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1.INTRODUCTION 

 

1.1 Hematopoietic stem cells (HSC)  

In humans, the hematopoietic system is a highly structured hierarchy which 

originates from hematopoietic stem cells (HSC). HSCs are characterized by the 

peculiar and unique ability to self-renew and differentiate into mature and 

functional blood cells of many different lineages. Moreover, they are capable of 

reconstituting the hematopoietic system in recipients after myeloablative irradiation 

1
.  From  a numerical point of view, HSC is a rare population, accounting for 1 in 

10000 to 1000000 cells in BM. They are physiologically quiescent but upon 

stimulation, they can enter into cell cycle and proliferate. These processes are 

strongly and deeply regulated, resulting, whenever abnormal regulation of HSC cell-

fate occurs, in leukemia and other myeloproliferative disorders. 

The studies of molecular marker expression performed by flow cytometry analysis 

have led the identification of each blood cell subpopulations in terms of their 

biology and potential when combined with other functional assays. As a result, 

schematic demonstration of hematopoietic hierarchy has been proposed (Figure 1). 

The origin of all blood cell in hematopoietic system is thought to be derived from 

HSCs that contain self-renewal capacity and give rise to multipotent progenitors 

(MPPs) which lose self-renewal potential but remain fully differentiate into all 

multilineages. MPPs further give rise to oligopotent progenitors which are 

represented by common lymphoid and myeloid progenitors (CLPs and CMPs, resp.). 

All these oligopotent progenitors therefore differentiate into their restricted lineage 

commitment: (1) CMPs advance to megakaryocyte/erythrocyte progenitors (MEPs), 

granulocyte/macrophage progenitors (GMPs), and dendritic cell (DC) progenitors, 

(2) CLPs give rise to T cell progenitors, B cell progenitors, NK cell progenitors and DC 

progenitors.  
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Figure 1: Hierarchy of hematopoiesis. The phenotypic cell surface marker of each population of 

human blood system is shown.  

 

                              

1.2 Cancer Stem Cells  
 
Treatment of cancer still represents an ambitious challenge, since, both in solid and 

in haematological setting, the pathogenesis involves dysregulation of endogenous 

and essential cellular processes 
2
. These alterations determine the difficulty, shared 

worldwide by scientists and physicians, to identify the potential targets to be hit in 

order to eradicate many neoplastic diseases. 

According to the most recent literature, the development and maintenance of 

cancer can be explained by two different models. One model is the so called 
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“stochastic model”, in which all cancer cells are able to form and maintain the tumor 

mass (Figure 2a). The second model, the so called “hierarchical model”, identifies a 

small group of cells susceptible for transformation, which forms and maintains the 

tumor (Figure 2b). The hierarchical model is also called the “cancer stem cell” (CSC) 

model because the group of cells responsible for this maintenance of the tumor has 

stem cell like characteristics 
3, 4, 5

 

 

 

Figure 2 Two general model of heterogeneity in cancer cells. 

a) “Stochastic model”: cancer cells of many different phenotypes have the potential to proliferate 

extensively, but any one cell would have a low probability of exhibiting this potential in an assay of 

clonogenicity or tumorigenicity. b) “Hierarchical model”: most cancer cells have only limited 

proliferative potential, but a subset of cancer cells consistently proliferate extensively in 

clonogenic assays and can form new tumors upon transplantation. This model  predicts that a 

distinct subset of cells is enriched for the ability to form new tumors, whereas most cells are 

depleted of this ability. Existing therapeutic approaches, both in leukemia and in solid tumors, 

have been based largely on the first described model, but the failure of these treatments to 

eradicate most solid cancers suggests that the second mode may be more accurate
6
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More and more increasing evidences have been found, supporting the CSC 

hypothesis, and many features suggest an overlap between SCs and CSCs 
6
.  

In details, normal SCs have the ability to proliferate life-long, are immortal and are 

mostly resistant to drugs by multiple mechanisms. SCs can divide asymmetrically 

and produce two cells: a daughter SC and a progenitor cell that can differentiate into 

different lineages but cannot self-renew. SCs have specific markers and are able to 

differentiate into certain tissues and cells due to the microenvironment and other 

factors.  

CSCs are quite similar to these criteria. CSCs have the ability to proliferate and the 

peculiar property to self-renew, and are heterogeneous. The CSC develops along the 

differentiation path similar as normal SCs and finally the tumor includes tumor 

initiating cells (CSCs) and an abundant amount of non-tumor initiating cells. CSCs 

express specific markers, often also found on SCs and importantly CSCs are often 

more resistant to drugs then the bulk of the tumor 
7, 8

.  

The main evidences for the existence of CSC emerge from in vitro and in vivo 

experiments. Bonnet et al., in the mid-1990s, identified a stem cell-like population 

from a human acute myeloid leukemia (AML), proving that cells with the 

CD34+/CD38- phenotype are the cells that are able to proliferate and initiate AML. 

This population of cells represent 0.2% of the human leukemia population
5
. The 

isolated cells, CD34+CD38-, had a similar cell-surface phenotype to normal SCID-

repopulating cells. They showed that these stem-like cells were capable of initiating 

human AML in NOD/SCID mice. In addition, the data they collected suggested that 

normal primitive cells, rather than committed progenitor cells, are targets for 

leukemic transformation. These cells homed to the bone marrow and proliferated 

extensively in response to in vivo cytokine treatment, resulting in a pattern of 

dissemination and leukemic cell morphology similar to that seen in the original 

patients 
9
.  
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Therefore, Zou postulated the definition of the CSC as follows: 

“Cancer stem cells can be defined as the specific cell population inside cancer which 

has the capacity for self-renewal, the potential to develop into any cells in the overall 

tumor population, and the proliferative ability to drive continued expansion of the 

population of malignant cells.”
10

. 

It is not known whether CSCs really arise from SCs however it is possible that 

deregulation of the normal SC gives the development of cancer
9
. Tumorigenesis 

process begins either with transformation of a multipotent SC which leads to 

uncontrolled self-renewal or transformation of a more downstream progenitor cell 

leading to acquired self-renewal of a cell that did not have self-renewal capacity 
6,11

  

In 1988, Pierce and Speers defined the CSC concept as follows: 

“A concept of neoplasms, based upon developmental and oncological principles, 

states that carcinomas are caricatures of tissue renewal, in that they are composed 

of a mixture of malignant stem cells, which have a marked capacity for proliferation 

and a limited capacity for differentiation under normal homeostatic conditions, and 

of the differentiated, possibly benign, progeny of these malignant cells.” 
12

 

Recently, and to summarize, Weissman and colleagues have proposed that a 

candidate CSC population should exhibit the following properties:  

1) The unique ability to engraft;  

2) The ability to recapitulate the tumor of origin both morphologically and 

immunophenotypically in xenografts;  

3) The ability to be serially transplanted
13

. 
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1.3 Leukemic Stem Cells (LSCs) in AML 

 

AML represents a group of  clinically, cytogenetically and molecularly  

heterogeneous diseases, affecting mostly adult people worldwide, with a mild 

prevalence in male sex and an estimated incidence of 3,7 cases out of 100,000 

persons. The pathogenesis of this rare disease involves a block of differentiation at 

the myeloid lineage, which results into growth of abnormal white blood cells called 

blasts, which disrupt the growth of normal blood cells, white and red blood cells. 

This leads to a default in the immune system resulting in infections, bleeding or 

organ infiltration and a defect in the formation of red blood cells resulting in 

anaemia. AML patients outcome are very poor, mainly in elderly subgroups, unfit for 

aggressive chemotherapeutic approaches and allogeneic stem cell transplantation.   

The AML phenotype is extremely various, since the disease develops by sudden 

genetic and/ or epigenetic events leading to the transformation of the HSC or 

progenitor. In the case of transformation of the progenitor, LSCs maintain the 

identity of the progenitor from which they arose, while acquiring SC-like features 

such as self-renewal 
14

. The phenotype of the LSC is much more heterogeneous than 

expected and can vary even within a single AML sample.  

At present, in AML treatment, despite a high initial complete remission rate 

obtained after induction chemotherapy, many patients relapse afterwards, resulting 

in a still dismal overall outcome. Several relapse related factors have been so far 

identified, such as certain cytogenetic and molecular aberrations at diagnosis, lack 

of early treatment response and high level of minimal residual disease (MRD, small 

number of leukemic cells that remain in the patient) after treatment. Moreover, 

high frequencies of LSCs at diagnosis and after treatment have been shown to 

predict relapse in AML
15

. Indeed, since conventional intensive chemotherapy 

primarily targets at the proliferative leukemic blasts, it has led to the concept of 
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chemo-resistant leukemia initiating cells, which can give rise to leukemic blasts and 

hence sustain the haematological malignancy.  

Quiescence of LSCs, also called dormancy, is probably the most important reason for 

treatment failure of AML cells because these cells are not in cycle. As known, most 

conventional chemotherapy (e.g. anthracyclines, cytarabine) triggers cell death by 

inducing DNA damage which leads to interference with cell growth and keeping the 

cells in S-phase resulting in the induction of cell death. Therefore, rapid dividing cells, 

such as tumor cells, are most affected by chemotherapy. The LSC are non-cycling. 

Therefore, most chemotherapeutic agents do not trigger cell death in these cells as 

easy as in rapidly dividing cells. The LSC escapes the induction of cell death, resulting 

in disease relapse. After chemotherapy treatment in AML, quiescent LSC’s often 

survive because of their dormant properties.  

It’s still a very debating object the development of agents which could bring normal 

SCs into cell cycle and awake the quiescent cells. To the best of our knowledge, 

some Cytokines like Interferon (INF)α and granulocyte colony stimulating factor (G-

CSF) are able to activate HSCs. Moreover, the compound arsenic trioxide (As2O3), 

which is very active in APL, both at diagnosis and at relapse, targets the 

promyelocytic leukemia (PML) protein resulting in degradation of the protein and 

the increase of mRNA 15. This results, like INFα and G-CSF, in cells getting into cycle. 

The initial stem cell idea of leukemia stem cell was first iterated in 1981, when 

Fialkow et al first demonstrated the clonal nature of AML by X-linked inactivation 

gene pattern 
16

. 

Following published studies, showed that only a small percentage of AML blast cells 

can proliferate and form colonies in in vitro methylcellulose culture 
17,

 
18

.  

Thereafter, Bonnet D and Dick JE, as already mentioned, firstly demonstrated the 

existence of putative LSC by showing that irrespective of the morphologic subtypes, 
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only a small fraction of LSCs, bearing the HSC-like phenotype (CD34+CD38-), can 

recapitulate the leukemia when injected into sublethally irradiated NOD/SCID mice 
5.  

Based on this discovery, Acute myeloid leukemia (AML) would be initiated and 

maintained by a small population of cells that have SC-like characteristics (Figure 3). 

These cells proliferate, divide asymmetrically and are able to self-renew and are 

called LSCs 
19,20

. Due to their persistence despite the administration of high dosage 

chemotherapy schedules, it is essential to develop new therapeutic strategies to 

eradicate LSCs.  

LSCs are located at the endosteal region of the bone marrow and are mainly non-

cycling 
21,

 
22,

 
23

. Due to this quiescent property, their escape from therapy could be 

explained. Thus, their release from this quiescence state could represent an 

opportunity to lead the LSCs into cell death.  

As previously described, LSCs and normal HSCs share several features, since they 

both reside in the AML bone marrow and present similar cell surface markers. The 

success of anti-LSC therapy would rely on functional manipulation of genes that lead 

to specific killing of LSCs while saving normal HSCs (Figure 4). 
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Figure 3 Leukemic stem cells may be targeted by a two-step strategy. Leukemic stem cells (LSCs), 

which may be a minority within the leukemic clone, show significant resistance to anti proliferative 

chemotherapy regimes that are thought to be the cause of frequently observed tumor relapse. In 

analogy to normal dormant hematopoietic stem cells (HSCs), resistance of LSCs may, at least in 

part, be mediated by a state of deep dormancy. Thus to specifically target dormant LSCs one may 

postulate a two-step therapy model. First, dormant LSCs would be activated by factors, such as 

Interferon α (IFNα), granulocyte colony-stimulating factor (G-CSF) or arsenic trioxide (As2O3) and 

exit from their niche. Once they are cycling, treatment would be continued through administration 

of targeted chemotherapy, such as Imatinib or cytarabine 
19

. 

 
 

At present, the characteristics of LSC have not yet been fully and clearly defined. 

From the mid 90’s, many studies have identified, in AML, potential phenotypic 

signatures which might concur in the definition of a LSC panel. Among these, Blair 

and co-authors  showed that AML LSCs were highly enriched in the CD34+CD38–

CD90–CD117– population 
24, 25

.  
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Figure 4 Development of LSC in AML. AML is organized in a hierarchy as normal hematopoiesis. 

Leukemic transformation into LSC can occur either at the primitive HSC level, multipotent 

progenitor (MMP), or even at the committed progenitor levels (CMP and GMP). Leukemic blasts of 

the different subtypes of AML (M0-M7) arise from a block in differentiation along the various 

hematopoietic lineages. 

 

 

More recently, LSC have been characterized based on other phenotypic markers, 

including interleukin-3 (IL-3) receptor CD123 
26

, early myeloid antigen CD33
27

, the C-

type lectin-like molecule-1 (CLL-1)
28

, the pan-T cell marker CD96
29

 and CD44
30

 (Table 
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1). These data result in the lack of a unique surface phenotype in LSC population, 

suggesting that additional functional markers may be important in defining LSC. 

 
Table 1 Surface phenotype of LSC 
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1.3.1 Regulations of LSC in AML 

 

Many studies, performed on transgenic mouse models and exogenous gene 

manipulatons, have identified a number of genes involved in regulating LSC in Acute 

Leukemia setting. Among these, the overexpression of HOXA9 in donor mouse BM 

cells, and resulted in long latency leukemia in recipient after transplantation have 

been demonstrated
31

. Moreover, deletion of the polycomb group gene PTEN in 

murine HSC has been showed to led to the rapid development of myeloproliferative 

disease and eventually leukemia that are transplantable into secondary recipients 
32

. 

Interestingly, human lin- UCB cells that were retrovirally transduced with the mixed-

lineage leukemia (MLL)-AF9 fusion might be able to induce both acute lymphoid 

leukemia (ALL) and AML upon transplantation into immunodeficient mice 
33

. 

Many other relevant studies have been conducted in primary AML samples, in order 

to identify the altered expression of genes and the involvement of the related 

signalling pathways in maintaining LSCs.   

For instance, CD34+ AML cells have been showed to present at least three activated 

pathways, if compared with normal HSC: 

-Activated NF kappa B activity 
34

;  

-Activated phosphoinositide 3-kinase (PI3K) 
35

  

-Constitutive activated Wnt/β-catenin pathway 
36

  

Recent studies have also shown that, analogous to HSC, LSCs from AML homed to 

and engrafted in the BM endosteal region upon transplantation into 

immunodeficient Mice 
23

. More importantly, it has been demonstrated by the same 

authors that chemoresistant leukemic cells were clustered around the putative HSC 

niches in the BM endosteum and the sinusoidal endothelium
23

. This has highlighted 
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the important role of the BM microenvironment in regulating LSC. In addition, gene 

expression analysis have been performed, and data obtained have also revealed 

changes in the molecular signatures in leukemic stromal cells as compared to the 

normal counterpart 
37

, strongly suggesting the involvement of a leukemic ‘niche’ 

signal in leukemic transformation as well as LSC maintenance. 

In this regard, genetic profiling comparing the BM and PB leukemic cells in AML has 

been performed 
38

. Despite of a highly similar gene expression profile, the study 

showed that expression of c-myb, HOXA9, LYN, cystatin C and LTC4s were 

significantly different between BM and PB samples. Nevertheless, the use of the 

heterogenous non-purified mononuclear cell (MNC) fraction for comparison has 

largely limited the interpretation of such data. Hence, definitive evidence is still 

lacking and that the mechanisms whereby regulatory signals are translated to 

impact on LSC in the BM milieu are far to be elucidated.  

 

1.4 Leukemia stem cells in Chronic Myeloid Leukemia (CML) 

 

Philadelphia-positive (Ph+) CML is a myeloproliferative disease characterized by 

granulocytosis and splenomegaly. The disease course is divided into three phases, 

triphasic, starting with a chronic phase, progressing to an accelerated phase, and 

ultimately ending in a terminal phase called blast crisis, which presents clinical and 

features comparable with Acute Leukemia. The Ph chromosome is present  in over 

90% of CML cases, being the diagnostic molecular hallmark of the disease. After the 

introduction, 13 years ago, of selective drugs with tyrosine-kinase inhibitory activity 

on BCR-ABL fusion gene, the prognosis of this haematological malignancies 

dramatically improved both in young and adult patients. Nevertheless, a definitely 

cure for CML is still lacking, due to the apparent and demonstrated persistence, 

even after allogenic stem cell transplantation, of quiescent LSCs 
39

. Although BMT is 
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considered a “curative” therapy for CML, the cure is apparently “relative” due to the 

existence of residual LSCs.  

From a practical point of view, indeed, in the current clinical management, the BCR-

ABL kinase inhibitor imatinib and many second generation TKIs have been 

developed to treat CML and now serves as the frontline therapy for the patients 

with chronic phase CML. Despite their ability to control CML, these compound do 

not appear to cure the disease, as LSCs evade treatment, as demonstrated in many 

reports 
40

. Moreover, both in vitro and in vivo studies showed that CD34+ cells 

derived from the bone marrow of CML patients could not be effectively killed by 

imatinib treatment. CD34+ CML stem cells, especially the non-dividing CD34+ cell 

population, were not sensitive to imatinib-inhibition in vitro, and this was further 

confirmed by the detection of BCR-ABL mRNA transcripts in CD34+ bone marrow 

cells from CML patients after a long-term treatment with imatinib 
41

. The minimal 

effect of BCR-ABL kinase inhibitor on LSCs was also observed in the CML mouse 

model 
42

. 

The second generation TKI, dasatinib, is a dual BCR-ABL/SRC kinase inhibitor, whit 

demonstrated activity in controlling CML. In CML mouse model, mice treated with 

dasatinib lived significantly longer than those treated with imatinib 
42

. These  data 

correlated with significantly lower numbers of BCR-ABL-expressing leukemic cells in 

peripheral blood compared with placebo- and imatinib-treated mice. However, all 

dasatinib-treated CML mice eventually died of this disease, meaning that, like 

imatinib, this drug is not able to completely eradicate LSCs in CML mice. This 

conclusion on the failure of dasatinib to eradicate LSCs is supported by the 

observation that quiescent human CD34+CD38- CML cells are resistant to dasatinib 

treatment 
43

. So, neither imatinib nor dasatinib are able to completely eradicate 

BCR-ABL-expressing HSCs, suggesting that neither drug alone will cure CML and 

targeting of multiple pathways in LSCs is required to cure the disease. 
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It is still unclear why imatinib and dasatinib do not completely eradicate LSCs, but 

several reasons should be excluded, based on the data available. First of all, the drug 

can access stem cells, as inhibition of intracellular BCR-ABL phosphorylation by 

dasatinib in the stem cells were detected 
42

, but its activity is not enough to 

eradicate the LSC compartment. Second, the inability of dasatinib to cure CML mice 

is not due to the appearance of mutations (e.g. BCR-ABL-T315I resistant clone) in 

the mice because CML mice treated with dasatinib for about 3 months contained 

>40% of GFP+Gr-1+ cells, among which there were large numbers of LSCs. 

Sequencing analysis of isolated genomic DNA from bone marrow cells of these mice 

did not show the T315I mutation in the BCR-ABL kinase domain
42

. In addition, the 

failure of imatinib to eradicate LSCs is not related to the c-kit function, because both 

imatinib and dasatinib inhibit c-kit 
44

. These results confirm that inhibition of BCR-

ABL kinase activity alone is insufficient to eradicate LSCs 
45

. 

The current challenge, therefore, is to identify the molecular pathways which are 

involved and contribute to the maintenance, survival and self-renewal in CML LSCs, 

in order to discover molecular target potentially to be hit by specific drugs, in 

combination with TKIs. Therefore, as in AML, a real deep and complete cure may 

require complete eradication of these stem cells. 

Thus, since CML patients receiving BMT can relapse LSCs are not eliminated.  

CML is defined as a stem cell disease that results in the clonal expansion of BCR-ABL 

expressing cells, resulting from the t(9;22)(q34;q11.2) balanced translocation. BCR-

ABL rearrangement occurs in a pluripotent hematopoietic stem cell, and LSCs in CML 

could be defined as part of properties of normal HSCs. Various subpopulations of 

CD34+ cells from CML patients have been isolated, and cells in each of the CD34+ 

subpopulations were examined for the presence of BCR-ABL mRNA 
46

, showing that 

BCR-ABL mRNA could be found in CD34+CD38- and CD34+CD38+ cells. Furthermore, 

other colleagues reported that enriched CD34+ cells from patients with CML could 
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be transplanted into NOD/SCID mice 
47

, although the mice did not develop lethal 

CML-like disease. The failure of BCR-ABL to induce typical CML in NOD/SCID mice 

does not necessarily indicate that this model is not suitable for examining LSCs, as 

human leukemia cells were indeed transplanted and survived in the recipient mice. 

It is obvious that the use of a NOD/SCID strain that allows more efficient 

engraftment of donor cells would likely improve the engraftment of human CML 

cells 
48

. Therefore, a full understanding of the biology of LSCs requires the 

development of a good animal model that allows analysis of CML LSCs in the future. 

 
 

1.4.1 Critical molecular pathways in CML LSCs 
 
BCR-ABL plays a critical role in the maintenance of survival of LSCs, as all critical 

molecular pathways identified so far can be activated by BCR-ABL. It is reasonable to 

think that the stemness of BCR-ABL-expressing HSCs is maintained by a complex 

molecular network involving BCR-ABL and its interaction with other downstream 

signaling pathways. Thus, these pathways would be specifically involved in the 

survival regulation of LSCs but not normal stem cell counterparts. In other words, it 

could be possible to identify genes that play critical role in the regulation of LSC 

function. This idea is supported by the identification of the Alox5 gene as a key 

regulatory gene for LSCs but not normal hematopoietic stem cells. So far, there have 

been no data that do not support a role of BCR-ABL in the maintenance of the 

stemness of LSCs. However, a critical question to ask is why BCR-ABL kinase 

inhibitors such as imatinib and dasatinib are incapable of eradicating LSCs, if BCR-

ABL kinase activity is inhibited? It has been shown that the inhibition of BCR-ABL 

kinase activity by imatinib in LSCs does not completely compromise BCR-ABL 

function 
42

, indicating the kinase-independent function of BCR-ABL.  
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A complete removal of BCR-ABL protein would have a much stronger inhibitory 

effect on LSCs. Besides targeting BCR-ABL, the identification and inhibition of key 

BCR-ABL downstream signaling molecules/pathways will offer effective therapeutic 

strategies aiming to eradicate LSCs. Below are some examples of the key pathways 

activated by BCR-ABL in LSCs (Figure 5, 6). 

 

                       
Figure 5 Critical molecular pathways in LSCs 
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Figure 6 Cell-surface markers and therapeutic targets of myeloid leukemia stem cells.  

Potential agents and strategies for the eradication of LSCs are depicted in red and include 

antibodies and fusion proteins as well as small-molecule inhibitors. (Adapted from Daniela S. 

Krause and Richard A. Van Etten Right on target: eradicating leukemic stem cells, TRENDS in 

Molecular Medicine Vol.13 No.11)  
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1.5 Hedgehog pathway 
 
Many emerging laboratory and clinical investigations, in the recent years, have 

shown that Hedgehog signaling (Hh) represents a novel therapeutic target in various 

human cancers 
49,50

. It’s a signaling pathways which physiologically regulates self-

renewal and terminal differentiation during the embryonic development, becoming 

typically silenced after birth, in adult tissues.  Its reactivation, infact, usually may 

appear only during tissue repair 
51

.  

Interestingly, aberrant Hh pathway signaling has been implicated in the 

pathogenesis, self-renewal, and chemotherapy resistance of a growing number of 

both  solid and hematologic malignancies, defining a potential target not only for 

preclinical studies but also for identification of new tailored therapies. 

Major components of the Hh pathway, which will be further described in details, 

include the Hh ligands (Sonic, Desert, and Indian), the transmembrane receptor 

Patched, the signal transducer Smoothened (Smo), and transcription factors Gli1–3 

which regulate the transcription of Hh target genes. Mutations in Hh pathway 

genes, as expected, increased Hh signaling in tumor stroma, and Hh overexpression 

in self-renewing cells (cancer stem cells) have been described. These different 

modes of Hh signaling, therefore, have implications for the design of Hh pathway 

inhibitors and their integration into conventional treatment regimens. 

The presence of a naturally-occurring Smo inhibitor, cyclopamine, has encouraged 

the development of several derivative compounds, which are currently objectives of 

clinical trials. Relevant and interesting encouraging laboratory and in vivo data has 

resulted in Phase I and II clinical trials of Smo inhibitors, but the optimal 

combination and sequence of these targeted therapies into current treatment 

algorithm still remain a challenge.  
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1.5.1 The pathway description 
 
The Hh signaling pathway is activated by the binding of Hh ligand to the 

transmembrane receptor, Patched (Ptc).  In the absence of ligand, Ptc suppresses 

the Hh signaling cascade by inhibiting the activity of a second transmembrane 

protein, SMO.  Binding of Hh ligand to Ptc alleviates repression of SMO, allowing 

SMO to transduce the signal to the cytoplasm resulting in activation of zinc finger 

transcription factor, Gli.  Gli translocates into the nucleus and activates transcription 

of target genes including additional Gli family members and Ptc (Figure 7). 

 

 
 
 

Figure 7 Proposed mechanism for Hedgehog (Hh) pathway activation. In the absence of Hh 

ligands, Gli2 and Gli3 (Glis) form a protein complex with other proteins, and the suppressor of 

Fused (SUFU). Furthermore, Patched (Ptch) suppresses the signaling activity of Smo. Costal2 might 

promote the degradation or proteolysis of Glis, which generates the repressor form of Glis (Rep-

Gli2 ⁄ 3). The translocaTon of Rep-Gli2 ⁄ 3 to the nucleus inhibits the transcripTon of target genes, 

including Gli1 and Ptch, and cancer proliferation- and invasion-related genes (left panel). In the 

presence of Hh, it binds to Ptch, activating Smo, and both degradation of Gli2 and proteolytic 

processing of Gli3 into its repressive form are inhibited, thereby permitting Gli2 to function as a 

strong activator of Hh signaling (Act-Gli2) and allowing full-length Gli3 to serve as an activator 

(Act-Gli3) (right panel). (Modified from Onishi H, Katano M: Hedgehog signaling pathway as a 

therapeutic target in various types of cancerCancer Sci. 2011 Oct;102(10):1756-60) 
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The Hh signaling pathway is essential for multiple functions in embryonic 

development, and is therefore considered a key developmental pathway.  

Disruption of this crucial pathway during human development results in severe birth 

defects represented by holoprosencephaly, polydactyly, cranial defects, and skeletal 

malformations
52

.  Aberrant activation of the Hh pathway has also been implicated in 

a lot of human malignancies, and can occur by two mechanisms, both of which 

result in cancer.   

First, mutations in Ptc or SMO genes result in constitutive activation of the pathway 

and upregulation of Gli.  Mutations in Hh signaling members have been reported in 

basal cell carcinoma, medulloblastoma, and rhabdomyosarcoma 
53, 54

. Moreover, a 

direct link between mutation driven aberrant Hh signaling and human tumorgenesis 

is found in Gorlin Syndrome, characterized by the development of multiple basal cell 

carcinomas (BCC) and a predisposition to medulloblastoma and rhabdomyosarcoma. 

These patients present a germline inactivating mutation in the repressor Ptc which 

results in constitutively active SMO and upregulation of Hh target genes.  The link 

between mutations in Ptc and BCC was also reported in a majority of sporadic BCC 

tumors 
53, 54

.  A significant number of sporadic medulloblastomas, a pediatric cancer 

of the cerebellar granule neuron progenitor cells, can also be attributed to 

inactivating mutations in Ptc gene 
54

.   

The second method of Hh activation is through autocrine or paracrine mechanisms 

of ligand driven Hh pathway activation in adult tissues with a normally dormant Hh 

pathway. In some cancers Hh pathway members are expressed in the tumor cells 

and directly affect the growth of the tumor, resulting in an autocrine positive 

feedback loop. In other cases, Hh ligand produced by tumor cells may activate the 

pathway in adjacent stroma, leading to the release of growth factors that support 

tumor growth or angiogenesis as part of the tumor microenvironment 
55

 (Figure 8).  
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Figure 8 HH pathway regulation in cancer (Adapted from Scales S. et al, Trends Pharmacol.Sci., 

2009) 

 

This has been reported in pancreatic, breast, prostate, small cell lung cancer and 

more recently in hematopoietic malignancies 
56,

 
57,

 
58, 59,60,

 
61

 (Figure 9). 
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Figure 9 A schematic presentation of the different modes of aberrant HH signaling and the 

subsequent different types of cancers which can be categorized on the basis of at which stage the 

HH signaling influences the neoplastic progression (Adapted from Swayamsiddha Kar, Moonmoon 

Deb et al., Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis, 

Experimental Cell Research 318 (2012) 1959–1972). 
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1.5.2 Role of Hedgehog pathway in Hematologic Malignancies 

 

As previously assessed, the identification of cancer stem cells that self-renew, 

reinitiate tumor development and give rise to the neoplastic bulk, represented a 

milestone in the understanding of leukemia pathogenesis. Ultimately, this biological 

capacity can contribute to resistance and metastatic spread, affecting, at the end, 

overall survival. Standard chemotherapy, radiotherapies and some targeted 

therapies, as widely demonstrated, can greatly reduce tumor bulk but may be less 

effective on quiescent cancer stem cells. The key challenge has been, therefore, in 

identifying the molecular mechanisms that maintain and support cancer stem cell 

self-renewal and survival, in order to hit the initiating cell, responsible for tumor 

appearance. 

In Ph+ CML subset, it has been widely demonstrated the ability of leukemic BCR-ABL 

clone to escape from direct tyrosine kinase inhibition, induced by first and second 

generation TKIs. For this reason, stem cell transplantation (with its high morbidity 

and mortality rates) remains the only potential cure for the relatively few patients 

with this option. Thus, the identification of less toxic and potentially curative 

therapies which target this disease remains of great interest. Several studies 
60, 61

 

have identified components of the Hh pathway as potential drug targets in BCR-ABL-

positive CML as it may play a key role in leukemic stem cells (LSC’s). Dierks et al 

described a 4-fold induction of Gli1 and Ptc1 in CD34+ chronic or blast crisis CML 

cells. BCR-ABL expression induced SMO, Gli1 and Ptc levels within the stem cell 

compartment in a mouse model of CML. The Ptc1 expression level is 20-fold higher 

in patient derived CD34+ blast-crisis CML cells compared to CD34+ chronic-phase 

CML cells 
62

. Gli2 expression increases progressively in chronic phase and blast crisis 

CML samples, and SMO is essential for expansion of the leukemic stem cell pool as 

compared to normal hematopoietic stem cells (HSC’s). Zhao et al demonstrated that 

Hh signaling is activated in LSCs through up regulation of SMO. While SMO does not 
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impact long-term reconstitution of regular hematopoiesis, the development of 

retransplantable BCR-ABL-positive leukemia was abolished in the absence of SMO 

expression. Furthermore, loss of SMO impairs HSC renewal and decreases induction 

of CML by the BCR–ABL oncoprotein and by depletion of the CML stem cell, whereas 

constitutively active SMO augments CML stem cell number to accelerate disease. 

The cell fate determinant Numb, which depletes CML stem cells, is increased in the 

absence of SMO activity. Pharmacological inhibition of Hh signaling impairs not only 

the propagation of CML driven by wild-type BCR–ABL, but also the growth of 

Imatinib-resistant mouse and human CML by reducing the number of LSCs in vivo 
61

. 

Finally, SMO was significantly upregulated in CML patients, suggesting activation of 

the Hh pathway may be associated with CML progression
63

. Collectively, these data 

indicate that Hh pathway activity is required for maintenance of normal and 

leukemic stem cell populations in CML, and raise the possibility that drug resistance 

and disease progression associated with TKI failure might be avoided by targeting 

this essential stem cell maintenance pathway. 

In addition to CML, aberrant Hh signaling has been described in a variety of human 

leukemia and leukemia stem cells. Expression levels of Ptc, SMO and Gli1 were 

examined in several leukemic cell lines 
64

. Ptc and SMO were expressed in Jurkat T-

ALL cells, and Shh and Gli1 were expressed in human promyelocytic leukemia (HL-

60) and KG-1 cells. Hh signaling is up-regulated in several subtypes of human AML 

cells, including primary CD34+ leukemic cells and cytokine-responsive CD34+ cell 

lines such as Kasumi-1, Kasumi- 3 and TF-1. These CD34+ cells express Gli1 and Gli2, 

indicative of active Hh signaling. Inhibition of Hh signalling induced apoptosis after 

48 h of exposure, although these CD34+ cell lines exhibited resistance to cytarabine 

(Ara-C). This data was confirmed by reverse transcription– polymerase chain 

reaction (RT-PCR) for Hh pathway components and a Gli-responsive reporter assay 
65

. 

Finally, upregulation of Hh pathway components has been observed in 



28 
 

chemoresistant AML cell lines in vitro, and pharmacological inhibition of the Hh 

pathway resulted in decreased multi-drug resistance (MDR-1) or P-glycoprotein 

(Pgp) expression in these cells 
66

. Given the central role that Hh signalling plays in 

cell differentiation, Hh inhibition represents a mechanistically novel approach to 

eliminate the LSC population and thus abrogate tumor proliferation in at least a 

subset of CD34+ myeloid driven hematapoietic malignancies. 

Additional evidence for the importance of Hh in leukemia’s is derived from patients 

enrolled in a recently closed single agent hematology trial with a Smo-inhibitor 

molecule, which will be the object of this research activity. The results will be 

showed in the related chapter.  

 
 

1.6 New Smo-inhibitor drugs in clinical development  
 

 

After the identification of a natural Hh pathway antagonist, represented by 

Cyclopamine, many synthetic and semi-synthetic derivatives, with increased potency 

and bioavailability have been introduced in clinical research, both in hematological 

malignancies and in solid tumors.  

Among these, in Table 2 are reported the most promising compounds, currently 

objectives of company sponsored experimental clinical trials.  

All these molecules act at the level of Smo, after oral administration, according to 

different schedules. As expected, similar to challenges underlined in other 

neoplastic malignancies, an open question about the potential benefit and the most 

appropriate combination chemotherapy approach, currently hasn’t led to any 

answer.    
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Drug (Sponsor) Indications Phases 

GDC-0449 (Genentech) Advanced solid tumors, BCC, breast, 

chondrosarcoma, colorectal, gastric,   

Phase II  

LDE-225 (Novartis) Advanced solid tumors, BCC, chronic myeloid 

leukemia, pancreatic  

Phase I, II  

BMS-833923 (Bristol-Myers Squibb) Advanced solid tumors, BCC, chronic myeloid 

leukemia, esophageal,   

Phase I, II  

XL139 (Exelixis) gastric, multiple myeloma, small cell lung   

IPI-926 (Infinity) Advanced solid tumors, chondrosarcoma, head and 

neck, myelofbrosis, pancreatic 

Phase I, II  

SMO-INHIBITOR (Pfizer) Advanced solid tumors, hematologic malignancies  Phase I  

LEQ-506 (Novartis) Advanced solid tumors  Phase I  

TAK-441 (Millenium) Advanced solid tumors  Phase I  

Itraconazole BCC, metastatic prostate cancer, non-small cell lung 

cancer 

Phase II 

 
Table 2 Smoothened inhibitors currently in clinical trials for cancer (Modified from Lin TL, Matsui 

W. Hedgehog pathway as a drug target: Smoothened inhibitors in development. Onco Targets 

Ther. 2012;5:47-58.  
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1.7 A new Smo-inhibitor: molecular and PK features 

 

The hereby described Smo inhibitor compound is a potent and selective inhibitor of 

Hedgehog (Hh) signaling in vitro, and has showed significant antitumor efficacy in 

vivo. The first experience in a mouse model of Hh pathway-driven tumor has been 

performed in medulloblastoma setting, demonstrating that the drug inhibits 

pathway activation (Gli1 expression) and produces rapid and complete tumor 

regression. Moreover, the compound was studied in haematological malignancies, 

demonstrating its capability of reducing leukemic burden in a blast crisis chronic 

myeloid leukemia mouse model, and of inhibiting tumor formation in secondary 

recipients. 

Preclinical pharmacokinetic/ pharmacodynamic (PK/PD) modelling suggests a target 

human dose of 15 mg/day, projected to yield at least 50% of tumor Gli1 mRNA 

inhibition from baseline levels. A 15 mg dose is projected to result in a Cmin 

(minimum plasma concentration) of 62 ng/mL total (5.6 ng/mL free) and a Cav 

(Average drug concentration) of 79 ng/mL total (7.2 ng/mL free). The anticipated 

maximum dose in the clinic is 200 mg/day which is projected to result in a Cmax 

(maximum plasma concentration) of 2150 ng/mL total (196 ng/mL free) and a Cave 

of 967 ng/mL total (88 ng/mL free). 

Absolute oral bioavailability of the molecule following single dose oral 

administration was 33% in rats and 68% in dogs. Plasma protein binding of the drug  

in mouse, rat, dog, and human plasma ranged from 85% to 93%. A volume of 

distribution at steady state (Vss) of 4.78 and 4.21 L/kg was observed in rats and dogs, 

respectively. Hepatic metabolism is predicted to be the major clearance pathway for 

the drug in humans. Its in vitro metabolism  was consistent across preclinical species 

and humans. 
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1.7.1 Drug Metabolism  

 

This Smo-inhibitor appeared to be metabolized to several oxidative metabolites. 

Preliminary assessment using individual recombinant P450 enzymes suggests that 

CYP3A4 plays a major role in mediating the metabolism of the drug. All metabolites 

observed in human in vitro incubations were present in one or more of the 

evaluated preclinical species. In vitro, the molecule did not inhibit CYP1A2, CYP2C8, 

CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM. Based on in 

vitro and in vivo evaluations of the drug, systemic plasma clearance, volume of 

distribution at steady state, elimination half-life and oral bioavailability in humans 

are projected to be 1.03 mL/min/kg, 2.7 L/kg, 30 hours and 55%, respectively. 

The compound was evaluated in rat and dog repeat-dose toxicity studies up to 1 

month in duration. The Smo-inhibitor compound was well tolerated up to 50 

mg/kg/day in the rat and 5 mg/kg/day in the dog. In both the rat and the dog, a 

greater than proportional increase in exposure occurred with increasing dose. In the 

1-month rat study, the increase in mean AUC(0-24) values were approximately 175-

fold and 232-fold greater than the dose (50-fold) range evaluated for Day 1 and Day 

29, respectively. In the 1-month dog toxicity study, the mean AUC(0-24) values were 

approximately 165-fold (male) and 360-fold (female) greater than the dose (30-fold) 

range evaluated on Day 1. Deaths and/or moribund euthanasia occurred in the 7-

day and 10-day rat studies, and the 1-month dog study at 250, 500 or 30/15 

mg/kg/day, respectively. Cause of death/morbidity in both species was attributed to 

kidney toxicity. The target organ in the rat 1-month toxicity study included kidney 

(tubular degeneration/necrosis, cytomegaly, inflammation, regeneration) and bone 

(decreased/disorganized chondrocytes in epiphysis); the no observed adverse effect 

level (NOAEL) was 10 mg/kg/day (less than the projected human Cave at steady 

state at a 200 mg dose). The kidney changes showed some signs of reversibility but 

did not entirely reverse, while the bone changes persisted. 
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The target organ in the 1-month toxicity study in the dog was limited to the kidney 

(tubular necrosis, granular/mineralized casts, dilated tubules); the NOAEL was 1 

mg/kg/day which is less than the projected human Cave at steady state at a 200 mg 

dose. Mild changes in the kidney were observed at 5 mg/kg/day which are also 

below the projected Cave at a 200 mg dose. The kidney changes in the dog were 

completely reversed in males and partially reversed in females after a 6-week 

reversal period. 

In the acute central nervous system (CNS) and respiratory studies in the rat, no 

effects were observed at the high dose of 50 mg/kg. The maximum plasma 

concentration at 50 mg/kg (group mean free Cmax of 617 ng/mL) from the 1-month 

rat study is 3-fold above the projected human free Cmax concentration of 196 

ng/mL at a 200 mg dose. Increases in QT and QTc were noted. The Smo inhibitor 

compound was negative in the definitive in vitro bacterial mutagenicity assay, 

human lymphocyte assay and the in vivo rat micronucleus. The molar extinction 

coefficient for the Smo inhibitor compound at 290 nm is 9622 L/mol/cm; therefore, 

the Smo-inhibitor compound has the potential to be phototoxic. 
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2. AIMS OF THE STUDY 

 

The role of Hedgehog pathway in LSCs maintenance and self renewal both in AML 

and CML have been demonstrated by in vitro and in vivo studies. 

In clinical development, data concerning hematological malignancies are still lacking.   

The aims of this study have included both preclinical and clinical activities, in order 

to: 

1. Conduce a first in man Phase I clinical trial in patients with hematological 

malignancies, based on the administration, as a single agent, of a new Smo- 

inhibitor drug, aimed to assess:  

a. the safety and tolerability profile of the compound 

b. the maximum tolerated dose (MTD1) of the compound  

c. the pharmacodynamics  and the pharmacokinetics of the compound  

d. the clinical and the hematological response observed in treated patients  

2. Identify useful biomarkers related to Hh pathway in order to detect stem cell 

persistence in myeloid hematological malignancies 

3. Evaluate GEP of CD34+ cells before and after treatment with Smo-inhibitor 

drugs 

4. Evaluate the rationale for combination schedules of Smo-inhibitor with TKIs in 

Ph+ Leukemias, according to innovative phase I/II clinical trials.  

5. HH pathway contribution to functional human LSC propagation  
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3. MATERIALS AND METHODS 

 

3.1 First in man, Phase I Multi-Center Clinical Trial 

 

The above described innovative Smo-inhibitor drug has been tested in an open-

label, multi-center, Phase 1 study. The compound was administered orally as single 

agent to adults with select advanced hematologic malignancies (Phase 1a), after the 

obtainment of a signed informed consent. A second part (Phase 1b), consisting in 

the combination treatment with dasatinib or bosutinib for CML patients in AP/BC 

was planned, but has not been performed yet. The protocol, therefore, was 

designed for previously strongly treated patients with relapsed or refractory 

advanced hematological malignancies, such as AML, CML, MDS or PMF. 

Phase 1a was aimed to assess the above mentioned Smo-inhibitor administered as 

single agent once daily in a continuous regimen. A dose escalation design was 

applied in 3-6 patient cohorts up to identification of the maximum tolerated dose 

(MTD1). The starting dose was 5 mg once daily. A lead-in period on Day -6 for each 

dose escalation cohort was planned, in which the single-dose pharmacokinetics and 

pharmacodynamics of the compound was characterized prior to initiation of 

continuous dosing in the first cycle of treatment. The lead-in period duration, PK 

time-points, doses and/or regimens used in subsequent cohorts could be modified 

based on the exposure (AUC) observed during the lead-in period (although the 

number of PK samples will not be increased). 

Once the MTD1 is established, the cohort will be expanded with at least 8 additional 

patients to further characterize safety and tolerability at the MTD1 and to collect 

blood and urine for metabolite profiling/urine PK. 
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Phase 1b will assess the drug in combination with dasatinib or bosutinib as two 

separate arms, both combinations administered orally once daily with food in a 

continuous regimen to patients with AP/BC CML.   

Treatment with the compound single agent or in combination with dasatinib or 

bosutinib (Phase 1a and 1b, respectively) could continue for up to 1 year (52 weeks) 

or until disease progression, patient withdrawal or unacceptable toxicity occurs.  

Patients who complete treatment for 1 year (52 weeks) will be considered to have 

completed the trial.  Patients who are still on trial at 1 year and who continue to 

benefit from treatment may have the option to continue treatment upon agreement 

between the investigator and sponsor, and pending study drug availability. 

Pre- and post- Smo inhibitor dose blood, bone marrow and normal skin was 

obtained for biomarker assessments and evaluating potential genetic changes that 

could correlate to clinical outcome.  These assessments included pharmacodynamic 

analyses of Hedgehog target genes and other signaling pathways which may interact 

with the Hedgehog pathway. 

 

Figure 10 Treatment schedule of cycle 1 
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3.1.1 Statistical Methods: Sample Size Determination 

 

The number of patients to be enrolled in the study depended on the observed safety 

profile, and the number of dose escalations in the two phases of the study. 

The expected number of patients for Phase 1a was estimated to be 42. 

 

3.1.2  Rationale for Selection of the Starting Dose 

 

The starting dose for the Smo inhibitor compound in this first-in-patient trial in 

cancer patients has been determined to be 5 mg daily, based on information derived 

from the 1-month repeat dose toxicology studies in rats and dogs (Data coming from 

Investigators’ Brochure). 

The doses tested in the 1-month toxicology study in the rat were 1, 10, and 50 

mg/kg/day orally, and in the 1-month dog study were 1, 5, and 30/15 mg/kg/day 

orally. 

According to DeGeorge et al (1998) , the currently accepted algorithm for calculating 

a starting dose in clinical trials for cytotoxic agents is to use one-tenth of the dose 

that causes severe toxicity (or death) in 10% of the rodents (STD10) on a mg/m  

basis, provided this starting dose does not cause serious, irreversible toxicity in a 

non-rodent species.  If irreversible toxicities are produced at the proposed starting 

dose in non-rodents or if the non-rodent is known to be the more sensitive animal 

model, then the starting dose would generally be one-sixth of the highest dose 

tested in the non-rodent that does not cause severe, irreversible toxicity.  The 

human equivalent starting dose was calculated to be ~ 55 mg based on the rat 

STD10, and ~6 mg based on the NOAEL of 1 mg/kg in the dog. 

Because the dog was determined to be the more sensitive species, the starting dose 

of the compound  was 5 mg and used as the starting dose for the FIP study. 
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3.1.3 Inclusion Criteria 

 

Patient eligibility was reviewed and documented by an appropriately qualified 

member of the investigator’s study team before patients are included in the study. 

Patients enrolled had to meet all of the following inclusion criteria to be eligible for 

enrollment into the study: 

1. Phase 1a: Patients with select advanced hematologic malignancies who are 

refractory, resistant or intolerant to prior therapies.  They may be newly diagnosed 

(patients with AML must be in compliance with national treatment guidelines, see 

below) and previously untreated (for all diseases with the exception of non-T315I 

CML (see below)), but not eligible for standard treatment options, or for whom 

standard therapies are not anticipated to result in a durable response. Eligible 

patients are limited to 1. Myelodysplastic Syndrome (any MDS International 

Prognostic Scoring System or IPSS score), 2. Myleofibrosis, 3. Chronic 

Myelomonocytic Leukemia (CMML), 4. CML T315I mutants (may be previously 

untreated), 5. non-T315I CML (any phase; must have received at least one prior 

treatment), 6. Acute Myeloid Leukemia (AML; not eligible to receive standard 

therapy based on national treatment guidelines [Morra et al, 2008;  NCCN 

guidelines, AML 2010 ). 

Patients with CML: 

� Must have a  confirmed diagnosis as evidenced by the presence of the BCR-

ABL translocation [t(9;22)] by fluorescence in situ hybridization (FISH), 

cytogenetics, or quantitative polymerase chain reaction (QPCR) for chronic 

myeloid leukemia in either chronic, accelerated or blast phase. 

� Non-T315I CML must have received at least one prior therapy. 

� May be resistant or intolerant as defined by: 

a. In CML-CP, primary resistance is defined as failure to achieve a complete 

hematologic response (CHR) following 3 months on therapy; failure to achieveany 
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cytogenetic response (CyR) following 6 months on therapy, failure to achieve a 

major cytogenetic response following 12 months on therapy, or failure to achieve a 

complete cytogenetic response following 18 months on therapy. 

b. Secondary resistance is defined as a loss of CHR (defined by leukocytosis 

confirmed with at least one WBC>15K not felt to be due to a secondary cause); loss 

of a MCyR (defined by ≥30% increase in the number of metaphases); or disease 

progression to AP or BP. 

c. In CML-AP or CML-BC, resistance is defined as the failure to achieve a hematologic 

response, an increasing WBC, or an overt disease progression. 

d. Intolerance for all phases is defined as discontinuation of prior therapy due to 

adverse events at the lowest approved dose or if a patient can only tolerate prior 

therapy at less than the lowest approved dose. 

In addition, for all phases (except patients with T315I mutations), patients are 

eligible in the case of unsatisfactory clinical response to the initial course of TKI, but 

who do not meet the definition for refractory, resistant or intolerant (eg, a CML CP 

patient who rapidly progresses on primary therapy, but does not meet the criteria 

for primary resistance because they have not been on TKI for 3 months; or patients 

with co-morbid diseases who cannot tolerate TKI therapy). 

 

3.1.4 Exclusion Criteria 
 
Patients presenting with any of the following were not be included in the study: 

1. Patient has undergone a donor lymphocyte infusion (DLI) in the prior 30-days; 

2. Patient is known to be refractory to platelet or packed red cell transfusions per 

Institutional Guidelines; 

3. Patient with active malignancy with the exception of basal cell carcinoma, non-

melanoma skin cancer, carcinoma-in-situ cervical or skin cancer. Other concurrent 

malignancies will be considered on a case-by case basis; 
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4. Any one of the following currently or in the previous 6 months: myocardial 

infarction, congenital long QT syndrome, torsades de points, arrhythmias (including 

sustained ventricular tachyarrhythmia and ventricular fibrillation), right bundle 

branch block and left anterior hemiblock (bifascicular block), unstable angina, 

coronary/peripheral artery bypass graft, symptomatic congestive heart failure (CHF 

NY Heart Association class III or IV), cerebrovascular accident, transient ischemic 

attack or symptomatic pulmonary embolism; 

For Phase 1a: QTc interval of >470 msec and for Phase 1b: QTc interval of >450 

msec; 

7. Bradycardia defined as HR <50 bpm; 

8.For Phase 1b: Uncorrected serum calcium, potassium, magnesium or phosphate 

below institutional LLN; 

9. Patient with an active, life threatening or clinically significant uncontrolled 

systemic infection; 

10. Patients with active central nervous system (CNS) involvement by leukemia. 

Patients with prior history of CNS disease will qualify if active disease is ruled out by 

imaging studies or spinal tap; 

11. Active graft versus host disease other than Grade 1 skin involvement; 

12. Patients taking immunosuppressants for GVHD (including but not limited to: 

steroids, cyclosporine, tacrolimus, methotrexate or mycophenolate mofetil) from 

14-days prior to the first dose of TKI until study treatment discontinuation; 

13. Known human immunodeficiency virus (HIV) or acquired immunodeficiency 

syndrome (AIDS)-related illness or with active Hepatitis B or C infection; 

14. Known malabsorption syndrome or other condition that may impair absorption 

of study medication (eg, gastrectomy or lap band); 

15. Prior or concurrent anti-cancer treatment with a Hedgehog inhibitor or 

concurrent treatment with other investigational (excluding bosutinib) or approved 
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oncology agents. Prior treatment with SMO-INHIBITOR is acceptable for inclusion in 

Phase 1b if the patient is withdrawn from the Phase 1a portion of the study for 

disease progression, meets Phase 1b inclusion criteria, has tolerated SMO-

INHIBITOR as a single agent and following sponsor approval; 

16. Concurrent administration of herbal preparations; 

17. Current use or anticipated need for food or drugs that are known 

strong/moderate CYP3A4 inhibitors, including their administration within 7-days 

prior to the first compound/TKI dose (ie, grapefruit juice, ketoconazole, 

itraconazole, voriconazole, posaconazole, clarithromycin, telithromycin, indinavir, 

saquinavir, ritonavir, nelfinavir, nefazodone, lopinavir,  troleandomycin, mibefradil, 

conivaptan, erythromycin,  azithromycin, verapamil, atazanavir, fluconazole, 

darunavir, diltiazem, delavirdine, aprepitant, imatinib, tofisopam, ciprofloxacin and 

cimetadine); 

18. Current use or anticipated need for drugs that are known strong CYP3A4 

inducers, including their administration within 7-days prior to the first drug/TKI dose 

(ie, phenobarbital, rifampin, phenytoin, carbamazepine, rifabutin, rifapentin, St. 

John’s Wort); 

19. Current use or anticipated need of drugs that are P-gp inhibitors (cyclosporine, 

tacrolimus, ritonavir, verapamil, erythromycin, ketoconazole, itraconazole, 

quinidine, elacridar and valspodar) or P-gp inducers (rifampin and St. John’s Wort), 

including their administration within 7-days prior to the first SMO-INHIBITOR/TKI 

dose; 

20. Current use or anticipated need for drugs that are CYP3A4 substrates and have a 

narrow therapeutic index, including their administration within 7-days prior to the 

first drug/TKI dose (eg, cyclosporine, sirolimus, astemizole, terfenadine, cisapride, 

pimozide, quinidine or ergot alkaloids); 
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21. Chronic systemic corticosteroid treatment, although topical applications, inhaled 

sprays, eye drops, local injections of corticosteroids and systemic steroids required 

for acute medical interventions are allowed; 

22. Current non-prescription drug or alcohol dependence; 

23. For Phase 1b only: Concurrent use of aspirin, clopidrogrel, dipyridamole, 

ticlopidine or other platelet inhibitors; 

24. Pregnancy or breastfeeding.  Female patients must be surgically sterile or be 

postmenopausal, or must agree to the use of effective contraception during the 

period of therapy. All female patients with reproductive potential must have a 

negative 

pregnancy test (serum or urine) prior to enrollment. Male patients must be 

surgically sterile or must agree to use effective contraception during the period of 

therapy; 

25. Other severe acute or chronic medical or psychiatric condition or laboratory 

abnormality that may increase the risk associated with study participation or study 

drug administration, or may interfere with the interpretation of study results, or in 

the judgment of the investigator would make the patient inappropriate for entry 

into the study. 

3.1.5 Study drug formulation 

 

The drug is formulated in tablets containing 5 mg, 10 mg, 25 mg and 100 mg of 

study medication.  The tablets are packaged in High-density polyethylene (HDPE) 

bottles, with protection from moisture.  

3.1.6 Laboratory Safety Assessments 

 

According to the clinical trial, laboratory values were checked at defined time 

points. These parameters involved, blood chemistry, coagulation tests, hematology. 
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In details: White blood cell count plus differential (including neutrophils, 

lymphocytes, eosinophils, basophils, monocytes), platelet count, hemoglobin, 

sodium, potassium, chloride, blood urea nitrogen, creatinine, glucose, uric acid, 

calcium, phosphorus, magnesium, total protein, albumin, total bilirubin, direct and 

indirect bilirubin, aspartate transaminase, alanine transaminase, alkaline 

phosphatase, lactate dehydrogenase, international normalized ratio, prothrombin 

time, and partial thromboplastin time. Microscopic urinalysis: pH, specific gravity, 

protein, glucose, ketones, red and white blood cells, leukocyte esterase, casts, 

crystals and nitrite.  If the urinary protein is ≥2+, then a 24-hour urine is required for 

quantitative measurements of protein, creatinine and glucose. 

Pregnancy test: Serum or urine pregnancy test for women of childbearing potential. 

 

3.1.7 Other Safety Assessments: ECG 
 
Triplicate 12-lead (with a 10-second rhythm strip) tracing in the supine position 

were performed for all ECGs, to determine the mean QTc interval. If any patient had 

a mean pre-or post dose QTc value >480 msec (using both Fridericia and Bazett 

correction methods), immediate correction for reversible causes (including 

electrolyte abnormalities, hypoxia and concomitant medications for drugs with the 

potential to prolong the QTc interval) should be performed. 

 

3.2 Blood for PK Analysis 
 

Blood samples (2 mL whole blood sufficient to provide a minimum of 1 mL of 

plasma) were collected for PK analysis of the Smo-inhibitor for all cohorts as 

outlined in the Schedule of 
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Activities: during the lead-in period on Day (-6), in Cycle 1 on Day 1, Day 5, Day 8, 

Day 15 and Day 21.  For cycles 2 and above a PK samples were also collected on Day 

1 and Day 15 matched with the ECGs as well as at End of Treatment.  

 

3.2.1 Urine for Analysis of Smo inhibitor and Metabolite Profiling 

 

Urine samples were collected in all cohorts in Phase 1a, on Cycle 1/Day 21 over 0-24 

hours post Smo-inhibitor dosing. 

At the end of the urine collection period, the total volume of urine was measured 

and total volume recorded in the CRF.  The urine were then mixed thoroughly and a 

20-mL aliquot were withdrawn for PK analysis and a further 20-ml aliquot 

withdrawn for metabolite profiling (if there is insufficient urine collected, the urine 

volume apportioned for PK analysis will be prioritized as first). The samples were 

then frozen at -20°C.  

 

3.2.2 Pharmacodynamic Biomarker Assessments 

 

Pharmacodynamic biomarker assessments were performed in patients enrolled in 

the Phase 1a. These assessments included evaluation of the effects of single agent 

Smo-inhibitor alone on Hh pathway related genes.  

Blood samples (~10 mL) were collected for pharmacodynamic biomarker 

assessments during screening, the lead-in period on Day (-6), Cycle 1/Day 8, Cycle 

1/Day 21 and at End of Treatment.  Bone marrow was collected at screening, on Day 

1 of every even cycle, End of Treatment and at investigators discretion for the AML 

and CML AP/BC patients.  For all other patients the bone marrow was collected at 

screening, Day 1 of Cycle 2, 6, 10, End of Treatment and at investigators discretion.   
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3.3 Efficacy Assessments 

 

The study has enrolled patients with select hematologic diagnoses, each having 

specific clinical response criteria.  The response criteria for CML are derived from 

Faderl et al 
67

(1999)  and Cohen et al (2005) 
68

. CMML/MDS, MF, Ph+ ALL and AML 

are derived and defined by the disease specific International Working Groups and 

World Health Organizations (WHO) Guidelines. 

 

 

3.4 Real Time PCR or quantitative PCR with Taqman probes  

 

The gene expression profiling has been quantified through a Real-Time PCR method 

and by the use of Taqman, selective for the following genes: Smo, Gli1, Gli2, Gli3, 

Abcb1, Abcg2 (Applied Biosystems). Moreover, it was necessary to have a reference 

gene, with a stable expression. The most suitable gene for this aim is the one 

codifying for GAPDH. The amplification has been performed loading every sample, in 

double, on a plate consisting in 96 wells (MicroAmp Optical 96-well reaction plate, 

Applied Biosystems), with a whole reaction volume of 25 mcl. The Real-Time PCR 

has been performed on a tool ABI prism 7300 SDS (Applied Biosystems) using these 

amplification procedures: 50°C 2 minutes, 95°C 10 minutes, followed by 40 cycles at 

95°C for 15 seconds and 60°C for 1 minute. The quantitative analysis has been 

performed through ∆∆Ct. 
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4. RESULTS 
 

4.1 Clinical Trial  

 

This first-in-patient Phase 1a dose-escalation study 
69

 was aimed designed to assess 

the dose-limiting toxicities (DLTs) and the recommended Phase 2 dose (RP2D) of the 

above mentioned Smo inhibitor compound, in patients with select hematologic 

malignancies (primary endpoint). Secondary endpoints included safety, 

pharmacokinetics (PK), pharmacodynamics, and preliminary signs of efficacy as 

defined by disease-specific guidelines. Patients had refractory, resistant, or 

intolerant select hematologic malignancies and could be previously untreated but 

not candidates for standard therapies: CML including T315I mutations (any phase), 

acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), myelofibrosis 

(MF), or chronic myelomonocytic leukemia (CMML). Cohorts of  3 patients received 

the drug alone, administered continuously in 28-day cycles, starting at a dose of 5 

mg orally once daily.  

Thirty-five patients have been enrolled at doses up to 400 mg: 21 males/14 females; 

AML, 20; MF, 6; CML, 5; MDS, 3; CMML 1, with a median age of 69 (35–79) years. 

ECOG PS was 0/1/2: n=11/16/5 (Table 3). 

The majority of the patients, according to inclusion and exclusion criteria, presented 

with strongly pretreated high risk hematological malignancies, refractory to 

standard chemotherapy or resistant to standard therapeutic approaches.  Clinical 

general conditions of the patients were in line with the advanced status disease.  
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About one half of the entire enrolled population was affected by AML, and the risk 

stratification of these patients is reported in Table 4, according to cytogenetics. 

 

 

Characteristic (N = 35) 

Age, median (range) 69 (35-79) 

Gender, n (%) 

   Female 

   Male 

 

14 (40) 

21 (60) 

ECOG, n (%) 

   0 

   1 

   2 

 

12 (34) 

18 (51) 

5 (14) 

Malignancy, n (%) 

   AML 

   CML 

   CMML 

   MDS 

   MF 

 

20 (57) 

5 (14) 

1 (3) 

3 (9) 

6 (17) 

Prior therapy for primary diagnosis    

   No 

   Yes 

 

10 (29) 

25 (71) 

 

Table 3 Characteristics of enrolled patients 

 

Preliminary indications of efficacy were observed across all hematologic diseases 

studied (Figure 11 and Table 6). 

One patient with AML (evolved from CMML and with a concurrent diagnosis of 

systemic mastocytosis) achieved a complete remission with incomplete blood count 

recovery; bone marrow blast count decreased from 92% to 1%. Five AML patients 
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had a 50% reduction in bone marrow blast counts (20% to 10%, 70% to 20%, 44% 

to 8%, 14% to 7%, 40% to 10%). One patient with low-risk MDS, currently remaining 

on study after 335 days, achieved significant reduction in spleen size and a 

hematologic improvement in platelets (from 98.5 to 369 x10
9
/L) and neutrophils 

(ANC from 410 to 5490), and is no longer granulocyte colony-stimulating factor (G-

CSF) dependent. Five patients with MF attained stable disease; an additional MF 

patient, currently remaining on study after 385 days, achieved clinical improvement 

with a >50% reduction in extramedullary disease (spleen size decreased from 10 cm 

to 3.5 cm sustained over 8 weeks). One patient with T3151 lymphoid blast crisis CML 

on study for 115 days achieved a major cytogenetic response with loss of their 

T3151 mutation.  

 

Characteristic (n = 20) 

Poor risk cytogenetics, n (%) 10 (50) 

Type of AML, n (%) 
   De novo 
   Developed from AHD 
   Unknown 

 

8 (40) 

7 (35) 

5 (25) 

Table 4 AML patients characteristics 

 
Treatment duration ranged from 1 to 387 days (AML: 1–266; CML: 1–281; MDS: 2–

335; MF: 44–387 days). One patient discontinued the study due to a treatment-

related adverse event (AE) after 137 days of therapy at the 10 mg dose level (grade 

[G] 3 hemorrhagic gastritis in the setting of chronic proton pump inhibitor 

administration prior to and during the study). One AML patient evolved from CMML 

on 80 mg had a DLT comprising G3 hypoxia and G3 pleural effusion. The majority of 
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AEs were of G1/2 severity; the most frequent treatment-related AEs included 

dysguesia (16%), alopecia (6%), arthralgia (6%), decreased appetite (6%), nausea 

(6%), and vomiting (6%) (Table 5). 

 

Event, n (%) Grade 1 Grade 2 Grade 3 Grade 4 

Dysgeusia 4 (11%) 2 (6%) 0 0 

Alopecia 3 (9%) 0 0 0 

Muscle 

spasms 

1 (3%) 1 (3%) 0 0 

Nausea 2 (6%) 0 0 0 

Vomiting 2 (6%) 0 0 0 

 

Table 5 Adverse Events 
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Figure 11 Bone marrow blast cells percentage in AML enrolled patients 

 

 

 

 

Disease Response Dose(s) 

MDS 

(Low 

Risk) 

Hematologic improvement in platelets and 

neutrophils,   

G-CSF independent  (1 patient) 

40 mg 

MF 

Clinical improvement with ≥50% reduction in 

spleen size  

(1 patient)  

20 mg 

Stable disease (5 patients) 5, 5, 10, 80, 120 mg 

CML 
Major cytogenetic response (1 patient with 

T315I BC CML) 
20 mg 

Table 6 Patients who obtained a clinical and hematological response 
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4.1.1 PK 

 

Preliminary PK parameters for enrolled subjects come from single and multiple 

dosing of Smo inhibitor administration in all cohorts tested (5, 10, 20, 40, 80, 120, 

180, 270, 400, and 600 mg QD) 
70

. 

The drug was rapidly absorbed following oral dosing with a median Tmax of 1 to 2 

hours after single and multiple dose administration. Following attainment of Cmax, 

plasma concentrations of the compound showed a bi-exponential decline. It was  

eliminated with a mean terminal half-life ranging from 17.4 to 34.2 hours. Following 

repeated daily dosing, the drug steady state was achieved by Day 8 and showed a 

median drug accumulation of 1.4 to 2.9 fold, which is consistent with the estimated 

half-life. In general, low to moderate inter-individual variability were observed in 

Cmax and AUC following single and multiple dose administration, though higher 

variability was observed at 180 and 270 mg. 

4.2 Identification of biomarkers related to Hh pathway 

In order to identify new potential clinical biomarkers for the above mentioned Smo-

inhibitor compound,  the leukemia stem cell population (CD34+ cells) collected 

before and after 28 days treatment in the already described first in men phase I 

dose escalation protocol was studied. Highly purified (98%) bone marrow 

hematopoietic progenitor cells (CD34+ populations) were collected and separated 

from 5 AML, 1 MF and 2 CML patients by immunomagnetic separation, and the 

analysis for gene expression profile (GEP) using Affimetrix HG-U133 Plus 2.0 

platform was performed 
71

. 1197 genes resulted differentially expressed between 

CD34+ cells separated from CML samples, collected before and after 28 days of  the 

experimental therapy (Table 7, Table 8, Figure 12). Clustering of their expression 

profiles showed that mostly genes differentially expressed are mainly related to Hh 

signaling, thus providing relevant evidences that the compound really 
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therapeutically targets the Hh pathway. As far as the genes involved in Hh pathway 

are concerned, it was observed that Gas1 and Kif27 were strongly upregulated (fold 

change 1.0947 and 1.12757 respectively; p-value 0.01 and 0.02 respectively) in 

CD34+ leukemia stem cells after 28 days exposure to treatment as compared to 

baseline, suggesting the potential role of these two genes as new biomarkers of 

activity. GAS-1 (growth arrest specific 1 gene) is a Sonic Hedgehog (Shh)-binding 

protein; it acts to sequester Shh and inhibit the Shh signalling pathway. Kif27 

(kinesin family member 27) mainly acts as a negative regulator in the Hh signaling 

pathway, and inhibits the transcriptional activator activity of Gli1 by inhibiting its 

nuclear translocation. Other genes were differentially expressed after ‘ex- vivo’ 

treatment with the molecule as compared to baseline: we observed a down 

regulation of Bcl2 (fold change -1.03004), ABCA2 (fold change -1.08966), LEF1 (fold 

change -1.28457), Gli1 (fold change -1.0775), Smo (fold change -1.07702), and an 

upregulation of Gli2 (fold change 1.08191).  

Table 7 CML- experiment contains 1197 genes with the specified threshold (p-value < 0.05) 

Table 8 AML- experiment contains 589  genes with the specified threshold (p-value < 0.05) 
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Moreover, genes involved in multidrug resistance pathway were found to be 

differently expressed depending on treatment with the described Smo inhibitor 

compound. In details, ABCB1 (fold change 1,46592) and ABCG2 (fold change -

1,16103) are respectively up and down regulated, with a not statistically significant 

p-value (0,35375 and 0,288194 respectively).  

Bcl2 (B-cell lymphoma 2), Bcl2l2 (Bcl2-like protein 2) and Bcl2l13 (Bcl2-like 13) are 

the founding members of the Bcl-2 family of apoptosis regulator proteins. Recent 

studies showed that Hh signals upregulate Bcl2 to promote cellular survival.  

Casp 4,7,10 (Caspases, or cysteine-aspartic proteases) are a family of cysteine 

proteases that play essential roles in apoptosis, necrosis, and inflammation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Different expression if genes involved in Hh pathway in samples of patients treated with 

Smo-inhibitor compound. Comparison at different timepoints. 
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ABCA2 (ATP-binding cassette sub-family A member 2), ABCF1 (ATP-binding cassette 

sub-family F member 1), ABCB1 (ATP-binding cassette sub-family B member 1, 

MDR1), ABCG2 (ATP-binding cassette sub-family G member 2) belong to the 

superfamily of adenosine triphosphate-binding cassette (ABC) transporters. ABC 

proteins transport various molecules across extra- and intracellular membranes. 

One mechanism of MDR is the increased expression of ABC drug transporters that 

mediate energy-dependent transport of drugs out of the cells against a 

concentration gradient, resulting in low intracellular drug concentrations. This is a 

common finding in LSC, and represents an important clinical problem for disease 

eradication.  

Furthermore, we evaluated Gli1, Gli2 and Smo expression by GEP, comparing data 

before and after 28 days of treatment with SMO-INHIBITOR and, as expected, we 

observed a down regulation of Gli1 (fold change -1.0775), Smo (fold change -

1.07702), and an up regulation of Gli2 (fold change 1.08191).  

Our results suggest that the compound  is able to revert MRD mechanisms of LSC by 

a strong down regulation of genes (Bcl-2, Bcl-2l13, Bcl-2l2, ABCA2, and ABCF1), 

which are critical for chemoresistance in acute and chronic leukemia patients
72

. 

Therefore, the combination of SMO-INHIBITOR with Tyrosine Kinase inhibitors or 

conventional chemotherapy could represent a valid new therapeutic approach in 

these haematological malignancies. 

 
 

4.3 Rationale for combination approach based on Smo inhibitors 

and TKIs in Ph+ Leukemias 
 
Pre-clinical studies showed that the compound has significant activity in imatinib 

resistant CML blast crisis disease (C. Jamieson et al, personal communication).  

Patient derived CD34+ imatinib resistant blast crisis CML cells xenotransplanted into 

immunocompromised mice treated with the drug alone or in combination with 
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dasatinib significantly reduced primary leukemic tumor burden.  This combination 

therapy also was able to reduce the leukemic stem cell population.  In addition, 

treatment with the molecule alone as compared to vehicle reduced leukemic tumor 

formation in secondary recipients, suggesting that the drug is able to inhibit the LSC 

population necessary for tumor propagation.  Finally, treatment with single agent  in 

a CML model of T315I ABL mutant disease (known to have escaped TKI inhibition 

and for which no therapeutic options other than stem cell transplant exist) 

significantly reduced leukemic tumor burden, suggesting that the drug may be a 

viable option for these patients. Similar data have been demonstrated for other 

TKI’s including nilotinib in combination with hedgehog inhibitors. 

Other compounds, also in our experience, have been administered, in clinical trials, 

in association with TKIs in Philadelphia positive Leukemias, resistant or refractory to 

TKIs alone. The rational was based on preclinical data, showing a synergistic activity, 

due to a double inhibition both on BCR-ABL domain and on self-renewal pathways. 

Data regarding our little experience on this topic are not available yet.  

 

4.4 Pre-clinical studies 
 
As previously reported, cumulative evidence coming from literature suggests that 

dormant self-renewing LSC contribute to relapse and blast crisis transformation by 

evading therapies that target cycling cells. Sonic hedgehog signaling was shown to 

modulate cell cycle regulation and self-renewal in normal mouse hematopoietic 

stem cells. However, its role in human LSC regeneration and quiescence had not 

been elucidated. This aim has been investigated (data submitted) in order to 

evaluate the role of Shh signaling in maintenance of dormancy 
73

. Compared to 

chronic phase CML and normal progenitors, human blast crisis LSC harbor enhanced 

expression of the Shh transcriptional activator, GLI2, and decreased expression of a 

transcriptional repressor, GLI3. Treatment of human blast crisis LSC engrafted RAG2
-
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/-
gc

-/-
 mice with the selective Shh inhibitor, reduced leukemic burden in a niche-

dependent manner commensurate with GLI downregulation. Full transcriptome RNA 

sequencing performed on FACS-purified human progenitors from Smo-inhibitor 

treated blast crisis LSC engrafted mice demonstrated greater Shh gene splice 

isoform concordance with normal progenitors than vehicle treated controls. In 

addition, RNA sequencing revealed significantly decreased cell cycle regulatory 

genes expression and splice isoform analysis demonstrated reversion towards a 

normal splice isoform signature for many cell cycle regulatory genes. Moreover, cell 

cycle FACS analysis showed that selective Shh inhibition permitted dormant blast 

crisis LSC to enter the cell cycle while normal progenitor cell cycle status was 

unaffected. Finally, the drug synergized with BCR-ABL inhibition to reduce blast crisis 

LSC survival and self-renewal in concert with increased expression of Shh pathway 

regulators. Therefore selective Shh antagonism induces cycling of dormant human 

blast crisis LSC, rendering them susceptible to BCR-ABL inhibition, while sparing 

normal progenitors. Implementation of novel LSC splice isoform detection platforms 

to assess efficacy of Shh inhibitor-mediated sensitization to molecularly targeted 

therapy may inform dormant cancer stem cell elimination strategies that ultimately 

avert relapse.  
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5.Discussion  

  

Current available treatments in many haematological malignancies are still 

unsatisfactory, in terms of overall response rates and long term survival. In 

particular, as  widely demonstrated, the complex molecular heterogeneity of AML 

requires the identification of molecular targets in order to perform tailored 

treatments approaches.  At the same time, the mechanisms of resistance to TKIs in 

Philadelphia positive leukemias underline the need for the assessment of other 

targets, to be hit in order to obtain not only a deeper control of the disease but also 

to eradicate it definitely. 

Therefore, the so called “cell of origin” key concept is assuming a more and more 

important role in the understanting of pathogenetic events which lead to the onset 

of leukemias. We know, infact, that in many cases of AML and CML, the first 

triggering neoplastic event occur to the most immature cell of the HSC, giving rise to 

a kind of leukemia intrinsically chemoresistant. Many molecular pathways seem to 

be involved in self renewal of the LSC, and among these the Hedgehog signalling was 

demonstrated to play a key role. 

Many compounds are currently in clinical development, both in solid and in 

haematological neoplasia, showing preliminary promising results as single agents. 

No data were available, so far, on leukemias.  

We’ve therefore participated in a first in man Phase I clinical trial, aimed, by 

definition, to define the safety profile in terms of adverse events of a new Smo 

antagonist compound, administered mainly at AML and CML relapsed or refractory 

patients.  The drug was safe and well tolerated, with early signs of efficacy observed 

in all hematologic diseases studied. Several patients with aggressive malignancies 

remained on trial for prolonged durations with improved quality of life; some 

exhibited cellular differentiation as determined by flow cytometry. On-target AEs 

(e.g. dysgeusia and alopecia) were observed at multiple dose levels. 
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Pharmacokinetics were linear, predictable, and compatible with once-daily dosing.  

The limited number of patients enrolled, of course, requires further investigations in 

order to confirm these data.  

The biological correlative studies have shown relevant results as well. Through the 

GEP analysis, performed on CD34+ separated CML or AML cells, before and after 

one month of therapy, a statistically different expression signature was found. The 

involvement of genes belonging to Hh pathway allowed us to confirm that the drug 

is active against the pathway it has been synthetized for. Moreover, our data 

demonstrate that the drug is reverts MDR by down-regulation of ABCA2 and BCL2 

on leukemia stem cells in AML and CML treated patients. It’s worldwide shared the 

challenge on MDR, mainly in elderly AML patients, with intrinsically resistant 

leukemias. Based on this, at least in this poor prognostic group, a combinatory 

approach consisting in Smo-inhibitor and chemotherapy could offer a relevant 

benefit to our patients with high risk AML or relapsed CML. Starting from this 

rationale, we’re planning to participate in a second clinical trial, which is based on 

the concomitant administration of Smo-inhibitor compound and Cyatarabine in high 

risk AML patients.  

In conclusion, in the landscape of  the molecular pathways involved in 

leukemogenesis, the Hh pathway seems to have a key role in self renewal, as 

demonstrated by our biological experiments in terms of up and down regulation of 

specific pathway genes. A combination approach with some “milestones” drugs of 

leukemia might lead, through the applicability of a strong rationale, to the 

improvement of the clinical outcome of our patients.   
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