 

(mainly Arbo Kendall electrodes) with inter-electrode distance of 20 mm 

arranged in the direction of the muscle fibers. Electrode skin areas were 

shaved and cleaned before electrodes placement, conductive gel was used 

when necessary. Electrode placement was achieved in accordance with the 

guidelines of SENIAM Project. [Hermens et al, 1999] 

 

 

Figure 15: Adhesive electrodes used for surface EMG recordings 

 

For our purposes we focused on leg muscles.  

 

Reference electrode was always located on the ankle of the leg of the 

examined muscle activity. EMG signals were amplified using a multi-channel, 

isolated biomedical signal amplifier (Biomedica Mangoni, Pisa, Italy - model. 

BM623) with an input impedance > 10 MOhm and CMRR > 100 dB (see 

figure). The gain was set to 1000 V/V; 

 



 

Figure 46: Biomedical signal multi-channel amplifier BM623 

 

CARDIO-RESPIRATORY PARAMETER RECORDING 

 

All subjects wore FitMate Pro silicone face mask that was fitted with a head 

cup to prevent air leakage, and a HR chest strap; both connected to the 

FitMate Pro (by Cosmed srl). 

 

The subjects’ oxygen uptake (VO2) was continuously recorded by means of 

an oxygen consumption meter (Galvanic Fuel Cell sensors with an accuracy 

of ± 0.02%).[Nieman et al, 2007]  Specific oxygen consumption (sVO2) was 

obtained by dividing the instantaneous VO2 by the body mass.  

 

The sVO2 values and the HR signals were monitored continuously during the 

whole EU in order to analyze their trends during the exercise.  

 

To assess the intensity of each exercise, the subjects gave a rating of 

perceived exertion (RPE) at the end of each exercise [Borg, 1970 and 1990].  

 

 

 



ACCELERATION SIGNAL RECORDINGS 

 

To reveal the acceleration of the platform, acceleration signals were 

registered using tiny and lightweight (less than 10g with the board) 

accelerometer produced by Freescale. In particular we used a MMA7261QT 

(sensitivity of 0.12 V/g., i10g max). The accelerometers were placed at the 

center of the vibrating platform. 

 

 

Figure 17: Simplified accelerometer block diagram 

 

The accelerometers are capacitive MEMS sensors with a temperature 

compensation system and the possibility to operate in Sleep Mode (reduced 

power consumption), which makes them ideal for operation in battery—

powered devices. Figure 18 shows the pinout description of the device: 



 

Figure 18: Pin connection for MMA7260QT MEMS accelerometer 

 

ACQUISITION AND PROCESSING SOFTWARE SUITE 

 

Specific software was developed to acquire, store, visualize and process both 

surface electromyography and specific oxygen uptake recordings. The 

software was written using MatLab IDE. In the following paragraphs a brief 

description of the suite is given. 

 

The software suite allows the operator to easily do some basic operations 

such as open and plot a file.  

 

Spectral analysis and Signal Processing 

A different section of the software is dedicated to the spectral analysis and 

signal processing. Spectral analysis allows the operator to compute and 

visualize either the amplitude and phase spectra or the power spectra of the 

signals. 

 



Some basic filtering operations are possible in the processing section: High, 

low, band pass and notch filtering were implemented in this version; all the 

filter parameters (filter type, cut off frequency, filter band) are adjustable 

through simple command windows.  

 

Each of the filtering operations can be seen at the time of the execution in 

the bottom window (see figure 19). Power and RMS values of the analyzed 

signal can also be easily computed, allowing the operator to compare, as an 

example, the total signal power with the power contained in specific target 

bands. 

 

 

Figure 19: Amplitude spectrum of a Vastus Medialis SMG. The windows shown the signal before (top 

window) and after (bottom window) a notch filter. 



EMG power spectrum is computed using Welch‘s averaged, modified 

periodogram method. RMS values are estimated using 500 ms time window 

without overlapping 

 

 

Figure 20: Power spectrum of a Rectus Femoris SEMG. The windows show the signal before (top window) 

and after (bottom window) a notch filtering operation. 

 

STUDY PROTOCOLS 

 

Different individuals were involved in the study; they were almost all 

students, not affected by any known neurological or musculoskeletal 

disorders, and voluntarily joined the study giving their informed, written 

consent to participate. All the subjects familiarized with the device and the 

postures to be assumed on the platform before the test. 

 



Two different postures were utilized in this study: 

• unloaded static squat:  subject is standing with feet apart, knees bent 

at the angle 90° 

 

• unloaded dynamic squat:  the subjects performed cyclic motions 

squatting between an angle of 110° and an angle of 90° of knee flexion 

with a rate of repetition equal to about 20 squats per minute 

 

Before each exercise, stance of participants was monitored by checking that 

the distance between their heels was shoulder-width and the knee angle was 

evaluated by means of a goniometer.  

 

The exercise sequence for each subject was randomized and between each 

exercise all the participants rested for about 20 min, until they felt recovered 

and their HR and sVO2 signals were returned to initial values. 

 

 



CHAPTER 5 - ANALYSIS OF THE EFFECTS OF 

VIBRATION ON OXYGEN UPTAKE AND 

ELECTROMYOGRAPHIC SIGNAL 
 

ANALYSIS OF THE EFFECTS OF VIBRATION ON MUSCLE 

 

The most cited mechanism to explain the effects of vibration treatment 

extended to the whole body is the elicited neuromuscular activation via the 

tonic vibration reflex (TVR). [Nordlund and Thorstensson, 2008] 

 

The theory was initially proposed by Eklund and Hagbarth [Eklund and 

Hagbarth , 1966] as the result of a vibration exposure applied directly to the 

tendon. 

 

However, WBV stimulation is clearly different from a localized tendon 

vibration, and the connection between WBV and the TVR has not been fully 

discussed or demonstrated in the literature. [Nordlund and Thorstensson, 

2008]. 

 

From the review analysis presented in chapter 2, other aspects were pointed 

out. Results in literature were found not yet coherent and as already 

mentioned, this may be attributable to different reasons. 

 



The methods to assess acute effects of vibration, such as EMG activity 

analysis under vibration, has to be refined, artifacts may arise from 

electrodes altering the treatment efficacy assessment. 

 

The real local (muscle) vibratory stimulation has to be characterized in 

individuals undergoing vibration treatments to obtain a clear knowledge of 

the effective muscle stimulation. 

 

Subject postures during treatment and the real kinematic chains involved in 

vibration transmissibility have to be pointed out. 

 

Nevertheless, studies on WBVT should have a detailed description of the 

stimulation and measurement protocols; individual postures, amplitude and 

frequency of vibration may be chosen depending on the target of the 

treatment. 

 

This work's aim was to focus on the above detailed key points of vibratory 

stimulation to contribute to a better understanding of the phenomena that 

are responsible for the positive (and negative) effects ascribed to WBVT. 

 

This section offers in detail the entire work carried out during these years. 

The chapter is partitioned to discuss each step of the study in a chronological 

order.  

 

All the findings of the entire research activity are here presented. 

 



THE EFFECT OF WHOLE BODY VIBRATION ON OXYGEN UPTAKE AND 

ELECTROMYOGRAPHIC SIGNAL OF THE RECTUS FEMORIS DURING STATIC 

AND DYNAMIC SQUAT 

 

As already cited, many studies report a significant increase of oxygen uptake 

during vibration training. These studies are based on the assumption that the 

sVO2 response is due to the increased number of muscle fibers (and thus the 

increased muscle activity) activated by the vibrations (Martin and Park, 1997; 

Person and Kozhina, 1992; Roll et al, 1989; Romaiguére et al, 1991).  

 

In fact, Rittweger et al. [Rittweger et al, 2001] reported that simple standing 

and dynamic squats performed on a WBV platform increased sVO2 compared 

to the same exercise without vibration. Later, Rittweger et al. [Rittweger et 

al, 2001] showed that the sVO2 was increased when vibration frequency and 

amplitude were increased.  

 

Similarly, after monitoring sVO2 and heart rate (HR) during and 24 hrs after a 

WBV exercise session and a second session without vibration (NoV), Hazell 

and Lemon [Hazell and Lemon, 2011] reported that sVO2 was 23% higher 

during WBV training session. 

 

Other research activities showed a significant increase of EMG RMS values in 

the lower body muscles during vibration training; these changes suggest an 

increase in neuromuscular activity [Cardinale et al, 2003; Verschueren et al, 

2004]. Specific WBV frequencies also seem to produce a higher EMG RMS 



signal than others [Cardinale and Lim, 2003]. Frequency that maximizes the 

RMS corresponds to the highest muscular response [Cardinale et al, 2003].  

 

Nevertheless, it is well known that during surface bio-potential recording, 

motion artifacts arise from relative motion between electrodes and skin and 

also between skin layers. Also the only skin stretch, modifying the internal 

charge distribution, results in a variation of electrode potential [Turker et al, 

1993; De Talhouet et al, 1996; Odman et al, 1982; Tam et al, 1977]. 

 

In literature mainly deals with motion artifact affecting clinical recording, as 

ECG, EEG, EMG, electrical impedance pneumography, etc. In 

electrocardiography, motion artifact voltage amplitude can result even ten 

times larger than signal and can be particularly troublesome either in 

ambulatory ECG recordings and much more during exercise ECG (Holter 

monitoring or stress tests) [Clancy et al, 2001]. Since typical power density of 

these types of artifacts is below 20 Hz, they can be largely attenuated using a 

high-pass filter [Clancy et al, 2002] with limited loss of signal content. 

Generally, these filters prevent motion artifacts from causing saturation of 

the recording apparatus. In classical clinical EMG recordings (isokinetic, 

isotonic, gait, etc.), frequency content of motion artifact is also considered 

below 10-20 Hz, then the general approach to motion  artifact reduction is to 

apply a high-pass filter (e.g. with a cut-off frequency of 20 Hz): little of the 

EMG signal power is lost, whilst most motion artifact is rejected [Hermens et 

al, 1999]. However, in particular situation as vibration treatment, power of 

motion artifacts is not confined below 10-20 Hz and standard high-pass 

filters are not suitable for filtering out this artifact.  



 

However, it is important to point out that the studies presented in literature 

investigated WBV effects only on muscular activity by recording 

electromyographic signal [Abercromby et al, 2007; Roelants et al, 2006] or 

on metabolic power by monitoring the sVO2 [Hazel and Lemon, 2011; 

Rittweger et al, 2001 and 2002] without standard protocol and using 

different exercise parameters.  The purpose of this study was to monitor 

simultaneously both signals in a novel approach. We investigated the 

differences due to WBV effects on VO2 and EMG between static and dynamic 

squat exercises. This was done to identify the better exercise characteristics 

for improving neuromuscular activation and progress in training efficacy. 

Monitoring VO2 throughout the exercise and not just during the last seconds 

(sVO2) of the exercise [Rittweger et al, 2001 and 2002] allows for analyzing 

the curves from the beginning of the exercise in order to find out possible 

differences in the sVO2 trend and differences in how it is reached at steady-

state. 

 

METHODS 

 

Subjects 

Fourteen subjects in good health and not affected by any neurological or 

musculoskeletal disorder participated in this study. All subjects (11 males 

and 3 females) had been practicing regularly physical activity or non-

competitive sports. The subjects were 22 to 31 yrs of age with mean and 

standard deviation, respectively, of 26.4 and 3.2 yrs. Their height was 

between 165 and 182 cm (171±6 cm), and their body weight was between 



55 and 81 kg (68±9 kg). The experiments were conducted in accordance with 

the Declaration of Helsinki and all the subjects signed a written informed 

consent. 

 

Exercises 

Before the testing session, the 

subjects were familiarized with 

the vibration platform and squat 

exercises. The warm-up consisted 

of exercising on a bicycle 

ergometer at a load of 70 W for 

10 min followed by stretching 

exercises for 5 min. All subjects 

wore socks without shoes. They 

performed a protocol of four kinds 

of exercise units (EU) that lasted 3 

min and 30 sec. In the first two EU (Figure 21a), the subjects ran through an 

unloaded static (isometric) squat (knee angle at ~90°), without and with 

vibration (SS and SSV, respectively). In the other EU (Figure 21b), the squat 

exercises were dynamic (i.e., the subjects performed cyclic motions 

squatting between an angle of 110° and an angle of 90° of knee flexion with 

a rate of repetition equal to about 20 squats per minute) without and with 

vibration (DS and DSV, respectively). The exercises with no vibration (SS and 

DS) were used as control.  

 

   

Figure 21: Static squat (a) and dynamic squat (b) 

positions. 



Before each EU, stance of participants was monitored by checking that the 

distance between their heels was shoulder-width and the knee angle was 

evaluated by means of a goniometer. The EU sequence for each subject was 

randomized and between each exercise all the participants rested for about 

20 min, until they felt recovered and their HR and sVO2 signals were returned 

to initial values.  We used CE-marked Medical Devices within the limits and 

according to the standard training protocols specified by the manufacturers. 

 

Whole-body vibration treatment (WBV) 

The WBV treatment was performed by using a vertical oscillating WBV 

platform (Vibroplate provided by TSEM SpA). The platform provided a 

sinusoidal vibration at a frequency of 26 Hz and a peak-to-peak displacement 

of 3 mm. The value of 26 Hz was chosen since it is close to the activation 

frequency of the quadriceps muscle group [Abercromby et al, 2007; 

Cardinale and Lim 2003; Rittweger et al, 2001]. The platform oscillation 

frequency was checked through a triaxial accelerometer based on MEMS 

technology placed in the platform center. 

 

 

 

 

 

 

 

 

 



Surface EMG  

Surface EMG (sEMG) signals were recorded by 

using small disc Ag/AgCl electrodes (diameter 5 

mm) with inter-electrodes distance of 20 mm 

arranged in the direction of the muscle fibers, 

placed on the rectus femoris (RF) in accordance 

with the literature [Hermes et al, 1999 and 

2000]. In order to reduce skin impedance (<3 

kΩ), electrode skin areas were shaved, cleaned 

with alcohol and a conductive gel was used. For 

the purpose of this study, we focused on the RF 

of the dominant leg [Petit et al, 2010] and 

reference electrode was located on the ankle of 

the same leg. 

 

The sEMG signals were amplified by using a multi-channel, isolated 

biomedical signal amplifier BM623 (Biomedica Magoni) with an input 

impedance >10 MOhm and CMRR >100 dB. The amplifier was set with a gain 

of 1000 V/V and a band pass filtering with cut-off frequencies of 5–500 Hz. 

The signals were acquired by using a PC multi-channel 16-bit data acquisition 

card with a sample frequency of 2048 Hz (DAQCard 6251 by National 

Instruments). 

 

It is well-known that during a surface bio-potential recording, the motion 

artifacts that arise from relative motion between electrodes and skin result 

in a variation of electrodes potential. Hence, vibrations generate motion 

 

Figure 22: Electrodes position on 

Rectus Femoris according to 

SENIAM project [Hermens et al, 

1999 and 2000] . 



artifacts on electrodes that could be non-negligible and could affect the 

sEMG signals analysis [Fratini et al, 2009a; Ritzmann et al, 2010]. Since 

vibration frequency and its harmonics lie in the sEMG frequency band of 20 – 

450 Hz, in order to reduce artifacts contribution, the acquired signals were 

processed by using sharp notch filters (band width of ±0.8 Hz) centered at 

the vibration frequency and its harmonics [Abercromby et al, 2007; Fratini et 

al, 2009a; Pollock et al, 2010; Roy et al, 2007]. Filters were applied to all 

recordings including those without vibration to ensure that loss of signal 

power due to the filtering procedure was the same in all recordings. Running 

root mean square values of the sEMG (EMGrms) were estimated by using 

500 ms time window to assess muscular activity during the EU [Abercromby 

et al, 2007; Fratini et al, 2009a]. The mean value of the EMGrms curve 

(mEMGrms) of each recording was computed. The mEMGrms values for the 

SSV and DSV were compared respectively with the controls (SS and DS), thus 

normalization relative to maximal voluntary contractions was unnecessary 

[Marin et al, 2009].  Signal processing was done by using MATLAB® R2010b 

(The Mathworks Inc., Natick, MA). 

 

Specific Oxygen Uptake 

The subjects’ oxygen uptake (VO2) was continuously recorded by means of 

an oxygen consumption meter (Galvanic Fuel Cell sensors with an accuracy 

of ± 0.02%).[Nieman et al, 2007]  Specific oxygen consumption (sVO2) was 

obtained by dividing the instantaneous VO2 by the body mass.  

All subjects wore FitMate Pro silicone face mask that was fitted with a head 

cup to prevent air leakage, and a HR chest strap; both connected to the 

FitMate Pro. The sVO2 values and the HR signals were monitored 



continuously during the whole EU in order to analyze their trends during the 

exercise. To make a comparison between the static and the dynamic squat 

exercises, the data acquired during the last 30 sec was used [Rittweger et al, 

2001]. 

 

Rate of Perceived Exertion and Heart Rate 

To assess the intensity of each EU, the subjects gave a rating of perceived 

exertion (RPE) at the end of each exercise [Borg, 1970 and 1990]. Resting HR 

was monitored before each exercise to check that the subjects recovered 

completely. The mean value of HR was estimated in the last 30 sec (HR30) of 

each EU to investigate the effect of WBV on the cardio-circulatory system 

[Bogaerts et al, 2009; Hazell and Lemon, 2011]. In particular, estimated HR30 

values were used to compute for each subject the increase in beats·min-1 

(dHR30) between the exercise NoV and the correspondent WBV one, 

according to the formula: dHR30 = HR30WBV -HR30NoV 

 

Statistical Analysis 

Variables, sVO2, mEMGrms, and dHR30, were tested for normal distribution 

with the Kolmogorov-Smirnov test (level of significance equal to 0.05) 

[Marsaglia et al, 2003; Smirnov, 1948].  Paired t-test was used to test 

differences in the sVO2 and mEMGrms values obtained in WBV versus NoV 

exercises, while a one-sample t-test was performed on dHR30 to check the 

possibility of rejecting the null hypothesis (no difference in HR between 

exercises with WBV and NoV). Statistical significance level was set at P≤0.05. 

Statistical analysis was done by using the software IBM SPSS statistics 19. 

 



RESULTS 

Surface EMG  

The analysis of the sEMG activity of all subjects showed that the computed 

EMGrms signals kept on average constant along the exercise, but their 

values were higher in the WBV exercises respect to the correspondent NoV 

(Figure 23). The mEMGrms values were normally distributed (Kolmogorov- 

 

 

Figure 23.  A detail of EMGrms signals during static (top) and dynamic (bottom) squat exercises of subject # 

9. During DS exercise, EMGrms varied periodically according to the knee angle (long and short arrows in 

correspondence of respectively 90° and 110° angles), however its mean value holds constant. 

 

Smirnov’s test and their means and standard deviations (Figure 24), in static 

and dynamic squat, indicated respectively a rise of about 63% (0.205±0.078 

vs. 0.325±0.091 mV) and 108% (0.152± 0.055 vs. 0.317±0.109 mV). Paired t-

test of the mEMGrms proved that the differences between WBV and NoV for 

both static and dynamic exercises are significant (P≤0.05) showing that 

whole body vibration increased muscle activity.  

 



 

Figure 24. mEMGrms (and standard deviation) in static and dynamic exercises, with and without WBV. 

 

Specific Oxygen Uptake 

Figures 25, 26, and 27 illustrate examples of VO2 monitored during static and 

dynamic exercises, with and without vibration. The WBV treatments 

increased the sVO2 during the whole EU session versus the same exercise 

NoV, and this effect was present in all the subjects.  In most of the 

recordings, the sVO2 increased during the exercise up to a plateau reached 

approximately after the 3rd min. Thus, the mean and standard deviation of 

the sVO2 values of the last 30 sec (sVO2-30s) were chosen to compare the 

different EU conditions [Rittweger et al, 2001]. 
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Figure 25. Oxygen uptake of subject #5 during SS and SSV. sVO2 during SS grew for 90 sec, then it achieved a 

steady-state at the maximum value of 10.4 [ml·kg
-1

·min
-1

]. During SSV, sVO2 increased to a maximum value 

of 14.9 [ml·kg
-1

·min
-1

]. 
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Dinamic Squat

Dinamic Squat + WBV

 

Figure 26. Oxygen uptake of subject #5; sVO2 curves for DS and DSV show a similar pattern for the first 90 

seconds and then diverge until the end. As for the static squat, sVO2 during DS reached a plateau value 

around 13 [ml·kg
-1

·min
-1

] while sVO2 in DSV showed an increase along the whole exercise up to a maximum 

value of 19.1 [ml·kg
-1

·min
-1

]. 
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Figure 27. Oxygen uptake of subject #5; sVO2 curves for SSV and DSV show a similar pattern for the first 50 

sec and then diverge until the end, with higher values of sVO2 in DSV. 

 

In the majority of static squat recordings (Figure 25), for the same subject, 

the sVO2 curves during SSV and SS exercises started from the same point and 

then diverged with different slope, higher in SSV curves. On the other hand, 

comparing data from DS and DSV (Figure 26) or SSV and DSV (Figure 27) 

exercises, sVO2 trends were similar at the beginning and diverged 

significantly after about the 1st min. The sVO2-30s values were normally 

distributed and paired t-test confirmed the separation of the data over the 

NoV and WBV treatments in both static and dynamic EU. The WBV 

treatment showed a significant increase sVO2-30s that grew respectively of 

44.0% (10.0±2.8 vs. 14.4±3.5 [ml·kg-1·min-1]) and 29.4% (14.3±2.7 vs. 

18.5±3.9 [ml·kg-1·min-1]) (Figure 28). 

 



 

Figure 28.  Mean values with standard deviations of the sVO2-30s estimated for all subjects. sVO2 increased 

by 44.0% in presence of vibrations during static exercise, while in dynamic exercise the increment is of 

29.4%. 

 

Rate of Perceived Exertion and Heart Rate 

Means and standard deviations for RPE during the static squat were 15.1±2.9 

for NoV and 12.3±3.5 for WBV, while during the dynamic squat were 

13.6±4.2 for NoV and 14.4±3.8 for WBV. No significant changes were 

observed between NoV and WBV exercises. However, the subjects seemed 

to perceive a greater effort after the static squat than the dynamic ones.  

The t-test results from the analysis of HR indicated that WBV treatment 

increased significantly the dHR30 for both static and dynamic squat exercises 

(P≤0.05), showing increments respectively equal to 11.1±9.1 beats·min-1 for 

static squat and 7.9±8.3 beats·min-1 for dynamic squat.  Summarizing, the 

results are shown in the following Table 2. 

 

 

 

 



 

Table 2.  T-Test Results 

 NoV WBV p 

RPE SS 15.1 ±±±± 2.9 12.3 ±±±± 3.5 > 0.05 

RPE DS 13.6 ±±±± 4.2 14.4 ±±±± 3.8 > 0.05 

sVO2 SS (ml·kg
-1

·min
-1) 10.0 ±±±± 2.8  14.4 ±±±± 3.5  < 0.05 

sVO2 DS (ml·kg
-1

·min
-1

) 14.3 ±±±± 2.7  18.5 ±±±± 3.9  < 0.05 

EMGrms SS (mV) 0.205 ±±±± 0.078  0.325 ±±±± 0.091  < 0.05 

EMGrms DS (mV) 0.152 ±±±± 0.055  0.317 ±±±± 0.109  < 0.05 

dHR30 SS 11.1 ±±±± 9.1 < 0.05 

dHR30 DS 7.9 ±±±± 8.3 < 0.05 

 

The t-tests summary on 14 subjects of the studied parameters in case of NoV 

and WBV treatment. Means, standard deviations and p-values were 

reported. Only for dHR30 a one-sample t-test was used to test the null 

hypothesis that the population mean is equal to zero (no differences due to 

WBV).  

 

DISCUSSION 

 

Whole-body vibration (WBV) training was initially used in the fitness 

industry, but has expanded to rehabilitation, therapy, and sports. The most 

common effect of WBV on the muscles is the increase in strength. But, given 

the lack of details in the methodologies applied in various research studies, it 

is difficult to investigate and verify the treatment outcomes. The purpose of 

this study was to analyze the effects of WBV treatment on 14 healthy 

subjects who performed squat exercises. We evaluated the muscular activity 

of the rectus femoris using EMGrms parameter estimated by 

electromyographic signals [Abercromby et al, 2007; Cardinale and Lim, 2003; 



Fratini et al, 2009b; Marín et al, 2009]. All signals were filtered [Fratini  et al, 

2009a; Ritzmann et al, 2010] to reduce negligible motion artifacts due to 

vibrations while other signals and parameters were simultaneously taken 

into account. Oxygen consumption (VO2) was used to estimate the exercise 

related metabolic power.  Also, relative VO2 was used to compare the VO2 

among different subjects. Heart rate and RPE provided information about 

the subjects’ cardiac activity and the intensity of the exercise as perceived by 

each individual. 

 

The main finding of this study was that WBV has the potential to increase 

both muscular and metabolic power, thus supporting the hypothesis that 

WBV has a stimulating effect on both twitch and tissue oxygenation of the 

muscles. In fact, our results demonstrate that estimated mEMGrms values 

are higher in the WBV exercises respect to the correspondent NoV of about 

63% and 108% in the static and dynamic exercises, respectively. This finding 

agrees with the findings of Abercromby et al. [Abercromby et al, 2007].  They 

reported a significant improvement in neuromuscular activation during WBV 

exercises. In addition, our results indicated a higher increment of EMGrms 

correlated to WBV in the DSV than in the SSV.  

 

The analysis of the NoV exercises showed that sEMG in the dynamic squat 

had a mean value less than the static one. This is in agreement with the 

observation that during the dynamic squat the twitch varies according to the 

knee angle. That is, since it is lower for angles >90°, the twitch in the static 

squat is always higher since the knee angle during the exercise is about 90°. 

Therefore, we hypothesized that the WBV effect would be more pronounced 



during the dynamic exercise, when the average of voluntary muscular 

contraction (not due to vibration) is lower. 

 

Rittweger et al. [Rittweger et al, 2001] investigated the effect of vibration on 

VO2 in different kinds of exercises. They reported incremental responses in 

sVO2 with WBV treatments. Other studies are in agreement with the finding 

[Hazell and Lemon, 2011; Rittweger et al, 2002]. However, it appears that no 

one has either monitored the sVO2 trend during the whole exercise or 

compared a single bout of static and dynamic squat with WBV. In our study, 

monitoring the VO2 trend since the beginning of exercises provided the 

opportunity to compare the slope of the curves for the different squat 

modalities. As a result, in general, the sVO2 curves for the same subject 

during SSV and DSV were similar at the beginning and diverged significantly 

after about the 1st min. Consequently, WBV treatment for duration ˂60 sec, 

followed by a resting period, could not cause remarkable differences on 

oxygen uptake between static and dynamic squat. Our findings show also 

that the sVO2 trend and sVO2-30s values were similar in SSV and DS exercises 

and, as a consequence, it is clear that vibration resulted in an increase in VO2 

during the static squat exercise comparable to the VO2 obtained in the 

dynamic squat exercise without vibration. 

 

The %HR30 results showed also an increase in the subjects’ HR due to WBV of 

about 7.3% and 5.5% for the static and the dynamic squat exercises, 

respectively. Furthermore, there was no significant effect of WBV upon RPE, 

although values depicted a greater effort after the static exercise than the 

dynamic exercise. The reason of these results could lie in the nature of the 



exercise. During the static squat, the subjects held the same knee angle and 

the muscles were continuously twitched.  On the other hand, during the 

dynamic squat exercise, the contraction is reduced in the higher angle 

phases. 

 

THE EFFECT OF WHOLE BODY VIBRATION ON OXYGEN UPTAKE DURING 

STATIC AND DYNAMIC SQUAT 

 

Over the past decade, whole-body vibration (WBV) exercise has become an 

increasingly popular training modality. Although occupational vibration 

exposure (i.e. sitting driving large equipment) is unhealthy, WBV exercise 

which involves shorter intermittent exposures at much greater vibration 

frequencies has been proposed to be beneficial in several ways.  

 

In theory, the vertical oscillations generated via a platform induce short and 

rapid changes in muscle fibre length which stimulate reflexive muscle 

contractions in a response akin to monosynaptic reflexes [Cardinale and 

Bosco 2003; Hagbarth and Eklund 1966; Ritzmann et al, 2010]. These vertical 

oscillations may also increase instability [Abercromby et al, 2007] or cause a 

muscle tuning response via one’s attempt to dampen the transmission of the 

vibration signal [Wakeling and Nigg 2001]. 

 

Regardless of the mechanism responsible, acute WBV exercise (both 

synchronous and side-alternating) has been shown to increase muscle 

activity, blood flow, and muscle/ skin temperature [Abercromby et al, 2007; 

Cardinale and Lim 2003; Cochrane et al, 2008; Hazell et al, 2007 and 2010; 



Marin et al, 2009; Ritzmann et al, 2010; Roelants et al, 2006] and has even 

been reported to increase strength, power, and performance [Bosco et al, 

1999; Da Silva-Grigoletto et al, 2009; McBride et al, 2010; Ronnestad, 2009; 

Torvinen et al, 2002]. However, there are also data showing little effect [de 

Ruiter et al, 2003; Erskine et al, 2007; Guggenheimer et al, 2009; Torvinen et 

al, 2002b] perhaps indicating that a wide range of exercise intensities are 

possible with WBV exercise. 

 

Completing dynamic squats on a WBV platform (side-alternating) increased 

measured VO2 * 3–5 ml kg-1 min-1 compared to the same exercise without 

vibration [Rittweger et al, 2001]. Moreover, Hazell et al. [Hazell et al, 2008] 

have demonstrated minimal cardiovascular stress (heart rate, blood flow, or 

mean arterial pressure with the addition of WBV to a static semi-squat 

position) suggesting that static WBV exercise is not a very strenuous form of 

exercise.  

 

However, dynamic WBV squats at least with an external load (35–40% body 

mass) can increase VO2 significantly (up to *50% of VO2max; [Rittweger et al, 

2001 and 2002] indicating that the stimulus can be substantial. The greatest 

increase in VO2 (0.7 ml kg-1 min-1) versus NoV during dynamic squatting was 

seen while performing a 2 s squat cycle (1 s down 1 s up; [Garatachea et al, 

2007] compared to slower squatting cadences (4 or 6 s cycles).  

 

The purpose of this study was to quantify VO2 during static and dynamic 

squat exercises with and without vibration monitoring VO2 throughout the 

exercise, and not just during the last seconds (sVO2). [Rittweger et al, 2001 



and 2002]. Hence we could analyze curves from the beginning of the exercise 

in order to find out possible differences in the sVO2 trend and differences in 

how it is reached at steady-state. 

 

METHODS 

 

Subjects 

Eleven healthy subjects, 3 male and 8 female, (age 22.5 + 3.1 years, height 

175.2 + 5.2 cm, weight 69.2 + 10.2 kg), not affected by any known 

neurological or musculoskeletal disorders, voluntarily participated in the 

study and gave their informed, written consent to participate.  

All of the subjects were athletically trained. 

 

Exercises 

Before the testing session, the 

subjects performed a warm-up on 

a bicycle ergometer (load of 70 W 

for 10 min) followed by stretching 

exercises for 5 min. 

They performed a protocol of four 

exercises that lasted 3 min and 30 

sec, with a rest period of 15 

seconds every minute. In the first 

two EU (Figure 29a), the subjects 

ran through an unloaded static 

(isometric) squat (knee angle at 

   

Figure 29: Static squat (a) and dynamic squat (b) 

positions. 

 



~90°), without and with vibration (SS and SSV, respectively). In the other EU 

(Figure 29b), the squat exercises were dynamic (i.e., the subjects performed 

cyclic motions squatting between an angle of 110° and an angle of 90° of 

knee flexion with a rate of repetition equal to about 20 squats per minute) 

without and with vibration (DS and DSV, respectively). The exercises with no 

vibration (SS and DS) were used as control.  

 

Before recording, the subjects were instructed about proper positioning on 

the platform and they were familiarized with the device. The exercises 

sequence for each subject was randomized and between each exercise all 

the participants rested for about 20 min, until they felt recovered and their 

HR and sVO2 signals were returned to initial values.   

We used CE-marked Medical Devices within the limits and according to the 

standard training protocols specified by the manufacturers. 

 

Whole-body vibration treatment (WBV) 

The WBV treatment was performed by using a vertical oscillating WBV 

platform (Vibroplate provided by TSEM SpA). The platform provided a 

sinusoidal vibration at a frequency of 26 Hz and a peak-to-peak displacement 

of 3 mm. The value of 26 Hz was chosen since it is close to the activation 

frequency of the quadriceps muscle group [Abercromby et al, 2007; 

Cardinale and Lim 2003; Rittweger et al, 2001].  

The platform oscillation frequency was checked through a triaxial 

accelerometer based on MEMS technology placed in the platform center. 

 

 



Specific Oxygen Uptake 

The subjects’ oxygen uptake (VO2) was continuously recorded by means of 

an oxygen consumption meter (Galvanic Fuel Cell sensors with an accuracy 

of ± 0.02%). [Nieman et al, 2007] Specific oxygen consumption (sVO2) was 

obtained by dividing the instantaneous VO2 by the body mass. All subjects 

wore FitMate Pro silicone face mask that was fitted with a head cup to 

prevent air leakage, and a HR chest strap; both connected to the FitMate 

Pro. The sVO2 values and the HR signals were monitored continuously during 

the whole EU in order to analyze their trends during the exercise. To make a 

comparison between the static and the dynamic squat exercises, the data 

acquired during the last 30 sec was used [Rittweger et al, 2001]. 

 

Rate of Perceived Exertion and Heart Rate 

To assess the intensity of each EU, the subjects gave a rating of perceived 

exertion (RPE) at the end of each exercise [Borg, 1970 and 1990]. Resting HR 

was monitored before each exercise to check that the subjects recovered 

completely. The mean value of HR was estimated in the last 30 sec (HR30) of 

each EU to investigate the effect of WBV on the cardio-circulatory system 

[Bogaerts et al, 2009; Hazell and Lemon, 2011]. In particular, estimated HR30 

values were used to compute for each subject the increase in beats·min-1 

(dHR30) between the exercise NoV and the correspondent WBV one, 

according to the formula: dHR30 = HR30WBV -HR30NoV 

 

Statistical Analysis 

sVO2 and dHR30 were tested for normal distribution with the Kolmogorov-

Smirnov test (level of significance equal to 0.05) [Marseglia et al, 2003; 



Smirnov, 1948].  Paired t-test was used to test differences in the sVO2 values 

obtained in WBV versus NoV exercises, while a one-sample t-test was 

performed on dHR30 to check the possibility of rejecting the null hypothesis 

(no difference in HR between exercises with WBV and NoV). Statistical 

significance level was set at P≤0.05. 

Statistical analysis was done by using the software IBM SPSS statistics 19. 

 

RESULTS 

 

Specific Oxygen Uptake 

Figures 30, 31, and 32 illustrate examples of VO2 monitored during static and 

dynamic exercises, with and without vibration. The sVO2 during the exercise 

WBV versus the same NoV are similar, and this effect was present in all the 

subjects. In most of the recordings, the sVO2 increased during the exercise 

up to a plateau reached approximately after the 3rd min. Thus, the mean 

and standard deviation of the sVO2 values of the last 30 sec (sVO2-30s) were 

chosen to compare the different EU conditions [Rittweger et al, 2001]. 

 



 

Figure 30. Oxygen uptake of subject #3 during SS and SSV, sVO2 show a similar pattern for the entire 

exercise. 

 

 

Figure 31. Oxygen uptake of subject #3, during DS and DSV, sVO2 show a similar pattern for the entire 

exercise. 



 

Figure 32. Oxygen uptake of subject #3, during SSV and DSV, sVO2 show a similar pattern for the entire 

exercise. 

 

Rate of Perceived Exertion and Heart Rate 

Means and standard deviations for RPE during the static squat were 13.1±2.1 

for NoV and 10.3±2.6 for WBV, while during the dynamic squat were 

12.6±3.9 for NoV and 13.1±4.1 for WBV. No significant changes were 

observed between NoV and WBV exercises. However, the subjects seemed 

to perceive a greater effort after the static squat than the dynamic ones.  

The same result was obtained for the analysis of HR, t-test indicated that 

WBV treatment not increased significantly the dHR30 for both static and 

dynamic squat exercises. 

 

DISCUSSION 

Rittweger found increased oxygen uptake and heart rate when squatting on 

a vibration platform, as compared to squatting without vibration [Rittweger 



et al, 2000 and 2002]. The increases in heart rate and oxygen uptake were 

only mild, arguing against stimulating effects on cardiorespiratory fitness in 

young subjects.  

 

Da Silva, however, found that vibration training provides cardiovascular 

stimuli similar to those experienced during moderate walking at 4 km/h [Da 

Silva et al, 2007]. In seated WBV, older and young adults showed an increase 

in heart rate and in oxygen uptake by 0.35 metabolic equivalent [Cochrane 

et al, 2008a]. Squat exercises on a vibration plate (3s up-3s down) lead to a 

similar metabolic rate as cycling at 70 W [Cochrane et al, 2008b].    

 

Differently from literature research, we don’t find a significant improvement 

of metabolic power, heart rate and rate of perceived exertion in presence of 

vibration. The reason of this result could be find in several causes: different 

exercises parameter, subjects training level and anthropometrics 

characteristic, vibrating platform settings. Indeed, it is important to point out 

that in the studies presented in literature the subjects run through exercises 

that lasted 3 minutes and 30 seconds without rest period.  

 

This is an important difference because the inclusion of two rest period 

could significantly modify the oxygen consumption during the exercises.  

 

Furthermore all subjects were athletically trained and capable to control 

breathing during exercises. 

 



THE EFFECT OF WHOLE BODY VIBRATION ON RESONANT FREQUENCIES OF 

LEG MUSCLES 

 

It is well known that localized, direct applications of vibratory stimuli to a 

single muscle or a tendon produce reactions of muscle spindles.[Marsden et 

al, 1969; Desmedt and Godaux, 1975 and 1978; De Gail et al, 1996] Local 

tendon vibrations induce activity of the muscle spindle la fibers, mediated by 

monosynaptic and polysynaptic pathways. 

 

A reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises 

in response to such vibratory stimulus.[Roll et al, 1996; Bongiovanni et al,  

1990; Romaiguere et al,1991; Person and Kozhina, 1992; Martin et al, 1997] 

Vibratory stimulations transferred to the whole body, i.e. whole body 

vibrations (WBV), were also largely studied for their impact on muscular 

activity, neuromuscular and postural control.[Verschueren et al, 2004; Bosco 

et al, 1999a and 1999b; Mester et al, 1999; Homma et al, 1981] A great deal 

of interest was in fact made around WBV treatment as a possible application 

of the TVR occurrence to the entire body.[Torvinen et al, 2002] 

 

Many studies have accounted for WBV effects in the fields of exercise 

physiology, sport and rehabilitation medicine.[Bautmans et al, 2005; 

Kerschan-Schindl et al, 2001; Mester, 2006; Rittweger et al, 2001; Bosco et 

al, 1998; lssurin and Tenenbaum, 1999; Lebedev and Polyakov, 1992] In 

these treatments, vibrations are delivered to the whole body by the use of 

vibrating platform. Many of these devices produce vertical sinusoidal 

oscillations (while some other an alternating rotation) of a platform across a 



frequency range from 10 to 80 Hz and peak to peak displacements from 1 to 

10 mm.[Cardinale and Wakeling, 2005] 

 

Vibrations are then transferred from the platform to a specific muscle group 

through the subject body; different positions of the subject on the platform 

correspond to different muscle mechanical stimulations. Soft tissues act as 

wobbling masses vibrating in a damped manner in response to mechanical 

excitation; neuromuscular system works to damp the soft tissue resonance 

that occurs in response to pulsed and continuous vibrations.[Wakeling et al, 

2002] 

 

Since vibration loads are applied, mechanical and metabolic responses arise 

from the neuromuscular system.[Homma et al, 1981;Bautmans et al, 2005; 

Kerschan-Schindl et al, 2001;Bosco et al, 2000; Issurin et al, 1994; Rubin et al, 

2004] 

 

A significantly higher level of electromyographic activity appears in muscles 

during WBV treatment with respect to a rest condition; specific WBV 

frequencies also seem to produce a higher EMG-RMS signal than 

others.[Cardinale and Lim, 2003]  

 

Nevertheless, the findings in literature are not yet coherent, part of the 

previous studies suggest some muscular improvement, whereas other 

results indicate no significant variation.[Bosco et al, 1999 (a,b); Cardinale and 

Wakeling, 2005; Issurin et al, 1994; Delecluse et al, 2003]  



Muscle response to vibration is a complex phenomenon as it depends on 

different parameters, like muscle-tension, muscle or segment-stiffness, 

amplitude and frequency of the mechanical vibration.[Wakeling et al, 2002] 

 

Since few studies in literature demonstrated that muscles resonant 

frequencies vary between subjects and muscle groups, in this part of the 

work we aims to identify a relationship between the resonant frequencies of 

legs muscles and the anthropometrics characteristic of the subjects.  

 

Simultaneous recordings of EMG of Rectus Femoris, Bicep Femoris and 

Gastrocnemius from twenty-three subjects undergoing vibration treatments 

were collected.  

 

METHODS 

 

Subjects 

Twenty-three healthy subjects not affected by any neurological or 

musculoskeletal disorder participated in this study. 

All subjects, 7 males and 16 females (age 25.1 + 6.5 years, height 172.2 + 7.5 

cm, weight 65.2 + 11.7 kg), had been practicing regularly physical activity or 

non-competitive sports. 

The experiments were conducted in accordance with the Declaration of 

Helsinki and all the subjects signed a written informed consent. 

 

 

 



Exercises 

Before the testing session, the 

subjects performed a warm-up 

on a bicycle ergometer (load of 

70 W for 10 min) followed by 

stretching exercises for 5 min. 

They performed a protocol of 

two exercise of 1 min. 

In the first exercise (Figure 

32a), the subjects ran through 

an unloaded static (isometric) 

squat (knee angle at ~90°), and 

in the other exercise (Figure 

32b) a calf (knee angle ~150°).  

 

Before recording, the subjects were instructed about proper positioning on 

the platform and they were familiarized with the device. The exercises 

sequence for each subject was randomized and between each exercise all 

the participants rested for about 20 min, until they felt recovered and their 

HR and sVO2 signals were returned to initial values.   

We used CE-marked Medical Devices within the limits and according to the 

standard training protocols specified by the manufacturers. 

 

Whole-body vibration treatment (WBV) 

A vibrating platform (TSEM S.p.A., Padova - Italy) was used to deliver 

vibration to the patients. The platform was modified (for our purpose) by the 

   

Figure 32: Static squat (a) and calf (b) positions. 

 



manufacturer to allow remote control of the principal parameters (i.e. 

vibration frequency and intensity) from an external PC. Vibrations impressed 

by the platform were exclusively vertical (there was neither horizontal shift, 

nor pitch, roll or yaw); platform displacement was sinusoidal with an 

intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency 

ranging from 10 to 80 Hz. Obviously, being the peak-to-peak displacement 

constant, the maximum acceleration impressed to the patients depends on 

the square of the pulsation. 

 

Surface EMG  

Signals from the Rectus Femoris (RF), Bicep Femoris (BF) and Gastrocnemius 

(GC) of the dominant leg were collected. Signals were recorded using small 

disc Ag/AgCl electrodes (5mm in diameter, inter—electrode distance of 20 

mm arranged in the direction of the muscle fibers). Electrode skin areas were 

shaved and cleaned before the placement of electrodes and conductive 

paste was used. All the electrodes ware placed in accordance with the 

guidelines of SENIAM Project [Hermens et al, 1999] and were secured 

(specific adhesive tape was used) to prevent the cables from swinging and 

from causing induced artifact. Reference electrode was located on the ankle 

of the same leg.  

EMG signals were amplified using a multi-channel, isolated biomedical signal 

amplifier (Biomedica Mangoni Pisa, Italy - model. BM623; input impedance > 

10 MOhm; CMRR > 100 dB). The gain was set to 1000 V/V and a band pass 

filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to 

suppress line interference. 



A PC multi-channel 16-bit data acquisition card (National Instruments 

DAQCard 6251) was used to acquire SEMG signals and to drive the vibrating 

plate. Specific software was designed on purpose using the Lab-

Windows/CVI (National Instruments) environment. All signals were sampled 

at 1536 Hz. 

To quantify SEMG signal, RMS values were computed using 500 ms time 

window without overlapping. Motion artifact components on recorded EMG 

signals were filtered out using a set of standard notch filters (with a -3dB 

band of 1.5 Hz) centered on the applied vibration stimulus frequency and its 

harmonics. 

 

 

RESULTS and DISCUSSION 

 

In order to obtain a mathematical model that relates the resonance 

frequency of the muscle groups with the anthropometric characteristics of 

the subjects numerous data are required. For this reason, has not yet been 

possible to identify a model that establishes a relationship between the 

parameters under evaluation, and the experiments are still in progress. 
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