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Università di Bologna

Dottorato di Ricerca in

MATEMATICA

Ciclo XXV

Settore Concorsuale di afferenza: 01/A5

Settore Scientifico disciplinare: MAT/08

Iterative regularization methods

for ill-posed problems

Tesi di Dottorato presentata da: Ivan Tomba

Coordinatore Dottorato:

Chiar.mo Prof.

Alberto Parmeggiani

Relatore:

Chiar.ma Prof.ssa

Elena Loli Piccolomini

Esame Finale anno 2013





Contents

Introduction vii

1 Regularization of ill-posed problems in Hilbert spaces 1

1.1 Fundamental notations . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Differentiation as an inverse problem . . . . . . . . . . . . . . 2

1.3 Abel integral equations . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Radon inversion (X-ray tomography) . . . . . . . . . . . . . . 7

1.5 Integral equations of the first kind . . . . . . . . . . . . . . . . 9

1.6 Hadamard’s definition of ill-posed problems . . . . . . . . . . 11

1.7 Fundamental tools in the Hilbert space setting . . . . . . . . . 12

1.7.1 Basic definitions and notations . . . . . . . . . . . . . 12

1.7.2 The Moore-Penrose generalized inverse . . . . . . . . . 13

1.8 Compact operators: SVD and the Picard criterion . . . . . . . 17

1.9 Regularization and Bakushinskii’s Theorem . . . . . . . . . . 20

1.10 Construction and convergence of regularization methods . . . 22

1.11 Order optimality . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.12 Regularization by projection . . . . . . . . . . . . . . . . . . . 28

1.12.1 The Seidman example (revisited) . . . . . . . . . . . . 29

1.13 Linear regularization: basic results . . . . . . . . . . . . . . . 32

1.14 The Discrepancy Principle . . . . . . . . . . . . . . . . . . . . 36

1.15 The finite dimensional case: discrete ill-posed problems . . . . 38

1.16 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . 41

1.17 The Landweber iteration . . . . . . . . . . . . . . . . . . . . . 44

i



ii CONTENTS

2 Conjugate gradient type methods 51

2.1 Finite dimensional introduction . . . . . . . . . . . . . . . . . 52

2.2 General definition in Hilbert spaces . . . . . . . . . . . . . . . 59

2.3 The algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 The minimal residual method (MR) and the conjugate

gradient method (CG) . . . . . . . . . . . . . . . . . . 66

2.3.2 CGNE and CGME . . . . . . . . . . . . . . . . . . . . 67

2.3.3 Cheap Implementations . . . . . . . . . . . . . . . . . 69

2.4 Regularization theory for the conjugate gradient type methods 72

2.4.1 Regularizing properties of MR and CGNE . . . . . . . 74

2.4.2 Regularizing properties of CG and CGME . . . . . . . 78

2.5 Filter factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.6 CGNE, CGME and the Discrepancy Principle . . . . . . . . . 81

2.6.1 Test 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.6.2 Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.3 Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7 CGNE vs. CGME . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.8 Conjugate gradient type methods with parameter n=2 . . . . 92

2.8.1 Numerical results . . . . . . . . . . . . . . . . . . . . . 93

3 New stopping rules for CGNE 97

3.1 Residual norms and regularizing properties of CGNE . . . . . 98

3.2 SR1: Approximated Residual L-Curve Criterion . . . . . . . . 102

3.3 SR1: numerical experiments . . . . . . . . . . . . . . . . . . . 107

3.3.1 Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.2 Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 SR2: Projected Data Norm Criterion . . . . . . . . . . . . . . 110

3.4.1 Computation of the index p of the SR2 . . . . . . . . . 113

3.5 SR2: numerical experiments . . . . . . . . . . . . . . . . . . . 114

3.6 Image deblurring . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.7 SR3: Projected Noise Norm Criterion . . . . . . . . . . . . . . 121

3.8 Image deblurring: numerical experiments . . . . . . . . . . . . 124



CONTENTS iii

3.8.1 Test 1 (gimp test problem) . . . . . . . . . . . . . . . . 125

3.8.2 Test 2 (pirate test problem) . . . . . . . . . . . . . . . 127

3.8.3 Test 3 (satellite test problem) . . . . . . . . . . . . . . 128

3.8.4 The new stopping rules in the Projected Restarted CGNE129

4 Tomography 133

4.1 The classical Radon Transform . . . . . . . . . . . . . . . . . 133

4.1.1 The inversion formula . . . . . . . . . . . . . . . . . . 136

4.1.2 Filtered backprojection . . . . . . . . . . . . . . . . . . 139

4.2 The Radon Transform over straight lines . . . . . . . . . . . . 141

4.2.1 The Cone Beam Transform . . . . . . . . . . . . . . . 143

4.2.2 Katsevich’s inversion formula . . . . . . . . . . . . . . 145

4.3 Spectral properties of the integral operator . . . . . . . . . . . 149

4.4 Parallel, fan beam and helical scanning . . . . . . . . . . . . . 151

4.4.1 2D scanning geometry . . . . . . . . . . . . . . . . . . 152

4.4.2 3D scanning geometry . . . . . . . . . . . . . . . . . . 154

4.5 Relations between Fourier and singular functions . . . . . . . 154

4.5.1 The case of the compact operator . . . . . . . . . . . . 155

4.5.2 Discrete ill-posed problems . . . . . . . . . . . . . . . . 156

4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 158

4.6.1 Fanbeamtomo . . . . . . . . . . . . . . . . . . . . . . . 159

4.6.2 Seismictomo . . . . . . . . . . . . . . . . . . . . . . . . 160

4.6.3 Paralleltomo . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Regularization in Banach spaces 163

5.1 A parameter identification problem for an elliptic PDE . . . . 164

5.2 Basic tools in the Banach space setting . . . . . . . . . . . . . 167

5.2.1 Basic mathematical tools . . . . . . . . . . . . . . . . . 167

5.2.2 Geometry of Banach space norms . . . . . . . . . . . . 168

5.2.3 The Bregman distance . . . . . . . . . . . . . . . . . . 174

5.3 Regularization in Banach spaces . . . . . . . . . . . . . . . . . 176

5.3.1 Minimum norm solutions . . . . . . . . . . . . . . . . . 176



iv CONTENTS

5.3.2 Regularization methods . . . . . . . . . . . . . . . . . 178

5.3.3 Source conditions and variational inequalities . . . . . 180

5.4 Iterative regularization methods . . . . . . . . . . . . . . . . . 181

5.4.1 The Landweber iteration: linear case . . . . . . . . . . 182

5.4.2 The Landweber iteration: nonlinear case . . . . . . . . 185

5.4.3 The Iteratively Regularized Landweber method . . . . 186

5.4.4 The Iteratively Regularized Gauss-Newton method . . 189

6 A new Iteratively Regularized Newton-Landweber iteration193

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.2 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.3 Parameter selection for the method . . . . . . . . . . . . . . . 202

6.4 Weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.5 Convergence rates with an a-priori stopping rule . . . . . . . . 211

6.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 213

6.7 A new proposal for the choice of the parameters . . . . . . . . 219

6.7.1 Convergence rates in case ν > 0 . . . . . . . . . . . . . 224

6.7.2 Convergence as n → ∞ for exact data δ = 0 . . . . . . 224

6.7.3 Convergence with noisy data as δ → 0 . . . . . . . . . 225

6.7.4 Newton-Iteratively Regularized Landweber algorithm . 227

Conclusions 229

A Spectral theory in Hilbert spaces 231

B Approximation of a finite set of data with cubic B-splines 235

B.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B.2 Data approximation . . . . . . . . . . . . . . . . . . . . . . . 236

C The algorithms 239

C.1 Test problems from P. C. Hansen’s Regularization Tools . . . 239

C.2 Conjugate gradient type methods algorithms . . . . . . . . . . 241

C.3 The routine data−approx . . . . . . . . . . . . . . . . . . . . . 242



CONTENTS v

C.4 The routine mod−min−max . . . . . . . . . . . . . . . . . . . . 243

C.5 Data and files for image deblurring . . . . . . . . . . . . . . . 244

C.6 Data and files for the tomographic problems . . . . . . . . . . 245

D CGNE and rounding errors 247

Bibliography 249

Acknowledgements i





Introduction

Inverse and ill-posed problems are nowadays a very important field of re-

search in applied mathematics and numerical analysis. The main reason for

this large interest is the wide number of applications, ranging from medi-

cal imaging, via material testing, seismology, inverse scattering and financial

mathematics, to weather forecasting, just to cite some of the most famous.

Typically, in these problems some fundamental information is not available

and the solution does not depend continuously on the data. As a consequence

of this lack of stability, even very small errors in the data can cause very large

errors in the results. Thus, the problems have to be regularized by inserting

some additional information in the data to obtain reasonable approximations

of the sought for solution. On the other hand, it is important to keep the

computational cost of the corresponding algorithms as low as possible, since

in practical applications the total amount of data to be processed is usually

very high.

The main topic of this Ph.D thesis is the regularization of ill-posed problems

by means of iterative regularization techniques. The principal advantage of

the iterative methods is that the regularized solutions are obtained by ar-

resting the methods at an early stage, which often allows to spare time in

the computations. On the other side, the main difficulty in their use is the

choice of the stopping index of the iteration: an early stopping produces an

over-regularized solution, whereas a late stopping computes a noisy solution.

In particular, we shall focus on the conjugate gradient type methods for

regularizing linear ill-posed problems from the classical Hilbert space set-

vii



viii Introduction

ting point of view, and on a new inner-outer Newton-Iteratively Regularized

Landweber method for solving nonlinear ill-posed problems in the Banach

space framework.

Regarding the conjugate gradient type methods, we propose three new au-

tomatic1 stopping rules for the Conjugate Gradient method applied to the

Normal Equation in the discrete setting, based on the regularizing properties

of the method in the continuous setting. These stopping rules are tested in

a series of numerical simulations, including some problems of tomographic

images reconstruction.

Regarding the Newton-Iteratively Regularized Landweber method, we define

both the iteration and the stopping rules showing convergence and conver-

gence rates results.

In detail, the thesis is constituted by six chapters.

• In Chapter 1 we recall the basic notions of the regularization theory in

the Hilbert space framework. Revisiting the regularization theory, we

mainly follow the famous book of Engl, Hanke and Neubauer [17]. Some

examples are added, some others corrected and some proofs completed.

• Chapter 2 is dedicated to the definition of the conjugate gradient type

methods and the analysis of their regularizing properties. A comparison

of these methods is made by means of numerical simulations.

• In Chapter 3 we motivate, define and analyze the new stopping rules

for the Conjugate Gradient applied to the Normal Equation. The stop-

ping rules are tested in many different examples, including some image

deblurring test problems.

• In Chapter 4 we consider some applications in tomographic problems.

Some theoretical properties of the Radon Transform are studied and

then used in the numerical tests to implement the stopping rules defined

in Chapter 3.

1i.e. that can be defined precisely by a software
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• Chapter 5 is a survey of the regularization theory in the Banach space

framework. The main advantages of working in a Banach space setting

instead of a Hilbert space setting are explained in the introduction.

Then, the fundamental tools and results of this framework are sum-

marized following [82]. The regularizing properties of some important

iterative regularization methods in the Banach space framework, such

as the Landweber and Iteratively Regularized Landweber methods and

the Iteratively Regularized Gauss-Newton method, are described in the

last section.

• The main results about the new inner-outer Newton-Iteratively Regu-

larized Landweber iteration are presented in the conclusive part of the

thesis, in Chapter 6.
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Chapter 1

Regularization of ill-posed

problems in Hilbert spaces

The fundamental background of this thesis is the regularization theory for

(linear) ill-posed problems in the Hilbert space setting. In this introductory

chapter we are going to revisit and summarize the basic concepts of this

theory, which is nowadays well-established. To this end, we will mainly

follow the famous book of Engl, Hanke and Neubauer [17].

Starting from some very famous examples of inverse problems (differentia-

tion and integral equations of the first kind) we will review the notions of

regularization method, stopping rule and order optimality. Then we will

consider a class of finite dimensional problems arising from the discretization

of ill-posed problems, the so called discrete ill-posed problems. Finally, in

the last two sections of the chapter we will recall the basic properties of the

Tikhonov and the Landweber methods.

Apart from [17], general references for this chapter are [20], [21], [22], [61],

[62], [90] and [91] and, concerning the part about finite dimensional problems,

[36] and the references therein.

1



2 1. Regularization of ill-posed problems in Hilbert spaces

1.1 Fundamental notations

In this section, we fix some important notations that will we used throughout

the thesis.

First of all, we shall denote by Z, R, C, the sets of the integer, real and

complex numbers respectively. In C, the imaginary unit will be denoted by

the symbol ı. The set of strictly positive integers will be denoted by N or

Z+, the set of positive real numbers by R+.

If not stated explicitly, we shall denote by 〈·, ·〉 and by ‖ · ‖ the standard

euclidean scalar product and euclidean norm on the cartesian product RD,

D ∈ N respectively. Moreover, SD−1 := {x ∈ RD | ‖x‖ = 1} will be the unit

sphere in RD.

For i and j ∈ N, we will denote by Mi,j(R) (respectively, Mi,j(C)) the space

of all matrices with i rows and j columns with entries in R (respectively,

C) and by GLj(R) (respectively, GLj(C)) the space of all square invertible

matrices on R (C).

For an appropriate subset Ω ⊆ RD, D ∈ N, C(Ω) will be the set of conti-

nuous functions on Ω. Analogously, Ck(Ω) will denote the set of differentiable

functions with k continuous derivatives on Ω, k = 1, 2, ...,∞, and Ck
0 (Ω)

will be the corresponding sets of functions with compact support. For p

∈ [1,∞], we will write Lp(Ω) for the Lebesgue spaces with index p on Ω,

and Wp,k(Ω) for the corresponding Sobolev spaces, with the special cases

Hk(Ω) = W2,k(Ω). The space of rapidly decreasing functions on RD will be

denoted by S(RD).

1.2 Differentiation as an inverse problem

In this section we present a fundamental example for the study of ill-posed

problems: the computation of the derivative of a given differentiable function.

Let f be any function in C1([0, 1]). For every δ ∈ (0, 1) and every n ∈ N define

f δ
n(t) := f(t) + δ sin

nt

δ
, t ∈ [0, 1]. (1.1)



1.2 Differentiation as an inverse problem 3

Then
d

dt
f δ
n(t) =

d

dt
f(t) + n cos

nt

δ
, t ∈ [0, 1],

hence, in the uniform norm,

‖f − f δ
n‖C([0,1]) = δ

and

‖ d
dt
f − d

dt
f δ
n‖C([0,1]) = n.

Thus, if we consider f and f δ
n the exact and perturbed data, respectively, of

the problem compute the derivative df
dt

of the data f , for an arbitrary small

perturbation of the data δ we can obtain an arbitrary large error n in the

result. Equivalently, the operator

d

dt
: (C1([0, 1]), ‖ ‖C([0,1])) −→ (C([0, 1]), ‖ ‖C([0,1]))

is not continuous. Of course, it is possible to enforce continuity by measuring

the data in the C1-norm, but this would be like cheating, since to calculate

the error in the data one should calculate the derivative, namely the result.

It is important to notice that df
dt

solves the integral equation

K[x](s) :=

∫ s

0

x(t)dt = f(s)− f(0), (1.2)

i.e. the result can be obtained by inverting the operator K. More precisely,

we have:

Proposition 1.2.1. The linear operator K : C([0, 1]) −→ C([0, 1]) defined

by (1.2) is continuous, injective and surjective onto the linear subspace of

C([0, 1]) denoted by W := {x ∈ C1([0, 1]) | x(0) = 0}. The inverse of K

d

dt
: W −→ C([0, 1])

is unbounded.

If K is restricted to

Sγ := {x ∈ C1([0, 1]) | ‖x‖C([0,1]) + ‖dx
dt

‖C([0,1]) ≤ γ, γ > 0},

then (K|Sγ)
−1 is bounded.
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Proof. The first part is obvious. For the second part, it is enough to observe

that ‖x‖C([0,1]) + ‖dx
dt
‖C([0,1]) ≤ γ ensures that Sγ is bounded and equicontinu-

ous in C([0, 1]), thus, according to the Ascoli-Arzelà Theorem, Sγ is relatively

compact. Hence (K|Sγ )
−1 is bounded because it is the inverse of a bijective

and continuous operator defined on a relatively compact set.

The last statement says that we can restore stability by assuming a-priori

bounds for f ′ and f ′′.

Suppose now we want to calculate the derivative of f via central difference

quotients with step size σ and let f δ be its noisy version with

‖f δ − f‖C([0,1]) ≤ δ. (1.3)

If f ∈ C2[0, 1], a Taylor expansion gives

f(t+ σ)− f(t− σ)

2σ
= f ′(t) +O(σ),

but if f ∈ C3[0, 1] the second derivative can be eliminated, thus

f(t+ σ)− f(t− σ)

2σ
= f ′(t) +O(σ2).

Remembering that we are dealing with perturbed data

f δ(t+ σ)− f δ(t− σ)

2σ
∼ f(t+ σ)− f(t− σ)

2σ
+
δ

σ
,

the total error behaves like

O(σν) +
δ

σ
, (1.4)

where ν = 1, 2 if f ∈ C2[0, 1] or f ∈ C3[0, 1] respectively.

A remarkable consequence of this is that for fixed δ, when σ is too small,

the total error is large, because of the term δ
σ
, the propagated data error.

Moreover, there exists an optimal discretization parameter σ♯, which cannot

be computed explicitly, since it depends on unavailable information about

the exact data, i.e. the smoothness.

However, if σ ∼ δµ one can search the power µ that minimizes the total error

with respect to δ, obtaining µ = 1
2
if f ∈ C2[0, 1] and µ = 1

3
if f ∈ C3[0, 1],
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The behavior of the Total Error in ill−posed problems
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Figure 1.1: The typical behavior of the total error in ill-posed problems

with a resulting total error of the order of O(
√
δ) and O(δ

2
3 ) respectively.

Thus, in the best case, the total error O(δ
2
3 ) tends to 0 slower than the

data error δ and it can be shown that this result cannot be improved unless

f is a quadratic polynomial: this means that there is an intrinsic loss of

information.

Summing up, in this simple example we have seen some important features

concerning ill-posed problems:

• amplification of high-frequency errors;

• restoration of stability by a-priori assumptions;

• two error terms of different nature, adding up to a total error as in

Figure 1.1;

• appearance of an optimal discretization parameter, depending on a-

priori information;
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• loss of information even under optimal circumstances.

1.3 Abel integral equations

When dealing with inverse problems, one has often to solve an integral equa-

tion. In this section we present an example which can be described mathe-

matically by means of the Abel Integral Equation. The name is in honor of

the famous Norwegian mathematician N. H. Abel, who studied this problem

for the first time.1

Let a mass element move on the plane R2
x1,x2

along a curve Γ from a point

P1 on level h > 0 to a point P0 on level 0. The only force acting on the mass

element is the gravitational force mg.

The direct problem is to determine the time τ in which the element moves

from P1 to P0 when the curve Γ is given. In the inverse problem, one mea-

sures the time τ = τ(h) for several values of h and tries to determine the

curve Γ. Let the curve be parametrized by x1 = ψ(x2). Then Γ = Γ(x2) and

Γ(x2) =

(

ψ(x2)

x2

)

, dΓ(x2) =
√

1 + ψ′(x2)2.

According to the conservation of energy,

m

2
v2 +mgx2 = mgh,

thus the velocity verifies

v(x2) =
√

2g(h− x2).

The total time τ from P1 to P0 is

τ = τ(h) =

∫ P0

P1

dΓ(x2)

v(x2)
=

∫ h

0

√

1 + ψ′(x2)2

2g(h− x2)
dx2, h > 0.

1This example is taken from [61].
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Figure 1.2: A classical example of computerized tomography.

Set φ(x2) :=
√

1 + ψ′(x2)2 and let f(h) := τ(h)
√
2g be known (measured).

Then the problem is to determine the unknown function φ from Abel’s inte-

gral equation
∫ h

0

φ(x2)√
h− x2

dx2 = f(h), h > 0. (1.5)

1.4 Radon inversion (X-ray tomography)

We consider another very important example widely studied in medical ap-

plications, arising in Computerized Tomography, which can lead to an Abel

integral equation.

Let Ω ⊆ R2 be a compact domain with a spatially varying density f : Ω → R

(in medical applications, Ω represents the section of a human body, see Fig-

ure 1.2). Let L be any line in the plane and suppose we direct a thin beam of
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X-rays into the body along L and measure how much intensity is attenuated

by going through the body. Let L be parametrized by its normal versor θ ∈
S1 and its distance s > 0 from the origin. If we assume that the decay −∆I

of an X-ray beam along a distance ∆t is proportional to the intensity I, the

density f and to ∆t, we obtain

∆I(sθ + tθ⊥) = −I(sθ + tθ⊥)f(sθ + tθ⊥)∆t,

where θ⊥ is a unit vector orthogonal to θ. In the limit for t→ 0, we have

d

dt
I(sθ + tθ⊥) = −I(sθ + tθ⊥)f(sθ + tθ⊥).

Thus, if IL(s, θ) and I0(s, θ) denote the intensity of the X-ray beam measured

at the detector and the emitter, respectively, where the detector and the

emitter are connected by the line parametrized by s and θ and are located

outside of Ω, an integration along the line yields

R[f ](s, θ) :=

∫

f(sθ + tθ⊥)dt = − log
IL(s, θ)

I0(s, θ)
, θ ∈ S1, s > 0, (1.6)

where the integration can be made over R, since obviously f = 0 outside of

Ω.

The inverse problem of determining the density distribution f from the X-

ray measurements is then equivalent to solve the integral equation of the first

kind (1.6). The operator R is called the Radon Transform in honor of the

Austrian mathematician J. Radon, who studied the problem of reconstructing

a function of two variables from its line integrals already in 1917 (cf. [75]).

The problem simplifies in the following special case (which is of interest, e.g.

in material testing), where Ω is a circle of radius R, f is radially symmetric,

i.e. f(r, θ) = ψ(r), 0 < r ≤ R, ‖θ‖ = 1 for a suitable function ψ, and we

choose only horizontal lines. If

g(s) := − log
IL(s, θ0)

I0(s, θ0)
(1.7)
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denotes the measurements in this situation, with θ0 = (0,±1), for 0 < s ≤ R

we have

R[f ](s, θ0) =

∫

R

f(sθ0 + tθ⊥
0 )dt =

∫

R

ψ(
√
s2 + t2)dt

=

∫ √
R2−s2

−
√
R2−s2

ψ(
√
s2 + t2)dt = 2

∫ √
R2−s2

0

ψ(
√
s2 + t2)dt

= 2

∫ R

s

rψ(r)√
r2 − s2

dr.

(1.8)

Thus we obtain another Abel integral equation of the first kind:

∫ R

s

rψ(r)√
r2 − s2

dr =
g(s)

2
, 0 < s ≤ R. (1.9)

In the case g(R) = 0, the Radon Transform can be explicitly inverted and

ψ(r) = −1

π

∫ R

r

g′(s)√
s2 − r2

ds. (1.10)

We observe from the last equation that the inversion formula involves the

derivative of the data g, which can be considered as an indicator of the ill-

posedness of the problem. However, here the data is integrated and thus

smoothed again, but the kernel of this integral operator has a singularity for

s = r, so we expect the regularization effect of integration to be only partial.

This heuristic statement can be made more precise, as we shall see later in

Chapter 4.

1.5 Integral equations of the first kind

In Section 1.3, starting from a physical problem, we have constructed a very

simple mathematical model based on the integral equation (1.5), where we

have to recover the unknown function φ from the data f . Similarly, in Sec-

tion 1.4 we have seen that an analogous equation is obtained to recover the

function ψ from the measured data g.

As a matter of fact, very often ill-posed problems lead to integral equations.

In particular, Abel integral equations such as (1.5) and (1.10) fall into the
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class of the Fredholm equations of the first kind whose definition is recalled

below.

Definition 1.5.1. Let s1 < s2 be real numbers and let κ, f and φ be real va-

lued functions defined respectively on [s1, s2]
2, [s1, s2] and [s1, s2]. A Fredholm

equation of the first kind is an equation of the form

∫ s2

s1

κ(s, t)φ(t)dt = f(s) s ∈ [s1, s2]. (1.11)

Fredholm integral equations of the first kind must be treated accurately

(see [22] as a general reference): if κ is continuous and φ is integrable, then

it is easy to see that f is also continuous, thus if the data is not continuous

while the kernel is, then (1.11) has no integrable solution. This means that

the question of existence is not trivial and requires investigation. Concerning

the uniqueness of the solutions, take for example κ(s, t) = s sin t, f(s) = s

and [s1, s2] = [0, π]: then φ(t) = 1/2 is a solution of (1.11), but so is each of

the functions φn(t) = 1/2 + sinnt, n ∈ N.

Moreover, we also observe that if κ is square integrable, as a consequence of

the Riemann-Lebesgue lemma, there holds

∫ π

0

κ(s, t) sin(nt)dt→ 0 as n→ +∞. (1.12)

Thus if φ is a solution of (1.11) and C is arbitrarily large

∫ π

0

κ(s, t)(φ(t) + C sin(nt))dt→ f(s) as n→ +∞ (1.13)

and for large values of n the slightly perturbed data

f̃(s) := f(s) + C

∫ π

0

κ(s, t) sin(nt)dt (1.14)

corresponds to a solution φ̃(t) = φ(t) +C sin(nt) which is arbitrarily distant

from φ. In other words, as in the example considered in Section 1.2, the

solution doesn’t depend continuously on the data.



1.6 Hadamard’s definition of ill-posed problems 11

1.6 Hadamard’s definition of ill-posed pro-

blems

Integral equations of the first kind are the most famous example of ill-posed

problems. The definition of ill-posedness goes back to the beginning of the

20-th century and was stated by J. Hadamard as follows:

Definition 1.6.1. Let F be a mapping from a topological space X to another

topological space Y and consider the abstract equation

F (x) = y.

The equation is said to be well-posed if

(i) for each y ∈ Y, a solution x ∈ X of F (x) = y exists;

(ii) the solution x is unique in X ;

(iii) the dependence of x upon y is continuous.

The equation is said to be ill-posed if it is not well-posed.

Of course, the definition of well-posedness above is equivalent to the re-

quest that F is surjective and injective and that the inverse mapping F−1 is

continuous.

For example, due to the considerations made in the previous sections, inte-

gral equations of the first kind are examples ill-posed equations. If X = Y is

a Hilbert space and F = A is a linear, self-adjoint operator with its spectrum

contained in [0,+∞[, the equation of the second kind

y = Ax+ tx

is well-posed for every t > 0, since the operator A + t is invertible and its

inverse (A+ t)−1 is also continuous.
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1.7 Fundamental tools in the Hilbert space

setting

So far, we have seen several examples of ill-posed problems. It is obvious

from Hadamard’s definition of ill-posedness that an exhaustive mathematical

treatment of such problems should be based on a different notion of solution

of the abstract equation F (x) = y to achieve existence and uniqueness. For

linear problems in the Hilbert space setting, this is done with the Moore-

Penrose Generalized Inverse.

At first, we fix some standard definitions and notations. General references

for this section are [17] and [21].

1.7.1 Basic definitions and notations

Let A be a linear bounded (continuous) operator between two Hilbert Spaces

X and Y . To simplify the notations, the scalar products in X and Y and

their induced norms will be denoted by the same symbols 〈·, ·〉 and ‖ · ‖
respectively. For x̄ ∈ X and δ > 0,

Bδ(x̄) := {x ∈ X | ‖x− x̄‖ < δ} (1.15)

is the open ball centered in x̄ with radius δ and Bδ(x̄) or Bδ(x̄) is its closure

with respect to the topology of X .

We denote by R(A) the range of A:

R(A) := {y ∈ Y | ∃ x ∈ X : y = Ax} (1.16)

and by ker(A) the null-space of A:

ker(A) := {x ∈ X | Ax = 0}. (1.17)

We recall that R(A) and ker(A) are subspaces of Y and X respectively and

that ker(A) is closed.

We also recall the following basic definitions.
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Definition 1.7.1 (Orthogonal space). Let M ⊆ X . The orthogonal space

of M is the closed vector space M⊥ defined by:

M⊥ := {x ∈ X | 〈x, z〉 = 0, ∀z ∈ M}. (1.18)

Definition 1.7.2 (Adjoint operator). The bounded operator A∗ : Y → X ,

defined as

〈A∗y, x〉 = 〈y, Ax〉, ∀x ∈ X , y ∈ Y , (1.19)

is called the adjoint operator of A.

If A : X → X and A = A∗, then A is called self-adjoint.

Definition 1.7.3 (Orthogonal projector). Let W be a subspace of X .

For every x ∈ X , there exist a unique element in W, called the projection of

x onto W, that minimizes the distance ‖x− w‖, w ∈ W.

The map P : X → X , that associates to an element x ∈ X its projection

onto W, is called the orthogonal projector onto W.

This is the unique linear and self-adjoint operator satisfying the relation P =

P 2 that maps X onto W.

Definition 1.7.4. Let {xn}n∈N be a sequence in X and let x ∈ X . The

sequence xn is said to converge weakly to x if, for every z ∈ X , 〈xn, z〉
converges to 〈x, z〉. In this case, we shall write

xn ⇀ x.

1.7.2 The Moore-Penrose generalized inverse

We are interested in solving the equation

Ax = y, (1.20)

for x ∈ X , but we suppose we are only given an approximation of the exact

data y ∈ Y , which are assumed to exist and to be fixed, but unknown.
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Definition 1.7.5. (i) A least-squares solution of the equation Ax = y is

an element x ∈ X such that

‖Ax− y‖ = inf
z∈X

‖Az − y‖. (1.21)

(ii) An element x ∈ X is a best-approximate solution of Ax = y if it is a

least-squares solution of Ax = y and

‖x‖ = inf{‖z‖ | z is a least-squares solution of ‖Ax− y‖} (1.22)

holds.

(iii) The Moore-Penrose (generalized) inverse A† of A is the unique linear

extension of Ã−1 to

D(A†) := R(A) +R(A)⊥ (1.23)

with

ker(A†) = R(A)⊥, (1.24)

where

Ã := A|ker(A)⊥ : ker(A)⊥ → R(A). (1.25)

A† is well defined: in fact, it is trivial to see that ker(Ã) = {0} and

R(Ã) = R(A), so R(Ã)−1 exists. Moreover, since R(A)
⋂R(A)⊥ = {0},

every y ∈ D(A†) can be written in a unique way as y = y1 + y2, with y1 ∈
R(A) and y2 ∈ R(A)⊥, so using (1.24) and the requirement that A† is linear,

one can easily verify that A†y = Ã−1y1.

The Moore Penrose generalized inverse can be characterized as follows.

Proposition 1.7.1. Let now and below P and Q be the orthogonal projectors

onto ker(A) and R(A), respectively. Then R(A†) = ker(A)⊥ and the four

Moore-Penrose equations hold:

AA†A = A, (1.26)

A†AA† = A†, (1.27)
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A†A = I − P, (1.28)

AA† = Q|D(A†). (1.29)

Here and below, the symbol I denotes the identity map.

If a linear operator Ǎ : D(A†) → X verifies (1.28) and (1.29), then Ǎ = A†.

Proof. For the first part, see [17]. We show the second part.

Since ǍAǍ = ǍQ|D(A†) = Ǎ and AǍA = A(I − P ) = A − AP = A, all

Moore-Penrose equations hold for Ǎ. Then, keeping in mind that I − P is

the orthogonal projector onto ker(A)⊥, for every y ∈ D(A†) we have: Ǎy =

ǍAǍy = (I − P )Ǎy = Ã−1A(I − P )Ǎy = Ã−1AǍy = Ã−1Qy = A†y.

An application of the Closed Graph Theorem leads to the following im-

portant fact.

Proposition 1.7.2. The Moore-Penrose generalized inverse A† has a closed

graph gr(A†). Furthermore, A† is continuous if and only if R(A) is closed.

We use this to give another characterization of the Moore-Penrose pseu-

doinverse:

Proposition 1.7.3. There can be only one linear bounded operator

Ǎ : Y → X that verifies (1.26) and (1.27) and such that ǍA and AǍ are self-

adjoint. If such an Ǎ exists, then A† is also bounded and Ǎ = A†. Moreover,

in this case, the Moore-Penrose generalized inverse of the adjoint of A, (A∗)†,

is bounded too and

(A∗)† = (A†)∗. (1.30)

Proof. Suppose Ǎ, B̌ : Y → X are linear bounded operators that verify (1.26)

and (1.27) and such that ǍA, B̌A, AǍ and AB̌ are self-adjoint.

Then

ǍA = A∗Ǎ∗ = (A∗B̌∗A∗)Ǎ∗ = (A∗B̌∗)(A∗Ǎ∗) = (B̌A)(ǍA) = B̌(AǍA) = B̌A
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and in a similar way AB̌ = AǍ. Thus we obtain

Ǎ = Ǎ(AǍ) = Ǎ(AB̌) = (ǍA)B̌ = (B̌A)B̌ = B̌.

Suppose now that such an operator Ǎ exists. For every z ∈ Y and every y ∈
R(A), y = limn→+∞Axn, xn ∈ X , we have

〈y, z〉 = lim
n→+∞

〈Axn, z〉 = lim
n→+∞

〈xn, A∗z〉 =

= lim
n→+∞

〈xn, A∗Ǎ∗A∗z〉 = 〈AǍy, z〉,

so y = AǍy and y lies in R(A). This means that R(A) is closed, thus

according to Proposition 1.7.2 A† is bounded and for the first part of the

proof A† = Ǎ.

Finally, to prove the last statement it is enough to verify that for the linear

bounded operator (A†)∗ conditions (1.26) and (1.27) hold with A replaced

by A∗, together with the the correspondent self-adjointity conditions, which

consists just of straightforward calculations.

The definitions of least-squares solution and best-approximate solution

make sense too: if y ∈ D(A†), the set S of the least-squares solutions of

Ax = y is non-empty and its best-approximate solution turns out to be

unique and strictly linked to the operator A†. More precisely, we have:

Proposition 1.7.4. Let y ∈ D(A†). Then:

(i) Ax = y has a unique best-approximate solution, which is given by

x† := A†y. (1.31)

(ii) The set S of the least-squares solutions of Ax = y is equal to x†+

ker(A) and every x ∈ X lies in S if and only if the normal equation

A∗Ax = A∗y (1.32)

holds.
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(iii) D(A†) is the natural domain of definition for A†, in the sense that

y /∈ D(A†) ⇒ S = ∅. (1.33)

Proof. See [17] for (i) and (ii). Here we show (iii). Suppose x ∈ X is a

least-squares solution of Ax = y. Then Ax is the closest element in R(A) to

y, so Ax − y ∈ R(A)⊥. This implies that Q(Ax − y) = 0, but QAx = Ax,

thus we deduce that Qy ∈ R(A) and y = Qy + (I −Q)y ∈ D(A†).

Thus the introduction of the concept of best-approximate solution, al-

though it enforces uniqueness, does not always lead to a solvable problem

and is no remedy for the lack of continuous dependance from the data in

general.

1.8 Compact operators: SVD and the Picard

criterion

Among linear and bounded operators, compact operators are of special in-

terest, since many integral operators are compact.

We recall that a compact operator is a linear operator that maps any bounded

subset of X into a relatively compact subset of Y .

For example, suppose that Ω ⊆ RD, D ≥ 1, is a nonempty compact and

Jordan measurable set that coincides with the closure of its interior. It is

well known that if the kernel κ is either in L2(Ω×Ω) or weakly singular, i.e.

κ is continuous on {(s, t) ∈ Ω× Ω | s 6= t} and for all s 6= t ∈ Ω

|κ(s, t)| ≤ C

|s− t|D−ǫ
(1.34)

with C > 0 and ǫ > 0, then the operator K : L2(Ω) → L2(Ω) defined by

K[x](s) :=

∫

Ω

κ(s, t)x(t)dt (1.35)
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is compact (see e.g. [20]).2

If a compact linear operator K is also self-adjoint, the notion of eigensystem

is well-defined (a proof of the existence of an eigensystem and a more exhaus-

tive treatment of the argument can be found e.g. in [62]): an eigensystem

{(λj; vj)}j∈N of the operator K consists of all nonzero eigenvalues λj ∈ R of

K and a corresponding complete orthonormal set of eigenvectors vj . Then

K can be diagonalized by means of the formula

Kx =

∞∑

j=1

λj〈x, vj〉vj , ∀x ∈ X (1.36)

and the nonzero eigenvalues of K converge to 0.

If K : X → Y is not self-adjoint, then observing that the operators K∗K : X
→ X and KK∗ : Y → Y are positive semi-definite and self-adjoint compact

operators with the same set of nonzero eigenvalues written in nondecreasing

order with multiplicity

λ21 ≥ λ22 ≥ λ23..., λj > 0 ∀j ∈ N,

we define a singular system {λj ; vj, uj}j∈N. The vectors vj form a complete

orthonormal system of eigenvectors of K∗K and uj, defined as

uj :=
Kvj

‖Kvj‖
, (1.37)

form a complete orthonormal system of eigenvectors of KK∗. Thus {vj}j∈N
span R(K∗) = R(K∗K), {uj}j∈N span R(K) = R(KK∗) and the following

formulas hold:

Kvj = λjuj, (1.38)

K∗uj = λjvj, (1.39)

Kx =
∞∑

j=1

λj〈x, vj〉uj, ∀x ∈ X , (1.40)

2Here and below, we shall denote with the symbol K a linear and bounded operator

which is also compact.
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K∗y =

∞∑

j=1

λj〈y, uj〉vj, ∀y ∈ Y . (1.41)

All the series above converge in the Hilbert space norms of X and Y .

Equations (1.40) and (1.41) are the natural infinite-dimensional extension of

the well known singular value decomposition (SVD) of a matrix.

For compact operators, the condition for the existence of the best-approximate

solution K†y of the equation Kx = y can be written down in terms of the

singular value expansion of K. It is called the Picard Criterion and can be

given by means of the following theorem (see [17] for the proof).

Theorem 1.8.1. Let {λj; vj , uj}j∈N be a singular system for the compact

linear operator K an let y ∈ Y. Then

y ∈ D(K†) ⇐⇒
∞∑

j=1

|〈y, uj〉|2
λ2j

< +∞ (1.42)

and whenever y ∈ D(K†),

K†y =
∞∑

j=1

〈y, uj〉
λj

vj . (1.43)

Thus the Picard Criterion states that the best-approximate solution x†

of Kx = y exists only if the SVD coefficients |〈y, uj〉| decay fast-enough with

respect to the singular values λj.

In the finite dimensional case, of course the sum in (1.42) is always finite, the

best-approximate solution always exists and the Picard Criterion is always

satisfied.

From (1.43) we can see that in the case of perturbed data, the error compo-

nents with respect to the the basis {uj} corresponding to the small values of

λj are amplified by the large factors λ−1
j . For example, if dim(R(K)) = +∞

and the perturbed data is defined by yδj := y + δuj, then ‖y − yδj‖ = δ, but

K†y −K†yδj = λ−1
j 〈δuj, uj〉vj

and hence

‖K†y −K†yδj‖ = λ−1
j δ → +∞ as j → +∞.
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In the finite dimensional case there are only finitely many eigenvalues, so

these amplification factors stay bounded. However, they might be still very

large: this is the case of the discrete ill-posed problems, for which also a

Discrete Picard Condition can be defined, as we shall see later on.

1.9 Regularization and Bakushinskii’s Theo-

rem

In the previous sections, we started discussing the problem of solving the

equation Ax = y. In practice, the exact data y is not known precisely, but

only approximations yδ with

‖yδ − y‖ ≤ δ (1.44)

is available. In literature, yδ ∈ Y is called the noisy data and δ > 0 the noise

level.

Our purpose is to approximate the best-approximate solution x† = A†y of

(1.20) from the knowledge of δ, yδ and A.

According to Proposition 1.7.2, in general the operator A† is not continuous,

so in the ill-posed case A†yδ is in general a very bad approximation of x†

even if it exists. Roughly speaking, regularizing Ax = y means essentially to

construct of a family of continuous operators {Rσ}, depending on a certain

regularization parameter σ, that approximate A† (in some sense) and such

that xδσ := Rσy
δ satisfies the conditions above. We state this more precisely

in the following fundamental definition.

Definition 1.9.1. Let σ0 ∈ (0,+∞]. For every σ ∈ (0, σ0), let Rσ : Y → X
be a continuous (not necessarily linear) operator.

The family {Rσ} is called a regularization operator for A† if, for every y ∈
D(A†), there exists a function

α : (0,+∞)× Y → (0, σ0),
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called parameter choice rule for y, that allows to associate to each cou-

ple (δ, yδ) a specific operator Rα(δ,yδ) and a regularized solution xδα(δ,yδ) :=

Rα(δ,yδ)y
δ, and such that

lim
δ→0

sup
yδ∈Bδ(y)

α(δ, yδ) = 0. (1.45)

If the parameter choice rule (below, p.c.r.) α satisfies in addition

lim
δ→0

sup
yδ∈Bδ(y)

‖Rα(δ,yδ)y
δ −A†y‖ = 0. (1.46)

then it is said to be convergent.

For a specific y ∈ D(A†), a pair (Rσ, α) is called a (convergent) regularization

method for solving Ax = y if {Rσ} is a regularization for A† and α is a

(convergent) parameter choice rule for y.

Remark 1.9.1. • In the definition above all possible noisy data with

noise level ≤ δ are considered, so the convergence is intended in a

worst-case sense.

However, in a specific problem, a sequence of approximate solutions

xδn
α(δn,yδn )

can converge fast to x† also when (1.46) fails!

• A p.c.r. α = α(δ, yδ) depends explicitly on the noise level and on the

perturbed data yδ.

According to the definition above it should also depend on the exact data

y, which is unknown, so this dependance can only be on some a priori

knowledge about y like smoothness properties.

We distinguish between two types of parameter choice rules:

Definition 1.9.2. Let α be a parameter choice rule according to Definition

1.9.1. If α does not depend on yδ, but only on δ, then we call α an a-

priori parameter choice rule and write α = α(δ). Otherwise, we call α an

a-posteriori parameter choice rule. If α does not depend on the noise level δ,

then it is said to be an heuristic parameter choice rule.
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If α does not depend on yδ it can be defined before the actual calculations

once and for all: this justifies the terminology a-priori and a-posteriori in the

definition above.

For the choice of the parameter, one can also construct a p.c.r. that depends

explicitly only on the perturbed data yδ and not on the noise level. However,

a famous result due to Bakushinskii shows that such a p.c.r. cannot be

convergent:

Theorem 1.9.1 (Bakushinskii). Suppose {Rσ} is a regularization operator

for A† such that for every y ∈ D(A†) there exists a convergent p.c.r. α which

depends only on yδ. Then A† is bounded.

Proof. If α = α(yδ), then it follows from (1.46) that for every y ∈ D(A†) we

have

lim
δ→0

sup
yδ∈Bδ(y)

‖Rα(yδ)y
δ − A†y‖ = 0, (1.47)

so that Rα(y)y = A†y. Thus, if {yn}n∈N is a sequence in D(A†) converging to

y, then A†yn = Rα(yn)yn converges to A†y. This means that A† is sequentially

continuous, hence it is bounded.

Thus, in the ill-posed case, no heuristic parameter choice rule can yield a

convergent regularization method. However, this doesn’t mean that such a

p.c.r. cannot give good approximations of x† for a fixed positive δ!

1.10 Construction and convergence of regu-

larization methods

In general terms, regularizing an ill-posed problem leads to three questions:

1. How to construct a regularization operator?

2. How to choose a parameter choice rule to give rise to convergent regu-

larization methods?
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3. How can these steps be performed in some optimal way?

This and the following sections will deal with the answers of these problems,

at least in the linear case. The following result provides a characterization

of the regularization operators. Once again, we refer to [17] for more details

and for the proofs.

Proposition 1.10.1. Let {Rσ}σ>0 be a family of continuous operators con-

verging pointwise on D(A†) to A† as σ → 0.

Then {Rσ} is a regularization for A† and for every y ∈ D(A†) there exists

an a-priori p.c.r. α such that (Rσ, α) is a convergent regularization method

for solving Ax = y.

Conversely, if (Rσ, α) is a convergent regularization method for solving Ax =

y with y ∈ D(A†) and α is continuous with respect to δ, then Rσy converges

to A†y as σ → 0.

Thus the correct approach to understand the meaning of regularization

is pointwise convergence. Furthermore, if {Rσ} is linear and uniformly

bounded, in the ill-posed case we can’t expect convergence in the opera-

tor norm, since then A† would have to be bounded.

We consider an example of a regularization operator which fits the definitions

above. Although very similar examples can be found in literature, cf. e.g.

[61], this is slightly different.

Example 1.10.1. Consider the operator K : X := L2[0, 1] → Y := L2[0, 1]

defined by

K[x](s) :=

∫ s

0

x(t)dt.

Then K is linear, bounded and compact and it is easily seen that

R(K) = {y ∈ H1[0, 1] | y ∈ C([0, 1]), y(0) = 0} (1.48)

and that the distributional derivative from R(K) to X is the inverse of K.

Since R(K) ⊇ C∞
0 [0, 1], R(K) is dense in Y and R(K)⊥ = {0}.
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For y ∈ C([0, 1]) and for σ > 0, define

(Rσy)(t) :=

{
1
σ
(y(t+ σ)− y(t)), if 0 ≤ t ≤ 1

2
,

1
σ
(y(t)− y(t− σ)), if 1

2
< t ≤ 1.

(1.49)

Then {Rσ} is a family of linear and bounded operators with

‖Rσy‖L2[0,1] ≤
√
6

σ
‖y‖L2[0,1] (1.50)

defined on a dense linear subspace of L2[0, 1], thus it can be extended to the

whole Y and (1.50) is still true.

Since the measure of [0, 1] is finite, for y ∈ R(K) the distributional derivative

of y lies in L1[0, 1], so y is a function of bounded variation. Thus, according

to Lebesgue’s Theorem, the ordinary derivative y′ exists almost everywhere

in [0, 1] and it is equal to the distributional derivative of y as an L2-function.

Consequently, we can apply the Dominate Convergence Theorem to show that

‖Rσy −K†y‖L2[0,1] → 0, as σ → 0

so that, according to Proposition 1.10.1, Rσ is a regularization for the distri-

butional derivative K†.

1.11 Order optimality

We concentrate now on how to construct optimal regularization methods. To

this aim, we shall make use of some analytical tools from the spectral theory

of linear and bounded operators. For the reader who is not accustomed with

the spectral theory, we refer to Appendix A or to the second chapter of [17],

where the basic ideas and results we will need are gathered in a few pages;

for a more comprehensive treatment, classical references are e.g. [2] and [44].

In principle, a (convergent) regularization method (R̄σ, ᾱ) for solving Ax = y

should be optimal if the quantity

ε1 = ε1(δ, R̄σ, ᾱ) := sup
yδ∈Bδ(y)

‖R̄ᾱ(δ,yδ)y
δ − A†y‖ (1.51)
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converges to 0 as quickly as

ε2 = ε2(δ) := inf
(Rσ ,α)

sup
yδ∈Bδ(y)

‖Rα(δ,yδ)y
δ −A†y‖, (1.52)

i.e. if there are no regularization methods for which the approximate solu-

tions converge to 0 (in the usual worst-case sense) quicker than the approxi-

mate solutions of (R̄σ, ᾱ).

Once again, it is not advisable to look for some uniformity in y, as we can

see from the following result.

Proposition 1.11.1. Let {Rσ} be a regularization for A† with Rσ(0) = 0,

let α = α(δ, yδ) be a p.c.r. and suppose that R(A) is non closed. Then there

can be no function f : (0,+∞) → (0,+∞) with limδ→0 f(δ) = 0 such that

ε1(δ, Rσ, α) ≤ f(δ) (1.53)

holds for every y ∈ D(A†) with ‖y‖ ≤ 1 and all δ > 0.

Thus convergence can be arbitrarily slow: in order to study convergence

rates of the approximate solutions to x† it is necessary to restrict on subsets

of D(A†) (or of X ), i.e. to formulate some a-priori assumption on the exact

data (or equivalently, on the exact solution). This can be done by introducing

the so called source sets, which are defined as follows.

Definition 1.11.1. Let µ, ρ > 0. An element x ∈ X is said to have a source

representation if it belongs to the source set

Xµ,ρ := {x ∈ X | x = (A∗A)µw, ‖w‖ ≤ ρ}. (1.54)

The union with respect to ρ of all source sets is denoted by

Xµ :=
⋃

ρ>0

Xµ,ρ = {x ∈ X | x = (A∗A)µw} = R((A∗A)µ). (1.55)

Here and below, we use spectral theory to define

(A∗A)µ :=

∫

λµdEλ, (1.56)
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where {Eλ} is the spectral family associated to the self-adjoint A∗A (cf. Ap-

pendix A) and since A∗A ≥ 0 the integration can be restricted to the compact

set [0, ‖A∗A‖] = [0, ‖A‖2].

Since A is usually a smoothing operator, the requirement for an element

to be in Xµ,ρ can be considered as a smoothness condition.

The notion of optimality is based on the following result about the source

sets, which is stated for compact operators, but can be extended to the non

compact case (see [17] and the references therein).

Proposition 1.11.2. Let A be compact with R(A) being non closed and let

{Rσ} be a regularization operator for A†. Define also

∆(δ,Xµ,ρ, Rσ, α) := sup{‖Rα(δ,yδ)y
δ − x‖ | x ∈ Xµ,ρ, y

δ ∈ Bδ(Ax)} (1.57)

for any fixed µ, ρ and δ in (0,+∞) (and α a p.c.r. relative to Ax). Then

there exists a sequence {δk} converging to 0 such that

∆(δk,Xµ,ρ, Rσ, α) ≥ δ
2µ

2µ+1

k ρ
1

2µ+1 . (1.58)

This justifies the following definition.

Definition 1.11.2. Let R(A) be non closed, let {Rσ} be a regularization for

A† and let µ, ρ > 0.

Let α be a p.c.r. which is convergent for every y ∈ AXµ,ρ.

We call (Rσ, α) optimal in Xµ,ρ if

∆(δ,Xµ,ρ, Rσ, α) = δ
2µ

2µ+1ρ
1

2µ+1 (1.59)

holds for every δ > 0.

We call (Rσ, α) of optimal order in Xµ,ρ if there exists a constant C ≥ 1 such

that

∆(δ,Xµ,ρ, Rσ, α) ≤ Cδ
2µ

2µ+1ρ
1

2µ+1 (1.60)

holds for every δ > 0.
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The term optimality refers to the fact that if R(A) is non closed, then

a regularization algorithm cannot converge to 0 faster than δ
2µ

2µ+1ρ
1

2µ+1 as

δ → 0, under the a-priori assumption x ∈ Xµ,ρ, or (if we are concerned with

the rate only), not faster than O(δ
2µ

2µ+1 ) under the a-priori assumption x ∈
Xµ. In other words, we prove the following fact:

Proposition 1.11.3. With the assumption of Definition 1.11.2, (Rσ, α) is

of optimal order in Xµ,ρ if and only if there exists a constant C ≥ 1 such that

for every y ∈ AXµ,ρ

sup
yδ∈Bδ(y)

‖Rα(δ,yδ)y
δ − x†‖ ≤ Cδ

2µ
2µ+1ρ

1
2µ+1 (1.61)

holds for every δ > 0. For the optimal case an analogous result is true.

Proof. First, we show that y ∈ AXµ,ρ if and only if y ∈ R(A) and x† ∈ Xµ,ρ.

The sufficiency is obvious because of (1.29). For the necessity, we observe

that if x = (A∗A)µw, with ‖w‖ ≤ ρ, then x lies in (kerA)⊥, since for every

z ∈ kerA we have:

〈x, z〉 = 〈(A∗A)µw, z〉 = lim
ǫ→0

∫ ‖A‖2

ǫ

λµd〈w,Eλz〉

= lim
ǫ→0

∫ ‖A‖2

ǫ

λµd〈w, z〉 = 0.

(1.62)

We obtain that x† = A†y = A†Ax = (I − P )x = x is the only element in

Xµ,ρ

⋂
A−1({y}), thus the entire result follows immediately and the proof is

complete.

The following result due to R. Plato assures that, under very weak as-

sumptions, the order-optimality in a source set implies convergence in R(A).

More precisely:

Theorem 1.11.1. Let {Rσ} a regularization for A†. For s > 0, let αs be the

family of parameter choice rules defined by

αs(δ, y
δ) := α(sδ, yδ), (1.63)
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where α is a parameter choice rule for Ax = y, y ∈ R(A).

Suppose that for every τ > τ0, τ0 ≥ 1, (Rσ, ατ) is a regularization method of

optimal order in Xµ,ρ, for some µ, ρ > 0.

Then, for every τ > τ0, (Rσ, ατ ) is convergent for every y ∈ R(A) and it is

of optimal order in every Xν,ρ, with 0 < ν ≤ µ.

It is worth mentioning that the source sets Xµ,ρ are not the only possible

choice one can make. They are well-suited for operators A whose spectrum

decays to 0 as a power of λ, but they don’t work very well in the case of

exponentially ill-posed problems in which the spectrum of A decays to 0 ex-

ponentially fast. In this case, different source conditions such as logarithmic

source conditions should be used, for which analogous results and definitions

can be stated. In this work logarithmic and other different source conditions

shall not be considered. A deeper treatment of this argument can be found,

e.g., in [47].

1.12 Regularization by projection

In practice, regularization methods must be implemented in finite-dimensional

spaces, thus it is important to see what happens when the data and the

solutions are approximated in finite-dimensional spaces. It turns out that

this important passage from infinite to finite dimensions can be seen as a

regularization method itself. One approach to deal with this problem is

regularization by projection, where the approximation is the projection onto

finite-dimensional spaces alone: many important regularization methods are

included in this category, such as discretization, collocation, Galerkin or Ritz

approximation.

The finite-dimensional approximations can be made both in the spaces X
and Y : here we consider only the first one.

We approximate x† as follows: given a sequence of subspaces of X

X1 ⊆ X2 ⊆ X3... (1.64)
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such that
⋃

n∈N
Xn = X , (1.65)

the n-th approximation of x† is

xn := A†
ny, (1.66)

where An = APn and Pn is the orthogonal projector onto Xn. Note that since

An has finite-dimensional range, R(An) is closed and thus A†
n is bounded (i.e.

xn is a stable approximation of x†). Moreover, it is an easy exercise to show

that xn is the minimum norm solution of Ax = y in Xn: for this reason, this

method is called least-squares projection.

Note that the iterates xn may not converge to x† in X , as the following

example due to Seidman shows. We reconsider it entirely in order to correct

a small inaccuracy which can be found in the presentation of this example

in [17].

1.12.1 The Seidman example (revisited)

Suppose X is infinite-dimensional, let {en} be an orthonormal basis for X
and let Xn := span{e1, ...en}, for every n ∈ N. Then of course {Xn} satisfies

(1.64) and (1.65). Define an operator A : X → Y as follows:

A(x) = A

( ∞∑

j=1

xjej

)

:=
∞∑

j=1

(xjaj + bjx1) ej , (1.67)

with

|bj| :=
{

0 if j = 1,

j−1 if j > 1,
(1.68)

|aj| :=
{

j−1 if j is odd,

j−
5
2 if j is even.

(1.69)

Then:

• A is well defined, since |ajxj + bjx1|2 ≤ 2 (|xj |2 + |x1|j−2) for every j

and linear.
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• A is injective: Ax = 0 implies

(a1x1, a2x2 + b2x1, a3x3 + b3x1, ...) = 0,

thus xj = 0 for every j, i.e. x = 0.

• A is compact: in fact, suppose {xk}k∈N is a bounded sequence in X .

Then also the first components of xk, denoted by xk,1, form a bounded

sequence in C, which has a convergent subsequence {xkl,1} and, in cor-

respondence,
∑∞

j=1 bjxkl,1ej is a subsequence of
∑∞

j=1 bjxk,1ej conver-

ging in X to
∑∞

j=1 bj liml→∞ xkl,1ej . Consequently, the application x 7→
∑∞

j=1 bjx1ej is compact. Moreover, the application x 7→ ∑∞
j=1 ajxjej

is also compact, because it is the limit of the sequence of operators

defined by Anx :=
∑n

j=1 ajxjej . Thus, being the sum of two compact

operators, A is compact (see, e.g., [62] for the properties of the compact

operators used here).

Let y := Ax† with

x† :=
∞∑

j=1

j−1ej (1.70)

and let xn :=
∑∞

j=1 xn,jej be the best-approximate solution of Ax = y in Xn.

Then it is readily seen that xn := (xn,1, xn,2, ..., xn,n) is the vector minimizing

n∑

j=1

(
aj(xj − j−1) + bj(x1 − 1)

)2
+

∞∑

j=n+1

j−2(1 + aj − x1)
2 (1.71)

among all x = (x1, ..., xn) ∈ Cn.

Imposing that the gradient of (1.71) with respect to x is equal to 0 for x =

xn, we obtain

2a21(xn,1 − 1)− 2

∞∑

j=n+1

j−2(1 + aj − xn,1) = 0,

2
n∑

j=1

(
aj(xn,j − j−1) + bj(xn,1 − 1)

)
ajδj,k, k = 2, ..., n.
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Here, δj,k is the Kronecker delta, which is equal to 1 if k = j and equal to 0

otherwise.

Consequently, for the first variable xn,1 we have

xn,1 =

(

1 +
∞∑

j=n+1

(1 + aj)j
−2

)(

1 +
∞∑

j=n+1

j−2

)−1

= 1 +

( ∞∑

j=n+1

ajj
−2

)(

1 +

∞∑

j=n+1

j−2

)−1
(1.72)

and for every k = 2, ..., n there holds

xn,k = (ak)
−1
(
k−1ak − bk(xn,1 − 1)

)
= k−1 − (akk)

−1(xn,1 − 1). (1.73)

We use this to calculate

‖xn − Pnx
†‖2 = ‖

n∑

j=1

(xn,j − j−1)ej‖2

= (xn,1 − 1)2 +
n∑

j=2

(
j−1 − (ajj)

−1(xn,1 − 1)− j−1
)2

= (xn,1 − 1)2

(

1 +
n∑

j=2

(ajj)
−2

)

=

(
n∑

j=1

(ajj)
−2

)( ∞∑

j=n+1

ajj
−2

)2(

1 +
∞∑

j=n+1

j−2

)−2

.

(1.74)

Of these three factors, the third one is clearly convergent to 1.

The first one behaves like n4, since, applying Cesaro’s rule to

sn :=

∑n
j=1 j

3

n4
,

we obtain

lim
n→∞

sn = lim
n→∞

(n+ 1)3

(n+ 1)4 − n4
=

1

4
.

Similarly,
∞∑

j=n+1

ajj
−2 ∼

∞∑

j=n+1

j−3 ∼ n−2,
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because
∑∞

j=n+1 j
−3

n−2
∼ −(n + 1)−3

(n+ 1)−2 − n−2
=

n2(n+ 1)−1

(n+ 1)2 − n2
→ 1

2
.

These calculations show that

||xn − Pnx
†|| → λ > 0, (1.75)

so xn doesn’t converge to x†, which was what we wanted to prove.

The following result gives sufficient (and necessary) conditions for con-

vergence.

Theorem 1.12.1. For y ∈ D(A†), let xn be defined as above. Then

(i) xn ⇀ x† ⇐⇒ {‖xn‖} is bounded;

(ii) xn → x† ⇐⇒ lim sup
n→+∞

‖xn‖ ≤ ‖x†‖;

(iii) if

lim sup
n→+∞

‖(A†
n)

∗xn‖ = lim sup
n→+∞

‖(A∗
n)

†xn‖ <∞, (1.76)

then

xn → x†.

For the proof of this theorem and for further results about the least-

squares projection method see [17].

1.13 Linear regularization: basic results

In this section we consider a class of regularization methods based on the

spectral theory for linear self-adjoint operators.

The basic idea is the following one: let {Eλ} be the spectral family associated

to A∗A. If A∗A is continuously invertible, then (A∗A)−1 =
∫

1
λ
dEλ. Since

the best-approximate solution x† = A†y can be characterized by the normal

equation (1.32), then

x† =

∫
1

λ
dEλA

∗y. (1.77)
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In the ill-posed case the integral in (1.77) does not exist, since the integrand
1
λ
has a pole in 0. The idea is to replace 1

λ
by a parameter-dependent family

of functions gσ(λ) which are at least piecewise continuous on [0, ‖A‖2] and,
for convenience, continuous from the right in the points of discontinuity and

to replace (1.77) by

xσ :=

∫

gσ(λ)dEλA
∗y. (1.78)

By construction, the operator on the right-hand side of (1.78) acting on y is

continuous, so the approximate solutions

xδσ :=

∫

gσ(λ)dEλA
∗yδ, (1.79)

can be computed in a stable way.

Of course, in order to obtain convergence as σ → 0, it is necessary to require

that limσ→0 gσ(λ) =
1
λ
for every λ ∈ (0, ‖A‖2].

First, we study the question under which condition the family {Rσ} with

Rσ :=

∫

gσ(λ)dEλA
∗ (1.80)

is a regularization operator for A†.

Using the normal equation we have

x† − xσ = x† − gσ(A
∗A)A∗y = (I − gσ(A

∗A)A∗A)x† =

∫

(1− λgσ(λ))dEλx
†.

(1.81)

Hence if we set, for all (σ, λ) for which gσ(λ) is defined,

rσ(λ) := 1− λgσ(λ), (1.82)

so that rσ(0) = 1, then

x† − xσ = rσ(A
∗A)x†. (1.83)

In these notations, we have the following results.

Theorem 1.13.1. Let, for all σ > 0, gσ : [0, ‖A‖2] → R fulfill the following

assumptions:
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• gσ is piecewise continuous;

• there exists a constant C > 0 such that

|λgσ(λ)| ≤ C (1.84)

for all λ ∈ (0, ‖A‖2];

•
lim
σ→0

gσ(λ) =
1

λ
(1.85)

for all λ ∈ (0, ‖A‖2].

Then, for all y ∈ D(A†),

lim
σ→0

gσ(A
∗A)A∗y = x† (1.86)

and if y /∈ D(A†), then

lim
σ→0

‖gσ(A∗A)A∗y‖ = +∞. (1.87)

Remark 1.13.1. (i) It is interesting to note that for every y ∈ D(A†) the

integral
∫
gσ(λ)dEλA

∗y is converging in X , even if
∫

1
λ
dEλA

∗y does not

exist and gσ(λ) is converging pointwise to 1
λ
.

(ii) According to Proposition 1.10.1, in the assumptions of Theorem 1.13.1,

{Rσ} is a regularization operator for A†.

Another important result concerns the so called propagation data error

‖xσ − xδσ‖:

Theorem 1.13.2. Let gσ and C be as in Theorem 1.13.1, xσ and xδσ be

defined by (1.78) and (1.79) respectively. For σ > 0, let

Gσ := sup{|gσ(λ)| | λ ∈ [0, ‖A‖2]}. (1.88)

Then,

‖Axσ −Axδσ‖ ≤ Cδ (1.89)

and

‖xσ − xδσ‖ ≤ δ
√

CGσ (1.90)

hold.
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Thus the total error ‖x† − xδσ‖ can be estimated by

‖x† − xδσ‖ ≤ ‖x† − xσ‖+ δ
√

CGσ. (1.91)

Since gσ(λ) → 1
λ
as σ → 0, and it can be proved that the estimate (1.90)

is sharp in the usual worst-case sense, the propagated data error generally

explodes for fixed δ > 0 as σ → 0 (cf. [22]).

We now concentrate on the first term in (1.91), the approximation error.

While the propagation data error can be studied by estimating gσ(λ), for the

approximation error one has to look at rσ(λ):

Theorem 1.13.3. Let gσ fulfill the assumptions of Theorem 1.13.1. Let

µ, ρ, σ0 be fixed positive numbers. Suppose there exists a function ωµ : (0, σ0) →
R such that for every σ ∈ (0, σ0) and every λ ∈ [0, ‖A‖2] the estimate

λµ|rσ(λ)| ≤ ωµ(σ) (1.92)

is true. Then, for x† ∈ Xµ,ρ,

‖xσ − x†‖ ≤ ρ ωµ(σ) (1.93)

and

‖Axσ − Ax†‖ ≤ ρ ωµ+ 1
2
(σ) (1.94)

hold.

A straightforward calculation leads immediately to an important conse-

quence:

Corollary 1.13.1. Let the assumptions of Theorem 1.13.3 hold with

ωµ(σ) = cσµ (1.95)

for some constant c > 0 and assume that

Gσ = O

(
1

σ

)

, as σ → 0. (1.96)

Then, with the parameter choice rule

α ∼
(
δ

ρ

) 2
2µ+1

, (1.97)

the regularization method (Rσ, α) is of optimal order in Xµ,ρ.
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1.14 The Discrepancy Principle

So far, we have considered only a-priori choices for the parameter α = α(δ).

Such a-priori choices should be based on some a-priori knowledge of the true

solution, namely its smoothness, but unfortunately in practice this infor-

mation is often not available. This motivates the necessity of looking for

a-posteriori parameter choice rules. In this section we will discuss the most

famous a-posteriori choice, the discrepancy principle (introduced for the first

time by Morozov, cf. [67]) and some other important improved choices de-

pending both on the noise level and on the noisy data.

Definition 1.14.1. Let gσ be as in Theorem 1.13.1 and such that, for every

λ > 0, σ 7→ gσ(λ) is continuous from the left, and let rσ be defined by (1.82).

Fix a positive number τ such that

τ > sup{|rσ(λ)| | σ > 0, λ ∈ [0, ‖A‖2]}. (1.98)

For y ∈ R(A), the regularization parameter defined via the Discrepancy Prin-

ciple is

α(δ, yδ) := sup{σ > 0 | ‖Axδσ − yδ‖ ≤ τδ}. (1.99)

Remark 1.14.1. • The idea of the Discrepancy Principle is to choose

the biggest parameter for which the corresponding residual has the same

order of the noise level, in order to reduce the propagated data error as

much as possible.

• It is fundamental that y ∈ R(A). Otherwise, ‖Axδσ−yδ‖ can be bounded

from below in the following way:

‖y −Qy‖ − 2δ ≤ ‖y − yδ‖+ ‖Q(yδ − y)‖+ ‖yδ −Qyδ‖ − 2δ

≤ δ + δ + ‖Axδσ − yδ‖ − 2δ = ‖Axδσ − yδ‖.
(1.100)

Thus, if δ is small enough, the set

{σ > 0 | ‖Axδσ − yδ‖ ≤ τδ}

is empty.
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• The assumed continuity from the left for gσ assures that the functional

σ 7→ ‖Axδσ − yδ‖ is also continuous from the left. Therefore, if α(δ, yδ)

satisfies the Discrepancy Principle (1.99), we have

‖Axδα(δ,yδ) − yδ‖ ≤ τδ. (1.101)

• If ‖Axδσ − yδ‖ ≤ τδ holds for every σ > 0, then α(δ, yδ) = +∞ and

xδ
α(δ,yδ)

has to be understood in the sense of a limit as α→ +∞.

The main convergence properties of the Discrepancy Principle are de-

scribed in the following important theorem (see [17] for the long proof). A

full understanding of the statement of the theorem requires the notions of

saturation and qualification of a regularization method.

The term saturation is used to describe the behavior of some regularization

operators for which

‖xδσ − x†‖ = O(δ
2µ

2µ+1 ) (1.102)

does not hold for every µ, but only up to a finite value µ0, called the qualifi-

cation of the method.

More precisely, the qualification µ0 is defined as the largest value such that

λµ|rσ(λ)| = O(σµ) (1.103)

holds for every µ ∈ (0, µ0].

Theorem 1.14.1. In addition to the assumptions made for gσ in Definition

1.14.1, suppose that there exists a constant c̃ such that Gσ satisfies

Gσ ≤ c̃

σ
, (1.104)

for every σ > 0. Assume also that the regularization method (Rσ, α) corre-

sponding to the Discrepancy Principle has qualification µ0 >
1
2
and that, with

ωµ defined as in Theorem 1.13.3,

ωµ(α) ∼ αµ, for 0 < µ ≤ µ0. (1.105)

Then (Rσ, α) is convergent for every y ∈ R(A) and of optimal order in Xµ,ρ,

for µ ∈ (0, µ0 − 1
2
] and for ρ > 0.
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Thus, in general, a regularization method (Rσ, α) with α defined via the

Discrepancy Principle need not be of optimal order in Xµ,ρ for µ > µ0 − 1
2
,

as the following result for the Tikhonov method in the compact case implies:

Theorem 1.14.2 (Groetsch). Let K = A be compact, define Rσ := (K∗K+

σ)−1K∗ and choose the Discrepancy Principle (1.99) as a parameter choice

rule for Rσ. If

‖xδα(δ,yδ) − x†‖ = o(δ
1
2 ) (1.106)

holds for every y ∈ R(K) and yδ ∈ Y fulfilling ‖yδ − y‖ ≤ δ, then R(K) is

finite-dimensional.

Consequently, since

• µ0 = 1 for (Rσ, α) as in Theorem 1.14.2 (cf. the results in Section 1.16)

and

• in the ill-posed case ‖xδα(δ,yδ)−x†‖ does not converge faster than O(δ
1
2 ),

(Rσ, α) cannot be of optimal order in Xµ,ρ for µ > µ0 − 1
2
.

This result is the motivation and the starting point for the introduction

of other (improved) a-posteriori parameter choice rules defined to overcome

the problem of saturation. However, we are interested mainly in iterative

methods, where these rules are not needed, so we address the interested

reader to [17] for more details about such rules. There, also a coverage of

some of the most important heuristic parameter choices rules can be found.

1.15 The finite dimensional case: discrete ill-

posed problems

In practice, ill-posed problems like integral equations of the first kind have

to be approximated by a finite dimensional problem whose solution can be

found by a software.

In the finite dimensional setting, the linear operator A is simply a matrix A
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∈ Mm,N(R), the Moore Penrose Generalized Inverse A† is defined for every

data b ∈ Y = Rm and being a linear map from Rm to ker(A)⊥ ⊆ X = RN is

continuous. Thus, according to Hadamard’s definition, the equation Ax = b

cannot be ill-posed. However, from a practical point of view, a theoretically

well-posed problem can be very similar to an ill-posed one. To explain this,

recall that a linear operator A is bounded if and only if there exists a con-

stant C > 0 such that ‖Ax‖ ≤ C‖x‖ for every x ∈ X : if the constant C is

too big, then this estimate is virtually useless and little perturbations in the

data can generate very huge errors in the results. This concern should be

even more serious if one takes into account also rounding errors due to finite

arithmetics calculations. Such finite dimensional problems occur very often

in practice and they are characterized by very ill-conditioned matrices.

In his book [36], P.C. Hansen distinguishes between two classes of problems

where the matrix of the system Ax = b is highly ill-conditioned: rank defi-

cient and discrete ill-posed problems.

In a rank deficient problem, the matrix A has a cluster of small eigenva-

lues and a well determined gap between its large and small singular values.

Discrete ill-posed problems arise from the discretization of ill-posed problems

such as integral equations of the first kind and their singular values typically

decay gradually to zero. Although of course we shall be more interested

in discrete ill-posed problems, we should keep in mind that regularization

methods can also be applied with success on rank deficient problems and

therefore should be considered also from this point of view.

As we have seen in Example 1.10.1, the process of discretization of an ill-

posed problem is indeed a regularization itself, since it can be considered as

a projection method. However, as a matter of fact, usually the regularizing

process of discretization is not enough to obtain a good approximation of the

exact solution and it is necessary to apply other regularization methods.

Here, we will give a very brief survey about the discretization of integral

equations of the first kind. More details can be found for example in [61]

(Chapter 3), in [3] and [14].
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There are essentially two classes of methods for discretizing integral equa-

tions such as (1.11): quadrature methods and Galerkin methods.

In a quadrature method, one choosesm samples f(si), i = 1, ..., m of the func-

tion f(s) and uses a quadrature rule with abscissas t1, t2, ..., tN and weights

ω1, ω2, ...ωN to calculate the integrals

∫ s2

s1

κ(si, t)φ(t)dt ∼
N∑

j=1

ωjκ(si, tj)φ(tj), i = 1, ..., m.

The result is a linear system of the type Ax = b, where the components of

the vector b are the samples of f , the elements of the matrix A ∈ Mm,N(R)

are defined by ai,j = ωjκ(si, tj) and the unknowns xj forming the vector x

correspond to the values of φ at the abscissas tj .

In a Galerkin method, it is necessary to fix two finite dimensional sub-

spaces XN ⊆ X and Ym ⊆ Y , dim(XN )= N , dim(Ym)= m and define two

corresponding sets of orthonormal basis functions φj , j = 1, ..., N and ψi,

i = 1, ..., m. Then the matrix and the right-hand side elements of the system

Ax = b are given by

ai,j =

∫ ∫

[s1,s2]2
κ(s, t)ψi(s)φj(t)dsdt and bi =

∫ s2

s1

f(s)ψi(s)ds (1.107)

and the unknown function φ depends on the solutions of the system via the

formula φ(t) =
∑N

j=1 xjφj(t).

If κ is symmetric, X = Y , m = N , XN = YN and φi = ψi for every i,

then the matrix A is also symmetric and the Galerkin method is called the

Rayleigh-Ritz method.

A special case of the Galerkin method is the least-squares collocation or

moment discretization: it is defined for integral operators K with continuous

kernel and the delta functions δ(s− si) as the basis functions ψi. In [17] it is

shown that least-squares collocation is a particular projection method of the

type described in Section 1.12 in which the projection is made on the space

Y and therefore a regularization method itself.

For discrete ill-posed problems, we have already noticed that the Picard
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Criterion is always satisfied. However, it is possible to state a Discrete Picard

Criterion as follows (cf. [32] and [36]).

Definition 1.15.1 (Discrete Picard condition). Fix a singular value de-

composition of the matrix A = UΛV∗ where U and V are constituted by the

singular vectors of A thought as column vectors. The unperturbed right-hand

side b in a discrete ill-posed problem satisfies the discrete Picard condition

if the SVD coefficients |〈uj,b〉| on the average decay to zero faster than the

singular values λj.

Unfortunately, the SVD coefficients may have a non-monotonic behavior,

thus it is difficult to give a precise definition.

For many discrete ill-posed problems arising from integral equations of the

first kind the Discrete Picard Criterion is satisfied for exact data. In general,

it is not satisfied when the data is perturbed by the noise.

We shall return to this argument later on and we will see how the plot of the

SVD coefficients may help to understand the regularizing properties of some

regularization methods.

1.16 Tikhonov regularization

The most famous regularization method was introduced by A.N. Tikhonov

in 1963 (cf. [90], [91]).

In the linear case, it fits the general framework of Section 1.13 and fulfills

the assumptions of Theorem 1.13.1 with

gσ(λ) :=
1

λ+ σ
. (1.108)

The regularization parameter σ stabilizes the computation of the approxi-

mate solutions

xδσ = (A∗A + σ)−1A∗yδ, (1.109)

which can therefore be defined by the following regularized version of the

normal equation:

A∗Axδσ + σxδσ = A∗yδ. (1.110)
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Tikhonov regularization can be studied from a variational point of view,

which is the key to extend it to nonlinear problems:

Theorem 1.16.1. Let xσ be as in (1.109). Then xδσ is the unique minimizer

of the Tikhonov functional

x 7→ ‖Ax− yδ‖2 + σ‖x‖2. (1.111)

As an illustrative example, we calculate the functions defined in the pre-

vious chapter in the case of Tikhonov regularization.

• Remembering that gσ(λ) =
1

λ+ σ
, we obtain immediately that

Gσ =
1

σ
and rσ(λ) = 1− gσ(λ) =

σ

σ + λ
. (1.112)

• The computation of ωµ(σ) requires an estimate for the function

hµ(σ) := λµ
σ

λ+ σ
. (1.113)

Calculating the derivative of hµ brings to

h′µ(λ) = rσ(λ)λ
µ−1(µ− λ

λ+ σ
), (1.114)

thus if µ < 1 hµ has a maximum for λ = σµ
1−µ

and we obtain

hµ(σ) ≤ µµ(1− µ)1−µσµ, (1.115)

whereas h′µ(λ) > 0 for µ ≥ 1, so hµ assumes its maximum for λ = ‖A‖2.
Putting this together, we conclude that for ωµ we can take

ωµ(σ) =

{

σµ, µ ≤ 1

cσ, µ > 1
(1.116)

with c=‖A‖2µ−2.
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The results of Section 1.13 can thus be applied to Tikhonov regularization:

in particular, according to Corollary 1.13.1, as long as µ ≤ 1 Tikhonov

regularization with the parameter choice rule (1.97) is of optimal order in Xµ,ρ

and the best possible convergence rate, obtained when µ = 1 and α ∼
(

δ
ρ

) 2
3
,

is given by

‖xδα − x†‖ = O(δ
2
3 ) (1.117)

for x† ∈ X1,ρ.

Due to the particular form of the function ωµ found in (1.116), the Tikhonov

method saturates, since (1.103) holds only for µ ≤ 1. Thus Tikhonov regula-

rization has finite qualification µ0 = 1. A result similar to Theorem 1.14.2

can be proved (see [17] or [22]).

Theorem 1.16.2. Let K be compact with infinite-dimensional range, xδσ be

defined by (1.109) with K instead of A. Let α = α(δ, yδ) be any parameter

choice rule. Then

sup{‖xδα − x†‖ : ‖Q(y − yδ)‖ ≤ δ} = o(δ
2
3 ) (1.118)

implies x† = 0.

The Tikhonov regularization method was also studied on convex subsets

of the Hilbert space X . This can be of particular interest in certain appli-

cations such as image deblurring where we can take X = L2([0, 1]2) and the

solution lies in the convex set C := {x ∈ X | x ≥ 0}. A quick treatment of

the argument can be found in [17] and for details we suggest [71].

The Tikhonov method is now well understood, but has some drawbacks:

1. It is quite expensive from a computational point of view, since it re-

quires an inversion of the operator A∗A+ σ.

2. For every choice of the regularization parameter the operator to be

inverted in the formula (1.109) changes, thus if α is chosen in the wrong

way the computations should be restarted.
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3. As a matter of fact, Tikhonov regularization calculates a smooth solu-

tion.

4. It has finite qualification.

The third drawback implies that Tikhonov regularization may not work very

well if one looks for irregular solutions. For this reason, in certain problems

such as image processing nowadays many researchers prefer to rely on other

methods based on the minimization of a different functional. More precisely,

in the objective function (1.111), ‖x‖2 is replaced by a term that takes into

account the nature of the sought solution x†. For example, one can choose a

version of the total variation of x, which often provides very good practical

results in imaging (cf. e.g. [96]).

The fourth problem can be overcome by using a variant of the algorithm

known as iterative Tikhonov regularization (cf. e.g. [17]).

The points 1 and 2 are the main reasons why we prefer iterative methods

to Tikhonov regularization. Nevertheless, the Tikhonov method is still very

popular. In fact, it can be combined with different methods, works well in

certain applications (e.g. when the sought solution is smooth) and it remains

one of the most powerful weapon against ill posed problems in the nonlinear

case.

1.17 The Landweber iteration

A different way of regularizing an ill-posed problem is the approach of the

iterative methods: consider the direct operator equation (1.20), i.e. the

problem of calculating y from x and A. If the computation of y is easy and

reasonably cheap, the iterative methods form a sequence of iterates {xk}
based on the direct solution of (1.20) that xk converges to x†.

It turns out that for many iterative methods the iteration index k plays the

role of the regularization parameter σ and that these methods can be studied

from the point of view of the regularization theory developed in the previous
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sections.

When dealing with perturbed data yδ, in order to use regularization tech-

niques, one has to write the iterates xδk in terms of an operator Rk (and of

course of yδ). Now, Rk may depend or not on yδ itself. If it doesn’t, then the

resulting method fits completely the general theory of linear regularization:

this is the case of the Landweber iteration, the subject of the present section.

Otherwise, some of the basic assumptions of the regularization theory may

fail to be true (e.g. the operator mapping yδ to xδk may be not continuous):

conjugate gradient type methods, which will we discussed in detail in the

next chapter, fit into this category.

In spite of the difficulties arising from this problem, in practice the conjugate

gradient type methods are known as a very powerful weapon against ill-posed

problems, whereas the Landweber iteration has the drawback of being a very

slow method and is mainly used in nonlinear problems. For this reason, in

this section we give only an outline of the main properties of the Landweber

iteration and skip most of the proofs.

The idea of the Landweber method is to approximate A†y with a sequence

of iterates {xk}k∈N transforming the normal equation (1.32) into equivalent

fixed point equations like

x = x+ A∗(y − Ax) = (I − A∗A)x. (1.119)

In practice, one is given the perturbed data yδ instead of y and defines the

Landweber iterates as follows:

Definition 1.17.1 (Landweber Iteration). Fix an initial guess xδ0 ∈ X
and for k = 1, 2, 3, ... compute the Landweber approximations recursively via

the formula

xδk = xδk−1 + A∗(yδ −Axδk−1). (1.120)

We observe that in the definition of the Landweber iterations we can

suppose without loss of generality ‖A‖ ≤ 1. If this were not the case, then

we would introduce a relaxation parameter ω with 0 < ω ≤ ‖A‖−2 in front
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of A∗, i.e. we would iterate

xδk = xδk−1 + ωA∗(yδ −Axδk−1), k ∈ N. (1.121)

In other words, we would multiply the equation Ax = yδ by ω
1
2 and iterate

with (1.120).

Moreover, if {zδk} is the sequence of the Landweber iterates with initial guess

zδ0 = 0 and data yδ −Axδ0, then x
δ
k = xδ0 + zδk, so that supposing xδ0 = 0 is no

restriction too.

Since we have assumed ‖A‖2 = 1 < 2, then I−A∗A is nonexpansive and one

may apply the method of successive approximations. It is important to note

that in the ill-posed case I −A∗A is no contraction, because the spectrum of

A∗A clusters at the origin. For example, if A is compact, then there exists a

sequence {λn} of eigenvalues of A∗A such that |λn| → 0 as n→ +∞ and for

a corresponding sequence of eigenvectors {vn} one has

‖(I − A∗A)vn‖
‖vn‖

=
‖(1− λn)vn‖

‖vn‖
= |1− λn| −→ 1 as n→ +∞,

i.e. ‖(I −A∗A)‖ ≥ 1.

Despite this, already in 1956 in his work [63], Landweber was able to prove

the following strong convergence result in the case of compact operators (our

proof, taken from [17] makes use of the regularization theory and is valid in

the general case of linear and bounded operators).

Theorem 1.17.1. If y ∈ D(A†), then the Landweber approximations xk

corresponding to the exact data y converge to A†y as k → +∞. If y /∈
D(A†), then ‖xk‖ → +∞ as k → +∞.

Proof. By induction, the iterates xk may be expressed in the form

xk =

k−1∑

j=0

(I −A∗A)jA∗y. (1.122)

Suppose now y ∈ D(A†). Then since A∗y = A∗Ax†, we have

x†−xk = x†−
k−1∑

j=0

(I−A∗A)jA∗Ax† = x†−A∗A
k−1∑

j=0

(I−A∗A)jx† = (I−A∗A)kx†.
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Thus we have found the functions g and r of Section 1.13:

gk(λ) =
k−1∑

j=0

(1− λ)j,

rk(λ) = (1− λ)k.

(1.123)

Since ‖A‖ ≤ 1 we consider λ ∈ (0, 1]: in this interval λgk(λ) = 1 − rk(λ)

is uniformly bounded and gk(λ) converges to 1
λ
as k → +∞ because rk(λ)

converges to 0. We can therefore apply Theorem 1.13.1 to prove the assertion,

with k−1 playing the role of σ.

The theorem above states that the approximation error of the Landweber

iterates converges to zero. Next we examine the behavior of the propagated

data error: on the one hand, according to the same theorem, if yδ /∈ D(A†)

the iterates xk must diverge; on the other hand, the operator Rk defined by

Rky
δ := xδk (1.124)

is equal to
k−1∑

j=0

(I −A∗A)jA∗. Therefore, for fixed k, xδk depends continuously

on the data so that the propagation error cannot be arbitrarily large.

This leads to the following result.

Proposition 1.17.1. Let y, yδ be a pair of right-hand side data with ‖y −
yδ‖ ≤ δ and let {xk} and {xδk} be the corresponding two iteration sequences.

Then we have

‖xk − xδk‖ ≤
√
kδ, k ≥ 0. (1.125)

Remark 1.17.1. According to the previous results, the total error has two

components, an approximation error converging (slowly) to 0 and the propa-

gated data error of the order at most
√
kδ. For small values of k the data

error is negligible and the total error seems to converge to the exact solution

A†y, but when
√
kδ reaches the order of magnitude of the approximation

error, the data error is no longer hidden in xδk and the total error begins to

increase and eventually diverges.
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The phenomenon described in Remark 1.17.1 is called semi-convergence

and is very typical of iterative methods for solving inverse problems. Thus the

regularizing properties of iterative methods for ill-posed problems ultimately

depend on a reliable stopping rule for detecting the transient from conver-

gence to divergence: the iteration index k plays the part of the regularization

parameter σ and the stopping rule is the counterpart of the parameter choice

rule for continuous regularization methods.

As an a-posteriori stopping rule, a discrete version of the Discrepancy Prin-

ciple can be considered:

Definition 1.17.2. Fix τ > 1. For k = 0, 1, 2, ... let xδk be the k-th iterate

of an iterative method for solving Ax = y with perturbed data yδ such that

‖y− yδ‖ ≤ δ, δ > 0. The stopping index kD = kD(δ, y
δ) corresponding to the

Discrepancy Principle is the biggest k such that

‖yδ −Axδk‖ ≤ τδ. (1.126)

Of course, one should prove that the stopping index kD is well defined,

i.e. there is a finite index such that the residual ‖yδ − Axδk‖ is smaller than

the tolerance τδ.

In the case of the Landweber iteration, we observe that the residual can be

written in the form

yδ − Axδk = y −Axδk−1 −AA∗(yδ − Axδk−1) = (I − AA∗)(yδ −Axδk−1),

hence the non-expansivity of I−AA∗ implies that the residual norm is mono-

tonically decreasing. However, this is not enough to show that the discre-

pancy principle is well defined. For this, a more precise estimate of the

residual norm is needed. This estimate can be found (cf. [17], Proposition

6.4) and leads to the following result.

Proposition 1.17.2. The Discrepancy Principle defines a finite stopping

index kD(δ, y
δ) with kD(δ, y

δ) = O(δ−2).

The regularization theory can be used to prove the order optimality of

the Landweber iteration with the Discrepancy Principle as a stopping rule:
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Theorem 1.17.2. For fixed τ > 1, the Landweber iteration with the discre-

pancy principle is convergent for every y ∈ R(A) and of optimal order in

Xµ, for every µ > 0.

Moreover, if A†y ∈ Xµ, then kD(δ, y
δ) = O(δ−

2
2µ+1 ) and the Landweber

method has qualification µ0 = +∞.

As mentioned earlier, the main problem of the Landweber iteration is

that in practice it requires too many iterations until the stopping criterion

is met. Another stopping rule has been proposed in [15], but it requires a

similar number of iterations. In fact, it can be shown that the exponent 2
2µ+1

cannot be improved in general. However, it is possible to reduce it to 1
2µ+1

if

more sophisticated methods are used. Such accelerated Landweber methods

are the so called semi-iterative methods (with the ν-methods as significant

examples): they will not be treated here, since we will focus our attention

in greater detail on the conjugate gradient type methods, which are conside-

red quicker (or at least not slower) and more flexible than the accelerated

Landweber methods. For a complete coverage of the semi-iterative methods,

see [17].
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Chapter 2

Conjugate gradient type

methods

This chapter is entirely dedicated to the conjugate gradient type methods.

These methods are mostly known for being fast and robust solvers of large

systems of linear equations: for example, the classical Conjugate Gradient

method (CG), introduced for the first time by Hestenes and Stiefel in 1952

(see [45]), finds the exact solution of a linear system with a positive definite

N×N matrix in at most N iterative steps, cf. Theorem 2.1.1 below. For this

reason, the importance of these methods goes far beyond the regularization

of ill-posed problems, although here they will be studied mainly from this

particular point of view.

One can approach the conjugate gradient type methods in many different

ways: it is possible to see them as optimization methods or as projection

methods. Alternatively, one can study them from the point of view of the

orthogonal polynomials. In each case, the Krylov spaces are fundamental in

the definition of the conjugate gradient type methods, so that they are often

regarded as Krylov methods.

Definition 2.0.3. Let V be a vector space and let A be a linear map from

V to itself. For a given vector x0 ∈ V and for k ∈ N, the k-th Krylov space

51
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(based on x0) is the linear subspace of V defined by

Kk−1(A; x0) := span{x0, Ax0, A2x0, ..., A
k−1x0}. (2.1)

A Krylov method selects the k-th iterative approximate solution xk of x†

as an element of a certain Krylov space depending on A and x0 satisfying

certain conditions.

In particular, a conjugate gradient type method chooses the minimizer of a

particular function in the shifted space x0 + Kk−1(A; y − Ax0) with respect

to a particular measure.

We will introduce the subject in a finite dimensional setting with an opti-

mization approach, but in order to understand the regularizing properties

of the algorithms in the general framework of Chapter 1 the main analysis

will be developed in Hilbert spaces using orthogonal polynomials. The main

reference for this chapter is the book of M. Hanke [27]. For the finite dimen-

sional introduction, we will follow [59].

2.1 Finite dimensional introduction

For N ∈ N we denote by

〈·, ·〉 : RN × RN −→ R (2.2)

the standard scalar product on RN inducing the euclidean norm ‖ · ‖.
For a matrix A ∈ Mm,N(R), m ∈ N, ‖A‖ denotes the norm of A as a linear

operator from RN to Rm.

For notational convenience, here and below a vector x ∈ RN will be thought

as a column vector x ∈ MN,1(R), thus x
∗ will be the row vector transposed

of x.

We consider the linear system

Ax = b, (2.3)

with A ∈ GLN(R) symmetric and positive definite, b ∈ RN , N >> 1.
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Definition 2.1.1. The conjugate gradient method for solving (2.3) generates

a sequence {xk}k∈N in RN such that for each k the k-th iterate xk minimizes

φ(x) :=
1

2
x∗Ax− x∗b (2.4)

on x0 +Kk−1(A; r0), with r0 := b−Ax0.

Of course, when the minimization is made on the whole space, then the

minimizer is the exact solution x†.

Due to the assumptions made on the matrix A, there are an orthogonal

matrix U ∈ ON (R) and a diagonal matrix Λ = diag{λ1, ..., λN}, with λi > 0

for every i = 1, ..., N , such that

A = UΛU∗ (2.5)

and (2.5) can be used to define on RN the so called A-norm

‖x‖A :=
√
x∗Ax. (2.6)

It turns out that the minimization property of xk can be read in terms of

this norm:

Proposition 2.1.1. If Ω ⊆ RN and xk minimizes the function φ on Ω, then

it minimizes also ‖x† − x‖A = ‖r‖A−1 on Ω, with r = b−Ax.

Proof. Since Ax† = b and A is symmetric, we have

‖x† − x‖2A = (x† − x)∗A(x† − x) = x∗Ax− x∗Ax† − (x†)∗Ax+ (x†)∗Ax†

= x∗Ax− 2x∗b+ (x†)∗Ax† = 2φ(x) + (x†)∗Ax†.

(2.7)

Thus the minimization of φ is equivalent to the minimization of ‖x† − x‖2A
(and consequently of ‖x† − x‖A).
Moreover, using again the symmetry of A,

‖x− x†‖2A = (A(x− x†))∗A−1(A(x− x†)) = (Ax− b)∗A−1(Ax− b)

= ‖Ax− b‖2A−1

(2.8)

and the proof is complete.
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Remark 2.1.1. Proposition 2.1.1 has the following consequences:

1. The k-th iterate of CG minimizes the the approximation error

εk := xk − x†

in the A-norm in the shifted Krylov space x0 +Kk−1(A; r0).

Since a generic element x̆ of x0 + Kk−1(A; r0) can be written in the

form

x̆ = x0 +

k−1∑

j=0

γjA
jr0 = x0 +

k−1∑

j=0

γjA
j+1(x† − x0)

for some coefficients γ0, ..., γk−1, if we define the polynomials

qk−1(λ) :=
k−1∑

j=0

γjλ
j,

pk(λ) := 1− λqk−1(λ),

(2.9)

we obtain that

x† − x̆ = x† − x0 − qk−1(A)r0 = x† − x0 − qk−1(A)A(x† − x0)

= pk(A)(x† − x0).

(2.10)

Hence the minimization property of xk can also be written in the form

‖x† − xk‖A = min
p∈Π0

k

‖p(A)(x† − x0)‖A, (2.11)

where Π0
k is the the set of all polynomials p of degree equal to k such

that p(0) = 1.

2. For every p ∈ Πk := {polynomials of degree k} one has

p(A) = Up(Λ)U∗.

Moreover, the square root of A is well defined by A
1
2 := UΛ

1
2U∗, with

Λ
1
2 := diag{λ

1
2
1 , ..., λ

1
2
N} and immediately there follows

‖x‖2A = ‖A 1
2x‖2, x ∈ RN . (2.12)
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Consequently, since the norm of a symmetric, positive definite matrix

is equal to its largest eigenvalue, we easily get:

‖p(A)x‖A = ‖p(A)A
1
2x‖ ≤ ‖p(A)‖‖x‖A, ∀x ∈ RN , ∀p ∈ Πk, (2.13)

‖x† − xk‖A ≤ ‖(x† − x0)‖A min
p∈Π0

k

max
λ∈spec(A)

|p(λ)|, (2.14)

where spec(A) denotes the spectrum of the matrix A.

The last inequality can be reinterpreted in terms of the relative error:

Corollary 2.1.1. Let A be symmetric and positive definite and let {xk}k∈N
be the sequence of iterates of the CG method. If k ≥ 0 is fixed and p is any

polynomial in Π0
k, then the relative error is bounded as follows:

‖x† − xk‖A
‖x† − x0‖A

≤ max
λ∈spec(A)

|p(λ)|. (2.15)

This leads to the most important result about the Conjugate Gradient

method in RN .

Theorem 2.1.1. If A ∈ GLN (R) is a symmetric and positive definite matrix

and b is any vector in RN , then CG will find the solution x† of (2.3) in at

most N iterative steps.

Proof. It is enough to define the polynomial

p̄(λ) =
N∏

j=1

λj − λ

λj
,

observe that p̄ belongs to Π0
N and use Corollary 2.1.1: since p̄ vanishes on

the spectrum of A, ‖x† − xN‖A must be equal to 0.

This result is of course very pleasant, but not so good as it seems: first,

if N is very large, N iterations can be too many. Then, we should remember

that we usually have to deal with perturbed data and if A is ill-conditioned

finding the exact solution of the perturbed system can lead to very bad

results. The first problem will be considered immediately, whereas for the
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second one see the next sections.

A-priori information about the data b and the spectrum of A can be very

useful to improve the result stated in Theorem 2.1.1: we consider two different

situations in which the same improved result can be shown.

Proposition 2.1.2. Let uj ∈ RN , j = 1, ..., N , be the columns of a matrix

U for which (2.5) holds. Suppose that b is a linear combination of k of these

N eigenvectors of A:

b =
k∑

l=1

γluil , γl ∈ R, 1 ≤ i1 < ... < ik ≤ N. (2.16)

Then, if we set x0 := 0, CG will converge in at most k iteration steps.

Proof. For every l = 1, ..., k, let λil be the eigenvalue corresponding to the

eigenvector uil. Then obviously

x† =
k∑

l=1

γl
λil

uil

and we proceed as in the proof of Theorem 2.1.1 defining

p̄(λ) =

k∏

l=1

λil − λ

λil
.

Now p̄ belongs to Π0
k and vanishes on λil for every l, so

p̄(A)x† =

k∑

l=1

p̄(λil)
γl
λil

uil = 0

and we use the minimization property

‖x† − xk‖A ≤ ‖p̄(A)x†‖A = 0

to conclude.

In a similar way it is possible to prove the following statement.
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Proposition 2.1.3. Suppose that the spectrum of A consists of exactly k

distinct eigenvalues. Then CG will find the solution of (2.3) in at most k

iterations.

One can also study the behavior of the relative error measured in the

euclidean norm in terms of the condition number of the matrix A:

Proposition 2.1.4. 1. Let λ1 ≥ λ2 ≥ ... ≥ λN be the eigenvalues of A.

Then for every x ∈ RN we have

‖x‖Aλ
1
2
N ≤ ‖Ax‖ ≤ ‖x‖Aλ

1
2
1 . (2.17)

2. If κ2(A) := ‖A‖‖A−1‖ is the condition number of A, then

‖b−Axk‖
‖b‖ ≤

√

κ2(A)
‖r0‖
‖b‖

‖xk − x†‖A
‖x0 − x†‖A

. (2.18)

Proof. Let uj ∈ RN (j = 1, ..., N) be the columns of a matrix U as in the

proof of Proposition 2.1.2. Then

Ax =
N∑

j=1

λj(u
∗
jx)uj ,

so

λN‖x‖2A = λN‖A
1
2x‖2A = λN

N∑

j=1

λj(u
∗
jx)

2

≤ ‖Ax‖2 ≤ λ1

N∑

j=1

λj(u
∗
jx)

2 = λ1‖A
1
2x‖2A = λ1‖x‖2A,

(2.19)

which proves the first part.

For the second statement, recalling that ‖A−1‖ = λ−1
N and using the previous

inequalities, we obtain

‖b−Axk‖
‖r0‖

=
‖A(x† − xk)‖
‖A(x† − x0)‖

≤
√

λ1
λN

‖x† − xk‖A
‖x† − x0‖A

=
√

κ2(A)
‖xk − x†‖A
‖x0 − x†‖A

.
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At last, we mention a result of J.W. Daniel (cf. [8]) that provides a bound

for the relative error, which is, in some sense, as sharp as possible:

‖xk − x†‖A
‖x0 − x†‖A

≤ 2

(√

κ2(A)− 1
√

κ2(A) + 1

)k

. (2.20)

We conclude the section with a couple of examples that show clearly the

efficiency of this method.

Example 2.1.1. Suppose we know that the spectrum of the matrix A is

contained in the interval I1 :=]9, 11[. Then, if we put x0 := 0 and

p̄k(λ) :=
(10− λ)k

10k
,

since p̄k lies in Π0
k the minimization property (2.11) gives

‖xk − x†‖A ≤ ‖x†‖ max
9≤λ≤11

|p̄k(λ)| = p̄k(9) = 10−k. (2.21)

Thus after k iteration steps, the relative error in the A-norm will be reduced

of a factor 10−3 when 10−k ≤ 10−3, i.e. when k ≥ 3.

Observing that κ2(A) ≤ 11
9
, the estimate (2.18) can be used to deduce that

‖Axk − b‖
‖b‖ ≤

√
11

3
10−k, (2.22)

so the norm of the residual will be reduced of 10−3 when 10−k ≤ 3√
11
10−3, i.e.

when k ≥ 4. Moreover, since the function λ 7→
√
λ−1√
λ+1

is strictly increasing in

]0,+∞[,

√
κ2(A)−1√
κ2(A)+1

is bounded by
√
11−3√
11+1

and Daniel’s inequality provides an

improved version of (2.21).

Even Daniel’s estimate can be very pessimistic if we have more precise

information about the spectrum of A. For instance, if all the eigenvalues

cluster in a small number of intervals, the condition number of A can be

very huge, but CG can perform very well, as the following second example

shows.
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Example 2.1.2. Suppose that the spectrum of A is contained in the intervals

I1 := (1, 1.50) and I2 := (399, 400) and put x0 := 0.

The best we can say about the condition number of A is that κ2(A) ≤ 400,

which inserted in Daniel’s formula gives

‖xk − x†‖
‖x†‖ ≤ 2

(
19

21

)k

≈ 2(0.91)k, (2.23)

predicting a slow convergence.

However, if we take

p̄3k(λ) :=
(1.25− λ)k(400− λ)2k

(1.25)k(400)2k

we easily see that

max
λ∈spec(A)

|p̄3k(λ)| ≤
(
0.25

1.25

)k

= (0.2)k, (2.24)

providing a much sharper estimate. More precisely, in order to reduce the

relative error in the A-norm of the factor 10−3 Daniel predicts 83 iteration

steps, since 2(0.91)k < 10−3 when k > − log10(2000)
log10(0.91)

≈ 82.5. Instead, according

to the estimate based on p̄3k the relative error will be reduced of the factor 10−3

after k = 3i iterations when (0.2)i < 10−3, i.e. when i > − 3
log10(0.2)

≈ 4.3,

hence it predicts only 15 iterations!

In conclusion, in the finite dimensional case we have seen that the Con-

jugate Gradient method combines certain minimization properties in a very

efficient way and that a-priori information can be used to predict the strength

of its performance. Moreover, the polynomials qk and pk can be used to un-

derstand its behavior and can prove to be very useful in particular cases.

2.2 General definition in Hilbert spaces

In this section we define the conjugate gradient type methods in the usual

Hilbert space framework. As a general reference and for the skipped proofs,

we refer to [27].
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If not said otherwise, here the operator A acting between the Hilbert spaces

X and Y will be self-adjoint and positive semi-definite with its spectrum

contained in [0, 1].1

For n ∈ N0 := N ∪ {0} , fix an initial guess x0 ∈ X of the solution A†y of

Ax = y and consider the bilinear form defined on the space of all polynomials

Π∞ by

[φ, ψ]n : = 〈φ(A)(y −Ax0), A
nψ(A)(y − Ax0)〉

=

∫ ∞

0

φ(λ)ψ(λ)λnd‖Eλ(y − Ax0)‖2,
(2.25)

where {Eλ} denotes the spectral family associated to A.

Then from the theory of orthogonal polynomials (see, e.g., [88] Chapter II)

we know that there is a well defined sequence of orthogonal polynomials

{p[n]k } such that p
[n]
k ∈ Πk and

[p
[n]
k , p

[n]
j ]n = 0, k 6= j. (2.26)

Moreover, if we force these polynomials to belong to Π0
k, the sequence is uni-

vocally determined and satisfies a well known three-term recurrence formula,

given by

p
[n]
0 = 1, p

[n]
1 = 1− α

[n]
0 λ,

p
[n]
k+1 = −α[n]

k λp
[n]
k + p

[n]
k − α

[n]
k

β
[n]
k

α
[n]
k−1

(

p
[n]
k−1 − p

[n]
k

)

, k ≥ 1,
(2.27)

where the numbers α
[n]
k 6= 0 and β

[n]
k , k ≥ 0 can be computed explicitly (see

below).

The k-th iterate of a conjugate gradient type method is given by

x
[n]
k := x0 + q

[n]
k−1(A)(y −Ax0), (2.28)

where the iteration polynomials {q[n]k−1} are related to the residual polyno-

mials {p[n]k } via

q
[n]
k−1(λ) =

1− p
[n]
k

λ
∈ Πk−1. (2.29)

1Of course, if this is not the case, the equation Ax = y can always be rescaled to

guarantee ‖A‖ ≤ 1.
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The expression residual polynomial for p
[n]
k is justified by the fact that

y − Ax
[n]
k = y − A

(

x0 + q
[n]
k−1(A)(y − Ax0)

)

= y − Ax0 −Aq
[n]
k−1(A)(y −Ax0)

=
(

I − Aq
[n]
k−1(A)

)

(y − Ax0)

= p
[n]
k (A)(y − Ax0).

(2.30)

Moreover, if y ∈ R(A) and x ∈ X is such that Ax = y, then

x− x
[n]
k = x− x0 − q

[n]
k−1(A)A(x− x0) = p

[n]
k (A)(x− x0). (2.31)

In the following sections, in order to simplify the notations, we will omit

the superscript n and the dependance of pk and qk from y unless strictly

necessary.

2.3 The algorithms

In this section we describe how the algorithms of the conjugate gradient type

methods can be derived from the general framework of the previous section.

We refer basically to [27], adding a few details.

Let n ∈ Z, n ≥ 0.

Proposition 2.3.1. Due to the recurrence formula (2.27), the iteration poly-

nomials satisfy

q−1 = 0, q0 = α0,

qk = qk−1 + αk

(

pk +
βk
αk−1

(qk−1 − qk−2)

)

, k ≥ 1.
(2.32)

Proof. By the definition of the iteration polynomials, we have

λq−1(λ) = 1− 1 = 0, q0(λ) =
1− p1(λ)

λ
= α0 (2.33)
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and for k ≥ 1 the recurrence formula for the pk gives

qk(λ) =
1− pk+1(λ)

λ
=

1 + αkλpk(λ)− pk(λ) + αkα
−1
k−1βk(pk−1(λ)− pk(λ))

λ

=
αkλ− λ2αkqk−1(λ) + λqk−1(λ) + αkα

−1
k−1βk(λqk−1(λ)− λqk−2(λ))

λ

= αkpk(λ) + qk−1(λ) +
αk

αk−1
βk (qk−1(λ)− qk−2(λ)) .

(2.34)

Proposition 2.3.2. The iterates xk of the conjugate gradient type methods

can be computed with the following recursion:

∆x0 = y − Ax0, x1 = x0 + α0∆x0,

∆xk = y − Axk + βk∆xk−1, xk+1 = xk + αk∆xk, k ≥ 1.
(2.35)

Proof. Since q0 = α0, the relation between x1 and x0 is obvious.

We proceed by induction on k. From the definitions of xk and xk+1 there

follows

xk+1 = xk + (qk − qk−1)(A)(∆x0) (2.36)

and now using Proposition 2.3.1 and the induction we have:

(qk − qk−1)(A)(∆x0) = αkpk(A)(∆x0) +
αk

αk−1
βk(qk−1 − qk−2)(A)(∆x0)

= αk(y −Axk) + αkβk
(qk−1 − qk−2)(A)(∆x0)

αk−1

= αk(y −Axk + βk∆xk−1).

(2.37)

Proposition 2.3.3. Define

s0 := 1, sk := pk + βksk−1, k ≥ 1. (2.38)

Then for every k ≥ 0 the following relations hold:

∆xk = sk(A)(y − Ax0), (2.39)

pk+1 = pk − αkλsk. (2.40)
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Proof. For k = 0, the first relation is obviously satisfied. For k ≥ 1, using

induction again we obtain:

∆xk = y − Axk + βk∆xk−1 = pk(A)(∆x0) + βksk−1(A)(∆x0) = sk(A)(∆x0),

which proves (2.39).

To see (2.40), it is enough to consider the relations

xk+1 − xk
αk

= ∆xk = sk(A)(∆x0),

xk+1 − xk = (qk(A)− qk−1(A)) (∆x0),

λ (qk(λ)− qk−1(λ)) = pk(λ)− pk+1(λ)

and link them together.

Proposition 2.3.4. The sequence {sk} = {s[n]k }k∈N is orthogonal with respect

to the inner product [·, ·]n+1. More precisely, if ℓ denotes the number of the

nonzero points of increase of the function α(λ) = ‖Eλ(∆x0)‖2, then 2

p
[n+1]
k =

1

πk,n

p
[n]
k − p

[n]
k+1

λ
, with πk,n := (p

[n]
k )′(0)− (p

[n]
k+1)

′(0) > 0 (2.41)

for every 0 ≤ k < ℓ.

Proof. A well known fact from the theory of orthogonal polynomials is that

p
[n]
k has k simple zeros λ

[n]
j,k, j = 1, ..., k, with

0 < λ
[n]
1,k < λ

[n]
2,k < ... < λ

[n]
k,k ≤ ‖A‖ ≤ 1.

As a consequence, we obtain

p
[n]
k (λ) =

k∏

j=1

(

1− λ

λ
[n]
j,k

)

, (p
[n]
k )′(0) = −

k∑

j=1

1

λ
[n]
j,k

. (2.42)

Thus (p
[n]
k )′(0) ≤ −k. Moreover, the zeros of two consecutive orthogonal

polynomials interlace, i.e.

0 < λ
[n]
1,k+1 < λ

[n]
1,k < λ

[n]
2,k+1 < λ

[n]
2,k < ... < λ

[n]
k,k < λ

[n]
k+1,k+1,

2of course, ℓ can be finite or infinity: in the ill-posed case, since the spectrum of A∗A

clusters at 0, it is infinity.
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so πk,n > 0 holds true.

Now observe that by the definition of πk,n the right-hand side of (2.41) lies

in Π0
k. Denote this polynomial by p. For any other polynomial q ∈ Πk−1 we

have

[p, q]n+1 =
1

πk,n
[p

[n]
k − p

[n]
k+1, q]n =

1

πk,n
([p

[n]
k , q]n − [p

[n]
k+1, q]n) = 0

and since p
[n+1]
k is the only polynomial in Π0

k satisfying this equation for

every q ∈ Π0
k−1, p = p

[n+1]
k . The orthogonality of the sequence {sk} follows

immediately from Proposition 2.3.3.

Proposition 2.3.5. If the function α(λ) defined in Proposition 2.3.4 has

ℓ = ∞ points of increase, the coefficients αk and βk appearing in the formulas

(2.35) of Proposition 2.3.2 can be computed as follows:

αk =
[pk, pk]n
[sk, sk]n+1

, k ≥ 0, (2.43)

βk =
1

αk−1

[pk, pk]n
[sk−1, sk−1]n+1

=
[pk, pk]n

[pk−1, pk−1]n
, k ≥ 1. (2.44)

Otherwise, the formulas above remain valid, but the iteration must be stopped

in the course of the (ℓ + 1)-th step since [sℓ, sℓ]n+1 = 0 and αk is undefined.

In this case, we distinguish between the following possibilities:

• if y belongs to R(A), for every n ∈ N0 x
[n]
ℓ = A†y;

• if y has a non-trivial component along R(A)⊥ and n ≥ 1, then (I −
E0)xℓ = A†y;

• if y has a non-trivial component along R(A)⊥ and n = 0, then the

conclusion (I − E0)xℓ = A†y does not hold any more.

Proof. Note that in the ill-posed case (2.43) and (2.44) are well defined, since

all inner products are nonzero. By the orthogonality of {pk} and Proposition

2.3.3, for every k ≥ 0 we have

0 = [pk+1, sk]n = [pk, sk]n − αk[λsk, sk]n = [pk, pk]− αk[sk, sk]n+1,
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which gives (2.43).

For every k ≥ 1, the orthogonality of {sk} with respect to [·, ·]n+1 yields

0 = [sk, sk−1]n+1 = [pk, λsk−1]n + βk[sk−1, sk−1]n+1

=
1

αk−1
[pk, pk−1 − pk]n + βk[sk−1, sk−1]n+1

= − 1

αk−1
[pk, pk]n + βk[sk−1, sk−1]n+1,

(2.45)

which leads to (2.44).

Now suppose that ℓ <∞. Then the bilinear form (2.25) turns out to be

[φ, ψ]n =

∫ +∞

0

λnφ(λ)ψ(λ)dα(λ) =
ℓ∑

j=1

λnj φ(λj)ψ(λj) (2.46)

if y ∈ R(A) or if n ≥ 1, whereas if neither of these two conditions is satisfied

λ0 := 0 is the (ℓ+ 1)-th point of increase of α(λ) and

[φ, ψ]n =

ℓ∑

j=0

λnj φ(λj)ψ(λj).

If y ∈ R(A), since there exists a unique polynomial p
[n]
k ∈ Π0

k perpendicular

to Πk−1 such that p
[n]
k (λj) = 0 for j = 1, ..., k and consequently satisfying

[pk, pk]n = 0, then ‖x[n]ℓ −x†‖2 = ‖pℓ(A)(x0 −x†)‖2 = 0. If y does not belong

to R(A) and n ≥ 1, since (2.46) is still valid, due to the same considerations

we obtain (I−E0)x
[n]
ℓ = x†. Finally, in the case n = 0 it is impossible to find

p
[n]
k as before, thus the same conclusions cannot be deduced.

From the orthogonal polynomial point of view, the minimization property

of the conjugate gradient type methods turns out to be an easy consequence

of the previous results.

Proposition 2.3.6. Suppose n ≥ 1, let xk be the k-th iterate of the corre-

sponding conjugate gradient type method and let x be any other element in

the Krylov shifted subspace x0 +Kk−1(A; y − Ax0). Then

‖An−1
2 (y − Axk)‖ ≤ ‖An−1

2 (y −Ax)‖ (2.47)
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and the equality holds if and only if x = xk.

If n = 0 and y ∈ R(A
1
2 ), then ‖An−1

2 (y−Axk)‖ is well defined and the same

result obtained in the case n ≥ 1 remains valid.

Proof. Consider the case n = 1. In terms of the residual polynomials pk,

(2.47) reads as follows:

[pk, pk]n−1 ≤ [p, p], for every p ∈ Π0
k.

Since for every p ∈ Π0
k there exists s ∈ Πk−1 such that p − pk = λs, by

orthogonality we have

[p, p]n−1 − [pk, pk]n−1 = [p− pk, p+ pk]n−1 = [s, λs+ 2pk]n = [s, s]n+1 ≥ 0,

and the equality holds if and only if s = 0, i.e. if and only if p = pk.

If n = 0 and y ∈ R(A
1
2 ), then [pk, pk]−1 is well defined by

[pk, pk]−1 :=

∫ ∞

0+

p2k(λ)λ
−1d‖Eλ(y −Ax0)‖2

and the proof is the same as above.

Note that in the case n = 0 this is the same result obtained in the discrete

case in Proposition 2.1.1.

The computation of the coefficients αk and βk allows a very easy and cheap

computation of the iterates of the conjugate gradient type-methods.

We focus our attention on the cases n = 1 and n = 0, corresponding respec-

tively to the minimal residual method and the classical conjugate gradient

method.

2.3.1 The minimal residual method (MR) and the con-

jugate gradient method (CG)

• In the case n = 1, from Proposition 2.3.6 we see that the corresponding

method minimizes, in the shifted Krylov space x0 +Kk−1(A; y −Ax0),

the residual norm. For this reason, this method is called minimal resi-

dual method (MR). Propositions 2.3.1-2.3.5 lead to Algorithm 1.
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• In the case n = 0, using again Propositions 2.3.1-2.3.5 we find (cf.

Algorithm 2) the classical Conjugate Gradient method originally pro-

posed by Hestenes and Stiefel in [45] in 1952. If y ∈ R(A), then ac-

cording to Proposition 2.3.6, the k-th iterate xk of CG minimizes the

error x†−xk in x0+Kk−1(A; y−Ax0) with respect to the energy-norm

〈x† − xk, A(x
† − xk)〉.

Looking at the algorithms, it is important to note that for every iterative

step MR and CG must compute only once a product of the type Av with v

∈ X .

Algorithm 1 MR

r0 = y −Ax0;

d = r0;

Ad = Ar0;

k = 0;

while (not stop) do

α = 〈rk, Ark〉/‖Ad‖2;
xk+1 = xk + αd;

rk+1 = rk − αAd;

β = 〈rk+1, Ark+1〉/〈rk, Ark〉;
d = rk+1 + βd;

Ad = Ark+1 + βAd;

k = k + 1;

end while

2.3.2 CGNE and CGME

Suppose that the operator A fails to be self-adjoint and semi-definite, i.e. it

is of the type we discussed in Chapter 1. Then it is still possible to use the

conjugate gradient type methods, seeking for the (best-approximate) solution

of the equation

AA∗υ = y (2.48)
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Algorithm 2 CG

r0 = y − Ax0;

d = r0;

k = 0;

while (not stop) do

α = ‖rk‖2/〈d, Ad〉;
xk+1 = xk + αd;

rk+1 = rk − αAd;

β = ‖rk+1‖2/‖rk‖2;
d = rk+1 + βd;

k = k + 1;

end while

and putting x = A∗υ.

In this more general case, we shall denote as usual with {Eλ} the spectral

family of A∗A and with {Fλ} the spectral family of AA∗. All the definitions

of the self-adjoint case carry over here, keeping in mind that they will always

refer to AA∗ instead of A and the corresponding iterates are

υk = υ0 + qk−1(AA
∗)(y −Ax0). (2.49)

The definition of the first iterate υ0 is not important, since we are not intere-

sted in calculating υk, but we are looking for xk. Thus we multiply both

sides of the equation (2.49) by A∗ and get

xk = x0 + A∗qk−1(AA
∗)(y − Ax0) = x0 + qk−1(A

∗A)A∗(y − Ax0). (2.50)

As in the self-adjoint case, the residual y −Axk is expressed in terms of the

residual polynomials pk corresponding to the operator AA∗ via the formula

y − Axk = pk(AA
∗)(y −Ax0) (2.51)

and if y = Ax for some x ∈ X , then

x− xk = pk(AA
∗)(x− x0). (2.52)
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As in the self-adjoint case, we consider the possibilities n = 1 and n = 0.

• If n = 1, according to Proposition 2.3.6, the iterates xk minimize the

residual norm in the Krylov shifted space x0+Kk−1(A
∗A;A∗(y−Ax0)),

cf. Algorithm 3.

A very important fact concerning this case is that this is equal to the

direct application of CG to the normal equation

A∗Ax = A∗y,

as one can easily verify by using Proposition 2.3.6 or by comparing the

algorithms. This method is by far the most famous in literature and is

usually called CGNE, i.e. CG applied to the Normal Equation.

• It is also possible to apply CG to the equation (2.48), obtaining Algo-

rithm 4: this corresponds to the choice n = 0 and by Proposition 2.3.6

if y ∈ R(A) the iterates xk minimize the error norm ‖x† − xk‖ in the

corresponding Krylov space.3

We conclude this section with a remark: forming and solving the equation

(2.48) can only lead to the minimal norm solution of Ax = y, because the

iterates xk = A∗υk lie in R(A∗) ⊆ ker(A)⊥, which is closed. Thus, if one is

looking for solutions different from x†, then should not rely on these methods.

2.3.3 Cheap Implementations

In [27] M. Hanke suggests an implementation of both gradient type methods

with n = 1 and n = 0 in one scheme, which requires approximately the same

computational effort of implementing only one of them. For this purpose,

further results (gathered in Proposition 2.3.7 below) from the theory of or-

thogonal polynomials are needed.

3The reader should keep in mind the difference between CG and CGME: the former

minimizes xk − x† in the energy norm, whereas the latter minimizes exactly the norm of

the error ‖x† − xk‖.
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Algorithm 3 CGNE

r0 = y − Ax0;

d = A∗r0;

k = 0;

while (not stop) do

α = ‖A∗rk‖2/‖Ad‖2;
xk+1 = xk + αd;

rk+1 = rk − αAd;

β = ‖A∗rk+1‖2/‖A∗rk‖2;
d = A∗rk+1 + βd;

k = k + 1;

end while

Algorithm 4 CGME

r0 = y − Ax0;

d = A∗r0;

k = 0;

while (not stop) do

α = ‖rk‖2/‖d‖2;
xk+1 = xk + αd;

rk+1 = rk − αAd;

β = ‖rk+1‖2/‖rk‖2;
d = A∗rk+1 + βd;

k = k + 1;

end while
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For simplicity, in the remainder we will restrict to the case in which A is a

semi-definite, self-adjoint operator and the initial guess is the origin: x0 = 0.

For the proof of the following facts and for a more exhaustive coverage of

the argument, see [27]. The second statement has already been proved in

Proposition 2.3.4.

Proposition 2.3.7. Fix k ∈ N0, k < ℓ. Then:

1. For n ∈ N, the corresponding residual polynomial p
[n]
k can be written in

the form

p
[n]
k = [p

[n]
k , p

[n]
k ]n−1

k∑

j=0

[p
[n−1]
j , p

[n−1]
j ]−1

n−1p
[n−1]
j (2.53)

and

‖An−1
2 (y − Ax

[n]
k )‖2 = [p

[n]
k , p

[n]
k ]n−1 =

(
k∑

j=0

[p
[n−1]
j , p

[n−1]
j ]−1

n−1

)−1

.

(2.54)

The same is true for n = 0 if and only if E0y = 0, i.e. if and only if

the data y has no component along R(A)⊥.

2. For n ∈ N0 there holds:

p
[n+1]
k =

1

πk,n

p
[n]
k − p

[n]
k+1

λ
. (2.55)

3. For n ∈ N, πk,n = (p
[n]
k )′(0)− (p

[n]
k+1)

′(0) is also equal to

πk,n =
[p

[n]
k , p

[n]
k ]n−1 − [p

[n]
k+1, p

[n]
k+1]n−1

[p
[n+1]
k , p

[n+1]
k ]n

=
[p

[n+1]
k , p

[n+1]
k ]n

[p
[n+1]
k , p

[n+1]
k ]n+1

. (2.56)

Starting from Algorithm 1 and using Proposition 2.3.7, it is not difficult to

construct an algorithm which implements both MR and CG without further

computational effort. The same can be done starting from CGNE. The

results are summarized in Algorithm 5 (6), where xk and zk are the iterates

corresponding respectively to CG (CGME) and MR (CGNE).

Once again, we address the reader to [27] for further details.
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Algorithm 5 MR+CG
x0 = z0;

r0 = y − Az0;

d = r0;

p1 = Ar0;

p2 = Ad;

k = 0;

while (not stop) do

α = 〈rk, p1〉/‖p2‖2;
zk+1 = zk + αd;

π = ‖rk‖2/〈rk, p1〉
xk+1 = xk + πrk;

rk+1 = rk − αp2;

t = Ark+1;

β = 〈rk+1, t〉/〈rk, p1〉;
d = rk+1 + βd;

p1 = t;

p2 = t+ βp2;

k = k + 1;

end while

2.4 Regularization theory for the conjugate

gradient type methods

This section is entirely devoted to the study of the conjugate gradient me-

thods for ill-posed problems. Although such methods are not regularization

methods in the strict sense of Definition 1.9.1, as we will see they preserve the

most important regularization properties and for this reason they are usually

included in the class of regularization methods. Since the results we are going

to state can nowadays be considered classic and are treated in great detail

both in [27] and in [17], most of the proofs will be omitted. The non-omitted
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Algorithm 6 CGNE+CGME
x0 = z0;

r0 = y −Az0;

d = A∗r0;

p1 = d;

p2 = Ad;

k = 0;

while (not stop) do

α = ‖p1‖2/‖p2‖2;
zk+1 = zk + αd;

π = ‖rk‖2/‖p1‖2
xk+1 = xk + πp1;

rk+1 = rk − αp2;

t = A∗rk+1;

β = ‖t‖2/‖p1‖2;
d = t+ βd;

p1 = t;

p2 = Ad;

k = k + 1;

end while

proofs and calculations will serve us to define new stopping rules later on.

We begin with an apparently very unpleasant result concerning the stability

properties of the conjugate gradient type methods.

Theorem 2.4.1. Let the self-adjoint semi-definite operator A be compact and

non-degenerate. Then for any conjugate gradient type method with parameter

n ∈ N0 and for every k ∈ N, the operator Rk = R
[n]
k that maps the data y

onto the k-th iterate xk = x
[n]
k is discontinuous in X .

Moreover, even in the non compact case, Rk is discontinuous at y if and only

if E0y belongs to an invariant subspace of A of dimension at most k − 1.

Every stopping rule for a conjugate gradient type method must take into
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account this phenomenon. In particular, no a-priory stopping rule k(δ) can

render a conjugate gradient type method convergent (cf. [27] and [17]). At

first, this seems to be discouraging, but the lack of discontinuity of Rk is

not really a big problem, since it is still possible to find reliable a-posteriori

stopping rules which preserve the main properties of convergence and order

optimality.

Before we proceed with the analysis, we have to underline that the methods

with parameter n ≥ 1 are much easier to treat than those with n = 0. For

this reason, we shall consider the two cases separately.

2.4.1 Regularizing properties of MR and CGNE

As usual, we begin considering the unperturbed case first.

Proposition 2.4.1. Let y ∈ R(A) and let n1 and n2 be integers with n1 < n2

and [1, 1]n1 < +∞. Then [p
[n2]
k , p

[n2]
k ]n1 is strictly decreasing as k goes from 0

to ℓ.

This has two important consequences:

Corollary 2.4.1. If y ∈ R(A) and xk = x
[n]
k are the iterates of a conjugate

gradient type method corresponding to a parameter n ≥ 1 and right-hand side

y, then

• The residual norm ‖y − Axk‖ is strictly decreasing for 0 ≤ k ≤ ℓ.

• The iteration error ‖x† − xk‖ is strictly decreasing for 0 ≤ k ≤ ℓ.

To obtain the most important convergence results, the following estimates

play a central role. We have to distinguish between the self-adjoint case and

the more general setting of Section 2.3.2. The proof of the part with the

operator AA∗, which will turn out to be of great importance later, can be

found entirely in [17], Theorem 7.9.

Lemma 2.4.1. Let λ1,k < ... < λk,k be the the zeros of pk. Then:
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• In the self-adjoint case, for y ∈ X ,

‖y −Axk‖ ≤ ‖Eλ1,k
ϕk(A)y‖, (2.57)

with the function ϕ(λ) := pk(λ)
λ1,k

λ1,k−λ
satisfying

0 ≤ ϕk(λ) ≤ 1, λ2ϕ2
k(λ) ≤ 4|p′k(0)|−1, 0 ≤ λ ≤ λ1,k. (2.58)

• In the general case with AA∗, for y ∈ Y,

‖y −Axk‖ ≤ ‖Fλ1,k
ϕk(AA

∗)y‖, (2.59)

with the function ϕ(λ) := pk(λ)
(

λ1,k

λ1,k−λ

) 1
2
satisfying

0 ≤ ϕk(λ) ≤ 1, λϕ2
k(λ) ≤ |p′k(0)|−1, 0 ≤ λ ≤ λ1,k. (2.60)

This leads to the following convergence theorem.

Theorem 2.4.2. • Suppose that A is self-adjoint and semi-definite. If

y ∈ R(A), then the iterates {xk} of a conjugate gradient type method

with parameter n ≥ 1 converge to A†y as k → +∞. If y /∈ R(A) and

ℓ = ∞, then ‖xk‖ → +∞ as k → +∞. If y /∈ R(A) and ℓ < ∞ then

the iteration terminates after ℓ steps, Axℓ = E0y and xℓ = A†y if and

only if ℓ = 0.

• Let A satisfy the assumptions of Section 2.3.2 and let {xk} be the itera-

tes of a conjugate gradient type method with parameter n ≥ 1 applied

with AA∗. If y ∈ D(A†), then xk converges to A†y as k → +∞, but if

y /∈ D(A†), then ‖xk‖ → +∞ as k → +∞.

Theorem 2.4.2 implies that the iteration must be terminated appropria-

tely when dealing with perturbed data yδ /∈ D(A†), due to numerical insta-

bilities.

Another consequence of Lemma 2.4.1 is the following one:
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Lemma 2.4.2. Let xδk be the iterates of a conjugate gradient type method

with parameter n ≥ 1 corresponding to the perturbed right-hand side yδ and

the self-adjoint semi-definite operator A. If the exact right-hand side belongs

to R(A) and ℓ = ∞, then

lim sup
k→+∞

‖yδ − Axδk‖ ≤ ‖y − yδ‖. (2.61)

Moreover, if the exact data satisfy the source condition

A†y ∈ Xµ
2
,ρ, µ > 0, ρ > 0, (2.62)

then there exists a constant C > 0 such that

‖yδ − Axδk‖ ≤ ‖y − yδ‖+ C|p′k(0)|−µ−1ρ, 1 ≤ k ≤ ℓ. (2.63)

The same estimate is obtained for the gradient type methods working with

AA∗ instead of A, but the exponent −µ− 1 must be replaced by −µ+1
2
.

Assuming the source condition (2.62), it is also possible to give an esti-

mate for the error:

Lemma 2.4.3. Let xδk be the iterates of a conjugate gradient type method

with parameter n ≥ 1 corresponding to yδ and the self-adjoint semi-definite

operator A. If (2.62) holds, then for 0 ≤ k ≤ ℓ,

‖A†y − xδk‖ ≤ C
(

‖Fλ1,k
(y − yδ)‖|p′k(0)|+ ρ

1
µ+1M

µ
µ+1

k

)

, (2.64)

where C is a positive constant depending only on µ, and

Mk := max{‖yδ − Axδk‖, ‖yδ − y‖}. (2.65)

In the cases with AA∗ instead of A, the same is true, but in (2.64) |p′k(0)|
must be replaced by |p′k(0)|

1
2 .

We underline that in Hanke’s statement of Lemma 2.4.3 (cf. Lemma

3.8 in [27]) the term ‖Fλ1,k
(y − yδ)‖ in the inequality (2.64) is replaced by

‖y−yδ‖. This sharper estimate follows directly from the proof of the Lemma

3.8 in [27].

Combining Lemma 2.4.2 and Lemma 2.4.3 we obtain:
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Theorem 2.4.3. If y satisfies the source condition (2.62) and ‖yδ − y‖ ≤ δ,

then the iteration error of a conjugate gradient type method with parameter

n ≥ 1 associated to a self-adjoint semi-definite operator A is bounded by

‖A†y − xδk‖ ≤ C
(
|p′k(0)|−µρ+ |p′k(0)|δ

)
, 1 ≤ k ≤ ℓ. (2.66)

In the cases with AA∗ instead of A, the same estimate holds, but |p′k(0)| must

be replaced by |p′k(0)|
1
2 .

Theorem 2.4.3 can be seen as the theoretical justification of the well

known phenomenon of the semi-convergence, which is experimented in prac-

tical examples: from (2.66), we observe that for small values of k the right-

hand side is dominated by |p′k(0)|−µρ, but as k increases towards +∞, this

term converges to 0, while |p′k(0)|δ diverges. Thus, as usual, there is a pre-

cise value of k that minimizes the error ‖A†y − xδk‖ and it is necessary to

define appropriate stopping rules to obtain satisfying results. In the case of

the conjugate gradient type methods with parameter n ≥ 1, the Discrepancy

Principle proves to be an efficient one.

Definition 2.4.1 (Discrepancy Principle for MR and CGNE). Assume

‖yδ − y‖ ≤ δ. Fix a number τ > 1 and terminate the iteration when, for the

first time, ‖yδ − Axδk‖ ≤ τδ. Denote the corresponding stopping index with

kD = kD(δ, y
δ).

A few remarks are necessary:

(i) The Discrepancy Principle is well defined. In fact, due to Lemma 2.4.2,

for every δ and every yδ such that ‖yδ − y‖ ≤ δ there is always a finite

stopping index such that the corresponding residual norm is smaller

than τδ.

(ii) Since the residual must be computed anyway in the course of the itera-

tion, the Discrepancy Principle requires very little additional compu-

tational effort.
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The following result is fundamental for the regularization theory of conjugate

gradient type methods. For MR and CGNE it was proved for the first time by

Nemirovsky in [70], our statement is taken as usual from [27], where a detailed

proof using the orthogonal polynomial and spectral theory framework is also

given.

Theorem 2.4.4. Any conjugate gradient type method with parameter n ≥ 1

with the Discrepancy Principle as a stopping rule is of optimal order, in

the sense that it satisfies the conditions of Definition 1.11.2, except for the

continuity of the operators Rk.

It is not difficult to see from the proof of Plato’s Theorem 1.11.1 that

the discontinuity of Rk does not influence the result. Thus we obtain also a

convergence result for y ∈ R(A):

Corollary 2.4.2. Let y ∈ R(A) and ‖yδ − y‖ ≤ δ. If the stopping index for

a conjugate gradient type method with parameter n ≥ 1 is chosen according

to the Discrepancy Principle and denoted by kD = kD(δ, y
δ), then

lim
δ→0

sup
yδ∈Bδ(y)

‖xδkD − A†y‖ = 0. (2.67)

2.4.2 Regularizing properties of CG and CGME

The case of conjugate gradient type methods with parameter n = 0 is much

harder to study. The first difficulties arise from the fact that the residual

norm is not necessarily decreasing during the iteration, as the following exam-

ple shows:

Example 2.4.1. Let A ∈ M2(R) be defined by

A =

(

τ 0

0 1

)

, (2.68)

τ > 0, and let x0 = 0 and y =

(

2

1

)

. Then according to Algorithm 2 we

have: r0 = y, Ar0 =

(

2τ

1

)

, α = 5
4τ+1

and x1 = 5
4τ+1

y. Therefore, if τ is
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sufficiently small, we have

‖y −Ax1‖ =

∥
∥
∥
∥
∥

(

2− 10τ
4τ+1

1− 5
4τ+1

)∥
∥
∥
∥
∥
>

√
5 = ‖y‖ = ‖y −Ax0‖.

Moreover, in the ill-posed case it is necessary to restrict to the case where

the data y belongs to R(A) (and not to D(A†)):

Theorem 2.4.5. If y /∈ R(A) and {xk} are the iterates of CG (CGME)

then either the iteration breaks down in the course of the (ℓ + 1)-th step or

ℓ = +∞ and ‖xk‖ → +∞ as k → +∞.

However, the main problem is that there are examples showing that the

Discrepancy Principle does not regularize these methods (see [27], Section

4.2). More precisely, CG and CGME with the Discrepancy Principle as a

stopping rule may give rise to a sequence of iterates diverging in norm as δ

goes to 0. Thus, other stopping criteria have to be formulated: one of the

most important is the following.

Definition 2.4.2. Fix τ > 1 and assume ‖y − yδ‖ ≤ δ. Terminate the CG

(CGME) iteration as soon as ‖yδ −Axδk‖ = 0, or when for the first time

k∑

j=0

‖yδ − Axδj‖−2 ≥ (τδ)−2. (2.69)

According to Proposition 2.3.7, the index corresponding to this stopping

rule is the smallest integer k such that [p
[1]
k , p

[1]
k ]

1
2
0 ≤ τδ, i.e. it is exactly the

same stopping index defined for MR (CGNE) by the Discrepancy Principle,

thus we denote it again by kD. The importance of this stopping criterion lies

in the following result.

Theorem 2.4.6. Let y satisfy (2.62) and let ‖y− yδ‖ ≤ δ. If CG or CGME

is applied to yδ and terminated after kD steps according to Definition 2.4.2,

then there exists some uniform constant C > 0 such that

‖A†y − xδkD‖ ≤ Cρ
1

µ+1 δ
µ

µ+1 . (2.70)
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Thus, due to Plato’s Theorem, except for the continuity of the operator

Rk, also CG and CGME are regularization methods of optimal order when

they are arrested according to Definition 2.4.2.

We continue with the definition of another very important tool for regulari-

zing ill-posed problems that will turn out to be very useful: the filter factors.

2.5 Filter factors

We have seen in Chapter 1 that the regularized solution of the equation (1.20)

can be computed via a formula of the type

xreg(σ) =

∫

gσ(λ)dEλA
∗yδ. (2.71)

If the linear operator A = K is compact, then using the singular value

expansion of the compact operator the equation above reduces to

xreg(σ) =

∞∑

j=1

gσ(λ
2
j )λj〈yδ, uj〉vj (2.72)

and the sum converges if gσ satisfies the basic assumptions of Chapter 1. If we

consider the operator U : Y → Y that maps the elements ej , j = 1, ...+∞,

of an orthonormal Hilbert base of Y into uj, we see that for y ∈ Y

U
∗y =

+∞∑

j=1

〈uj, y〉ej.

Then, if V : X → X is defined in a similar way and Λ(ej) := λjej , (2.72) can

be written in the compact form

xreg(σ) = V ΘσΛ
†
U

∗yδ, (2.73)

with Θσ(ej) := gσ(λ
2
j)λ

2
jej .

The coefficients

Φσ(λ
2
j) := gσ(λ

2
j)λ

2
j , j = 1, ...,+∞,
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are known in literature (cf. e.g. [36]) as the filter factors of the regularization

operator, since they attenuate the errors corresponding to the small singular

values λj.

Filter factors are very important when dealing with ill-posed and discrete ill-

posed problems, because they give an insight into the way a method regula-

rizes the data. Moreover, they can be defined not only for linear regulariza-

tion methods such as Tikhonov Regularization or Landweber type methods,

but also when the solution does not depend linearly on the data, as it hap-

pens in the case of Conjugate Gradient type methods, where equation (2.71)

does not hold any more. For example, from formula (2.50) we can see that

for n = 0, 1

x
[n]
k = q

[n]
k−1(A

∗A)A∗yδ = V q
[n]
k−1(Λ

2)V ∗
V ΛU

∗yδ = V q
[n]
k−1(Λ

2)Λ2Λ†
U

∗yδ,

(2.74)

so the filter factors of CGME and CGNE are respectively

Φ
[0]
k (λ2j) = q

[0]
k−1(λ

2
j )λ

2
j (2.75)

and

Φ
[1]
k (λ2j) = q

[1]
k−1(λ

2
j)λ

2
j . (2.76)

Later on, we shall see how this tool can be used to understand the regularizing

properties of the conjugate gradient type methods.

2.6 CGNE, CGME and the Discrepancy Prin-

ciple

So far, we have given a general overview of the main properties of the conju-

gate gradient type methods and a stopping rule for every method has been

defined.

In the remainder of this chapter, we shall study the behavior of the conju-

gate gradient type method in discrete ill-posed problems. We will proceed

as follows.
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• Analyze the performances of CGNE and CGME arrested at the step

kD = kD(δ, y
δ), i.e. respectively with the Discrepancy Principle (cf.

Definition 2.4.1) and with the a-posteriori stopping rule proposed by

Hanke (cf. Definition 2.4.2). This will be the subject of the current

section.

• Give an insight of the regularizing properties of CGME and CGNE by

means of the filter factors (cf. Section 2.7).

• Analyze the performances obtained by the method with parameter n =

2 (cf. Section 2.8).

Discrete ill-posed problems are constructed very easily using P.C. Hansen’s

Regularization Tools [35], cf. the Appendix.

As an illustrative example, we consider the test problem heat(N) in our pre-

liminary test, which will be called Test 0 below.

2.6.1 Test 0

The Matlab command

[A, b, x] = heat(N)

generates the matrix A ∈ GLN (R) (A is not symmetric in this case!), the e-

xact solution x† and the right-hand side vector b of the artificially constructed

ill-posed linear system Ax = b. More precisely, it provides the discretization

of a Volterra integral equation of the first kind related to an inverse heat

equation, obtained by simple collocation and midpoint rule with N points

(cf. [35] and the references therein). The inverse heat equation is a well

known ill-posed problem, see e.g. [17], [61] and [62].

After the construction of the exact underlying problem, we perturb the exact

data with additive white noise, by generating a multivariate gaussian vector

E ∼ N (0, IN), by defining a number ̺ ∈ ]0, 1[ representing the percentage

of noise on the data and by setting

bδ := b+ e, with e =
̺‖b‖
‖E‖ E. (2.77)
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Figure 2.1: Test 0: relative errors (on the left) and optimal solutions (on the

right)

Here and below, 0 is the constant column vector whose components are equal

to 0 and IN is the identity matrix of dimension N ×N .

Of course, from the equation above there follows immediately that δ = ̺‖b‖
and e ∼ N (0, δIN). In this case, since ‖b‖ = 1.4775 and ̺ is chosen equal

to 1%, δ = 1.4775× 10−2.

Next, we solve the linear system with the noisy data bδ performing kMAX =

40 iteration steps of algorithm 6, by means of the routine cgne−cgme defined

in the Appendix. The parameter τ > 1 of the Discrepancy Principle is fixed

equal to 1.001. Looking at Figure 2.1 we can compare the relative errors of

CGME (red stars) and CGNE (blue circles) in the first 30 iteration steps.

Denoting with xδ
k the CGME iterates and with zδk the CGNE iterates we

observe:

1. The well known phenomenon of semi-convergence is present in both al-

gorithms, but appears with stronger evidence in CGME than in CGNE.

2. If k♯x(δ) and k
♯
z(δ) are defined as the iteration indices at which, respec-

tively, CGME and CGNE attain their best approximation of x†, the

numerical results show that k♯x(δ) = 8 and k♯z(δ) = 24. The correspon-
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Figure 2.2: Test 0: comparison between the solutions of CGNE and CGME

at k = kD (on the left) and between the discrepancy and the optimal solution

of CGNE (on the right).

ding relative errors are approximately equal to

ε♯x = 0.2097, ε♯z = 0.0570,

so CGNE achieves a better approximation, although to obtain its best

result it has to perform 16 more iteration steps than CGME.

3. Calculating the iteration index defined by Morozov’s Discrepancy Prin-

ciple we get kD := kD(δ,b
δ) = 15: the iterates corresponding to this

index are the solutions of the regularization methods in Definition 2.4.2

and Definition 2.4.1 (respectively the a-posteriori rule proposed by

Hanke and Morozov’s Discrepancy Principle) and the corresponding

relative errors are approximately equal to

εxD = 2.2347, εzD = 0.0794.

Therefore, even if the stopping rule proposed by Hanke makes CGME a

regularization method of optimal order, in this case it finds a very un-

satisfying solution (cf. its oscillations in the left picture of Figure 2.2).
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Moreover, from the right of Figure 2.2 we can see that CGNE arrested

with the Discrepancy Principle gives a slightly oversmoothed solution

compared to the optimal one, which provides a better reconstruction

of the maximum and of the first components of x† at the price of some

small oscillations in the last components.

Although we chose a very particular case, many of the facts we have described

above hold in other examples as well, as we can see from the next more

significant test.

2.6.2 Test 1

Test 1

1D Test Problems

N noise k
♯
x k

♯
z kD ε

♯
x ε

♯
z ε

♯
xD ε

♯
zD

Baart 1000 0.1% 3 7 4 0.1659 0.0893 1.8517 0.1148

Deriv2 1000 0.1% 9 27 21 0.2132 0.1401 1.8986 0.1460

Foxgood 1000 0.1% 2 5 3 0.0310 0.0068 0.4716 0.0070

Gravity 1000 0.1% 6 13 11 0.0324 0.0083 1.0639 0.0104

Heat 1000 0.1% 18 37 33 0.0678 0.0174 0.8004 0.0198

I-laplace 1000 0.1% 11 38 19 0.2192 0.1856 1.7867 0.1950

Phillips 1000 0.1% 4 12 9 0.0243 0.0080 0.1385 0.0089

Shaw 1000 0.1% 6 14 8 0.0853 0.0356 0.2386 0.0474

2D Test Problems

N noise k
♯
x k

♯
z kD ε

♯
x ε

♯
z ε

♯
xD ε

♯
zD

Blur 2500 2.0% 9 12 7 0.1089 0.1016 0.1161 0.1180

Tomo 2500 2.0% 13 22 11 0.2399 0.2117 0.2436 0.2450

Table 2.1: Numerical results for Test 1.

We consider 10 different medium size test problems from [35]. The same

algorithm of Test 0 is used apart from the choices of the test problem and of

the parameters ̺, N and kMAX = 100. In all examples the white gaussian
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noise is generated using the Matlab function rand and the seed is chosen equal

to 0. The results are gathered in Table 2.1.

Looking at the data, one can easily notice that the relations

k♯x < k♯z, ε♯x > ε♯z, kD < k♯z

hold true in all the examples considered. Thus it is natural to ask if they are

always verified or counterexamples can be found showing opposite results.

Another remark is that very often kD > k♯x and in this case the correspon-

ding error is very huge.

2.6.3 Test 2

The following experiment allows to answer the questions asked in Test 1 and

substantially confirms the general remarks we have made so far.

For each of the seven problems of Table 2.2 we choose 10 different values

for each of the parameters N ∈ {100, 200, ..., 1000}, ̺ ∈ {0.1%, 0.2%, ..., 1%}
and the Matlab seed ∈ {1, ..., 10} for the random components of the noise on

the exact data. In each case we compare the values of k♯x and k♯z with kD and

the values of ε♯x with ε♯z. The left side of the table shows how many times, for

each test problem, ε♯z < ε♯x and vice versa. The right-hand side shows how

many times, for each problem and for each method, the stopping index kD

is smaller, equal or larger than the optimal one. In this case the value of τ

has been chosen equal to 1 + 10−15. From the results, summarized in Table

2.2, we deduce the following facts.

• It is possible, but very unlikely, that ε♯x < ε♯z (this event has occurred

only 22 times out of 7000 in Test 2 and only in the very particular test

problem foxgood, which is severely ill-posed).

• The trend that emerged in Test 0 and Test 1 concerning the relation

between kD and the optimal stopping indices k♯x and k♯z is confirmed in

Test 2. The stopping index kD provides usually (but not always!) a
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Test 2

Best err. perf. Stopping

CGNE CGME kD < k♯ kD = k♯ kD > k♯

Baart 1000 0 CGNE 564 372 64

CGME 0 545 455

Deriv2 1000 0 CGNE 882 112 6

CGME 0 0 1000

Foxgood 978 22 CGNE 483 426 91

CGME 0 532 468

Gravity 1000 0 CGNE 861 118 21

CGME 0 1 999

Heat 1000 0 CGNE 991 9 0

CGME 0 1 999

Phillips 1000 0 CGNE 751 207 42

CGME 0 48 952

Shaw 1000 0 CGNE 806 185 9

CGME 0 4 996

Total 6978 22 CGNE 5338 1429 233

CGME 0 1031 5869

Table 2.2: Numerical results for Test 2.

slightly oversmoothed solution for CGNE and often a noise dominated

solution for CGME.

In the problems with a symmetric and positive definite matrix A, it is also

possible to compare the results of CGNE and CGME with those obtained

by MR and CG. This was done for phillips, shaw, deriv2 and gravity and the

outcome was that CGNE attained the best performance 3939 times out of

4000, with 61 successes of MR in the remaining cases.

In conclusion, the numerical tests described above lead us to ask the following

questions:

1. The relations k♯x < k♯z and ε♯x > ε♯z hold very often in the cases consi-
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dered above. Is there a theoretical justification of this fact?

2. The conjugate gradient methods with parameter n = 1 seem to provide

better results than those with parameter n = 0. What can we say about

other conjugate gradient methods with parameter n > 1?

3. To improve the performance of CGME one can choose a larger τ . This

is not in contrast with the regularization theory above. On the other

hand, arresting CGNE later means stopping the iteration when the

residual norm has become smaller than δ, while the Discrepancy Prin-

ciple states that τ must be chosen larger than 1. How can this be

justified and implemented in practice by means of a reasonable stop-

ping rule?

We will answer the questions above in detail.

2.7 CGNE vs. CGME

In the finite dimensional setting described in Section 2.6, both iterates of

CGME and CGNE will eventually converge to the vector x̃ := A†bδ as de-

scribed in Section 2.1, which can be very distant from the exact solution

x† = A†b we are looking for, since A† is ill-conditioned. The problem is to

understand how the iterates converge to x̃ and how they reach an approxi-

mation of x† in their first steps.

First of all, we recall that xδ
k minimizes the norm of the error ‖x − x̃‖ in

Kk−1(A
∗A;A∗bδ), whereas zδk minimizes the residual norm ‖Ax−bδ‖ in the

same Krylov space. Thus the iterates of CGME, converging to x̃ as fast as

possible, will be the better approximations of the exact underlying solution

x† in the very first steps, when the noise on the data still plays a secondary

role. However, being the greediest approximations of the noisy solution x̃,

they will also be influenced by the noise at an earlier stage than the iterates

of CGNE. This explains the relation k♯x < k♯z, which is often verified in the

numerical experiments.
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Figure 2.3: Relative error history for CGNE and CGME with a perturbation

of the type ē = Aw̄, for the problem phillips(1000). CGME achieves the

better approximation (ε♯x = 0.0980, ε♯x = 0.1101).

Moreover, expanding the quantities minimized by the methods in terms of

the noise e, we get

‖x− x̃‖ = ‖x− x† −A†e‖

for CGME and

‖Ax− bδ‖ = ‖Ax− b− e‖

for CGNE. In the case of CGME, the error is amplified by the multiplication

with the matrix A†. As a consequence, in general CGME will obtain a

poorer reconstruction of the exact solution x†, because its iterates will be

more sensible to the amplification of the noise along the components relative

to the small singular values of A.

This justifies the relation ε♯x > ε♯z verified in almost all the numerical

experiments above. We observe that these considerations are based on the

remark that the components of the random vector e are approximately of

the same size. Indeed, things can change significantly if a different kind of

perturbation is chosen (e.g. the SVD components of the noise e decay like

O(λj)). To show this, consider the test problem phillips(1000), take ̺ = 5%,

define ē = Aw̄, where w̄ is the exact solution of the problem heat(1000) and

put bδ = b + ē: from the plot of the relative errors in Figure 2.3 it is clear
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Figure 2.4: Residual polynomials for CGNE (blue line) and CGME (red line)

that in this case CGME obtains the best performance and it is not difficult

to construct similar examples leading to analogous results.

This example suggests that it is almost impossible to claim that a method

works better than the other one without assuming important restrictions on

A, δ and bδ and on the perturbation e. Nevertheless, a general remark can

be done from the analysis of the filter factors of the methods. In [36] P. C.

Hansen describes the regularizing properties of CGNE by means of the filter

factors, showing that in the first steps it tends to reconstruct the components

of the solution related to the low frequency part of the spectrum. The analysis

is based on the convergence of the Ritz values λ
[1]
i,k (the zeros of the residual

polynomial p
[1]
k ) to the singular values of the operator A. From the plot of

the residual polynomials (cf. Figure 2.4) and from the interlacing properties

of their roots we can deduce that the iterates of CGME and CGNE should

behave in a similar way. The main difference is the position of the roots,

which allows us to compare the filter factors of the methods.

Theorem 2.7.1. Let A be a linear compact operator between the Hilbert

spaces X and Y and let yδ be the given perturbed data of the underlying exact

equation Ax = y. Let {λj ; uj, vj}j∈N be a singular system for A. Denote with

xδk and zδk the iterates of CGME and CGNE corresponding to yδ respectively,

with p
[0]
k and p

[1]
k the corresponding residual polynomials and with Φ

[0]
k (λj) and

Φ
[1]
k (λj) the filter factors. Let also λ

[0]
i,k, i = 1, ..., k and λ

[1]
i,k, i = 1, ..., k be the
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zeros of p
[0]
k and p

[1]
k respectively.

Then, for every j such that λ2j < λ
[0]
1,k,

Φ
[0]
k (λj) > Φ

[1]
k (λj). (2.78)

Proof. The filter factors of the conjugate gradient type methods are:

Φ
[n]
k (λj) = q

[n]
k (λ2j)λ

2
j , n = 0, 1.

We recall from the theory of orthogonal polynomials that the zeros of p
[0]
k

and of p
[1]
k interlace as follows:

λ
[0]
1,k < λ

[1]
1,k < λ

[0]
2,k < λ

[1]
2,k < ... < λ

[0]
k,k < λ

[1]
k,k. (2.79)

Thus, writing down the residual polynomials in the form

p
[n]
k (λ) =

k∏

j=1

(

1− λ

λ
[n]
j,k

)

, n = 0, 1, (2.80)

it is very easy to see that p
[0]
k < p

[1]
k on ]0, λ

[0]
1,k] (cf. Figure 2.4) and conse-

quently

q
[0]
k > q

[1]
k on ]0, λ

[0]
1,k].

This result is a theoretical justification of the heuristic considerations of

the beginning of this section: the iterates of CGNE filter the high frequencies

of the spectrum slightly more than the iterates of CGME. Summing up:

• Thanks to its minimization properties, CGNE works better than CGME

along the high frequency components, keeping the error small for a few

more iteration and usually achieving the better results.

• Anyway this is not a general rule (see the counterexample of this section

and the results of Test 2), because the performances of the two methods

strongly depend on the matrix A and on the vectors x†, b, e and x0.

• Finding a particular class of problems (or data) in which CGNE always

gets the better results is maybe possible, but rather difficult.
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2.8 Conjugate gradient type methods with

parameter n=2

We now turn to the question about the conjugate gradient type methods

with parameter n > 1, restricting to the case n = 2 for AA∗.

From the implementation of the corresponding method outlined in Algorithm

7 and performed by the routine cgn2 defined in the Appendix, we can see that

the computation of a new iterate requires 4 matrix-vector multiplications at

each iteration step, against the only 2 needed by CGNE and CGME.

On the other hand, it is obvious that the same analysis of Section 2.7

Algorithm 7 CG type method with parameter n = 2 for AA∗

r0 = y − Ax0;

d = A∗r0;

p2 = Ad;

m1 = p2;

m2 = A∗m1;

k = 0;

while (not stop) do

α = ‖p2‖2/‖m2‖2;
xk+1 = xk + αd;

rk+1 = rk − αm1;

p1 = A∗rk+1;

t = Ap1;

β = ‖t‖2/‖p2‖2;
d = p1 + βd;

m1 = Ad;

m2 = A∗m1;

p2 = t;

k = k + 1;

end while

will suggest that this method filters the high frequency components of the

spectrum even better than CGNE, because of the relation λ
[1]
i,k < λ

[2]
i,k, valid for

all i = 1, ..., k. As a matter of fact, the phenomenon of the semi-convergence

appears more attenuate here than in the case of CGNE, as we can see e.g.

from Figure 2.5, where a plot of the relative errors of both methods in the

same assumptions of Test 0 of Section 2.6 has been displayed. Thus, the

conjugate gradient type method with parameter n = 2 is more stable than
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Figure 2.5: Relative error history for CGNE and the conjugate gradient type

method with parameter n = 2 in the assumptions of Test 0 of Section 2.6.

CGNE with respect to the iteration index k (exactly for the same reasons

why we have seen that CGNE is more stable than CGME). This could be an

advantage especially when the data are largely contaminated by the noise.

For example, if we consider the test problem blur(500), with ̺ = 10%, we can

see from Figure 2.6 that the optimal reconstructed solutions of both methods

are similar, but the conjugate gradient type method with parameter n = 2

attenuates the oscillations caused by the noise in the background better than

CGNE.

2.8.1 Numerical results

We compare the conjugate gradient type methods for the matrix AA∗ with

parameters 1 and 2 in the same examples of Test 2 of Section 2.6, by adding

the test problem i−laplace. From the results of Table 2.3, we can see that the

methods obtain quite similar results. The conjugate gradient type method

with parameter n = 2 usually performs a little bit better, but this advantage

is minimal: the average improvement of the results obtained by the method

with n = 2, namely the difference of the total sums of the relative errors
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Figure 2.6: Comparison between the conjugate gradient type method with

parameter n = 2 and CGNE for the test problem blur(500), with ̺ = 10%.

divided by the total sum of the relative errors of CGNE, is equal to

|683.74− 686.74|
686.74

∼= 0.4%.

Concerning the stopping index, we observe that in both cases the Discre-

pancy Principle stops the iteration earlier than the optimal stopping index

in the large majority of the considered cases. We shall return to this impor-

tant topic later.

Our numerical experiments confirm the trend also for a larger noise. Per-

forming the same test with ̺ ∈ {10−2, 2 × 10−2, ..., 10−1} instead of ̺ ∈
{10−3, 2× 10−3, ..., 10−2}, we obtain that the method with parameter n = 2

achieves the better relative error in 4763 cases (59.5% of the times) and the

overall sums of the relative errors are 1101.8 for n = 2 and 1115.5 for n = 1.

Thus the average improvement obtained by the method with n = 2 is 1% in

this case.

In conclusion, the conjugate gradient type method with parameter n = 2 has

nice regularizing properties: in particular, it filters the high frequency compo-

nents of the noise even better than CGNE. Consequently, it often achieves
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Comparison of CG type methods: n = 1 and n = 2

Best err. perf. Average rel. err. n Discrepancy Stopping

kD < k♯ kD = k♯ kD > k♯

Baart 598 0.13404 n = 1 564 372 64

402 0.13482 n = 2 616 321 63

Deriv2 197 0.19916 n = 1 882 112 6

803 0.19792 n = 2 965 33 2

Foxgood 565 0.01862 n = 1 483 426 91

435 0.01876 n = 2 547 362 91

Gravity 386 0.02179 n = 1 861 118 21

614 0.02151 n = 2 838 147 15

Heat 294 0.05709 n = 1 991 9 0

706 0.05657 n = 2 996 4 0

I-laplace 447 0.18091 n = 1 957 30 13

553 0.18036 n = 2 971 18 11

Phillips 441 0.01774 n = 1 751 207 42

559 0.01731 n = 2 775 204 21

Shaw 548 0.05739 n = 1 806 185 9

452 0.05649 n = 2 837 156 7

Total 3476 0.08584 n = 1 6285 1459 256

4524 0.08546 n = 2 6545 1245 210

Table 2.3: Comparison between the CG type methods for AA∗ with para-

meters 1 and 2. We emphasize that kD is not the same stopping index here

for n = 1 and n = 2.

the better results and keeps the phenomenon of the semi-convergence less

pronounced, especially for large errors in the data. On the other hand, it is

more expensive than CGNE from a computational point of view, because it

usually performs more steps to reach the optimal solution and in each step

it requires 4 matrix-vector multiplications (against the only 2 required by

CGNE). Despite the possible advantages described above, in our numerical

tests the improvements were minimal, even in the case of a large δ. For this

reason, we believe that it should be rarely worth it, to prefer the method

with parameter n = 2 to CGNE.
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Chapter 3

New stopping rules for CGNE

In the last sections of Chapter 2 we have seen that CGNE, being both efficient

and precise, is one of the most promising conjugate gradient type methods

when dealing with (discrete) ill-posed problems.

The general theory suggests the Discrepancy Principle as a very reliable stop-

ping rule, which makes CGNE a regularization method of optimal order1. Of

course, the stopping index of the Discrepancy Principle is not necessarily

the best possible for a given noise level δ > 0 and a given perturbed data

yδ. Indeed, as we have seen in the numerical tests of Chapter 2, it usually

provides a slightly oversmoothed solution. Moreover, in practice the noise

level is often unknown: in this case it is necessary to define heuristic stopping

rules. Due to Bakushinskii’s Theorem a method arrested with an heuristic

stopping rule cannot be convergent, but in some cases it can give more sa-

tisfactory results than other methods arrested with a sophisticated stopping

rule of optimal order based on the knowledge of the noise level.

When dealing with discrete ill-posed problems (e.g. arising from the discre-

tization of ill-posed problems defined in a Hilbert space setting), it is very

important to rely on many different stopping rules, in order to choose the best

one depending on the particular problem and data: among the most famous

1except for the continuity of the operator that maps the data into the k-th iterate of

CGNE, cf. Chapter 2.

97
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stopping rules that can be found in literature, apart from the Discrepancy

Principle, we mention the Monotone Error Rule (cf. [24], [23], [25], [36])

and, as heuristic stopping rules, the L-curve ([35], [36]), the Generalized

Cross Validation ([17] and the references therein) and the Hanke-Raus Cri-

terion ([27], [24]).

In this chapter, three new stopping rules for CGNE will be proposed, ana-

lyzed and tested. All these rules rely on a general analysis of the residual

norm of the CGNE iterates.

The first one, called the Approximated Residual L-Curve Criterion, is an

heuristic stopping rule based on the global behavior of the residual norms

with respect to the iteration index.

The second one, called the Projected Data Norm Criterion, is another heuri-

stic stopping rule that relates the residual norms of the CGNE iterates to

the residual norms of the truncated singular value decomposition.

The third one, called the Projected Noise Norm Criterion, is an a-posteriori

stopping rule based on a statistical approach, intended to overcome the over-

smoothing effect of the Discrepancy Principle and mainly bound to large

scale problems.

3.1 Residual norms and regularizing proper-

ties of CGNE

This section is dedicated to a general analysis of the regularizing properties

of CGNE, by linking the relative error with the residual norm in the case of

perturbed data.

In their paper [60] Kilmer and Stewart related the residual norm of the

minimal residual method to the norm of the relative error.

Theorem 3.1.1 (Kilmer, Stewart). Let the following assumptions hold:

• The matrix A ∈ GLN(R) is symmetric and positive definite, and in

the coordinate system of its eigenvectors the exact linear system can be
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written in the form

Λx = b, (3.1)

where Λ = diag{λ1, ..., λN}, 1 = λ1 > λ2 > ... > λN > 0.

• The exact data are perturbed by an additive noise e ∈ RN such that its

components ei are random variables with mean 0 and standard deviation

ν > 0.

• For a given δ > 0, let y be the purported solution with residual norm

δ minimizing the distance from the exact solution x, i.e. y solves the

problem2

minimize ‖x− y‖
subject to ‖bδ −Λy‖2 = δ2.

(3.2)

If c > −1 solves the equation

N∑

i=1

e2i
(1 + cλ2i )

2
= δ2, (3.3)

then the vector y(c), with components

yi(c) := xi +
cλiei

1 + cλ2i
, (3.4)

is a solution of (3.2) and

‖x− y(c)‖2 =
N∑

i=1

(
cλiei

1 + cλ2i

)2

. (3.5)

Note that the solution of (3.2) is Tikhonov’s regularized solution with

parameter δ2 > 0, where δ satisfies (3.3).

As c varies from −1 to +∞, the residual norm decreases monotonically from

+∞ to 0 and the error norm ‖x − y(c)‖ decreases from ∞ to 0 at c =

0 when δ = ‖e‖, but then increases rapidly (for further details, see the

2here the perturbed data bδ = b+ e does not necessarily satisfy ‖bδ − b‖ = δ.
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considerations after Theorem 3.1 in [60]). As a consequence, choosing a

solution with residual norm smaller than ‖e‖ would result in large errors, so

the theorem provides a theoretical justification for the discrepancy principle

in the case of the Tikhonov method.

However, the solution y(c) can differ significantly from the iterates of the

conjugate gradient type methods.

The following simulation shows that the results of Kilmer and Stewart cannot

be applied directly to the CGNE method and introduces the basic ideas

behind the new stopping rules that are going to be proposed.

Fix N = 1000 and p = 900 and let

Λ = diag{λ1, ..., λp, λp+1, ..., λN} (3.6)

be the diagonal matrix such that

λ1 > ... > λp >> λp+1 > ... > λN > 0 (3.7)

and

λi ∼
{

10−2 i = 1, ..., p,

10−8 i = p+ 1, ..., N.
(3.8)

Let λ be the vector whose components are the λi and indicate

λp :=







λ1

...

λp






, λN−p :=







λp+1

...

λN






. (3.9)

Accordingly, set also

e =

(

ep

eN−p

)

, bδ = b+ e =

(

bδ
p

bδ
N−p

)

, (3.10)

where b = Λx† and x† is the exact solution of the test problem gravity from

P.C. Hansen’s Regularization Tools.

The left picture of Figure 3.1 shows the graphic of the residual norm of

the CGNE iterates with respect to the iteration index for this test problem

with noise level ̺ = 1%: we note that this graphic has the shape of an L.
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Figure 3.1: Residual and relative error norm history in a diagonal matrix

test problem with two cluster of singular values and ̺ = 1%.

In general, a similar L-shape is observed in the discrete ill-posed problems,

thanks to the rapid decay of the singular values, as described in [76] and [77].

In fact, in the general case of a non diagonal and non symmetric matrix A,

for b ∈ R(A) and ‖b−bδ‖ ≤ δ, δ > 0, combining (2.59) and (2.60) we have

‖Azδk − bδ‖ ≤ ‖Fλ1,k
e‖+ |p′k(0)|−1/2‖x†‖ ≤ δ + |p′k(0)|−1/2‖x†‖. (3.11)

Since |p′k(0)| is the sum of the reciprocals of the Ritz values at the k-th step

and λ1,k is always smaller than λk, a very rough estimate of the residual norm

is given by δ + ‖x†‖λ1/2k , which has an L-shape if the eigenvalues of A decay

quickly enough. Thus the residual norm curve must lie below this L-shaped

curve and for this reason it is often L-shaped too.

We consider now the numerical results of the simulation. Comparing the

solution obtained by the Discrepancy Principle (denoted by the subscript D)

with the optimal solution (denoted with the superscript ♯) we have:

• k♯ = 5 and kD = 3 for the stopping indices;

• ‖bδ − Λzδk♯‖ ∼ 1.32 × 10−3 and ‖bδ − ΛzδkD‖ ∼ 3.71 × 10−3 for the

residual norms;
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• ε♯ ∼ 1.09 × 10−2 and εD ∼ 1.50 × 10−2 for the relative error norms (a

plot of the relative error norm history is shown in the right picture of

Figure 3.1).

Note that ‖eN−p‖ ∼ 1.29×10−3 is very close to ‖bδ−Λzδ
k♯
‖: this suggests to

stop the iteration as soon as the residual norm is lower or equal to τ‖eN−p‖
for a suitable constant τ > 1 (instead of τδ, as in the Discrepancy Principle).

This remark can be extended to the general case of a discrete ill-posed pro-

blem. In fact, the stopping index of the discrepancy principle is chosen large

enough so that ‖x†‖|p′k(0)|−1/2 is lower than (τ − 1)δ in the residual norm

estimate (3.11) and small enough so that the term δ|p′k(0)|1/2 is as low as

possible in the error norm estimate (2.64) in Chapter 2. However, in the

sharp versions of these estimates with δ replaced by ‖Fλ1,k
(bδ −b)‖, when k

is close to the optimal stopping index k♯, Fλ1,k
is the projection of the noise

onto the high frequency part of the spectrum and the quantity ‖Fλ1,k
e‖ is a

reasonable approximation of the residual norm threshold eN−p considered in

our simulation with the diagonal matrix.

Summarizing:

• the behavior of the residual norm plays an important role in the choice

of the stopping index: usually its plot with respect to k has the shape

of an L (the so called Residual L-curve);

• the norm of the projection of the noise onto the high frequency part of

the spectrum may be chosen to replace the noise level δ as a residual

norm threshold for stopping the iteration.

3.2 SR1: Approximated Residual L-Curve Cri-

terion

In Section 3.1 we have seen that the residual norms of the iterates of CGNE

tend to form an L-shaped curve. This curve, introduced for the first time
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by Reichel and Sadok in [76], differs from the famous Standard L-Curve

considered e.g. in [33], [34] and [36], which is defined by the points

(ηk, ρk) := (‖zδk‖, ‖bδ −Azδk‖), k = 1, 2, 3, .... (3.12)

Usually a log-log scale is used for the Standard L-Curve, i.e. instead of

(ηk, ρk) the points (log(ηk), log(ρk)) are considered. In the case of the Resid-

ual L-Curve, different choices are possible, cf. [76] and [77]: we shall plot the

Residual L-Curve in a semi-logarithmic scale, i.e. by connecting the points

(k, log(ρk)), k = 1, 2, 3, ....

In contrast to the Discrepancy Principle and the Residual L-Curve, the Stan-

dard L-Curve explicitly takes into account the growth of the norm of the

computed approximate solutions (cf. e.g. [36] and [87]) as k increases. In

his illuminating description of the properties of the Standard L-Curve for

Tikhonov regularization and other methods in [36], P. C. Hansen suggests

to define the stopping index as the integer k corresponding to the corner of

the L-curve, characterized by the point of maximal curvature (the so called

L-Curve Criterion).

Castellanos et al. [9] proposed a scheme for determining the corner of a discre-

te L-curve by forming a sequence of triangles with vertices at the points of

the curve and then determining the desired vertex of the L from the shape

of these triangles. For obvious reasons, this algorithm is known in literature

as the Triangle method.

Hansen et al. [37] proposed an alternative approach for determining the

vertex of the L: they constructed a sequence of pruned L-curves, removing

an increasing number of points, and considered a list of candidate vertices

produced by two different selection algorithms. The vertex of the L is se-

lected from this list by taking the last point before reaching the part of the

L-curve, where the norm of the computed approximate solution starts to

increase rapidly and the norm of the associated residual vectors stagnates.

This is usually called the Pruning method or the L-Corner method.

The Standard L-Curve has been applied successfully to the solution of many

linear discrete ill-posed problems and is a very popular method for choos-
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Figure 3.2: L-curves for blur(100), ̺ = 3%. The L-curve is simply not L-

shaped.

ing the regularization parameter, also thanks to its simplicity. However, it

has some well known drawbacks, as shown by Hanke [28] and Vogel [95]. A

practical difficulty, as pointed out by Reichel et al. in [76] and in the recent

paper [77], is that the discrete points of the Standard L-Curve may be irreg-

ularly spaced, the distance between pairs of adjacent points may be small for

some values of k and it can be difficult to define the vertex in a meaningful

way. Moreover, sometimes the L-curve may not be sufficiently pronounced

to define a reasonable vertex (cf., e.g., Figure 3.2).

In their paper [76], Reichel and Sadok defined the Residual L-Curve for

the TSVD in a Hilbert space setting seeking to circumvent the difficulties

caused by the cluster of points near the corner of the Standard L-Curve and

showing that it often achieved the better numerical results. Among all heuri-

stic methods considered in the numerical tests of [77], the Residual L-Curve
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proved to be one of the best heuristic stopping rules for the TSVD, but it

also obtained the worst results in the case of CGNE, providing oversmoothed

solutions.

Two reasons for this oversmoothing effect are the following:

• the Residual L-Curve in the case of CGNE sometimes presents some

kinks before getting flat, thus the corner may be found at an early

stage;

• the residual norm of the solution is often too to large at the corner

of the Residual L-Curve: it is preferable to stop the iteration as soon

as the term ‖x†‖|p′k(0)|−1/2 is neglibible in the residual norm estimate

(3.11), i.e., when the curve begins to be flat.

In Figure 3.3 we show the results of the test problem phillips(1000), with noise

level ̺ = 0.01%. In this example, both L-curve methods fail: as expected by

Hanke in [28], the Standard L-curve stops the iteration too late, giving an

undersmoothed solution; on the other hand, due to a very marked step at an

early stage, the Residual L-Curve provides a very oversmoothed solution.

We propose to approximate the Residual L-Curve by a smoother curve.

More precisely, let npt be the total number of iterations performed by CGNE.

For obvious reasons, to obtain a reasonable plot of the L-curves, we must

perform enough iterations, i.e. npt > k♯. We approximate the data points

{(k, log(ρk))}k=1,...,npt with cubic B-splines using the routine data−approx

defined in the Appendix, obtaining a new (smoother) set of data points

{(k, log(ρ̃k))}k=1,...,npt.

We call the curve obtained by connecting the points (k, log(ρ̃k)) with straight

lines the Approximated Residual L-Curve and we denote by kL, krL and karL

the indices determined by the triangle method for the Standard L-Curve, the

Residual L-Curve and the Approximated Residual L-Curve respectively.

In Figure 3.4 we can see 2 approximate residual L-curves. Typically, the

approximation has the following properties:
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Figure 3.3: Residual L-Curve and Standard L-Curve for the test problem

phillips(1000), ̺ = 0.01%.

(i) it tends to remove or at least smooth the steps of the Residual L-Curve

when they are present (cf. the picture on the left in Figure 3.4);

(ii) when the Residual L-Curve has a very marked L-shape it tends to have

a minimum in correspondence to the plateau of the Residual L-Curve

(cf. the picture on the right in Figure 3.4);

(iii) when the Residual L-Curve is smooth the shape of both curves is si-

milar.

As a consequence, very often we have krL < karL and karL corresponds to

the plateau of the Residual L-Curve. This should indeed improve the perfor-

mances, because it allows to push the iteration a little bit further, overcoming

the oversmoothing effects described above.

We are ready to define the first of the three stopping rules (SR) for CGNE.

Definition 3.2.1 (Approximated Residual L-Curve Criterion). Con-

sider the sequence of points (k, log(ρk)) obtained by performing npt steps

of CGNE and let (k, log(ρ̃k)) be the sequence obtained by approximating

(k, log(ρk)) by means of the routine data−approx. Compute the corners krL
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Figure 3.4: Residual L-Curve and Approximated Residual L-Curve for 2

different test problems. Fixed values: N = 1000, ̺ = 0.01%, seed = 1.

and karL using the triangle method and let k0 be the first index such that

ρ̃k0 = min{ρ̃k | k = 1, ..., npt}. Then, as a stopping index for the iterations

of CGNE, choose

kSR1 := max{krL, ǩ}, ǩ = min{karL, k0}. (3.13)

This somewhat articulated definition of the stopping index avoids possible

errors caused by an undesired approximation of the Residual L-Curve or by

an undesired result in the computation of the corner of the Approximated

Residual L-Curve. Below, we will analyze and compare the stopping rules

defined by kL, krL and kSR1.

3.3 SR1: numerical experiments

This section is dedicated to show the performances of the stopping rule SR1.

In all examples below, in order to avoid some problems caused by rounding

errors, the function lsqr−b from [35] has been used with parameter reorth = 1.

For more details on this function and rounding errors in the CGNE algorithm,

see Appendix D.
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3.3.1 Test 1

In order to test the stopping rule of Definition 3.2.1, we consider 10 different

test problems from P.C. Hansen’s Regularization Tools [35]. For each test

problem, we fix the number npt in such a way that both the standard and the

residual L-curves can be visualized appropriately and take 2 different values

for the dimension and the noise level. In each of the possible cases, we run

the algorithm with 25 different Matlab seeds, for a total of 1000 different

examples.

In Table 3.1, for each test problem and for each couple (Ni, ̺j), i,j ∈ {1, 2},
we show the average relative errors obtained respectively by the stopping

indices kL (Standard L-Curve), krL (Residual L-Curve) and kSR1 for all pos-

sible seeds. In round brackets we collect the number of failures, i.e. how

many times the relative error obtained by the stopping rule is at least 5

times larger than the relative error obtained by the optimal stopping index

k♯. We can see that stopping rule associated to the index kSR1 improves the

results of the Residual L-Curve in almost all the cases.

This stopping rule proves to be reliable also when the noise level is smaller

and the Standard L-Curve fails, as we will see below.

3.3.2 Test 2

In this example we test the robustness of the method when the noise level is

small and with respect to the number of points npt. As we have seen, this

is a typical case in which the Standard L-Curve method may fail to obtain

acceptable results.

We consider the test problems gravity, heat and phillips, with N = 1000, ̺ ∈
{1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4}, seed ∈ {1, 2, ..., 25}. For each case,

we also take 3 different values of npt (the smallest one is only a little bit

larger than the optimal index k♯), in order to analyze the dependence of the

methods on this particular parameter.

The results of Table 3.2 clearly show that the Approximated Residual L-
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Test 1: results
Average Rel. Err. (no. of failures) for kL, krL, kSR1

Problem[npt] N ̺1 ̺2
Baart[8] N1 0.1216(0),0.1660 (0),0.1216(0) 0.1688(0),0.2024(0),0.1676(0)

N2 0.1156(0),0.1656(0),0.1156(0) 0.1680(0),0.1872(0),0.1660(0)

Deriv2[30] N1 0.2024(0),0.1920(0),0.1872(0) 0.3024(0),0.2732(0),0.2632(0)

N2 0.1488(0),0.1924(0),0.1924(0) 0.2184(0),0.2772(0),0.2268(0)

Foxgood[6] N1 0.0104 (0),0.0308(2),0.0104 (0) 0.0704(0),0.0324(0),0.1192(2)

N2 0.0076 (0),0.0308 (3),0.0076(0) 0.0300(0),0.0308(0),0.0400(0)

Gravity[20] N1 0.0732(11),0.0232(0),0.0104(0) 0.1080(4),0.0596(0),0.0388(0)

N2 0.0176 (0),0.0220(0),0.0156(0) 0.0368(0),0.0580(0),0.0320(0)

Heat[50] N1 0.2160 (0),0.0440(0),0.0436(0) 0.3296(0),0.1232(0),0.1300(0)

N2 0.0680 (0),0.0404(0),0.0404(0) 0.0748(0),0.1124(0),0.1040(0)

I-Laplace[20] N1 0.1156 (0),0.1224(0),0.1028(0) 0.1964(0),0.1600(0),0.1584(0)

N2 0.1904 (0),0.2164(0),0.2020(0) 0.2128(0),0.2488(0),0.2488(0)

Phillips[30] N1 0.1036 (23),0.0240(0),0.0236(0) 0.0908(2),0.0276(0),0.0272(0)

N2 0.0204 (1),0.0240(0),0.0240(0) 0.0328(0),0.0248(0),0.0244(0)

Shaw[15] N1 0.1008(1),0.0596(0),0.0492(0) 0.1400(0),0.1680(0),0.1284(0)

N2 0.0536(0),0.0592(0),0.0476(0) 0.0636(0),0.1676(0),0.0672(0)

Blur(50,3,1)[200] N1 0.3280(0),0.2324(0),0.2308(0) 0.3540(0),0.3536(0),0.3536(0)

N2 0.2556 (0),0.1980(0), 0.1976(0) 0.3040(0),0.1776(0),0.1768(0)

Tomo[200] N1 0.6292 (0),0.3732(0),0.2768(0) 0.8228(0),0.3780(0),0.3808(0)

N2 0.6892 (0),0.3732(0),0.3748(0) 0.6424(0),0.1776(0),0.1768(0)

Table 3.1: General test for the L-curves: numerical results. In the 1D test

problems N1 = 100, N2 = 1000, ̺1 = 0.1%, ̺2 = 1%; in the 2D test problems

N1 = 900, N2 = 2500, ̺1 = 1%, ̺2 = 5%.

Curve method is by far the best in this case, not only because it gains the

better results in terms of the relative error (cf. the sums of the relative er-

rors for all possible seed = 1, ..., 25), but also because it is more stable with

respect to the parameter npt.

Concerning the number of failures of this example, the Standard L-Curve

fails in the 66% of the cases, the Residual L-Curve in the 24.7% and the Ap-

proximated Residual L-Curve only in the 1% of the cases. We also note that

for the Residual L-Curve and the Approximated Residual L-Curve methods

the results tend to improve for large values of npt.
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Test 2: results
npt:

∑
Rel. Err. (no. of failures) for kL, krL, kSR1

Gravity Heat Phillips
20: 0.44(19),0.13(0),0.09(0) 80: 3.39(25),0.31(0),0.30(0) 45: 1.91(25),0.49(22),0.04(0)

̺1 30: 0.49(22),0.13(0),0.06(0) 120: 1.50(25),0.31(0),0.30(0) 60: 0.87(25),0.40(18),0.04(0)

40: 0.85(25),0.13(0),0.06(0) 160: 1.73(25),0.31(0),0.30(0) 45: 0.76(25),0.40(18),0.04(0)

18: 0.36(10),0.20(0),0.13(0) 60: 3.47(25),0.39(0),0.36(0) 35: 1.25(25),0.60(25),0.05(0)

̺2 24: 0.33(7),0.20(0),0.10(0) 90: 1.47(19),0.39(0),0.36(0) 45: 0.59(25),0.60(25),0.05(0)

30: 0.54(17),0.19(0),0.13(0) 160: 1.61(22),0.36(0),0.36(0) 55: 0.63(25),0.60(25),0.05(0)

15: 0.46(6),0.27(0),0.19(0) 50: 2.33(25),0.42(0),0.39(0) 25: 1.23(25),0.60(25),0.07(0)

̺3 20: 0.18(0),0.27(0),0.19(0) 70: 1.94(23),0.40(0),0.39(0) 32: 0.95(25),0.60(25),0.07(0)

25: 0.43(4),0.27(0),0.19(0) 90: 1.46(4),0.39(0),0.39(0) 55: 0.51(23),0.60(25),0.07(0)

15: 0.32(0),0.55(0),0.28(0) 40: 3.72(25),0.88(0),0.75(0) 20: 1.30(25),0.61(5),0.60(5)

̺4 20: 0.35(0),0.55(0),0.28(0) 60: 1.55(0),0.88(0),0.46(0) 27: 0.49(2),0.61(5),0.53(2)

25: 0.60(4),0.55(0),0.28(0) 80: 1.61(0),0.88(0),0.45(0) 35: 0.56(8),0.61(5),0.53(2)

Table 3.2: Second test for the approximated Residual L-Curve Criterion:

numerical results with small values of δ.

3.4 SR2: Projected Data Norm Criterion

The diagonal matrix example and the observation of Section 3.1 suggest to

replace the classic threshold of the Discrepancy Principle ‖e‖ with the norm

of the projection of the noise onto the high frequency part of the spectrum.

However, in practice a direct computation of this quantity is impossible, be-

cause the noise is unknown (only information about its norm and its stocha-

stic distribution is usually available) and because the Ritz values are too

expensive to be calculated during the iteration.

To overcome these difficulties, we propose the following strategy, based on

the singular value decomposition of the matrix A.

Let A ∈ Mm,N(R), m ≥ N , rank(A) = N , let A = UΛV∗ be a SVD of

A and suppose that the singular values of A may be divided into a set of

large singular values λp ≤ ... ≤ λ1 and a set of N − p small singular values

λN ≤ ... ≤ λp+1, with λp+1 < λp. If the exact data b satisfy the Discrete

Picard condition, then the SVD coefficients |u∗
ib| are very small for i > p.
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Therefore, if

xTSVD
p :=

p
∑

j=1

u∗
jb

δ

λj
vj = VΛ†

pU
∗bδ, (3.14)

with Λ†
p being the pseudo inverse matrix of

Λp =

















λ1

...

λp

0

...

0

0 ... 0

















∈ Mm,N (R), (3.15)

then

‖bδ −AxTSVD
p ‖ = ‖U∗bδ −ΛV∗xTSVD

p ‖ = ‖U∗bδ −U∗
pb

δ‖
= ‖U∗

m−pb
δ‖ ∼ ‖U∗

m−pe‖,
(3.16)

where Up, Um−p ∈ Mm(R), depending on the column vectors ui of the ma-

trix U, are defined by (u1, ..,up, 0, .., 0) and (0, .., 0,up+1, ..,um) respectively.

The right-hand side is exactly the projection of the noise onto the high fre-

quency part of the spectrum, so we can interpret (3.16) as a relation between

the residual norm of the truncated singular value decomposition and this

quantity.

The equation (3.16) and the considerations of Section 3.1 suggest to calcu-

late the regularized solution xTSVD
p of the perturbed problem Ax = bδ u-

sing the truncated singular value decomposition, by stopping the iteration of

CGNE as soon as the residual norm becomes smaller than ‖bδ −AxTSVD
p ‖ =

‖U∗
m−pb

δ‖.
The following numerical simulation on 8 problems of P.C. Hansen’s Regula-

rization Tools confirms the statement above. We fix the dimension N = 1000,

̺ = 0.1% and the constant of the Discrepancy Principle τ = 1.001, run lsqr−b

with reorthogonalization for each problem with 25 different Matlab seeds and

compare the Discrepancy Principle solutions with those obtained by arresting

the iteration of CGNE at the first index such that the residual norm is lower
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Residual thresholds for stopping CGNE

Problem Avg. rel. err. CGNE

τ‖U∗
m−p♯

bδ‖ τδ Opt. err. τ‖U∗
m−p♯

e‖
Baart 0.1158 0.1158 0.1041 0.1158

Deriv2 0.1456 0.1517 0.1442 0.1459

Foxgood 0.0079 0.0079 0.0076 0.0079

Gravity 0.0129 0.0144 0.0111 0.0124

Heat 0.0228 0.0281 0.0225 0.0228

I−Laplace 0.1916 0.1952 0.1870 0.1898

Phillips 0.0078 0.0087 0.0075 0.0086

Shaw 0.0476 0.0476 0.0440 0.0480

Table 3.3: Comparison between different residual norm thresholds for stop-

ping CGNE, with p as in 3.17.

or equal to τ‖U∗
m−p♯

bδ‖, with p♯ minimizing the error of the truncated sin-

gular value decomposition:

‖xTSVD
p♯

− x†‖ = min
j

‖xTSVD
j − x†‖. (3.17)

The results, summarized in Table 3.3, show that this gives an extremely

precise solution in a very large number of cases. Moreover, the corresponding

stopping index is equal to k♯ (the optimal stopping index of CGNE) in the

53% of the considered examples.

In the table, we also consider the results obtained by arresting the iteration

when the residual norm is lower or equal to τ‖U∗
m−p♯

e‖. As a matter of

fact, the residual norm corresponding to the optimal stopping index is very

well approximated by this quantity in the large majority of the considered

examples.

Performing the same simulation with the same parameters except for ̺ = 1%

leads to similar results: the method based on the optimal solution of the

TSVD obtains the better performance in 86 cases on 200 and the worse

performance only 24 times and in a very large number of examples (45%) its

stopping index is equal to k♯.

These considerations justify the following heuristic stopping rule for CGNE.
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Definition 3.4.1 (Projected Data Norm Criterion). Let zδk be the ite-

rates of CGNE for the perturbed problem

Ax = bδ. (3.18)

Let A = UΛV∗ be a SVD of A. Let p be a regularization index for the

TSVD relative to the data bδ and to the matrix A and fix τ > 1. Then stop

CGNE at the index

kSR2 := min{k ∈ N | ‖bδ −Azδk‖ ≤ τ‖U∗
m−pb

δ‖}. (3.19)

3.4.1 Computation of the index p of the SR2

Obviously, in practice the optimal index of the truncated singular value de-

composition is not available, since the exact solution is unknown. However,

for discrete ill-posed problems it is well known that a good index can be

chosen by analyzing the plot of the SVD coefficients |ui
∗bδ| of the perturbed

problem Ax = bδ. The behavior of the SVD coefficients in the case of white

Gaussian noise given by e ∼ N(0, ν2Im), ν > 0, is analyzed by Hansen in

[36]: as long as the unperturbed data b satisfy the discrete Picard condition,

the coefficients |u∗
ib| decay on the average to 0 at least as fast as the singular

values λi. On the other hand, the coefficients |u∗
ib

δ| decay, on the average,

only for the first small values of i, because for large i the noisy components

u∗
i e dominate, thus after a certain critical index ibδ they begin level off at

the level

E(u∗
i e) = ν. (3.20)

To compute a good index p for the truncated singular value decomposition,

one must also consider machine errors if the last singular values are very

small: as pointed out in [36], pg. 70 − 71, the number of terms that can be

safely included in the solution is such that:

p ≤ min{iA, ibδ}, (3.21)

where iA is the index at which λi begin to level off and ibδ is the index at

which |u∗
ib

δ| begin to level off. The value iA is proportional to the error
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Figure 3.5: Plot of the singular values λi (blue cross), of the SVD coefficients

|u∗
ib

δ| (red diamond) and of the ratios |u∗
ib

δ|/λi (green circle) of 2 different

test problems with perturbed data: ̺ = 0.1%, seed = 0.

present in the matrix A (i.e. model error) while the value ibδ is proportional

to the errors present in the data bδ (i.e. noise error). Although very often

a visual inspection of the plot of the coefficients in a semi-logarithmic scale

is enough to choose the index p, defining an algorithm to compute the index

p automatically is not easy, because the decay of the SVD coefficients may

not be monotonic and indeed is often affected by outliers (cf. Figure 3.5).

A rule based on the moving geometric mean has been proposed in [32] and

implemented in the file picard.m of [35]. Here we suggest to use the Modified

Min−Max Rule, defined in Section C.4 of the Appendix.

3.5 SR2: numerical experiments

We test the stopping rule of Definition 3.4.1 in 4000 different examples. For

each of 8 test problems we choose 2 values of N , 10 values of ̺ and 25 values

of seed. We compare the results obtained by the stopping index kSR2 with

those obtained by the Discrepancy Principle. In Table 3.4 we summarize the

main results of the test.
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Numerical test for SR2

Problem Dim Avg. rel. err. CGNE Failures kSR2 vs. kD (kSR2 = k♯)

kSR2 kD k♯ εSR2 >5(10)ε♯

Baart 100 0.1742 0.1750 0.1469 0(0) 20,201,29 (135)

Baart 1000 0.1612 0.1586 0.1357 0(0) 8,234,8 (89)

Deriv2 100 0.3533 0.2352 0.2242 7(1) 100,11,139 (60)

Deriv2 1000 0.2596 0.1992 0.1874 9(0) 146,32,72 (57)

Foxgood 100 0.0390 0.0312 0.0232 7(1) 41,146,63 (130)

Foxgood 1000 0.0267 0.0270 0.0166 4(0) 14,226,10 (96)

Gravity 100 0.0332 0.0349 0.0276 0(0) 146,24,80 (115)

Gravity 1000 0.0236 0.0256 0.0192 0(0) 81,163,6 (67)

Heat 100 0.1065 0.0921 0.0803 0(0) 148,4,98 (62)

Heat 1000 0.0530 0.0598 0.0476 0(0) 215,14,21 (79)

I-laplace 100 0.1360 0.1370 0.1242 0(0) 91,116,43 (114)

I-laplace 1000 0.2140 0.2134 0.2004 0(0) 84,122,44 (13)

Phillips 100 0.0311 0.0244 0.0215 0(0) 97,15,138 (74)

Phillips 1000 0.0183 0.0200 0.0156 0(0) 138,102,10 (74)

Shaw 100 0.0890 0.0973 0.0760 0(0) 96,112,42 (82)

Shaw 1000 0.0724 0.0635 0.0520 0(0) 22,168,60 (53)

Table 3.4: Comparison between the numerical results obtained by kSR2, kD

and the optimal index k♯.

The constant τ , chosen equal to 1.001 when N = 100 and equal to 1.005

when N = 1000, is always the same for kSR2 and kD. The columns 3, 4 and 5

of the table collect the average relative errors for all values of ̺ = 10−3, 2×
10−3, ..., 10−2 and seed = 1, ..., 25 obtained by kSR2, kD and k♯ respectively.

The column 6 contains the number of times the relative error corresponding

to kSR2, denoted by εSR2, is larger than 5(10) times the optimal error ε♯. The

numbers in the last column count how many times εSR2 > εD, how many

times εSR2 = εD and how many times εSR2 < εD respectively. Finally, the

fourth number in round brackets counts how many times εSR2 = ε♯.

The results clearly show that the stopping rule is very reliable for discrete ill-

posed problems of medium size. It is remarkable that in the 4000 examples

considered it failed (that is, εSR2 > 10ε♯) only twice (cf., e.g., the results



116 3. New stopping rules for CGNE

obtained by the heuristic stopping rules in [77], Table 2). Moreover, in many

cases it even improves the results of the Discrepancy Principle, which is based

on the knowledge of the noise level.

3.6 Image deblurring

One of the most famous applications of the theory of ill-posed problems is

to recover a sharp image from its blurry observation, i.e. image deblurring.

It frequently arises in imaging sciences and technologies, including optical,

medical, and astronomical applications and is crucial for allowing to detect

important features and patterns such as those of a distant planet or some

microscopic tissue.

Due to its importance, this subject has been widely studied in literature:

without any claim to be exhaustive, we point out at some books [10], [38],

[48], [100], or chapters of books [4], [96] dedicated to this problem.

In most applications, blurs are introduced by three different types of physical

factors: optical, mechanical, or medium-induced, which could lead to familiar

out-of-focus blurs, motion blurs, or atmospheric blurs respectively. We refer

the reader to [10] for a more detailed account on the associated physical

processes.

Mathematically, a continuous (analog) image is described by a nonnegative

function f = f(x) on R2 supported on a (rectangular) 2D domain Ω and the

blurring process is either a linear or nonlinear operator K acting on the some

functional space. Since we shall focus only on linear deblurring problems, K

is assumed to be linear.

Among all linear blurs, the most frequently encountered type is the shift

invariant blur, i.e. a linear blur K = K[f ] such that for any shift vector y ∈
R2,

g(x) = K [f(x)] =⇒ g(x− y) = K [f(x− y)] ,x ∈ Ω. (3.22)
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It is well known in signal processing as well as system theory [72] that a

shift-invariant linear operator must be in the form of convolution:

g(x) = K[f ](x) = κ ∗ f(x) =
∫

Ω

κ(x− y)f(y)dy, (3.23)

for some suitable kernel function κ(x), or the point spread function (PSF).

The function g(x) is the blurred analog image that is converted into a digital

image through a digitalization process (or sampling).

A digital image is typically recorded by means of a CCD (charge-coupled

device), which is an array of tiny detectors (potential wells), arranged in a

rectangular grid, able to record the amount, or intensity, of the light that

hits each detector.

Thus, a digital grayscale image

G = (gj,l), j = 1, ..., J, l = 1, ..., L (3.24)

is a rectangular array, whose entries represent the (nonnegative) light inten-

sities captured by each detector.

The PSF is described by a matrix H = (hj,l) of the same size of the image,

whose entries are all zero except for a very small set of pixels (j, l) distributed

around a certain pixel (jc, lc) which is the center of the blur. Since we are

assuming spatial invariant PSFs, the center of the PSF corresponds to the

center of the 2D array.

In some cases the PSF can be described analytically and H can be con-

structed from a function, rather than through experimentation (e.g. the

horizontal and vertical motion blurs are constructed in this way).

In other cases, the knowledge of the physical process that causes the blur

provides an explicit formulation of the PSF. In this case, the elements of

the PSF array are given by a precise mathematical expression: e.g. the

out-of-focus blur is given by the formula

hj,l =

{
1

πr2
if (j − jc)

2 + (l − lc)
2 ≤ r2,

0 otherwise,
(3.25)
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where r > 0 is the radius of the blur.

For other examples, such as the blur caused by atmospheric turbulence or

the PSF associated to an astronomical telescope, we refer to [38] and the

references therein.

As a consequence of the digitalization process, the continuous model de-

scribed by (3.23) has to be adapted to the discrete setting as well. To do

this, we consider first the 1D case

g(t) =

∫

κ(t− s)f(s)ds. (3.26)

To fix the ideas, we assume that J is even and that the function f(s) is

defined in the interval [−J−1
2
, J−1

2
]. Let

sj = −J − 1

2
+ j − 1, j = 1, ..., J (3.27)

be the J points in which the interval is subdivided and discretize κ and f

in such a way that κ(s) = κ(sj) = hj if |s − sj | < 1
2
or s = sj +

1
2
and

analogously for κ. Approximating (3.26) with the trapezoidal rule

g(t) ∼=
J∑

j′=1

κ(t− sj′)f(sj′) (3.28)

and recomputing in the points sj, we obtain the components of the discretized

version g of the function g:

gj =

J∑

j′=1

κ(sj − sj′)f(sj′), j = 1, ...J. (3.29)

As a consequence of the assumptions we have made, (3.29) can be rewritten

into

gj =
J∑

j′=1

hj−j′+J
2
fj′, j = 1, ...J, (3.30)

which is the componentwise expression of the discrete convolution between

the column vectors h = (hj) and f = (fj). We observe that some terms in

the sum in the right-hand side of (3.30) may be not defined: this happens
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because the support of the convolution between κ and f is larger than the

supports of κ and f . The problem is solved by extending the vector h to the

larger vector

h̃ =

















h−J
2
+1

...

h0

h

hJ+1

...

hJ+J
2

















, hj = hj+J , j = −J
2
+ 1, ...,

J

2
(3.31)

and substituting h with h̃ in (3.30), which is equivalent to extend κ periodi-

cally on the real line. The convolution (3.30) may also be expressed in the

form

g = Af , A = (ai,j), ai,j = hi−j+J
2
, i, j = 1, ..., J. (3.32)

In the 2D case, proceeding in an analogous way, we get

gj,l =
J∑

j′=1

L∑

l′=1

hj−j′+J
2
,l−l′+L

2
fj′,l′. (3.33)

The equation above (3.33) is usually written in the form

G = H ∗ F, (3.34)

where G, H and F are here matrices in MJ,L(R). If g and f are the column

vectors obtained by concatenating the columns of G and F respectively, then

(3.34) can be rewritten in the form

g = Af . (3.35)

In the case of an image f with 1024 × 1024 pixels, the system (3.35) has

then more than one million unknowns. For generic problems of this size,

the computation of the singular value decomposition is not usually possible.
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However, if we set N := JL, then A ∈ MN(R) is a circulant matrix with

circulant blocks (BCCB). It is well known (cf. e.g. [4] or [38]) that BCCB

matrices are normal (that is, A∗A = AA∗) and that may be diagonalized by

A = Φ∗ΛΦ, (3.36)

where Φ is the two-dimensional unitary matrix unitary Discrete Fourier

Transform (DFT) matrix.

We recall that the DFT of a vector z ∈ CN is the vector ẑ whose components

are defined by

ẑj =
1√
N

N∑

j′=1

zj′e
−2πı(j′−1)(j−1)/N (3.37)

and the inverse DFT of a vector w ∈ CN is the vector w̃, whose components

are calculated via the formula

w̃j =
1√
N

N∑

j′=1

wj′e
2πı(j′−1)(j−1)/N . (3.38)

The two-dimensional DFT of a 2D array can be obtained by computing the

DFT of its columns, followed by a DFT of its rows. A similar approach is

used for the inverse two-dimensional DFT. The DFT and inverse DFT com-

putations can be written as matrix-vector multiplication operations, which

may be computed by means of the FFT algorithm, see e.g. [12], [94] and

Matlab’s documentation on the routines fft, ifft, fft2 and ifft2. In general, the

speed of the algorithms depends on the size of the vector x: they are most

efficient if the dimensions have only small prime factors. In particular, if N

is a power of 2, the cost is N log2(N).

Thus, matrix-vector multiplications withΦ andΦ∗ may be performed quickly

without constructing the matrices explicitly and since the first column of Φ

is the vector of all ones scaled by the square root of the dimension, denoting

with a1 and φ1 the first column of A and Φ respectively, it follows that

Φa1 = Λφ1 =
1√
N
λ, (3.39)
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where λ is the column vector of the eigenvalues of A.

As a consequence, even in the 2D case, the spectral decomposition of the

matrix A can be calculated with a reasonable computational effort, so it is

possible to apply the techniques we have seen in Chapter 3 for this particular

problem. In particular, we shall be able to compute the SVD coefficients

(Fourier coefficients) |φ∗
jg| and the ratios |φ∗

jg|/λj, and arrest the CGNE

method according to the stopping rule of Definition 3.4.1.

Moreover, when the spectral decomposition of A is known, matrix-vector

multiplications can be performed very efficiently in Matlab using the DFT.

For example, as shown in [38], given the PSF matrix H and an image F:

• to compute the eigenvalues of A, use

S = fft2(fftshift(H)); (3.40)

• to compute the blurred image G = H ∗ F, use3

G = real(ifft2(H⊚ fft2(F))). (3.41)

3.7 SR3: Projected Noise Norm Criterion

In this section we define an a-posteriori stopping rule, based on a statistical

approach, suited mainly for large scale problems. The aim is again to ap-

proximate the norm of the projection of the noise onto the high frequency

components

‖U∗
m−pe‖, (3.42)

where p ≥ 0 is the number of the low frequency components of the problem.

We assume that p can be determined by means of an algorithm: for example,

in the case of image deblurring, the algorithm of Section 3.4 can be applied.

We simply consider a modified version of the Discrepancy Principle with δ

replaced by the expected value of ‖U∗
m−pe‖:

3the operation ⊚ is the componentwise multiplication of two matrices.
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Definition 3.7.1 (Projected Noise Norm Criterion). Suppose the ma-

trix A ∈ Mm,N (R) has m − p noise-dominated SVD coefficients. Fix τ > 1

and stop the iteration of CGNE as soon as the norm of the residual is lower

or equal to τ δ̄ with δ̄ := δ
√

(m− p)/m:

kSR3 := min{k ∈ N | ‖Azδk − bδ‖ ≤ τ δ̄}. (3.43)

Note that the definition does not require a SVD of the matrix A, but

only a knowledge about p.

The following result provides a theoretical justification for the definition

above: if m is big, with high probability δ̄ is not smaller than ‖U∗
m−pe‖.

Theorem 3.7.1. Let ǫ1 > 0 and ǫ2 > 0 be small positive numbers and let α

∈ (0, 1/2). Then there exists a positive integer m̄ = m̄(ǫ1, ǫ2, α) such that for

every m > m̄ the estimate

P
(
‖U∗

m−pe‖2 − ǫ1 > δ̄2
)
≤ ǫ2 (3.44)

holds whenever the following conditions are satisfied:

(i) p ≤ αm;

(ii) e ∼ N (0, ν2Im), ν > 0;

(iii) δ2 = ‖e‖2.

Before proving the theorem, a few remarks:

• The theorem is based on the simple idea that if e ∼ N (0, ν2Im), then

U∗e has the same distribution: this argument fails if the perturbation

has a different distribution!

• In principle it is possible, but maybe hard, to calculate m̄ in terms of

ǫ1, ǫ2 and α. For this reason we do not recommend this stopping rule

for the small and medium size problems of Section 3.4.
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• The assumption on p restricts the validity of the statement: luckily

enough, in most cases p is small with respect to m. When this does

not happen (p >> m/2), the choice p = m/2 should improve the

performances anyway.

Proof. Fix ǫ1 > 0, ǫ2 > 0 and α ∈ (0, 1/2). Let A = UΛV∗ be an SVD of

A and let p ∈ {1, ..., m − 1}. We observe that if e ∼ N (0, ν2Im), ν > 0,

then U∗e ∼ N (0, ν2Im), so U∗
m−pe ∼ (0, ..., 0, ep+1, ..., em). Thus, if p, e and

δ satisfy (i), (ii) and (iii) respectively, there holds:

P

(

‖U∗
m−pe‖2 −

δ2(m− p)

m
> ǫ1

)

= P

(
m∑

i=p+1

e2i −
δ2(m− p)

m
> ǫ1

)

.

(3.45)

For 0 < t < min{1/(2pν2)}, Markov’s inequality and our assumptions (ii)

and (iii) yield

P

(
m∑

i=p+1

e2i −
δ2(m− p)

m
> ǫ1

)

= P

(

p

m∑

i=p+1

e2i − (m− p)

p
∑

i=1

e2i > mǫ1

)

= P

(

exp

[

t

(

p
m∑

i=p+1

e2i − (m− p)

p
∑

i=1

e2i

)]

> exp[tmǫ1]

)

≤ exp[−tmǫ1]E
(

exp

[

t

(

p
m∑

i=p+1

e2i −
p
∑

i=1

e2i

)])

= exp[−tmǫ1](1− 2tsν2)−
m−p

2 (1 + 2t(m− p)ν2)−
p
2 ,

(3.46)

where in the last equality we have used the assumption (ii) and the fact that

if X is a random variable with gaussian distribution X ∼ N (0, ν2), then, for

every a < 1/(2ν2),

E(exp[aX2]) = (1− 2aν2)−
1
2 . (3.47)

Putting w := 2tν2 the right-hand side of (3.46) can be rewritten as

exp

[−mǫ1w
2ν2

]

(1− sw)−
m−p

2 (1 + (m− p)w)−
p
2 . (3.48)
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If p ≤ √
m, the expression above can be made < ǫ2 choosing w close enough

to 1/p for all m sufficiently large. On the other hand, if
√
m < p ≤ αm and

w = o( 1
m
), a Taylor expansion of the second and the third factor gives

exp

[

−mǫ1w
2ν2

+
m− p

2
(sw +

p2w2

2
+O(p3w3))

−p
2

(

(m− p)w +
(m− p)2w2

2
+O((m− p)3w3)

)]

= exp

[

−mǫ1w
2ν2

− p(m− p)(m− 2p)w2

4
(1 + o(1))

]

,

(3.49)

thus it is possible to choose w (e.g., w ≈ 1/(mp1/4)) in such a way that the

last expression can be made arbitrarily small for all m sufficiently large.

Summing up, we have proved that there exists m̄ ∈ N such that for allm > m̄

and for all p < αm there holds

inf{t > 0 | exp[−tmǫ1](1− 2tsν2)−
m−p

2 (1 + 2t(m− p)ν2)−
p
2} ≤ ǫ2 (3.50)

and according to (3.45) and (3.46) this completes the proof.

3.8 Image deblurring: numerical experiments

This section is dedicated to show the performances of the stopping rules SR2

and SR3 (with p as in the SR2) for the case of image deblurring.

In all examples below, we are given an exact image F and a PSF H. Assu-

ming periodic boundary conditions on the matrix A corresponding to H and

perturbing G := H∗F with white gaussian noise, we get a blurred and noisy

image Gδ = G + E, where E ∈ MJ(R) is the noise matrix. The problem

fits the framework of Section 3.6: as a consequence, the singular values and

the Fourier coefficients are computed by means of the 2D Discrete Fourier

Transform fft2 using the routine fou−coeff from the Appendix. The stopping

rules SR2 and SR3 can be applied with δ = ‖e‖ = ‖gδ − Af‖, where the

vectors e, gδ and f are the columnwise stacked versions of the matrices E,

Gδ and F respectively.
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(b) Perturbed image: stdev = 2.0, ̺ = 1.0%.

Figure 3.6: The exact data F and a perturbed data Gδ for the gimp test

problem.

We fix τ = 1.001, run cgls−deb, a modified version of the function cgls from

the Regularization Tools and compare the results obtained by the Discrep-

ancy Principle, SR2 and SR3 with the optimal solution.

3.8.1 Test 1 (gimp test problem)

The dimension of the square matrix F ∈ MJ(R) corresponding to the image

gimp.png, shown on the left in Figure 3.6, is given by J = 200. The algorithm

blurring, described in the Appendix, generates a Gaussian PSF H and a

blurred and noisy image.

We consider different values for the standard deviation of the Gaussian PSF

and for the noise level, and compare the results obtained by stopping CGNE

with the discrepancy principle, SR2 and SR3.

We underline that in almost all the considered problems the computation of

the index p of the stopping rule SR2 is made using only the first N/2 = J2/2

Fourier coefficients, to spare time in the minimization process of the function

mod−min−max. When stdv = 1.0 and ̺ = 0.1, 0.5, all the Fourier coefficients

are used, since in these cases they are necessary for calculating a good value
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CGNE results for the gimp test problem

stdev ̺ Relative error (stopping index)

Discr. Princ. SR2 SR3 Opt. Sol.

3.0 0.1% 0.2104(154) 0.2082(196) 0.2053(313) 0.2048(348)

3.0 0.5% 0.2257(49) 0.2259(48) 0.2194(86) 0.2182(112)

3.0 1.0% 0.2331(34) 0.2286(45) 0.2264(61) 0.2261(68)

3.0 5.0% 0.2733(13) 0.3079(7) 0.2613(17) 0.2583(22)

2.0 0.1% 0.1265(144) 0.1703(61) 0.1196(213) 0.1167(310)

2.0 0.5% 0.1846(36) 0.1762(54) 0.1612(96) 0.1599(109)

2.0 1.0% 0.1962(20) 0.1962(20) 0.1878(36) 0.1849(53)

2.0 5.0% 0.2199(7) 0.2228(6) 0.2160(9) 0.2149(11)

1.0 0.1% 0.0442(45) 0.0419(50) 0.0350(68) 0.0344(92)

1.0 0.5% 0.0725(15) 0.0652(22) 0.0636(28) 0.0636(28)

1.0 1.0% 0.0865(9) 0.0797(13) 0.0781(15) 0.0780(16)

1.0 5.0% 0.1244(4) 0.1435(3) 0.1194(5) 0.1194(5)

Table 3.5: Comparison between different stopping rules of CGNE for the

gimp problem.

of p.

The numerical results of Table 3.5 show that the a-posteriori stopping rule

SR3 always finds a relative error lower than that obtained by the Discrepancy

Principle. The heuristic stopping rule SR2 gives very good results apart

from some cases where it provides an over-regularized solution. Since the

performance of SR3 is excellent here and changing the Matlab seed does

not make things significantly different (i.e. the statistical approximation of

‖U∗
m−pe‖ seems to be very solid in such a large-size problem), we deduce

that the approximation of the residual norm of the TSVD solution with the

norm of the projection of the noise onto the high frequency components

‖gδ −AfTSVD
p ‖ ∼ ‖U∗

m−pe‖

is not very appropriate in these cases.
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(b) Perturbed image: stdev = 2.0, ̺ = 1.0%.

Figure 3.7: The exact data F and a perturbed data Gδ for the pirate test

problem.

3.8.2 Test 2 (pirate test problem)

The image pirate.tif, shown on the left in Figure 3.7, has a higher resolution

than gimp.png: J = 512.

We proceed as in the gimp test problem, but with a few variations:

• instead of the values 1.0, 2.0, 3.0 for the stdev we consider the values

3.0, 4.0, 5.0;

• To compute the index p of the stopping rules SR2 and SR3, instead of

considering the first N/2 ratios ϕi = |φ∗
ig

δ|/λi, we take only the first

N/4. Moreover, in the computation of the curve that approximates

the ϕi, we use the function data−approx with only ⌊N/200⌋ inner knots
(instead of ⌊N/50⌋).

The results, summarized in Table 3.6, show that both SR2 and SR3 give

excellent results, finding a relative error lower than the Discrepancy Principle

in almost all cases. The phenomenon observed in the gimp test problem

concerning SR2 appears to be much more attenuate here.
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CGNE results for the pirate test problem

stdev ̺ Relative error (stopping index)

Discr. Princ. SR2 SR3 Opt. Sol.

5.0 0.1% 0.1420(171) 0.1420(170) 0.1384(330) 0.1375(484)

5.0 0.5% 0.1524(49) 0.1519(52) 0.1481(90) 0.1472(122)

5.0 1.0% 0.1579(29) 0.1551(40) 0.1529(57) 0.1524(69)

5.0 5.0% 0.1746(9) 0.1746(9) 0.1697(14) 0.1686(18)

3.0 0.1% 0.1076(104) 0.1051(153) 0.1032(233) 0.1029(280)

3.0 0.5% 0.1187(31) 0.1161(42) 0.1141(61) 0.1140(69)

3.0 1.0% 0.1251(18) 0.1251(18) 0.1204(31) 0.1198(39)

3.0 5.0% 0.1425(6) 0.1405(7) 0.1385(9) 0.1382(10)

4.0 0.1% 0.1268(142) 0.1260(158) 0.1226(290) 0.1219(397)

4.0 0.5% 0.1379(40) 0.1408(29) 0.1343(65) 0.1329(98)

4.0 1.0% 0.1432(24) 0.1418(28) 0.1389(43) 0.1385(53)

4.0 5.0% 0.1591(8) 0.1566(10) 0.1549(13) 0.1547(14)

Table 3.6: Comparison between different stopping rules of CGNE for the

pirate test problem.

3.8.3 Test 3 (satellite test problem)

CGNE results for the satellite problem

Discr. Princ. SR2 SR3 Opt. Sol.

Stopping index 23 34 28 34

Relative Error 0.3723 0.3545 0.3592 0.3545

Table 3.7: Comparison between different stopping rules of CGNE for the

satellite problem.

The data for this example were developed at the US Air Force Phillips

Laboratory and have been used to test the performances of several available

algorithms for computing regularized nonnegative solutions, cf. e.g. [29] and

[5]. The data consist of an (unknown) exact gray-scale image F, a space

invariant point spread function H and a perturbed version Gδ of the blurred

image G = H ∗ F, see Figure 3.8. All images F, H and Gδ are 256 × 256
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Figure 3.8: The exact data F and the perturbed data Gδ for the satellite

problem.

matrices with nonnegative entries.

The results, gathered in Table 3.7 show that both SR2 and SR3 improve the

results of the Discrepancy Principle in this example and the stopping index

of SR2 coincides with the optimal stopping index k♯.

3.8.4 The new stopping rules in the Projected Restarted

CGNE

These stopping rules may work very well also when CGNE is combined with

other regularization methods. To show this, we consider CGNE as the inner

iteration of the Projected Restarted Algorithm from [5]. Using the notations

of Chapter 2, it is a straightforward exercise to prove that Algorithm 1 of [5]

is equivalent to the following scheme:

• Fix f̃ (0) = f (0) = 0 and i = 0.

• For every i = 0, 1, 2, ..., if f (i) does not satisfy the Discrepancy Principle

(respectively, SR2, SR3), compute f̃ (i+1) as the regularized solution of

CGNE applied to the system Af = gδ with initial guess f̃ (i) arrested
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Projected restarted CGNE with discrepancy principle
outer step:20
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(a) Discrepancy principle: rel. err. 0.3592.

Projected restarted CGNE solution with SR2
outer step: 20
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(b) SR2: rel. err. 0.3302.

Figure 3.9: The solutions of the satellite problem reconstructed by the Pro-

jected Restarted CGNE algorithm at the 20-th outer step.

with the Discrepancy Principle (respectively, SR2, SR3) and define

f (i+1) as the projection of f̃ (i+1) onto the set W of nonnegative vectors

W :=
{
f ∈ RN | f ≥ 0

}
. (3.51)

• Stop the iteration as soon as f (i) satisfies the Discrepancy Principle

(respectively, SR2, SR3) or a prefixed number of iteration has been

carried out.

An implementation of this scheme for the satellite test problem with τ =

1.001 leads to the results of Table 3.8. The relative errors obtained by ar-

resting CGNE according to SR2 and SR3 are smaller than those obtained

by means of the Discrepancy Principle. We underline that the relative er-

rors of the stopping rule SR2 are even lower than those obtained in [5] with

RRGMRES instead of CGNE. The regularized solutions obtained by this

projected restarted CGNE with the Discrepancy Principle and SR2 as stop-

ping rules at the 20-th outer iteration step are shown in Figure 3.9.
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Projected Restarted CGNE results for the satellite problem

Discr. Princ. SR2 SR3

2 outer steps total CGNE steps 27 45 33

Relative Error 0.3644 0.3400 0.3499

5 outer steps total CGNE steps 37 74 47

Relative Error 0.3614 0.3347 0.3465

10 outer steps total CGNE steps 46 108 64

Relative Error 0.3601 0.3321 0.3446

20 outer steps total CGNE steps 57 162 86

Relative Error 0.3592 0.3302 0.3432

50 outer steps total CGNE steps 60 274 120

Relative Error 0.3590 0.3290 0.3422

200 outer steps total CGNE steps 60 532 129

Relative Error 0.3590 0.3286 0.3420

Table 3.8: Comparison between different stopping rules of CGNE as inner

iteration of the Projected restarted algorithm for the satellite problem.
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Chapter 4

Tomography

The term tomography is derived from the Greek word τoµos, slice. It stands

for a variety of different techniques for imaging two-dimensional cross sections

of three-dimensional objects. The impact of these techniques in diagnostic

medicine has been revolutionary, since it has enabled doctors to view internal

organs with unprecedented precision and safety to the patient. We have

already seen in the first Chapter that these problems can be mathematically

described by means of the Radon Transform. The aim of this chapter is to

analyze the main properties of the Radon Transform and to give an overview

of the most important algorithms.

General references for this chapter are [19], [68], [69] and [43].

4.1 The classical Radon Transform

In this section we provide an outline of the main properties of the Radon

Transform over hyperplanes of RD. An hyperplane H of RD can be repre-

sented by an element of the unit cylinder

C
D := {(θ, s) | θ ∈ SD−1, s ∈ R}, (4.1)

via the formula

H(θ, s) = {x ∈ RD | 〈x, θ〉 = s}, (4.2)

133
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where 〈·, ·〉 denotes the usual euclidean inner product of RD and where we

identify H(−θ,−s) with H(θ, s). We denote the set of all hyperplanes of RD

with

ΞD := C
D/Z2, (4.3)

and define the Radon Transform of a rapidly decreasing function f ∈ S(RD)

as its integral on H(θ, s):

R[f ](θ, s) :=

∫

H(θ,s)

f(x)dµH(x), (4.4)

where µH(x) is the Lebesgue measure on H(θ, s).

Much of the theory of the Radon Transform is based on its behavior under

the Fourier Transform and convolution. We recall that the Fourier Transform

of a function f ∈ L1(RD) is given by

f̂(y) = F (f)(y) = (2π)−D/2

∫

RD

f(x)e−ı〈x,y〉dx, y ∈ RD. (4.5)

Observing that the exponential e−ı〈x,y〉 is constant on hyperplanes orthogonal

to y, an important relation between the Fourier and the Radon Transform

is obtained integrating (4.5) along such hyperplanes. Explicitly, we write

y = ξθ for ξ ∈ R and θ ∈ SD−1 to get the famous Projection-Slice Theorem:

f̂(ξθ) = (2π)−D/2

∫

R

∫

H(θ,s)

f(x)e−ıξ〈x,θ〉dµH(x)ds

= (2π)−D/2

∫

R

(∫

H(θ,s)

f(x)dµH(x)

)

e−ısξds

= (2π)−D/2

∫

R

R[f ](θ, s)e−ısξds.

(4.6)

This immediately implies that the operator R is injective on S(RD) (but also

on larger spaces, e.g. on L1(RD)).

Moreover, let us introduce the space of Schwartz-class functions on ΞD. We

say that a function f ∈ C∞(CD) belongs to S(CD) if for every k1,k2 ∈ N0 we

have

sup
(θ,s)

(1 + |s|)k1
∣
∣
∣
∣

∂k2

∂sk2
f(θ, s)

∣
∣
∣
∣
< +∞.
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The space S(ΞD) is the space of the even functions in S(CD), i.e. f(θ, s) =

f(−θ,−s). The Partial Fourier Transform of a function f ∈ S(ΞD) is its

Fourier Transform in the s variable:

f(θ, s) 7→ f̂(θ, ξ) = F (s 7→ f(θ, s)) (ξ) =

∫

R

f(θ, s)e−ıξsds. (4.7)

On ΞD, we understand the convolution as acting on the second variable as

well:

(g ∗ h)(θ, s) =
∫

R

g(θ, s− t)h(t)dt. (4.8)

The Partial Fourier Transform maps S(CD) into itself and S(ΞD) into itself

and the Projection-Slice Theorem states that the Fourier Transform of f

∈ S(RD) is the Partial Fourier Transform of its Radon Transform. For f ∈
S(RD), if we change to polar coordinates (θ, s) 7→ sθ in RD, a straightforward

application of the chain rule shows that its Fourier Transform lies in S(CD).

By the Projection-Slice Theorem then

R : S(RD) −→ S(ΞD). (4.9)

Another consequence of the Projection-Slice Theorem is that the Radon

Transform preserves convolutions, in the sense that for every f and g ∈
S(RD) the following formula holds:

R(f ∗ g)(θ, s) =
∫

R

R[f ](θ, s− t)R[g](θ, t)dt. (4.10)

We now introduce the backprojection operator R∗ by

R
∗[g](x) =

∫

SD−1

g(θ, 〈x, θ〉)dθ, g ∈ S(ΞD). (4.11)

For g = Rf , R∗[g](x) is the average of all hyperplane integrals of f through

x. Mathematically speaking, R∗ is simply the adjoint of R: for φ ∈ S(R)
and f ∈ S(RD), there holds

∫

R

φ(s)R[f ](θ, s)ds =

∫

RD

φ(〈x, θ〉)f(x)dx (4.12)
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and consequently for g ∈ S(ΞD) and f ∈ S(RD)

∫

SD−1

∫

R

g(Rf)dθds =

∫

RD

(R∗g)fdx. (4.13)

A more general approach for studying the Radon Transform leading to the

same result can be found in the first chapters of [19].

The following result is the starting point for the Filtered Backprojection

algorithm, which will be discussed later.

Theorem 4.1.1. Let f ∈ S(RD) and υ ∈ S(ΞD). Then1

R
∗(υ ∗ Rf) = (R∗υ) ∗ f. (4.14)

Proof. For any x ∈ RD, we have

R
∗(υ ∗ Rf)(x) =

∫

SD−1

(∫

R

υ(θ, 〈θ,x〉 − s)R[f ](θ, s)ds

)

dθ

=

∫

SD−1

(∫

R

υ(θ, 〈θ,x〉 − s)

(∫

H(θ,s)

f(y)dµH(y)

)

ds

)

dθ

=

∫

SD−1

(∫

RD

υ(θ, 〈θ,x− y〉)f(y)dy
)

dθ

=

∫

RD

(∫

SD−1

υ(θ, 〈θ,x− y〉)dθ
)

f(y)dy

=

∫

RD

R
∗υ(x− y)f(y)dy

= ((R∗υ) ∗ f)(x).
(4.15)

4.1.1 The inversion formula

We are now ready to derive the inversion formula for the Radon Transform.

The proof is basically taken from [19], but here, apart from the different

notations and definitions, some small errors in the resulting constants have

1Note the different meaning of the symbol ∗ in the formula!
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been corrected. We state the general theorem exactly as in [69].

We start from the inversion formula of the classical Fourier Transform in RD

(2π)D/2f(x) =

∫

RD

f̂(y)eı〈x,y〉dy (4.16)

and switch to polar coordinates y = ξθ, obtaining

(2π)D/2f(x) =

∫

SD−1

∫ +∞

0

f̂(ξθ)eıξ〈x,θ〉ξD−1dξdθ

=
1

2

∫

SD−1

∫ +∞

0

f̂(ξθ)eıξ〈x,θ〉ξD−1dξdθ

+
1

2

∫

SD−1

∫ +∞

0

f̂(ξ(−θ))eıξ〈x,−θ〉ξD−1dξdθ

=
1

2

∫

SD−1

∫ +∞

0

f̂(ξθ)eıξ〈x,θ〉ξD−1dξdθ

+
1

2

∫

SD−1

∫ 0

−∞
f̂(ξθ)eıξ〈x,θ〉(−ξ)D−1dξdθ

=
1

2

∫

SD−1

∫ +∞

−∞
f̂(ξθ)eıξ〈x,θ〉|ξ|D−1dξdθ.

(4.17)

If D is odd, |ξ|D−1 = ξD−1, thus the Projection-Slice Theorem and the pro-

perties of the Fourier Transform in one variable imply

f(x) =
1

2(2π)D

∫

SD−1

∫ +∞

−∞
eıξ〈x,θ〉ξD−1

(∫

R

R[f ](θ, s)e−ısξds

)

dξdθ

= cD

∫

SD−1

F
−1

(

ξ 7→ F

(

s 7→ ∂D−1

∂sD−1
R[f ](θ, s)

)

(ξ)

)

(〈x, θ〉)dθ

= cDR
∗
(
∂D−1

∂sD−1
Rf

)

(x),

(4.18)

where

cD :=
2π

2(ı)D−1(2π)D
=

1

2
(2π)1−D(−1)

D−1
2 . (4.19)

Suppose now D is even. To obtain a complete inversion formula, we recall a

few facts from the theory of distributions (cf. [19] and, as a general reference

for the theory of distributions, [80]).
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1. The linear mapping p.v.[1/t] from S(R) to C defined by

p.v.[1/t]h = lim
ǫ→0+

∫

|t|>ǫ

h(t)

t
dt (4.20)

is well defined (although 1/t is not locally integrable) and belongs to

the dual space of S(R); that is to say, it is a tempered distribution on

R.

2. The signum function on R defined by

sgn(ξ) =

{

1 if ξ ≥ 0,

−1 if ξ < 0
(4.21)

is a tempered distribution on R as well, whose (distributional) Fourier

Transform is related to p.v.[1/t] via the formula

F (p.v.[1/t])(ξ) = −
√
π

2
ısgn(ξ). (4.22)

The Hilbert Transform of a function φ ∈ S(R) is the convolution H φ :=

φ ∗ 1
π
p.v.[1/t], i.e.

H [φ](p) = lim
ǫ→0+

∫

|t|>ǫ

φ(p− t)

πt
dt, p ∈ R. (4.23)

As a consequence, the Fourier Transform of H φ is the function

F [H φ](ξ) = −ıφ̂(ξ)sgn(ξ). (4.24)

Now we return to the right-hand side of (4.17), which, for D even, is equal

to
1

2

∫

SD−1

∫ +∞

−∞
f̂(ξθ)eıξ〈x,θ〉ξD−1sgn(ξ)dξdθ.

We proceed similarly to the odd case and using (4.24) we have

f(x) =
1

2(2π)D

∫

SD−1

∫ +∞

−∞
eıξ〈x,θ〉ξD−1sgn(ξ)

(∫

R

R[f ](θ, s)e−ısξds

)

dξdθ

= cD

∫

SD−1

F
−1

(

ξ 7→ F

(

H (s 7→ ∂D−1

∂sD−1
R[f ])(θ, s)

)

(ξ)

)

(〈x, θ〉)dθ

= cDR
∗
(

H

(
∂D−1

∂sD−1
R[f ]

))

(x),

(4.25)
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where

cD :=
2π

2(ı)D−2(2π)D
=

1

2
(2π)1−D(−1)

D−2
2 . (4.26)

Altogether, we have proved the following theorem.

Theorem 4.1.2. Let f ∈ S(RD) and let g = Rf . Then

f = cD

{

R∗H g(D−1) n even,

R∗g(D−1) n odd,
(4.27)

with

cD =
1

2
(2π)1−D

{

(−1)
D−2

2 n even,

(−1)
D−1

2 n odd,
(4.28)

where the derivatives in ΞD are intended in the second variable.

We conclude the section with a remark on the inversion formula from [69].

For D odd, the equation (4.18) says that f(x) is simply an average of g(D−1)

over all hyperplanes through x. Thus, in order to reconstruct f at some

point x, one needs only the integrals of f through x. This is not true for

D even. In fact, inserting the definition of the Hilbert Transform into (4.25)

and changing the order of integration, we obtain2

f(x) = lim
ǫ→0+

cD

∫

|t|>ǫ

1

t

∫

SD−1

g(D−1)(θ, 〈x, θ〉 − t)dθdt, (4.29)

from which we can see that the computation of f at some point x requires

integrals of f also over hyperplanes far away from x.

4.1.2 Filtered backprojection

Rather than using the inversion formula described above, the most common

method for reconstructing X-ray images is the method of the Filtered Back-

projection. Its main advantage is the ability to cancel out high frequency

noise.

2the equality with the right-hand side of formula (4.25) is guaranteed because g is a

rapidly decreasing function.
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Let υ ∈ S(ΞD). There is a constant C such that |υ(ξ)| ≤ C for all ξ ∈ ΞD and

so the definition of R∗ implies that also |R∗υ(x)| ≤ C for all x. Thus R∗υ

is a tempered distribution. Moreover, in [19] it is shown that the following

relation between R∗υ and υ̂ holds for all y 6= 0 in RD:

F (R∗υ)(y) = 2(2π)(D−1)/2‖y‖1−Dυ̂

(
y

‖y‖ , ‖y‖
)

. (4.30)

The starting point of the Filtered Backprojection algorithm is Theorem 4.1.1:

we put in formula (4.14) g = Rf and V = R∗υ obtaining

V ∗ f = R
∗(υ ∗ g). (4.31)

The idea is to choose V as an approximation of the Dirac δ-function and to

determine υ from V = R∗υ. Then V ∗ f is an approximation of the sought

function f that is calculated in the right-hand side by backprojecting the

convolution of υ with the data g.

Usually only radially symmetric functions V are chosen, i.e. V (y) = V (‖y‖).
Then υ = υ(θ, s) can be assumed to be only an even function of s and formula

(4.30) reads now

F (R∗υ)(y) = 2(2π)(D−1)/2‖y‖1−Dυ̂(‖y‖). (4.32)

Now we choose V as a band limited function by allowing a filter factor φ̂(y)

which is close to 1 for ‖y‖ ≤ 1 and which vanishes for ‖y‖ > 1 putting

V̂Υ(y) := (2π)−D/2φ̂(‖y‖/Υ), Υ > 0. (4.33)

Then the corresponding function υΥ such that R∗υΥ = VΥ satisfies

υ̂Υ(ξ) =
1

2
(2π)1/2−DξD−1φ̂(ξ/Υ), ξ > 0 (4.34)

(note that υ̂Υ is an even function being the Fourier Transform of an even

function).

Many choices of φ̂ can be found in literature. We mention the choice proposed

by Shepp and Logan in [84], where

φ̂(ξ) :=

{

sinc(ξπ/2), 0 ≤ ξ ≤ 1,

0, ξ > 1,
(4.35)
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where sinc(t) is equal to sin(t)/t if t 6= 0, and 1 otherwise.

Once υ has been chosen, the right-hand side of equation (4.14) has to be

calculated to obtain the approximation V ∗ f of f . This has to be done in

a discrete setting, and the discretization of (4.14) depends on the way the

function g is sampled: different samplings lead to different algorithms. Since

we are going to concentrate on iterative methods, we will not proceed in the

description of these algorithms and for a detailed treatment of this argument

we refer to [69].

4.2 The Radon Transform over straight lines

In the previous section we studied the Radon Transform, which integrates

functions on RD over hyperplanes. One can also consider an integration

over d-planes, with d = 1, ..., D − 1. In this case, ΞD is replaced by the

set of unoriented affine d-planes in RD, the affine Grassmannian G(d,D).

For simplicity, here we will consider only the case d = 1: the corresponding

transform is the so called X-Ray Transform or just the Ray Transform.

We identify a straight line L of G(1, D) with a direction θ ∈ SD−1 and a

point s ∈ θ⊥ as {s+ tθ, t ∈ R} and define the X-Ray Transform P by

P[f ](θ, s) =

∫

R

f(s+ tθ)dt. (4.36)

Similarly to the case d = D−1 we have a Projection Slice Theorem as follows.

For f ∈ L1(RD) and y ∈ RD let L = L(θ, s) ∈ G(1, D) be a straight line

such that y lies in θ⊥. Then

f̂(y) = (2π)−D/2

∫

RD

f(x)e−ı〈x,y〉dx

= (2π)−D/2

∫

θ⊥

(∫

R

f(s+ tθ)e−ı〈s+tθ,y〉dt

)

dµθ⊥(s)

= (2π)−D/2

∫

θ⊥

Pf(θ, s)e−ı〈s,y〉dµθ⊥(s).

(4.37)
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Thus Pf is a function on TD := {(θ, s) θ ∈ SD−1, s ∈ θ⊥} and f ∈ S(RD)

implies Pf ∈ S(TD), where

S(TD) =

{

g ∈ C∞ : sup
(θ,s)

(1 + |s|)k1
∣
∣
∣
∣

∂k2

∂sk2
g(θ, s)

∣
∣
∣
∣
< +∞

}

. (4.38)

On TD, the convolution and the Partial Fourier Transform are defined by

(g ∗ h)(θ, s) =
∫

θ⊥

g(θ, s− t)h(θ, t)dµθ⊥(t), s ∈ θ⊥, (4.39)

ĝ(θ, ξ) = (2π)(1−D)/2

∫

θ⊥

e−ı〈s,ξ〉g(θ, s)dµθ⊥(s), ξ ∈ θ⊥. (4.40)

Theorem 4.2.1. For f, g ∈ S(RD), we have

Pf ∗ Pg = P(f ∗ g). (4.41)

As in the case d = D− 1, the convolution on RD and on TD are denoted

by the same symbol in the theorem.

The backprojection operator P∗ is now

P
∗[g](x) =

∫

SD−1

g(θ, Eθx)dθ, (4.42)

where Eθ is the orthogonal projector onto θ⊥, i.e. Eθx = x−〈x, θ〉θ. Again
it is the adjoint of P:

∫

SD−1

∫

θ⊥

gPfdθdµθ⊥(s) =

∫

RD

fP
∗gdx. (4.43)

There is also an analogous version of Theorem 4.1.1:

Theorem 4.2.2. Let f ∈ S(RD) and g ∈ S(TD). Then

P
∗(g ∗ Pf) = (P∗g) ∗ f. (4.44)

From (4.37) and (4.40) follows immediately that for f ∈ S(RD), θ ∈ SD−1

and ξ ⊥ θ there holds

(̂Pf)(θ, ξ) = (2π)1/2f̂(ξ). (4.45)

This is already enough to state the following uniqueness result in R3.
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Theorem 4.2.3. Let S2
0 be a subset of S2 that meets every equatorial circle

of S2 (Orlov’s condition, 1976). Then the knowledge of Pf for θ ∈ S2
0

determines f uniquely.

Proof. For every ξ ∈ R3, since S2
0 satisfies Orlov’s condition, there exists an

element θ ∈ S2
0 such that θ ⊥ ξ. Hence f̂(ξ) is determined by (4.45).

An explicit inversion formula on S2
0 was found by the same Orlov in 1976

(see Natterer [69] for a proof).

In spherical coordinates,

x =







cosχ cosϑ

sinχ cosϑ

sinϑ






, 0 ≤ χ < 2π, |ϑ| ≤ π

2
, (4.46)

S2
0 is given by ϑ−(χ) ≤ ϑ ≤ ϑ+(χ), 0 ≤ χ < 2π, where ϑ± are functions such

that −π
2
< ϑ−(χ) < 0 < ϑ+(χ) <

π
2
, 0 ≤ χ < 2π.

Now, let l(x,y) be the length of the intersection of S2
0 with the plane spanned

by x and y ∈ R3. According to the assumption made on ϑ±, l(x,y) > 0 if x

and y are linearly independent.

Theorem 4.2.4 (Orlov’s inversion formula). Let f ∈ S(R3) and g(θ, s) =

P[f ](θ, s) for θ ∈ S2
0 and s ⊥ θ. Then

f(x) = △
∫

S20

h(θ, Eθx)dθ, (4.47)

where

h(θ, s) = − 1

4π2

∫

θ⊥

g(θ, s− t)

‖t‖l(θ, t) dµθ⊥(t) (4.48)

and △ is the Laplace operator on R3.

4.2.1 The Cone Beam Transform

We define the Cone Beam Transform of a density function f ∈ S(R3) by

D [f ](x, θ) =

∫ +∞

0

f(x+ tθ)dt, x ∈ R3, θ ∈ S2. (4.49)
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When x is the location of an X-ray source traveling along a curve Γ, the

operator D is usually called the Cone Beam Transform of f along the source

curve Γ. We want to invert D in this particular case, which is of interest in

the applications.

We start by considering the case where Γ is the unit circle in the x1-x2

plane. A point x on Γ is expressed as x = (cos φ, sinφ, 0)∗, with x⊥ =

(− sinφ, cosφ, 0)∗. An element θ ∈ S2 \ {x} corresponds to a couple (y2,y3)
∗

∈ R2 by taking the intersection of the beam through θ and x with the plane

spanned by x⊥ and e3 := (0, 0, 1)∗ passing through −x 3. Thus, if f vanishes

outside the unit ball of R3, we have

D [f ](φ, y2, y3) =

∫ +∞

0

f((1− t)x+ t(y2x
⊥ + y3e3))dt. (4.50)

We also define the Mellin Transform of a function h ∈ R by

M [h](s) =

∫ +∞

0

ts−1h(t)dt. (4.51)

Then in [69] it is shown that performing a Mellin Transform of g and f with

respect to y3 and x3 respectively and then expanding the results in Fourier

series with respect to φ one obtains the equations

gl(y2, s) =

∫ +∞

0

fl

(√

(1− t)2 + t2y22, s

)

e−ılα(t,y2)dt, l ∈ Z, (4.52)

where α(t, y2) is the argument of the point (1 − t, ty2) in the x1-x2 plane.

Unfortunately an explicit solution to this equation does not exist and the

entire procedure seems rather expensive from a computational point of view.

This is a reason why usually nowadays different paths are used.

An explicit inversion formula was found by Tuy in 1983 (cf. [93]). It applies

to paths satisfying the following condition:

Definition 4.2.1 (Tuy’s condition). Let Γ = Γ(t), t ∈ [0, 1] be a para-

metric curve on R3. Γ is said to satisfy Tuy’s condition if it intersects each

3in other words, y2 and y3 are just the coordinates of the stereographic projection of

θ from the projection point x.
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plane hitting supp(f) transversally, i.e. if for each x ∈ supp(f) and each θ

∈ S2 there exists t = t(x, θ) ∈ [0, 1] such that

〈Γ(t), θ〉 = 〈x, θ〉, 〈Γ′(t), θ〉 6= 0. (4.53)

Theorem 4.2.5. Suppose that the source curve satisfies Tuy’s condition.

Then

f(x) = (2π)−3/2ı−1

∫

S2
(〈Γ′(t), θ〉)−1 d

dt
(̂Df)(Γ(t), θ)dθ, (4.54)

where t = t(x, θ) and where the Fourier Transform is performed only with

respect to the first variable.

Of course, Tuy’s condition doesn’t hold for the circular path described

above since it lies entirely on a plane. In the pursuit of the data sufficiency

condition, various scanning trajectories have been proposed, such as circle

and line, circle plus arc, double orthogonal circles, dual ellipses and helix

(see [50] and the references therein). Of particular interest is the helical

trajectory, for which in a series of papers from 2002 to 2004 ([56], [57] and

[58]) the Russian mathematician A. Katsevich found an inversion formula

strictly related to the Filtered Backprojection algorithm. Although we won’t

investigate the implementation of these algorithms, we dedicate the follo-

wing section to the basic concepts developed in those papers since they are

considered a breakthrough by many experts in the field.

4.2.2 Katsevich’s inversion formula

In the description of Katsevich’s inversion formula we follow [97] and [98].

First of all, the source lies on an helical trajectory defined by

Γ(t) =

(

R cos(t),R sin(t),P
t

2π

)∗
, t ∈ I, (4.55)

where R > 0 is the radius of the helix, P > 0 is the helical pitch and I := [a, b],

b > a. In medical applications, the helical path is obtained by translating the

platform where the patient lies through the rotating source-detector gantry.
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Thus the pitch of the helix is the displacement of the patient table per source

turn. We assume that the support Ω of the function f ∈ C∞(R3) to be

reconstructed lies strictly inside the helix, i.e. there exists a cylinder

U := {x ∈ R3 | x21 + x22 < r}, 0 < r < R, (4.56)

such that Ω ⊆ U.

To understand the statement of Katsevich’s formula we introduce the notions

of π-line and Tam-Danielsson window.

A π-line is any line segment that connects two points on the helix which are

separated by less than one helical turn (see Figure 4.1). It can be shown

Figure 4.1: The π-line of an helix: in the figure, y(sb) and y(st) correspond

to Γ(t0) and Γ(t1) respectively.

(cf. [11]) that for every point x inside the helix, there is a unique π-line

through x. Let Iπ(x) = [t0(x), t1(x)] be the parametric interval corresponding

to the unique π-line passing through x. In particular, Γ(t0) and Γ(t1) are

the endpoints of the π-line which lie on the helix. By definition, we have

t1 − t0 < 2π.

The region on the detector plane bounded above and below by the projections

of an helix segment onto the detector plane when viewed from Γ(t) is called

the Tam-Danielsson window in the literature (cf. Figure 4.2). Now, consider

the ray passing through Γ(t) and x. Let the intersection of this ray with the

detector plane be denoted by x̄. Tam et al. in [89] and Danielsson et al. in
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Figure 4.2: The Tam-Danielsson window: a(λ) in the figure corresponds to

Γ(t) in our notation.

[11] showed that if x̄ lies inside the Tam-Danielsson window for every t ∈ Iπ,

then f(x) may be reconstructed exactly. We define a κ-plane to be any plane

that has three intersections with the helix such that one intersection is half-

way between the two others. Denote the κ-plane which intersects the helix

at the three points Γ(t), Γ(t+ψ) and Γ(t+2ψ) by κ(t, ψ), ψ ∈ (−π/2, π/2).
The κ(t, ψ)-plane is spanned by the vectors ν1(t, ψ) = Γ(t + ψ) − Γ(t) and

ν2(t, ψ) = Γ(t + 2ψ)− Γ(t) and the unit normal vector to the κ(t, ψ)-plane

is

n(t, ψ) := sgn(ψ)
ν1(t, ψ)× ν2(t, ψ)

‖ν1(t, ψ)× ν2(t, ψ)‖
, ψ ∈ (−π/2, π/2), (4.57)

where the symbol × stands for the external product in R3. Katsevich [58]

proved that for a given x, the κ-plane through x with ψ ∈ (−π/2, π/2) is

uniquely determined if the projection x̄ onto the detector plane lies in the

Tam-Danielson window. A κ-line is the line of intersection of the detector

plane and a κ-plane, so if x̄ lies in the Tam-Danielson window, there is a

unique κ-line. We denote the unit vector from Γ(t) toward x by

β(t,x) =
x− Γ(t)

‖x− Γ(t)‖ . (4.58)

For a generic α ∈ S2, let m(t,α) be the unit normal vector for the plane

κ(t, ψ) with the smallest |ψ| value that contains the line of direction α which
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passes through Γ(t), and put e(t,x) := β(t,x) × m(t,β). Then β(t,x) and

e(t,x) span the κ-plane that we will want to use for the reconstruction of f

in x. Any direction in the plane may be expressed as

θ(t,x, γ) = cos(γ)β(t,x) + sin(γ)e(t,x), γ ∈ [0, 2π). (4.59)

We can now state Katsevich’s result as follows.

Theorem 4.2.6 (Katsevich). For f ∈ C∞
0 (U),

f(x) = − 1

2π2

∫

Iπ(x)

1

‖x− Γ(t)‖p.v.
∫ 2π

0

∂

∂q
Df(Γ(q), θ(t,x, γ))|q=t

dγdt

sin γ
,

(4.60)

where p.v. stands for the principal value integral and where all the objects

appearing in the formula are defined as above.

Proof. See [56], [57], [58].

For a fixed x, consider the κ-plane with unit normal m(t,β(t,x)). We

consider a generic line in this plane with direction θ0(t,x) = cos(γ0)β(t,x)+

sin(γ0)e(t,x), γ0 ∈ [0, 2π) and define

g′(t, θ0(t,x)) :=
∂

∂q
Df(Γ(q), θ(t,x, γ)|q=t (4.61)

and

gF (t, θ0(t,x)) := p.v.

∫ 2π

0

1

π sin γ
g′(t, cos(γ0−γ)β(t,x)−sin(γ0−γ)e(s,x))dγ.

(4.62)

Thus Katsevich’s formula can be rewritten as

f(x) = − 1

2π

∫

Iπ(x)

1

‖x− Γ(t)‖g
F (t,β(t,x))dt. (4.63)

Therefore, we see that Katsevich’s formula may be implemented as a deriva-

tive, followed by a 1D convolution, and then a back-projection: for this reason

it is usually described as a Filtered Backprojection-type formula. Further de-

tails for the implementation of Katsevich’s formula can be found, e.g., in [97]

and [98].
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4.3 Spectral properties of the integral ope-

rator

In this section we study the spectral properties of the operator R defined by

(4.4).

We consider the polynomials of degree k orthogonal with respect to the weight

function tl in [0, 1] and denote them by Pk,l = Pk,l(t). Similarly to what we

have already seen in Chapter 2, the polynomials Pk,l are well defined for every

k and l ∈ N0 and the orthogonality property means that
∫ 1

0

tlPk1,l(t)Pk2,l(t) = δk1,k2, (4.64)

where δk1,k2 = 1 if k1=k2 and 0 otherwise. In fact, up to a normalization, they

are the Jacobi polynomials Gk(l+(D−2)/2, l+(D−2)/2, t) (cf. Abramowitz

and Stegun [1], formula 22.2.2).

We shall also need the Gegenbauer polynomials Cµ
m, which are defined as

the orthogonal polynomials on [−1, 1] with weight function (1 − t2)µ−1/2,

µ > −1/2. Moreover, we recall that a spherical harmonic of degree l is the

restriction to SD−1 of an harmonic polynomial homogeneous of degree l on

RD (cf. e.g. [66], [83] and [85]). There exist exactly

n(D, l) :=
(2l +D − 2)(D + l − 3)!

l!(D − 2)!
(4.65)

linearly independent spherical harmonics of degree l and spherical harmonics

of different degree are orthogonal in L2(SD−1).

Now let Yl,k, k = 1, ..., n(D, l) be an orthonormal basis for the spherical

harmonics of degree l. We define, for i ≥ 0, 0 ≤ l ≤ i, 1 ≤ k ≤ n(D, l),

filk(x) =
√
2P(i−l)/2,l+(D−2)/2(‖x‖2)‖x‖lYl,k(x/‖x‖) (4.66)

and

gilk(θ, s) = c(i)w(s)D−1C
D/2
i (s)Yl,k(θ). (4.67)

Here w(s) := (1− s2)1/2 and

c(i) =
π21−D/2Γ(i+D)

i!(i+D/2)(Γ(D/2))2
, (4.68)



150 4. Tomography

where Γ stands for Euler’s Gamma function.

Theorem 4.3.1 (Davison(1983) and Louis (1984)). The functions filk

and gilk, i ≥ 0, 0 ≤ l ≤ i, 1 ≤ k ≤ n(D, l), are complete orthonormal families

in the spaces L2({‖x‖ < 1}) and L2(ΞD, w1−D), respectively. The singular

value decomposition of R as an operator between these spaces is given by

Rf =

∞∑

i=0

λi
∑

0≤l≤i,
l+i even

n(D,l)
∑

k=1

〈f, filk〉L2({‖x‖<1})gilk, (4.69)

where

λi =

(
2DπD−1

(i+ 1) · · · (i+D − 1)

)1/2

(4.70)

are the singular values of R, each being of multiplicity n(D, l)⌊ i+2
2
⌋.

Proof. See [13] and [64]. For a proof in a simplified case with D = 2, cf.

[4].

We observe that in the case D = 2 the singular values decay to zero

rather slowly, namely λi = O(i−1/2). This is in accordance with the remark

we have made in the introductory example of Chapter 1, where we have seen

that to compute an inversion of R the data are differentiated and smoothed

again. A more precise statement to explain this can be made by means of

the following theorem (see [69] for the details not specified below).

Theorem 4.3.2. Let Ω be a bounded and sufficiently regular domain in RD

and let α ∈ R. Then there are positive constants c(α,Ω) and C(α,Ω) such

that for all f ∈ Hα
0 (Ω)

c(α,Ω)‖f‖Hα
0 (Ω) ≤ ‖Rf‖Hα+(D−1)/2(ΞD) ≤ C(α,Ω)‖f‖Hα

0 (Ω). (4.71)

Here, Hα
0 (Ω) is the closure of C∞

0 (Ω) with respect to the norm of the Sobolev

space Hα(RD) and Hβ(ΞD) is the space of even functions g on the cylinder

C
D such that

‖g‖Hβ(CD) :=

∫

SD−1

∫

R

(1 + ξ2)β/2ĝ(θ, ξ)2dξdθ, β ∈ R. (4.72)
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Thus, roughly speaking, in the general case we can say that Rf is smoother

than f by an order of (D − 1)/2.

Similar results can be found for the operator P.

Theorem 4.3.3 (Maass (1987)). With the functions filk defined above

and a certain complete orthonormal system gilk on L2(TD, w), where w(ξ) =

(1− ‖ξ‖2)1/2, there are positive numbers λil such that

Pf(θ, s) =

∞∑

i=0

∑

0≤l≤i,
l+i even

λil

n(D,l)
∑

k=1

〈f, filk〉gilk. (4.73)

The singular values λil, each of multiplicity n(D, l), satisfy

λil = O(i−1/2) (4.74)

as i → +∞, uniformly in l.

Proof. See [65].

Theorem 4.3.4. Let Ω be a bounded and sufficiently regular domain in RD

and let α ∈ R. Then there are positive constants c(α,Ω) and C(α,Ω) such

that for all f ∈ Hα
0 (Ω)

c(α,Ω)‖f‖Hα
0 (Ω) ≤ ‖Pf‖Hα+1/2(TD) ≤ C(α,Ω)‖f‖Hα

0 (Ω), (4.75)

where

‖g‖Hβ(TD) :=

∫

SD−1

∫

θ⊥

(1 + ‖ξ‖2)β/2ĝ(θ, ξ)2dξdθ, β ∈ R. (4.76)

4.4 Parallel, fan beam and helical scanning

In this section we give a very brief survey of the different scanning geometries

in computerized tomography. We distinguish between the 2D and the 3D

cases.
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(a) First generation: parallel, dual mo-

tion scanner.

(b) Second generation: narrow fan beam

(∼ 10◦), dual motion scanner.

Figure 4.3: First and second generation scanners.

4.4.1 2D scanning geometry

In 2D geometry, only one slice of the object is scanned at a time, the recon-

struction is made slice by slice by means of the classical 2D Radon Transform.

In parallel scanning, the X-rays are emitted along a two-parameter family

of straight lines Ljl, j = 0, ..., j̄ − 1, l = −l̄, ..., l̄, where Ljl is the straight

line making an angle φj = j∆φ with the x2-axis and having signed distance

sl = l∆s from the origin, i.e., 〈x, θj〉 = sl, θj = (cosφj, sinφj)
∗. The mea-

sured values gPAR
jl are simply

gPAR
jl = R[f ](θj, sl), j = 0, ..., j̄ − 1, l = −l̄, ..., l̄. (4.77)

In the first CT scanners (first generation scanners) the source moves along a

straight line. The X-ray is fired at each position sl and the intensity is mea-

sured by a detector behind the object which translates simultaneously with

the source. Then the same process is repeated with a new angular direction.

A first improvement on this invasive and rather slow technique came with

the second generation scanners, where more than one detector is used, but
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the number of detectors is still small (cf. Figure 4.3).

Fan beam scanning geometry is characterized by the use of many detectors.

In a third generation scanner, the X-ray source and the detectors are mounted

(a) Third generation: fan beam, rotating

detectors.

(b) Fourth generation: fan beam, sta-

tionary detectors.

Figure 4.4: Fan beam geometry: third and fourth generation scanners.

on a common rotating frame (cf. Figure 4.4). During the rotation the detec-

tors are read out in small time intervals which is equivalent to assume that

the X-rays are fired from a number of discrete source positions. Let rθ(βj),

θ(β) := (cos β, sin β)∗ be the j-th source position and let αl be the angle

the l-th ray in the fan emanating from the source at rθ(βj) makes with the

central ray. Then the measured valued gjl correspond to the 2D Cone Beam

Transform:

gFAN
jl = D [f ](rθ(βj), θ(αl + βj + π)), j = 0, ..., j̄ − 1, l = −l̄, ..., l̄. (4.78)

In a fourth generation scanner, the detectors are at rθ(βj), the source is

rotating continuously on a circle around the origin (cf. Figure 4.4) and the

detectors are read out at discrete time intervals.
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4.4.2 3D scanning geometry

In 3D cone beam scanning, the source runs around the object on a curve,

together with a 2D detector array. As we have already seen in the section

dedicated Katsevich’s formula, in the simplest case the curve is a circle and

the situation can be modeled by the 3D Cone Beam Transform in the same

way as for 2D third generation scanners. When the object is translated con-

tinuously in the direction of the axis of symmetry of the fan beam scanner,

we obtain the case of 3D helical scanning.

The number of rays actually measured varies between 100 in industrial to-

mography to 106-108 in radiological applications [69]. Thus the number of

data to be processed is extremely large: for this reason we shall concen-

trate on iterative regularization methods which are usually faster than other

reconstruction techniques.

4.5 Relations between Fourier and singular

functions

We have seen that in the case of image deblurring the SVD of the matrix

of the underlying linear system is given by means of the DFT, according

to (3.36). This allows to study the spectral properties of the problem, even

when the size of the system is large.

In the tomography related problems the exact SVD of the matrix of the sy-

stem is not available. Anyway, it is possible to exploit some a-priori known

qualitative information to obtain good numerical results. There are two im-

portant pieces of information that are going to be used in the numerical

experiments below: the first one is the decay of the singular values of the

Radon operator described in Section 4.3; the second one is a general property

of ill-posed problems, which is the subject of the current section.

In the paper [39] Hansen, Kilmer and Kjeldsen developed an important in-

sight into the relationship between the SVD and discrete Fourier bases for
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discrete ill-posed problems arising from the discretization of Fredholm inte-

gral equations of the first kind. We reconsider their analysis and relate it to

the considerations we have made in Chapter 3 and in particular in Section

3.1 and Section 3.4.

4.5.1 The case of the compact operator

Although we intend to study large scale discrete ill-posed problems, we return

first to the continuous setting of Section 1.8, because the basic ideas draw

upon certain properties of the underlying continuous problem involving a

compact integral operator. As stated already in [39], this material is not

intended as a rigorous analysis but rather as a tool to gain some insight into

non-asymptotic relations between the Fourier and singular functions of the

integral operator.

Consider the Hilbert space X = L2([−π, π]) with the usual inner product

〈·, ·〉 and denote with ‖ · ‖ the norm induced by the scalar product. Define

K[f ](s) :=

∫

I

κ(s, t)f(t)dt, I = [−π, π]. (4.79)

Assume that the kernel κ is real, (piecewise) C1(I × I) and non-degenerate.

Moreover, assume for simplicity also that ‖κ(π, ·) − κ(−π, ·)‖ = 0. Then,

as we have seen in Section 1.8, K is a compact operator from X to itself

and there exist a singular system {λj; vj , uj} for K such that (1.38), (1.39),

(1.40) and (1.41) hold.

Define the infinite matrix B whose rows indexed by k = −∞, ...,+∞ and

columns indexed by j = 1, ...,+∞, with entries

Bk,j = |〈uj, eıks/
√
2π〉|.

Then the following phenomenon, observed in the discrete setting, can be

shown:

The largest entries in the matrix B form a V -shape, with the V lying on the

side and the tip of the V located at k = 0, j = 1.

This means that the function uj is well represented only by a small number
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of the eıks/
√
2π for some |k| in a band of contiguous integers depending on j.

Therefore, the singular functions are similar to the Fourier series functions

in the sense that large singular values (small j) and their corresponding

singular functions correspond to low frequencies, and small singular values

(larger j) correspond to high frequencies. The important consequence is

that it is possible to obtain at least some qualitative information about the

spectral properties of an ill-posed problem without calculating the SVD of

the operator but only performing a Fourier Transform.

4.5.2 Discrete ill-posed problems

As a matter of fact, the properties of the integral operator described in

Section 4.5.1 are observed in practice. As already shown in the paper [39],

the Fourier and the SVD coefficients of a discrete ill-posed problem Ax = b

with perturbed data bδ have a similar behavior if they are ordered in the

correct way.

As a consequence of the phenomenon described in Section 4.5.1 and of the

properties of the Discrete Fourier Transform, we can reorder the Fourier

coefficients as follows:

ϕi :=

{

(Φ∗bδ)(i+1)/2 if i is odd,

(Φ∗bδ)(2m−i+2)/2 if i is even.
(4.80)

In Figure 4.5 we compare the SVD and the Fourier coefficients of the test

problem phillips(200) with ̺ = 0.1% and Matlab seed = 1. It is evident from

the graphic that the Fourier coefficients, reordered according to the formula

(4.80), decay very similarly to the SVD coefficients in this example.

In [39], only the case of the 1D ill-posed problems was considered in detail.

Here we consider the case of a 2D tomographic test problem, where:

• the matrix A of the system is the discretization of a 2D integral ope-

rator acting on a function of two space variables. For example, in the

case of parallel X-rays modeled by the Radon Transform, R[f ](θ, s) is
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Figure 4.5: SVD(blue full circles) and Fourier (red circles) coefficients of

phillips(200), noise 0.1%

simply the integral of the density function f multiplied by the Dirac

δ-function supported on the straight line corresponding to (θ, s).

• The exact data, denoted by the vector g, is the columnwise stacked

version of the matrix G with entries given by a formula of the type

(4.77) or (4.78) (the sinogram).

• The exact solution f is the columnwise stacked version of the image

F obtained by computing the density function f on the discretization

points of the domain.

To calculate the Fourier coefficients of the perturbed problem Af = gδ,

‖gδ − g‖ ≤ δ, we suggest the following strategy:

(i) compute the two-dimensional Discrete Fourier Transform of the (per-

turbed) sinogram Gδ corresponding to gδ.

(ii) Consider the matrix of the Fourier coefficients obtained at the step

(i) and reorder its columnwise stacked version as in the 1D case (cf.

formula (4.80)).
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4.6 Numerical experiments

In this section we present some numerical experiments performed on three

different test problems of P.C. Hansen’s Air Tools (cf. Appendix C.6). In all

the considered examples we denote with:

• A, F, G and Gδ the matrix of the system, the exact solution, the exact

data and the perturbed data respectively;

• f , g and gδ the columnwise stacked versions of the matrices F, G and

Gδ;

• m and N the number of rows and columns of A respectively (in all the

test problems considered m > N ≥ 10000);

• l0 and j0 the number of rows and columns of the sinogram Gδ (see also

Appendix C.6);

• J the number of rows (and columns) of the exact solution F;

• ϕ the vector of the Fourier coefficients of the perturbed system Af =

gδ, reordered as described in Section 4.5.2;

• ϕ̃ the approximation of the vector ϕ computed by the routine data−approx

with ⌊m/5000⌋ inner knots.
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CGNE results for the fanbeamtomo problem

J ̺ Average relative error

Discr. Princ. SR1(np) SR3 Opt. Sol.

100 1% 0.0750 0.0817(100) 0.0568 0.0427

100 3% 0.1437 0.1347(75) 0.1232 0.1132

100 5% 0.1943 0.1847(50) 0.1715 0.1696

100 7% 0.2273 0.2273(25) 0.2139 0.2127

200 1% 0.1085 0.1049(80) 0.0947 0.0886

200 3% 0.1747 0.1669(60) 0.1693 0.1668

200 5% 0.2226 0.2143(40) 0.2127 0.2123

200 7% 0.2550 0.2550(20) 0.2495 0.2477

Table 4.1: Comparison between different stopping rules of CGNE for the

fanbeamtomo test problem.

Using the algorithm cgls, we compute the regularized solutions of CGNE

stopped according to the Discrepancy Principle and to SR1 and SR3.

The index p of SR3 is calculated as follows (see Figure 4.6):

(i) determine a subsequence of the approximated Fourier coefficients by

choosing the elements ϕ̃1, ϕ̃1+J , ϕ̃1+2J , ....

(ii) Discard all the elements after the first relative minimum of this subse-

quence.

(iii) The index p is defined by p := 1 + (i+ 1)J where i is the corner of the

discrete curve obtained at the step (ii) determined by the algorithm

triangle.

4.6.1 Fanbeamtomo

We consider the function fanbeamtomo, that generates a tomographic test

problem with fan beam X-rays. We choose two different values for the di-

mension J , four different percentages ̺ of noise on the data, and 16 different

Matlab seeds, for a total of 128 simulations.

For fixed values of J and ̺, the average relative errors over all Matlab seeds
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CGNE results for the seismictomo problem

dim ̺ Average relative error

Discr. Princ. SR1(np) SR3 Opt. Sol.

100 1% 0.0985 0.1022(50) 0.0954 0.0929

100 3% 0.1344 0.1367(35) 0.1291 0.1291

100 5% 0.1544 0.1603(25) 0.1549 0.1533

100 7% 0.1713 0.1820(20) 0.1813 0.1713

200 1% 0.1222 0.1260(50) 0.1207 0.1177

200 3% 0.1503 0.1637(35) 0.1484 0.1481

200 5% 0.1699 0.1934(25) 0.1661 0.1660

200 7% 0.1830 0.1960(20) 0.1814 0.1800

Table 4.2: Comparison between different stopping rules of CGNE for the

seismictomo test problem.

are summarized in Table 4.1. The results show that SR3 provides an improve-

ment on the Discrepancy Principle, which is more significant when the noise

level is small. Moreover, SR1 confirms to be a reliable heuristic stopping

rule.

4.6.2 Seismictomo

The function seismictomo creates a two-dimensional seismic tomographic test

problem (see Appendix C.6 and [40]).

As for the case of fanbeamtomo, we choose two different values for the

dimension J , four different percentages ̺ of noise on the data, and 16 different

Matlab seeds. For fixed values of J and ̺, the average relative errors over all

Matlab seeds are summarized in Table 4.2.

The numerical results show again that SR3 improves the results of the Discre-

pancy Principle. It is interesting to note that in this case the solutions of

SR1 are slightly oversmoothed. In fact, the Approximated Residual L-Curve

is very similar to the Residual L-Curve, so in this example the approximation

helps very little in overcoming the oversmoothing effect of the Residual L-

Curve method described in Chapter 3.
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4.6.3 Paralleltomo

The function paralleltomo generates a 2D tomographic test problem with par-

allel X-rays.

For this test problem we consider also the following variant of SR3 for com-

puting the index p (cf. Figure 4.7). Using the Matlab function svds, we

calculate the largest singular value λ1 of the matrix A. Assuming that the

singular values of A decay like O(i−1/2) we define a vector of approximated

singular values λ̃i := λ1i
−1/2 for i ≥ 1 (the approximation is justified by

Theorem 4.3.1). Typically, the graphic of the ratios ϕ̃i/λ̃i is similar to that

shown in Figure 4.7. Similarly to the 1D examples described in Chapter

3, this graphic has a relative minimum when the Fourier coefficients begin

to level off. We denote with pλ the index corresponding to this minimum

and with pc the index determined as in the test problems fanbeamtomo and

seismictomo.

As in the previous cases, we choose two different values for the dimension

J , four different percentages ̺ of noise on the data, and 16 different Matlab

seeds. For fixed values of J and ̺, the average relative errors over all Matlab

seeds are summarized in Table 4.3.
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CGNE results for the paralleltomo problem

dim ̺ Average relative error

Discr. Princ. SR1(np) SR3c SR3λ Opt. Sol.

100 1% 0.1247 0.1186(100) 0.1041 0.0868 0.0759

100 3% 0.1992 0.1861(75) 0.1861 0.1759 0.1703

100 5% 0.2378 0.2378(50) 0.2299 0.2272 0.2269

100 7% 0.2724 0.2674(25) 0.2674 0.2670 0.2670

200 1% 0.1568 0.1501(80) 0.1516 0.1507 0.1465

200 3% 0.2140 0.2055(60) 0.2055 0.2051 0.2051

200 5% 0.2593 0.2517(40) 0.2523 0.2517 0.2517

200 7% 0.2962 0.2950(20) 0.2931 0.2931 0.2889

Table 4.3: Comparison between different stopping rules of CGNE for the

paralleltomo test problem.

The numerical results show that the qualitative a-priori notion about the

spectrum improves the results. As a matter of fact, SR3 with p = pλ provides

excellent results, in particular when the noise level is low. The performances

of the heuristic stopping rule SR1 are very good here as well.



Chapter 5

Regularization in Banach

spaces

So far, we have considered only linear ill-posed problems in a Hilbert space

setting. We have seen that this theory is well established since the nineties,

so we focused mainly on the applications in the discrete setting.

In the past decade of research, in the area of inverse and ill-posed problems, a

great deal of attention has been devoted to the regularization in the Banach

space setting. The research on regularization methods in Banach spaces was

driven by different mathematical viewpoints. On the one hand, there are

various practical applications where models that use Hilbert spaces are not

realistic or appropriate. Usually, in such applications sparse solutions1 of

linear and nonlinear operator equations are to be determined, and models

working in Lp spaces, non-Hilbertian Sobolev spaces or continuous function

spaces are preferable. On the other hand, mathematical tools and techniques

typical of Banach spaces can help to overcome the limitations of Hilbert

models. In the monograph [82], a series of different applications ranging from

non-destructive testing, such as X-ray diffractometry, via phase retrieval, to

an inverse problem in finance are presented. All these applications can be

1Sparsity means that the searched-for solution has only a few nonzero coefficients with

respect to a specific, given, basis.

163
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modeled by operator equations

F (x) = y, (5.1)

where the so-called forward operator F : D(F ) ⊆ X → Y denotes a conti-

nuous linear or nonlinear mapping between Banach spaces X and Y .

In the opening section of this chapter we shall describe another important

example, the problem of identifying coefficients or source terms in partial

differential equations (PDEs) from data obtained from the PDE solutions.

Then we will introduce the fundamental notions and tools that are peculiar

of the Banach space setting and discuss the problem of regularization in this

new framework.

At the end of the chapter we shall focus on the properties of some of the most

important regularization methods in Banach spaces for solving nonlinear ill-

posed problems, such as the Landweber-type methods and the Iteratively

Regularized Gauss-Newton method.

We point out that the aim of this chapter is the introduction of the Newton-

Landweber type iteration that will be discussed in the final chapter of this

thesis. Thus, methods using only Tikhonov-type penalization terms shall not

be considered here.

5.1 A parameter identification problem for

an elliptic PDE

The problem of identifying coefficients or source terms in partial differential

equations from data obtained from the PDE solution arises in a variety of

applications ranging from medical imaging, via nondestructive testing, to

material characterization, as well as model calibration.

The following example has been studied repeatedly in the literature (see,

e.g. [7], [16], [31], [52], [78] and [82]) to illustrate theoretical conditions and

numerically test the convergence of regularization methods.

Consider the identification of the space-dependent coefficient c in the elliptic
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boundary value problem
{

−△u+ cu = f in Ω

u = 0 on ∂Ω
(5.2)

from measurements of u in Ω. Here, Ω ⊆ RD, D ∈ N is a smooth, bounded

domain and △ is the Laplace operator on Ω.

The forward operator F : D(F ) ⊆ X → Y , where X and Y are to be specified

below, and its derivative can be formally written as

F (c) = A (c)−1f, F ′(c)h = −A (c)−1(hF (c)), (5.3)

where A (c) : H2(Ω) ∩H1
0(Ω) → L2(Ω) is defined by A (c)u = −△u+ cu.

In order to preserve ellipticity, a straightforward choice of the domain D(F )

is

D(F ) := {c ∈ X | c ≥ 0 a.e., ‖c‖X ≤ γ}, (5.4)

for some sufficiently small γ > 0. For the situation in which the theory

requires a nonempty interior of D(F ) in X , the choice

D(F ) := {c ∈ X | ∃ ϑ̂ ∈ L∞(Ω), ϑ̂ ≥ 0 a.e. : ‖c− ϑ̂‖X ≤ γ}, (5.5)

for some sufficiently small γ > 0, has been devised in [30].

The preimage and image spaces X and Y are usually both set to L2(Ω),

in order to fit into the Hilbert space theory. However, as observed in [82],

the choice Y = L∞(Ω) is the natural topology for the measured data and

in the situation of impulsive noise the choice Y = L1(Ω) provides a more

robust option than the choice Y = L2(Ω) (cf. also [6] and [49]). Concerning

the preimage space, one often aims at actually reconstructing a uniformly

bounded coefficient, or a coefficient that is sparse in some sense, suggesting

the use of the L∞(Ω) or the L1(Ω)-norm.

This motivates to study the use of

X = Lp(Ω), Y = Lr(Ω),

with general exponents p, r ∈ [1,+∞] within the context of this example.

Restricting to the choice (5.4) of the domain, it is possible to show the

following results (cf. [82]).
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Proposition 5.1.1. Let p, r, s ∈ [1,+∞] and denote by (W2,s ∩H1
0)(Ω) the

closure of the space C∞
0 (Ω) with respect to the norm

‖v‖W2,s∩H1
0
:= ‖△v‖Ls + ‖∇v‖L2,

invoking Friedrichs’ inequality.

Let also X = Lp(Ω), Y = Lr(Ω).

(i) If

s ≥ D/2 and {s = 1 or s > max{1, D/2} or r < +∞}

or

s < D/2 and r ≤ Ds

D − 2s
,

then (W2,s∩H1
0)(Ω) ⊆ Lr(Ω) and there exists a constant Cr

(a) > 0 such

that

∀v ∈ (W2,s ∩ H1
0)(Ω) : ‖v‖Lr ≤ Cr

(a)‖v‖W2,s∩H1
0
.

(ii) Assume c ∈ D(F ) with a sufficiently small γ > 0 and let

1 = s ≥ D

2
or s > max{1, D

2
}. (5.6)

Then the operator A (c)−1 : Ls(Ω) → (W2,s ∩ H1
0)(Ω) is well defined

and bounded by some constant Cs
(d).

(iii) For any f ∈ Lmax{1,D/2}(Ω), the operator F : D(F ) ⊆ X → Y, F (c) =

A (c)−1f is well defined and bounded on D(F ) as in (5.4) with γ > 0

sufficiently small.

(iv) For any

p, r ∈ [1,+∞], f ∈ L1(Ω), D ∈ {1, 2}

or

p ∈ (D/2,∞], p ≥ 1, r ∈ [1,+∞], f ∈ LD/2+ǫ(Ω), ǫ > 0

and c ∈ D(F ), the operator F ′(c) : X → Y, F ′(c) = −A (c)−1(hF (c)),

is well defined and bounded.
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5.2 Basic tools in the Banach space setting

The aim of this section is to introduce the basic tools and fix the classical

notations used in the Banach space setting for regularizing ill-posed problems.

For details and proofs, cf. [82] and the references therein.

5.2.1 Basic mathematical tools

Definition 5.2.1 (Conjugate exponents, dual spaces and dual pai-

rings). For p > 1 we denote by p∗ > 1 the conjugate exponent of p, satisfying

the equation
1

p
+

1

p∗
= 1. (5.7)

We denote by X ∗ the dual space of a Banach space X , which is the Banach

space of all bounded (continuous) linear functionals x∗ : X → R, equipped

with the norm

‖x∗‖X ∗ := sup
‖x‖=1

|x∗(x)|. (5.8)

For x∗ ∈ X ∗ and x ∈ X we denote by 〈x∗, x〉X ∗×X and 〈x, x∗〉X×X ∗ the duality

pairing (duality product) defined as

〈x∗, x〉X ∗×X := 〈x, x∗〉X×X ∗ := x∗(x). (5.9)

In norms and dual pairings, when clear from the context, we will omit the

indices indicating the spaces.

Definition 5.2.2. Let {xn}n∈N be a sequence in X and let x ∈ X . The

sequence xn is said to converge weakly to x if, for every x∗ ∈ X ∗, 〈x∗, xn〉
converges to 〈x∗, x〉.

As in the Hilbert space case, we shall denote by the symbol ⇀ the weak

convergence in X and by → the strong convergence in X .

Definition 5.2.3 (Adjoint operator). Let A be a bounded (continuous)

linear operator between two Banach spaces X and Y. Then the bounded

linear operator A∗ : Y∗ → X ∗, defined as

〈A∗y∗, x〉X ∗×X = 〈y∗, Ax〉Y∗×Y , ∀x ∈ X , y∗ ∈ Y∗,
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is called the adjoint operator of A.

As in the Hilbert space setting, we denote by ker(A) the null-space of A

and by R(A) the range of A.

We recall three important inequalities that are going to be used later.

Theorem 5.2.1 (Cauchy’s inequality). For x ∈ X and x∗ ∈ X ∗ we have:

|〈x∗, x〉X ∗×X | ≤ ‖x∗‖X ∗‖x‖X .

Theorem 5.2.2 (Hölder’s inequality). For functions f ∈ Lp(Ω), g ∈
Lp∗(Ω), Ω ⊆ RD as in Section 5.1:

∣
∣
∣
∣

∫

Ω

f(x)g(x)dx

∣
∣
∣
∣
≤
(∫

Ω

|f(x)|pdx
)1/p(∫

Ω

|g(x)|p∗dx
)1/p∗

.

Theorem 5.2.3 (Young’s inequality). Let a and b denote real numbers

and p, p∗ > 1 conjugate exponents. Then

ab ≤ 1

p
|a|p + 1

p∗
|b|p∗.

5.2.2 Geometry of Banach space norms

Definition 5.2.4 (Subdifferential of a convex functional). A functional

f : X → R ∪ ∞ is called convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ X , ∀t ∈ [0, 1].

In this case, an element x∗ ∈ X ∗ is a subgradient of f in x if

f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ X .

The set ∂f(x) of all subgradients of f in x is called the subdifferential of f

in x.

Theorem 5.2.4 (Optimality conditions). Let f : X → R ∪ ∞ be a convex

functional and let z be such that f(z) <∞. Then

f(z) = min
x∈X

f(x) ⇐⇒ 0 ∈ ∂f(z).
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This result generalizes the classical optimality condition f ′(z) = 0, where

f ′ is the Fréchet derivative of f . The subdifferential also is a generaliza-

tion of the differential in the sense that if f is Gateaux-differentiable, then

∂f(x) = {∇f(x)}.
In general the subdifferential of a function may also be the empty set. How-

ever, if the function is Lipschitz-continuous, its sudifferential is not empty.

Among the various properties of the subdifferential of a convex functional,

we recall the following one.

Theorem 5.2.5 (Monotonicity of the subgradient). Assume that the

convex functional f : X → R ∪ ∞ is proper, i.e. the set of all x ∈ X
such that f(x) <∞ is non-empty. Then the following monotonicity property

holds:

〈x∗ − y∗, x− y〉 ≥ 0, ∀x∗ ∈ ∂f(x), y∗ ∈ ∂f(y), x, y ∈ X .

To understand the geometry of the Banach spaces, it is important to

study the properties of the proper convex functional x 7→ 1
p
‖x‖p. We start

introducing the so-called duality mapping JX
p .

Definition 5.2.5 (Duality mapping). The set valued mapping JX
p : X →

2X
∗

, with p ≥ 1 defined by

JX
p (x) := {x∗ ∈ X ∗ | 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}, (5.10)

is called the duality mapping of X with gauge function t 7→ tp−1.

By jXp we denote a single-valued selection of JX
p , i.e. jXp : X → X ∗ is a

mapping with jXp ∈ JX
p for all x ∈ X .

The duality mapping is the subgradient of the functional above:

Theorem 5.2.6 (Asplund). Let X be a normed space and p ≥ 1. Then

JX
p = ∂

(
1

p
‖ · ‖pX

)

.
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Example 5.2.1. For every p ∈ (1,+∞), Jp : L
p(Ω) → Lp∗(Ω) is given by

JX
p (f) = |f |p−1sgn(f), f ∈ Lp(Ω). (5.11)

From the monotonicity property of the subgradient and the Asplund

Theorem, we know that for all x, z ∈ X we have

1

p
‖z‖p − 1

p
‖x‖p − 〈JX

p (x), z − x〉 ≥ 0,

and setting y = −(z − x) yields

1

p
‖x− y‖p − 1

p
‖x‖p + 〈JX

p (x), y〉 ≥ 0.

We are interested in the upper and lower bounds of the left-hand side of the

above inequality in terms of the norm of y.

Definition 5.2.6 (p-convexity and p-smoothness). • A Banach space

X is said to be convex of power type p or p-convex if there exists a con-

stant cp > 0 such that

1

p
‖x− y‖p ≥ 1

p
‖x‖p − 〈jXp (x), y〉+

cp
p
‖y‖p

for all x, y ∈ X and all jXp ∈ JX
p .

• A Banach space X is said to be smooth of power type p or p-smooth if

there exists a constant Gp > 0 such that

1

p
‖x− y‖p ≤ 1

p
‖x‖p − 〈jXp (x), y〉+

Gp

p
‖y‖p

for all x, y ∈ X and all jXp ∈ JX
p .

The p-convexity and p-smoothness properties can be regarded as an ex-

tension of the polarization identity

1

2
‖x− y‖2 = 1

2
‖x‖2 − 〈x, y〉+ 1

2
‖y‖2, (5.12)

which ensures that Hilbert spaces are 2-convex and 2-smooth.

The p-convexity and p-smoothness are related to other famous properties of

convexity and smoothness.
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Definition 5.2.7. • A Banach space X is said to be strictly convex if

‖1
2
(x+ y)‖ < 1 for all x, y of the unit ball of X satisfying the condition

x 6= y.

• A Banach space X is said to be uniformly convex if, for the modulus of

convexity δX : [0, 2] → [0, 1], defined by

δX (ǫ) := inf

{

1− ‖1
2
(x+ y)‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ǫ

}

,

we have

δX (ǫ) > 0, 0 < ǫ ≤ 2.

• A Banach space X is said to be smooth if, for every x ∈ X with x 6= 0,

there is a unique x∗ ∈ X ∗ such that ‖x∗‖ = 1 and 〈x∗, x〉 = ‖x‖.

• A Banach space X is said to be uniformly smooth if, for the modulus

of smoothness ρX : [0,+∞) → [0,+∞), defined by

ρX (τ) :=
1

2
sup{‖x+ y‖+ ‖x− y‖ − 2 | ‖x‖ = 1, ‖y‖ ≤ τ},

there holds:

lim
τ→0

ρX (τ)

τ
= 0.

If a Banach space is p-smooth for some p > 1, then x 7→ ‖x‖p is Fréchet-

differentiable, hence Gateaux-differentiable and therefore JX
p is single-valued.

In the famous paper [99], Xu and Roach proved a series of important inequa-

lities, some of which will be very useful in the proofs of the following chapter.

Here we recall only the results about uniformly smooth and s-smooth Banach

spaces and refer to [82] and to [99] for the analogous results about uniformly

convex and s-convex Banach spaces.

Theorem 5.2.7 (Xu-Roach inequalities I). Let X be uniformly smooth,

1 < p <∞, and jXp ∈ JX
p . Then, for all x, y ∈ X , we have

‖x− y‖p − ‖x‖p + p〈jXp (x), y〉

≤ +pGp

∫ 1

0

(‖x− ty‖ ∨ ‖x‖)p
t

ρX

(
t‖y‖

‖x− ty‖ ∨ ‖x‖

)

dt,
(5.13)
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where a ∨ b = max{a, b}, a, b ∈ R, and where Gp > 0 is a constant that can

be written explicitly (cf. its expression in [82]).

Theorem 5.2.8 (Xu-Roach inequalities II). The following statements

are equivalent:

(i) X is s-smooth.

(ii) For some 1 < p < ∞ the duality mapping JX
p is single-valued and for

all x, y ∈ X we have

‖JX
p (x)− JX

p (y)‖ ≤ C(‖x‖ ∨ ‖y‖)p−s‖x− y‖s−1.

(iii) The statement (ii) holds for all p ∈ (1,∞).

(iv) For some 1 < p < ∞, some jXp ∈ JX
p and for all x, y, the inequality

(5.13) holds. Moreover, the right-hand side of (5.13) can be estimated

by

C

∫ 1

0

ts−1 (‖x− ty‖ ∨ ‖x‖)p−s ‖y‖sdt.

(v) The statement (iv) holds for all p ∈ (1,∞) and all jXp ∈ JX
p .

The generic constant C can be chosen independently of x and y.

An important consequence of the Xu-Roach inequalities is the following

result.

Corollary 5.2.1. If X be p-smooth, then for all 1 < q < p the space X is

also q-smooth. If on the other hand X is p-convex, then for all q such that

p < q <∞ the space X is also q-convex.

If X is s-smooth and p > 1, then the duality mapping JX
p is single-valued.

The spaces that are convex or smooth of power type share many intere-

sting properties, summarized in the following theorems.

Theorem 5.2.9. If X is p-convex, then:
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• p ≥ 2;

• X is uniformly convex and the modulus of convexity satisfies δX (ǫ) ≥
Cǫp;

• X is strictly convex;

• X is reflexive (i.e. X ∗∗ = X ).

If X is p-smooth, then:

• p ≤ 2;

• X is uniformly smooth and the modulus of smoothness satisfies ρX (τ) ≤
Cτ p;

• X is smooth;

• X is reflexive.

Theorem 5.2.10. There hold:

• X is p-smooth if and only if X ∗ is p∗ convex.

• X is p-convex if and only if X ∗ is p∗ smooth.

• X is uniformly convex (respectively uniformly smooth) if and only if X ∗

is uniformly smooth (respectively uniformly convex).

• X is uniformly convex if and only if X is uniformly smooth.

Theorem 5.2.11. The duality mappings satisfy the following assertions:

• For every x ∈ X the set JX
p (x) is empty and convex.

• X is smooth if and only if the duality mapping JX
p is single-valued.

• If X is uniformly smooth, then JX
p is single-valued and uniformly con-

tinuous on bounded sets.
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• If X is convex of power type and smooth, then JX
p is single-valued,

bijective, and the duality mapping JX ∗

p∗ is single-valued with

JX ∗

p∗ (JX
p (x)) = x.

An important consequence of the last statement is that for spaces being

smooth of power type and convex of power type the duality mappings on the

primal and dual spaces can be used to transport all elements from the primal

to the dual space and vice versa. This is crucial to extend the regularization

methods defined in the Hilbert space setting to the Banach space setting, as

we shall see later.

The smoothness and convexity of power type properties have been studied for

some important function spaces. We summarize the results in the theorem

below.

Theorem 5.2.12. Let Ω ⊆ RD be a domain. Then for 1 < r <∞ the spaces

ℓr of infinite real sequences, the Lebesgue spaces Lr(Ω) and the Sobolev spaces

Wm,r(Ω), equipped with the usual norms, are

max{2, r}-convex and min{2, r}-smooth.

Moreover, it is possible to show that ℓ1 cannot be p-convex or p-smooth for

any p.

5.2.3 The Bregman distance

Due to the geometrical properties of the Banach spaces, it is often more

appropriate to exploit the Bregman distance instead of functionals like ‖x−
y‖pX or ‖jXp (x)− jXp (y)‖pX ∗ to prove convergence of the algorithms.

Definition 5.2.8. Let jXp be a single-valued selection of the duality mapping

JX
p . Then, the functional

Dp(x, y) :=
1

p
‖x‖p − 1

p
‖y‖p − 〈jXp (y), x− y〉X ∗×X , x, y ∈ X (5.14)

is called the Bregman distance (with respect to the functional 1
p
‖ · ‖p).
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The Bregman distance is not a distance in the classical sense, but has

many useful properties.

Theorem 5.2.13. Let X be a Banach space and jXp be a single-valued selec-

tion of the duality mapping JX
p . Then:

• Dp(x, y) ≥ 0 ∀ x, y ∈ X .

• Dp(x, y) = 0 if and only if jXp (y) ∈ JX
p (x).

• If X is smooth and uniformly convex, then a sequence {xn} ⊆ X re-

mains bounded in X if Dp(y, xn) is bounded in R. In particular, this is

true if X is convex of power type.

• Dp(x, y) is continuous in the first argument. If X is smooth and uni-

formly convex, then JX
p is continuous on bounded subsets and Dp(x, y)

is continuous in its second argument. In particular, this is true if X is

convex of power type.

• If X is smooth and uniformly convex, then the following statements are

equivalent:

◮ limn→∞ ‖xn − x‖ = 0;

◮ limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈JX
p (xn), x〉 = 〈JX

p (x), x〉;

◮ limn→∞Dp(x, xn) = 0.

In particular, this is true if X is convex of power type.

• The sequence {xn} is a Cauchy sequence in X if it is bounded and for all

ǫ > 0 there is an N(ǫ) ∈ N such that Dp(xk, xl) < ǫ for all k, l ≥ N(ǫ).

• X is p-convex if and only if Dp(x, y) ≥ cp‖x− y‖p.

• X is p-smooth if and only if Dp(x, y) ≤ Gp‖x− y‖p.

The following property of the Bregman distance replaces the classical

triangle inequality.
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Proposition 5.2.1 (Three-point identity). Let jXp be a single-valued se-

lection of the duality mapping JX
p . Then:

Dp(x, y) = Dp(x, z) +Dp(z, y) + 〈jXp (z)− jXp (y), x− z〉. (5.15)

There is a close relationship between the primal Bregman distances and

the related Bregman distances in the dual space.

Proposition 5.2.2. Let jXp be a single-valued selection of the duality map-

ping JX
p . If there exists a single-valued selection jX

∗

p∗ of JX ∗

p∗ such that for

fixed y ∈ X we have jX
∗

p∗ (jXp (y)) = y, then

Dp(y, x) = Dp∗(j
X
p (x), j

X
p (y)) (5.16)

for all x ∈ X .

5.3 Regularization in Banach spaces

In this section we extend the fundamental concepts of the regularization

theory for linear ill-posed operator equations in Hilbert spaces discussed in

Chapter 1 to the more general framework of the present chapter.

5.3.1 Minimum norm solutions

In Section 1.6 we have seen Hadamard’s definition of ill-posed problems. We

recall that an abstract operator equation F (x) = y is well posed (in the sense

of Hadamard) if for all right-hand sides y a solution of the equation exists,

is unique and the solution depends continuously on the data.

For linear problems in the Hilbert space setting, we have defined the Moore-

Penrose generalized inverse, that allows to overcome the problems of existence

and uniqueness of the solution by defining the minimum norm (or best-

approximate) solution. For general ill-posed problems in Banach spaces,

it is also possible to define a minimum norm solution.

In the linear case, the definition is similar to the Hilbert space setting.
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Definition 5.3.1 (Minimum norm solution). Let A be a linear operator

between Banach spaces X and Y An element x† ∈ X is called a minimum

norm solution of the operator equation Ax = y if

Ax† = y and ‖x†‖ = inf{‖x̃‖ | x̃ ∈ X , Ax̃ = y}.

The following result gives a characterization of the minimum norm solu-

tion (see [82] for the proof).

Proposition 5.3.1. Let X be smooth and uniformly convex and let Y be an

arbitrary Banach space. Then, if y ∈ R(A), the minimum norm solution of

Ax = y is unique. Furthermore, it satisfies the condition JX
p (x†) ∈ R(A∗)

for 1 < p <∞. If additionally there is some x ∈ X such that JX
p (x) ∈ R(A∗)

and x− x† ∈ ker(A), then x = x†.

In the nonlinear case, one has to face nonlinear operator equations of the

type

F (x) = y, x ∈ D(F ) ⊆ X , y ∈ F (D(F )) ⊆ Y , (5.17)

where F : D(F ) ⊆ X → Y is a nonlinear mapping with domain D(F ) and

range F (D(F )).

According to the local character of the solutions in nonlinear equations we

have to focus on some neighborhood of a reference element x0 ∈ X which can

be interpreted as an initial guess for the solution to be determined. Then,

one typically shifts the coordinate system from the zero to x0 and searches

for x0-minimum norm solutions.

Definition 5.3.2 (x0-minimum norm solution). An element x† ∈ D(F )

⊆ X is called a x0-minimum norm solution of the operator equation F (x) = y

if

F (x†) = y and ‖x† − x0‖ = inf{‖x̃− x0‖ | x̃ ∈ D(F ), F (x̃) = y}.

To ensure that x0-minimum norm solutions to the nonlinear operator

equation (5.17) exist, some assumptions have to be made on the Banach

spaces X and Y , on the domain D(F ) and on the operator F .
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Proposition 5.3.2. Assume the following conditions hold:

(i) X and Y are infinite dimensional reflexive Banach spaces.

(ii) D(F ) ⊆ X is a convex and closed subset of X .

(iii) F : D(F ) ⊆ X → Y is weak-to-weak sequentially continuous, i.e. xn

⇀ x̄ in X with xn ∈ D(F ), n ∈ N, and x̄ ∈ D(F ) implies F (xn) ⇀

F (x̄) in Y.

Then the nonlinear operator equation (5.17) admits an x0-minimum norm

solution.

Proof. See [82], Proposition 3.14.

5.3.2 Regularization methods

As usual, we shall assume that the data y of an ill-posed (linear or nonlinear)

operator equation are not given exactly, but only elements yδ ∈ Y satisfying

the inequality ‖y − yδ‖ ≤ δ, with noise level δ > 0 are available.

Consequently, regularization approaches are required for detecting good ap-

proximate solutions. Here we give a definition of regularization methods

which is analogous to that given in Chapter 1, but a little more general.

Definition 5.3.3. Let σ0 ∈ (0,+∞]. For every σ ∈ (0, σ0), let Rσ : Y → X
be a continuous operator.

The family {Rσ} is called a regularization operator for A† if, for every y ∈
D(A†), there exists a function

α : (0,+∞)× Y → (0, σ0),

called parameter choice rule for y, that allows to associate to each cou-

ple (δ, yδ) a specific operator Rα(δ,yδ) and a regularized solution xδ
α(δ,yδ)

:=

Rα(δ,yδ)y
δ, and such that

lim
δ→0

sup
yδ∈Bδ(y)

α(δ, yδ) = 0. (5.18)
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If, in addition, for every sequence {yδn}n∈N ⊆ Y with ‖yδn − y‖ ≤ δn and δn

→ 0 as n → ∞ the regularized solutions xδn
α(yδn,δn)

converge in a well-defined

sense to a well-defined solution x† of (5.17), then α is said to be convergent.

Convergent regularization methods are defined accordingly, analogously to

Definition 1.9.1. If the solution of equation (5.17) is not unique, convergence

to solutions possessing desired properties, e.g. x0-minimum norm solutions,

is required.

In the linear case, similar definitions hold.

The distinction between a-priori, a-posteriori and heuristic parameter

choice rules is still valid in this context.

We have seen that in the case of linear operator equations in a Hilbert space

setting the construction of regularization methods is based in general on

the approximation of the Moore-Penrose approximated inverse of the linear

operator A by a σ-dependent family of bounded operators with regularized

solutions

xδσ = gσ(A
∗A)A∗yδ, σ > 0.

However, in the Banach space setting neither A† nor A∗A is available, since

the adjoint operator A∗ : Y∗ →X ∗ maps between the dual spaces. In the case

of nonlinear operator equations, a comparable phenomenon occurs, because

the adjoint operator

F ′(x†)∗ : Y∗ → X ∗

of a bounded linear derivative operator

F ′(x†) : X → Y

of F at the solution point x† ∈ D(F ) also maps between the dual spaces.

Nevertheless, two large and powerful classes of regularization methods with

prominent applications, for example in imaging, were recently promoted: the

class of Tikhonov-type regularization methods in Banach spaces and the class

of iterative regularization methods in Banach spaces.

Once again, we shall focus our attention on iterative regularization methods:
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since Tikhonov-type regularization methods require the computation of a

global minimizer, often the amount of work required for carrying out iterative

regularization methods is much smaller than the comparable amount for a

Tikhonov-type regularization.

For a detailed coverage of the most recent results about Tikhonov-type regu-

larization methods, see [82].

5.3.3 Source conditions and variational inequalities

We have seen in Chapter 1 that the convergence of the regularized solutions

of a regularization method to the minimum norm solution of the ill-posed

operator equation Ax = y can be arbitrarily slow. To obtain convergence

rates

ε(xδα, x
†) = O(ϕ(δ)) as δ → 0 (5.19)

for an error measure ε and an index function ϕ, some smoothness of the

solution element x† with respect to A : X → Y is required. In Chapter 1,

we have seen a classical tool for expressing the smoothness of x†, the source

conditions. In the Hilbert space setting, this allows to define the concept of

(order) optimality of a regularization method.

In the Banach space setting, things are more complicated. The issue of

the order optimality of a regularization method is, at least to the author’s

knowledge, still an open question in the field. The rates depend on the

interplay of intrinsic smoothness of x† and the smoothing properties of the

operator A with non-closed range, but very often proving rates is a difficult

task and it is not easy to find the correct smoothness assumptions on x† to

obtain convergence rates that, at least in the special case of Hilbert spaces,

can be considered optimal.

In this presentation, the extension of the concept of source conditions to the

Banach space setting is omitted. We only say that a wide variety of choices

has been proposed and analyzed, where either x† itself or an element ξ† from

the subdifferential of functionals of the form 1
p
‖·‖pX in x† belongs to the range

of a linear operator that interacts with A in an appropriate manner. The
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source conditions defined in Chapter 1 are only one of these choices.

We will focus our attention on a different strategy for proving convergence

rates, the use of variational inequalities. As many authors pointed out (cf.

e.g. [46], [82] and the references therein), estimating from above a term of

the form

|〈JX
p (x†), x† − x〉X ∗×X |

is a very powerful tool for proving convergence rates in regularization. The

main advantage of this approach is that this term is contained in the Bregman

distance with respect to the functional 1
p
‖ · ‖pX .

In the literature, many similar variational inequalities have been proposed.

Essentially, the right-hand side of these inequalities contain a term with the

Bregman distance between x and x† and a term that depends on the operator

A or, in the nonlinear case, on the forward operator F , for example:

|〈JX
p (x†), x† − x〉X ∗×X | ≤ β1Dp(x, x

†) + β2‖F (x)− F (x†)‖, (5.20)

for constants 0 ≤ β1 < 1 and β2 ≥ 0. The inequalities must hold for all x ∈
M, with some set M which contains all regularized solutions of interest.

We shall not discuss these assumptions here, but we limit ourselves to state a

particular variational inequality in each examined case. For a more detailed

treatment of the argument, we refer to [82], where some important results

that link the variational inequalities with the source conditions can also be

found.

5.4 Iterative regularization methods

In this section we consider iterative regularization methods for nonlinear ill-

posed operator equations (5.17). We will assume that the noise level δ is

known to provide convergence and convergence rates results.

In the following, x0 is some initial guess. We will assume that a solution

to (5.17) exists: according to Proposition 5.3.2, this implies the existence

of an x0-minimum norm solution x†, provided that the assumptions of that
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proposition are satisfied.

The iterative methods discussed in this section will be either of gradient

(Landweber and Iteratively Regularized Landweber) or of Newton-type (Ite-

ratively Regularized Gauss-Newton method).

5.4.1 The Landweber iteration: linear case

Before turning to the nonlinear case, we consider the Landweber iteration

for linear ill-posed problems in Banach spaces with noisy data.

In Chapter 1, we have seen that the Landweber iteration for solving linear

ill-posed problems in Hilbert spaces can be expressed in the form

xk+1 = xk − ωA∗(Axk − y),

where ω > 0 is the step size of the method. Here, we shall consider a variable

step size ωk > 0 (k ∈ N) in the course of the iteration, since an appropriate

choice of the step size helps to prove convergence.

The generalization of the Landweber iteration to the Banach space setting

requires the help of the duality mappings. As a consequence, the space X is

assumed to be smooth and uniformly convex, whereas Y can be an arbitrary

Banach space. Note that this implies that jXp = JX
p is single-valued, X is

reflexive and X ∗ is strictly convex and uniformly smooth.

The Landweber algorithm

Assume that instead of the exact data y ∈ R(A) and the exact linear and

bounded operator A : X → Y , only some approximations {yj}j in Y and

{Al}l in the space L (X ,Y) of linear and bounded operators between X and

Y , are available. Assume also that estimates for the deviations

‖yj − y‖ ≤ δj , δj > δj+1 > 0, lim
j→∞

δj = 0, (5.21)

and

‖Al − A‖ ≤ ηl, ηl > ηl+1 > 0, lim
l→∞

ηl = 0, (5.22)
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are known. Moreover, to properly include the second case (5.22), we need an

a-priori estimate for the norm of x†, i.e. there is a constant R > 0 such that

‖x†‖ ≤ R. (5.23)

Further, set

S := sup
l∈N

‖Al‖. (5.24)

(i) Fix p, r ∈ (1,∞). Choose constants C, C̃ ∈ (0, 1) and an initial vector

x0 such that

jXp (x0) ∈ R(A∗) and Dp(x
†, x0) ≤

1

p
‖x†‖p. (5.25)

Set j−1 := 0 and l−1 := 0. For k = 0, 1, 2, ... repeat

(ii) If for all j > jk−1 and all l > lk−1,

‖Alxk − yj‖ ≤ 1

C̃
(δj + ηlR), (5.26)

stop iterating.

Else, find jk > jk−1 and lk > lk−1 with

δjk + ηlkR ≤ C̃Rk

where

Rk := ‖Alkxk − yjk‖.

Choose ωk according to:

(a) In case x0 = 0 set

ω0 := C(1− C̃)p−1p
∗p−1

Sp
R
p−r
0 .

(b) For all k ≥ 0 (respectively k ≥ 1 if x0 = 0), set

γk := min

{

ρX ∗(1),

(

C(1− C̃)Rk

2p∗Gp∗S‖xk‖

)}

,
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whereGp∗ is the constant from the Xu-Roach inequalities (cf. The-

orem 5.2.7), and choose τk ∈ (0, 1], with

ρX ∗(τk)

τk
= γk

and set

ωk :=
τk
S

‖xk‖p−1

Rr−1
k

. (5.27)

Iterate

xk+1 := JX ∗

p∗

(
JX
p (xk)− ωkA

∗
lk
jYr (Alkxk − yjk)

)
. (5.28)

Theorem 5.4.1. The Landweber algorithm either stops after a finite number

of iterations with the minimum norm solution of Ax = y or the sequence of

iterates {xk} converges strongly to x†.

Proof. See [82], Theorem 6.6.

Let us consider now the case of noisy data yδ and a perturbed operator

Aη, with noise level

‖y − yδ‖ and ‖A− Aη‖ ≤ η. (5.29)

We apply the Landweber algorithm with δj = δ and ηl = η for all j, l ∈ N

and use the Discrepancy Principle. To that end, condition (5.26) provides us

with a stopping rule: we terminate the iteration at kD = kD(δ), where

kD(δ) := min{k ∈ N | Rk <
1

C̃
(δ + ηR)}. (5.30)

The proof of Theorem 5.4.1 shows that, as long as Rk ≥ 1
C̃
(δ + ηR), xk+1

is a better approximation of x† than xk. A consequence of this fact and of

Theorem 5.4.1 is the stability of this method with respect to the noise.

Corollary 5.4.1. Together with the Discrepancy Principle (5.30) as a stop-

ping rule, the Landweber algorithm is a regularization method for Ax = y.

We observe that since the selection jYr needs not to be continuous, the

method is another example of regularization with non-continuous mapping,

exactly like the the conjugate gradient type methods.
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5.4.2 The Landweber iteration: nonlinear case

Analogous to the Landweber method in Hilbert spaces (cf. [30]), we study a

generalization of the Landweber iteration described in Section 5.4.1 to solve

nonlinear problems of the form (5.17):

JX
p (xδk+1) = JX

p (xδk)− ωkA
∗
kj

Y
r (F (x

δ
k)− yδ),

xδk+1 = JX ∗

p∗ (JX
p (xδk+1)), k = 0, 1, ...

(5.31)

where we abbreviate Ak = F ′(xδk).

Of course, some assumptions are required on the spaces and on the forward

operator F (see the results below). A typical assumption on the forward

operator is the so-called η-condition (or tangential cone condition):

‖F (x)− F (x̄)− F ′(x)(x− x̄)‖ ≤ ‖F (x)− F (x̄)‖, ∀x, x̄ ∈ BD

ρ (x
†) (5.32)

for some 0 < η < 1, where BD

ρ (x
†) := {x ∈ X | Dp(x

†, x) ≤ ρ2, ρ > 0}.
A key point for proving convergence of the Landweber iteration is showing

the monotonicity of the Bregman distances.

Proposition 5.4.1. Assume that X is smooth and p-convex, that the ini-

tial guess x0 is sufficiently close to x†, i.e. x0 ∈ BD

ρ (x
†), that F satisfies

the tangential cone condition with a sufficiently small η, that F and F ′ are

continuous, and that

BD

ρ (x
†) ⊆ D(F ). (5.33)

Let τ be chosen sufficiently large, so that

c(η, τ) := η +
1 + η

τ
< 1. (5.34)

Then, with the choice

ωk :=
p∗(1− c(η, τ))p−1

Gp−1
p∗

‖F (xδk − yδ‖p − r

‖Ak‖p
≥ 0, (5.35)

with Gp∗ being the constant from the Xu-Roach inequalities (cf. Theorem

5.2.7), monotonicity of the Bregman distances

Dp(x
†, xδk+1)−Dp(x

†, xδk) ≤ −p
∗(1− c(η, τ))p

p(Gp∗p∗)p−1

‖F (xδk − yδ‖p
‖Ak‖p

(5.36)
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as well as xδk+1 ∈ D(F ) holds for all k ≤ kD(δ)− 1, with kD(δ) satisfying the

Discrepancy Principle:

kD(δ) := min{k ∈ N | ‖F (xδk)− yδ‖ ≤ τδ}. (5.37)

This allows to show the following convergence results for the Landweber

iteration. For a proof of this theorem, as well as of Proposition 5.4.1, we

refer as usual to [82].

Theorem 5.4.2. Let the assumptions of Proposition 5.4.1 hold, with ad-

ditionally Y being uniformly smooth and let kD(δ) be chosen according to

the Discrepancy Principle (5.37), with (5.34). Then, according to (5.31),

the Landweber iterates xδkD(δ) converge to a solution of (5.17) as δ → 0. If

R(F ′(x)) ⊆ R(F ′(x†)) for all x ∈ Bρ(x0) and JX
p (x0) ∈ R(F ′(x†)), then

xδkD(δ) converge to x† as δ → 0.

5.4.3 The Iteratively Regularized Landweber method

In the Hilbert space setting, the proof of convergence rates for the Landweber

iteration under source conditions

x† − x0 ∈ R
(
(F ′(x†)∗F ′(x†))

ν
2

)
(5.38)

relies on the fact that the iteration errors xδk − x† remain in

R
(
(F ′(x†)∗F ′(x†))

ν
2

)

and their preimages under
(
(F ′(x†)∗F ′(x†))

ν
2

)
form a bounded sequence (cf.

Proposition 2.11 in [53]). In [82] is stated that this approach can hardly be

carried over to the Banach space setting, unless more restrictive assumptions

are made on the structure of the spaces than in the proof of convergence

only, even in the case ν = 1.

Therefore, an alternative version of the Landweber iteration is considered,

namely the Iteratively Regularized Landweber method.
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The iterates are now defined by

JX
p (xδk+1 − x0) = (1− αk)J

X
p (xδk − x0)− ωkA

∗
kj

Y
r (F (x

δ
k)− yδ),

xδk+1 = x0 + Jp∗X ∗(JX
p (xδk+1 − x0)), k = 0, 1, ...

(5.39)

An appropriate choice of the sequence {αk}k∈N ∈ [0, 1], has been shown to

be convergent in a Hilbert space setting (with rates under a source condition

of the form ξ† = (F ′(x†))∗v, v ∈ Y∗) in [81].

In place of the Hilbert space condition (5.38) we consider the variational

inequality

∃ β > 0 : ∀x ∈ BD
ρ (x

†)

|〈JX
p (x† − x0), x− x†〉X ∗×X | ≤ βDx0

p (x†, x)
1−ν
2 ‖F ′(x†)(x− x†)‖ν

(5.40)

where

Dx0
p (x†, x) := Dp(x

† − x0, x− x0). (5.41)

According to (5.40), due to the presence of additional regularity, the tangen-

tial cone condition can be relaxed to a more general condition on the degree

of nonlinearity of the operator F :

∥
∥(F ′(x† + v)− F ′(x†))v

∥
∥ ≤ K

∥
∥F ′(x†)v

∥
∥
c1
Dx0

p (x†, v + x†)c2 ,

v ∈ X, x† + v ∈ BD
ρ (x

†) , (5.42)

with

c1 = 1 or c1 + rc2 > 1 or (c1 + rc2 ≥ 1 and K > 0 sufficiently small)

(5.43)

and

c1 + c2
2ν

ν + 1
≥ 1. (5.44)

For further details on the degree of nonlinearity conditions, see [82] and the

references therein.

The step size ωk > 0 is chosen such that

ωk
1− 3C(c1)K

3(1− C(c1)K)
‖F (xδk)− yδ‖r − 2p

∗+p−2Gp∗ω
p∗

k ‖A∗
kj

Y
r (F (x

δ
k)− yδ)‖p∗ ≥ 0,

(5.45)
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where C(c1) = cc11 (1 − c1)
1−c1 , c1 and K as in (5.42). This is possible, e.g.

by a choice

0 < ωk ≤ Cω
‖F (xδk)− yδ‖ p−r

p−1

‖Ak‖p∗
=: ωk,

with Cω := 22−p∗−p

3
1−3C(c1)K

(1−C(c1)K)Gp∗
.

If r ≥ p, F and F ′ are bounded on BD

ρ (x
†), it is possible to bound ωk from

above and below, i.e. there exist ω, ω > 0, independent of k and δ, such that

0 < ω ≤ ωk ≤ ω, (5.46)

cf. [82].

To prove convergence rates, the following a-priori stopping rule has been

proposed:

k∗(δ) := min{k ∈ N | α
ν+1

r(ν+1)−2ν

k ≤ τδ}, (5.47)

where ν < 1 is the exponent of the variational inequality (5.40).

Theorem 5.4.3. Assume that X is smooth and p-convex, that x0 ∈ BD

ρ (x
†),

that the variational inequality (5.40) holds with ν ∈ (0, 1] and β sufficiently

small, that F satisfies (5.42), with (5.43) and (5.44), that F and F ′ are

continuous and uniformly bounded in BD

ρ (x
†), that BD

ρ (x
†) ⊆ D(F ) and that

p∗ ≥ 2ν

p(ν + 1)− 2ν
+ 1. (5.48)

Let k∗(δ) be chosen according to (5.47), with τ sufficiently large. Moreover,

assume that r ≥ p and that the sequence {ωk}k∈N is chosen such that (5.46)

holds. Finally, assume that the sequence {αk}k∈N ⊆ [0, 1] is chosen such that

(
αk+1

αk

) 2ν
p(ν+1)−2ν

+
1

3
αk − 1 ≥ cαk (5.49)

for some c ∈ (0, 1
3
) independent of k and αmax = maxk∈N αk is sufficiently

small.

Then, the iterates xδk+1 remain in BD

ρ (x
†) for all k ≤ k∗(δ) − 1, with k∗(δ)

according to (5.47). Moreover, we obtain optimal rates

Dx0
p (x†, xk∗) = O(δ

2ν
ν+1 ), δ → 0 (5.50)
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as well as in the noise free case δ = 0

Dx0
p (x†, xk∗) = O(α

2ν
r(ν+1)−2ν

k ), k → ∞. (5.51)

A possible choice of the parameters {αk}k∈N, satisfying (5.49), and small-

ness of αmax is given by

αk =
α0

(k + 1)t
(5.52)

with t ∈ (0, 1] such that 3tθ < α0 sufficiently small, cf. [82].

We emphasize that in the Banach space setting an analogous of Plato’s The-

orem 1.11.1 is not available. Consequently, convergence rate results under

source conditions or variational inequalities like (5.40) cannot be used to

prove (strong) convergence results.

5.4.4 The Iteratively Regularized Gauss-Newton method

Among the iterative methods, the Iteratively Regularized Gauss-Newton

(IRGN) method is one of the most important for solving nonlinear ill-posed

problems.

In the Banach space setting, the (n+ 1)-th iterate of the IRGN method, de-

noted by xδn+1 = xδn+1(αn), is a minimizer xδn+1(α) of the Tikhonov functional

‖An(x−xδn)+F (xδn)−yδ‖r+α‖x−x0‖p, x ∈ D(F ), n = 0, 1, 2, ...., (5.53)

where p, r ∈ (1,∞), {αn} is a sequence of regularization parameters, and

An = F ′(xδn).

The regularizing properties of the IRGN method are now well understood.

If one of the assumptions

F ′(x) : X → Y is weakly closed ∀x ∈ D(F ), and Y is reflexive, (5.54)

D(F ) is weakly closed (5.55)

holds, then the method is well defined (cf. Lemma 7.9 in [82]). Moreover,

assuming variational inequalities similar to (5.40) and the a-priori choice

(5.47) for αn, it is possible to obtain optimal convergence rates, see [82] and
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the references therein.

Here we concentrate on the a-posteriori choice given by the Discrepancy

Principle. More precisely, we have the following two theorems (see, as usual,

[82] for the proofs).

Theorem 5.4.4. Assume that X is smooth and uniformly convex and that F

satisfies the tangential cone condition (5.32) with BD

ρ (x
†) replaced by D(F )∩

Bρ(x0) and with η sufficiently small. Assume also that

(xn ⇀ x ∧ F (xn) → f) ⇒ (x ∈ D(F ) ∧ F (x) = f) (5.56)

or

(JX
p (xn−x0)⇀ x∗∧F (xn) → f) ⇒ (x := JX ∗

p∗ (x∗)+x0 ∈ D(F )∧F (x) = f)

(5.57)

for all {xn}n∈N ⊆ X , holds, as well as (5.54) or (5.55). Let

η < σ < σ < 1, (5.58)

and let τ be chosen sufficiently large, so that

η +
1 + η

τ
≤ σ and η <

1− σ

2
. (5.59)

Choose the regularization parameters αn such that

σ‖F (xδn)−yδ‖ ≤ ‖An(x
δ
n+1(αn)−xδn)+F (xδn)−yδ‖ ≤ σ‖F (xδn)−yδ‖, (5.60)

if

‖An(x0 − xδn) + F (xδn)− yδ‖ ≥ σ‖F (xδn)− yδ‖ (5.61)

holds. Moreover, assume that

δ <
‖F (x0)− yδ‖

τ
(5.62)

and stop the iteration at the iterate nD = nD(δ) according to the Discrepancy

Principle (5.37). Then, for all n ≤ nD(δ)− 1, the iterates

xδn+1 :=

{

xδn+1 = xδn+1(αn), with αn as in (5.60), if (5.61) holds

x0, else

(5.63)
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are well defined.

Furthermore, there exists a weakly convergent subsequence of

{

xδnD(δ), if (5.56) holds

JX
p (xδnD(δ) − x0), if (5.56) holds

(5.64)

and along every weakly convergent subsequence xnD(δ) converges strongly to

a solution of F (x) = y as δ → 0. If the solution is unique, then xnD(δ)

converges strongly to this solution as δ → 0.

The theorem above provides us with a convergence result. The following

theorem gives convergence rates.

Theorem 5.4.5. Let the assumptions of Theorem 5.4.4 be satisfied. Then

under the variational inequality

∃ β > 0 : ∀x ∈ BD
ρ (x

†)

|〈JX
p (x† − x0), x− x†〉X ∗×X | ≤ βDx0

p (x, x†)
1−ν
2 ‖F ′(x†)(x− x†)‖ν

(5.65)

with 0 < ν < 1, we obtain optimal convergence rates

Dx0
p (xnD

, x†) = O(δ
2ν
ν+1 ), as δ → 0. (5.66)
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Chapter 6

A new Iteratively Regularized

Newton-Landweber iteration

The final chapter of this thesis is entirely dedicated to a new inner-outer

Newton-Iteratively Regularized Landweber iteration for solving nonlinear

equations of the type (5.17) in Banach spaces.

The reasons for choosing a Banach space framework have already been ex-

plained in the previous chapter. We will see the advantages of working in

Banach spaces also in the numerical experiments presented later.

Concerning the method, a combination of inner and outer iterations in a

Newton type framework has already been shown to be highly efficient and

flexible in the Hilbert space context, see, e.g., [78] and [79].

In the recent paper [49], a Newton-Landweber iteration in Banach spaces

has been considered and a weak convergence result for noisy data has been

proved. However, neither convergence rates nor strong convergence results

have been found. The reason for this is that the convergence rates proof

in Hilbert spaces relies on the fact that the iteration errors remain in the

range of the adjoint of the linearized forward operator and their preimages

under this operator form a bounded sequence. Carrying over this proof to

the Banach space setting would require quite restrictive assumptions on the

structure of the spaces, though, which we would like to avoid, to work with

193
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as general Banach spaces as possible.

Therefore, we study here a combination of the outer Newton loop with an

Iteratively Regularized Landweber iteration, which indeed allows to prove

convergence rates and strong convergence.

From Section 6.1 to Section 6.5 we will study the inner-outer Newton-Iteratively

Regularized Landweber method following [54]. We will see that a strategy

for the stopping indices similar to that proposed in [49] leads to a weak con-

vergence result. Moreover, always following [54], we will show a convergence

rate result based on an a-priori choice of the outer stopping index.

Section 6.6 is dedicated to some numerical experiments for the elliptic PDE

problem presented in Section 5.1.

In Section 6.7 we will consider a different choice of the parameters of the

method that allows to show both strong convergence and convergence rates.

6.1 Introduction

In order to formulate and later on analyze the method, we recall some basic

notations and concepts. For more details about the concepts appearing be-

low, we refer to Chapter 5.

Consider, for some p ∈ (1,∞), the duality mapping JX
p (x) := ∂

{
1
p
‖x‖p

}

from X to its dual X ∗. To analyze convergence rates we employ the Breg-

man distance

Dp(x̃, x) =
1

p
‖x̃‖p − 1

p
‖x‖p − 〈jXp (x), x̃− x〉X ∗×X

(where jXp (x) denotes a single-valued selection of JX
p (x)) or its shifted version

Dx0
p (x̃, x) := Dp(x̃− x0, x− x0) .

Throughout this paper we will assume that X is smooth (which implies that

the duality mapping is single-valued, cf. Chapter 5) and moreover, that X
is s-convex for some s ∈ [p,∞), which implies

Dp(x, y) ≥ cp,s‖x− y‖s(‖x‖+ ‖y‖)p−s (6.1)
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for some constant cp,s > 0, cf. Chapter 5. As a consequence, X is reflexive

and we also have

Dp∗(x
∗, y∗) ≤ Cp∗,s∗‖x∗ − y∗‖s∗((pDp∗(J

X ∗

p∗ (x∗), 0))1−
s∗

p∗ + ‖x∗ − y∗‖p∗−s∗) ,

(6.2)

for some Cp∗,s∗, where s
∗ denotes the dual index s∗ = s

s−1
. The latter can be

concluded from estimate (2.2) in [49], which is the first line in

Dp∗(x
∗, y∗) ≤ C̃p∗,s∗‖x∗ − y∗‖s∗(‖y∗‖p∗−s∗ + ‖x∗ − y∗‖p∗−s∗)

≤ Cp∗,s∗‖x∗ − y∗‖s∗(‖x∗‖p∗−s∗ + ‖x∗ − y∗‖p∗−s∗)

= Cp∗,s∗‖x∗ − y∗‖s∗(‖JX ∗

p∗ (x∗)‖(p∗−s∗)(p−1) + ‖x∗ − y∗‖p∗−s∗)

= Cp∗,s∗‖x∗ − y∗‖s∗((pDp∗(J
X ∗

p∗ (x∗), 0))(p
∗−s∗)p−1

p + ‖x∗ − y∗‖p∗−s∗),

where Cs∗,p∗ is equal to C̃s∗,p∗(1+2p
∗−s∗−1) if p∗−s∗ > 1 and is simply 2C̃s∗,p∗

otherwise.

Note that the duality mapping is bijective and (JX
p )−1 = JX ∗

p∗ , the latter de-

noting the (by s-convexity also single-valued) duality mapping on the dual

X ∗ of X .

We will also make use of the Three-point identity (5.15) and the relation

(5.16), which connects elements of the primal space with the corresponding

elements of the dual space.

We here consider a combination of the Iteratively Regularized Gauss-Newton

method with an Iteratively Regularized Landweber method for approximating

the Newton step, using some initial guess x0 and starting from some xδ0 (that
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need not necessarily coincide with x0)

For n = 0, 1, 2 . . . do

un,0 = 0

zn,0 = xδn

For k = 0, 1, 2 . . . , kn − 1 do

un,k+1 = un,k − αn,kJ
X
p (zn,k − x0)

−ωn,kA
∗
nj

Y
r (An(zn,k − xδn)− bn)

JX
p (zn,k+1 − x0) = JX

p (xδn − x0) + un,k+1

xδn+1 = zn,kn ,

(6.3)

where we abbreviate

An = F ′(xδn) , bn = yδ − F (xδn) .

For obtaining convergence rates we impose a variational inequality

∃ β > 0 : ∀x ∈ BD

ρ (x
†)

|〈JX
p (x† − x0), x− x†〉X ∗×X | ≤ βDx0

p (x†, x)
1
2
−ν‖F (x)− F (x†)‖2ν , (6.4)

with ν ∈ (0, 1
2
], corresponding to a source condition in the special case of

Hilbert spaces, cf., e.g., [42].

Here

BD

ρ (x
†) = {x ∈ X |Dx0

p (x†, x) ≤ ρ2}

with ρ > 0 such that x0 ∈ BD

ρ (x
†).

By distinction between the cases ‖x − x0‖ < 2‖x† − x0‖ and ‖x − x0‖ ≥
2‖x† − x0‖ and the second triangle inequality we obtain from (6.1) that

BD

ρ (x
†) ⊆ Bρ̄(x0) = B‖·‖

ρ̄ (x0) = {x ∈ X | ‖x− x0‖ ≤ ρ̄} (6.5)

with ρ̄ = max{2‖x† − x0‖ ,
(

2p3s−pρ
cp,s

)1/p

}.
The assumptions on the forward operator besides a condition on the domain

BD

ρ (x
†) ⊆ D(F ) (6.6)
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include a structural condition on its degree of nonlinearity. For simplicity of

exposition we restrict ourselves to the tangential cone condition

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η ‖F (x̃)− F (x)‖ , x̃, x ∈ BD

ρ (x
†) , (6.7)

and mention in passing that most of the results shown here remain valid under

a more general condition on the degree of nonlinearity already encountered

in Chapter 5 (cf. [42])

∥
∥(F ′(x† + v)− F ′(x†))v

∥
∥ ≤ K

∥
∥F ′(x†)v

∥
∥
c1
Dx0

p (x†, v + x†)c2 ,

v ∈ X , x† + v ∈ BD

ρ (x
†) , (6.8)

with conditions on c1, c2 depending on the smoothness index ν in (6.4). Here

F ′ is not necessarily the Fréchet derivative of F , but just a linearization of

F satisfying the Taylor remainder estimate (6.7). Additionally, we assume

that F ′ and F are uniformly bounded on BD

ρ (x
†).

The method contains a number of parameters that have to be chosen appro-

priately. At this point we only state that at first the inner iteration will be

stopped in the spirit of an inexact Newton method according to

∀0 ≤ k ≤ kn − 1 : µ‖F (xδn)− yδ‖ ≤ ‖An(zn,k − xδn) + F (xδn)− yδ‖ (6.9)

for some µ ∈ (η, 1).

Since zn,0 = xδn and µ < 1, at least one Landweber step can be carried out in

each Newton iteration. By doing several Landweber steps, if allowed by (6.9),

we can improve the numerical performance as compared to the Iteratively

Regularized Landweber iteration from [55].

Concerning the remaining parameters ωn,k, αn,k and the overall stopping

index n∗, we refer to the sections below for details.

Under the condition (6.9), we shall distinguish between the two cases:

(a) (6.4) holds with some ν > 0;

(b) a condition like (6.4) cannot be made use of, since the exponent ν is

unknown or (6.4) just fails to hold.
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The results we will obtain with the choice (6.9) by distinction between a

priori and a posteriori parameter choice are weaker than what one might

expect at a first glance. While the Discrepancy Principle for other methods

can usually be shown to yield (optimal) convergence rates if (6.4) happens

to hold (even if ν > 0 is not available for tuning the method but only for

the convergence analysis) we here only obtain weak convergence. On the

other hand, the a priori choice will only give convergence with rates if (6.4)

holds with ν > 0, otherwise no convergence can be shown. Still there is an

improvement over, e.g, the results in [55] and [81] in the sense that there no

convergence at all can be shown unless (6.4) holds with ν > 0. Of course from

the analysis in [49] it follows that there always exists a choice of αn,k such

that weak convergence without rates holds, namely αn,k = 0 corresponding

to the Newton-Landweber iteration analyzed in [49]. What we are going to

show here is that a choice of positive αn,k is admissible, which we expect to

provide improved speed of convergence for the inner iteration, as compared

to pure Landweber iteration.

Later on, we will analyze a different choice of the stopping indices that leads

to strong convergence.
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6.2 Error estimates

For any n ∈ IN we have

Dx0
p (x†, zn,k+1)−Dx0

p (x†, zn,k)

= Dx0
p (zn,k, zn,k+1) + 〈JX

p (zn,k+1 − x0)− JX
p (zn,k − x0)

︸ ︷︷ ︸

=un,k+1−un,k

, zn,k − x†〉X ∗×X

= Dx0
p (zn,k, zn,k+1)

︸ ︷︷ ︸

(I)

−ωn,k〈jYr (An(zn,k − xδn) + F (xδn)− yδ), An(zn,k − x†)〉Y∗×Y
︸ ︷︷ ︸

(II)

−αn,k〈JX
p (x† − x0), zn,k − x†〉X ∗×X

︸ ︷︷ ︸

(III)

−αn,k〈JX
p (zn,k − x0)− JX

p (x† − x0), zn,k − x†〉X ∗×X
︸ ︷︷ ︸

(IV )

. (6.10)

Assuming that zn,k ∈ BD

ρ (x
†), we now estimate each of the terms on the

right-hand side separately, depending on whether in (6.4) ν > 0 is known

(case a) or is not made use of (case b).

By (6.2) and (5.16) we have for the term (I)

Dx0
p (zn,k, zn,k+1) ≤ Cp∗,s∗‖ JX

p (zn,k+1 − x0)− JX
p (zn,k − x0)

︸ ︷︷ ︸

=un,k+1−un,k

‖s∗

·
(

(pρ2)1−
s∗

p∗ + ‖JX
p (zn,k+1 − x0)− JX

p (zn,k − x0)‖p∗−s∗
)

= Cp∗,s∗(pρ
2)1−

s∗

p∗ ‖αn,kJ
X
p (zn,k − x0)

+ωn,kA
∗
nj

Y
r (An(zn,k − xδn) + F (xδn)− yδ)‖s∗

+Cp∗,s∗‖αn,kJ
X
p (zn,k − x0) + ωn,kA

∗
nj

Y
r (An(zn,k − xδn) + F (xδn)− yδ)‖p∗

≤ 2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗αs∗

n,k‖zn,k − x0‖(p−1)s∗

+2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗ωs∗

n,k‖A∗
nj

Y
r (An(zn,k − xδn) + F (xδn)− yδ)‖s∗

)

+2p
∗−1Cp∗,s∗α

p∗

n,k‖zn,k − x0‖(p−1)p∗

+2p
∗−1Cp∗,s∗ω

p∗

n,k‖A∗
nj

Y
r (An(zn,k − xδn) + F (xδn)− yδ)‖p∗

)

≤ Cp∗,s∗

(

(pρ2)1−
s∗

p∗ ρ̄(p−1)s∗2s
∗−1αs∗

n,k + ρ̄p2p
∗−1αp∗

n,k

)

+ ϕ(ωn,kt̃n,k),(6.11)
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where we have used the triangle inequality in X ∗ and X , the Young’s ine-

quality

(a+ b)λ ≤ 2λ−1(aλ + bλ) for a, b ≥ 0 , λ ≥ 1 , (6.12)

and (6.5), as well as the abbreviations

dn,k = Dx0
p (x†, zn,k)

1/2,

tn,k = ‖An(zn,k − xδn) + F (xδn)− yδ‖,
t̃n,k = ‖A∗

nj
Y
r (An(zn,k − xδn) + F (xδn)− yδ)‖,

≤ ‖An‖tr−1
n,k . (6.13)

Here

ϕ(λ) = 2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗ λs
∗

+ 2p
∗−1Cp∗,s∗λ

p∗ , (6.14)

which by p∗ ≥ s∗ > 1 defines a strictly monotonically increasing and convex

function on R+.

For the term (II) in (6.10) we get, using (6.7) and (1.44),

ωn,k〈jYr (An(zn,k − xδn) + F (xδn)− yδ), An(zn,k − x†)〉Y∗×Y

= ωn,kt
r
n,k

+ωn,k〈jYr (An(zn,k − xδn) + F (xδn)− yδ),

An(x
δ
n − x†)− F (xδn) + yδ〉Y∗×Y

≥ ωn,kt
r
n,k − ωn,kt

r−1
n,k (η‖F (xδn)− yδ‖+ (1 + η)δ). (6.15)

Together with (6.9) this yields

ωn,k〈jYr (An(zn,k − xδn) + F (xδn)− yδ), An(zn,k − x†)〉Y∗×Y

≥ (1− η

µ
)ωn,kt

r
n,k − (1 + η)ωn,kt

r−1
n,k δ (6.16)

≥ (1− η

µ
− C( r−1

r
)ǫ)ωn,kt

r
n,k − C( r−1

r
)
(1 + η)r

ǫr−1
ωn,kδ

r , (6.17)

where we have used the elementary estimate

a1−λbλ ≤ C(λ)(a+ b) for a, b ≥ 0 , λ ∈ (0, 1) (6.18)

with C(λ) = λλ(1− λ)1−λ.
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To make use of the variational inequality (6.4) for estimating (III) in case

a) with ν > 0, we first of all use (6.7) to conclude

‖F (zn,k)− F (x†)‖
= ‖(An(zn,k − xδn) + F (xδn)− yδ)

+(F (zn,k)− F (xδn)− An((zn,k − xδn) + (yδ − y)‖
≤ tn,k + η‖F (zn,k)− F (xδn)‖+ δ

≤ tn,k + η(‖F (zn,k)− F (x†)‖+ ‖F (xδn)− yδ‖) + (1 + η)δ ,

hence by (6.9)

‖F (zn,k)− F (x†)‖ ≤ 1

1− η

(

(1 +
η

µ
)tn,k + (1 + η)δ

)

. (6.19)

This together with (6.4) implies

|αn,k〈JX
p (x† − x0), zn,k − x†〉X ∗×X |

≤ β

(1− η)2ν
αn,kd

1−2ν
n,k

(

(1 +
η

µ
)tn,k + (1 + η)δ

)2ν

≤ C(2ν
r
)

β

(1− η)2ν

{

ωn,k

(

(1 +
η

µ
)tn,k + (1 + η)δ

)r

+
(

ω
− 2ν

r
n,k αn,kd

1−2ν
n,k

) r
r−2ν

}

≤ C(2ν
r
)

β

(1− η)2ν

{

2r−1ωn,k

(

(1 +
η

µ
)rtrn,k + (1 + η)rδr

)

+C( (1−2ν)r
2(r−2ν)

)
[

αn,kd
2
n,k + ω

− 4ν
r(1+2ν)−4ν

n,k α
r(1+2ν)

r(1+2ν)−4ν

n,k

]}

, (6.20)

where we have used (6.18) twice. In the case b) we simply estimate

|αn,k〈JX
p (x† − x0), zn,k − x†〉X ∗×X | ≤ ‖x† − x0‖p−1αn,k(pd

2
n,k)

1
p . (6.21)

Finally, for the term (IV) we have that

αn,k〈JX
p (x† − x0)− JX

p (zn,k − x0), x
† − zn,k〉X ∗×X

= αn,k(D
x0
p (x†, zn,k) +Dx0

p (zn,k, x
†)) ≥ αn,kd

2
n,k . (6.22)
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Altogether in case a) we arrive at the estimate

d2
n,k+1 ≤

(

1− (1− c0)αn,k

)

d2
n,k + c1α

s∗

n,k + c2α
p∗

n,k + c3ω
−θ
n,kα

1+θ
n,k

−(1 − c4)ωn,kt
r
n,k + C5ωn,kδ

r + ϕ(ωn,kt̃n,k) , (6.23)

where

c0 =
β

(1− η)2ν
C(2ν

r
)C( (1−2ν)r

2(r−2ν)
) (6.24)

c1 = Cp∗,s∗(pρ
2)1−

s∗

p∗ ρ̄(p−1)s∗2s
∗−1 (6.25)

c2 = Cp∗,s∗ρ̄
p2p

∗−1 (6.26)

c3 = c0 (6.27)

c4 =
η

µ
+ C( r−1

r
)ǫ+

β

(1− η)2ν
C(2ν

r
)2r−1(1 +

η

µ
)r (6.28)

C5 = C( r−1
r
)
(1 + η)r

ǫr−1
+

β

(1− η)2ν
C(2ν

r
)2r−1(1 + η)r (6.29)

θ =
4ν

r(1 + 2ν)− 4ν
, (6.30)

(small c denoting constants that can be made small by assuming x0 to be

sufficiently close to x† and therewith β, η, ‖x0 − x†‖ small).

In case b) we use (6.16), (6.21) instead of (6.17), (6.20), which yields

d2
n,k+1 ≤

(

1− αn,k

)

d2
n,k + c̃0αn,kd

2
p

n,k + c1α
s∗

n,k + c2α
p∗

n,k

−
(

1− η

µ

)

ωn,kt
r
n,k + (1 + η)ωn,kt

r−1
n,k δ + ϕ(ωn,kt̃n,k), (6.31)

where

c̃0 = ‖x† − x0‖p−1p
1
p . (6.32)

6.3 Parameter selection for the method

To obtain convergence and convergence rates we will have to appropriately

choose

• the step sizes ωn,k,
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• the regularization parameters αn,k,

• the stopping indices kn of the inner iteration,

• the outer stopping index n.

We will now discuss these choices in detail.

In view of estimates (6.23), (6.31) it makes sense to balance the terms

ωn,kt
r
n,k and ϕ(ωn,kt̃n,k). Thus for establishing convergence in case b), we will

assume that in each inner Landweber iteration the step size ωn,k > 0 in (6.3)

is chosen such that

cω ≤
ϕ
(

ωn,kt̃n,k

)

ωn,ktrn,k
≤ cω (6.33)

with sufficiently small constants 0 < cω < cω. In case a) of (6.4) holding true

it will turn out that we do not need the lower bound in (6.33) but have to

make sure that ωn,k stays bounded away from zero and infinity

ω ≤ ωn,k ≤ ω and
ϕ
(

ωn,kt̃n,k

)

ωn,ktrn,k
≤ cω (6.34)

for some ω > ω > 0.

To see that we can indeed satisfy (6.33), we rewrite it as

cω ≤ ϕ(ωn,kt̃n,k)
1

ωn,ktrn,k
= ψ(ωn,kt̃n,k)

t̃n,k
trn,k

≤ cω ,

with sufficiently small constants 0 < cω < cω, and ψ(λ) = ϕ(λ)
λ

, which by

(6.14) and p∗ > 1, s∗ > 1 defines a continuous strictly monotonically increas-

ing function on R+ with ψ(0) = 0, limλ→+∞ ψ(λ) = +∞, so that, after fixing

tn,k and t̃n,k, ωn,k is well-defined by (6.33). An easy to implement choice of

ωn,k such that (6.33) holds is given by

ωn,k = ϑmin{t
r

s∗−1

n,k t̃−s
n,k , t

r
p∗−1

n,k t̃−p
n,k} (6.35)

with ϑ sufficiently small, which is similar to the choice proposed in [49] but

avoids estimating the norm of An. Indeed, by (6.14), with this choice, the
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quantity to be estimated from below and above in (6.33) becomes

min{ 2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗ ϑs
∗−1 + 2p

∗−1Cp∗,s∗ϑ
p∗−1T−(p∗−1) ,

2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗ ϑs
∗−1T (s∗−1) + 2p

∗−1Cp∗,s∗ϑ
p∗−1} ,

where

T =

[

t
r( 1

p∗−1
− 1

s∗−1
)

n,k t̃s−p
n,k

]

.

This immediately implies the lower bound with

cω = min{2s∗−1Cp∗,s∗(pρ
2)1−

s∗

p∗ ϑs
∗−1 , 2p

∗−1Cp∗,s∗ϑ
p∗−1}. (6.36)

The upper bound with

cω = 2s
∗−1Cp∗,s∗(pρ

2)1−
s∗

p∗ ϑs
∗−1 + 2p

∗−1Cp∗,s∗ϑ
p∗−1 (6.37)

follows by distinction between the cases T ≥ 1 and T < 1.

For (6.34) in case a) we will need the step sizes ωn,k to be bounded away

from zero and infinity. For this purpose, we will assume that

F ′ and F are uniformly bounded on BD

ρ (x
†) (6.38)

and that

r ≥ s ≥ p , (6.39)

i.e., r∗ ≤ s∗ ≤ p∗. To satisfy (6.34), the choice (6.35) from case b) is modified

to

ωn,k = min{ϑt
r

s∗−1

n,k t̃−s
n,k , ϑt

r
p∗−1

n,k t̃−p
n,k , ω} (6.40)

which, due to the fact that ψ is strictly monotonically increasing, obviously

still satisfies the upper bound in (6.33) with (6.37). Using (6.13) we get

t
r

ξ∗−1

n,k t̃−ξ
n,k ≥

(

sup
x∈BD

ρ (x†)
‖F ′(x)‖

)−ξ

t
−rξ( 1

r∗
− 1

ξ∗
)

n,k

≥



 sup
x∈BD

ρ (x†)

‖F ′(x)‖





−ξ

(2 + 3η) sup
x∈BD

ρ (x†)

‖F (x)− F (x†))‖+ δ





−rξ( 1
r∗

− 1
ξ∗

)

︸ ︷︷ ︸

=:S(ξ)
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by (6.7), provided zn,k, x
δ
n ∈ BD

ρ (x
†) (a fact which we will prove by induction

below). Hence, we also have that ωn,k according to (6.40) satisfies ωn,k ≥ ω

with ω ≥ ϑmin{S(s) , S(p)}, thus altogether (6.34).

The regularization parameters {αn,k}n∈IN will also be chosen differently

depending on whether the smoothness information ν in (6.4) is known or not.

In the former case we choose {αn,k}n∈IN a priori such that

d2
0,0

αθ
0,0

≤ γ̄ , (6.41)

αθ
n,k ≤

ρ2

γ̄
, (6.42)

max
0≤k≤kn

αn,k → 0 as n→ ∞ , (6.43)
{(

αn,k

αn,k−1

)θ

− 1 + (1− c0)αn,k−1

}

γ̄

≥ c1α
s∗−θ
n,k−1 + c2α

p∗−θ
n,k−1 + (c3ω

−θ +
C5ω

τ r
)αn,k−1 (6.44)

for some γ > 0 independent of n, k, where c0, C1, c2, c3, C5, θ, ω, ω are as

in (6.24)–(6.30), (6.34), and ν ∈ (0, 1
2
] is the exponent in the variational

inequality (6.4). Moreover, when using (6.4) with ν > 0, we are going to

impose the following condition on the exponents p, r, s

1 + θ =
r(1 + 2ν)

r(1 + 2ν)− 4ν
≤ s∗ ≤ p∗ . (6.45)

Well definedness in case k = 0 is guaranteed by setting αn,−1 = αn−1,kn−1 ,

ωn,−1 = ωn−1,kn−1, which corresponds to the last line in (6.3). To satisfy

(6.41)–(6.44) for instance, we just set

γ̄ :=
d2
0,0

αθ
0,0

, αn,k =
α0,0

(n + 1)σ
(6.46)

with αθ
0,0 ≤ ρ2

γ̄
and σ ∈ (0, 1] sufficiently small. Indeed, with this choice we

have

1−
(

αn,k

αn,k−1

)θ

=

{

1− nσθ

(n+1)σθ if k = 0

0 else.
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In the first case by the Mean Value Theorem we have for some t ∈ [0, 1]

1−
(

αn,k

αn,k−1

)θ

≤ (n+ 1)σθ − nσθ

(n + 1)σθ
=
σθ(n + t)σθ−1

(n+ 1)σθ

≤ σθ

n
= σθ

(
αn,k−1

α0,0

) 1
σ

≤ σθ

α0,0
αn,k−1 .

Hence, provided (6.45) holds, a sufficient condition for (6.44) is

1 ≥ σθ

α0,0
+ c0 +

1

γ̄

(

c1α
s∗−θ−1
0,0 + c2α

p∗−θ−1
0,0 + c3ω

−θ +
C5ω

τ r

)

,

which can be achieved by making c0, c3, α0,0,
σθ
α0,0

sufficiently small and τ

sufficiently large.

If ν is unknown or just zero, then in order to obtain weak convergence

only, we choose αn,k a posteriori such that

αn,k ≤ min{1 , cωn,kt
r
n,k} (6.47)

for some sufficiently small constant c > 0.

Also the number kn of interior Landweber iterations in the n-th Newton

step acts as a regularization parameter. We will choose it such that (6.9)

holds. In case b), i.e., when we cannot make use of a ν > 0 in (6.4), we also

require that on the other hand

µ‖F (xδn)− yδ‖ ≥ ‖An(zn,kn − xδn) + F (xδn)− yδ‖ = tn,kn. (6.48)

While by zn,0 = xδn and µ < 1, obviously any kn ≥ 1 that is sufficiently small

will satisfy (6.9), existence of a finite kn such that (6.48) holds will have to

be proven below.

The stopping index n∗ of the outer iteration in case a) ν > 0 is known

will be chosen according to

n∗(δ) = min{n ∈ IN : ∃k ∈ {0, . . . , kn} : α
1+θ
r

n,k ≤ τδ} . (6.49)

with some fixed τ > 0 independent of δ, and we define our regularized solution

as zn∗,k∗n∗
with the index

k∗n∗
= min{k ∈ {0, . . . , kn∗

} : α
1+θ
r

n∗,k
≤ τδ} . (6.50)
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Otherwise, in case b) we use a Discrepancy Principle

n∗(δ) = min{n ∈ IN : ‖F (xδn)− yδ‖ ≤ τδ} (6.51)

and consider xδn∗
= znn∗−1,kn∗−1 as our regularized solution.

6.4 Weak convergence

We now consider the case in which the parameter ν in (6.4) is unknown or

ν = 0.

Using the notations of the previous sections, we recall that ωn,k, αn,k, kn and

n∗(δ) are chosen as follows. For fixed Newton step n, and Landweber step k

we choose the step size ωn,k > 0 in (6.3) is such that

cω ≤
ϕ
(

ωn,kt̃n,k

)

ωn,kt
r
n,k

≤ cω (6.52)

i.e., (6.33) holds. We refer to Section 6.3 for well-definedness of such a step

size.

Next, we select αn,k such that

αn,k ≤ min
{
1, γ0ωn,kt

r
n,k

}
, (6.53)

where γ0 > 0 satisfies

γ0 <
1− η+ 1+η

τ

µ
− cω

c̃0D
x0
p (x†, x0)

1
p + c1 + c2

. (6.54)

The stopping index of the inner Landweber iteration is chosen such that

∀0 ≤ k ≤ kn − 1 : µ‖bn‖ ≤ tn,k (6.55)

i.e., (6.9) holds for some µ ∈ (η, 1) and on the other hand kn is maximal with

this property, i.e.

µ‖bn‖ ≥ tn,kn. (6.56)
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The stopping index of the Newton iteration is chosen according to the

discrepancy principle (6.51)

n∗(δ) = min{n ∈ IN : ‖bn‖ ≤ τδ} . (6.57)

In order to show weak convergence, besides the tangential cone condition

(6.7) we also assume that there is a constant γ1 > 0 such that

‖F ′(x)‖ ≤ γ1 (6.58)

for all x ∈ BD

ρ (x
†).

We will now prove monotone decay of the Bergman distances between

the iterates and the exact solution, cf. [30, 49]. Since n∗ is chosen according

to the Discrepancy Principle (6.51), and by (6.9), estimate (6.31) yields

d2
n,k+1 ≤

(

1− αn,k

)

d2
n,k + c̃0αn,kd

2
p

n,k + c1α
s∗

n,k + c2α
p∗

n,k

−
(

1− η + 1+η
τ

µ

)

ωn,kt
r
n,k + ϕ(ωn,kt̃n,k), (6.59)

from (6.59) and the definitions of ωn,k and αn,k according to (6.52), (6.53),

we infer

d2
n,k+1 − d2

n,k ≤ (c̃0D
x0
p (x†, x0)

1
p + c1 + c2)αn,k (6.60)

−(1 − η + 1+η
τ

µ
− cω)ωn,kt

r
n,k. (6.61)

Thus, since αn,k is chosen smaller than γ0ωn,kt
r
n,k, we obtain

d2
n,k+1 − d2

n,k ≤ −γ2ωn,kt
r
n,k, (6.62)

with γ2 := 1− η+ 1+η
τ

µ
− cω − (c̃0D

x0
p (x†, x0)

1
p + c1 + c2)γ0 > 0 by(6.54).

Summing over k = 0, ..., kn − 1 we obtain

Dx0
p (x†, xn)−Dx0

p (x†, xn+1) =

kn−1∑

k=0

(d2
n,k − d2

n,k+1) ≥ γ2

kn−1∑

k=0

ωn,kt
r
n,k. (6.63)
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Now, we use the definition of ωn,k to observe that

ωn,kt
r
n,k ≥ Φ

(
trn,k

t̃n,k

)

≥ Φ

(
µ‖bn‖
‖An‖

)

, (6.64)

for k ≤ kn − 1, where the strictly positive and strictly monotonically increa-

sing function Φ : R+ → R is defined by Φ(λ) = λψ−1(cωλ), which yields

Dx0
p (x†, xn)−Dx0

p (x†, xn+1) ≥ γ2knΦ

(
µ‖bn‖
‖An‖

)

. (6.65)

Consequently, for every Newton step n with bn 6= 0, the stopping index kn

is finite. Moreover, summing now over n = 0, ..., n∗(δ) − 1 and using the

assumed bound on F ′ (6.58) as well as (6.51) and kn ≥ 1, we deduce

Dx0
p (x†, x0) ≥ Dx0

p (x†, x0)−Dx0
p (x†, xn∗(δ)) ≥ γ2n∗(δ)Φ

(
µτδ

γ1

)

. (6.66)

Thus, for δ > 0, n∗(δ) is also finite, the method is well defined and we can

directly follow the lines of the proof of Theorem 3.2 in [49] to show the weak

convergence in the noisy case as stated in Theorem 6.4.1.

Besides the error estimates from Section 6.2, the key step of the proof of

strong convergence as n → ∞ in the noiseless case δ = 0 of Theorem 6.4.1

is a Cauchy sequence argument going back to the seminal paper [30]. Since

some additional terms appear in this proof due to the regularization term

in the Landweber iteration, we provide this part of the proof explicitly here.

By the identity

Dx0
p (xl, xm) = Dx0

p (x†, xm)−Dx0
p (x†, xl)

+〈JX
p (xl − x0)− JX

p (xm − x0), xl − x†〉X ∗×X (6.67)

and the fact that the monotone decrease (6.63) and boundedness from below

of the sequence Dx0
p (x†, xm) implies its convergence, it suffices to prove that

the last term in (6.67) tends to zero as m < l → ∞. This term can be

rewritten as

〈JX
p (xl−x0)−JX

p (xm−x0), xl−x†〉X ∗×X =

l−1∑

n=m

kn−1∑

k=0

〈un,k+1−un,k, xl−x†〉X ∗×X
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where

|〈un,k+1 − un,k, xl − x†〉X ∗×X |
= |αn,k〈JX

p (zn,k − x0), xl − x†〉X ∗×X

+ωn,k〈jYr (An(zn,k − xδn)− bn), An(xl − x†)〉X ∗×X |
≤ ωn,kt

r−1
n,k

(
(2ρ̄pγ0tn,k + ‖An(xl − x†)‖

)

by our choice (6.53) of αn,k. Using (6.7), (6.48), it can be shown that

‖F (xn+1)− y‖ ≤ µ+ η

1− η
‖F (xn)− y‖ (6.68)

with a factor µ+η
1−η

< 1 by our assumption µ < 1−2η, (which by continuity of

F implies that a limit of xn – if it exists – has to solve (5.17)). Hence, using

again (6.7), as well as (6.68), we get

‖An(xl − x†)‖ ≤ 2(1 + η)‖F (xn)− y‖+ (1 + η)‖F (xl)− y‖ ≤ 3(1 + η)

µ
tn,k ,

so that altogether we arrive at an estimate of the form

||〈JX
p (xl − x0)− JX

p (xm − x0), xl − x†〉X ∗×X |

≤ C
l−1∑

n=m

kn−1∑

k=0

ωn,kt
r
n,k ≤

C

γ2
(Dx0

p (x†, xm)−Dx0
p (x†, xl))

by (6.63) with l ≥ n, where the right-hand side goes to zero as l, m→ ∞ by

the already mentioned convergence of the monotone and bounded sequence

Dx0
p (x†, xm).

Altogether we have proven the following result.

Theorem 6.4.1. Assume that X is smooth and s-convex with s ≥ p, that x0

is sufficiently close to x†, i.e., x0 ∈ BD

ρ (x
†), and that F satisfies (6.7) with

(6.6), that F and F ′ are continuous and uniformly bounded in BD

ρ (x
†). Let

ωn,k, αn,k, kn, n∗ be chosen according to (6.9), (6.33), (6.47), (6.48), (6.51)

with η < 1
3
, η < µ < 1− 2η, τ sufficiently large.

Then, the iterates zn,k remain in BD

ρ (x
†) for all n ≤ n∗ − 1, k ≤ kn, hence
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any subsequence of xδn∗
= zn∗−1,kn∗−1 has a weakly convergent subsequence as

δ → 0. Moreover, the weak limit of any weakly convergent subsequence solves

(5.17). If the solution x† to (5.17) is unique, then xδn∗
converges weakly to x†

as δ → 0.

In the noise free case δ = 0, xn converges strongly to a solution of (5.17) in

BD

ρ (x
†).

6.5 Convergence rates with an a-priori stop-

ping rule

We now consider the situation that ν > 0 in (6.4) is known and recall that

the parameters appearing in the methods are then chosen as follows, using

the notation of Section 6.2.

First of all, for fixed Newton step n and Landweber step k we again choose

the step size ωn,k > 0 in (6.3) such that (6.34) holds with a sufficiently small

constant cω > 0 (see (6.69) below) which is possible as explained in Section

6.3. In order to make sure that ωn,k stays bounded away from zero we assume

that (6.38), (6.39) hold.

Next, we assume (6.45) and select αn,k such that (6.41)–(6.44) holds.

Concerning the number kn of interior Landweber iterations, we only have to

make sure that (6.9) holds for some fixed µ ∈ (0, 1) independent of n and k.

The overall stopping index n∗ of the Newton iteration is chosen such that

(6.49) holds.

With this n∗, our regularized solution is zn∗,k∗n∗
with the index according to

(6.50).

The constants µ ∈ (0, 1), τ > 0 appearing in these parameter choices are a

priori fixed, τ will have to be sufficiently large.

Moreover we assume that cω, β and η are small enough (the latter can be

achieved by smallness of the radius ρ of the ball around x† in which we will
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show the iterates to remain), so that we can choose ǫ > 0 such that

c4 + cω ≤ 1 (6.69)

with c4 as in (6.28).

By the choice (6.34) of ωn,k, estimate (6.23) implies

d2
n,k+1 ≤

(

1− (1− c0)αn,k

)

d2
n,k + c1α

s∗

n,k + c2α
p∗

n,k + c3ω
−θ
n,kα

1+θ
n,k

−(1 − c4 − cω)ωn,kt
r
n,k + C5ωn,kδ

r . (6.70)

Multiplying (6.70) with α−θ
n,k+1, using (6.49), and abbreviating

γn,k := d2
n,kα

−θ
n,k ,

we get

γn,k+1 ≤
(

αn,k

αn,k+1

)θ (

{1− (1− c0)αn,k} γn,k

+(c1α
s∗−θ
n,k + c2α

p∗−θ
n,k + (c3ω

−θ +
C5ω

τ r
)αn,k

)

.

Using (6.44), this enables to inductively show

γn,k+1 ≤ γ̄ ,

hence by (6.42) also

d2
n,k+1 ≤ γ̄αθ

n,k ≤ ρ2 (6.71)

for all n ≤ n∗ − 1 and k ≤ kn − 1 as well as for n = n∗ and k ≤ k∗n∗
− 1

according to (6.50). Inserting the upper estimate defining k∗n∗
we therewith

get

d2
n∗,k∗n∗

≤ γ̄αθ
n∗,k∗n∗

≤ γ̄(τδ)
rθ
1+θ ,

which is the desired rate. Indeed, by (6.43), there exists a finite k∗n∗
≤ kn∗

such that

α
1+θ
r

n∗,k∗n∗
≤ τδ

and

∀0 ≤ k ≤ k∗n∗
− 1 : µ‖F (xδn∗

)− yδ‖ ≤ ‖An(zn∗,k − xδn∗
) + F (xδn∗

)− yδ‖ .

Summarizing, we arrive at
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Theorem 6.5.1. Assume that X is smooth and s-convex with s ≥ p, that

x0 is sufficiently close to x†, i.e., x0 ∈ BD

ρ (x
†), that a variational inequality

(6.4) with ν ∈ (0, 1] and β sufficiently small is satisfied, that F satisfies (6.7)

with (6.6), that F and F ′ are continuous and uniformly bounded in BD

ρ (x
†),

and that (6.45), (6.39) hold. Let ωn,k, αn,k, kn, n∗, k
∗
n∗

be chosen according to

(6.9), (6.34), (6.41)–(6.44), (6.49), (6.50) with τ sufficiently large.

Then, the iterates zn,k remain in BD

ρ (x
†) for all n ≤ n∗ − 1, k ≤ kn and

n = n∗, k ≤ k∗n∗
. Moreover, we obtain optimal convergence rates

Dx0
p (x†, zn∗,k∗n∗

) = O(δ
4ν

2ν+1 ) , as δ → 0 (6.72)

as well as in the noise free case δ = 0

Dx0
p (x†, zn,k) = O

(

α
4ν

r(2ν+1)−4ν

n,k

)

(6.73)

for all n ∈ IN.

6.6 Numerical experiments

In this section we present some numerical experiments to test the method

defined in Section 6.4. We consider the estimation of the coefficient c in the

1D boundary value problem
{

−u′′ + cu = f in (0, 1)

u(0) = g0 u(1) = g1
(6.74)

from the measurement of u, where g0, g1 and f ∈ H−1[0, 1] are given.

Here and below, H−1([0, 1]) is the dual space of the closure of C∞
0 ([0, 1])

in H1([0, 1]), denoted by H1
0([0, 1]), cf. e.g. [92]. We briefly recall some

important facts about this problem (cf. Section 5.1):

1. For 1 ≤ p ≤ +∞ there exists a positive number γp such that for every

c in the domain

D := {c ∈ Lp[0, 1] : ‖c− ϑ̂‖Lp ≤ γp, ϑ̂ ≥ 0 a.e.}

(6.74) has a unique solution u = u(c) ∈ H1([0, 1]).
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2. The nonlinear operator F : D ⊆ Lp([0, 1]) → Lr([0, 1]) defined as

F (c) := u(c) is Frechét differentiable and

F ′(c)h = −A (c)−1(hu(c)), F ′(c)∗w = −u(c)A (c)−1w, (6.75)

where A (c) : H2([0, 1])∩H1
0([0, 1]) → L2([0, 1]) is defined by A (c)u =

−u′′ + cu.

3. For every p ∈ (1,+∞) the duality map Jp : Lp([0, 1]) → Lp∗([0, 1]) is

given by

Jp(c) = |c|p−1sgn(c), c ∈ Lp([0, 1]). (6.76)

For the numerical simulations we take X = Lp([0, 1]) with 1 < p < +∞ and

Y = Lr([0, 1]), with 1 ≤ r ≤ +∞ and identify c from noisy measurements uδ

of u. We solve all differential equations approximately by a finite difference

method by dividing the interval [0, 1] into N + 1 subintervals with equal

length 1/(N +1); in all examples below N = 400. The Lp and Lr norms are

calculated approximately too by means of a quadrature method.

We have chosen the same test problems as in [49]. Moreover, we added a

variant of the example for sparsity reconstruction.

The parameters ωn,k and αn,k are chosen according to (6.35) and (6.53) and

the outer iteration is stopped according to the Discrepancy Principle (6.51).

Concerning the stopping index of the inner iteration, in addition to the con-

ditions (6.9) and (6.48), we require also that if ‖F (zn,k)− yδ‖ ≤ τδ then the

iteration has to be stopped. More precisely,

kn = min{k ∈ Z, k ≥ 0, | ‖F (zn,k)− yδ‖ ≤ τδ ∨ tn,k ≤ µ‖bn‖} (6.77)

and the regularized solution is xδn∗
= znn∗−1,kn∗−1.

Example 6.6.1. In the first simulation we assume that the solution is sparse:

c†(t) =







0.5, 0.3 ≤ t ≤ 0.4,

1.0, 0.6 ≤ t ≤ 0.7,

0.0, elsewhere.

(6.78)
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Figure 6.1: Reconstructed Solutions and relative errors for Example 6.6.1.

The test problem is constructed by taking u(t) = u(c†)(t) = 1 + 5t, f(t) =

u(t)c†(t), g0 = 1 and g1 = 6. We perturb the exact data u with gaussian

white noise: the corresponding perturbed data uδ satisfies ‖uδ − u‖Lr = δ,

with δ = 0.1 × 10−3. When applying the method of Section 6.4, we take

µ = 0.99 and τ = 1.02. The upper bound cω satisfies

cω = 2s
∗−1Cp∗,s∗(pρ

2)1−s∗/p∗ϑ̂s
∗−1 + 2p

∗−1Cp∗,s∗ϑ̂
p∗−1, (6.79)

and ϑ̂ is chosen as 2−j♯, where j♯ is the first index such that γ0 := 0.99(1−
η
µ
− 1+η

τµ
− cω) > 0. In the tests, we always choose Y = L2([0, 1]) and change

the values of p. In Figure 6.1 we show the results obtained by our method

with p = 2 and p = 1.1 respectively. From the plot of the solution we can

see that the reconstruction of the sparsity in the case p = 1.1 is much better

than in the case with p = 2 and the quality of the solutions is in line with

what one should expect (cf. the solutions obtained in [49]). From the plot of

the relative errors we note that a strict monotonicity of the error cannot be

observed in the case with p = 1.1. The monotonicity holds instead in the case

p = 2. We also underline that in this example the total number of the inner

iterations

Np =

n∗−1∑

n=0

kn
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Figure 6.2: Reconstructed Solutions for Example 6.6.2, case A.

is much larger in the case p = 2 (N2 = 20141) than in the case p = 1.1

(N1.1 = 4053), thus the reconstruction with p = 1.1 is also faster.

Example 6.6.2. Choosing a different exact solution doesn’t change the re-

sults too much. In this example we only modify c† into

c†(t) =







0.25, 0.1 ≤ t ≤ 0.15,

0.5, 0.3 ≤ t ≤ 0.4,

1.0, 0.6 ≤ t ≤ 0.7,

0.0 elsewhere.

(6.80)

and choose again δ = 0.1× 10−3.

The reconstructed solutions obtained show that choosing a p smaller than

2 improves the results because the oscillations in the zero parts are damped

significantly. Once again, the iteration error and the residual norms do not

decrease monotonically in the case p = 1.1, but only in the average.

We also tested the performance obtained by the method with the choice αn,k =

0 instead of (6.53) and summarized the results in Table 6.1. Similarly to

Example 1, a small p allows not only to get the better reconstruction, but also

to spare time in the computation. Moreover, we notice that in this example

the method with αn,k > 0 chosen according to (6.53) proved to be faster than
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Results for Example 2

p = 2, αn,k > 0 p = 2, αn,k = 0 p = 1.1, αn,k > 0 p = 1.1, αn,k = 0

Np 21610 26303 4529 5701

Rel. Err. 9.8979× 10−2 9.8938× 10−2 4.9645× 10−2 4.9655× 10−2

Table 6.1: Numerical results for Example 2.

the method with αn,k = 0, performing fewer iterations, with a gain of 17.8%

in the case with p = 2 and 20.5% with p = 1.1.

Example 6.6.3. At last, we consider an example with noisy data where a

few data points called outliers are remarkably different from other data points.

This situation may arise from procedural measurement errors.

We suppose c† to be a smooth solution

c†(t) = 2− t+ 4 sin(2πt) (6.81)

and take u(c†)(t) = 1 − 2t, f(t) = (1 − 2t)(2 − t + 4 sin(2πt)), g0 = 1 and

g1 = −1 as exact data of the problem. We start the iteration from the initial

guess c0(t) = 2− t, fix the parameters µ = 0.999 and τ = 1.0015 and choose

cω and γ0 as in Example 1.

Case A. At first, we assume the data are perturbed with white gaussian

noise (δ = 0.1× 10−2), fix X = L2([0, 1]) and take Y = Lr([0, 1]), with r = 2

or r = 1.1. As we can see from Figure 6.3, being the data reasonably smooth,

we obtain comparable reconstructions (in the case r = 2 the relative error is

equal to 2.1331× 10−1, whereas in the case r = 1.1 we get 2.0883× 10−1).

Case B. The situation is much different if the perturbed data contain

also a few outliers. We added 19 outliers to the gaussian noise perturbed

data of case A obtaining the new noise level δ = 0.0414. In this case taking

Y = L1.1([0, 1]) considerably improves the results keeping the relative error

reasonably small (2.9388× 10−1 against 1.1992, cf. Figure 6.3).
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(e) Outliers r = 2
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Figure 6.3: Numerical results for Example 6.6.3: (a) and (d) are data with

noise; (b) and (d) are reconstructions with X = Y = L2[0, 1]; (c) and (f) are

reconstructions with X = L2[0, 1] and Y = L1.1[0, 1].
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Concerning the total number of iterations N , in this example it is not sub-

jected to remarkable variations.

To summarize, in all examples above the method obtained reasonable

results, proving to be reliable, both in the sparsity reconstruction examples

and when the data are affected with outliers. Concerning the total number

of iterations, the introduction of the parameters αn,k has accelerated the

method in Example 2, but the issue of the speed of the algorithms requires

further investigation.

6.7 A new proposal for the choice of the pa-

rameters

With the parameter choices proposed in Section 6.3, it is rather difficult to

prove strong convergence and convergence rates for the Discrepancy Princi-

ple. Moreover, the numerical experiments show that the method still requires

many iterations to obtain good regularized solutions.

Indeed, the choices that have been made for ωn,k and αn,k seem to make the

method not flexible enough. For this reason, we propose here a different way

to select these parameters. To do this, we return to the estimates of Section

6.2. Using the same notations, we estimate the term d2
n,k+1 as in (6.10) and

proceed exactly as in Section 6.2 for estimating the terms (I), (II) and (IV).

For the term (III), if ν = 0 instead of using (6.9), we reconsider the estimate

‖F (zn,k)− F (x†)‖
= ‖(An(zn,k − xδn) + F (xδn)− yδ)

+(F (zn,k)− F (xδn)− An((zn,k − xδn) + (yδ − y)‖
≤ tn,k + η‖F (zn,k)− F (xδn)‖+ δ

≤ tn,k + η(‖F (zn,k)− F (x†)‖+ ‖F (xδn)− yδ‖) + (1 + η)δ ,

to conclude

‖F (zn,k)− F (x†)‖ ≤ 1

1− η
(tn,k + ηrn + (1 + η)δ) . (6.82)
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This together with (6.4) implies

|αn,k〈JX
p (x† − x0), zn,k − x†〉X ∗×X |

≤ β

(1− η)2ν
αn,kd

1−2ν
n,k (tn,k + ηrn + (1 + η)δ)2ν

≤ C(1
2
+ ν)

β

(1− η)2ν
αn,k

{

d2
n,k + (tn,k + ηrn + (1 + η)δ)

4ν
1+2ν

}

(6.83)

where we have used (6.18) with C(λ) = λλ(1− λ)1−λ.

In the case ν = 0, we simply use (6.21) as in Section 6.2.

Altogether, we obtain

d2
n,k+1 ≤

(

1− (1− c0)αn,k

)

d2
n,k + c̃0αn,k + c1α

s∗

n,k + c2α
p∗

n,k

+c3αn,k (tn,k + ηrn + (1 + η)δ)
4ν

1+2ν

−ωn,kt
r
n,k + ωn,kt

r−1
n,k (ηrn + (1 + η)δ) + ϕ(ωn,kt̃n,k) , (6.84)

where

c0 =

{

0 if ν = 0
β

(1−η)2ν
C(1

2
+ ν) if ν > 0

(6.85)

c̃0 =

{

‖x† − x0‖p−1(pρ2)
1
p if ν = 0

0 if ν > 0

c1 = Cp∗,s∗(pρ
2)1−

s∗

p∗ ρ̄(p−1)s∗2s
∗−1 (6.86)

c2 = Cp∗,s∗ ρ̄
p2p

∗−1 (6.87)

c3 =

{

c0 in case (a) ν, θ > 0

‖x† − x0‖p−1(pρ2)
1
p in case (b) ν, θ = 0

(6.88)

θ =
4ν

r(1 + 2ν)− 4ν
. (6.89)

Multiplying (6.84) with α−θ
n,k+1 and abbreviating

γn,k := d2
n,kα

−θ
n,k ,
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we get

γn,k+1 − γn,k ≤
(

αn,k

αn,k+1

)θ {(

1− (1− c0)αn,k −
(
αn,k+1

αn,k

)θ)

γn,k

+(c̃0α
1−θ
n,k + c1α

s∗−θ
n,k + c2α

p∗−θ
n,k + c3α

1−θ
n,k (tn,k + ηrn + (1 + η)δ)

4ν
1+2ν

−α−θ
n,k

(
ωn,kt

r
n,k − ωn,kt

r−1
n,k (ηrn + (1 + η)δ)− ϕ(ωn,kt̃n,k)

)}

.

To obtain monotone decay of the sequence γn,k with increasing k we

choose

• ωn,k ≥ 0 such that

ω ≤ ωn,k ≤ ω and
ϕ
(

ωn,kt̃n,k

)

ωn,kt
r
n,k

≤ cω (6.90)

for some 0 < ω < ω, cω > 0. We will do so by setting

ωn,k = ϑmin{t
r

s∗−1

n,k t̃−s
n,k , t

r
p∗−1

n,k t̃−p
n,k , ω} (6.91)

with ϑ sufficiently small, and assuming that

r ≥ s ≥ p , (6.92)

• αn,k ≥ 0 such that

αn,k ≥ α̌n,k := τ̃ (tn,k + ηrn + (1 + η)δ)
r

1+θ (6.93)

and

c0+
c̃0
γ0,0

+
c1
γ0,0

αs∗−θ−1
n,k +

c2
γ0,0

αp∗−θ−1
n,k +

c3
τ̃ θγ0,0

+
1

τ̃ 1+θγ0,0
≤ q < 1 (6.94)

(note that in case θ = 0 we have c0 = 0 and vice versa, in case θ > 0

we have c̃0 = 0). The latter can be achieved by

αn,k ≤ 1 and (6.95)

s∗ ≥ θ + 1 , p∗ ≥ θ + 1 , (6.96)

c0, c̃0, c1, c2, c3, τ̃
1 sufficiently small.
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In case (a) we additionally require

αn,k+1 ≥ α̂n,k+1 := αn,k

(

1− (1− q)αn,k

)1/θ

(6.97)

with an upper bound γ0,0 for γ0,0. Note that this just means αn,k+1 ≥ 0

in case (b) corresponding to ν = 0, i.e., θ = 0, thus an empty condition

in case (b).

To meet conditions (6.93), (6.97) with a minimal αn,k+1 we set

αn,k+1 = max{α̌n,k+1 , α̂n,k+1} for k ≥ 0 (6.98)

αn,0 =

{

αn−1,kn−1 if n ≥ 1

α0,0 if n = 0
.

It remains to choose

• the inner stopping index kn

• the outer stopping index n∗,

see below.

Indeed with these choices of ωn,k and αn,k+1 we can inductively conclude from

(6.90) that

γn,k+1 − γn,k ≤
(

αn,k

αn,k+1

)θ {(

1− (1− q)αn,k −
(
αn,k+1

αn,k

)θ)

γ0,0

}

−α−θ
n,k+1(1− cω)ωn,kt

r
n,k ,

≤ −α−θ
n,k+1(1− cω)ωn,kt

r
n,k ≤ 0 . (6.99)

This monotonicity result holds for all n ∈ IN and for all k ∈ IN.

By (6.99) and αn,k ≤ 1 (cf. (6.95)) it can be shown inductively that all

iterates remain in BD

ρ (x
†) provided

γ0,0 ≤ ρ2 . (6.100)

Moreover, (6.99) implies that

∞∑

n=0

∞∑

k=0

α−θ
n,k+1ωn,kt

r
n,k ≤

γ0,0
1− cω

<∞, (6.101)
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hence by αn,k+1 ≤ 1, ωn,k ≥ ω

tn,k → 0 as k → ∞ for all n ∈ IN (6.102)

and

sup
k∈IN0

tn,k → 0 as n→ ∞ . (6.103)

Especially, since tn,0 = rn,

rn → 0 as n→ ∞ . (6.104)

To quantify the behavior of the sequence αn,k according to (6.93), (6.97),

(6.98) for fixed n we distinguish between two cases.

(i) There exists a k such that for all k ≥ k we have αn,k = α̂n,k. Con-

sidering an arbitrary accumulation point ᾱn of αn,k (which exists since

0 ≤ αn,k ≤ 1) we therefore have ᾱn = ᾱn

(

1 − (1 − q)ᾱn

) 1
θ
, hence

ᾱn = 0.

(ii) Consider the situation that (i) does not hold, i.e., there exists a sub-

sequence kj such that for all j ∈ IN we have αn,kj = α̌n,kj . Then by

(6.93), (6.97), and (6.102) we have αn,kj → τ̃ (ηrn + (1 + η)δ)
r

1+θ .

Altogether we have shown that

lim sup
k→∞

αn,kj ≤ τ̃ (ηrn + (1 + η)δ)
r

1+θ for all n ∈ IN. (6.105)

Since η and δ can be assumed to be sufficiently small, this especially implies

the bound αn,k ≤ 1 in (6.95).

We consider zn∗,k
n∗
∗

as our regularized solution, where n∗, k
n∗
∗ (and also

kn for all n ≤ n∗ − 1; note that kn∗
∗ is to be distinguished from kn∗ - actually

the latter is not defined, since we only define kn for n ≤ n∗ − 1!) are still to

be chosen appropriately, according to the requirements from the proofs of

• convergence rates in case ν, θ > 0,

• convergence for exact data δ = 0,

• convergence for noisy data as δ → 0.
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6.7.1 Convergence rates in case ν > 0

From (6.99) we get

d2
n,k ≤ γ0,0α

θ
n,k for all n, k ∈ IN , (6.106)

hence in order to get the desired rate

d2
n∗,k

n∗
∗

= O(δ
rθ
1+θ )

in view of (6.105) (which is a sharp bound in case (ii) above) we need to have

a bound

rn∗ ≤ τδ (6.107)

for some constant τ > 0, and we should choose kn∗
∗ large enough so that

αn∗,k
n∗
∗

≤ Cα(rn∗
+ δ)

r
1+θ (6.108)

which is possible with a finite kn∗
∗ by (6.105) for Cα > (τ̃(1 + η))

r
1+θ . Note

that this holds without any requirements on kn.

6.7.2 Convergence as n → ∞ for exact data δ = 0

To show that (xn)n∈IN is a Cauchy sequence (following the seminal paper

[30]), for arbitrary m < j, we choose the index l ∈ {m, . . . , j} such that rl is

minimal and use the identity

Dx0
p (xl, xm) = Dx0

p (x†, xm)−Dx0
p (x†, xl)

+〈JX
p (xl − x0)− JX

p (xm − x0), xl − x†〉X ∗×X (6.109)

and the fact that the monotone decrease and boundedness from below of the

sequence Dx0
p (x†, xm) implies its convergence, hence it suffices to prove that

the last term in (6.109) tends to zero as m < l → ∞ (analogously it can

be shown that Dx0
p (xl, xj) tends to zero as l < j → ∞). This term can be

rewritten as

〈JX
p (xl − x0)− JX

p (xm − x0), xl − x†〉X ∗×X

=

l−1∑

n=m

kn−1∑

k=0

〈un,k+1 − un,k, xl − x†〉X ∗×X ,
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where

|〈un,k+1 − un,k, xl − x†〉X ∗×X |
= |αn,k〈JX

p (zn,k − x0), xl − x†〉X ∗×X

+ωn,k〈jYr (An(zn,k − xδn)− bn), An(xl − x†)〉X ∗×X |
≤ 2ρ̄pαn,k + ωn,kt

r−1
n,k ‖An(xl − x†)‖

≤ 2ρ̄pτ̃ (tn,k + ηrn)
r + ωn,kt

r−1
n,k (1 + η)(2rn + rl)

≤ 2ρ̄pτ̃ (tn,k + ηrn)
r + 3(1 + η)ωn,kt

r−1
n,k rn

by our choice of αn,k = α̌n,k (note that α̂n,k = 0 in case θ = 0), condition

(6.7) and the minimality of rl.

Thus we have by ωn,k ≤ ω and Young’s inequality that there exists C > 0

such that

〈JX
p (xl − x0)− JX

p (xm − x0), xl − x†〉X ∗×X ≤ C
l−1∑

n=m

{(
kn−1∑

k=0

trn,k

)

+ knr
r
n

)

for which we can conclude convergence as m, l → ∞ from (6.101) provided

that
∞∑

n=m

knrrn → 0 as m→ ∞ ,

which we guarantee by choosing, for an a priori fixed summable sequence

(an)n∈IN,

kn := anr
−r
n . (6.110)

6.7.3 Convergence with noisy data as δ → 0

In case (a) ν, θ > 0 convergence follows from the convergence rates results in

Subsection 6.7.1. Therefore it only remains to show convergence as δ → 0 in

case θ = 0.

In this section we explicitly emphasize dependence of the computed quan-

tities on the noisy data and on the noise level by a superscript δ.
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Let ‖yδj − y‖ ≤ δj with δj a zero sequence and n∗j the corresponding

stopping index. As usual [30] we distinguish between the two cases that (i)

n∗j has a finite accumulation point and (ii) n∗j tends to infinity.

(i) There exists an N ∈ IN and a subsequence nji such that for all i ∈ IN

we have nji = N . Provided

n∗(δ) = N for all δ ⇒ The mapping δ 7→ xδN is continuous at δ = 0 ,

(6.111)

we can conclude that x
δji
N → x0N as i → ∞, and by taking the limit as

i → ∞ also in (6.107), x0N is a solution to (5.17). Thus we may set

x† = x0N in (6.99) (with θ = 0) to obtain

Dx0
p (x0N , z

δji

n∗ji
,k

n∗ji
∗ji

) = Dx0
p (x0N , z

δji

N,k
n∗ji
∗ji

) ≤ Dx0
p (x0N , x

δji
N ) → 0 as i→ ∞

where we have again used the continuous dependence (6.111) in the

last step.

(ii) Let n∗j → ∞ as j → ∞, and let x† be a solution to (5.17). For

arbitrary ǫ > 0, by convergence for δ = 0 (see the previous subsection)

we can find n such that Dx0
p (x†, x0n) <

ǫ
2
and, by Theorem 2.60 (d) in

[82] there exists j0 such that for all j ≥ j0 we have n∗,j ≥ n + 1 and

|Dx0
p (x†, x

δj
n )−Dx0

p (x†, x0n)| < ǫ
2
, provided

n ≤ n∗(δ)−1 for all δ ⇒ The mapping δ 7→ xδn is continuous at δ = 0 .

(6.112)

Hence, by monotonicity of the errors we have

Dx0
p (x†, z

δj

n∗j ,k
n∗j
∗j

) ≤ Dx0
p (x†, xδjn )

≤ Dx0
p (x†, x0n) + |Dx0

p (x†, xδjn )−Dx0
p (x†, x0n)| < ǫ .

(6.113)

Indeed, (6.111), (6.112) can be concluded from continuity of F , F ′, the defi-

nition of the method (6.3), as well as stable dependence of all parameters

ωn,k, αn,k, k
n according to (6.91), (6.93), (6.97), (6.98), (6.110) on the data

yδ.

Altogether we have derived the following algorithm.
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6.7.4 Newton-Iteratively Regularized Landweber algo-

rithm

Choose τ, τ̃ , Cα sufficiently large, x0 sufficiently close to x†,

α00 ≤ 1, ω > 0, (an)n∈IN0 such that
∑∞

n=0 an <∞.

If (6.4) with ν ∈ (0, 1] holds, set θ = 4ν
r(1+2ν)−4ν

, otherwise θ = 0.

For n = 0, 1, 2 . . . until rn ≤ τδ do

un,0 = 0

zn,0 = xδn

αn,0 = αn−1,kn−1 if n > 0

For k = 0, 1, 2 . . . until

{

k = kn − 1 = anr
−r
n if rn > τδ

αn∗,k
n∗
∗

≤ Cα(rn∗
+ δ)

r
1+θ if rn ≤ τδ

}

do

ωn,k = ϑmin{t
r

s∗−1

n,k t̃−s
n,k , t

r
p∗−1

n,k t̃−p
n,k , ω}

un,k+1 = un,k − αn,kJ
X
p (zn,k − x0)

−ωn,kF
′(xδn)

∗jYr (F
′(xδn)(zn,k − xδn) + F (xδn)− yδ)

JX
p (zn,k+1 − x0) = JX

p (xδn − x0) + un,k+1

αn,k+1 = max{α̌n,k+1 , α̂n,k+1} with α̌n,k+1 , α̂n,k+1 as in (6.93), (6.97)

xδn+1 = zn,kn .

Note that we here deal with an a priori parameter choice: θ and therefore

ν has to be known, otherwise θ must be set to zero.

The analysis above yields the following convergence result.

Theorem 6.7.1. Assume that X is smooth and s-convex with s ≥ p, that

x0 is sufficiently close to x†, i.e., x0 ∈ BD

ρ (x
†), that F satisfies (6.7) with

(6.6), that F and F ′ are continuous and uniformly bounded in BD

ρ (x
†), and

that (6.92), (6.96) hold.

Then, the iterates zn,k defined by Algorithm 6.7.4 remain in BD
ρ (x

†) and con-

verge to a solution x† of (5.17) subsequentially as δ → 0 (i.e., there exists

a convergent subsequence and the limit of every convergent subsequence is a

solution).

In case of exact data δ = 0, we have subsequential convergence of xn to a so-

lution of (5.17) as n→ ∞. If additionally a variational inequality (6.4) with



228 6. A new Iteratively Regularized Newton-Landweber iteration

ν ∈ (0, 1] and β sufficiently small is satisfied, we obtain optimal convergence

rates

Dx0
p (x†, zn∗,k

n∗
∗
) = O(δ

4ν
2ν+1 ) , as δ → 0 . (6.114)



Conclusions

In this short conclusive chapter, we point out the main contributions of the

thesis in the area of the regularization of ill-posed problems and present some

possible further developments of this work.

The three stopping rules for the Conjugate Gradient method applied to

the Normal Equation presented in Chapter 3 produced very promising nu-

merical results in the numerical experiments. In particular, SR2 provided an

important insight into the regularizing properties of this method, connecting

the well-known theoretical estimates of Chapter 2 with the properties of the

Truncated Singular Value Decomposition method.

In the numerical experiments presented in Chapter 4, the new stopping

rules defined in Chapter 3 also produced very good numerical results. Of

course, these results can be considered only the starting point of a possible

future work. Some further developments can be the following:

• applications of the new stopping rules in combination with more so-

phisticated regularization methods that make use of CGNE (e.g., the

Restarted Projected CGNE described in Chapter 3);

• extension of the underlying ideas of the new stopping rules to other

regularization methods (e.g., SART, Kaczmarz,...);

• analysis of the speed of the algorithms presented for computing the

indices of the new stopping rules, to get improvements.

The theoretical results of Chapter 6, and in particular of Section 6.7, en-

hanced the regularization theory of Banach spaces. However, they have to

229
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be tested in more serious practical examples. We believe that the new ways

to arrest the iteration can indeed improve the performances significantly.

Besides the repetition of the numerical tests of Section 6.6, also two di-

mensional examples should be considered, as well as a comparison of the

inner-outer Newton-Landweber iteration proposed here with the classical Ite-

ratively regularized Gauss-Newton method.

Possible extensions to the case of non-reflexive Banach spaces and further

simulations in different ill-posed problems should also be a subject of future

research.



Appendix A

Spectral theory in Hilbert

spaces

We recall briefly some fundamental results of functional calculus for self-

adjoint operators in Hilbert spaces. Details and proofs can be found, e.g. in

[2], [17] and [44].

Throughout this section, X will always denote a Hilbert space. The scalar

product in X will be denoted by 〈·, ·〉X and the norm induced by this scalar

product will be denoted by ‖ · ‖X .

Definition A.0.1 (Spectral family). A family {Eλ}λ∈R of orthogonal pro-

jectors in X is called a spectral family or resolution of the identity if it satisfies

the following conditions:

(i) EλEµ = Emin{λ,µ}, λ, µ ∈ R;

(ii) E−∞ = 0, E+∞ = I, where E±∞x := limλ→±∞ Eλx, ∀ x ∈ X , and where

I is the identity map on X .

(iii) Eλ−0 = Eλ, where Eλ−0x := limǫ→0+ Eλ−ǫx, ∀ x ∈ X .

Proposition A.0.1. Let f : R → R be a continuous function. Then the

limit of the Riemann sum
n∑

i=1

f(ξi)
(
Eλi

− Eλi−1

)
x

231
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exists in X for |λi − λi−1| → 0, where −∞ < a = λ0 < ... < λn = b < +∞,

ξi ∈ (λi−1, λi], and is denoted by

∫ b

a

f(λ)dEλx.

Definition A.0.2. For any given x ∈ X and any continuous function f :

R → R, the integral
∫ +∞
−∞ f(λ)dEλx is defined as the limit, if it exists, of

∫ b

a
f(λ)dEλx when a → −∞ and b → +∞.

Since condition (i) in the definition of the spectral family is equivalent to

〈Eλx, x〉 ≤ 〈Eµx, x〉, for all x ∈ Xandλ ≤ µ,

the function λ 7→ 〈Eλx, x〉 = ‖Eλx‖2 is monotonically increasing and due to

the condition (ii) in the definition of the spectral family also continuous from

the left. Hence it defines a measure on R, denoted by d‖Eλx‖2. Then the

following connection holds:

Proposition A.0.2. For any given x ∈ X and any continuous function f :

R → R:

∫ +∞

−∞
f(λ)dEλx exists ⇐⇒

∫ +∞

−∞
f 2(λ)d‖Eλx‖2 < +∞.

Proposition A.0.3. Let A be a self-adjoint operator in X . Then there

exist a unique spectral family {Eλ}λ∈R, called spectral decomposition of A or

spectral family of A, such that

D(A) = {x ∈ X |
∫ +∞

−∞
λ2d‖Eλx‖2 < +∞}

and

Ax =

∫ +∞

−∞
λdEλx, x ∈ D(A).

We write:

A =

∫ +∞

−∞
λdEλ.
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Definition A.0.3. Let A be a self-adjoint operator in X with spectral family

{Eλ}λ∈R and let f be a measurable function on R with respect to the measure

d‖Eλx‖2 for all x ∈ X . Then f(A) is the operator defined by the formula

f(A)x =

∫ +∞

−∞
f(λ)dEλx, x ∈ D(f(A)),

where

D(f(A)) = {x ∈ X |
∫ +∞

−∞
f 2(λ)d‖Eλx‖2 < +∞}.

Proposition A.0.4. Let M0 be the set of all measurable functions on R

with respect to the measure d‖Eλx‖2 for all x ∈ X (in particular, piecewise

continuous functions lie in M0). Let A be a self-adjoint operator in X with

spectral family {Eλ}λ∈R and let f , g ∈ M0.

(i) If x ∈ D(f(A)) and z ∈ D(g(A)), then

〈f(A)x, g(A)z〉 =
∫ +∞

−∞
f(λ)g(λ)d〈Eλx, z〉.

(ii) If x ∈ D(f(A)), then f(A)x ∈ D(g(A)) if and only if x ∈ D((gf)(A)).

Furthermore,

g(A)f(A)x = (gf)(A)x.

(iii) If D(f(A)) is dense in X , then f(A) is self-adjoint.

(iv) f(A) commutes with Eλ for all λ ∈ R.

Proposition A.0.5. Let A be a self-adjoint operator in X with spectral fam-

ily {Eλ}λ∈R.

(i) λ0 lies in the spectrum of A if and only if Eλ0 6= Eλ0+ǫ for all ǫ > 0.

(ii) λ0 is an eigenvalue of A if and only if Eλ0 6= Eλ0+0 = limǫ→0 Eλ0+ǫ. The

corresponding eigenspace is given by (Eλ0+0 − Eλ0)(X ).
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At last, we observe that if A is a linear bounded operator, then the

operator A∗A is a linear, bounded, self-adjoint and semi-positive definite

operator. Let {Eλ} be the spectral family of A∗A and let M be the set of

all measurable functions on R with respect to the measure d‖Eλx‖2 for all x
∈ X . Then, for all f ∈ M,

∫ +∞

−∞
f(λ)dEλx =

∫ ‖A‖2

0

f(λ)dEλx = lim
ǫ→0+

∫ ‖A‖2+ǫ

0

f(λ)dEλx.

Hence, the function f can be restricted to the interval [0, ‖A‖2 + ǫ] for some

ǫ > 0.



Appendix B

Approximation of a finite set of

data with cubic B-splines

B.1 B-splines

Let [a, b] be a compact interval of R, let

∆ = {a = t0 < t1 < ... < tk < tk+1 = b} (B.1)

be a partition of [a, b] and let m be an integer, m > 1. Then the space

Sm(∆) of polynomial splines with simple knots of order m on ∆ is the space

of all function s = s(t) for which there exist k+1 polynomials s0, s1, ..., sk of

degree ≤ m− 1 such that

(i) s(t) = sj(t) for tj ≤ t ≤ tj+1, j = 0, ..., k;

(ii) di

dti
sj−1(tj) =

di

dti
sj(tj), for i = 0, ..., m− 2, j = 1, ..., k.

The points tj are called the knots of the spline and t1, ..., tk are the inner

knots.

It is well known (cf. e.g. [86]) that Sm(∆) is a vector space of dimension

m+k. A base of Sm(∆) with good computational properties is given by the

normalized B-splines.

An extended partition of [a, b] associated to Sm(∆) is a sequence of points

235
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∆∗ = {t̃−m+1 ≤ ... ≤ t̃k+m} such that t̃i = ti for every i = 0, ..., k + 1. There

are different possible choices of the extended partition ∆∗. Here, we shall

consider the choice

t̃−m+1 = ... = t̃0 = a, t̃k+1 = t̃k+2 = ... = t̃k+m. (B.2)

The normalized B-splines on ∆∗ are the functions {Nj,m}j=−m+1,...,k defined

recursively in the following way:

Nj,1(t) =

{

1, for t̃j ≤ t ≤ t̃j+1,

0, elsewhere;
(B.3)

Nj,h(t) =

{
t−t̃j

t̃j+h−1−t̃j
Nj,h−1(t) +

t̃j−t

t̃j+h−t̃j+1
Nj+1,h−1(t), for t̃j 6= t̃j+h,

0, elsewhere

(B.4)

for h = 2, ..., m. The cases 0/0 must be interpreted as 0.

The functions Nj,h have the following well known properties:

(1) Local support: Nj,m(t) = 0, ∀ t /∈ [t̃j , t̃j+m) if t̃j < t̃j+m;

(2) Non negativity: Nj,m(t) > 0, ∀ t ∈ (t̃j , t̃j+m), t̃j < t̃j+m;

(3) Partition of unity:
∑k

j=−m+1 Nj,m(t) = 1, ∀ t ∈ [a, b].

B.2 Data approximation

Let now (λ1, µ1), ..., (λn, µn), n ∈ N, n ≥ m+ k, λj and µj ∈ R such that

a = λ1 < ... < λn = b (B.5)

be a given set of data. We want to find a spline s(t) ∈ Sm(∆),

s(t) =
k∑

j=−m+1

cjNj,m(t),

that minimizes the least-squares functional

n∑

l=1

|s(λl)− µl|2 (B.6)
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on Sm(∆). Simple calculations show that the solutions of this minimization

problem are the solutions of the overdetermined linear system

k∑

j=−m+1

cj

n∑

l=1

Ni,m(λl)Nj,m(λl) =

n∑

l=1

µlNi,m(λl), i = −m+ 1, ..., k. (B.7)

Denoting with H the matrix of the normalized B-splines on the approxima-

tion points:

H = {hl,j} = {Nj,m(λl)}, l = 1, ..., n; j = −m+ 1, ..., k, (B.8)

we can rewrite (B.7) in the form

H∗Hc = H∗µ, (B.9)

where c and µ are the column vectors of the cj and of the µl respectively.

It can be shown that the system has a unique solution if ∆∗ satisfies the so

called Schönberg-Whitney conditions :

Theorem B.2.1. The matrix H has maximal rank if there exists a sequence

of indices 1 ≤ j1 ≤ ... ≤ jm+k ≤ n such that

t̃i < λji < t̃i+m, i = −m+ 1, ..., k, (B.10)

where the t̃i are the knots of the extended partition ∆∗.

With equidistant inner knots ti = a + i (b−a)
k+1

and the particular choice

(B.2), it is easy to see that the Schönberg-Whitney conditions are satisfied

for every k ≤ n−m: for example, if k = n−m, ji = i for every i = 1, ..., n.
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Appendix C

The algorithms

In this section of the appendix we present the main algorithms used in the

thesis. All numerical experiments have been executed on a Pentium IV PC

using Matlab 7.11.0 R2010b.

C.1 Test problems from P. C. Hansen’s Reg-

ularization Tools

blur and tomo exact solution

10 20 30 40 50 60 70 80 90 100
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40
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Figure C.1: Exact solution of the test problems tomo and blur from P.C.

Hansen’s Regularization Tools.

Many test problems used in this thesis are taken from P. C. Hansen’s
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Regularization Tools. This is a software package that consists of a collection

of documented Matlab functions for analysis and solution of discrete ill-posed

problems. The package and the underlying theory is published in [35] and the

most recent version of the package, which is updated regularly, is described

in [41]. The package can be downloaded directly from the page

http : //www2.imm.dtu.dk/ pch/Regutools/, (C.1)

where a complete manual is also available.

All the algorithms of the thesis referring to [35] or [41] are taken from the

version 4.1 (for Matlab version 7.3). Below, we describe briefly the files that

have been used in the thesis.

More details on these functions such as the synopsis, the input and output

arguments, the underlying integral equation and the references can be found

in the manual of the Regularization Tools [35] in a pdf format at the web

page (C.1).

We consider 10 different very famous test problems:

• baart, deriv2, foxgood, gravity, heat, i−laplace, phillips, shaw generate the

square matrix A, the exact solution x and the exact right-hand side b

of a discrete ill-posed problem, typically arising from a discretization of

an integral equation of the first kind. The dimension N of the problem

is the main input argument of these functions. In some cases it is

possible to choose between 2 or 3 different exact solutions. Of course,

A is always very ill-conditioned, but in some problems the eigenvalues

decrease more quickly than in others.

• blur and tomo generate the square matrix A, the exact solution f and

the exact right-hand side g a 2D image reconstruction problem. In

both cases, the vector f is a columnwise stacked version of a simple

test image (cf. Figure C.1) with J ×J pixels and J is the fundamental

input argument of the function. In the blur problem, the matrix A is

a symmetric J2 × J2 doubly Toeplitz matrix, stored in sparse format

associated to an atmospheric turbulence blur and g := Af is the blurred
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image. By modifying the third input argument of the function which

is set by default equal to 0.7, it is possible to control the shape of the

Gaussian point spread function associated to A. In the tomo problem,

the matrix A arises from the discretization of a simple 2D tomography

model. If no additional input arguments are used, A is a square matrix

of dimension J2 × J2 as in the case of blur.

C.2 Conjugate gradient type methods algo-

rithms

Two different functions for the implementation of CGNE can be found in

the Regularization tools: cgls and lsqr−b. cgls is a direct implementation of

algorithm 3, lsqr−b is an equivalent implementation of the same algorithm

based on Lanczos bidiagonalization (cf. [73] and [36]).

Both routines require the matrix of the system A, a data vector b and an

integer kMAX corresponding to the number of CGNE steps to be performed

and return all kMAX solutions, stored as columns of the matrix X. The

corresponding solution norms and residual norms are returned in η and ρ,

respectively. If the additional parameter reorth is set equal to 1, then the

routines perform a reorthogonalization of the normal equation residual vec-

tors.

To compare CGNE and CGME, a new routine cgne−cgme has been gene-

rated based on Algorithm 6. This function is similar to cgls and lsqr−b, but

returns also the solutions, the residual norms and the solution norms of the

CGME iterates.

A modified version of cgls, cgls−deb has been used for the image deblur-

ring problems to avoid forming the matrix A. In the cgls−deb algorithm,

the matrix A is replaced by the PSF, the data vector g is replaced by its

corresponding image and all matrix-vectors multiplications are replaced by

the corresponding 2D convolutions as in Section 3.6, formula (3.41). As a
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consequence, the synopsis of this function is different from the others:

[f, rho, eta] = cgls−deb(h, g, k); (C.2)

here the input arguments are the matrices of the PSF h and of the blurred

image g and the number of iterations kMAX . The output is a 3D matrix f

such that for every k = 1, ..., kMAX the Matlab command

f(:, :, k)

gives the k-th iterate of the algorithm in the form of an image.

At last, a new routine cgn2 similar to cgls and lsqr−b has been created to

implement the conjugate gradient type method with parameter n = 2 (cf.

Algorithm 7 from Chapter 2).

We emphasize that in the tests where a visualization of the reconstructed

solutions was not necessary, all these functions were used without generating

the matrix of the reconstructed solutions, but instead overwriting at each

step the new iterate of CGNE on the old one, in order to spare memory and

time.

C.3 The routine data−approx

In the notations of Appendix B, the routine data−approx generates an approx-

imation {(λ1, µ̃1), ..., (λn, µ̃n)} of the data set {(λ1, µ1), ..., (λn, µn)} according
to the following scheme (valid for n ≥ 5):

Step 1: Fix m = 4 and the number of inner knots k according to the dimension

of the problem: if n ≤ 5000 then k = ⌊n/4⌋, if n > 5000 then k =

⌊n/50⌋. Construct the partition ∆ = {t0 < t1 < ... < tk < tk+1} such

that t0 = λ1, tk+1 = λn and ti = λ1 + iλn−λ1

k+1
, then choose the extended

partition ∆∗ according to (B.2).

Step 2: Construct the matrix H of the normalized B-splines of order m on the

approximation points λ1, ..., λn relative to the extended partition ∆∗

according to (B.3), (B.4) and (B.8).
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Step 3: Find the unique solution c of the linear system (B.9).

Step 4: Evaluate the spline s(t) =
∑k

i=−m+1 ciNi,m(t) on the approximation

points λj denoting with µ̃j = s(λj) the corresponding results.

C.4 The routine mod−min−max

This section describes the Matlab function implemented for the computation

of the index p that divides the vector of the SVD (Fourier) coefficients |u∗
ib

δ|,
i = 1, ..., m, associated to the (perturbed) linear system Ax = bδ, into a

vector of low frequency components, constituted by its first p entries and a

vector of high frequency components, constituted by its last m− p entries.

The routine, denoted with the name mod−min−max, is a variation of the

Min−Max Rule proposed in [101] and requires the singular values λ1, ..., λN

of A.

Suppose for simplicity m = N and let ϕi denote the ratios |u∗
ib

δ|/λi for

i = 1, ..., N . Separate the set Ψ = {ϕ1, ..., ϕN} into 2 sets

Ψ1 := {ϕi | ϕi > λi} Ψ2 := {ϕi | ϕi ≤ λi} (C.3)

and let N1 and N2 be the number of elements in Ψ1 and Ψ2 respectively.

Then:

(i) If N2 = 0 or λN < 10−13, calculate an approximation Ψ̃ of Ψ by means

of cubic B-splines with the routine data−approx of the Section C.3 of

the Appendix and choose p as the index corresponding to the minimal

value in Ψ̃.

(ii) Otherwise, consider the first of the last 5 elements in Ψ2 such that ϕij+1

/∈ Ψ2 and choose p as the corresponding index.

When the smallest singular value is close to the machine epsilon or the set

Ψ2 is empty, then Ψ can be used to determine the regularization index. In

this case the data noise is assumed to be predominant with respect to the
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model errors, so the minimum of the sequence ϕi should correspond to the

index ibδ . Moreover, the data approximation is used to avoid the presence

of possible outliers. A typical case is shown in Figure 3.5 with the shaw test

problem.

In the second case of the modified Min−Max Rule the model errors are pre-

dominant and the greatest indices in Ψ2 are included in the TSVD provided

that they are contiguous (i.e. the successive element does not belong to Ψ1).

This situation is shown in the picture on the right of Figure 3.5 obtained

with the phillips test problem.

C.5 Data and files for image deblurring

The experiments on image deblurring performed in Section 3.6 make use of

the following files.

• The file psfgauss is taken the HNO Functions, a small Matlab package

that implements the image deblurring algorithms presented in [38]. The

package is available at the web page

http : //www2.imm.dtu.dk/ pch/HNO/.

For a given integer J and a fixed number stdev, representing the devi-

ations of the Gaussian along the vertical and horizontal directions, the

Matlab command

[h, center] = psfGauss(J, stdev); (C.4)

generates the PSF matrix h of dimension J × J and the center of the

PSF.

• The file im−blurring generates a test problem for image deblurring. A

gray-scale image is read with the Matlab function im−read. Then a

Gaussian PSF is generated by means of the function psfgauss and the

image is blurred according to the forumla (3.41) from Section 3.6. At
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last, Gaussian white noise is added to the blurred image to obtain the

perturbed data of the problem.

• The function fou−coeff plots the Fourier coefficients of an image de-

blurring test problem. Given the (perturbed) image g and the PSF h,

it returns the Fourier coefficients, the singular values of the BCCB ma-

trix A corresponding to h and the index p computed by the function

mod−min−max of Section C.4 of the Appendix.

C.6 Data and files for the tomographic prob-

lems

The numerical experiments on the tomographic problems described in Sec-

tion 4.6 make use of the files paralleltomo, fanbeamtomo and seismictomo from

P.C. Hansen’s Air Tools. This is a Matlab software package for tomographic

reconstruction (and other imaging problems) consisting of a number of alge-

braic iterative reconstruction methods. The package, described in the paper

[40], can be downloaded at the web page

http : //www2.imm.dtu.dk/ pcha/AIRtools/.

For a fixed integer J > 0, the Matlab command

[A, g, f] = paralleltomo(J) (C.5)

generates the exact solution f , the matrix A and the exact data g = Af of a

two dimensional tomographic test problem with parallel X-rays. The input

argument J is the size of the exact solution f of the system. Therefore, the

matrix A has N := J2 columns. The number of rows of A is given by the

number of total rays for each angle l0 multiplied by the number of angles j0.

Consequently, the sinogram G corresponding to the exact data g is a matrix

with l0 rows and j0 columns.

The functions fanbeamtomo and seismictomo generate the test problem in
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a similar way. We emphasize that for each problem the dimensions of the

sinogram are different. If these values are not specified, they are set by

default. In particular:

• paralleltomo: l0 = round(
√
2J), j0 = 180;

• fanbeamtomo: l0 = round(
√
2J), j0 = 360;

• seismictomo: l0 = 2J, j0 = J .



Appendix D

CGNE and rounding errors

In literature, there are a number of mathematically equivalent implementa-

tions of CGNE and of the other methods discussed above. Many authors

suggest LSQR (cf. [73] and [36]), which is an equivalent implementation of

CGNE based on Lanczos bidiagonalization.

The principal problem with any of these methods is the loss of orthogonality

in the residuals due to finite precision arithmetic. The orthogonality can

be maintained by reorthogonalization techniques that are significantly more

expensive and require a larger number of intermediate vectors (cf. e.g., [18]).

In the literature the influence of round-off errors on conjugate gradient type

methods has been studied mainly for well-posed problems.

In [27] Hanke comments on the ill-posed case that the reorthogonalization

techniques did not improve the optimal accuracy in the case he considered.

Our numerical experiments confirm that the sequence of the relative errors

‖x† − zδk‖ does not change significantly for k smaller than the optimal stop-

ping index.

However, even small differences in the computation of the residual norms

and of the norm of the solutions ‖zδk‖ may affect seriously the results pre-

sented in the following sections of Chapter 3, especially in the 1D examples.

Therefore, in these sections the routine lsqr−b from [35], with the parameter

reorth = 1 was preferred to the other routines in the implementation of the

247
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CGNE algorithm.

In the other cases we proceeded as follows:

• In the tests of Chapter 2, to compare the results obtained by CGNE

and CGME we implemented Algorithm 6, generating a new routine

cgne−cgme specific for this case;

• In the numerical experiments of Chapter 3 on image deblurring we used

the routine cgls−deb;

• In the numerical experiments of Chapter 4 we simply used cgls without

reorthogonalization.
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