
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA 

Ciclo: XXV     –     A.A.: 2011/12     –     SSD: ING-INF/05     –     SETTORE  CONCORSUALE: 09/H1 

 

 

 
FACULTY OF ENGINEERING 

 

PH.D. PROGRAM IN ELECTRONICS ENGINEERING, 

TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY 

 
 

Hardware/Software Design of 

Dynamic Real-Time Schedulers for 

Embedded Multiprocessor Systems 

 

 

 
AUTHOR 

 

Primiano Tucci 

 ADVISOR 

 

Prof. Antonio Corradi 

 

 

CO-ADVISOR 

 

Prof. Eugenio Faldella 

 

 

 

PH.D. COORDINATOR 

 

Prof. Alessandro Vanelli Coralli 

 

 

 

Ph.D. THESIS 



 

2 

 

[This page intentionally left blank]  



3 

 

Abstract 

The new generation of multicore processors opens new perspectives for 

the design of embedded systems. Multiprocessing, however, poses new 

challenges to the scheduling of real-time applications, in which the ever-

increasing computational demands are constantly flanked by the need of 

meeting critical time constraints. Many research works have contributed 

to this field introducing new advanced scheduling algorithms. However, 

despite many of these works have solidly demonstrated their 

effectiveness, the actual support for multiprocessor real-time scheduling 

offered by current operating systems is still very limited.  

This dissertation deals with implementative aspects of real-time 

schedulers in modern embedded multiprocessor systems. The first 

contribution is represented by an open-source scheduling framework, 

which is capable of realizing complex multiprocessor scheduling 

policies, such as G-EDF, on conventional operating systems exploiting 

only their native scheduler from user-space. A set of experimental 

evaluations compare the proposed solution to other research projects that 

pursue the same goals by means of kernel modifications, highlighting 

comparable scheduling performances. 

The principles that underpin the operation of the framework, originally 

designed for symmetric multiprocessors, have been further extended first 

to asymmetric ones, which are subjected to major restrictions such as the 

lack of support for task migrations, and later to re-programmable 

hardware architectures (FPGAs). In the latter case, this work introduces 

a scheduling accelerator, which offloads most of the scheduling 

operations to the hardware and exhibits extremely low scheduling jitter. 

The realization of a portable scheduling framework presented many 

interesting software challenges. One of these has been represented by 

timekeeping. In this regard, a further contribution is represented by a 

novel data structure, called addressable binary heap (ABH). Such ABH, 

which is conceptually a pointer-based implementation of a binary heap, 

shows very interesting average and worst-case performances when 

addressing the problem of tick-less timekeeping of high-resolution 

timers.  
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1.  Introduction 

1.1. Scenario and motivations 

The technological advances of microelectronics have radically changed, 

among many others, the scenario of modern embedded real-time systems. 

Up until recently, the world of real-time systems was tightly and almost 

exclusively bounded to specialized computational platforms such as PLCs 

(programmable logic controllers) and application-specific microcontrollers. 

[Lee2000]. In recent decades, new generations of multicore processors and 

multiprocessor systems on chip (MPSoCs) have opened up new vistas as 

regards the huge computational power that can be exploited to face the 

ever-increasing complexity of modern embedded applications. 

Furthermore, the high level of integration of silicon technology opens up 

many interesting possibilities also for the world of re-programmable 

hardware platforms. The high availability of hardware resources offered by 

modern Field Programmable Gate Arrays (FPGAs), in fact, have made 

these platforms interesting targets for the development of integrated 

multiprocessor systems-on-programmable-chip (MP-SoPCs). These MP-

SoPCs allow hardware/software co-design patterns that can reap the 

benefits of both rapid prototyping and large possibilities of customization 

[BOBSBS2008, DJM+2009, JS2006, Sch2007]. 

Together with the countless number of evident advantages, however, all 

these new multiprocessor platforms also brought in many issues, posing 

new challenges to the already complex matter of real-time systems. 

Primarily there are new methodological issues. The degree of freedom 

introduced by the presence of many processors does not translate 

straightforwardly into a direct ability of ‘doing more work’. 

Even without bringing in any elaborate consideration such as 

parallelizability of software algorithms, but keeping more simplistic 

assumptions of independent tasks, the sole problem of choosing how to 

distribute such tasks on the available processors easily degenerates into 

complex (NP-Hard [LW1982]) problems. 
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In addition, there also many new software design issues. The wide variety 

of multiprocessors chips currently available, in fact, translates into a wide 

heterogeneity of strongly different computational architectures that, 

besides the mere performances, have different programming models and a 

strong impact on the overall software design. 

In most desktop processors (e.g. Intel x86/64) the multicore architecture is 

quite transparent to the software, allowing designers to rely on legacy 

shared-memory patterns. However, many other embedded processors have 

followed a different path, mainly for area and power-related concerns, 

employing more decoupled, yet cost effective, architectures at the expense 

of more complex (and sometimes esoteric) software programming models 

[ANA2004, JBP2006]. 

The purpose of this dissertation is to focus on these latter software and 

hardware design aspects, in particular as regards the implementation of 

complex real-time multiprocessor scheduling policies on these new 

multiprocessor platforms. 

1.2. Contributions 

Many remarkable works have contributed in the scientific literature to 

methodological aspects related to multiprocessor real-time systems. In 

particular, for what concerns the contents of this thesis, many of these 

studies have introduced new advanced scheduling algorithms, which are 

able to exploit fruitfully the computational power of these systems, still 

ensuring the respect of deadlines [DB2011]. The most renowned of these is 

undoubtedly represented by the multiprocessor variants of the earliest 

deadline first algorithm (EDF) [BB2009]. 

Despite what many published works have solidly demonstrated in past 

years regarding the effectiveness of such new scheduling algorithms 

[Bak2003a, Bak2005b, Bak2005c, BCL2005, DA2008, EDB2010, 

MBer2005], the actual support that current real-time operating systems 

(RTOSs) offer to deal with multiprocessor platforms is still limited. 

Almost the all RTOS schedulers, in fact, support merely static (i.e. 

numeric) priority-driven policies and in many cases do not even deal with 

the notion of periodic processes [CG2011, SR2004]. 
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In this regard, the first contribution of this work is represented by an open-

source scheduling framework, called X-RT [Tuc2012]. It consists of a 

runtime framework that offers, to real-time application developers, a set of 

high-level and OS-agnostic scheduling API, providing the concepts of 

periodic tasks and deadlines. Furthermore, its runtime library is capable of 

realizing, in a portable way (i.e. without altering the RTOS kernel), 

complex multiprocessor scheduling policies such as G-EDF. The operating 

principle of the runtime library stands on a metascheduler approach. Such 

metascheduler is a special process, which dynamically mangles at runtime 

the numeric priorities of the other RTOSs processes in order to emulate the 

behavior of more complex scheduling policies. 

The realization of such a portable scheduling framework presented many 

interesting challenges. One of these has been definitely timekeeping, the 

software handling of several outstanding timers, using a limited number 

(typically just one) of hardware timers. Timekeeping, however, is a more 

general topic that, besides the specific problems addressed in the 

realization of the X-RT framework, has historically generated great 

interests in scientific and technical literature, since it involves not only the 

area of (real-time) operating systems, but also many other fields as discrete 

event simulation and networking. 

In this regard, this work contributes to this latter topic introducing a novel 

data structure, called addressable binary heap (ABH). Such ABH, that 

conceptually is a pointer-based implementation of the traditional array-

backed binary heap, shows very interesting average and worst-case 

performances, especially when compared to other data structures typically 

employed for the timekeeping purpose (such as self-balancing binary trees 

and array-backed binary heaps), making it an interesting alternative for 

addressing the general problem of tick-less handling of fine-grained timers. 

The principles that underpin the operation of the X-RT framework, 

originally designed for symmetric multiprocessing (SMP) architectures, 

have been further extended to encompass asymmetric (AMP) ones. 

Many restrictions apply in the case of AMP architectures, for instance the 

lack of direct support for inter-processor task migrations and the more rigid 

memory models, making more difficult the plain applicability of global 
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scheduling policies. In this direction, this work presents a novel approach, 

based on a shadow process model, to support a subset of global scheduling 

policies such as R-EDF (the restricted migration variant of G-EDF) on 

AMP platforms. 

The concepts that underpin this shadow process model have been validated 

on a FPGA-based platform using AMP soft-cores, analyzing how different 

memory layouts influence the schedulability and the overall system 

performances. 

The FPGA-based MP-SoPC architecture has been further employed to 

make another step towards the improvement of scheduling performances 

on re-programmable hardware platforms, by means of developing a 

hardware-accelerated scheduling IP core. Following the research directions 

that many works in this field have delineated, the last chapter of this work 

presents the design and experimental validation of a hardware scheduler 

accelerator that implements the scheduling policy entirely in hardware, 

freeing the RTOS from most of its scheduling overhead. 

1.3. Organization 

The rest of this thesis is organized as follows. Chapter 2 presents the 

background of real-time scheduling on multiprocessors, introducing the 

basic notation used in the later chapters, reviews the preliminary literature 

in the field and presents a brief survey about the support offered by 

mainstream RTOSs currently available. In order to improve the readability 

of the thesis, the literature more closely related to the specific topics 

investigated is deferred to the beginning of each chapter. 

Chapter 3 presents the operational principles and the design of the X-RT 

scheduling framework, together with the experimental results carried out 

on both SMP and AMP platforms, which assess its viability by means of 

overhead measurements and schedulability tests. 

Chapter 4 focuses on algorithmic aspects of the timekeeping topic, first 

presenting a brief survey about data structures typically employed in 

modern operating systems for this purpose, and then introducing the novel 

ABH data structure. At first, the theoretical properties that underpin its 

physical structure are formally presented, followed by the implementation 
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details of its main operations. A set of synthetic experiments finally 

evaluate its actual performances on real-world platforms, comparing them 

with the other data structures discussed. 

Part of the work addressed in Chapter 3, which is based on FPGA MP-

SoPCs is further extended in Chapter 5 introducing a hardware 

multiprocessor scheduling accelerator. Such accelerator, which is 

supported by a minimal software coordination infrastructure, offloads the 

scheduling operations of the RTOS to the hardware and exhibits interesting 

performances especially as regards the release jitter of real-time tasks. 

Finally, Chapter 6 presents the concluding remarks, summarizing the 

results presented in this thesis and outlining possible research directions 

that could be undertaken to further extend the work herein presented. 
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2.  Background and related work 

2.1. Embedded real-time systems 

Real-time systems are defined as those systems in which the correctness of 

the computation not only depends on the logical correctness of the results 

(functional correctness) but also upon the time at which the results are 

produced (timeliness). Real-time does not mean fast. Many designers often 

erroneously assume to need a real-time system just because they are bound 

to performances. Most of the times those performances can be achieved 

just by choosing a suitably fast hardware platform. In contrast, an actual 

real-time system often gets by with slower hardware platforms, which are 

nevertheless able to make guarantees for the execution of critical 

operations. Real-time deals with guarantees, not with raw speed. Typical 

examples of real-time systems space from finance (surprisingly), to 

industrial control systems, automotive control units and aerospace flight 

control systems [Mar2006, Sch2007, Let2008]. 

These kinds of systems, which are very different from each other from a 

functional perspective, share a common nature of being reactive systems. 

Most embedded systems typically interface with physical hardware and 

carry out special purpose functions, aimed at monitoring the state and 

controlling the evolution of a physical process (for such reason they are 

sometimes referred to as cyber-physical systems). 

For instance, in the automotive antilock braking system (ABS), the purpose 

of the control system is monitoring the car speed and wheels’ angular 

speed during a braking and timely take the proper corrective actions, 

controlling the brake actuators, in order to avoid, as much as allowed by 

the car dynamics, the lock of the wheels. The rate of a typical ABS control 

loop is in the order of 5 milliseconds [PSG1998]. In this apparently short 

time span, the control system must undertake a large set of concurrent and 

time-bounded tasks, such as processing the data coming from the wheel 

sensors, estimating the vehicle dynamics, generating the waveforms that 

open and close the actuator valves, etc. 

Timeliness, thus, is the key concern around which the design of a real-time 

system focuses. 
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Two aspects quantitatively define such timeliness: 

• Functional criticality 

What are the consequences of missing such time requirements? 

• Usefulness function 

Which concrete relationship exists between the time at which results 

are produced and the usefulness of those results? Typically, this 

relationship can be expressed by means of a mathematical function, 

which analytically describes the usefulness as a function of time. 

A real-time system typically consists, from the software viewpoint, in a 

multiplicity of tasks. In the light of the above definitions, a real-time task 

can be classified as soft real-time or hard real-time, as follows: 

• Functional criticality 

A task is defined hard real-time (HRT) if missing the timeliness 

requirements, even sporadically, can cause the failure of the system. 

On the other side, a task is defined soft real-time (SRT) if missing the 

timeliness requirements causes a degradation but not a critical failure 

of the system, thus the system can be still able to operate or even able 

to fully recover its state. 

• Usefulness function 

The usefulness of a non-real-time task is independent of the time upon 

which the results are computed (Figure 1a). The usefulness function of 

a soft real-time task, instead, is a function that gradually slopes to zero 

after the deadline (Figure 1b). Some examples of soft real-time 

systems are services like voice-over-IP, digital TV, video conferencing 

and many other multimedia systems. 

In the case of a hard real-time task, two cases must be distinguished: 

the general one in which the usefulness function drops directly to zero 

(Figure 1c), and the better-never-than-late case in which the 

usefulness function drops to – ∞ (Figure 1d). Typical instances of the 

latter are represented by military systems, in which the consequences 

of a late action can be even worse than not performing that action at 

all. 
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Figure 1: Usefulness function U(t) for different classes of real-time tasks 

2.2. Real-time task model 

A real-time task is an elementary software unit that is cyclically executed. 

Each execution of a given task Ti is called job, identified by Tij with j being 

the j-th invocation of task i. From an analytical viewpoint, the fundamental 

timing parameters of a real-time task Ti are characterized by the tuple 

{pi, Di}, respectively, period and relative deadline. The absolute time upon 

a job Tij becomes ready for the execution is called release (or arrival) time 

and is identified by rij. Once released, a job Tij should complete within its 

absolute deadline, that is dij = rij + Di, to meet the real-time requirements of 

the application, otherwise it is said to be late (or tardy) (Figure 2). 

Furthermore, each task is characterized also by a worst-case execution time 

(WCET), denoted with ci, that is a worst-case assumption on the 

computation time required on a processor by each job. 

Depending on the release policy and the relative deadline, the following 

three categories of tasks can be identified. 

  

(a) (b) 

(c) (d) 
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• Periodic tasks 

A task Ti is said to be periodic when all its jobs are cyclically and 

continuously released at a fixed rate, stated by its period pi, such that 

the interval between the release of any two consequent jobs is always 

equal to ri 
j+1 - ri 

j = pi . 

Periodic tasks are usually characterized by an implicit (relative) 

deadline, Di = pi, equal to their period (a job should complete before 

the next one is released). 

• Sporadic tasks 

Unlike periodic tasks, sporadic tasks, sometimes called event-driven or 

reactive tasks, become ready for their execution in response to an 

external event. In this case, the period pi of a sporadic task determines 

the minimum time between the occurrences of the event that triggers 

its release (its maximum invocation rate). Thus, the interval between 

the releases of any two consequent jobs satisfies the condition 

ri
j+1 - ri

j ≥ pi. 

In this sense, a periodic task can be viewed as a special case of a 

sporadic task, in which the releases of its jobs occur always at the 

maximum rate. Most works in literature generally deal with the notion 

of sporadic tasks, consequently their results apply also for purely 

periodic tasks. 

• Aperiodic tasks 

It might be noted that in the two aforementioned categories there is no 

particular value in executing the job immediately after its release time, 

assuming that the deadline is met. This is not true for the case of 

aperiodic tasks. As the name suggests, an aperiodic task lacks the 

notions of period (and often deadline too), thus its jobs can arrive at 

any time. Usually these kind of tasks are soft-real time event-handlers 

that have a slightly different semantic: their purpose is to respond 

within the shortest possible time to external service requests, 

compatibly with the presence of other sporadic/periodic tasks in the 

system. Usually their execution is carried out by means of special 
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software patterns called real-time servers [AB1998] (not to be 

confused with networking topics or client/server software patterns).  

 

All the work in this thesis focuses only on the more general case of 

sporadic (thus periodic) tasks. 

 

Figure 2: Temporal attributes of a sporadic real-time task. 

2.3. The uniprocessor real-time scheduling problem 

One of the key points of real-time systems is represented by scheduling, 

which involves two different aspects: an algorithmic viewpoint, that is, 

identifying a feasible schedule through an appropriate scheduling 

algorithm (policy), and a software viewpoint, that is, concretely enforcing 

the decisions of the scheduling policy on the operating system, putting into 

execution the tasks at the right time, through a scheduler. 

A key concept introduced by a scheduler is represented by pre-emption. 

Pre-emption occurs when a task that is executing is interrupted, its state is 

saved and the execution is then granted to another task. This switching of 

tasks on a processor is usually referred to with the term context switch and 

requires a certain amount of time to be performed [Tsa2007]. 

In the next paragraphs, the scheduling problem will be analysed first for 

the more simple case of uniprocessor systems. Later, in 2.6 such 

considerations will be refined and expanded in the light of the more 

general (and more complex) case of multiprocessor systems. 

From an algorithmic viewpoint, the scheduling problem consists in the 

following: given a task-set τ of n real-time tasks T1..Tn, and their temporal 

attributes as previously defined in 2.2, produce a schedule, which in every 

instant identifies which task, among the released ones, should be put into 

Task Ti Job Tij Job Tij+1 

ri
j ri

j+1 di
j di

j+1 

Di Di 

pi 

t 
ci 
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execution. Such schedule must ensure that all released jobs execute and 

complete on time, under the following constraints: (i) jobs are not 

scheduled before their release time, and (ii) precedence among jobs of the 

same task is respected.  

Definitions 

• Schedulability 

A task-set τ is said to be HRT schedulable on a platform by an 

algorithm A if A always produces a feasible schedule for τ (i.e., no job 

of τ misses its deadline under A). 

A task-set τ is said to be SRT schedulable under A if the maximum 

tardiness of its tasks is bounded. [Liu2000] 

• Feasibility 

A task set τ is feasible on a given platform if there exists a (feasible) 

schedule in which every job of τ complete by its deadline.  

• Class-feasibility 

A task set τ is said to be feasible under a class C of scheduling 

algorithms if τ is schedulable by some algorithm A ∈ C.  

• Optimality 

An algorithm A is said to be optimal with respect to the class C if 

A ∈ C and A correctly schedules every task system that is feasible 

under C. If the class C is not specified, it is usually assumed to include 

all possible scheduling algorithms.  [JCASB2004] 

• Scheduling performances 

As frequently used in literature, the expression A1 has better 

scheduling performances than A2, typically refers to the ability of a 

given algorithm A1 (or a class) to feasibly schedule task-sets with 

higher utilization factors than another algorithm A2. 
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2.4. Taxonomy 

This section outlines a taxonomy of uniprocessor scheduling algorithms. 

Unless otherwise specified, preemption is always assumed to be allowed. 

Online vs. offline classification 

A first classification is made depending on the time at which the schedule 

is produced, distinguishing between online scheduling and offline 

scheduling. 

In online scheduling, the decisions regarding how to schedule tasks are 

taken at runtime during the regular operation of the system. Thus, the 

scheduling algorithm being employed concretely represent an active (and 

fundamental) part of the software, which is repeatedly invoked to take the 

proper scheduling actions in occasion of decisional instants (e.g., the 

release of a task, the expiration of a timer, the completion of a job). For 

this reason, online scheduling algorithms, though being extremely flexible, 

for instance allowing dynamic insertion of new real-time tasks in the 

system, introduce a source of runtime overhead that must be carefully 

accounted. In the case of complex algorithms, in fact, the scheduling 

algorithm itself might demand non-negligible computational costs, making 

the overall system (real-time tasks + scheduler) unschedulable. Even 

though, online scheduling represents a very typical scenario in most 

modern embedded systems [JCASB2004]. 

Conversely, in offline scheduling, the scheduling policy does not take 

active part during the runtime of the real-time system, rather it is used to 

determine the decisional instants and the sequence of actions that the 

scheduler will take before the activation of the system (thus the offline 

term). This approach, which static and inflexible nature does not require 

any further comment, has the major benefit of allowing to adopt (often) 

optimal, yet very complex, algorithms which in some case represent the 

last resort, whereas the high computational demand and the tight timing 

constraints, don’t allow online alternatives [CJGJ1978]. 

There might be cases, in which a scheduling algorithm falls in between 

these two classes, by means of a two-stage decomposition. For example, 

the algorithm can be decoupled into a pre-processing stage, in which the 
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entire task-set is subdivided into smaller subsets and the actual scheduling 

stage, where an online scheduling algorithm is applied on the identified 

subsets. The preprocessing stage, in these cases might be performed offline 

in order to reduce, possibly in an optimal way (with respect to the online 

algorithm being employed), the complexity of the problem and the runtime 

overhead. [BBA2011, LMM1998] 

Priority-based classification 

When differentiating scheduling algorithms according to the priority 

assignment strategy, three categories can be identified [JCASB2004]. 

• Static priorities 

A unique priority is associated to each task, and all its jobs have the 

same priority associated to it. Thus, if task T1 has higher priority than 

task T2, then whenever both have active jobs, T1’s job will have 

priority over T2’s job. An example of a scheduling algorithm in this 

class is the Rate Monotonic (RM) algorithm [LSD1989]. 

• Job-level dynamic priorities 

For every pair of jobs Tij and Ti’j’, if Tij has higher priority than Ti’j’ at 

some instant in time, then Tij always has higher priority than Ti’j’. An 

example of a scheduling algorithm that is in this class, but not the 

previous class, is the earliest deadline first algorithm [Liu2000]. 

• Unrestricted dynamic priorities 

No restrictions are placed on the priorities that may be assigned to 

jobs, and the relative priority of two jobs may change at any time. An 

example of a scheduling algorithm that is in this class, but not the 

previous two classes, is the least laxity first (LLF) algorithm 

[But2011]. 

 

By definition, unrestricted dynamic-priority algorithms are a 

generalization of job-level dynamic-priority algorithms, which are in 

turn a generalization of static-priority algorithms. In uniprocessor 

scheduling, the distinction between job-level and unrestricted 

dynamic-priority algorithms is rarely emphasized because EDF is 
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already optimal [Liu2000]. However, in the multiprocessor case, 

unrestricted dynamic-priority scheduling algorithms might reveal to be 

more efficient than job-level dynamic-priority algorithms 

[JCASP2004]. 

WCET Awareness 

A further classification shall be made as regards the information exploited 

by the scheduling algorithm for taking its decision. As introduced in 2.2, 

one of the temporal attributes which characterizes a real-time tasks is 

represented by the WCET parameter (ei). 

While this attribute is fundamental for almost any known schedulability 

analysis test (determining a-priori if a given algorithm will be able to 

schedule a given task-set on a given platform, under worst case 

assumptions), it may or may not be further required at runtime by the 

algorithm for taking scheduling decisions. In this regards we distinguish 

WCET-aware algorithms (LLF is a key example of this class), from 

WCET-unaware algorithms (e.g., RM, EDF). This difference has usually 

strong implications on the behavior of the scheduling algorithm when the 

actual duration of the jobs deviates from their worst case estimation. 

2.5. Uniprocessor real-time scheduling 

The EDF scheduling algorithm (Figure 3) is the most popular job-level 

dynamic priority algorithm known in literature. It schedules tasks 

according to a fundamental rule: at any time, the priority of a job is 

inversely proportional to its absolute deadline. In a uniprocessor system, it 

implies that, at any time, the processor executes the ready task with the 

earliest deadline. Ties can be broken arbitrarily in case of an even deadline. 

From the scheduling performances viewpoint, EDF, due to its dynamic 

nature, have better performances than fixed-level priority algorithms. 
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Figure 3: A sample application scheduled on a uniprocessor using the EDF algorithm. 

In the particular case of uniprocessor systems, EDF is an optimal 

scheduling algorithm, i.e., a set of periodic hard real-time tasks with 

implicit deadlines can be feasibly scheduled on a uniprocessor system if 

and only if the utilization factor of the task set U ≤ 1. In the more general 

case of sporadic tasks with non-implicit deadlines, a task-set is schedulable 

if (but not necessarily only if) its density ∆ ≤ 1. (Figure 4). The optimality 

of EDF can be proved by using a time slice swapping technique [Liu2000], 

which stands on the principle that any valid schedule for any task set can 

be transformed into a valid EDF schedule.  

 

Figure 4: Schedulability bounds for uniprocessor EDF. 

On uniprocessor systems, EDF is typically preferred to other unrestricted 

dynamic priority algorithms (even if still optimal), for its implementative 

implications. In fact, the direct consequence of being a job-level dynamic 

priority algorithm is that the only decisional instants in which a re-schedule 

can be required are: (i) the release of a new job and (ii) the completion of a 

job. As will be discussed later in chapter 3, this has a direct impact on the 
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overheads involved and on the mechanisms required for its concrete 

implementation. 

EDF, furthermore, is a key example WCET-unaware algorithm, as the 

priority of a job is assigned on release time and depends exclusively on its 

absolute deadline. 

2.6. Multiprocessor systems 

All the considerations made so far were considering only the simpler case 

of uniprocessor systems. In the following, such considerations are going to 

be extended to the more interesting case of multiprocessors. Before doing 

that, however, it might be worth making some clarifications about the 

architectural details of modern multiprocessor systems. 

With the term multiprocessor, we identify any kind of computer system 

that can count on the availability of more than one computational unit for 

the execution of software processes. Multiprocessors themselves are not a 

recent concept, as they have been known to the industry since the early 

sixties. However, while the early multiprocessor systems were based on 

multiple physical chips requiring a special interconnection bus, thus being 

extremely expensive and complex to realize, the last generations of 

multicore microprocessors for desktop and server systems and 

multiprocessor systems on chip (MPSoCs) for embedded systems have 

definitely changed this situation, turning multiprocessing into an everyday 

reality [Wol2004, WJM2008]. 

Today, multiprocessing has clearly established as the mainstream approach 

for taking advantage of the high integration level of silicon. becoming a 

reference model for almost every scale of computational platform, from 

embedded and low power MPSoCs as the popular NVIDIA Tegra and TI 

OMAP chips employed in modern consumer electronics, to large scale  

high performance computing clusters as the 48-cores Intel SCC processor 

or the NVIDIA Tesla family of general purpose graphics processing units 

(GPGPUs). 

Nevertheless, while multicore chips and multiprocessing in general are 

clearly acknowledged as the standard that will drive electronics for the 

coming years, the internal architecture of such multiprocessors has not yet 
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converged to a common reference model. Rather, a wide variety of 

different architectural trends is currently part of active debates in both the 

industrial and scientific community [Let2008, Mar2006, Sch2007]. 

Diversity is not merely a challenge across the range of multiprocessor 

architectures. Within a single system, the architecture of cores can vary, 

and current trends are more toward a mix of different cores. Some 

platforms are endowed with cores that share the same instruction set but 

different performance characteristics [LBKH2007], since a processor with 

a small number of large cores is generally inefficient for readily 

parallelized programs, but, on the other side, a large number of small cores 

may perform poorly on sequential software. Another trend is represented 

by having cores with different sets of instructions for specialized functions 

(e.g. mixing general-purpose and DSP cores), often embedding many 

further peripherals, such as GPUs, network interfaces, and other 

application-specific (and programmable) accelerators [HCMP2007, 

LSK+2005, RSJK2005]. 

Among the many new issues that multiprocessing brings in both hardware 

and software design, the choice of the reference architectural scheme, 

either symmetric multiprocessing (SMP) or asymmetric multiprocessing2 

(AMP), represents the first crucial design issue, involving complex trade-

offs between the high-level services exposed by the software platform and 

the low-level hardware requirements. 

SMP involves a set of closely coupled and architecturally identical 

processors interfaced to a shared bus, which operate as a single resource 

pool (Figure 5a). The platform exhibits a coordinated environment in 

which a unique operating system yields a homogeneous view of the 

physical memory and is able to dynamically execute and migrate tasks on 

any processor. 

This scheme, which is widely used in most desktop and server PCs, is 

generally very straightforward to handle from a software perspective and 

                                                 
2  The term asymmetric, itself, does not imply a difference between processors 

architectures. The prefix heterogeneous is usually preferred for this purpose. In this thesis, 

only the case of homogeneous processors (sharing the same instruction set) is being 

considered. 
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paves the way to dynamic load balancing of computationally intensive 

multitasking applications by means of software processes migrations. 

The price to pay for the cleaner programming model (uniform memory 

view) is represented by a high number of dedicated hardware mechanisms 

(e.g., interlocked operations, cache coherency management, IRQ routing) 

which can be very costly for an embedded system, due to both area and 

power requirements. 

For such reasons, in the case of small scale and highly-integrated 

embedded systems, AMP often reveals to be the leading choice. AMP can 

be viewed as a multi-uniprocessor scheme (Figure 5b), in which the 

processors are independent and don’t necessarily share all the physical 

memory space. Typically more loosely coupled mechanisms for inter-

processor communication are offered by the hardware, mostly FIFOs and 

mailboxes. This restriction has a strong impact on the overall software 

organization, which needs to be approached in a decentralized fashion: 

distinct OS instances must be independently executed on each processor, 

working as separate environments, lacking any direct support to process 

migrations among different processors. 

 

Figure 5: Overview of SMP and AMP processor architectures. 

Even within the SMP area, still a variety of architectural models exists. 

In the last decade, the computational speed of processors has increased 

faster than the system memory bandwidth [MHSM2009]. As a result, as 

processors try to access the main memory more frequently, the shared 

nature of the memory bus creates bottlenecks. In summary, as more 

processors are added, the scalability of the SMP system becomes 
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problematic. To overcome these scalability issues, two approaches have 

been developed: on-chip cache memories and distributed point-to-point 

memory interconnects. 

Cache memories tend to hide the latency for most of the access in system 

memory, allowing processor speeds to increase at a greater rate than RAM 

memory speeds by leveraging the spatial and temporal locality of memory 

accesses. The beauty of caches is their effective operation with very little 

impact on the programmer or compiler. In other words, details of the cache 

hierarchy do not affect the instruction set architecture and their operation is 

completely based on hardware and transparent to software programmers. 

While cache memories have marginal issues on a uniprocessor system, 

they heavily complicate the memory consistency in multiprocessors. The 

root of the problem lies in store propagation. While two processors in a 

system (say P1 and P2) may both load the same memory block into their 

caches, a subsequent store by either of the processors would cause those 

values in the cache to differ. Thus if P1 stores to a memory block present 

in both the caches of P1 and P2, P2’s cache can hold a potentially stale 

value. This cache incoherence would not be problematic if P2 never again 

loads to the block while still cached or if the multiprocessor did not 

support the shared-memory programming model. But since the point of 

SMP is to support that, at some point future loads of the block by P2 must 

receive the new valued stored by P1, as defined by the model. That is, P1’s 

store must potentially affect the status of the cache line in P2’s cache to 

maintain coherence.  

As regards interconnection with system memory, the high clock rate 

reached by modern memories, together with tight power budgets and 

scalability constraints, do not allow any more solutions like the front-side 

bus pattern, which leaded for years in SMP systems. Instead, the memory 

interconnects are moving towards point-to-point asynchronous connections 

(Figure 6) such as, for instance, the Intel QPI or ARM AMBA AXI, were 

high speed serial lanes interconnect the various cores, which have 

dedicated channels to the memory controller, ending up in non-uniform 

memory architectures. While the memory architecture does not reflect on 
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the software functionality (at least on SMP), the performances of software 

application can be severely biased by the patterns of memory accesses. 

 

Figure 6: Evolution of SMP computer architectures (a) Multi-chip multiprocessors; (b) 

FSB-based multicore processors; (c) Interconnect-based multicore processors. 
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2.7. Multiprocessor real-time scheduling 

While the computational power exhibited by multiprocessor platforms 

sounds appealing, paving the way towards the integration of several 

computationally intensive real-time tasks in a single system, extending 

real-time scheduling algorithms to multiprocessors is not straightforward 

as it might appear, neither from the theoretical viewpoint, nor from the 

software’s. 

From an analytic perspective, multiprocessing introduces a new degree of 

complexity, that is, the task-to-processor mapping. The scheduling 

problem statement of 2.3 must be refined, introducing: 

• A further assignment variable that consists in: 

m identical processors P1..Pm. 

• Two additional constraints: 

(iii) Each processor is assigned to at most one job at any time. 

(iv) Each job is scheduled on at most one processor at any time. 

 

Conversely to what may seem obvious, in the real-time domain the 

increase of computational resources does not always lead to an 

improvement of the scheduling performances. A key example is 

represented by the Dhall’s effect presented in [DL1978], which shows that 

under particular distributions, the deadline monotonic priority assignment 

may systematically miss deadlines of task-sets with arbitrary low 

utilization factors.  

Before delving into a deeper analysis of the implications of 

multiprocessors on scheduling algorithms, a further refinement shall be 

made to the taxonomy previously introduced. The new degree of freedom 

introduced by the increased number of processors, can give the possibility 

(depending on kind of hardware multiprocessor architecture) of performing 

software migrations, that is suspend the execution of a given process and 

resume it on a different processor. 
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In this regard, three new classes of scheduling algorithms, orthogonal to 

the taxonomy previously delineated, can be identified: 

• No migration (partitioning) algorithms 

No-migration scheduling algorithms presuppose a static partitioning of 

the n application tasks into m disjoint subsets. Each subset is then 

locally scheduled on each processor employing a uniprocessor 

scheduling algorithm, as discussed in 2.5. As a result, all jobs of each 

task are always executed on the same processor. (Figure 7a) 

• Full (job-level) migration algorithms 

Full migration policies, conversely, involve a single system-wide 

scheduler that is allowed to delegate the execution of each task to any 

processor. Moreover, the execution can be suspended, possibly more 

than once, and later resumed on a different processor. (Figure 7b) 

• Restricted (task-level) migration algorithms 

Restricted migration policies, finally, envisage that the execution of 

different jobs of any task may be delegated to different processors, with 

the only constraint that every job, even if pre-empted, has to be entirely 

executed on the same processor. (Figure 7c) 

 

Partitioning is widely used, because it is very simple and straightforward to 

implement and its performances are reasonable when employing popular 

and well-known uniprocessor algorithms such as EDF and RM. In practice, 

partitioning approaches reuse the knowledge of well-known and deeply 

studied uniprocessor algorithms that the scientific community has 

developed over years [Bak2005, BBA2010, CY2012, LRL2009, 

NNB2010]. 

However, partitioning introduces several flaws. The problem of allocating 

a set of tasks to a set of processors is analogous to the bin-packing 

problem. In this case, the tasks are the objects to pack, of size equal to their 

utilization factor. The bins are processors with a capacity equal to the 

schedulability bound for the chosen algorithm (1 for EDF). The bin-

packing problem is known to be NP-Hard in the strong sense [GJ1979].  

Hence, optimal partitioning is very unlikely to be computed online due to 
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the run-time overhead which would be involved. In these cases, the 

partitioning is typically performed separately as an off-line stage, and only 

the m instances of the chosen uniprocessor algorithm are computed online. 

Alternatively, fairly good approximation algorithms are known for bin-

packing [BC2003, Ken1996]. However these do result in a loss of 

optimality and might be unable to schedule task-sets that are schedulable 

using offline optimal partitioning strategies [BLOS1995, CJGJ1978, 

DL1978, SVC1998] 

Furthermore, in dynamic systems, where new tasks may join the system at 

runtime, partitioning is problematic since the arrival of a new task in the 

system might require to re-partition the entire task-set, hence incurring in 

non-negligible runtime overhead. 

 

Figure 7: Examples of possible schedules of a task-set produced by: (a) a partitioning 

algorithm, (b) a full migration algorithm, (c) a restricted migration algorithm. 
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The biggest problem of partitioning, however, is that it is inherently 

suboptimal when scheduling periodic tasks. For instance, consider a slight 

variation of the previous task-set as depicted in Figure 8 with the same 3 

tasks, with the same periods of respectively of 4, 5 and 10 time units, but 

slightly different computation times of, respectively, 2, 3 and 6 time units. 

It might be immediately noted that even if the total utilization factor has 

not changed, this time no partitioning scheduling algorithm can be able to 

schedule this task-set on a system with m < 3 processors, since the 

computational demand of any possible subset of 2 (or more) tasks will 

exceed the computational capacity of a single processor (1.0).  

 

Figure 8:  A slightly different version of the former example, 

not schedulable anymore with a partitioning approach.  

From a theoretical viewpoint, the utilization bounds known so far (thus the 

guarantee of being able to schedule a task-set with a given utilization 

factor) for the partitioning versions of RM (p-RM) and EDF (p-EDF) are 

conservative. In general, no partitioned algorithm has a worst-case 

utilization on m processors larger than (m + 1) / 2. To see why, note that m 

+ 1 tasks, each with utilization of (1 + ε) / 2, cannot be partitioned on m 

processors. As ε tends to 0, the total utilization of such a task-set tends to 

(m + 1) / 2 [BC2003]. 

In general, better utilization bounds can be found when introducing 

restrictions on per-task utilization. Supposing that Umax is the maximum 

utilization of any task in the task-set, any task can be assigned to a 

processor that has a spare capacity of at least Umax. This implies that, if a 

set of tasks is not schedulable, then every processor must have a spare 

capacity of less than Umax. Hence, the total utilization of such a task-set is 

more than m(1 - Umax) + Umax. Equivalently, any task-set with utilization of 
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at most m – (m – 1) Umax is schedulable. In [LGDG2000] Lopetz et al. have 

used bin-packing techniques to slightly improve this bound, proving that 

the worst bound achievable on m processors is (ß m + 1) / (ß + 1), where ß 

= ⌊1/ Umax⌋ 

Full migration algorithms (often known in literature as global scheduling 

approaches), on the other side, generally provide better performances, 

achieving higher utilization factors, especially in bounded tardiness soft 

real-time systems [ABD2005, DA2008, EDB2010]. However, they make 

the assumption of an underlying SMP platform, in order to handle a shared 

tasks queue and perform inter-processor job migration. 

No-migration policies, conversely, may be applied, at least from a 

conceptual viewpoint, on both SMP and AMP platforms, since they 

substantially operate as a multiplicity of legacy uniprocessors. 

As AMP turns out to be the only architectural scheme supported in most 

low-power embedded MPSoCs, many studies are currently being 

undertaken, some investigating on partitioning approaches [NVC2010, 

XWB2007, KBDV2006], others aiming to extend SMP facilities to AMP 

platforms [HBK2005, HCMP2007]. Although the latter prove to be 

functionally correct, the overhead they introduce is not negligible and the 

overall platform does not scale well as the number of cores increases.  

A reference paper which analyzes the viability of supporting sporadic real-

time task-sets on SMP platforms, taking into account also the resulting 

overheads, is represented by [BA2009], conducted by Brandenburg and 

Anderson at the university of North Carolina at Chapel Hill (USA). To 

facilitate this line of research, the UNC’s Real-Time Group has developed 

an open-source project called LITMUSRT (Linux Testbed for 

Multiprocessor Scheduling in Real-Time systems), an extension of the 

Linux kernel for benchmarking multiprocessor scheduling algorithms on 

SMP hardware platforms supported by Linux. 

In [CLB+2006], Calandrino et al. used LITMUSRT to evaluate five well-

known multiprocessor real-time scheduling algorithms on a four-processor 

(non-multicore) 32-bit 2.7 GHz Intel Xeon SMP platform. On this small 

SMP platform, with relatively large private L2 caches, each tested 

algorithm proved to be the preferred choice in many of the tested 
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scenarios. In particular, global algorithms outperformed partitioned 

algorithms in supporting SRT workloads. 

In [BCA2008], Brandenburg et al. analyzed the scalability of several 

global and partitioned algorithms. This evaluation was conducted on a 

much larger and slower multicore platform: a SUN Niagara with a small 

single shared L2 cache and 32 logical processors, each with an effective 

speed of 300 MHz. As before, each tested algorithm was found to perform 

better than the others for some subset of the considered scenarios. 

Particularly, it was observed that global algorithms are heavily affected by 

run-queue related overheads.  

In [BA2009], Brandenburg and Anderson evaluated seven possible 

implementations of G-EDF in LITMUSRT on the above-mentioned Niagara 

platform. Tradeoffs involving different synchronization schemes for the 

scheduler’s data structures were found to significantly impact 

schedulability. 

Restricted migration policies have received less attention. In [BC2003, 

FB2004] a restricted-migration variant of the earliest deadline first 

algorithm (r-EDF) is proven to be not worse than the highest known 

utilization bound for global fixed priority scheduling. 

Finally, it is also worth noting that non-preemptive versions of global 

policies, as NP-G-EDF [Bar2006, KM2005] still fall in the case of 

restricted-migration policies. 

Restricted migration policies can bring significant benefits even for very 

simple real-time applications as the one depicted in Figure 9, which 

considers the scheduling of three tasks (the parameters associated to each 

task represent, respectively, its computation time, period and resulting 

processor utilization) on a 2-way multiprocessor system. It is evident that 

no-migration policies are not able to feasibly schedule this task-set since 

the utilization factor of any pair of tasks exceeds the computational 

capacity of a single processor. 

However, an r-EDF policy could be able to schedule successfully the 

application meeting all deadlines, as shown in Figure 9. 
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T1 {1, 2, 0.5} 
            

T2 {2, 3, 0.66} 
            

T3 {3, 4, 0.75 
            

          Time 1 2 3 4 5 6 7 8 9 10 11 12 

Legend Ready Running (core 1) Running (core 2) 

 

Figure 9: Schedule of a sample application using r-EDF.  

2.8. Real-Time operating systems 

Operating systems play a key role in the software organization of an 

embedded system. The main purpose of an operating system is to provide 

software application developers with uniform and high level interfaces that 

abstract, as much as possible, the details of the underlying hardware 

platform. 

The variety of services offered by modern operating systems is so wide 

that even a simple enumeration of their salient aspects is impracticable and 

would probably require more than the overall length of this thesis, going 

far beyond the purposes of this work. Instead, if we narrow the scope to the 

real-time systems scenario, the subset of interfaces and services has a 

definitely lesser extent. There are, in fact, few but fundamental building 

blocks that are nowadays considered a must, in order to classify an 

operating system as real-time. 

Process model 

The main requirement of an embedded system is to carry out several 

concurrent activities that must react, within firm deadlines, to a wide 

number of synchronous and asynchronous inputs. In the era of PLC and 

bare-metal microcontrollers (which is not yet faded away at the time this 

thesis is being written), a software pattern typically employed to handle 

this concurrency is represented by the cyclic executive pattern [Mac1980].  

The principle of cyclic executive lays in organizing the software into 

multiple sub-programs (tasks), smaller, still sequential, portions of code 

that handle a single activity, processing the corresponding inputs and 

producing the relative outputs. The sub-program partitioning itself, 

however, is not a great deal. The challenge, instead, is represented by the 
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fundamental requirement that, in order not to break the model and ensure 

the timeliness of the overall system, the code of all these tasks must be 

strictly asynchronous, i.e., non-blocking. 

The ever-increasing complexity of modern embedded applications, 

however, make the pure-asynchronous software modelling an extremely 

hard task for application designers. Furthermore, single-threaded patterns 

like the cyclic executive lack any form of isolation, thus, a single task 

holding the CPU for more than expected (or even worse, stuck in a loop) 

have catastrophic consequences on the operation of the overall system. 

For such reasons, a desirable feature for modern RTOSs is represented by 

multitasking support. Multitasking itself is definitely not a new concept, 

nor an exclusive prerogative of RTOSs, and it is not in the aim of this 

thesis to discuss the details of its operational principles. What is more 

interesting to highlight instead is that, from the software viewpoint, there 

are different ways in which multitasking can be achieved, commonly 

referred to as process models.  

• Heavy process model, inspired to BSD-style processes. Each process is 

an independent execution unit, with a private address space and a 

private set of resources (files, I/O apertures, etc.). This model offers the 

strongest guarantees in terms of isolation between processes, ensuring 

that in cases of unhandled faults, only the process causing the fault is 

aborted and its resources are properly cleaned up by the operating 

system. However it has two main drawbacks: resource sharing between 

processes, a feature often desirable, is more complex and expensive; 

context switching between processes is generally more expensive 

compared to the other models (for instance in x86/amd64 architectures 

it further implies a flush of the TLB cache, and in many ARM 

architectures with virtually-indexes-virtually-tagged caches and no 

MVA support it requires also flush of the data and instruction caches) . 

• User Threads model, sometimes also referred to as lightweight process 

model. Each thread is still an independent execution unit with its own 

context, but shares its address space and most of the resources with 

other threads. This model is more flexible than the heavy processes 

one, allowing transparent sharing of resources and more lightweight 
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inter-thread coordination patterns, requires generally less context 

switch overheads, but is definitely less dependable, since an unhandled 

exception in a thread causes the abort of all the other threads in the 

same address space. 

• Kernel threads model, is an extremization of the former case, in which 

all threads are executed in kernel space. It offers great advantages in 

terms of performances, since the overhead for invoking system calls is 

almost zero, and the context switch between threads is extremely fast, 

since all the system threads share the same address space with the 

kernel. At the same time this model is extremely dangerous since a bug 

in any part of the application can corrupt the kernel data structures and 

jeopardize the reliability of the entire system. This, however, does not 

stop it being very used in many low latency mission critical systems. 

In general, the three models just briefly presented, are not exclusive, and 

many RTOSs offer all of them, though with completely different interfaces 

not exchangeable with each other. 

Since the principles that will be discussed in this thesis are orthogonal to 

the particular process models, which is mainly a design choice of the 

application designer, the term process will be generically used to identify 

the runtime abstraction provided by the operating system, without a 

particular reference to heavy processes or user/kernel threads. 

Besides the specific process model, the strong difference between general-

purpose and RTOSs is represented by process scheduling. While the 

former try to ensure fairness among ready processes, often using very 

complex yet effective metrics to do that (e.g. I/O ratio, scheduling history, 

interactivity with the user, etc.), RTOS schedulers obey more simple but 

very strict rules. 

In a RTOS each process is associated to a priority level, typically a number 

within a predetermined range, which in the most RTOSs can be changed at 

runtime through a dedicated system call. At any time the RTOS must 

ensure that the ready process (the m ready processes in the case of a SMP 

RTOS) with the highest priority must be running on the CPU(s). On this 

(and some others discussed later) apparently simple principle, that takes 

the name of static priority driven scheduling, relies most of the theory of 
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real-time systems and the operations of the most mission-critical 

applications. 

The reasons why the application of this principle is not as simple as it 

might seem, are manifold: in the case of SMP, such requirements imply 

that the RTOS must be able to coordinate the processors and migrate 

processes among them at any time; secondly, ensuring strict priority-driven 

scheduling becomes very challenging in presence of events that alter the 

nominal execution flow of processes, such as critical sections, waiting 

queues, signals and message exchanges. 

Synchronization primitives 

Another fundamental requirement for a RTOS is represented by inter-

process synchronization primitives. Many aspects are involved into the 

synchronization topic. The most evident is undoubtedly represented by 

critical sections and the corresponding patterns to deal with those, which 

are semaphores and derivatives (e.g., mutexes). Again, semaphores are not 

an exclusive prerogative of a RTOS, as synchronization is a more general 

need in many other software engineering fields. The key difference, for a 

RTOS, is represented by the way critical sections are handled by the 

scheduler (for instance the order in which processes pending on a 

semaphore should be awaken when a post operation is performed). General 

purpose operating systems typically don’t follow strict rules, or try to 

balance fairness also in these situations. In RTOSs, instead, many concerns 

affect the operations of semaphores. At first, a typical requirement of most 

real-time applications is to respect the process priority scheme when 

awakening processes pending on a semaphore. Furthermore, another 

important issue related to critical sections is represented by priority 

inversion. 

Priority inversion is a problematic scenario that occurs when a high 

priority task is pending on a critical section which is currently acquired by 

a low priority task, and that low priority task is pre-empted by a third task 

which has an intermediate priority (Figure 10). This scenario, apparently 

legitimate at first glance, causes a scheduling paradox in which a high 

priority process is effectively pre-empted by a lower priority process (the 
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medium priority one), which can have a severe impact on the response 

times of a real-time system. 

Among the many approaches that can be adopted to avoid the extent of this 

problem, a simple one is represented by priority inheritance [SRL1990]. 

Priority inheritance is a feature required to RTOSs, which provides that the 

priority of a process executing in a critical section (PL in the example of 

Figure 10) is temporally raised when one or higher priority processes are 

pending on the same critical section, to the highest of those priorities. This 

allows reducing the waiting time for many cases as the one being 

considered in the example, and more importantly, keep it under an upper 

bound that can be determined analytically, provided that the dynamic of 

the processes is known. 

 

Figure 10: A sample instance of a priority inversion problem. 

Critical sections, however, are not the only form of inter-process 

synchronization, interesting mainly the shared-memory software scenarios. 

In the case of more loosely coupled interaction, for instance in client-server 

scenarios, another fundamental mechanism part of most RTOS set of 

services is message queuing. Message queues are an inter-process 

communication mechanism that allows many-to-one interaction by means 

of message exchange. 

While the implementation details (like the length and granularity of the 

messages) usually change from RTOS to RTOS, the main operating 

principle holds among the various platforms. A message queue is a 

conventional queue that is typically initialized by the server with a 

Running Running in critical section Ready x Pending 
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predetermined maximum length. Messages are typically enqueued in the 

queue according to two patterns: conventional first-in-first-out (FIFO), or 

priority-based. In the latter case, the message queue behaves exactly as a 

priority queue: each message is inserted in the queue with a specific 

priority, and the consumer peeks always the message with the highest 

priority. The critical issue, from the scheduling viewpoint, is represented 

by the enqueue case when the queue is full. In the case of synchronous 

(blocking) enqueueing, the RTOS must ensure that processes blocked on 

the queue are awakened according to their priority. Many variants of 

message queues are typically found in modern RTOS, as for instance byte-

oriented message-queues (pipes), or variable length and loosely time-

coupled mailboxes. 

Timers 

A third key aspect of RTOS is represented by timekeeping. For the most 

time-driven real-time applications, timers represent a fundamental building 

block. It is very common that a real-time application can need more timers 

than the effective availability of the hardware platform. In this regard, a 

RTOS must be able to handle a large number of software timers using a 

small number of hardware timers. Typically RTOS make a distinction 

between coarse grained timers, timers with large timeouts which don’t 

need a precise accuracy (for instance most network and I/O timeouts) and 

high resolution timers (typically below the millisecond range). A detailed 

discussion about timekeeping is postponed to Chapter 4. 
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2.9. IEEE POSIX standards for real-time applications 

The POSIX Portable Operating System Interface is a collection of 

standards developed by IEEE that define application program interfaces 

(APIs) for accessing operating systems services, aimed to provide a 

platform-independent abstraction layer for maintaining compatibility 

across different operating systems. POSIX specifications consists in 27 

documents grouped in 3 sets: (1) POSIX core services (kernel APIs for 

process creation and control, signals, exceptions, timers, pipes, I/O); (2) 

POSIX commands and utilities (user portability extensions, corrections and 

extensions, protection and control utilities and batch system utilities); (3) 

POSIX Conformance testing. 

Here is a list of the standards defined by POSIX: 

 IEEE 1003.0 Guide to POSIX 

 IEEE 1003.1 System API (C language) 

 IEEE 1003.1a System API extensions 

 IEEE 1003.1b Real-time and I/O extensions 

 IEEE 1003.1c Threads (was: POSIX.4a) 

 IEEE 1003.1d More real-time extensions 

 IEEE 1003.1e Security extensions, ACLs 

 IEEE 1003.1f Transparent network file access 

 IEEE 1003.1g Protocol independent communication, sockets 

 IEEE 1003.1h Fault tolerance 

 IEEE 1003.1i Technical corrections to POSIX.1b 

 IEEE 1003.1j Advanced real-time extensions 

 IEEE 1003.1k Removable media API 

 IEEE 1003.1m Checkpoint/restart 

 IEEE 1003.1n Fixes to .1,.1b,.1c,.1i 

 IEEE 1003.1p Ressource limits 

 IEEE 1003.1q Trace 

 IEEE 1003.2 Shell and common utility programs 

 IEEE 1003.2a More tools and utilities 

 IEEE 1003.2b More utilities 

 IEEE 1003.2c Security utilities 

 IEEE 1003.2d Batch processing utilities 

 IEEE 1003.2e Removable media utilities 

 IEEE 2003 Test methodology (was POSIX.3) 

 IEEE 2003.1 Test methods for POSIX.1 

 IEEE 2003.1b Test methods for POSIX.1b 

 IEEE 2003.2 Test methods for POSIX.2 
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In 1993, the POSIX. 1003.1b (formerly 1b-1993) has introduced new 

definitions and APIs for dealing with real-time applications. These new 

POSIX extensions focus on the requirements of real-time applications and 

high performance I/O. Many applications like interactive video games, 

high performance database servers, multimedia players and control 

software for all kinds of hardware require more deterministic scheduling.  

 

POSIX Process model 

As regards the process model, POSIX defines both the heavy process and 

the users threads models. The interface specified by POSIX for processes 

is pretty straightforward, consisting substantially into 3 families of system 

calls: exec, fork and wait, which handle respectively, process creation, 

duplication (spawning a process which share the same code with the 

parent, but with a dedicated address space) and wait for termination. The 

listing below shows a brief sample of a multitasking application realized 

using fork and wait primitives: 

1. #include <stdio.h> 

2. #include <stdlib.h> 

3. #include <unistd.h> 

4. #include <sys/types.h> 

5.  

6. int main(int argc, char* argv[]) { 

7.   /* Opaque type for pid encapsulation */ 

8.   pid_t child; 

9.  

10.   /* fork a new child */ 

11.   child = fork(); 

12.   if (child != 0) { 

13.     /* Parent code */ 

14.     /* Waits for child completion */ 

15.     int status = 0; 

16.     waitpid(&status); 

17.  

18.     printf("Child with pid=%d “ 

19.            “exited with status code %d\n", 

20.            child, status); 

21.   } else { 

22.     printf("Child started with pid=%d\n", getpid()); 

23.   } 

24.   return 0; 

25. } 
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While the isolated memory address space represents a winning strategy for 

ensuring robustness and reliability of applications, it soon turns out to be a 

very limiting and expensive choice when the taking into account the 

necessity of associating different concurrent execution flows to the same 

address space for sharing resources. 

For such reasons, POSIX introduces also the concept of threads (usually 

abbreviated with the term pthread) [DM2003]. A pthread cannot be 

instantiated as standalone item, rather it must be created within a process, 

which marks the isolation boundaries for the memory address space and 

resource pool that all its thread will share. 

From the scheduling viewpoint, a thread represent the elementary 

scheduling unit perceived by the operating system. In order to keep this 

design choice consistent with the process model, each process upon 

creation is implicitly associated to a thread, corresponding to the main() 

process’ entry point. 

Dedicated primitives allow the instantiation, signalling and 

synchronization of threads, respectively: pthread_create, 

pthread_interrupt and pthread_join. The listing below shows a brief 

example of a multithreading which uses POSIX threads. 

1. #include <pthread.h> 

2. #include <stdio.h> 

3. #include <stdlib.h> 

4. #define NUM_THREADS 5 

5.  

6. /* Entry point where each thread starts its execution */ 

7. void* thread_entry(void* arguments) { 

8.  printf("This is thread #%ld\n", pthread_self()); 

9.  do_some_work(); 

10.  pthread_exit(NULL); 

11. } 

12.  

13. int main (int argc, char* argv[]) { 

14.  /* Array of thread descriptors */ 

15.  pthread_t threads[NUM_THREADS]; 

16.  

17.  /* Starts a number of threads */ 

18.  for(int i = 0; i < NUM_THREADS; i++) { 

19.    /* pthread_create instances a new thread */ 

20.    rc = pthread_create(&threads[i], NULL, 

21.                        thread_entry, NULL); 
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22.  

23.    /* Check for errors */ 

24.    if (rc) { 

25.      perror("pthread_create() failed."); 

26.      exit(rc); 

27.    } 

28.  } 

29.  

30.  /* Waits for completion of all threads */ 

31.  for(i=0; i<NUM_THREADS; i++) 

32.    pthread_join(threads[i], NULL); 

33.   

34.  return 0; 

35. } 

 

Besides the process model, real-time extensions include also rigid 

standards that define how thread executions should be handled by the 

operating system. POSIX defines a static priority-driven scheme, in which 

each thread is associated to a priority level, in the range 0 (lowest) to 99 

(highest). Three main scheduling classes are envisaged by the standard, 

namely, SCHED_FIFO, SCHED_RR and SCHED_OTHER. 

SCHED_OTHER is the custom operating system’s time-slicing scheduler used 

for non-real-time threads, which are assigned a symbolic static priority of 0 

(most operating systems typically define further private mechanisms for 

handling scheduling of non-real-time processes, like Linux’s nice value). 

SCHED_FIFO and SCHED_RR, conversely, are intended for real-time 

scheduling. Both can only be used with priorities higher than 0, which       

means that when a real-time thread becomes ready, it will always pre-empt 

immediately any other non-real-time thread. 

Both SCHED_FIFO and SCHED_RR define conventional static priority 

scheduling policies as previously introduced in this chapter. When a thread 

belonging to one of these classes becomes ready, it is inserted at the end of 

the list for its priority level. A change of the priority class or level, through 

the, sched_setscheduler  or sched_setparam  system calls, will put the 
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thread at the start of the list, if it is ready, allowing it to pre-empt the 

currently running process if it has the same priority 3. 

A call to sched_yield has the effect of moving the caller thread at the 

end of the list for its priority level. No other events move a thread 

belonging to the SCHED_FIFO class in the priority list, thus a ready thread 

runs until either it is blocked (e.g., for an I/O request or for a mutex), it is 

pre-empted by a higher priority thread, or it calls sched_yield. 

SCHED_RR is a simple variant of SCHED_FIFO, that  adds a further round-

robin semantic for ready threads on the same priority level, introducing the 

concept of scheduling quantum. A ready thread belonging to the SCHED_RR 

class is executed for a maximum time equal to the scheduling quantum, 

after which it is moved at the end of the list for its priority level. A 

SCHED_RR process that has been pre-empted by a higher  priority  process 

and subsequently resumes its execution, will complete the unexpired 

portion of its quantum and then yield. The length of the scheduling 

quantum for SCHED_RR threads can be retrieved using the 

sched_set_interval system call. Unfortunately, POSIX does not specify 

any mechanism for controlling the size of the round-robin time quantum. 

Typically, POSIX compliant operating systems define proprietary (non-

portable) system calls to change it. 

 
POSIX real-time signals 

A first basic inter-process communication mechanisms defined by POSIX 

standards is represented by signals. Signals are primarily meant as a 

notification mechanism, such as exception handling or asynchronous 

interrupts. Signal delivery in POSIX is on per process basis. A process can 

signal another process to synchronise and communicate. Each process can 

define several service functions for registered signals, called signal 

handlers. When the system delivers a signal to the process, the signal 

handler is executed asynchronously, in practice implementing in user-

                                                 
3 In this regard there is a mismatch between POSIX 1003.1 and the behaviour of some 

operating systems. The standard specifies that the thread should be placed to the end of 

the list. 
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space the idea of immediate and asynchronous interruption, just like 

interrupt handlers do inside kernels. 

Each signal in POSIX is associated to an integer value. Many POSIX 

signals are pre-defined and used, in an implementation-dependent way, by 

the operating system. The user, however, has the possibility of defining 

custom signals for its own purposes and register them to custom signal 

handlers. 

Standard POSIX signals can be generated via the kill primitive. A 

process can request a signal be sent to itself: when a timer expires (i.e. 

SIGALRM), when asynchronous I/O completes, etc.  

The main issue of regarding conventional POSIX signals is that they are 

unreliable: in most implementations, a signal can be definitely lost if the 

process is executing a signal handler which has masked that signal. 

Furthermore, the delivery behaviour is not specified in the standard, 

leaving to the operating system implementing the standard the freedom of 

choosing the delivery order and time. For such reasons, in the 1003.1b 

real-time extensions, a new subset of signals with a more strict semantics 

have been standardized. The new standards introduces a minimum number 

of 8 application-definable real-time signals, are numbered from SIGRTMIN 

to SIGRTMAX. Only those signals whose numbers lie between the two are 

considered real-time. 

For those signals, POSIX introduces reliability guarantees, specifying that, 

conversely to what happens with traditional UNIX signal, a signal must be 

enqueued if the target process cannot accept it (the signal is masked), and 

delivered as soon as the process unmasks it, following the priority of the 

signal. Furthermore, real-time signals can optionally carry user-defined 

extra data, by means of a dedicated pointer to the siginfo_t struct, 

conversely to traditional signals that have only one numeric parameter 

carrying the number of the signal. This additional structure contains the 

signal number, a code which indicates the cause of the signal (for example, 

a timer signal) and an integer or pointer value. This capability increases the 

communication bandwidth of the signal mechanism. As an example, a 

server can use this mechanism to notify a client of the completion of a 

requested service and pass the result back to the client at the same time. 
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Real-time extensions provide a new and more responsive synchronous 

signal-wait function called sigwaitinfo. The function suspends the 

calling process until the specified signal is received. To use this function, 

the signal must be blocked, in order to avoid triggering the asynchronous 

handler. Similarly, the primitive sigtimedwait has the same semantics as 

sigwaitinfo, but allows to specify a timeout, returning an error code if no 

signals are received by the timeout.  

Despite this strong semantic, however, signals are still too inflexible as a 

communication mechanism for many real-time applications. The reason 

lies mainly in the limitation of the number of the definable signals, the 

length of the queue not controllable by the user, and more importantly, 

their limited compliance only with the heavy process model, but not with 

the finder grained pthread model (signal handlers are process-wide). 

There are few occasions in which signals are an appropriate 

communication mechanism, for instance, for rare but urgent notifications 

that require an asynchronous interrupt for the process or for dealing with 

timers. 

 

POSIX message queues 

For such reasons, POSIX defines another communication mechanism, less 

complex compared to signals, but more flexible as regards also inter-thread 

communication, that is message queues. POSIX message queues allow an 

efficient, priority-driven IPC mechanism with multiple readers and writers, 

for many aspects similar to the concept of named pipes. Conversely to 

named pipes, however, message queues have internal structure. More 

importantly, message queues are priority-driven. Whenever a writer sends 

a message to a queue, a priority is specified for that message. The queue 

will remain sorted such that the oldest message of the highest priority will 

always be the first one picked by the receiver. 

The user has control over the geometry of a message queue. When a 

message queue is initialized, the user can define the maximum length of 

the message queue, and the maximum size allowed for messages, bounding 

a priori the memory required in the worst-case scenario. 
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A process can determine the status of a message queue, conversely to 

pipes, where the of the channel is unknown to the endpoints. With message 

queues, a process can determine how many messages are outstanding on 

the queue, the boundaries of the queue and the number of processes that 

are blocked for sending or receiving. 

Like pipes and FIFOs, all message queue operations are performed based 

on message queue descriptors (mqd_t). Message queues are created and 

opened using the mq_open system call. The returned descriptor is used to 

refer to the open message queue in later calls. Each message queue is 

identified by a unique identifier. Different processes or threads can operate 

on the same queue by passing the same name to the mq_open call. 

Messages are transferred to and from a queue using mq_send and 

mq_receive. When a process has finished using the queue, it closes it 

using mq_close, and when the queue is no longer required, it can be 

deleted using mq_unlink.  

The code listing below shows a brief example of use of POSIX message 

queues. 

 

1. #include <mqueue.h> 

2. #include <stdio.h> 

3.  

4. #define MSG_SIZE     4096 

5. #define MSG_PRIORITY 0 

6.      

7. void main () { 

8.   struct mq_attr attr; 

9.   mqd_t mq; 

10.   char buf[MSG_SIZE]; 

11.   unsigned int prio;  

12.      

13.   // Set up the queue attributes 

14.   attr.mq_maxmsg = 100; 

15.   attr.mq_msgsize = MSG_SIZE; 

16.   attr.mq_flags = 0; 

17.  

18.   // Open the queue. 

19.   mq = mq_open("/queuename", O_RDWR | O_CREAT, 0, &attr); 

20.    

21.   /* Producer-side code */ 

22.   mq_send(mq, &buf[0], MSG_SIZE, MSG_PRIORITY); 
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23.  

24.   /* Consumer-size code */  

25.   while (mq_receive(mq, &buf[0], MSG_SIZE, &prio) != -1))    

26.   { 

27.       printf ("Received message, priority: %d.\n", prio); 

28.   } 

29.  

30.   // Close the message descriptors.     

31.   mq_close (mqdes); 

32.   mq_unlink(“/queuename”); 

33. } 

 

2.10. Linux as a real-time operating system 

Many developers, in the last years, have been adding real-time support  to  

Linux, trying to fill  the  major  gap  in  its  capabilities  for real-time 

processing. According to a recent end-user survey [Gee2004], in the last 

quarter of 2004, Linux owned the highest percentage of new embedded-

development projects of any operating system.  

A number of real-time extensions of Linux have been proposed and 

implemented during the last years, for instance the compliance with 

POSIX 1003.1b interfaces previously introduced. In  addition,  further 

features  such  as  high-resolution  timers,  priority inheritance, and 

shortened non-preemptible kernel sections, which  enhance  kernel 

responsiveness,  have  been  also recently introduced [DW2005]. 

However, despite its high numbers in the embedded systems panorama, 

Linux is not yet strictly classifiable as a RTOS. A key concern for a RTOS 

is represented by latency, that is, the  delay  that might take place between 

the triggering of an event and the time the corresponding software 

application actually processes it. For instance, in the case of hardware 

device drivers, the amount of time that elapses between an interrupt request 

and the execution of the associated handler, called interrupt latency. 

Many factors can contribute to latency, either hardware-related (bus 

contentions, DMA operations, cache misses) or software-related (interrupt 

masking). While the former mostly depend on the choice of a proper 

hardware platform, the latter require a dependable operating system that 

guarantees at design-time bounds on them. 
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At the time this thesis is being written, Linux, despite its popularity in the 

embedded system panorama, is not yet able to make strong guarantees on 

latency bounds. The main reasons for this are the non-negligible 

complexity level that the Linux kernel has reached after years of 

development, and the fact that it still inherits (and it will very likely 

continue to do in the future) many design choices oriented to optimize its 

performances in the average case behavior, as a general-purpose operating 

system, at the price of non guaranteed worst-case scenarios (for instance, 

there is no strict guarantee for how long a non-preemptible kernel section 

can delay the execution of a real-time process). 

All these considerations, however, do not necessarily mean that Linux is 

‘bad’ for real-time (and its numbers, in fact, contradict this). Undoubtedly, 

it is not the top choice for hard real-time and mission critical systems, and 

for real-time systems with timing requirements below the seconds range in 

general. However, the amazing speed of modern processors, nowadays 

often higher than the computational demands of the most embedded 

applications, tend to hide the impact of the kernel unpredictability, making 

Linux still an optimal compromise, especially for the world of soft real-

time systems. 

There have been many different approaches to real-time in Linux through 

the years, most of them made by third-party companies aiming at provide 

commercial version of Linux tailored for embedded systems.  

Early co-kernel approaches 

The earliest solution found for adding real-time capabilities to Linux was 

represented by co-kernel approaches, that is, running a small non-Linux 

real-time kernel side-by-side with the Linux one on the same hardware, 

instead of turning the standard kernel into a RTOS. 

The basic principle of a co-kernel design is that the real-time co-kernel, 

which is responsible of the critical real-time activities for the system, has 

the precedence over the Linux kernel, handling all the interrupt requests (in 

particular timer ones), and re-dispatching them to the Linux kernel, 

deferring their execution with respect of the other real-time tasks. Thus, all 

device interrupts must go through the co-kernel before they can be 
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processed by Linux, so that the latter cannot delay the execution of the 

real-time tasks, ensuring predictable response times. Sometimes this 

interrupt re-dispatching, which can sound expensive for the performances 

non real-time application, can be optimized in presence of programmable 

interrupt controllers with different priority levels. 

Practically speaking, a co-kernel is usually available as a set of modules, 

which are either dynamically linked or compiled in the Linux kernel tree, 

like a regular driver. Some implementations (notably RTAI and Xenomai) 

support the execution of real-time software in user space just like any 

regular application. Others (notably RTLinux) require real-time 

applications to be embodied in kernel modules. 

Co-kernel designs exhibit great advantages in terms of predictability and 

isolation of the real-time applications from the unpredictable behaviour of 

the Linux kernel. However, such isolation have major impacts on the 

software design process. Since the Linux kernel is treated as untrusted 

(from the timing viewpoint), real-time applications (either in user or kernel 

space) are restricted to use only the real-time co-kernel services and system 

calls. In other words, the whole set of regular Linux drivers and libraries 

(which typically represent the first reason that leads towards the choice of 

Linux) cannot be used for real-time applications, unless forked and ported 

to work, in a predictable manner, in the co-kernel. For the same reason, 

many user-space libraries (for instance the GNU standard C library itself) 

cannot be relied on, since they can cause unexpected latencies due to their 

invocations of Linux kernel system calls. This strongly affects the 

programming model and the design complexity of real-time applications, 

basically keeping the benefits of Linux only for the subset of non real-time 

tasks in the application. 

The Linux-RT approach 

A more interesting approach for real-time in Linux is represented by the 

RT (formerly CONFIG_PREEMPT_RT) patch-set, currently part of the 

official Linux kernel tree. This solution, that appeared in 2004 as a patch 

for the Linux 2.6 kernel, introduced full pre-emption (not enabled by 

default) to the Linux kernel, aiming to turn it into a native RTOS. 
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The approach used for enabling full pre-emption to the original Linux 

kernel (and its huge set of drivers) relies on two major changes: (i) all the 

critical sections based on spinlocks (and rw-locks) are automatically turned 

into semaphore-based equivalents, making those critical sections pre-

emptible; (ii) All the interrupt handlers (with a few exceptions, as the timer 

ones) are turned into kernel threads. The advantage of this choice is that 

non-critical interrupt handlers can be set to a lower priority than more 

critical real-time tasks, thus avoiding unexpected latencies. 

The RT patch strives to covert the Linux kernel into a full RTOS with few 

modifications, without changing its original general-purpose design. For 

most applications that need real-time determinism, the RT-Linux kernel 

provides very adequate services.  However, many mission-critical 

applications that also require reliability guarantees and software 

certifications, the Linux kernel, with or without the RT patch, is not 

sufficient. In contrast, it turns out to be an excellent compromise for most 

of the remaining non mission-critical real-time scenarios, such as robotics 

and many industrial control systems. 

Real-time scheduling in the Linux kernel 

As regards scheduling, the design of the Linux kernel reflects in many 

aspects its conformance to POSIX standards. The elementary scheduling 

unit in Linux is represented by a thread. A thread can correspond either to 

a user-space POSIX thread or to a process, or a kernel space thread (and 

derivatives, such as work queues). From the scheduling viewpoint, these 

three concepts are indistinguishable inside the kernel scheduler, since they 

are treated exactly in the same way. 

In order to handle the schedule of its threads, the Linux kernel introduces 

several scheduling classes, three for non real-time applications, namely 

SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, and two for real-

time targets, exactly as provided by the POSIX standard, SCHED_FIFO, 

SCHED_RR. 

SCHED_NORMAL is the POSIX equivalent of SCHED_OTHER, and is 

the default class associated to any process. The scheduling of 

SCHED_NORMAL threads is carried out through the completely fair 
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scheduler (CFS), a scheduler (which replaced the former O(1)-scheduler 

since Linux 2.6.23) that strives to distribute fairly the CPU using an 

approach very similar to the fair queuing algorithm used in network packet 

scheduling [DKS1989]. The fairness of the CFS scheduler (which details 

are not covered in this thesis, since irrelevant for real-time purposes) can 

be biased by means of a nice level. A common misconception, which is 

worth clarifying, is that the nice level is a concept related exclusively to 

non real-time processes/threads. 

Conversely, real-time threads, associated to the SCHED_FIFO and 

SCHED_RR classes, are handled by a separate scheduler (that in this thesis 

is referred to as Linux RT scheduler), which recalls from many aspects the 

former O(1) scheduler.  

The Linux RT scheduler is organized as a distributed scheduler, arranged 

in so-called runqueues. A runqueue is a data structure that holds, from a 

logical viewpoint, the information about the tasks enqueued on a processor, 

grouped by priority levels. Such information, however, is encoded in a 

redundant fashion (soon explained in its details). The purpose of the 

redundancy is to minimize the time required for the various operations of 

the RT scheduler. 

Each of the m runqueues (struct rt_rq) holds, among other things: 

• An array of 100 doubly-linked lists (one for each priority level), 

called the active threads array. Each list of the array holds the 

threads enqueued on that particular processor for that particular 

priority level. 

• A bitmap of 100 bits, where each bit reflects the presence or 

absence of one or more tasks in the corresponding list of the active 

array. 

• An integer value (highest_prio) which reflects the priority of the 

highest-priority thread enqueued in that runqueue (that corresponds 

to the index of the most significant high bit in the bitmap) 

A further global structure (struct cpupri) holds summary information 

about the processors state. In particular it holds: 
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• A bitmap (pri_active) of 100 bits, where each bit reflects the 

presence of absence of one or more tasks with that priority in any 

of the m runqueues (ideally is the logical or of the m runqueue 

bitmaps).  

• An array of m integer values (cpu_to_pri) which reflects the 

priority of each processor, which can be INVALID; IDLE, 

NORMAL, RT1...RT99 (INVALID is typically used when the 

processor disabled). 

• An array of 100 bitmaps (pri_to_cpu), where each bit reflects, for 

each priority level, the presence of a CPU with that priority. 

The basic idea behind this complex distributed organization is to try to 

avoid, as much as possible, contention when several processors take 

scheduling decisions at the same time, reducing the length of global (inter-

processor) critical sections. 

Multiprocessor scheduling of threads in the RT scheduler, is handled by 

means of two fundamental operations, called push and pull, the purpose of 

which is to re-establish the global priority ordering after threads are 

inserted and removed into the runqueues, and ensure that, at any time, the 

m threads with the highest priority are executing. 

The logic behind the RT scheduler is that any event that causes a 

modification of the runqueues, subsequently invokes push and/or pull 

operations to complete the reschedule. For instance, when a thread 

becomes ready for execution (e.g., because a semaphore on which it was 

pending is posted), it is optimistically inserted on a runqueue (which is 

determined by a pre-balancing algorithm). However that runqueue might 

be running another thread with a higher priority (thus not suitable for being 

pre-empted), while another runqueue might have been more suitable for 

the new thread, e.g., because completely idle. 

The push operation has the responsibility of (trying to) migrate to other 

runqueues those threads which are not eligible to run on the current 

runqueue due to a lower priority. There are several events that require a 

push operation, for instance: (i) a thread being enqueued on a runqueue 

which is currently running another higher priority thread; (ii) a thread 
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being pre-empted on a runqueue due to the schedule of another higher 

priority thread; (iii) a thread which priority is being raised (through a 

sched_setpriority call), but not enough to overtake the priority of the 

running thread on that runqueue.  

The push operation (which is invoked on a particular runqueue) looks at 

the highest-priority non-running thread on the runqueue and then considers 

all the runqueues to find a processor where it can run (i.e. a processor 

which priority level is lower than the highest priority thread on the current 

runqueue). If such a processor is found, the thread running on that 

processor is pre-empted, and the thread is moved to that runqueue. 

The global cpupri structure allows to make this decision without 

interfering (read locking) the other runqueues. Critical sections are entered 

only when the thread needs to be effectively moved across runqueues. 

While searching for a new runqueue, the push operation looks first to the 

processor on which the thread last executed, as it is likely to be cache-hot 

in that location (or a closer one, in NUMA systems). The push operation is 

repeated until a thread fails to be migrated or there are no more threads to 

be pushed. Because the algorithm always selects the highest non-running 

task for pushing, the rationale is that, if a thread cannot be migrated, then 

the lower priority threads cannot be migrated as well. 

The pull operation is symmetrical to the push, and is invoked consequently 

to those events which cause one or more threads to be removed from a 

runqueue, in order to determine the next highest priority thread that should 

be executed on that processor. Such events are, for instance: (i) a thread 

being not anymore eligible for execution (e.g. blocking on a I/O operation, 

or pending on a semaphore); (ii) a thread which priority is being lowered. 

The pull operation looks at all the status of the other runqueues (using 

again the cpupri structure) and checks whether they have a thread with a 

higher priority than the target runqueue and if that thread can run on the 

target runqueue (according to its affinity mask). If so, the thread is queued 

on the target runqueue. The pull operation may pull more than one task to 

the target runqueue. The rationale is that if the pull operation selects only 

one candidate thread to be pulled in the first pass and then performs the 

actual pull in the second pass, there is a possibility that the selected 
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highest-priority thread is no longer valid, due to another parallel 

scheduling operation on another processor. To avoid this race between 

finding the highest-priority runqueue and having that still be the highest-

priority thread on the target runqueue, the pull operation pulls several 

threads. In the worst case, this might lead to a number of threads which 

would later get pushed off back to other processors, leading to task 

bouncing. Task bouncing, however, is known to be a rare occurrence 

[LJ2009]. 
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3.  X-RT: A portable framework for real-time scheduling 

3.1. Introduction 

This chapter discusses the theoretical foundations, the design and the 

guiding principles of an open-source cross-platform run-time framework 

called X-RT, which has been developed as a part of this thesis work 

[Tuc2012]. The aim of this framework is to provide real-time application 

designers with high level and platform-independent APIs for handling 

periodic real-time tasks and support advanced multiprocessor scheduling 

policies, such as G-EDF. The X-RT framework acts as a scheduling 

middleware which exploits, for its operations, only the common services 

offered by mainstream RTOSs and their conventional static priority-driven 

scheduler. Thus it can be easily ported to most of them (the current 

implementation supports POSIX-compliant RTOSs), requiring no kernel-

level modifications to take advantage of modern multiprocessor scheduling 

policies. 

3.2. Motivations 

Motivated by the outstanding possibilities offered by the new generations 

of multi-core processors, which provide exceptional computational 

capabilities in highly integrated embedded platforms, on one side, and by 

the ever increasing computational demands of modern real-time 

applications, constantly flanked by compelling timeliness requirements, on 

the other side, this work aims at tackling the multiprocessor real-time 

scheduling problem from an implementative viewpoint. While these topics 

have received considerable attention in the scientific literature, especially 

as regards theoretical aspects such as the study and analysis of efficient 

scheduling algorithms, more practical considerations aiming at concretely 

putting such algorithms into operation on current platforms and RTOSs 

have a lesser extent. 

The current software scenario counts a wide variety RTOSs, some, as 

QNX or the many Linux flavors, endowed with a rich set of drivers and 

services, others more lightweight and tailored for small scale and hard real-

time applications like VxWorks, FreeRTOS and µC/OS-II.  
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Many of those (such as Linux, VxWorks and QNX Neutrino) are 

deployable on multiprocessor platforms. Unfortunately, they have been 

developed without much regard to recent algorithmic advances on 

multiprocessor real-time scheduling and resource allocation. For example, 

dynamic global real-time scheduling policies are almost never available, 

despite the fact that such policies are provably superior to conventional 

(read static) scheduling policies in many ways [Bar2007, BBMS2010, 

BCL2009]. 

When taking a look in detail at the services and interfaces exhibited by this 

wide variety of RTOSs, a huge gap becomes immediately evident: while 

offering remarkable extra-functional advantages, such as a formally 

verified or safety certified software architecture [KEH+2009] or very fast 

and time-bounded critical sections, when it comes to actual real-time 

scheduling, most of them provide, surprisingly, a very limited support even 

for the most common and recurring patterns. 

The run-time model they exhibit, in fact, merely consists of a set of straight 

processes whose execution is transparently carried out using a static 

priority-driven scheduler, further supported by conventional 

synchronization mechanisms and control system calls. Even the notion of 

periodic execution is completely lacking, leaving to the designer the 

burden of realizing these abstractions using low level mechanisms such as 

timers and semaphores. 

This mismatch between theory and practice cannot be blamed solely on 

experimentalists. Indeed, in the last few years scores of papers have been 

written on multiprocessor real-time scheduling algorithms, but working 

implementations do not exist for many (if not most) of the algorithms that 

have been recently proposed. 

3.1. Related work 

Many studies compare different real-time multiprocessor scheduling 

algorithms by means of measuring the percentage of schedulable task sets 

among a number of randomly-generated ones, as in [Bak2002, Bak2003a, 

Bak2005, Bak2006, BB2009]. These approaches often rely on 

schedulability tests or simulations, and they do not involve real tasks 
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running on a real system, thus they cannot collect such run-time metrics as 

the actually experienced tardiness due to platform related issues such as 

cache misses, context switches, RTOS activity, etc. Often, these overheads 

are assumed to be known a priori and to be accounted in the initial WCET 

estimation [CA2009]. However, the scheduling policy itself may strongly 

impact the WCET, for instance due to frequent task preemptions or inter-

processor migrations. In this regard, some of the main theoretical 

properties of EDF and RM are analyzed in [But2005], but the study refers 

only to uniprocessor systems. 

In the field of WCET analysis, [HP2008, JCR2007, LHPo2009,  

LDN1997] propose a methodology to bound the cache-related migration 

delay in multi-cores, while in [CGKS2005, YZ2008] the focus is on 

devising proper task interference models. On a slightly more practical 

basis, memory access traces of program executions have been used to feed 

cache architectural simulators in [MB1991, SA2004], while in 

[BBA2010a, DCC2007, LDS2007, Tsa2007a] some micro-benchmarks 

have been run on a Linux system in order to quantify the cache-related 

context switch delay in some specific scenarios (e.g., because of interrupt 

processing).  

In [CLB+2006] Calandrino et al. studied the behavior of some variants of 

G-EDF and Pfair; in [BCA2008] Brandenburg et al. explored the 

scalability of a similar set of algorithms. In [BBA2010] Bastoni et al. 

concentrated on partitioned, clustered and global EDF on a large multi-

core system. In all these works, samples of the various forms of overhead 

that show up during execution on real hardware are gathered and are then 

plugged in schedulability analysis tests, making them more accurate. 

However, the final conclusions about the performance of the various 

scheduling algorithms are actually influenced by the accuracy of the best 

known schedulability tests, which are often quite conservative. 

Some other studies carried out in-depth analysis on implementative aspects 

of multiprocessor scheduling policies. A milestone, in this regard, is 

undoubtedly represented by the LITMUSRT testbed, which has been 

developed (and is being continuously expanded) by the Real-Time Systems 

Group at University of North Carolina at Chapel Hill. LITMUSRT is an 
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extension to the Linux Kernel that allows different multiprocessor 

scheduling algorithms to be linked as plug-in components. In [BA2009] 

Anderson et al. exploited LITMUSRT to analyze and compare the 

performances of several variants of the G-EDF policy implementations, 

evaluating different data structures and different synchronization 

techniques for the implementation of the G-EDF policy. In particular their 

study shown as, when it comes to the handling of the most critical sections, 

as the task release and ready queues, simple but more efficient approaches, 

such as handling the release queue on a single processor or using only 

coarse grained locking for synchronizing accesses to the ready queue, are 

preferable. 

Despite the large number of ongoing works and the maturity reached by 

the project, however, the goal of LITMUSRT, as stated by the authors in 

[BBC+2007] is not to create a production runtime platform, rather to 

provide a stable experimental testbed to rapidly implement, study and 

evaluate different real-time scheduling policies on multicore platforms. 

A slightly different direction, instead, is taken by the works of Faggioli et 

al. in [FCTS2009, FTC2009]. Recently, they have made available an EDF 

scheduling policy implementation for the Linux kernel in the form of a 

new scheduling class. It is called SCHED_DEADLINE and implements 

EDF scheduling with both hard and soft resource reservation capabilities 

[BLAC2005, MST1994]. SCHED_DEADLINE implements a variant of 

the Constant Bandwidth Server (CBS) algorithm [AB1998] achieving 

temporal isolation among concurrently running tasks.  

While the original version of the work did support only partitioned 

scheduling, recent updates introduces support also for clustered and global 

EDF. A recent approach has been taken by Lelli et al. in [LFCL2012] 

extending the original version of SCHED_DEADLINE. Conversely to 

what happens in the LITMUSRT CE1 implementation of Anderson et al., 

the implementation of G-EDF relies on a distributed run-queue: each 

processor maintains private queue and tasks migrations, when required, are 

achieved by means of a push/pull approach similar to the one employed by 

the standard Linux RT scheduler. 
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Both LITMUSRT and SCHED_DEADLINE aim at introducing support for 

G-EDF within the Linux Kernel. While undoubtedly optimal as regards 

keeping low overheads for the enforcement of the scheduling decisions, 

this kind of approach, in our viewpoint, introduces some drawbacks as 

regards the maintainability and the portability across different ranges of 

RTOSs and process models. Furthermore, such kernel-level interventions 

can turn out to be problematic from a legal viewpoint, when using third-

party customized or certified kernels (in which cases kernel modifications 

would void the certification). 

In this work, instead, the purpose is to provide an alternative approach to 

implement global scheduling policies, with particular interest in G-EDF, 

by means of a cross-platform run-time framework, which exploits the basic 

priority-driven scheduler made available by every RTOS known. While 

expecting some obvious performance degradations due to the additional 

context switches required invoke OS system calls and to interact with the 

runtime framework, the purpose of this work is to analyze if and how such 

approach is viable, and how does it compare to the existing kernel-level 

approaches. A similar approach has been taken by Li et al in [LRSF2004], 

which, however, deals only with uniprocessor scheduling.  

3.2. Software architecture for SMP 

Overview 

The main challenge of concretely putting into operation an advanced 

multiprocessor scheduling policy, such as G-EDF, on a conventional SMP 

RTOS is represented by the limited support offered by the static priority-

driven RTOS scheduler, which at any time puts into execution the ready 

processes with the highest priority number. 

The goal of the X-RT framework is to raise the abstraction level perceived 

by the real-time application designer, and introduce the notions of periodic 

real-time tasks, characterized by temporal attributes such as periods and 

deadlines, and global scheduling policies. 

The purpose is not only freeing the real-time application developer from 

the burden of dealing with platform-specific and RTOS-specific details,  
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but also offering a uniform programming interface which remains 

unchanged when moving across different RTOSs or different process 

models. This allows the application developer to just declare the temporal 

attributes of the real-time application, and lets the framework handling its 

concrete execution on the target RTOS, hiding the operational details. 

Abstracting the platform details and elegantly wrapping RTOS primitives, 

however, is not sufficient to fill the gap that exists between the simplistic 

scheduling policy implemented by the RTOS, and the complex dynamic 

global policies offered by the framework. The bigger contribution of this 

framework, in fact, is represented by the run-time support offered for the 

concrete implementation of more sophisticated scheduling policies, though 

leaving the RTOS kernel untouched. 

The foundation of the X-RT run-time operations lays on a metascheduler 

approach. From a concrete viewpoint, such metascheduler is a 

conventional high-priority RTOS process that is triggered by certain events 

(user requests, task completion notifications, timers). Such process 

properly manipulates the numeric priorities of the other RTOS processes 

(which wrap the user-provided application real-time tasks), in order to let 

their overall execution to evolve according to the global scheduling policy 

chosen. 

In this regard, the X-RT framework supports the implementation of 

different policies by means of a plug-in interface, which decouples the 

algorithmic aspects of the policy from the interactions between the 

framework and the RTOS. The current release is bundled with a plug-in 

implementing the G-EDF policy. 
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Overall architecture 

From the architectural viewpoint, the X-RT framework consists into three 

major components: 

• A system abstraction layer (SAL), which abstracts the interface 

towards the underlying RTOS and hardware platform, as regards 

process creation, priority mangling, synchronization and timers. 

• An Application Programming Interface (API), which defines, 

independently of the RTOS and hardware platform,  the services 

and the primitives offered to the real-time application developer 

that realize the periodic tasks abstraction. 

• The metascheduler, the core engine that implements the API and 

interacts with the native operating system through the SAL, 

concretely executing the scheduling policy. 

• A scheduling policy plug-in, which implements the core logic for 

the chosen scheduling policy, interacting exclusively with the 

metascheduler for the enforcement of scheduling decisions (task 

activations and pre-emptions). 

In order to avoid ambiguities, in this chapter the term process is used to 

identify the run-time abstraction of software execution flow exposed by the 

operating system, in order to distinguish it from the concept of periodic 

real-time tasks which is exposed by the X-RT framework to the application 

developer. Depending on the target operating system and software model 

chosen, a process concretely corresponds to a pthread when targeting user-

space POSIX threads, a BSD process when targeting isolated Unix 

processes, a system task when targeting kernel-space VxWorks’ taskLib 

processes. 

In order to carry out the implementation of complex scheduling policies, 

the X-RT framework requires some simple but stringent features in the 

target RTOS. As presented in the next pages, it can be noted as the set of 

requirements perfectly matches the base support offered by the manifold 

contemporary RTOSs. Figure 11 presents a graphical overview of some 

possible mappings. 
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In order to guarantee its proper operation and be able to handle the 

execution of n periodic real-time tasks on a SMP system of m processors, 

the X-RT framework requires the following. 

Priority driven scheduler requirements 

1. The RTOS must be able to handle the execution of n+1 (required for 

the metascheduler) processes on the m processors. The execution of 

such processes must be carried out according to a strict, yet very 

simple, priority-driven policy: the m ready processes with the highest 

priorities must be executing on the m processors at any time (with the 

exception of short non-preemptible sections such as interrupt service 

routines, which are almost unavoidable on any actual operating 

system). 

2. When a high priority process becomes ready for execution and m lower 

priority processes are already executing, the RTOS must pre-empt the 

one with the lowest priority and immediately yield the execution to the 

higher priority one.  

3. When a process is not anymore eligible for the execution the RTOS 

must yield to the next equal or lower priority ready process (if any). In 

case of parities, ties must be broken by means of first-in-first-out 

(FIFO) ordering. 

4. The RTOS must provide a system call, herein generically called 

SysSetPriority, which allows to arbitrarily raise or lower the priority 

of a given process. Whenever the priority of a process is changed, the 

RTOS must rearrange the processes execution in order to meet the 

previous requirements. 

5. Only three priority levels in total are required by the X-RT framework 

for handling the execution of an arbitrary number of tasks, 

respectively:  

• HIGH: is the priority level that is associated to the metascheduler. 

Whenever the metascheduler has a pending event to process, it 

must be able to pre-empt to execution of the other real-time tasks, 
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in order to promptly enforce the new decisions envisaged by the 

implemented scheduling policy. 

• MEDIUM: is the priority level associated to (at most) m of the n 

processes, which wrap the user-defined real-time tasks. 

• LOW: is the priority level associated to the (at most) n-m 

remaining processes, when the scheduling policy decides to pre-

empt them. 

Inter process communication 

The RTOS must exhibit a facility for allowing message-based point-to-

point inter-process communication. From a functional viewpoint, the 

requirement consists in an abstract data type, called sys_mqueue_t in the 

SAL, which is equipped with two operations, respectively, 

SysMsgSend(queue, msg) and SysMsgReceive(queue).  

The semantic required by X-RT is that, upon a call to SysMsgReceive, if 

no message is available on that queue the calling process is suspended 

indefinitely until a new message is available, and the execution yields to 

the next higher priority ready process. However, when a message becomes 

available, as a result to a SysMsgSend  being invoked from another 

process, the process suspended on SysMsgReceive must be promptly 

resumed, compatibly with the priorities of the other ready processes. The 

analogous blocking semantic is required for the SysMsgSend operation. 

The design of the X-RT framework guarantees that: 

• The length of the message queue is bounded: at most n + 1 

outstanding message can be present on the queue at any time. 

• All the SysMsgReceive calls for a given message queue are 

performed by the same thread (thus no thread-safety is required for 

the message reception system call). 

From a practical viewpoint, these requirements find a very straightforward 

mapping to POSIX message queues on POSIX systems, SysV message 

queues on many Unix systems, MsgQLib message queues on VxWorks 

systems. 
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Timers 

In order to carry out the timekeeping activities required by the framework, 

the RTOS is requested to provide a retriggerable absolute-counting 

monotonic timer facility. Two operations are envisaged for such purpose in 

the SAL in order to start/retrigger a timer and stop it, respectively 

SysTimerReset(abs_expiration) and SysTimerStop(). 

Only a single timer is required by the X-RT framework for all its 

timekeeping activities, including the ones of the scheduling policy. The 

RTOS is requested to handle such timer in a strict monotonic fashion (i.e. 

the timer must not be affected by time-of-day adjustments) and is expected 

to call a framework-provided asynchronous handler when the 

abs_expiration time is reached. No assumptions are made by the X-RT 

framework on the execution context of the timer handler routine, since a 

simple SysMsgSend call is involved in the handler. 

From a practical viewpoint, this requirement finds a very straightforward 

mapping to CLOCK_MONOTONIC timers on POSIX systems and the 

equivalent TimerLib timers on VxWorks systems. 

As regards the time resolution, there is no requirement directly enforced by 

the X-RT framework. However, the resolution offered by the RTOS or the 

underlying hardware directly reflects on the maximum resolution that the 

framework will exhibit to the end-user (e.g., for periodic tasks periods and 

deadlines).  

The X-RT framework handles its timer queues on its own, requiring a 

single timer to the RTOS. The reasons of this choice are twofold: on one 

side, while the availability of a timer is ensured on every platform, it is not 

legitimate to expect an arbitrary availability of timers on all platforms. In 

some cases, the RTOS merely reflects the availability of hardware timers 

offered by underlying hardware (typically a few). Furthermore, even in the 

cases in which the RTOS handles in software timekeeping of an arbitrary 

number of timers, relying on the RTOS would imply letting the 

performances of the framework depend strongly on the implementation 

details of the RTOS (A more in-depth discussion of this point is postponed 

to Chapter 4. ). While such a dependency is not avoidable in the other 
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cases (process handling), a performance decoupling can be established for 

timekeeping.  

Therefore, in absence of, or in the case of a very inefficient, timer support 

of the RTOS, the underlying hardware timer (e.g. HPET of Intel 

processors) can be directly employed by the SAL to ensure the seamless 

operation of the framework. 

 

 

Figure 11: Mapping of SAL operations of the X-RT framework on different RTOSs. 
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Thread-safety remarks 

As a final remark, it might be noted that no locking primitives (e.g., 

semaphores or mutexes) are required by the X-RT framework. Despite the 

architecture of a multiprocessor scheduler being intrinsically highly 

concurrent, the design choices adopted in X-RT have focused on a loosely 

coupled message-passing architecture. 

Concurrency races, which typically arise in shared-memory designs, are 

avoided by design, modelling the X-RT framework as a set of independent 

runtime components. Each of them is uniquely responsible of handling its 

data structures in a thread-local only fashion and interacts with the other 

components by means of message-passing. The reasons behind this choice 

are manifold. The experience gained by other research works in this field 

shows as, in modern cache-coherent multiprocessor architectures, shared 

memory patterns typically perform poorly. For instance in their study 

[BA2009] Anderson at al. shown as highly tuned concurrent data structure 

which take advantage of fine-grained critical sections perform 

unexpectedly poorly due to cache affinity issues. Similar considerations 

can be found in [SBas1994].  

On the other side, the fast point-to-point network-based interconnects of 

modern multiprocessor architectures definitely favour inter-processor 

signalling patterns to cache-coherent memory sharing [MHSM2009]. 

It is easy to see that with a very simple example: consider two cores c1,c2 

of a modern multicore processor accessing (read-write) a simple byte of 

memory on a shared location, not even necessarily at the same time, in a 

write-back cache scenario (that is the standard). Assume that c1 accesses 

the shared memory location first. Later, when c2 tries to modify the same 

byte, the cache coherency protocol will require c1 to write-back in memory 

(MESI) or transfer to the second processor (MOESI) the entire stale cache 

line, thus involving a transfer on the interconnect of 32 bytes (the typical 

size of a cache line). On the other side, if the software instead employs a 

message-passing pattern, for instance with c1 being the responsible of 

handling the data structure in memory, and P2 just requesting the update 

through an IPI (inter-processor interrupt), only the bytes of the message 

(typically a few) need to be transferred through the interconnect, and the 
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cache line being modified by P1 remains local to P1, thus not needing any 

write-back or transfer of ownership and reducing the time spent on the 

interconnect. 

Finally, as will be later discussed in 3.5, shared memory sometimes isn’t a 

viable option at all, for instance in the case of AMP systems. In this view, 

the decoupled architecture of the X-RT framework enhances the portability 

across different hardware architectures. 

Metascheduler design 

Upon initialization, the user requests the instantiation of the n periodic 

real-time tasks, through the CreateNewPeriodicProcess API method, 

defined as follows: 

xrt_task_id_t XRT_CreateNewPeriodicTask( 
                  xrt_periodic_task_desc_t *taskDesc); 

where its unique input argument is the task descriptor, a structure that 

defines the attributes of the task as follows: 

typedef struct 

{ 

    char                 name[XRT_TASK_NAME_MAXLEN]; 

    xrt_rel_time_t       release_period; 

    xrt_rel_time_t       initial_phase; 

    xrt_rel_time_t       relative_deadline; 

    xrt_overrun_policy_t overrun_policy; 

    void                 (*job_entrypoint)(void* argument); 

    void*                job_argument; 

} xrt_periodic_task_desc_t; 

 

Apart the temporal attributes of the task, which are self-explicative, the 

user has to provide a job_entrypoint, a function pointer to the task body, 

which is the routine that will be periodically executed by the framework, as 

specified by the release_period field. Together with that, the user can 

specify also an optional argument that will be passed back upon each job 

invocation, for instance an identifier to distinguish the specific task 

instance if several tasks share the same entry-point. 

From the runtime viewpoint, for each periodic task requested by the user, 

the framework instantiates a dedicated RTOS process. The entry-point of 

such process, however, doesn’t directly point to the user-provided 
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job_entrypoint (which is a straight function with no notion of cyclic 

execution). Rather, another module of the framework, called task shell, 

which resides in the same process space of the real-time task, acts as entry-

point for the process. 

Concretely, each task-shell is a cyclic event-processing loop, which 

coordinates the execution of the wrapped task with the metascheduler. The 

communication between each task-shell and the metascheduler is handled 

uniquely by means of message passing, exploiting the messaging 

abstraction provided by the SAL. For such purpose, each task shell has an 

ingress message queue for receiving the following messages from the 

metascheduler: 

• MSG_RELEASE_JOB: triggers the release of a new job, invoking 

the invocation of the job_entrypoint function. 

• MSG_TERMINATE_TASK: causes the termination of the process 

associated to the real-time task.  

On the other way, the task-shell transmits back the following messages to 

the metascheduler (which has its own message queue too): 

• MSG_TASK_INITIALIZED: sent once upon task creation, notifies 

that the task has completed its initialization phase. 

• MSG_JOB_COMPLETED: sent every time a job execution 

completes (i.e. the job_entrypoint function returns). 

• MSG_TASK_TERMINATED: sent once, after receiving the 

MSG_TERMINATE_TASK, to notify that the task has completed its 

clean-up phase. 

Figure 12 depicts the interaction, the run-time organization and the 

message exchange between the task-shells and the metascheduler. 
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Figure 12: Overview of the interaction between the X-RT framework components: (a) 

task-shell(s); (b) Metascheduler; (c) Scheduling policy plug-in. 
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3.   bool exit = false; 

4.  

5.   /* Initialization code, omitted for sake of brevity. */ 

6.  

7.   while (not exit) 

8.   { 

9.     SysMsgReceive(& rx_queue, & rx_message); 

10.        

11.     switch (rx_message.id) 

12.     { 

13.     case MSG_RELEASE_JOB: 

14.       task->job_entrypoint(task->job_argument); 

15.       SysMsgSend(& tx_queue, MSG_JOB_COMPLETED, task_id); 

… 

X-RT Framework 

Real-time application 

Task 1 body (user defined) 
 

job1_entry_point(data) 

{...} 

Task n body (user defined) 
 

job1_entry_point(data) 

{...} 

Initialization routine 
 

int main() 

{...} 

…

Metascheduler 

Create periodic task [T1] 

Create periodic task [T2] 

Start 

Task Shell Task Shell 

Job completed 

Start new job Start new job 

Scheduling policy 

plugin (e.g., G.-EDF) 

• on_task_creation(taskId) 

• on_job_release(taskId) 

• on_job_completion(taskId) 

• on_missed_deadline(taskId) 

• on_task_removal(taskId) 

• Activate_task(taskId) 

• Preempt_task(taskId) 

(a) 
 

(b) 
 

(c) 
 



3.2 Software architecture for SMP 

 

76 

 

16.       break; 

17.  

18.     case MSG_TERMINATE_TASK: 

19.       exit = true; 

20.       break; 

21.     } 

22.   } 

23.  

24.   /* Cleanup code, omitted for sake of brevity. */ 

25.   SysMsgSend(& tx_queue, MSG_TASK_TERMINATED, task_id); 

26. } 

 

It might be noted that the task-shell is only responsible for the local 

execution of the task jobs, but is completely unaware about the current 

process priority and how to mangle it. 

Such operation, instead, is carried on by the metascheduler, which is the 

core module of the X-RT scheduling framework. From the metascheduler 

viewpoint, each periodic task can be in one of the following states (Figure 

13): 

• CREATED: state associated to newly created tasks, which task-

shell has not yet completed the initialization phase. 

• IDLE: the initialization phase has completed and the last job 

execution has completed. The task-shell is suspended on its 

message queue, waiting for the metascheduler to trigger the 

execution of a new job (or issuing termination of the task). 

• READY: state associated to tasks which release timer has expired 

but that have not yet initiated the execution of the job (e.g. due to 

the presence of some other higher priority tasks). This state is 

entered after the metascheduler releases the task (sending a 

MSG_RELEASE_JOB to the corresponding task-shell) and persists 

until the metascheduler is requested (by the scheduling policy plug-

in) to run the task.  

• RUNNING: state associated to tasks that are currently running a job 

on one of the m processors. This state is entered when the 

scheduling policy plug-in requests a task activation to the 

metascheduler. 
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• PREEMPTED: state associated to tasks previously RUNNING, for 

which the scheduling policy plug-in requested a pre-emption, in 

order to make room for a higher priority task. From the scheduling 

viewpoint a PREEMPTED task is analogous to a READY task, 

with the only exception that a PREEMPTED task have already 

executed a part of its job (this aspect will have a fundamental 

importance later for restricted-migration policies). 

 

Figure 13: States of the real-time tasks handled by the X-RT metascheduler. 
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task. The scheduling policy is assumed to be work-conserving (i.e. non-

idling). 

In the former case, the MetaschedulerActivateTask call causes the 

metascheduler to raise the priority of the task’s process to MEDIUM and 

send the MSG_RELEASE_JOB message to the task-shell. The RTOS 

scheduler, at this point, has no other option4 than moving the process to 

one of its m running queues and carrying out the execution of the task-shell 

that will in turn start the execution of the user-provided job entry-point 

(line 14). In the latter case, instead, the process will simply remain 

suspended waiting for the release message (line 9), which will occur when, 

in a next event, the scheduling policy plug-in will finally decide to activate 

the task. 

When a new task is released, the scheduling policy plug-in can decide to 

pre-empt another RUNNING task in order to respect the metascheduler 

invariant (keep at most m RUNNING tasks), issuing a 

MetaschedulerPreemptTask call. In this case, the metascheduler reacts 

lowering the priority of the pre-empted task’s process to LOW through the 

SysProcessSetPriority primitive of the SAL. At the end of the new task 

activation + task pre-emption sequence, the RTOS scheduler will find 

again m processes with MEDIUM priority, thus making them reflect the m 

RUNNING tasks of the metascheduler. 

When a job execution completes, the execution flow of the task’s process 

returns to the task-shell (line 15), which will simply notify the event to the 

metascheduler through the MSG_JOB_COMPLETED message and self-

suspend waiting for a new metascheduler message. Correspondingly, as the 

metascheduler receives the completion message, the state of the task is 

changed to IDLE and the scheduling policy plug-in is notified about the 

event through the OnJobCompletion method. 

At this point, if there are any READY or PREEMPTED tasks, the 

scheduling policy plug-in must pick and activate one of them, in order to 

                                                 
4 In the case the RTOS schedules the task’s process on the same processor where the 

metascheduler is currently running, the task-shell execution will continue as soon as the 

metascheduler (which has a HIGH priority) completes the handling of the release queue 

and suspends itself again waiting for a new message. 
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keep the RTOS scheduled fed with m running processes. Conversely, if no 

any other task is being activated, the RTOS can either idle that processor or 

grant the execution to other non real-time processes. 

 

Figure 14: Mapping of metascheduler task states to RTOS processes states. 

 

Figure 15: Interaction diagram of the metascheduler components and the RTOS. 
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Timekeeping 

Timekeeping in the X-RT framework is organized in timer queues. Each 

timer queue (xrt_timer_queue_t) is a priority queue of timer objects 

(xrt_timer_t), which use the absolute expiration time as priority key. 

Each timer queue is concretely implemented as an addressable binary heap 

(ABH), a novel tree-based implementation of the binary heap data 

structure designed ad-hoc for timekeeping in embedded real-time systems, 

which brings together the performances of binary heaps (all the insert and 

removal operations of the ABH have logarithmic worst-case complexity), 

the flexibility of a pointer based tree structure, and the determinism of a 

embedded-anchor model, which doesn’t require any dynamic memory 

management. (A more in-depth discussion about these topics, together with 

the presentation of the ABH data structure are deferred to chapter 4. ). 

All the components of the X-RT framework, which require timers for their 

operation, take advantage of one or more X-RT timer queues. For instance, 

the metascheduler employs a timer queue for handling the release of 

periodic tasks (release queue) and one for monitoring their deadlines 

(when deadlines are not implicit). 

The interface exposed for using X-RT timers is the following. 

1. void TimerQueueCreate 
( 
    xrt_timer_queue_t*   timer_queue, 
    xrt_timer_callback_t callback 
); 
 

2. void TimerStart 
( 
    xrt_timer_queue_t* timer_queue, 
    xrt_timer_t*       timer, 
    xrt_abs_time_t     expiration 
); 

 

3. void TimerStop 
( 
    xrt_timer_queue_t* timer_queue, 
    xrt_timer_t* timer 
); 

 

It might be questionable why the X-RT timekeeping has been organized in 

multiple queues, instead of keeping all the timer objects in a single queue, 
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considering that a single RTOS timer is going to be used at the end. The 

reasons behind this choice are several. On one side the decoupling in timer 

queues allows to reduce the timekeeping overhead for different class of 

timers characterized by different update rates: if a small set of timers that is 

updated more frequently (e.g., the running queue of a scheduling policy 

plug-in) and other sets of timers are updated less frequently (e.g., the 

metascheduler release queue), the overhead for ABH insertion/removal is 

bounded only to the cardinality of the involved timer queue. Secondly, 

dividing timers in timer queues allows to handle prioritization, for instance 

giving more priority to the timer queues of the metascheduler, which are 

critical for taking system-wide scheduling decisions, and lower priority for 

timers requested by the end-user for its own application purposes. 

From the RTOS interaction viewpoint, timer queues as handled follows. At 

any time the only RTOS timer, abstracted by the SAL, is triggered to timer 

expiring soonest, that is the highest priority element among all the timer 

queues head (Figure 16). When a new timer is started (stopped) its 

corresponding timer object is inserted into (removed from) the given 

(corresponding) queue. This operation has a O(log(n)) worst-case 

complexity (with n being the number of active timers in the timer queue) 

due to the ABH implementation. After the insertion (removal), the head of 

the queue, that is the timer with soonest expiration in that queue, is 

compared against its old value. If the head has not changed, no further 

action is required, since, per definition of min-queue, it implies that the 

RTOS timer is already triggered to the soonest expiration time. 

If the queue head has changed, instead, the RTOS timer might need to be 

retriggered: in the case of an insertion, the new timer might expire sooner 

than all the other timer present, thus the RTOS timer must be anticipated to 

match the new (closer) expiration time; in the case of a removal, the 

removed timer might be the soonest one, thus the RTOS timer must be 

delayed to match the soonest among the remaining timers, if any. 

In order to keep the binding between the timer queue heads and the RTOS 

timer, another priority queue, the root timer queue, is employed in a 

hierarchical fashion. The nodes of the root timer queue are represented by 
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the heads of the registered timer queues, and its head corresponds exactly 

to the expiration time of the RTOS timer. 

Thus, whenever the start (stop) of a timer leads to a change of the 

corresponding queue’s head, the priority of corresponding node in the root 

timer queue must be increased (decreased) accordingly. If such operation, 

in turn, reflects in a change of the root timer queue’s head, the RTOS timer 

is retriggered. Since a priority increase/decrease operation has still a 

logarithmic worst-case complexity, the overall worst-case complexity for 

handling m timer queues in the X-RT framework is O(log(m)) + O(log(n)) 

(with n being the length of the largest timer queue, typically larger than the 

number of timer queues). 

 

Figure 16: Timekeeping in the X-RT Framework. 

  

20 

22 30 

24 40 31 

10 

80 11 

13 

23 14 

15 

10 

20 13 

Timer queue 1 Timer queue 3 

Timer queue 2 

Root timer queue 

RTOS Timer 



3.  X-RT: A portable framework for real-time scheduling 

 

83 

 

3.3. Implementation of the G-EDF scheduling policy 

Now that the overall architecture of the X-RT framework and the 

interaction mechanisms between the metascheduler and the RTOS have 

been illustrated, the design of the G-EDF scheduling policy plug-in is 

finally presented. 

The G-EDF policy provides that, at any time, the m tasks with the closest 

(absolute) deadline shall be executing on the m processors. This apparently 

straightforward requirement has, however, complex implications as it is 

applied to an event-driven scenario like the one of the X-RT scheduler, in 

order to ensure the respect of the policy in every condition.  

In the X-RT implementation, the G-EDF plug-in uses two data structures 

to keep track of running and ready tasks, respectively, a running queue 

(Rq) and a ready queue (rq). Both queues take advantage again of the ABH 

data structure previously employed for timers.  

The running queue is organized as a max-heap (the head represents the task 

with the furthest deadline), and contains only the (at most) m RUNNING 

tasks currently expected to be running on the processors. 

The ready queue is organized, instead, as a min-heap (the head represents 

the task with the closest deadline) and contains the (at most) 

n – m released task (either in the READY or PREEMPTED states). 

Tasks are inserted using their absolute deadline as the priority key in both 

queues, respecting the following invariants: 

1. Rq ∪rq ≡ {t ∈ Τ | state(t) ≠ IDLE} 

Both the ready and running queues contain only non-IDLE tasks. 

2. Rq ∩ rq ≡ ∅ 

The ready and running queues are disjoint. 

3. ∀ ti ∈	Rq  ∄   tj ∈ rq | dj < di 

Any task in the running queue has a closer absolute deadline than 

the tasks in the ready queue. 
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Release of a new job 

When a new job is released (i.e. the metascheduler calls the OnJobRelease 

method on the G-EDF plug-in), the plug-in verifies whether the task should 

be activated or not, as follows. 

The trivial case is represented by the running queue containing less than m 

tasks. In this case the newly released task just need to be inserted in the 

running queue (that is a O(log(m)) operation), and activated through the 

MetaschedulerActivateTask call. 

Conversely, if the running queue is full, the plug-in must check whether its 

deadline is closest than at least one of the m other running tasks. With the 

running queue organized as a max-queue, this translates into a simple O(1) 

operation, involving just a comparison with the running queue head, which 

represents the less prioritary running task. 

If the new task has a further deadline, it is inserted into the ready queue in 

O(log(n-m)) and no action is requested to the metascheduler, which will 

keep the task into the READY state. If the task has a closer deadline than 

the running queue’s head, the corresponding task is pre-empted, issuing a 

MetaschedulerPreemptTask, it is moved to the ready queue (in 

O(log(n-m))) and the newly released task is inserted in the running queue 

(O(log (m))) and activated. 

 

Completion of a job 

When a job completes its execution (i.e. the metascheduler calls the 

OnJobCompletion method on the G-EDF plug-in), the corresponding task 

is removed from the running queue. The end of its execution makes room 

for the execution of another (READY or PREEMPTED) task, which is the 

task (if any) in the ready queue with the closest deadline. 

Since the ready queue is modelled as a min-heap, this operation concretely 

translates in a ABHRemoveHighest operation, which requires O(log(n-m)) 

time. This is the time required to remove the node and rearrange the ready 

queue, perform an insertion into the running queue and a 

MetaschedulerActivateTask call, in order to give back MEDIUM 
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priority to the task’s process (and eventually unblock the task-shell if the 

task was in the READY state) and carry on its execution. 

In the case of a job overrun, that is, a job which does not complete by the 

next job’s release, two different overrun reaction strategies are available 

and can be selected by the user at the moment of task creation: ASAP (as 

soon as possible) and SKIP. The former provides that the next job is 

released (thus is made eligible for execution) as soon as the current 

overrunning job completes. This allows reducing the impact of short and 

temporary overloading events (e.g., I/O errors) on the schedule and 

recovering the nominal execution as soon as possible. 

However, this kind of strategy is known for causing avalanche effects on 

applications catheterized by very high utilization factors close to the 

schedulability bounds. For such reasons an alternative SKIP policy has 

been envisaged. In the case of a task overrun, such policy forces the task to 

skip a number of successive jobs equal to the length of the overrun. This 

latter policy tends to introduce scheduling fairness, penalizing overrunning 

tasks by means of job inhibition and giving back CPU time to the other 

tasks, in order to compensate the scheduling pressure generated by the 

overrun condition. 

Final remarks 

As a final remark, it might be worth noting as the plug-in implementation 

doesn’t deal at all with processor assignments. The reason behind this 

choice is mostly related to the metascheduler design of the X-RT 

framework. The metascheduler, in fact, does not replace the native RTOS 

scheduler, rather acts as a frontend for it, letting the RTOS handle the 

hardware-related context switching and migration operations. 

RTOS schedulers, in fact, already implement such logic for handling 

process-to-CPU assignment and their migrations, since it is a mandatory 

requirement also for the operation of the simpler priority-driven native 

scheduler. For instance, the recent releases of the Linux kernel are 

endowed with fine-grained control logic, which takes into account the 

multiprocessor topology (for dealing with hyper-threading processors and 
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NUMA systems) and the cache-affinity of processes when it comes to 

make decisions about inter-processor task migrations. 

Some RTOSs give the possibility to override such behaviour by means of 

per-process affinity masks, which force the scheduler to execute a given 

process on a specified processor. However, the decision made in this work 

is not to take advantage of such mechanisms (i.e. leave the affinity masks 

filled), enforcing only the priorities of the processes through the X-RT 

framework and leaving the degree of freedom of the processor assignment 

to the RTOS. 

 

3.4. SMP experimental evaluations. 

In order to evaluate the validity of the X-RT metascheduler approach and 

the G-EDF plug-in, on SMP platforms, two types of evaluations have been 

conducted: runtime overheads measurements and schedulability tests. 

The system used for the experimentations is an eight-thread Intel Core i7-

920 64-bit processor. Each core is endowed with 64k L1 cache, 1MB of L2 

cache and 8MB of shared L3 cache. The operating system chosen for the 

experimentation is Linux x86_64 kernel ver. 3.6.6, in tick-less 

configuration (CONFIG_NO_HZ = y). 

In order to get comparable results with other kernel-space approaches 

discussed in other cited works, the evaluation methodology illustrated in 

the next sections is strongly inspired by the one used in [BA2009]. 

Runtime overheads 

The first set of evaluations is represented by overhead measurements and is 

aimed at identifying which is the overhead introduced by the X-RT 

framework, in terms of CPU time taken by the metascheduler, the G-EDF 

plug-in and the underlying RTOS kernel for carrying out all the operations 

envisaged by the framework. Such overhead depends on three major 

factors, which have been accounted separately (Figure 17 graphically 

illustrates them): 

1. Release-queue overhead: is the time spent to process the release 

queue, release the expired tasks, reinsert them into the release 
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queue for their next period and retrigger the RTOS timer, every 

time the (unique) RTOS timer expires.  

2. Job activation overhead: is the time spent by the G-EDF plug-in 

when the release of a new task is notified, plus the time spent by 

the consequent metascheduler invocations to pre-empt and activate 

the newly released tasks, plus the time consequently required by the 

RTOS kernel to alter the priorities of the processes and perform the 

corresponding context switches. 

3. Job completion overhead: symmetrically occurs when a job 

completes and the event is notified to the metascheduler (and in 

turn to the G-EDF plug-in). This overhead accounts also the time 

required by the G-EDF plug-in to eventually select and activate the 

next task, and the corresponding RTOS context-switches, when 

ready queue is not empty. 

 
Figure 17: Factors that contribute to the X-RT framework overhead. 
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The measurements have been conducted using task-sets of variable 

cardinality, from 50 to 450 in steps of 50. For each step, ten different task-

sets have been randomly generated, with periods uniformly distributed in 

the 10-100 ms. range and keeping an almost constant utilization factor of 

3.2 (~ 40% total CPU time). Each of those 90 task-sets have been executed 

for 30 seconds, and the corresponding average values (outliers filtered out 

using 98th percentile) are shown in Figure 18-Figure 20. 

Figure 18 shows the release-queue overhead. Such overhead is mostly due 

to the processing of the timer queues and the system call to retrigger the 

RTOS timer.  

Figure 19 shows the job activation overhead. Two main factors contribute 

to this overhead: the metascheduler + G-EDF plug-in computation and the 

RTOS system call invocations, for raising the priority of the activated task, 

send a message to the corresponding task-shell and, in the case a pre-

emption is required, lower the priority of the pre-empted task. It might be 

noted as the major contribution is due to the latter factor, where the Linux 

system calls impact with an almost fixed cost of 1.5 microseconds. The 

remaining metascheduler contribution, which gives the logarithmic trend to 

the overhead curve, is due to the processing of two ABH queues employed 

by the G-EDF policy plug-in for tracking, respectively, the running and the 

ready tasks. 

Figure 20 finally shows the job completion overhead. Similarly to the 

previous case, job completion involves up to three RTOS system calls (one 

for sending the completion message to the metascheduler, one for lowering 

the priority of the process and an optional third one for increasing the 

priority of a previously pre-empted process, if any) and the corresponding 

processing of the two G-EDF queues. In this case, however, the fixed cost 

due to the RTOS reveals to be slightly higher. A possible explanation for 

this higher overhead is the concurrent use of the POSIX message queues. 

In fact, while the job activation message sending is one-to-many (job 

activation messages are always sent from the metascheduler, which is a 

single thread, to the task shells), during job completion the messages are 

sent on the reverse path in a many-to-one fashion. Thus, depending on the 

implementation details of the POSIX message queues, this is very likely to 
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cause either bouncing of the cache-lines that hold the message queues’ 

data, and synchronization in the cases in which multiple jobs complete 

simultaneously on different processors. 

In general, the overhead measurements show very encouraging results. In 

fact, when considering the cumulative effect of this overhead during an 

entire task-set execution, the corresponding metascheduler overhead ratio, 

which has been calculated as the ratio between the total CPU time of the 

metascheduler thread and the total CPU time of the entire process (n + 1 

threads) ranges between 0.5% (N=50 tasks) and 1.9% (N=450 tasks). 

 

Figure 18: Release queue overhead (average). 

 

Figure 19: Job activation overhead (average). 
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Figure 20: Job completion overhead (average) 
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(heavy). 

Each task-set was created by generating tasks until a cap on the total 

utilization factor, which varies between 0.5 and 8 with a step of 0.5, was 

reached and then discarding the last-added task. 

Sampling points were chosen such that sampling density is higher (100 

samples) in areas where curves change rapidly, and lower in the other areas 

(20 samples). Each task-set has been executed for 60 seconds. 

For each of the 18 scenarios, three curves have been plotted on the y axis 

(ratio of schedulable task-sets) as a function of the utilization cap on the x 

axis (1.0 = 100% CPU time on one processor): 
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• HRT schedulability: each task-set is considered HRT schedulable 

if, during the experiment, no task misses any deadline. The ratio of 

HRT schedule task-sets is represented in the plot by a blue dashed 

line, labelled “HARD”. 

• SRT schedulability: each task-set is considered SRT schedulable 

during the evaluations if the maximum tardiness of the tasks is less 

or equal than their period (i.e. if the tasks that miss their deadline 

complete their execution by the end of their 2nd period). The ratio 

of SRT schedulable task-sets is represented in the plots by a purple 

dotted line, labelled “SOFT”. 

• Theoretical schedulability: each task-set is tested (offline) for HRT 

schedulability using four known sufficient (but not necessary) 

schedulability tests for G-EDF [Bak2003a, BCA2008, BCL2005, 

GFB2003] and deemed schedulable if it passed at least one of these 

four tests. The ratio of theoretically schedulable task-sets is 

represented in the plot by a red straight line, labelled “SCHED”. 

Results 

In the case of uniform light distributions (Figure 21a, Figure 22a, Figure 

23a) the frameworks exhibits a very good behaviour as both the HRT and 

SRT schedulability curves are perfectly overlapped with the theoretical 

trend of the schedulability tests. 

The situation becomes even more interesting when moving to uniform 

medium distributions (Figure 21b, Figure 22b, Figure 23b). In all the three 

cases, in fact, the sufficient nature of the schedulability tests emerges in a 

evident way. While the schedulability tests drop down between the range 

[5.5; 6.5], the actual HRT schedulability is still held until the utilization 

factor of 7.3, highlighting a pessimistic behaviour of the four 

schedulability tests in the case of medium uniform distributions and a still 

good behaviour of the G-EDF implementation and the overall X-RT 

framework (a utilization factor of 7.3 on a 8-thread system corresponds to 

a normalized CPU usage of 91.25%). 

A degradation of the scheduling performances, instead, can be noted in the 

case of uniform heavy distributions (Figure 21c, Figure 22c, Figure 23c) or 
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bimodal ones (Figure 24, Figure 25, Figure 26) though at a lesser extent. In 

particular, in the case of short periods, the HRT schedulability is worse 

than the theoretical lower bounds of the schedulability tests. However, a 

very good behaviour is still observed for moderate and long periods, where 

the curve of the HRT schedulability overlaps again with the theoretical 

bounds of the schedulability tests. 

As regards SRT schedulability it is worth noting that the adoption of the 

SKIP policy, for avoiding system overload in cases of missed deadlines, 

exhibits the most benefit in the case of heavy utilization and longer 

periods. In such cases in fact, the penalty interdiction period imposed by 

the SKIP policy to the heavy overrunning tasks gives back a substantial 

CPU time to the remaining tasks, which allows them to recover from the 

overload within a single period. As expected, instead, such effect is less 

evident when the overrunning tasks are short and highly fragmented, 

because the contribution to the overload of the system is more distributed. 

In general the framework and the G-EDF implementation provided very 

satisfactory results. The trend for SRT schedulability is very close to what 

envisaged by other studies on G-EDF, especially due to improvements 

brought on SRT scenarios by the SKIP policy.  

In this regard, Figure 27…Figure 32 show comparative schedulability tests 

of X-RT (thick blue line) and LITMUSRT (thin purple line) for HRT (solid 

lines) and SRT (dashed lines) performed on the same machine using six 

different utilization distributions (uniform/bimodal light, medium and 

heavy) with periods distributed uniformly in the [10..100] ms. range. 

Furthermore, the lockless message-driven multiprocessor architecture 

proved to cope extremely well with the network-based QPI architecture of 

the modern Intel processors, as the one used in the experimental 

evaluations. In particular, the schedulability trends on task-sets with 

medium uniform utilization are notably higher when compared to the 

corresponding results obtained in [BA2009], which was employing a 

crossbar-based SPARC multicore processor (Sun Niagara). 

It has to been said that, in the current set of experiments, the generated 

tasks are simulating pure CPU-bound load, not performing any memory 

read/write transaction. In this regard, it would be interesting to carry out 
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more detailed investigations on the behaviour of the overall system, with 

task performing actual memory access. Such an experimentation would 

reveal more interesting details about the process-to-processor mapping  

and migration strategies employed by the underlying RTOS, highlighting 

the magnitude of the bottlenecks which would unavoidable come in when 

cache line bouncing effects are involved. 

In this work cache-related effects have been avoided, in order to have an 

evaluation methodology comparable with the other works in the field, 

assessing the general viability of the novel multiprocessor synchronization 

approach based on message-exchange. 
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Figure 21:Schedulability test on SMP; period [3,33] ms; distributions: uniform (a), 

medium (b), heavy (c). 
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Figure 22:Schedulability test on SMP; period [10,100] ms; distributions: uniform (a), 

medium (b), heavy (c). 
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Figure 23:Schedulability test on SMP; period [30, 250] ms; 

 distributions: uniform light (a), medium (b), heavy (c). 
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Figure 24: Schedulability test on SMP; period [3, 33] ms; 

 distributions: bimodal light (a), medium (b), heavy (c). 
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Figure 25: Schedulability test on SMP; period [10, 100] ms; 

 distributions: bimodal light (a), medium (b), heavy (c). 
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Figure 26: Schedulability test on SMP; period [50, 250] ms; 

 distributions: bimodal light (a), medium (b), heavy (c). 
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Figure 27: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: uniform light. 

 

 

Figure 28: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: bimodal light. 
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Figure 29: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: uniform medium. 

 

 

Figure 30: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: bimodal medium. 
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Figure 31: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: uniform heavy. 

 

Figure 32: Comparative schedulability tests of LITMUSRT and X-RT on SMP. 

Period [10, 100] ms.; distribution: bimodal heavy. 
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3.5. Software architecture for AMP 

SMP has become a standard de-facto for many areas in the real-time 

domain, such as process control and industrial automation, due to the high 

flexibility offered by its uniform programming model. 

However, it has a major drawback in terms of hardware requirements. 

Some dedicated hardware resources, in fact, are required to support the 

interlocked operations, cache coherence and other mechanisms typical of 

SMP systems. Such hardware resources, however, can prove very costly 

when it comes to small-scale and low-power embedded system due to both 

area and power requirements. 

For such reasons, in many small-scale and highly-integrated embedded 

real-time systems, AMP reveals to be the leading choice, despite its more 

complex and less flexible computational model. 

Furthermore, it has to be said that, conversely to SMP, where the 

multiprocessing model is somehow uniform and independent of the 

specific architecture that implements it (for instance, the software 

programming model of x86/amd64 multicore processors is not that 

different from the one of multicore SPARC or PowerPCs), AMP usually 

doesn’t identify a precise model, rather a variety of different and 

application-specific architectures that often reflect into very different 

software programming models.  

The common principles that typically hold among all the different AMP 

architectures are mostly related the resulting software organization, which 

consists in several distinct operating system instances running 

independently on each processor. 

 

Reference architecture 

Before extending the design considerations made so far for SMP to AMP 

systems, it is mandatory to make some more detailed assumptions about 

the underlying AMP architecture that is going to be tackled by the X-RT 

framework. 
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Considering that the main target of this work has been represented mostly 

by industrial embedded real-time systems, the choice fell on the area of 

multiprocessor systems on programmable chip (MP-SoPCs). 

Originally exploited as prototyping platforms for later implementation in 

ASIC, FPGAs have become feasible vehicles for final designs, enabling an 

agile integration of manifold hardware resources suitably interconnected 

via a customizable bus, as general-purpose processors (soft-cores), 

memory and peripheral devices. Currently available design tools leave high 

degrees of freedom to the designer, particularly as regards the inter-

processor communication infrastructure and the memory layout. 

Customization options typically involve not only the choice of the memory 

technology, which can range from fast on-chip memory to external DRAM 

solutions, but also the interconnection topology, allowing to tightly couple 

a memory to a single core, avoiding any contention, or share it, sacrificing 

access times in favor of resource saving [ANJ+2004, TAK2006].   

However, due to the intrinsic nature of FPGAs, the computational 

performances of soft-cores can often result limited (though still 

remarkable) if compared to specialized hardware such as modern PC 

processors, having execution rates ranging within the order of hundreds of 

MHz. On the other hand, the extreme flexibility of modern SoPC platforms 

allows many soft-cores to be instantiated on a single FPGA, in order to 

enhance, accordingly to the user needs, the computational power of the 

resulting platform by means of multicore hardware parallelism. 

Nevertheless, exploiting such multicore platforms in order to concretely 

take advantage of the hardware parallelism is, in general, a non-trivial task 

that requires particular care in both the software design and development 

stages. The complexity level, in fact, is far beyond the traditional 

uniprocessor scenarios, which are undoubtedly more familiar to the most 

embedded application developers. In this sense, if we narrow the focus to 

more specific and constrained scenarios, such as the embedded real-time 

one, the introduction of an ad-hoc infrastructure which properly 

masquerades the underlying complexities can make such SoPC multicore 

platforms feasible and reliable solutions, for instance as in the cases of 

[BBCG2008, XWB2007]. 
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More technical specifications about the soft-core architecture used for the 

evaluation of this work are deferred to the performance evaluations 

section. For the moment, the only architectural assumptions made for AMP 

are: (i) the availability of a shared memory only for holding the working 

sets of real-time tasks; (ii) a hardware inter-processor communication 

mechanism that allow the software instances running on the several 

processors to exchange messages. 

The AMP architecture, furthermore, imposes some more restrictions on the 

scheduling algorithm that can be employed. In particular, conversely to 

what happens in SMP systems, process migrations cannot be performed. 

For such reason, for the AMP we are considering the restricted-migration 

variant of the G-EDF scheduling policy, that is R-EDF [BC2003]. 

 

Design of the AMP version of the X-RT framework. 

The fundamental contribution brought in by the X-RT framework in the 

AMP case is represented by the underlying run-time model, herein called 

shadow process model. Its purpose is realize a 1-to-m mapping of periodic 

real-time tasks onto processes of the m RTOS instances and manage their 

execution flow in a centralized manner, according to the global decisions 

of the scheduling plug-in, realizing a task-level migration abstraction even 

if RTOS processes cannot be really migrated. 

From the software standpoint, each shadow process consists in an instance 

of the task-shell, which operates in the same way of the SMP version. The 

main difference is that in this new model, each real-time task is associated 

to m task shells, one for each processor. As in the SMP case, also in AMP 

the X-RT framework requires only three priority levels (LOW, MEDIUM, 

HIGH), which keep the same semantic. 

At any time, at most one shadow process is ready for execution (from the 

RTOS scheduler viewpoint) with MEDIUM priority on each of the m 

RTOS instances. This shadow process corresponds to the real-time task 

that is expected to execute on that processor by the infrastructure. 

Therefore, keeping the assumption that each RTOS scheduler follows a 

strict priority-driven policy, no ambiguity can exist as regards the overall 

set of tasks running on the system at any time. 
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AMP compliance is ensured since the restricted migration model 

guarantees that pre-empted tasks cannot be resumed on any processor other 

than the one where the job execution started, therefore no migration of 

process context is required. The only state that the infrastructure should 

care about and keep coherent is the working-set of the tasks, which might 

be accessed (at different times) by distinct jobs of the same task on 

different processors. This latter point will be further discussed later in 3.6. 

The X-RT framework is deployed in a distributed fashion on AMP: the 

metascheduler, together with the scheduling policy plug-in, is executed 

exclusively on one of the m processors (which can be used as well for the 

scheduling of real-time tasks). The scheduling policy plug-in takes global 

scheduling decisions also in the AMP version of X-RT (with respect of the 

additional restricted-migration constraint, though). The interface between 

the metascheduler and the policy plug-in remains unchanged, thus the 

plug-in remains completely unaware of the underlying process model and 

SMP/AMP architecture.  

The task-shells, conversely, are distributed on the m processors. Their 

operating principle, however, is the same. In this sense, the decoupled 

architecture of the framework, and in particular the message passing 

strategy employed to coordinate the metascheduler and the task-shells, 

shows its best advantages in the AMP scenario, where a coordination based 

on traditional shared-memory patterns would be completely unfeasible. 

An extra component, however, is required to put the shadow process model 

in operation. Due to the inherent run-time isolation between the RTOS 

instances, the metascheduler is not capable anymore of directly 

instantiating the wrapper processes upon instantiation of new real-time 

tasks. For such reason, a further component, the dispatcher(s), is 

introduced. The framework requires that m dispatchers must be pre-loaded 

on each processor after the initialization of each RTOS instance (Figure 

33). From the runtime viewpoint, each dispatcher acts as a local proxy for 

the centralized metascheduler. The interaction between the metascheduler 

and the dispatchers is, once again, realized by means of (inter-processor) 

message passing. 
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In this regard, a new message (MSG_CREATE_SHADOW_PROCESS) is 

envisaged. Such message is sent by the metascheduler to the dispatchers 

when a new periodic task is requested to the metascheduler through the 

XRT_CreateNewPeriodicTask method of the X-RT API. 

 

 

Figure 33: Software and memory organization of the X-RT framework on AMP. 
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3.6. AMP experimental evaluations 

The Altera NIOS-II soft-core has been chosen as reference architecture for 

the experimental evaluations, due to the flexibility of its integrated 

development environment that permits easy customization of different 

hardware templates transparently supported by the bundled µC/OS-II 

RTOS. The NIOS-II/f fast version we employed in our experiments can be 

further endowed with a write-back directly mapped data cache (D-cache), 

which permits to reduce bus contentions exploiting spatial and temporal 

locality of memory accesses. Lacking any hardware coherency support, 

explicit cache flushes and proper synchronization must be handled by 

software in order to guarantee coherency of memory shared by different 

cores. The message-passing infrastructure has been realized using the FIFO 

core provided by the Altera SoPC, realizing a 1-to-m bidirectional channel 

between soft-cores (Figure 34). 

 

 

Figure 34: Overview of the Altera SoPC architecture. 

Using an Altera Cyclone IV FPGA clocked at 50 MHz and combining 

different memory and cache layouts as shown in Figure 35, four reference 

hardware templates based on NIOS-II/f cores have been investigated: 

shared memory (TS), shared memory with D-cache (TSC), dedicated 

memory (TD), dedicated memory with D-cache (TDC). As regards the 
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memory technology, we used internal MK9 SRAM blocks for the on-chip 

memory and an external SDRAM module for the shared memory. In order 

to preserve the memory consistency of the shadow process model in the 

TSC and TDC templates, explicit cache flushes are performed on job 

boundaries. 

 

The goals of the experimental evaluation are twofold. 

Infrastructure overhead. Two key factors contribute to such overhead: (i) 

job release overhead, i.e. the interval that elapses between the issue of an 

MSG_RELEASE_JOB message by the metascheduler and the execution of 

the corresponding shadow process; (ii) job completion overhead, i.e. the 

interval that elapses between the completion of a job, the update of the 

working-set and the reception of the corresponding message by the 

metascheduler. The additional time taken by the scheduling policy plug-in 

to carry out its scheduling decisions has not been accounted since it 

strongly depends on the particular policy employed and is extensively 

discussed by the relative studies herein referred. 

Performance slowdown. Apart from the infrastructure overhead itself, the 

measurements analyze how the run-time execution of application tasks is 

further biased by the hardware platform. The different hardware templates, 

in fact, are likely to differently respond to the workload of the real-time 

tasks, in particular to changes of number of cores simultaneously executing 

and their working-set size. Furthermore, the more or less frequent context 

switches and task migrations issued by the scheduling policy can 

additionally contribute to the run-time duration. In order to account these 

additional contributes and determine the effective factors which influence 

them, we set-up an experimental test-bench which combines (Figure 36) 

the four hardware templates (T) with 4 different number of cores (m), 6 

working set sizes (S) , 4 pre-emption rates (P) and 4 migration rates (M, 

expressed in migrations per period), for a total of 1536 scenarios. 

 TS  TSC  TD  TDC  

Instuctions. cache 2 Kb 

Data cache No 2 kB No 2 kB 

RTOS memory (Instructions + data) External memory On-chip memory 

Tasks memory (Instructions) External memory On-chip memory 

Tasks memory (Data) External memory 

Figure 35: Configuration of the reference hardware templates. 
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Each scenario involves the scheduling of a fixed number of 16 identical 

tasks, in which each job executes a CoreMark [Con2009] instance in order 

to emulate some real workload on the working set. Task periods were 

chosen to be long enough to compensate duration variance due to the 

different platforms avoiding overrun conditions. A regular scheduling 

pattern which relied on a quantum-driven round-robin scheme has been 

chosen in order to deliver a constant number of preemptions and 

migrations according to the configuration of each scenario. At each period 

the 16 tasks are arranged in m clusters and each cluster is scheduled on 

each core in round-robin using a P time-quantum (‘NO’ means that task 

jobs are sequentially executed). On the next period the pattern repeats 

shifting the clusters by M positions.  

 

Experimental results 

Figure 37 (a) and (b) show the two contributions to the infrastructure 

overhead. Each column reports the overhead measured for each hardware 

template in function of m, aggregating the average over the variation of S, 

P and M parameters, as, not surprisingly, they revealed to have a negligible 

influence on the infrastructure overhead. Job activation measurements 

show as both the TD and TDC templates exhibit an almost constant overhead 

as m increases, since the operations performed on the shared memory are 

minimal. On the other hand, the TS and TSC templates exhibit a worse 

scalability, in particular in the case of simultaneous activations on the 

cores, as both data and instruction ports contribute to the contention of the 

shared memory module when RTOS scheduling primitives are invoked. 

Furthermore, it might be also noted that for both the dedicated and shared 

cases, the relative templates involving data cache exhibit slightly higher 

overheads. The limited size of the data cache, in fact, is likely to cause a 

lag due to write-back of the stale cache lines prior to executing the 

dispatcher code, causing for such a short-length routine an opposite effect 

 
Figure 36: Testbench parameters for the AMP evalutaion. 
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than expected. As regards the completion overheads, both TS and TD 

templates exhibit a very limited, yet expected, contribution. The 

corresponding templates involving data cache, instead, introduce a more 

consistent overhead (order of tenths of microseconds) required to 

invalidate and write-back the data cache in order to preserve the working-

sets consistency. In this case, while the TDC template exhibits an almost 

linear behavior, the TSC template suffers of concurrent data and instruction 

cache contentions causing increased (≈ 2x) overheads in the 8-cores 

configuration. 

Cumulative infrastructure overhead is shown in Figure 37 (c) as the sum of 

the two contributions. The dedicated templates exhibit an overall good 

scalability inducing small and almost constant overhead even in the 8-core 

configurations, while the shared templates demonstrate to be negatively 

influenced by the shared memory bottleneck. 

 

 

Figure 37:  Infrastructure overhead due to job activation (a), completion (b) and 

cumulative results (c). 
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In addition to the overhead directly introduced by the scheduling 

infrastructure, Figure 38 (a-d) show how run-time performance of 

application tasks is affected by preemptions. Each of the 4 charts reports 

the average time required to complete a whole job issuing preemptions at 

different rates (according to the P parameter) in function of m, under each 

hardware template. TD reveals to be the less influenced template incurring, 

in the {m=8 cores; P=1 ms} configuration, a slowdown of 1,8% (7 us) 

compared to the sequential execution case. In the corresponding template 

involving data cache (TDC), preemptions caused a higher relative increment 

of 6,9% (5 us.) in the analogous configuration. The shared templates 

demonstrated to majorly suffer the influence of preemptions, in particular 

the TS exhibit a slowdown of 24,5% (98 us) in the {m=8 cores; P=1 ms} 

configuration while the introduction of data cache induce in the TSC 

template a slowdown of 30,8% (25 us). As a broader level consideration it 

might be noted that the effect of data cache on the preemption overhead 

has a lesser extent if compared to the speedup provided to tasks run-time. 

In order to provide a comparative evaluation of the overall run-time 

overhead factors, Figure 39 (a-d) show, for each hardware template, the 

relative slowdowns highlighting, at variations of W, the difference between 

the slowdown due to the hardware architecture and the slowdown due to 

the scheduling infrastructure. For each column, the lower colored part 

reports the ratio between the average run-time on the m-way 

multiprocessor configuration performing sequential jobs execution and the 

corresponding measurement on the uniprocessor configuration. The upper 

(red) part shows the surplus slowdown, introduced by the infrastructure, 

using the preemptive round-robin execution with the tightest (P = 1 ms) 

quantum. It may be clearly noted that the slowdown introduced in the 

infrastructure is definitely marginal in the TD and TS templates when 

compared to the slowdown introduced by the multiprocessor hardware 

architecture. Such slowdown becomes comparable only in the TDC and TSC 

templates, highlighting how preemptions suffer a worse exploitation of 

caches.  

As a final remark it might be noted that neither of the considered graphs 

reports the effect of tasks migrations. In fact, in all of the combinations 
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considered, the changes of the M parameter did not produce any 

remarkable effect on the measurements, thus they have been omitted. 
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Figure 38: Absolute run-time performances of TD (a), TDC  (b), TS (c) and TSC (d) 

templates varying m and P parameters with W: 16 kB. 

 

 

Figure 39: Relative slow-down of TD (a), TDC (b), TS (c) and TSC (d) templates 
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3.7. Concluding remarks 

In this chapter the design considerations and the essential implementation 

details of a real-time scheduling framework called X-RT have been 

presented. Such framework enables scheduling of real-time tasks on 

symmetric and some asymmetric multi-processor platforms, according to 

global (restricted-migration in the case of AMP) scheduling policies. The 

focus has been put on the mechanisms that, regardless the particular policy 

employed, allow to arbitrarily perform job preemptions and task migrations 

on the mainstream embedded SMP and AMP platforms employing only 

elementary scheduling primitives offered by almost every RTOS. In order 

to decouple these low-level scheduling mechanisms from user-definable 

high-level scheduling policies, a metascheduler approach has been 

introduced. 

The operating principle of this metascheduler stands on a dedicated high-

priority process that coordinates the execution of the other processes by 

means of message passing interaction and dynamically mangles their 

priorities, using only conventional system calls provided by the RTOS, in 

order to emulate the operation of more complex global scheduling policies. 

Experimental evaluations have been carried out to assess the viability of 

the approach, employing an Intel eight-thread processor running Linux 3.6 

kernel, for the SMP version, and four reference FPGA-based 

multiprocessor templates combining different memory models and cache 

layouts for the AMP version. The experimental evaluations analyzed both 

the overhead directly introduced by the scheduling infrastructure and the 

further consequences yielded on run-time performances, putting particular 

attention to the effect of scheduling decisions, i.e. preemptions and 

migrations, on the tasks run-time. 

In this regard the overhead introduced by the proposed framework shows 

to have a limited extent, both in SMP and in AMP platforms which involve 

dedicated memory for the RTOS. Furthermore, in the case of AMP 

platforms, job preemptions induce a slowdown which is smaller than the 

slowdown caused by the multiprocessor parallelism. Task migrations, 

furthermore, showed to not cause any remarkable effect on AMP, as the 
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approach employed does not actually migrate processes, rather it activates 

different shadow instances on different processors. 

As future research directions, as regards SMP, the work herein presented 

should be extended to take in account cache-related effects, simulating 

real-world workloads on memory working-sets of various size and using 

different access patterns, as for instance is done in [Bas2011]. 

As regards AMP, the experimental evaluations herein presented should be 

extended in order to contemplate more complex MPSoC architectures 

involving other communication and interaction paradigms such as 

network-on-chips, and studying the viability of the approach (or alternative 

ones) on those hardware platforms which do not assume any shared 

memory at all.  
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4.  Data structures for timekeeping in real-time systems 

4.1. Introduction 

In the area of real-time systems, one of the most critical functions typically 

handled by the operating system is represented by timekeeping. Timers, in 

fact, represent a key building block for both the operating system itself, for 

carrying out its internal operations, and for user-space applications, for 

instance when they take advantage of services like POSIX’s timers or 

sleep system calls. 

Timekeeping is mainly a software problem, which has, however, tight 

dependencies on the underlying hardware. It is quite typical, for an 

operating system, to handle at any time hundreds or thousands outstanding 

timers, going to expire in sooner or later future intervals.  

On the other side, the hardware platform typically offers only a few 

(sometimes just one) programmable hardware timers to carry out the 

timekeeping activities. Thus, the operating system has to properly 

multiplex such large queues of software timers using the few hardware 

timers available. Such multiplexing requires proper data structures. 

In traditional systems, most of the timers are required to have just coarse 

granularities in the order hundreds of milliseconds, for instance in the cases 

of device drivers dealing with I/O timeouts or user-space applications 

interacting with the user. However, this trend is changing over time and, 

nowadays, the number of drivers and applications which require finer 

grained timers is constantly increasing. 

For instance, timers with fine granularity are required by many modern 

networking protocols to measure accurately small intervals of time. 

Accurate estimates of roundtrip delay are fundamental for TCP congestion 

control algorithms on wireless networks [Chi2005] or for distributed 

protocols like the scalable reliable multicast framework [FJM+1995]. 

Furthermore, many modern multimedia applications [DTH1992] use high 

frequency timers, and the number of such applications is nowadays 

increasing.  If then we move to the area of industrial automation, signal 

processing and embedded real-time systems in general, the number of fine 
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grained timers, with resolutions down to the nanosecond range, becomes 

substantial. 

The performance of timekeeping operations becomes an issue when fine 

granularity timers are involved and when the average number of 

outstanding timers is large. Furthermore, if the timekeeping is performed 

inside an interrupt service routine, as it actually happens in the most 

operating systems, such overhead becomes critical for the reliability and 

responsiveness of the entire system. 

Above all, in the case of real-time systems, the RTOS scheduler has a 

compelling need of timers, since it must deal with periodic release of tasks 

and monitoring of their deadlines with extremely high accuracy. In this 

scenario, timekeeping represents the most crucial activity in the 

performance path of the most RTOS operations. 

In order to have a qualitative idea of the impact that timekeeping overhead 

has on the runtime performances of a real-time system, just consider a very 

modest real-time application, involving, for instance, a dozen periodic 

tasks with periods and deadlines in the millisecond range: the RTOS 

scheduler will need to intervene several thousand times in each second. 

Thus, if the timekeeping routine takes even just a few microseconds for its 

execution, it would introduce an overage overhead of about 5% of CPU 

time. 

However, more than the average case, the worst case overhead is the most 

crucial aspect to account for in the runtime behavior of a RTOS. If the 

scheduling overhead is negligible in most of its interventions (so that even 

the average overhead is negligible), but occasionally takes larger amounts 

of time, its effect may be catastrophic if interleaving with the execution of 

a hard real-time task with a small slack. 

For these reasons, in real-time systems ensuring that the overhead 

introduced by timekeeping operations is bounded, for instance by means of 

exploiting appropriate data structures which can guarantee that by design, 

is generally preferred than keeping an extremely low average-case 

behavior with longer worst cases, as usually happens in the design of 

general purpose operating systems. 
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In the following, the topic of timekeeping is explored from the software 

implementation viewpoint, first analyzing some traditional approaches 

already known in technical and scientific literature, and then discussing a 

novel approach, introduced by this thesis, designed for time-critical and 

memory-constrained embedded real-time systems. 

4.2. Problem statement 

We consider, in the following, the problem of handling a set of an arbitrary 

number of timers, by means of the following primitives: 

 

StartTimer(timer_handle, interval, expiry_callback) 

Invoked by the application to request the start of a timer, which will 

expire after interval time units. The caller supplies a reference 

(timer_handle) to the timer object, which in most real-world 

implementations is simply an opaque pointer, used to distinguish 

requests for this timer from other timers in the system. Upon 

expiration, the expiry_callback function will be called back, if the 

timer has not been stopped in the meantime. 

 

StopTimer(timer_handle) 

Invoked to stop the timer referenced by timer_handle. 

 

Timekeeping() 

Software routine, typically invoked upon a hardware timer interrupt, 

responsible for updating the state of the registered timers, according to 

the chosen timekeeping methodology (discussed soon), and triggering 

the execution of the callback for the expired timers. 

 

There are two main timekeeping methodologies which can be used to 

interact with a hardware timer: tick-driven and tick-less handling. 
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Tick-driven handling 

Tick-driven handling is the most straightforward way to realize 

timekeeping. It requires the hardware timer to simply deliver its interrupts 

at fixed rate (tick rate), triggering the execution of the Timekeeping 

routine at equidistant intervals of time. The tick rate is typically decided 

upon system initialization and never changed at runtime. 

While such a way of handling timers is evidently simple, it has a major 

issue: the periodic interrupt handler introduce a constant source of 

overhead, even when there is no compelling need. In other words, the 

hardware timer interrupt handler will execute at its usual rate even if there 

are no timers registered. Secondly, the maximum resolution for all the 

software timers handled is dependent on the tick rate. For instance, if 

the hardware timer is programmed to a rate of 1000 Hz, the maximum 

resolution allowed for software timers is 1 ms. 

A minor advantage of tick-driven handling is that the expiration time can 

be stored as a relative interval, rather than an absolute time. This can save 

some memory and some arithmetic computation time on very small 

microcontrollers with few memory and very low (i.e. 8 or 16 bits) data 

parallelism. Relative timekeeping, however, is not considered in this thesis 

as practically irrelevant for most of the modern platforms. 

 

Tick-less handling 

Tick-less handling is an alternative and more advanced methodology to 

deal with timekeeping [SPV2007]. It requires a high-resolution 

programmable interval timer (PIT), which nowadays is available on most 

hardware platforms, and is often directly embedded in the processor. A PIT 

is a free-running monotonic counter driven at a fixed rate (usually in the 

order of nanoseconds) that ideally never wraps. 

The advantage of a PIT is that it doesn’t deliver interrupts at a 

predetermined rate; rather it is further endowed with a register, freely re-

programmable by the software, which triggers an interrupt only when the 

internal counter reaches that value. In other words, a write to the PIT 

register marks a decisional instant in a precise moment in the future, which 

triggers a single interrupt. 
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The basic idea behind tick-less handling, therefore, is that the operating 

system keeps the hardware PIT always triggered to match the software 

timer expiring soonest. Thus, every time an interrupt is triggered, the 

corresponding software timer callback is invoked and the hardware PIT is 

reprogrammed with the value of next software timer, if any. 

This synchronization between the PIT and the software timer queues, 

however, is not that straightforward as it might seem at a first glance. In 

fact software timers can be stopped, as well as new timers can be added at 

any time. In all these situations, the synchronization with the PIT must be 

ensured in order to never miss a timer event. 

The two aforementioned timekeeping methodologies reflect in a very 

realistic way what happens in the majority of real-world RTOS. In some 

cases, whereas the underlying hardware platform is endowed with both the 

hardware timers, the operating system can provide both forms of 

timekeeping. For instance the Linux kernel, in some configurations, is able 

to provide lower resolution timers, handled in a tick-driven fashion by the 

tick handler, and high-resolution timers (namely hrtimers) handled in a 

tick-less fashion with a nanosecond resolution [GN2006]. 

4.3. Traditional data structures for timekeeping 

Dense array of timers 

One of the most straightforward ways of realizing software timekeeping is 

modeling the timers queue in memory as contiguous arrays of timer 

entries. In this model the entries are compacted within the array, reflecting 

their creation order (but not their interval), as in Figure 40. 

 

Figure 40: Dense array data structure for timekeeping problems. 
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In such a structure the implementation of the StartTimer routine is very 

straightforward. Supposing to know the number of active timers in the 

queue, in order to start a timer, the routine can directly index the next free 

entry and store the timer entry in O(1). The timer_handle can be just a 

unique identifier assigned to each timer upon creation. 

On the other side, however, the StopTimer routine requires a full scan of 

the array, in order to search for the given timer_handle, and shift all its 

following entries to re-compact the array, thus with O(n) complexity, with 

n being the number of active timers. 

As regards the Timekeeping routine: 

• In case of tick-driven handling, it has to increment the system time and 

check whether it has reached the value of one or more active timers. 

Once an expired timer is detected, the corresponding 

expiry_callback is invoked and the expired timers are shifted out 

similarly as in the StopTimer, thus requiring again O(n) time in the 

worst-case. 

• In case of tick-less handling, the Timekeeping routine has to scan the 

array to find the expired timer, remove it and then retrigger the PIT 

with the value of the next timer expiring soonest, requiring O(n) time. 

Memory complexity 

Since the memory usage of this model is basically O(N), with N being 

the maximum number of active timers allowed, it works fine in the 

cases where a bound on the maximum number of timer can be 

determined a priori. The static nature of the array, instead, turns out to 

be particularly inefficient when the number of active timers is 

extremely variable, thus forcing to either over-allocating a huge array 

or to rely on memory reallocation techniques. Memory relocation, 

however, can be very time-consuming since it can involve a deep copy 

of the previous array in a larger one. For these reasons this model 

usually fits only the case of “home-brewed” timekeeping for very 

modest applications, where the number of timers is small and known a 

priori. 
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Sparse array of timers 

A slightly variation of the latter model can be obtained relaxing the density 

constraint and allowing free entries to interleave active timers entries, as 

depicted in Figure 41. 

 

Figure 41: Sparse array data structure for timekeeping problems. 
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timer entries (with the only exception of head and tail pointers, which, 

however, are fixed regardless the number of timers in the queue).  

 

Figure 42: Linked list data structure for timekeeping problems. 
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Memory complexity 

It might be immediately noted that this model has an optimal memory 

utilization, requiring O(n) memory to keep only the active timer only. 

Timing wheel  

Timing wheel is a more complex data structure, mostly intended for tick-

driven timekeeping, presented by Varghese et al. in [VL1987], and further 

refined in [VL1997]. It basically consists in a fixed-length array of linked 

lists of timers (Figure 43). Time is divided into cycles, with each cycle 

consisting in N time units. The information about the current time is kept 

through a combination of a single array of length N, which keeps the state 

for the current cycle in a modular fashion, and a cycle counter c. The 

current time t, therefore, is represented by the tuple {c, i}, that is, the 

current number of cycles and the index within the cycle array, such that 

t =  c�N + i, and in every moment the N entries of the array correspond to 

the time interval [c�N ; 2�c�N - 1]. Each of the N linked lists contain the 

timer entries that expire in the corresponding time identified by the index 

of the list. The i index is incremented modulo N and, when it wraps, c is 

consequently incremented by one in order to reflect the new cycle. Timers 

whose expiration exceed such interval are placed in a so called overflow 

list, which is checked upon each new cycle boundary (discussed later). 

Computational worst-case complexity 

In a timing wheel, the StartTimer routine proceeds as follows. 

First of all, it has to check if the expiration time e of the new timer falls 

within the current cycle, i.e. if c�N ≤ e < c�(N+1), or beyond it, 

i.e. e ≥ c�(N + 1). In the former case, the new timer entry is appended to the 

linked list of index i = (e mod N). In the latter, it is appended to the 

overflow list. In both cases the StartTimer require constant time, since it 

involves only an array lookup and a unsorted list enqueue operation, thus 

its worst-case complexity is O(1). 

Since timer entries are always part of a linked list (either a list of the array 

or the overflow list), the timer_handle can be directly implemented as the 

memory address of the corresponding timer entry, similarly to the case of 
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the sorted linked list model. Thus, also in this case the StopTimer has O(1) 

complexity, at least as regards tick-driven handling. 

The Timekeeping routine, instead, requires some more careful analysis.  

• In case of tick-driven handling, the Timekeeping routine updates the 

system time incrementing the i index by one modulo N. Two scenarios 

are possible: (i) i < N and (ii) i = 0, thus it wraps. In (i), the only 

operation to be performed is checking if the linked list addressed by 

the incremented i index contains any timer, and if so call the 

expiry_callback for those and remove them, thus requiring constant 

O(1) time (or still optimal O(t) relaxing the assumption on expiration 

time uniqueness). The latter (ii) case, instead, is definitely more 

complex, since upon each new cycle, the overflow list must be 

processed looking for timers which expiration time falls in the new 

cycle, and if so they need to be moved from the overflow list to their 

corresponding list in the N-length array, thus requiring O(n) time in 

the worst case. 

As a final consideration, it might be noted as adding a sorting 

restriction to the overflow list can favor the Timekeeping complexity, 

which becomes O(N), in favor of the StartTimer routine, which 

consequently becomes O(n). 

• In case of tick-less handling, instead, the situation gets worse. In fact, 

once a timer expires (or equivalently when first timer is stopped), the 

next timer expiring soonest must be looked-up, in order to retrigger the 

hardware PIT. This operation, however, requires to iterate over the 

array until a non-empty list is found, thus requiring O(N) time. Even 

worse, if no more timers are present in the current cycle, the cycle 

corresponding to the next timer must be loaded from the overflow list, 

requiring additional O(n) time. Thus the worst case complexity in the 

case of tick-less handling is O(N + n), in practice making timing 

wheels an unfeasible choice for this scenario. 
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Figure 43: The timing wheel data structure for timekeeping problems. 
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timers are registered beyond that bound, however, the overflow list comes 

up again, bringing back the original O(n) behavior. Thus the approach 

remains impracticable for real-time systems which require nanoseconds 

resolutions, unless a very large N is employed to cover the horizon of 

possible timer intervals, though yielding a significant memory usage. 

Additionally, in [VL1997] another variant is presented, aimed at 

distributing the overflow list over the N arrays by means of hashing, thus 

reducing the average cost of the overflow list processing to O(n/N). 

However, no particularly assumptions can be made on the worst case 

complexity, unless introducing some strong assumptions on the 

distribution of the timer intervals. 

Memory Complexity 

The main strength of the timing wheel model, and most of its variants, lays 

on a memory vs. computational complexity tradeoff. In general the largest 

the array is, the lowest probability of processing entries in the overflow list 

it gets, though its worst case complexity remains linear. For such reasons, 

its memory complexity of O(N + n) it is far away from being optimal, and 

can become an issue when a large number of queues, requiring a timing 

wheel each, is required 

Self-balancing binary search tree 

Another approach for organizing timers in memory is represented by 

exploiting binary search tree (BST). A BST is a tree-based data structure 

(Figure 44) in which each node η has (at most) two children ηL,ηR, which 

respect the following ordering relation: ηL < η ≤ ηR . The point of BST is to 

keep its nodes sorted by their key, in order to allow fast (i.e. O(log(n))) 

insertion, retrieval and removal operations. 

The main issue of conventional BST, however, is that, depending on the 

insertion/removal pattern, the tree can easily degenerate in a linked list (for 

instance, simply inserting new nodes in increasing order of their keys). As 

the tree degenerates in a flat list, the run-time behavior of its operations 

degenerates into linear complexity. 
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For such reasons, self-balancing BST (SB-BST) are typically preferred 

when worst-case behavior is a concern [ST1985]. Most SB-BST 

implementations (e.g., Red-black trees [Knu2006] and AVL trees 

[AL1963]) have the same organization of a conventional BST, differing 

only in the behavior of the insertion and removal operations. Qualitatively, 

their operating principle is based on spending little more effort upon each 

modification of the tree (though still keeping a logarithmic complexity) in 

order to keep the height of the tree small, thus guarantee a logarithmic 

behavior to subsequent operations.   

 

 

Figure 44: Binary search tree data structures for timekeeping problems. 
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• In case of tick-driven handling, the Timekeeping routine just needs to 

increment the system time, check if it reached the value of the active 

timer entry expiring soonest, that is the leftmost leaf of the BST and, if 

so, trigger the corresponding expiry_callback and remove it. Both 

the lookup and removal operations require O(log(n)) time in the worst 

case when the BST is balanced. 

• In case of tick-less handling, the Timekeeping routine needs just to 

remove the leftmost leaf of the BST, invoke the corresponding 

expiry_callback and retrigger the hardware clock with the absolute 

time of the next entry (its parent node), thus requiring O(log(n)) time 

for keeping the BST balanced after removal. 

Memory complexity 

SB-BST have an optimal memory utilization, requiring O(n) memory to 

keep only the active timer entries. In order to be able to traverse the tree in 

either direction, starting from an arbitrary node, each node need to keep 

three pointers (left child, right child and parent) in its payload, in addition 

to the expiration time and the expiry_callback pointer. 

Array-backed binary heap 

In the following, another model based on an array-backed data structure 

called binary heap is presented. A binary heap is typically employed to 

implement a priority queue, that is, an abstract data type, similar to a 

queue, where each element has a priority associated with it. 

A priority queue supports the following two operations: 

insert_with_priority, that inserts an element into the queue with a 

given priority and remove_highest_priority_element, which removes 

from the queue and returns the element that has the highest priority. 

Priority queues are typically employed in a wide variety of applications 

such as graph problems, discrete event simulation, network routing and, of 

course, timekeeping. In the specific case of timekeeping, the priority queue 

elements are represented by timer entries which priority is inversely 

proportional to their expiration time, such that the element with the 

maximum priority represents the timer expiring soonest.  
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From a logical viewpoint, a binary heap is a tree-like data structure, which 

nodes respect two properties: (i) shape property: a binary heap is always a 

complete binary tree, i.e. all levels of the tree, except possibly the last one 

are completely filled, and, if the last level is not complete, the nodes of that 

level are filled from left to right. (ii) heap property: each node has a higher 

or equal priority than its children. In this regard, it might be worth nothing 

that no relationship exists between the priorities of nodes on the same 

level. Compared to the BST, in fact, a binary heap induces a more relaxed 

ordering among its nodes. 

From a memory layout viewpoint all implementations of the binary heap 

known so far are based on arrays (array-backed heap). Since the logical 

structure of a binary heap is a complete binary tree, its physical structure 

can be stored in memory through an array, according to the breadth-first 

binary tree implicit representation. 

 In this arrangement, no pointers are required to address children or parent 

nodes, as they can be directly indexed in the array as follows: if a node has 

an index i, its left and right children are found, respectively, at indices 

2�i+1 and 2�i+2, while its parent (if any) is found at index 

 ⌊(i – 1) / 2⌋, assuming the root has index 0 (Figure 45).  

 

 

Figure 45: Array-backed binary heap data structure for timekeeping problems. 

Computational worst-case complexity 

We consider in the following a binary heap backed by an array of size N, 

containing, at the time the routines are invoked, n < N active timer entries. 

The StartTimer routine proceeds as follows. The new timer entry is 

placed in the array at index n (the first non-occupied slot). While this 

placement preserves the shape property, the new timer entry may violate 

the heap property since its expiration time might be closer than its parent 
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entry. In such case, the new entry must be recursively swapped with its 

parent, until the heap property is restored. This operation, typically called 

bubble-up requires O(log(n)) time in the worst case, that is, the case in 

which the new timer expires sooner than all other n timers (has the highest 

priority), thus it must be percolated up through all the height of the tree 

(which is ⌊log2(n)⌋) up to the root. 

The main issue that arises with array-backed data structures in general, and 

in particular with a binary heap, is the addressability of the single entries. 

In fact, since the position of an entry within the array is not fixed, in the 

binary heap model the timer_handle cannot directly use the memory 

address of the entry. Typically, items are addressed by means of a unique 

id (e.g., a counter which is monotonically incremented upon each 

StartTimer invocation). 

Therefore, in the case of a StopTimer, unless the timer to be removed is 

exactly the root of the binary heap, its id must be looked-up requiring a full 

visit of the entire heap, giving the StopTimer a worst-case runtime 

complexity of O(n). Eventually, the complexity of the lookup operation 

can be improved (at the expense of the other operations) and become 

O(log(n)) by using an alternative model for the timer_handle based on 

indirect addressing. Indirect addressing basically consists in using handle 

objects to establish the node-id to array-position mapping. Such handles, 

however, need to be updated every time a node’s position is altered (e.g. by 

bubble-up or percolate-down operations), thus adding overhead to most of 

the heap mangling operations. 

As regards the Timekeeping routine: 

• In case of tick-driven handling, it just needs to increment the system 

time, check if it reached the value of the root node of the binary heap 

and, if so, trigger the corresponding expiry_callback and remove it 

by means of a remove_highest_priority_element operation. The 

latter involves two stages: (i) replacing the root node, by definition 

placed at index 0 in the array, with the last element of the array (that is 

the downmost and rightmost node of the tree) in order to preserve the 

shape property of the heap. (ii) Then, the new root is percolated down, 

re-iteratively swapping it with its highest priority children, 
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symmetrically to what happens in the insertion case, until the heap 

property is restored. Since, in the worst case, the binary heap must be 

fully traversed in its height, the Timekeeping routine has O(log(n)) 

complexity. 

• In case of tick-less handling, the operations to be performed by the 

Timekeeping routine are almost unchanged: it has to remove the root, 

invoke the corresponding expiry_callback and retrigger the 

hardware clock with the absolute time of the next entry, that is the new 

root of the binary heap resulting after the remove_highest 

priority_element operation on the expired one.  

Memory complexity 

It might be immediately noted that, as in the array-based models previously 

presented in beginning of this chapter, the memory usage of this model is 

also O(N), requiring an upper bound estimation on the maximum number 

of active timers or runtime memory relocation techniques. 

 

As a final remark, it can be noted that, the worst-case complexity of this 

data structure is never better than the BST model. Its analysis in this thesis 

might seem arguable at a first glance. However, two further considerations 

must be done in this regard: first, the worst-case runtime complexity herein 

analyzed gives an indication of the asymptotic behavior of the models, but 

doesn’t give any information about their actual performances. Such 

performance analysis will be carried out in the end of this chapter. 

Secondly, the logic structure of the binary heap model underpins the 

architecture of a novel data structure called addressable binary heaps, 

discussed in the next section, which shares with this one its logical 

structure.  

As a summary of this section Figure 46 gives an overall overview of the 

worst-case run-time and memory complexities of the models analyzed. 
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Model 
StartTimer 

w.c. complexity 

StopTimer 

w.c. complexity 

Timekeeping TD 

w.c. complexity 

Timekeeping TL 

w.c. complexity 

Memory 

complexity 

Dense 

array 
O(1) O(n) O(n) O(n) O(N) 

Sparse 

array 
O(n) O(1) O(N) O(N) O(N) 

Sorted 

list 
O(n) O(1) O(1)* O(1)* O(n) 

Timing 

wheel 
O(1) O(1) O(n) O(N + n), O(N + n) 

SB-BST O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) 

Binary 

Heap 
O(log(n)) 

O(n) 
O(log(n)) O(log(n)) O(N) 

/ O(log(n)) 

 

Figure 46: Overview of worst-case computational complexity and memory complexity of 

the analyzed timekeeping models 

4.4. The addressable binary heap 

In order to overcome the limitations of the array-backed binary heap, a 

novel approach, called addressable binary heap (ABH), is presented. The 

aim of ABH is to implement a binary heap by means of a pointer-based 

tree-like physical structure. The design of the ABH lays on the 

conventional layout of a binary tree, in which each node is linked to its two 

children by means of pointers. No pointer to parent is required. 

As in the array-backed binary heap, the nodes of the tree respect both the 

shape property and the heap property. In the following we present the 

details of the insert_with_priority and remove_highest_ 

priority_element, showing as they can be implemented with a 

logarithmic complexity. The removal routine is further extended to the 

general case of removing an arbitrary node from the ABH, still keeping a 

logarithmic worst-case complexity. 

Insertion of a new node, with arbitrary priority, in the ABH. 

The first issue that arises when inserting a new node in an ABH, is finding 

its proper location, in order to keep the tree complete and respect the shape 

property. In the array-backed case this is immediate, since using the 
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implicit tree representation the right position (downmost and leftmost) 

corresponds directly to the index n of the array, where n is number of 

nodes already present. In a pointer-based scenario it requires a little more 

analysis. 

Definitions 

• L(η) : level of a node 

Given an arbitrary node η of the ABH, we denote with L(η) the level 

of such node, that is, the number of parent nodes of η. There is only 

one node η1 in the ABH such that L(η1) = 0 and that node is the root. 

 

• η -N : Nth parent of a node 

Given a node of the ABH η ≠ η1, and a natural number N, such that N 

≤ L(η), we denote with η - N the Nth parent of the node η, such that L(η) 

- L(η – N) = N, with N=0 being the identity η 0 ≡ η. 

• ηL  ηR: left and right children of a node 

We denote with ηL  ηR, respectively, the left and right children of a 

node η. 

 

• P(η) : path of a node 

Given a node of the ABH η ≠ η1, we denote with P(η) the binary 

sequence [0 | 1]L(η), such that each ith  (0 ≤ i < L(η)) element of the 

sequence, with i=0 being the rightmost element, is 

 ����� 	= �0		if		��� = (�����)�

1		if		��� = (�����)�
 

More informally, the path of a node is a binary string that describes the 

sequence of branches that must be taken to reach the node from the 

root. The length of the binary string is equal to the level of the node 

and, for each level, each zero (one) bit means that the path for that 

level follows the left (right) child. 

 

• I(η) : index of a node 
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Given an arbitrary node η of the ABH, we denote with I(η) its index 

within the tree, counting the nodes left to right, from the root level 

L(η1) up to the upper level L(ηN), starting from I(η1) = 1. 

Property 4.4.1 

Given an arbitrary node η of index I(η), the indexes of its left and right 

children are, respectively:  I(ηL) = 2�I(η) and  I(ηR) = 2�I(η) + 1. 

Proof 

Let us consider an arbitrary node η of the ABH. From the definition of 

index, I(η) corresponds the number of nodes that precede it (top to bottom, 

left to right) plus one. 

Therefore, the index can be alternatively be expressed as: 

(1)  I(η)  = A(η) + SL(η) + 1 

Where A(η) is the number of ancestors of η (upper-level nodes) and 

SL(η) the number of its left siblings (preceding nodes on the same level). 

 

Furthermore, from the definition of complete binary tree: 

(2)  A(η) = 2L(η) - 1 

(3)  S(η)  = SL(η) + SR(η) = A(η)  = 2L(η) - 1 

More informally, the number of ancestors of a node η is equal to the 

number of its left and right siblings. 

Thus 

 SL(η)  =  I(η) - A(η) - 1           From 1 

      =  I(η) - (2L(η) - 1) - 1       From 2 

(4)    =  I(η) - 2L(η) 

 

By construction, the number of right siblings of η  is: 

 SR (η)  = S(η) - SL(η) 

       = (2L(η) - 1) - (I(η) - 2L(η))      From 3,4 

(5)     = 2L(η)+1  - I(η) - 1 
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We can now determine I(ηL), that is, the index of the left child of η. 

Per definition of complete tree, the number of nodes that lay between η and 

ηL is exactly the number of right siblings of η plus the number of children 

of the left siblings of η, that is 2 � SL(η). Thus the index of ηL is: 

I(ηL)  = I(η) + SR (η) + 2� SL(η) +1 

       = I(η) + (2L(η)+1 - I(η) - 1) + 2�(I(η) - 2L(η)) + 1  From 5,4 

(6)    = 2�I(η) 

Thus, the index of the right child: 

 I(ηR) = I(ηL) + 1 

        = 2�I(η) + 1         From 6 

□ 
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Property 4.4.2 

P(η) = (I(η) - 2L(η))b for each node of the ABH η ≠ η1. 

More informally: The path to any non-root node of the ABH corresponds 

to the binary representation of its index minus its most significant bit. 

Proof 

The property can be verified by induction, as follows. 

It is immediate to verify that the property is valid for the first two non-root 

nodes at level 1, that are, the nodes η1L  and η1R of index 2 and 3: 

P(η1L) = 0b = 10b - 10b = 2 – 21 = I(η1L) - 2
L(η1L)   

P(η1R) = 1b = 11b - 10b = 3 – 21 = I(η1R) - 2L(η1R)   

 

Furthermore, by definition of path, given an arbitrary node η of the ABH, 

the paths of its left and right child are, respectively: 

(1a)   P(ηL)  =  P(η)  # 0b =  2�P(η)       (# � binary concatenation operator) 

(1b)  P(ηL)  =  P(η) # 1b =  2�P(η) + 1 

More informally, the path of the left (right) child of a node is equal to the 

path of that node concatenated with 0b (1b) or, equivalently, multiplied by 

two (plus one). 

 

Let us now consider a generic node η with L(η) > 1 and suppose that the 

property is valid for the level L(η) 

(2)  P(η) = I(η) - 2L(η) 

 

From property 4.4.1, the indexes of the two children of the node η are: 

(3a) I(ηL) = 2�I(η) 

(3b) I(ηR) = 2�I(η) + 1 
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Hence, at level l+1, the path of the left child of η will be: 

P(ηL)  = 2�P(η)                             From 1a 

= 2�(I(η) - 2 L(η) )  = 2�I(η) - 2 L(η) +1   From 2 

= I(ηL) - 2
 L(η) +1                   From 3a 

= I(ηL) - 2
L(ηL)

                     Per definition of child 

 

Similarly, for the right child 

P(ηR)  = 2�P(η) + 1                             From 1b 

= 2�(I(η) - 2 L(η)) + 1 = 2�I(η) + 1 - 2 L(η) +1  From 2 

= I(ηR) - 2 L(η) +1                        From 3b 

= I(ηR) - 2L(ηR)
                          Per definition of child 

 

Thus, the general property 4.4.2 P(η) = (I(η) - 2L(η)) holds.  

□ 

 

Figure 47 graphically illustrates the property 4.4.2, highlighting the match 

between the indexes of the nodes and their paths. 

 

Figure 47: Graphical overview of the fundamental path-finding property that underpins 

the operations of the addressable binary heap. 

η1 

η2 η3 

η4 η5 η6 η7 

I(η1) : 1b 

I(η2) : 10b I(η3) : 11b

I(η6) : 110b I(η4) : 100b I(η7) : 111bI(η4) : 101b 
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Data structure definition 

Once that the theoretical process that underlies the look-up of nodes from 

their index has been presented, the concrete data structure and the 

insertion/removal algorithms can be discussed in their details. 

 

The concrete data structure of an ABH is defined as follows: 

1. typedef struct 

2. { 

3.     abheap_node_t*     head; 

4.     abheap_node_t      sentinel; 

5.     size_t             count; 

6. } abheap_t; 

 

where head is a pointer to the root node descriptor (the one with highest 

priority) and count is an integer variable which keeps track of the number 

of nodes currently present in the ABH. 

 

The data type associated to each node of the ABH is defined as follows: 

1. typedef struct abheap_node 

2. { 

3.     abheap_prio_t       priority; 

4.     struct abheap*      owner; 

5.     unsigned long       position; 

6.     struct abheap_node* left_child; 

7.     struct abheap_node* right_child; 

8. } abheap_node_t; 

 

where priority represents the numeric priority of that node 

(abheap_prio_t is just a redefinition of the value type chosen to model 

the priority), owner is a back pointer to the owner ABH (only for 

diagnostic purposes, .e.g., breaking the debugger in case of double 

insertions or double removals), position represents the index I(η) of that 

node (as defined in 4.4) and left_child/right_child the pointers to the 

node’s left and right children.  
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Path extraction and navigation 

As regards the navigation in the ABH, in the following the methods for 

extracting the path of a node from its index and navigating through it are 

presented, basically concretizing in C code the theoretical considerations 

previously made. 

An ad-hoc data type has been defined for representing a path and allowing 

efficient navigation through it, as follows. 

1. typedef struct 

2. { 

3.   unsigned long  bitmap; 

4.   int            steps; 

5. } path_t; 

 

In such data type, bitmap is a machine word, in which each bit represents, 

MSB to LSB, the direction (0: left, 1: right) that must be taken when 

branching in each level of the ABH. The length of the bitmap word 

depends on the underlying architecture. In the most common cases it is a 

32 or 64 bit word, thus allowing to keep the path for trees of up to 232-1 or 

264-1 nodes. 

However, depending on the actual number of nodes present in the ABH 

and the number of branches already taken when navigating along that path, 

the number of meaningful bits will vary. Per definition the bitmap is left 

aligned, i.e. its MSB represents the branch direction for the next level. In 

order to identify the number of meaningful most significant bits, a separate 

integer variable is introduced, here called steps. In practice this variable 

represents the number of levels of the ABH that still need to be traversed to 

reach the destination. 

In the previous section it has been shown that the binary string representing 

the path of a node corresponds to the binary representation of the index, 

after its most significant high bit is stripped off. In order to identify and 

strip such bit we take advantage of a specific machine instruction which 

most computer architectures offer 5 , herein referred to as 

                                                 
5 In lack of that, the CountLeadingZeros function can be easily emulated in software. 
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CountLeadingZeros, that returns the position of the most significant high 

bit of a machine word (bsr on Intel x86, lzcnt on AMD, clz in ARM). 

The corresponding C code is shown in the following. 

1. path_t GetPathToNode(unsigned long node_index) 

2. { 

3.   path_t path; 

4.   int leading_zeros    = CountLeadingZeros(node_index); 

5.   const int ULONG_BITS = sizeof(node_index) * 8;     

6.   /* The maximum operand allowed by C standards for the  

7.    * << operator is the word size (64). Therefore the shift  
   * operation must be split in two steps */ 

8.   path.bitmap = (node_index << (leading_zeros)) << 1;    

9.   path.steps  = ULONG_BITS - leading_zeros - 1; 

10.   return path; 

11. } 

 

The navigation of the path is absolutely straightforward. Basically it 

consists in a check of the bitmap‘s MSB, a left-shift operating and a 

decrement of the number of remaining steps. 

1. bool PathHasNext(const path_t* path) 

2. { 

3.   return path->steps > 0; 

4. } 

5.  

6. path_dir_t PathMoveNext(path_t* path) 

7. { 

8.   path_dir_t dir = (MSB(path->bitmap)) ? RIGHT : LEFT; 

9.   path->bitmap <<= 1; 

10.   path->steps   -= 1; 

11.   return dir; 

12. } 

 

Insertion algorithm 

It is immediate to note that when a new node is being inserted in a ABH 

containing count nodes, in order to ensure the shape property a node 

(possibly the new node itself, if its priority is sufficiently low) will end up 

occupying the position at index count + 1. 

Furthermore, in the light of the theoretical considerations made in 4.4, it is 

also evident that the knowledge of the final destination index gives also a 

precious information on the path that leads to its position. 
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A naïve insertion approach could consist in emulating the behavior of an 

array-backed binary heap, which is, first inserting the new node in the last 

position, following fully the path, and then percolating it up to restore heap 

property. While this approach is theoretically correct, it would require both 

an extra memory overhead, in order to keep track of the node parents, 

either storing them in the abheap_node_t structure or in a temporary 

stack, and a run-time overhead, since the tree should be traversed in its 

height two times, in both directions. Instead, the insertion algorithm 

envisaged traverses the ABH only once (top-down). In order to do so we 

need to introduce the concept of the dangling node. 

Conceptually, the dangling node represents the potential competitor of 

each node that is encountered traversing the tree top-down along the path 

identified by the target position. At each level, such dangling node can turn 

out to have either a lower or equal priority than its current competitor, or a 

greater priority. In the former case, the traversal just continues to the next 

level, following the path without performing any modification to the ABH. 

Conversely, in the case that the dangling node has a higher priority than its 

current competitor the two nodes are swapped. It might be worth noting 

that swapping an ABH node η with another node η’ (the dangling node) 

that has a higher priority than η but a lower priority than η -1, preserves the 

heap property. 

After a swap, the former dangling node assumes its final position at that 

level (thus the parent’s pointer and its pointers are updated accordingly), 

while the former competitor is detached from the ABH and becomes the 

new dangling node. 

This process continues until the last level of the tree is reached. There, the 

final dangling node, which in the meanwhile might have been swapped 

with lower priority nodes encountered along the path, is placed. 

It can be noted as this algorithm traverses the tree only once in its height, 

and since, per definition, an ABH is always complete, the worst-case 

complexity of the algorithm is O(log(n)). 

In the following, the C code that implements the insertion algorithm just 

described is shown. 
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1. void ABHeapInsert 

2. ( 

3.     abheap_t*         heap, 

4.     abheap_node_t*    node, 

5.     abheap_prio_t     priority 

6. ) 

7. { 

8.   abheap_node_t*  dangling_node   = node; 

9.   abheap_node_t** parent_ptr      = & heap->head; 

10.   unsigned long   target_position = (heap->count + 1); 

11.   path_t path    = GetPathToNode(target_position); 

12.   node->owner    = heap; 

13.   node->priority = priority; 

14.      

15.   while (PathHasNext(&path)) 

16.   { 

17.     abheap_node_t* current = *parent_ptr; 

18.     if (HasHigherPriority(dangling_node, current)) 

19.     { 

20.       ReplaceNode(current, dangling_node, parent_ptr); 

21.       SwapPointers(dangling_node, current); 

22.     } 

23.  

24.     if (PathMoveNext(&path) == LEFT) 

25.     { 

26.       parent_ptr = & current->left_child; 

27.     } 

28.     else 

29.     { 

30.       parent_ptr  = & current->right_child; 

31.     } 

32.   } 

33.      

34.   dangling_node->position    = target_position; 

35.   dangling_node->left_child  = & heap->sentinel; 

36.   dangling_node->right_child = & heap->sentinel; 

37.   *parent_ptr                = dangling_node; 

38.   heap->count += 1; 

39. } 
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Highest priority element removal algorithm 

Let us consider first the case of removing the highest priority element (the 

root) from the ABH. Trivial cases, i.e. count ≤ 1, are omitted. 

Step 1: identification and removal of the last node 

As in the case of the array-backed binary heap, a good approach for 

removing the root node and, at the same time, preserving the shape 

property is represented by replacing the root with the last node of the heap 

(the one with highest index). Since the ABH data structure is based on 

pointers, however, such replacement requires that the last node must be 

first identified and unlinked from the heap. 

The identification process is, at this point, absolute straightforward and 

analogous to what discussed in the insertion case. The knowledge of the 

count of nodes directly reflects the index of the last node, thus its path. 

Furthermore, since the path to reach the last node must necessarily pass 

through its parent, the unlink process can be performed traversing the ABH 

in its height just once, keeping track in a temporary variable of the 

left/right child pointer of the last parent seen and invalidating it at the last 

iteration, as follows: 

1. abheap_node_t* UnlinkLastNode(abheap_t* heap) 

2. { 

3.  abheap_node_t** parent_ptr = & heap->head; 

4.  path_t          path       = GetPathToNode(heap->count); 

5.  abheap_node_t*  last_node; 

6.  while (PathHasNext(&path)) 

7.  { 

8.    abheap_node_t* current = *parent_ptr; 

9.    if (PathMoveNext(&path) == LEFT) 

10.    { 

11.      parent_ptr = & current->left_child; 

12.    } 

13.    else 

14.    { 

15.      parent_ptr = & current->right_child; 

16.    }         

17.  } 

18.  last_node    = *parent_ptr; 

19.  *parent_ptr  = & heap->sentinel; 

20.  return last_node; 

21. } 
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Step 2: restoration of the heap property 

The pointer based physical structure of the ABH paves the way towards the 

restoration of the heap property in a similar way to what happens, at least 

from a logical viewpoint, in the array-backed binary heap during a standard 

percolate-down operation. 

In the case of ABH, however, this operation can be performed in a lighter-

weight fashion by means of just mangling link pointers, without actually 

swapping or physically moving the nodes themselves. 

This hole-propagation approach, herein called bubble-down, consists in the 

following: the removal of the root node conceptually creates a hole in the 

tree that must properly filled, ensuring to preserve both the heap property 

and the shape property of the ABH. 

From an algorithmic viewpoint, however, the node which causes the hole 

is not concretely removed. Instead, it is directly replaced by choosing 

among the highest of its two children and the last node of the ABH (which 

has been unlinked in the previous step and is temporary not part of the 

ABH). At this point two cases are possible: (i) one of the two children has 

the highest priority, so its replacement preserves the heap property but 

causes the hole to move downwards in the place of the swapped child. In 

this case the algorithm must be reiterated, in the worst case until the hole is 

pushed over the last level of the ABH; (ii) the last node is the one with the 

highest priority: this causes the termination of the algorithm, since its 

replacement gives back the complete shape to the ABH and restores the 

heap property. 

It might be finally worth noting that the algorithm, as described so far, can 

be theoretically performed also on a portion of the ABH, i.e. starting from 

a non-root node. For such reason, in the following a generalized version, 

which takes as input parameters a generic start node (and the link of its 

parent), is presented: 

 

1. void BubbleDown 

2. ( 

3.   abheap_node_t*  hole, 

4.   abheap_node_t** hole_parent_ptr, 

5.   abheap_node_t*  replacement 
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6. ) 

7. { 

8.   abheap_t*       heap          = hole->owner; 

9.   abheap_node_t** parent_ptr    = hole_parent_ptr; 

10.   unsigned long   hole_position = hole->position; 

11.   abheap_node_t*  hole_left     = hole->left_child; 

12.   abheap_node_t*  hole_right    = hole->right_child; 

13.   bool            completed     = false; 

14.   while (not completed) 

15.   { 

16.     if (HasHigherPriority(hole_left, hole_right)) 

17.     { 

18.       if (HasHigherPriority(hole_left, replacement)) 

19.       { /* Pull-up hole's left child */ 

20.         *parent_ptr          = hole_left; 

21.         parent_ptr           = & hole_left->left_child; 

22.         hole_left->position /= 2; 

23.         SWAP(hole_right, hole_left->right_child); 

24.         hole_left            = hole_left->left_child; 

25.         hole_position        = hole_position * 2; 

26.       } 

27.       else 

28.       { 

29.          completed = true; 

30.       } 

31.     } 

32.     else 

33.     { 

34.       if (HasHigherPriority(hole_right, replacement)) 

35.       { /* Pull-up hole's right child */ 

36.         *parent_ptr          = hole_right; 

37.         parent_ptr           = & hole_right->right_child; 

38.         hole_right->position /= 2; 

39.         SWAP(hole_left, hole_right->left_child); 

40.         hole_right           = hole_right->right_child; 

41.         hole_position        = hole_position * 2 + 1; 

42.       } 

43.       else 

44.       { 

45.         completed = true; 

46.       } 

47.     } 

48.   } 

49.   *parent_ptr              = replacement; 

50.   replacement->position    = hole_position; 

51.   replacement->left_child  = hole_left; 

52.   replacement->right_child = hole_right; 

53. } 
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In the light of the above considerations, the highest priority element 

removal routine is presented in its entirety below: 

1. abheap_node_t* ABHeapRemoveHighest 

2. ( 

3.   abheap_t* heap 

4. ) 

5. { 

6.   if(heap->count > 0) 

7.   { 

8.     abheap_node_t* const old_head = heap->head; 

9.     abheap_node_t* last_node = UnlinkLastNode(heap); 

10.     BubbleDown(old_head, & heap->head, last_node); 

11.     old_head->owner = NULL; 

12.     heap->count--; 

13.     return old_head; 

14.   } 

15.   else 

16.   { 

17.     return NULL; 

18.   } 

19. } 

 

It can be finally noted that, since both the UnlinkLastNode and the 

BubbleDown traverse the ABH in its height one time each, the worst-case 

complexity of the ABHeapRemoveHighest routine is O(log(n)). 

Arbitrary element removal algorithm 

The greatest advantage introduced by ABH, over the array-backed binary 

heap, is the direct addressability of its elements. Direct addressability 

paves the way towards the efficient implementation of a further operation, 

fundamental for our timekeeping purposes, that is, the removal of arbitrary 

nodes from the ABH. 

In the light of the previous discussions, the removal of a node creates a 

hole that can be bubbled-down. The choice of the initial replacement node, 

however, requires a more careful handling in this scenario. In fact, no 

assumption can be made on the relationship that exists between the priority 

of an arbitrary node and priority of the last ABH node (except for the 

singular cases in which the node being removed is an ancestor of the last 

node). 
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Thus, due to this intrinsically weak ordering, the last node won’t 

necessarily ensure the heap property to be preserved in the first 

L(hole) levels of the ABH and could turn out to have a higher priority than 

some ancestors of the node being removed. Figure 48 graphically depicts 

such scenario. 

 

Figure 48: A particular case of arbitary element removal in an addresable binary heap. 

In order to ensure the global satisfaction of the heap property, a 

preliminary filtering step is required: the last node must be filtered down 

on the path that leads from the root to the node being removed, and 

swapped every time a lower priority node is encountered, in order to re-

establish the heap property in the first levels of the ABH. 

Thus, at the end of this partial walk, the replacement node employed for 

the BubbleDown routine will be the lowest priority node encountered along 

the path. For instance, in the example of 8, the last node of priority (5) 

would be swapped with the node (10), and the latter would be used to 

replace the hole of the node (11) in the BubbleDown call. 

From a practical viewpoint, the logic of the filtering step is exactly the 

same of the insertion algorithm, in which the last node represents the initial 

dangling node. 

The complete code for removal of an arbitrary node is presented below: 

  

1 

10 2 

11 20 

12 23 

3 30 

21 24 5 
Last node 

Node to be 

removed 



4.4 The addressable binary heap 

 

150 

 

1. void ABHeapRemove 

2. ( 

3.   abheap_node_t* node_to_remove 

4. ) 

5. { 

6.   abheap_t*        heap       = node_to_remove->owner; 

7.   abheap_node_t**  parent_ptr = & heap->head; 

8.   abheap_node_t*   dangling_node; 

9.   path_t path = GetPathToNode(node_to_remove->position); 

10.  

11.   dangling_node = UnlinkLastNode(heap); 

12.  

13.   if (dangling_node != node_to_remove) 

14.   { 

15.     while(PathHasNext(&path)) 

16.     { 

17.       abheap_node_t* current = *parent_ptr; 

18.  

19.       if(HasHigherPriority(dangling_node, current)) 

20.       { 

21.         ReplaceNode(current, dangling_node, parent_ptr); 

22.         SwapPointers(dangling_node, current); 

23.       } 

24.  

25.       if(PathMoveNext(&path) == PATH_DIR_LEFT) 

26.       { 

27.         parent_ptr = & current->left_child; 

28.       } 

29.       else 

30.       { 

31.         parent_ptr = & current->right_child; 

32.       } 

33.     } 

34.     /* At this point 

35.     - dangling_node is either the last_node or a node 

36.       with lower priority encountered along the path 

37.      (from head to node_to_be_removed). 

38.     - parent_ptr points to node_to_be_removed, unless it 

39.       was exactly the last_node. In such case parent_ptr 

40.       points to the sentinel,since node_to_be_removed was 

41.       detached by UnlinkLastNode. 

42.     - node_to_be_removed has not been removed yet, but we 

43.       ready to do it now. */ 

44.    BubbleDown(node_to_remove, parent_ptr, dangling_node); 

45.   } 

46.   node_to_remove->owner = NULL; 

47.   heap->count--; 

48. } 
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It might be noted that this routine walks the heap in its height two times: 

the first time to identify and unlink the last node, and the second time to 

filter down the last node (lines 13-33) and then to bubble-down the 

resulting dangling node (line 44) in the remaining levels of the ABH. Thus 

its worst-case run-time complexity is O(log(n)).  

As a final note, it might be noted that, as in the case of the array-backed 

binary heap, also the ABH is a non-stable model, i.e. the order of two 

elements having the same priority is not guaranteed to be preserved. 

Whereas stability represents a concern, however, non-stable priority 

queues can be made stable by the introduction of an auxiliary priority field, 

a sequence number, to break ties as discussed by McCormack and Sargent 

in [MS1981]. 

4.5. Experimental evaluations 

The ABH, as presented so far, allows to implement all the operations 

envisaged by a priority queue, including the removal of arbitrary nodes, 

with a logarithmic worst-case complexity and a linear memory complexity. 

It might be worth verifying, at this point, how the presented 

implementation of such data structure performs when applied to the 

timekeeping problem. 

Performance evaluation involves three main points, which are being 

discussed separately in the following: (i) a methodological aspect, i.e. what 

operations should be evaluated and under which scenarios; (ii) a 

comparative aspect: which other data structure to compare; (iii) a practical 

aspect: how to concretely measure performances, mostly related to the 

underlying software and hardware platform. 

Evaluation methodology 

Over  the  years,  several  performance  studies  has been carried on 

priority queues, mostly in the context  of  discrete  event  simulation 

(DES). In such context, a priority queue is generally used to hold the 

pending event set (sometimes referred to as the event calendar [CSR1993]) 

which contains the scheduled future events. The DES scheduling problem, 

however, is, in its essence, a tick-less timekeeping problem, since DES 
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simulators basically rely on a set of timers which are scheduled to trigger 

future actions. Run-time performances of timekeeping in DES are as 

critical as in RTOS schedulers since, as shown by an empirical study by 

Comfort [Com1984], up to 40% of the DES execution time may be spent 

on the event-set management (thus on timekeeping routines) itself. 

Similarly to [RA1997], synthetic experiments are preferred over real 

simulations since they provide better control over the variables affecting 

performance and,  thus,  they  better  expose  the  factors  that  influence  

performance. Furthermore, synthetic experiments facilitate direct 

comparison to earlier priority queue studies [CSR1993, MS1981, 

VD1975]. 

In this regard, a widely  used  method  for  performance  evaluations is 

represented by the insert-hold model, introduced by Vaucher and Duval in 

[VD1975]  and  refined  by  Jones  [Jon1986].  It models operations on a  

fixed-size queue where a series of hold operations (a removal followed by 

an insertion) are performed. In [RAFD1993] Rönngren et al. highlight as 

this methodology is in general not sufficient to capture the dynamic nature 

of queue sizes that often appears in practice, as recognized by several 

researchers as in [CSR1993]. 

An Up/Down model is proposed by Rönngren et al.  [RA1993],  where  a  

sequence  of  insertions is followed  by  an  equally  long  sequence  of  

removals.  Further refinements of these models have been presented in the 

scientific literature. For instance Chung et al. [CSR1993] propose a 

generalization  of  the  Hold  model,  the  Markov  Hold, where  operations  

on  the  queue  are  determined  by  a  two-state  Markov process. 

However in [RA1997] Rönngren et al., after a long series of comparative 

evaluations, highlight as, when the queue size remains nearly constant, the 

classic Hold model gives as accurate and informative results as the more 

random access patterns generated by the Markov Hold. Furthermore, for 

changing queue sizes, the simple Up/Down model often gives sufficient 

information. In general, the simplicity of the classic Hold and the 

Up/Down models seems to reveal more and clearer information on the 

dependencies of priority increment distributions and queue sizes on the 

performance of the queue. 
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In the light of the above considerations, the evaluation methodology 

adopted in this work is the following: 19 base experiments evaluate and 

compare the run-time performances of the timekeeping operations on 

several data structures at varying sizes Si of the timer queues (S1=10 to 

S10=100 in steps of 10, to S19=1000 in steps of 100). In each base 

experiment, a number of Si up-insertions are performed (the queue is 

gradually populated). Then another set of Si hold operations are performed 

(a maximum priority removal and an insertion each) using uniform 

distributions for the random generation of new timers’ expiration. Finally 

the queue is emptied with a Si down operations, this time performing 

random removals of arbitrary nodes. Each of those base-experiments is 

repeated 50 times, varying the random seed that generates the priorities for 

insertions (both for up and hold) and selects the random nodes to be 

removed during the down removal operation. 

Comparative evaluation 

The ABH has been compared, in this work, with the following data 

structure implementations: 

RBT: Red-black tree is one of the most famous and widely used variant of 

self-balancing binary trees. The Linux Kernel implementation of red-black 

trees has been herein chosen due to its popularity and its ability to being 

use standalone in other context than the Linux kernel, without requiring 

many external dependencies. Like the ABH, the Linux RBT 

implementation is based on an embedded-anchor model, which is very 

popular in embedded systems. Conversely to what happens in higher level 

frameworks, such as most Java or C++ STL containers, the embedded-

anchor model provides that the data type of the objects being added to the 

data structure is aware of the container and explicitly define an anchor 

field, which contains the child pointers and the other relevant fields 

required by the data structure. Although this model may seem, at a first 

glance, to go against the cornerstones of software engineering principles, it 

has the great advantage of not requiring any dynamic memory allocation 

for the operations of the container. Therefore, if the nodes that are added 

and removed at runtime are known a priori (or at least an upper bound on 

their number), they can be statically allocated during the binary 
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initialization phase and their handling in the data structure can be 

performed without the intervention of dynamic memory management 

(often banned in military and high reliability systems, as in the case of DO-

178B level A profiles). 

 

T1H, T1K: Timing wheel open source library [eST2009], which 

implement the hashed variant of the timing wheel data structure discussed 

in 4.3. Such data structure exhibits, from an analytic viewpoint, a O(1) 

worst-case complexity for insertions and random removals and hashtable-

like O(n/N) average and O(n) worst-case complexity for highest priority 

removals. As in the case of ABH and RBT, the timing wheel 

implementation also relies on the embedded-anchor model, so the 

performance measurements do not take into account any time required for 

allocation of their nodes. Two instances of the timing wheel, respectively 

of 100 (T1H) and 1000 (T1K) buckets, have been considered in the 

evaluation. 

 

MLS: C++ STL Multiset. The C++ Standard Template Library (STL) 

introduces the set and multiset containers. In the HP’s STL 

implementation, the foundation of these classes is a red-black tree, and, 

like Linux RBT, it supports insertion, removals and highest-priority 

removal in O(log(n)) worst-case complexity. However, conversely to 

Linux embedded-anchor RBT, this STL container takes implicitly 

advantage, in its internals, of dynamic memory management to wrap the 

elements of the set, so its runtime performances can differ from RBT. 

 

BHP: Traditional array-backed binary heap implementation, which is 

based on a conventional C array and on the push_heap and pop_heap C++ 

STL methods defined in the <algorithm> header. Conversely to the ABH, 

RBT, T1H/K, and MLS, which basically rely on pointer-mangling 

operations and don’t actually move the data nodes, the operations of the 

BHP, as described in 4.3, do physically move and swap nodes in order to 

keep the heap consistent. Since the runtime performances of the 

move/swap depend on the actual size of the timer descriptor, in order to 



4.  Data structures for timekeeping in real-time systems 

 

155 

 

carry out a fair comparison which reflects real-world timekeeping 

implementations, the elements of the array have been defined as a tuple 

embedding the absolute expiration time of the timer, the pointer to the 

callback function invoked on timer expiration and the argument passed to 

that callback. 

1. struct STLNode 

2. { 

3.     uint64_t      abs_expiration_time; 

4.     void*         callback_fn; 

5.     void*         callback_data;  

6. } 

 

The measurements do not take into account the time required for the 

allocation and the initialization of the array during the experiments. 

Random element removal measurements are not available for BHP, since 

such primitive is not envisaged by the C++ STL, and in general would 

require a O(n) complexity, in order to look-up the element to remove. 

 

PQU: C++ STL priority_queue container. The C++ STL introduce the 

priority_queue adapter container. In the default HP’s STL 

implementation, it models a priority queue over a STL vector, thus 

incurring in dynamic allocations and, more importantly, in memory 

relocations as the size of the queue grows up. As for BHP, the interface of 

the STL priority_queue envisages only methods for insertion and 

highest priority removal. Thus measurements for random element removals 

are not available for PQU. 

Evaluation platform 

The scenario being investigated consists in the aforementioned data 

structures being used to address the timekeeping problem in real-time 

systems. For such reason, an important aspect of the performance 

evaluations is the worst-case execution time measurement. 

In real-world systems, however, measuring the actual worst-case execution 

time of a software algorithm is not trivial. The major issues are represented 

by the wide spectrum of noise, due to both hardware (e.g., peripherals 
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triggering interrupt requests, presence of other bus-master devices slowing 

down CPU accesses, dynamic CPU frequency scaling) and software 

activities (higher priority processes and kernel threads which may preempt 

the experiments), which are hard to control. This problem, of course, could 

be easily overcome by means of filtering out outliers from the collected 

samples. This kind of solution, however, is not suitable at all for our 

scenarios, since it would inevitably filter out not only the measurement 

noise but also potential peaks related to the nature of the data structures 

being investigated. 

For such reason, the experimental evaluations have been carried out on a 

hardware platform simulation infrastructure called OVPSim [OVP2012]. 

OVPSim  (namely open  virtual  platform  simulator)  is  a broadly diffused 

open-source simulation platform, able to model a wide variety of 

computational architectures typically employed in embedded systems, such 

as the ARM, MIPS and OpenRisc processors, with instruction-level 

accuracy. The simulation engine is fully customizable and gives the 

possibility of setting up ad-hoc virtual platforms, choosing arbitrary CPU 

and memory layouts to best fit the simulation needs. The simulator takes 

advantage of just-in-time code morphing, translating dynamically target 

instructions to x86 host instructions. OVPsim has been specifically 

architected for the fast and accurate simulation and includes many 

optimizations enabling simulation of platforms utilizing many 

homogeneous and heterogeneous processors with many complex memory 

hierarchies. 

The simulation platform gives the complete control on the virtual memory 

initialization, allowing to easily load custom binaries in the virtual 

platform memory before booting the virtual cores. Furthermore OVPSim 

libraries support semi-hosting for many peripherals, allowing to redirect 

the C/C++ standard library I/O of the target system to the host simulator. 

For such reasons, the software experiments can be run bare on the target 

virtual platform without requiring any additional driver or any operating 

system to be loaded. 
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The ARM-CM3 and the MIPS 32 virtual processor models have been 

chosen for the experimental evaluations, as representatives of a large class 

of realistic real-world scenarios. 

The software experiments together with the ABH implementation, have 

been compiled with Mentor Graphic Sourcery CodeBench Lite GCC-based 

toolchains (more in detail GCC 4.6.3 for mips32-sde, and GCC 4.5.2 for 

armv7), enabling all compiler optimizations (-O3 switch). 

 

Experimental results 

The first set of measurement compares the average and maximum 

execution time (in terms of emulated machine instructions) taken by each 

data structure for each of the four operations previously described in a set 

of 50 repetitions per experiment. Thus, each point of the plots represents, 

respectively, the average and maximum values over a set of 50 * N 

(number of timers in the experiment on the x-axis) samples. 

For sake of graphical intelligibility, the x-axis of the plots follows a 

double-linear scale with a discontinuity on N=100 (emphasized by a 

vertical dashed line). 

 

Insert-up 

Average ramp-up insertion times (Figure 49 and Figure 51) show that, as 

expected, both T1H and T1K keep, in any scenario, a perfect constant 

behavior regardless the length of the queue. In general, data structures 

based on a binary heap (in particular ABH, BHP) outperform both red-

black tree implementations (RBT and MLS). The BHP exhibits the best 

average performances on both platforms: its array-backed physical 

structure allows to directly walk the heap in height very quickly with direct 

indexed memory access. A higher cost, instead, is paid by the tree-based 

data structures such as ABH, RBT and MLS. However, it might be noted 

as the ABH outperforms both the RBT and MLS red-black tree 

implementations in the ARM platform. 

Furthermore, it might be noted as embedded-anchor tree models (ABH and 

RBT) exhibit better performances than the dynamic one MLS, which 

evidently suffers the run-time overhead due to the dynamic allocation of 
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STL container wrappers. A final note goes on the definitely odd behavior 

of the PQU, that finds a proper explanation on the unproportionatelly high 

overheads that are incurred when the underlying Vector grows and 

consequently performs dynamic memory reallocations. Since the 

occurrences of such reallocations are rare, their high cost is better 

amortized in the average value as the size of the queue increases, that 

explains its unexpected decreasing trend. 

The situation becomes, however, more interesting when worst-case run-

times are taken into account (Figure 50 and Figure 52). Unsurprisingly, the 

worst-case run-time for the BHP (that is, a node with a high priority being 

inserted when the heap is almost full, causing the percolate-up to deep-

swap the contents of log2(N) elements of the array) lifts-up, reaching an 

almost perfect overlap with ABH in the case of ARM-CM3, and becoming 

even worse, in the case of MIPS 32. Furthermore it can be noted as in both 

platforms the ABH largely outperforms both RBT and MLS. The worst-

case plot for the PQU has been omitted for keeping the figures more 

readable. In both platforms, in fact, the growths and reallocation of the 

underlying Vector caused the worst-case samples to have peaks of an 

order of magnitude higher than the other data structures (which would have 

required to shrink the y-axis too much). 

 

Insert-hold 

Similar considerations apply for insert-hold measurements. The only 

noticeable difference, in this case, is that both average execution times 

(Figure 53 and Figure 55) and maximum execution times (Figure 52 and 

Figure 54), show the PQU backing-up to reasonable values close to the 

BHP behavior. The reason is that, conversely to what happens during 

ramp-up insertions, hold insertions keep the size of the queue constant, 

thus no dynamic expansions of the underlying Vector are needed. 

 

Remove head 

Average measurements for maximum-priority removals (Figure 57 and 

Figure 59) highlight as the runtime behavior of the timing wheels, as 

expected, is definitely not suitable for addressing tick-less timekeeping 
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problems. Clearly, for both timing wheels, the time spent looping for 

finding the next element represents the highest contribution to their run-

time behavior, which is order of magnitudes higher than all other data 

structures (for this reason the charts for head-removal measurements use a 

logarithmic y axis). Curiously, both in the average and maximum 

measurements, the run-time behavior of both timing-wheels improve as the 

length of the queues increases. The reason of this lies in the uniformly 

random distribution of samples in the experiments, which is such that in 

larger queues the next element is statistically closer (i.e. requires shorter 

loops) than in smaller queues. 

As regards the other data structures, both red-black trees implementations 

exhibit an almost O(1) amortized runtime performance. Both the RBT and 

MLS red-black trees tend to outperform binary heaps as the length of the 

queue increases 

Also in this case, however, the RBT demonstrates to be a more efficient 

implementation than MLS, which, while keeping the same trend, pays a 

higher constant overhead due to the STL container wrappers and 

comparison callbacks. 

ABH shows a very interesting behavior here, even in the average 

measurements, outperforming the other two BHP and PQU binary heap 

implementations in the MIPS 32 platform, and performing as the BHP in 

the ARM CM3 platform. 

The most interesting results, however, come out when analyzing worst-

case performances (Figure 58 and Figure 60). First of all, it can be noted as 

the worst-case behavior of ABH closely matches its average performances. 

Both the RBT and MLS red-black trees, instead, tend to have slightly 

worse worst-case behaviors than binary heaps (ABH, BHP and PQU). 

Besides, in both platforms, the ABH shows a remarkable behavior, 

outperforming all the others data structures (except the timing wheels when 

the queues length is small)  

 

Remove random 

As expected both T1H and T1K timing wheels keep a O(1) constant 

runtime for removal of random elements in all cases, due to the doubly 
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linked arrangement of the bucket lists. On average (Figure 61 and Figure 

63) the performances of the ABH are better than the RBT and MLS red-

black trees only when the length of the queue is modest (under 100). In 

general RBT has better average case performance, with MLS following its 

trend with its usual constant overhead offset. 

However, when worst-case performances are take into account (Figure 62 

and Figure 64), ABH again shows its tendency to keep very close worst 

and average runtime cases, outperforming MLS and keeping comparable 

worst-case performances than RBT on both platforms. 
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Run-time distributions 

In order to get a broader level view that captures not only the average and 

maximum run times, but gives an overall graphical indication of the 

statistical distribution of the samples, Figure 65…Figure 72 show the 

violin plots [HN1998] for the insert and removal operations on the binary 

heap and red-black tree data structures, which all share a theoretical 

O(log(n)) worst-case runtime complexity. Each plot compares, for each 

operation, the statistical distribution, on both architectures, of the samples 

collected from the synthetic experiment involving a queue of N=500 

timers. The bold rectangle inside the violins represent the inter quartile 

range (IQR), and the white dot marks the mean value. 

During a ramp-up insertion (Figure 65 and Figure 66), the boundaries of 

the ABH distribution follow strictly the BHP. However, while the BHP 

samples are more dense around the 1st and 2nd quartiles, denoting a better 

average behavior, the ABH samples are almost exactly centered around 

their median. Furthermore these two plots make evident as, during an 

insertion, the RBT and MLS don’t perform better than binary trees in any 

architecture, while PQU (which violin plot has been trimmed in its upper 

part for graphical reasons) confirms to suffer both longer execution times 

in average, and  very high, yet  sporadic, peaks. 

During insert-hold insertions (Figure 67 and Figure 68), the distributions of 

ABH, BHP and PQU highlight that all the heap-based implementations 

tend behave as in their best-case behavior for most of the samples, and 

their worst-case behaviors are always better than RBT and MLS. 

Furthermore, ABH has worse average and minimum times than BHP and 

PQU. On the other side, its worst-case behavior is slightly better than the 

other two, especially in the MIPS 32 platform.  

When highest priority removal is taken into account, Figure 69 and Figure 

70 show a very interesting situation. RBT and MLS red-black trees exhibit 

better overall better performances. Their samples distribute on a lower but 

wider range, compared to binary heaps (in particular PQU and BHP), 

exhibiting an excursion between best and worst execution times of, 

respectively,  225 and 189 instructions on ARM CM3, and 239 and 180 

instructions on MIPS 32. BHP and PQU, conversely, keep a narrower 
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range (112 and 106 instructions on ARM CM3 and 115 and 178 

instructions on MIPS 32), but a higher mean and worst-case value. 

The most interesting trend, however, is exhibited by ABH. While keeping 

a similar mean and range than BHP and PQU, its worst-case execution 

time is, in both platforms, smaller than all the other ones, including the red-

black trees which have a sensibly smaller mean value. The shape of the 

two ABH violin plots give a reasonable view of this behavior, showing as, 

conversely to what happens in all other cases, on both platforms the ABH 

samples density is highly concentrated around the worst-case value. In 

summary, ABH demonstrate to require the worst-case execution time in 

most of the removals, but its worst-case is the best among all the data 

structures considered, in both platforms. 

A similar situation is observed during random element removals (Figure 71 

and Figure 72).  
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Figure 49: Average execution time for ramp-up insertion on ARM CM3. 

 
Figure 50: Maximum execution time for ramp-up insertion on ARM CM3. 
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Figure 51: Average execution time for ramp-up insertion on MIPS 32. 

 
Figure 52: Maximum execution time for ramp-up insertion on ARM CM3. 
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Figure 53: Average execution time for hold insertion on ARM CM3. 

 
Figure 54: Maximum execution time for hold insertion on ARM CM3. 
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Figure 55: Average execution time for hold insertion on MIPS 32. 

 
Figure 56: Maximum execution time for hold insertion on MIPS 32. 
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Figure 57: Average execution time for highest priority removal on ARM CM3. 

 

 
Figure 58: Maximum execution time for highest priority removal on ARM CM3. 
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Figure 59: Average execution time for highest priority removal on MIPS 32. 

 
Figure 60: Maximum execution time for highest priority removal on MIPS 32. 
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Figure 61: Average execution time for random removals on ARM CM3. 

 
Figure 62: Maximum execution time for random removals on ARM CM3. 
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Figure 63: Average execution time for random removals on MIPS 32. 

 
Figure 64: Maximum execution time for random removals on MIPS 32. 
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Figure 65: Execution time distribution for ramp-up insertion on ARM CM3 

 

Figure 66: Execution time distribution for ramp-up insertion on MIPS 32. 
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Figure 67: Execution time distribution for hold insertion on ARM CM3. 

 
Figure 68: Execution time distribution for hold insertion on MIPS 32. 
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Figure 69: Execution time distribution for highest priority removal on ARM CM3. 

 

Figure 70: Execution time distribution for highest priority removal on MIPS 32. 
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Figure 71: Execution time distribution for random removal on ARM CM3. 

 

Figure 72: Execution time distribution for random removal on MIPS 32. 
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4.1. Concluding remarks. 

This chapter presented a novel data structure, called addressable binary 

heap. At first, the theoretical properties which underpin its pointer-based 

physical structure are presented. Furthermore, a complete C 

implementation of the data structure is discussed in its full details, 

describing the operating principles of its main operations (insert with 

priority, remove highest priority and remove random) that enable the ABH 

to model a fully-fledged priority queue which operations all exhibit a 

O(log(n)) worst case run-time complexity and a O(1) memory run-time 

complexity (plus O(n) memory required for the data structure itself). 

The viability and the performances of the ABH data structure have been 

later measured on an instruction-accurate virtual platform simulator, by 

means of synthetic experiments which emulate the manifold behavior of a 

timer queue in different scenarios and with different queue lengths. 

Such experiments provided a detailed analysis of the mean, worst-case, and 

overall distribution of execution times, comparing the ABH with some 

mainstream data structures well known in literature to address timekeeping 

(and for priority queues in general) that are, timing wheels, red-black trees 

(both Linux kernel implementation and the C++ STL) and array-backed 

binary heaps (both STL heap and Vector-based priority_queue). 

The timing wheel demonstrated to have excellent overall performances but 

only on tick-driven timekeeping. Its array-based structure, in fact, revealed 

definitely unsuitable behaviors for tick-less timekeeping, conversely to all 

the other data structure herein considered.  

On the other side, the traditional array-backed binary heap (which is 

largely employed in most priority queue implementations), exhibits 

logarithmic worst-case complexity for all its operations, and good 

performances in general, being a good candidate for tackling the 

timekeeping problem with high determinism. However, it has two big 

drawbacks: (i) it complicates random elements removal, a frequent 

operation in timekeeping problems for canceling outstanding timers. 

(ii) Its physical structure is based on an array, which implies that the size 

of the problem (i.e. the maximum number of active timers), or at least a 

very good upper-bound, must be known a priori. 
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The C++ STL priority_queue implementation provides a solution to the 

latter issue, modeling a priority queue on top of a STL Vector, that is, in a 

nutshell, a dynamically expandable array. However, the experimental 

evaluations showed as its behavior makes such data structure absolutely 

not suitable for being employed in real-time systems. Its average 

performances, in general, suffer of substantial overhead due to the STL 

container logic. Furthermore the memory reallocations required to 

dynamically expand the queue length (which in some standards for 

embedded real-time systems is a completely banned practice) revealed to 

suffer disproportionately high overheads for the insertion operations. 

For such reasons, red-black trees are generally preferred for deterministic 

handling of fine grained resolution timers, as, for instance, in the case of 

the Linux kernel’s hrtimers, giving the possibility to arbitrarily insert and 

remove elements with O(log(n)) worst-case complexity. In this regard the 

Linux red-black tree implementation revealed to be more efficient 

compared to the HP implementation of the STL multiset, more likely due 

to the embedded anchor model. 

In this scenario, the experimental evaluations of the ABH revealed very 

interesting results. During insertions, its average behavior outperformed 

red-black trees in almost every situation, and the measured worst-cases 

were never worse than any binary heap or red-black tree implementation 

(with the only exception of the hold insertion on ARM CM3, where PQU 

behaved slightly better). During highest priority removals, the average 

performances of the ABH were comparable (yet never worse) to the two 

red-black tree implementations, while the measured worst-cases of ABH 

were the best among all of them. Finally, the average behavior during 

random removals did not show any exceptional results when compared to 

red-black trees. However, the measured worst case behavior was 

constantly better than both of them. 

In summary ABH showed a good average behavior, comparable (and 

sometimes better) to red-black trees, and a surprisingly good worst-case 

behavior, outperforming in many cases even the traditional array-backed 

binary heap implementation. Such bounded worst-case behavior makes 
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ABH a very good candidate for tackling timekeeping problems in highly 

deterministic real-time systems.  
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5.  A hardware scheduling accelerator for MP-SoPCs 

5.1. Introduction 

In Chapters 2 and 3 it has been discussed as RTOSs and more in general 

software run-time infrastructures play a crucial role in an embedded real-

time system. Besides the provisioning of fundamental building-blocks for 

the agile development of software applications, a RTOS is further 

responsible of ensuring the satisfaction of extra-functional requirements, in 

particular timeliness, ensuring that all the real-time tasks meet their 

deadlines. 

In order to do so, however, a RTOS unavoidably needs to “steal” some 

computational power at runtime to take the proper scheduling decisions. 

As discussed in chapter 0(and in the works therein referred), the scheduling 

overhead is generally small as regards the percentage of CPU time, but still 

represents a non-negligible amount of absolute time which may jeopardize 

the schedulability of high-rate periodic tasks with periods in the sub-

millisecond range. 

Furthermore, in many scenarios such as digital control, data acquisition 

and telecommunication applications, another important extra-functional 

requirement is represented by bounding jitter. Due to the high complexity 

of modern (multi)processor architectures, keeping a low jitter can turn out 

to be more critical and difficult than handling the scheduling operations 

themselves (in particular in presence of caches and architectures with 

speculative and out-of-order execution). 

Such contrasting requirements often force to make critical tradeoffs, i.e. 

using extremely elementary scheduling strategies in order to keep low 

scheduling jitter. 

For such reasons, a vast number of publications in the field of embedded 

real-time systems have introduced alternative approaches that aim to 

exploit dedicated hardware resources to address these scheduling issues. 

In general, the use of hardware co-processors for offloading frequent and 

critical software computations is a definitely not new strategy that has been 

out for decades. However, while in many other fields (e.g., floating-point 

calculus, encryption, audio/video (de)coding, TCP/IP networking) the wide 
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homogeneity and the large scale of the problem easily justified the high 

costs of dedicated hardware, the situation has been always different for the 

field of embedded systems. Embedded systems, in fact, usually exhibit 

very custom and singular requirements, even as regards the mere problem 

of real-time scheduling, mainly due to the wide heterogeneity of the 

underlying computational platforms involved. 

This situation, however, drastically changed in the last decade, as the 

evolution reconfigurable hardware platforms (FPGAs) led to high powerful 

and inexpensive platforms (compared to low-volumes of dedicated 

ASICs), which today can integrate in a single physical chip all the 

resources required for a complete embedded system (CPU, memory, 

peripherals). This system on programmable chip (SoPC) paradigm 

introduced by mainstream vendors, has made FPGA interesting targets for 

the development of  many embedded real-time systems, where the 

hardware/software co-design  reaps  the  benefits of both rapid 

development and large possibilities of customization, reducing nearly to 

zero the cost of using ad-hoc co-processors and accelerators to address 

custom needs. 

5.2. Related work 

In 1991 Lindh at al. presented [Lin1991] a proof-of-concept of a hybrid 

hardware-software RTOS implementation, moving critical parts of the 

RTOS kernel in hardware, in order to reduce indeterminism of the 

conventional pipelined processor architectures.  FASTCHART consists of 

a simple hardware real-time kernel, supporting 64 tasks with 8 priority 

levels, which execution is handled by mean of a simple multi-level FIFOs 

dispatching. The proof-of-concept, later turned into a more advanced and 

complete project called FASTHARD [Lin1992]. 

Based on this work, later in 1996 another project called RTU (Real-Time 

Unit) is carried out by Lindh et al.,  a completely hardware based kernel 

supporting more run-time services such as tasks delays, semaphores, event 

queues, and interrupt handling simultaneously on three homogeneous 

processors. The RTU is interfaced through a memory mapped bus, which 



5.  A hardware scheduling accelerator for MP-SoPCs 

 

181 

 

is accessed through a round-robin arbiter, and uses a single interrupt input 

of each processor to control context switching [LMID+2003]. 

In 2005 in [NLJS2005] Lindh et al. introduce support interfaces for 

integrating the RTU hardware kernel in the µC/OS-II RTOS. The RTU is 

also at the time commercialized as a commercial product (Sierra Kernel). 

RTU only supports binary semaphores for process synchronization, and its 

priority scheme is fixed (changes of priority levels are not possible after 

task creation). The timing measurements show that the functions 

implemented in hardware are accelerated up to a factor of 370%, and in 

[NA2007] hardware configurability is added to the single processor 

version of the RTU. A newer version of the RTU is available in the form of 

a customizable IP core for implementation in FPGA. It can be configured 

to have 2-512 tasks, 2–1024 priority levels and binary semaphores.  

A similar approach is introduced by the STRON project (silicon real-time 

operating system nucleus) in [NUI+1995]. The system is based upon the 

µITRON real-time OS, re-implementing most of its system calls and core 

functions in hardware. A small micro kernel has been implemented to take 

care of the features not implemented in hardware, and to serve as the API 

to the hardware kernel. The STRON handles contains task management, 

event flags, semaphores and timers, as well as external interrupt 

management. The interface with the CPU is handled by means of a basic 

memory mapped scheme using, using a single interrupt line to the CPU. 

Implementation tests show that the circuit can be realized in VLSI CMOS 

technology and that the RTOS function calls are accelerated between 6 and 

50 times compared to the software version, while task release and 

activation jitter is almost completely removed. The STRON hardware 

RTOS is less capable than the RTU as it doesn’t directly support periodic 

release of tasks and has a timer horizon limited to only 255 ticks.  

In [PSJC+1997] Parisoto et al. introduce a FPGA-targeted accelerator 

called F-Timer, aimed at implementing task scheduling and interrupt 

handling in hardware. It can handle up to 32 tasks and 64 different priority 

levels. The interface with general purpose processors is handled by means 

of a standard memory mapped bus and a single interrupt line to the CPU. 

The overall system is designed much like a software RTOS with memory 
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based queues for the ready, timer and interrupt handling queues. The paper, 

however, gives no information about the scheduling algorithm employed, 

and there is also no hardware support for task synchronization. 

In [SR1991] Stankovic et al. present the Spring kernel which, compared to 

traditional RTOSs, takes a radically different approach for handling real-

time task scheduling. The conventional approach of priority-driven 

scheduling is abandoned in favor of a dynamic and speculative scheduling, 

implemented by the means of heuristic algorithms. Taking into account all 

active tasks’ WCET, deadline and resource constraints, the scheduling 

algorithm constructs a custom schedule which guaranteed that all tasks will 

meet their deadlines and never block waiting for resources. When a new 

task arrives it is only added to the current task set if a new feasible 

schedule can be constructed. The Spring kernel is designed for large and 

complex real-time system running on multiprocessor systems. The system 

is partitioned into application processors and a system processor. Each 

application processor runs a lightweight dispatcher which executes the task 

allocated for that processor in the order determined in the schedule 

calculated by the system processor. In addition, the system processor takes 

care of the remaining RTOS activities (e.g., servicing interrupt requests) in 

order to insure that the AP processors aren’t affected by external events. 

The approach, however, has the evident main drawback of requiring long 

and complex computations in order to produce a feasible schedule, thus 

being less suitable for dynamic systems. In order to address this issue, in 

[BKN+1999] Stankovic et al. introduce the spring scheduling coprocessor, 

which implements in hardware the planning algorithm used originally used 

in the spring kernel. The implementation is done in 2µm VLSI CMOS 

technology and is designed with low on-chip memory requirements, 

making the tree search less effective if backtracking is needed, but still 

much faster than if done in software thanks to the massive hardware 

parallelism. 

In [KGJ2003] Kohout et al. identify the software scheduler as the major 

cause of performance degradation of a RTOS and aim at replacing it with a 

hardware implementation called real-time task manager (RTM). RTM 

supports static priority scheduling, and offers hardware support for time 



5.  A hardware scheduling accelerator for MP-SoPCs 

 

183 

 

and event management. RTM makes massive use of hardware registers to 

keep the state of the tasks and allow parallel implementation of the 

scheduling algorithms. The computational delay of either scheduling or 

event management is O(log(n)) and the hardware cost scales linearly with 

the number of resources (tasks, events, timers) handled. The RTM requires 

roughly 2600 register-bits for 64 task records which is stated to require 

around the same die size as a 32bitx64 word register file, making it feasible 

for on chip implementation next to a CPU. The experimental results using 

various benchmarks comparing the performance with µC/OS-II and a 

homemade non-preemptive OS (NOS) showed a decrease in RTOS 

overhead of 90% and an 81% decrease in response latency. 

In [CRL2006] a different approach is used for hardware-accelerating an 

already existing RTOS (eCos). The project discussed in the paper aims at 

automatically generating a hardware implementation of the popular RTOS 

by means of a behavioral software synthesis. The goal of the project are to 

improve system performances and reduce the RTOS footprint, by means of 

moving task management, scheduling and synchronization into hardware. 

The authors argued that the main reason of scarce commercial diffusion of 

hardware accelerated RTOS is to be found in the restricted chip-to-chip 

communication infrastructure and their relatively slow communication 

speed of the older architecture employed in prior works, which hinder the 

speed-up provided by the hardware. The project is interfaced to an ARM 

processor using a memory mapped approach similar to the other works 

herein referred. The hardware implementation is stated to require less than 

10K gates and provide on average a 15x speedup for an image filtering 

algorithm. The number of tasks and resources supported by the 

implementation is not known. 

In [MIY2010] Maruyama et al. propose a hybrid hardware-software 

implementation of a networked RTOS for TCP/IP processing (called 

ARTESSO), aiming at improving not only the dependability of the system, 

but also the network performances, by means of offloading both critical 

RTOS routines and part of the TCP/IP protocol processing in hardware. 

The hardware-RTOS is endowed with a priority-driven scheduler, which is 

implemented through a novel queue structure called VQueue. Such 
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VQueue aims at reducing the hardware requirements in terms of logic-

gates, compared to traditional FIFO-based queue implementations. The 

ARTESSO hardware RTOS supports 256 tasks and 16 priority levels, and 

uses a parallel tree structure which guarantees a O(log(n)) complexity for 

taking scheduling decisions. The experimental evaluations are carried out 

on an ARM926 processor clocked at 50Mhz and show a 6x-9x 

performance boost over STRON, and an increased 11x network processing 

bandwidth. 

5.3. Motivations 

The wide number of projects and papers published in this field suggest that 

the principle of offloading the RTOS operations (or at least part of them) to 

the hardware is generally a viable approach, especially in reconfigurable 

hardware platforms like FPGA-based SoPCs. 

It might be worth noting, however, that while some of the aforementioned 

approaches deal with multiprocessor systems, most of them support just 

static priority-driven policies. Other few works in this field [HGT1999, 

MIB2002] introduce support also for the EDF policy, but only for 

uniprocessor systems. 

Therefore, considered the current state of the art, the purpose of this work 

is to make a step forward in this direction, presenting the design and 

implementation of a FPGA-based hardware scheduling accelerator which 

supports the multiprocessor G-EDF and R-EDF (restricted migration 

variant) policies. 

Similarly to the rest of the software produced in this thesis, also the full 

VHDL sources implementing the scheduling accelerator are available for 

free in the code repository of the X-RT project [TUC2012]. 

5.4. Hardware design 

Extending the preliminary architecture introduced in 3.5, which was 

already exploiting an FPGA (yet only as a general-purpose AMP platform) 

some of the hardware cells of the FGPA, in this project, have been further 

employed to implement a R-EDF scheduling accelerator. 
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The scheduling accelerator has been developed as a VHDL (VHSIC 

hardware description language) IP core according to the Altera SoPC 

methodology. 

The Altera SOPC is a design methodology promoted by Altera, which aims 

at rapid development of reusable IP cores, interacting each other by means 

of a common switch fabric, called Avalon. The Avalon switch fabric is a 

flexible and modular bus designed for on-chip interconnection of 

processors and peripherals. Its specifications define several interfaces that 

the IP cores can implement in order to interface to the bus (e.g. memory-

mapped master/slaves, interrupt sender/receivers, streaming source/sinks). 

The switch fabric for memory-mapped peripherals supports simultaneous 

multi-mastering, allowing multiple bus masters to perform bus transactions 

concurrently, as long as they do not access the same slave during the same 

bus cycle. In the event that multiple masters attempt to access the same 

slave at the same time, a built-in arbitrator prioritizes accesses to that slave 

(Figure 73). 

The real advantage brought in by the Altera SoPC methodology is 

represented by the SoPC builder, that is a software tool that enables to 

rapidly and easily integrate proprietary and third party IP cores, taking care 

of automatically and transparently generating all the hardware related to 

the bus, address mapping, decoding logic and arbitration.  Essentially it is a 

system-generation tool that let the designer define, parameterize, link, and 

integrate a wide variety of IP cores (such as soft processor, DSP, 

communication and memory controller cores) in the company’s high-

density FPGAs.  

This reduces the amount of time designers must spend on peripheral 

integration and increases their ability to reuse peripherals in subsequent 

designs. The interconnect fabric uses minimal FPGA logic resources to 

support address decoding, wait-state generation, pipelined and burst 

transactions, peripheral address alignment, interrupt-priority assignment, 

data path multiplexing and clock domain crossing 
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Figure 73: Overview of the Altera SoPC architecture. 

Design principles 

Before delving straight in a discussion about the design of the scheduling 

accelerator, this paragraph introduces the principles that driven the design 

of the overall hardware scheduling architecture. Inspired by a divide and 

conquer methodology, the design process aims at organizing the hardware 

components in a multi-layer architecture, composed by a functional units 

layer, an operational services layer and an orchestration layer. This multi-

layer architecture attempts to define the basic contract interfaces for the 

hardware components, independently of the particular function that they 

implement, in terms of basic I/O signals expected, their semantic and the 

handshaking protocols for their interoperability. 

Functional units layer 

A functional unit is a low level entity which encapsulates the data 

structures needed to accomplish a specific function and exhibits 
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elementary micro-operations which can be performed on that. 

As a general interface contract, every functional unit must provide: 

• A input signal (one-bit) for requesting each operation exposed. 

• A global READY output signal (one-bit) which states, when 

asserted, that the functional unit is ready to accept and carry out a 

new operation. 

The interaction protocol with the upper layers is defined as follows: 

• Each request signal must be asserted for at least one clock cycle 

and cleared before the operation is completed. 

• The READY signal must go down as the request is acknowledged 

and held down until the rising edge of the clock that follows the 

completion of the operation. 

• Changes of inner state (content of the data structures) of a 

functional unit can occur only at the rising edge of the system clock 

(i.e. purely synchronous design). 

• The READY signal can be tied to ‘1’ for functional units which 

involve only mono-cycle operations. 

Operational services layer 

The elementary operations exposed by the functional units are, in general, 

not sufficient to respond to the needs of the problem domain. The services 

offered by the infrastructure are more sophisticated and involve one or 

more complex sequences of micro-operations in order to accomplish a 

whole high-level service. 

In this sense, an operational service is a high level component that 

encapsulates the decisional logic for each service offered by the 

infrastructure, handling the sequence of micro-operations by means of 

finite state machine evolutions, taking advantage of one or more functional 

units. 
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As a general interface contract, every operational service must provide: 

• REQUEST: an input signal (one-bit) to request the execution of 

the service. 

• DONE: an output signal (one-bit) to notify the completion of the 

service. 

The interaction protocol with the upper layers is defined as follows: 

• The REQUEST signal must be asserted for at least one clock cycle 

and cleared before the service is completed. 

• The DONE signal must be asserted only when the service is fully 

completed and all the involved functional units have refreshed the 

new output configurations. 

Distinct services may require, by design, to interact with the same 

functional units, leading to unavoidable conflicts. Such conflicts are 

resolved introducing ad-hoc entities, called resource arbiters, which 

handle by means of static-priority resolution, the multiplexed access to the 

shared functional units. 

Orchestration layer 

The orchestration layer represents the higher-level layer that bridges the 

services offered by the operational layer together with the hardware 

environment in which the infrastructure is employed (the Avalon bus in 

our case). 

It exposes an unique interface to the rest of the environment, in the form of 

a memory-mapped slave, decodes the incoming requests, routes them to 

the proper operation services, and provides the results, properly respecting 

the specificities of the interface protocol (e.g. handshaking with wait-

requests on the bus, performing serialization and encoding of the in/out 

data, etc.) 
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Figure 74: Interactions between components in the three-layer architecture 

 of the scheduling accelerator. 

Now that the core design principles and interface contract have been 

presented, we can delve into the in-depth discussion of the scheduling 

accelerator components. In the following, the components of the 

scheduling accelerators are described in a top-down fashion, starting from 

higher level ones down to the individual functional units. Figure 75 gives a 

preliminary overview of the overall architecture. 

 

Figure 75: Hardware architecture of the scheduling accelerator based on Altera Avalon. 
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Functional units 

Task table 

The task table (Figure 76) is a register file which holds the task descriptors, 

storing for each of them the state, period, deadline and statistic counters 

(jobs executed, missed deadlines, overruns). It is periodically updated by 

the other components and can be enquired to retrieve details of tasks. 

 

 

Figure 76: I/O signals of the the task table functional unit. 

 

Tick generator 

The tick generator (Figure 77) produces the time reference signal for the 

whole infrastructure. It cyclically triggers a periodic signal called TICK, 

whose interval is programmable. Such signal is delivered to the release 

queue and ready queue units for the timekeeping activities, and defines the 

resolution of their timing registers (release and deadline counters). 

 

 

Figure 77: I/O signals of the the tick generator functional unit. 
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Release queue 

The release queue (Figure 78) is a set of per-task countdown timers which 

are decremented at every TICK. When the n-th counter reaches zero, the 

output bit RELEASE_TASK[n] is asserted, notifying that the release 

period of the n-th task is expired and a new job must be released. Figure 84 

shows the inner gate-level RTL architecture of the functional unit. 

 

 

Figure 78: I/O signals of the the release queue functional unit. 

Ready queue 

The ready queue (Figure 79) is a priority queue of ready tasks, ordered by 

increasing values of absolute deadlines. For each task, a countdown timer 

is inserted in the queue upon job release and is removed when it completes. 

If a deadline counter reaches zero, the corresponding bit in the 

MISSED_DEADLINE[n] output signal is asserted, notifying that a task 

missed deadline notification is raised. Figure 85 shows the inner gate-level 

RTL architecture of the functional unit. 

 

 

Figure 79: I/O signals of the the ready queue functional unit. 
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CPU mapper 

The CPU mapper (Figure 80) is the core component of the scheduling 

infrastructure. It takes the scheduling decisions according to the scheduling 

policy, mapping ready tasks on the available CPUs as long as a change of 

the ready queue is notified. In the current implementation the CPU mapper 

implements the G-EDF policy.  

Figure 86 shows the inner gate-level RTL architecture of the functional 

unit: a set of 2m registers hold the current and next running tasks 

assignments (i.e. which task is running on each CPU). Whenever a change 

is detected on the ITEMS output of the ready queue, a priority encoder is 

used to determine the m-th highest priority tasks among them and 

assigning the next mapping registers. The assignment process is performed 

in three sequential stages: in the first stage the new set of (at most) m tasks 

that must be running is determined using the priority encode; in the second 

stage, the tasks that were already running (before the ready queue change 

that triggered the remapping process) are confirmed on their previous 

CPUs, in order to minimize the impact of migrations; in the third stage the 

remaining tasks are assigned arbitrarily to the CPUs left. 

 

 

Figure 80: I/O signals of the the CPU mapper functional unit. 
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Operational services 

Create new task 

The CreateNewTask service (Figure 81) is invoked by the software upon 

system initialization, in order to introduce new tasks into the infrastructure. 

For each task, the caller must provide its relative deadline and the period. 

When the service is requested, the task table and the release queue are 

populated with the relative entries and the numeric identifier of the new 

task is returned. The service in practice takes care of inserting atomically 

the new task both in the task table and in the release queue, after acquiring 

exclusive access to both. 

 

 

Figure 81: I/O signals of the the CreateNewTask operational service. 

 

Notify job completion 

Every time a task’s job completes, the software notifies the event to the 

hardware infrastructure. The JobCompletion service (Figure 82) takes care 

of updating the task statistic counters, its state in the task table and 

removing it from the ready queue, in order to allow the next higher priority 

task, if any, to be promoted. 
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Figure 82: I/O signals of the the NotifyJobCompletion operational service. 

Job release 

As soon as the release queue signals the need to release one or more jobs, 

the ReleaseJobs service (Figure 83) is invoked. It is in charge of updating 

the released tasks’ state into the task table and inserting them into the ready 

queue, in order to allow them to be consequently scheduled by the CPU 

mapper according to the priority resulting from their deadline. 

 

 

Figure 83: I/O signals of the the JobCompletion operational service. 
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Figure 84: Hardware architecture (RTL) of the release queue. 
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Figure 85: Hardware architecture (RTL) of the ready queue. 
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Figure 86: Hardware architecture (RTL) of the CPU mapper. 
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5.5. MP-SoPC architecture 

Using Altera NIOS II soft-cores, the Avalon bus, and Altera IP cores 

(memory controller, GPIO, etc.), the reference SoPC platform used to 

validate and test the hardware scheduling accelerator has been organized as 

follows: 

• m NIOS II/f processors, m can be chosen arbitrarily by the end-user 

on the basis of the number of the tasks, the required computational 

power and FPGA resources availability. 

• A SDRAM memory controller employed to hold on an external 

memory the RTOS and application footprints and the 

corresponding run-time memory (stack, heap and data). 

• The hardware accelerator, a memory-mapped Avalon slave IP core 

that takes care of the task scheduling and the dispatching process, 

interacting with the NIOS processors by means of interrupt 

signaling. 

• Application dependent peripherals, e.g. GPIO for motor control, 

UART for user interface, etc. 

 

Figure 87 shows the HW/SW architecture of the SoPC platform used as a 

testbed for the hardware scheduling accelerator. The hardware scheduler 

memory-mapped slave is connected to the data bus of all the NIOS 

processors, in a memory range that is accessed exclusively by the 

scheduling framework. Furthermore m dedicated interrupt interfaces 

connect to the IRQ0 line (the one with highest priority) of the NIOS 

processors. 

Due to the use of NIOS processors, the resulting SoPC architecture is an  

AMP system, which takes advantage, on the software side, of the same 

principles illustrated in 3.5.  
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Figure 87: Architecture of the SoPC platform integrating the scheduling hardware 

accelerator. 

In particular, as regards the memory layout, a single external SDRAM 

memory chip has been exploited for all the m processors. The reason of 

this choice is that the purpose of this testbed is not to evaluate the 

performances of the soft-cores themselves (this analysis has been already 

carried out in 3.6). Compared to on-chip memories, the use of an external 

SDRAM memory allows to save many hardware cells on the FPGA, which 

can be employed, instead, to assess the timing performances and the 

expandability of the hardware scheduler itself. 

Furthermore, since each processor has dedicated instruction and data 

caches, the performance evaluations are not affected by the latencies of the 

SDRAM, especially considering the very small footprint of the software 

layer involved. 

The memory available on the SDRAM is logically organized in m + 1 

partitions (Figure 88) through the use of custom linker scripts.  

Each partition consists of a code section, containing the code for the RTOS 

which is pointed by the reset vector of each processor, and a data section, 

used for storage of RTOS variables, stack and heap. Those m partitions are 
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completely independent of each other, and can be replaced at any time with 

dedicated on-chip memory connected exclusively to each processor. 

Finally a shared memory partition, accessible by all the processors, has 

been envisaged for the task code and data, and for the shared scheduling 

framework library. 

 

 

Figure 88: Memory organization of the embedded software running on the soft-cores. 

5.6. Hardware synthesis results 

The preliminary introduction of a clear and well defined multi-layer 

architecture has brought several advantages as regards the extensibility of 

the overall design. First of all, the introduction of new functionalities (e.g. 

a new scheduling policy) requires just the integration of the new 

component without impacting with the stability and the complexity of the 

existing design, allowing to completely reuse the other existing functional 

units and operational services layers.  

In particular, the proposed approach achieves a clean decoupling between 

the functionalities offered by each layer and the timings with which they 

are carried out. Just to take a mere but concrete example, during the 
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implementation of the CPU mapper the design needed to be reiterated due 

to low fMAX caused by its heavy combinatorial logic, introducing two 

pipeline stages (its inputs and outputs are registered). Obviously, the 

latency, in terms of clock cycles, required by the unit to complete its 

operations has increased. However, such modification did not require any 

intervention on the upper layer (operational services), since all the 

interactions stand on the request/ready protocol. Pipelining just caused, in 

this case, a delay in the generation of the ready signal and, therefore, a 

delay in the completion of the upper layer services involved with the CPU 

mapper unit. 

The use of VHDL generics allowed to model the components 

independently of the dimensions of the scheduler, more specifically, 

independently of the (maximum) number of tasks in the system, the 

number of processors and the desiderated resolution for task counters. All 

these parameters that state the dimension, and therefore the complexity, of 

the infrastructure are uniquely described in a package declaration file, for 

which a brief outlook is here reported: 

1. package HWGlobalScheduler is 

2.   constant  N_CPUS          : natural := 2; 

3.   constant  TASKID_SIZE     : natural := 3; 

4.   constant  PERIOD_SIZE     : natural := 16; 

5.   constant  DEADLINE_SIZE   : natural := 16; 

6.   constant  STATS_SIZE      : natural := 8; 

  . 

Every component takes advantage of these definitions to dynamically 

adapts its structure (in terms of inferred logic gates). In this way, it is 

possible to completely adjust the scheduler complexity according to the 

needs of the end-user and the complexity of the application, just editing 

nothing but 5 rows of VHDL. 

Figure 89 reports the results (related to the only hardware infrastructure) of 

the synthesis on a Cyclone II EP2C20F484C7 using the Quartus II EDA 

(area vs. speed optimizations: balanced) and the TimeQuest timing 

analyzer (slow-model). 

In order to provide a term of comparison for the fMAX (which is strongly 

dependent on the FPGA process technology and doesn’t provide much 
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valuable information itself), an equivalent system, in terms of hardware 

cells usage, made of 6 NIOS II/f processors, plus the other standard Avalon 

peripherals, reached a fMAX of 64 MHz on the same FPGA. 

 

Hardware scheduler 

configuration 

Total comb. 

functions 

Total logic 

registers 
fMAX 

2 cores, 8 Tasks, 8 bit deadline 

and period counters, 8 bit stats 

counters 

1246 (7%) 598 (3%) 59.8 MHz 

4 cores, 16 Tasks, 8 bit deadline 

and period counters, 8 bit stats 

counters 

2363 (13%) 1114 (6%) 51.86 MHz 

8 cores, 32 Tasks, 16 bit deadline 

and period counters, 16 bit stats 

counters 

7167 (38%) 3738 (20%) 39.08 MHz 

 

Figure 89: Synthesis results of the scheduling accelerator on an Altera Cyclone II FPGA. 

5.7. Scheduling jitter analysis 

The aim of the scheduling jitter analysis is to estimate the uncertainty 

related to the release of periodic tasks, intended as the interval between the 

moment in which a task release counter goes down to zero and the instant 

in which an interrupt is concretely dispatched to the proper processor. 

According to the design of the hardware scheduling accelerator, such 

interval depends on the following parameters: 

• TRELQ: time required by the release queue functional unit to 

properly issue the RELEASE_TASKS output signal once a tick is 

received.  

• TRELSVC: time required by the release jobs operational service to 

acknowledge the latter signal, update the entries in the task table 

and insert the proper elements into the ready queue. 

• TCPUMAP: time required by the CPU mapper functional unit to 

acknowledge the change of the ready queue and determine the new 

task mappings for the CPUs according to the new priorities. 
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• TINTREQ: time required by the interrupt logic to acknowledge the 

latter mappings and send interrupts to the processor that need to 

issue scheduling changes  on the running tasks. 

 

In the current hardware implementation, such timings are defined as 

follows (intervals are expressed in clock cycles unless otherwise stated; m : 

number of processors, n : maximum number of tasks allowed): 

 

TRELQ = 1, for each m, n 

TRELSVC  = 2 + n, for each m 

TCPUMAP  = 4 + [1.. m], for each n 

TINTREQ  = 1, for each m, n 

Thus, TREL_TO_INT = 1 + 2 + N + 4 + [1..m] + 1   =    8 + n + [1.. m] 

 

The only uncertainty, therefore, is related to the term [1..m] due to the 

CPU mapper operations, which complexity is linear in the number of 

processors (configured through the N_CPUS VHDL constant). Considering 

our test-bench in which n=8, m = 2 , Clock = 50 MHz, it translates into: 

A maximum delay of 8 + 8 + 2 = 18 TCLK = 360 ns.  

A minimum delay of 8 + 8 + 1 = 17 TCLK = 340 ns. 

TREL_TO_INT = 350 ± 10 ns. 

5.8. Concluding remarks 

The development of a hybrid hardware-software scheduling infrastructure, 

such as the one proposed in this chapter, has revealed very interesting 

results. In the projects discussed in the previous chapters, a pure-software 

implementation of a multiprocessor scheduling framework has been carried 

out (focused in particular on the G-EDF policy). Surprisingly, moving 

from a pure software implementation to hardware/software co-designing 

revealed to be an amazingly smooth experience, less complex than 

expected. 
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The reasons are soon clear. As regard the hardware design, the availability 

of a reference architecture that clearly defines the methodologies and the 

interaction patterns between the components, revealed to be the winning 

strategy for the rapid development of a clear and well-arranged system. 

This, in particularly, relates to both the hardware scheduler’s inner 

architecture and the Avalon bus interface specifications that, standing on a 

adaptive design strategy (i.e. increase the complexity of the component 

interface as long as it is really needed) and a great availability of reference 

documentation, made the development process of the hardware 

components a straightforward path. 

The greatest difficulties were, undoubtedly, represented by the software 

layer, in particular due to the very elementary task model of µC/OS-II, 

which required a lot of interventions on the software layer, hindering the 

plain applicability of the X-RT framework as designed in chapter 3. 

As a final comment, both the software and hardware performances 

achieved were pretty satisfying. In particular, the scheduling accelerator, 

despite its complexity, turned out to have an impressively low jitter and 

modest area requirements, especially considering the adaptability and 

flexibility of the design that can be seamlessly expanded just touching few 

lines of VHDL constants. 

Of course, still some additional work would be still needed in order to 

enhance the hardware design of this proof-of-concept: there is still a 

number of long combinatorial paths which limit the overall fMAX of the 

sequential logic (although the flexibility of the SOPC platform could allow 

decoupling the clock domains of the scheduler and the processors).  

As future work directions, it would be definitely interesting to reproduce 

the experiments with a larger hardware availability, replacing the NIOS 

soft-cores with SMP-compliant processors, such as, for instance, the new 

hybrid Altera Cyclone V FPGAs which embed an ARM Cortex A9 SMP 

processor. Furthermore, more investigations should be undertaken as 

regards the scalability of this approach on massively multi-core platforms, 

carrying out deeper studies to highlight any bottlenecks of the hardware 

architecture, in particular as regards the influence and the scalability of the 

switch fabric. 



6.  Concluding remarks 

 

205 

 

6.  Concluding remarks 

This dissertation has dealt with implementative aspects of real-time 

schedulers in embedded multiprocessor systems, addressing two main 

topics: tick-less timekeeping and the implementation of global (i.e. non-

partitioned) schedulers in modern RTOSs. 

As regards the former, this work presented a novel data structure, called 

addressable binary heap (ABH), which implements all the typical 

operations of a priority queue using a pointer-based binary heap. 

At first, the theoretical properties that underpin its physical structure and 

ensure logarithmic worst-case complexity to all its operations are 

presented. Furthermore, a complete C implementation of the data structure 

is discussed in its full details. The viability and the performances of the 

ABH have been evaluated on an instruction-accurate virtual platform 

simulator, comparing other data structure typically employed for this 

purpose, such as various implementations of array-backed binary heaps 

and self-balancing binary trees. In the experimental evaluations, the ABH 

demonstrated to be a very good candidate for tackling timekeeping 

problems in a highly deterministic manner, as its worst-case behavior is 

almost always better than all the other data structures analyzed. 

The ABH data structure has been employed as a building block for the 

realization of a scheduling framework called X-RT, which represents the 

second major contribution of this thesis. Such framework aims at providing 

runtime facilities for the development of real-time applications, by means 

of a user-space runtime library which is able to implement global 

scheduling policies, such as G-EDF, in the mainstream RTOSs exploiting 

their priority-driven scheduler. 

Some other research works in this field addressed the same problem by 

means of interventions on the operating-system kernel. The work presented 

in this thesis, instead, adopts a different approach, based on a user-space 

framework. The X-RT framework, released in the form of an open-source 

project [TUC2012], showed, in fact, as these advanced real-time 

multiprocessor scheduling policies can be realized without modifying the 

RTOS kernel. The experimental work undertaken highlights that the 
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performances of this approach are, both in terms of raw overhead and 

schedulability tests, very close to kernel-level approaches. 

The principles that underpin the operation of this framework, originally 

designed for symmetric multiprocessors, have been further extended to 

asymmetric ones. Such platforms are typically subjected to major 

restrictions, such as the lack of support for task migrations, hindering the 

plain applicability of global scheduling policies. However, by introducing 

some limitations on the scheduling model, such as restricting the 

granularity of migrations to job boundaries, interesting results can be still 

obtained. 

Finally, the last chapter of this thesis investigates the world of re-

programmable hardware platforms, notably FPGAs, presenting a 

scheduling accelerator, which offloads most of the scheduling operations to 

the hardware and exhibits extremely low scheduling jitter. 

 

Future research directions 

As regards the ABH data structure, more experimental investigations 

should be carried out on actual hardware platforms, in order to assess the 

validity of the results in presence of caches, branch predictors and super-

scalar pipelines, which are not modeled by the platform simulator used in 

the experiments. 

The X-RT scheduling framework have revealed satisfactory results in the 

schedulability tests, in many cases very close to the theoretical bounds 

known for the G-EDF policy. However, it has to be underlined that the 

tasks of the experimental workbench were simulating pure CPU-bound 

processes, without performing any memory or I/O access. More interesting 

results could be obtained taking into account these factors, as has been 

recently done in some of the research work cited, in order to validate the 

behavior of the scheduling framework in presence of cache-hotness effects. 

As regards the last point of this thesis, the hardware scheduling accelerator, 

more investigations should be undertaken as regards the integration of the 

accelerator with other bus-master peripherals in the system. In fact, while 

the scheduling accelerator guarantees extremely predictable timings for the 
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computation of scheduling decisions, in many scenarios this is not 

sufficient to guarantee a deterministic behavior of the overall system. 

In fact, the presence of other bus-masters in the system other than the CPU, 

notably DMA controllers, can delay the execution of tasks as soon as they 

try to access memory. In general this problem is difficult to address in 

traditional systems where scheduling is a purely software activity. 

However, the introduction of a hardware scheduler paves the way to the 

synergic coordination of hardware peripherals, as all the information about 

task timings are now available in hardware. This, however, would require 

major interventions on the architecture of the bus/switching fabric, but, in 

theory at least, could contribute increasing the determinism of real-time 

embedded systems, by means of enforcing scheduling decisions also to 

hardware peripherals, arbitrating the bus accesses in a deadline-aware 

fashion. 
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