
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

Ciclo: XXV – A.A.: 2011/12 – SSD: ING-INF/05 – SETTORE CONCORSUALE: 09/H1

FACULTY OF ENGINEERING

PH.D. PROGRAM IN ELECTRONICS ENGINEERING,

TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY

Hardware/Software Design of

Dynamic Real-Time Schedulers for

Embedded Multiprocessor Systems

AUTHOR

Primiano Tucci

 ADVISOR

Prof. Antonio Corradi

CO-ADVISOR

Prof. Eugenio Faldella

PH.D. COORDINATOR

Prof. Alessandro Vanelli Coralli

Ph.D. THESIS

2

[This page intentionally left blank]

3

Abstract

The new generation of multicore processors opens new perspectives for

the design of embedded systems. Multiprocessing, however, poses new

challenges to the scheduling of real-time applications, in which the ever-

increasing computational demands are constantly flanked by the need of

meeting critical time constraints. Many research works have contributed

to this field introducing new advanced scheduling algorithms. However,

despite many of these works have solidly demonstrated their

effectiveness, the actual support for multiprocessor real-time scheduling

offered by current operating systems is still very limited.

This dissertation deals with implementative aspects of real-time

schedulers in modern embedded multiprocessor systems. The first

contribution is represented by an open-source scheduling framework,

which is capable of realizing complex multiprocessor scheduling

policies, such as G-EDF, on conventional operating systems exploiting

only their native scheduler from user-space. A set of experimental

evaluations compare the proposed solution to other research projects that

pursue the same goals by means of kernel modifications, highlighting

comparable scheduling performances.

The principles that underpin the operation of the framework, originally

designed for symmetric multiprocessors, have been further extended first

to asymmetric ones, which are subjected to major restrictions such as the

lack of support for task migrations, and later to re-programmable

hardware architectures (FPGAs). In the latter case, this work introduces

a scheduling accelerator, which offloads most of the scheduling

operations to the hardware and exhibits extremely low scheduling jitter.

The realization of a portable scheduling framework presented many

interesting software challenges. One of these has been represented by

timekeeping. In this regard, a further contribution is represented by a

novel data structure, called addressable binary heap (ABH). Such ABH,

which is conceptually a pointer-based implementation of a binary heap,

shows very interesting average and worst-case performances when

addressing the problem of tick-less timekeeping of high-resolution

timers.

4

[This page intentionally left blank]

5

“Life’s a trampoline.

Sometimes it takes someone

trying to bring you down,

in order to jump higher”

Santa Clara, CA

4 Oct 2012

6

Preface

Many things have changed in my life in these years as a PhD student.

In the last year, in particular, I had the unique opportunity of working in

two of the coolest tech companies of our times, respectively Google Inc.

and NVIDIA Corp., that, for a curious turn of events, I joined with near-

perfect timing. In the former, I had the pleasure to join the Chrome for

Android team while the most advanced mobile browser of the time was

firstly launched and soon thereafter became the official browser of the

Android OS. In the latter, I had the amazing opportunity to join the

software engineering team in the months in which the NVIDIA Tesla

K20 debuted as the GPGPU powering the most powerful supercomputer

of the world1, the Cray XK7 Titan.

Things will unavoidably change in the future years and perhaps one day

many of us will smile rereading these lines and thinking back to them

with the same nostalgic mood that we have today seeing screenshots of

NCSA Mosaic or reproductions of the Cray-1 in museums. However,

one thing will remain the same, whatever changes the future will bring:

the thought that I was there and was actively contributing to them.

Many of these changes could not have happened without the influence of

many people who crossed my path in these years. A grateful

acknowledgement, therefore, goes to them, for the spiritual and material

support provided.

First of all I would like to thank all the many friends that I had the

pleasure and the luck to meet during my early university years. I will

never forget all the pleasant moments we shared together, the

uncountable dinners and the never-ending nights of our carefree student

years spent in the old streets of Bologna.

A further special thank goes to my friends and colleagues Andrea,

Giuseppe and Mario, with whom I had the pleasure to share this PhD

adventure (and the unforgettable flavors of the campus’ cafeteria).

I would like to express my earnest gratitude to my PhD advisor Prof.

Eugenio Faldella, for his remarkable wisdom, honesty, enthusiasm and

1 http://www.top500.org/lists/2012/11/

7

friendliness (and, lastly, passion for brain teaser games), which I had the

pleasure to appreciate during the numerous days (and late-evenings)

spent working together.

Some of my acknowledgements go also to companies. In first place,

IMA S.p.A. and SACMI Imola, who believed and supported my work

and with which I had the pleasure to collaborate, in my early years, on

very challenging embedded industrial automation projects. In particular,

my thanks goes for the rewarding thought that parts of this thesis will

continue to live in many of the tea bags produced worldwide.

Another thanks goes to the B&R automation and Altera corporations, for

the interests that they have demonstrated in the academy through the

time and the resources dedicated to university contests, which I attended

with some of the projects herein presented (see next page).

A remarkable acknowledgement finally goes to the amazing people I had

the opportunity to work with during my last internships. To them goes

my greatest and most sincere admiration. Besides their unquestionable

and unequaled talent, their wisdom and their technical skills, I have been

gladly impressed by the great character and charm of many of them that

with extreme discretion, great passion and hard commitment contribute

to the technological evolution of our world. A particular thanks, in this

regard, goes to my mentors Hans and Lucien, who helped me getting

started into these two amazing companies and had the patience to endure

my bazillion questions and review my code.

Finally yet importantly, I would like to thank my family that have

supported and motivated me during all these years. To them goes my

constant and profound gratitude, especially in these months of oceanic

distance.

8

 Altera InnovateItaly 2011

“Home automation over mains

with Altera NIOS-II”

First place.

B&R European Industrial Ethernet

Award 2010/11

“Powerlink over PowerLine: the next

generation of home automation runs

in real-time over mains”

Winner in the category

'relevance for the industry'.

Altera InnovateItaly 2010

“Hard real-time meets

 embedded multicore SoPCs”

First place, ex-aequo.

9

Table of Contents

Abstract ... 3

Preface .. 6

Table of Contents .. 9

1. Introduction... 11

1.1. Scenario and motivations ... 11

1.2. Contributions .. 12

1.3. Organization ... 14

2. Background and related work ... 17

2.1. Embedded real-time systems ... 17

2.2. Real-time task model ... 19

2.3. The uniprocessor real-time scheduling problem 21

2.4. Taxonomy .. 23

2.5. Uniprocessor real-time scheduling... 25

2.6. Multiprocessor systems .. 27

2.7. Multiprocessor real-time scheduling .. 32

2.8. Real-Time operating systems ... 38

2.9. IEEE POSIX standards for real-time applications 44

2.10. Linux as a real-time operating system 52

3. X-RT: A portable framework for real-time scheduling 61

3.1. Introduction .. 61

3.2. Motivations .. 61

3.1. Related work .. 62

3.2. Software architecture for SMP ... 65

3.3. Implementation of the G-EDF scheduling policy 83

3.4. SMP experimental evaluations. ... 86

3.5. Software architecture for AMP .. 103

3.6. AMP experimental evaluations .. 108

3.7. Concluding remarks ... 115

4. Data structures for timekeeping in real-time systems 117

10

4.1. Introduction ..117

4.2. Problem statement ..119

4.3. Traditional data structures for timekeeping121

4.4. The addressable binary heap ..134

4.5. Experimental evaluations ...151

4.1. Concluding remarks. ..175

5. A hardware scheduling accelerator for MP-SoPCs179

5.1. Introduction ..179

5.2. Related work ..180

5.3. Motivations...184

5.4. Hardware design ...184

5.5. MP-SoPC architecture ..198

5.6. Hardware synthesis results ...200

5.7. Scheduling jitter analysis ...202

5.8. Concluding remarks ...203

6. Concluding remarks ..205

Bibliography ...209

1. Introduction

11

1. Introduction

1.1. Scenario and motivations

The technological advances of microelectronics have radically changed,

among many others, the scenario of modern embedded real-time systems.

Up until recently, the world of real-time systems was tightly and almost

exclusively bounded to specialized computational platforms such as PLCs

(programmable logic controllers) and application-specific microcontrollers.

[Lee2000]. In recent decades, new generations of multicore processors and

multiprocessor systems on chip (MPSoCs) have opened up new vistas as

regards the huge computational power that can be exploited to face the

ever-increasing complexity of modern embedded applications.

Furthermore, the high level of integration of silicon technology opens up

many interesting possibilities also for the world of re-programmable

hardware platforms. The high availability of hardware resources offered by

modern Field Programmable Gate Arrays (FPGAs), in fact, have made

these platforms interesting targets for the development of integrated

multiprocessor systems-on-programmable-chip (MP-SoPCs). These MP-

SoPCs allow hardware/software co-design patterns that can reap the

benefits of both rapid prototyping and large possibilities of customization

[BOBSBS2008, DJM+2009, JS2006, Sch2007].

Together with the countless number of evident advantages, however, all

these new multiprocessor platforms also brought in many issues, posing

new challenges to the already complex matter of real-time systems.

Primarily there are new methodological issues. The degree of freedom

introduced by the presence of many processors does not translate

straightforwardly into a direct ability of ‘doing more work’.

Even without bringing in any elaborate consideration such as

parallelizability of software algorithms, but keeping more simplistic

assumptions of independent tasks, the sole problem of choosing how to

distribute such tasks on the available processors easily degenerates into

complex (NP-Hard [LW1982]) problems.

1.2 Contributions

12

In addition, there also many new software design issues. The wide variety

of multiprocessors chips currently available, in fact, translates into a wide

heterogeneity of strongly different computational architectures that,

besides the mere performances, have different programming models and a

strong impact on the overall software design.

In most desktop processors (e.g. Intel x86/64) the multicore architecture is

quite transparent to the software, allowing designers to rely on legacy

shared-memory patterns. However, many other embedded processors have

followed a different path, mainly for area and power-related concerns,

employing more decoupled, yet cost effective, architectures at the expense

of more complex (and sometimes esoteric) software programming models

[ANA2004, JBP2006].

The purpose of this dissertation is to focus on these latter software and

hardware design aspects, in particular as regards the implementation of

complex real-time multiprocessor scheduling policies on these new

multiprocessor platforms.

1.2. Contributions

Many remarkable works have contributed in the scientific literature to

methodological aspects related to multiprocessor real-time systems. In

particular, for what concerns the contents of this thesis, many of these

studies have introduced new advanced scheduling algorithms, which are

able to exploit fruitfully the computational power of these systems, still

ensuring the respect of deadlines [DB2011]. The most renowned of these is

undoubtedly represented by the multiprocessor variants of the earliest

deadline first algorithm (EDF) [BB2009].

Despite what many published works have solidly demonstrated in past

years regarding the effectiveness of such new scheduling algorithms

[Bak2003a, Bak2005b, Bak2005c, BCL2005, DA2008, EDB2010,

MBer2005], the actual support that current real-time operating systems

(RTOSs) offer to deal with multiprocessor platforms is still limited.

Almost the all RTOS schedulers, in fact, support merely static (i.e.

numeric) priority-driven policies and in many cases do not even deal with

the notion of periodic processes [CG2011, SR2004].

1. Introduction

13

In this regard, the first contribution of this work is represented by an open-

source scheduling framework, called X-RT [Tuc2012]. It consists of a

runtime framework that offers, to real-time application developers, a set of

high-level and OS-agnostic scheduling API, providing the concepts of

periodic tasks and deadlines. Furthermore, its runtime library is capable of

realizing, in a portable way (i.e. without altering the RTOS kernel),

complex multiprocessor scheduling policies such as G-EDF. The operating

principle of the runtime library stands on a metascheduler approach. Such

metascheduler is a special process, which dynamically mangles at runtime

the numeric priorities of the other RTOSs processes in order to emulate the

behavior of more complex scheduling policies.

The realization of such a portable scheduling framework presented many

interesting challenges. One of these has been definitely timekeeping, the

software handling of several outstanding timers, using a limited number

(typically just one) of hardware timers. Timekeeping, however, is a more

general topic that, besides the specific problems addressed in the

realization of the X-RT framework, has historically generated great

interests in scientific and technical literature, since it involves not only the

area of (real-time) operating systems, but also many other fields as discrete

event simulation and networking.

In this regard, this work contributes to this latter topic introducing a novel

data structure, called addressable binary heap (ABH). Such ABH, that

conceptually is a pointer-based implementation of the traditional array-

backed binary heap, shows very interesting average and worst-case

performances, especially when compared to other data structures typically

employed for the timekeeping purpose (such as self-balancing binary trees

and array-backed binary heaps), making it an interesting alternative for

addressing the general problem of tick-less handling of fine-grained timers.

The principles that underpin the operation of the X-RT framework,

originally designed for symmetric multiprocessing (SMP) architectures,

have been further extended to encompass asymmetric (AMP) ones.

Many restrictions apply in the case of AMP architectures, for instance the

lack of direct support for inter-processor task migrations and the more rigid

memory models, making more difficult the plain applicability of global

1.3 Organization

14

scheduling policies. In this direction, this work presents a novel approach,

based on a shadow process model, to support a subset of global scheduling

policies such as R-EDF (the restricted migration variant of G-EDF) on

AMP platforms.

The concepts that underpin this shadow process model have been validated

on a FPGA-based platform using AMP soft-cores, analyzing how different

memory layouts influence the schedulability and the overall system

performances.

The FPGA-based MP-SoPC architecture has been further employed to

make another step towards the improvement of scheduling performances

on re-programmable hardware platforms, by means of developing a

hardware-accelerated scheduling IP core. Following the research directions

that many works in this field have delineated, the last chapter of this work

presents the design and experimental validation of a hardware scheduler

accelerator that implements the scheduling policy entirely in hardware,

freeing the RTOS from most of its scheduling overhead.

1.3. Organization

The rest of this thesis is organized as follows. Chapter 2 presents the

background of real-time scheduling on multiprocessors, introducing the

basic notation used in the later chapters, reviews the preliminary literature

in the field and presents a brief survey about the support offered by

mainstream RTOSs currently available. In order to improve the readability

of the thesis, the literature more closely related to the specific topics

investigated is deferred to the beginning of each chapter.

Chapter 3 presents the operational principles and the design of the X-RT

scheduling framework, together with the experimental results carried out

on both SMP and AMP platforms, which assess its viability by means of

overhead measurements and schedulability tests.

Chapter 4 focuses on algorithmic aspects of the timekeeping topic, first

presenting a brief survey about data structures typically employed in

modern operating systems for this purpose, and then introducing the novel

ABH data structure. At first, the theoretical properties that underpin its

physical structure are formally presented, followed by the implementation

1. Introduction

15

details of its main operations. A set of synthetic experiments finally

evaluate its actual performances on real-world platforms, comparing them

with the other data structures discussed.

Part of the work addressed in Chapter 3, which is based on FPGA MP-

SoPCs is further extended in Chapter 5 introducing a hardware

multiprocessor scheduling accelerator. Such accelerator, which is

supported by a minimal software coordination infrastructure, offloads the

scheduling operations of the RTOS to the hardware and exhibits interesting

performances especially as regards the release jitter of real-time tasks.

Finally, Chapter 6 presents the concluding remarks, summarizing the

results presented in this thesis and outlining possible research directions

that could be undertaken to further extend the work herein presented.

1.3 Organization

16

2. Background and related work

17

2. Background and related work

2.1. Embedded real-time systems

Real-time systems are defined as those systems in which the correctness of

the computation not only depends on the logical correctness of the results

(functional correctness) but also upon the time at which the results are

produced (timeliness). Real-time does not mean fast. Many designers often

erroneously assume to need a real-time system just because they are bound

to performances. Most of the times those performances can be achieved

just by choosing a suitably fast hardware platform. In contrast, an actual

real-time system often gets by with slower hardware platforms, which are

nevertheless able to make guarantees for the execution of critical

operations. Real-time deals with guarantees, not with raw speed. Typical

examples of real-time systems space from finance (surprisingly), to

industrial control systems, automotive control units and aerospace flight

control systems [Mar2006, Sch2007, Let2008].

These kinds of systems, which are very different from each other from a

functional perspective, share a common nature of being reactive systems.

Most embedded systems typically interface with physical hardware and

carry out special purpose functions, aimed at monitoring the state and

controlling the evolution of a physical process (for such reason they are

sometimes referred to as cyber-physical systems).

For instance, in the automotive antilock braking system (ABS), the purpose

of the control system is monitoring the car speed and wheels’ angular

speed during a braking and timely take the proper corrective actions,

controlling the brake actuators, in order to avoid, as much as allowed by

the car dynamics, the lock of the wheels. The rate of a typical ABS control

loop is in the order of 5 milliseconds [PSG1998]. In this apparently short

time span, the control system must undertake a large set of concurrent and

time-bounded tasks, such as processing the data coming from the wheel

sensors, estimating the vehicle dynamics, generating the waveforms that

open and close the actuator valves, etc.

Timeliness, thus, is the key concern around which the design of a real-time

system focuses.

2.1 Embedded real-time systems

18

Two aspects quantitatively define such timeliness:

• Functional criticality

What are the consequences of missing such time requirements?

• Usefulness function

Which concrete relationship exists between the time at which results

are produced and the usefulness of those results? Typically, this

relationship can be expressed by means of a mathematical function,

which analytically describes the usefulness as a function of time.

A real-time system typically consists, from the software viewpoint, in a

multiplicity of tasks. In the light of the above definitions, a real-time task

can be classified as soft real-time or hard real-time, as follows:

• Functional criticality

A task is defined hard real-time (HRT) if missing the timeliness

requirements, even sporadically, can cause the failure of the system.

On the other side, a task is defined soft real-time (SRT) if missing the

timeliness requirements causes a degradation but not a critical failure

of the system, thus the system can be still able to operate or even able

to fully recover its state.

• Usefulness function

The usefulness of a non-real-time task is independent of the time upon

which the results are computed (Figure 1a). The usefulness function of

a soft real-time task, instead, is a function that gradually slopes to zero

after the deadline (Figure 1b). Some examples of soft real-time

systems are services like voice-over-IP, digital TV, video conferencing

and many other multimedia systems.

In the case of a hard real-time task, two cases must be distinguished:

the general one in which the usefulness function drops directly to zero

(Figure 1c), and the better-never-than-late case in which the

usefulness function drops to – ∞ (Figure 1d). Typical instances of the

latter are represented by military systems, in which the consequences

of a late action can be even worse than not performing that action at

all.

2. Background and related work

19

Figure 1: Usefulness function U(t) for different classes of real-time tasks

2.2. Real-time task model

A real-time task is an elementary software unit that is cyclically executed.

Each execution of a given task Ti is called job, identified by Tij with j being

the j-th invocation of task i. From an analytical viewpoint, the fundamental

timing parameters of a real-time task Ti are characterized by the tuple

{pi, Di}, respectively, period and relative deadline. The absolute time upon

a job Tij becomes ready for the execution is called release (or arrival) time

and is identified by rij. Once released, a job Tij should complete within its

absolute deadline, that is dij = rij + Di, to meet the real-time requirements of

the application, otherwise it is said to be late (or tardy) (Figure 2).

Furthermore, each task is characterized also by a worst-case execution time

(WCET), denoted with ci, that is a worst-case assumption on the

computation time required on a processor by each job.

Depending on the release policy and the relative deadline, the following

three categories of tasks can be identified.

(a) (b)

(c) (d)

2.2 Real-time task model

20

• Periodic tasks

A task Ti is said to be periodic when all its jobs are cyclically and

continuously released at a fixed rate, stated by its period pi, such that

the interval between the release of any two consequent jobs is always

equal to ri
j+1 - ri

j = pi .

Periodic tasks are usually characterized by an implicit (relative)

deadline, Di = pi, equal to their period (a job should complete before

the next one is released).

• Sporadic tasks

Unlike periodic tasks, sporadic tasks, sometimes called event-driven or

reactive tasks, become ready for their execution in response to an

external event. In this case, the period pi of a sporadic task determines

the minimum time between the occurrences of the event that triggers

its release (its maximum invocation rate). Thus, the interval between

the releases of any two consequent jobs satisfies the condition

ri
j+1 - ri

j ≥ pi.

In this sense, a periodic task can be viewed as a special case of a

sporadic task, in which the releases of its jobs occur always at the

maximum rate. Most works in literature generally deal with the notion

of sporadic tasks, consequently their results apply also for purely

periodic tasks.

• Aperiodic tasks

It might be noted that in the two aforementioned categories there is no

particular value in executing the job immediately after its release time,

assuming that the deadline is met. This is not true for the case of

aperiodic tasks. As the name suggests, an aperiodic task lacks the

notions of period (and often deadline too), thus its jobs can arrive at

any time. Usually these kind of tasks are soft-real time event-handlers

that have a slightly different semantic: their purpose is to respond

within the shortest possible time to external service requests,

compatibly with the presence of other sporadic/periodic tasks in the

system. Usually their execution is carried out by means of special

2. Background and related work

21

software patterns called real-time servers [AB1998] (not to be

confused with networking topics or client/server software patterns).

All the work in this thesis focuses only on the more general case of

sporadic (thus periodic) tasks.

Figure 2: Temporal attributes of a sporadic real-time task.

2.3. The uniprocessor real-time scheduling problem

One of the key points of real-time systems is represented by scheduling,

which involves two different aspects: an algorithmic viewpoint, that is,

identifying a feasible schedule through an appropriate scheduling

algorithm (policy), and a software viewpoint, that is, concretely enforcing

the decisions of the scheduling policy on the operating system, putting into

execution the tasks at the right time, through a scheduler.

A key concept introduced by a scheduler is represented by pre-emption.

Pre-emption occurs when a task that is executing is interrupted, its state is

saved and the execution is then granted to another task. This switching of

tasks on a processor is usually referred to with the term context switch and

requires a certain amount of time to be performed [Tsa2007].

In the next paragraphs, the scheduling problem will be analysed first for

the more simple case of uniprocessor systems. Later, in 2.6 such

considerations will be refined and expanded in the light of the more

general (and more complex) case of multiprocessor systems.

From an algorithmic viewpoint, the scheduling problem consists in the

following: given a task-set τ of n real-time tasks T1..Tn, and their temporal

attributes as previously defined in 2.2, produce a schedule, which in every

instant identifies which task, among the released ones, should be put into

Task Ti Job Tij Job Tij+1

ri
j ri

j+1 di
j di

j+1

Di Di

pi

t
ci

2.3 The uniprocessor real-time scheduling problem

22

execution. Such schedule must ensure that all released jobs execute and

complete on time, under the following constraints: (i) jobs are not

scheduled before their release time, and (ii) precedence among jobs of the

same task is respected.

Definitions

• Schedulability

A task-set τ is said to be HRT schedulable on a platform by an

algorithm A if A always produces a feasible schedule for τ (i.e., no job

of τ misses its deadline under A).

A task-set τ is said to be SRT schedulable under A if the maximum

tardiness of its tasks is bounded. [Liu2000]

• Feasibility

A task set τ is feasible on a given platform if there exists a (feasible)

schedule in which every job of τ complete by its deadline.

• Class-feasibility

A task set τ is said to be feasible under a class C of scheduling

algorithms if τ is schedulable by some algorithm A ∈ C.

• Optimality

An algorithm A is said to be optimal with respect to the class C if

A ∈ C and A correctly schedules every task system that is feasible

under C. If the class C is not specified, it is usually assumed to include

all possible scheduling algorithms. [JCASB2004]

• Scheduling performances

As frequently used in literature, the expression A1 has better

scheduling performances than A2, typically refers to the ability of a

given algorithm A1 (or a class) to feasibly schedule task-sets with

higher utilization factors than another algorithm A2.

2. Background and related work

23

2.4. Taxonomy

This section outlines a taxonomy of uniprocessor scheduling algorithms.

Unless otherwise specified, preemption is always assumed to be allowed.

Online vs. offline classification

A first classification is made depending on the time at which the schedule

is produced, distinguishing between online scheduling and offline

scheduling.

In online scheduling, the decisions regarding how to schedule tasks are

taken at runtime during the regular operation of the system. Thus, the

scheduling algorithm being employed concretely represent an active (and

fundamental) part of the software, which is repeatedly invoked to take the

proper scheduling actions in occasion of decisional instants (e.g., the

release of a task, the expiration of a timer, the completion of a job). For

this reason, online scheduling algorithms, though being extremely flexible,

for instance allowing dynamic insertion of new real-time tasks in the

system, introduce a source of runtime overhead that must be carefully

accounted. In the case of complex algorithms, in fact, the scheduling

algorithm itself might demand non-negligible computational costs, making

the overall system (real-time tasks + scheduler) unschedulable. Even

though, online scheduling represents a very typical scenario in most

modern embedded systems [JCASB2004].

Conversely, in offline scheduling, the scheduling policy does not take

active part during the runtime of the real-time system, rather it is used to

determine the decisional instants and the sequence of actions that the

scheduler will take before the activation of the system (thus the offline

term). This approach, which static and inflexible nature does not require

any further comment, has the major benefit of allowing to adopt (often)

optimal, yet very complex, algorithms which in some case represent the

last resort, whereas the high computational demand and the tight timing

constraints, don’t allow online alternatives [CJGJ1978].

There might be cases, in which a scheduling algorithm falls in between

these two classes, by means of a two-stage decomposition. For example,

the algorithm can be decoupled into a pre-processing stage, in which the

2.4 Taxonomy

24

entire task-set is subdivided into smaller subsets and the actual scheduling

stage, where an online scheduling algorithm is applied on the identified

subsets. The preprocessing stage, in these cases might be performed offline

in order to reduce, possibly in an optimal way (with respect to the online

algorithm being employed), the complexity of the problem and the runtime

overhead. [BBA2011, LMM1998]

Priority-based classification

When differentiating scheduling algorithms according to the priority

assignment strategy, three categories can be identified [JCASB2004].

• Static priorities

A unique priority is associated to each task, and all its jobs have the

same priority associated to it. Thus, if task T1 has higher priority than

task T2, then whenever both have active jobs, T1’s job will have

priority over T2’s job. An example of a scheduling algorithm in this

class is the Rate Monotonic (RM) algorithm [LSD1989].

• Job-level dynamic priorities

For every pair of jobs Tij and Ti’j’, if Tij has higher priority than Ti’j’ at

some instant in time, then Tij always has higher priority than Ti’j’. An

example of a scheduling algorithm that is in this class, but not the

previous class, is the earliest deadline first algorithm [Liu2000].

• Unrestricted dynamic priorities

No restrictions are placed on the priorities that may be assigned to

jobs, and the relative priority of two jobs may change at any time. An

example of a scheduling algorithm that is in this class, but not the

previous two classes, is the least laxity first (LLF) algorithm

[But2011].

By definition, unrestricted dynamic-priority algorithms are a

generalization of job-level dynamic-priority algorithms, which are in

turn a generalization of static-priority algorithms. In uniprocessor

scheduling, the distinction between job-level and unrestricted

dynamic-priority algorithms is rarely emphasized because EDF is

2. Background and related work

25

already optimal [Liu2000]. However, in the multiprocessor case,

unrestricted dynamic-priority scheduling algorithms might reveal to be

more efficient than job-level dynamic-priority algorithms

[JCASP2004].

WCET Awareness

A further classification shall be made as regards the information exploited

by the scheduling algorithm for taking its decision. As introduced in 2.2,

one of the temporal attributes which characterizes a real-time tasks is

represented by the WCET parameter (ei).

While this attribute is fundamental for almost any known schedulability

analysis test (determining a-priori if a given algorithm will be able to

schedule a given task-set on a given platform, under worst case

assumptions), it may or may not be further required at runtime by the

algorithm for taking scheduling decisions. In this regards we distinguish

WCET-aware algorithms (LLF is a key example of this class), from

WCET-unaware algorithms (e.g., RM, EDF). This difference has usually

strong implications on the behavior of the scheduling algorithm when the

actual duration of the jobs deviates from their worst case estimation.

2.5. Uniprocessor real-time scheduling

The EDF scheduling algorithm (Figure 3) is the most popular job-level

dynamic priority algorithm known in literature. It schedules tasks

according to a fundamental rule: at any time, the priority of a job is

inversely proportional to its absolute deadline. In a uniprocessor system, it

implies that, at any time, the processor executes the ready task with the

earliest deadline. Ties can be broken arbitrarily in case of an even deadline.

From the scheduling performances viewpoint, EDF, due to its dynamic

nature, have better performances than fixed-level priority algorithms.

2.5 Uniprocessor real-time scheduling

26

Figure 3: A sample application scheduled on a uniprocessor using the EDF algorithm.

In the particular case of uniprocessor systems, EDF is an optimal

scheduling algorithm, i.e., a set of periodic hard real-time tasks with

implicit deadlines can be feasibly scheduled on a uniprocessor system if

and only if the utilization factor of the task set U ≤ 1. In the more general

case of sporadic tasks with non-implicit deadlines, a task-set is schedulable

if (but not necessarily only if) its density ∆ ≤ 1. (Figure 4). The optimality

of EDF can be proved by using a time slice swapping technique [Liu2000],

which stands on the principle that any valid schedule for any task set can

be transformed into a valid EDF schedule.

Figure 4: Schedulability bounds for uniprocessor EDF.

On uniprocessor systems, EDF is typically preferred to other unrestricted

dynamic priority algorithms (even if still optimal), for its implementative

implications. In fact, the direct consequence of being a job-level dynamic

priority algorithm is that the only decisional instants in which a re-schedule

can be required are: (i) the release of a new job and (ii) the completion of a

job. As will be discussed later in chapter 3, this has a direct impact on the

2. Background and related work

27

overheads involved and on the mechanisms required for its concrete

implementation.

EDF, furthermore, is a key example WCET-unaware algorithm, as the

priority of a job is assigned on release time and depends exclusively on its

absolute deadline.

2.6. Multiprocessor systems

All the considerations made so far were considering only the simpler case

of uniprocessor systems. In the following, such considerations are going to

be extended to the more interesting case of multiprocessors. Before doing

that, however, it might be worth making some clarifications about the

architectural details of modern multiprocessor systems.

With the term multiprocessor, we identify any kind of computer system

that can count on the availability of more than one computational unit for

the execution of software processes. Multiprocessors themselves are not a

recent concept, as they have been known to the industry since the early

sixties. However, while the early multiprocessor systems were based on

multiple physical chips requiring a special interconnection bus, thus being

extremely expensive and complex to realize, the last generations of

multicore microprocessors for desktop and server systems and

multiprocessor systems on chip (MPSoCs) for embedded systems have

definitely changed this situation, turning multiprocessing into an everyday

reality [Wol2004, WJM2008].

Today, multiprocessing has clearly established as the mainstream approach

for taking advantage of the high integration level of silicon. becoming a

reference model for almost every scale of computational platform, from

embedded and low power MPSoCs as the popular NVIDIA Tegra and TI

OMAP chips employed in modern consumer electronics, to large scale

high performance computing clusters as the 48-cores Intel SCC processor

or the NVIDIA Tesla family of general purpose graphics processing units

(GPGPUs).

Nevertheless, while multicore chips and multiprocessing in general are

clearly acknowledged as the standard that will drive electronics for the

coming years, the internal architecture of such multiprocessors has not yet

2.6 Multiprocessor systems

28

converged to a common reference model. Rather, a wide variety of

different architectural trends is currently part of active debates in both the

industrial and scientific community [Let2008, Mar2006, Sch2007].

Diversity is not merely a challenge across the range of multiprocessor

architectures. Within a single system, the architecture of cores can vary,

and current trends are more toward a mix of different cores. Some

platforms are endowed with cores that share the same instruction set but

different performance characteristics [LBKH2007], since a processor with

a small number of large cores is generally inefficient for readily

parallelized programs, but, on the other side, a large number of small cores

may perform poorly on sequential software. Another trend is represented

by having cores with different sets of instructions for specialized functions

(e.g. mixing general-purpose and DSP cores), often embedding many

further peripherals, such as GPUs, network interfaces, and other

application-specific (and programmable) accelerators [HCMP2007,

LSK+2005, RSJK2005].

Among the many new issues that multiprocessing brings in both hardware

and software design, the choice of the reference architectural scheme,

either symmetric multiprocessing (SMP) or asymmetric multiprocessing2

(AMP), represents the first crucial design issue, involving complex trade-

offs between the high-level services exposed by the software platform and

the low-level hardware requirements.

SMP involves a set of closely coupled and architecturally identical

processors interfaced to a shared bus, which operate as a single resource

pool (Figure 5a). The platform exhibits a coordinated environment in

which a unique operating system yields a homogeneous view of the

physical memory and is able to dynamically execute and migrate tasks on

any processor.

This scheme, which is widely used in most desktop and server PCs, is

generally very straightforward to handle from a software perspective and

2 The term asymmetric, itself, does not imply a difference between processors

architectures. The prefix heterogeneous is usually preferred for this purpose. In this thesis,

only the case of homogeneous processors (sharing the same instruction set) is being

considered.

2. Background and related work

29

paves the way to dynamic load balancing of computationally intensive

multitasking applications by means of software processes migrations.

The price to pay for the cleaner programming model (uniform memory

view) is represented by a high number of dedicated hardware mechanisms

(e.g., interlocked operations, cache coherency management, IRQ routing)

which can be very costly for an embedded system, due to both area and

power requirements.

For such reasons, in the case of small scale and highly-integrated

embedded systems, AMP often reveals to be the leading choice. AMP can

be viewed as a multi-uniprocessor scheme (Figure 5b), in which the

processors are independent and don’t necessarily share all the physical

memory space. Typically more loosely coupled mechanisms for inter-

processor communication are offered by the hardware, mostly FIFOs and

mailboxes. This restriction has a strong impact on the overall software

organization, which needs to be approached in a decentralized fashion:

distinct OS instances must be independently executed on each processor,

working as separate environments, lacking any direct support to process

migrations among different processors.

Figure 5: Overview of SMP and AMP processor architectures.

Even within the SMP area, still a variety of architectural models exists.

In the last decade, the computational speed of processors has increased

faster than the system memory bandwidth [MHSM2009]. As a result, as

processors try to access the main memory more frequently, the shared

nature of the memory bus creates bottlenecks. In summary, as more

processors are added, the scalability of the SMP system becomes

2.6 Multiprocessor systems

30

problematic. To overcome these scalability issues, two approaches have

been developed: on-chip cache memories and distributed point-to-point

memory interconnects.

Cache memories tend to hide the latency for most of the access in system

memory, allowing processor speeds to increase at a greater rate than RAM

memory speeds by leveraging the spatial and temporal locality of memory

accesses. The beauty of caches is their effective operation with very little

impact on the programmer or compiler. In other words, details of the cache

hierarchy do not affect the instruction set architecture and their operation is

completely based on hardware and transparent to software programmers.

While cache memories have marginal issues on a uniprocessor system,

they heavily complicate the memory consistency in multiprocessors. The

root of the problem lies in store propagation. While two processors in a

system (say P1 and P2) may both load the same memory block into their

caches, a subsequent store by either of the processors would cause those

values in the cache to differ. Thus if P1 stores to a memory block present

in both the caches of P1 and P2, P2’s cache can hold a potentially stale

value. This cache incoherence would not be problematic if P2 never again

loads to the block while still cached or if the multiprocessor did not

support the shared-memory programming model. But since the point of

SMP is to support that, at some point future loads of the block by P2 must

receive the new valued stored by P1, as defined by the model. That is, P1’s

store must potentially affect the status of the cache line in P2’s cache to

maintain coherence.

As regards interconnection with system memory, the high clock rate

reached by modern memories, together with tight power budgets and

scalability constraints, do not allow any more solutions like the front-side

bus pattern, which leaded for years in SMP systems. Instead, the memory

interconnects are moving towards point-to-point asynchronous connections

(Figure 6) such as, for instance, the Intel QPI or ARM AMBA AXI, were

high speed serial lanes interconnect the various cores, which have

dedicated channels to the memory controller, ending up in non-uniform

memory architectures. While the memory architecture does not reflect on

2. Background and related work

31

the software functionality (at least on SMP), the performances of software

application can be severely biased by the patterns of memory accesses.

Figure 6: Evolution of SMP computer architectures (a) Multi-chip multiprocessors; (b)

FSB-based multicore processors; (c) Interconnect-based multicore processors.

CPU CPU

CPU CPU

Priv. cache Priv. cache

Priv. cache Priv. cache

Physical Chip

CPU

CPU CPU CPU

Physical Chip Physical Chip Physical Chip Physical Chip

System Memory

Shared bus

System Memory

CPU CPU

CPU CPU

Priv. cache Priv. cache

Priv. cache Priv. cache

Shared Cache

Physical Chip

CPU CPU

CPU CPU

Priv. cache Priv. cache

Priv. cache Priv. cache

Shared Cache

Physical Chip

S
h
a
re
d
 C
a
c
h
e

System
memory

 System
memory

 System
memory

 System
memory

CPU CPU

CPU CPU

Priv. cache Priv. cache

Priv. cache Priv. cache

Physical Chip

S
h
a
re
d
 C
a
c
h
e

(a)

(b)

(c)

Shared bus

2.7 Multiprocessor real-time scheduling

32

2.7. Multiprocessor real-time scheduling

While the computational power exhibited by multiprocessor platforms

sounds appealing, paving the way towards the integration of several

computationally intensive real-time tasks in a single system, extending

real-time scheduling algorithms to multiprocessors is not straightforward

as it might appear, neither from the theoretical viewpoint, nor from the

software’s.

From an analytic perspective, multiprocessing introduces a new degree of

complexity, that is, the task-to-processor mapping. The scheduling

problem statement of 2.3 must be refined, introducing:

• A further assignment variable that consists in:

m identical processors P1..Pm.

• Two additional constraints:

(iii) Each processor is assigned to at most one job at any time.

(iv) Each job is scheduled on at most one processor at any time.

Conversely to what may seem obvious, in the real-time domain the

increase of computational resources does not always lead to an

improvement of the scheduling performances. A key example is

represented by the Dhall’s effect presented in [DL1978], which shows that

under particular distributions, the deadline monotonic priority assignment

may systematically miss deadlines of task-sets with arbitrary low

utilization factors.

Before delving into a deeper analysis of the implications of

multiprocessors on scheduling algorithms, a further refinement shall be

made to the taxonomy previously introduced. The new degree of freedom

introduced by the increased number of processors, can give the possibility

(depending on kind of hardware multiprocessor architecture) of performing

software migrations, that is suspend the execution of a given process and

resume it on a different processor.

2. Background and related work

33

In this regard, three new classes of scheduling algorithms, orthogonal to

the taxonomy previously delineated, can be identified:

• No migration (partitioning) algorithms

No-migration scheduling algorithms presuppose a static partitioning of

the n application tasks into m disjoint subsets. Each subset is then

locally scheduled on each processor employing a uniprocessor

scheduling algorithm, as discussed in 2.5. As a result, all jobs of each

task are always executed on the same processor. (Figure 7a)

• Full (job-level) migration algorithms

Full migration policies, conversely, involve a single system-wide

scheduler that is allowed to delegate the execution of each task to any

processor. Moreover, the execution can be suspended, possibly more

than once, and later resumed on a different processor. (Figure 7b)

• Restricted (task-level) migration algorithms

Restricted migration policies, finally, envisage that the execution of

different jobs of any task may be delegated to different processors, with

the only constraint that every job, even if pre-empted, has to be entirely

executed on the same processor. (Figure 7c)

Partitioning is widely used, because it is very simple and straightforward to

implement and its performances are reasonable when employing popular

and well-known uniprocessor algorithms such as EDF and RM. In practice,

partitioning approaches reuse the knowledge of well-known and deeply

studied uniprocessor algorithms that the scientific community has

developed over years [Bak2005, BBA2010, CY2012, LRL2009,

NNB2010].

However, partitioning introduces several flaws. The problem of allocating

a set of tasks to a set of processors is analogous to the bin-packing

problem. In this case, the tasks are the objects to pack, of size equal to their

utilization factor. The bins are processors with a capacity equal to the

schedulability bound for the chosen algorithm (1 for EDF). The bin-

packing problem is known to be NP-Hard in the strong sense [GJ1979].

Hence, optimal partitioning is very unlikely to be computed online due to

2.7 Multiprocessor real-time scheduling

34

the run-time overhead which would be involved. In these cases, the

partitioning is typically performed separately as an off-line stage, and only

the m instances of the chosen uniprocessor algorithm are computed online.

Alternatively, fairly good approximation algorithms are known for bin-

packing [BC2003, Ken1996]. However these do result in a loss of

optimality and might be unable to schedule task-sets that are schedulable

using offline optimal partitioning strategies [BLOS1995, CJGJ1978,

DL1978, SVC1998]

Furthermore, in dynamic systems, where new tasks may join the system at

runtime, partitioning is problematic since the arrival of a new task in the

system might require to re-partition the entire task-set, hence incurring in

non-negligible runtime overhead.

Figure 7: Examples of possible schedules of a task-set produced by: (a) a partitioning

algorithm, (b) a full migration algorithm, (c) a restricted migration algorithm.

2. Background and related work

35

The biggest problem of partitioning, however, is that it is inherently

suboptimal when scheduling periodic tasks. For instance, consider a slight

variation of the previous task-set as depicted in Figure 8 with the same 3

tasks, with the same periods of respectively of 4, 5 and 10 time units, but

slightly different computation times of, respectively, 2, 3 and 6 time units.

It might be immediately noted that even if the total utilization factor has

not changed, this time no partitioning scheduling algorithm can be able to

schedule this task-set on a system with m < 3 processors, since the

computational demand of any possible subset of 2 (or more) tasks will

exceed the computational capacity of a single processor (1.0).

Figure 8: A slightly different version of the former example,

not schedulable anymore with a partitioning approach.

From a theoretical viewpoint, the utilization bounds known so far (thus the

guarantee of being able to schedule a task-set with a given utilization

factor) for the partitioning versions of RM (p-RM) and EDF (p-EDF) are

conservative. In general, no partitioned algorithm has a worst-case

utilization on m processors larger than (m + 1) / 2. To see why, note that m

+ 1 tasks, each with utilization of (1 + ε) / 2, cannot be partitioned on m

processors. As ε tends to 0, the total utilization of such a task-set tends to

(m + 1) / 2 [BC2003].

In general, better utilization bounds can be found when introducing

restrictions on per-task utilization. Supposing that Umax is the maximum

utilization of any task in the task-set, any task can be assigned to a

processor that has a spare capacity of at least Umax. This implies that, if a

set of tasks is not schedulable, then every processor must have a spare

capacity of less than Umax. Hence, the total utilization of such a task-set is

more than m(1 - Umax) + Umax. Equivalently, any task-set with utilization of

2.7 Multiprocessor real-time scheduling

36

at most m – (m – 1) Umax is schedulable. In [LGDG2000] Lopetz et al. have

used bin-packing techniques to slightly improve this bound, proving that

the worst bound achievable on m processors is (ß m + 1) / (ß + 1), where ß

= ⌊1/ Umax⌋

Full migration algorithms (often known in literature as global scheduling

approaches), on the other side, generally provide better performances,

achieving higher utilization factors, especially in bounded tardiness soft

real-time systems [ABD2005, DA2008, EDB2010]. However, they make

the assumption of an underlying SMP platform, in order to handle a shared

tasks queue and perform inter-processor job migration.

No-migration policies, conversely, may be applied, at least from a

conceptual viewpoint, on both SMP and AMP platforms, since they

substantially operate as a multiplicity of legacy uniprocessors.

As AMP turns out to be the only architectural scheme supported in most

low-power embedded MPSoCs, many studies are currently being

undertaken, some investigating on partitioning approaches [NVC2010,

XWB2007, KBDV2006], others aiming to extend SMP facilities to AMP

platforms [HBK2005, HCMP2007]. Although the latter prove to be

functionally correct, the overhead they introduce is not negligible and the

overall platform does not scale well as the number of cores increases.

A reference paper which analyzes the viability of supporting sporadic real-

time task-sets on SMP platforms, taking into account also the resulting

overheads, is represented by [BA2009], conducted by Brandenburg and

Anderson at the university of North Carolina at Chapel Hill (USA). To

facilitate this line of research, the UNC’s Real-Time Group has developed

an open-source project called LITMUSRT (Linux Testbed for

Multiprocessor Scheduling in Real-Time systems), an extension of the

Linux kernel for benchmarking multiprocessor scheduling algorithms on

SMP hardware platforms supported by Linux.

In [CLB+2006], Calandrino et al. used LITMUSRT to evaluate five well-

known multiprocessor real-time scheduling algorithms on a four-processor

(non-multicore) 32-bit 2.7 GHz Intel Xeon SMP platform. On this small

SMP platform, with relatively large private L2 caches, each tested

algorithm proved to be the preferred choice in many of the tested

2. Background and related work

37

scenarios. In particular, global algorithms outperformed partitioned

algorithms in supporting SRT workloads.

In [BCA2008], Brandenburg et al. analyzed the scalability of several

global and partitioned algorithms. This evaluation was conducted on a

much larger and slower multicore platform: a SUN Niagara with a small

single shared L2 cache and 32 logical processors, each with an effective

speed of 300 MHz. As before, each tested algorithm was found to perform

better than the others for some subset of the considered scenarios.

Particularly, it was observed that global algorithms are heavily affected by

run-queue related overheads.

In [BA2009], Brandenburg and Anderson evaluated seven possible

implementations of G-EDF in LITMUSRT on the above-mentioned Niagara

platform. Tradeoffs involving different synchronization schemes for the

scheduler’s data structures were found to significantly impact

schedulability.

Restricted migration policies have received less attention. In [BC2003,

FB2004] a restricted-migration variant of the earliest deadline first

algorithm (r-EDF) is proven to be not worse than the highest known

utilization bound for global fixed priority scheduling.

Finally, it is also worth noting that non-preemptive versions of global

policies, as NP-G-EDF [Bar2006, KM2005] still fall in the case of

restricted-migration policies.

Restricted migration policies can bring significant benefits even for very

simple real-time applications as the one depicted in Figure 9, which

considers the scheduling of three tasks (the parameters associated to each

task represent, respectively, its computation time, period and resulting

processor utilization) on a 2-way multiprocessor system. It is evident that

no-migration policies are not able to feasibly schedule this task-set since

the utilization factor of any pair of tasks exceeds the computational

capacity of a single processor.

However, an r-EDF policy could be able to schedule successfully the

application meeting all deadlines, as shown in Figure 9.

2.8 Real-Time operating systems

38

T1 {1, 2, 0.5}

T2 {2, 3, 0.66}

T3 {3, 4, 0.75

 Time 1 2 3 4 5 6 7 8 9 10 11 12

Legend Ready Running (core 1) Running (core 2)

Figure 9: Schedule of a sample application using r-EDF.

2.8. Real-Time operating systems

Operating systems play a key role in the software organization of an

embedded system. The main purpose of an operating system is to provide

software application developers with uniform and high level interfaces that

abstract, as much as possible, the details of the underlying hardware

platform.

The variety of services offered by modern operating systems is so wide

that even a simple enumeration of their salient aspects is impracticable and

would probably require more than the overall length of this thesis, going

far beyond the purposes of this work. Instead, if we narrow the scope to the

real-time systems scenario, the subset of interfaces and services has a

definitely lesser extent. There are, in fact, few but fundamental building

blocks that are nowadays considered a must, in order to classify an

operating system as real-time.

Process model

The main requirement of an embedded system is to carry out several

concurrent activities that must react, within firm deadlines, to a wide

number of synchronous and asynchronous inputs. In the era of PLC and

bare-metal microcontrollers (which is not yet faded away at the time this

thesis is being written), a software pattern typically employed to handle

this concurrency is represented by the cyclic executive pattern [Mac1980].

The principle of cyclic executive lays in organizing the software into

multiple sub-programs (tasks), smaller, still sequential, portions of code

that handle a single activity, processing the corresponding inputs and

producing the relative outputs. The sub-program partitioning itself,

however, is not a great deal. The challenge, instead, is represented by the

2. Background and related work

39

fundamental requirement that, in order not to break the model and ensure

the timeliness of the overall system, the code of all these tasks must be

strictly asynchronous, i.e., non-blocking.

The ever-increasing complexity of modern embedded applications,

however, make the pure-asynchronous software modelling an extremely

hard task for application designers. Furthermore, single-threaded patterns

like the cyclic executive lack any form of isolation, thus, a single task

holding the CPU for more than expected (or even worse, stuck in a loop)

have catastrophic consequences on the operation of the overall system.

For such reasons, a desirable feature for modern RTOSs is represented by

multitasking support. Multitasking itself is definitely not a new concept,

nor an exclusive prerogative of RTOSs, and it is not in the aim of this

thesis to discuss the details of its operational principles. What is more

interesting to highlight instead is that, from the software viewpoint, there

are different ways in which multitasking can be achieved, commonly

referred to as process models.

• Heavy process model, inspired to BSD-style processes. Each process is

an independent execution unit, with a private address space and a

private set of resources (files, I/O apertures, etc.). This model offers the

strongest guarantees in terms of isolation between processes, ensuring

that in cases of unhandled faults, only the process causing the fault is

aborted and its resources are properly cleaned up by the operating

system. However it has two main drawbacks: resource sharing between

processes, a feature often desirable, is more complex and expensive;

context switching between processes is generally more expensive

compared to the other models (for instance in x86/amd64 architectures

it further implies a flush of the TLB cache, and in many ARM

architectures with virtually-indexes-virtually-tagged caches and no

MVA support it requires also flush of the data and instruction caches) .

• User Threads model, sometimes also referred to as lightweight process

model. Each thread is still an independent execution unit with its own

context, but shares its address space and most of the resources with

other threads. This model is more flexible than the heavy processes

one, allowing transparent sharing of resources and more lightweight

2.8 Real-Time operating systems

40

inter-thread coordination patterns, requires generally less context

switch overheads, but is definitely less dependable, since an unhandled

exception in a thread causes the abort of all the other threads in the

same address space.

• Kernel threads model, is an extremization of the former case, in which

all threads are executed in kernel space. It offers great advantages in

terms of performances, since the overhead for invoking system calls is

almost zero, and the context switch between threads is extremely fast,

since all the system threads share the same address space with the

kernel. At the same time this model is extremely dangerous since a bug

in any part of the application can corrupt the kernel data structures and

jeopardize the reliability of the entire system. This, however, does not

stop it being very used in many low latency mission critical systems.

In general, the three models just briefly presented, are not exclusive, and

many RTOSs offer all of them, though with completely different interfaces

not exchangeable with each other.

Since the principles that will be discussed in this thesis are orthogonal to

the particular process models, which is mainly a design choice of the

application designer, the term process will be generically used to identify

the runtime abstraction provided by the operating system, without a

particular reference to heavy processes or user/kernel threads.

Besides the specific process model, the strong difference between general-

purpose and RTOSs is represented by process scheduling. While the

former try to ensure fairness among ready processes, often using very

complex yet effective metrics to do that (e.g. I/O ratio, scheduling history,

interactivity with the user, etc.), RTOS schedulers obey more simple but

very strict rules.

In a RTOS each process is associated to a priority level, typically a number

within a predetermined range, which in the most RTOSs can be changed at

runtime through a dedicated system call. At any time the RTOS must

ensure that the ready process (the m ready processes in the case of a SMP

RTOS) with the highest priority must be running on the CPU(s). On this

(and some others discussed later) apparently simple principle, that takes

the name of static priority driven scheduling, relies most of the theory of

2. Background and related work

41

real-time systems and the operations of the most mission-critical

applications.

The reasons why the application of this principle is not as simple as it

might seem, are manifold: in the case of SMP, such requirements imply

that the RTOS must be able to coordinate the processors and migrate

processes among them at any time; secondly, ensuring strict priority-driven

scheduling becomes very challenging in presence of events that alter the

nominal execution flow of processes, such as critical sections, waiting

queues, signals and message exchanges.

Synchronization primitives

Another fundamental requirement for a RTOS is represented by inter-

process synchronization primitives. Many aspects are involved into the

synchronization topic. The most evident is undoubtedly represented by

critical sections and the corresponding patterns to deal with those, which

are semaphores and derivatives (e.g., mutexes). Again, semaphores are not

an exclusive prerogative of a RTOS, as synchronization is a more general

need in many other software engineering fields. The key difference, for a

RTOS, is represented by the way critical sections are handled by the

scheduler (for instance the order in which processes pending on a

semaphore should be awaken when a post operation is performed). General

purpose operating systems typically don’t follow strict rules, or try to

balance fairness also in these situations. In RTOSs, instead, many concerns

affect the operations of semaphores. At first, a typical requirement of most

real-time applications is to respect the process priority scheme when

awakening processes pending on a semaphore. Furthermore, another

important issue related to critical sections is represented by priority

inversion.

Priority inversion is a problematic scenario that occurs when a high

priority task is pending on a critical section which is currently acquired by

a low priority task, and that low priority task is pre-empted by a third task

which has an intermediate priority (Figure 10). This scenario, apparently

legitimate at first glance, causes a scheduling paradox in which a high

priority process is effectively pre-empted by a lower priority process (the

2.8 Real-Time operating systems

42

medium priority one), which can have a severe impact on the response

times of a real-time system.

Among the many approaches that can be adopted to avoid the extent of this

problem, a simple one is represented by priority inheritance [SRL1990].

Priority inheritance is a feature required to RTOSs, which provides that the

priority of a process executing in a critical section (PL in the example of

Figure 10) is temporally raised when one or higher priority processes are

pending on the same critical section, to the highest of those priorities. This

allows reducing the waiting time for many cases as the one being

considered in the example, and more importantly, keep it under an upper

bound that can be determined analytically, provided that the dynamic of

the processes is known.

Figure 10: A sample instance of a priority inversion problem.

Critical sections, however, are not the only form of inter-process

synchronization, interesting mainly the shared-memory software scenarios.

In the case of more loosely coupled interaction, for instance in client-server

scenarios, another fundamental mechanism part of most RTOS set of

services is message queuing. Message queues are an inter-process

communication mechanism that allows many-to-one interaction by means

of message exchange.

While the implementation details (like the length and granularity of the

messages) usually change from RTOS to RTOS, the main operating

principle holds among the various platforms. A message queue is a

conventional queue that is typically initialized by the server with a

Running Running in critical section Ready x Pending

2. Background and related work

43

predetermined maximum length. Messages are typically enqueued in the

queue according to two patterns: conventional first-in-first-out (FIFO), or

priority-based. In the latter case, the message queue behaves exactly as a

priority queue: each message is inserted in the queue with a specific

priority, and the consumer peeks always the message with the highest

priority. The critical issue, from the scheduling viewpoint, is represented

by the enqueue case when the queue is full. In the case of synchronous

(blocking) enqueueing, the RTOS must ensure that processes blocked on

the queue are awakened according to their priority. Many variants of

message queues are typically found in modern RTOS, as for instance byte-

oriented message-queues (pipes), or variable length and loosely time-

coupled mailboxes.

Timers

A third key aspect of RTOS is represented by timekeeping. For the most

time-driven real-time applications, timers represent a fundamental building

block. It is very common that a real-time application can need more timers

than the effective availability of the hardware platform. In this regard, a

RTOS must be able to handle a large number of software timers using a

small number of hardware timers. Typically RTOS make a distinction

between coarse grained timers, timers with large timeouts which don’t

need a precise accuracy (for instance most network and I/O timeouts) and

high resolution timers (typically below the millisecond range). A detailed

discussion about timekeeping is postponed to Chapter 4.

2.9 IEEE POSIX standards for real-time applications

44

2.9. IEEE POSIX standards for real-time applications

The POSIX Portable Operating System Interface is a collection of

standards developed by IEEE that define application program interfaces

(APIs) for accessing operating systems services, aimed to provide a

platform-independent abstraction layer for maintaining compatibility

across different operating systems. POSIX specifications consists in 27

documents grouped in 3 sets: (1) POSIX core services (kernel APIs for

process creation and control, signals, exceptions, timers, pipes, I/O); (2)

POSIX commands and utilities (user portability extensions, corrections and

extensions, protection and control utilities and batch system utilities); (3)

POSIX Conformance testing.

Here is a list of the standards defined by POSIX:

 IEEE 1003.0 Guide to POSIX

 IEEE 1003.1 System API (C language)

 IEEE 1003.1a System API extensions

 IEEE 1003.1b Real-time and I/O extensions

 IEEE 1003.1c Threads (was: POSIX.4a)

 IEEE 1003.1d More real-time extensions

 IEEE 1003.1e Security extensions, ACLs

 IEEE 1003.1f Transparent network file access

 IEEE 1003.1g Protocol independent communication, sockets

 IEEE 1003.1h Fault tolerance

 IEEE 1003.1i Technical corrections to POSIX.1b

 IEEE 1003.1j Advanced real-time extensions

 IEEE 1003.1k Removable media API

 IEEE 1003.1m Checkpoint/restart

 IEEE 1003.1n Fixes to .1,.1b,.1c,.1i

 IEEE 1003.1p Ressource limits

 IEEE 1003.1q Trace

 IEEE 1003.2 Shell and common utility programs

 IEEE 1003.2a More tools and utilities

 IEEE 1003.2b More utilities

 IEEE 1003.2c Security utilities

 IEEE 1003.2d Batch processing utilities

 IEEE 1003.2e Removable media utilities

 IEEE 2003 Test methodology (was POSIX.3)

 IEEE 2003.1 Test methods for POSIX.1

 IEEE 2003.1b Test methods for POSIX.1b

 IEEE 2003.2 Test methods for POSIX.2

2. Background and related work

45

In 1993, the POSIX. 1003.1b (formerly 1b-1993) has introduced new

definitions and APIs for dealing with real-time applications. These new

POSIX extensions focus on the requirements of real-time applications and

high performance I/O. Many applications like interactive video games,

high performance database servers, multimedia players and control

software for all kinds of hardware require more deterministic scheduling.

POSIX Process model

As regards the process model, POSIX defines both the heavy process and

the users threads models. The interface specified by POSIX for processes

is pretty straightforward, consisting substantially into 3 families of system

calls: exec, fork and wait, which handle respectively, process creation,

duplication (spawning a process which share the same code with the

parent, but with a dedicated address space) and wait for termination. The

listing below shows a brief sample of a multitasking application realized

using fork and wait primitives:

1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <unistd.h>

4. #include <sys/types.h>

5.

6. int main(int argc, char* argv[]) {

7. /* Opaque type for pid encapsulation */

8. pid_t child;

9.

10. /* fork a new child */

11. child = fork();

12. if (child != 0) {

13. /* Parent code */

14. /* Waits for child completion */

15. int status = 0;

16. waitpid(&status);

17.

18. printf("Child with pid=%d “

19. “exited with status code %d\n",

20. child, status);

21. } else {

22. printf("Child started with pid=%d\n", getpid());

23. }

24. return 0;

25. }

2.9 IEEE POSIX standards for real-time applications

46

While the isolated memory address space represents a winning strategy for

ensuring robustness and reliability of applications, it soon turns out to be a

very limiting and expensive choice when the taking into account the

necessity of associating different concurrent execution flows to the same

address space for sharing resources.

For such reasons, POSIX introduces also the concept of threads (usually

abbreviated with the term pthread) [DM2003]. A pthread cannot be

instantiated as standalone item, rather it must be created within a process,

which marks the isolation boundaries for the memory address space and

resource pool that all its thread will share.

From the scheduling viewpoint, a thread represent the elementary

scheduling unit perceived by the operating system. In order to keep this

design choice consistent with the process model, each process upon

creation is implicitly associated to a thread, corresponding to the main()

process’ entry point.

Dedicated primitives allow the instantiation, signalling and

synchronization of threads, respectively: pthread_create,

pthread_interrupt and pthread_join. The listing below shows a brief

example of a multithreading which uses POSIX threads.

1. #include <pthread.h>

2. #include <stdio.h>

3. #include <stdlib.h>

4. #define NUM_THREADS 5

5.

6. /* Entry point where each thread starts its execution */

7. void* thread_entry(void* arguments) {

8. printf("This is thread #%ld\n", pthread_self());

9. do_some_work();

10. pthread_exit(NULL);

11. }

12.

13. int main (int argc, char* argv[]) {

14. /* Array of thread descriptors */

15. pthread_t threads[NUM_THREADS];

16.

17. /* Starts a number of threads */

18. for(int i = 0; i < NUM_THREADS; i++) {

19. /* pthread_create instances a new thread */

20. rc = pthread_create(&threads[i], NULL,

21. thread_entry, NULL);

2. Background and related work

47

22.

23. /* Check for errors */

24. if (rc) {

25. perror("pthread_create() failed.");

26. exit(rc);

27. }

28. }

29.

30. /* Waits for completion of all threads */

31. for(i=0; i<NUM_THREADS; i++)

32. pthread_join(threads[i], NULL);

33.

34. return 0;

35. }

Besides the process model, real-time extensions include also rigid

standards that define how thread executions should be handled by the

operating system. POSIX defines a static priority-driven scheme, in which

each thread is associated to a priority level, in the range 0 (lowest) to 99

(highest). Three main scheduling classes are envisaged by the standard,

namely, SCHED_FIFO, SCHED_RR and SCHED_OTHER.

SCHED_OTHER is the custom operating system’s time-slicing scheduler used

for non-real-time threads, which are assigned a symbolic static priority of 0

(most operating systems typically define further private mechanisms for

handling scheduling of non-real-time processes, like Linux’s nice value).

SCHED_FIFO and SCHED_RR, conversely, are intended for real-time

scheduling. Both can only be used with priorities higher than 0, which

means that when a real-time thread becomes ready, it will always pre-empt

immediately any other non-real-time thread.

Both SCHED_FIFO and SCHED_RR define conventional static priority

scheduling policies as previously introduced in this chapter. When a thread

belonging to one of these classes becomes ready, it is inserted at the end of

the list for its priority level. A change of the priority class or level, through

the, sched_setscheduler or sched_setparam system calls, will put the

2.9 IEEE POSIX standards for real-time applications

48

thread at the start of the list, if it is ready, allowing it to pre-empt the

currently running process if it has the same priority 3.

A call to sched_yield has the effect of moving the caller thread at the

end of the list for its priority level. No other events move a thread

belonging to the SCHED_FIFO class in the priority list, thus a ready thread

runs until either it is blocked (e.g., for an I/O request or for a mutex), it is

pre-empted by a higher priority thread, or it calls sched_yield.

SCHED_RR is a simple variant of SCHED_FIFO, that adds a further round-

robin semantic for ready threads on the same priority level, introducing the

concept of scheduling quantum. A ready thread belonging to the SCHED_RR

class is executed for a maximum time equal to the scheduling quantum,

after which it is moved at the end of the list for its priority level. A

SCHED_RR process that has been pre-empted by a higher priority process

and subsequently resumes its execution, will complete the unexpired

portion of its quantum and then yield. The length of the scheduling

quantum for SCHED_RR threads can be retrieved using the

sched_set_interval system call. Unfortunately, POSIX does not specify

any mechanism for controlling the size of the round-robin time quantum.

Typically, POSIX compliant operating systems define proprietary (non-

portable) system calls to change it.

POSIX real-time signals

A first basic inter-process communication mechanisms defined by POSIX

standards is represented by signals. Signals are primarily meant as a

notification mechanism, such as exception handling or asynchronous

interrupts. Signal delivery in POSIX is on per process basis. A process can

signal another process to synchronise and communicate. Each process can

define several service functions for registered signals, called signal

handlers. When the system delivers a signal to the process, the signal

handler is executed asynchronously, in practice implementing in user-

3 In this regard there is a mismatch between POSIX 1003.1 and the behaviour of some

operating systems. The standard specifies that the thread should be placed to the end of

the list.

2. Background and related work

49

space the idea of immediate and asynchronous interruption, just like

interrupt handlers do inside kernels.

Each signal in POSIX is associated to an integer value. Many POSIX

signals are pre-defined and used, in an implementation-dependent way, by

the operating system. The user, however, has the possibility of defining

custom signals for its own purposes and register them to custom signal

handlers.

Standard POSIX signals can be generated via the kill primitive. A

process can request a signal be sent to itself: when a timer expires (i.e.

SIGALRM), when asynchronous I/O completes, etc.

The main issue of regarding conventional POSIX signals is that they are

unreliable: in most implementations, a signal can be definitely lost if the

process is executing a signal handler which has masked that signal.

Furthermore, the delivery behaviour is not specified in the standard,

leaving to the operating system implementing the standard the freedom of

choosing the delivery order and time. For such reasons, in the 1003.1b

real-time extensions, a new subset of signals with a more strict semantics

have been standardized. The new standards introduces a minimum number

of 8 application-definable real-time signals, are numbered from SIGRTMIN

to SIGRTMAX. Only those signals whose numbers lie between the two are

considered real-time.

For those signals, POSIX introduces reliability guarantees, specifying that,

conversely to what happens with traditional UNIX signal, a signal must be

enqueued if the target process cannot accept it (the signal is masked), and

delivered as soon as the process unmasks it, following the priority of the

signal. Furthermore, real-time signals can optionally carry user-defined

extra data, by means of a dedicated pointer to the siginfo_t struct,

conversely to traditional signals that have only one numeric parameter

carrying the number of the signal. This additional structure contains the

signal number, a code which indicates the cause of the signal (for example,

a timer signal) and an integer or pointer value. This capability increases the

communication bandwidth of the signal mechanism. As an example, a

server can use this mechanism to notify a client of the completion of a

requested service and pass the result back to the client at the same time.

2.9 IEEE POSIX standards for real-time applications

50

Real-time extensions provide a new and more responsive synchronous

signal-wait function called sigwaitinfo. The function suspends the

calling process until the specified signal is received. To use this function,

the signal must be blocked, in order to avoid triggering the asynchronous

handler. Similarly, the primitive sigtimedwait has the same semantics as

sigwaitinfo, but allows to specify a timeout, returning an error code if no

signals are received by the timeout.

Despite this strong semantic, however, signals are still too inflexible as a

communication mechanism for many real-time applications. The reason

lies mainly in the limitation of the number of the definable signals, the

length of the queue not controllable by the user, and more importantly,

their limited compliance only with the heavy process model, but not with

the finder grained pthread model (signal handlers are process-wide).

There are few occasions in which signals are an appropriate

communication mechanism, for instance, for rare but urgent notifications

that require an asynchronous interrupt for the process or for dealing with

timers.

POSIX message queues

For such reasons, POSIX defines another communication mechanism, less

complex compared to signals, but more flexible as regards also inter-thread

communication, that is message queues. POSIX message queues allow an

efficient, priority-driven IPC mechanism with multiple readers and writers,

for many aspects similar to the concept of named pipes. Conversely to

named pipes, however, message queues have internal structure. More

importantly, message queues are priority-driven. Whenever a writer sends

a message to a queue, a priority is specified for that message. The queue

will remain sorted such that the oldest message of the highest priority will

always be the first one picked by the receiver.

The user has control over the geometry of a message queue. When a

message queue is initialized, the user can define the maximum length of

the message queue, and the maximum size allowed for messages, bounding

a priori the memory required in the worst-case scenario.

2. Background and related work

51

A process can determine the status of a message queue, conversely to

pipes, where the of the channel is unknown to the endpoints. With message

queues, a process can determine how many messages are outstanding on

the queue, the boundaries of the queue and the number of processes that

are blocked for sending or receiving.

Like pipes and FIFOs, all message queue operations are performed based

on message queue descriptors (mqd_t). Message queues are created and

opened using the mq_open system call. The returned descriptor is used to

refer to the open message queue in later calls. Each message queue is

identified by a unique identifier. Different processes or threads can operate

on the same queue by passing the same name to the mq_open call.

Messages are transferred to and from a queue using mq_send and

mq_receive. When a process has finished using the queue, it closes it

using mq_close, and when the queue is no longer required, it can be

deleted using mq_unlink.

The code listing below shows a brief example of use of POSIX message

queues.

1. #include <mqueue.h>

2. #include <stdio.h>

3.

4. #define MSG_SIZE 4096

5. #define MSG_PRIORITY 0

6.

7. void main () {

8. struct mq_attr attr;

9. mqd_t mq;

10. char buf[MSG_SIZE];

11. unsigned int prio;

12.

13. // Set up the queue attributes

14. attr.mq_maxmsg = 100;

15. attr.mq_msgsize = MSG_SIZE;

16. attr.mq_flags = 0;

17.

18. // Open the queue.

19. mq = mq_open("/queuename", O_RDWR | O_CREAT, 0, &attr);

20.

21. /* Producer-side code */

22. mq_send(mq, &buf[0], MSG_SIZE, MSG_PRIORITY);

2.10 Linux as a real-time operating system

52

23.

24. /* Consumer-size code */

25. while (mq_receive(mq, &buf[0], MSG_SIZE, &prio) != -1))

26. {

27. printf ("Received message, priority: %d.\n", prio);

28. }

29.

30. // Close the message descriptors.

31. mq_close (mqdes);

32. mq_unlink(“/queuename”);

33. }

2.10. Linux as a real-time operating system

Many developers, in the last years, have been adding real-time support to

Linux, trying to fill the major gap in its capabilities for real-time

processing. According to a recent end-user survey [Gee2004], in the last

quarter of 2004, Linux owned the highest percentage of new embedded-

development projects of any operating system.

A number of real-time extensions of Linux have been proposed and

implemented during the last years, for instance the compliance with

POSIX 1003.1b interfaces previously introduced. In addition, further

features such as high-resolution timers, priority inheritance, and

shortened non-preemptible kernel sections, which enhance kernel

responsiveness, have been also recently introduced [DW2005].

However, despite its high numbers in the embedded systems panorama,

Linux is not yet strictly classifiable as a RTOS. A key concern for a RTOS

is represented by latency, that is, the delay that might take place between

the triggering of an event and the time the corresponding software

application actually processes it. For instance, in the case of hardware

device drivers, the amount of time that elapses between an interrupt request

and the execution of the associated handler, called interrupt latency.

Many factors can contribute to latency, either hardware-related (bus

contentions, DMA operations, cache misses) or software-related (interrupt

masking). While the former mostly depend on the choice of a proper

hardware platform, the latter require a dependable operating system that

guarantees at design-time bounds on them.

2. Background and related work

53

At the time this thesis is being written, Linux, despite its popularity in the

embedded system panorama, is not yet able to make strong guarantees on

latency bounds. The main reasons for this are the non-negligible

complexity level that the Linux kernel has reached after years of

development, and the fact that it still inherits (and it will very likely

continue to do in the future) many design choices oriented to optimize its

performances in the average case behavior, as a general-purpose operating

system, at the price of non guaranteed worst-case scenarios (for instance,

there is no strict guarantee for how long a non-preemptible kernel section

can delay the execution of a real-time process).

All these considerations, however, do not necessarily mean that Linux is

‘bad’ for real-time (and its numbers, in fact, contradict this). Undoubtedly,

it is not the top choice for hard real-time and mission critical systems, and

for real-time systems with timing requirements below the seconds range in

general. However, the amazing speed of modern processors, nowadays

often higher than the computational demands of the most embedded

applications, tend to hide the impact of the kernel unpredictability, making

Linux still an optimal compromise, especially for the world of soft real-

time systems.

There have been many different approaches to real-time in Linux through

the years, most of them made by third-party companies aiming at provide

commercial version of Linux tailored for embedded systems.

Early co-kernel approaches

The earliest solution found for adding real-time capabilities to Linux was

represented by co-kernel approaches, that is, running a small non-Linux

real-time kernel side-by-side with the Linux one on the same hardware,

instead of turning the standard kernel into a RTOS.

The basic principle of a co-kernel design is that the real-time co-kernel,

which is responsible of the critical real-time activities for the system, has

the precedence over the Linux kernel, handling all the interrupt requests (in

particular timer ones), and re-dispatching them to the Linux kernel,

deferring their execution with respect of the other real-time tasks. Thus, all

device interrupts must go through the co-kernel before they can be

2.10 Linux as a real-time operating system

54

processed by Linux, so that the latter cannot delay the execution of the

real-time tasks, ensuring predictable response times. Sometimes this

interrupt re-dispatching, which can sound expensive for the performances

non real-time application, can be optimized in presence of programmable

interrupt controllers with different priority levels.

Practically speaking, a co-kernel is usually available as a set of modules,

which are either dynamically linked or compiled in the Linux kernel tree,

like a regular driver. Some implementations (notably RTAI and Xenomai)

support the execution of real-time software in user space just like any

regular application. Others (notably RTLinux) require real-time

applications to be embodied in kernel modules.

Co-kernel designs exhibit great advantages in terms of predictability and

isolation of the real-time applications from the unpredictable behaviour of

the Linux kernel. However, such isolation have major impacts on the

software design process. Since the Linux kernel is treated as untrusted

(from the timing viewpoint), real-time applications (either in user or kernel

space) are restricted to use only the real-time co-kernel services and system

calls. In other words, the whole set of regular Linux drivers and libraries

(which typically represent the first reason that leads towards the choice of

Linux) cannot be used for real-time applications, unless forked and ported

to work, in a predictable manner, in the co-kernel. For the same reason,

many user-space libraries (for instance the GNU standard C library itself)

cannot be relied on, since they can cause unexpected latencies due to their

invocations of Linux kernel system calls. This strongly affects the

programming model and the design complexity of real-time applications,

basically keeping the benefits of Linux only for the subset of non real-time

tasks in the application.

The Linux-RT approach

A more interesting approach for real-time in Linux is represented by the

RT (formerly CONFIG_PREEMPT_RT) patch-set, currently part of the

official Linux kernel tree. This solution, that appeared in 2004 as a patch

for the Linux 2.6 kernel, introduced full pre-emption (not enabled by

default) to the Linux kernel, aiming to turn it into a native RTOS.

2. Background and related work

55

The approach used for enabling full pre-emption to the original Linux

kernel (and its huge set of drivers) relies on two major changes: (i) all the

critical sections based on spinlocks (and rw-locks) are automatically turned

into semaphore-based equivalents, making those critical sections pre-

emptible; (ii) All the interrupt handlers (with a few exceptions, as the timer

ones) are turned into kernel threads. The advantage of this choice is that

non-critical interrupt handlers can be set to a lower priority than more

critical real-time tasks, thus avoiding unexpected latencies.

The RT patch strives to covert the Linux kernel into a full RTOS with few

modifications, without changing its original general-purpose design. For

most applications that need real-time determinism, the RT-Linux kernel

provides very adequate services. However, many mission-critical

applications that also require reliability guarantees and software

certifications, the Linux kernel, with or without the RT patch, is not

sufficient. In contrast, it turns out to be an excellent compromise for most

of the remaining non mission-critical real-time scenarios, such as robotics

and many industrial control systems.

Real-time scheduling in the Linux kernel

As regards scheduling, the design of the Linux kernel reflects in many

aspects its conformance to POSIX standards. The elementary scheduling

unit in Linux is represented by a thread. A thread can correspond either to

a user-space POSIX thread or to a process, or a kernel space thread (and

derivatives, such as work queues). From the scheduling viewpoint, these

three concepts are indistinguishable inside the kernel scheduler, since they

are treated exactly in the same way.

In order to handle the schedule of its threads, the Linux kernel introduces

several scheduling classes, three for non real-time applications, namely

SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, and two for real-

time targets, exactly as provided by the POSIX standard, SCHED_FIFO,

SCHED_RR.

SCHED_NORMAL is the POSIX equivalent of SCHED_OTHER, and is

the default class associated to any process. The scheduling of

SCHED_NORMAL threads is carried out through the completely fair

2.10 Linux as a real-time operating system

56

scheduler (CFS), a scheduler (which replaced the former O(1)-scheduler

since Linux 2.6.23) that strives to distribute fairly the CPU using an

approach very similar to the fair queuing algorithm used in network packet

scheduling [DKS1989]. The fairness of the CFS scheduler (which details

are not covered in this thesis, since irrelevant for real-time purposes) can

be biased by means of a nice level. A common misconception, which is

worth clarifying, is that the nice level is a concept related exclusively to

non real-time processes/threads.

Conversely, real-time threads, associated to the SCHED_FIFO and

SCHED_RR classes, are handled by a separate scheduler (that in this thesis

is referred to as Linux RT scheduler), which recalls from many aspects the

former O(1) scheduler.

The Linux RT scheduler is organized as a distributed scheduler, arranged

in so-called runqueues. A runqueue is a data structure that holds, from a

logical viewpoint, the information about the tasks enqueued on a processor,

grouped by priority levels. Such information, however, is encoded in a

redundant fashion (soon explained in its details). The purpose of the

redundancy is to minimize the time required for the various operations of

the RT scheduler.

Each of the m runqueues (struct rt_rq) holds, among other things:

• An array of 100 doubly-linked lists (one for each priority level),

called the active threads array. Each list of the array holds the

threads enqueued on that particular processor for that particular

priority level.

• A bitmap of 100 bits, where each bit reflects the presence or

absence of one or more tasks in the corresponding list of the active

array.

• An integer value (highest_prio) which reflects the priority of the

highest-priority thread enqueued in that runqueue (that corresponds

to the index of the most significant high bit in the bitmap)

A further global structure (struct cpupri) holds summary information

about the processors state. In particular it holds:

2. Background and related work

57

• A bitmap (pri_active) of 100 bits, where each bit reflects the

presence of absence of one or more tasks with that priority in any

of the m runqueues (ideally is the logical or of the m runqueue

bitmaps).

• An array of m integer values (cpu_to_pri) which reflects the

priority of each processor, which can be INVALID; IDLE,

NORMAL, RT1...RT99 (INVALID is typically used when the

processor disabled).

• An array of 100 bitmaps (pri_to_cpu), where each bit reflects, for

each priority level, the presence of a CPU with that priority.

The basic idea behind this complex distributed organization is to try to

avoid, as much as possible, contention when several processors take

scheduling decisions at the same time, reducing the length of global (inter-

processor) critical sections.

Multiprocessor scheduling of threads in the RT scheduler, is handled by

means of two fundamental operations, called push and pull, the purpose of

which is to re-establish the global priority ordering after threads are

inserted and removed into the runqueues, and ensure that, at any time, the

m threads with the highest priority are executing.

The logic behind the RT scheduler is that any event that causes a

modification of the runqueues, subsequently invokes push and/or pull

operations to complete the reschedule. For instance, when a thread

becomes ready for execution (e.g., because a semaphore on which it was

pending is posted), it is optimistically inserted on a runqueue (which is

determined by a pre-balancing algorithm). However that runqueue might

be running another thread with a higher priority (thus not suitable for being

pre-empted), while another runqueue might have been more suitable for

the new thread, e.g., because completely idle.

The push operation has the responsibility of (trying to) migrate to other

runqueues those threads which are not eligible to run on the current

runqueue due to a lower priority. There are several events that require a

push operation, for instance: (i) a thread being enqueued on a runqueue

which is currently running another higher priority thread; (ii) a thread

2.10 Linux as a real-time operating system

58

being pre-empted on a runqueue due to the schedule of another higher

priority thread; (iii) a thread which priority is being raised (through a

sched_setpriority call), but not enough to overtake the priority of the

running thread on that runqueue.

The push operation (which is invoked on a particular runqueue) looks at

the highest-priority non-running thread on the runqueue and then considers

all the runqueues to find a processor where it can run (i.e. a processor

which priority level is lower than the highest priority thread on the current

runqueue). If such a processor is found, the thread running on that

processor is pre-empted, and the thread is moved to that runqueue.

The global cpupri structure allows to make this decision without

interfering (read locking) the other runqueues. Critical sections are entered

only when the thread needs to be effectively moved across runqueues.

While searching for a new runqueue, the push operation looks first to the

processor on which the thread last executed, as it is likely to be cache-hot

in that location (or a closer one, in NUMA systems). The push operation is

repeated until a thread fails to be migrated or there are no more threads to

be pushed. Because the algorithm always selects the highest non-running

task for pushing, the rationale is that, if a thread cannot be migrated, then

the lower priority threads cannot be migrated as well.

The pull operation is symmetrical to the push, and is invoked consequently

to those events which cause one or more threads to be removed from a

runqueue, in order to determine the next highest priority thread that should

be executed on that processor. Such events are, for instance: (i) a thread

being not anymore eligible for execution (e.g. blocking on a I/O operation,

or pending on a semaphore); (ii) a thread which priority is being lowered.

The pull operation looks at all the status of the other runqueues (using

again the cpupri structure) and checks whether they have a thread with a

higher priority than the target runqueue and if that thread can run on the

target runqueue (according to its affinity mask). If so, the thread is queued

on the target runqueue. The pull operation may pull more than one task to

the target runqueue. The rationale is that if the pull operation selects only

one candidate thread to be pulled in the first pass and then performs the

actual pull in the second pass, there is a possibility that the selected

2. Background and related work

59

highest-priority thread is no longer valid, due to another parallel

scheduling operation on another processor. To avoid this race between

finding the highest-priority runqueue and having that still be the highest-

priority thread on the target runqueue, the pull operation pulls several

threads. In the worst case, this might lead to a number of threads which

would later get pushed off back to other processors, leading to task

bouncing. Task bouncing, however, is known to be a rare occurrence

[LJ2009].

2.10 Linux as a real-time operating system

60

3. X-RT: A portable framework for real-time scheduling

61

3. X-RT: A portable framework for real-time scheduling

3.1. Introduction

This chapter discusses the theoretical foundations, the design and the

guiding principles of an open-source cross-platform run-time framework

called X-RT, which has been developed as a part of this thesis work

[Tuc2012]. The aim of this framework is to provide real-time application

designers with high level and platform-independent APIs for handling

periodic real-time tasks and support advanced multiprocessor scheduling

policies, such as G-EDF. The X-RT framework acts as a scheduling

middleware which exploits, for its operations, only the common services

offered by mainstream RTOSs and their conventional static priority-driven

scheduler. Thus it can be easily ported to most of them (the current

implementation supports POSIX-compliant RTOSs), requiring no kernel-

level modifications to take advantage of modern multiprocessor scheduling

policies.

3.2. Motivations

Motivated by the outstanding possibilities offered by the new generations

of multi-core processors, which provide exceptional computational

capabilities in highly integrated embedded platforms, on one side, and by

the ever increasing computational demands of modern real-time

applications, constantly flanked by compelling timeliness requirements, on

the other side, this work aims at tackling the multiprocessor real-time

scheduling problem from an implementative viewpoint. While these topics

have received considerable attention in the scientific literature, especially

as regards theoretical aspects such as the study and analysis of efficient

scheduling algorithms, more practical considerations aiming at concretely

putting such algorithms into operation on current platforms and RTOSs

have a lesser extent.

The current software scenario counts a wide variety RTOSs, some, as

QNX or the many Linux flavors, endowed with a rich set of drivers and

services, others more lightweight and tailored for small scale and hard real-

time applications like VxWorks, FreeRTOS and µC/OS-II.

3.1 Related work

62

Many of those (such as Linux, VxWorks and QNX Neutrino) are

deployable on multiprocessor platforms. Unfortunately, they have been

developed without much regard to recent algorithmic advances on

multiprocessor real-time scheduling and resource allocation. For example,

dynamic global real-time scheduling policies are almost never available,

despite the fact that such policies are provably superior to conventional

(read static) scheduling policies in many ways [Bar2007, BBMS2010,

BCL2009].

When taking a look in detail at the services and interfaces exhibited by this

wide variety of RTOSs, a huge gap becomes immediately evident: while

offering remarkable extra-functional advantages, such as a formally

verified or safety certified software architecture [KEH+2009] or very fast

and time-bounded critical sections, when it comes to actual real-time

scheduling, most of them provide, surprisingly, a very limited support even

for the most common and recurring patterns.

The run-time model they exhibit, in fact, merely consists of a set of straight

processes whose execution is transparently carried out using a static

priority-driven scheduler, further supported by conventional

synchronization mechanisms and control system calls. Even the notion of

periodic execution is completely lacking, leaving to the designer the

burden of realizing these abstractions using low level mechanisms such as

timers and semaphores.

This mismatch between theory and practice cannot be blamed solely on

experimentalists. Indeed, in the last few years scores of papers have been

written on multiprocessor real-time scheduling algorithms, but working

implementations do not exist for many (if not most) of the algorithms that

have been recently proposed.

3.1. Related work

Many studies compare different real-time multiprocessor scheduling

algorithms by means of measuring the percentage of schedulable task sets

among a number of randomly-generated ones, as in [Bak2002, Bak2003a,

Bak2005, Bak2006, BB2009]. These approaches often rely on

schedulability tests or simulations, and they do not involve real tasks

3. X-RT: A portable framework for real-time scheduling

63

running on a real system, thus they cannot collect such run-time metrics as

the actually experienced tardiness due to platform related issues such as

cache misses, context switches, RTOS activity, etc. Often, these overheads

are assumed to be known a priori and to be accounted in the initial WCET

estimation [CA2009]. However, the scheduling policy itself may strongly

impact the WCET, for instance due to frequent task preemptions or inter-

processor migrations. In this regard, some of the main theoretical

properties of EDF and RM are analyzed in [But2005], but the study refers

only to uniprocessor systems.

In the field of WCET analysis, [HP2008, JCR2007, LHPo2009,

LDN1997] propose a methodology to bound the cache-related migration

delay in multi-cores, while in [CGKS2005, YZ2008] the focus is on

devising proper task interference models. On a slightly more practical

basis, memory access traces of program executions have been used to feed

cache architectural simulators in [MB1991, SA2004], while in

[BBA2010a, DCC2007, LDS2007, Tsa2007a] some micro-benchmarks

have been run on a Linux system in order to quantify the cache-related

context switch delay in some specific scenarios (e.g., because of interrupt

processing).

In [CLB+2006] Calandrino et al. studied the behavior of some variants of

G-EDF and Pfair; in [BCA2008] Brandenburg et al. explored the

scalability of a similar set of algorithms. In [BBA2010] Bastoni et al.

concentrated on partitioned, clustered and global EDF on a large multi-

core system. In all these works, samples of the various forms of overhead

that show up during execution on real hardware are gathered and are then

plugged in schedulability analysis tests, making them more accurate.

However, the final conclusions about the performance of the various

scheduling algorithms are actually influenced by the accuracy of the best

known schedulability tests, which are often quite conservative.

Some other studies carried out in-depth analysis on implementative aspects

of multiprocessor scheduling policies. A milestone, in this regard, is

undoubtedly represented by the LITMUSRT testbed, which has been

developed (and is being continuously expanded) by the Real-Time Systems

Group at University of North Carolina at Chapel Hill. LITMUSRT is an

3.1 Related work

64

extension to the Linux Kernel that allows different multiprocessor

scheduling algorithms to be linked as plug-in components. In [BA2009]

Anderson et al. exploited LITMUSRT to analyze and compare the

performances of several variants of the G-EDF policy implementations,

evaluating different data structures and different synchronization

techniques for the implementation of the G-EDF policy. In particular their

study shown as, when it comes to the handling of the most critical sections,

as the task release and ready queues, simple but more efficient approaches,

such as handling the release queue on a single processor or using only

coarse grained locking for synchronizing accesses to the ready queue, are

preferable.

Despite the large number of ongoing works and the maturity reached by

the project, however, the goal of LITMUSRT, as stated by the authors in

[BBC+2007] is not to create a production runtime platform, rather to

provide a stable experimental testbed to rapidly implement, study and

evaluate different real-time scheduling policies on multicore platforms.

A slightly different direction, instead, is taken by the works of Faggioli et

al. in [FCTS2009, FTC2009]. Recently, they have made available an EDF

scheduling policy implementation for the Linux kernel in the form of a

new scheduling class. It is called SCHED_DEADLINE and implements

EDF scheduling with both hard and soft resource reservation capabilities

[BLAC2005, MST1994]. SCHED_DEADLINE implements a variant of

the Constant Bandwidth Server (CBS) algorithm [AB1998] achieving

temporal isolation among concurrently running tasks.

While the original version of the work did support only partitioned

scheduling, recent updates introduces support also for clustered and global

EDF. A recent approach has been taken by Lelli et al. in [LFCL2012]

extending the original version of SCHED_DEADLINE. Conversely to

what happens in the LITMUSRT CE1 implementation of Anderson et al.,

the implementation of G-EDF relies on a distributed run-queue: each

processor maintains private queue and tasks migrations, when required, are

achieved by means of a push/pull approach similar to the one employed by

the standard Linux RT scheduler.

3. X-RT: A portable framework for real-time scheduling

65

Both LITMUSRT and SCHED_DEADLINE aim at introducing support for

G-EDF within the Linux Kernel. While undoubtedly optimal as regards

keeping low overheads for the enforcement of the scheduling decisions,

this kind of approach, in our viewpoint, introduces some drawbacks as

regards the maintainability and the portability across different ranges of

RTOSs and process models. Furthermore, such kernel-level interventions

can turn out to be problematic from a legal viewpoint, when using third-

party customized or certified kernels (in which cases kernel modifications

would void the certification).

In this work, instead, the purpose is to provide an alternative approach to

implement global scheduling policies, with particular interest in G-EDF,

by means of a cross-platform run-time framework, which exploits the basic

priority-driven scheduler made available by every RTOS known. While

expecting some obvious performance degradations due to the additional

context switches required invoke OS system calls and to interact with the

runtime framework, the purpose of this work is to analyze if and how such

approach is viable, and how does it compare to the existing kernel-level

approaches. A similar approach has been taken by Li et al in [LRSF2004],

which, however, deals only with uniprocessor scheduling.

3.2. Software architecture for SMP

Overview

The main challenge of concretely putting into operation an advanced

multiprocessor scheduling policy, such as G-EDF, on a conventional SMP

RTOS is represented by the limited support offered by the static priority-

driven RTOS scheduler, which at any time puts into execution the ready

processes with the highest priority number.

The goal of the X-RT framework is to raise the abstraction level perceived

by the real-time application designer, and introduce the notions of periodic

real-time tasks, characterized by temporal attributes such as periods and

deadlines, and global scheduling policies.

The purpose is not only freeing the real-time application developer from

the burden of dealing with platform-specific and RTOS-specific details,

3.2 Software architecture for SMP

66

but also offering a uniform programming interface which remains

unchanged when moving across different RTOSs or different process

models. This allows the application developer to just declare the temporal

attributes of the real-time application, and lets the framework handling its

concrete execution on the target RTOS, hiding the operational details.

Abstracting the platform details and elegantly wrapping RTOS primitives,

however, is not sufficient to fill the gap that exists between the simplistic

scheduling policy implemented by the RTOS, and the complex dynamic

global policies offered by the framework. The bigger contribution of this

framework, in fact, is represented by the run-time support offered for the

concrete implementation of more sophisticated scheduling policies, though

leaving the RTOS kernel untouched.

The foundation of the X-RT run-time operations lays on a metascheduler

approach. From a concrete viewpoint, such metascheduler is a

conventional high-priority RTOS process that is triggered by certain events

(user requests, task completion notifications, timers). Such process

properly manipulates the numeric priorities of the other RTOS processes

(which wrap the user-provided application real-time tasks), in order to let

their overall execution to evolve according to the global scheduling policy

chosen.

In this regard, the X-RT framework supports the implementation of

different policies by means of a plug-in interface, which decouples the

algorithmic aspects of the policy from the interactions between the

framework and the RTOS. The current release is bundled with a plug-in

implementing the G-EDF policy.

3. X-RT: A portable framework for real-time scheduling

67

Overall architecture

From the architectural viewpoint, the X-RT framework consists into three

major components:

• A system abstraction layer (SAL), which abstracts the interface

towards the underlying RTOS and hardware platform, as regards

process creation, priority mangling, synchronization and timers.

• An Application Programming Interface (API), which defines,

independently of the RTOS and hardware platform, the services

and the primitives offered to the real-time application developer

that realize the periodic tasks abstraction.

• The metascheduler, the core engine that implements the API and

interacts with the native operating system through the SAL,

concretely executing the scheduling policy.

• A scheduling policy plug-in, which implements the core logic for

the chosen scheduling policy, interacting exclusively with the

metascheduler for the enforcement of scheduling decisions (task

activations and pre-emptions).

In order to avoid ambiguities, in this chapter the term process is used to

identify the run-time abstraction of software execution flow exposed by the

operating system, in order to distinguish it from the concept of periodic

real-time tasks which is exposed by the X-RT framework to the application

developer. Depending on the target operating system and software model

chosen, a process concretely corresponds to a pthread when targeting user-

space POSIX threads, a BSD process when targeting isolated Unix

processes, a system task when targeting kernel-space VxWorks’ taskLib

processes.

In order to carry out the implementation of complex scheduling policies,

the X-RT framework requires some simple but stringent features in the

target RTOS. As presented in the next pages, it can be noted as the set of

requirements perfectly matches the base support offered by the manifold

contemporary RTOSs. Figure 11 presents a graphical overview of some

possible mappings.

3.2 Software architecture for SMP

68

In order to guarantee its proper operation and be able to handle the

execution of n periodic real-time tasks on a SMP system of m processors,

the X-RT framework requires the following.

Priority driven scheduler requirements

1. The RTOS must be able to handle the execution of n+1 (required for

the metascheduler) processes on the m processors. The execution of

such processes must be carried out according to a strict, yet very

simple, priority-driven policy: the m ready processes with the highest

priorities must be executing on the m processors at any time (with the

exception of short non-preemptible sections such as interrupt service

routines, which are almost unavoidable on any actual operating

system).

2. When a high priority process becomes ready for execution and m lower

priority processes are already executing, the RTOS must pre-empt the

one with the lowest priority and immediately yield the execution to the

higher priority one.

3. When a process is not anymore eligible for the execution the RTOS

must yield to the next equal or lower priority ready process (if any). In

case of parities, ties must be broken by means of first-in-first-out

(FIFO) ordering.

4. The RTOS must provide a system call, herein generically called

SysSetPriority, which allows to arbitrarily raise or lower the priority

of a given process. Whenever the priority of a process is changed, the

RTOS must rearrange the processes execution in order to meet the

previous requirements.

5. Only three priority levels in total are required by the X-RT framework

for handling the execution of an arbitrary number of tasks,

respectively:

• HIGH: is the priority level that is associated to the metascheduler.

Whenever the metascheduler has a pending event to process, it

must be able to pre-empt to execution of the other real-time tasks,

3. X-RT: A portable framework for real-time scheduling

69

in order to promptly enforce the new decisions envisaged by the

implemented scheduling policy.

• MEDIUM: is the priority level associated to (at most) m of the n

processes, which wrap the user-defined real-time tasks.

• LOW: is the priority level associated to the (at most) n-m

remaining processes, when the scheduling policy decides to pre-

empt them.

Inter process communication

The RTOS must exhibit a facility for allowing message-based point-to-

point inter-process communication. From a functional viewpoint, the

requirement consists in an abstract data type, called sys_mqueue_t in the

SAL, which is equipped with two operations, respectively,

SysMsgSend(queue, msg) and SysMsgReceive(queue).

The semantic required by X-RT is that, upon a call to SysMsgReceive, if

no message is available on that queue the calling process is suspended

indefinitely until a new message is available, and the execution yields to

the next higher priority ready process. However, when a message becomes

available, as a result to a SysMsgSend being invoked from another

process, the process suspended on SysMsgReceive must be promptly

resumed, compatibly with the priorities of the other ready processes. The

analogous blocking semantic is required for the SysMsgSend operation.

The design of the X-RT framework guarantees that:

• The length of the message queue is bounded: at most n + 1

outstanding message can be present on the queue at any time.

• All the SysMsgReceive calls for a given message queue are

performed by the same thread (thus no thread-safety is required for

the message reception system call).

From a practical viewpoint, these requirements find a very straightforward

mapping to POSIX message queues on POSIX systems, SysV message

queues on many Unix systems, MsgQLib message queues on VxWorks

systems.

3.2 Software architecture for SMP

70

Timers

In order to carry out the timekeeping activities required by the framework,

the RTOS is requested to provide a retriggerable absolute-counting

monotonic timer facility. Two operations are envisaged for such purpose in

the SAL in order to start/retrigger a timer and stop it, respectively

SysTimerReset(abs_expiration) and SysTimerStop().

Only a single timer is required by the X-RT framework for all its

timekeeping activities, including the ones of the scheduling policy. The

RTOS is requested to handle such timer in a strict monotonic fashion (i.e.

the timer must not be affected by time-of-day adjustments) and is expected

to call a framework-provided asynchronous handler when the

abs_expiration time is reached. No assumptions are made by the X-RT

framework on the execution context of the timer handler routine, since a

simple SysMsgSend call is involved in the handler.

From a practical viewpoint, this requirement finds a very straightforward

mapping to CLOCK_MONOTONIC timers on POSIX systems and the

equivalent TimerLib timers on VxWorks systems.

As regards the time resolution, there is no requirement directly enforced by

the X-RT framework. However, the resolution offered by the RTOS or the

underlying hardware directly reflects on the maximum resolution that the

framework will exhibit to the end-user (e.g., for periodic tasks periods and

deadlines).

The X-RT framework handles its timer queues on its own, requiring a

single timer to the RTOS. The reasons of this choice are twofold: on one

side, while the availability of a timer is ensured on every platform, it is not

legitimate to expect an arbitrary availability of timers on all platforms. In

some cases, the RTOS merely reflects the availability of hardware timers

offered by underlying hardware (typically a few). Furthermore, even in the

cases in which the RTOS handles in software timekeeping of an arbitrary

number of timers, relying on the RTOS would imply letting the

performances of the framework depend strongly on the implementation

details of the RTOS (A more in-depth discussion of this point is postponed

to Chapter 4.). While such a dependency is not avoidable in the other

3. X-RT: A portable framework for real-time scheduling

71

cases (process handling), a performance decoupling can be established for

timekeeping.

Therefore, in absence of, or in the case of a very inefficient, timer support

of the RTOS, the underlying hardware timer (e.g. HPET of Intel

processors) can be directly employed by the SAL to ensure the seamless

operation of the framework.

Figure 11: Mapping of SAL operations of the X-RT framework on different RTOSs.

System Abstraction Layer

POSIX Threads
POSIX

Message Queues
POSIX Timers

BSD Processes
SysV

Message Queues
System Timer

VxWorks

taskLib

VxWorks

msgQLib

VxWorks

timerLib

Processes

� ProcessCreate
� ProcessSetPrio
� ProcessYield

Messaging

� MQueueCreate
� MQueueDestroy
� MsgSend
� MsgReceive

Time

� GetTime
� TimerCreate
� TimerDestroy
� TimerReset
� TimerStop

X-RT Runtime Framework

Real-time application

� Period
� Deadline
� Job entry-point

Periodic RT task
descriptor 1

� Period
� Deadline
� Job entry-point

Periodic RT task
descriptor 2

� Period
� Deadline
� Job entry-point

Periodic RT task
descriptor n

…

Application Program Interface (API)

3.2 Software architecture for SMP

72

Thread-safety remarks

As a final remark, it might be noted that no locking primitives (e.g.,

semaphores or mutexes) are required by the X-RT framework. Despite the

architecture of a multiprocessor scheduler being intrinsically highly

concurrent, the design choices adopted in X-RT have focused on a loosely

coupled message-passing architecture.

Concurrency races, which typically arise in shared-memory designs, are

avoided by design, modelling the X-RT framework as a set of independent

runtime components. Each of them is uniquely responsible of handling its

data structures in a thread-local only fashion and interacts with the other

components by means of message-passing. The reasons behind this choice

are manifold. The experience gained by other research works in this field

shows as, in modern cache-coherent multiprocessor architectures, shared

memory patterns typically perform poorly. For instance in their study

[BA2009] Anderson at al. shown as highly tuned concurrent data structure

which take advantage of fine-grained critical sections perform

unexpectedly poorly due to cache affinity issues. Similar considerations

can be found in [SBas1994].

On the other side, the fast point-to-point network-based interconnects of

modern multiprocessor architectures definitely favour inter-processor

signalling patterns to cache-coherent memory sharing [MHSM2009].

It is easy to see that with a very simple example: consider two cores c1,c2

of a modern multicore processor accessing (read-write) a simple byte of

memory on a shared location, not even necessarily at the same time, in a

write-back cache scenario (that is the standard). Assume that c1 accesses

the shared memory location first. Later, when c2 tries to modify the same

byte, the cache coherency protocol will require c1 to write-back in memory

(MESI) or transfer to the second processor (MOESI) the entire stale cache

line, thus involving a transfer on the interconnect of 32 bytes (the typical

size of a cache line). On the other side, if the software instead employs a

message-passing pattern, for instance with c1 being the responsible of

handling the data structure in memory, and P2 just requesting the update

through an IPI (inter-processor interrupt), only the bytes of the message

(typically a few) need to be transferred through the interconnect, and the

3. X-RT: A portable framework for real-time scheduling

73

cache line being modified by P1 remains local to P1, thus not needing any

write-back or transfer of ownership and reducing the time spent on the

interconnect.

Finally, as will be later discussed in 3.5, shared memory sometimes isn’t a

viable option at all, for instance in the case of AMP systems. In this view,

the decoupled architecture of the X-RT framework enhances the portability

across different hardware architectures.

Metascheduler design

Upon initialization, the user requests the instantiation of the n periodic

real-time tasks, through the CreateNewPeriodicProcess API method,

defined as follows:

xrt_task_id_t XRT_CreateNewPeriodicTask(
 xrt_periodic_task_desc_t *taskDesc);

where its unique input argument is the task descriptor, a structure that

defines the attributes of the task as follows:

typedef struct

{

 char name[XRT_TASK_NAME_MAXLEN];

 xrt_rel_time_t release_period;

 xrt_rel_time_t initial_phase;

 xrt_rel_time_t relative_deadline;

 xrt_overrun_policy_t overrun_policy;

 void (*job_entrypoint)(void* argument);

 void* job_argument;

} xrt_periodic_task_desc_t;

Apart the temporal attributes of the task, which are self-explicative, the

user has to provide a job_entrypoint, a function pointer to the task body,

which is the routine that will be periodically executed by the framework, as

specified by the release_period field. Together with that, the user can

specify also an optional argument that will be passed back upon each job

invocation, for instance an identifier to distinguish the specific task

instance if several tasks share the same entry-point.

From the runtime viewpoint, for each periodic task requested by the user,

the framework instantiates a dedicated RTOS process. The entry-point of

such process, however, doesn’t directly point to the user-provided

3.2 Software architecture for SMP

74

job_entrypoint (which is a straight function with no notion of cyclic

execution). Rather, another module of the framework, called task shell,

which resides in the same process space of the real-time task, acts as entry-

point for the process.

Concretely, each task-shell is a cyclic event-processing loop, which

coordinates the execution of the wrapped task with the metascheduler. The

communication between each task-shell and the metascheduler is handled

uniquely by means of message passing, exploiting the messaging

abstraction provided by the SAL. For such purpose, each task shell has an

ingress message queue for receiving the following messages from the

metascheduler:

• MSG_RELEASE_JOB: triggers the release of a new job, invoking

the invocation of the job_entrypoint function.

• MSG_TERMINATE_TASK: causes the termination of the process

associated to the real-time task.

On the other way, the task-shell transmits back the following messages to

the metascheduler (which has its own message queue too):

• MSG_TASK_INITIALIZED: sent once upon task creation, notifies

that the task has completed its initialization phase.

• MSG_JOB_COMPLETED: sent every time a job execution

completes (i.e. the job_entrypoint function returns).

• MSG_TASK_TERMINATED: sent once, after receiving the

MSG_TERMINATE_TASK, to notify that the task has completed its

clean-up phase.

Figure 12 depicts the interaction, the run-time organization and the

message exchange between the task-shells and the metascheduler.

3. X-RT: A portable framework for real-time scheduling

75

Figure 12: Overview of the interaction between the X-RT framework components: (a)

task-shell(s); (b) Metascheduler; (c) Scheduling policy plug-in.

When the execution of a job completes, the task-shell re-enters its message

loop, waiting for new messages. From the RTOS scheduler viewpoint,

therefore, the process associated to the real-time task is suspended after

each job execution, until a new message comes from the metascheduler.

The operation of the task-shell is summarized, in its essential, in the code

listing below.

1. void TaskShell(const xrt_task_t* task)

2. {

3. bool exit = false;

4.

5. /* Initialization code, omitted for sake of brevity. */

6.

7. while (not exit)

8. {

9. SysMsgReceive(& rx_queue, & rx_message);

10.

11. switch (rx_message.id)

12. {

13. case MSG_RELEASE_JOB:

14. task->job_entrypoint(task->job_argument);

15. SysMsgSend(& tx_queue, MSG_JOB_COMPLETED, task_id);

…

X-RT Framework

Real-time application

Task 1 body (user defined)

job1_entry_point(data)

{...}

Task n body (user defined)

job1_entry_point(data)

{...}

Initialization routine

int main()

{...}

…

Metascheduler

Create periodic task [T1]

Create periodic task [T2]

Start

Task Shell Task Shell

Job completed

Start new job Start new job

Scheduling policy

plugin (e.g., G.-EDF)

• on_task_creation(taskId)

• on_job_release(taskId)

• on_job_completion(taskId)

• on_missed_deadline(taskId)

• on_task_removal(taskId)

• Activate_task(taskId)

• Preempt_task(taskId)

(a)

(b)

(c)

3.2 Software architecture for SMP

76

16. break;

17.

18. case MSG_TERMINATE_TASK:

19. exit = true;

20. break;

21. }

22. }

23.

24. /* Cleanup code, omitted for sake of brevity. */

25. SysMsgSend(& tx_queue, MSG_TASK_TERMINATED, task_id);

26. }

It might be noted that the task-shell is only responsible for the local

execution of the task jobs, but is completely unaware about the current

process priority and how to mangle it.

Such operation, instead, is carried on by the metascheduler, which is the

core module of the X-RT scheduling framework. From the metascheduler

viewpoint, each periodic task can be in one of the following states (Figure

13):

• CREATED: state associated to newly created tasks, which task-

shell has not yet completed the initialization phase.

• IDLE: the initialization phase has completed and the last job

execution has completed. The task-shell is suspended on its

message queue, waiting for the metascheduler to trigger the

execution of a new job (or issuing termination of the task).

• READY: state associated to tasks which release timer has expired

but that have not yet initiated the execution of the job (e.g. due to

the presence of some other higher priority tasks). This state is

entered after the metascheduler releases the task (sending a

MSG_RELEASE_JOB to the corresponding task-shell) and persists

until the metascheduler is requested (by the scheduling policy plug-

in) to run the task.

• RUNNING: state associated to tasks that are currently running a job

on one of the m processors. This state is entered when the

scheduling policy plug-in requests a task activation to the

metascheduler.

3. X-RT: A portable framework for real-time scheduling

77

• PREEMPTED: state associated to tasks previously RUNNING, for

which the scheduling policy plug-in requested a pre-emption, in

order to make room for a higher priority task. From the scheduling

viewpoint a PREEMPTED task is analogous to a READY task,

with the only exception that a PREEMPTED task have already

executed a part of its job (this aspect will have a fundamental

importance later for restricted-migration policies).

Figure 13: States of the real-time tasks handled by the X-RT metascheduler.

The state of a task, as described so far, is only an internal representation of

the metascheduler, which is not directly perceived by the RTOS. The

mapping between the state of a task in the metascheduler and the state of

the corresponding process in the RTOS scheduler is established by the

metascheduler, as follows. An IDLE task has its corresponding process

suspended in the task-shell waiting for a message (line 9). When its release

timer expires, the metascheduler simply updates its state to READY,

without performing any further action on the RTOS process. Furthermore,

the OnJobRelease method is invoked on the scheduling policy plug-in, in

order to notify it about this new event. Upon this notification, the

scheduling policy plug-in has two options: activate the task (issuing a

MetaschedulerActivateTask call back on the metascheduler) or keep it

deactivated, in the case that other m tasks are already running and the

scheduling policy considers them more prioritary than the newly released

CREATED IDLE

READY

PREEMPTED

RUNNING

Initialization completed

Release timer expiration

Activation request

(by scheduling policy)

Job completion

(De)activation requests

(by scheduling policy)

3.2 Software architecture for SMP

78

task. The scheduling policy is assumed to be work-conserving (i.e. non-

idling).

In the former case, the MetaschedulerActivateTask call causes the

metascheduler to raise the priority of the task’s process to MEDIUM and

send the MSG_RELEASE_JOB message to the task-shell. The RTOS

scheduler, at this point, has no other option4 than moving the process to

one of its m running queues and carrying out the execution of the task-shell

that will in turn start the execution of the user-provided job entry-point

(line 14). In the latter case, instead, the process will simply remain

suspended waiting for the release message (line 9), which will occur when,

in a next event, the scheduling policy plug-in will finally decide to activate

the task.

When a new task is released, the scheduling policy plug-in can decide to

pre-empt another RUNNING task in order to respect the metascheduler

invariant (keep at most m RUNNING tasks), issuing a

MetaschedulerPreemptTask call. In this case, the metascheduler reacts

lowering the priority of the pre-empted task’s process to LOW through the

SysProcessSetPriority primitive of the SAL. At the end of the new task

activation + task pre-emption sequence, the RTOS scheduler will find

again m processes with MEDIUM priority, thus making them reflect the m

RUNNING tasks of the metascheduler.

When a job execution completes, the execution flow of the task’s process

returns to the task-shell (line 15), which will simply notify the event to the

metascheduler through the MSG_JOB_COMPLETED message and self-

suspend waiting for a new metascheduler message. Correspondingly, as the

metascheduler receives the completion message, the state of the task is

changed to IDLE and the scheduling policy plug-in is notified about the

event through the OnJobCompletion method.

At this point, if there are any READY or PREEMPTED tasks, the

scheduling policy plug-in must pick and activate one of them, in order to

4 In the case the RTOS schedules the task’s process on the same processor where the

metascheduler is currently running, the task-shell execution will continue as soon as the

metascheduler (which has a HIGH priority) completes the handling of the release queue

and suspends itself again waiting for a new message.

3. X-RT: A portable framework for real-time scheduling

79

keep the RTOS scheduled fed with m running processes. Conversely, if no

any other task is being activated, the RTOS can either idle that processor or

grant the execution to other non real-time processes.

Figure 14: Mapping of metascheduler task states to RTOS processes states.

Figure 15: Interaction diagram of the metascheduler components and the RTOS.

X-RT Framework

Metascheduler
Sched. Policy

plug-in
Task shell RT Task

Message passing Synchronous call

SAL create process Create periodic task

Task state: CREATED

MSG_INITIALIZATION_COMPLETE
Task state: IDLE

Task state: READY

Release timer exp. Job released

Activate task

MSG_RELEASE_JOB

Task state: RUNNING

SAL set process priority to MEDIUM Call job entry-point

…

…

Preempt task

SAL set process priority to LOW

Release timer exp. (another) job released

Task state: PREEMPTED

RT Application

Metascheduler process space RT task process space

Legend

Running

(HIGH prio.)

Running

(MED prio.)

Ready

(LOW prio.)

Process states from the RTOS scheduler viewpoint

IDLE READY PREEMPTED RUNNING

State of the task in the metascheduler

State of the corresponding process in the RTOS scheduler

Suspended on

SysMsgReceive

Suspended on

SysMsgReceive

Ready,

priority = LOW

Running,

priority = MED

3.2 Software architecture for SMP

80

Timekeeping

Timekeeping in the X-RT framework is organized in timer queues. Each

timer queue (xrt_timer_queue_t) is a priority queue of timer objects

(xrt_timer_t), which use the absolute expiration time as priority key.

Each timer queue is concretely implemented as an addressable binary heap

(ABH), a novel tree-based implementation of the binary heap data

structure designed ad-hoc for timekeeping in embedded real-time systems,

which brings together the performances of binary heaps (all the insert and

removal operations of the ABH have logarithmic worst-case complexity),

the flexibility of a pointer based tree structure, and the determinism of a

embedded-anchor model, which doesn’t require any dynamic memory

management. (A more in-depth discussion about these topics, together with

the presentation of the ABH data structure are deferred to chapter 4.).

All the components of the X-RT framework, which require timers for their

operation, take advantage of one or more X-RT timer queues. For instance,

the metascheduler employs a timer queue for handling the release of

periodic tasks (release queue) and one for monitoring their deadlines

(when deadlines are not implicit).

The interface exposed for using X-RT timers is the following.

1. void TimerQueueCreate
(
 xrt_timer_queue_t* timer_queue,
 xrt_timer_callback_t callback
);

2. void TimerStart
(
 xrt_timer_queue_t* timer_queue,
 xrt_timer_t* timer,
 xrt_abs_time_t expiration
);

3. void TimerStop
(
 xrt_timer_queue_t* timer_queue,
 xrt_timer_t* timer
);

It might be questionable why the X-RT timekeeping has been organized in

multiple queues, instead of keeping all the timer objects in a single queue,

3. X-RT: A portable framework for real-time scheduling

81

considering that a single RTOS timer is going to be used at the end. The

reasons behind this choice are several. On one side the decoupling in timer

queues allows to reduce the timekeeping overhead for different class of

timers characterized by different update rates: if a small set of timers that is

updated more frequently (e.g., the running queue of a scheduling policy

plug-in) and other sets of timers are updated less frequently (e.g., the

metascheduler release queue), the overhead for ABH insertion/removal is

bounded only to the cardinality of the involved timer queue. Secondly,

dividing timers in timer queues allows to handle prioritization, for instance

giving more priority to the timer queues of the metascheduler, which are

critical for taking system-wide scheduling decisions, and lower priority for

timers requested by the end-user for its own application purposes.

From the RTOS interaction viewpoint, timer queues as handled follows. At

any time the only RTOS timer, abstracted by the SAL, is triggered to timer

expiring soonest, that is the highest priority element among all the timer

queues head (Figure 16). When a new timer is started (stopped) its

corresponding timer object is inserted into (removed from) the given

(corresponding) queue. This operation has a O(log(n)) worst-case

complexity (with n being the number of active timers in the timer queue)

due to the ABH implementation. After the insertion (removal), the head of

the queue, that is the timer with soonest expiration in that queue, is

compared against its old value. If the head has not changed, no further

action is required, since, per definition of min-queue, it implies that the

RTOS timer is already triggered to the soonest expiration time.

If the queue head has changed, instead, the RTOS timer might need to be

retriggered: in the case of an insertion, the new timer might expire sooner

than all the other timer present, thus the RTOS timer must be anticipated to

match the new (closer) expiration time; in the case of a removal, the

removed timer might be the soonest one, thus the RTOS timer must be

delayed to match the soonest among the remaining timers, if any.

In order to keep the binding between the timer queue heads and the RTOS

timer, another priority queue, the root timer queue, is employed in a

hierarchical fashion. The nodes of the root timer queue are represented by

3.2 Software architecture for SMP

82

the heads of the registered timer queues, and its head corresponds exactly

to the expiration time of the RTOS timer.

Thus, whenever the start (stop) of a timer leads to a change of the

corresponding queue’s head, the priority of corresponding node in the root

timer queue must be increased (decreased) accordingly. If such operation,

in turn, reflects in a change of the root timer queue’s head, the RTOS timer

is retriggered. Since a priority increase/decrease operation has still a

logarithmic worst-case complexity, the overall worst-case complexity for

handling m timer queues in the X-RT framework is O(log(m)) + O(log(n))

(with n being the length of the largest timer queue, typically larger than the

number of timer queues).

Figure 16: Timekeeping in the X-RT Framework.

20

22 30

24 40 31

10

80 11

13

23 14

15

10

20 13

Timer queue 1 Timer queue 3

Timer queue 2

Root timer queue

RTOS Timer

3. X-RT: A portable framework for real-time scheduling

83

3.3. Implementation of the G-EDF scheduling policy

Now that the overall architecture of the X-RT framework and the

interaction mechanisms between the metascheduler and the RTOS have

been illustrated, the design of the G-EDF scheduling policy plug-in is

finally presented.

The G-EDF policy provides that, at any time, the m tasks with the closest

(absolute) deadline shall be executing on the m processors. This apparently

straightforward requirement has, however, complex implications as it is

applied to an event-driven scenario like the one of the X-RT scheduler, in

order to ensure the respect of the policy in every condition.

In the X-RT implementation, the G-EDF plug-in uses two data structures

to keep track of running and ready tasks, respectively, a running queue

(Rq) and a ready queue (rq). Both queues take advantage again of the ABH

data structure previously employed for timers.

The running queue is organized as a max-heap (the head represents the task

with the furthest deadline), and contains only the (at most) m RUNNING

tasks currently expected to be running on the processors.

The ready queue is organized, instead, as a min-heap (the head represents

the task with the closest deadline) and contains the (at most)

n – m released task (either in the READY or PREEMPTED states).

Tasks are inserted using their absolute deadline as the priority key in both

queues, respecting the following invariants:

1. Rq ∪rq ≡ {t ∈ Τ | state(t) ≠ IDLE}

Both the ready and running queues contain only non-IDLE tasks.

2. Rq ∩ rq ≡ ∅

The ready and running queues are disjoint.

3. ∀ ti ∈	Rq ∄ tj ∈ rq | dj < di

Any task in the running queue has a closer absolute deadline than

the tasks in the ready queue.

3.3 Implementation of the G-EDF scheduling policy

84

Release of a new job

When a new job is released (i.e. the metascheduler calls the OnJobRelease

method on the G-EDF plug-in), the plug-in verifies whether the task should

be activated or not, as follows.

The trivial case is represented by the running queue containing less than m

tasks. In this case the newly released task just need to be inserted in the

running queue (that is a O(log(m)) operation), and activated through the

MetaschedulerActivateTask call.

Conversely, if the running queue is full, the plug-in must check whether its

deadline is closest than at least one of the m other running tasks. With the

running queue organized as a max-queue, this translates into a simple O(1)

operation, involving just a comparison with the running queue head, which

represents the less prioritary running task.

If the new task has a further deadline, it is inserted into the ready queue in

O(log(n-m)) and no action is requested to the metascheduler, which will

keep the task into the READY state. If the task has a closer deadline than

the running queue’s head, the corresponding task is pre-empted, issuing a

MetaschedulerPreemptTask, it is moved to the ready queue (in

O(log(n-m))) and the newly released task is inserted in the running queue

(O(log (m))) and activated.

Completion of a job

When a job completes its execution (i.e. the metascheduler calls the

OnJobCompletion method on the G-EDF plug-in), the corresponding task

is removed from the running queue. The end of its execution makes room

for the execution of another (READY or PREEMPTED) task, which is the

task (if any) in the ready queue with the closest deadline.

Since the ready queue is modelled as a min-heap, this operation concretely

translates in a ABHRemoveHighest operation, which requires O(log(n-m))

time. This is the time required to remove the node and rearrange the ready

queue, perform an insertion into the running queue and a

MetaschedulerActivateTask call, in order to give back MEDIUM

3. X-RT: A portable framework for real-time scheduling

85

priority to the task’s process (and eventually unblock the task-shell if the

task was in the READY state) and carry on its execution.

In the case of a job overrun, that is, a job which does not complete by the

next job’s release, two different overrun reaction strategies are available

and can be selected by the user at the moment of task creation: ASAP (as

soon as possible) and SKIP. The former provides that the next job is

released (thus is made eligible for execution) as soon as the current

overrunning job completes. This allows reducing the impact of short and

temporary overloading events (e.g., I/O errors) on the schedule and

recovering the nominal execution as soon as possible.

However, this kind of strategy is known for causing avalanche effects on

applications catheterized by very high utilization factors close to the

schedulability bounds. For such reasons an alternative SKIP policy has

been envisaged. In the case of a task overrun, such policy forces the task to

skip a number of successive jobs equal to the length of the overrun. This

latter policy tends to introduce scheduling fairness, penalizing overrunning

tasks by means of job inhibition and giving back CPU time to the other

tasks, in order to compensate the scheduling pressure generated by the

overrun condition.

Final remarks

As a final remark, it might be worth noting as the plug-in implementation

doesn’t deal at all with processor assignments. The reason behind this

choice is mostly related to the metascheduler design of the X-RT

framework. The metascheduler, in fact, does not replace the native RTOS

scheduler, rather acts as a frontend for it, letting the RTOS handle the

hardware-related context switching and migration operations.

RTOS schedulers, in fact, already implement such logic for handling

process-to-CPU assignment and their migrations, since it is a mandatory

requirement also for the operation of the simpler priority-driven native

scheduler. For instance, the recent releases of the Linux kernel are

endowed with fine-grained control logic, which takes into account the

multiprocessor topology (for dealing with hyper-threading processors and

3.4 SMP experimental evaluations.

86

NUMA systems) and the cache-affinity of processes when it comes to

make decisions about inter-processor task migrations.

Some RTOSs give the possibility to override such behaviour by means of

per-process affinity masks, which force the scheduler to execute a given

process on a specified processor. However, the decision made in this work

is not to take advantage of such mechanisms (i.e. leave the affinity masks

filled), enforcing only the priorities of the processes through the X-RT

framework and leaving the degree of freedom of the processor assignment

to the RTOS.

3.4. SMP experimental evaluations.

In order to evaluate the validity of the X-RT metascheduler approach and

the G-EDF plug-in, on SMP platforms, two types of evaluations have been

conducted: runtime overheads measurements and schedulability tests.

The system used for the experimentations is an eight-thread Intel Core i7-

920 64-bit processor. Each core is endowed with 64k L1 cache, 1MB of L2

cache and 8MB of shared L3 cache. The operating system chosen for the

experimentation is Linux x86_64 kernel ver. 3.6.6, in tick-less

configuration (CONFIG_NO_HZ = y).

In order to get comparable results with other kernel-space approaches

discussed in other cited works, the evaluation methodology illustrated in

the next sections is strongly inspired by the one used in [BA2009].

Runtime overheads

The first set of evaluations is represented by overhead measurements and is

aimed at identifying which is the overhead introduced by the X-RT

framework, in terms of CPU time taken by the metascheduler, the G-EDF

plug-in and the underlying RTOS kernel for carrying out all the operations

envisaged by the framework. Such overhead depends on three major

factors, which have been accounted separately (Figure 17 graphically

illustrates them):

1. Release-queue overhead: is the time spent to process the release

queue, release the expired tasks, reinsert them into the release

3. X-RT: A portable framework for real-time scheduling

87

queue for their next period and retrigger the RTOS timer, every

time the (unique) RTOS timer expires.

2. Job activation overhead: is the time spent by the G-EDF plug-in

when the release of a new task is notified, plus the time spent by

the consequent metascheduler invocations to pre-empt and activate

the newly released tasks, plus the time consequently required by the

RTOS kernel to alter the priorities of the processes and perform the

corresponding context switches.

3. Job completion overhead: symmetrically occurs when a job

completes and the event is notified to the metascheduler (and in

turn to the G-EDF plug-in). This overhead accounts also the time

required by the G-EDF plug-in to eventually select and activate the

next task, and the corresponding RTOS context-switches, when

ready queue is not empty.

Figure 17: Factors that contribute to the X-RT framework overhead.

release
queue

processing

ready
queue

processing

timer
exp.

SysSetPriority

PREEMPTED

IDLE READY

RUNNING

OnJobRelease

RUNNING IDLE

RUN.

OnJobCompletion

SysSetPriority

PreemptTask,

ActivateTask

Release-queue

overhead

Job activation

overhead

Job completion

overhead

Metascheduler

Task 1

Task n

G-EDF plug-in

RTOS

3.4 SMP experimental evaluations.

88

The measurements have been conducted using task-sets of variable

cardinality, from 50 to 450 in steps of 50. For each step, ten different task-

sets have been randomly generated, with periods uniformly distributed in

the 10-100 ms. range and keeping an almost constant utilization factor of

3.2 (~ 40% total CPU time). Each of those 90 task-sets have been executed

for 30 seconds, and the corresponding average values (outliers filtered out

using 98th percentile) are shown in Figure 18-Figure 20.

Figure 18 shows the release-queue overhead. Such overhead is mostly due

to the processing of the timer queues and the system call to retrigger the

RTOS timer.

Figure 19 shows the job activation overhead. Two main factors contribute

to this overhead: the metascheduler + G-EDF plug-in computation and the

RTOS system call invocations, for raising the priority of the activated task,

send a message to the corresponding task-shell and, in the case a pre-

emption is required, lower the priority of the pre-empted task. It might be

noted as the major contribution is due to the latter factor, where the Linux

system calls impact with an almost fixed cost of 1.5 microseconds. The

remaining metascheduler contribution, which gives the logarithmic trend to

the overhead curve, is due to the processing of two ABH queues employed

by the G-EDF policy plug-in for tracking, respectively, the running and the

ready tasks.

Figure 20 finally shows the job completion overhead. Similarly to the

previous case, job completion involves up to three RTOS system calls (one

for sending the completion message to the metascheduler, one for lowering

the priority of the process and an optional third one for increasing the

priority of a previously pre-empted process, if any) and the corresponding

processing of the two G-EDF queues. In this case, however, the fixed cost

due to the RTOS reveals to be slightly higher. A possible explanation for

this higher overhead is the concurrent use of the POSIX message queues.

In fact, while the job activation message sending is one-to-many (job

activation messages are always sent from the metascheduler, which is a

single thread, to the task shells), during job completion the messages are

sent on the reverse path in a many-to-one fashion. Thus, depending on the

implementation details of the POSIX message queues, this is very likely to

3. X-RT: A portable framework for real-time scheduling

89

cause either bouncing of the cache-lines that hold the message queues’

data, and synchronization in the cases in which multiple jobs complete

simultaneously on different processors.

In general, the overhead measurements show very encouraging results. In

fact, when considering the cumulative effect of this overhead during an

entire task-set execution, the corresponding metascheduler overhead ratio,

which has been calculated as the ratio between the total CPU time of the

metascheduler thread and the total CPU time of the entire process (n + 1

threads) ranges between 0.5% (N=50 tasks) and 1.9% (N=450 tasks).

Figure 18: Release queue overhead (average).

Figure 19: Job activation overhead (average).

Number of tasks

O
v
e
rh
e
a
d
 [
u
s
.]

50 100 150 200 250 300 350 400 450

0
.0

0
.5

1
.0

1
.5

2
.0

Release queue overhead

Number of tasks

O
v
e
rh
e
a
d
 [
u
s
.]

50 100 150 200 250 300 350 400 450

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Job activation overhead

3.4 SMP experimental evaluations.

90

Figure 20: Job completion overhead (average)

Schedulability tests

As regards the overall schedulability, random task-sets have been

generated using three period and six utilization distributions, for a total of

18 scenarios. As regards the former, periods were generated according to

three uniform distributions in the ranges [3 ms, 33 ms] (short), [10 ms, 100

ms] (moderate) and [50ms, 250ms] (long). As regards the latter, utilization

factors were generated using three uniform distributions in the ranges

[0.001, 0.1] (light), [0.1, 0.4] (medium) and [0.5, 0.9] (heavy) and three

bimodal distributions, of either [0.001, 0.5) or [0.5, 0.9] with respective

probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9

(heavy).

Each task-set was created by generating tasks until a cap on the total

utilization factor, which varies between 0.5 and 8 with a step of 0.5, was

reached and then discarding the last-added task.

Sampling points were chosen such that sampling density is higher (100

samples) in areas where curves change rapidly, and lower in the other areas

(20 samples). Each task-set has been executed for 60 seconds.

For each of the 18 scenarios, three curves have been plotted on the y axis

(ratio of schedulable task-sets) as a function of the utilization cap on the x

axis (1.0 = 100% CPU time on one processor):

Number of tasks

O
v
e
rh
e
a
d
 [
u
s
.]

50 100 150 200 250 300 350 400 450

0
.0

1
.5

3
.0

4
.5

Job completion overhead

3. X-RT: A portable framework for real-time scheduling

91

• HRT schedulability: each task-set is considered HRT schedulable

if, during the experiment, no task misses any deadline. The ratio of

HRT schedule task-sets is represented in the plot by a blue dashed

line, labelled “HARD”.

• SRT schedulability: each task-set is considered SRT schedulable

during the evaluations if the maximum tardiness of the tasks is less

or equal than their period (i.e. if the tasks that miss their deadline

complete their execution by the end of their 2nd period). The ratio

of SRT schedulable task-sets is represented in the plots by a purple

dotted line, labelled “SOFT”.

• Theoretical schedulability: each task-set is tested (offline) for HRT

schedulability using four known sufficient (but not necessary)

schedulability tests for G-EDF [Bak2003a, BCA2008, BCL2005,

GFB2003] and deemed schedulable if it passed at least one of these

four tests. The ratio of theoretically schedulable task-sets is

represented in the plot by a red straight line, labelled “SCHED”.

Results

In the case of uniform light distributions (Figure 21a, Figure 22a, Figure

23a) the frameworks exhibits a very good behaviour as both the HRT and

SRT schedulability curves are perfectly overlapped with the theoretical

trend of the schedulability tests.

The situation becomes even more interesting when moving to uniform

medium distributions (Figure 21b, Figure 22b, Figure 23b). In all the three

cases, in fact, the sufficient nature of the schedulability tests emerges in a

evident way. While the schedulability tests drop down between the range

[5.5; 6.5], the actual HRT schedulability is still held until the utilization

factor of 7.3, highlighting a pessimistic behaviour of the four

schedulability tests in the case of medium uniform distributions and a still

good behaviour of the G-EDF implementation and the overall X-RT

framework (a utilization factor of 7.3 on a 8-thread system corresponds to

a normalized CPU usage of 91.25%).

A degradation of the scheduling performances, instead, can be noted in the

case of uniform heavy distributions (Figure 21c, Figure 22c, Figure 23c) or

3.4 SMP experimental evaluations.

92

bimodal ones (Figure 24, Figure 25, Figure 26) though at a lesser extent. In

particular, in the case of short periods, the HRT schedulability is worse

than the theoretical lower bounds of the schedulability tests. However, a

very good behaviour is still observed for moderate and long periods, where

the curve of the HRT schedulability overlaps again with the theoretical

bounds of the schedulability tests.

As regards SRT schedulability it is worth noting that the adoption of the

SKIP policy, for avoiding system overload in cases of missed deadlines,

exhibits the most benefit in the case of heavy utilization and longer

periods. In such cases in fact, the penalty interdiction period imposed by

the SKIP policy to the heavy overrunning tasks gives back a substantial

CPU time to the remaining tasks, which allows them to recover from the

overload within a single period. As expected, instead, such effect is less

evident when the overrunning tasks are short and highly fragmented,

because the contribution to the overload of the system is more distributed.

In general the framework and the G-EDF implementation provided very

satisfactory results. The trend for SRT schedulability is very close to what

envisaged by other studies on G-EDF, especially due to improvements

brought on SRT scenarios by the SKIP policy.

In this regard, Figure 27…Figure 32 show comparative schedulability tests

of X-RT (thick blue line) and LITMUSRT (thin purple line) for HRT (solid

lines) and SRT (dashed lines) performed on the same machine using six

different utilization distributions (uniform/bimodal light, medium and

heavy) with periods distributed uniformly in the [10..100] ms. range.

Furthermore, the lockless message-driven multiprocessor architecture

proved to cope extremely well with the network-based QPI architecture of

the modern Intel processors, as the one used in the experimental

evaluations. In particular, the schedulability trends on task-sets with

medium uniform utilization are notably higher when compared to the

corresponding results obtained in [BA2009], which was employing a

crossbar-based SPARC multicore processor (Sun Niagara).

It has to been said that, in the current set of experiments, the generated

tasks are simulating pure CPU-bound load, not performing any memory

read/write transaction. In this regard, it would be interesting to carry out

3. X-RT: A portable framework for real-time scheduling

93

more detailed investigations on the behaviour of the overall system, with

task performing actual memory access. Such an experimentation would

reveal more interesting details about the process-to-processor mapping

and migration strategies employed by the underlying RTOS, highlighting

the magnitude of the bottlenecks which would unavoidable come in when

cache line bouncing effects are involved.

In this work cache-related effects have been avoided, in order to have an

evaluation methodology comparable with the other works in the field,

assessing the general viability of the novel multiprocessor synchronization

approach based on message-exchange.

3.4 SMP experimental evaluations.

94

Figure 21:Schedulability test on SMP; period [3,33] ms; distributions: uniform (a),

medium (b), heavy (c).

3. X-RT: A portable framework for real-time scheduling

95

Figure 22:Schedulability test on SMP; period [10,100] ms; distributions: uniform (a),

medium (b), heavy (c).

3.4 SMP experimental evaluations.

96

Figure 23:Schedulability test on SMP; period [30, 250] ms;

 distributions: uniform light (a), medium (b), heavy (c).

3. X-RT: A portable framework for real-time scheduling

97

Figure 24: Schedulability test on SMP; period [3, 33] ms;

 distributions: bimodal light (a), medium (b), heavy (c).

3.4 SMP experimental evaluations.

98

Figure 25: Schedulability test on SMP; period [10, 100] ms;

 distributions: bimodal light (a), medium (b), heavy (c).

3. X-RT: A portable framework for real-time scheduling

99

Figure 26: Schedulability test on SMP; period [50, 250] ms;

 distributions: bimodal light (a), medium (b), heavy (c).

3.4 SMP experimental evaluations.

100

Figure 27: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: uniform light.

Figure 28: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: bimodal light.

3. X-RT: A portable framework for real-time scheduling

101

Figure 29: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: uniform medium.

Figure 30: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: bimodal medium.

3.4 SMP experimental evaluations.

102

Figure 31: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: uniform heavy.

Figure 32: Comparative schedulability tests of LITMUSRT and X-RT on SMP.

Period [10, 100] ms.; distribution: bimodal heavy.

3. X-RT: A portable framework for real-time scheduling

103

3.5. Software architecture for AMP

SMP has become a standard de-facto for many areas in the real-time

domain, such as process control and industrial automation, due to the high

flexibility offered by its uniform programming model.

However, it has a major drawback in terms of hardware requirements.

Some dedicated hardware resources, in fact, are required to support the

interlocked operations, cache coherence and other mechanisms typical of

SMP systems. Such hardware resources, however, can prove very costly

when it comes to small-scale and low-power embedded system due to both

area and power requirements.

For such reasons, in many small-scale and highly-integrated embedded

real-time systems, AMP reveals to be the leading choice, despite its more

complex and less flexible computational model.

Furthermore, it has to be said that, conversely to SMP, where the

multiprocessing model is somehow uniform and independent of the

specific architecture that implements it (for instance, the software

programming model of x86/amd64 multicore processors is not that

different from the one of multicore SPARC or PowerPCs), AMP usually

doesn’t identify a precise model, rather a variety of different and

application-specific architectures that often reflect into very different

software programming models.

The common principles that typically hold among all the different AMP

architectures are mostly related the resulting software organization, which

consists in several distinct operating system instances running

independently on each processor.

Reference architecture

Before extending the design considerations made so far for SMP to AMP

systems, it is mandatory to make some more detailed assumptions about

the underlying AMP architecture that is going to be tackled by the X-RT

framework.

3.5 Software architecture for AMP

104

Considering that the main target of this work has been represented mostly

by industrial embedded real-time systems, the choice fell on the area of

multiprocessor systems on programmable chip (MP-SoPCs).

Originally exploited as prototyping platforms for later implementation in

ASIC, FPGAs have become feasible vehicles for final designs, enabling an

agile integration of manifold hardware resources suitably interconnected

via a customizable bus, as general-purpose processors (soft-cores),

memory and peripheral devices. Currently available design tools leave high

degrees of freedom to the designer, particularly as regards the inter-

processor communication infrastructure and the memory layout.

Customization options typically involve not only the choice of the memory

technology, which can range from fast on-chip memory to external DRAM

solutions, but also the interconnection topology, allowing to tightly couple

a memory to a single core, avoiding any contention, or share it, sacrificing

access times in favor of resource saving [ANJ+2004, TAK2006].

However, due to the intrinsic nature of FPGAs, the computational

performances of soft-cores can often result limited (though still

remarkable) if compared to specialized hardware such as modern PC

processors, having execution rates ranging within the order of hundreds of

MHz. On the other hand, the extreme flexibility of modern SoPC platforms

allows many soft-cores to be instantiated on a single FPGA, in order to

enhance, accordingly to the user needs, the computational power of the

resulting platform by means of multicore hardware parallelism.

Nevertheless, exploiting such multicore platforms in order to concretely

take advantage of the hardware parallelism is, in general, a non-trivial task

that requires particular care in both the software design and development

stages. The complexity level, in fact, is far beyond the traditional

uniprocessor scenarios, which are undoubtedly more familiar to the most

embedded application developers. In this sense, if we narrow the focus to

more specific and constrained scenarios, such as the embedded real-time

one, the introduction of an ad-hoc infrastructure which properly

masquerades the underlying complexities can make such SoPC multicore

platforms feasible and reliable solutions, for instance as in the cases of

[BBCG2008, XWB2007].

3. X-RT: A portable framework for real-time scheduling

105

More technical specifications about the soft-core architecture used for the

evaluation of this work are deferred to the performance evaluations

section. For the moment, the only architectural assumptions made for AMP

are: (i) the availability of a shared memory only for holding the working

sets of real-time tasks; (ii) a hardware inter-processor communication

mechanism that allow the software instances running on the several

processors to exchange messages.

The AMP architecture, furthermore, imposes some more restrictions on the

scheduling algorithm that can be employed. In particular, conversely to

what happens in SMP systems, process migrations cannot be performed.

For such reason, for the AMP we are considering the restricted-migration

variant of the G-EDF scheduling policy, that is R-EDF [BC2003].

Design of the AMP version of the X-RT framework.

The fundamental contribution brought in by the X-RT framework in the

AMP case is represented by the underlying run-time model, herein called

shadow process model. Its purpose is realize a 1-to-m mapping of periodic

real-time tasks onto processes of the m RTOS instances and manage their

execution flow in a centralized manner, according to the global decisions

of the scheduling plug-in, realizing a task-level migration abstraction even

if RTOS processes cannot be really migrated.

From the software standpoint, each shadow process consists in an instance

of the task-shell, which operates in the same way of the SMP version. The

main difference is that in this new model, each real-time task is associated

to m task shells, one for each processor. As in the SMP case, also in AMP

the X-RT framework requires only three priority levels (LOW, MEDIUM,

HIGH), which keep the same semantic.

At any time, at most one shadow process is ready for execution (from the

RTOS scheduler viewpoint) with MEDIUM priority on each of the m

RTOS instances. This shadow process corresponds to the real-time task

that is expected to execute on that processor by the infrastructure.

Therefore, keeping the assumption that each RTOS scheduler follows a

strict priority-driven policy, no ambiguity can exist as regards the overall

set of tasks running on the system at any time.

3.5 Software architecture for AMP

106

AMP compliance is ensured since the restricted migration model

guarantees that pre-empted tasks cannot be resumed on any processor other

than the one where the job execution started, therefore no migration of

process context is required. The only state that the infrastructure should

care about and keep coherent is the working-set of the tasks, which might

be accessed (at different times) by distinct jobs of the same task on

different processors. This latter point will be further discussed later in 3.6.

The X-RT framework is deployed in a distributed fashion on AMP: the

metascheduler, together with the scheduling policy plug-in, is executed

exclusively on one of the m processors (which can be used as well for the

scheduling of real-time tasks). The scheduling policy plug-in takes global

scheduling decisions also in the AMP version of X-RT (with respect of the

additional restricted-migration constraint, though). The interface between

the metascheduler and the policy plug-in remains unchanged, thus the

plug-in remains completely unaware of the underlying process model and

SMP/AMP architecture.

The task-shells, conversely, are distributed on the m processors. Their

operating principle, however, is the same. In this sense, the decoupled

architecture of the framework, and in particular the message passing

strategy employed to coordinate the metascheduler and the task-shells,

shows its best advantages in the AMP scenario, where a coordination based

on traditional shared-memory patterns would be completely unfeasible.

An extra component, however, is required to put the shadow process model

in operation. Due to the inherent run-time isolation between the RTOS

instances, the metascheduler is not capable anymore of directly

instantiating the wrapper processes upon instantiation of new real-time

tasks. For such reason, a further component, the dispatcher(s), is

introduced. The framework requires that m dispatchers must be pre-loaded

on each processor after the initialization of each RTOS instance (Figure

33). From the runtime viewpoint, each dispatcher acts as a local proxy for

the centralized metascheduler. The interaction between the metascheduler

and the dispatchers is, once again, realized by means of (inter-processor)

message passing.

3. X-RT: A portable framework for real-time scheduling

107

In this regard, a new message (MSG_CREATE_SHADOW_PROCESS) is

envisaged. Such message is sent by the metascheduler to the dispatchers

when a new periodic task is requested to the metascheduler through the

XRT_CreateNewPeriodicTask method of the X-RT API.

Figure 33: Software and memory organization of the X-RT framework on AMP.

RTOS

Dispatcher

Task n
body

RTOS RTOS

Dispatcher Dispatcher

Task 1
body

Task Shell Task Shell

Task n
body

Task 1
body

Task Shell Task Shell

System Abstraction Layer System Abstraction Layer System Abstraction Layer

Metascheduler

Task n
body

Task 1
body

Task Shell Task Shell

Processor 1 Processor 2 Processor m

Shared memory

RTOS memory

(code + data + stack)

Task 1
(code + stack)

X-RT Library
(code + data + stack)

Processor m

Private memory

Processor 1

Private memory

RTOS memory

(code + data + stack)

X-RT Library
(code + data + stack)

Task 1

(stack)

Task n

(stack)

MS

(stack)
Task n

(code + stack)

RTOS memory

(code + data + stack)

Task 1
(code + stack)

X-RT Library
(code + data + stack)

Task n
(code + stack)

Processor 2

Private memory

Task 1

working set (data)

Task 2

working set (data)

Task n

working set (data)

3.6 AMP experimental evaluations

108

3.6. AMP experimental evaluations

The Altera NIOS-II soft-core has been chosen as reference architecture for

the experimental evaluations, due to the flexibility of its integrated

development environment that permits easy customization of different

hardware templates transparently supported by the bundled µC/OS-II

RTOS. The NIOS-II/f fast version we employed in our experiments can be

further endowed with a write-back directly mapped data cache (D-cache),

which permits to reduce bus contentions exploiting spatial and temporal

locality of memory accesses. Lacking any hardware coherency support,

explicit cache flushes and proper synchronization must be handled by

software in order to guarantee coherency of memory shared by different

cores. The message-passing infrastructure has been realized using the FIFO

core provided by the Altera SoPC, realizing a 1-to-m bidirectional channel

between soft-cores (Figure 34).

Figure 34: Overview of the Altera SoPC architecture.

Using an Altera Cyclone IV FPGA clocked at 50 MHz and combining

different memory and cache layouts as shown in Figure 35, four reference

hardware templates based on NIOS-II/f cores have been investigated:

shared memory (TS), shared memory with D-cache (TSC), dedicated

memory (TD), dedicated memory with D-cache (TDC). As regards the

3. X-RT: A portable framework for real-time scheduling

109

memory technology, we used internal MK9 SRAM blocks for the on-chip

memory and an external SDRAM module for the shared memory. In order

to preserve the memory consistency of the shadow process model in the

TSC and TDC templates, explicit cache flushes are performed on job

boundaries.

The goals of the experimental evaluation are twofold.

Infrastructure overhead. Two key factors contribute to such overhead: (i)

job release overhead, i.e. the interval that elapses between the issue of an

MSG_RELEASE_JOB message by the metascheduler and the execution of

the corresponding shadow process; (ii) job completion overhead, i.e. the

interval that elapses between the completion of a job, the update of the

working-set and the reception of the corresponding message by the

metascheduler. The additional time taken by the scheduling policy plug-in

to carry out its scheduling decisions has not been accounted since it

strongly depends on the particular policy employed and is extensively

discussed by the relative studies herein referred.

Performance slowdown. Apart from the infrastructure overhead itself, the

measurements analyze how the run-time execution of application tasks is

further biased by the hardware platform. The different hardware templates,

in fact, are likely to differently respond to the workload of the real-time

tasks, in particular to changes of number of cores simultaneously executing

and their working-set size. Furthermore, the more or less frequent context

switches and task migrations issued by the scheduling policy can

additionally contribute to the run-time duration. In order to account these

additional contributes and determine the effective factors which influence

them, we set-up an experimental test-bench which combines (Figure 36)

the four hardware templates (T) with 4 different number of cores (m), 6

working set sizes (S) , 4 pre-emption rates (P) and 4 migration rates (M,

expressed in migrations per period), for a total of 1536 scenarios.

 TS TSC TD TDC

Instuctions. cache 2 Kb

Data cache No 2 kB No 2 kB

RTOS memory (Instructions + data) External memory On-chip memory

Tasks memory (Instructions) External memory On-chip memory

Tasks memory (Data) External memory

Figure 35: Configuration of the reference hardware templates.

3.6 AMP experimental evaluations

110

Each scenario involves the scheduling of a fixed number of 16 identical

tasks, in which each job executes a CoreMark [Con2009] instance in order

to emulate some real workload on the working set. Task periods were

chosen to be long enough to compensate duration variance due to the

different platforms avoiding overrun conditions. A regular scheduling

pattern which relied on a quantum-driven round-robin scheme has been

chosen in order to deliver a constant number of preemptions and

migrations according to the configuration of each scenario. At each period

the 16 tasks are arranged in m clusters and each cluster is scheduled on

each core in round-robin using a P time-quantum (‘NO’ means that task

jobs are sequentially executed). On the next period the pattern repeats

shifting the clusters by M positions.

Experimental results

Figure 37 (a) and (b) show the two contributions to the infrastructure

overhead. Each column reports the overhead measured for each hardware

template in function of m, aggregating the average over the variation of S,

P and M parameters, as, not surprisingly, they revealed to have a negligible

influence on the infrastructure overhead. Job activation measurements

show as both the TD and TDC templates exhibit an almost constant overhead

as m increases, since the operations performed on the shared memory are

minimal. On the other hand, the TS and TSC templates exhibit a worse

scalability, in particular in the case of simultaneous activations on the

cores, as both data and instruction ports contribute to the contention of the

shared memory module when RTOS scheduling primitives are invoked.

Furthermore, it might be also noted that for both the dedicated and shared

cases, the relative templates involving data cache exhibit slightly higher

overheads. The limited size of the data cache, in fact, is likely to cause a

lag due to write-back of the stale cache lines prior to executing the

dispatcher code, causing for such a short-length routine an opposite effect

Figure 36: Testbench parameters for the AMP evalutaion.

3. X-RT: A portable framework for real-time scheduling

111

than expected. As regards the completion overheads, both TS and TD

templates exhibit a very limited, yet expected, contribution. The

corresponding templates involving data cache, instead, introduce a more

consistent overhead (order of tenths of microseconds) required to

invalidate and write-back the data cache in order to preserve the working-

sets consistency. In this case, while the TDC template exhibits an almost

linear behavior, the TSC template suffers of concurrent data and instruction

cache contentions causing increased (≈ 2x) overheads in the 8-cores

configuration.

Cumulative infrastructure overhead is shown in Figure 37 (c) as the sum of

the two contributions. The dedicated templates exhibit an overall good

scalability inducing small and almost constant overhead even in the 8-core

configurations, while the shared templates demonstrate to be negatively

influenced by the shared memory bottleneck.

Figure 37: Infrastructure overhead due to job activation (a), completion (b) and

cumulative results (c).

0

100

200

300

400

1 Core 2 Cores 4 Cores 8 Cores

O
v

e
rh

e
a

d
 [

u
s.

]

Job activation overhead

TD TDC TS TSC

0

5

10

15

20

25

30

1 Core 2 Cores 4 Cores 8 Cores

O
v

e
rh

e
a

d
 [

u
s.

]

Job completion overhead

TD TDC TS TSC

0

100

200

300

400

500

1 Core 2 Cores 4 Cores 8 Cores

O
v

e
rh

e
a

d
 [

u
s.

]

Infrastructure overhead

TD TDC TS TSC

3.6 AMP experimental evaluations

112

In addition to the overhead directly introduced by the scheduling

infrastructure, Figure 38 (a-d) show how run-time performance of

application tasks is affected by preemptions. Each of the 4 charts reports

the average time required to complete a whole job issuing preemptions at

different rates (according to the P parameter) in function of m, under each

hardware template. TD reveals to be the less influenced template incurring,

in the {m=8 cores; P=1 ms} configuration, a slowdown of 1,8% (7 us)

compared to the sequential execution case. In the corresponding template

involving data cache (TDC), preemptions caused a higher relative increment

of 6,9% (5 us.) in the analogous configuration. The shared templates

demonstrated to majorly suffer the influence of preemptions, in particular

the TS exhibit a slowdown of 24,5% (98 us) in the {m=8 cores; P=1 ms}

configuration while the introduction of data cache induce in the TSC

template a slowdown of 30,8% (25 us). As a broader level consideration it

might be noted that the effect of data cache on the preemption overhead

has a lesser extent if compared to the speedup provided to tasks run-time.

In order to provide a comparative evaluation of the overall run-time

overhead factors, Figure 39 (a-d) show, for each hardware template, the

relative slowdowns highlighting, at variations of W, the difference between

the slowdown due to the hardware architecture and the slowdown due to

the scheduling infrastructure. For each column, the lower colored part

reports the ratio between the average run-time on the m-way

multiprocessor configuration performing sequential jobs execution and the

corresponding measurement on the uniprocessor configuration. The upper

(red) part shows the surplus slowdown, introduced by the infrastructure,

using the preemptive round-robin execution with the tightest (P = 1 ms)

quantum. It may be clearly noted that the slowdown introduced in the

infrastructure is definitely marginal in the TD and TS templates when

compared to the slowdown introduced by the multiprocessor hardware

architecture. Such slowdown becomes comparable only in the TDC and TSC

templates, highlighting how preemptions suffer a worse exploitation of

caches.

As a final remark it might be noted that neither of the considered graphs

reports the effect of tasks migrations. In fact, in all of the combinations

3. X-RT: A portable framework for real-time scheduling

113

considered, the changes of the M parameter did not produce any

remarkable effect on the measurements, thus they have been omitted.

3.6 AMP experimental evaluations

114

Figure 38: Absolute run-time performances of TD (a), TDC (b), TS (c) and TSC (d)

templates varying m and P parameters with W: 16 kB.

Figure 39: Relative slow-down of TD (a), TDC (b), TS (c) and TSC (d) templates

58

59

62

72

59

60

63

73

59

60

63

73

60

62

65

77

50 100

1 Core

2 Cores

4 Cores

8 Cores

Run-time - TDC [us.]

1 ms 5 ms 10 ms NO Preempt.

116

136

198

382

117

136

199

383

117

137

200

384

119

139

203

389

50 100 150 200 250 300 350 400 450

1 Core

2 Cores

4 Cores

8 Cores

Run-time - TD [us.]

1 ms 5 ms 10 ms NO Preempt.

60

62

67

81

60

62

68

84

61

63

69

88

63

66

76

106

50 100

1 Core

2 Cores

4 Cores

8 Cores

Run-time - TSC [us.]

1 ms 5 ms 10 ms NO Preempt.

121

140

207

400

122

142

210

413

122

143

213

426

126

148

229

498

50 100 150 200 250 300 350 400 450 500 550

1 Core

2 Cores

4 Cores

8 Cores

Run-time - TS [us.]

1 ms 5 ms 10 ms NO Preempt.

0%

25%

50%

75%

100%

125%

150%
175%

200%

225%

250%

275%

300%

325%

350%

512 B 1 kB 2 kB 4 kB 8 kB 16 kB

Working-set size

Preemption overhead - T
S

1 Core 2 Cores 4 Cores 8 Cores

0%

25%

50%

75%

512 B 1 kB 2 kB 4 kB 8 kB 16 kB

Working-set size

Preemption overhead - T
SC

1 Core 2 Cores 4 Cores 8 Cores

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

512 B 1 kB 2 kB 4 kB 8 kB 16 kB

Working-set size

Preemption overhead - TD

1 Core 2 Cores 4 Cores 8 Cores

0%

25%

512 B 1 kB 2 kB 4 kB 8 kB 16 kB

Working-set size

Preemption overhead - T
DC

1 Core 2 Cores 4 Cores 8 Cores

3. X-RT: A portable framework for real-time scheduling

115

3.7. Concluding remarks

In this chapter the design considerations and the essential implementation

details of a real-time scheduling framework called X-RT have been

presented. Such framework enables scheduling of real-time tasks on

symmetric and some asymmetric multi-processor platforms, according to

global (restricted-migration in the case of AMP) scheduling policies. The

focus has been put on the mechanisms that, regardless the particular policy

employed, allow to arbitrarily perform job preemptions and task migrations

on the mainstream embedded SMP and AMP platforms employing only

elementary scheduling primitives offered by almost every RTOS. In order

to decouple these low-level scheduling mechanisms from user-definable

high-level scheduling policies, a metascheduler approach has been

introduced.

The operating principle of this metascheduler stands on a dedicated high-

priority process that coordinates the execution of the other processes by

means of message passing interaction and dynamically mangles their

priorities, using only conventional system calls provided by the RTOS, in

order to emulate the operation of more complex global scheduling policies.

Experimental evaluations have been carried out to assess the viability of

the approach, employing an Intel eight-thread processor running Linux 3.6

kernel, for the SMP version, and four reference FPGA-based

multiprocessor templates combining different memory models and cache

layouts for the AMP version. The experimental evaluations analyzed both

the overhead directly introduced by the scheduling infrastructure and the

further consequences yielded on run-time performances, putting particular

attention to the effect of scheduling decisions, i.e. preemptions and

migrations, on the tasks run-time.

In this regard the overhead introduced by the proposed framework shows

to have a limited extent, both in SMP and in AMP platforms which involve

dedicated memory for the RTOS. Furthermore, in the case of AMP

platforms, job preemptions induce a slowdown which is smaller than the

slowdown caused by the multiprocessor parallelism. Task migrations,

furthermore, showed to not cause any remarkable effect on AMP, as the

3.7 Concluding remarks

116

approach employed does not actually migrate processes, rather it activates

different shadow instances on different processors.

As future research directions, as regards SMP, the work herein presented

should be extended to take in account cache-related effects, simulating

real-world workloads on memory working-sets of various size and using

different access patterns, as for instance is done in [Bas2011].

As regards AMP, the experimental evaluations herein presented should be

extended in order to contemplate more complex MPSoC architectures

involving other communication and interaction paradigms such as

network-on-chips, and studying the viability of the approach (or alternative

ones) on those hardware platforms which do not assume any shared

memory at all.

4. Data structures for timekeeping in real-time systems

117

4. Data structures for timekeeping in real-time systems

4.1. Introduction

In the area of real-time systems, one of the most critical functions typically

handled by the operating system is represented by timekeeping. Timers, in

fact, represent a key building block for both the operating system itself, for

carrying out its internal operations, and for user-space applications, for

instance when they take advantage of services like POSIX’s timers or

sleep system calls.

Timekeeping is mainly a software problem, which has, however, tight

dependencies on the underlying hardware. It is quite typical, for an

operating system, to handle at any time hundreds or thousands outstanding

timers, going to expire in sooner or later future intervals.

On the other side, the hardware platform typically offers only a few

(sometimes just one) programmable hardware timers to carry out the

timekeeping activities. Thus, the operating system has to properly

multiplex such large queues of software timers using the few hardware

timers available. Such multiplexing requires proper data structures.

In traditional systems, most of the timers are required to have just coarse

granularities in the order hundreds of milliseconds, for instance in the cases

of device drivers dealing with I/O timeouts or user-space applications

interacting with the user. However, this trend is changing over time and,

nowadays, the number of drivers and applications which require finer

grained timers is constantly increasing.

For instance, timers with fine granularity are required by many modern

networking protocols to measure accurately small intervals of time.

Accurate estimates of roundtrip delay are fundamental for TCP congestion

control algorithms on wireless networks [Chi2005] or for distributed

protocols like the scalable reliable multicast framework [FJM+1995].

Furthermore, many modern multimedia applications [DTH1992] use high

frequency timers, and the number of such applications is nowadays

increasing. If then we move to the area of industrial automation, signal

processing and embedded real-time systems in general, the number of fine

4.1 Introduction

118

grained timers, with resolutions down to the nanosecond range, becomes

substantial.

The performance of timekeeping operations becomes an issue when fine

granularity timers are involved and when the average number of

outstanding timers is large. Furthermore, if the timekeeping is performed

inside an interrupt service routine, as it actually happens in the most

operating systems, such overhead becomes critical for the reliability and

responsiveness of the entire system.

Above all, in the case of real-time systems, the RTOS scheduler has a

compelling need of timers, since it must deal with periodic release of tasks

and monitoring of their deadlines with extremely high accuracy. In this

scenario, timekeeping represents the most crucial activity in the

performance path of the most RTOS operations.

In order to have a qualitative idea of the impact that timekeeping overhead

has on the runtime performances of a real-time system, just consider a very

modest real-time application, involving, for instance, a dozen periodic

tasks with periods and deadlines in the millisecond range: the RTOS

scheduler will need to intervene several thousand times in each second.

Thus, if the timekeeping routine takes even just a few microseconds for its

execution, it would introduce an overage overhead of about 5% of CPU

time.

However, more than the average case, the worst case overhead is the most

crucial aspect to account for in the runtime behavior of a RTOS. If the

scheduling overhead is negligible in most of its interventions (so that even

the average overhead is negligible), but occasionally takes larger amounts

of time, its effect may be catastrophic if interleaving with the execution of

a hard real-time task with a small slack.

For these reasons, in real-time systems ensuring that the overhead

introduced by timekeeping operations is bounded, for instance by means of

exploiting appropriate data structures which can guarantee that by design,

is generally preferred than keeping an extremely low average-case

behavior with longer worst cases, as usually happens in the design of

general purpose operating systems.

4. Data structures for timekeeping in real-time systems

119

In the following, the topic of timekeeping is explored from the software

implementation viewpoint, first analyzing some traditional approaches

already known in technical and scientific literature, and then discussing a

novel approach, introduced by this thesis, designed for time-critical and

memory-constrained embedded real-time systems.

4.2. Problem statement

We consider, in the following, the problem of handling a set of an arbitrary

number of timers, by means of the following primitives:

StartTimer(timer_handle, interval, expiry_callback)

Invoked by the application to request the start of a timer, which will

expire after interval time units. The caller supplies a reference

(timer_handle) to the timer object, which in most real-world

implementations is simply an opaque pointer, used to distinguish

requests for this timer from other timers in the system. Upon

expiration, the expiry_callback function will be called back, if the

timer has not been stopped in the meantime.

StopTimer(timer_handle)

Invoked to stop the timer referenced by timer_handle.

Timekeeping()

Software routine, typically invoked upon a hardware timer interrupt,

responsible for updating the state of the registered timers, according to

the chosen timekeeping methodology (discussed soon), and triggering

the execution of the callback for the expired timers.

There are two main timekeeping methodologies which can be used to

interact with a hardware timer: tick-driven and tick-less handling.

4.2 Problem statement

120

Tick-driven handling

Tick-driven handling is the most straightforward way to realize

timekeeping. It requires the hardware timer to simply deliver its interrupts

at fixed rate (tick rate), triggering the execution of the Timekeeping

routine at equidistant intervals of time. The tick rate is typically decided

upon system initialization and never changed at runtime.

While such a way of handling timers is evidently simple, it has a major

issue: the periodic interrupt handler introduce a constant source of

overhead, even when there is no compelling need. In other words, the

hardware timer interrupt handler will execute at its usual rate even if there

are no timers registered. Secondly, the maximum resolution for all the

software timers handled is dependent on the tick rate. For instance, if

the hardware timer is programmed to a rate of 1000 Hz, the maximum

resolution allowed for software timers is 1 ms.

A minor advantage of tick-driven handling is that the expiration time can

be stored as a relative interval, rather than an absolute time. This can save

some memory and some arithmetic computation time on very small

microcontrollers with few memory and very low (i.e. 8 or 16 bits) data

parallelism. Relative timekeeping, however, is not considered in this thesis

as practically irrelevant for most of the modern platforms.

Tick-less handling

Tick-less handling is an alternative and more advanced methodology to

deal with timekeeping [SPV2007]. It requires a high-resolution

programmable interval timer (PIT), which nowadays is available on most

hardware platforms, and is often directly embedded in the processor. A PIT

is a free-running monotonic counter driven at a fixed rate (usually in the

order of nanoseconds) that ideally never wraps.

The advantage of a PIT is that it doesn’t deliver interrupts at a

predetermined rate; rather it is further endowed with a register, freely re-

programmable by the software, which triggers an interrupt only when the

internal counter reaches that value. In other words, a write to the PIT

register marks a decisional instant in a precise moment in the future, which

triggers a single interrupt.

4. Data structures for timekeeping in real-time systems

121

The basic idea behind tick-less handling, therefore, is that the operating

system keeps the hardware PIT always triggered to match the software

timer expiring soonest. Thus, every time an interrupt is triggered, the

corresponding software timer callback is invoked and the hardware PIT is

reprogrammed with the value of next software timer, if any.

This synchronization between the PIT and the software timer queues,

however, is not that straightforward as it might seem at a first glance. In

fact software timers can be stopped, as well as new timers can be added at

any time. In all these situations, the synchronization with the PIT must be

ensured in order to never miss a timer event.

The two aforementioned timekeeping methodologies reflect in a very

realistic way what happens in the majority of real-world RTOS. In some

cases, whereas the underlying hardware platform is endowed with both the

hardware timers, the operating system can provide both forms of

timekeeping. For instance the Linux kernel, in some configurations, is able

to provide lower resolution timers, handled in a tick-driven fashion by the

tick handler, and high-resolution timers (namely hrtimers) handled in a

tick-less fashion with a nanosecond resolution [GN2006].

4.3. Traditional data structures for timekeeping

Dense array of timers

One of the most straightforward ways of realizing software timekeeping is

modeling the timers queue in memory as contiguous arrays of timer

entries. In this model the entries are compacted within the array, reflecting

their creation order (but not their interval), as in Figure 40.

Figure 40: Dense array data structure for timekeeping problems.

Computational worst-case complexity

Timer 1

56

*expiry_callback

Timer 2

51

*expiry_callback

Timer 3

62

*expiry_callback

Free entry

Free entry

4.3 Traditional data structures for timekeeping

122

In such a structure the implementation of the StartTimer routine is very

straightforward. Supposing to know the number of active timers in the

queue, in order to start a timer, the routine can directly index the next free

entry and store the timer entry in O(1). The timer_handle can be just a

unique identifier assigned to each timer upon creation.

On the other side, however, the StopTimer routine requires a full scan of

the array, in order to search for the given timer_handle, and shift all its

following entries to re-compact the array, thus with O(n) complexity, with

n being the number of active timers.

As regards the Timekeeping routine:

• In case of tick-driven handling, it has to increment the system time and

check whether it has reached the value of one or more active timers.

Once an expired timer is detected, the corresponding

expiry_callback is invoked and the expired timers are shifted out

similarly as in the StopTimer, thus requiring again O(n) time in the

worst-case.

• In case of tick-less handling, the Timekeeping routine has to scan the

array to find the expired timer, remove it and then retrigger the PIT

with the value of the next timer expiring soonest, requiring O(n) time.

Memory complexity

Since the memory usage of this model is basically O(N), with N being

the maximum number of active timers allowed, it works fine in the

cases where a bound on the maximum number of timer can be

determined a priori. The static nature of the array, instead, turns out to

be particularly inefficient when the number of active timers is

extremely variable, thus forcing to either over-allocating a huge array

or to rely on memory reallocation techniques. Memory relocation,

however, can be very time-consuming since it can involve a deep copy

of the previous array in a larger one. For these reasons this model

usually fits only the case of “home-brewed” timekeeping for very

modest applications, where the number of timers is small and known a

priori.

4. Data structures for timekeeping in real-time systems

123

Sparse array of timers

A slightly variation of the latter model can be obtained relaxing the density

constraint and allowing free entries to interleave active timers entries, as

depicted in Figure 41.

Figure 41: Sparse array data structure for timekeeping problems.

Computational worst-case complexity

The behavior of this model is almost the same of the dense array model,

with the difference that the opaque timer_handle in this case can directly

reflect the index within the array of its entry, since entries are never shifted

until they expire or are stopped. The consequence of that is that now the

StartTimer has to find a free entry before writing the new timer

descriptor, thus requiring O(N) time, with N being the length of the array.

StopTimer, instead, can use the timer_handle to directly index the entry

to be removed and just wipe it, in constant O(1) time (only in tick-driven

handling, though).

The Timekeeping is almost unaltered, with the only difference that, in all

cases, its operation requires, in the worst case, O(N) rather than O(n) time,

since no assumptions can be made on the density of the array, thus on the

position of a timer entry.

Memory complexity

The same considerations of the dense array model apply.

Sorted linked list

In the sorted linked list model (Figure 42) active timer entries are kept

sorted, with respect of their expiration time, in a doubly linked list.

Conversely to the array-based variants, this model provides dynamic

expandability, not requiring to pre-allocate a-priori any storage for the

Timer 1

56

*expiry_callback

Timer 3

62

*expiry_callback

Timer 2

51

*expiry_callback

Free entry

Free entry

4.3 Traditional data structures for timekeeping

124

timer entries (with the only exception of head and tail pointers, which,

however, are fixed regardless the number of timers in the queue).

Figure 42: Linked list data structure for timekeeping problems.

Computational worst-case complexity

In such a structure the StartTimer routine needs to walk the linked list,

find an entry with a later expiration, and insert the new one before that,

thus requiring O(n) time in the worst case.

Since the knowledge of a single entry is sufficient to walk the queue in

both directions, the timer_handle can directly reflect the memory address

of the corresponding timer entry. For such reason, the StopTimer routine

can directly remove any entry in constant time, thus with O(1) complexity,

just linking together its previous and next entries.

As regards the Timekeeping routine:

• In case of tick-driven handling, it just needs to increment the system

time and check if it reached the value of the first active timer entry

(the queue’s head). If the head is expired, the corresponding

expiry_callback is triggered and the entry is removed, thus

requiring constant O(1) time (under the assumption that expiration

times are unique, otherwise it would requires O(t) with t being the

number of timers concurrently expiring, which is still optimal).

• In case of tick-less handling, the Timekeeping routine needs just to

remove the head of the queue, invoke the corresponding

expiry_callback and retrigger the hardware clock with the absolute

time of the next entry, thus requiring constant O(1) time. Furthermore,

whenever the first timer is stopped (thus the list’s head is removed),

the PIT just needs to be retriggered with the value of the new list’s

head.

Timer 2

51

*expiry_callback

Timer 1

56

*expiry_callback

Timer 3

62

*expiry_callback

next

prev

next

prev T

A

I

L

H

E

A

D

4. Data structures for timekeeping in real-time systems

125

Memory complexity

It might be immediately noted that this model has an optimal memory

utilization, requiring O(n) memory to keep only the active timer only.

Timing wheel

Timing wheel is a more complex data structure, mostly intended for tick-

driven timekeeping, presented by Varghese et al. in [VL1987], and further

refined in [VL1997]. It basically consists in a fixed-length array of linked

lists of timers (Figure 43). Time is divided into cycles, with each cycle

consisting in N time units. The information about the current time is kept

through a combination of a single array of length N, which keeps the state

for the current cycle in a modular fashion, and a cycle counter c. The

current time t, therefore, is represented by the tuple {c, i}, that is, the

current number of cycles and the index within the cycle array, such that

t = c�N + i, and in every moment the N entries of the array correspond to

the time interval [c�N ; 2�c�N - 1]. Each of the N linked lists contain the

timer entries that expire in the corresponding time identified by the index

of the list. The i index is incremented modulo N and, when it wraps, c is

consequently incremented by one in order to reflect the new cycle. Timers

whose expiration exceed such interval are placed in a so called overflow

list, which is checked upon each new cycle boundary (discussed later).

Computational worst-case complexity

In a timing wheel, the StartTimer routine proceeds as follows.

First of all, it has to check if the expiration time e of the new timer falls

within the current cycle, i.e. if c�N ≤ e < c�(N+1), or beyond it,

i.e. e ≥ c�(N + 1). In the former case, the new timer entry is appended to the

linked list of index i = (e mod N). In the latter, it is appended to the

overflow list. In both cases the StartTimer require constant time, since it

involves only an array lookup and a unsorted list enqueue operation, thus

its worst-case complexity is O(1).

Since timer entries are always part of a linked list (either a list of the array

or the overflow list), the timer_handle can be directly implemented as the

memory address of the corresponding timer entry, similarly to the case of

4.3 Traditional data structures for timekeeping

126

the sorted linked list model. Thus, also in this case the StopTimer has O(1)

complexity, at least as regards tick-driven handling.

The Timekeeping routine, instead, requires some more careful analysis.

• In case of tick-driven handling, the Timekeeping routine updates the

system time incrementing the i index by one modulo N. Two scenarios

are possible: (i) i < N and (ii) i = 0, thus it wraps. In (i), the only

operation to be performed is checking if the linked list addressed by

the incremented i index contains any timer, and if so call the

expiry_callback for those and remove them, thus requiring constant

O(1) time (or still optimal O(t) relaxing the assumption on expiration

time uniqueness). The latter (ii) case, instead, is definitely more

complex, since upon each new cycle, the overflow list must be

processed looking for timers which expiration time falls in the new

cycle, and if so they need to be moved from the overflow list to their

corresponding list in the N-length array, thus requiring O(n) time in

the worst case.

As a final consideration, it might be noted as adding a sorting

restriction to the overflow list can favor the Timekeeping complexity,

which becomes O(N), in favor of the StartTimer routine, which

consequently becomes O(n).

• In case of tick-less handling, instead, the situation gets worse. In fact,

once a timer expires (or equivalently when first timer is stopped), the

next timer expiring soonest must be looked-up, in order to retrigger the

hardware PIT. This operation, however, requires to iterate over the

array until a non-empty list is found, thus requiring O(N) time. Even

worse, if no more timers are present in the current cycle, the cycle

corresponding to the next timer must be loaded from the overflow list,

requiring additional O(n) time. Thus the worst case complexity in the

case of tick-less handling is O(N + n), in practice making timing

wheels an unfeasible choice for this scenario.

4. Data structures for timekeeping in real-time systems

127

Figure 43: The timing wheel data structure for timekeeping problems.

It might be noted as the average computational complexity of the timing

wheel model, in case of tick-driven handling, is extremely good, requiring

constant O(1) time in N-1 cases out of N. For such reasons, it turns out to

be a particularly suitable solution for handling timers in general purpose

operating systems. The Linux 2.6 kernel, for instance, employs a variant of

the timing wheel data structure presented for handling coarse granularity

timers.

The remaining O(n) case (wrapping), however, still represents a non

negligible worst-case, making this data structure not suitable for real-time

systems. Taking again the case of the Linux kernel, high resolution timers

are handled by means of a completely different and more deterministic

data structure [GN2006], a self-balancing binary tree, which is going to be

discussed in the next section.

A sliding-window variant of the original timing wheel aims at ensuring a

constant O(1) complexity for the Timekeeping routine when all the timers

are registered with an expiration interval of at most N time units. If any

0

1 2

3

4

5

6

�

7

8

9

 �

t = 10 � 5 + 1 = 51

N = 10

C

=

5

O
v
e
r
f
l
o
w

L
i
s
t

i = 1

Timer 2

51

*expiry_callback

T

A

I

L

H

E

A

D

Timer 1

56

*expiry_callback

T

A

I

L

H

E

A

D

Timer 3

62

*expiry_callback

T

A

I

L

H

E

A

D

4.3 Traditional data structures for timekeeping

128

timers are registered beyond that bound, however, the overflow list comes

up again, bringing back the original O(n) behavior. Thus the approach

remains impracticable for real-time systems which require nanoseconds

resolutions, unless a very large N is employed to cover the horizon of

possible timer intervals, though yielding a significant memory usage.

Additionally, in [VL1997] another variant is presented, aimed at

distributing the overflow list over the N arrays by means of hashing, thus

reducing the average cost of the overflow list processing to O(n/N).

However, no particularly assumptions can be made on the worst case

complexity, unless introducing some strong assumptions on the

distribution of the timer intervals.

Memory Complexity

The main strength of the timing wheel model, and most of its variants, lays

on a memory vs. computational complexity tradeoff. In general the largest

the array is, the lowest probability of processing entries in the overflow list

it gets, though its worst case complexity remains linear. For such reasons,

its memory complexity of O(N + n) it is far away from being optimal, and

can become an issue when a large number of queues, requiring a timing

wheel each, is required

Self-balancing binary search tree

Another approach for organizing timers in memory is represented by

exploiting binary search tree (BST). A BST is a tree-based data structure

(Figure 44) in which each node η has (at most) two children ηL,ηR, which

respect the following ordering relation: ηL < η ≤ ηR . The point of BST is to

keep its nodes sorted by their key, in order to allow fast (i.e. O(log(n)))

insertion, retrieval and removal operations.

The main issue of conventional BST, however, is that, depending on the

insertion/removal pattern, the tree can easily degenerate in a linked list (for

instance, simply inserting new nodes in increasing order of their keys). As

the tree degenerates in a flat list, the run-time behavior of its operations

degenerates into linear complexity.

4. Data structures for timekeeping in real-time systems

129

For such reasons, self-balancing BST (SB-BST) are typically preferred

when worst-case behavior is a concern [ST1985]. Most SB-BST

implementations (e.g., Red-black trees [Knu2006] and AVL trees

[AL1963]) have the same organization of a conventional BST, differing

only in the behavior of the insertion and removal operations. Qualitatively,

their operating principle is based on spending little more effort upon each

modification of the tree (though still keeping a logarithmic complexity) in

order to keep the height of the tree small, thus guarantee a logarithmic

behavior to subsequent operations.

Figure 44: Binary search tree data structures for timekeeping problems.

Computational worst-case complexity

In the timekeeping scenario, SB-BSTs are employed to keep timer entries

sorted by their expiration time, i.e. each timer entry is modeled by a BST

node, operating as follows: the StartTimer routine inserts the timer entry

by means of a conventional self-balancing BST insertion, which requires

O(log(n)) time in the worst case.

Like a linked list, BST nodes have the additional benefit of being directly

addressable, i.e. the knowledge of a single entry is sufficient to traverse the

tree in any direction. Thus the opaque timer_handle, in the BST model,

can be directly implemented as the memory address of the corresponding

timer entry. For such reason, the StopTimer routine can remove any entry,

by means of a self-balancing tree removal operation, in O(log(n)) time.

As regards the Timekeeping routine:

Timer 2

51

*expiry_callback

Timer 1

56

*expiry_callback

Timer 3

62

*expiry_callback

ROOT

4.3 Traditional data structures for timekeeping

130

• In case of tick-driven handling, the Timekeeping routine just needs to

increment the system time, check if it reached the value of the active

timer entry expiring soonest, that is the leftmost leaf of the BST and, if

so, trigger the corresponding expiry_callback and remove it. Both

the lookup and removal operations require O(log(n)) time in the worst

case when the BST is balanced.

• In case of tick-less handling, the Timekeeping routine needs just to

remove the leftmost leaf of the BST, invoke the corresponding

expiry_callback and retrigger the hardware clock with the absolute

time of the next entry (its parent node), thus requiring O(log(n)) time

for keeping the BST balanced after removal.

Memory complexity

SB-BST have an optimal memory utilization, requiring O(n) memory to

keep only the active timer entries. In order to be able to traverse the tree in

either direction, starting from an arbitrary node, each node need to keep

three pointers (left child, right child and parent) in its payload, in addition

to the expiration time and the expiry_callback pointer.

Array-backed binary heap

In the following, another model based on an array-backed data structure

called binary heap is presented. A binary heap is typically employed to

implement a priority queue, that is, an abstract data type, similar to a

queue, where each element has a priority associated with it.

A priority queue supports the following two operations:

insert_with_priority, that inserts an element into the queue with a

given priority and remove_highest_priority_element, which removes

from the queue and returns the element that has the highest priority.

Priority queues are typically employed in a wide variety of applications

such as graph problems, discrete event simulation, network routing and, of

course, timekeeping. In the specific case of timekeeping, the priority queue

elements are represented by timer entries which priority is inversely

proportional to their expiration time, such that the element with the

maximum priority represents the timer expiring soonest.

4. Data structures for timekeeping in real-time systems

131

From a logical viewpoint, a binary heap is a tree-like data structure, which

nodes respect two properties: (i) shape property: a binary heap is always a

complete binary tree, i.e. all levels of the tree, except possibly the last one

are completely filled, and, if the last level is not complete, the nodes of that

level are filled from left to right. (ii) heap property: each node has a higher

or equal priority than its children. In this regard, it might be worth nothing

that no relationship exists between the priorities of nodes on the same

level. Compared to the BST, in fact, a binary heap induces a more relaxed

ordering among its nodes.

From a memory layout viewpoint all implementations of the binary heap

known so far are based on arrays (array-backed heap). Since the logical

structure of a binary heap is a complete binary tree, its physical structure

can be stored in memory through an array, according to the breadth-first

binary tree implicit representation.

 In this arrangement, no pointers are required to address children or parent

nodes, as they can be directly indexed in the array as follows: if a node has

an index i, its left and right children are found, respectively, at indices

2�i+1 and 2�i+2, while its parent (if any) is found at index

 ⌊(i – 1) / 2⌋, assuming the root has index 0 (Figure 45).

Figure 45: Array-backed binary heap data structure for timekeeping problems.

Computational worst-case complexity

We consider in the following a binary heap backed by an array of size N,

containing, at the time the routines are invoked, n < N active timer entries.

The StartTimer routine proceeds as follows. The new timer entry is

placed in the array at index n (the first non-occupied slot). While this

placement preserves the shape property, the new timer entry may violate

the heap property since its expiration time might be closer than its parent

4.3 Traditional data structures for timekeeping

132

entry. In such case, the new entry must be recursively swapped with its

parent, until the heap property is restored. This operation, typically called

bubble-up requires O(log(n)) time in the worst case, that is, the case in

which the new timer expires sooner than all other n timers (has the highest

priority), thus it must be percolated up through all the height of the tree

(which is ⌊log2(n)⌋) up to the root.

The main issue that arises with array-backed data structures in general, and

in particular with a binary heap, is the addressability of the single entries.

In fact, since the position of an entry within the array is not fixed, in the

binary heap model the timer_handle cannot directly use the memory

address of the entry. Typically, items are addressed by means of a unique

id (e.g., a counter which is monotonically incremented upon each

StartTimer invocation).

Therefore, in the case of a StopTimer, unless the timer to be removed is

exactly the root of the binary heap, its id must be looked-up requiring a full

visit of the entire heap, giving the StopTimer a worst-case runtime

complexity of O(n). Eventually, the complexity of the lookup operation

can be improved (at the expense of the other operations) and become

O(log(n)) by using an alternative model for the timer_handle based on

indirect addressing. Indirect addressing basically consists in using handle

objects to establish the node-id to array-position mapping. Such handles,

however, need to be updated every time a node’s position is altered (e.g. by

bubble-up or percolate-down operations), thus adding overhead to most of

the heap mangling operations.

As regards the Timekeeping routine:

• In case of tick-driven handling, it just needs to increment the system

time, check if it reached the value of the root node of the binary heap

and, if so, trigger the corresponding expiry_callback and remove it

by means of a remove_highest_priority_element operation. The

latter involves two stages: (i) replacing the root node, by definition

placed at index 0 in the array, with the last element of the array (that is

the downmost and rightmost node of the tree) in order to preserve the

shape property of the heap. (ii) Then, the new root is percolated down,

re-iteratively swapping it with its highest priority children,

4. Data structures for timekeeping in real-time systems

133

symmetrically to what happens in the insertion case, until the heap

property is restored. Since, in the worst case, the binary heap must be

fully traversed in its height, the Timekeeping routine has O(log(n))

complexity.

• In case of tick-less handling, the operations to be performed by the

Timekeeping routine are almost unchanged: it has to remove the root,

invoke the corresponding expiry_callback and retrigger the

hardware clock with the absolute time of the next entry, that is the new

root of the binary heap resulting after the remove_highest

priority_element operation on the expired one.

Memory complexity

It might be immediately noted that, as in the array-based models previously

presented in beginning of this chapter, the memory usage of this model is

also O(N), requiring an upper bound estimation on the maximum number

of active timers or runtime memory relocation techniques.

As a final remark, it can be noted that, the worst-case complexity of this

data structure is never better than the BST model. Its analysis in this thesis

might seem arguable at a first glance. However, two further considerations

must be done in this regard: first, the worst-case runtime complexity herein

analyzed gives an indication of the asymptotic behavior of the models, but

doesn’t give any information about their actual performances. Such

performance analysis will be carried out in the end of this chapter.

Secondly, the logic structure of the binary heap model underpins the

architecture of a novel data structure called addressable binary heaps,

discussed in the next section, which shares with this one its logical

structure.

As a summary of this section Figure 46 gives an overall overview of the

worst-case run-time and memory complexities of the models analyzed.

4.4 The addressable binary heap

134

Model
StartTimer

w.c. complexity

StopTimer

w.c. complexity

Timekeeping TD

w.c. complexity

Timekeeping TL

w.c. complexity

Memory

complexity

Dense

array
O(1) O(n) O(n) O(n) O(N)

Sparse

array
O(n) O(1) O(N) O(N) O(N)

Sorted

list
O(n) O(1) O(1)* O(1)* O(n)

Timing

wheel
O(1) O(1) O(n) O(N + n), O(N + n)

SB-BST O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Binary

Heap
O(log(n))

O(n)
O(log(n)) O(log(n)) O(N)

/ O(log(n))

Figure 46: Overview of worst-case computational complexity and memory complexity of

the analyzed timekeeping models

4.4. The addressable binary heap

In order to overcome the limitations of the array-backed binary heap, a

novel approach, called addressable binary heap (ABH), is presented. The

aim of ABH is to implement a binary heap by means of a pointer-based

tree-like physical structure. The design of the ABH lays on the

conventional layout of a binary tree, in which each node is linked to its two

children by means of pointers. No pointer to parent is required.

As in the array-backed binary heap, the nodes of the tree respect both the

shape property and the heap property. In the following we present the

details of the insert_with_priority and remove_highest_

priority_element, showing as they can be implemented with a

logarithmic complexity. The removal routine is further extended to the

general case of removing an arbitrary node from the ABH, still keeping a

logarithmic worst-case complexity.

Insertion of a new node, with arbitrary priority, in the ABH.

The first issue that arises when inserting a new node in an ABH, is finding

its proper location, in order to keep the tree complete and respect the shape

property. In the array-backed case this is immediate, since using the

4. Data structures for timekeeping in real-time systems

135

implicit tree representation the right position (downmost and leftmost)

corresponds directly to the index n of the array, where n is number of

nodes already present. In a pointer-based scenario it requires a little more

analysis.

Definitions

• L(η) : level of a node

Given an arbitrary node η of the ABH, we denote with L(η) the level

of such node, that is, the number of parent nodes of η. There is only

one node η1 in the ABH such that L(η1) = 0 and that node is the root.

• η -N : Nth parent of a node

Given a node of the ABH η ≠ η1, and a natural number N, such that N

≤ L(η), we denote with η - N the Nth parent of the node η, such that L(η)

- L(η – N) = N, with N=0 being the identity η 0 ≡ η.

• ηL ηR: left and right children of a node

We denote with ηL ηR, respectively, the left and right children of a

node η.

• P(η) : path of a node

Given a node of the ABH η ≠ η1, we denote with P(η) the binary

sequence [0 | 1]L(η), such that each ith (0 ≤ i < L(η)) element of the

sequence, with i=0 being the rightmost element, is

 ����� 	= �0		if		��� = (�����)�

1		if		��� = (�����)�

More informally, the path of a node is a binary string that describes the

sequence of branches that must be taken to reach the node from the

root. The length of the binary string is equal to the level of the node

and, for each level, each zero (one) bit means that the path for that

level follows the left (right) child.

• I(η) : index of a node

4.4 The addressable binary heap

136

Given an arbitrary node η of the ABH, we denote with I(η) its index

within the tree, counting the nodes left to right, from the root level

L(η1) up to the upper level L(ηN), starting from I(η1) = 1.

Property 4.4.1

Given an arbitrary node η of index I(η), the indexes of its left and right

children are, respectively: I(ηL) = 2�I(η) and I(ηR) = 2�I(η) + 1.

Proof

Let us consider an arbitrary node η of the ABH. From the definition of

index, I(η) corresponds the number of nodes that precede it (top to bottom,

left to right) plus one.

Therefore, the index can be alternatively be expressed as:

(1) I(η) = A(η) + SL(η) + 1

Where A(η) is the number of ancestors of η (upper-level nodes) and

SL(η) the number of its left siblings (preceding nodes on the same level).

Furthermore, from the definition of complete binary tree:

(2) A(η) = 2L(η) - 1

(3) S(η) = SL(η) + SR(η) = A(η) = 2L(η) - 1

More informally, the number of ancestors of a node η is equal to the

number of its left and right siblings.

Thus

 SL(η) = I(η) - A(η) - 1 From 1

 = I(η) - (2L(η) - 1) - 1 From 2

(4) = I(η) - 2L(η)

By construction, the number of right siblings of η is:

 SR (η) = S(η) - SL(η)

 = (2L(η) - 1) - (I(η) - 2L(η)) From 3,4

(5) = 2L(η)+1 - I(η) - 1

4. Data structures for timekeeping in real-time systems

137

We can now determine I(ηL), that is, the index of the left child of η.

Per definition of complete tree, the number of nodes that lay between η and

ηL is exactly the number of right siblings of η plus the number of children

of the left siblings of η, that is 2 � SL(η). Thus the index of ηL is:

I(ηL) = I(η) + SR (η) + 2� SL(η) +1

 = I(η) + (2L(η)+1 - I(η) - 1) + 2�(I(η) - 2L(η)) + 1 From 5,4

(6) = 2�I(η)

Thus, the index of the right child:

 I(ηR) = I(ηL) + 1

 = 2�I(η) + 1 From 6

□

4.4 The addressable binary heap

138

Property 4.4.2

P(η) = (I(η) - 2L(η))b for each node of the ABH η ≠ η1.

More informally: The path to any non-root node of the ABH corresponds

to the binary representation of its index minus its most significant bit.

Proof

The property can be verified by induction, as follows.

It is immediate to verify that the property is valid for the first two non-root

nodes at level 1, that are, the nodes η1L and η1R of index 2 and 3:

P(η1L) = 0b = 10b - 10b = 2 – 21 = I(η1L) - 2
L(η1L)

P(η1R) = 1b = 11b - 10b = 3 – 21 = I(η1R) - 2L(η1R)

Furthermore, by definition of path, given an arbitrary node η of the ABH,

the paths of its left and right child are, respectively:

(1a) P(ηL) = P(η) # 0b = 2�P(η) (# � binary concatenation operator)

(1b) P(ηL) = P(η) # 1b = 2�P(η) + 1

More informally, the path of the left (right) child of a node is equal to the

path of that node concatenated with 0b (1b) or, equivalently, multiplied by

two (plus one).

Let us now consider a generic node η with L(η) > 1 and suppose that the

property is valid for the level L(η)

(2) P(η) = I(η) - 2L(η)

From property 4.4.1, the indexes of the two children of the node η are:

(3a) I(ηL) = 2�I(η)

(3b) I(ηR) = 2�I(η) + 1

4. Data structures for timekeeping in real-time systems

139

Hence, at level l+1, the path of the left child of η will be:

P(ηL) = 2�P(η) From 1a

= 2�(I(η) - 2 L(η)) = 2�I(η) - 2 L(η) +1 From 2

= I(ηL) - 2
 L(η) +1 From 3a

= I(ηL) - 2
L(ηL)

 Per definition of child

Similarly, for the right child

P(ηR) = 2�P(η) + 1 From 1b

= 2�(I(η) - 2 L(η)) + 1 = 2�I(η) + 1 - 2 L(η) +1 From 2

= I(ηR) - 2 L(η) +1 From 3b

= I(ηR) - 2L(ηR)
 Per definition of child

Thus, the general property 4.4.2 P(η) = (I(η) - 2L(η)) holds.

□

Figure 47 graphically illustrates the property 4.4.2, highlighting the match

between the indexes of the nodes and their paths.

Figure 47: Graphical overview of the fundamental path-finding property that underpins

the operations of the addressable binary heap.

η1

η2 η3

η4 η5 η6 η7

I(η1) : 1b

I(η2) : 10b I(η3) : 11b

I(η6) : 110b I(η4) : 100b I(η7) : 111bI(η4) : 101b

4.4 The addressable binary heap

140

Data structure definition

Once that the theoretical process that underlies the look-up of nodes from

their index has been presented, the concrete data structure and the

insertion/removal algorithms can be discussed in their details.

The concrete data structure of an ABH is defined as follows:

1. typedef struct

2. {

3. abheap_node_t* head;

4. abheap_node_t sentinel;

5. size_t count;

6. } abheap_t;

where head is a pointer to the root node descriptor (the one with highest

priority) and count is an integer variable which keeps track of the number

of nodes currently present in the ABH.

The data type associated to each node of the ABH is defined as follows:

1. typedef struct abheap_node

2. {

3. abheap_prio_t priority;

4. struct abheap* owner;

5. unsigned long position;

6. struct abheap_node* left_child;

7. struct abheap_node* right_child;

8. } abheap_node_t;

where priority represents the numeric priority of that node

(abheap_prio_t is just a redefinition of the value type chosen to model

the priority), owner is a back pointer to the owner ABH (only for

diagnostic purposes, .e.g., breaking the debugger in case of double

insertions or double removals), position represents the index I(η) of that

node (as defined in 4.4) and left_child/right_child the pointers to the

node’s left and right children.

4. Data structures for timekeeping in real-time systems

141

Path extraction and navigation

As regards the navigation in the ABH, in the following the methods for

extracting the path of a node from its index and navigating through it are

presented, basically concretizing in C code the theoretical considerations

previously made.

An ad-hoc data type has been defined for representing a path and allowing

efficient navigation through it, as follows.

1. typedef struct

2. {

3. unsigned long bitmap;

4. int steps;

5. } path_t;

In such data type, bitmap is a machine word, in which each bit represents,

MSB to LSB, the direction (0: left, 1: right) that must be taken when

branching in each level of the ABH. The length of the bitmap word

depends on the underlying architecture. In the most common cases it is a

32 or 64 bit word, thus allowing to keep the path for trees of up to 232-1 or

264-1 nodes.

However, depending on the actual number of nodes present in the ABH

and the number of branches already taken when navigating along that path,

the number of meaningful bits will vary. Per definition the bitmap is left

aligned, i.e. its MSB represents the branch direction for the next level. In

order to identify the number of meaningful most significant bits, a separate

integer variable is introduced, here called steps. In practice this variable

represents the number of levels of the ABH that still need to be traversed to

reach the destination.

In the previous section it has been shown that the binary string representing

the path of a node corresponds to the binary representation of the index,

after its most significant high bit is stripped off. In order to identify and

strip such bit we take advantage of a specific machine instruction which

most computer architectures offer 5 , herein referred to as

5 In lack of that, the CountLeadingZeros function can be easily emulated in software.

4.4 The addressable binary heap

142

CountLeadingZeros, that returns the position of the most significant high

bit of a machine word (bsr on Intel x86, lzcnt on AMD, clz in ARM).

The corresponding C code is shown in the following.

1. path_t GetPathToNode(unsigned long node_index)

2. {

3. path_t path;

4. int leading_zeros = CountLeadingZeros(node_index);

5. const int ULONG_BITS = sizeof(node_index) * 8;

6. /* The maximum operand allowed by C standards for the

7. * << operator is the word size (64). Therefore the shift
 * operation must be split in two steps */

8. path.bitmap = (node_index << (leading_zeros)) << 1;

9. path.steps = ULONG_BITS - leading_zeros - 1;

10. return path;

11. }

The navigation of the path is absolutely straightforward. Basically it

consists in a check of the bitmap‘s MSB, a left-shift operating and a

decrement of the number of remaining steps.

1. bool PathHasNext(const path_t* path)

2. {

3. return path->steps > 0;

4. }

5.

6. path_dir_t PathMoveNext(path_t* path)

7. {

8. path_dir_t dir = (MSB(path->bitmap)) ? RIGHT : LEFT;

9. path->bitmap <<= 1;

10. path->steps -= 1;

11. return dir;

12. }

Insertion algorithm

It is immediate to note that when a new node is being inserted in a ABH

containing count nodes, in order to ensure the shape property a node

(possibly the new node itself, if its priority is sufficiently low) will end up

occupying the position at index count + 1.

Furthermore, in the light of the theoretical considerations made in 4.4, it is

also evident that the knowledge of the final destination index gives also a

precious information on the path that leads to its position.

4. Data structures for timekeeping in real-time systems

143

A naïve insertion approach could consist in emulating the behavior of an

array-backed binary heap, which is, first inserting the new node in the last

position, following fully the path, and then percolating it up to restore heap

property. While this approach is theoretically correct, it would require both

an extra memory overhead, in order to keep track of the node parents,

either storing them in the abheap_node_t structure or in a temporary

stack, and a run-time overhead, since the tree should be traversed in its

height two times, in both directions. Instead, the insertion algorithm

envisaged traverses the ABH only once (top-down). In order to do so we

need to introduce the concept of the dangling node.

Conceptually, the dangling node represents the potential competitor of

each node that is encountered traversing the tree top-down along the path

identified by the target position. At each level, such dangling node can turn

out to have either a lower or equal priority than its current competitor, or a

greater priority. In the former case, the traversal just continues to the next

level, following the path without performing any modification to the ABH.

Conversely, in the case that the dangling node has a higher priority than its

current competitor the two nodes are swapped. It might be worth noting

that swapping an ABH node η with another node η’ (the dangling node)

that has a higher priority than η but a lower priority than η -1, preserves the

heap property.

After a swap, the former dangling node assumes its final position at that

level (thus the parent’s pointer and its pointers are updated accordingly),

while the former competitor is detached from the ABH and becomes the

new dangling node.

This process continues until the last level of the tree is reached. There, the

final dangling node, which in the meanwhile might have been swapped

with lower priority nodes encountered along the path, is placed.

It can be noted as this algorithm traverses the tree only once in its height,

and since, per definition, an ABH is always complete, the worst-case

complexity of the algorithm is O(log(n)).

In the following, the C code that implements the insertion algorithm just

described is shown.

4.4 The addressable binary heap

144

1. void ABHeapInsert

2. (

3. abheap_t* heap,

4. abheap_node_t* node,

5. abheap_prio_t priority

6.)

7. {

8. abheap_node_t* dangling_node = node;

9. abheap_node_t** parent_ptr = & heap->head;

10. unsigned long target_position = (heap->count + 1);

11. path_t path = GetPathToNode(target_position);

12. node->owner = heap;

13. node->priority = priority;

14.

15. while (PathHasNext(&path))

16. {

17. abheap_node_t* current = *parent_ptr;

18. if (HasHigherPriority(dangling_node, current))

19. {

20. ReplaceNode(current, dangling_node, parent_ptr);

21. SwapPointers(dangling_node, current);

22. }

23.

24. if (PathMoveNext(&path) == LEFT)

25. {

26. parent_ptr = & current->left_child;

27. }

28. else

29. {

30. parent_ptr = & current->right_child;

31. }

32. }

33.

34. dangling_node->position = target_position;

35. dangling_node->left_child = & heap->sentinel;

36. dangling_node->right_child = & heap->sentinel;

37. *parent_ptr = dangling_node;

38. heap->count += 1;

39. }

4. Data structures for timekeeping in real-time systems

145

Highest priority element removal algorithm

Let us consider first the case of removing the highest priority element (the

root) from the ABH. Trivial cases, i.e. count ≤ 1, are omitted.

Step 1: identification and removal of the last node

As in the case of the array-backed binary heap, a good approach for

removing the root node and, at the same time, preserving the shape

property is represented by replacing the root with the last node of the heap

(the one with highest index). Since the ABH data structure is based on

pointers, however, such replacement requires that the last node must be

first identified and unlinked from the heap.

The identification process is, at this point, absolute straightforward and

analogous to what discussed in the insertion case. The knowledge of the

count of nodes directly reflects the index of the last node, thus its path.

Furthermore, since the path to reach the last node must necessarily pass

through its parent, the unlink process can be performed traversing the ABH

in its height just once, keeping track in a temporary variable of the

left/right child pointer of the last parent seen and invalidating it at the last

iteration, as follows:

1. abheap_node_t* UnlinkLastNode(abheap_t* heap)

2. {

3. abheap_node_t** parent_ptr = & heap->head;

4. path_t path = GetPathToNode(heap->count);

5. abheap_node_t* last_node;

6. while (PathHasNext(&path))

7. {

8. abheap_node_t* current = *parent_ptr;

9. if (PathMoveNext(&path) == LEFT)

10. {

11. parent_ptr = & current->left_child;

12. }

13. else

14. {

15. parent_ptr = & current->right_child;

16. }

17. }

18. last_node = *parent_ptr;

19. *parent_ptr = & heap->sentinel;

20. return last_node;

21. }

4.4 The addressable binary heap

146

Step 2: restoration of the heap property

The pointer based physical structure of the ABH paves the way towards the

restoration of the heap property in a similar way to what happens, at least

from a logical viewpoint, in the array-backed binary heap during a standard

percolate-down operation.

In the case of ABH, however, this operation can be performed in a lighter-

weight fashion by means of just mangling link pointers, without actually

swapping or physically moving the nodes themselves.

This hole-propagation approach, herein called bubble-down, consists in the

following: the removal of the root node conceptually creates a hole in the

tree that must properly filled, ensuring to preserve both the heap property

and the shape property of the ABH.

From an algorithmic viewpoint, however, the node which causes the hole

is not concretely removed. Instead, it is directly replaced by choosing

among the highest of its two children and the last node of the ABH (which

has been unlinked in the previous step and is temporary not part of the

ABH). At this point two cases are possible: (i) one of the two children has

the highest priority, so its replacement preserves the heap property but

causes the hole to move downwards in the place of the swapped child. In

this case the algorithm must be reiterated, in the worst case until the hole is

pushed over the last level of the ABH; (ii) the last node is the one with the

highest priority: this causes the termination of the algorithm, since its

replacement gives back the complete shape to the ABH and restores the

heap property.

It might be finally worth noting that the algorithm, as described so far, can

be theoretically performed also on a portion of the ABH, i.e. starting from

a non-root node. For such reason, in the following a generalized version,

which takes as input parameters a generic start node (and the link of its

parent), is presented:

1. void BubbleDown

2. (

3. abheap_node_t* hole,

4. abheap_node_t** hole_parent_ptr,

5. abheap_node_t* replacement

4. Data structures for timekeeping in real-time systems

147

6.)

7. {

8. abheap_t* heap = hole->owner;

9. abheap_node_t** parent_ptr = hole_parent_ptr;

10. unsigned long hole_position = hole->position;

11. abheap_node_t* hole_left = hole->left_child;

12. abheap_node_t* hole_right = hole->right_child;

13. bool completed = false;

14. while (not completed)

15. {

16. if (HasHigherPriority(hole_left, hole_right))

17. {

18. if (HasHigherPriority(hole_left, replacement))

19. { /* Pull-up hole's left child */

20. *parent_ptr = hole_left;

21. parent_ptr = & hole_left->left_child;

22. hole_left->position /= 2;

23. SWAP(hole_right, hole_left->right_child);

24. hole_left = hole_left->left_child;

25. hole_position = hole_position * 2;

26. }

27. else

28. {

29. completed = true;

30. }

31. }

32. else

33. {

34. if (HasHigherPriority(hole_right, replacement))

35. { /* Pull-up hole's right child */

36. *parent_ptr = hole_right;

37. parent_ptr = & hole_right->right_child;

38. hole_right->position /= 2;

39. SWAP(hole_left, hole_right->left_child);

40. hole_right = hole_right->right_child;

41. hole_position = hole_position * 2 + 1;

42. }

43. else

44. {

45. completed = true;

46. }

47. }

48. }

49. *parent_ptr = replacement;

50. replacement->position = hole_position;

51. replacement->left_child = hole_left;

52. replacement->right_child = hole_right;

53. }

4.4 The addressable binary heap

148

In the light of the above considerations, the highest priority element

removal routine is presented in its entirety below:

1. abheap_node_t* ABHeapRemoveHighest

2. (

3. abheap_t* heap

4.)

5. {

6. if(heap->count > 0)

7. {

8. abheap_node_t* const old_head = heap->head;

9. abheap_node_t* last_node = UnlinkLastNode(heap);

10. BubbleDown(old_head, & heap->head, last_node);

11. old_head->owner = NULL;

12. heap->count--;

13. return old_head;

14. }

15. else

16. {

17. return NULL;

18. }

19. }

It can be finally noted that, since both the UnlinkLastNode and the

BubbleDown traverse the ABH in its height one time each, the worst-case

complexity of the ABHeapRemoveHighest routine is O(log(n)).

Arbitrary element removal algorithm

The greatest advantage introduced by ABH, over the array-backed binary

heap, is the direct addressability of its elements. Direct addressability

paves the way towards the efficient implementation of a further operation,

fundamental for our timekeeping purposes, that is, the removal of arbitrary

nodes from the ABH.

In the light of the previous discussions, the removal of a node creates a

hole that can be bubbled-down. The choice of the initial replacement node,

however, requires a more careful handling in this scenario. In fact, no

assumption can be made on the relationship that exists between the priority

of an arbitrary node and priority of the last ABH node (except for the

singular cases in which the node being removed is an ancestor of the last

node).

4. Data structures for timekeeping in real-time systems

149

Thus, due to this intrinsically weak ordering, the last node won’t

necessarily ensure the heap property to be preserved in the first

L(hole) levels of the ABH and could turn out to have a higher priority than

some ancestors of the node being removed. Figure 48 graphically depicts

such scenario.

Figure 48: A particular case of arbitary element removal in an addresable binary heap.

In order to ensure the global satisfaction of the heap property, a

preliminary filtering step is required: the last node must be filtered down

on the path that leads from the root to the node being removed, and

swapped every time a lower priority node is encountered, in order to re-

establish the heap property in the first levels of the ABH.

Thus, at the end of this partial walk, the replacement node employed for

the BubbleDown routine will be the lowest priority node encountered along

the path. For instance, in the example of 8, the last node of priority (5)

would be swapped with the node (10), and the latter would be used to

replace the hole of the node (11) in the BubbleDown call.

From a practical viewpoint, the logic of the filtering step is exactly the

same of the insertion algorithm, in which the last node represents the initial

dangling node.

The complete code for removal of an arbitrary node is presented below:

1

10 2

11 20

12 23

3 30

21 24 5
Last node

Node to be

removed

4.4 The addressable binary heap

150

1. void ABHeapRemove

2. (

3. abheap_node_t* node_to_remove

4.)

5. {

6. abheap_t* heap = node_to_remove->owner;

7. abheap_node_t** parent_ptr = & heap->head;

8. abheap_node_t* dangling_node;

9. path_t path = GetPathToNode(node_to_remove->position);

10.

11. dangling_node = UnlinkLastNode(heap);

12.

13. if (dangling_node != node_to_remove)

14. {

15. while(PathHasNext(&path))

16. {

17. abheap_node_t* current = *parent_ptr;

18.

19. if(HasHigherPriority(dangling_node, current))

20. {

21. ReplaceNode(current, dangling_node, parent_ptr);

22. SwapPointers(dangling_node, current);

23. }

24.

25. if(PathMoveNext(&path) == PATH_DIR_LEFT)

26. {

27. parent_ptr = & current->left_child;

28. }

29. else

30. {

31. parent_ptr = & current->right_child;

32. }

33. }

34. /* At this point

35. - dangling_node is either the last_node or a node

36. with lower priority encountered along the path

37. (from head to node_to_be_removed).

38. - parent_ptr points to node_to_be_removed, unless it

39. was exactly the last_node. In such case parent_ptr

40. points to the sentinel,since node_to_be_removed was

41. detached by UnlinkLastNode.

42. - node_to_be_removed has not been removed yet, but we

43. ready to do it now. */

44. BubbleDown(node_to_remove, parent_ptr, dangling_node);

45. }

46. node_to_remove->owner = NULL;

47. heap->count--;

48. }

4. Data structures for timekeeping in real-time systems

151

It might be noted that this routine walks the heap in its height two times:

the first time to identify and unlink the last node, and the second time to

filter down the last node (lines 13-33) and then to bubble-down the

resulting dangling node (line 44) in the remaining levels of the ABH. Thus

its worst-case run-time complexity is O(log(n)).

As a final note, it might be noted that, as in the case of the array-backed

binary heap, also the ABH is a non-stable model, i.e. the order of two

elements having the same priority is not guaranteed to be preserved.

Whereas stability represents a concern, however, non-stable priority

queues can be made stable by the introduction of an auxiliary priority field,

a sequence number, to break ties as discussed by McCormack and Sargent

in [MS1981].

4.5. Experimental evaluations

The ABH, as presented so far, allows to implement all the operations

envisaged by a priority queue, including the removal of arbitrary nodes,

with a logarithmic worst-case complexity and a linear memory complexity.

It might be worth verifying, at this point, how the presented

implementation of such data structure performs when applied to the

timekeeping problem.

Performance evaluation involves three main points, which are being

discussed separately in the following: (i) a methodological aspect, i.e. what

operations should be evaluated and under which scenarios; (ii) a

comparative aspect: which other data structure to compare; (iii) a practical

aspect: how to concretely measure performances, mostly related to the

underlying software and hardware platform.

Evaluation methodology

Over the years, several performance studies has been carried on

priority queues, mostly in the context of discrete event simulation

(DES). In such context, a priority queue is generally used to hold the

pending event set (sometimes referred to as the event calendar [CSR1993])

which contains the scheduled future events. The DES scheduling problem,

however, is, in its essence, a tick-less timekeeping problem, since DES

4.5 Experimental evaluations

152

simulators basically rely on a set of timers which are scheduled to trigger

future actions. Run-time performances of timekeeping in DES are as

critical as in RTOS schedulers since, as shown by an empirical study by

Comfort [Com1984], up to 40% of the DES execution time may be spent

on the event-set management (thus on timekeeping routines) itself.

Similarly to [RA1997], synthetic experiments are preferred over real

simulations since they provide better control over the variables affecting

performance and, thus, they better expose the factors that influence

performance. Furthermore, synthetic experiments facilitate direct

comparison to earlier priority queue studies [CSR1993, MS1981,

VD1975].

In this regard, a widely used method for performance evaluations is

represented by the insert-hold model, introduced by Vaucher and Duval in

[VD1975] and refined by Jones [Jon1986]. It models operations on a

fixed-size queue where a series of hold operations (a removal followed by

an insertion) are performed. In [RAFD1993] Rönngren et al. highlight as

this methodology is in general not sufficient to capture the dynamic nature

of queue sizes that often appears in practice, as recognized by several

researchers as in [CSR1993].

An Up/Down model is proposed by Rönngren et al. [RA1993], where a

sequence of insertions is followed by an equally long sequence of

removals. Further refinements of these models have been presented in the

scientific literature. For instance Chung et al. [CSR1993] propose a

generalization of the Hold model, the Markov Hold, where operations

on the queue are determined by a two-state Markov process.

However in [RA1997] Rönngren et al., after a long series of comparative

evaluations, highlight as, when the queue size remains nearly constant, the

classic Hold model gives as accurate and informative results as the more

random access patterns generated by the Markov Hold. Furthermore, for

changing queue sizes, the simple Up/Down model often gives sufficient

information. In general, the simplicity of the classic Hold and the

Up/Down models seems to reveal more and clearer information on the

dependencies of priority increment distributions and queue sizes on the

performance of the queue.

4. Data structures for timekeeping in real-time systems

153

In the light of the above considerations, the evaluation methodology

adopted in this work is the following: 19 base experiments evaluate and

compare the run-time performances of the timekeeping operations on

several data structures at varying sizes Si of the timer queues (S1=10 to

S10=100 in steps of 10, to S19=1000 in steps of 100). In each base

experiment, a number of Si up-insertions are performed (the queue is

gradually populated). Then another set of Si hold operations are performed

(a maximum priority removal and an insertion each) using uniform

distributions for the random generation of new timers’ expiration. Finally

the queue is emptied with a Si down operations, this time performing

random removals of arbitrary nodes. Each of those base-experiments is

repeated 50 times, varying the random seed that generates the priorities for

insertions (both for up and hold) and selects the random nodes to be

removed during the down removal operation.

Comparative evaluation

The ABH has been compared, in this work, with the following data

structure implementations:

RBT: Red-black tree is one of the most famous and widely used variant of

self-balancing binary trees. The Linux Kernel implementation of red-black

trees has been herein chosen due to its popularity and its ability to being

use standalone in other context than the Linux kernel, without requiring

many external dependencies. Like the ABH, the Linux RBT

implementation is based on an embedded-anchor model, which is very

popular in embedded systems. Conversely to what happens in higher level

frameworks, such as most Java or C++ STL containers, the embedded-

anchor model provides that the data type of the objects being added to the

data structure is aware of the container and explicitly define an anchor

field, which contains the child pointers and the other relevant fields

required by the data structure. Although this model may seem, at a first

glance, to go against the cornerstones of software engineering principles, it

has the great advantage of not requiring any dynamic memory allocation

for the operations of the container. Therefore, if the nodes that are added

and removed at runtime are known a priori (or at least an upper bound on

their number), they can be statically allocated during the binary

4.5 Experimental evaluations

154

initialization phase and their handling in the data structure can be

performed without the intervention of dynamic memory management

(often banned in military and high reliability systems, as in the case of DO-

178B level A profiles).

T1H, T1K: Timing wheel open source library [eST2009], which

implement the hashed variant of the timing wheel data structure discussed

in 4.3. Such data structure exhibits, from an analytic viewpoint, a O(1)

worst-case complexity for insertions and random removals and hashtable-

like O(n/N) average and O(n) worst-case complexity for highest priority

removals. As in the case of ABH and RBT, the timing wheel

implementation also relies on the embedded-anchor model, so the

performance measurements do not take into account any time required for

allocation of their nodes. Two instances of the timing wheel, respectively

of 100 (T1H) and 1000 (T1K) buckets, have been considered in the

evaluation.

MLS: C++ STL Multiset. The C++ Standard Template Library (STL)

introduces the set and multiset containers. In the HP’s STL

implementation, the foundation of these classes is a red-black tree, and,

like Linux RBT, it supports insertion, removals and highest-priority

removal in O(log(n)) worst-case complexity. However, conversely to

Linux embedded-anchor RBT, this STL container takes implicitly

advantage, in its internals, of dynamic memory management to wrap the

elements of the set, so its runtime performances can differ from RBT.

BHP: Traditional array-backed binary heap implementation, which is

based on a conventional C array and on the push_heap and pop_heap C++

STL methods defined in the <algorithm> header. Conversely to the ABH,

RBT, T1H/K, and MLS, which basically rely on pointer-mangling

operations and don’t actually move the data nodes, the operations of the

BHP, as described in 4.3, do physically move and swap nodes in order to

keep the heap consistent. Since the runtime performances of the

move/swap depend on the actual size of the timer descriptor, in order to

4. Data structures for timekeeping in real-time systems

155

carry out a fair comparison which reflects real-world timekeeping

implementations, the elements of the array have been defined as a tuple

embedding the absolute expiration time of the timer, the pointer to the

callback function invoked on timer expiration and the argument passed to

that callback.

1. struct STLNode

2. {

3. uint64_t abs_expiration_time;

4. void* callback_fn;

5. void* callback_data;

6. }

The measurements do not take into account the time required for the

allocation and the initialization of the array during the experiments.

Random element removal measurements are not available for BHP, since

such primitive is not envisaged by the C++ STL, and in general would

require a O(n) complexity, in order to look-up the element to remove.

PQU: C++ STL priority_queue container. The C++ STL introduce the

priority_queue adapter container. In the default HP’s STL

implementation, it models a priority queue over a STL vector, thus

incurring in dynamic allocations and, more importantly, in memory

relocations as the size of the queue grows up. As for BHP, the interface of

the STL priority_queue envisages only methods for insertion and

highest priority removal. Thus measurements for random element removals

are not available for PQU.

Evaluation platform

The scenario being investigated consists in the aforementioned data

structures being used to address the timekeeping problem in real-time

systems. For such reason, an important aspect of the performance

evaluations is the worst-case execution time measurement.

In real-world systems, however, measuring the actual worst-case execution

time of a software algorithm is not trivial. The major issues are represented

by the wide spectrum of noise, due to both hardware (e.g., peripherals

4.5 Experimental evaluations

156

triggering interrupt requests, presence of other bus-master devices slowing

down CPU accesses, dynamic CPU frequency scaling) and software

activities (higher priority processes and kernel threads which may preempt

the experiments), which are hard to control. This problem, of course, could

be easily overcome by means of filtering out outliers from the collected

samples. This kind of solution, however, is not suitable at all for our

scenarios, since it would inevitably filter out not only the measurement

noise but also potential peaks related to the nature of the data structures

being investigated.

For such reason, the experimental evaluations have been carried out on a

hardware platform simulation infrastructure called OVPSim [OVP2012].

OVPSim (namely open virtual platform simulator) is a broadly diffused

open-source simulation platform, able to model a wide variety of

computational architectures typically employed in embedded systems, such

as the ARM, MIPS and OpenRisc processors, with instruction-level

accuracy. The simulation engine is fully customizable and gives the

possibility of setting up ad-hoc virtual platforms, choosing arbitrary CPU

and memory layouts to best fit the simulation needs. The simulator takes

advantage of just-in-time code morphing, translating dynamically target

instructions to x86 host instructions. OVPsim has been specifically

architected for the fast and accurate simulation and includes many

optimizations enabling simulation of platforms utilizing many

homogeneous and heterogeneous processors with many complex memory

hierarchies.

The simulation platform gives the complete control on the virtual memory

initialization, allowing to easily load custom binaries in the virtual

platform memory before booting the virtual cores. Furthermore OVPSim

libraries support semi-hosting for many peripherals, allowing to redirect

the C/C++ standard library I/O of the target system to the host simulator.

For such reasons, the software experiments can be run bare on the target

virtual platform without requiring any additional driver or any operating

system to be loaded.

4. Data structures for timekeeping in real-time systems

157

The ARM-CM3 and the MIPS 32 virtual processor models have been

chosen for the experimental evaluations, as representatives of a large class

of realistic real-world scenarios.

The software experiments together with the ABH implementation, have

been compiled with Mentor Graphic Sourcery CodeBench Lite GCC-based

toolchains (more in detail GCC 4.6.3 for mips32-sde, and GCC 4.5.2 for

armv7), enabling all compiler optimizations (-O3 switch).

Experimental results

The first set of measurement compares the average and maximum

execution time (in terms of emulated machine instructions) taken by each

data structure for each of the four operations previously described in a set

of 50 repetitions per experiment. Thus, each point of the plots represents,

respectively, the average and maximum values over a set of 50 * N

(number of timers in the experiment on the x-axis) samples.

For sake of graphical intelligibility, the x-axis of the plots follows a

double-linear scale with a discontinuity on N=100 (emphasized by a

vertical dashed line).

Insert-up

Average ramp-up insertion times (Figure 49 and Figure 51) show that, as

expected, both T1H and T1K keep, in any scenario, a perfect constant

behavior regardless the length of the queue. In general, data structures

based on a binary heap (in particular ABH, BHP) outperform both red-

black tree implementations (RBT and MLS). The BHP exhibits the best

average performances on both platforms: its array-backed physical

structure allows to directly walk the heap in height very quickly with direct

indexed memory access. A higher cost, instead, is paid by the tree-based

data structures such as ABH, RBT and MLS. However, it might be noted

as the ABH outperforms both the RBT and MLS red-black tree

implementations in the ARM platform.

Furthermore, it might be noted as embedded-anchor tree models (ABH and

RBT) exhibit better performances than the dynamic one MLS, which

evidently suffers the run-time overhead due to the dynamic allocation of

4.5 Experimental evaluations

158

STL container wrappers. A final note goes on the definitely odd behavior

of the PQU, that finds a proper explanation on the unproportionatelly high

overheads that are incurred when the underlying Vector grows and

consequently performs dynamic memory reallocations. Since the

occurrences of such reallocations are rare, their high cost is better

amortized in the average value as the size of the queue increases, that

explains its unexpected decreasing trend.

The situation becomes, however, more interesting when worst-case run-

times are taken into account (Figure 50 and Figure 52). Unsurprisingly, the

worst-case run-time for the BHP (that is, a node with a high priority being

inserted when the heap is almost full, causing the percolate-up to deep-

swap the contents of log2(N) elements of the array) lifts-up, reaching an

almost perfect overlap with ABH in the case of ARM-CM3, and becoming

even worse, in the case of MIPS 32. Furthermore it can be noted as in both

platforms the ABH largely outperforms both RBT and MLS. The worst-

case plot for the PQU has been omitted for keeping the figures more

readable. In both platforms, in fact, the growths and reallocation of the

underlying Vector caused the worst-case samples to have peaks of an

order of magnitude higher than the other data structures (which would have

required to shrink the y-axis too much).

Insert-hold

Similar considerations apply for insert-hold measurements. The only

noticeable difference, in this case, is that both average execution times

(Figure 53 and Figure 55) and maximum execution times (Figure 52 and

Figure 54), show the PQU backing-up to reasonable values close to the

BHP behavior. The reason is that, conversely to what happens during

ramp-up insertions, hold insertions keep the size of the queue constant,

thus no dynamic expansions of the underlying Vector are needed.

Remove head

Average measurements for maximum-priority removals (Figure 57 and

Figure 59) highlight as the runtime behavior of the timing wheels, as

expected, is definitely not suitable for addressing tick-less timekeeping

4. Data structures for timekeeping in real-time systems

159

problems. Clearly, for both timing wheels, the time spent looping for

finding the next element represents the highest contribution to their run-

time behavior, which is order of magnitudes higher than all other data

structures (for this reason the charts for head-removal measurements use a

logarithmic y axis). Curiously, both in the average and maximum

measurements, the run-time behavior of both timing-wheels improve as the

length of the queues increases. The reason of this lies in the uniformly

random distribution of samples in the experiments, which is such that in

larger queues the next element is statistically closer (i.e. requires shorter

loops) than in smaller queues.

As regards the other data structures, both red-black trees implementations

exhibit an almost O(1) amortized runtime performance. Both the RBT and

MLS red-black trees tend to outperform binary heaps as the length of the

queue increases

Also in this case, however, the RBT demonstrates to be a more efficient

implementation than MLS, which, while keeping the same trend, pays a

higher constant overhead due to the STL container wrappers and

comparison callbacks.

ABH shows a very interesting behavior here, even in the average

measurements, outperforming the other two BHP and PQU binary heap

implementations in the MIPS 32 platform, and performing as the BHP in

the ARM CM3 platform.

The most interesting results, however, come out when analyzing worst-

case performances (Figure 58 and Figure 60). First of all, it can be noted as

the worst-case behavior of ABH closely matches its average performances.

Both the RBT and MLS red-black trees, instead, tend to have slightly

worse worst-case behaviors than binary heaps (ABH, BHP and PQU).

Besides, in both platforms, the ABH shows a remarkable behavior,

outperforming all the others data structures (except the timing wheels when

the queues length is small)

Remove random

As expected both T1H and T1K timing wheels keep a O(1) constant

runtime for removal of random elements in all cases, due to the doubly

4.5 Experimental evaluations

160

linked arrangement of the bucket lists. On average (Figure 61 and Figure

63) the performances of the ABH are better than the RBT and MLS red-

black trees only when the length of the queue is modest (under 100). In

general RBT has better average case performance, with MLS following its

trend with its usual constant overhead offset.

However, when worst-case performances are take into account (Figure 62

and Figure 64), ABH again shows its tendency to keep very close worst

and average runtime cases, outperforming MLS and keeping comparable

worst-case performances than RBT on both platforms.

4. Data structures for timekeeping in real-time systems

161

Run-time distributions

In order to get a broader level view that captures not only the average and

maximum run times, but gives an overall graphical indication of the

statistical distribution of the samples, Figure 65…Figure 72 show the

violin plots [HN1998] for the insert and removal operations on the binary

heap and red-black tree data structures, which all share a theoretical

O(log(n)) worst-case runtime complexity. Each plot compares, for each

operation, the statistical distribution, on both architectures, of the samples

collected from the synthetic experiment involving a queue of N=500

timers. The bold rectangle inside the violins represent the inter quartile

range (IQR), and the white dot marks the mean value.

During a ramp-up insertion (Figure 65 and Figure 66), the boundaries of

the ABH distribution follow strictly the BHP. However, while the BHP

samples are more dense around the 1st and 2nd quartiles, denoting a better

average behavior, the ABH samples are almost exactly centered around

their median. Furthermore these two plots make evident as, during an

insertion, the RBT and MLS don’t perform better than binary trees in any

architecture, while PQU (which violin plot has been trimmed in its upper

part for graphical reasons) confirms to suffer both longer execution times

in average, and very high, yet sporadic, peaks.

During insert-hold insertions (Figure 67 and Figure 68), the distributions of

ABH, BHP and PQU highlight that all the heap-based implementations

tend behave as in their best-case behavior for most of the samples, and

their worst-case behaviors are always better than RBT and MLS.

Furthermore, ABH has worse average and minimum times than BHP and

PQU. On the other side, its worst-case behavior is slightly better than the

other two, especially in the MIPS 32 platform.

When highest priority removal is taken into account, Figure 69 and Figure

70 show a very interesting situation. RBT and MLS red-black trees exhibit

better overall better performances. Their samples distribute on a lower but

wider range, compared to binary heaps (in particular PQU and BHP),

exhibiting an excursion between best and worst execution times of,

respectively, 225 and 189 instructions on ARM CM3, and 239 and 180

instructions on MIPS 32. BHP and PQU, conversely, keep a narrower

4.5 Experimental evaluations

162

range (112 and 106 instructions on ARM CM3 and 115 and 178

instructions on MIPS 32), but a higher mean and worst-case value.

The most interesting trend, however, is exhibited by ABH. While keeping

a similar mean and range than BHP and PQU, its worst-case execution

time is, in both platforms, smaller than all the other ones, including the red-

black trees which have a sensibly smaller mean value. The shape of the

two ABH violin plots give a reasonable view of this behavior, showing as,

conversely to what happens in all other cases, on both platforms the ABH

samples density is highly concentrated around the worst-case value. In

summary, ABH demonstrate to require the worst-case execution time in

most of the removals, but its worst-case is the best among all the data

structures considered, in both platforms.

A similar situation is observed during random element removals (Figure 71

and Figure 72).

4. Data structures for timekeeping in real-time systems

163

Figure 49: Average execution time for ramp-up insertion on ARM CM3.

Figure 50: Maximum execution time for ramp-up insertion on ARM CM3.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

ABH RBT T1H T1K MLS BHP PQU

ARM CM3 - Insert Up [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

ABH RBT T1H T1K MLS BHP

ARM CM3 - Insert Up [MAX]

4.5 Experimental evaluations

164

Figure 51: Average execution time for ramp-up insertion on MIPS 32.

Figure 52: Maximum execution time for ramp-up insertion on ARM CM3.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

ABH RBT T1H T1K MLS BHP PQU

MIPS 32 - Insert Up [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

ABH RBT T1H T1K MLS BHP

MIPS 32 - Insert Up [MAX]

4. Data structures for timekeeping in real-time systems

165

Figure 53: Average execution time for hold insertion on ARM CM3.

Figure 54: Maximum execution time for hold insertion on ARM CM3.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

ABH RBT T1H T1K MLS BHP PQU

ARM CM3 - Insert Hold [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

ABH RBT T1H T1K MLS BHP PQU

ARM CM3 - Insert Hold [MAX]

4.5 Experimental evaluations

166

Figure 55: Average execution time for hold insertion on MIPS 32.

Figure 56: Maximum execution time for hold insertion on MIPS 32.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

ABH RBT T1H T1K MLS BHP PQU

MIPS 32 - Insert Hold [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

ABH RBT T1H T1K MLS BHP PQU

MIPS 32 - Insert Hold [MAX]

4. Data structures for timekeeping in real-time systems

167

Figure 57: Average execution time for highest priority removal on ARM CM3.

Figure 58: Maximum execution time for highest priority removal on ARM CM3.

1
e
+
0
2

5
e
+
0
2

5
e
+
0
3

5
e
+
0
4

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e
 (
lo
g
.)

10 30 50 70 90 200 400 600 800 1000

ABH RBT T1H T1K MLS BHP PQU

ARM CM3 - Remove Head [MEAN]

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e
 (
lo
g
.)

10 30 50 70 90 200 400 600 800 1000

ABH RBT T1H T1K MLS BHP PQU

ARM CM3 - Remove Head [MAX]

4.5 Experimental evaluations

168

Figure 59: Average execution time for highest priority removal on MIPS 32.

Figure 60: Maximum execution time for highest priority removal on MIPS 32.

1
e
+
0
2

5
e
+
0
2

5
e
+
0
3

5
e
+
0
4

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e
 (
lo
g
.)

10 30 50 70 90 200 400 600 800 1000

ABH RBT T1H T1K MLS BHP PQU

MIPS 32 - Remove Head [MEAN]

1
e
+
0
2

1
e
+
0
3

1
e
+
0
4

1
e
+
0
5

1
e
+
0
6

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e
 (
lo
g
.)

10 30 50 70 90 200 400 600 800 1000

ABH RBT T1H T1K MLS BHP PQU

MIPS 32 - Remove Head [MAX]

4. Data structures for timekeeping in real-time systems

169

Figure 61: Average execution time for random removals on ARM CM3.

Figure 62: Maximum execution time for random removals on ARM CM3.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
2
5

5
0

7
5

1
0
0

1
5
0

2
0
0

ABH RBT T1H T1K MLS

ARM CM3 - Remove Rand. [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
5
0

1
5
0

2
5
0

3
5
0

4
5
0

ABH RBT T1H T1K MLS

ARM CM3 - Remove Rand. [MAX]

4.5 Experimental evaluations

170

Figure 63: Average execution time for random removals on MIPS 32.

Figure 64: Maximum execution time for random removals on MIPS 32.

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
2
5

5
0

7
5

1
2
5

1
7
5

2
2
5

ABH RBT T1H T1K MLS

MIPS 32 - Remove Rand. [MEAN]

Number of timers

E
x
e
c
u
ti
o
n
 t
im
e

10 30 50 70 90 200 400 600 800 1000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

ABH RBT T1H T1K MLS

MIPS 32 - Remove Rand. [MAX]

4. Data structures for timekeeping in real-time systems

171

Figure 65: Execution time distribution for ramp-up insertion on ARM CM3

Figure 66: Execution time distribution for ramp-up insertion on MIPS 32.

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

Insert Up, N=500 - ARM CM3

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

Insert Up, N=500 - MIPS 32

4.5 Experimental evaluations

172

Figure 67: Execution time distribution for hold insertion on ARM CM3.

Figure 68: Execution time distribution for hold insertion on MIPS 32.

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Insert Hold, N=500 - ARM CM3

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Insert Hold, N=500 - MIPS 32

4. Data structures for timekeeping in real-time systems

173

Figure 69: Execution time distribution for highest priority removal on ARM CM3.

Figure 70: Execution time distribution for highest priority removal on MIPS 32.

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Remove Head, N=500 - ARM CM3

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH BHP RBT MLS PQU

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Remove Head, N=500 - MIPS 32

4.5 Experimental evaluations

174

Figure 71: Execution time distribution for random removal on ARM CM3.

Figure 72: Execution time distribution for random removal on MIPS 32.

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH RBT MLS

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Remove Random, N=500 - ARM CM3

Data structure

In
s
tr
u
c
ti
o
n
s
 c
o
u
n
t
d
is
tr
ib
u
ti
o
n

ABH RBT MLS

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Remove Random, N=500 - MIPS 32

4. Data structures for timekeeping in real-time systems

175

4.1. Concluding remarks.

This chapter presented a novel data structure, called addressable binary

heap. At first, the theoretical properties which underpin its pointer-based

physical structure are presented. Furthermore, a complete C

implementation of the data structure is discussed in its full details,

describing the operating principles of its main operations (insert with

priority, remove highest priority and remove random) that enable the ABH

to model a fully-fledged priority queue which operations all exhibit a

O(log(n)) worst case run-time complexity and a O(1) memory run-time

complexity (plus O(n) memory required for the data structure itself).

The viability and the performances of the ABH data structure have been

later measured on an instruction-accurate virtual platform simulator, by

means of synthetic experiments which emulate the manifold behavior of a

timer queue in different scenarios and with different queue lengths.

Such experiments provided a detailed analysis of the mean, worst-case, and

overall distribution of execution times, comparing the ABH with some

mainstream data structures well known in literature to address timekeeping

(and for priority queues in general) that are, timing wheels, red-black trees

(both Linux kernel implementation and the C++ STL) and array-backed

binary heaps (both STL heap and Vector-based priority_queue).

The timing wheel demonstrated to have excellent overall performances but

only on tick-driven timekeeping. Its array-based structure, in fact, revealed

definitely unsuitable behaviors for tick-less timekeeping, conversely to all

the other data structure herein considered.

On the other side, the traditional array-backed binary heap (which is

largely employed in most priority queue implementations), exhibits

logarithmic worst-case complexity for all its operations, and good

performances in general, being a good candidate for tackling the

timekeeping problem with high determinism. However, it has two big

drawbacks: (i) it complicates random elements removal, a frequent

operation in timekeeping problems for canceling outstanding timers.

(ii) Its physical structure is based on an array, which implies that the size

of the problem (i.e. the maximum number of active timers), or at least a

very good upper-bound, must be known a priori.

4.1 Concluding remarks.

176

The C++ STL priority_queue implementation provides a solution to the

latter issue, modeling a priority queue on top of a STL Vector, that is, in a

nutshell, a dynamically expandable array. However, the experimental

evaluations showed as its behavior makes such data structure absolutely

not suitable for being employed in real-time systems. Its average

performances, in general, suffer of substantial overhead due to the STL

container logic. Furthermore the memory reallocations required to

dynamically expand the queue length (which in some standards for

embedded real-time systems is a completely banned practice) revealed to

suffer disproportionately high overheads for the insertion operations.

For such reasons, red-black trees are generally preferred for deterministic

handling of fine grained resolution timers, as, for instance, in the case of

the Linux kernel’s hrtimers, giving the possibility to arbitrarily insert and

remove elements with O(log(n)) worst-case complexity. In this regard the

Linux red-black tree implementation revealed to be more efficient

compared to the HP implementation of the STL multiset, more likely due

to the embedded anchor model.

In this scenario, the experimental evaluations of the ABH revealed very

interesting results. During insertions, its average behavior outperformed

red-black trees in almost every situation, and the measured worst-cases

were never worse than any binary heap or red-black tree implementation

(with the only exception of the hold insertion on ARM CM3, where PQU

behaved slightly better). During highest priority removals, the average

performances of the ABH were comparable (yet never worse) to the two

red-black tree implementations, while the measured worst-cases of ABH

were the best among all of them. Finally, the average behavior during

random removals did not show any exceptional results when compared to

red-black trees. However, the measured worst case behavior was

constantly better than both of them.

In summary ABH showed a good average behavior, comparable (and

sometimes better) to red-black trees, and a surprisingly good worst-case

behavior, outperforming in many cases even the traditional array-backed

binary heap implementation. Such bounded worst-case behavior makes

4. Data structures for timekeeping in real-time systems

177

ABH a very good candidate for tackling timekeeping problems in highly

deterministic real-time systems.

4.1 Concluding remarks.

178

5. A hardware scheduling accelerator for MP-SoPCs

179

5. A hardware scheduling accelerator for MP-SoPCs

5.1. Introduction

In Chapters 2 and 3 it has been discussed as RTOSs and more in general

software run-time infrastructures play a crucial role in an embedded real-

time system. Besides the provisioning of fundamental building-blocks for

the agile development of software applications, a RTOS is further

responsible of ensuring the satisfaction of extra-functional requirements, in

particular timeliness, ensuring that all the real-time tasks meet their

deadlines.

In order to do so, however, a RTOS unavoidably needs to “steal” some

computational power at runtime to take the proper scheduling decisions.

As discussed in chapter 0(and in the works therein referred), the scheduling

overhead is generally small as regards the percentage of CPU time, but still

represents a non-negligible amount of absolute time which may jeopardize

the schedulability of high-rate periodic tasks with periods in the sub-

millisecond range.

Furthermore, in many scenarios such as digital control, data acquisition

and telecommunication applications, another important extra-functional

requirement is represented by bounding jitter. Due to the high complexity

of modern (multi)processor architectures, keeping a low jitter can turn out

to be more critical and difficult than handling the scheduling operations

themselves (in particular in presence of caches and architectures with

speculative and out-of-order execution).

Such contrasting requirements often force to make critical tradeoffs, i.e.

using extremely elementary scheduling strategies in order to keep low

scheduling jitter.

For such reasons, a vast number of publications in the field of embedded

real-time systems have introduced alternative approaches that aim to

exploit dedicated hardware resources to address these scheduling issues.

In general, the use of hardware co-processors for offloading frequent and

critical software computations is a definitely not new strategy that has been

out for decades. However, while in many other fields (e.g., floating-point

calculus, encryption, audio/video (de)coding, TCP/IP networking) the wide

5.2 Related work

180

homogeneity and the large scale of the problem easily justified the high

costs of dedicated hardware, the situation has been always different for the

field of embedded systems. Embedded systems, in fact, usually exhibit

very custom and singular requirements, even as regards the mere problem

of real-time scheduling, mainly due to the wide heterogeneity of the

underlying computational platforms involved.

This situation, however, drastically changed in the last decade, as the

evolution reconfigurable hardware platforms (FPGAs) led to high powerful

and inexpensive platforms (compared to low-volumes of dedicated

ASICs), which today can integrate in a single physical chip all the

resources required for a complete embedded system (CPU, memory,

peripherals). This system on programmable chip (SoPC) paradigm

introduced by mainstream vendors, has made FPGA interesting targets for

the development of many embedded real-time systems, where the

hardware/software co-design reaps the benefits of both rapid

development and large possibilities of customization, reducing nearly to

zero the cost of using ad-hoc co-processors and accelerators to address

custom needs.

5.2. Related work

In 1991 Lindh at al. presented [Lin1991] a proof-of-concept of a hybrid

hardware-software RTOS implementation, moving critical parts of the

RTOS kernel in hardware, in order to reduce indeterminism of the

conventional pipelined processor architectures. FASTCHART consists of

a simple hardware real-time kernel, supporting 64 tasks with 8 priority

levels, which execution is handled by mean of a simple multi-level FIFOs

dispatching. The proof-of-concept, later turned into a more advanced and

complete project called FASTHARD [Lin1992].

Based on this work, later in 1996 another project called RTU (Real-Time

Unit) is carried out by Lindh et al., a completely hardware based kernel

supporting more run-time services such as tasks delays, semaphores, event

queues, and interrupt handling simultaneously on three homogeneous

processors. The RTU is interfaced through a memory mapped bus, which

5. A hardware scheduling accelerator for MP-SoPCs

181

is accessed through a round-robin arbiter, and uses a single interrupt input

of each processor to control context switching [LMID+2003].

In 2005 in [NLJS2005] Lindh et al. introduce support interfaces for

integrating the RTU hardware kernel in the µC/OS-II RTOS. The RTU is

also at the time commercialized as a commercial product (Sierra Kernel).

RTU only supports binary semaphores for process synchronization, and its

priority scheme is fixed (changes of priority levels are not possible after

task creation). The timing measurements show that the functions

implemented in hardware are accelerated up to a factor of 370%, and in

[NA2007] hardware configurability is added to the single processor

version of the RTU. A newer version of the RTU is available in the form of

a customizable IP core for implementation in FPGA. It can be configured

to have 2-512 tasks, 2–1024 priority levels and binary semaphores.

A similar approach is introduced by the STRON project (silicon real-time

operating system nucleus) in [NUI+1995]. The system is based upon the

µITRON real-time OS, re-implementing most of its system calls and core

functions in hardware. A small micro kernel has been implemented to take

care of the features not implemented in hardware, and to serve as the API

to the hardware kernel. The STRON handles contains task management,

event flags, semaphores and timers, as well as external interrupt

management. The interface with the CPU is handled by means of a basic

memory mapped scheme using, using a single interrupt line to the CPU.

Implementation tests show that the circuit can be realized in VLSI CMOS

technology and that the RTOS function calls are accelerated between 6 and

50 times compared to the software version, while task release and

activation jitter is almost completely removed. The STRON hardware

RTOS is less capable than the RTU as it doesn’t directly support periodic

release of tasks and has a timer horizon limited to only 255 ticks.

In [PSJC+1997] Parisoto et al. introduce a FPGA-targeted accelerator

called F-Timer, aimed at implementing task scheduling and interrupt

handling in hardware. It can handle up to 32 tasks and 64 different priority

levels. The interface with general purpose processors is handled by means

of a standard memory mapped bus and a single interrupt line to the CPU.

The overall system is designed much like a software RTOS with memory

5.2 Related work

182

based queues for the ready, timer and interrupt handling queues. The paper,

however, gives no information about the scheduling algorithm employed,

and there is also no hardware support for task synchronization.

In [SR1991] Stankovic et al. present the Spring kernel which, compared to

traditional RTOSs, takes a radically different approach for handling real-

time task scheduling. The conventional approach of priority-driven

scheduling is abandoned in favor of a dynamic and speculative scheduling,

implemented by the means of heuristic algorithms. Taking into account all

active tasks’ WCET, deadline and resource constraints, the scheduling

algorithm constructs a custom schedule which guaranteed that all tasks will

meet their deadlines and never block waiting for resources. When a new

task arrives it is only added to the current task set if a new feasible

schedule can be constructed. The Spring kernel is designed for large and

complex real-time system running on multiprocessor systems. The system

is partitioned into application processors and a system processor. Each

application processor runs a lightweight dispatcher which executes the task

allocated for that processor in the order determined in the schedule

calculated by the system processor. In addition, the system processor takes

care of the remaining RTOS activities (e.g., servicing interrupt requests) in

order to insure that the AP processors aren’t affected by external events.

The approach, however, has the evident main drawback of requiring long

and complex computations in order to produce a feasible schedule, thus

being less suitable for dynamic systems. In order to address this issue, in

[BKN+1999] Stankovic et al. introduce the spring scheduling coprocessor,

which implements in hardware the planning algorithm used originally used

in the spring kernel. The implementation is done in 2µm VLSI CMOS

technology and is designed with low on-chip memory requirements,

making the tree search less effective if backtracking is needed, but still

much faster than if done in software thanks to the massive hardware

parallelism.

In [KGJ2003] Kohout et al. identify the software scheduler as the major

cause of performance degradation of a RTOS and aim at replacing it with a

hardware implementation called real-time task manager (RTM). RTM

supports static priority scheduling, and offers hardware support for time

5. A hardware scheduling accelerator for MP-SoPCs

183

and event management. RTM makes massive use of hardware registers to

keep the state of the tasks and allow parallel implementation of the

scheduling algorithms. The computational delay of either scheduling or

event management is O(log(n)) and the hardware cost scales linearly with

the number of resources (tasks, events, timers) handled. The RTM requires

roughly 2600 register-bits for 64 task records which is stated to require

around the same die size as a 32bitx64 word register file, making it feasible

for on chip implementation next to a CPU. The experimental results using

various benchmarks comparing the performance with µC/OS-II and a

homemade non-preemptive OS (NOS) showed a decrease in RTOS

overhead of 90% and an 81% decrease in response latency.

In [CRL2006] a different approach is used for hardware-accelerating an

already existing RTOS (eCos). The project discussed in the paper aims at

automatically generating a hardware implementation of the popular RTOS

by means of a behavioral software synthesis. The goal of the project are to

improve system performances and reduce the RTOS footprint, by means of

moving task management, scheduling and synchronization into hardware.

The authors argued that the main reason of scarce commercial diffusion of

hardware accelerated RTOS is to be found in the restricted chip-to-chip

communication infrastructure and their relatively slow communication

speed of the older architecture employed in prior works, which hinder the

speed-up provided by the hardware. The project is interfaced to an ARM

processor using a memory mapped approach similar to the other works

herein referred. The hardware implementation is stated to require less than

10K gates and provide on average a 15x speedup for an image filtering

algorithm. The number of tasks and resources supported by the

implementation is not known.

In [MIY2010] Maruyama et al. propose a hybrid hardware-software

implementation of a networked RTOS for TCP/IP processing (called

ARTESSO), aiming at improving not only the dependability of the system,

but also the network performances, by means of offloading both critical

RTOS routines and part of the TCP/IP protocol processing in hardware.

The hardware-RTOS is endowed with a priority-driven scheduler, which is

implemented through a novel queue structure called VQueue. Such

5.3 Motivations

184

VQueue aims at reducing the hardware requirements in terms of logic-

gates, compared to traditional FIFO-based queue implementations. The

ARTESSO hardware RTOS supports 256 tasks and 16 priority levels, and

uses a parallel tree structure which guarantees a O(log(n)) complexity for

taking scheduling decisions. The experimental evaluations are carried out

on an ARM926 processor clocked at 50Mhz and show a 6x-9x

performance boost over STRON, and an increased 11x network processing

bandwidth.

5.3. Motivations

The wide number of projects and papers published in this field suggest that

the principle of offloading the RTOS operations (or at least part of them) to

the hardware is generally a viable approach, especially in reconfigurable

hardware platforms like FPGA-based SoPCs.

It might be worth noting, however, that while some of the aforementioned

approaches deal with multiprocessor systems, most of them support just

static priority-driven policies. Other few works in this field [HGT1999,

MIB2002] introduce support also for the EDF policy, but only for

uniprocessor systems.

Therefore, considered the current state of the art, the purpose of this work

is to make a step forward in this direction, presenting the design and

implementation of a FPGA-based hardware scheduling accelerator which

supports the multiprocessor G-EDF and R-EDF (restricted migration

variant) policies.

Similarly to the rest of the software produced in this thesis, also the full

VHDL sources implementing the scheduling accelerator are available for

free in the code repository of the X-RT project [TUC2012].

5.4. Hardware design

Extending the preliminary architecture introduced in 3.5, which was

already exploiting an FPGA (yet only as a general-purpose AMP platform)

some of the hardware cells of the FGPA, in this project, have been further

employed to implement a R-EDF scheduling accelerator.

5. A hardware scheduling accelerator for MP-SoPCs

185

The scheduling accelerator has been developed as a VHDL (VHSIC

hardware description language) IP core according to the Altera SoPC

methodology.

The Altera SOPC is a design methodology promoted by Altera, which aims

at rapid development of reusable IP cores, interacting each other by means

of a common switch fabric, called Avalon. The Avalon switch fabric is a

flexible and modular bus designed for on-chip interconnection of

processors and peripherals. Its specifications define several interfaces that

the IP cores can implement in order to interface to the bus (e.g. memory-

mapped master/slaves, interrupt sender/receivers, streaming source/sinks).

The switch fabric for memory-mapped peripherals supports simultaneous

multi-mastering, allowing multiple bus masters to perform bus transactions

concurrently, as long as they do not access the same slave during the same

bus cycle. In the event that multiple masters attempt to access the same

slave at the same time, a built-in arbitrator prioritizes accesses to that slave

(Figure 73).

The real advantage brought in by the Altera SoPC methodology is

represented by the SoPC builder, that is a software tool that enables to

rapidly and easily integrate proprietary and third party IP cores, taking care

of automatically and transparently generating all the hardware related to

the bus, address mapping, decoding logic and arbitration. Essentially it is a

system-generation tool that let the designer define, parameterize, link, and

integrate a wide variety of IP cores (such as soft processor, DSP,

communication and memory controller cores) in the company’s high-

density FPGAs.

This reduces the amount of time designers must spend on peripheral

integration and increases their ability to reuse peripherals in subsequent

designs. The interconnect fabric uses minimal FPGA logic resources to

support address decoding, wait-state generation, pipelined and burst

transactions, peripheral address alignment, interrupt-priority assignment,

data path multiplexing and clock domain crossing

5.4 Hardware design

186

Figure 73: Overview of the Altera SoPC architecture.

Design principles

Before delving straight in a discussion about the design of the scheduling

accelerator, this paragraph introduces the principles that driven the design

of the overall hardware scheduling architecture. Inspired by a divide and

conquer methodology, the design process aims at organizing the hardware

components in a multi-layer architecture, composed by a functional units

layer, an operational services layer and an orchestration layer. This multi-

layer architecture attempts to define the basic contract interfaces for the

hardware components, independently of the particular function that they

implement, in terms of basic I/O signals expected, their semantic and the

handshaking protocols for their interoperability.

Functional units layer

A functional unit is a low level entity which encapsulates the data

structures needed to accomplish a specific function and exhibits

5. A hardware scheduling accelerator for MP-SoPCs

187

elementary micro-operations which can be performed on that.

As a general interface contract, every functional unit must provide:

• A input signal (one-bit) for requesting each operation exposed.

• A global READY output signal (one-bit) which states, when

asserted, that the functional unit is ready to accept and carry out a

new operation.

The interaction protocol with the upper layers is defined as follows:

• Each request signal must be asserted for at least one clock cycle

and cleared before the operation is completed.

• The READY signal must go down as the request is acknowledged

and held down until the rising edge of the clock that follows the

completion of the operation.

• Changes of inner state (content of the data structures) of a

functional unit can occur only at the rising edge of the system clock

(i.e. purely synchronous design).

• The READY signal can be tied to ‘1’ for functional units which

involve only mono-cycle operations.

Operational services layer

The elementary operations exposed by the functional units are, in general,

not sufficient to respond to the needs of the problem domain. The services

offered by the infrastructure are more sophisticated and involve one or

more complex sequences of micro-operations in order to accomplish a

whole high-level service.

In this sense, an operational service is a high level component that

encapsulates the decisional logic for each service offered by the

infrastructure, handling the sequence of micro-operations by means of

finite state machine evolutions, taking advantage of one or more functional

units.

5.4 Hardware design

188

As a general interface contract, every operational service must provide:

• REQUEST: an input signal (one-bit) to request the execution of

the service.

• DONE: an output signal (one-bit) to notify the completion of the

service.

The interaction protocol with the upper layers is defined as follows:

• The REQUEST signal must be asserted for at least one clock cycle

and cleared before the service is completed.

• The DONE signal must be asserted only when the service is fully

completed and all the involved functional units have refreshed the

new output configurations.

Distinct services may require, by design, to interact with the same

functional units, leading to unavoidable conflicts. Such conflicts are

resolved introducing ad-hoc entities, called resource arbiters, which

handle by means of static-priority resolution, the multiplexed access to the

shared functional units.

Orchestration layer

The orchestration layer represents the higher-level layer that bridges the

services offered by the operational layer together with the hardware

environment in which the infrastructure is employed (the Avalon bus in

our case).

It exposes an unique interface to the rest of the environment, in the form of

a memory-mapped slave, decodes the incoming requests, routes them to

the proper operation services, and provides the results, properly respecting

the specificities of the interface protocol (e.g. handshaking with wait-

requests on the bus, performing serialization and encoding of the in/out

data, etc.)

5. A hardware scheduling accelerator for MP-SoPCs

189

Figure 74: Interactions between components in the three-layer architecture

 of the scheduling accelerator.

Now that the core design principles and interface contract have been

presented, we can delve into the in-depth discussion of the scheduling

accelerator components. In the following, the components of the

scheduling accelerators are described in a top-down fashion, starting from

higher level ones down to the individual functional units. Figure 75 gives a

preliminary overview of the overall architecture.

Figure 75: Hardware architecture of the scheduling accelerator based on Altera Avalon.

5.4 Hardware design

190

Functional units

Task table

The task table (Figure 76) is a register file which holds the task descriptors,

storing for each of them the state, period, deadline and statistic counters

(jobs executed, missed deadlines, overruns). It is periodically updated by

the other components and can be enquired to retrieve details of tasks.

Figure 76: I/O signals of the the task table functional unit.

Tick generator

The tick generator (Figure 77) produces the time reference signal for the

whole infrastructure. It cyclically triggers a periodic signal called TICK,

whose interval is programmable. Such signal is delivered to the release

queue and ready queue units for the timekeeping activities, and defines the

resolution of their timing registers (release and deadline counters).

Figure 77: I/O signals of the the tick generator functional unit.

5. A hardware scheduling accelerator for MP-SoPCs

191

Release queue

The release queue (Figure 78) is a set of per-task countdown timers which

are decremented at every TICK. When the n-th counter reaches zero, the

output bit RELEASE_TASK[n] is asserted, notifying that the release

period of the n-th task is expired and a new job must be released. Figure 84

shows the inner gate-level RTL architecture of the functional unit.

Figure 78: I/O signals of the the release queue functional unit.

Ready queue

The ready queue (Figure 79) is a priority queue of ready tasks, ordered by

increasing values of absolute deadlines. For each task, a countdown timer

is inserted in the queue upon job release and is removed when it completes.

If a deadline counter reaches zero, the corresponding bit in the

MISSED_DEADLINE[n] output signal is asserted, notifying that a task

missed deadline notification is raised. Figure 85 shows the inner gate-level

RTL architecture of the functional unit.

Figure 79: I/O signals of the the ready queue functional unit.

5.4 Hardware design

192

CPU mapper

The CPU mapper (Figure 80) is the core component of the scheduling

infrastructure. It takes the scheduling decisions according to the scheduling

policy, mapping ready tasks on the available CPUs as long as a change of

the ready queue is notified. In the current implementation the CPU mapper

implements the G-EDF policy.

Figure 86 shows the inner gate-level RTL architecture of the functional

unit: a set of 2m registers hold the current and next running tasks

assignments (i.e. which task is running on each CPU). Whenever a change

is detected on the ITEMS output of the ready queue, a priority encoder is

used to determine the m-th highest priority tasks among them and

assigning the next mapping registers. The assignment process is performed

in three sequential stages: in the first stage the new set of (at most) m tasks

that must be running is determined using the priority encode; in the second

stage, the tasks that were already running (before the ready queue change

that triggered the remapping process) are confirmed on their previous

CPUs, in order to minimize the impact of migrations; in the third stage the

remaining tasks are assigned arbitrarily to the CPUs left.

Figure 80: I/O signals of the the CPU mapper functional unit.

5. A hardware scheduling accelerator for MP-SoPCs

193

Operational services

Create new task

The CreateNewTask service (Figure 81) is invoked by the software upon

system initialization, in order to introduce new tasks into the infrastructure.

For each task, the caller must provide its relative deadline and the period.

When the service is requested, the task table and the release queue are

populated with the relative entries and the numeric identifier of the new

task is returned. The service in practice takes care of inserting atomically

the new task both in the task table and in the release queue, after acquiring

exclusive access to both.

Figure 81: I/O signals of the the CreateNewTask operational service.

Notify job completion

Every time a task’s job completes, the software notifies the event to the

hardware infrastructure. The JobCompletion service (Figure 82) takes care

of updating the task statistic counters, its state in the task table and

removing it from the ready queue, in order to allow the next higher priority

task, if any, to be promoted.

5.4 Hardware design

194

Figure 82: I/O signals of the the NotifyJobCompletion operational service.

Job release

As soon as the release queue signals the need to release one or more jobs,

the ReleaseJobs service (Figure 83) is invoked. It is in charge of updating

the released tasks’ state into the task table and inserting them into the ready

queue, in order to allow them to be consequently scheduled by the CPU

mapper according to the priority resulting from their deadline.

Figure 83: I/O signals of the the JobCompletion operational service.

5. A hardware scheduling accelerator for MP-SoPCs

195

Figure 84: Hardware architecture (RTL) of the release queue.

5.4 Hardware design

196

Figure 85: Hardware architecture (RTL) of the ready queue.

5. A hardware scheduling accelerator for MP-SoPCs

197

Figure 86: Hardware architecture (RTL) of the CPU mapper.

5.5 MP-SoPC architecture

198

5.5. MP-SoPC architecture

Using Altera NIOS II soft-cores, the Avalon bus, and Altera IP cores

(memory controller, GPIO, etc.), the reference SoPC platform used to

validate and test the hardware scheduling accelerator has been organized as

follows:

• m NIOS II/f processors, m can be chosen arbitrarily by the end-user

on the basis of the number of the tasks, the required computational

power and FPGA resources availability.

• A SDRAM memory controller employed to hold on an external

memory the RTOS and application footprints and the

corresponding run-time memory (stack, heap and data).

• The hardware accelerator, a memory-mapped Avalon slave IP core

that takes care of the task scheduling and the dispatching process,

interacting with the NIOS processors by means of interrupt

signaling.

• Application dependent peripherals, e.g. GPIO for motor control,

UART for user interface, etc.

Figure 87 shows the HW/SW architecture of the SoPC platform used as a

testbed for the hardware scheduling accelerator. The hardware scheduler

memory-mapped slave is connected to the data bus of all the NIOS

processors, in a memory range that is accessed exclusively by the

scheduling framework. Furthermore m dedicated interrupt interfaces

connect to the IRQ0 line (the one with highest priority) of the NIOS

processors.

Due to the use of NIOS processors, the resulting SoPC architecture is an

AMP system, which takes advantage, on the software side, of the same

principles illustrated in 3.5.

5. A hardware scheduling accelerator for MP-SoPCs

199

Figure 87: Architecture of the SoPC platform integrating the scheduling hardware

accelerator.

In particular, as regards the memory layout, a single external SDRAM

memory chip has been exploited for all the m processors. The reason of

this choice is that the purpose of this testbed is not to evaluate the

performances of the soft-cores themselves (this analysis has been already

carried out in 3.6). Compared to on-chip memories, the use of an external

SDRAM memory allows to save many hardware cells on the FPGA, which

can be employed, instead, to assess the timing performances and the

expandability of the hardware scheduler itself.

Furthermore, since each processor has dedicated instruction and data

caches, the performance evaluations are not affected by the latencies of the

SDRAM, especially considering the very small footprint of the software

layer involved.

The memory available on the SDRAM is logically organized in m + 1

partitions (Figure 88) through the use of custom linker scripts.

Each partition consists of a code section, containing the code for the RTOS

which is pointed by the reset vector of each processor, and a data section,

used for storage of RTOS variables, stack and heap. Those m partitions are

5.6 Hardware synthesis results

200

completely independent of each other, and can be replaced at any time with

dedicated on-chip memory connected exclusively to each processor.

Finally a shared memory partition, accessible by all the processors, has

been envisaged for the task code and data, and for the shared scheduling

framework library.

Figure 88: Memory organization of the embedded software running on the soft-cores.

5.6. Hardware synthesis results

The preliminary introduction of a clear and well defined multi-layer

architecture has brought several advantages as regards the extensibility of

the overall design. First of all, the introduction of new functionalities (e.g.

a new scheduling policy) requires just the integration of the new

component without impacting with the stability and the complexity of the

existing design, allowing to completely reuse the other existing functional

units and operational services layers.

In particular, the proposed approach achieves a clean decoupling between

the functionalities offered by each layer and the timings with which they

are carried out. Just to take a mere but concrete example, during the

5. A hardware scheduling accelerator for MP-SoPCs

201

implementation of the CPU mapper the design needed to be reiterated due

to low fMAX caused by its heavy combinatorial logic, introducing two

pipeline stages (its inputs and outputs are registered). Obviously, the

latency, in terms of clock cycles, required by the unit to complete its

operations has increased. However, such modification did not require any

intervention on the upper layer (operational services), since all the

interactions stand on the request/ready protocol. Pipelining just caused, in

this case, a delay in the generation of the ready signal and, therefore, a

delay in the completion of the upper layer services involved with the CPU

mapper unit.

The use of VHDL generics allowed to model the components

independently of the dimensions of the scheduler, more specifically,

independently of the (maximum) number of tasks in the system, the

number of processors and the desiderated resolution for task counters. All

these parameters that state the dimension, and therefore the complexity, of

the infrastructure are uniquely described in a package declaration file, for

which a brief outlook is here reported:

1. package HWGlobalScheduler is

2. constant N_CPUS : natural := 2;

3. constant TASKID_SIZE : natural := 3;

4. constant PERIOD_SIZE : natural := 16;

5. constant DEADLINE_SIZE : natural := 16;

6. constant STATS_SIZE : natural := 8;

 .

Every component takes advantage of these definitions to dynamically

adapts its structure (in terms of inferred logic gates). In this way, it is

possible to completely adjust the scheduler complexity according to the

needs of the end-user and the complexity of the application, just editing

nothing but 5 rows of VHDL.

Figure 89 reports the results (related to the only hardware infrastructure) of

the synthesis on a Cyclone II EP2C20F484C7 using the Quartus II EDA

(area vs. speed optimizations: balanced) and the TimeQuest timing

analyzer (slow-model).

In order to provide a term of comparison for the fMAX (which is strongly

dependent on the FPGA process technology and doesn’t provide much

5.7 Scheduling jitter analysis

202

valuable information itself), an equivalent system, in terms of hardware

cells usage, made of 6 NIOS II/f processors, plus the other standard Avalon

peripherals, reached a fMAX of 64 MHz on the same FPGA.

Hardware scheduler

configuration

Total comb.

functions

Total logic

registers
fMAX

2 cores, 8 Tasks, 8 bit deadline

and period counters, 8 bit stats

counters

1246 (7%) 598 (3%) 59.8 MHz

4 cores, 16 Tasks, 8 bit deadline

and period counters, 8 bit stats

counters

2363 (13%) 1114 (6%) 51.86 MHz

8 cores, 32 Tasks, 16 bit deadline

and period counters, 16 bit stats

counters

7167 (38%) 3738 (20%) 39.08 MHz

Figure 89: Synthesis results of the scheduling accelerator on an Altera Cyclone II FPGA.

5.7. Scheduling jitter analysis

The aim of the scheduling jitter analysis is to estimate the uncertainty

related to the release of periodic tasks, intended as the interval between the

moment in which a task release counter goes down to zero and the instant

in which an interrupt is concretely dispatched to the proper processor.

According to the design of the hardware scheduling accelerator, such

interval depends on the following parameters:

• TRELQ: time required by the release queue functional unit to

properly issue the RELEASE_TASKS output signal once a tick is

received.

• TRELSVC: time required by the release jobs operational service to

acknowledge the latter signal, update the entries in the task table

and insert the proper elements into the ready queue.

• TCPUMAP: time required by the CPU mapper functional unit to

acknowledge the change of the ready queue and determine the new

task mappings for the CPUs according to the new priorities.

5. A hardware scheduling accelerator for MP-SoPCs

203

• TINTREQ: time required by the interrupt logic to acknowledge the

latter mappings and send interrupts to the processor that need to

issue scheduling changes on the running tasks.

In the current hardware implementation, such timings are defined as

follows (intervals are expressed in clock cycles unless otherwise stated; m :

number of processors, n : maximum number of tasks allowed):

TRELQ = 1, for each m, n

TRELSVC = 2 + n, for each m

TCPUMAP = 4 + [1.. m], for each n

TINTREQ = 1, for each m, n

Thus, TREL_TO_INT = 1 + 2 + N + 4 + [1..m] + 1 = 8 + n + [1.. m]

The only uncertainty, therefore, is related to the term [1..m] due to the

CPU mapper operations, which complexity is linear in the number of

processors (configured through the N_CPUS VHDL constant). Considering

our test-bench in which n=8, m = 2 , Clock = 50 MHz, it translates into:

A maximum delay of 8 + 8 + 2 = 18 TCLK = 360 ns.

A minimum delay of 8 + 8 + 1 = 17 TCLK = 340 ns.

TREL_TO_INT = 350 ± 10 ns.

5.8. Concluding remarks

The development of a hybrid hardware-software scheduling infrastructure,

such as the one proposed in this chapter, has revealed very interesting

results. In the projects discussed in the previous chapters, a pure-software

implementation of a multiprocessor scheduling framework has been carried

out (focused in particular on the G-EDF policy). Surprisingly, moving

from a pure software implementation to hardware/software co-designing

revealed to be an amazingly smooth experience, less complex than

expected.

5.8 Concluding remarks

204

The reasons are soon clear. As regard the hardware design, the availability

of a reference architecture that clearly defines the methodologies and the

interaction patterns between the components, revealed to be the winning

strategy for the rapid development of a clear and well-arranged system.

This, in particularly, relates to both the hardware scheduler’s inner

architecture and the Avalon bus interface specifications that, standing on a

adaptive design strategy (i.e. increase the complexity of the component

interface as long as it is really needed) and a great availability of reference

documentation, made the development process of the hardware

components a straightforward path.

The greatest difficulties were, undoubtedly, represented by the software

layer, in particular due to the very elementary task model of µC/OS-II,

which required a lot of interventions on the software layer, hindering the

plain applicability of the X-RT framework as designed in chapter 3.

As a final comment, both the software and hardware performances

achieved were pretty satisfying. In particular, the scheduling accelerator,

despite its complexity, turned out to have an impressively low jitter and

modest area requirements, especially considering the adaptability and

flexibility of the design that can be seamlessly expanded just touching few

lines of VHDL constants.

Of course, still some additional work would be still needed in order to

enhance the hardware design of this proof-of-concept: there is still a

number of long combinatorial paths which limit the overall fMAX of the

sequential logic (although the flexibility of the SOPC platform could allow

decoupling the clock domains of the scheduler and the processors).

As future work directions, it would be definitely interesting to reproduce

the experiments with a larger hardware availability, replacing the NIOS

soft-cores with SMP-compliant processors, such as, for instance, the new

hybrid Altera Cyclone V FPGAs which embed an ARM Cortex A9 SMP

processor. Furthermore, more investigations should be undertaken as

regards the scalability of this approach on massively multi-core platforms,

carrying out deeper studies to highlight any bottlenecks of the hardware

architecture, in particular as regards the influence and the scalability of the

switch fabric.

6. Concluding remarks

205

6. Concluding remarks

This dissertation has dealt with implementative aspects of real-time

schedulers in embedded multiprocessor systems, addressing two main

topics: tick-less timekeeping and the implementation of global (i.e. non-

partitioned) schedulers in modern RTOSs.

As regards the former, this work presented a novel data structure, called

addressable binary heap (ABH), which implements all the typical

operations of a priority queue using a pointer-based binary heap.

At first, the theoretical properties that underpin its physical structure and

ensure logarithmic worst-case complexity to all its operations are

presented. Furthermore, a complete C implementation of the data structure

is discussed in its full details. The viability and the performances of the

ABH have been evaluated on an instruction-accurate virtual platform

simulator, comparing other data structure typically employed for this

purpose, such as various implementations of array-backed binary heaps

and self-balancing binary trees. In the experimental evaluations, the ABH

demonstrated to be a very good candidate for tackling timekeeping

problems in a highly deterministic manner, as its worst-case behavior is

almost always better than all the other data structures analyzed.

The ABH data structure has been employed as a building block for the

realization of a scheduling framework called X-RT, which represents the

second major contribution of this thesis. Such framework aims at providing

runtime facilities for the development of real-time applications, by means

of a user-space runtime library which is able to implement global

scheduling policies, such as G-EDF, in the mainstream RTOSs exploiting

their priority-driven scheduler.

Some other research works in this field addressed the same problem by

means of interventions on the operating-system kernel. The work presented

in this thesis, instead, adopts a different approach, based on a user-space

framework. The X-RT framework, released in the form of an open-source

project [TUC2012], showed, in fact, as these advanced real-time

multiprocessor scheduling policies can be realized without modifying the

RTOS kernel. The experimental work undertaken highlights that the

5.8 Concluding remarks

206

performances of this approach are, both in terms of raw overhead and

schedulability tests, very close to kernel-level approaches.

The principles that underpin the operation of this framework, originally

designed for symmetric multiprocessors, have been further extended to

asymmetric ones. Such platforms are typically subjected to major

restrictions, such as the lack of support for task migrations, hindering the

plain applicability of global scheduling policies. However, by introducing

some limitations on the scheduling model, such as restricting the

granularity of migrations to job boundaries, interesting results can be still

obtained.

Finally, the last chapter of this thesis investigates the world of re-

programmable hardware platforms, notably FPGAs, presenting a

scheduling accelerator, which offloads most of the scheduling operations to

the hardware and exhibits extremely low scheduling jitter.

Future research directions

As regards the ABH data structure, more experimental investigations

should be carried out on actual hardware platforms, in order to assess the

validity of the results in presence of caches, branch predictors and super-

scalar pipelines, which are not modeled by the platform simulator used in

the experiments.

The X-RT scheduling framework have revealed satisfactory results in the

schedulability tests, in many cases very close to the theoretical bounds

known for the G-EDF policy. However, it has to be underlined that the

tasks of the experimental workbench were simulating pure CPU-bound

processes, without performing any memory or I/O access. More interesting

results could be obtained taking into account these factors, as has been

recently done in some of the research work cited, in order to validate the

behavior of the scheduling framework in presence of cache-hotness effects.

As regards the last point of this thesis, the hardware scheduling accelerator,

more investigations should be undertaken as regards the integration of the

accelerator with other bus-master peripherals in the system. In fact, while

the scheduling accelerator guarantees extremely predictable timings for the

6. Concluding remarks

207

computation of scheduling decisions, in many scenarios this is not

sufficient to guarantee a deterministic behavior of the overall system.

In fact, the presence of other bus-masters in the system other than the CPU,

notably DMA controllers, can delay the execution of tasks as soon as they

try to access memory. In general this problem is difficult to address in

traditional systems where scheduling is a purely software activity.

However, the introduction of a hardware scheduler paves the way to the

synergic coordination of hardware peripherals, as all the information about

task timings are now available in hardware. This, however, would require

major interventions on the architecture of the bus/switching fabric, but, in

theory at least, could contribute increasing the determinism of real-time

embedded systems, by means of enforcing scheduling decisions also to

hardware peripherals, arbitrating the bus accesses in a deadline-aware

fashion.

5.8 Concluding remarks

208

Bibliography

209

Bibliography

[AB1998]: ABENI, L. & BUTTAZZO, G.: Integrating multimedia applications in
hard real-time systems. In:: . : Real-Time Systems Symposium, 1998.
Proceedings., The 19th IEEE., 1998, S. 4--13

[AL1963]: ADELSONVELSKII, M. & LANDIS, E.: An algorithm for the
organization of information: Defense Technical Information Center., 1963

[AFLS1996]: ADOMAT, J.; FURUNAS, J.; LINDH, L. & STARNER, J.: Real-
time kernel in hardware RTU: a step towards deterministic and high-performance
real-time systems. In:: . : Real-Time Systems, 1996., Proceedings of the Eighth
Euromicro Workshop on., 1996, S. 164--168

[AS2005]: ALBERS, K. & SLOMKA, F.: Efficient feasibility analysis for real-
time systems with EDF scheduling. In:: . : Design, Automation and Test in
Europe, 2005. Proceedings., 2005, S. 492--497

[Alt2010]: ALTERA: Nios II Processor Reference - Handbook, Altera Corp.,
2010

[Alt2009]: ALTERA: Mailbox Core, Quartus II 9.1 Handbook, Online, 2009

[Alt2003]: ALTERA: Avalon Bus Specification Reference Manual, Altera Corp.,
2003

[Alt2002]: ALTERA: Simultaneous Multi-Mastering with the Avalon Bus, Altera
Corp., 2002

[ABD2005]: ANDERSON, J. H.; BUD, V. & DEVI, U. C.: An EDF-based
scheduling algorithm for multiprocessor soft real-time systems, 2005

[ABJ2001]: ANDERSSON, B.; BARUAH, S. & JONSSON, J.: Static-priority
scheduling on multiprocessors. In:: . : Real-Time Systems Symposium,
2001.(RTSS 2001). Proceedings. 22nd IEEE., 2001, S. 193--202

[ANA2004]: ANDREWS, D.; NIEHAUS, D. & ASHENDEN, P.: Programming
models for hybrid CPU/FPGA chips. In: Computer 37 (2004), Nr. 1, S. 118--120

[ANJ+2004]: ANDREWS, D.; NIEHAUS, D.; JIDIN, R.; FINLEY, M.; PECK, W.;
FRISBIE, M.; ORTIZ, J.; KOMP, E. & ASHENDEN, P.: Programming models for
hybrid FPGA-cpu computational components: a missing link. In: IEEE Micro 24
(2004), Nr. 4, S. 42--53

Bibliography

210

[Bak2006]: BAKER, T.: An analysis of fixed-priority schedulability on a
multiprocessor. In: Real-Time Systems 32 (2006), Nr. 1, S. 49--71

[Bak2003]: BAKER, T.: An Analysis of Deadline-Monotonic Schedulability on a
Multiprocessor, 2003

[Bak2003a]: BAKER, T.: Multiprocessor EDF and deadline monotonic
schedulability analysis. In:: . : Real-Time Systems Symposium, 2003. RTSS 2003.
24th IEEE., 2003, S. 120--129

[BB2009]: BAKER, T. & BARUAH, S.: An analysis of global EDF schedulability
for arbitrary-deadline sporadic task systems. In: Real-Time Systems 43 (2009),
Nr. 1, S. 3--24

[Bak2005]: BAKER, T. P.: A comparison of global and partitioned EDF
schedulability tests for multiprocessors, Bericht, In International Conf. on Real-
Time and Network Systems, 2005

[Bak2005b]: BAKER, T. P.: Comparison of empirical success rates of global vs.
partitioned fixed-priority and EDF scheduling for hard real time, 2005

[Bak2005c]: BAKER, T. P.: Further improved schedulability analysis of EDF on
multiprocessor platforms, 2005

[Bar2007]: BARUAH, S.: Techniques for multiprocessor global schedulability
analysis. In:: . : Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International., 2007, S. 119--128

[Bar2006]: BARUAH, S.: The Non-preemptive Scheduling of Periodic Tasks upon
Multiprocessors. In: Real-Time Systems 32 (2006), S. 9-20

[BBMS2010]: BARUAH, S.; BONIFACI, V.; MARCHETTI-SPACCAMELA, A. &
STILLER, S.: Improved multiprocessor global schedulability analysis. In: Real-
Time Systems 46 (2010), Nr. 1, S. 3--24

[BC2003]: BARUAH, S. & CARPENTER, J.: Multiprocessor fixed-priority
scheduling with restricted interprocessor migrations. In:: . : Real-Time Systems,
2003. Proceedings. 15th Euromicro Conference on., 2003, S. 195 - 202

[Bas2011]: BASTONI, A.: Towards the integration of theory and practice in
multiprocessor real-time scheduling. In: PhD in computer science and
automation engineering, University of Rome" Tor Vergata (2011)

[BBA2011]: BASTONI, A.; BRANDENBURG, B. & ANDERSON, J.: Is semi-
partitioned scheduling practical?. In:: . : Real-Time Systems (ECRTS), 2011 23rd
Euromicro Conference on., 2011, S. 125--135

Bibliography

211

[BBA2010]: BASTONI, A.; BRANDENBURG, B. & ANDERSON, J.: An empirical
comparison of global, partitioned, and clustered multiprocessor EDF schedulers.
In:: . : Real-Time Systems Symposium (RTSS), 2010 IEEE 31st., 2010, S. 14--24

[BBA2010a]: BASTONI, A.; BRANDENBURG, B. & ANDERSON, J.: Cache-
related preemption and migration delays: Empirical approximation and impact
on schedulability. In:: . : Proc. of the 6th Int’l Workshop on Operating Sys.
Platforms for Embedded Real-Time Apps., 2010, S. 33--44

[BOBSBS2008]: BEN OTHMAN, S.; BEN SALEM, A. K. & BEN SAOUD, S.:
MPSoC design of RT control applications based on FPGA SoftCore processors.
In:: . : Proc. 15th IEEE Int. Conf. Electronics, Circuits and Systems ICECS
2008., 2008, S. 404--409

[vBer2009]: VAN BERKEL, C. H.: Multi-core for mobile phones. In:: . : Proc.
DATE '09. Design, Automation & Test in Europe Conf. & Exhibition., 2009, S.
1260--1265

[BCL2009]: BERTOGNA, M.; CIRINEI, M. & LIPARI, G.: Schedulability
analysis of global scheduling algorithms on multiprocessor platforms. In:
Parallel and Distributed Systems, IEEE Transactions on 20 (2009), Nr. 4, S. 553-
-566

[BCL2005]: BERTOGNA, M.; CIRINEI, M. & LIPARI, G.: Improved
schedulability analysis of EDF on multiprocessor platforms. In:: . : Real-Time
Systems, 2005.(ECRTS 2005). Proceedings. 17th Euromicro Conference on.,
2005, S. 209--218

[BBCG2008]: BETTI, E.; BOVET, D.; CESATI, M. & GIOIOSA, R.: Hard real-
time performances in multiprocessor-embedded systems using ASMP-Linux. In:
EURASIP Journal of Embedded Systems 2008 (2008), S. 1--16

[BM2006]: BJERREGAARD, T. & MAHADEVAN, S.: A survey of research and
practices of network-on-chip. In: ACM Computing Surveys (CSUR) 38 (2006),
Nr. 1, S. 1

[BA2009]: BRANDENBURG, B. & ANDERSON, J.: On the implementation of
global real-time schedulers. In:: . : Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE., 2009, S. 214--224

[BBC+2007]: BRANDENBURG, B.; BLOCK, A.; CALANDRINO, J.; DEVI, U.;
LEONTYEV, H. & ANDERSON, J.: LITMUSRT: A status report. In:: . :
Proceedings of the 9th real-time Linux workshop., 2007, S. 107--123

[BCA2008]: BRANDENBURG, B.; CALANDRINO, J. & ANDERSON, J.: On the
Scalability of Real-Time Scheduling Algorithms on Multicore Platforms: A Case
Study. In:: . : Real-Time Systems Symposium, 2008., 2008, S. 157 -169

Bibliography

212

[BLA2009]: BRANDENBURG, B.; LEONTYEV, H. & ANDERSON, J.:
Accounting for interrupts in multiprocessor real-time systems. In:: . :
Proceedings of the 15th IEEE international conference on embedded and real-
time computing systems and applications., 2009, S. 273--283

[Bro1988]: BROWN, R.: Calendar queues: a fast 0 (1) priority queue
implementation for the simulation event set problem. In: Communications of the
ACM 31 (1988), Nr. 10, S. 1220--1227

[BLOS1995]: BURCHARD, A.; LIEBEHERR, J.; OH, Y. & SON, S.: New
strategies for assigning real-time tasks to multiprocessor systems. In: Computers,
IEEE Transactions on 44 (1995), Nr. 12, S. 1429--1442

[BKN+1999]: BURLESON, W.; KO, J.; NIEHAUS, D.; RAMAMRITHAM, K.;
STANKOVIC, J.; WALLACE, G. & WEEMS, C.: The spring scheduling
coprocessor: a scheduling accelerator. In: Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 7 (1999), Nr. 1, S. 38--47

[But2011]: BUTTAZZO, G.: Hard real-time computing systems: predictable
scheduling algorithms and applications: Springer., 2011

[But2005]: BUTTAZZO, G.: Rate monotonic vs. EDF: judgment day. In: Real-
Time Systems 29 (2005), Nr. 1, S. 5--26

[BLAC2005]: BUTTAZZO, G.; LIPARI, G.; ABENI, L. & CACCAMO, M.: Soft
Real-Time Systems: Predictability vs. Efficiency: Predictability vs. Efficiency:
Springer., 2005

[CA2009]: CALANDRINO, J. & ANDERSON, J.: On the Design and
Implementation of a Cache-Aware Multicore Real-Time Scheduler. In:: . : Real-
Time Systems, 2009. ECRTS '09. 21st Euromicro Conference on., 2009, S. 194 -
204

[CLB+2006]: CALANDRINO, J.; LEONTYEV, H.; BLOCK, A.; DEVI, U. &
ANDERSON, J.: LITMUS RT: A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers. In:: . : Real-Time Systems Symposium, 2006.
RTSS'06. 27th IEEE International., 2006, S. 111--126

[CGKS2005]: CHANDRA, D.; GUO, F.; KIM, S. & SOLIHIN, Y.: Predicting
inter-thread cache contention on a chip multi-processor architecture. In:: . :
High-Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on., 2005, S. 340--351

[CRL2006]: CHANDRA, S.; REGAZZONI, F. & LAJOLO, M.:
Hardware/software partitioning of operating systems: a behavioral synthesis
approach. In:: . : Proceedings of the 16th ACM Great Lakes symposium on VLSI.,
2006, S. 324--329

Bibliography

213

[Chi2005]: CHIANG, M.: Balancing transport and physical layers in wireless
multihop networks: Jointly optimal congestion control and power control. In:
Selected Areas in Communications, IEEE Journal on 23 (2005), Nr. 1, S. 104--
116

[CI2001]: CHILDS, S. & INGRAM, D.: The Linux-SRT integrated multimedia
operating system: Bringing QoS to the desktop. In:: . : Real-Time Technology and
Applications Symposium, 2001. Proceedings. Seventh IEEE., 2001, S. 135--140

[CY2012]: CHISHIRO, H. & YAMASAKI, N.: Experimental Evaluation of Global
and Partitioned Semi-Fixed-Priority Scheduling Algorithms on Multicore
Systems. In:: . : Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), 2012 IEEE 15th International Symposium on., 2012, S. 127-
-134

[CSR1993]: CHUNG, K.; SANG, J. & REGO, V.: A performance comparison of
event calendar algorithms: an empirical approach. In: Software: Practice and
Experience 23 (1993), Nr. 10, S. 1107--1138

[CJGJ1978]: COFFMAN JR, E.; GAREY, M. & JOHNSON, D.: An application
of bin-packing to multiprocessor scheduling. In: SIAM Journal on Computing 7
(1978), Nr. 1, S. 1--17

[Com1984]: COMFORT, J.: The simulation of a master-slave event set processor.
In: Simulation 42 (1984), Nr. 3, S. 117--124

[Con2009]: CONSORTIUM, T. E. M. B.: EEMBC Benchmark Suite, Online,
2009

[CG2011]: CUCINOTTA, T. & GOGOUVITIS, S.: Real-Time Attributes in
Operating Systems. In: Achieving Real-Time in Distributed Computing: From
Grids to Clouds. IGI Global (2011)

[Cur2006]: CURTIS, K. E.: Embedded Multitasking (Embedded Technology):
Newnes., 2006

[DCC2007]: DAVID, F.; CARLYLE, J. & CAMPBELL, R.: Context switch
overheads for Linux on ARM platforms. In:: . : Proceedings of the 2007 workshop
on Experimental computer science., 2007, S. 3

[DB2011]: DAVIS, R. & BURNS, A.: A survey of hard real-time scheduling for
multiprocessor systems. In: ACM Computing Surveys (CSUR) 43 (2011), Nr. 4, S.
35

Bibliography

214

[DKS1989]: DEMERS, A.; KESHAV, S. & SHENKER, S.: Analysis and
simulation of a fair queueing algorithm. In:: . 19, Nr. 4 : ACM SIGCOMM
Computer Communication Review., 1989, S. 1--12

[DA2008]: DEVI, U. & ANDERSON, J.: Tardiness bounds under global EDF
scheduling on a multiprocessor. In: Real-Time Systems 38 (2008), S. 133-189

[DL1978]: DHALL, S. & LIU, C.: On a real-time scheduling problem. In:
Operations Research 26 (1978), Nr. 1, S. 127--140

[DW2005]: DIETRICH, S. & WALKER, D.: The evolution of real-time linux. In::
. : Proc. 7th Real-Time Linux Workshop., 2005, S. 3--4

[DNB2007]: DI NATALE, M. & BINI, E.: Optimizing the FPGA Implementation
of HRT Systems. In:: . : Proc. 13th IEEE Real Time and Embedded Technology
and Applications Symp. RTAS '07., 2007, S. 22--31

[DJM+2009]: DORTA, T.; JIMENEZ, J.; MARTIN, J. L.; BIDARTE, U. &
ASTARLOA, A.: Overview of FPGA-Based Multiprocessor Systems. In:: . : Proc.
Int. Conf. Reconfigurable Computing and FPGAs ReConFig '09., 2009, S. 273--
278

[DM2003]: DREPPER, U. & MOLNAR, I.: The native POSIX thread library for
Linux. In: White Paper, Red Hat (2003)

[DTH1992]: DUPUY, S.; TAWBI, W. & HORLAIT, E.: Protocols for high-speed
multimedia communications networks. In: Computer Communications 15 (1992),
Nr. 6, S. 349--358

[DJR2001]: DUTTA, S.; JENSEN, R. & RIECKMANN, A.: Viper: A
multiprocessor SOC for advanced set-top box and digital TV systems. In: IEEE
Des Test Comput 18 (2001), Nr. 5, S. 21--31

[EDB2010]: ERICKSON, J.; DEVI, U. & BARUAH, S.: Improved tardiness
bounds for global EDF. In:: . : Real-Time Systems (ECRTS), 2010 22nd
Euromicro Conference on., 2010, S. 14--23

[Ern1998]: ERNST, R.: Codesign of embedded systems: status and trends. In:
IEEE Des Test Comput 15 (1998), Nr. 2, S. 45--54

[eST2009]: ESTW: embedded Single Timer Wheel (eSTW), Online, 2009

[FCTS2009]: FAGGIOLI, D.; CHECCONI, F.; TRIMARCHI, M. & SCORDINO,
C.: An EDF scheduling class for the Linux kernel. In:: . : Proc. of the Real-Time
Linux Workshop., 2009

Bibliography

215

[FTC2009]: FAGGIOLI, D.; TRIMARCHI, M. & CHECCONI, F.: An
implementation of the earliest deadline first algorithm in linux. In:: . :
Proceedings of the 2009 ACM symposium on Applied Computing., 2009, S. 1984-
-1989

[FJM+1995]: FLOYD, S.; JACOBSON, V.; MCCANNE, S.; LIU, C. & ZHANG,
L.: A reliable multicast framework for light-weight sessions and application level
framing. In:: . 25, Nr. 4 : ACM SIGCOMM Computer Communication Review.,
1995, S. 342--356

[FCKN2007]: FREITAS, H.; COLOMBO, D.; KASTENSMIDT, F. & NAVAUX,
P.: Evaluating Network-on-Chip for Homogeneous Embedded Multiprocessors in
FPGAs. In:: . : Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on., 2007, S. 3776 -3779

[FB2004]: FUNK, S. & BARUAH, S.: Restricting EDF migration on uniform
multiprocessors. In:: . : Proceedings of the 12th International Conference on
Real-Time Systems., 2004

[GJ1979]: GAREY, M. & JOHNSON, D.: Computers and intractability: Freeman
San Francisco, CA. 174, 1979

[Gee2004]: GEER, D.: Survey: Embedded Linux Ahead of the Pack. In: IEEE
Distributed Systems Online (2004)

[GN2006]: GLEIXNER, T. & NIEHAUS, D.: Hrtimers and beyond: Transforming
the linux time subsystems. In:: . 1 : Linux Symposium., 2006, S. 333--346

[GFB2003]: GOOSSENS, J.; FUNK, S. & BARUAH, S.: Priority-driven
scheduling of periodic task systems on multiprocessors. In: Real-Time Systems 25
(2003), Nr. 2, S. 187--205

[HP2008]: HARDY, D. & PUAUT, I.: WCET analysis of multi-level non-inclusive
set-associative instruction caches. In:: . : Real-Time Systems Symposium, 2008.,
2008, S. 456--466

[HGT1999]: HILDEBRANDT, J.; GOLATOWSKI, F. & TIMMERMANN, D.:
Scheduling coprocessor for enhanced least-laxity-first scheduling in hard real-
time systems. In:: . : Real-Time Systems, 1999. Proceedings of the 11th
Euromicro Conference on., 1999, S. 208--215

[HN1998]: HINTZE, J. & NELSON, R.: Violin plots: a box plot-density trace
synergism. In: The American Statistician 52 (1998), Nr. 2, S. 181--184

[HMo2006]: HOROWITZ, E.; MEHTA, D. & OTHERS: Fundamentals of data
structures in C++: Galgotia Publications., 2006

Bibliography

216

[HPB2005]: HUBNER, M.; PAULSSON, K. & BECKER, J.: Parallel and Flexible
Multiprocessor System-On-Chip for Adaptive Automotive Applications based on
Xilinx MicroBlaze Soft-Cores. In:: . : Proc. 19th IEEE Int. Parallel and
Distributed Processing Symp., 2005

[HCMP2007]: HUERTA, P.; CASTILLO, J.; MARTINEZ, J. & PEDRAZA, C.:
Exploring fpga capabilities for building symmetric multiprocessor systems. In:: . :
Programmable Logic, 2007. SPL'07. 2007 3rd Southern Conference on., 2007, S.
113--118

[HCP+2009]: HUERTA, P.; CASTILLO, J.; PEDRAZA, C.; CANO, J. &
MARTINEZ, J. I.: Symmetric Multiprocessor Systems on FPGA. In:: IEEE
Computer Society. 0, 2009, S. 279-283

[HBK2005]: HUNG, A.; BISHOP, W. & KENNINGS, A.: Symmetric
multiprocessing on programmable chips made easy. In:: . : Proc. Design,
Automation and Test in Europe., 2005, S. 240--245

[IBM2001]: IBM: SA-14-2528-02 On-Chip Peripheral Bus Architecture
Speci?cations, Online, 2001

[JCASB2004]: J. CARPENTER, S. FUNK, P. H.; A. SRINIVASAN, J. A. &
BARUAH, S.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. In: LEUNG, J. Y. (Hrsg.), Boca Raton, Florida: Chapman and
Hall/CRC., 2004, S. 30-1 - 30-19

[JLS+2010]: JALIER, C.; LATTARD, D.; SASSATELLI, G.; BENOIT, P. &
TORRES, L.: Flexible and distributed real-time control on a 4G telecom MPSoC.
In:: . : Proc. IEEE Int Circuits and Systems (ISCAS) Symp., 2010, S. 3961--3964

[JBP2006]: JERRAYA, A. A.; BOUCHHIMA, A. & PETROT, F.: Programming
models and HW-SW interfaces abstraction for multi-processor SoC. In:: . : Proc.
43rd ACM/IEEE Design Automation Conf., 2006, S. 280--285

[Jon1986]: JONES, D.: An empirical comparison of priority-queue and event-set
implementations. In: Communications of the ACM 29 (1986), Nr. 4, S. 300--311

[JS2006]: JOOST, R. & SALOMON, R.: Advantages of FPGA-based
multiprocessor systems in industrial applications. In:: . : Industrial Electronics
Society, 2005. IECON 2005. 31st Annual Conference of IEEE., 2006, S. 6

[JCR2007]: JU, L.; CHAKRABORTY, S. & ROYCHOUDHURY, A.: Accounting
for cache-related preemption delay in dynamic priority schedulability analysis.
In:: . : Design, Automation & Test in Europe Conference & Exhibition, 2007.
DATE'07., 2007, S. 1--6

Bibliography

217

[KM2005]: KARGAHI, M. & MOVAGHAR, A.: Non-preemptive earliest-deadline-
first scheduling policy: a performance study. In:: . : Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2005. 13th IEEE
International Symposium on., 2005, S. 201 - 208

[Ken1996]: KENYON, C.: Best-fit bin-packing with random order. In:: . :
Proceedings of the seventh annual ACM-SIAM symposium on Discrete
algorithms., 1996, S. 359--364

[KBDV2006]: KIM, M.; BANERJEE, S.; DUTT, N. &
VENKATASUBRAMANIAN, N.: Design space exploration of real-time multi-
media MPSoCs with heterogeneous scheduling policies. In:: . :
Hardware/Software Codesign and System Synthesis, 2006. CODES+ISSS '06.
Proceedings of the 4th International Conference., 2006, S. 16 -21

[Kin1985]: KINGSTON, J.: Analysis of tree algorithms for the simulation event
list. In: Acta Informatica 22 (1985), Nr. 1, S. 15--33

[KEH+2009]: KLEIN, G.; ELPHINSTONE, K.; HEISER, G.; ANDRONICK, J.;
COCK, D.; DERRIN, P.; ELKADUWE, D.; ENGELHARDT, K.; KOLANSKI, R.;
NORRISH, M. & OTHERS: seL4: Formal verification of an OS kernel. In:: . :
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles., 2009, S. 207--220

[Knu2006]: KNUTH, D.: The art of computer programming: addison-Wesley.,
2006

[KGJ2003]: KOHOUT, P.; GANESH, B. & JACOB, B.: Hardware support for
real-time operating systems. In:: . : Hardware/Software Codesign and System
Synthesis, 2003. First IEEE/ACM/IFIP International Conference on., 2003, S. 45-
-51

[KS1995]: KOREN, G. & SHASHA, D.: Skip-over: Algorithms and complexity for
overloaded systems that allow skips. In:: . : Real-Time Systems Symposium, 1995.
Proceedings., 16th IEEE., 1995, S. 110--117

[LGDG2000]: LÓPEZ, J.; GARCIA, M.; DIAZ, J. & GARCIA, D.: Worst-case
utilization bound for EDF scheduling on real-time multiprocessor systems. In:: . :
Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on.,
2000, S. 25—33

[LJ2009]: Real-Time Linux Kernel Scheduler. Linux Journal. August 2009. Issue
184. Online.

[LRL2009]: LAKSHMANAN, K.; RAJKUMAR, R. & LEHOCZKY, J.: Partitioned
fixed-priority preemptive scheduling for multi-core processors. In:: . : Real-Time
Systems, 2009. ECRTS'09. 21st Euromicro Conference on., 2009, S. 239--248

Bibliography

218

[Lam2001]: LAMPRET, D.: OpenRISC 1200 IP Core specification, Online, 2001

[LMM1998]: LAUZAC, S.; MELHEM, R. & MOSSE, D.: Comparison of global
and partitioning schemes for scheduling rate monotonic tasks on a
multiprocessor. In:: . : Real-Time Systems, 1998. Proceedings. 10th Euromicro
Workshop on., 1998, S. 188 -195

[Lee2000]: LEE, E. A.: What's ahead for embedded software?. In: Computer 33
(2000), Nr. 9, S. 18--26

[LMID+2003]: LEE, J.; MOONEY III, V.; DALEBY, A.; INGSTRÖM, K.;
KLEVIN, T. & LINDH, L.: A comparison of the RTU hardware RTOS with a
hardware/software RTOS. In:: . : Proceedings of the 2003 Asia and South Pacific
Design Automation Conference., 2003, S. 683--688

[LSD1989]: LEHOCZKY, J.; SHA, L. & DING, Y.: The rate monotonic
scheduling algorithm: Exact characterization and average case behavior. In:: . :
Real Time Systems Symposium, 1989., Proceedings.., 1989, S. 166--171

[LSK+2005]: LEHTORANTA, O.; SALMINEN, E.; KULMALA, A.;
HANNIKAINEN, M. & HAMALAINEN, T.: A parallel MPEG-4 encoder for
FPGA based multiprocessor SoC. In:: . : Field Programmable Logic and
Applications, 2005. International Conference on., 2005, S. 380 - 385

[LFCL2012]: LELLI, J.; FAGGIOLI, D.; CUCINOTTA, T. & LIPARI, G.: An
experimental comparison of different real-time schedulers on multicore systems.
In: Journal of Systems and Software (2012)

[LHPo2009]: LESAGE, B.; HARDY, D.; PUAUT, I. & OTHERS: WCET analysis
of multi-level set-associative data caches. In:: . : 9th Intl. Workshop on Worst-
Case Execution Time WCET Analysis., 2009

[Let2008]: LETEINTURIER, P. BREWERTON, S. S. K.: MultiCore Benefits &
Challenges for Automotive Applications. In: SAE SP - SOCIETY OF
AUTOMOTIVE ENGINEERS INC. NUMB 2159 (2008), S. 103-114

[LW1982]: LEUNG, J. & WHITEHEAD, J.: On the complexity of fixed-priority
scheduling of periodic, real-time tasks. In: Performance evaluation 2 (1982), Nr.
4, S. 237--250

[LDS2007]: LI, C.; DING, C. & SHEN, K.: Quantifying the cost of context
switch. In:: . : Proceedings of the 2007 workshop on Experimental computer
science., 2007, S. 2

[LRSF2004]: LI, P.; RAVINDRAN, B.; SUHAIB, S. & FEIZABADI, S.: A formally
verified application-level framework for real-time scheduling on posix real-time

Bibliography

219

operating systems. In: Software Engineering, IEEE Transactions on 30 (2004),
Nr. 9, S. 613--629

[LBKH2007]: LI, T.; BAUMBERGER, D.; KOUFATY, D. & HAHN, S.: Efficient
operating system scheduling for performance-asymmetric multi-core
architectures. In:: . : Proceedings of the 2007 ACM/IEEE conference on
Supercomputing., 2007, S. 53

[LT2009]: LIGGESMEYER, P. & TRAPP, M.: Trends in Embedded Software
Engineering. In: IEEE Software 26 (2009), Nr. 3, S. 19--25

[Lin1992]: LINDH, L.: Fasthard-a fast time deterministic hardware based real-
time kernel. In:: . : Real-Time Systems, 1992. Proceedings., Fourth Euromicro
workshop on., 1992, S. 21--25

[Lin1991]: LINDH, L.: Fastchart-a fast time deterministic cpu and hardware
based real-time-kernel. In:: . : Real Time Systems, 1991. Proceedings.,
Euromicro'91 Workshop on., 1991, S. 36--40

[LL1973]: LIU, C. & LAYLAND, J.: Scheduling algorithms for
multiprogramming in a hard-real-time environment. In: Journal of the ACM
(JACM) 20 (1973), Nr. 1, S. 46--61

[Liu2000]: LIU, J.: Real-time systems: Prentice Hall PTR., 2000

[LDN1997]: LUCULLI, G. & DI NATALE, M.: A cache-aware scheduling
algorithm for embedded systems. In:: . : Real-Time Systems Symposium, 1997.
Proceedings., The 18th IEEE., 1997, S. 199 -209

[Mac1980]: MACLAREN, L.: Evolving toward Ada in real time systems. In:: . 15,
Nr. 11 : ACM Sigplan Notices., 1980, S. 146--155

[MEB1988]: MAJUMDAR, S.; EAGER, D. L. & BUNT, R. B.: Scheduling in
multiprogrammed parallel systems. In: SIGMETRICS Perform. Eval. Rev. 16
(1988), S. 104--113

[Mar2006]: MARTIN, G.: Overview of the MPSoC design challenge. In:: . :
Proc. 43rd ACM/IEEE Design Automation Conf., 2006, S. 274--279

[MIY2010]: MARUYAMA, N.; ISHIHARA, T. & YASUURA, H.: An RTOS in
hardware for energy efficient software-based TCP/IP processing. In:: . :
Application Specific Processors (SASP), 2010 IEEE 8th Symposium on., 2010, S.
58--63

Bibliography

220

[MCF2010]: MASRUR, A.; CHAKRABORTY, S. & FÄRBER, G.: Constant-time
admission control for deadline monotonic tasks. In:: . : Proceedings of the
Conference on Design, Automation and Test in Europe., 2010, S. 220--225

[MDF2008]: MASRUR, A.; DRÖSSLER, S. & FÄRBER, G.: Improvements in
polynomial-time feasibility testing for EDF. In:: . : Proceedings of the conference
on Design, automation and test in Europe., 2008, S. 1033--1038

[MC2004]: MATTSSON, D. & CHRISTENSSON, M.: Evaluation of synthesizable
CPU cores. In: Master's thesis, Department of Computer Engineering, Chalmers
University of Technology (2004)

[MS1981]: MCCORMACK, W. & SARGENT, R.: Analysis of future event set
algorithms for discrete event simulation. In: Communications of the ACM 24
(1981), Nr. 12, S. 801--812

[MST1994]: MERCER, C.; SAVAGE, S. & TOKUDA, H.: Processor capacity
reserves: Operating system support for multimedia applications. In:: . :
Multimedia Computing and Systems, 1994., Proceedings of the International
Conference on., 1994, S. 90--99

[MB1991]: MOGUL, J. & BORG, A.: The effect of context switches on cache
performance: ACM. 26, Nr. 4, 1991

[MHSM2009]: MOLKA, D.; HACKENBERG, D.; SCHONE, R. & MULLER, M.:
Memory performance and cache coherency effects on an Intel Nehalem
multiprocessor system. In:: . : Parallel Architectures and Compilation
Techniques, 2009. PACT'09. 18th International Conference on., 2009, S. 261--
270

[MIB2002]: MOONEY III, V. & BLOUGH, D.: A hardware-software real-time
operating system framework for SoCs. In: Design & Test of Computers, IEEE 19
(2002), Nr. 6, S. 44--51

[NUI+1995]: NAKANO, T.; UTAMA, A.; ITABASHI, M.; SHIOMI, A. & IMAI,
M.: Hardware implementation of a real-time operating system. In:: . : TRON
Project International Symposium, 1995., Proceedings of the 12th., 1995, S. 34--42

[NNB2010]: NEMATI, F.; NOLTE, T. & BEHNAM, M.: Partitioning real-time
systems on multiprocessors with shared resources. In: Principles of Distributed
Systems (2010), S. 253--269

[NVC2010]: NOLLET, V.; VERKEST, D. & CORPORAAL, H.: A Safari Through
the MPSoC Run-Time Management Jungle. In: Journal of Signal Processing
Systems 60 (2010), S. 251-268

Bibliography

221

[NA2007]: NORDSTROM, S. & ASPLUND, L.: Configurable hardware/software
support for single processor real-time kernels. In:: . : System-on-Chip, 2007
International Symposium on., 2007, S. 1--4

[NLJS2005]: NORDSTROM, S.; LINDH, L.; JOHANSSON, L. & SKOGLUND,
T.: Application specific real-time microkernel in hardware. In:: . : Real Time
Conference, 2005. 14th IEEE-NPSS., 2005, S. 4--pp

[OKP2010]: OBERMAISSER, R.; KOPETZ, H. & PAUKOVITS, C.: A Cross-
Domain Multiprocessor System-on-a-Chip for Embedded Real-Time Systems. In:
IEEE Transactions on Industrial Informatics 6 (2010), Nr. 4, S. 548--567

[Ope2002]: OPENCORES: Wishbone Bus Specifications Revision B.3, Online,
2002

[OVP2012]: OVPSIM, O. V. P.: , Online, 2012

[PSJC+1997]: PARISOTO, A.; SOUZA JR, A.; CARRO, L.; PONTREMOLI, M.;
PEREIRA, C. & SUZIM, A.: F-Timer: Dedicated FPGA to real-time systems
design support. In:: . : Real-Time Systems, 1997. Proceedings., Ninth Euromicro
Workshop on., 1997, S. 35--40

[PLC+1997]: PAULIN, P. G.; LIEM, C.; CORNERO, M.; NACABAL, F. &
GOOSSENS, G.: Embedded software in real-time signal processing systems:
application and architecture trends. In: Proceedings of the IEEE 85 (1997), Nr.
3, S. 419--435

[PSG1998]: PUESCHEL, H.; SCHMIDT, G. & GERDES, M.: Method and device
for controlling an ABS antilock braking/ASR traction control system: Google
Patents., 1998

[RA1997]: RÖNNGREN, R. & AYANI, R.: A comparative study of parallel and
sequential priority queue algorithms. In: ACM Transactions on Modeling and
Computer Simulation (TOMACS) 7 (1997), Nr. 2, S. 157--209

[RAFD1993]: RÖNNGREN, R.; AYANI, R.; FUJIMOTO, R. & DAS, S.: Efficient
implementation of event sets in Time Warp. In:: . 23, Nr. 1 : ACM SIGSIM
Simulation Digest., 1993, S. 101--108

[RSJK2005]: RAVINDRAN, K.; SATISH, N.; JIN, Y. & KEUTZER, K.: An FPGA-
based soft multiprocessor system for IPv4 packet forwarding. In:: . : Field
Programmable Logic and Applications, 2005. International Conference on.,
2005, S. 487 - 492

[RW2010]: REICHENBACH, F. & WOLD, A.: Multi-core Technology – Next
Evolution Step in Safety Critical Systems for Industrial Applications?. In:: . :

Bibliography

222

Proc. 13th Euromicro Conf. Digital System Design: Architectures, Methods and
Tools (DSD)., 2010, S. 339--346

[RA1993]: RÖNNGREN, R., R. J. & AYANI, R.: Lazy queue: New approach to
implementing the pending event set.. In: Int. J. Comput. Simul 3 (1993), S. 303-
332

[Ros2004]: ROSINGER, H.: Connecting customized IP to the MicroBlaze soft
processor using the Fast Simplex Link (FSL) channel. In: Xilinx Application Note
(2004)

[SVC1998]: SÁEZ, S.; VILA, J. & CRESPO, A.: Using exact feasibility tests for
allocating real-time tasks in multiprocessor systems. In:: . : Real-Time Systems,
1998. Proceedings. 10th Euromicro Workshop on., 1998, S. 53--60

[Sch2007]: SCHIRRMEISTER, F.: Multi-core Processors: Fundamentals, Trends,
and Challenges. In:: . : Imperas, Embedded Systems Conference (ESC)., 2007

[Sch2002]: SCHMIDT, D. C.: Middleware for real-time and embedded systems.
In: Commun. ACM 45 (2002), S. 43--48

[SRL1990]: SHA, L.; RAJKUMAR, R. & LEHOCZKY, J.: Priority inheritance
protocols: An approach to real-time synchronization. In: Computers, IEEE
Transactions on 39 (1990), Nr. 9, S. 1175--1185

[SPV2007]: SIDDHA, S.; PALLIPADI, V. & VEN, A.: Getting maximum mileage
out of tickless. In:: . 2 : Linux Symposium., 2007, S. 201--207

[ST1985]: SLEATOR, D. & TARJAN, R.: Self-adjusting binary search trees. In:
Journal of the ACM (JACM) 32 (1985), Nr. 3, S. 652--686

[SA2004]: STÄRNER, J. & ASPLUND, L.: Measuring the cache interference cost
in preemptive real-time systems. In:: . 39, Nr. 7 : ACM SIGPLAN Notices., 2004,
S. 146--154

[Sta1988]: STANKOVIC, J.: Misconceptions about real-time computing: A
serious problem for next-generation systems. In: Computer 21 (1988), Nr. 10, S.
10--19

[SR2004]: STANKOVIC, J. A. & RAJKUMAR, R.: Real-Time Operating Systems.
In: Real-Time Syst. 28 (2004), S. 237--253

[SR1991]: STANKOVIC, J. & RAMAMRITHAM, K.: The Spring kernel: A new
paradigm for real-time systems. In: Software, IEEE 8 (1991), Nr. 3, S. 62--72

Bibliography

223

[SK2011]: STAVRINIDES, G. & KARATZA, H.: Scheduling multiple task graphs
in heterogeneous distributed real-time systems by exploiting schedule holes with
bin packing techniques. In: Simulation Modelling Practice and Theory 19 (2011),
Nr. 1, S. 540--552

[SWP2004]: STEIGER, C.; WALDER, H. & PLATZNER, M.: Operating systems
for reconfigurable embedded platforms: Online scheduling of real-time tasks. In:
Computers, IEEE Transactions on 53 (2004), Nr. 11, S. 1393--1407

[Ste1994]: STEINMAN, J.: Discrete-event simulation and the event horizon. In:: .
24, Nr. 1 : ACM SIGSIM Simulation Digest., 1994, S. 39--49

[SBas1994]: SWAGATO BASUMALLICK, K. N.: Cache Issues in Real-Time
Systems, 1994

[THT2008]: TOMIYAMA, H.; HONDA, S. & TAKADA, H.: Real-time operating
systems for multicore embedded systems. In:: . 01 : Proc. Int. SoC Design Conf.
ISOCC '08., 2008

[TAK2006]: TONG, J.; ANDERSON, I. & KHALID, M.: Soft-Core Processors for
Embedded Systems. In:: . : Microelectronics, 2006. ICM '06. International
Conference on., 2006, S. 170 -173

[Tsa2007]: TSAFRIR, D.: The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops). In:: . : Proceedings of the 2007
workshop on Experimental computer science., 2007, S. 4

[Tsa2007a]: TSAFRIR, D.: The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops). In:: . : Proceedings of the 2007
workshop on Experimental computer science., 2007, S. 4

[Tuc2012]: TUCCI, P.: X-RT scheduling framework., Online:
https://sourceforge.net/p/xrt/

[TBC+2008]: TUMEO, A.; BRANCA, M.; CAMERINI, L.; CERIANI, M.;
PALERMO, G.; FERRANDI, F.; SCIUTO, D. & MONCHIERO, M.: A dual-
priority real-time multiprocessor system on FPGA for automotive applications.
In:: ACM. : Proceedings of the conference on Design, automation and test in
Europe., 2008, S. 1039--1044

[VL1997]: VARGHESE, G. & LAUCK, A.: Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility. In: Networking,
IEEE/ACM Transactions on 5 (1997), Nr. 6, S. 824--834

Bibliography

224

[VL1987]: VARGHESE, G. & LAUCK, T.: Hashed and hierarchical timing
wheels: Data structures for the efficient implementation of a timer facility. In:: .
21, Nr. 5 : ACM SIGOPS Operating Systems Review., 1987, S. 25--38

[VD1975]: VAUCHER, J. & DUVAL, P.: A comparison of simulation event list
algorithms. In: Communications of the ACM 18 (1975), Nr. 4, S. 223--230

[VOM+2006]: VETROMILLE, M.; OST, L.; MARCON, C.; REIF, C. & HESSEL,
F.: Rtos scheduler implementation in hardware and software for real time
applications. In:: . : Rapid System Prototyping, 2006. Seventeenth IEEE
International Workshop on., 2006, S. 163--168

[VHag2005]: VON HAGEN, W.: Real-Time and Performance Improvements in
the 2. 6 Linux Kernel. In: Linux Journal 134 (2005), S. 8

[WL1998]: WANG, Y. & LIN, K.: Enhancing the real-time capability of the Linux
kernel. In:: . : Real-Time Computing Systems and Applications, 1998.
Proceedings. Fifth International Conference on., 1998, S. 11--20

[WEE+2008]: WILHELM, R.; ENGBLOM, J.; ERMEDAHL, A.; HOLSTI, N.;
THESING, S.; WHALLEY, D.; BERNAT, G.; FERDINAND, C.; HECKMANN, R.;
MITRA, T. & OTHERS: The worst-case execution-time problem—overview of
methods and survey of tools. In: ACM Transactions on Embedded Computing
Systems (TECS) 7 (2008), Nr. 3, S. 36

[Wol2004]: WOLF, W.: The future of multiprocessor systems-on-chips. In::
ACM. : Proceedings of the 41st annual Design Automation Conference., 2004, S.
681--685

[WJM2008]: WOLF, W.; JERRAYA, A. A. & MARTIN, G.: Multiprocessor
System-on-Chip (MPSoC) Technology. In: IEEE T Comput Aid D 27 (2008), Nr.
10, S. 1701--1713

[XWB2007]: XIE, X.; WILLIAMS, J. & BERGMANN, N.: Asymmetric Multi-
Processor Architecture for Reconfigurable System-on-Chip and Operating System
Abstractions. In:: . : Proc. Int. Conf. Field-Programmable Technology ICFPT
2007., 2007, S. 41--48

[YZ2008]: YAN, J. & ZHANG, W.: WCET analysis for multi-core processors with
shared L2 instruction caches. In:: . : Real-Time and Embedded Technology and
Applications Symposium, 2008. RTAS'08. IEEE., 2008, S. 80--89

