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Abstract

Power electronic converters are extensively adopted for the solution of timely issues, such

as power quality improvement in industrial plants, energy management in hybrid electrical

systems, and control of electrical generators for renewables. Beside nonlinearity, this sys-

tems are typically characterized by hard constraints on the control inputs, and sometimes

the state variables. In this respect, control laws able to handle input saturation are crucial

to formally characterize the systems stability and performance properties. From a prac-

tical viewpoint, a proper saturation management allows to extend the systems transient

and steady-state operating ranges, improving their reliability and availability.

The main topic of this thesis concern saturated control methodologies, based on mod-

ern approaches, applied to power electronics and electromechanical systems. The pur-

sued objective is to provide formal results under any saturation scenario, overcoming the

drawbacks of the classic solution commonly applied to cope with saturation of power con-

verters, and enhancing performance. For this purpose two main approaches are exploited

and extended to deal with power electronic applications: modern anti-windup strategies,

providing formal results and systematic design rules for the anti-windup compensator, de-

voted to handle control saturation, and “one step” saturated feedback design techniques,

relying on a suitable characterization of the saturation nonlinearity and less conservative

extensions of standard absolute stability theory results.

The first part of the thesis is devoted to present and develop a novel general anti-windup

scheme, which is then specifically applied to a class of power converters adopted for power

quality enhancement in industrial plants. In the second part a polytopic differential in-

clusion representation of saturation nonlinearity is presented and extended to deal with a

class of multiple input power converters, used to manage hybrid electrical energy sources.

The third part regards adaptive observers design for robust estimation of the parameters

required for high performance control of power systems.
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Introduction

Control input constraints is an ubiquitus issue in control systems, even when the engineer-

ing plants are characterized by open-loop linear models, closed-loop system nonlinearity

stems form saturation at the control inputs which, in turn, is owed to the physical limita-

tions of the actuators used to apply the control effort to the plant. Nevertheless actuators

are commonly sized in order to prevent saturation under a set of nominal working condi-

tions, unpredicted phenomena such as faults, external disturbances, unfeasible references

generation, can steer the system to operate outside from the predefined working region.

Under these unexpected conditions the required control effort can act beyond the admis-

sible values, bringing the controller’s actuators to hit their limits.

It’s well known that, if not suitably handled, control input saturation can dramatically

affects the feedback system, giving rise to the so-called windup effect. The term originates

from the first simple PID controllers, implemented by means of analog electronics, where

the actuator saturation slows down the system response, causing the integral part of the

controller to windup to large values and, as a consequence, long settling time and excessive

overshoot. The term is still used in more involved multivariable modern controllers, to

denote a pretty severe performance degradation of the system under saturation, which, in

some particular cases, could also lead to the loss of the system stability properties.

From the early 40’s were practictioners became aware of saturation issues until a not so

distant past (70’s and early 80’s), and still in several industrial applications, the prob-

lem of input saturation was handled by means of ad hoc solutions; namely the controller

was designed disregarding constraints, then the system was augmented with application-

specific schemes, whose task was to introduce additional feedbacks, in such a way that the

overall system had a graceful behavior also under saturation. For this reason, this kind

of additional systems were referred to as anti-windup units. Even though this schemes

were able to effectively deal with saturation of the specific plant, a formal stability and

performance characterization was lacking.

The first academic attempts to rigorously cope with constrained control inputs, providing

constructive techniques for a broader class of systems, were made in the early 80’s, first

by working on intelligent integrators [1], [2] then, in the late 80’s early 90’s introducing

state space interpretations [3], [4] [5], [6] valid also for multivariable systems. However, at

this point, most of the approaches still were not handling stability and performance in a

systematic fashion. Moreover methodological tools to tune the anti-windup system were

not in general provided. It’s only in the last two decades that so-called modern approaches
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were proposed to cope with input saturation. A settled definition of modern approach to

input saturation is still missing, however, in most of the dedicated literature, the term is

referred to methodological and systematic approaches, based on sound theoretical results,

that can be exploited for a rather general class of systems, in order to formally and quan-

titavely ensure stability and a certain degree of performance under saturation.

This definition clearly goes beyond the solely anti-windup compensators; in this respect

three main class of methodologies can be outlined

• Modern Anti-windup compensator design

• Direct saturated feedback control design

• Model predictive control

Modern anti-windup compensators are the natural continuation of the above mentioned

applied perspective driven trend, began in industries since the first stage of control the-

ory. Similarly to their “ancestors” this schemes are joined to preexisting controllers, that

have been designed to meet the specifications without explicitly considering possible con-

straints, with the specific task to tackle saturation by modifying the original controller

output signals and states or, for certain approaches, the closed-loop system reference ([7],

[8]). Differently from early compensators, recently proposed anti-windup units can pro-

vide stability and performance guarantees. Furthermore the design can be carried out

by means of reliable synthesis algorithms, based on well established mathematical tools,

e.g. Linear Matrix Inequalities (LMI) [9]. From a historical standpoint, these techniques

started to be developed in the late 90’s ([10], [11]), nowadays the topic is quite mature,

and recent publications ([12], [13], [14]) attempted to order the vast amount of contribu-

tions in a comprehensive an self-contained way. However it still remain an open research

issue, especially for what concerns solutions for nonlinear constrained systems with non

minimum phase zero dynamics, and complex systems whose specifications are hard to be

cast into the available modern anti-windup frameworks.

An alternative approach to deal with saturation is to design the control law in one step,

i.e. taking explicitly into account input constraints during the regulator design procedure.

While anti-windup comes from practical industrial problems, this approach stemmed from

the works on Lyapunov absolute stability theory. In plain words, the main idea is to

characterize the saturation nonlinearity in a less conservative with respect to the classic

sector characterization adopted to derive Popov and Circle criteria ([15]). New results on

this topic began to be developed from the 80’s onward, mainly searching for possibly local,

but tighter sector conditions for the saturation nonlinearity standard sector characteriza-

tion ([16]), and then handle the saturated system analysis and design as a standard Lure

problem. Another possible methodology consists in giving a (possibly local) description

of the saturated closed-loop system in terms of parametrized Polytopic Linear Differential

Inclusions (PLDIs) (see [17], [18], [19]), commonly adopted in the robust control theory

framework. Similar approaches were proposed also for deadzone function and more general

classes of algebraic nonlinearities [20]. With this representation at hands, both analysis
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and control synthesis problem are addressed by applying the Lyapunov’s second method.

The main advantage of this approach is that control law synthesis can be cast into nu-

merically efficient optimization algorithms involving linear matrix inequalities, where the

objective function is selected to formally meet the specifications ([21], [22]). Moreover, in

the recent past, several solutions, based on non-quadratic Lyapunov functions, combined

with nonlinear feedback controllers, have been proposed, exploiting the similarity with

typical system descriptions addressed in the robust control theory framework ([23], [24],

[25]). This has led to further reduce and eliminated ([26])conservatism in the LDI anal-

ysis and stabilization procedure (the approximation in the nonlinearity description still

hold), on the other hand, this has come “hand in hand” with an increased complexity

in the analysis and design algorithms. Another limitation is that the majority of these

works deals with saturated linear plants, while one step constrained control of nonlinear

systems is still an open problem. It’s further to notice that this two class of approaches

are somewhat interlaced, since some of the the early results on analysis and synthesis of

saturated linear systems have been exploited to produce the above mentioned LMI-based

tuning algorithms for modern anti-windup units.

The third approach to handle input saturation is by casting the problem in the Model

Predictive Control (MPC) framework; indeed saturated systems are a particular class of

constrained systems. MPC for input saturated systems was proposed since the late 80’s

and early 90’s ([27] [28]), and nowadays, thanks to the advance in both theoretical ([29])

and technological fields, it can be exploited to handle rather complex nonlinear saturated

systems. Differently from the previous solutions, MPC is more suitable to be adopted when

the plant is expected to hit the saturation limits commonly also during its nominal opera-

tion. When saturation is expected not to occur so frequently, or when a control structure

has been already implemented, the other two approaches seems preferable. Furthermore,

in some cases it can result hard to cast the systems specifications into the standard MPC

framework, even for what concerns it’s desired “small signals” behavior, namely the range

of states and inputs for which no constraints are active.

For the class of power electronic and electromechanical systems, the issue of input satu-

ration is of crucial importance; since, in addition to the above mentioned problems, such

devices often are required to manage high energy/power levels, and power converters are

directly connected to the line grid. Therefore they can be characterized as safety criti-

cal components, whose behavior has to be preserved under a wide range of possible non

nominal scenarios. Furthermore, from an engineering point of view, an optimal use of

the actuators capacity, would avoid system oversizing, reducing the overall system costs,

mass, and volume. Finally, the extension of the system operational regions, provided by

a correct saturation management, enhances the system reliability and availability proper-

ties. Recently this topics have been receiving particular attention, due to the technological

advances, that made power electronic components a pervasive presence in several indus-

trial and commercial fields. In particular power electronics is extensively adopted in the

recently blossomed fields of optimal electrical energy management, power quality enhance-
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ment, and renewable energies. It’s further to remark that these kind of complex dynamic

devices, are expected to distributed into complex, possibly “smart”, grid topologies, for

which more demanding regulations, compared to traditional networks, have to be fulfilled.

From a control theory viewpoint, the state-space models of converters and electric ma-

chines adopted in the above mentioned power systems, are commonly nonlinear, and,

in some cases, the controlled outputs are characterized by non-minimum phase internal

dynamics, usually related to energy reservoirs as DC-link capacitors and magnetic fields

in electric machines. These features make high-performance control quite complex, even

under saturation-free hypothesis, therefore system constraints need to be addressed by

means of modern, sophisticated solutions.

Thesis Outline and Contributions

This thesis is devoted to present and discuss advanced saturated control techniques for

power electronic and electromechanical systems. Following the spirit of the modern ap-

proaches previously outlined, solutions capable to tackle saturation in a systematic and

formal fashion are proposed, overcoming the drawbacks of classic countermeasures usually

adopted in industries. In fact, standard techniques are focused on preventing system sat-

uration, and extending the system working range, considering some steady-state system

configurations. The main aim of this work is to move forward; ensuring a correct sat-

uration handling even during transient conditions, and for rather complex scenarios not

covered before. In order to achieve this objective, the starting point is to construct rather

general advanced methodologies, inspired by the existing modern methodologies, then ex-

ploit the guidelines given by this general approaches to design specific saturated control

laws for the considered power electronics application. This thesis gathers the research

work carried out in the last three years, and, for sake of clarity, is divided into three main

parts.

The first part (chapters 1 − 3) concerns anti-windup unit design issues, with specific ap-

plications to power converters devoted to power quality enhancement in industrial plants.

In chapter 1 first the anti-windup design problem and its objectives are formulated ei-

ther from a qualitative and a quantitative standpoint, then the three most main modern

anti-windup strategies proposed in the literature are described in their basic features. Fi-

nally a novel anti-windup approach, first introduced in [30], is defined. The general idea

is described and then formally developed for a simple but rather general class of control

systems, providing an interpretation in the light of the modern anti-windup schemes ob-

jectives, and critically comparing the presented methodology with the other approaches

proposed in the literature.

In chapter 2 this strategy is exploited to design a constrained control solution for a class of

power converters used as active filters for reactive and harmonic currents compensation in

industrial plant. The initial part of the chapter is devoted to describe the system, define

the control objectives, and present a robust saturation-free current control solution [31],
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[32] that will be used as a benchmark to test the proposed anti-windup strategy. Then

it’s shown how the general anti-windup scheme can be adapted to manage the current

control unit saturation. The basic strategy is extended with some specific countermea-

sures, applied to improve the filter performance and, at the same time, deal with the plant

non minimum phase zero-dynamics, associated with the voltage of the converter DC-link

capacitor. Finally the anti-windup unit is suitably combined with a current saturation

strategy, to formally handle the converter current limitations, that, from a control theory

standpoint, can be regarded as plant state constraints.

For the sake of completeness, and to clarify it’s possible interaction with the anti-windup

unit, Chapter 3 is devoted to the issue of the DC-link voltage dynamics stabilization. After

a formal definition of the control problem, some possible control strategies are discussed.

Among them, the focus will be put on a promising averaging control solution [33], based

on the two-time scale separation of the filter current and DC-link voltage dynamics.

The second part (chapters 4 − 6) regards one step control design solutions for input sat-

urated linear and bilinear systems, also in this case with applications to timely power

electronic issues. In chapter 4 the theoretical background, that will be exploited and the

extended to cope with the considered power systems, is presented; the above mentioned

saturation characterization, based on parametrized polytopic differential inclusions, is an-

alyzed and formally motivated, showing how conservatism is reduced with respect to stan-

dard characterization techniques. Then the controller synthesis procedure is presented,

first by considering linear state feedback laws and quadratic Lyapunov candidates, that

lead to the formulation of LMI constrained convex problems, allowing to select the optimal

saturated feedback controller to satisfy common requirements such as stability region max-

imization, disturbance rejection, or convergence rate enhancement. Then some common

classes of non-quadratic Lyapunov functions, such as piecewise quadratic [34], polyhedral

[35] or the so-called composite quadratic functions [36], possibly combined with nonlinear

feedback controllers, aimed to reduce conservatism in the design procedure, and improve

the results obtainable with quadratic functions and linear controllers, are presented.

In chapter 5 this methodologies are adopted and extended, according to the procedure

proposed in [37], to design saturated control laws for a class of multiple inputs power elec-

tronic, converter extensively adopted in a wide range of applications (e.g hybrid electrical

vehicles and stand-alone photovoltaic systems) to actively steer the power flow between hy-

brid electrical energy storage devices, such as supercapacitors and batteries, and a generic

load. Beside the hard input constraints, this systems are also typically characterized by bi-

linear state-space models, hence PLDI-based description of saturated systems is extended

to describe also bi-linearity, so that the obtained inclusion is ensured to contain all the

trajectories of the original nonlinear system. Then a robust control solution is designed

by means of an LMI constrained convex problem. Finally the tracking domain analysis

is improved by means of a particular class of piecewise quadratic functions based on a

suitable partition of the state space region.

Chapter 6 deals with control solutions for medium power wind energy conversion systems
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[38], it goes a little astray from the path of the part, as the above mentioned saturated

control techniques are not applied. However, the power/torque saturation limits of the

generators are handled by a specific strategy, presented in [39], that consists in combining

the two system’s control knobs, i.e. the generator torque and the blade pitch angles, to

extend the system operating region for wind speeds producing a power/torque that goes

beyond the turbine limits, and to prevent windup effects or control signal bumps when the

nominal conditions are restored. Since the system limits are explicitly accounted during

the control law design and no additional units with the specific task to handle saturation

are needed, this can be somewhat seen as a one step saturated control synthesis procedure.

The final part of this thesis (chapters 7− 8) deals with auxiliary tools for power electronic

and electromechanical system control. Very frequently, advanced control units for this

class of systems require accurate informations about state variables or parameters that

are not measured, or whose measures can be impaired by the harsh conditions under which

the system has to operate. Moreover, in many cases it can be preferable to reduce the

number of sensors placed on the plant, for cost saving and improved reliability reasons.

Hence such variables need to be robustly estimated exploiting the informations on the

system model and the other measured variables. A classic example in the considered field

regards sensorless control algorithms for electric machines, where the position and speed

of the rotor are reconstructed without the need of any sensor. From a control theory view-

point the most widely adopted frameworks to cope with this issues are adaptive observers

designed by means of passivity arguments [40] or nonlinear internal model principles [41],

and high gain observers [42].

In this context in chapter 7 a nonlinear adaptive observer, first introduced in [43], de-

voted to robust three-phase line grid parameters estimation, under possible unbalanced

conditions, is discussed. The basic idea is to exploit the properties of a polar coordinates

synchronous reference frame to represent the line voltage, in order to provide a larger

robustness to withstand negative sequences and voltage harmonics (produced by line un-

balancing) with respect to standard LTI observers.

The same principle is adopted in chapter 8 for rotor speed and position reconstruction

for Permanent Magnet Synchronous Machines (PMSM) without the assumption of stator

flux dynamics perfect knowledge. The main idea is to push the reference frame adopted

in the observer toward the synchronous one, by forcing it to be intrinsically aligned with

the estimated back-emf vector, and by designing suitable adaptations law for its speed

and angle along with the back-emf amplitude. Since the flux dynamics are not integrated

for the estimates, an increased robustness with respect to measurements uncertainties is

obtained. Following the approach of [44], the adaptation law is tuned exploiting singular

perturbation theory arguments and Lyapunov’s second method based design techniques,

in order to formally ensure the the observer’s estimates asymptotic convergence. Two

appendices conclude this work; in A the mathematical tools, used throughout the thesis

to formulate and solve LMI constrained optimization problems for anti-windup or con-

strained feedback design purposes, are recalled, while in B some practical considerations
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Anti-windup Solutions
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Chapter 1

Modern Anti-Windup Strategies

This chapter reviews the state-of-the-art in the field of modern anti-windup

methodologies. The anti-windup unit objectives are formally stated and moti-

vated. Then the three most widely used families of modern anti-windup ap-

proaches are presented, finally a novel anti-windup strategy is discussed in its

main features, considering a simple but rather general class of nonlinear sys-

tems.

1.1 Modern anti-windup problem statement and objectives

Consider the generic input saturated feedback control systems reported in Fig. 1.1(a),

where w(t) is an exogenous input, y(t) and z(t) are the the measured and performance

outputs respectively, while u is the control input vector that enters the actuator, repre-

sented by its nonlinear saturation function, before acting on the plant. For the sake of

simplicity the considered actuator nonlinearity is described as a decentralized symmetric

saturation function, i.e. a vector of scalar saturation functions, as the one reported in Fig.

1.1(b), where the ith function depends only on the ith input component, an the satura-

tion limits are symmetric with respect to the origin (u ∈ [−usat, usat]), according to the

following law

sat(ui) = sign(ui)min{usat, |ui|)}, i = 1, . . . ,m (1.1)

however the anti-windup schemes presented in this chapter are valid for more general

classes of memoryless nonlinearities. Here and in the following, with some abuse of nota-

tion, the symbol sat(·) will be used to denote either the vector and the scalar saturation

functions. As mentioned in the Introduction, windup phenomena can take place when the

control input saturation occurs, since the unconstrained controller is designed neglecting

the system constraints. The main idea of anti-windup solutions is to augment the system

with a specific unit that prevent the controller to misbehave during saturation. In this

respect, from a qualitative , the following objectives can be defined

• Small signals preservation: It is the first objective of any anti-windup scheme, it con-

sists of making the responses of the augmented system equal to those of a saturation-
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Figure 1.1: Saturated feedback system.

free system, with no anti-windup augmentation, unless saturation occurs. In other

words, it is required the anti-windup system to be silent when the required control

effort lies in the actuators admissible range, according to a reasonable “parsimony

principle”;

• Internal stability : Considering the absence of exogenous inputs, make a defined

working point, that without loss of generality is assumed to be the origin, asymptot-

ically stable, maximizing the basin of attraction or, at least ensure a stability region

containing the set of states over which the system is expected to operate. It’s fur-

ther to notice that this requirement is more ambitious then simple local asymptotic

stability, that would be guaranteed also by any stabilizing unconstrained controller.

Indeed for plants that are not exponentially unstable, global asymptotic stability

can be induced by means of suitable anti-windup solutions;

• External stability : To enforce a bounded response for the set of initial conditions

and exogenous inputs that are expected during operation. A bounded response

for any initial condition and exogenous input is impossible to achieve for certain

classes of constrained systems, e.g linear plants with exponentially unstable modes.

Thus it’s not reasonable to generally express external stability in global terms, such

requirement can be asked for linear exponentially stable systems. On the other hand

for this class of systems providing stability via anti-windup augmentation is trivial,

hence further objectives are commonly pursued as those discussed in the next item;

• Unconstrained response recovery : To reproduce the closed-loop response of a virtu-

ally saturation-free system whenever possible. It looks reasonable to require that,

beside the linear actuator region, the augmented closed loop system emulates the

saturation free system behavior also when input saturation has occurred, if possible.

When this is not the case, the internal and external stability objectives become rele-

vant. However, it’s further to remark that characterizing the unconstrained response

recovery property can be tricky. While for exponentially stable plants it’s easy to

3
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Figure 1.2: Input saturated system with anti-windup augmentation.

verify that the property is achievable if the unconstrained input uuc(t) asymptoti-

cally falls below the saturation threshold, i.e. uuc(t) − sat(uuc(t)) → 0 if t → ∞,

for exponentially unstable or marginally stable plants this condition is no longer

sufficient (see [12] ch. 2 for further details).

The above qualitative tasks can be mapped into quantitative performance indexes, on

which modern techniques relies, to define the anti-windup design algorithms. As regards

the small signal preservation property, it can be structurally enforced by means of the

standard adopted anti-windup architecture, reported in Fig. 1.2; since the anti-windup

system is fed by the mismatch signal q = sat(u)− u between the controller signal and its

saturated version, it suffices to design a generic anti-windup unit

ẋaw = f(xaw, q)

v = h(xaw, q)
(1.2)

satisfying f(0, 0) = 0, h(0, 0) = 0 to guarantee small signal preservation.

As regards internal and external stability, a reasonable choice is to relate both the

properties to the quantity

‖z‖2 ≤ β|xcl(0)|+ γw(t) (1.3)

with β, γ two positive scalars and xcl = [xp xc xaw]
T ∈ R

np×nc×naw the augmented closed-

loop state collecting the plant xp, controller xc and anti-windup unit xaw states. While

‖ · ‖2 denotes the L2 norm defined as
√

(
∫ t
0 x(τ)

Tx(τ)dτ), differently, along the thesis the

euclidean norm x(t)Tx(t) will be denoted with the symbol ‖‖.
The L2 size of z(t) is a standard performance indexes for control systems with exogenous

inputs, and it relies on the assumption that the size of the plant state is related to that

of the performance output . The anti-windup synthesis objective can then be formulated

as to minimize the L2 gain γ from w to z. Unless the plant is exponentially stable,

it’s impossible to ensure a global finite L2 whatever the anti-windup augmentation is.

However, it is always possible to enforce a finite gain over a local region, the aim in this

case is to maximize the finite gain region while still minimizing γ. In general these are two

contrasting objectives, as it turns out that, the wider the finite gain region is, the larger
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1.1. Modern anti-windup problem statement and objectives

the upper bound on the L2 gain. In this respect, it’s has been remarked [12] that using

a single factor to characterize the energy attenuation (or amplification) in a constrained

feedback loop can be misleading, since a saturated feedback controller able to attenuate

a low energy exogenous input, may not be able to attenuate an high energy input by the

same factor. Therefore it makes more sense to characterize the energy attenuation of the

exogenous input w through a nonlinear L2 gain function γ(s) where s is the exogenous

input energy level. There are basically three kind of shapes that the nonlinear gain can

assume; if the system is both open and closed-loop globally exponentially stable, then the

nonlinear gain can be upper bounded by a linear function, however, for low energy input

levels, the ratio between the output energy and the input energy can be much smaller

than the linear bound. If the closed-loop system is externally stable for low energy inputs

but not for high energy inputs, we have a gain function that grows to infinite for finite

energy exogenous inputs, this is typical of open loop unstable plants, locally stabilized by

a constrained feedback. Finally we can have a nonlinear curve that does not go to infinite

for limited value of ‖w‖2, but it cannot even be bounded by a linear function. In this case

the system is said to be L2 stable, but without a global finite gain γ, i.e. the output energy

may grow unbounded if the energy of the input increases. This situation typically occurs

for marginally stable plants globally asymptotically stabilized by a constrained feedback

law.

As regards the unconstrained response recovery, a reasonable assumption is the mismatch

between the unconstrained and the augmented system performance outputs zuc − z is

somewhat related to the mismatch of the corresponding plant states xpuc−xp. Then if z−
zuc belongs to the class of L2 signals and it’s uniformly continuous, according to Barbalat’s

lemma [15] we can conclude that the outputs difference asymptotically goes to zero, and

so the state mismatch. Hence, a way to guarantee the unconstrained response recovery

property, for inputs w(t) that make the unconstrained control input uuc to converge, in a

L2 sense, to the linear region of the saturation function, is to fulfill the following inequality

‖z − zuc‖2 ≤ β|xaw(0)|+ γ|uuc − sat(uuc)| (1.4)

for the set of initial conditions and unconstrained control inputs that are expected dur-

ing the system operation. Continuous uniformity of the considered signals is satisfied by

anti-windup augmented system under mild technical hypothesis (see [12] ch. 2). Also

in this case the anti-windup design objective is to minimize γ, and the optimal valued

is commonly called unconstrained response recovery gain. Even if focused on the perfor-

mance output recovery, this objective is similar to the standard L2 formulation (1.3) for

the augmented system stability, hence similar considerations about locally valid finite gain

and nonlinear gain functions can be made.

Before analyzing the different classes of anti-windup algorithms, we conclude this para-

graph with some standard nomenclature adopted to subdivide the different anti-windup

schemes:

• Static or Dynamic: When the anti-windup unit can be represented as a memoryless
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function the scheme is refereed to as static, otherwise it is said to be dynamic. In the

literature there are two different definitions of a full order dynamic scheme, some

authors [45] mean the anti-windup unit order is equal to the plant order i.e. np =

naw, while others [13] include the controller dynamics in the definition, considering

as full order a compensator whose order is equal to the closed loop system order

before augmentation, i.e. naw = np + nc;

• Linear or non linear : In the case the original system is augmented with linear

dynamics, the anti-windup scheme is said to be linear, nonlinear otherwise;

• External or full authority : In all the modern anti-windup solutions that can be rep-

resented by the scheme in Fig. 1.2, the anti-windup signals v enter the unconstrained

controller additively. In some realizations the anti-windup outputs can directly act

on both the controller output and state equations, these are commonly refereed

to as full authority anti-windup augmentation. For example, considering a linear

controller, a typical full authority solution corresponds to the following equations

ẋc = Acxc +Bcy +Bcww + v1

yc = Ccxc +Dcy +Dcww + v2.
(1.5)

While for other instances the anti-windup unit injects the signals only at the input

and output of the unconstrained controller, for this reason this kind of schemes are

called external anti-windup augmentation. In this case, example (1.5) need to be

modified as
ẋc = Acxc +Bc(y + v1) +Bcww

yc = Ccxc +Dc(y + v1) +Dcww + v2.
(1.6)

1.2 Direct Linear Anti-windup

The direct linear anti-windup (DLAW) approach was the first constructive scheme relying

on LMI-based optimization problem to tune the anti-windup unit in order to formally

ensure the stability and performance properties outlined before.

First simple static schemes were considered [46], [9], more recently, extensions of the

approach involving dynamic compensators have been proposed [45], [47]. In this section

the basic results will be presented considering dynamic anti-windup schemes, since the

static schemes can be derived as particular cases. The target for this class of solutions,

are linear saturated plants in the form

ẋp = Apxp +Bpusat(u) +Bpww

y = Cpxp +Dpusat(u) +Dpww

z = Czxp ++Dzusat(u) +Dzww

(1.7)

associated with a linear dynamic controller

ẋc = Acxc +Bcuc +Bcww + v1

yc = Ccxc +Dcuuc +Dcww + v2
(1.8)
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1.2. Direct Linear Anti-windup

where uc ∈ R
p is the controller input yc ∈ R

m the output and v1, v2 two anti-windup

signals. A natural assumption is that the above controller provides stability and the

required performances of the closed-loop system when no saturation occurs, i.e. the system

obtained by the saturation-free interconnection: sat(u) = u = yc, uc = y, v1 = v2 = 0,

is globally asymptotically stable. In other words, assuming also well-posedness of the

interconnection, i.e. the matrix ∆ = I −DcDpu is non singular, the controlled is required

to make the unconstrained system closed-loop state matrix Hurwitz, that is

Â =

[

Ap +Bpu∆
−1DcCp Bpu∆

−1Cc

Bc(I −Dpu∆
−1Dc)Cp Ac +BcDpu∆

−1Cc

]

< 0. (1.9)

In DLAW approaches the compensator in Fig. 1.2 is selected as the following linear filter,

producing the signal v = [v1 v2]

ẋaw = Aawxaw +Baw(sat(u)− u)

v1 = Caw,1xaw +Daw,1(sat(u)− u)

v2 = Caw,2xaw +Daw,2(sat(u)− u).

(1.10)

In general the order naw of the filer is a design parameter along with the matrices Aaw,

Baw, Caw = [CT
aw,1C

T
aw,2]

T , Daw = [DT
aw,1D

T
aw,2]

T . For the sake of brevity, here only

full order schemes (naw = nc + np) with some reference to static versions (naw = 0)

as particular cases, are recalled. The most common performance measure, optimized by

DLAW strategies, is the input-output gain form w to z that, by (1.3), can be expressed

as the inequality ‖z‖2 ≤ γ‖w‖2.
Considering the usual interconnection u = yc, uc = y, and expressing the saturation

nonlinearity in terms of the mismatch signal q, i.e. sat(yc) = yc + q, the systems (1.7),

(1.8), (1.10) can be combined to obtain the following augmented closed-loop system

ẋcl = Aclxcl +B1clq +B2clw

ycl = C1clxcl +D11clq +D12clw

z = C2clxcl +D21clq +D22clw

(1.11)

with

Acl =

[

Â BvCaw

0 Aaw

]

, B1cl =

[

Bq +BvBaw

Baw

]

, B2cl =

[

B2

0

]

C1cl =
[

C1 Cv1Caw

]

, D11cl = D1 + Cv1Daw, D21cl =D2 + Cv2Daw

C2cl =
[

C2 Cv2Caw

]
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Figure 1.3: Deadzone nonlinearity corresponding to the mismatch signal q.

and

Bv =

[

Bpu∆
−1[0 Im]

BcDpu∆
−1[0 Im] + [Inc 0]

]

, Bq =

[

Bpu(Im +∆−1DcDpu)

BcDpu(Im +∆−1DcDpu)

]

C1 =
[

∆−1DcCp ∆−1Cc

]

, Cv1 = ∆−1
[

0 Im

]

C2 =
[

Cz +Dzu∆
−1DcCp Dzu∆

−1Cc

]

, D1 = ∆−1DcDpu

Cv2 = Dzu∆
−1[0 Im], D2 = Dzu(Im +∆−1DcDpu)

B2 =

[

Bpu∆
−1(Dcw +DcDpw) +Bpw

BcDpu∆
−1(Dcw +DcDpw) +Bcw +BcDpw

]

, D12cl = ∆−1(Dcw +DcDpw)

D22cl = Dzw +Dzu∆
−1(Dcw +DcDpw)

Note that, if a decentralized symmetric saturation (1.1) is concerned, the mismatch signal

corresponds to a decentralized deadzone nonlinearity q = dz(u), i.e. each component of

the control input vector is processed according to the function reported in Fig. 1.3. In

order to develop LMI conditions for the compensator synthesis, the following generalized

sector characterization of the deadzone function, first introduced in [48], is commonly

exploited: define the set S(usat) := {u ∈ R
m, ω ∈ R

m : −usat ≤ u− ω ≤ usat} then the

following holds

Lemma 1.2.1 If u and ω belongs to the set S(usat), then the nonlinearity q(u) = sat(u)−
u satisfies the following inequality

q(u)TS−1(q(u) + ω) ≤ 0 (1.12)

for any diagonal positive definite matrix S

the proof of the lemma is reported in A.5. Based on this characterization, in [47] is

provided the following sufficient condition for the global stability of the augmented closed-

loop system (1.11)
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1.2. Direct Linear Anti-windup

Proposition 1.2.2 If there exist a symmetric positive matrix Q ∈ R
n×n, where n =

naw + nc + np, a diagonal matrix S ∈ R
m×m and a positive number γ such that









QAT
cl +AclQ B1clS −QCT

1cl B2cl QCT
2cl

(B1clS −QCT
1cl)

T −2(S + 2D11clS) −D12cl SDT
21cl

BT
2cl −DT

12cl −I DT
22cl

C2clQ D21clS D22cl −γ2I









< 0 (1.13)

then

• If w = 0, the origin of system (1.11) is globally asymptotically stable;

• The closed loop system trajectories are bounded for any initial condition and any

w(t) ∈ L2;

• The system is externally L2 stable with

∫ T

0
z(t)T z(t)dt ≤ γ2

∫ T

0
w(t)Tw(t)dt+ γ2xcl(0)

TQ−1xcl(0), ∀ T ≥ 0. (1.14)

Proof Consider the quadratic candidate Lyapunov function V (xcl) = xTclQ
−1xcl. Then

both internal and external stability are ensured for any xcl(0) if

V̇ (xcl) < γ2wTw − zT z. (1.15)

Lemma 1.2.1 hold globally if ω = u, hence we have

qTS−1(q + u) ≤ 0.

Therefore, applying the S-procedure to the two inequalities above we obtain

V̇ +
1

γ2
zT z − wTw − 2qTS−1(q + u) < 0 (1.16)

which, by Schur’s complement, is equivalent to (1.13). Then it’s easy to verify that

when w = 0, V̇ (xcl) < 0 , hence global asymptotic stability trivially follows. Condition

(1.14) is be obtained by integrating (1.16), then Lemma 1.2.1 and positive defiteness of V

(V (xcl(T )) > 0 for T > 0) yields

∫ T

0
zT zdt ≤ γ2V (xcl(0)) + γ2

∫ T

0
wTwdt ≤ γ2xcl(0)

TQ−1xcl(0) + γ2
∫ T

0
wTwdt (1.17)

As long as the synthesis problem is faced, conditions (1.13) become not convex, in par-

ticular bilinear matrix inequalities (BMI) arise, since the products between the matrix

variables Aaw, Baw, Caw, Daw, Q and S appears in several inequality terms. However in

the case of full order compensator a convex characterization can be obtained as stated in

the next result
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Proposition 1.2.3 An anti-windup compensator in the form (1.10) can be designed to

satisfy proposition 1.2.2 if there exist two positive definite symmetric matrices X,Y ∈
R
nc+np × nc + np and a positive number γ such that






ÂX +XÂ XB2 CT
2

BT
2 X −I DT

22cl

C2 D22cl −γI




 < 0






Y1A
T
p +ApY1 Bpw Y1C

T
z

BT
pw −I DT

zw

CzY
T
1 Dzw −γ2I




 < 0,

[

X I

I Y

]

> 0

(1.18)

where Y1 is the upper left corner square block, with dimension np, of Y .

Proof First partition the matrix Q defined in proposition 1.2.2 as

Q =

[

Y NT

N W

]

, MTN = I −XY

Q−1 =

[

X M−1

M W

] (1.19)

then define the matrices

φ1 =









Y ÂT + ÂY ÂNT BqS − Y TCT
1 B2 Y CT

2

NÂT 0 −NCT
1 0 NCT

2

(BqS − Y TCT
1 )

T BT
2 −2S −D1S − SDT

1 −D22cl SDT
2

C2Y C2N
T D2S D22cl −γ2I









F =

[

0 I 0 0 0

BT
v 0 −CT

v1 0 CT
v2

]

G =

[

N W 0 0 0

0 0 S 0 0

]

, H =

[

Aaw Baw

Caw Daw

]

(1.20)

noting that (1.13) can be rearranged as

φ1 + F THG+GTHTF < 0 (1.21)

and using, the Elimination Lemma, the following equivalent inequalities are obtained

NT
F φ1NF < 0, NT

Gφ1NG < 0 (1.22)

where NF , NG are basis of Ker(F ), Ker(G) respectively. Since NG can be defined as

NG =











X 0 0

M 0 0

0 0 0

0 I 0

0 0 I











(1.23)
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(1.22) is equivalent to the first inequality in (1.18). Similarly we can define

NT
F =






[Inp 0] 0 Bpu 0 0

0 0 0 I 0

0 0 Dzu 0 I




 (1.24)

noting that the following equalities hold

[Inp 0]Bv −BpuCv1 = 0, −DzuCv1 + Cv2 = 0

BpuSB
T
q

[

Inp

0

]

+ [Inp 0]BqSB
T
pu = 0

Dzu(−2S − 2D1S)D
T
zu + 2D2SD

T
zu = 0

(1.25)

it can be concluded that inequality involving NF in (1.22) is equivalent to the second

inequality in (1.18). Finally, the third inequality of (1.18) allow to define Q and therefore

X, Y satisfying (1.19).

It’s further to notice that proposition (1.2.3) does not provide a constructive method to

synthesize the anti-windup filter, such conditions can be found in the particular case of

static DLAW ([9]) where only Daw need to be computed. However, numerically tractable

synthesis algorithm for dynamic DLAW can be defined by fixing some of the variables, as

in the following example

1. Minimize γ under the LMIs in (1.18);

2. Compute Q by (1.19);

3. Fix Q in (1.13) and solve the resulting eigenvalue problem in the variables Aaw,

B̄aw = BawS, Caw, D̄awS.

It’s further to remark that global results can be ensured only for exponentially stable

plants, it’s easy to verify that if it’s not the case the previous conditions would be un-

feasible. Similar results have been established in a local context [49]; exploiting the same

framework as in proposition 1.2.2 the following yields

Proposition 1.2.4 If there exists a symmetric positive definite matrix Q ∈ R
n×n, a ma-

trix Z ∈ R
m×n, a positive diagonal matrix S ∈ R

m×m and a positive scalar γ such that









QAT
cl +AclQ B1clS −QCT

1cl − ZT B2cl QCT
2cl

(B1clS −QCT
1cl − ZT )T −2(S + 2D11clS) −D12cl SDT

21cl

BT
2cl −DT

12cl −I DT
22cl

C2clQ D21clS D22cl −γ2I









< 0

[

Q ZT
l

Zl
u2
sat

δ

]

≥ 0, l = 1, . . . ,m

(1.26)

then
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• If w = 0 the ellipsoid E(Q−1, δ) :=
{
xcl : x

T
clQ

−1xcl ≤ δ
}
is a domain of asymptotic

stability for the augmented system origin;

• For any w ∈ L2 such that ‖w‖22 ≤ δ and for xcl(0) = 0, the closed-loop system

trajectories are bounded in E(Q−1, δ), and the system is externally L2 stable with

∫ T

0
zT zdt ≤

∫ T

0
wTwdt, ∀ T ≥ 0. (1.27)

Proof Consider a quadratic Lyapunov candidate V (xcl) = xTclQ
−1xcl, and ω = u +Kxcl

so that the sector conditions (1.12) reads as

qTS−1(q + u+Kxcl) ≤ 0 (1.28)

and it applies for any diagonal positive S and any x ∈ S(usat) where

S(usat) = {u : −usat ≤ Kxcl ≤ usat} . (1.29)

By choosing Z = KQ and from Schur’s complement it can be verified that the second

inequality in (1.26) implies Q−1

δ ≥ GTG
u2
sat

, i.e. E(Q−1, δ) ⊆ S(usat). Then applying S-

procedure to the stability condition (1.15) and (1.28), the following inequality holds ∀xcl ∈
E(Q−1, δ)

V̇ +
1

γ2
zT z − wTw − 2qTS−1(q + u+Kxcl) < 0 (1.30)

which by Shur complement is equivalent to (1.26). Internal local stability condition V̇ <

0, ∀xcl ∈ E(Q−1, δ) immediately follows replacing w = 0 in the above inequality. While

(1.27) can be verified by integrating (1.30), setting xcl(0) = 0, and exploiting Lemma 1.2.1

and positive defiteness of V .

To remark the need of a trade-off between small L2 gain and wide stability regions men-

tioned in (1.1), consider the case when xcl(0) 6= 0 in a local DLAW context. A common

approach is to consider an ellipsoid E(Q−1, α) containing the admissible initial conditions,

then ensure all the trajectories starting in this set to be bounded by a larger ellipsoid

E(Q−1, α + δ), depending on the exogenous input energy level. Hence it’s clear how the

size of the stability region, basically related to α+ δ, the set of initial conditions, related

to α, and the disturbance bound on the tolerable disturbances, given by δ, are three con-

trasting objectives to be managed depending on the specific application. This topic will

be elaborated in 4.3.2 for what concerns explicit saturated state feedback design.

Similarly to the global guarantees case, a synthesis condition involving LMIs can be for-

mulated (see [13] for further details).

1.3 Model Recovery Anti-windup

This class of anti-windup algorithms, also referred to as L2 anti-windup, was first proposed

in [11], [50]. The motivating objective is to strive for recovering the unconstrained plant

12



1.3. Model Recovery Anti-windup

model as seen from the unconstrained controller, in order to prevent the system from

misbehaving when saturation takes place. Differently from the DLAW schemes presented

in 1.2, this strategies can be applied to nonlinear systems combined with nonlinear con-

trollers, since, as it will be clear in the following, model recovery anti-windup architecture

is completely independent of the controller dynamics. For what concerns the block dia-

gram representation of the augmented system, the general structure showed in Fig. 1.2,

specializes into that in Fig. 1.4(a), where the above mentioned strategy to achieve the

recovery objective, can be clearly noted. It consists in incorporating the plant dynamics

in the anti-windup compensator, modifying the input of the unconstrained controller from

y to y − yaw, where yaw is the output of the anti-windup compensator. At the same time

the saturation nonlinearity input is changed from the controller output yc to yc+η, where

η can be regarded as a supplemental anti-windup signal gathering the degrees of freedom

in the anti-windup system design. Since the anti-windup signals yaw, η additively affects

the unconstrained controller input and output, MRAW solutions belong to the family of

external anti-windup schemes.

Assuming perfect knowledge of the plant dynamics, the augmented system can be equiv-

alently represented as the cascade structure of Fig. 1.4(b), which underscores how the

aim of this anti-windup architecture is to keep track of what the closed loop response

would be without saturation constraints. In particular, the performance output zaw of

the anti-windup unit, can be regarded as a measure of the mismatch between the uncon-

strained variable zuc and the signal z corresponding to the augmented saturated system.

Hence, this kind of approach it’s mainly oriented to the unconstrained response recovery

objective. In this respect, all the anti-windup algorithms belonging to this framework, are

devoted to design the signal η to steer the state of the anti-windup system to zero, since

it captures the mismatch between the unconstrained and the augmented saturated system

behaviors.

In order to highlight these properties for the most general formulation of the MRAW

Plant
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Controller

w

sat(u) y

u

w

z
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(a) Model recovery anti-windup scheme.
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(b) MRAW Cascade Structure.

Figure 1.4: Model recovery anti-windup block diagrams.
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structure consider the, possibly nonlinear, plant

ẋ = f(xp, u) + ν1

y = h(xp, u) + ν2
(1.31)

and assume an unconstrained control law has been designed for the following model, related

to the actual plant (1.31)

ẋ = F (xp, u) + ν1

y = H(xp, u) + ν2.
(1.32)

The basic MRAW structure can be then built as follows

• Augment the system with the plant order dynamics;

ẋaw = f(xp, u)− F (xp − xaw, yc)

yaw = h(xp, u)−H(xp − xaw, yc)
(1.33)

• change the unconstrained controller input from uc = y to uc = y − yaw;

• change the plant input from u = yc to u = yc + η.

By (1.31), (1.33), after some computations it turns out

˙︷ ︸︸ ︷

xp − xaw = F (xp − xaw, yc) + ν1

uc = y − yaw = H(xp − xaw, yc) + ν2

(1.34)

therefore the unconstrained controller is actually enforced to “see” a system evolving

according to the dynamics (1.32), for which it was designed. By virtue of this property, we

can conclude that the anti-windup unit is able to prevent the controller misbehaving when

inserted in the constrained loop. From a quantitative standpoint, it’s easy to verify that

xp−xaw is the unconstrained system state trajectory, thus, steering the anti-windup system

states to the origin, allows to completely recover the unconstrained plant behavior. Hence

the main objective in the design of the degree of freedom lying in η, is to drive xaw to zero

whenever it is possible, or at least make it minimal according to some size measurement

index. An drawback of MRAW approach is that is assumes a perfect knowledge of the

plant model, which is exploited in (1.33) to produce the cancellation needed to recover the

unconstrained system as seen by the original controller, leading to the cascade structure

of Fig. 1.4(b). Obviously this cancellation is not robust, and arbitrary small uncertainties

on the plant model impair the recovery property. For this reason MRAW can be used only

when the accuracy in the plant model is high, even though some margin of robustness

can be provided by a proper design of the function η, in order to handle the interaction

between the anti-windup compensator and the unconstrained control loop perturbation,

the tolerable mismatch, between the actual and the model plant dynamics, depends on

the specific problem.

Now consider the case of linear systems, characterized by the dynamics reported in (1.7),

i.e. with f(xp, u) = Apxp + Bpusat(u) + Bpww, h(xp, u) = Cpxp + Dpusat(u) + Dpww ,

14
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in this case the plant model (1.32) used for unconstrained control design and anti-windup

purposes becomes

ẋp = Apxp +Bpuu+Bpww

y = Cpxp +Dpuu+Dpww

z = Czxp +Dzuu+Dzww

(1.35)

while, according to the previously defined procedure, the corresponding anti-windup sys-

tem equations are

ẋaw = Apxaw +Bpu[sat(η + yc)− yc]

yaw = Cpxaw +Dpu[sat(η + yc)− yc]

zaw = Czxaw +Dzu[sat(η + yc)− yc].

(1.36)

Note that, differently for the general nonlinear case, for linear systems, no measurements

of the plant state components are needed to construct the MRAW unit. Moreover, by the

linear compensator state equation, it can be further analyzed how the signal η and the

unconstrained control input yc affect the anti-windup state xaw. In brief the anti-windup

goal can be interpreted as a bounded stabilization problem; i.e. η has to be selected in

order to drive to zero, or to keep small xaw in spite of the signal yc. In this context the

unconstrained controller output yc can be regarded as a sort of disturbance, that enters the

saturation function along with η, shifting the saturation levels and making the nonlinearity

time-varying. This control problem has been extensively considered in the literature, and

several solutions have been made available within the MRAW architecture in order to

improve the anti-windup system performance. Here just a few algorithm based on linear

compensators in the form (1.36) with η computed as a linear feedback form

η = Fxaw +G[sat(η + yc)− yc] (1.37)

and exponentially stable linear plants are presented, in order to show how also the MRAW

problem can be formulated by means of LMI constrained optimization problems, at least

in it’s simplest version. However in the literature non trivial extensions to unstable plants

([51]), possibly involving nonlinear laws for the signal η ([52]), have been proposed, along

with MRAW solution for special classes of nonlinear plants ([53]).

Constructive design algorithms are usually laid down considering the anti-windup com-

pensator (1.36) expressed in the equivalent form

ẋaw = Apxaw +Bpuη +Bpu(sat(u)− u)

yaw = Cpxaw +Dpuη +Dpu(sat(u)− u)

zaw = Czxaw +Dzuη +Dzu(sat(u)− u)

η = (I −G)−1Fxaw + (I −G)−1G(sat(u)− u)

(1.38)

where the interconnection law u = η+yc has been exploited to explicit the signal η. When

G 6= 0 an implicit loop need to be solved in order to implement the scheme, hence the

design algorithm have to ensure also well-posedness of this algebraic loop.

The first simple algorithm example is able to guarantee global exponential stability of

15



Chapter 1. MODERN ANTI-WINDUP STRATEGIES

the constrained system, provided that the plant is exponentially stable, even if no other

performance indexes are optimized, it’s used in some practical application to obtain high

performance anti-windup behavior. The simples algorithm consist in setting η = 0, hence

no degree of freedom are exploited in the anti-windup design, and by(1.38), it’s straightfor-

ward to verify that the resulting compensator dynamics will be an exact copy of the plant.

Thus the so-called internal model control-based anti-windup strategy [54] is obtained. It’s

obvious that this technique relies on the plant stability properties, furthermore no per-

formance measure are optimized. More evolved technique, where the design of matrices

F , G can be cast into LMI constrained optimization problem have been proposed; among

those the following example [55] pursues the goals of global exponential stability of the

closed-loop augmented system and minimization of the following natural cost function

J =

∫ ∞

0
xTawQpxaw + ηTRpηdt (1.39)

with Qp, Rp two positive definite matrices, chosen as design parameters, in a typical LQ

control design fashion. The algorithm relies on the global sector characterization for the

saturation function (see A.5), and it can be outlined as follows

• Select two positive definite matrices Qp, Rp, and solve the following eigenvalue prob-

lem (EVP);

min
Q,U,X1,X2

α

s.t.

[

QAT
P +ApQ BpuU +XT

1

UBT
pu +X1 X2 +XT

2 − 2U

]

< 0






QAT
P +ApQ+ 2BpuX1 Q XT

1

Q −Q−1
p 0

X1 0 −R−1
p




 < 0

[

αI I

I Q

]

> 0, Q > 0, U > 0 diagonal

(1.40)

• Select η as in (1.37), with F = X1Q
−1, G = X2U

−1, and construct the anti-windup

linear filter (1.38).

The first LMI in (1.40) ensures global quadratic stability w.r.t a Lyapunov candidate

V = xTpQ
−1xp of the augmented closed-loop system, while the other two inequalities

express the minimization on the LQ index (1.39). Also in this case the plant stability is a

necessary condition for the feasibility of the above problem, however the method can be

rearranged to provide local guarantees for unstable plants (see [12] chapt. 7).

Another interesting approach was presented in [56]; it relies on the hypothesis that in

many cases the controller output in the unconstrained control loop, that by means of the

signal yaw will coincide with yc in the augmented system, converges to small values inside

the saturation linear region after a transient phase, since the unconstrained controller is

commonly designed to achieve fast convergence performance of the unconstrained loop.
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1.4. Command Governor

Bearing in mind the previous considerations on how the unconstrained controller output

yc acts on the anti-windup dynamics (in the linear case), yc can be thought as a pulse

disturbance driving xaw away from the origin. Hence it seems reasonable to minimize

the integral of the performance output mismatch zaw = z − zuc forcing it to be smaller

than the initial condition size of the anti-windup system state xaw. Furthermore since yc

in (1.36) is multiplied by Bpu, only the initial conditions belonging to the image of Bpu.

Formally, F , G are selected in order to minimize γ in the following inequality

∫ T

0
zaw(t)

T zaw(t)dt ≤ γ|xaw(T )|2 (1.41)

where T is the smallest time such that the control action returns into the saturation

linear region ∀t ≥ T , and xaw(T ) ∈ Im(Bpu). The measure above represent a sort of

H2 performance index, related to the unconstrained response recovery, moreover global

stability of the augmented system can be ensured applying the following procedure

• Solve the EVP, in the variables Q = QT > 0, U > 0 and diagonal, β > 0, X1, X2

min
Q,U,X1,X2

β

s.t.






QAT
p +ApQ+ 2BpuX1 XT

1 −BpuX2 −BpuU XT
1

−UBT
pu −XT

2 B
T
pu +X1 −2U − 2X2 XT

2

X1 X2 −I




 < 0

[

QAT
p +ApQ+ 2BpuX1 QCT

z +XT
1 D

T
zu

CzQ+DzuX1 −I

]

< 0

[

βI BT
pu

Bpu Q

]

> 0;

(1.42)

• Select η as in (1.37), where F = (I +X2U
−1)−1X1Q

−1, G = (I +X2U
−1)−1X2U

−1,

and consturct the anti-windup compensator as (1.38).

Also in this case, the first LMI condition, provides global quadratic stability w.r.t the

Lyapunov candidate V (xp) = xTpQ
−1xp, while the other two conditions are related to

the performance index optimization. Furthermore the LMIs ensures that matrix (I +

X2U
−1) is non singular, hence the algorithm can be completed with the anti-windup gain

computation.

1.4 Command Governor

In this section the so called command or reference governor (CG) is discussed; differ-

ntly from the two previously presented methodologies, this strategy does not fall into

the general paradigm reported in Fig. 1.2. The typical command governor control block

diagram is reported in 1.5; in plain words, the reference feeding the unconstrained con-

troller, designed disregarding constraints, is, if necessary, a suitable elaboration, performed

by a device added to the forward path, of the original reference, with the specific goal to
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Figure 1.5: Command governor scheme.

prevent constraints violations, and possibly keep good tracking performance. Other differ-

ences with respect to DLAW and MRAW approaches are that, in addition to control inputs

limitations, command governor paradigm can explicitly handle also state constraints. Fur-

thermore, the anti-windup unit design is usually performed in the discrete time domain

exploiting a receding horizon approach typical of the MPC framework. Historically this

technique was proposed in the 90’s, first for unperturbed, linear time invariant systems

[57], [58], then extensions to bounded unknown disturbances [8], and generic linear time-

varying systems [7], [59] were presented, finally also solutions for nonlinear constrained

systems have been considered [60].

Here the basics of this solution are briefly outlined considering the simple case of LTI

systems in presence of unknown bounded disturbances. The following closed-loop system,

regulated by an unspecified suitable unconstrained controller, is assumed

xcl(t+ 1) = Aclxcl(t) +Bgg(t) +Bdd(t)

z(t) = Cxcl(t)

c(t) = Hxcl(t) + Lg(t) + Ld(t)d(t)

(1.43)

where xcl = [xp xc]
T ∈ R

n is the state including the plant and controller states, g(t) ∈ R
m

is the command governor output, i.e. a properly modified version of the original reference

r(t). While d(t) is an external disturbance which is supposed to lie in a known convex

compact set D containing the origin in its interior, z(t) ∈ R
m is the performance output,

which is required to track r(t), and c(t)the vector lumping the system constraints viz.

c(t) ∈ C, ∀t > 0 (1.44)

where C a defined compact convex set. Then, under the following common hypothesis

1. System (1.43) is asymptotically stable;

2. System (1.43) has a unitary DC-gain, i.e. C(I −Acl)
−1Bg = Im.

the command governor anti-windup problem can be formulated as: design a memoryless

function of the current state and reference

g(t) = ḡ(x(t), r(t)) (1.45)
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so that g(t) is the best pointwise approximation of r(t), under the constraints (1.44), and

for any d(t) ∈ D. Actually, the following additional objectives are commonly pursued

1. g(t) → r̂, if r(t) → r ≡ const., with r̂ the best feasible approximation of r;

2. g(t) = r̂ after a finite time if r(t) ≡ r.

The requirements above can be interpreted in the light of the objectives stated in 1.1; the

small signal preservation and the unconstrained system response property are somewhat

included in the requirement to find the best feasible approximation of the original reference.

Whenever r(t) does not violate any constraint, the command governor is requested to be

silent, i.e. g(t) = r(t). While when constraints are active, the reference, and then the

system response z(t), are the best possible approximations of the signals produced by an

ideally unconstrained system. As regards the stability objective, it will be elaborated in

the following.

The command governor unit design is commonly carried out consider a class of constant

command sequences v(·, ν) = ν, the idea is to compute at time t, given the current state

and reference, a constant sequence g(t+ k|t) = ν that, if used as the system set point for

the subsequent instants t+k, would avoid constraints violations, furthermore the distance

of the system evolution from a constant reference value r(t) would be minimal. This

procedure can be clearly cast in the receding horizon philosophy, by applying just the first

term of the sequence g(t) at time t, and then recompute the sequence at t+1, given x(t+1),

and r(t+1). It’s further to remark that, differently from a general model predictive control

solution, here the stabilization of the system is left to a pre-designed controller, while the

duty of the CG unit is to handle the system constraints, this leads in general to simpler

constrained optimization problems, at the cost of some performances. However, the CG

anti-windup paradigm seems more suitable then the MPC when saturation is not expected

to occur frequently during the system nominal operation, or a controller has already been

designed.

Now we briefly define a common procedure ([59]) to design a command governor for

system (1.43); in order to deal with disturbances, system linearity is exploited to separate

the effects of d(t) from those of the initial conditions and inputs, e.g xcl = x̄cl+ x̃cl, where

x̄cl is the disturbance free component depending only on xcl(0) and g(·), while x̃cl is the

state response due to d(t) with xcl(0) = 0, g(t) ≡ 0. Same reasoning can be applied to

c(t) = c̄(t)+ c̃(t). For design purpose, the disturbance free steady-state solutions of (1.43)

correponding to g(t) ≡ ν is denoted as

x̄clν := (I −Acl)
−1Bgν

z̄ν := C(I −Acl)
−1Bgν

c̄ν := H(I −Acl)
−1Bgν + Lν

(1.46)
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and the following sets are defined

C0 := C ∼ LdD
Ck := Ck−1 ∼ HAk−1

cl BdD

C∞ :=
∞⋂

k=0

Ck
(1.47)

with A ∼ B := {a ∈ A : a+ b ∈ A, ∀b ∈ B}. It can be verified that the sets Ck represent

non-conservative restrictions of C such that if c̄ ∈ C∞, then c(t) ∈ C. Thus the design can

be carried out considering the disturbance free evolutions and a worst case scenario, by

taking the sets

Cδ := C∞ ∼ Bδ, Wδ :=
{

ν : c̄ν ∈ Cδ
}

(1.48)

where Bδ := {c : ‖c‖ ≤ δ}. Roughly speaking, Wδ contains the commands ν producing a

steady-state which fulfills the constraints with margin δ. Now define the set of all constant

commands belonging to Wδ, that satisfies the constraints also during transient, as

V(xcl) :=
{

ν ∈ Wδ : c̄ν(k, ν, xcl) ∈ Ck, ∀k > 0
}

(1.49)

where

c̄ν(k, xcl, ν) := H

(

Ak
cl +

k−1∑

i=0

Ak−i−1
cl Bgν

)

+ Lν (1.50)

is the disturbance-free trajectory of c, at time k, under a constant command ν. There-

fore the following inclusion holds: V(xcl) ⊂ Wδ. Finally, the robust command governor

problem can be formulated as

g(t) = argmin
ν

(ν(t)− r(t))TQ(ν(t)− r(t))

s.t. ν ∈ V(xcl)
(1.51)

where Q = QT > 0 is a design parameter penalizing the reference components.

If the assumptions 1 − 2 are satisfied by system (1.43), and Vxcl
is non empty, then the

following properties hold for the considered CG selection rule [7]:

• The minimization problem (1.51) is feasible and convex i.e.: there exists a unique

optimal point and, if V(xcl(0)) is non-empty, then V(xcl(t)) in non empty along the

trajectories generated by the solutions of (1.51);

• There exists a finite constraints horizon k̄ such that, if c̄(xcl, k, ν) ∈ C ∀ k = 1, . . . , k̄,

then c̄(xcl, k, ν) ∈ C ∀ k > k̄. That is, the set V(xcl) is finitely determined;

• The overall system is asymptotically stable and, if r(t) ≡ r, g(t) approaches r, or its

best feasible approximation r̂, in finite time.

Here the complete proof of the above properties, along with the procedure to compute

the value of k̄ to be adopted in the receding horizon algorithm for 1.51, is omitted (see

[7], [59] for details). However, the stability property of the overall constrained system
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deserves attention, so that the analysis of the CG approach in terms of the three qualitative

objectives stated in 1.1 is complete. Note that, since the modified reference g(t) depends

on the current state xcl(t), an extra feedback loop is somewhat introduced, hence stability

does not trivially follows by the unconstrained controller properties. Stability of the CG

method is easily verified if a constant reference r(t) ≡ r is considered. Taking as candidate

Lyapunov function the value function

V (t) = (ν(t)− r)TQ(ν(t)− r) (1.52)

if xcl(t + 1) satisfies the state equation in (1.43), it can be proved that V (t) ≥ V (t + 1)

∀ t > 0. This claim can be motivated ad follows; since ν(t) is not in genral an optimal

point for (1.51) at time t+ 1, there exists a feasible ν(t+ 1) such that

(ν(t+ 1)− r(t+ 1))TQ(ν(t+ 1)− r) ≤ (ν(t)− r(t))TQ(ν(t)− r) (1.53)

thus, as V (t) is non negative and non increasing it has a finite limit

V (∞) = lim
t→∞

(ν(t)− r)TQ(ν(t)− r) (1.54)

which proves stability of the overall closed-loop system.

Beside stability and the previously defined features, CG approach is also endowed with the

so called viability property [7]: given an admissible initial condition xcl(0), there exists a

finite number of constant commands v(·, νi) = νi which, concatenated with finite switching

times, can steer the system state from xcl(0) to any x̄clν+∆∞, with ν ∈ Wδ. Where ∆∞ is

the Hausdoff limit [8] of the following sequence ∆0 = 0, ∆k = ∆k−1+A
−1
cl BdD. By stabil-

ity properties of Acl, the limit exist and it coincides with the smallest closed set containing

the state evolution x̃cl(k), forced by all the possible sequences {di}ki=0 ⊂ D. Roughly

speaking, viability property ensures that, starting from any feasible initial condition, any

admissible disturbance-free steady state condition x̄clν , ν ∈ Wδ can be approached at a

possibly small distance, in finite time and without violating constraints.

The command governor approach seems to merge the benefits of the DLAW and MRAW

paradigms, since it can explicitly account for partially known disturbances or model uncer-

tainties, it’s independent from the pre-designed unconstrained controller, and it can apply

to nonlinear plants. However its main drawback lies in fact that the reference modifica-

tion has to be computed by solving an on-line constrained optimization problem which,

for nonlinear plants, or nonlinear constraint functions, is in general not convex. Hence

the computational burden required to find the global optimal solution can significantly

increase w.r.t the linear case. Moreover, also a procedure to determine the control horizon

k̄ is needed, in [57] a suitable algorithm is proposed, relying on the solution of a sequence

of mathematical problems, which are convex only in the case of constraints function affine

in the state variables. Even if this algorithm can be run off-line, and a finite k̄ is ensured

to exist also in the nonlinear case [60], determining such k̄ can be a difficult task also for

rather simple systems. Finally the value of k̄ is problem-specific and it obviously affects

the optimization problem dimensions, hence even in the simple cases of linear plants with
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affine constraints, for which (1.51) reduces to a quadratic programming problem, complex-

ity can stem from a large horizon on which to evaluate the constraints at each step. Due

to this reasons, when only input constraints are concerned, DLAW and MRAW strategies

can lead to simpler high performance anti-windup solutions.

1.5 Novel Anti-Windup strategy: general idea

Here an original anti-windup strategy, first sketched in [30], is presented in it’s main fea-

tures, considering a rather general class of, possibly nonlinear, systems. The obtained

results will be exploited in chapter 2, where a saturated control solution for a class of

power converters used as active filters is presented. In particular, the guidelines provided

in this section will be adopted, and further developed, to design the anti-windup unit for

the current controller of the above mentioned class of power electronics systems.

As usual in the anti-windup framework, we assume that a proper controller has been

designed in order to ensure the desired stability and tracking properties for a virtual

unconstrained system. The key objective of the proposed approach is to construct an

anti-windup system which is able to preserve, whatever the original controller is and un-

der any condition, the closed-loop unconstrained system tracking error dynamics. In this

way all the results provided by the unconstrained control law design, would still be valid

when saturation is concerned.

The proposed way to achieve this task, is to modify the reference to be tracked by the

closed-loop system, and combine the reference modification with a suitable feed-forward

action, related to it, such that input saturation is prevented. In this way, it looks rea-

sonable and feasible to impose no modification on the tracking error dynamics, while the

control input windup effect is avoided.

This philosophy shows some similarities to the command governor framework, however

the crucial difference lies in the main objective of the scheme; here the priority is given

to the closed-loop tracking behavior preservation, at the cost of some optimality in the

obtained reference correction. In this respect, the reference correction is not produced by

a memoryless device, but by a suitable “additional dynamics” injected into the closed-

loop system, in order to generate a smooth and feasible modified reference, according to

the system relative degree. Furthermore, no on-line solution of constrained optimization

problems is required. Hence, the obtained reference modification will not in general be

minimal in the sense defined in 1.4, on the other hand, this strategy can lead to simpler

effective solutions for nonlinear systems, and or when the specifications cannot be trivially

cast into the CG standard framework.

For the sake of completeness, it’s worth to cite that also in the so-called conditioning tech-

nique, proposed by Hanus et. al in [4], [5], the input constraints are handled by producing

realizable reference signals, however the main purpose of that approach was to reduce the

effect of saturation on the controller behavior, preserving the controller states coherence.
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Now consider the following simple but rather significative class of systems

ẋp = f(xp) + u(t)

y(t) = xp(t)
(1.55)

where xp(t), u(t), y(t) are the plant state, control input, and controlled output respec-

tively, and the following properties hold

• f(·) is a smooth vector fields;

• system (1.55) is square, i.e. it has the same number of inputs and controlled outputs,

xp(t), u(t) ∈ R
n, and functionally controllable according to the definition given in

[61];

• the control input vector u(t) is constrained to lie in a connected compact set U ⊂ R
n.

It’s further to notice that (1.55) can be seen as a particular case of the so-called generalized

normal form systems [62],[63], for which functional controllability, along with the relative

degree, that in this simple case is just one, are well defined and can be checked by means

of formal procedures (see [63] and reference therein).

Bearing in mind this considerations, define a sufficiently smooth reference x∗, more pre-

cisely belonging to the class of C1 functions, bounded with bounded first derivative, and

the corresponding tracking error variables x̃ = xp−x∗. According to the functional control-
lability hypothesis, there exist a control input and a proper set of initial conditions, such

that the reference x∗ can be exactly reproduced at the output. Now assume this steady-

state control action can be robustly recovered, with the desired convergence properties,

by the following unconstrained feedback law

u = c(x∗, x̃, xc)

ẋc = m(x∗, x̃, xc)
(1.56)

namely, the resulting closed-loop tracking error dynamics

˙̃x = f(x∗ + x̃) + c(x∗, x̃, xc)− ẋ∗

ẋc = m(x∗, x̃, xc).
(1.57)

is stabilized at the origin with the required properties.

Now the limitations on the control input authority need to be addressed. As claimed

before, the basic idea is to add a reference modification xaw , and a suitable feed-forward

action gaw(xaw, ·), capable of achieving the following objectives

• u(t) ∈ U , ∀t;

• for each condition s.t. c(·) ∈ U , xaw is null or it tends to zero in some way;

• the new error ˜̃x = xp−x∗−xaw dynamics are exactly the same as those reported in

(1.57), replacing x̃ with ˜̃x.
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The first item of the list is similar to the main CG objective, that, differently from DLAW

and MRAW schemes, aims to prevent saturation rather then handling its effects on the

unconstrained controller, while the second goal can be clearly related to the small signal

preservation and unconstrained response recovery properties defined in 1.1. As regards the

overall system stability, it’s easy to guess that it will be structurally ensured if the third

objective, which is the peculiar feature of the proposed approach, is fulfilled. Indeed, if the

unconstrained tracking dynamics form is preserved, also its stability properties will still

hold despite the anti-windup augmentation. It’s worth to remark that stability turns out as

a structural consequence of this predefined objective, which is in general more demanding,

and focused to guarantee high performance anti-windup behavior to the system.

Starting from this last point, define the modified tracking error dynamics ˜̃x by

˙̃̃x = f(˜̃x+ x∗ + xaw) + c(x∗, ˜̃x, xc) + gaw(xaw, ·)− ẋ∗ − ẋaw

ẋc = m(x∗, ˜̃x, xc)
(1.58)

where the original controller has been modified as uaw = u + gaw, and, in u defined by

(1.56), x̃ has been replaced by ˜̃x, but x∗ has not be replaced by x∗+xaw. Hence, assuming

a perfect knowledge of the plant dynamics, by simple computations, it can be verified that

defining gaw(xaw, ·) as

gaw(xaw, ·) = f(˜̃x+ x∗)− f(˜̃x+ x∗ + xaw) + ẋaw (1.59)

dynamics (1.58) are made identical to (1.57). It’s further to remark that here the functional

controllability hypothesis is exploited, since gaw(xaw, ·) in (1.59) is based on the system

right inverse, and it embeds the control action needed to perfectly track any differentiable

reference modification xaw.

Thus the next step is to design such an xaw in order to fulfill the remaining of the above

mentioned objectives i.e.

a) uaw = c(x∗, ˜̃x, xc) + g(xaw, ·) ∈ U ;

b) xaw is bounded and moves towards zero, while c(x∗, ˜̃x, xc) ∈ U .

The actual xaw design is related to the specific system, however, by (1.59) it can be noted

that, in general, ẋaw can be considered as the actual anti-windup steering input, hence

an additional reference dynamics needs to be managed. This feature can be equivalently

motivated recalling the basic objective of preserving the closed-loop system tracking be-

havior, from which equation(1.59) stems from; for this purpose a r-times differentiable

reference modification, where r is the system I/O relative degree, needs to be generated

in order to be perfectly tracked by the closed-loop systemd.

In this respect, since the considered system relative degree is one, the anti-windup unit

has to be completed by designing the following dynamics:

ẋaw = h(U , c(·), x∗, xp, xaw) (1.60)
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1.5. Novel Anti-Windup strategy: general idea

which is required to guarantee objectives a) and b). Note that (1.60) is a sort of internal

dynamics with respect to the output tracking error ˜̃x, that needs to be properly stabilized

in order to ensure objective b). Therefore, even if it seems reasonable to fulfill objective

a) trying at the same time to minimize g(xaw, ·), i.e. this term should be null, whenever

c(·) ∈ U , while it should keep the overall control action on suitable points of the feasibility

set boundary ∂U , whenever c(·) /∈ U , this choice could in principle lead to to poorly

damped or even unstable anti-windup dynamics (1.60). Hence a degree-of-freedom should

be preserved, in order to and ensure a bounded and “reasonable” behavior of xaw according

to objective b). In this respect, a possible solution to cope with such issue, is to formulate

a sort of constrained minimum-effort control problem. Alternatively, a simpler, even if

“suboptimal”, strategy is to save a part (possibly small) of the control action to shape the

xaw dynamics. This second procedure is here outlined as follows: given raw > 0, define

Ur = {u ∈ U s.t. dist(∂U , u) ≥ raw} . (1.61)

where dist(x, S) denotes the distance of x from the set S defined, according to [11], as

dist(x, S) = miny∈S‖x− y‖. Note that Ur lies in the interior of U and, between ∂Ur and

∂U there is a “stripe” of width raw. Obviously, raw cannot be too large, otherwise U = ∅;
but, as it will be clear in 2, “small” raw will be considered for practical application of the

proposed procedure.

The next step is to redefine ẋaw in (1.60) as the sum of two terms

ẋaw = h1(Ur, c(·), x∗, x, xaw) + h2(·) (1.62)

then, substituting in (1.59) yields

gaw(xaw, ·) =
g1(·)

︷ ︸︸ ︷

f(˜̃x+ x∗)− f(˜̃x+ x∗ + xaw) + h1(·)+h2(·) (1.63)

u(t) = c(·) + g1(·) + h2(·). (1.64)

Then, h1 can be simply designed in order to minimize ‖g1‖ giving (c(·) + g1(·)) ∈ ∂Ur and

neglecting any issue related to xaw behavior; while h2 has the task to properly shape xaw

dynamics. In order to satisfy objective a), i.e. to guarantee u(t) ∈ U , it’s easy to verify

that h2 need to be saturated as: ‖h2‖ ≤ raw. Obviously, raw should be selected as small

as possible in order to make Ur very close to the original U and not to “waste” too much

control authority with this a-priori preservation.

With all these results at hand, it’s worth to underscore that the anti-windup design is

completely independent form the adopted unconstrained control solution; the only natural

requirement is the stability of the saturation-free closed-loop tracking dynamics. Further-

more, the resulting error dynamics ˜̃x, and the additional anti-windup dynamics xaw are

structurally decoupled, whatever the anti-windup dynamics are. As a consequence, the

additional dynamics can be stabilized and designed to meet the above mentioned specifi-

cations, without affecting the closed-loop error dynamics. On the other hand this strong

decoupling property, along with the unconstrained error dynamics form recovery, holds
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only if perfect knowledge of the plant model is available. If it is not the case, and a nomi-

nal model f̂ is used to design the unconstrained controller and to compute gaw(xaw, ·), it’s
straightforward to verify that the ˜̃x dynamics, instead of being identical to (1.57), would

be perturbed by the plant model mismatch f(˜̃x+ x∗ + xaw)− f̂(˜̃x+ x∗ + xaw), since the

cancellation provided by the term gaw would not be perfect. Hence decoupling and the

original tracking behavior recovery properties, would be destroyed by model uncertainties.

This drawback is similar to what discussed in 1.3 for the MRAW framework, hence similar

considerations apply. Obviously also this scheme is not tailored to provide robustness,

but it’s mainly focused on high performance anti-windup, and should be adopted only

when an accurate system model is available. On the other hand, for linear plants and

parametric uncertainties some robustness properties can be enforced by relying on input-

to-state stability (with restriction on the initial state and the input amplitude) of either

the unconstrained closed-loop dynamics (w.r.t f(˜̃x+x∗+xaw)− f̂(˜̃x+x∗+xaw)) and the

additional anti-windup system (w.r.t a sort of mismatch signal between the unconstrained

control action and the saturated one).
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Chapter 2

Saturated Nonlinear Current

Control of Shunt Active Filters

In this chapter the control of a particular kind of Active Power Filter (APF),

so-called Shunt Active Filters (SAF), aimed to compensate for harmonic cur-

rent distortion, is addressed, formally accounting for input and state constraints.

The system model and the overall control objectives are introduced, along with a

possible robust nonlinear unconstrained control solution. Then the filter control

input and current constraints are formally dealt with; the proposed anti-windup

strategy is specialized for the system current control, and suitably combined with

a current saturation strategy.

2.1 Introduction

Electric pollution in the AC mains is a common and significant issue in industrial plants,

since it worsen the system power factor, and gives rise to additional power losses, nega-

tively affecting the plant electrical energy exploitation, and increasing the operating costs.

Beside these economic motivations, a high level of electric pollution, could lead to sys-

tem malfunctioning or even damages to other plant equipments that are connected to the

same portion of the perturbed line grid. Electric pollution is mainly caused by reactive

and harmonic distortion currents injected into the mains by the input stage of industrial

nonlinear loads, e.g. rectifiers or motor drives.

Traditionally, passive filtering components have been adopted to compensate for harmonic

distortion, however they are affected by several drawbacks: high sensitivity to network

impedance variation and environmental conditions, a priori defined filtering frequencies

with poor tuning flexibility, possible safety critical behavior due to resonance phenomena.

In order to overcome these limitations, in the last decades, driven also by the fast growth

in power electronics and processing units technology, a remarkable research attempt has

been devoted to the study of the so-called Active Power Filters (APFs), both from a

theoretical and technological point of view (see [64], [65], [66] for a quite comprehensive
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Figure 2.1: Shunt Active Filter topology.

overview). These devices are able to properly work in a wide range of operating condi-

tions, providing better performance and overtaking intrinsic limitations of passive devices;

they are far less sensitive to network impedance variations and they can be tuned onto

different frequencies just varying some software parameters. Furthermore, also reliability

is improved, since resonance phenomena are avoided and an active diagnosis system can

be implemented on the control processor to monitor the system variables and adopt some

recovery strategy in case of faulty conditions.

2.1.1 SAF saturated control strategy motivation

In this chapter a particular class of APFs, the so-called Shunt Active Filters (SAF) is con-

sidered. Roughly speaking, the main purpose of this kind of power converters is to inject

proper currents into the mains, in order to cancel, partially or totally, the effects of the

nonlinear load current harmonics. The considered filter topology is reported in Fig. 2.1,

it is based on a three-phase three-wire AC/DC boost converter [67] connected in parallel

between the mains and the nonlinear load. The main energy storage element is a DC-bus

capacitor, while the inductances are exploited to steer the filter currents by means of the

converter voltages. The switching devices of the three-legs bridge (also called “inverter”)

are usually realized by IGBTs and free-wheeling diodes. From a control theory standpoint,

the main distinguishing mark, characterizing the system compensation performance, is the

filter currents control algorithm. In this respect, several approaches have been presented

in literature; in [68] the high performances of hysteresis current control are exploited, in

[69] current predictive control has been proposed, while in [70], [31] the internal model

principle has been exploited to design a robust current control solution.

Usually, for this kind of systems, the controller design is carried out disregarding con-

straints that, inthis case, concern the maximum voltage on the inverter legs and the

maximum current that the converter switching devices can drain. These limitations can

be partially handled by means of a suitable device sizing procedure ([71], [32]), that en-

sures to avoid constraints violation, provided that the system operates in a predefined
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set of nominal conditions. Anyway, this is not sufficient to achieve high performance and

reliability indexes for actual industrial applications, since in real plants there are several

operating conditions (such as line voltage amplitude and load current profile variations)

requiring to exit from the nominal working area during transients, or even permanently.

Common devices just turn off when facing such conditions, impairing their availability.

While an effective control under saturation conditions would guarantee to withstand off-

nominal transients and extend the system operating range, ensuring, at the same time,

stability and a graceful performance degradation. This would enable also to reduce over-

sizing, to meet modern regulations requirements and to improve reliability and availability

of such system, particularly in complex, and possibly “smart”, grid topologies, where non

standard operating scenarios occurs more frequently then in traditional power networks.

Since several high performance unconstrained control solutions are available, and satu-

ration is not expected to be a common situation for the nominal system conditions, the

anti-windup framework is the most suitable to cope with saturated control of this class of

power filters. To this aim, here the internal model based solution proposed in [31], will

be adopted as a benchmark unconstrained control law, then the strategy defined in 1.5

will be specified, extending the design method presented in [30], in order to achieve the

following qualitative objectives

a) Maximum enlargement of the system working region;

b) Preservation of the original unconstrained current and DC-bus voltage dynamics

under saturation;

c) Avoidance of additional harmonics injection by the anti-windup unit;

d) Minimization of the reference modification needed to comply with the previous re-

quirements.

It’s worth noting that objective d) is different from the common requirement of standard

CG approaches; here minimizing the reference modification is not the maximum priority

goal, but it is subject to the previous requirements, especially b) and c). In other words,

provided that no spurious harmonics are injected into the system and the unconstrained

system tracking properties are maintained, the resulting reference modification can be not

minimal in the sense discussed in 1.4.

However the system is also subject to a maximum current constraint, which clearly affects

the anti-windup unit, since it is based on a proper current reference modification. As

it will be clear in the following, the maximum current limit can be regarded as a state

constraint. Hence, Command Governor or a Model Predictive Control methodologies may

seem more suitable to face both input and state constraints by means of a one step proce-

dure. Nevertheless, the above outlined objectives are rather unusual for receding horizon

base frameworks. Beside the plant nonlinearity, that would demand a significant compu-

tational effort to solve on-line the constrained optimization problems arising in CG and

MPC approaches, a crucial issue in SAF control, is the stabilization of the DC-bus voltage
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dynamics, which can be regarded as a non minimum phase internal dynamics with respect

to the filter currents outputs. Moreover, requirement c on the avoidance of additional

harmonic pollution injected by the anti-windup unit, is not trivial to be incorporated into

a standard MPC objective function. It is further to remark that this specification is of

utmost importance, as the main objective of SAF is to compensate for distortion, thus

new spurious currents given by anti-windup appliance are unacceptable.

For this reasons, here a multiple step approach is considered to deal with this non standard

and heavily interlaced constrained control problem; first, starting from a suitable relax-

ation, the proposed anti-windup system is added to the current controller, then, relying on

it, a suitable current reference saturation law is defined to face also the current limitations.

In this respect, the method that will be carried out along the chapter is outlined in the

following:

1. Focusing on the input saturation, and disregarding either the DC-bus dynamics

preservation under saturation, and the filter current bounds, an anti-windup unit

based on the guidelines presented in 1.5 is designed;

2. The straightforward application of the AW general method in 1.5 to SAFs is slightly

modified to take into account the DC-bus voltage dynamics preservation require-

ment.

3. Objective c is accomplished by steering the anti-windup dynamics towards a piece-

wise constant steady state current modification value. This behavior is enforced

modifying the anti-windup dynamics design, based on the periodicity of the load

current harmonics to be compensated for;

4. The effects of the previous modifications to the anti-windup units in shrinking the

maximum working region are carefully analyzed. Then, taking into account this

limitations and the maximum current limits, a current reference saturation strategy,

consisting in a suitable scaling of the current harmonics to be compensated for,

is defined in order to fulfill both the anti-windup unit objectives and the current

constraints.

Bearing in mind this outline, the chapter is organized as follows. In Section 2.2, the SAF

mathematical model is derived and the control objectives are formally stated, in Section

2.3 the features of the internal model based current control solution, presented in [70], [31],

are recalled. In Section 2.4 the system control input and current saturation constraints

are analyzed, their causes are discussed and the effects produced by practical common

saturation scenarios are shown via simulation tests. In Section 2.5, following the strategy

presente in [30], a specific anti-windup scheme is constructed to handle SAF input vector

saturation, and the improvements defined in 2−3 are introduced. In Section 2.6 item 4 of

the previous list is carried out. The control input feasibility set is analyzed, assuming the

system has been augmented with the propose anti-windup unit and and accounting for

the current constraints, then a numerically tractable optimization problem is formulated,
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in order to compute the maximum feasible reference current. Finally, on the basis of the

maximum available reference a proper current saturation strategy. In section 2.8.2 the

proposed strategy is tested by extensive simulations of a realistic system. Section 2.9 ends

the chapter with a possible variation on the anti-windup dynamics design, which enriches

the class of generated reference modification signals.

2.2 System model and control objectives

The notation reported in Fig. 2.1 is adopted to denote the model variables; vm =

(vma, vmb, vmc)
T is the mains voltage tern, im=(ima, imb, imc)

T are the mains currents,

il=(ila, ilb, ilc)
T is the nonlinear load current vector, i=(ia, ib, ic)

T are the filter currents,

while v is the capacitor voltage. The inverter switches commands, that are the actual

system control knobs, are denoted with the vector u1 = (ux, uy, uz), while L and C are

the inductances and capacitor values respectively.

2.2.1 State space model derivation

Considering the inductors dynamics, the filter model can be expressed as





vma(t)

vmb(t)

vmc(t)




− L

d

dt




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
−R






ia(t)

ib(t)

ic(t)




 =


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uz(t)




 v(t)− vNK
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


1

1

1




 (2.1)

where R is the parasitic resistance related to the inductance L and to the cables, while

vNK is the voltage between the nodes N and K reported in Fig. 2.1. Since a PWM

(Pulse Width Modulation) strategy is usually exploited to control the inverter (achieving

the desired voltage on the converter legs as mean value in a PWM period) the above-

mentioned control inputs are constrained to lie in the range u1i ∈ [0, 1], i = x, y, z.

According to the three-wire topology, for any generic voltage/current vector x it holds
∑

i=a,b,c xi = 0. Thus, summing the scalar equations in (2.1) it follows that

vNK =
ux(t) + uy(t) + uz(t)

3
v(t) (2.2)

now, defining

uabc = [ua(t), ub(t), uc(t)]
T =






ux(t)

uy(t)

uz(t)




− ux(t) + uy(t) + uz(t)

3


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

1

1

1




 (2.3)

by direct computation it follows [1 1 1]uabc(t) = 0 ∀t ≥ 0. For what concerns the capacitor

voltage dynamics, it can be derived considering an ideal inverter, and applying a power

balance condition between the input and the output stages of the filter. Replacing (2.2)

into (2.1), the complete filter model is

di

dt
= −R

L
I3i(t)−

v(t)

L
uabc(t) +

1

L
vmabc

dv

dt
=

1

C
uTabc(t)i(t).

(2.4)
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The system model can be reduced to the standard two-phase stationary planar represen-

tation of a three-phase balanced systems [72], which is obtained applying the following

coordinates transformation

iαβ(t) = [iα iβ]
T =αβ Tabci(t)

uαβ(t) = [uα uβ ]
T =αβ Tabcuabc(t)

vmαβ = [vmαvmβ ]
T =αβ Tabcvm

αβTabc =
2

3

[

1 −1
2 −1

2

0
√
3
2 −

√
3
2

]

(2.5)

then, the resulting SAF dynamics are

diαβ
dt

= −R
L
I2iαβ(t)−

v(t)

L
uαβ(t) +

1

L
vmαβ

dv

dt
=

3

2C
uTαβ(t)iαβ(t).

(2.6)

In order to simplify the control objectives definition and the controller design, it is conve-

nient to adopt a further transformation, from the two-phase current variables [iα iβ]
T to

a so-called d-q synchronous rotating reference frame, aligned to the mains voltage vector,

according to the following change of coordinates

idq = [id iq]
T =dq Tαβiαβiαβ

dqTαβ =

[

cos(ωmt) sin(ωmt)

−sin(ωmt) cos(ωmt)

]

.
(2.7)

The previous transformation yields the following state-space model that will be considered

throughout the chapter for control and anti-windup purposes

d

dt
idq =M(R,L)idq(t)−

v(t)

L
ū(t) + d0

v̇ = ǫūT idq

(2.8)

with

d0 =

[
Vm

L

0

]

, M(R,L) =

[

−R/L ωm

−ωm −R/L

]

, ǫ =
3

2C
(2.9)

where Vm, ωm are the mains voltage amplitude and angular frequency respectively, and

ū = [ūd ūq]
T is the transformed control input vector. The same synchronous coordinate

setting can be adopted to represent the load currents; in particular, any nonlinear load

current profile can in principle be approximated as a finite sum of harmonics [73], obtaining

the following general expression

ilj = Ilj0 +

N+1∑

n=1

Iljncos(nωmt+ ψjn), j = d, q. (2.10)

It’s further to remark that, in order to represent the system variables in such synchronous

coordinates, an accurate, and possibly robust, estimation of the line phase-angle and

frequency need to be performed (see 2.7), this issue will be detailed in ch. 7, where the

nonlinear adaptive observers framework is exploited to design a robust estimation scheme

of three-phase line voltage parameters.
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2.2.2 Control objectives

If the previously defined synchronous coordinates representation is adopted, each current

vector (i.e.. SAF current, load current, main current) is structurally split into a real, or

active, part (the d-component), and virtual, or reactive, part (the q-component) ([73]),

this simplifies the control problem definition and the controller design.

Roughly speaking, the main control objective is to steer the filter current vector idq, in

order to cancel out the undesired load harmonics at the line side. It turns out that the only

desired load component in (2.10) is Ild0, since, in the d−q reference frame it represents the

first-order harmonic aligned with the mains voltages (i.e. the mean power component),

while the remaining part of the real component ild − Ild0 and all the reactive component

ilq, are undesired terms which do not contribute to the power flow but worsen the system

power factor (see [67]). In addition, as it will detailed in chapter 3, the DC-link voltage

differential equation represents an internal dynamics with respect to idq. Therefore it

needs to be carefully managed, since, the energy stored in the DC-bus provides the control

authority to steer the filter current. Bearing in mind these considerations, the SAF control

problem can be formulated as follows.

O1) The instantaneous currents drained by the filter have to asymptotically compensate

for the oscillating component of the load real current, and for the load reactive current;

this imply that the idq subsystem has to track the following reference

i∗dq =

[

Ild0 − ild + η

−ilq

]

(2.11)

where η is an additional active current term necessary to compensate for the filter power

losses and stabilize the DC-bus voltage dynamics (see O2).

O2) Given a safe voltage range [vm, vM ], assuming v(t0) ∈ [vm, vM ], the following condition

must be fulfilled

v(t) ∈ [vm, vM ], ∀t > t0. (2.12)

The lower bound vm > 0 is chosen to satisfy a controllability constraint under nominal

working conditions, while the upper bound vM is selected according to the capacitor

maximum voltage ratings [71].

The two control objectives O1 and O2 are interlaced, and possibly in contrast each other.

However, in ch. 3 it will be showed how a suitable capacitor sizing, combined with a

voltage controller producing the additional reference current η, allows to comply with

both the objectives. In particular, the above mentioned sizing procedure can be exploited

to enforce a two time-scale separation property between the SAF currents and DC-bus

voltage dynamics. Therefore, according to Singular Perturbation Theory results (see [15]

ch. 11), the main tracking objective O1, and the voltage stabilization requirement O2,

can be separately handled by two different controllers combined in the overall structure

of Fig. 2.2. In the following the focus is put on the current control unit and its saturation

issues, while the the DC-bus voltage stabilizer is left unspecified, and it will be deeply

discussed in ch. 3. However, as reported in the outline of the proposed saturated control
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Figure 2.2: SAF Control structure.

design procedure (item 2 in 2.1.1), some adjustments to the anti-windup structure are

specifically devoted to not impair the voltage dynamics by means of the current reference

modification.

2.3 Internal model-based current controller

In this section, the robust current tracking solution, based on the internal model principle,

presented in [70] and improved in [31], is recalled, as it will be used to test the anti-

windup and current saturation strategies. For this purpose, we assume the state vector

components idq, v are available from measurement (which is usually the case for practical

filter realizations), and a suitable voltage stabilization algorithm, as those presented in ch.

3, is able to enforce v(t) ∈ [vm, vM ].

Defining the current error variables, w.r.t the reference defined in (2.11), ĩdq=idq− i∗dq, the
the current subsystem in (2.8) can be rewritten as

d

dt
ĩdq =M(R,L)̃idq −

1

L
u(t) + d(t) (2.13)

with

u(t) = ū(t)v(t)

d(t) = d0 +M(R,L)i∗dq −
d

dt
i∗dq.

(2.14)

The ability to steer ĩdq to the origin (i.e. perfectly track the current reference) requires

the compensation of the T-periodic (T = 1/(2πωm)) disturbance term d(t). In order to

robustly cope with this issue, according to standard internal model-based techniques, the

two components of d(t) can be thought as generated by the following exosystem

ẇi = Ωwi(t), wi ∈ R
2N+1, i = d, q

di(t) = Γiwi(t)
(2.15)
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where Γi ∈ R
(1×2N+1) are suitably defined vectors and matrix Ω ∈ R

(2N+1)×(2N+1) is

defined as Ω = blkdiag(Ωj) with Ω0 = 0 and

Ωj =

[

0 jωm

−jωm 0

]

, j = 1, . . . , N. (2.16)

with the pairs (Γi, Ω) observable. Thus, defining Φ = blkdiag(Ω,Ω) and Γ = blkdiag(Γd,Γq),

the following internal model-based controller can be designed

ξ̇ = Φξ +Qĩdq

u(t) = Γξ +Kĩdq, ū(t) = ūuc(t) = u(t)/v(t)
(2.17)

where K, Q are free design parameters to be selected to ensure asymptotic stability at

the origin of the following closed-loop error dynamics, resulting from the interconnection

of systems (2.17) and (2.13)

˙̃idq =

(

M(R,L)− K

L

)

ĩdq + Γξ̃

˙̃
ξ = Qĩdq +Φξ̃

(2.18)

where ξ̃ = ξ − Lw(t). According to the parametrization introduced in [74], K and Q can

be chosen as K = diag(ki), i = d, q, and Q = Π−1GK. Where G = blkdiag(Gi), i = d, q

is composed by column vectors which paired with two arbitrary Hurwitz matrices Fi ∈
R
(2N+1)×(2N+1) form controllable pairs. While Π = blkdiag(Πi), i = d, q is formed by

the solutions of the following Sylvester equations, that by the observability hypothesis on

(Γi,Ω), are ensured to exist and being non singular

FiΠi −ΠiΩ = −GiΓi, i=d,q. (2.19)

Further details on the tuning of K and Q will be provided in ch. 3, where the stability

properties of the overall unconstrained system error dynamics, involving also the DC-bus

voltage v(t), is analyzed. Here, relying on the existence of such result, which implies

bounded v(t) inside the predefined range, ūuc imposed at the SAF input, is assumed

always well-defined (see eq. (2.17)).

2.4 Input saturation and current bound issues

The SAF two main limitations mentioned in 2.1.1, namely a bounded control authority

due to the maximum voltage on the converter legs (that clearly cannot rise beyond the DC-

bus capacitor voltage) and a maximum current value that the filter can provide without

damaging its components, need to be formulated in terms of the input and state variables

of the SAF state-space model derived in (2.8). With this results at hand, the anti-windup

structure in 1.5 can be specialized to this particular application.

First the input constraints are concerned; by (2.3) and applying the transformations de-

fined in (2.5), (2.7) it can be verified that the control input vector ū has to lie inside the
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Figure 2.3: Control input feasibility space.

hexagon reported in Fig.2.3, where each vertex corresponds to a possible discrete config-

uration of the inverter switching network, while all the other points can be obtained as

mean value in a PWM period (see [32] for further details). For the sake of simplicity, and

to guarantee a certain margin, since realistic converters cannot be driven by PWM mod-

ulation indexes uxyz ranging exactly on [0, 1], the hexagon is commonly approximated by

its inscribed circle. Hence the following saturation constraint on the control input vector

is formulated

‖ū(t)‖ =
‖u(t)‖
v(t)

≤ rin =
1√
3
, ∀t (2.20)

where rin is the radius of the inscribed circle.

As far as the converter current limitation is concerned, given the threshold value Imax of

the filter current vector norm, and recalling (2.11), the constraint can be mapped into the

following inequality

‖̂i∗dq + (η 0)T + ĩdq‖ ≤ Imax (2.21)

where, for reasons that will be clear in the following, the overall current reference i∗dq has

been subdivided into the terms î∗dq == [Ild0 − ild − ilq]
T , related to the load harmonics

compensation, and η related to the DC-bus voltage stabilization.

In [71], [32] a filter sizing procedure, which allows to comply with condition (2.20), given

a worst case scenario for the non linear load current profiles that the filter is expected

to compensate for, and nominal three-phase line voltage conditions, has been presented.

In plain words, the capacitor voltage lower bound vm has to be large enough to avoid

saturation for the current controller under a worst load profile scenario. This sizing rule

can guarantee saturation avoidance under perfect tracking of the considered load currents

scenario, whatever the adopted current controller is (it is based on SAF nominal model

inversion). Moreover, depending on the vm oversizing and the adopted current controllers,

saturation can be prevented even when some tracking errors are present. Similarly, the

SAF switching devices can be selected so that the maximum permissible current norm

Imax is large enough to comply with (2.21) under the given worst case load profile. Never-

theless, as previously remarked, SAF are expected to operate also under harsh conditions,

where the margins given by a suitable dimensioning are not sufficient, and the saturation

limits can be temporary or permanently hit.

For what concerns control input saturation, beside initial tracking error, the most common
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SAF Parameters

Inductances L [mH] 3

Parasitic resistance R [Ω] 0.12

DC-bus capacitance C [mF] 9.4

Nominal line voltage amplitude V ∗
m [V] 310

DC-bus voltage working range [vm, vM ] [V] [700 900]

Maximum filter current vector norm Imax [A] 70

Table 2.1: Shunt Active Filter parameters.

causes for SAFs are mains voltage amplitude fluctuations and too large load currents to

compensate for, i.e.. unfeasible reference for the above defined current controller. Re-

calling equations (2.9), (2.14), it can be noted that the line voltage amplitude and large

current harmonics affect the disturbance term d(t), through the constant component d0

and the oscillatory term M(R,L)i∗dq − d
dt i

∗
dq, respectively. Then, by (2.17), it can be veri-

fied how this two components acts on the control action, influencing the controller integral

part for what concern d0, and the remaining controller internal states devoted to reproduce

the load currents oscillatory dynamics. Provided that the line voltage disturbance has to

be rejected in order to steer the filter currents for the harmonics compensation, since the

overall control effort is limited, it is straightforward to conclude that too large references

i∗dq cannot be tracked without violating the inequality (2.20). It’s further to notice that

not only the amplitude, but also the angular frequency of the current harmonics affects

the control effort.

Similarly, a sudden rise of the voltage amplitude, and then of d0, would require the most of

the control effort to be put on the integral action, leaving less room to compensate for the

disturbance oscillatory terms. As a result inequality (2.20) can be violated even if i∗dq is

a feasible reference under nominal operating conditions. It’s further to remark that these

considerations are valid for any current control solution, since the ability to asymptotically

track the current harmonics mandates to cope with the rejection of disturbance d(t).

As mentioned in the previous chapters, if not managed properly, control input saturation

produces the well known pernicious windup effects; a strong loss of performance and, in

some cases, stability properties. For the considered application, particular attention has

to be paid to avoid this situations, since each undesired behavior of the filter currents is

reflected to the grid line. In Fig. 2.5, 2.4 the consequences of a 20% mains voltage ampli-

tude increase, in the absence of a suitable anti-windup scheme, are reporteded. Simulations

have been carried out considering a benchmark system characterized by the parameters

reported in 2.1, while two sinusoidal harmonics, with amplitude 5 A at frequency 7ωm

and 13ωm (corresponding respectivly to 6ωm, 12ωm in the d− q rotating reference frame),

have been adopted to reproduce a nonlinear load current profile.

When the line voltage amplitude step occurs (at time t = 1.5 sec.), a strong degradation

of tracking performance, highlighted by the tracking error waveforms in Fig. 2.4, can be
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noted. As a consequence, highly distorted currents are injected on the line grid, as the

main current waveform in Fig. 2.5 shows. Moreover, when the mains voltages amplitude

is restored to the nominal value (at time t = 3 sec.), the windup effect is clearly present on

the control inputs, this enforces strong oscillations on the mains currents for a significant

transient time.

As concern current constraint (2.21), in principle a current reference, related to the non-

linear load according to (2.11), can require an overall control action that lies inside the

admissible set, but it can still be unfeasible because it exceeds the system maximum cur-

rent rating. This typically occurs if the range for the DC-bus voltage is set to high values,

providing a high control authority on the inverter legs, while the filter current limit Imax is

relatively small. When this condition takes place, a suitable reference current saturation

strategy has to be applied. As it will be showed in 3, the active current term η plays

a crucial role, as it prevent the system energy storage device from discharging. For this

reason it is suitable to preserve it, and make the current reference to fulfill (2.21 ) by prop-

erly reshaping î∗dq, possibly with minimal impairment to the compensation performances.

This issue is deeply discussed in 2.6, where a current saturation approach, relying on the

anti-windup unit for control input saturation, described in the next section, is presented.
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Figure 2.4: Current tracking performance under voltage amplitude transient: transition

between nominal and saturation condition (on the left) and viceversa (on the

right).

38



2.5. Current control Anti-Windup scheme

1.45 1.5 1.55 1.6
0
2
4
6

time [s]

||ū
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Figure 2.5: Saturation (on the left) and windup (on the right) effects on control input

norm and mains current.

2.5 Current control Anti-Windup scheme

The system resulting from the interconnection of the SAF current subsystem, obtained by

(2.8) neglecting the DC-bus voltage state equation, and the internal model-based controller

(2.17), matches the system general form reported in (1.55), (1.56). As a consequence the

closed-loop currents error dynamics (2.18) correspond to the general expression given in

(1.57); the current state matrixM(R,L) plays the role of the general function f , while, ac-

cording to (2.20), the admissible control set for the SAF input vector is U = {ū : ‖ū‖ ≤ rin}
which is obviously compact and connected. Moreover, the functional controllability hy-

pothesis are clearly satisfied by the square and bilinear SAF currents subsystem. On

the other hand, it has to be underscored that the DC-link voltage value v(t) affects the

currents tracking error dynamics (2.13), by multiplying the control input (see (2.14)).

However, here a suitable voltage stabilizer is assumed, and, as stated in 2.1.1, the focus

is first put on the current controller, neglecting the internal dynamics stabilization, then

some specific countermeasures will be taken to not impair the voltage controller, whatever

its realization is, with the anti-windup unit.

In view of these considerations, the methodology sketched in 1.5 can be specialized to

design an anti-windup solution for the SAF current subsystem. To this aim, consider
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the following reduced feasibility set, specializing definition (1.61) for the SAF application:

Ur := {ū : ‖ū‖ ≤ r̂}, with r̂ = rin − raw and raw ∈ [0, rin[. Now denote the distance

function dist(Ur, ū) from a generic control vector ū to the set Ur; exploiting the circular

shape of the input feasibility set, the following projection vector can be defined, according

to the geometric idea described in Fig. 2.6.

d̄Ur(ū) =







dist(Ur, ū)
−∇dist(Ur ,ū)
‖∇dist(Ur ,ū)‖ if ū /∈ U

0 if ū ∈ U
(2.22)

That being defined, the results of the anti-windup procedure in 1.5, applied to the SAF

current control problem, can be summarized in the following proposition.

Proposition 2.5.1 Consider the current subsystem and the corresponding controller re-

spectively reported in the first equation of (2.8) and (2.17). Assume v(t) is always inside

the interval specified by objective O2 in 2.2.

Then, if an anti-windup unit is constructed exploiting the following elements,

• the additional reference dynamics

d

dt
iaw = h1SAF (Ur, ūuc, i

∗
dq, idq, iaw) + h2SAF (·)

h1SAF =M(R,L)iaw − v

L
d̄Ur(ūuc)

h2SAF = σ
(
Kaw ĩaw

)
, ĩaw = iaw − īaw

(2.23)

with Kaw an arbitrary Hurwitz matrix and

σ
(
Kaw ĩaw

)
=







Kaw ĩaw if ‖L
vKaw ĩaw‖ ≤ raw

Kaw ĩaw
‖Kaw ĩaw‖raw if ‖L

vKaw ĩaw‖ > raw
(2.24)

īaw =
v

L
M(R,L)−1d̄Ur(ūuc) (2.25)

where ūuc is the unconstrained control vector given by the internal model-based law

in (2.17).
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• the additional feed-forward term (similar to what in (1.59))

gawSAF (·) =
L

v

(

M(R,L)iaw − diaw
dt

)

(2.26)

and, in the controller (2.17) providing the control command ūuc, the tracking error ĩdq is

replaced by ˜̃idq , idq − i∗dq − iaw,

and the overall control action ū is re-defined (similar to 1.63) as follows

ū = ūuc + gawSAF (·) = ūuc +
L

v

(

M(R,L)iaw − d

dt
iaw

)

=

= ūuc +

g1SAF
︷ ︸︸ ︷

L

v
(M(R,L)iaw − h1SAF )−

L

v
h2SAF

(2.27)

then the following holds

1. The new tracking error variables ˜̃idq have the same dynamics as those of the orig-

inal closed-loop error system reported in (2.18), furthermore they are structurally

decoupled from the additional reference dynamics iaw;

2. The additional reference dynamics (2.23) is bounded;

3. The Euclidean norm of the current reference modification ‖iaw‖ tends to decrease

when the control vector ūuc (defined by (2.17) with ˜̃idq replacing ĩdq) belongs to the

admissible set U = {ū : ‖ū‖ ≤ rin};

4. The ū(t) re-defined in (2.27) is in U ∀ t.

Proof 1. Consider the overall control action defined in (2.27), replacing it in (2.13),

and expliciting ūuc according to (2.17), by direct computation the error dynamics

become
˙̃̃
idq =

(

M(R,L)− 1

L
K

)

˜̃idq + Γξ̃

˙̃
ξ = Φξ̃ +Q˜̃idq

(2.28)

This system is completely decoupled from the reference modification dynamics in

(2.23), moreover it is identical with the original tracking error dynamics ĩdq given

by (2.18). Therefore, it’s easy to guess that the stability properties of the original

tracking dynamics are preserved, and no modification of the unconstrained feedback

controller is required.

2. First note that the distance vector d̄Ur(ūuc) is norm bounded, since the disturbance

term d(t) lumping togheter the load harmonics and line voltage effects, is obviously

bounded, and (2.28) is decoupled from (2.23) and GAS (according to the design of

the unconstrained controller). Furthermore, the term h2SAF , being the output of a

saturation function, is bounded by definition, and the matrixM(R,L) is Hurwitz.As

a result system (2.23) is a stable linear system driven by the bounded input d̄Ur(ūuc),

hence boundedness of the trajectories iaw(t) trivially follows.
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3. From definition (2.22) and (2.25), it is straightforward to verify that when ūuc ∈ U ,
then d̄U (ūuc) and īaw are null. Now consider the Lyapunov candidate V (iaw) =

‖iaw‖2, taking its derivative along the system (2.23) trajectories under the above

mentioned conditions (i.e. d̄U (ūuc) = 0, ĩaw = iaw) yields

d

dt
‖iaw‖22 = −2R‖iaw‖22 + iTawσ(Kawiaw) < 0

where negative definiteness of V̇ (iaw) clearly stems from the properties of the ma-

trices M(R,L), Kaw, and the function σ(·) defined in (2.24) which, as it can easily

verified, preserves the sign of its input argument.

4. By the definitions of h1SAF , h2SAF in (2.27) the overall control action in (2.23) can

be written as

ū(t) = ūuc(t) + d̄Ur(ūuc)−
L

v
σ(Kaw ĩaw) (2.29)

therefore, according to definitions (2.22), (2.24), and the obvious requirement raw ∈
[0, rin[, the following inequality holds

‖ū(t)‖ ≤ ‖ūuc + d̄Ur(ūuc)‖+
∥
∥
∥
∥
−L
v
σ(Kaw ĩaw)

∥
∥
∥
∥
≤ r̂ + raw ≤ rin (2.30)

which shows that the re-defined ū(t) is always in U .

Remark It’s further to notice that by the choice of h1SAF , we obtain g1SAF , defined in

(2.27) similarly to that in (1.63), equal to the distance vector d̄Ur . Hence, recalling the

considerations reported in 1.5, g1SAF is actually the minimum norm vector that steers the

overall control action inside the set Ur. In other words uuc + g1SAF is enforced to lie on

the boundary of the restricted admissible set ∂Ur for any possible input saturation sce-

nario. Therefore no control authority, except for the part reserved to shape the additional

reference dynamics by means of h2SAF , is lost for anti-windup purposes.

Remark From (2.23), it can be verified that īaw defined in (2.25) corresponds to the

constant iaw (i.e.. with null derivative) steady state reference modification value, that

would be required to prevent saturation under constant saturation scenarios. Where for

constant saturation scenario is meant a working condition producing a constant (on both

amplitude and direction) vector d̄Ur(ūuc). Computing the corresponding error dynamics,

by (2.23) and (2.25) yields

d

dt
ĩaw =M(R,L)̃iaw + σ(Kaw ĩaw). (2.31)

Similarly to what in item 3 of the above proof, by simple Lyapunov arguments and the

properties ofM(R,L),Kaw and σ(·), it’s straightforward to verify that, in these conditions,

the origin is an asymptotically stable equilibrium point of (2.31), i.e. iaw asymptotically

approaches īaw.

In this particular application, the considered anti-windup additional dynamics would be
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stable even without the shaping term h2SAF , as it replicates the plant free dynamics,

which is given by the Hurwitz matrix M(R,L). On the other hand, the anti-windup

convergence property would depend only on the system electrical parameters (specifically

on the ratio R/L), which can give rise to poorly damped dynamics. As a result the

actual reference modification iaw could reach īaw after a long transient phase during which

additional spurious currents could be injected into the system, impairing the compensation

performance. Therefore the shaping term h2SAF = σ(Kaw ĩaw) is introduced to endow the

anti-windup dynamics with the desired convergence rate and comply with objective c)

stated in 1.5. As a certain part of the control action, specifically the annulus of thickness

raw, needs to be reserved for the above mentioned stabilizing action, a suitable trade-off

between the anti-windup dynamics convergence properties and the loss of control authority

has to be sought.

By the last remark it’s clear that, under constant saturation conditions, the anti-windup

unit would achieve objective c) stated in 1.5, since a constant reference modification, that

in the considered synchronous coordinates corresponds to oscillating currents at the line

frequency, would be injected, without introducing additional harmonics. While under

different scenarios, beside stability and saturation avoidance would still be ensured, the

requirement to not inject spurious currents by means of the anti-windup system could

be violated. Moreover, under realistic operating condition, a constant steady state īaw

is hardly reached. In fact, according to the internal model principle, the steady state

unconstrained vector, has to reproduce the output of the exosystem 2.15 to ensure perfect

tracking, i.e. by 2.13 ūuc = L
v d(t). Thus the control action is clearly influenced by the

load harmonics oscillations, this also affects the distance vector d̄Ur(ūuc) which in turn

acts on īaw through (2.25). In conclusion the anti-windup unit so far designed could inject

additional electrical pollution into the mains.

These considerations are confirmed by simulation tests carried out under the same sce-

nario reported in 2.4. In Figs. 2.7, 2.8 it can be noticed that, albeit the input vector

saturation is prevented, the current error variables are not affected by the line voltage

step, and a smooth transition between saturation and nominal conditions,with no bumps

or windup effects, is ensured, the harmonic compensation performances are very poor

during saturation condition, as showed by the mains current waveform in Fig. 2.8(c) and

the corresponding magnitude spectrum in Fig. 2.8(d). For the sake of simplicity the sim-

ulation test have been carried out with no stabilizing action in the anti-windup system,

that is Kaw and raw have been set to null values. However, the introduction of the term

h2SAF would not improve the system behavior in terms of compensation performances, in

fact, as previously remarked, the effects of such a stabilizing action are mainly devoted to

steer the anti-windup dynamics towards a stationary (in this case constant) steady-state

reference modification īaw.

Another issue stemming from the straightforward application of the generic anti-windup

strategy in 1.5 to the SAF current controller, is that the reference modification can act on

both the active and reactive current components. In view of what previously mentioned,
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Figure 2.7: Control input norm (saturation limit in red) and main current waveforms with

anti-windup solution implemented: transition between nominal and saturation

condition (left), and viceversa (on the right).

as it will be deeply elaborated in 3, the first influences relevantly the DC-bus power flow,

perturbing the voltage stabilizer action.

2.5.1 Improvements in the anti-windup strategy

In order to overcome the drawbacks arising from the straightforward application of the

general anti-windup strategy to the SAF system, and to achieve objectives b) and c) stated

in 1.5, the anti-windup unit design is modified exploiting some general insights combined

with the SAF structural properties. The first step is to generate a reference modification

acting only on the q-component of the current reference, so that the anti-windup unit is, as

much as possible, decoupled from the DC-link voltage dynamics, and, as a consequence,

it will minimally impair the voltage stabilizer action during saturation. To make the

anti-windup dynamics (2.23) compliant with these restriction on the additional reference

current components, we define the new distance vector

d̂Ur(ū) =







dist[−ωmL R](Ur, ū)
−∇dist[−ωmL R](Ur,ū)

‖∇dist[−ωmL R](Ur,ū)‖ if ū /∈ U
0 if ū ∈ U

(2.32)

where dist[−ωmL R](·) denotes the distance from the generic vector ū to the set Ur along

the direction defined by the vector [−ωmL R]T (see Fig. 2.9 for the geometrical represen-

tation). Then h1SAF is redefined accordingly, replacing d̄Ur(ū) with d̂Ur(ū) in (2.23). It

can be verified that this variation generates a steady stave value īaw (defines as in 2.25)

which has the d-component structurally null, i.e. īaw = [0 īawq]
T .

The next modification to guarantee a proper harmonic cancellation under saturated con-

ditions is to make īawq “as constant as possible”, despite of the oscillations related to

current harmonics to be compensated for. For this purpose the following almost constant
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Figure 2.8: Current tracking performance with anti-windup solution implemented: tran-

sition between nominal and saturation condition (on the left) and viceversa

(on the right).

distance vector is adopted in place of d̂Ur(ūuc)

d̂Ur(ūuc) = d̂Ur(ūuc(arg max
τ∈]t−T,t]

(||d̂Ur(ūuc(τ))||))). (2.33)

this selection takes advantage from T-periodicity of steady-state control signals needed

for the perfect harmonics tracking, in order to define a constant (or piecewise constant

in case of no stationary load profiles) distance vector. In this way, bearing in mind the

previous remarks, even for realistic saturation scenarios, the anti-windup unit defined in

Prop. 2.5.1 will asymptotically approach a steady state constant (or piecewise constant)

value defined by
¯̄iaw = [0 ¯̄iawq]

T =
v

L
M−1d̂Ur(ūuc). (2.34)

On the other hand, due to this choice the term g1SAF will no longer be minimal, in the

sense reported in 1.5; indeed during saturation, the modified control vector ū will often

range in the interior of the set Ur instead of lying exactly on the its boundary. Even if in

45



Chapter 2. SATURATED NONLINEAR CURRENT CONTROL OF SHUNT ACTIVE FILTERS

−0. 8

−0.4

0

0.4

0.8

0.80 0.4−0.4−0. 8
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Figure 2.9: Definition of vector d̂Ur .

this case the control action compatible with the constraints and the shaping of the anti-

windup dynamics would not be fully exploited, since the anti windup scheme produces a

constant reference modification, no other harmonics will be injected into the system, and

the compensation performance of the system will be significantly improved.

Owing to the considered restriction on the form of the reference modification īaw, some

feasibility issues could arise with respect to the maximum operative region enlargement

objective a stated in 1.5, this topic will be carefully analyzed in the next Section.

2.6 Dealing with current and anti-windup unit limitations

The anti-windup solution presented in 2.5 introduces an additional current term to prevent

control input saturation, however, as mentioned in 2.4, shunt active filters are subject also

to a maximum current limitation. Furthermore the modifications introduced in 2.5.1 to act

on the solely current q-component, in order not to affect the voltage stabilizer performance,

reduces the degrees of freedom available to the anti-windup unit. As a consequence the

set of operating conditions that can be handled is reduced.

This two issues can be addressed by limiting the current reference term î∗dq related to the

load current harmonics. In particular a proper reference scaling need to be performed so

that the anti-windup unit is ensured to have the authority to enforce the overall control

action inside the admissible set, by means of a reference modification iaw compliant with

the filter current limitation. Obviously the procedure has account also for the other

variables appearing in (2.21), i.e. the term η, exploited to stabilize the DC-link voltage

dynamics, and the current tracking error ĩdq which also affects the control action through

the stabilizing output feedback terms in (2.17).

In the following, first an optimization problem will be formulated to evaluate what are the

maximum current references that can be tracked without violating the system constraints.

In this respect it will be showed how the anti-windup unit, defined in 2.5, actually provides

a significant extension of the system operative range. Then, based on the maximum

reference estimation, a suitable current saturation strategy will be introduced to cope

with unfeasible load currents.
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Figure 2.10: Feasibility space when an AW unit acting on iq is considered.

2.6.1 General problem formulation

When the proposed anti-windup unit is added to the system, the current constraint in-

equality (2.21) is modified as

‖Cx∗ + ĩdq(t) +
¯̄iaw + ĩaw(t) + (0 η)T ‖ ≤ Imax (2.35)

where, in order to underscore the contribution of each harmonic component, the reference

term î∗dq has been expressed as the output of the following system

ẋ∗ = Sx∗, î∗dq = Cx∗

S = blkdiag(Si), Si =

[

0 ωi

−ωi0

]

, C =

[

1 0 1 . . .

0 1 0 . . .

]

, i = 1, . . . , N.
(2.36)

As regards the control input feasibility set, by considering the fact that the anti-windup

reference modification is allowed to act only on the current q-component, which in turn

induces an additional feed-forward action (2.26) acting along the direction given by the

vector [ωL − R]T , we obtain that the set of unconstrained control actions that can be

steered inside the feasibility space Ur := {ūuc ≤ r̂} by adding a reference term in the form

reported in (2.34), is the region between the two half-planes (see Fig. 2.10)

ūTuc

[
R

ωmL
1

]T

≤
√
(

1 +
R

ωmL

)2

r̂2

ūTuc

[
R

ωmL
1

]T

≥ −
√
(

1 +
R

ωmL

)2

r̂2

(2.37)

Recalling (2.15) (2.14) and(2.36), by simple computations, the unconstrained control ac-

tion ūuc provided by the internal model-based controller (2.17) can be written as

ūuc =
Γξ̃ + L

[
M(Cx∗ + (η 0)T )− CSx∗ − (0 η̇)T + d0

]
+Kĩdq

v
. (2.38)

Then, by inequality (2.37) and Fig. 2.10, it’s obvious that the proposed anti-windup

unit enlarges the range of the admissible unconstrained control input vectors which, if no

anti-windup unit was introduced, would coincide with the inscribed circle in Fig. 2.3. On

the other hand, the constraint to have a null d-component on the reference modification
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current vector ¯̄iaw causes the control vector directions lying outside the strip in Fig. 2.10

to be unrecoverable, in the sense that they cannot be led inside the admissible circle by the

anti-windup system. This issue would be avoided if the anti-windup reference signal was

allowed to have a non null d-component, however, as discussed in 2.5, this solution is not

suitable to keep a proper voltage dynamics behavior also under saturation, as requested by

objective b) in 2.1.1. Moreover, the input constraint has to be combined with the current

limitation; roughly speaking, no matter the form of the anti-windup reference signal, if

the unconstrained control vector norm is too large, the required current modification can

violate inequality (2.35).

As mentioned, here the objective is to formulate a suitable optimization problem to eval-

uate the maximum amplitude of the current harmonics, collected in the vector x∗, that

the filter can compensate for, without exceeding the current and control action constraints

expressed in (2.37), (2.35) respectively. To this aim, the following optimization variables

are considered: x∗, ĩdq, ξ̃, η, η̇, iaw, ĩaw, while the line grid amplitude Vm and the DC-link

voltage v(t) are regarded as problem parameters.

In order to obtain meaningful results, we need to add some restrictions regarding the error

variables ĩdq, ξ̃, along with the current term η, and its derivative η̇. As regards η, a con-

servative bound on the maximum value necessary to keep the DC-link voltage inside the

admissible range can be estimated, under the reasonable assumptions that the the voltage

initial condition belongs to this range, and the system power losses, for which, as it will

be shown in 3.1, it has to compensate for, are bounded. Similarly a bound can be set on

the maximum derivative η̇. Thus the following additional constraints are introduced

|η| ≤ ηmax, η̇| ≤ η̇max. (2.39)

It’s further to remark that the DC-bus voltage controller has to be suitably saturated so

that the actual output η satisfies the above limitations.

For what concerns the error variables, we assume that, under a worst case scenario, the

initial conditions χ̃(0) = [̃idq(0) ξ̃(0)]
T and ĩaw(0) ranges respectively on finite regions W0

and I0. In view of these considerations, the largest feasible current reference î∗dq = Cx∗

can be computed as the solution of the following problem

max
x∗ ,̃idq ,ξ̃,η,η̇,̃iaw, ¯

āwi
‖Cx∗‖

subject to (2.35), (2.37), (2.39), (2.18), (2.23)

∀ t > 0, ∀ χ̃(0) ∈ W0, ∀ ĩaw(0) ∈ I0.

(2.40)

2.6.2 Reduced problem formulation

Problem (2.40) is highly nonlinear and strongly interlaced, in the sense that the constraints

equations depends on several optimization variables, via involved functions, e.g the dis-

tance function defined in Fig. 2.9. Moreover the constraints depends on time, even if we

can exploit periodicity of the current harmonics and consider just a single line grid period,

we need to solve semi-infinite problems.
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Figure 2.11: Approximation of the control term devoted to track the current reference

component η.

In order to obtain a numerically tractable version of the optimization problem, a sort

of “clusterization” can be performed; namely the contributions that the optimization

variables give to the the current and control action constraints are separately consid-

ered. Then, a reduced problem, involving only the reference harmonics vector x∗ and

the anti-windup signal ¯̄iaw as optimization variables is formulated, by bounding the terms

depending on the other original optimization variables and subtracting the obtained ap-

proximated sets to the original constraints inequalities.

Starting with the current term η, by (2.38) the steady-state control effort required to

perfectly track it is

uη =
L

vdc
(M [η 0]T − [0 η̇]) (2.41)

hence constraints in (2.39) can be mapped to uη, obtaining the polytope (see Fig. 2.11(a))

Pη := co
{
M [±ηmax 0]T − [0 ± η̇max]

}
, where co denotes the convex hull of the vectors

representing the polygon vertices. Then, for the sake of simplicity, the polytope with

is approximated with its circumscribed circle of radius rη, obtaining a norm constraint

‖uη‖ ≤ rη. Finally this control effort can be subtracted to ūuc in (2.38) (see Fig. Fig.

2.11(b)); by this procedure the control action authority required to track η and then sta-

bilize the DC-link voltage, is preserved given a worst case scenario. This, combined with

the choice to act only on the q-component reference for anti-windup purposes, allows to

completely decouple the anti-windup and the DC-bus capacitor voltage dynamics. As a

result the voltage controller performance is not impaired by the anti-windup unit, and

objective b) in 1.5 is fulfilled. In principle conservatism can be reduced by directly sub-

tracting the polytope P instead of its circumscribed circle to the set Ur . The obtained

set is reported in Fig. 2.11(c) where it can be seen that the approximation error made

taking the inscribed circle is reasonably small.

Now we move to estimate the control effort related to the error variables χ̃ = [̃idq ξ̃]
T

that, by (2.38), results

˜̄u =
[K Γ]χ̃

v
. (2.42)
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Recalling that the initial condition χ̃(0) is assumed to belong to the region W0 the goal is

to find a tight bound on the trajectories of system (2.18) that for convenience are rewritten

as

˙̃χ = Âχ̃, with Â =

[

M(R,L)− K
L Γ

Q Φ

]

(2.43)

A rather simple method to bound the error trajectories is by means of quadratic Lyapunov

functions ellipsoidal level sets ([75], [23]). In particular, given a Lyapunov candidate in

the form V (χ̃) = χ̃TPχ̃, associated to (2.43), the smallest invariant ellipsoid E(P ) :=
{
χ̃ : χ̃TPχ̃ ≤ 1

}
enclosing W0 would provide a bound for the trajectories χ̃(t), and, as

direct consequence on the size of ‖χ̃(t)‖.
By the invariance hypothesis on E(P ) it follows ‖χ̃(t)‖ ≤ maxχ̃∈E(P ) ‖χ̃(t)‖, therefore the

peak value of the error vector can be expressed as

ᾱ :=
√

max {‖χ̃‖ : χ̃TPχ̃ ≤ 1}. (2.44)

Now consider the set
{
χ̃ : ‖χ̃‖ ≤ α2

}
which can be also regarded as the scaled unit ball

E( I
α2 , 1) :=

{

χ̃ : χ̃T Iχ̃
α2 ≤ 1

}

. Therefore, it’s easy to verify that α ≥ ᾱ if E(P, 1) ⊂ E( I
α2 ).

In this respect, ᾱ can be equivalently defined as

ᾱ = min

{

α : P ≥ I

α2

}

(2.45)

thus the best upper bound of ‖χ̃‖ can be computed minimizing α. In view of these

considerations, solving the problem

min
P>0,δ

δ

s.t.

[

P I

I δI

]

≥ 0

W0 ⊂ E(P )
ÂTP + PÂ < 0

(2.46)

provides an upper bound
√
δ∗ on the peak value of χ̃ and a symmetric positive definite

matrix P ∗ defining the smallest invariant ellipsoid containing W0. Note that the first

constraint is equivalent to inequality (2.45) by Schur’s complement, while the second and

third constraints enforce the invariance of E(P ) for each χ̃(0) ∈ W0. When the set W0 is a

polytope, i.e. W0 := co {χ̃vi} , i = 1, . . . , 24N+4, by convexity the set inclusion W0 ⊂ E(P )
can be expressed as a linear inequality in the variable P , hence the above problem is cast

into the following eigenvalue problem

min
P>0,δ

δ

s.t. χ̃T
viPχ̃vi ≤ 1, i = 1, . . . , 24N+4

[

P I

I δI

]

≥ 0

ÂTP + PÂ < 0

(2.47)
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Figure 2.12: Vector ˆ̄uuc feasibility space.

in practical conditions, this situation arises when the initial values of the error vector

components χ̃i(0), i = 1, . . . , 4N + 4 are decoupled and known to belong to a range

[χ̃imin, χ̃imax]. Finally, by (2.42), it is straightforward to verify that the norm of ˜̄u is

ensured to be less then β = 1
v(t)

√

δ∗λmax([K Γ]T [K Γ]). Hence, in order to completely

bound the control authority related to all the terms that don’t depend directly on the

harmonics vector x∗, also β, along with rη, is subtracted to the overall control action. As

a result, an equivalent feasibility set involving the control action ˆ̄uuc =
L
v ((M−CS)x∗+d0),

explicitly depending on the current harmonics, can be considered by replacing ūuc with

ˆ̄uuc and r̂ with ˆ̄r = r̂ − rη − β in (2.37). The obtained set is shown in Fig. 2.12.

A similar procedure can be adopted to deal with the current limitation (2.35); beside the

term η the terms ĩdq, ĩawneed to be bounded. As regards the tracking error ĩdq, since it is

part of the vector χ̃, which, by the previous analysis, is ensured to belong to the ellipsoid

E(P ∗) ∀ t, its size can be evaluated by projecting the invariant ellipsoid onto the plane

ĩd, ĩq. In order to consider a worst case condition, the largest projection has to be sought.

To this aim first the extremal values of ĩd, ĩq belonging to the invariant boundary surface

are computed by solving the following convex optimization problems

max(min)̃id(̃iq)

s.t. χ̃P ∗χ̃ ≤ 1.
(2.48)

then the resulting R
2 ellipsoid P ∗

ĩ
defined by the optimal values of (2.48) is approximated

by its circumscribed circle of radius rĩ =
1√

λmin(P ∗

ĩ
)
to finally obtain the bound ‖̃idq‖ ≤ rĩ.

As concerns the anti-windup unit error variables ĩaw(t), the same analysis carried out to

handle the error vector χ̃ can be repeated, i.e. by solving

min
Q>0,δaw

δaw

s.t. I0 ⊂ E(Q)
[

Q I

I δawI

]

≥ 0

(M(R,L) +Kaw)
TQ+Q(M(R,L) +Kaw) < 0

(2.49)
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Figure 2.13: Control inputs constraints combined with AW current limitation.

an upper bound
√
δ∗aw for ‖̃iaw(t)‖ is obtained. Summarizing these results, and recalling

(2.34) constraint (2.35) can be approximated as

‖Cx∗‖ − |̄̄iawq| ≤ Îmax (2.50)

with Îmax = Imax − |ηmax| − rĩ −
√
δ∗aw.

Even with the adopted reduction, the maximum current and control input constraints are

interlaced, since ¯̄iawq in (2.50) depends on ˆ̄uuc through (2.34). In other words, the feasible

control input vectors ¯̂uuc are those that lie in the region between the half-planes (defined

similarly to what in 2.37) shown in Fig. 2.12 and can be led inside the feasible set Ûr :=
{
‖ˆ̄uuc‖ ≤ ˆ̄r

}
by means of an anti-windup reference modification ¯̄iaw fulfilling inequality

(2.50). By (2.29) it can be verified that the anti-windup unit action is geometrically

equivalent to translating the feasibility circle by ±L
vM(R,L)(‖̄̄iaw‖). Summarizing all

these considerations, for a given ¯̄iaw, the feasibility set F̂ reported in Fig. 2.13 is obtained.

Therefore, since the line grid voltage disturbance d0 has to be compensated to ensure

system stability, bearing in mind the previous reasoning, by (2.38) we can state that a

current reference vector î∗dq = Cx∗ is certainly feasible if it requires a corresponding control

action ˆ̄u∗uc such that

‖ˆ̄u∗uc‖ =

∥
∥
∥
∥

L

v
(M − CS)x∗

∥
∥
∥
∥
≤ dF̂ (̄̄iawq) (2.51)

where dF̂

(
¯̄iawq

)

= dist(ū∗, ∂F̂) is the distance from the point ū∗ =
(
Vm

v , 0
)
to the

boundary ∂F̂ of the feasibility set (see Fig. 2.13). Exploiting geometrical considerations,

dF̂ (̄̄iawq) can be computed as the optimal value of the following problem

min
ˆ̄u∗
uc,λ≥0

∥
∥
∥
∥
∥
ˆ̄u∗uc −

(
Vm
v

0

)T
∥
∥
∥
∥
∥

∇ˆ̄u∗
uc

∥
∥
∥
∥
∥
ˆ̄u∗uc −

(
Vm
v

0

)T
∥
∥
∥
∥
∥
+ λ∇ˆ̄u∗

uc
g(ˆ̄u∗uc,

¯̄iaw) = 0

g(ˆ̄u∗uc,
¯̄iawq) = 0

(2.52)

where, according to the Lagrange multipliers theory, the first constraint is a sort of tan-

gency condition between the circle containing the control action devoted to track the
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current harmonics, and the boundary of the feasible set ∂F which is represented by the

piecewise function

g =







ˆ̄u∗Tuc [
R

wmL 1]T − q P1d ≤ ˆ̄u∗ucd ≤ P2d, ˆ̄u
∗
ucq ≤ P2q

ˆ̄u∗Tuc [
R

wmL 1]T + q P3d ˆ̄u
∗
ucd ≤ P4d, ˆ̄u

∗
ucq ≤ P3q

‖ˆ̄u∗uc − gSAF ‖2 − r̂2 ˆ̄u∗ucd ≥ P2d or P4d ≤ ˆ̄u∗ucd ≤ P2d, ˆ̄u
∗
ucq ≤ P6q

‖ˆ̄u∗uc − gSAF ‖2 − r̂2 u∗ucd ≥ P3d or P1d ≤ ˆ̄u∗ucd ≤ P3d, ˆ̄u
∗
ucq ≥ P5q

(2.53)

where q =

√
(

1 + R
ωmL

)2
ˆ̄r2. Clearly dF̂ depends on the anti-windup current modification

¯̄iawq, more precisely it can be verified that d
d̄̄iawq

d̂F ≥ 0, i.e. a larger |̄̄iawq| would enlarge

the left and right boundaries of F̂ . Before formulating the final reduce problem, inequality

(2.51) is rearranged as

L

v

√
√
√
√

N∑

i=1

c2i x̄
∗2
i ≤ dF̂

ci =
√

λmax((M − Si)T (M − Si))

(2.54)

where x̄∗i is the amplitude of the ith current harmonic x∗i . Note that in (2.54) we consider

a worst case condition where all the control terms ˆ̄uuci =
L
v (M − Si)x∗i related to each

harmonic are aligned in the same direction. In a similar fashion current constraint (2.50)

is expressed as
√
√
√
√

N∑

i=1

x̄∗2i + |̄̄iawq| ≤ Îmax. (2.55)

eventually the following reduced optimization problem is derived

max
x̄∗
1 ,̄̄iawq

√
√
√
√

N∑

i=1

k2i x̄
∗
1

s.t.
L

v

√
√
√
√

N∑

i=1

k2i c
2
i x̄

∗
1 ≤ dF̂ (̄̄iawq)

√
√
√
√

N∑

i=1

k2i x̄
∗
1 + |̄̄iawq| ≤ Îmax, x̄

∗
1 ≥ 0.

(2.56)

where dF̂ is computed as the optimal value of problem (2.52), and, assuming a known load

current spectrum, the harmonics components have been expressed in terms of the lowest

frequency harmonics x∗1 to be compensated for, by means of the (known) gains ki.

The outlined procedure is based on a suitable clusterization of the terms involved in the

original nonlinear optimization problem (2.40), this leads in principle to a conservative

solution. Moreover the sets bounding each group of variables are approximated by their

circumscribed spherical regions. However the problem complexity have been fairly reduced.

In this respect, note that for a given of dF̂ (̄̄iawq), problem (2.56) is a linear programming
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problem. Therefore the computation of the maximum feasible current reference is reduced

to solve a sequence of LP problems for different values of ¯̄iawq and, in turn of dF̂ (̄̄iawq)

coming from the solution of (2.52). Hence the problem can be quite solved by means of

pretty standard active set or interior point methods available for example inMATLABTM

fmincon constrained optimization function.

Bearing in mind the considerations on how ¯̄iawq influences the size of the control input

feasibility set, and by standard linear programming arguments, it is easy to guess that the

optimal value ¯̄i∗awq of (2.56) satisfies

Îmax − |̄̄i∗awq|
√
∑N

i k2i

=
dF̂

L
v

√
∑N

i=1 c
2
i k

2
i

(2.57)

that is the control input and current constraints are both active at the optimal point.

2.7 Current saturation strategy

Problem (2.56) provides an upper bound on the amplitude of the load current harmonics

that can be compensated for, adopting the proposed anti-windup strategy. By solving it for

the instantaneous DC-link voltage v(t) and line voltage amplitude Vm values, the maximum

size for the reference term î∗dq to be feasible can be estimated as: ‖̂i∗dqmax‖ =
∑N

i=1 kix̄1.

Whith this result at hand the current reference derived by the load currents, as reported

in (2.11), can be shaped to fulfill the system constraints, according to the following law

î∗dqsat = αî∗dq, α = sat10(α
∗)

α∗ = min
τ∈[t,t−T [

‖̂i∗dqmax‖(Vm(t), v(t))

î∗dq(τ)

(2.58)

where sat10(·) denotes a scalar saturation function with bounds [0, 1]. By this saturation

strategy, provided that the assumptions on the current tracking error initial values and

the term η made in 2.6 are satisfied, the anti-windup unit has always the authority to steer

the control input vector inside the feasible set without incurring into current limitation

problems. Also in this case T-periodicity in the load currents has been exploited, in or-

der to produce a constant (or piecewise constant for time-varying load profiles) reference

scaling factor α∗. Thus, frequent and abrupt reference bumps that would be impossible

to track by the internal model based current controller are avoided.

By (2.54) and (2.36) it’s straightforward to verify that the harmonics frequency affects

control input constraints through the term ci, and that higher frequency harmonics de-

mand a larger control effort to be compensated for. Hence, assuming known frequencies

for the load profile, in order to ensure feasibility for any possible scenario, î∗dqmax has to

be computed by solving problem (2.56) for a current reference entirely generated by the

highest frequency load current component, i.e. setting ki = 1 for i = N and ki = 0 other-

wise.

Due to this choice, and the worst case scenario approximations made in 2.6 to bound
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the contributions of the error and DC-link stabilization variables, the above saturation

strategy can lead to significantly conservative results. In principle conservatism could be

reduced by exploiting the available measures of the current error variables, and the actual

values of the variables η and ¯̄iawq. Based on these informations, the computation of the

scaling factor of α∗ in (2.58) can be replaced by the following more “speculative” strategy

α∗ = min
τ∈[t,t−T [

Imax − ‖̃idq(t)‖ − ‖̃iaw(t)‖ − |η| − |̄̄iawq|
î∗dq(τ)

(2.59)

however, in general, no formal guarantee of current reference feasibility would be provided

by the above law.

2.8 Numerical and simulation results

In order to confirm the effectiveness of the considered SAF saturated control strategy,

extensive simulation tests have been carried out considering a realistic filter characterized

by the parameters reported in Tab. 2.1. In this respect, first a numerical comparison

between the maximum reference achievable with the proposed saturated control strategy

and the one obtained with no anti-windup solution has been carried out. The results are

discussed in the next paragraph.

2.8.1 Numerical results

Consider the SAF parameters reported in Tab. 2.1, and set the DC-link voltage and

line grid voltage amplitude respectively to the lower end of the admissible working range

v = vm and the nominal value Vm = V ∗
m. As regards the variable η the limit values

are: ηmax = 10A, ˙ηmax = 10A/s, while the error variables initial conditions ĩdq, ξ̃ ĩaw

are assumed to range in: ĩdqi ∈ [−20, 20]A, i = d, q, ξ̃i ∈ [−10, 10]A, i = 1, . . . , 4N + 2,

ĩaw ∈ [−10, 10]A i = d, q. Finally a margin raw = 0.05 is reserved for the anti-windup

stabilizing action h2SAF . If no anti-windup augmentation is performed, the same analysis

made in (2.6.2) to derive problem (2.56) can be carried out to formulate the problem

max
x̄∗
1 ,̄̄iawq

√
√
√
√

N∑

i=1

k2i x̄
∗
1

s.t.
L

v

√
√
√
√

N∑

i=1

k2i c
2
i x̄

∗
1 ≤ ˆ̄rnoAW

√
√
√
√

N∑

i=1

k2i x̄
∗
1 ≤ Îmax, x̄

∗
1 ≥ 0.

(2.60)

where Îmax = Imax − rĩ − |ηmax| and ˆ̄rnoAW = rin − rη − β since no anti-windup unit is

implemented. The considered benchmark load profile consists of the first two harmonics of

a three-phase diode rectifiers (a common nonlinear load in industrial plants) that, in the
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Maximum current comparison between AW and no AW solutions

AW no AW

x̄∗1 (300 [Hz]) 17.67 [A] 7.99 [A]

x̄∗2 (600 [Hz]) 7.35 [A] 3.32 [A]
¯̄i∗awq 25.6 [A] n.a

Table 2.2

d−q reference frame, are placed at 6ωm, 12ωm. The amplitude ratio is set according to the

rectifier spectrum (see [67]). The numerical values of the optimal variables obtained solving

(2.56) and (2.60) with the above defined parameters, are reported in Tab. 2.2. As stated

in 2.7, in order to guarantee the saturation law (2.58) to effectively tackle all the possible

load scenarios, given the frequency spectrum, problems (2.60) ,(2.56) need to be solved

for a single harmonics at 12fm; in this scenario we obtain respectively ‖̂i∗dqmax‖ = 6.67 A

and ‖̂i∗dqmax‖ = 11.81 A with ¯̄i∗awq = 30.1A. It’s worth to notice that almost half of the

available current is used by the anti-windup unit, this high current request is due to the

fact that only the q component is exploited for anti-windup purposes, inducing a constraint

on the direction of the feed-forward action as reported in Fig. 2.9. In section 2.9 possible

improvements to overcome this issue will be discussed, however, how it will be showed in

the next paragraph, this approach is suitable to cope with practical cases of abrupt line

voltage amplitude variations and load currents that would produce input saturation if no

anti-windup was implemented.

2.8.2 Simulations

The first scenario to be reproduced is the same reported in 2.4 and 2.5, in order to confirm

the effectiveness of the improvements reported in 2.5.1. The matrix Kaw in (2.23) is set

to diag(kaw), with kaw = −5R/L, while the norm of the corresponding feed-forward term
L
vKaw ĩaw is saturated to raw = 0.05. Figures 2.14, 2.15 show the obtained results; the

tracking error behavior is similar to that obtained with the anti-windup dynamics design

carried out in 2.5, while, as regards the harmonics compensation, when the mains voltage

amplitude disturbance is increased, the cancellation performance are not relevantly im-

paired. In fact, thanks to the adopted improvements in the anti-windup dynamics design,

only the constant term ¯̄iawq, corresponding to an inductive current term, is injected into

the mains by the anti-windup unit, while the two disturbances harmonics are effectively

compensated, also during saturation conditions. The FFT of the load and main currents

reported in Fig. 2.15(c) confirms this fact. The effects of the stabilizing action Kaw ĩaw

can be noted in Fig. 2.14(a) where the control action waveform reaches the limit value rin

during the anti-windup dynamics transient, then, when the steady state value is reached,

it lies strictly below the limit according to the defined margin raw. As a result the can-

cellation performances are improved, since the constant steady state is quickly reached,
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Figure 2.14: Control input norm (limit in red) and mains current under line voltage steps

with improved anti-windup solution.

and the effects of the anti-windup dynamics transient are barely noticed at the line side

as showed by the waveform of the line current ima in Fig. 2.14(b). It is worth to remark

that the anti-windup scheme, combined with the current saturation strategy defined in 2.7,

can handle an instantaneous line voltage amplitude increase of arbitrary value, provided

that the required current ¯̄iawq is below Îmax.

A second simulation scenario has been set to prove the scheme effectiveness to handle load

current harmonics that would be unfeasible without the anti-windup augmentation. For

this purpose, the load current profile, selected as the first two harmonics of a three-phase

AC-DC rectifier (composed by a diode bridge), is switched between a feasible scenario and

the maximum values computed in 2.8.1; the obtained results are reported in Figs. 2.16,

2.17. Also in this case without anti-windup solutions the current tracking performance

drastically degrade, while the anti-windup unit is able to exploit the available current

margin to introduce a current reference modification on the q component that prevents

the control input vector saturation. By the magnitude spectrum of the line current ima

reported in Fig. 2.17(c), it can be verified that the adopted strategy allows to totally

compensate for the increased load current, thus enlarging the set of trajectories that the

current controller can effectively track.
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Figure 2.15: Current tracking performance under line voltage steps with improved anti-

windup solution: transition between nominal and saturation condition (on

the left) and viceversa (on the right).
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Figure 2.16: System behavior under large current harmonics with no anti-windup.
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Figure 2.17: System behavior under large current harmonics with anti-windup solution.
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Furthermore, even if the current tracking is momentary lost due to the reference disconti-

nuity produced by the load switch, in contrast with the case with no anti-windup augmen-

tation, the current error variables are quickly steered to zero. The different behaviors are

highlighted by the current error variables phase portrait reported in Fig. 2.16(a), 2.17(a).

In this set of simulations the less conservative current saturation strategy (2.59) has been

adopted in order to show the effectiveness of the control input anti-windup scheme under

the maximum reference currents calculated in 2.8.1.

2.9 Alternative SAF AW unit design

InSubsection 2.5.1 the focus has been put on designing a filter anti-windup unit producing

a constant reference modification acting on the current q-component in order to achieve

all the objective stated in 2.1.1. On the other hand this choice entails a limitation on

the input feasibility set enlargement; as showed in 2.6, all the input vector lying outside

the region between the two half-planes defined by (2.37) can not be led back to the

feasible circle U with such a reference modification form. In principle this drawback can

be overcome by enriching the set of possible reference modifications the anti-windup unit

can generate. Owing to requirement c) in 2.1.1, it turns out that, along with constants,

the other only possible choice is to inject current signals at the same frequency of the

load current harmonics. In this respect, based on the load current measures ildq, the load

current harmonics xl can be estimated by a standard Luenberger observer

x̂l = Sx̂l + L(Cx̂− ildq) (2.61)

with S, C defined as in (2.36). Now assume the vector ūuc lies outside the region between

the half-planes in (2.37), a possible solution is to compute the minimum radius R1 ≥ rin :

∃ ¯̄iaw such that ‖ūuc + gawSAF ‖ = R1 (see Fig. 2.18(a)), and steer the unconstrained

vector on UR1 := {ū : ‖ū‖ ≤ R1} by means of (2.23), then augment the anti-windup unit

with the following dynamics

d

dt
iaw1 = h1SAF1(Ur, ūuc + gawSAF , i

∗
dq, idq, iaw1) + h2SAF1(·)

h1SAF1 =M(R,L)iaw1 −
v

L
d̂1Ur

(uuc + gawSAF )

h2SAF1 = σ
(
Kaw1ĩaw1

)
, ĩaw1 = iaw1 − īaw1

(2.62)

with

īaw1 =
v

L

λCx̂l
,

λ = − v

L
dist[MC−CS]x̂(Ur, ūuc + gawSAF ). (2.63)

Similarly to what in (2.23) dist[MC−CS]x̂(·) denotes the distance taken along the direction

given by [MC−CS]x̂, and d̂1Ur
(·) the corresponding vector defined similarly to (2.32). Also

in this case a stabilizing action can be introduced and properly saturated on the circle

of radius raw1 (preventively subtracted to U along with raw) by means of the function

σ(·) in (2.24). The above dynamics has to be combined with the feed-forward action

gaw1SAF = L
v

(
M(R,L)iaws − diaws

dt

)
, so that the redefined overall control action ū =
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ūuc + gawSAF + gaw1SAF is inside U . After some computations it can be proved that

dynamics (2.62) is endowed with all the properties stated in Prop. 2.5.1, and that īaws

is the oscillatory steady state to which iaws is steered by the property of M(R,L) and

the stabilizing action Kawsĩaws1. Roughly speaking, recalling (2.11), a scaled version of

the term î∗dq is subtracted to the overall current reference, so that the input constraint is

fulfilled.

However, even adding dynamics (2.63) does not ensure feasibility for all the possible

directions of ūuc, in particular during the anti-windup dynamics transient, when iaw1 6=
īaw1. Assuming that ūuc+gawSAF cannot be enforced in U by acting only on the direction

given by (MC−CS)x̂l (see Fig. 2.18(b)), we can iterate the approach presented before; i.e.

after computing the minimum radius R2 : ∃ ¯̄iaw1 such that ‖ūuc+gawSAF+gawsSAF ‖ = R2,

the vector ūuc + gawSAF is steerd into UR2 by (2.63), and the following additional anti-

windup dynamics is introduced

d

dt
iaw2 = h1SAF2(Ur, ūuc + gawSAF + gaw1SAF , i

∗
dq, idq, iaw2) + h2SAF2(·)

h1SAF2 =M(R,L)iaw2 −
v

L
d̂2Ur

(uuc + gawSAF + gaw1SAF )

h2SAF2 = σ
(
Kaw2ĩaw2

)
, ĩaw2 = iaw2 − īaw2

(2.64)

with
īaw2 =

v

L
(M − Ω2)

−1d̂2Ur
(uuc + gawSAF + gaw1SAF )

Ω2 =

[

0 ω2

−ω2 0

]
(2.65)

and ω2 and arbitrary angular frequency, obviously different from the load harmonic fre-

quencies. As usual a stabilizing action h2SAF2 has been added also for this part of the

anti-windup dynamics, and a proper control authority margin raw2 has to be preserved

for it. Here d̂2Ur
(uuc + gawSAF + gaw1SAF ), defined similarly to what in (2.32), denotes the

distance vector from uuc+gawSAF +gaw1SAF to Ur taken along the vector [(MC−CS)x̂]⊥,
which defines an orthogonal direction with respect to (MC−CS)x̂ (see Fig. 2.18(b)). Re-

placing (2.65) into (2.64) it’s easy to verify that īaw2 is the steady-state sine-wave signal, at

frequency ω2, to which dynamics (2.64) is steered thanks to the properties of the matrices

M −Ω2 and Kaw2. Furthermore, the same steps reported in the proof of Proposition 2.5.1

can be repeated to state the same results for (2.65). Finally, adding the corresponding

feed-forward action gaw2SAF = L
v

(

M(R,L)iaw2 − diaw2
dt

)

, applying the same reasoning re-

ported in 2.5, it can be verified that uuc + gawSAF + gaw1SAF + gaw2SAF ∈ U .
It’s worth noticing that, the shaping of the current reference is already included in dy-

namics (2.62) through the term λ, hence the current saturation strategy can be lumped

together with the computation of the anti-windup reference signals ¯̄iaw, īaw1, īaw2. For

this purpose we express d̂2Ur
(uuc + gawSAF + gaw1SAF ) as

d̂2Ur
(uuc + gawSAF + gaw1SAF ) = γ

[(MC − CS)x̂l]
⊥

‖[(MC − CS)x̂l]⊥‖
β = distUr(uuc + gawSAF + gaw1SAF )

(2.66)
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Figure 2.18: Feasibility set enlargement by anti-windup dynamics enrichment.

then, combining (2.34), (2.63), (2.65), the current constraint inequality (2.21) is modified

as
‖̂i∗dq + (η 0)T + ĩdq +

¯̄iaw + ĩaw +
v

L
λCx̂l+

+ ĩaw1 +
v

L
(M − Ω2)

−1γ̄[(MC − CS)x̂]⊥ + ĩaw2‖ ≤ Imax

(2.67)

with

γ̄ =
β

‖[(MC − CS)x̂l]⊥‖
.

Bearing in mind all the previous considerations, the following optimization problem can

be formulated in order to comply with the SAF input and maximum current constraints

min
λ,β,̄̄iaw

β

ūuc + gawSAF + gaw1SAF + gaw2SAF ∈ U
‖̂i∗dq + (η 0)T + ĩdq +

¯̄iaw + ĩaw +
v

L
λ̄Cx̂l + ĩaw1+

+
v

L
(M − Ω2)

−1β̄[(MC − CS)x̂]⊥ + ĩaw2‖ ≤ Imax

(2.68)

This alternative seems promising, since it allows to enlarge the range of control actions

that can be steered inside the feasible set to all the possible directions in R
2, without

affecting the DC − bus voltage dynamics, since no active current terms (i.e. constant

d-component) are injected by the anti-windup dynamics. Thus the only limitation in the

filter operating range would be due to the constraints on the drained current. On the

other hand, due to the several control and reference terms added by the anti-windup unit,

reducing (2.68) to a numerically tractable problem in a similar fashion to what carried out

in 2.6.2 is a much harder task. Moreover the term iaw2 actually introduces a steady-state

spurious current signal which, in general, is not ensured to vanish when ūuc+gawSAF comes

back to the range that can be compensated with the solely dynamics (2.62). However,

in the future this solution could be further explored to enhance the results presented in

2.8.2.
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Chapter 3

On the control of DC-link voltage

in Shunt Active Filters

In this chapter the stabilization of the SAF non-minimum phase zero dynamics,

given by the Shunt active filter DC-bus voltage, is addressed. The issue is mo-

tivated by the physics of the system, showing how the capacitor would inevitably

discharge if no compensation action is applied, then, relying on a suitable sys-

tem dimensioning, providing a frequency separation between the voltage and filter

currents dynamics, two different control solutions are analyzed.

3.1 Problem statement

In ch. 2 the issue of the DC-bus voltage non-minimum phase behavior has been sketched,

mentioning how part of the current reference η needs to be devoted to keep the DC-bus

voltage value inside the range defined by O2 in 2.2.2, in a backstepping fashion typical for

underactuated systems. Before presenting the possible solutions to provide η by a voltage

stabilizer reported in Fig. 2.2, a formal motivation of the non minimum phase behavior

is stated. In this respect, consider the ideal reference term î∗dq = [ild − ild0 ilq]
T , defined

in (2.11), then the first equation in (2.8) can be rewritten as

u(t) = ūv(t) =M(R,L)

(

î∗dq + ĩdq −
dî∗dq
dt

− dĩdq
dt

+ d0

)

(3.1)

thus, it turns out that the steady state voltage dynamics, corresponding to a perfect

tracking of î∗dq is

v̇2 = ǫL

(

d0 +M(R,L)̂i∗dq(t)−
d

dt
î∗dq(t)

)T

î∗dq. (3.2)

The integrator is driven by two periodic signals, with period T = 1/fm: the zero mean

value component ǫL(d0− d
dt î

∗)T î∗dq, and the signal ǫL(M(R,L)̂i∗dq)
T î∗dq which has negative

mean value as long as parasitic resistance R or reference î∗dq are not null. By this, even if

the initial voltage value of the DC-link is inside the desired range, it will leave it in finite

64



3.1. Problem statement

time, providing a loss of controllability of the system due to the capacitor discharge.

To avoid this phenomenon, the reference must be revised, taking into account an additional

active current term, which should be drained from the line grid by the active filter, in order

to compensate for its power losses. Following this motivation, the current reference signal

should be modified as i∗dqϕ0
= î∗dq + (ϕ0 0)T , where ϕ0 is the active current needed to

compensate for the power losses, namely the value that would make the signal driving

the integrator in (3.2) with zero mean value. Albeit ϕ0 can be in principle computed by

solving the following power balancing equation ([32],[33])

Rϕ2
0 − Vmϕ0 +Rfm

∫ 1/fm

0
(i∗2d (τ) + i∗2q (τ))dτ = 0 (3.3)

due to the system parameters uncertainties, its value is in general unknown or heavily

inaccurate. Hence it needs to be reconstructed by means of η, by a suitable elaboration

of the DC-bus voltage measures. To this purpose, considering the change of variables

z̃ = v2(t) − V 2∗, where V 2∗ is the square desired reference voltage value (usually set

to (v2M + v2m)/2), and recalling (2.13), (2.8), the overall system error dynamics can be

expressed as
d

dt
ĩdq =M(R,L)̃idq −

v

L
ū(t) + d(t)

˙̃z = ǫuT [̃idq + î∗dq + (η 0)T ].

(3.4)

Therefore objective O2 can be equivalently formulated in the error variable z̃ requiring

z̃(t) ∈ [−l∗, l∗] for all t ≥ t0, with l
∗ = (v2M −v2m)/2,provided that z̃0 ∈ [−l∗, l∗]. It is worth

remarking that, the hypothesis in O2, to start the filter operation with the DC-bus voltage

already inside the admissible range is not limiting, since, due to the L − C resonance ad

the free-wheeling diodes, the natural uncontrolled response of a three-phase AC-DC boost

converter brings the DC-bus voltage to a value that is twice the line peak-to-peak voltage,

which is in general grater then the lower bound vm. Thus the controller can be switched

after an initial free response transient phase, having z̃(t0) ∈ [−l∗, l∗].
In summary the goal of a voltage stabilizer is to steer, by means of the virtual input η,

z̃ towards a steady state where the voltage trajectories are free to oscillate within the

admissible region, but their mean value is null. In this chapter two possible approaches

to achieve this goal are discussed. In Section 3.2, a preliminary control oriented capacitor

sizing procedure is discussed; by (3.4) it can be clearly noted that the capacitor value affects

the amplitude of the voltage oscillations through the term ǫ defined in (2.9), therefore, no

matter what is the adopted control solution to generate η, if the capacitor is undersized,

its voltage oscillations will extend beyond the desired range [vm, vM ].

However, a suitable capacitor sizing can be exploited also to induce a time-scale separation

between the filter currents and DC-bus voltage dynamics; with this result at hand, the

voltage stabilization problem can be carried out separately from the current tracking

controller, then the overall system practical stability can be formally stated by means

of singular perturbation and input to state stability results for two-time scales systems

([76]). Relying on such design procedure, in Section 3.3 a robust integral control solution,
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proposed in [70] to asymptotically recover the unknown power losses related term ϕ0 is

briefly presented. In Section 3.4, an averaged control solution, carried out in the so-

called phasor’s domain as proposed in [33], and able to minimize the effects of the voltage

stabilization on the harmonic cancellation performance, is discussed, providing a complete

analysis of a possible real-time control implementation.

3.2 Control oriented DC-Bus capacitor sizing

As mentioned in 2.2.2, the SAF current tracking problem and DC-bus voltage stabilization

are interlaced, since the ability to steer the filter currents relies on the energy stored in the

DC-bus capacitor, and, in turn, the capacitor voltage depends on the currents absorbed

/delivered to the mains. In order to tackle the two problems by separate controllers, a sort

of frequency separation between the dynamics of the SAF current and voltage subsystems

has to be induced. To this aim, noting that system (2.8) can be viewed as a singular

perturbation model, parametrized by ǫ, and then, by (2.9), on C, a suitable capacitor

sizing has to be carried out. Moreover, as previously mentioned , the voltage on the DC-

bus is enforced to oscillate during current harmonics compensation, therefore, if objective

O2 has to be fulfilled, the capacitor size has to be large enough to prevent the voltage

oscillations to exit the predefined range ((see (3.2), (3.4)).

A possible procedure ([32], [71]) to cope with this issues is the following; determine the

maximum energy that the capacitor has to exchange over a line period T by solving, in

the variables z consisting in the filter current harmonics (2N +1) magnitudes and 2N +1

phases, the problem

Emax = max
z

max
t

∣
∣
∣
∣

∫ t

t0

[Vm 0]T idq(τ)dτ

∣
∣
∣
∣

(3.5)

subject to the constraints

• switches currents must be less than the maximum rating

• the control output must be feasible, i.e. ū ∈ U

• harmonics components phases have to be greater than −π and less than π.

Then, assuming the voltage variation corresponding to Emax is V ∗ − vm, where vm is the

DC-bus voltage range lower bound, the capacitor value design equation can be written as

C =
2Emax

V ∗2 − v2m
(3.6)

this sizing rule ensures the voltage oscillations are bounded inside the range [vm, vM ] for

a considered worst case scenario, and in general it is suitable to provide a time-scale

separation between the current and voltage subsystems.

66



3.3. Robust integral control of voltage dynamics

3.3 Robust integral control of voltage dynamics

A possible approach to deal with the DC-bus voltage dynamics stabilization was presented

in [70], [31], the proposed control structure to generate η is

η = Nq(z̃) +Nθ

θ = −ǫh(z̃)
(3.7)

where N = (1 0)T , q(·) the deadzone function

q(z̃) =







0 if z̃ < l

z̃ − z̃sign(z̃) otherwise
(3.8)

with l ≤ l∗ and h(·) a differentiable function satisfying h(z̃) = 0 ∀z̃ : |z̃| ≤ l. This control

law can be motivated as follows: the role of θ is to introduce an integral action in the

voltage dynamics, with the aim to estimate the unknown term ϕ0. Since h(·) is null if

|z̃| ≤ l, the integral term is inactive if the voltage value lies strictly inside [vm, vM ], while if

v(t) approaches the boundary of the admissible range, the function h(·) has to be chosen so

that θ approaches ϕ0. In addition, when z̃ approaches the admissible bounds, the integral

action is enriched with a further stabilizing term q(z̃). Roughly speaking, the rationale

of this control solution is to make the voltage controller to minimally interfere with the

current controller, precisely only when the boundaries of a suitable deadzone function are

approached by z̃, so that the harmonics cancellation performance are maximized. Here

the stability proof of the overall system under the internal model based current control

presented in 2.3 and the stabilizer (3.7) is sketched for the sake of completeness. Replacing

(2.17) and (3.7) into (3.4) the overall closed-loop dynamics in the error variables becomes

˙̃idq =

(

M(R,L)− 1

L
K

)

ĩdq −
1

L
Γξ̃ + I(z̃, θ̃, ˙̃z,

˙̃
θ)

˙̃
ξ = Qĩdq +Φξ̃

˙̃z = ǫ(LdT (t)N(θ̃ − q(z̃))) + γ1(·) + γ2(·) + de(t)
˙̃
θ = −ǫh(z̃)

(3.9)

where θ̃ = θ − ϕ0, and γ1(̃idq, ξ̃, z̃, θ̃) = (Γξ̃ +Kĩdq)(̃idq −Nq(z̃) +Nθ̃), γ2(̃idq, ξ̃) = (Γξ̃ +

Kĩdq)(i
∗
dq+Nϕ0)+Ld

T (t)̃idq, de(t) = LdT (t)(i∗dq+Nϕ0), and I(z̃, θ̃, ˙̃z,
˙̃
θ) =M(R,L)N(θ̃−

q(z̃)) − N
(
˙̃
θ − dq(z̃)

dt

)

. Then, relying on a suitable dimensioning procedure, briefly de-

scribed in (3.2), we can assume ǫ to be “small enough” so that the two time-scale averaging

theory (see [15], [76]) can be applied to system (3.9). Namely the overall dynamics can

be viewed as the interconnection between the fast subsystem (χ̃ = [̃idq ξ̃]) and the slow

subsystem (z̃, θ̃). It is further to notice that ǫ has been introduced in the integral action of

the controller (3.7) in order to keep the voltage controller speed in scale with the voltage

subsystem, thus maintaining the two-time scale behavior of the closed-loop system.

In accordance with the general singular perturbation theory, the effectiveness of the con-

trol law (2.17), can be proved by considering the boundary layer system, obtained taking
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ǫ = 0 in (3.9), which gives

˙̃idq =

(

M(R,L)− 1

L
K

)

ĩdq −
1

L
Γξ̃ + I(z̃, θ̃, 0, 0)

˙̃
ξ = Qĩdq +Φξ̃.

(3.10)

If the matrices K and Q are selected as in 2.3, on the basis of the solution of (2.19),

asymptoic stability of the above boundary layer system can be stated. In order to prove

this claim, define the vector

Rξ =

[

− R

Γd1
02N − ωmL

Γq1
02N

]T

(3.11)

where Γd1, Γq1 denote the first element of vectors Γd, Γq composing matrix Γ in (2.17)

and 02N is a zero raw vector having dimension 2N . Consider now the change of variables

ζ̃ = Πξ̃ −ΠRξ(θ̃ − q(z̃)) + LGĩdq (3.12)

where Π = blkdiag(Πd,Πq), G = blkdiag(Gd, Gq). By (2.19), expressing system (3.10) in

this set of coordinates yields

˙̃i =

(

M(R,L)− 1

L
K + ΓL−1G

)

ĩdq −
1

L
ΓΠ−1ζ̃

˙̃
ζ = F ζ̃ − L(FG−GM(R,L))̃idq

(3.13)

where F = blkdiag(Fd, Fq). Using standard linear system tools it can be verified that

a value k̄ exists, such that ∀ k ≥ k̄ the matrix K defined as in (2.17) ensures the state

matrix of (3.13) is Hurwitz, hence asymptotic stability of the boundary layer system can

be stated (see [70] for further details).

As regards the slow voltage subsystem (z̃,θ̃), a sort of reduced averaged dynamics can be

considered, by confusing, as usual, the fast dynamics with the boundary layer steady state.

Noting that the term de(t) in (3.9) is with zero mean value, and after some computation

(see [31]) the following reduced system is obtained

˙̃z = −ǫc(q(z̃)− θ̃)− ǫR(q(z̃)− θ̃)2

˙̃
θ = −ǫh(z̃)

(3.14)

with c = Vm − 2Rϕ0. Analyzing (3.14) is straightforward to verify that c > 0 is cru-

cial for the system stability, this condition is actually verified by realistic system imple-

mentations. Indeed, from a physical viewpoint, it is reasonable to assume small system

power losses on the parasitic resistances R, i.e. Rϕ0 < Vm. Therefore, it can be proved

that a suitable choice of the function h(·) allows local asymptotic stability of the set

Az :=
{

(z̃, θ̃) : |z̃| ≤ l, θ̃ = 0
}

, for the reduced system (3.14). The main result is sum-

marized in the next lemma

Lemma 3.3.1 Consider system (3.14) with

h(z̃) = ρ
dq(z̃)

dz̃
q(z̃) (3.15)
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with ρ > 0. Define the compact set Hz(lz) :=
{

(z̃, θ̃) : dist(Az, (z̃, θ̃)) ≤ lz

}

, there exist

l∗z and a class KL function β(·, ·) such that, for all lz ≤ l∗z , the trajectories of (3.14)

originating from Hz(lz) satisfy

dist(Az, (z̃(t), θ̃(t))) ≤ β(dist(Az, (z̃(0), θ̃(0))), t) (3.16)

Combining the stability results of the boundary layer and reduced dynamics, practical

stability of the set
{
(χ̃ ∈ R

4N+4 : χ̃ = 0
}
× Az naturally stems from Theorem 1 in [76].

This claim is precisely stated in the next proposition [31].

Proposition 3.3.2 Consider the controller (2.17), (3.7) with h(·) selected as in (3.15).

Let Hf ⊂ R
4N+4 be an arbitrary compact set and Hz(lz) the set defined in 3.3.1. There

exist positive numbers M , λ, l∗z , k̄, a class KL function β(·, ·), and, ∀ ν > 0, an ǫ∗ > 0

such that, for all positive lz ≤ l∗z , k > k̄, and ǫ ≤ ǫ∗, the trajectories of the closed loop

system (3.9), with initial conditions χ̃(0) ∈ Hf , (z̃(0), θ̃(0)) ∈ Hz(lz), are bounded and

satisfy

‖(̃idq(t) ξ̃ −Rξ(θ̃(t)− q(z̃(t)))‖ ≤Me−λt‖̃idq(0) ξ̃(0)−Rξ(θ̃(0)− q(z̃(0)))‖+ ν (3.17)

with Rξ defined as in (3.11).

It is worth remarking that practical stability result is semi-global for what concern the

fast variables (̃idq, ξ̃), while only local as far as the voltage dynamics error variables (z̃, θ̃)

are concerned. However this is not an issue for z̃(0), since, as mentioned, by the theory of

AC/DC boost converters the natural system response steers the DC-bus capacitor voltage

to a level that is twice the mains voltage amplitude. Therefore, relying on a proper system

dimensioning, z̃(0) can be always assumed inside the desired range. As regards ˜θ(0), as

for realistic implementations ϕ0 is usually very small (the power losses need to be limited

for obvious practical reasons), in practice, setting θ̃(0) = 0 always fulfills the restriction

on the voltage dynamics initial state.

3.4 Averaged control solution

The solution presented in 3.3 seems suitable to stabilize the DC-bus voltage dynamics

without significantly perturbing the harmonic compensation. However, by a deep analysis

of the slow subsystem dynamics (3.14), it is possible to show that ([70]), under the law

(3.7), the time intervals between two consecutive contacts of z̃ with the boundaries of the

admissible range, are monotonically increasing. In other words, this means that z̃, and

thus v(t), would approach a steady state value inside the desired range, but close to one

of its bound. As a result, the controller fails to lead the DC-bus voltage mean value to

the desired reference V ∗ = (vM + vm)/2.

In order to overcome this limitation, a possible solution, presented in [33], is to directly

act on the average value of the DC-bus voltage. In this respect the voltage dynamics are

averaged according to the procedure presented in [77], where harmonic analysis is used
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to reduce the system equations of power converters to the dynamics of single harmonics,

so-called phasors.

Following this reasoning, the controlled variable is chosen to be the time-window averaged

value z̃a of the square voltage error z̃, and the averaging is performed over the time interval

[t−T, t]. In terms of [77], this average value can be regarded as a zero-order phasor defined

as

z̃a(t) =

∫ t

t−T
z̃(τ)dτ (3.18)

the fact that z̃a is a zero-order phasor, allows to obtain its derivative by simply applying

the same averaging procedure to its differential equation in (3.4)

˙̃za =
1

T

∫ t

t−T

˙̃z(τ)dτ =
ǫL

T

∫ t

t−T

(

M(R,L)i∗dq −
di∗dq
dt

+ d0

)T

i∗dqdτ + ǫLD̃(̃idq) (3.19)

where u has been replaced according to (3.1) and the complete reference idq∗ = î∗dq+(η 0)T ,

while D̃(̃idq) collects all the terms depending on the current tracking error ĩdq. The above

average voltage derivative can also be expressed as the difference over one line period of

the actual voltage, hence

d

dt
(z̃a) =

d

dt

∫ t

t−T
z̃(τ)dτ =

z̃(t)− z̃(t− T )

T
(3.20)

this property connotes the availability of z̃a for measurement in real time, and it is of

crucial importance to actually implement the averaged controller.

The next step is to exploit T-periodicity of the current reference term î∗dq (see also (2.36)),

therefore, when averaged on its own period, a constant value is obtained. Indeed this is

the main motivation to carry out the voltage controller design considering the averaged

dynamics (3.19). In particular, the T-periodic signals in (3.19) can be collected in the

following term

D∗ =
1

T

∫ t

t−T





(

M(R,L)̂i∗dq −
dî∗dq
dt

+ d0

)T

î∗dq



 dτ (3.21)

which, bearing in mind the previous considerations, can be regarded as a constant dis-

turbance. Furthermore, since D∗includes the components associated to the system power

losses through the parasitic resistance R; by physical considerations it follows D∗ < 0.

For further simplification the integral operator can be applied to the occurring derivative

terms. By definitions given in (2.11) and (2.9), after some computations, the averaged

error voltage dynamics can be fully expressed in phasor variables, obtaining

˙̃za = ǫ[Vmηa − 2Rνa − Lν̇a + LD∗ + LD̃] (3.22)

where the following nonlinear term has been defined

ν(t) = η(t)

(
1

2
η(t) + i∗d

)

(3.23)
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which enters (3.22) with its average and averaged derivative

νa(t) =
1

T

∫ t

t−T
ν(τ)dτ, ν̇a(t) =

νa(t)− νa(t− T )

T
. (3.24)

Hence the averaged voltage trajectories can be steered by means of the averaged control

input

ηa(t) =
1

T

∫ t

t−T
η(τ)dτ. (3.25)

Also in this case, a two time-scale behavior of the system can be assumed, relying on a

suitable capacitor sizing that makes ǫ small, and, as a result, enforces the voltage subsys-

tem to be much slower with respect to the current dynamics. Therefore, as in (3.3), the

voltage controller design can be carried out considering only the reduced dynamics, ob-

tained confusing the value of ĩdq with its steady state value ĩdq = 0. It can be verified that

D̃(0) = 0, then the reduced voltage dynamics is obtained by (3.22) simply dropping the

coupling term D̃. However, the nonlinear terms νa, and ν̇a cannot be easily managed; be-

side non linearity they contain an integral, a time delay and a time-varying term i∗d(t). In

order to simplify the mathematical treatment, a sort of linearized version of system (3.22)

can be considered. This approximation can be motivated by the following fact ([33]); since

the parasitic resistance R and the filter inductance value L are usually much smaller with

respect to the line voltage amplitude Vm, the nonlinear terms in (3.22) are expected to be

negligible with respect to the the linear ones. In addition, as the current reference active

component i∗d is T-periodic with zero mean value, it does not affect the averaging at all,

as long as η is constant. When η is time-varying, its oscillatory part will be filtered by the

averaging procedure. As a result of the previous steps and considerations, the linearized

reduced averaged model for the DC-bus voltage dynamics can be expressed as

˙̃za = ǫVm[ηa − ϕ0] (3.26)

this dynamics are considered for control purposes, in particular a standard PI regulator is

selected to produce the control input η, namely

ηa = −kpz̃a + θ

θ̇ = −ǫkiz̃a.
(3.27)

The closed-loop system resulting by the interconnection of (3.27) and (3.26), and perform-

ing the change of coordinates θ̃ = θ − ϕ0, results

[
˙̃za
˙̃
θ

]

= ǫ

[

−Vmkp Vm

−ki 0

][

z̃a

θ̃

]

(3.28)

since ǫ and Vm are positive, the state matrix in (3.28) is Hurwitz for any positive gains

kp, ki, thus asymptotic stability at the origin of the above system trivially follows.

Albeit this solution is able to steer the DC-bus voltage average exactly to the desired

reference value V ∗, namely z̃a → 0 while z̃ is free to oscillate according to the load profile

to be compensate for, the resulting control signal ηa is expressed in the space of phasors.
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Therefore a procedure is required to synthesize a real-world control signal η(t) whose mean

value is equal to ηa produced by (3.27). In this respect, note that the derivative of ηa

d

dt
ηa =

d

dt

1

T

∫ t

t−T
η(τ)dτ (3.29)

can be equivalently expressed on the left side as the difference over one period, while the

right hand side is replaced with what in (3.27)

1

T
[η(t)− η(t− T )] = −kp ˙̃za + ˙̃

θ = −kp ˙̃za − ǫkiz̃a (3.30)

then, solving for η(t) yields

η(t) = −Tkp ˙̃za(t)− ǫTkiz̃a(t) + η(t− T ). (3.31)

The above real time law is actually implementable, since by (3.20), the derivative of the

averaged square voltage error is available from measurements. However, even if stability of

the voltage subsystem would be ensured in the sense of the average value, a further step is

required. In fact, in the incremental implementation (3.31) the integral action is no longer

present, instead, the control input history is kept in memory for one period. Roughly

speaking the current control action is a modification of the value applied at t − T . Con-

sider now that, for the phasor variables system, a stable steady-state guarantees that all

the values assume a constant average, while in principle the real world values can oscillate

freely. This property is desired for what concern the capacitor voltage and, as mentioned,

it is the main motivation for applying the averaging procedure. On the other hand imple-

mentation according to (3.31) can introduce undesired periodic oscillations in the control

input η, which, being remembered through the time delay term, will permanently persist.

In summary, while ηa will approach ϕ0, the actual input η might be any periodic signal

with average value equal to ϕ0. Recalling that η modifies the current reference value i∗d,

any oscillation will impair the harmonics compensation performance.

A possible countermeasure to cope with this issue is to add to (3.31) the following term

dη(t) = η(t− T )− η̄a(t− T/2) (3.32)

whose rationale is to correct the stored signal η(t−T ) towards its mean value η̄a(t−T/2).
It’s worth to remark that, the mean value of the stored signal η(t − T ), is expressed as

its time shifted average value since, in the considered phasor space, the averaged value

does not the corresponds to the actual mean value of its corresponding signal, which is

commonly defined as

sm =
1

T

∫ t+T/2

t−T/2
s(τ)dτ (3.33)

and is identical to the zero-order phasor definition, except for a time shift of T/2. Note

also that the mean value of the stored signal η(t − T ) can be computed in real time,

because also its “future” values are available. Therefore, the final implementation of the

control law is obtained by (3.31), (3.32)

η(t) = Tηa + η̄a(t− T/2) = −Tkp ˙̃za − ǫTkiz̃a + η̄a(t− T/2). (3.34)
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A further analysis is required to verify that the properties of the averaged voltage system

are preserved under the modification (3.32). This means that the average value η̄a, of the

signal η(t) in (3.34) has to approach a steady state equal to the output produced by the

PI averaged law in (3.27). In this respect, define the mismatch variable with respect to

the output of the PI controller in (3.27) η̃a = η̄a − ηa, by (3.26), (3.27), and (3.34), after

some computations it turns out

˙̃ηa = ˙̄ηa − η̇a =
η(t)− η(t− T )

T
− η̇a = η̇a +

η̄a
(
t− T

2

)
− η(t− T )

T
− η̇a =

=
−kpz̃a

(
t− T

2

)
+ θ

(
t− T

2

)
+ η̃a

(
t− T

2

)

T
+

−T η̇a(t− T )− η̄a
(
t− 3T

2

)

T
= . . .

=
−kpz̃a

(
t− T

2

)
+ θ̃

(
t− T

2

)
+ η̃a

(
t− T

2

)

T
+ ǫkI z̃a(t− T )+

+ ǫkpVm

(

−kpz̃a(t− T ) + θ̃(t− T ) + η̃a(t− T )
)

+
kpz̃a

(
t− 3T

2

)
− θ̃

(
t− 3T

2

)
− η̃a

(
t− 3T

2

)

T

.

(3.35)

Applying the Laplace transform to the previous dynamics yields the following frequency

domain representation

sη̃a = e−sT
2

(
η̃a − kpz̃a + θ̃

T
+ e−sT

2

(

ǫkiz̃a + ǫkpVm

(

− kpz̃a + θ̃ + η̃a

)

+ e−sT
2

(
kpz̃a − θ̃ − η̃a

T

))) (3.36)

which, expressing also (3.26) and (3.27) in the frequency domain, reads as

sη̃a = e−sT
2

(
1

T

(

1− kp
ǫVms

s2 + kpǫVms+ ǫ2kiVm
− ǫ2Vmki
s2 + kpǫVms+ ǫ2kiVm

)

+

+ e−sT
2

(

+ kpǫVm − (kpǫVm)2s

s2 + kpǫVms+ ǫ2kiVm
− kpkiǫ

3V 2
m

s2 + kpǫVms+ ǫ2kiVm
+

+
ǫ2kiVms

s2 + kpǫVms+ ǫ2kiVm
+ e−sT

2

(
1

T

(

− 1 + kp
ǫVms

s2 + kpǫVms+ ǫ2kiVm
+

+
ǫ2Vmki

s2 + kpǫVms+ ǫ2kiVm

))))

η̃a

(3.37)

thus, drawing the corresponding Nyquist diagram (see Fig. 3.1), and applying the Nyquist

criterion, it can be concluded that η̃ = 0 is an asymptotically stable equilibrium point

for system (3.35). This means that the averaged value η̄a, of the real world input η(t) in

(3.34) will asymptotically approach the desired averaged signal ηa given by controller 3.27.

Hence, since the closed-loop averaged dynamics (3.28), obtained under such control action

is asymptotically stable, the modified real world control input (3.34) cannot introduce

undesired permanent oscillations.

The overall system stability under this voltage stabilizing solution can be proved by

exploiting the same two-time scale averaging theory and input to state stability arguments

used in 3.3. In particular, replacing (3.34) into (3.4), the following closed-loop current
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Figure 3.1: Nyquist diagram of system (3.37).

system is obtained

˙̃x = (M(R,L)− 1

L
K)x̃− 1

L
Γξ̃ + f(z̃a, θ̃, ˙̃za,

˙̃
θ, ǫ)

˙̃
ξ = Φξ̃ +Qx̃.

(3.38)

where

f(z̃a, θ̃, ˙̃za,
˙̃
θ, ǫ) = Tkp ¨̃za + ǫki ˙̃za + kp ˙̃za(t− T/2)− ˙̃

θ(t− T/2)

+M(R,L)[−Tkp ˙̃za − ǫkiz̃a − kpz̃a(t− T/2) + θ̃(t− T/2)].
(3.39)

Then, the boundary layer system can be derived taking ǫ = 0

˙̃x = (M(R,L)− 1

L
K)x̃− 1

L
Γξ̃ + f(z̃a, θ̃, 0, 0, 0)

˙̃
ξ = Φξ̃ +Qx̃.

(3.40)

and defining the change of variables, similar to what in (3.12)

ζ̃a = Πξ̃ −ΠRξ(θ̃(t− T/2)− kpz̃a(t− T/2)) + LGx̃ (3.41)

it can be verified that the same linear systems as (3.13) is obtained. Finally, as for Prop.

3.3.2, practical stability of the interconnection between the current and the averaged

voltage subsystems can be proved recalling results of Theorem 1 in [76].
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Explicit Saturated Control Design
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Chapter 4

Control of Linear Saturated

Systems

This chapter outlines the main analysis and synthesis results regarding direct sat-

urated feedback law design for input constrained linear systems. Among the possi-

ble strategies, the focus is put in particular on a LDI-based representation of sat-

urated linear systems, which, beside reducing conservatism with respect to stan-

dard sector characterization, naturally leads to LMI-based control design meth-

ods. Design algorithms to optimally deal with common control theory problems

are presented, then some improvements, provided by adopting various classes of

non-quadratic Lyapunov functions, possibly combined with non linear controllers,

are discussed.

4.1 Introduction

In the previous chapters, saturation nonlinearity at the control inputs has been neglected

at first control design stage, focusing on how to introduce efficient anti-windup systems to

cope with saturation adverse effects. Here systematic strategies, accounting for saturation

at the outset of the control law design, are discussed. The modern approach to address

this issue, is a Lyapunov based procedure, where some quantitative measures such as the

size of the domain of attraction, the L2 gain or the convergence rate are systematically

characterized for the saturated closed-loop system.

Two main steps are involved in this procedure; first a proper characterization of the

saturation (or deadzone) nonlinearity has to be provided, including it into a sector (as

recalled in A.5), or describing the system by means of LDIs ([21], [22]). The second step

exploits tools from absolute stability theory, or an LMI characterization of stability and

performance ( [17], [78]), respectively, to formally analyze the saturated system properties

or for control design purposes.

Here the focus is mainly put on the aforementioned LDI-based framework, since it will be

the base to cope with the power electronics application of ch.5.
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4.2. Reducing conservatism in saturation nonlinearity characterization

In this respect the following class of saturated linear systems is considered

ẋ = Ax+Bp+Bww, p = sat(u)

u = Cux, z = Czx
(4.1)

where x ∈ R
n, u ∈ R

m, and sat(·) is a unit saturation defined as in (1.1), while w(t) is an

exogenous disturbance input and z(t) is the performance output.

In 4.2, 4.3, the main analysis and synthesis results will be presented for linear static state

feedback control laws and relying on quadratic Lyapunov candidates. However it will be

showed how the approach can be easily extended to the output feedback case. While in 4.4

the potential enhancement given by nonlinear control laws, combined with non-quadratic

Lyapunov functions is presented.

4.2 Reducing conservatism in saturation nonlinearity char-

acterization

The most popular solution to explicitly deal with input constraints, is by the sector char-

acterization reported in A.5. The payoff in adopting this mathematical description, is

that saturation nonlinearity is expressed in terms of quadratic inequalities, that, com-

bined with quadratic Lyapunov candidates, allow to describe the system properties by

means of LMI constrained problems, for which reliable and efficient solution algorithms

are available (see A.2). In order to motivate this claim, consider a quadratic Lyapunov

candidate V (x) = xTPx (P = P T > 0) for system (4.1). Assume w(t) = 0, then, applying

(A.29), it’s easy to proof that a sufficient condition to ensure asymptotic stability for all

the closed-loop trajectories is ([75]):

V̇ (xp) = xT (ATP + PA)x+ xT (PB +BTP )p, ∀x 6= 0 : pT (p− Cux) ≤ 0 (4.2)

by applying S-procedure to the two quadratic inequalities the following condition is ob-

tained [

ATP + PA PB + CT
u T

BTP + TCu −2T

]

< 0, T = diag(τ1, . . . , τm) ≥ 0. (4.3)

Condition (4.3) is an LMI in the variable P as long as Cu is given; if the synthesis problem

is concerned, it suffices to multiply the above inequality on the left and the right by

diag(P−1, T−1) to get a linear inequality in the variables Q = P−1, U = T−1, Y = QCu

[

QAT +AQ BpU + Y T

UBT
p + Y −U

]

< 0 (4.4)

similar considerations can be made as concerns external stability and other common control

system properties (see [75] for details). The main drawback of this methodology is that

asymptotic stability of the plant is required, otherwise the LMI conditions (4.3), (4.4)

would be clearly unfeasible. In order to overcome this strong limitation, a possible solution

is to define local sector bounds, and apply the absolute stability tools over a finite region
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Chapter 4. CONTROL OF LINEAR SATURATED SYSTEMS

of the state space. In [15], the following proposition, corresponding to a local multivariable

circle criterion, is presented;

Proposition 4.2.1 Assume that (A, Cz, B) is controllable and observable, given an el-

lipsoid E(P, ρ), if there exist positive diagonal matrices K1, K2, with K1 < I, K2−K1 ≥ I

such that

(A+BK1Cu)
TP + P (A+BK1Cu) +

1

2
(CT

uK2 + PB)(K2Cu +BTP ) < 0 (4.5)

and E(P, ρ) ⊆ L(K1Cu), where L(K1Cu) := {x| K1Cu,ix ≤ 1, i ∈ [1,m]} is the linear

region of the feedback law, then E(P, ρ) is a contractive positive invariant set, i.e the

trajectories entering it remain in it and then converge to the origin.

In [16], [21] this result is used to extend stability analysis and synthesis for unstable plants,

estimating the basin of attraction by the maximum volume ellipsoid satisfying (4.5). How-

ever, since inequality (4.5) is not jointly convex in K1, K2, P , the approaches involve

bilinear matrix inequalities, that require a larger computational burden to be solved.

An alternative approach, extensively discussed in [17], is to include the saturated system

into a polytopic model, placing the saturated control action p = sat(Cux) inside the convex

hull of a group of linear feedback laws. In this way, the system properties can be charac-

terized by more tractable LMI conditions, since the hard input nonlinearity “disappears”

in the polytopic differential inclusion. Before introducing the main results regarding this

approach, some preliminaries about convex hull properties need to be recalled ([22], [17])

Lemma 4.2.2 Given u ∈ Co {ui : i ∈ [1, n1]}, v ∈ Co {vj : j ∈ [1, n2]}, then
[

u

v

]

∈ Co

{[

ui

vj

]}

(4.6)

Proof Rewrite u and v as u =
∑n1

i=1 αiui, v =
∑n2

j=1 βjvj , with
∑n1

i=1 αi =
∑n2

j=1 βj = 1.

Then [

q

v

]

=

[∑n1
i=1 αiui

∑n2
j=1 βjvj

]

=

[∑n1
i=1 αiui(

∑n2
j=1 βj)

∑n2
j=1 βjvj(

∑n1
i=1 αi)

]

=

n1∑

i=1

n2∑

j=1

αiβj

[

ui

vj

]

. (4.7)

Noting that
∑n1

i=1

∑n2
j=1 αiβj = 1, (4.6) is obtained.

Now define D as the set of m×m diagonal matrices having 1 or 0 as diagonal entries, and

denote the 2m elements of the set as Di, while Im −Di, which is still an element of D, is

denoted as D−
i . Then the following fact holds

Lemma 4.2.3 Given two vectors u, v ∈ R
m, with |vi| ≤ 1 ∀ i ∈ [1,m], then

p = sat(u) ∈ Co
{
Diu+D−

i v, i ∈ [1,m]
}

(4.8)

Proof By the assumption |vi| ≤ 1 if follows pi = sat(ui) ∈ Co {ui, vi}, ∀ i ∈ [1,m]. Thus,

applying Lemma 4.2.2 inductively, inclusion (4.8) easily follows.
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4.2. Reducing conservatism in saturation nonlinearity characterization

Now it is trivial to verify that the same fact holds if u, v in (4.8) are respectively replaced

by two feedback laws Cux, Hux, with ‖Hux‖∞ ≤ 1, obtaining the inclusion

p = sat(Cux) ∈ Co
{
DiCux+D−

i Hux, i ∈ [1, 2m]
}
. (4.9)

which, as mentioned, places the saturated control law into a family of linear state feedback

regulators. With this result at hands, system (4.1) can be finally represented by the

following polytopic differential inclusion

ẋ ∈ Co
{
Ax+B(DiCux+D−

i Hux) +Bww
}

z = Czx.
(4.10)

It’s further to remark that the above inclusion holds in general only locally, specifi-

cally in the linear region L(Hu) := {x : ‖Hux‖∞ ≤ 1} of the auxiliary matrix Hu which

parametrizes the inclusion. Therefore an additional degree of freedom can be injected in

a finite region of the state space, where the system is expected to operate, reducing con-

servatism with respect to the criterion 4.5. Moreover, description (4.10) allows to check

the (possibily local) quadratic stability properties of the original nonlinear system by a

simple LMI condition, as stated by the following result ([22])

Theorem 4.2.4 Consider the closed loop system (4.1) with w = 0, given an ellipsoid

E(P, ρ), if there exist a matrix Hu ∈ R
m×n such that

(A+Bp(DiCu +D−
i Hu))

TP + P (A+B(DiCu +D−
i Hu)) < 0, ∀ i ∈ [1, 2m] (4.11)

and E(P, ρ) ⊆ L(Hu), i.e Hu,ix ≤ 1, ∀ x : xTPx ≤ ρ, i = 1, . . . ,m, then E(P, ρ) is a

contractive invariant set.

Proof Let V (x) = xTPx, invariance condition of E(P, ρ) can be expressed as

V̇ = 2xT (Ax+Bpsat(Cux)) < 0, ∀ x ∈ E(P, ρ). (4.12)

As Hu,ix ≤ 1 ∀ x ∈ E(P, ρ), by (4.9) it follows

Ax+Bsat(Cux) ∈ co{Ax+B(DiCu +D−
i Hu)x}, , i in [1, 2m] (4.13)

and then

V̇ ≤ max
i∈[1,2m]

{2xTP (A+Bu(DiCu +D−
i Hu))x} ∀ x ∈ E(P, ρ). (4.14)

Since (4.11) holds by hypothesis, it turns out that

max
i∈[1,2m]

2xTP (A+B(DiCu +D−
i Hu))x < 0∀ x 6= 0

which verifies (4.12).

By simple computations, it can be showed how restricting Hu = K1Cu, condition (4.11)

is equivalent to the so called vertex criterion ([15] Th. 10.4), which is less conservative
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Chapter 4. CONTROL OF LINEAR SATURATED SYSTEMS

then the local sector condition (4.5), but, obviously more restrictive then (4.11), where

Hu can be arbitrary selected. Alternatively, note that the ellipsoid E(P, ρ) can go beyond

the linear region of the saturation function sat(Cux), as long as an auxiliary feedback law

containing it in its linear region can be found. Furthermore the auxiliary law does not

need to be linear, indeed by lemma 4.2.3, it’s easy to prove theorem 4.2.4 for any h(x) such

that ‖h(x)‖∞ ≤ 1. In 4.4 nonlinear laws, together with non quadratic Lyapunov functions,

will be exploited, to improve the results presented in the following section. Finally, results

in 4.2.4 can be tightened for single input systems, obtaining a necessary and sufficient

quadratic invariance condition (see [17] ch. 7-8 for details).

4.3 Saturated control design via LMI constrained optimiza-

tion techniques

Based on the polytopic inclusion (4.10), and quadratic Lyapunov candidates, several con-

trol theory problems can be solved for the original saturated system, by deriving conditions

in the form of LMIs. From these conditions, convex problems can be formulated in order

to obtain an optimal estimation of the system properties or, if synthesis problems are

concerned, select the optimal feedback law which induces the desired saturated system

behavior. In the next Subsections the most common issues are discussed.

4.3.1 Domain of attraction maximization

Invariance condition (4.11), can be exploited to establish the stability properties of (4.1),

in particular, the system region of attraction can be approximated with the “largest”

contractive invariant ellipsoid satisfying (4.11). In this respect, a natural choice is to

maximize the convex quantity logdet(P−1), that is directly related to the ellipsoid volume

(see [75]), under the LMI constraint (4.11). However, in principle a high volume set

could be overly stretched on some directions and very thin along others. This situation

would clearly affect the ensured stability margin. Hence it can be profitable to optimize

the ellipsoid dimensions with respect to a specific shape reference set XR, so that the

invariant region can be ensured to have a certain size along the desired directions, and

informations on the initial conditions can be exploited. To this aim, the objective function

can be modified to maximize a scalar α with the additional constraint E(P ) ⊆ αXR, where

αXR := {αx : x ∈ XR}. In conclusion, the maximal (w.r.t XR) quadratic stability region

for (4.1)can be obtained selecting the matrices P ∈ R
n×n, Cu, Hu ∈ R

n×n as the optimal

variables of

sup
P>0,ρ,Hu,Cu

α

s.t. αXR ⊂ E(P, ρ)
E(P, ρ) ⊂ L(Hq)

(A+Bp(DiCu +D−
i Hu))

TP + P (A+Bp(DiCu +D−
i Hu)) < 0, ∀ i ∈ [1, 2m].

(4.15)
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4.3. Saturated control design via LMI constrained optimization techniques

The problem constraints can be cast into LMIs, under some hypothesis. Assume XR is a

convex set, then the first inclusion can be rewritten as a matrix inequality, e.g. if XR is

an ellipsoid
{
xTRx ≤ 1

}
, the inclusion is equivalent to α2 P

ρ − R > 0, which by Schur’s

complement yields





(

P
ρ

)−1

I

I γR




 ≥ 0, γ = 1/α2. (4.16)

Similar reasoning can be made for the set inclusion E(P, ρ) ⊂ L(Hq), which can be verified

to be equivalent to min
{
xTPx : |Hu,i| = 1, i ∈ [1,m]

}
≥ ρ. The minimum can be com-

puted by Lagrange multipliers obtaining (Hq,iP
−1HT

q,i)
−1, which yields ρHq,iP

−1HT
q,i ≤

1, i = 1, . . . , 1 and, by Schur’s complement







1 Hu,i

(

P
ρ

)−1

(

P
ρ

)−1

HT
u,i

(

P
ρ

)−1






≥ 0, i ∈ [1,m]. (4.17)

Note that if ρ → ∞, inequality (4.17) enforces Hu → 0, and global results are recovered.

Now let Q =

(

P
ρ

)−1

, Z = HuQ, Y = CuQ; by multiplying the third inequality in (4.15)

on left and right by Q, and rewriting (4.16), (4.17) in the new variables, the following

EVP is obtained

inf
Q>0,Z

γ

[

1 Zi

ZT
i Q

]

≥ 0, i = 1, . . . ,m

[

Q I

I γR

]

≥ 0

QAT +AQ+ (DiY +D−
i Z)

TBT +B(DiY Q+D−
i Z) < 0, i ∈ [1, 2m]

(4.18)

thus the optimal feedback gain matrix can be recovered as C∗
u = Y ∗Q∗−1, where Y ∗, Q∗−1

are the optimal values of (4.18).

If the auxiliary feedback matrix Hu is restricted to be equal to Cq, i.e Y = Z, the set of

2m inequalities in (4.18) reduces to the inequality QAT +AQ+ZTBT
p +BpZ < 0. Thus, a

reduced optimization problem is obtained, whose optimal solution cannot be better than

what obtained for (4.18), since the degrees of freedom have been reduced. On the other

hand, since 2m−1 constraints have been eliminated, the minimum of the reduced problem

cannot be larger than the one in (4.18). From that arguments, it can be concluded that,

if the only purpose is to enlarge the domain of attraction, a simpler problem with Y = Z

can be considered. As we will be showed in the following, the freedom in choosing Hu (Z)

can be exploited to meet other specifications, beyond the domain of attraction.
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Chapter 4. CONTROL OF LINEAR SATURATED SYSTEMS

The same procedure is still valid if a dynamic output feedback control in the form

ẋ = Ax+Bup, p = sat(u)

ξ̇ = Acξ +Bcz

z = Czx, u = Ccξ +Dcz

(4.19)

is concerned. Defining the state vector x̂ = [x ξ]T , the closed loop state-space equation

can be written as

˙̂x = Âx̂+ B̂sat(Kx̂)

Â =

[

A 0

BcCz Ac

]

, B̂ =

[

B

0

]

, K = [DcCz Cc]
(4.20)

which is in the same form as (4.1).

A polytopic description similar to (4.10) can be derived also to characterize the deadzone

nonlinearity ([23]), and more general memoryless nonlinearities ([20]).

4.3.2 Disturbance rejection with guaranteed stability region

Now we move to analyze external stability of system (4.1), in particular L2 disturbances

w(t) are considerd. As mentioned in ch. 1, since in principle a saturated system may not

have a well defined (finite) L2 gain for any disturbance energy levels, and the gain can in

general depend on the value of ‖w(t)‖2, it would be profitable to characterize the system

rejection property via a nonlinear L2 function. The parametrized PLDI (4.10) is suitable

to carry out the nonlinear L2 gain analysis.

The first step is to solve the so called disturbance tolerance problem ([19]), i.e to determine

the maximum energy level smax, such that for any ‖w‖2 ≤ smax, the trajectories of the

closed-loop system (4.1) are bounded. Two different situations need to be distinguished;

zero and nonzero initial condition. Starting with the assumption x(0) = 0, relying on

description (4.10) and a quadratic Lyapunov candidate, the the problem can be approached

by establishing a sufficient condition under which the trajectories starting from the origin,

and perturbed ‖w‖2 ≤ s < smax, are kept inside an outer ellipsoid. In this respect results

have been established in ([19])

Theorem 4.3.1 Consider system (4.1) under a given feedback law u = Cux and let also

P > 0 be given. If there exist a matrix Hu ∈ R
m×n and a positive scalar η, such that

(A+B(DiCu +D−
i Hu))

TP + P (A+B(DiCu +D−
i Hu)) +

1

η
PBwB

T
wP < 0, ∀ i ∈ [1, 2m]

E(P, sη) ⊂ L(Hu)

(4.21)

then the trajectories of the closed loop system starting from the origin will remain inside

E(P, sη) for all w s.t. ‖w‖22 ≤ s

Proof Consider a quadratic Lyapunov function V (x) = xTPx, the derivative of V along

the closed-loop system trajectories is V̇ = 2xTP (Ax + Bsat(Cux) + Bww. Now let the
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4.3. Saturated control design via LMI constrained optimization techniques

ellipsoid E(P, ρ) and matrix Hu such that E(P, ρ) ⊂ L(Hu); following the same procedure

as the proof of Th. 4.2.4 it follows

V̇ (x) = 2xTP (Ax+Bsat(Cux) ≤ max
i∈[1,2m]

{2xTP (A+B(DiCu+D−
i Hu))x}, ∀ x ∈ E(P, ρ)

(4.22)

and, by Young’s inequality

2xTPBww ≤ 1

η
xTPBwB

T
wPx+ ηwTw ∀η > 0 (4.23)

thus V̇ (x,w) can be upper bounded inside E(P, ρ) as

V̇ (x,w) ≤ max
i∈[1,2m]

{2xTP (A+Bp(DiCq +D−
i Hq))x}+

1

η
xTPBwB

T
wPx+ ηwTw. (4.24)

Now set ρ = sη, by (4.21) and integrating both sides of(4.24), it follows

V (x(t)) ≤ η

∫ t

0
w(τ)Tw(τ)dτ ≤ sη (4.25)

which proves the theorem.

With this result at hand, the maximum tolerable disturbance energy level smax can be

estimated by solving the problem

sup
P>0,Hu

s

s.t. (A+Bp(DiCu +D−
i Hu))

TP + P (A+Bu(DiCu +D−
i Hu)) +

1

η
PBwB

T
wP < 0, ∀ i ∈ [1, 2m]

E(P, s) ⊂ L(Hu)

(4.26)

then, assuming without loss of generality η = 1, performing the change of variables Q =

P−1, ν = 1/s, Z = HuQ, and expressing the set inclusion by means of Schur’s complement,

(4.26) is cast into the LMI constrained problem

inf
Q>0,Z,Y,ν

ν

s.t. QAT +AQ+ (BDiCuQ)T + (BDiCuQ) + (BD−
i Z)

T + (BD−
i Z) +BwB

T
w < 0, i ∈ [1, 2m]

[

ν Zi

ZT
i Q

]

≥ 0, i = 1, . . . ,m.

(4.27)

The next step is to compute the L2 gain of the system restricting the analysis to exogenous

inputs satisfying ‖w‖2 ≤ smax. In this respect the following result can be established ([17],

[19])

Theorem 4.3.2 Let smax be the maximal tolerable disturbance level determined by (4.27).

Given an arbitrary γ > 0, if there exist a matrix Hu such that

(A+B(DiCu +D−
i Hu))

TP + P (A+Bu(DiCu +D−
i Hu)) + PBwB

T
wP +

1

γ2
CTC ≤ 0, i ∈ [1, 2m]

E(P, s) ⊂ L(Hu)

(4.28)

then the L2 gain of system (4.1) from w to z is less then γ for any ‖w‖22 ≤ smax.
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Proof Consider a quadratic Lyapunov function V = xTPx, by (4.9), the derivative along

system trajectories can be expressed as

V̇ (x,w) ≤ max
i∈[1,2m]

{2xTP (A+B(DiCu +D−
i Hu))x}+ xTPBwB

T
wPw+wTw ∀ x ∈ E(P, s)

(4.29)

combining this inequality with (4.28) yields

V̇ (x,w) ≤ wTw − 1

γ2
xTCTCx = wTw − 1

γ2
zTCT z (4.30)

which is the standard external stability condition already exploited in (1.15).

As a product of this result, the system disturbance rejection level can be evaluated by

computing the tightest upper bound of system restricted L2 gain, solving the problem

inf
P>0,Hu,Cu

γ2

s.t. E(P, s) ⊂ L(Hu)





(A+Bp(DiCq +D−
i Hu))

TP + P (A+Bp(DiCq +D−
i Hu)) PBw CT

BT
wP −I 0

C 0 −γ2I




 ≤ 0

(4.31)

that can be cast into a convex problem by performing the previously mentioned tranfor-

mations. Finally, the nonlinear L2 gain function can be computed by solving (4.31) for s

ranging over [0, smax].

Now we move to consider the nonzero initial state situation, since for nonlinear systems

the effect of the initial condition may not vanish as time goes on, a possible way to measure

the rejection capability is to compare the relative size of two nested sets ([19]); one in-

cluding the set of initial conditions, and the other eventually bounding all the trajectories

originating from the former. In this respect, the following extension of Th. 4.3.1 can be

stated

Theorem 4.3.3 Consider system (4.1) under a given feedback law u = Cux and let P > 0

be given. If there exist an Hu and a positive scalar η, such that

(A+B(DiCu +D−
i Hu))

TP + P (A+B(DiCu +D−
i Hu)) +

1

η
PBwB

T
wP < 0, i ∈ [1, 2m]

E(P, 1 + sη) ⊂ L(Hu)

(4.32)

then the trajectories of the closed loop system starting from E(P, 1) will remain inside

E(P, 1 + sη) for all w s.t. ‖w‖22 ≤ s.

the proof can be carried put quite similarly to that of Th. 4.3.1 (see [19] for the details).

As for the previous case, condition (4.32) can be exploited to approximate the largest

disturbance the closed-loop system can tolerate, provided that the trajectories start inside

a given ellipsoid E(S, 1). In other words, the largest s, such that the nested ellipsoids
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defined in Th. 4.3.3 exist, and E(S, 1) ⊂ E(P, 1), is sought for. Formally the following

problem is formulated

sup
P>0,η,s

s

s.t. (A+B(DiCu +D−
i Hq))

TP + P (A+B(DiCu +D−
i Hu)) +

1

η
PBwB

T
wP < 0, i ∈ [1, 2m]

(1 + sη)Hu,iP
−1HT

u,i ≤ 1, i ∈ [1,m]
[

S I

I P−1

]

> 0

(4.33)

where the set inclusion constraints have been already transformed into matrix inequalities.

Defining µ = 1/(1 + sη), Q = P−1, Z = HqQ an EVP is obtained for fixed µ. Then the

global optimum can be in principle derived sweeping µ over [0, 1].

Bearing in mind these considerations, η can be associated to the disturbance rejection

level of the system, since it represents an index of the size difference between the ellipsoid

E(S, 1), which is ensured to contain the initial state, and the invariant E(P, 1 + sη). For-

mally speaking, similarly to what reported in 2.6 for SAFs saturated control, given a set of

initial conditions E(S, 1) and the maximal disturbance energy smax the smallest invariant

ellipsoid containing E(S, 1) can be computed as

inf
P,Hu

η

E(S, 1) ⊂ E(P, 1)

(A+Bp(DiCu +D−
i Hu))

TP + P (A+B(DiCu +D−
i Hu)) +

1

η
PBwB

T
wP < 0, i ∈ [1, 2m]

E(P, 1 + sη) ⊂ L(Hu).

(4.34)

It’s further to remark that the differential inclusion representation can be exploited, in

a similar fashion, to analyze the saturated system rejection properties for other common

classes of exogenous inputs, such as norm bounded persistent disturbances ([22]) or peri-

odic signals ([79]).

4.3.3 Convergence rate maximization

In 4.3.1 the focus was on ensuring a large stability region for saturated input systems, how-

ever, beside stability, another common requirement is to ensure a fast system response,

namely a high system convergence rate. Solving problem (4.18) can lead to a closed-loop

state matrix A + BCu whose eigenvalues are very close to the imaginary axis, thus pro-

ducing a sluggish response. On the other hand, in order to ensure a fast response, an high

gain feedback matrix Cu is usually required, which, due to saturation nonlinearity, is in

contrast with a large basin of attraction specification. Here feedback design techniques to

maximize the convergence rate of saturated systems in the form (4.1) are recalled, then

a method to obtain a trade-off between the two contrasting objectives regarding stability
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and responsiveness of the system is defined.

Before elaborating on the convergence rate maximization, it’s further to define for con-

venience the convergence rate of system (4.1) on a Lyapunov function level set LV (ρ)

as

α =
1

2
min

{

− V̇ (x)

V (x)

}

∀x ∈ LV (ρ). (4.35)

In particular, as in the previous Subsections, quadratic functions having ellipsoidal level

sets will be considered. Furthermore a disturbance free case w(t) = 0 will be considered

for the sake of simplicity.

The problem of maximizing the overall convergence rate of systems in the form (4.1) has

a well known solution in the optimal time bang-bang law minimizing V̇ (i.e maximizing

the decay rate) ui = −sign(BT
i Px), i ∈ [1,m]. However, discontinuity of such feedback

law can give rise to chattering phenomena for practical implementation, moreover the

resulting closed-loop dynamics should be carefully analyzed to exclude finite escape time

of the system trajectories for some initial conditions. A simple solution to overcome this

drawbacks is to replace the bang-bang controller with a saturated high gain feedback law,

at the cost of some optimality. The reduction in the convergence rate, and the stability

property of the modified controller can be formally characterized as follows

Theorem 4.3.4 Assume that an ellipsoid E(P, ρ) can be made contractive invariant with

a bounded control law, then there exists a k0 > 0 such that, for any k > k0, E(P, ρ) is a

contractive controlled invariant set under the feedback law

u = −sat(kBTPx). (4.36)

Proof The assumption that E(P, ρ) can be made contractive invariant by a bounded law

implies it can be made invariant also by the bang-bang control (4.36), that is

V̇ = xT (ATP + PA)x− 2

m∑

i=1

xTPBisign(BiPx) < 0 ∀x ∈ E(P, ρ) (4.37)

to prove the theorem it has to be shown that this is equivalent to

V̇ = xT (ATP + PA)x− 2
m∑

i=1

xTPBisat(kBiPx) < 0 ∀x ∈ E(P, ρ). (4.38)

Since V̇ is an homogeneous function, condition (4.38) can be equivalently checked on the

boundary of ∂E(P, ρ). Define

ǫ = − max
x∈∂E(P,ρ)

{

xT (ATP + PA)x− 2
m∑

i=1

xTPBisign(BiPx)

}

(4.39)

which by (4.37)is positive. After some computations it follows

xT (ATP+PA)x−2
m∑

i=1

xTPBisat(BiPx) ≤ −ǫ+2
m∑

i=1

xTPBi(sign(B
T
i Px)−sat(kBT

i Px))

(4.40)
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As

∣
∣xTPBi(sign(B

T
i Px)− sat(kBT

i Px))
∣
∣ =







0 if |kBT
i Px| > 1

≤ 1
k if |kBT

i Px| ≤ 1
(4.41)

the absolute value of the sum in (4.40) can be upper bounded with 2m
k , hence, choosing

k > k0 =
2m
ǫ , by (4.40) it turns out

xT (ATP + PA)x− 2
m∑

i=1

xTPBisat(kBiPx) < 0 ∀x ∈ ∂E(P, ρ) (4.42)

which proves (4.38).

This result states that, albeit under law (4.36) the convergence rate is slightly reduced, the

same invariant set of the bang-bang controller can be obtained. It is worth noticing that an

high gain is not needed to ensure invariance, but only to provide a fast convergence rate,

since if the ellipsoid can be made invariant with a bounded control (formal procedures to

check this can be found in [17] ch. 11), there exists a k > 0 such that E(P, ρ) is invariant
under (4.36).

The next step is to investigate how the decay rate and the size of the invariant ellipsoid

are related, i.e to determine how α depends on ρ, and P . As regards the dependence on

ρ the following results can be proved ([17] Th. 11.2.4)

• α(ρ) = 1
2min

{

− V̇
ρ : xTPx = ρ

}

• There exists a limit value

β∗ = min
{
−xT (ATP + PA)x : xTPx = 1, xTPB = 0

}
(4.43)

such that limρ→0 α(ρ) =
β∗

2 .

As expected α increases as ρ is decreased, i.e the size of the invariant ellipsoid is shrunk

in face of a higher convergence rate. Furthermore α approaches a finite limit as ρ tends

to zero, hence β∗ is an index on the maximum convergence performance, inside E(P, ρ),
of system (4.1). If the matrix P is given, β∗ is derived by definition (4.43) as β∗ =

−λmax((N
TPN)−1NT (ATP+PA)N), where N is a basis for the Kernel of BTP . However

it would be profitable to select the matrix P so that the resulting β∗, and then the

convergence rate, is not too small. For this purpose the following proposition (see [17] ch.

11) can be exploited to derive an LMI-based procedure to shape P

Proposition 4.3.5 Let P be given, then

β∗ = sup
Cu

η

s.t. (A+BCu)
TP + P (A+BCu) ≤ −ηP.

(4.44)

Thus, in principle, letting P to be a free parameter, and assuming (A,B) in (4.1) is a

controllable pair, problem (4.44) can be solved to make −β∗/2 equal to the largest real part

87



Chapter 4. CONTROL OF LINEAR SATURATED SYSTEMS

of the eigenvalues of the matrix A+BpCq, according to the decay rate definition of linear

systems. Thus, in principle β∗ can be made arbitrary large, increasing the convergence

rate until specification on system response are met. On the other hand, in general, as β∗

increases, matrix P becomes badly conditioned, affecting the shape of the ellipsoidal level

set E(P, ρ), that can result very small with respect to a fixed shape reference set. Roughly

speaking the invariant ellipsoid could be very “thin” along some state space directions,

reducing the stability margin.

A possible solution to found a suitable balance between a large domain of attraction and

a fast convergence rate consist in a suitable combination of the two problems (4.18), and

(4.44). For example, if a lower bound β̄ is specified for β∗, then the control law maximizing

the size of the domain of attraction, and providing at the same time a convergence rate

greater then β̄, can be derived by solving the following mixed problem

sup
P>0,ρ,Cu,Hu

α

s.t. αXR ⊂ E(P, ρ)
E(P, ρ) ⊂ L(Cu)

(A+BpCu)
TP + P (A+BpCu) < 0

(A+BpHu)
TP + P (A+BpHu) ≤ −β̄P

(4.45)

which is exactly problem (4.18), except for the last constraint inequality, that has been

added to guarantee a minimal convergence rate, related to β̄. Following the same reasoning

reported in 4.3.1, it is easy to verify that (4.45) can be cast into a convex LMI-constrained

problem. The above analysis can be further extended, with suitable modifications, to the

case of system perturbed by peak bounded disturbances (see [17] for details).

4.4 Improvements via non-quadratic Lyapunov functions

The effectiveness of the LDI appraoche considered in this chapter depends on two factors:

how well the LDI description approximate the original saturated system, and what tools

are exploited to analyze it and synthesize control laws.

As regards this second factor, the results presented so far are based on quadratic Lya-

punov functions that, as mentioned, are a natural choice due to the vast amount of tools

available for their use, and the possibility to convert stability and performance problems

of LDIs, into LMI constrained optimization problems. On the other hand, it’s well known

that quadratic forms are not a universal class for system described by LDIs, therefore,

as showed in the previous section, only sufficient conditions can be derived. In other

words, there are cases where an LDI is stable but a quadratic Lyapunov function does not

exist. Furthermore, even when a quadratic Lyapunov can be found, it usually provides

conservative results, expecially as concerns regional stability and performance analysis for

constrained systems.

In this section, some classes of non-quadratic Lyapunov candidates, stemming from robust
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control of time-varying and uncertain systems, which, in the considered framework, share

the polytopic representation with input saturated systems, are presented.

In the following the autonomous PLDI

ẋ ∈ co {Ai}x (4.46)

with Ai = (A + BDiCu + BD−
i Hu) will be considered to represent system (4.10) in case

the auxiliary feedback matrix Hu has already been defined (e.g by means of the quadratic

stability tools established in the previous sections), while the controlled inclusion

ẋ ∈ co {Aix+Biv} (4.47)

where Ai = (A + BDiCu), Bi = BD−
i , v = Hux will be exploited to represent the case

when Hu is synthesized by means of a non quadratic control Lyapunov candidate. It’s

worth to recall that LDI (4.10) holds only locally, inside a particular level set of the con-

sidered Lyapunov function that, in case of quadratic forms, has an ellipsoidal form. Here,

without loss of generality, the unit invariant LV (1) := {x : V (x) ≤ 1} will be considered

to replace the condition used in 4.2, with the inclusion LV (1) ⊂ L(Hu). It will be showed

how less restrictive conditions can be obtained, for both analysis and synthesis problems,

finally, since the potential of non-quadratic Lyapunov functions is fully unleashed only if

associated with nonlinear control laws ([80]), an example on how to combine this two tools

to further reduce conservatism will be sketched for a particular class of functions, which

has been recently proved to be universal for LDIs ([26]).

As mentioned, the price for these improvements is an increased complexity in the opti-

mization problems to be solved for analysis and feddback design purposes. In general

non-convex BLMI constrained problems need to be solved. Although some effective algo-

rithms have been proposed to deal with issues ([81], [82]), BLMI problems are not yet a

mature technology, in the sense that they cannot be straightforwardly solved by running

reliable algorithm, without having a deep knowledge of the mathematical details. Further-

more they require a higher computational burden with respect to LMI problems, but given

the fast growth of nowadays processors technology, this could not be a strong limitation.

4.4.1 Piecewise quadratic Lyapunov functions

A natural choice to extend the quadratic invariance conditions given in 4.2, is to adopt

piecewise quadratic functions. It’s easy to guess that, searching for a common quadratic

Lyapunov function for all the member systems of the polytopic inclusion can be very lim-

iting. Indeed this has been established in the literature by long time, as in the context of

absolute stability, the Lure Postinikov functions ([15] ch. 7), associated with the Popov

criterion in the frequency domain, which is known to be less conservative than the classic

circle criterion (springing from quadratic stability considerations), can be seen as a par-

ticular case of piecewise quadratic functions.

In [34], [83] a more general piecewise quadratic representation, based on a suitable state
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space partition, has been proposed for the following class of piecewise affine systems

ẋ = Ai + ai, x(t) ∈ Xi (4.48)

where Xi are suitably defined cells covering a finite region or the entire state space. The

analysis is presented for this class of systems, since it will be exploited in chapter 5

to refine the stability analysis of a class of bilinear saturated systems arising in power

electronic applications. However it is easy to adapt all the results here presented, for

systems in the form (4.46) or (4.47). Consider a Lyapunov function composed by different

quadratic “pieces” which stabilize the system whose dynamics is defined by Ai inside the

cell Xi where this representation holds. The basic idea is to define a quadratic Lyapunov

function for each cell Xi, in this way conservatism is clearly reduced, since each “piece”

has to provide stability only for the dynamics of the cell it is associated with.

For the sake of simplicity, assume the cells Xi are closed polyhedral sets with disjoint

interiors, and that ai = 0 the for the cells containing the origin. Now let the Lyapunov

candidate function be V (x) = xTPix, for x ∈ Xi; in order to ensure continuity across the

boundaries of the partitioning cells the following conditions need to be fulfilled

Pi = F T
i TFi

F̄i

[

x

1

]

= F̄i

[

x

1

]

if x ∈ Xj ∩Xi

F̄i = [Fi fi].

(4.49)

The existence of parametrizing matrices Fi, ensuring continuity, is guaranteed by the

hypothesis of polyhedral cells, furthermore a solution of the above conditions satisfying

fi = 0 for the sectors containing the origin can always be computed. Note that matrices

Pi depends linearly on the decision variables that are collected in the symmetric matrix

T . Hence the search for a piecewise quadratic Lyapunov function for autonomous LDIs as

(4.48), is still an LMI problem.

Now denote with I0 the set of indexes i such that Xi contain the origin, the candidate

Lyapunov function can be written in the general form

V (x) =







xTPix if x ∈ Xi, i ∈ I0



x

1





T

P̄i




x

1



 if x ∈ Xi, i /∈ I0
(4.50)

where Pi = FiTFi, P̄i = F̄iT F̄i. The main result regarding this representation can thus

be stated ([34])

Theorem 4.4.1 Consider symmetric matrices T , Ui, Wi such that Ui, Wi have non neg-

ative entries, while Pi, P̄i satisfy

{

AT
i Pi + PiAi + ET

i UiEi < 0

Pi − ET
i WiEi > 0

i ∈ I0 (4.51)
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{

ĀT
i P̄i + P̄iĀi + ĒT

i UiĒi < 0

P̄i − ĒT
i WiĒj > 0

i /∈ I0 (4.52)

where

Ēi = [Ei ei], Ēi

[

x

1

]

≥ 0, x ∈ Xi (4.53)

then any continuous piecewise C1 trajectory of system (4.48) converges to the origin expo-

nentially.

Proof By the definition of Ēi in (4.53), it can be verified that each polyhedral cell Xi can

be characterized by the following inequalities







xTET
i UiEix ≥ 0 ifi ∈ I0




x

1





T

ĒT
i UiĒi




x

1



 ifi /∈ I0
(4.54)

with a suitable choice of matrices Ui. Then, applying the S-procedure to the above in-

equalities and those related to positiveness of the quadratics xTPix and negativeness of

its time derivative inside the respective cells Xi, yields conditions (4.51), (4.52).

In view of this statement, a technique similar to what showed in (4.3.1) can be exploited

to estimate the system basin of attraction, searching the maximum unit level set LV (1)

contained in the region covered by the state-space partition. As in 4.3.1, a shape reference

setXR can be defined, and the scaling variable α, such that αXR ⊂ LV (1) under conditions

(4.51) can be maximized in the matrix variable T . If XR is an ellipsoid, than the previous

inclusion reads as α2V (x) ≤ xTRx ∀ x ∈ ∂XR. This condition has to be checked for each

cell, and, as it will be showed in 5.4, by S-procedure it can be formulated in terms of LMIs,

thus obtaining a generalized eigenvalue problem (GEVP).

As regards the control synthesis problem, all the previous analysis can be adopted also for

system (4.47), replacing Ai with (Ai + BiK) as far as a linear feedback control v = Kx

is concerned, or (Ai + BiKi), as far as a piecewise linear controller is concerned. In this

case the above reported matrix inequalities will become bilinear, due to the presence of

the variables K, Ki.

4.4.2 Polyhedral Lyapunov functions

In robust control theory literature ([84]) it has been well established that a class of uni-

versal Lyapunov candidates for LDIs are the so-called symmetrical polyhedral functions or

Minkowski functionals. Universality of this function class holds also when synthesis prob-

lems are concerned, i.e they can be used as control Lyapunov candidates as well. Here

the main results regarding polyhedral functions for polytopic LDIs are briefly sketched,

referring to the specific literature ([35], [85], [86]) for a complete discussion.

A polyhedral function can be expressed in the general form Vp(x) = ‖Fx‖∞, where F
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is a full rank column matrix. In order to analyze the properties of system (4.46), it is

convenient to express the function in a more explicit form as

Vp(x) = max
i

|Fix| (4.55)

that is positive definite if and only if the unit ball, characterized by the polyhedral set

P := {x| |Fix| ≤ 1, }, contains the origin in its interior. As mentioned, this class of

functions is universal for LDIs, specifically the following necessary and sufficient condition

can be stated: a positive definite polyhedral function in the form (4.55) is a Lyapunov

function for system (4.46) if and only if there exist M matrices (i.e Mij ≥ 0, for i 6= j) Hi

such that
FAi = HiF

Hi1̄ ≤ −β1̄
(4.56)

for some β > 0.

This condition can be exploited to obtain an estimation of the domain of attraction for

systems (4.1) under a given saturated feedback law. In this respect, a problem similar to

(4.15) can be formulated, by replacing the set inclusions with polyhedral sets representing

the level surfaces of function Vp(x), and the quadratic stability inequality with conditions

derived by (4.56) (see [13] ch. 4). This approach allows to eliminate conservatism intro-

duced by quadratic functions, however, by (4.56) it’s trivial to note that if the shape of

the polyhedral sets, and thus the function Vp(x) are not a priori fixed, BMI problems have

to be solved. Anyway, the solution of the arising non convex problem, is facilitated, since

polyhedral functions, as quadratic forms, are endowed with a duality property. The dual

representation of a polyhedral function is

Vp(x) = min {1̄α | Xα = x} (4.57)

where X is the matrix whose columns are the vertices of the polyhedral function unit ball.

Hence, alternatively to (4.56), the following dual inequalities, in the M matrices variables

Li, can be checked to elaborate on stability of (4.46)

AiX = XLi

1̄TLi ≤ −β1̄T .
(4.58)

As concerns the feedback synthesis problem, as mentioned the polyhedral functions have

been proved to be universal even as control Lyapunov candidates for systems in the form

(4.47). The necessary and sufficient condition associated with stabilizability of such sys-

tems is the following: the polyhedral function (4.55) is a control Lyapunov function for

system (4.47), if and only if there exist a matrix U and M matrices Pi such that

AiX +BiU = XPi

1̄TPi ≤ −β1̄T
(4.59)

hold for some positive β. Beside the bilinearity of conditions (4.56), (4.59), the main

drawback of polyhedral functions is that their computation is usually not trivial, and
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the computational burden in their construction and the solution of the above stated in-

equalities dramatically increases with the dimension of the system and the the number

of vertices of the polytope of matrices describing the LDI. This could be a limitation for

saturated systems with multiple inputs, as, by (4.10), it is easy to verify that the set of

vertices needed to define the LDI associated to the system increases exponentially with

the number of inputs m.

In order to motivate this claim, we sketch a standard iterative procedure, commonly used

to compute F ([84]), which is based on the so-called discrete Euler approximating system

(EAS) of (4.47), i.e

x(k + 1) ∈ co {[I + TsAi]x+ TsBiu} (4.60)

where Ts is the sampling time, and the equivalent of condition (4.59) for discrete time

systems

AkX +BkU = XPk

1̄TPk ≤ λ1̄T
(4.61)

for some λ < 1.

Assuming the existence of a polytope P0 including the origin, that for convenience is

represented in the form P =
{
x|F (0)x ≤ g(0)

}
, and fixing a contractive parameter λ̄ < 1

with some tolerance, i.e λ̄(1 + ǫ) < 1 for a given ǫ > 0, the main steps of the procedure

can be outlined as follows;

• Set i = 0, P(0) = P;

• Form the polytope Sk :=
{
(x, u)| F (k)([I + TsAi]x+ TsBiu) ≤ λ̄gk

}
in the extended

state (x, u);

• Compute the projection of the polyhedron Sk on the subspace associated with the

state component

P̃(i+1) =
{

x| ∃u | (x, u) ∈ S(i+1)
}

; (4.62)

• set P(i+1) = P̃(i+1) ∩ P;

• if P̃(i) ⊆ P̃(i+1)(1 + ǫ) stop, else iterate the procedure.

The algorithm ensures equation (4.61) to be satisfied with λ = λ̄(1 + ǫ) and X the set

of vertices of the polyhedron computed as the limit of the converging sequence Pk. It

can be proved that the polyhedral function thus obtained is indeed a Lyapunov function

for the original time-continuous system, furthermore the obtained results can be exploited

to construct a linear variable structure control law for (4.47). On the other hand, it’s

easy to see that the computational burden of the above procedure clearly depends on

the system dimension and the number of vertices corresponding to the LDI description.

Moreover the obtained control laws, although continuous, are not given in an explicit form,

introducing difficulties in the implementation. In order to overcome this drawbacks, the

so-called homogeneous polynomial functions, have been proposed, allowing in particular
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an explicit formulation of the control law without impairing universality, while also the

computational burden is slightly reduced. Here this class of functions is not reported for

the sake of brevity, the details can be found in [35], [87].

4.4.3 Composite quadratic Lyapunov functions

In this last Subsection a pair of so-called composite quadratic functions ([36]) is considered,

the name stems from the fact that they are composed by families of quadratic functions.

Specifically, the so-called max-quadratic functions ([23], formed by the point-wise maxi-

mum of quadratics defined by l positive definite matrices Qj

Vmax =
1

2
max

j=1,...,l
xTQjx (4.63)

and the convex hull quadratic functions

Vc(x) =
1

2
min
λ∈Γ

xT





l∑

j=1

λjQj





−1

x (4.64)

where Γl :=
{

λ :
∑l

i=0 λi = 1, λi ≥ 0
}

will be discussed. The properties of this pair of

functions have been deeply analyzed in the literature, showing how less involved conditions

about stability and stabilizability of polytopic LDIs can be obtained with respect to stan-

dard polyhedral functions ([88], [89], [90]). Before sketching the main results concerning

this function families, some preliminary properties are recalled.

Functions (4.63), (4.64) are discussed together since they are related by a conjugacy prop-

erty in the sense of convex analysis; according to the standard definition ([91]) the conju-

gate of a convex function f(x) is given by f∗(ξ) = supx {ξx− f(x)}. Then applying the

definition to (4.63), after some computation ([89]) it turns out that

V ∗
max(ξ) = Vc(ξ) =

1

2
min
λ∈Γl

ξT





l∑

j=1

λjQj





−1

ξ. (4.65)

This relationship is of crucial importance, since, on the basis of convex analysis results,

it allows to develop a duality theory [88] for linear differential inclusions. In plain words,

stability of system (4.46) can be checked either associating a convex Lyapunov function

directly to it, or considering its dual dynamics

ξ̇ ∈ co
{
AT

i ξ
}

(4.66)

associated with the conjugate of the original convex Lyapunov candidates. Formally the

following results has been established ([88])

Theorem 4.4.2 Given a convex positively homogeneous of degree 2 function function

V : Rn → R, then its conjugate V ∗is convex positive definite, positively homogenenous of

degree 2, and
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4.4. Improvements via non-quadratic Lyapunov functions

∂V (x)Ax ≤ −γV (x) ∀ x ∈ R
n, A ∈ co {Ai} (4.67)

∂V ∗(ξ)AT ξ ≤ −γV ∗(ξ) ∀ ξ ∈ R
n, AT ∈ co

{
AT

i

}
(4.68)

are equivalent.

This theorem, combined with the results reported in ([85]), states the equivalence of

exponential stability at the origin of systems (4.46) and (4.66). Vmax and Vp satisfies

the requirements of Th. 4.4.2: as regards Vmax it is convex (by definition), positive

homogeneous of degree 2 (i.e Vmax(αx) = α2Vmax(x)), and its unit level set is given by the

intersections of the ellipsoids defined by the matrices Qj , i.e LV max(1) = ∩E(Qj). While,

as far as the convex hull function is concerned the following properties holds: Vc is convex

positive homogeneous of degree 2, continuously differentiable and its unit level set is given

by the convex hull of the ellipsoids defined by the matrices Q−1
j , i.e LV c(1) = co

{

E(Q−1
j )
}

.

For this reason Vc is called convex hull function, and it can be alternatively described as

the convex hull of quadratics 1
2x

TQ−1
j x.

Since for LDI asymptotic and exponential stability are equivalent, the above result can be

exploited to obtain general stability results similar to what reported for the other families

of Lyapunov candidates. In this respect, exploiting Th. 4.4.2, and the conjugacy between

Vc and Vmax = V ∗
c , the main result concerning stability of (4.46) is here recalled

Theorem 4.4.3 Let positive definite matrices Qk ∈ R
n×n, k ∈ [1, l] be given to construct

Vmax and Vc defined in (4.63), (4.64) respectively.

• For γ ∈ R, if there exists δijk ≥ 0, j, k ∈ [1, l] such that

AT
i Qk +QkAi ≤

l∑

j=1

δijk(Qj −Qk)− γQk ∀k ∈ [1, l] (4.69)

then ∀x ∈ R
n, A ∈ co {Ai} it holds: ∂V T

maxAx ≤ −γVmax.

• For γ ∈ R, if there exists δijk ≥ 0, j, k ∈ [1, l] such that

QkA
T
i +AiQk ≤

l∑

j=1

δijk(Qj −Qk)− γQk ∀k ∈ [1, l] (4.70)

then ∀x ∈ R
n, A ∈ co {Ai} it holds: ∂V T

c Ax ≤ −γVmax.

It’s further to remark that inequalities (4.69), (4.70) are not equivalent since they provide

only sufficient conditions for Vmax, Vc to be Lyapunov functions. In other words, if one

of the two condition is not satisfied, the other can be checked, this doubles the number of

tools that can be exploited to analyze and estimate the stability region of LDIs. When

i = 2, by using S-procedure, it’s possible to show that condition (4.69) becomes also

necessary (see [75] pag. 73).

In order to express the set inclusions for the local validity of the PLDI (4.10) associated

to saturate systems, the following properties are introduced ([92])
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Lemma 4.4.4 Let Hu ∈ R
m×n and L(Hu) := {x| Hu,wx ≤ 1, w ∈ [1,m]}, then

• LV c(1) ⊂ L(H) ⇔ 2HT
q,w ∈ LV c∗ ∀ w ∈ [1,m]

• LV max(1) = LV c∗(1) ⊂ L(Hu) ⇔ 2HT
u,w ∈ LV c(1) ∀w ∈ [1,m]

Proof Vc and V ∗
c = Vmax are positive definite and positive homogeneous of degree two,

hence they induce a pair of polar norms: ‖x‖c = (2Vc(x))
1/2, ‖x‖∗c = (2V ∗

c (x))
1/2. It

can be verified that for any z, and any δ > 0, |zTx| ≤ 1 for all ‖x‖c ≤ δ if and only if

‖z‖∗c ≤ 1/δ. Applying this fact with δ =
√
2 and z = HT

u,w yields |Hq,wx| ≤ 1 for all

Vc(x) ≤ 1, if and only if V ∗
c (Hu,w) = 4V ∗

c (H
T
u,w) ≤ 1. This prove item one of the lemma,

the second item can be showed similarly.

Based on the above lemma and Th. 4.4.3 the following invariance conditions for the level

sets LV c(1), LV max(1) can be given

Theorem 4.4.5 Let Vc be the convex hull function formed by matrices Qk as defined in

(4.64), and take γ > 0, if there exist matrices Cu, Hu and numbers δijk ≥ 0 such that

Qk(A+B(DiCu +D−
i Hu)

T + (A+B(DiCu +D−
i Hu)Qk ≤ δijk

l∑

k=1

δijk(Qj −Qk)− γQk

2HT
u,wQjHu,w ≤ 1

∀i ∈ [1, 2m], j, k = 1, . . . , l, w = 1, . . . ,m

(4.71)

then for the saturated closed-loop system (4.1) it holds

∂V T
c (Ax+Bsat(Cux)) ≤ −γVc ∀x ∈ LV c(1) (4.72)

Theorem 4.4.6 Let V ∗
c = Vmax be the max quadratic function formed by matrices Qk as

defined in (4.63), and take γ > 0, if there exist matrices Cu, Hu and numbers δijk ≥ 0

such that

(A+B(DiCu +D−
i Hu)

TQk +Qk(A+Bp(DiCu +D−
i Hu) ≤ δijk

l∑

k=1

δijk(Qj −Qk)− γQk

2Hu,w ∈ LV c

∀i ∈ [1, 2m], j, k = 1, . . . , l, w = 1, . . . ,m

(4.73)

then for the saturated closed-loop system (4.1) it holds

∂V T
max(Ax+Bsat(Cux)) ≤ −γVmax, ∀x ∈ LV c∗(1) = LV max(1) (4.74)

the above theorems can be proved by combining Th. 4.4.3 lemma 4.4.4 and the results

of Th. 4.2.4. Following the same reasoning made in 4.3 the invariant sets LV c(1) and

96



4.4. Improvements via non-quadratic Lyapunov functions

LV max(1) can be used to obtain an estimation of the system domain of attraction, maxi-

mizing their size by formulating the following two problems

sup
Qk,γ,δijk,Cu,Hu

α

s.t. 4.71

αXR ⊂ LV c

γ > 0, δijk ≥ 0, Qj > 0 ∀ i, j, k

(4.75)

sup
Qk,γ,δijk,Cu,Hu

α

s.t. 4.73

αXR ⊂ LV max

γ > 0, δijk ≥ 0, Qj > 0 ∀ i, j, k.

(4.76)

Here the stabilizability and feedback synthesis problem has been concerned, stability anal-

ysis trivially follows if matrix Cu is given. Noting that conditions in Lemma 4.4.4 can be

respectively expressed as the inequalities
[

1 Hq,w

HT
q,w

∑l
k=1 λkQk

]

≥ 0

[
1
2 Hu,wQk

QkH
T
u,w Qk

]

≥ 0

(4.77)

similarly to what in (4.3), the above problems can be cast into BLMIs as long as the shape

reference set XR is convex. If a single element Q is considered, it is straightforward to

verify that the quadratic stability LMI problem (4.18) is recovered.

Recently it has been proved in ([26]) that composite quadratic functions are universal for

polytopic LDIs, hence the stability and stabilizability conditions obtained before can be

showed to be also necessary if the numberl of considered quadratics is let to be any integer,

i.e l > n, where n is the order of systems defining the LDI. Although conservatism in the

Lyapunov analysis would be completely eliminated, the computational burden increases

if a larger set of quadratics is used to construct the composite funcitions, even it is in

general less demanding with respect to a polyhedral function based approach.

As mentioned, all the above results can still be enhanced letting the feedback law to be

nonlinear; in [24] a nonlinear synthesis approach has been proposed for the stabilization

problem of LDIs in the form (4.47). Since the convex hull quadratic function is endowed

with continuous differentiability, it is preferred for synthesis purposes, as it allows to ensure

continuity of the resulting control law. The main result discussed in [24] is here reported

Theorem 4.4.7 Let Vc be the convex hull function defined by matrices Qk = QT
k , and

λ > 0. Suppose there exist matrices Yk, and numbers δijk ≤ 0, j, k ∈ [1, l], such that

QkA
T
i +AiQk +BiYk + Y T

k Bi ≤
l∑

j=1

δijk(Qj −Qk)− γQk (4.78)
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Chapter 4. CONTROL OF LINEAR SATURATED SYSTEMS

then a stabilizing nonlinear feedback law can be constructed as follows. For each x let

λ∗(x) = argminλ∈Γl
xT
(
∑l

k=1 λkQk

)−1
x, and denote

Y (λ∗(x)) =
l∑

k=1

λ∗kYk, Q(λ∗) =
l∑

j=k

λ∗kQk, K(λ∗) = Y (λ∗)Q(λ∗)−1 (4.79)

defining k(x) = K(λ∗(x))x, it follows

max{∇Vc(x)T (Aix+Bik(x))} ≤ −βVc(x) ∀x (4.80)

for some β > 0.

The above result can be easily specified for saturated linear systems represented by the

local LDI (4.10), extending the claim of Th. 4.4.5;

Theorem 4.4.8 Let Vc be the convex hull function formed by matrices Qk as defined in

(4.64), and take γ > 0, if there exist matrices Yk, Zk and numbers δijk ≥ 0 such that

AQk +QkA
T +BDiYk + (BD−

i Yk)
T +BD−

i Zk + (BD−
i Zk)

T ≤
l∑

j=1

δijk(Qj −Qk)− γQk

[
1
2 Zk,w

ZT
k,w Qk

]

≥ 0

∀i ∈ [1, 2m], j, k = 1, . . . , l

(4.81)

then

∂V T
c (Ax+Bsat(Cux)) ≤ −γVc ∀x ∈ LV c(1). (4.82)

According to Th. 4.4.7, the nonlinear feedback law can then be recovered as Cu(λ
∗(x)) =

Y (λ∗(x))Q(λ∗(x))−1, Hu(λ
∗(x)) = Z(λ∗(x))Q(λ∗(x))−1. The method seems promising

to cope with practical problems and effectively extend the results obtained by simple

linear controllers, however the computational burden needed to compute the nonlinear

gain matrix is significantly increased. Indeed, beside a non convex BMI problem, a convex

minimization problem providing λ∗(x) has to be solved on-line since it depends on the

current state x.
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Chapter 5

Control Design for Power

Converters fed by Hybrid Energy

Sources

This chapter addresses saturated control of a class of power systems driven by

battery/supercapacitor hybrid energy storage devices. The power flow from the

battery and the supercapacitor to the electrical load is actively controlled by two

bidirectional buck-boost converters. The LDI description presented in chapter 4

is exploited to deal with the resulting multiple saturated inputs and bilinear state-

space model. Stability and performance are optimized, casting the control design

problem into a numerically efficient problem with linear matrix inequalities.

5.1 Introduction and motivation

The battery/supercapacitor hybrid energy storage systems are widely used in electric,

hybrid and plug-in hybrid electric vehicles, and have received a considerable interest in

the specific literature (see [93],[94], [95],[96] for a comprehensive overview). Under the

fast growth of renewables, they have also found applications in wind systems [97], [98],

photovoltaic systems [99], and microgrids [100].

It is generally accepted that combining different types of energy storage devices can pro-

vide several advantages over using only one type of such devices alone [101]. In this respect

batteries and supercapacitors are commonly combined to obtain a system having both the

high energy density of the batteries and the high power density of the supercapacitors.

Such a combination is able to provide very high current to the load in a short period of

time, while maintaining a safe discharging current from the batteries. This strategy would

extend the life time of the batteries without sacrificing the performance of the whole sys-

tem.

The main functions of supercapacitors in such systems are to provide high currents during

hard transients (such as motor start), absorbing possible wind/solar power excess, and
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Chapter 5. CONTROL DESIGN FOR POWER CONVERTERS FED BY HYBRID ENERGY SOURCES

storing energy from regenerative braking. To realize these functions, effective strategies

are required to allocate current flow among the different energy storage devices. The sim-

plest way is to connect the battery and the supercapacitor in parallel. This earlier method

has an obvious limitation since the currents from the power sources can not be controlled.

To actively steer system currents, especially the current from the battery, dc-dc convert-

ers are needed to connect the power sources and the load or DC bus. There are various

configurations and control strategies to implement active current control, as summarized

in [95],[102],[96]. In some configurations [103], [104], [101], a single dc-dc converter is used

to connect the battery and the supercapacitor, however the most commonly used config-

uration consists of two bidirectional buck-boost converters, each driven by the battery or

supercapacitor. The outputs of the two dc-dc converters are connected in parallel to the

load or DC bus, see Fig. 5.1. Such a configuration has been considered, for example, in

[105], [102], [106], [100], where different control strategies have been proposed to actively

steer the current flow from the battery and the supercapacitor. A common strategy is to

use a certain energy management algorithm to determine a reference current that is needed

from the battery or the supercapacitor, then use a simple decentralized PI control on each

dc-dc converter to track the respective reference current. Such a strategy assumes ideal

converters, disregarding the power loss in the circuit elements, furthermore the coupling

between the power converters is not considered. Finally saturation of the converter control

inputs and system bilinear terms are usually discarded in the regulators design procedure

which considered a linearized system around the predefined working point. As a result a

very small stability region of the actual nonlinear system can be ensured by means of this

techniques. As mentioned many times, power electronic systems are expected to robustly

work in a considerable wide range of situations which can bring them to drift from the

predefined equilibrium point, hence it would be profitable to guarantee a wide stability

region and a certain degree of performance over multiple conditions. In addition, on a

practical viewpoint, even if stability is preserved, the output power in the load may not

be the desired value and the tracking performance may not be satisfactory.

Here the typical configuration with two bidirectional dc-dc converters driven by corre-

sponding battery and supercapacitor as in Fig. 5.1 is considered; following the approach

proposed in [37] first the state-space description for the whole system is formally derived

in order to enlighten the couplings among circuit variables dynamics in the two converters

connected to the common load. Then the resulting bilinear saturated model is then de-

scribed with linear differential inclusions (LDIs) with four vertex. Based on this polytopic

description, the method discussed in ch. 4 and already applied to a single input power

converter in [107], is extended to design a feedback control law for the considered MIMO

system via optimization algorithms.

The main control objective can be regarded as a reference tracking for some variables

such as battery current, supercapacitor current, load voltage and load current. Since the

hybrid energy storage system has two control inputs (the duty cycles) of the two dc-dc

converters, it can track references for two circuit variables. Instead of choosing the battery
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Re RL1 L1

S1

C2

E D1

Load

S2

S3

S4
D2

L2RL2Ru

C1

Cu

CoR

Figure 5.1: Parallel topology of the buck-boost converters.

current and the supercapacitor current, commonly adopted in the specialized literature,

here the battery current and the voltage of the load are considered as controlled outputs.

This choice is motivated by the fact that the supercapacitor is playing a supporting role

and it can supply or absorb almost any current as needed, while the state-of-health of the

battery (which depends on its charging/discharging profiles) and the performance at the

load side are of high priority for the above mentioned typical applications.

The chapter is organized as follows. In Section 5.2 the averaged system dynamics are

formally derived, in Section 5.3 the system bilinear terms and saturation nonlinearity are

described by mean of a PLDI, based on this characterization a robust control solution,

maximizing the system tracking domain with ensured convergence rate is designed in a

similar fashion of what reported in 4.3.3. In 5.4 formal stability results are improved

by refining the system bilinearity description via a piecewise linear differential inclusions,

and associating the resulting representation with the class of piecewise quadratic Lya-

punov functions discussed in 4.4.1. Section 5.5 ends the chapter with simulation and

experimental results obtained on a reduced scale hybrid system.

5.2 State-space averaged model

In this section, the state-space averaged model for the hybrid energy storage system is

derived, following the well-known averaging method initiated by Middlebrook in [108].

As mentioned the the circuit topology of the hybrid energy storage system consists of

two standard bi-directional buck-boost converter connected in parallel at the load side,

and fed by a battery and a supercapacitor respectively. For semplicity of presentation,

the battery and the supercapacitor are described with very simple models which only in-

clude parasitic series resistances Re and Ru, respectively. More comprehensive models of

these devices ([109]) can be considered. However, as will be explained later, this would

will only increase the considered system order, without affecting the crucial feature of

system dynamics. Hence higher order dynamics related to battery and supercapacitors

modeling can be easily added “plugged-in” the proposed framework to improve enhance

real systems performances. Here a simple resistive load is considered, anyway, with small

variations, it can be replaced by more realistic load topologies, e.g as a an inverter DC-bus.
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Circuit operating modes

Duty cycle S1 S2 S3 S4

P1 On Off On Off

P2 On Off Off On

P3 Off On Off On

P4 Off On Off On

Table 5.1

i1

vuCu

E C1

C2

Co

Re

Ru

Ron3

Ron1 R

RL1

RL2

L1

L2

v1

v2

vo

i2

Figure 5.2: Equivalent circuit for mode P1.

5.2.1 State space description for 4 operational modes

The two MOSFETs S1 and S2 operate synchronously, when one is off, the other is on, the

same applies for S3 and S4, thus four operating modes for the switching circuit can be

considered, as shown in Table 5.1. For the sake of simplicity the two buck-boost converters

are assumed to be operated at the same switching frequency. To obtain an averaged

model, each mode is considered separately, then a weighted average of the obtained the

state-space descriptions is performed with the durations of each possible condition, as

weighting coefficients. As regards the operating mode P1, S1 and S3 are on, while S2

and S4 are off. In this mode, S1 and S3 can be simply modeled as resistors Ron1 and

Ron3, respectively. The on resistance for S2, S4 are denoted Ron2 and Ron4, respectively,

as reported in equivalent circuit for this mode drawn in Fig. 5.2. Let v1, v2, vu, vo be

the capacitor voltages and i1, i2 be the inductor currents (see the assignment in Fig. 5.2).

Denote the state vector as ζ = [v1 v2 vu i1 i2 vo]
T , then the state-space description can

be obtained by applying Kirchoff’s voltage law and Kirchoff’s current law. The following
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matrices are defined to compact the notation for the 4 operating modes:

A11 =






− 1
ReC1

0 0

0 − 1
RuC2

1
RuC2

0 1
RuCu

− 1
RuC2




 , A12 =






− 1
C1

0 0

0 − 1
C2

0

0 0 0




 , A21 =






1
L1

0 0

0 1
L2

0

0 0 0






A22,1 =






−RL1+Ron1
L1

0 0

0 −RL2+Ron3
L2

0

0 0 − 1
RC0




 , Ap1 =

[

A11 A12

A21 A22,1

]

(5.1)

and Be = [ 1
ReC1

0 0 0 0 0]T . By these definitions, the state-space description for

operating mode P1 results:

ζ̇ = Ap1ζ +BeE (5.2)

where E is the battery voltage. Similar considerations apply for the other modes, whose

circuit can be drawn similarly to what in 5.2; as regards P2 (S1, S4 on, S2, S3 off), defining

A22,2 =






−RL1+Ron1
L1

0 0

0 −RL2+Ron4
L2

− 1
L2

0 1
Co

− 1
RCo




 , Ap2 =

[

A11 A12

A21 A22,2

]

(5.3)

yields the state space description:

ζ̇ = Ap2ζ +BeE. (5.4)

While as concern modes P3, P4, denoting

A22,3 =






−RL1+Ron2
L1

0 − 1
L1

0 −RL2+Ron3
L2

0
1
Co

0 − 1
RCo




 , A22,4 =






−RL1+Ron2
L1

0 − 1
L1

0 −RL2+Ron4
L2

− 1
L2

1
Co

1
Co

− 1
RCo






(5.5)

and

Ap3 =

[

A11 A12

A21 A22,3

]

, Ap4 =

[

A11 A12

A21 A22,4

]

(5.6)

the following state-space descriptions are respectively obtained for operation mode 3,4

ζ̇ = Ap3ζ +BeE (5.7)

ζ̇ = Ap4ζ +BeE (5.8)

5.2.2 Averaged model for the open loop system

On the basis of the previously obtained state-space representation the system averaged

dynamics can be expressed as

˙̄ζ =

(
4∑

i=1

diAPi

)

ζ̄ +BeE, (5.9)
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where ζ̄ denotes the state averaged vector over one switching period T , while di represents

the duration for each operating mode normalized over T . It is clear that the average

of the matrices can be carried out by each element, such as APi(j, k), i = 1, 2, 3, 4. This

element-wise averaging may be convenient when APi’s have good structures. However, the

determination of di’s is a tedious procedure, since they depend not only on the converters

duty cycles D1 and D2, associated with the on state of S1, S3 respectively, but also

on the time difference between the turning-on of instants of the two switches. Denote

this time difference as δT (δ ∈ [0, 1)), i.e.., S3 is turned on after S1 is turned on by

δT . Now assume that δ = 0, i.e.., S1 and S3 turning on instants are synchronous. If

D1 > D2, then d1 = D2, d2 = D1 − D2, d3 = 0, d4 = 1 − D1, while if D1 < D2, then

d1 = D1, d2 = 0, d3 = D2 − D1, d4 = 1 − D2. The situation would be more involved

if δ 6= 0, since the expressions for d′is would depend on the relative size of δ,D1 and

D2, as a result the analysis should be broken down into several cases. Fortunately, the

expressions for di’s it’s not needed in this case, thanks to the properties of the matrices

Api, i = 1, 2, 3, 4. In fact, it turns out that the resulting averaged model does not rely

on δ and has only one expression for all possible cases. First note that all the 4 APi’s

have the same blocks A11, A12 and A21 (see (5.1), (5.3), (5.6)), thus they are these blocks

are not affected by the averaging procedure, and only the nonzero elements of the block

A22,i, i = 1, 2, 3, 4 need to be considered. Let begin with A22,i(1, 1) first; by (5.1), (5.3),

(5.5) it can be verified that the average of A22,i(1, 1), i = 1, 2, 3, 4 over one switching

period is A22,avg(1, 1) = −RL1+D1Ron1+(1−D1)Ron2

L1
. Similarly, the average of A22,i(2, 2) is

A22,avg(2, 2) = −RL2+D2Ron3+(1−D2)Ron4

L2
. As concerns A22,i(1, 3), it is 0 for modes P1, P2

(S1 on) and equals − 1
L1

for modes P3, P4 (S1 off). Hence A22,avg(1, 3) = − 1
L1

(1 − D1).

Similar arguments can be used to average the other elements;

A22,avg(2, 3) = − 1

L2
(1−D2), A22,avg(3, 1) =

1

Co
(1−D1)

A22,avg(3, 2) =
1

Co
(1−D2), A22,avg(3, 3) = − 1

RCo
.

(5.10)

Combining the above results and defining

W0 =






−RL1+Ron2
L1

0 − 1
L1

0 −RL2+Ron4
L2

− 1
L2

1
Co

1
Co

− 1
RCo




 , W1 =






Ron2−Ron1
L1

0 1
L1

0 0 0

− 1
Co

0 0






W2 =






0 0 0

0 Ron4−Ron3
L2

1
L2

0 − 1
Co

0






(5.11)

the average of A22,i’ can be expressed in the compact form

A22,avg =W0 +W1D1 +W2D2. (5.12)

Finally, to describe the averaged model, denote

Â0 =

[

A11 A12

A21 W0

]

, Â1 =

[

0 0

0 W1

]

, Â2 =

[

0 0

0 W2

]

(5.13)
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5.2. State-space averaged model

then the averaged model is

˙̄ζ = (Â0 + Â1D1 + Â2D2)ζ̄ +BeE (5.14)

the same method can be applied if more comprehensive models for the battery and the

supercapacitor are considered. The only difference will be a higher dimension of ζ due

to the additional variables associated to the battery and the supercapcitor parasitic ca-

pacitor voltage dynamics (see [109]). Assume that the new voltage variables are stacked

on top of the original state ζ. Since the capacitors in the battery/supercapacitor models

are not directly connected to the MOSFETs, like Cu, C1, C2, they will not affect A22,i’s.

Accordingly, the corresponding A11, A12 and A21 will be fixed but with higher dimensions.

Thus the structure of the averaged model is the same. In general system (5.14), can be

completed with a controlled output equation ȳ = Cζ̄ +DE, where ȳ is any combination

of two averaged state variables. As mentioned, here the tracking of desired references for

the battery current ib and the load voltage vo is considered; hence the output equations

specialize to

īb =

[

− 1

Re
0 0 0 0 0

]

ζ̄ +
1

Re
E

v̄o = [0 0 0 0 0 1]ζ̄ .

(5.15)

Since C1 and C2 are small filter capacitors, in the following i1 will be considered in place

of ib for convenience.

Model (5.14) can be used for simulation of the open-loop system under constant duty

cycles D1 and D2, as well as for the closed-loop system under particular control strategies.

However, it is not suitable for steady-state analysis or control design. For a power converter

driven by ideal voltage sources, a steady state will be reached (usually very quickly, e.g.,

within a few milliseconds) when a constant duty cycle is applied and the steady state can

be used to determine the corresponding equilibrium point for the system variables. The

steady state can be easily computed by setting ˙̄ζ = 0 in (5.14). When a supercapacitor is

used as a power source/sink, it would take much longer (e.g., from many seconds to a few

minutes) to reach a steady state. Furthermore, this steady state is generally not a useful

or a desired operating condition for the considered applications. The reason is that, at a

steady state, dv̄u/dt = 0, this implies that the supercapacitor is not supplying/absorbing

current and thus not assisting the power system. However, a nominal working condition,

which has to be a steady state (or an equilibrium point), needs to be considered for control

design (stabilization or tracking) purposes, in order to derive a perturbation model. To

handle this situation, a similar approach to what presented in 3.2 for Shunt Active Filters

can be applied; relying on a suitable supercapacitor sizing, capable of providing a time-

scale separation between the supercapacitor dynamics and the remaining state variables,

allows to exploit singular perturbation theory arguments and replace Cu with an ideal

voltage source whose value is varying “slowly” within a certain range. In this respect,

a robust feedback controller will be derived for a lower order “fast” subsystem, obtained

disregarding the supercapacitor voltage dynamics, but able to handle the the uncertain

and varying ideal voltage source value.
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When the supercapacitor Cu is replaced with an ideal voltage source Eu, a 5th order

averaged model can be derived with similar approach as in last section. Denote the state

variable and its average as ξ = [v1 v2 i1 i2 vo]
T , ξ̄, and Ve = [E Eu]

T , then the 5th

order averaged model can be written as

˙̄ξ = (Ā0 + Ā1D1 + Ā2D2)ξ̄ + B̄eVe (5.16)

where matrices Ā0, Ā1, Ā2 can be easily derived by those reported in (5.13) neglecting vu.

5.3 Saturated controller design for robust output tracking

As mentioned in the previous section, stabilization for the original hybrid energy storage

system as described in Fig. 5.1 and the 6th-order averaged model (5.14) is not a meaningful

problem since no steady state (or equilibrium point) is a desired operating condition as

it would imply null current provided/drained by the supercapacitor. The system has two

control inputs D1 and D2 then, in principle, the reference for an arbitrary two-dimensional

output, ȳ = Cξ̄ where C is a matrix of two rows, can be tracked. However, due to the

control input hard constraints D1, D2 ∈ [0, 1], the following facts should be realized:

• For the 5th order model where the supercapacitor is replaced with an ideal voltage

source Eu, for each output reference ȳref , there is a certain range for the voltages

pair (E,Eu) where tracking is possible. On the other hand, for a given range of

(E,Eu), there is a certain set of ȳref which can be feasibily tracked.

• For the original 6th order system with supercapacitor, any tracking can only last

for a finite time period, beyond which the supercapacitor voltage will drop (or rise)

out of the range where ȳref can be tracked. If some a priori information about

the power required by the load is available, e.g a benchmark periodic load profile

is known, then a suitable sizing of the supercapacitor, such that its voltage never

drifts from a predefined range during the load switching cycle, can be carried out, in

a similar fashion to what discussed in 3.2 as regards the DC-bus capacitor of Shunt

Active Filters. In addition, the battery reference current can be augmented with a

term, given by a slow control loop, devoted to keep the supercapacitor averaged volt-

age value unchanged over a load switching cycle. This can be achieved by exploiting

the averaging theory framework as in 3.4, or by constrained convex optimization

arguments ([102], [96]).

Here the focus is put on the fast varying dynamics control, neglecting the supercapac-

itor averaged voltage regulation, and regarding its slow variations as an uncertainty

to be managed by the feedback controller.
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5.3. Saturated controller design for robust output tracking

5.3.1 Converting the tracking problem to a stabilization problem

Based on the previous considerations, the 5th order model (5.16) is considered for control

design, selecting ȳ = [̄i1 v̄o]
T as the controlled output, it can be completed as follows

˙̄ξ = (Ā0 + Ā1D1 + Ā2D2)ξ̄ + B̄eVe

ȳ = Cξ̄
(5.17)

where Ve = [E Eu]
T and

C =

[

0 0 1 0 0

0 0 0 0 1

]

. (5.18)

Before designing a control law, a suitable nominal operating condition has to be chosen

for the variables: R0, Ve0 = [E0 Eu0]
T D10, D20, and ξ̄ss,0 satisfying

ξ̄ss,0 = −(Ā0 + Ā1D10 + Ā2D20)
−1B̄eVe0. (5.19)

Given a pair (E,Eu), a reference ȳref is feasible if there exist D1, D2 ∈ [0, 1] such that

Cξ̄ss,0 = ȳref where ξ̄ss,0 is the solution of the above equilibrium equation. Actually, it’s

worth to remark that due to the nonlinear nature of (5.19) if ibref , vo,ref are plugged

into ξ̄ss,0 in (5.19), and the remaining states and the two duty cycles are considered

as variables, some bifurcation-like behaviors, not unusual for power electronic systems

([110]), can occur. For the considered application, if the parasitic resistance RL1, RL2,

Re,Ru are accounted in the duty cycle calculation, for possibly feasible references cannot

be associated with D10, D20 belonging to the real field (see [37]).

The next natural step is to derive a perturbation model around a given nominal condition.

To this aim define x = ξ̄ − ξ̄ss,0, y = ȳ − Cξ̄ss,0, u1 = D1 − D10, u2 = D2 − D20 and

u = [u1 u2]
T . Denote also

A0 = Ā0 + Ā1D10 + Ā2D20, B = [Ā1ξ̄ss,0 Ā2ξ̄ss,0] (5.20)

then, by plugging ξ̄ = x+ ξ̄ss,0, D1 = u1+D10 and D2 = u2+D20 into (5.17) and applying

(5.19), yields the following perturbation model:

ẋ = A0x+ Ā1xu1 + Ā2xu2 +Bu+ B̄e(Ve − Ve0) + Ã0ξ̄ss,0

y = Cx.
(5.21)

where Ã0 accounts for a different load resistor from the nominal value. A feedback law can

be designed to stabilize the origin of the system (5.21) under the nominal condition where

Ve = Ve0 and for nominal load resistance value R0, however, it should be expected that,

on a real circuit, Ve 6= Ve0 as the battery and the supercapacitor voltage values are always

changing. Furthermore, the desired value for the output is also changed frequently and

the load resistance is not a constant in the most of the applications. To achieve robust

reference tracking in the presence of uncertainties a standard integral augmentation is

performed, defining

xa =

∫

(y − r)dt =

∫

(Cx− yref )dt (5.22)
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where r(t) is a generic desired reference profile superposed to the nominal condition ȳref .

Then, defining the corresponding augmented state xw :=

[

x

xa

]

, that includes the pertur-

bations of the voltages of three capacitors C1, C2, Co, the two inductor currents, and two

integrator outputs, along with matrices

Ā =

[

A0 0

C 0

]

, Āb1 =

[

Ā1 0

0 0

]

, Āb2 =

[

Ā2 0

0 0

]

B̄ =

[

B

0

]

, g =

[

B̄e(Ve − Ve0) + Ã0ξ̄ss,0

−yref

]

where the zero blocks have compatible dimension, the following augmented error dynamics

are obtained

ẋw = Āxw + Āb1xwu1 + Āb2xwu2 + B̄u+ g. (5.23)

Therefore the control design objective can be stated as

• Design a feedback control law u = f(xw) which stabilizes (5.23) at the origin with

a large stability region, under the nominal condition g = 0, and under the control

inputs constraint D1, D2 ∈ [0, 1].

It’s further to notice that, if the system drifts away from the nominal working con-

dition and goes to another equilibrium point, each state variable, in particular, the

integral xa, will still reach a steady state. This means that y− yref must go to zero

and the output y is regulated to the desired value yref .

5.3.2 State feedback law design via LMI optimization

In what follows, a stabilizing feedback for (5.23) under input constraint is presented, by

adopting and extending the techniques presented in 4.3. Beside input constraints, the

system is bilinear, here also bilinearity is handled by means of a polytopic inclusion,

following the philosophy already proposed in [109], [107], for single input converters.

Constraints Dj ∈ [Djmin, Djmax] ⊂ [0, 1], j = 1, 2 can be trivially mapped into the

variables uj , j = 1, 2, that is Djmin − Dj0 ≤ uj ≤ Djmax − Dj0. Denoting umj =

Dj0 −Djmin and upj = Djmax −Dj0, the constraints can be expressed as

− umj ≤ uj ≤ upj , j = 1, 2. (5.24)

These input limitations can be clearly enforced via a decentralized saturation function

sat(u) = [sat(u1) sat(u2)]
T similar to what in (1.1), i.e.

sat(uj) =







upj if uj > upj

uj ifuj ∈ [−umj , upj ]

−umj if uj < −umj

(5.25)
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5.3. Saturated controller design for robust output tracking

Considering a simple saturated state feedback law u = sat(Kx), where K =

[

K1

K2

]

∈ R
2×7,

the following closed loop system is derived

ẋw = (Ā+ Āb1sat(K1xw) + Āb2sat(K2xw))xw + B̄sat(Kxw). (5.26)

The nonlinear terms Āb1sat(K1xw), Āb2sat(K2xw) can be described (with some conser-

vatism) with a polytopic inclusion, according to the “global linearization” principle (see

[75] ch.4). In particular, since umj ≤ Kj ≤ upj (where Kj denotes the jth raw of matrix

K), defining

Ã1 = Ā− um1Āb1 − um2Āb2

Ã2 = Ā− um1Āb1 + up2Āb2

Ã3 = Ā+ up1Āb1 − um2Āb2

Ã4 = Ā+ up2Āb1 + up2Āb2

the following four vertices inclusion characterizes system (5.26)

ẋw ∈ co
{

Ãi + B̄sat(Kxw)
}

xw, i = 1, . . . , 4. (5.27)

Thus the same approach applied to describe saturated linear system in (4.2) can be applied

to the saturated inclusion (5.27), obtaining the PLDI

ẋw ∈ co
{

(Ãi + B̄DjK ++B̄D−
j Hu)

}

xw, i = 1, . . . , 4, j = 1, . . . , 4 (5.28)

which is similar to (4.10). Therefore all the LMI-based optimization methods presented

in 4.3 can be exploited to design a feedback control law meeting the system specifications.

As mentioned, for this application, the main objective is to ensure a wide stability region

of the desired working point, however a certain degree of system responsiveness is usually

required. Recalling the considerations reported in 4.3.3 this request can be mapped into

a convergence rate request for the closed-loop system, which, due to the limited control

authority, has to be suitably balanced with the need of a large basin of attraction. As a

consequence, taking a classic quadratic control Lyapunov candidate V (xw) = xTwPxw, the

following problem, similar to what in 4.45 is formulated

inf
Q>0,Y,γ

γ

s.t. ÃiQ+QÃT
i + B̄Y + Y T B̄T < −2ηQ, i = 1, . . . , 4

[

min(u2mj , u
2
pj) Yj

Y T
j Q

]

≥ 0, j = 1, 2

[

Q I

I γ

]

≥ 0

for a given convergence rate η the problem is an EVP.

By result of Th. 4.2.4 and convexity of the matrices set
{

Ãi

}4

i=1
, it is straightforward to

prove that the inequality constraints in (5.29) ensures quadratic stability of the inclusion
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Circuit parameters

Inductor L1 [µH] 680

Battery model resistor Re [Ω] 0.04

Inductor parasitic resistor RL1 [Ω] 0.25

Battery side filter capacitor C1 [mF] 1

Inductor L2 [µH] 39

Supercapacitor model resistor Ru [Ω] 0.011

Inductor parasitic resistor RL2 [Ω] 0.114

Capacitor C2 [m F] 0.22

Supercapacitor Cu [F] 116

Mosfet on-resistance Ron [Ω] 0.021

Load side capacitor C [mF ] 1

Table 5.2

(5.28) inside the ellipsoid E(Q−1), which is in turn contractive invariant. The scaled unit

ball δI, with δ = 1
√
γ has been selected as shape reference set with respect to compare

the ellipsoid size, providing an estimation of the basin of attraction. Finally, the optimal

state feedback gain matrix K can be recovered as K = Y Q−1.

5.3.3 Numerical result for an experimental setup

In order to motivate the extended stability analysis provided in 5.4, the results of the

control design method reported in the previous section are presented for an experimental

system constructed according to the topology reported in Fig.5.1. The circuit fixed pa-

rameters are provided in Tab. 5.2, while the load resistance R is variable. In the tests

reported in 5.5, it is switched between 2Ω (heavy load) and 200Ω (light load). The control

design has been carried out considering R0 = 2Ω as the nominal condition, while the

nominal battery voltage has been chosen as E0 = 6V and the nominal voltage for the

ideal voltage source in place of the supercapacitor is selected as Eu0 = 7V . The nominal

reference output vector is defined as ȳ0 = [3 10]T . By solving (5.19) for these numerical

data, it turns out that the unique duty cycles paie (D1, D2) that produces this nominal

output is (D10, D20) = (0.4933, 0.3822), and the corresponding steady state for the 5th-

order averaged model is ξ̄ss,0 = [5.88 6.938 3 5.632 10]T . For the duty cycle, the

restriction D1, D2 ∈ [0.2, 0.8] is imposed to take into account realistic converters, which

cannot operate over the full range of the duty cycle values, thus the corresponding bounds

on u1, u2 are: um1 = 0.2933, up1 = 0.3067, um2 = 0.1822, up2 = 0.4127. By solving

(5.29) for these parameters and with η = 5, 25, by means of the standard MATLABTM

solver “mincx” (which minimizes linear objective under LMI constraints), the following
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two matrices are obtained

K5 =

[

−0.002 0 −0.037 0 0.02 −1.16 −0.57

0 0 −0.002 0 −0.006 1.8 −5.08

]

K25 =

[

−0.004 0 −0.08 −0.001 0.04 −6.6 −4.11

0 0 −0.008 −0.002 −0.03 10.11 −23.9

] (5.29)

and the problem optimal values are respectively γ = 12.21, 321.1, corresponding to α =
1√
γ = 0.288, 0.056. Computing the maximal scaled unit ball, contained in the invariant

ellipsoid, as α×
{
xw ∈ R

T : xTwxw ≤ 1
}
, it turns out that very small domains of attraction

are ensured. Such estimates are not very useful considering the possible initial conditions

of the circuit variables (which can be evaluated by sweeping D1, D2 over the admissible

range and founding the corresponding steady state by 5.19). The reason for such an high

conservative results is twofold; bilinear terms are pretty roughly approximated by the four

vertices inclusion (5.27), and, as remarked in 4.4, quadratic stability tools can be very

limiting when applied to nonlinear systems.

In the the next section two countermeasures will be taken in the same fashion of the

work [107] where a single boost converter was considered: first the system bilinearity is

described by means of a piecewice LDI model, in order to obtain a closer description of the

original system, then, in the light of the methods presented in 4.4.1, a piecewise Lyapunov

candidate will be considered in order to extend the domain of attraction estimation.

5.4 Stability and tracking domain analysis via piecewise

quadratic Lyapunov functions

Here the objective is to extend the stability results obtained in the previous section by

means of an LDI representation and quadratic Lyapunov candidates. Moreover the sta-

bility region of non nominal working condition, caused for example by battery and super-

capacitor voltage variations, a different load resistance, or a desired reference term r 6= 0,

will be discussed considering a non null g in (5.23). Assuming that a linear feedback law

has been designed relying on the techniques presented in the previous section, the resulting

closed loop

ẋw = Āxw + Āb1sat(K1xw)xw + Āb2sat(K2xw)xw + B̄sat(Kxw) + g (5.30)

where B1, B2 are the rows of matrix B, can be described by means of piecewise LDIs, as

previously mentioned. In general, the stability properties of a generic working point xe

satisfying

0 = Āxe + Āb1(K1xe)xe + Āb2(K2xe)xe + B̄(Kxe) + g (5.31)

need to be considered. Note that the admissible references r(t) and/or working conditions,

are those producing a vector g compliant with the system constraints, i.e. the above

equation needs to be satisfied for |Kjxe| ≤ min(umj , upj), j = 1, 2. Obviously for g =

0 ⇒ xe = 0 and the problem reduces to evaluate the domain of attraction of the nominal
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working point defined in the previous section. To examine stability around a generic xe,

the following change of coordinates is defined: z = xw − xe. Then, subtracting (5.31)

from (5.30), after some computations (adding and subtracting B̄(Kxe) + Āb1xe(K1xe) +

Āb2xe(K2xe) + Āb1zK1xe + Āb2zK2xe) the dynamics of z are obtained

ż = Arz+[Br1+Āb1z](sat(K1(z+xe)−K1xe)+[Br2+Āb2z](sat(K2(z+xe)−K2xe) (5.32)

where Ar = Ā + Āb1K1xe + Āb2K2xe, Br1 = B̄1 + Āb1xe, Br2 = B2 + Āb2xe and B̄1, B̄2

are the columns of B̄.

Following the approach presented in ([107], [109]), the focus is restricted to a polytopic

state space region bounded by the four hyperplanes, K1z = ±c1, K2z = ±c2. For sake

of simplicity we assume c1 = c2 = c, where c > upj −Kjxe, ∀j = 1, 2 and −c < −umj −
Kjxe, ∀j = 1, 2. Thus the objective can be stated to search for the largest controlled

invariant set ( under the saturated law Kxw) contained in the above defined state space

subset, which is compactly expressed as Ic = {z : |Kjz| ≤ c j = 1, 2}.
As mentioned, the first step is to improve the approximation accuracy of the bilinear

terms. For this purpose each control input component is associated with two sets of

N − 1 positive and negative scalars (in principle the numbers of positive and negative

coefficients can differ, here they are assumed equal to simplify the notation), aj1, . . . , ajN ,

bj1, . . . , bjN , such that: 0 < aj1 < aj2 · · · < ajN−1 < upj − Kjxe, 0 > bj1 < bj2 · · · <
bjN−1 > −umj −Kjxe, j = 1, 2 and ajN = upj −Kjxe, bjN = −umj −Kjxe, ajN+1 = c,

bjN+1 = −c. Hence Ic can be partitioned into (2N +1)2 polytopes Ωij , i = 1, . . . , 2N +1,

j = 1, . . . , 2N + 1 defined as

Ω00 := {z| b1,1 ≤ K1z ≤ a1,1} ∩ {z| b2,1 ≤ K2z ≤ a2,1}
Ωi0 := {z| a1,i ≤ K1z ≤ a1,i+1} ∩ {z| b2,1 ≤ K2z ≤ a2,1}
Ω0j := {z| b1,1 ≤ K1z ≤ a1,1} ∩ {z| a2,j ≤ K2z ≤ a2,j+1}
Ωij := {z| a1,i ≤ K1z ≤ a1,i+1} ∩ {z| a2,j ≤ K2z ≤ a2,j+1} i, j = 1, . . . , N

Ωi0 := {z| b1,i+1 ≤ K1z ≤ b1,i} ∩ {z| b2,1 ≤ K2z ≤ a2,1}
Ω0j := {z| b1,1 ≤ K1z ≤ a1,1} ∩ {z| b2,j+1 ≤ K2z ≤ b2,j}
Ωij :=

{
z| b1,(i+1) ≤ K1z ≤ b1,i

}
∩ {z| b2,j+1 ≤ K2z ≤ b2,j} i, j = N + 1, . . . , 2N

Ωij := {z| b1,i+1 ≤ K1z ≤ b1,i} ∩ {z| a2,j ≤ K2z ≤ a2,j+1} i = N + 1, . . . , 2N, j = 1, . . . , N

Ωij := {z| a1,i ≤ K1z ≤ a1,i+1} ∩ {z| b2,j+1 ≤ K2z ≤ b2,j} i = 1, . . . , N, j = N + 1, . . . , N

(5.33)

where only Ω0 contains the origin. The geometric interpretation of the above partition is

drawn in Fig. 5.3

5.4.1 Piecewice LDI description

In view of the partition defined in (5.33), system (5.32) can be represented by a four

vertices LDI for each of the polytopic cells Ωij . Inside Ω0, similarly to (5.27), it can be

verified that the following LDI description holds

ż ∈ co {A0pp, A0pm, A0mp, A0mm} z (5.34)
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Figure 5.3: Partition example of Ic with N = 2.

with A0pp = (Ar + Āb1a1,1+ Āb2a2,1+Br1K1+Br2K2), A0mm = (Ar + Āb1b1,1+ Āb2b2,1+

Br1K1+Br2K2), A0mp = (Ar+Āb1b1,1+Āb2a2,1+Br1K1+Br2K2), A0pm = (Ar+Āb1a1,1+

Āb2b2,1 + Br1K1 + Br2K2). While when i, j = N , saturation occurs at both inputs and

the LDI representation “collapses” to a single affine system defined as

ż = ANN

[

z

1

]

,

ANN =

[

Ar + Āb1a1,N + Āb2b2,N Br1a1,N +Br2a2,N

01×N 0

]

.

(5.35)

Similar considerations can be made to obtain the system description inside the other cells;
for i, j = 1, . . . , N − 1 define

Ai0pp =

[

(Ar +Ab1a1,i+1 + Āb2a2,1 +Br1K1 +Br2K2) 0

01×7 0

]

, Ai0mp =

[

(Ar +Ab1a1,i + Āb2a2,1 +Br1K1 +Br2K2) 0

01×7 0

]

Ai0pm =

[

(Ar +Ab1a1,i+1 + Āb2b2,1 +Br1K1 +Br2K2) 0

01×7 0

]

, Ai0mm =

[

(Ar +Ab1a1,i + Āb2b2,1 +Br1K1 +Br2K2) 0

01×7 0

]

A0jpp =

[

(Ar + Āb1a1,1 + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, A0jmp =

[

(Ar + Āb1b1,1 + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

A0jpm =

[

(Ar + Āb1a1,1 + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmm =

[

(Ar + Āb1b1,1 + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

Aijpp =

[

(Ar + Āb1a1,i+1 + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmp =

[

(Ar + Āb1a1,i + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

Aijpm =

[

(Ar + Āb1a1,i+1 + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmm =

[

(Ar + Āb1a1,i + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

(5.36)
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while if i, j = N + 1, 2N − 1

Ai0pp =

[

(Ar + Āb1b1,i + Āb2a2,1 +Br1K1 +Br2K2) 0

01×7 0

]

, Ai0mp =

[

(Ar + Āb1b1,i+1 + Āb2a2,1 +Br1K1 +Br2K2) 0

01×7 0

]

Ai0pm =

[

(Ar + Āb1b1,i + Āb2b2,1 +Br1K1 +Br2K2) 0

01×7 0

]

, Ai0mm =

[

(Ar + Āb1b1,i+1 + Āb2b2,1 +Br1K1 +Br2K2) 0

01×7 0

]

A0jpp =

[

(Ar + Āb1a1,1 + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

, A0jmp =

[

(Ar + Āb1b1,1 + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

A0jpm =

[

(Ar + Āb1a1,1 + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, A0jmm =

[

(Ar + Āb1b1,1 + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

Aijpp =

[

(Ar + Āb1b1,i + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmp =

[

(Ar + Āb1b1,i+1 + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

Aijpm =

[

(Ar + Āb1b1,i + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmm =

[

(Ar + Āb1b1,i+1 + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

(5.37)

When i = 1, . . . , N − 1 and j = N + 1, . . . , 2N − 1;

Aijpp =

[

(Ar + Āb1a1,i+1 + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmp =

[

(Ar + Āb1a1,i + Āb2b2,j +Br1K1 +Br2K2) 0

01×7 0

]

Aijpm =

[

(Ar + Āb1a1,i+1 + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmm =

[

(Ar + Āb1a1,i + Āb2b2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

(5.38)

finally, if i = N + 1, 2N − 1, j = 1, . . . , N , define

Aijpp =

[

(Ar + Āb1b1,i + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmp =

[

(Ar + Āb1b1,i+1 + Āb2a2,j+1 +Br1K1 +Br2K2) 0

01×7 0

]

Aijpm =

[

(Ar + Āb1b1,i + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

, Aijmm =

[

(Ar + Āb1b1,i+1 + Āb2a2,j +Br1K1 +Br2K2) 0

01×7 0

]

.

(5.39)

When i = N and j = 1, . . . , N − 1 u1 hits its positive saturation limits and the state
space matrices defining the LDI become

ANjmm = ANjpm =

[

Ar + Āb1a1,N + Āb2a2,j +Br2K2 Br1a1,N

01×N 0

]

ANjmp = ANjpp =

[

Ar + Āb1a1,N + Āb2a2,j+1 +Br2K2 Br1a1,N

01×N 0

]
(5.40)

while if j = N , i = 1, . . . , N − 1, u2 reaches its upper bound and

AiNmm = ANjmp =

[

Ar + Āb1a1,i + Āb2a2,N +Br1K1 Br2a2,N

01×N 0

]

AiNpm = ANjpp =

[

Ar + Āb1a1,i+1 + Āb2a2,N +Br1K1 Br2a2,N

01×N 0

]

.

(5.41)

similar considerations, omitted for brevity, can be made to describe the system behavior

inside the cells corresponding to input saturation. In general, a polytopic LDI in the form

d

dt

[

z

1

]

= co {Aijmm, Aijpm, Aijmp, Aijpp}
[

z

1

]

(5.42)

can be adopted to describe the system behavior inside the cell Ωij , obtaining a piecewise

differential inclusion representation of the constrained bilinear closed-loop system over the

state space region Ic.
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5.4. Stability and tracking domain analysis via piecewise quadratic Lyapunov functions

5.4.2 Piecewise quadratic Lyapunov function

The piecewise LDI description introduced in the previous Subsection, can then be analyzed

with non quadratic stability tools, in order to further reduce conservatism. In particular

a continuous piecewise quadratic Lyapunov candidate V (z) is considered, applying the

results presented in 4.4.1 to the power converters, in a similar fashion as what proposed

in ([107]) for a single input converter.

Based on the specific partition of Ic by (2N + 1)2 four vertices polytopes (see Fig. 5.3),

the following matrices can be introduced to ensure continuity of V (z) along the cells

115



Chapter 5. CONTROL DESIGN FOR POWER CONVERTERS FED BY HYBRID ENERGY SOURCES

boundaries

F0 =

[

In

04N×n

]

, Fi0 =



















In 0

K1 −a1,1
.
..

.

..

K1 −a1,i

03N−i×n 0



















F0j =























In 0

02N×n 0

K2 −a2,j
.
.
.

.

.

.

K2 −a2,j

02N−j×n 0























, Fij =









































In 0

K1 −a1,1
.
.
.

.

.

.

K1 −a1,i

02N−i×n 0

K2 −a2,1
..
.

..

.

K2 −a2,j

02N−j×n 0









































for i, j = 1, . . . , N

Fi0 =























In 0

0N×n 0

K1 −b1,1
.
..

.

..

K1 −b1,i

03N−i×n 0























, F0j =























In 0

03N×n 0

K2 −b2,1
.
..

.

..

K2 −b2,j

0N−j×n 0























Fij =













































In 0

K1 −a1,1
.
.
.

.

.

.

K1 −a1,i

02N−i×n 0

0N 0

K2 −b2,1
.
.
.

.

.

.

K2 −b2,j

0N−j 0













































for i = 1, . . . , N, j = N + 1, . . . , 2N

Fij =









































In 0

0N×n 0K1 −b1,1
..
.

..

.

K1 −b1,i

0N−i×n 0

K2 −a2,1
.
.
.

.

.

.

K2 −a2,j

02N−j 0









































for i = N + 1, . . . , 2N, j = 1, . . . , N

Fij =









































In 0

0N×n 0K1 −b1,1
.
.
.

.

.

.

K1 −b1,i

02N−i×n 0

K2 −b2,1
.
..

.

..

K2 −b2,j

0N−j 0









































for i = N + 1, . . . , 2N, j = N + 1, . . . , 2N.

(5.43)

116



5.4. Stability and tracking domain analysis via piecewise quadratic Lyapunov functions

Then, the piecewise quadratic Lyapunov candidate function can be defined as

V (z) =







zTF T
0 PF0 z ∈ Ω0

[z 1]TF T
ijPFij




z

1



 z ∈ Ωj

. (5.44)

with P ∈ R
2N+7×2N+7 a symmetric positive definite matrix to be defined.

5.4.3 Invariance and set inclusion LMI conditions

Now the stability analysis for a given feedback matrix K can be extended relying on

function (5.44). As usual, the unit level set of V LV (1) := {z : V (z) ≤ 1} is used as

an estimate of the stability region, and, provided its invariance (V̇ < 0∀z ∈ LV (1)),

maximized w.r.t a given shape reference set. Since the piecewise LDI representation holds

only inside the region Ic, the inclusion condition LV (1) ⊂ Ic has to be fulfilled.

First a sufficient invariance condition is derived. To this aim, note that each polytopic cell

can be characterized by means of two quadratic inequalities: as regards Ω0 it holds

Ω00 =

{

z :

∣
∣
∣
∣
K1z −

a1,1 + b1,1
2

∣
∣
∣
∣

2

≤
(
a1,1 − b1,1

2

)2

,

∣
∣
∣
∣
K2z −

a2,1 + b2,1
2

∣
∣
∣
∣

2

≤
(
a2,1 − b2,1

2

)2
}

(5.45)

or, equivalently: ẑTM0iẑ ≤ 0, i = 1, 2 with ẑ = [z 1]T and

Mi00 =

[

2KT
i Ki −(ai,1 + bi,1)K

T
i

−(ai,1 + bi,1)Ki 2ai,1bi,1

]

≤ 0.

the same reasoning can be applied to the other cells. Since Ω0 include the origin in its

interior, the invariance condition V (z) > 0, V̇ < 0 along (5.34) can be expressed as

F T
0 PF0 > 0

AT
0ppF

T
0 PF0 + (AT

0ppF
T
0 PF0)

T < 0, AT
0pmF

T
0 PF0 + (AT

0pmF
T
0 PF0)

T < 0

AT
0mpF

T
0 PF0 + (AT

0mpF
T
0 PF0)

T < 0, AT
0mmF

T
0 PF0 + (AT

0mmF
T
0 PF0)

T < 0.

(5.46)

While for a generic cell not containing the origin, by S-procedure the invariance condition

along (5.42) can be expressed as

F T
ijPFij + α1ijM1ij + α2ijM2ij > 0

AT
ijppF

T
ijPFij + (AT

ijppF
T
ijPFij)

T − β1ijM1ij − β2ijM2ij < 0

AT
ijpmF

T
ijPFij + (AT

ijpmF
T
ijPFij)

T − γ1ijM1ij − γ2ijM2ij < 0

AT
ijmpF

T
ijPFij + (AT

ijmpF
T
ijPFij)

T − δ1ijM1ij − δ2ijM2ij < 0

AT
ijmmF

T
ijPFij + (AT

ijmmF
T
ijPFij)

T − η1ijM1ij − η2ijM2ij < 0, i, j = 1, . . . (2N + 1)

(5.47)

for non negative scalars β1ij , β2ij, γ1ij , γ2ij, η1ij , η2ij.

As concerns the set inclusion requirement LV (1) ⊆ Ic, it is easy to verify that it is satisfied

if and only if V (z) > 1 for all z belonging to one of the four hyperplanes K1z = ±c,
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K2z = ±c, i.e. if V (z) − K1z/c > 0 for K1z = c, V (z) + K1z/c > 0 for K1z = −c,
V (z) − K2z/c > 0 for K2z = c, V (z) + K2z/c > 0 for K2z = −c. According to the

previously defined partition, there are (2N + 1) × 4 cells sharing at least one boundary

with these hyperplanes. Thus, by S-procedure we can claim that the set inclusion condition

holds if there exist four groups of (2N + 1) scalars λNj , λ2Nj , λiN , λi2N , and four groups

of (2N + 1) non-negative scalars χNj , χ2Nj , χiN , χi2N , with i, j = 0, . . . , 2N such that

F T
Nj1PFNj −

1

2c

[

0 KT
1

K1 0

]

+ λNj

[

0 KT
1

K1 −2c

]

+ χNj+M2Nj > 0

F T
2NjPF2Nj +

1

2c

[

0 KT
1

K1 0

]

+ λ2Nj

[

0 KT
1

K1 2c

]

+ χ2NjM2Nj > 0

F T
iNPFiN − 1

2c

[

0 KT
2

K2 0

]

+ λiN

[

0 KT
2

K2 −2c

]

+ χiNM1iN > 0

F T
i2NPFi2N +

1

2c

[

0 KT
2

K2 0

]

+ λi2N

[

0 KT
2

K2 2c

]

+ χi2NM1i2N > 0

(5.48)

where the matrices F and M are associated with the (2N + 1) × N cells that shares a

boundary with the hyperplanes defining Ic.

Finally the size of LV (1) has to be measured w.r.t. some shape reference set XR in order to

define the maximization objective: ǫ∗ = sup {ǫ : ǫXR ⊂ LV (1)}. The inclusion condition

is equivalent to require V (z) ≤ 1 for all z belonging to the boundary of the ball, i.e.

V (z) ≤ zT
R

ǫ2
z, ∀z ∈ ∂(ǫXR) (5.49)

where, for the sake of simplicity the reference set XR has been assumed to have an ellip-

soidal form. The above condition must be checked in each set Ωij , and, by S-procedure,

it is easy to verify that it is implied by the following matrix inequalities

[

F T
0 PF0 0

0 0

]

− ω100M100 − ω200M200 + ζ0

[

0 0

0 1

]

≤ t

[

1 + ζ0R 0

0 0

]

F T
ijPFij − ω1ijM1ij − ω2ijM2ij + ζj

[

0 0

0 1

]

≤ t

[

1 + ζijR 0

0 0

]

, i, j = 1, . . . , 2N + 1.

(5.50)

with t = 1/ǫ2, ζ0, ζij ≥ 0.

5.4.4 Stability region estimation via LMI optimization

In view of all the considerations made in the previous Subsections, the stability region of

the origin of system (5.32) (corresponding to a generic working point xe of (5.23)), can

be determined by means of the Lyapunov candidate (5.44) by solving the optimization

problem (a GEVP in t, P )

inf t, s.t. (5.47), (5.48), (5.50). (5.51)
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Thus the results obtained in 5.3.3, on stability of the error system (5.30), can be improved

taking xe = 0 and the scaled unit ball as shape reference set, then compute (5.51) for the

matrices K given in (5.29). Choosing N = 3 and aj1 = upj/4, aj2 = upj/2, bj1 = −umj/4,

bj2 = −umj/2, j = 1, 2, c = 1 yields t = 0.0016 for the gains K5, and t = 0.013 for the

gains K25 corresponding to the optimal scale values ǫ∗ = 25.13, ǫ∗ = 8.78.

Hence the conservatism introduced by the single LDI description and quadratic stability

tools has been significantly reduced, in particular the result obtained for η = 5 ensure

a practically global stability of the system as compared to realistic range of the circuit

variables. If the gains are increased to improve performances then the basin of attraction

is shrunk, however, the piecewise LDI description, and thus the obtained results, can be

enhanced by considering a more resolute state space partition, i.e. increasing N .

5.5 Simulation and experimental results

In order to test the effectiveness of the proposed control solution a detailed circuit simu-

lation, taking into account the switching nature of the power converters has been carried

out by means of MATLAB SimPower Systems toolbox. Then an experimental system

was constructed for the hybrid energy storage configuration as described in Fig. 5.1. As

mentioned in 5.3.3, the considered circuit is characterized by the parameters reported in

Tab. 5.2. The battery is a lead-acid one rated 6V, 13Ah, with an open circuit voltage

variation range between 5.8V and 6.3V, corresponding to 10% and 100% state of charge,

respectively, while the supercapacitor consist of two parallel ones rated 58F, 16.2V with

serial resistance 0.022Ω. Simulations with both the full order averaged model (5.14) and

the SimPower Systems circuit model have been carried out. The initial conditions for the

battery and the supercapacitor voltages have been set to E0 = 6V , Eu0 = 7V respectively.

Fig. 5.4 shows the simulation results carried out under an abrupt load resistance switch-

ing between the considered nominal value R0 = 2Ω (corresponding to a heavy load) and

R = 200Ω (simulating a light load). The adopted feedback law is defined by K25 in (5.29).

The references for the battery current ib and the load voltage vo are first set at 3A and

10V , as in the nominal condition; the obtained results are reported in Fig. 5.4(a). In each

plot, the responses by the averaged model are the smooth red curves and the responses

by the SimPowerSystem model are the blue curves. The load is switched 3 times in 1

second but it is long enough to reach a steady-state after each switch. From 0 to 0.25

second and from 0.5 to 0.75 second, the load resistance is 200Ω. During such light load,

both outputs (battery current and load voltage) converge to the set reference values, while

the supercapacitor current is negative. This shows that the supercapacitor is charged un-

der light load. From 0.25 to 0.5 second and from 0.75 to 1 second, the load resistance

is 2Ω. During such a heavy load, the outputs also converge to the set reference values

after some initial overshoot/undershoot. As a result, even if not a controlled output, the

supercapacitor supplies an average current greater than 5A so that the load power request

is satisfied. Recall that the feedback laws are designed for the nominal working condition
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(a) Response to load switch between 2Ω and 200Ω, ib,ref = 3A, vo,ref = 10V .
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(b) Response to load switch between 2Ω and 200Ω, ib,ref = 1.5A, vo,ref = 10V .

Figure 5.4: Simulation results under abrupt load switching.

where R0 = 2Ω. Hence the simulation results in Fig.5.4(a) demonstrate the robustness of

the control solution against parameter changes. This feature can be formally confirmed

by applying the stability analysis in 5.4 to the resulting working point xe for R = 200Ω.

The robust tracking performance is also validated by varying the reference for the battery

current. Fig. 5.4(b) shows the tracking of references ib,ref = 1.5A, vo,ref = 10V . It can be

noted that both the battery current and the load voltage track their respective reference

while, in response to a smaller battery current, the supercapacitor current is adjusted

automatically. During light load, it absorbs smaller current as compared to the value in

Fig. 5.4(a); during heavy load, it supplies larger current.

The experimental tests were carried out on a setup equipped with a Panasonic LC-

R067R2P battery model and two supercapacitor modules of BMOD0058 MAXWELL 58

Farads-16.2 V DC. Same type of MOSFETs (FQP50N06L) were used for the two bidirec-

tional buck-boost converters, with switching frequency at 37kHz. As regards the control

law implementation, observing that the elements in the first 5 columns of matrices K5,

K25 in (5.29) are much smaller than those in the last two columns, the simplified feedback

law has been considered

u =

[

−1.16
∫
(ib − ib,ref )dt− 0.57

∫
(vo − vo,ref )dt

1.8
∫
(ib − ib,ref )dt− 5.08

∫
(vo − vo,ref )dt

]

(5.52)

hence, the two duty cylces D1 = u1 +D10 and D2 = u2 +D20 can be easily computed. In

fact, the above control law can be implemented with operational amplifiers. For the real

circuit, the initial battery voltage was about 6.15V, and the initial supercapacitor voltage

was between 7V and 7.4V , while the load was switched between 2Ω and 200Ω as for the

simulation tests. Also in this case the system robust tracking capability, under the law

(5.52), were tested setting the reference for vo at vo,ref = 10V while adopting two values

ib,ref = 1.5A, 3A as battery current reference.
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5.5. Simulation and experimental results

(a) Tracking response to load switch,

ib,ref = 3A, vo,ref = 10V , R =

2Ω, 200Ω.

(b) Tracking response to load switch,

ib,ref = 1.5A, vo,ref = 10V , R =

2Ω, 200Ω.

Figure 5.5: Experimental results under abrupt load switching.

Fig. 5.5(a) shows the response when the load was switched between 200Ω and 2Ω, with

ib,ref = 3A, vo,ref = 10V . The set up was similar to that for the simulation in Fig.

5.4(a) but the load switch was implemented manually and the total time was 6 seconds

(the time scale is 500ms/div). The four curves from top to bottom are respectively,

the supercapacitor current isc (Channel 4, orange, 5A/div), the supercapacitor’s terminal

voltage v1 (Channel 3, green, 5V/div), the battery current ib (Channel 2, red, 2A/div), and

the load voltage vo (Channel 1, blue, 10V/div). Initially the load was set at 200Ω. The first

1.5 seconds show a “steady state” (ignoring the slow increase of supercapacitor voltage)

for this load condition. The references for both outputs are tracked: ib = 3A, vo = 10V ,

except for measurement noises. The supercapacitor voltage is about 7V and its current

about -1.5A. At about 1.5 second, the load is switched to 2Ω. After a brief transient,

both the load voltage and the battery current quickly returned to the respective reference

value. This verifies the robust tracking performance under varying load. Meanwhile, the

supercapacitor current quickly increases to above 5A and continue to increase at a slower

rate. Since the heavy load condition last for about 2.7 seconds, much longer than the 0.25

seconds in simulation (in Fig. 5.4(a)), a slight decrease of supercapacitor voltage can be

noticed. Thus, to maintain a desired output voltage and power, the supercapacitor current

must increase. At about 4.2 second, the load is switched back to 200Ω. Again, after some

transient response, both outputs return to the desired reference values. Note that the

outputs settling time last more than 0.4 seconds for the experimental test; the reason is

that a simple model for the battery was used in simulation, if it was refined adding some

pairs of parallel resistor and capacitor, the transient response would last longer even in

simulation.

Fig. 5.5(b) shows the experimental results for the second reference scenario: where ib,ref =

1.5A, vo,ref = 10V . Also in this case the circuit behavior is similar to what observed in

simulation in Fig. 5.4(b). The assignment of the four channels are the same as in Fig.

5.5(a). The scale for Channel 4 is 5.5A/div as compared with 5A/div in Fig. 5.5(a).

The scales for other channels are the same. The load is switched from 200Ω to 2Ω at
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about 1.3 second, then switched back to 200Ω at about 4.07 second. Both outputs follow

their references after each load switch. As expected, the supercapacitor drew less current

during light load period and supplied more current during heavy load period. This test

also verifies the robust tracking performance under different reference values for a realistic

circuit.
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Chapter 6

Saturated Speed Control of

Medium Power Wind Turbines

In this chapter a specific saturated control solution, regarding the speed control

of wind turbines is presented. The approach to handle control input saturation is

based on a suitable partition of the control effort between the speed control knobs,

i.e. blade pitch angles and generator torque, avoiding hybrid control structures

which are impaired by wind and turbine dynamics uncertainties. Time-varying

torque and power limits at generator side, related to the system thermal dynamics

are taken into account, to better exploit the generator capabilities. A full stability

analysis under unknown wind speed and uncertain aerodynamics curves is carried

out, showing how to tune the proposed controller for a wide stability domain.

Furthermore a standard MPPT algorithm is mounted on top of the proposed

solution.

6.1 Introduction and motivation

Wind energy conversion has been growing extremely fast along the last decade, becoming

the most competitive energy source among the renewable sources for electrical power gen-

eration. Thanks to the improvement in wind turbine and power electronics technologies,

today variable-speed pitch-regulated wind turbines ([111]) are usually adopted in medium

or large scale power production, maximizing the energy captured from the wind in almost

every working condition.

Basically, two main kinds of variable-speed, pitch-regulated wind turbines can be iden-

tified: large power ones (a few MW) and medium power ones (a few hundreds of kW).

These categories show, at the same time, similarities and differences, affecting the con-

trol requirements. Both kinds of turbines are expected to capture the maximum power

available from the wind, up to the rated power of the electric generator drive. Hence, two

main working region can be defined; “at low wind speed”, with an available wind power

lower than the nominal turbine power, and “at high wind speed” where available wind
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power is equal or greater than the turbine nominal one. At low wind speed, the generator

torque, the turbine speed and the pitch angles need to be regulated in order to capture

the maximum power from the wind according to turbine aerodynamics and wind speed.

Differently, at high wind speed, pitch angles and generator torque are set to bound the

extracted power to the nominal one and, often, to keep a constant turbine speed. Beside

this common general strategy, large power and medium power turbines show relevant dif-

ferences in two main elements: concerns about mechanical vibrations and knowledge of

accurate mechanical and aerodynamic models.

For large power turbines, torsional vibrations of the drive line and tower and blades oscil-

latory modes need to be carefully damped, since relevant fatigue stress can occur, owing to

large mechanical loads and large dimensions (natural mode frequencies are rather low with

respect to the operating frequency range). On the other hand, for this kind of turbines,

accurate aerodynamic and mechanical models are available together with wind speed sen-

sors. The large cost of such plants motivates the strong effort in modeling and sensoring.

These features enable to define an offline optimizing curve for “low wind speed” region

and to design accurate multivariable control algorithms to deal with mechanical vibra-

tions. Various solutions have been presented in literature; the most popular methodology

is based on linearization along trajectories or equilibria and application of advanced LPV

gain scheduling approaches, exploiting H2, H∞ techniques to shape performances and ro-

bustness to some model uncertainties ( [112], [113], [114]). Differently, in [115] the turbine

control problem has been cast into a receding horizon nonlinear adaptive model predictive

control framework in order to enhance performance under off-design conditions.

A different scenario takes place when medium power turbines are considered. Mechanical

vibrations are no longer a crucial issue (natural modes are usually outside the working fre-

quency range, thanks to smaller dimensions, and mechanical loads are not critical), on the

other hand, wide dispersion of aerodynamic characteristics usually affects these turbines

and very poor models and measurements are available, owing to development and pro-

duction cost limitation. Therefore, Maximum Power Point Tracking (MPPT) algorithms

have received particular attention to steer adaptively the turbine toward the best working

condition in the “low wind speed” region. MMPT solutions are usually structured as hill-

climbing discrete-events searching algorithms. In [116], [117] and [118], the turbine speed

is modified to search for the power optimum, while in [119] the convexity of the parabola

representing the generator torque curve is adapted. Whatever solution is used, a crucial

issue is to guarantee stability of the wind turbine in any condition, taking into account the

electric power saturation occurring in “high wind speed” region. In [119], where generator

torque is modified for MPPT, a stability analysis is presented only for low wind speed

operation and without considering pitch control. Differently, in approaches where turbine

speed is varied for MPPT (the most common ones), the focus is on the algorithm efficiency

and no formal stability analysis is usually carried out, implicitly assuming that a robust

closed-loop speed control is present.

In this chapter, a simple and effective speed controller, first introduced in [39] is presented.
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Differently from the applications considered so far, the saturated speed controller does not

rely on the theoretical backgrounds presented in chapters 1 and 4, however a sort of one

step approach is adopted exploiting a suitable partitioning of the overall control effort

between the two system “knobs”; i.e. blade pitch angles and generator torque. It will be

showed how this solution does not require a switching between two different controllers cor-

responding to the previously defined operating regions, this allows to intrinsically prevent

from possible bumps and limit cycles under variable wind and uncertain aerodynamics

characteristics. A basic PI structure is proposed and a complete stability analysis un-

der unknown wind speed and uncertain aerodynamics curves is carried out defining some

tuning rules for for a wide stability domain under time varying torque/power saturation

limits.

The chapter is organized as follows. In Section 6.2 the medium-power wind turbine model

is reported and the general saturated control strategy is discussed, in Section 6.3 the pro-

posed speed control solution is presented, and its stability properties and the related design

rules are discussed. In Section 6.4 a slight modification of a common MPPT algorithm is

presented in order to be “mounted on top” of the proposed speed controller. Simulation

results are presented in Section 6.5.

6.2 System Modeling and Control Objective

The class of wind turbines considered in this chapter are medium-power, horizontal axis,

variable-speed variable-pitch wind turbine, with collective blade pitch actuation (according

to pitch-to-feather strategy, see[38]). Their rotational dynamics can be modeled as follows:

ω̇ =
1

J
(Tw(c, V, ω, β)− TG) (6.1)

where ω, V are respectively the rotor and wind speed, J is the total rotational inertia,

collecting the blades, drive train shaft, and electric generator rotor contributions, and

ρ the air density, while TG is the actuated generator torque and Tw is the aerodynamic

torque which, assuming a perfect alignment with wind direction, can be expressed as ([38])

Tw(c, ω, β) =
1

2
ρπR3Cq(c, λ, β)V

2, Cq(c, λ, β) =
Cp(c, λ, β)

λ
. (6.2)

Thus, the power captured from the turbine can be derived from (6.2)

P =
1

2
Cp(c, λ, β)ρπR

2V 3, λ =
ωR

V
(6.3)

Cq, Cp are the so-called torque and power coefficient that define the aerodynamic of the

turbine, they depend on the blades pitch angle β, and the tip speed ratio λ, while the

vector c contains the coefficients of the function adopted to fit the turbine power curve.

Here the following approximation, valid for a wide range of commercial turbines ([120]),

is considered

Cp(c, λ, β) = c1

(
c2
λi

− c3β − ce

)

e

(

− c5
λi

)

+ c6λ,
1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
. (6.4)
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In order to take into account the approximation error with respect to the unknown actual

turbine curve, a limited set C such that c ∈ C, centered on the nominal values n-ple

c1n, . . . , c6n is considered for the vector c parameters.

In most of medium scale turbines the only accurately measured variables are the shaft

angular speed and the generator torque, hence also the generator power can be derived,

while accurate knowledge about inertial terms is usually available by manufacturers data.

On the other hand wind speed value is usually not available or roughly provided by an

anemometer whose measure usually does not fit accurately the actual wind field acting on

the blades, hence it cannot be used to obtain information about wind aerodynamic torque,

furthermore the uncertainty on Cp curve cannot be neglected.

It’s further to remark that blades flapping, tower fore-aft motion and drive train shaft

resonant modes will be neglected for control purposes, hence model (6.1) has been derived

assuming a perfectly rigid system, putting the focus on the main rotating dynamic of the

drive train shaft. This approximation can be effectively adopted to define a control law

for the class of turbines here considered, indeed in medium power wind energy conversion

systems often no gearbox is present and, as mentioned, resonant modes are at much higher

frequency and more damped than those in large power turbine and, then, usually outside

the control bandwidth.

6.2.1 Considerations on the general control strategy

From the expression of the aerodynamic power (6.3) it can be seen that the energy captured

from the wind can be varied shaping the power coefficient by means of the tip speed ratio

and the pitch angle; the maximum power coefficient corresponds to optimal values for

tip speed ratio and pitch angle λ∗, β∗. While λ∗ slightly depends on the system specific

aerodynamic characteristic, the pitch angle value maximizing the power coefficient, for all

kind of wind turbine, regardless power curve uncertainties, is β∗ = 0◦ ([38]).

Bearing in mind these considerations, in order to achieve maximum power extraction at

below rated wind speed, the pitch angle can be held constant to zero, while the angular

speed is varied to reach the optimal tip speed ratio; if information about the turbine

aerodynamic are available with high precision, the generator torque can be actuated as

a feedforward action following the optimal power extraction locus reported in Fig. 6.1,

with this method the equilibrium point corresponding to the optimal angular speed results

asymptotically stable. At high wind speeds, the angular speed increases until power-torque

saturation occurs, then the pitch angle is varied to shed aerodynamic torque and control

the angular speed.

An analogous strategy can be adopted without exploiting turbine aerodynamic and wind

speed knowledge, in this case the optimal tip speed ratio is reached by means of an MPPT

algorithm properly integrated with a speed controller, however, at high wind speed, the

strategy is different from the previous one. Controlling the angular speed, power-torque

saturation limit can be reached also at low rotor speed if a strong wind gust occurs,

in this case the MPPT algorithm is suspended and the pitch angle is used to shed the
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Figure 6.1: Optimum power generation locus.

aerodynamic torque and ensure a constant power operation (highlighted in bold in Fig. 6.1)

at the maximum generator value. In Section 6.4 a slightly different strategy is proposed

to limit generator power losses due to high torque demand. Whatever control strategy

is adopted, the critical issue is to ensure a smooth transition between the two different

turbine operating regimes, providing reliable performance and stability for all the possible

conditions.

6.2.2 Torque and Power saturation

Before detailing the saturated control solution, the system torque and power saturation

need to be elaborated, accounting for the electrical machine and electrical power thermal

behavior. Typically the following input constraints have to be respected: maximum torque

and power peak values, TGmax and PGmax, and maximum RMS values, TGRMSmax and

PGRMSmax (obviously lower than the corresponding peak bounds). According to common

sizing rules, torque constraints (both peak and RMS) are related to the electrical machine

used as generator, while power constraints are related both to the electrical machine and

the controlled power converter, but mainly to the second one (which is used to drive the

generator and transfer the electric power to the line grid). In addition, RMS constraints are

actually related to thermal bounds on electric machine and power converter, then thermal

dynamics should be taken into account for a better exploitation of the actuators capabil-

ities. Usually this possibility is not considered and constant instantaneous limits equal to

TGRMSmax and PGRMSmax are adopted as generator torque and power constraints.

Here, thermal dynamics will be explicitly considered, in a receding horizon model pre-

dictive fashion, to derive temporary higher bounds than TGRMSmax and PGRMSmax (but

obviously lower than instantaneous peak limits and with some safety margin). Beside

a better exploitation of the generator and power electronics, these time-varying bounds,

combined with the control solution presented in Section 6.3, will allow a smoother pitch

angle variation.

The thermal behavior of both generator power drive and front-end converter can be ap-

proximated by a first order dynamic, hence the torque and power RMS constraints can be
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written as follows (with some abuse of notation between Laplace and time domain):

T̂ 2
GRMS(t) ,

T 2
G(t)

1 + τ1s
≤ TGRMSmax P̂ 2

GRMS(t) ,
P 2
G(t)

1 + τ2s
≤ PGRMSmax (6.5)

with P 2
G = (TGω)

2 and where, according to common sizing, τ1 is the electric generator

thermal time constant (tipically a few minutes), while τ2 is the thermal time constant of

the converter grid-side (usually a few tens of seconds). The time-varying bound for the

generator torque, which can be applied without overcoming the RMS limitation can be

calculated as follows. A time prediction horizon T , reasonably shorter than the thermal

settling-time (around 5τ1), is selected. Then, inverting the model (6.5), the constant

torque value T̄G(t) that, applied to the system over the time horizon [t, t+T ], leads to the

limit value T 2
GRMSmax starting from the initial value T 2

GRMS(t), is derived. The obtained

equation of this new time-varying receding horizon thermal bound, T̄ , reported in the

following, enlighten that the bound will be always greater or equal than TGRMSmax

T̄ (t) =

√
√
√
√T 2

GRMSmax − T̂ 2
GRMS(t)e

− T
τ1

1− e
− T

τ1

≥ TGRMSmax (6.6)

The same approach can be followed to calculate the power limit P̄ similarly defined to T̄

P̄ =

√
√
√
√P 2

GRMSmax − P̂ 2
GRMS(0)e

− T
τ2

1− e
− T

τ2

≥ PGRMSmax. (6.7)

Adopting these constraints, evaluated at run time by means of the described procedure,

in place of the steady state values TGRMSmax, PGRMSmax, the following torque saturation

law holds (power saturation law can be derived accordingly)

TGsat = min

(

TGmax,
PGmax

ω
, T̄ ,

P̄

ω

)

. (6.8)

This saturation threshold is less conservative with respect to the usually adopted steady-

state values, the bounds that would be achieved without thermal dynamic consideration

are a lower bound of TGsat in (6.8) and can be expressed as follows

TGsatmin
(ω) = min

(

TGRMSmax,
PGRMSmax

ω

)

(6.9)

This bound will be useful for offline dimensioning and MPPT algorithms.

6.3 Saturated Speed Controller Design

The basic idea of the proposed solution is to consider a unique scalar control input for

speed regulation, given by the sum of the generator torque and the torque effect of the pitch

angle variation w.r.t. its optimum value for power capture (β = 0). Hence, a unique SISO

speed controller is designed for the whole operating range and its total torque command is

split in generator torque command and pitch angle command, so that the generator torque
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and power limits are never overcome. According to the general control strategy reported

in 6.2.1, when the total torque command is below the generator bounds, only a generator

torque command will be issued, while pitch angle is left at its optimum value. Differently,

when total torque command exceeds the generator bounds a suitable pitch angle variation

will be requested. This approach induces an intrinsically smooth transition between “low

wind speed” and “high wind speed” condition even if the generator torque-power limits

are time-varying and fast changes in the wind regime occur.

6.3.1 Controller definition

First of all, the mechanical model (6.1) is rearranged in order to separate the aerodynamic

torque generated with fixed optimum pitch angle, β = 0, from the braking effect obtained

by moving β to positive values. Hence, defining T∆ as:

T∆(c, V, ω, β) = Tw(c, V, ω, 0)− Tw(c, V, ω, β)

model (6.1) can be rewritten as

ω̇ =
1

J
(Tw(c, V, ω, 0)− (T∆(c, V, ω, β) + TG)) (6.10)

where (Tw(V, ω, 0) (non-negative, by turbine physics) can be seen as an exogenous input

depending on wind, while the sum (T∆(c, V, ω, β) + TG) can be intended as a single scalar

control input (also T∆ is non-negative according to turbine physics). The distribution of

the total control input command in TG and β can be decided according to maximization

of the generated electric power and generator torque and power bounds. By the way, this

operation is completely independent of the chosen speed controller which “sees” a single

control command.

Before designing the speed controller with the above mentioned assumption on the control

input, it is necessary to note that the β contribution is actually dependent on the aero-

dynamic parameters c, and the wind speed, V which are uncertain and not measurable,

respectively. Hence, for control purposes, T∆(c, V, ω, β) is approximated by an averaging

procedure which yields the following function independent of parameters variation, wind

and turbine speeds

f(β) , mean {T∆(c, V, ω, β) | c ∈ C, ω ∈ [0, ωmax], V ∈ [V ∗(c, ω), Vmax]} (6.11)

the set C is the set of admissible aerodynamic parameters, ωmax is the maximum operating

speed allowed for the wind turbine, Vmax is the so-called survival wind speed (i.e. the max-

imum wind speed the turbine is designed to resist at) and V ∗(c, ω) is the wind speed which,

for given c and ω, generates TW (c, V ∗(c, ω), ω, 0) = TGsatmin
. Hence, owing to monotonic-

ity of TW with respect to V , at given c and ω, V < V ∗ =⇒ TW (c, V, ω, 0) < TGsatmin
,

while V ≥ V ∗ =⇒ TW (c, V, ω, 0) ≥ TGsatmin
. The reason why the wind range in the

considered set is lower bounded by V ∗ is the following. According to the reasoning made

in 6.2.1, β will be used only when the total control command hit the available generator
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torque limit, this can occur, in principle, in any condition depending on current tracking

error and reference derivatives. However, restricting the analysis to most common condi-

tions, namely steady-state or almost steady-state (i.e. with null or small tracking error and

limited speed reference derivative), the use of β is expected to occur only when the wind

speed is high enough to generate an aerodynamic torque larger than the one available at

generator side. Hence it make sense to restrict the area used to calculate the mean value

of T∆ to the most common and significant one.

It is wort noting that f(0) = 0 by definition and, as clarified in the following, for control

purpose f(β) needs to be a bijective continuous function; therefore, a bijective continuous

approximation would be adopted if the mean value of T∆ was not. In principle a function

f(β, ω), instead of f(β), could be adopted to approximate T∆(c, V, ω, β) since ω is mea-

sured, however, even the simpler method discussed here ensures to obtained the desired

results. According to the definition of f(β), (6.10) can be rewritten as

ω̇ = 1
J (Tw(c, V, ω, 0)− [TG + f(β)]

︸ ︷︷ ︸
−T̃∆(c, V, ω, β)

)

(6.12)

where, actually, the scalar control input will be the sum TG + f(β), denoted as u in

the following, while T̃∆ = T∆(c, V, ω, β) − f(β) represents the control input addictive

unknown error due to aerodynamic uncertainties (note that T̃∆(c, V, ω, 0) = 0, ∀c, V, ω,
by definition).

After this model reformulation, enlightening the “combined” scalar control input, the

addictive error on control input and the unknown exogenous input (depending on wind

and turbine speed only), the speed controller can be designed. A simple PI structure

with feed-forward action is selected with the the main purpose of guaranteeing robust non

local stability properties, despite of the unknown disturbances and actuation errors. The

proposed controller is defined as follows:

u = kpω̃ + χ− Jω̇∗

χ̇ = kiω̃
(6.13)

where ω̃ = ω − ω∗ is the angular speed error with respect to the reference ω∗, which is

assumed to be known and bounded together with its time derivative ω̇∗. The integral

term χ has the basic role to estimate and compensate for the unknown exogenous input

Tw and the unknown actuation error T̃∆. Actually, these terms are constant, in perfect

tracking condition, only when ω∗, V and TGsat are constant. Then, perfect tracking ca-

pability is structurally limited to those conditions. Nevertheless, ω∗, V and TGsat, when

non-constant, are usually slowly varying, leading to small residual tracking errors..

For what concerns the distribution of the control command u on TG and f(β), accord-

ing to the general control strategy devoted to maximize the generated electrical power,

the following partitioning rule, explicitly accounting for the system saturation limits is

adopted:

(TG, β) =







(u, 0) ifu ≤ TGsat

(TGsat, f
−1(u− TGsat)) ifu > TGsat

(6.14)
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Finally, it can be noted that, to avoid motoring behavior of the electric generator, negative

values of control input u should be prevented. This can be practically achieved by suitable

limitation on the speed reference derivative, assuming a bounded derivative in the wind

speed variation and starting with reasonably small speed tracking error. Nevertheless,

considering very large initial error, the positiveness and boundedness of u can be assured

by saturating it at [0, umax] (with umax depending on generator and pitch properties of the

turbine) and adding a suitable anti-windup strategy for the PI controller. More details

about this issue are reported in appendix B, where practical anti-windup solutions for

SISO PI controllers are briefly discussed.

6.3.2 Stability analysis

The stability analysis of the proposed solution, leading to rules for PI gains selection, is

carried out assuming constant wind speed V , turbine velocity reference ω∗ and generator

torque saturation TGsat. The proposed results can be extended to slowly varying conditions

for the above mentioned variables, by considering their derivatives as sufficiently small

perturbing inputs. The control objective is to asymptotically stabilize the system (6.12)

with controller (6.13) and the partitioning rule (6.14) at the following equilibrium point

ω = ω∗ i.e. ω̃ = 0, χ̄ = Tw(c, V, ω
∗, 0)− T̃∆(c, V, ω

∗, β̄) (6.15)

with

β̄ =







0 if Tw(c, V, ω
∗, 0) ≤ TGsat

¯̄β s.t. Tw(V, ω
∗, 0)− T̃∆(V, ω

∗, ¯̄β)− TGsat = f( ¯̄β) otherwise

Defining χ̃ = χ− χ̄, the following error dynamics can be derived

˙̃ω =
1

J

(

Tw(c, V, ω, 0)− T̃∆(c, V, ω, β)−Kpω̃ − χ̄− χ̃
)

˙̃χ = Kiω̃.
(6.16)

The displacement of TW and T∆ with respect to their values at the equilibrium point can

be defined as follows

˜̃T∆(c, V, ω
∗, ω̃, β) = T̃∆(c, V, ω, β)− T̃∆(c, V, ω

∗, β̄)

T̃w(c, V, ω
∗, ω̃) = Tw(c, V, ω, 0)− Tw(c, V, ω

∗, 0)
(6.17)

hence, by (6.17) and (6.15), the error dynamics system (6.16) can be rewritten as

˙̃ω =
1

J

(

T̃w(c, V, ω
∗, ω̃)− ˜̃T∆(c, V, ω

∗, ω̃, β)− kpω̃ − χ̃
)

˙̃χ = kiω̃.
(6.18)

Then, it can be noted that the computation of β in (6.14) can be rewritten as

β = f−1 (sat∞0 (kpω̃ + χ̄+ χ̃− TGsat)) . (6.19)
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Therefore the error dynamics can be rewritten enlightening the remarkable dependence of
˜̃T∆ on kpω̃ and χ̃, which is crucial for stability analysis and PI design,

˙̃ω =
1

J

(

−kpω̃ − χ̃+ T̃w(c, V, ω
∗, ω̃)− ˜̃T∆ (c, V, ω∗, ω̃, kpω̃, χ̃)

)

˙̃χ = kiω̃
(6.20)

After the above rearrangements of the error dynamics, the results on stability analysis can

be summarized in the following proposition.

Proposition 6.3.1 Consider system (6.20),

- if there exist six positive numbers, k1, k2, k3, ω̃max, ymax and χ̃max, such that

• the following inequality

|Tw(c, V, ω∗, ω̃)− T∆(c, V, ω
∗, ω̃, y, χ̃)| < k1|ω̃|+ k2|y|+ k3|χ̃| (6.21)

holds uniformly w.r.t. c ∈ C, V ∈ [0, Vmax] and ω
∗ ∈ [0, ωmax], and ∀ω̃ ∈ [−ω̃max, ω̃max],

∀y ∈ [−ymax, ymax] and χ̃ ∈ [−χ̃max, χ̃max],

• the following system of inequalities

kp (1− 2k2 − k3) > 2k1

k2p(1− k22 − 2k2 − 2k3)− 2kp(k2k1 + k1)− k21 > 0
(6.22)

admits solution kp > 0,

- if kp > 0 is selected, independently of c, V and ω∗, but satisfying (6.22), and if ki

is chosen as ki = k2p/(2J), then the origin of (6.20) is asymptotically stable, for each

constant c, V and ω∗ in the domain where (6.21) holds, with a basin of attraction Ω =
{

(ω̃, χ̃) :
kp
8 ω̃

2 + 1
2

(
kp
2 ω̃ + χ̃

)2
< V ∗

}

where

V ∗ = sup
{

V : ∀(ω̃, χ̃)with kp
8 ω̃

2 + 1
2(

kp
2 ω̃ + χ̃)2 = V it holds

ω̃ ∈ [−min{ω̃max, ymax/kp},min{ω̃max, ymax/kp}]
and χ̃ ∈ [−χ̃max, χ̃max]}

Proof Setting ki = k2p/(2J) and introducing the following change of coordinates

z1 =
kp
2
ω̃, z2 =

kp
2
ω̃ + χ̃ (6.23)

the system (6.20) can be expressed as

ż1 = − kp
2J
z1 −

kp
2J
z2 +

kp
2J

(

T̃w − ˜̃T∆

)

ż2 = − kp
2J
z2 +

kp
2J
z1 +

kp
2J

(

T̃w − ˜̃T∆

)

.

(6.24)
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Consider now the following candidate Lyapunov function V = 1
2(z

2
1 + z22) taking the

derivative along the system trajectories yields

V̇ = − kp
2J

(
z21 + z22

)
+
kp
2J

(T̃w − ˜̃T∆)(z1 + z2). (6.25)

According to (6.21), the following inequality holds, for all c ∈ C, V ∈ [0, Vmax], ω
∗ ∈

[0, ωmax], χ̃ ∈ [−χ̃max, χ̃max] and ω̃ ∈ [−min(ω̃max, ymax/kp), min(ω̃max, ymax/kp)]:

Tw − T∆ <k1|ω̃|+ k2|kpω̃|+ k3|χ̃| = k1

∣
∣
∣
∣

2z1
kp

∣
∣
∣
∣
+ k2|2z1|+ k3 |z2 − z1| <

k1

∣
∣
∣
∣

2z1
kp

∣
∣
∣
∣
+ k2|2z1|+ k3 |z1|+ k3 |z2|

hence, in the same domain, the following inequality for V̇ holds

V̇ < − kp
2J

(z21 + z22) +
kp
2J

(
(

2
kp

+2k2+k3
)

|z1|+k3|z2|
)

(|z1|+ |z2|)

the quadratic form on the right-hand side can be rewritten as

V̇ < −
[

|z1| |z2|
]
[

kp
2J − kp

(
k2
J + k3

2J

)

− k1
J

−k1−kpk2−kpk3
2J

−k1−kpk2−kpk3
2J

kp(1−k3)
2J

][

|z1|
|z2|

]

(6.26)

and, according to the assumption on kp > 0 satisfying (6.22), it will be negative definite.

6.3.3 Numerical results for a case of study

In order to show that the above proposed approach can lead to reasonable and feasible

controllers for practical medium power conversion energy system, a typical 200kW three-

blades wind turbine, with blade length of R = 13m, is considered as case of study. A

direct-drive coupling between turbine and electric generator is also assumed. The following

nominal coefficients for Cp curve expression (6.4), corresponding to the values reported in

MATLABTM wind turbine library, have been adopted: c1n = 0.517630, c2n = 116, c3n =

0.4, c4n = 5, c5n = 21, c6n = 0.0067950, and the set of variation C, defined considering a

spread of ±10% around these values, has been considered. In Fig.6.2 the power coefficient

surface obtained putting the nominal n-ple into expression (6.4) is reported. Numerical

values of all the system parameters, adopted to test the proposed solution, are summarized

in Tab. 6.1. Note that, owing to the front-end converter fast thermal dynamics (τ2 is

negligible w.r.t. other dynamics), the P̄ for the considered system, calculated by (6.7), will

be always equal to PGRMSmax. Based on these parameters the approximation function

f(β) is derived applying the mean value calculation reported in (6.11); the obtained curve

is reported in Fig. 6.3. For what concerns controller gains, first, taking the error variables

bounds ω̃max = 5 rad/s, ymax = 1×106Nm, χ̃max = 10×103Nm, the following parameters

are selected in order to obtain the conservative disturbances approximation expressed by

inequality (6.21); k1 = 4800, k2 = 0.23, k3 = 0.23, then plugging these values into the

system of inqualities (6.22), the stability condition on proportional gain: kp > 437663, is

derived. Ffinally the corresponding integral gain ki = 2.4× 106 can be set as indicated in

Prop. 6.3.1.
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Figure 6.2: Power coefficient surface versus tip speed ratio λ and pitch angle β.

Wind turbine characteristics

System inertia J [Kgm2] 40000

Shaft speed range [ωmin, ωmax] [rad/s] [0,15]

Nominal angular speed ωnom [rad/s] 6.7

Wind speed range for power production [Vcin, Vcoff ] [m/s] [3.5, 25]

Rated wind speed Vnom [m/s] 11

Survival wind speed Vmax [m/s] 56

Maximum generator torque peak TGmax [Nm] 50000

Maximum generator power peak PGmax [kW] 350

Maximum RMS generator torque TGRMSmax [Nm] 30000

Maximum RMS converter power PGRMSmax [kW] 200

Generator thermal time constant τ1 [s] 60

Converter thermal time constant τ2 [s] negligible

Prediction time horizon T [s] 40

Pitch angle range [βmin, βmax] [deg.] [0, 60]

Table 6.1

6.4 Combination with MPPT approaches for speed refer-

ence generation

A standard MPPT algorithm can be easily mounted on the proposed control structure to

generate an optimal speed reference that allows to track the maximum power curve for

the turbine when needed, and to manage also the other operating conditions.

Overall control logic and speed reference generator, in general, has to manage four differ-

ent phases: system start up, maximum power tracking, power saturation and switch off.

Among these the most significant are MPPT and power saturation phases. For MPPT a

discrete event algorithm, based on a perturb and observe approach, is adopted following

these steps: starting from a constant speed ω∗(0), reached after startup, a first attempt

perturbation of the reference angular speed is produced with a predefined ∆ω∗(0), i.e.

134



6.4. Combination with MPPT approaches for speed reference generation

0 10 20 30 40 50 60
−5

0

5

10
x 10

5

pitch angle [deg]
f 

[N
m

]

Figure 6.3: T∆ mean value over c, ω, V set of variation calculated for all pitch angle

admissible values.

ω∗ = ω∗(0) + ∆ω∗(0). As detailed in the following, the new speed reference is smoothly

applied to the controller, then, when steady-state condition is reached (i.e. constant speed

reference and small tracking error), mean value of the electric power captured by the gen-

erator is evaluated and assumed equal to the aerodynamic power P , extracted from the

turbine, see (6.3), possibly saturated by the generator torque bound at very low rotor speed

(this condition is actually rather unusual). The ratio between generator power variation

and the imposed speed reference variation is adopted as a local gradient estimation of the

P − ω curve. This estimate, scaled by a suitable coefficient K, is then used to define the

subsequent reference speed perturbation and to restart the procedure, until the estimated

gradient is sufficiently close to zero. The above mentioned method can be summarized

with the following equations to be recursively applied at each step k ≥ 1.

∆PG(k) = PG(k)− PG(k − 1) ∆ω∗(k) =
∆PG(k)

∆ω∗(k − 1)

ω∗(k + 1) = ω∗(k) +K∆ω∗(k)

convergence of the proposed gradient based method to the global maximum of PG can be

ensured, assuming constant wind speed and pitch angle during the algorithm computation

steps, by concavity in the variable ω, of function (6.3) expressing the power extracted

from the wind (see also 6.4). In this respect, the scaling parameter K has to be properly

to achieve the desired convergence properties. Several methods are available, from exact

search methods optimizing PG along the ray ω∗(k)+K∆ω∗(k) to steepest increase methods

(see [91]). Here a so-called guarded Newton-Raphson method is considered by choosing K

such that

K <

(

max

∣
∣
∣
∣

∂2P (c, V, ω, β)

∂2ω

∣
∣
∣
∣

)−1

(6.27)

where the maximum value of partial second derivative is evaluated on the following set

{(c, V, ω, β) : c ∈ C, V ∈ [0, Vmax], ω ∈ [0.7, 1.3] · λopt(c)V/R, β = 0}.
Once the almost maximum power condition is reached (sufficiently small gradient estima-

tion is obtained), the MMPT algorithms is stopped and restarted when a relevant variation

in the generated power occurs, since it is a symptom of a possible wind variation requiring

a new MPPT run.
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For what concerns the smooth application of the speed reference perturbation to the con-

troller, it is worth noting that this issue is relevant not only to reduce stress on the speed

controller, but also to avoid motoring behavior of the generator in transient condition (i.e.

to avoid that the speed controller requires a negative torque TG, drawing electric power

from the line grid). A filtered ramp is used for speed perturbation generation and its slope

is run-time adapted in order to take into account the torque available form the wind. In

particular, at each iteration k of the MPPT algorithm, the adopted reference slope ω̇∗(k)

is defined as follows

ω̇∗(k) =
ηTG(k)

J
(6.28)

where TG(k) is the mean value of the torque applied, with fixed speed reference, at k

iteration and represent an estimation of the torque available from the wind; η << 1,

typically 0.2, guarantees that only a small fraction of the torque available from the wind

is used to change turbine angular speed, avoiding an excessive torque demand that would

cause energy injection to accelerate the blades.

Transition from the MPPT phase to power saturation phase takes place when mean power

at generator side reaches or exceeds the value PGRMSmax at a certain iteration k; note that

this limit can be exceeded for a limited amount of time, owing to the thermal time-varying

bound adopted in speed control. This will occur when the wind available power is larger

than the turbine/generator nominal one. At this stage, the speed reference is smoothly

increased going over the nominal value ωnom that is the value at which, for rated wind

speed Vnom the captured power equals Pmax. This procedure allows to reduce the generator

torque value while keeping constant generator power by means of pitch angle, hence lower

currents need to be drained by the generator power drive and the thermal power losses

are minimized. It’s further to notice that the value of reference speed to impose when

power saturation occurs, has to be accurately selected, the rational is to choose a safe

angular speed value that ensures the turbine braking even if a wind gust up to survival

wind speed takes place. Finally, the reverse transition from power saturation phase back

to MPPT phase will occur whenever the mean generator power significantly fall below the

PGRMSmax bound.

6.5 Simulation results

Extensive simulations have been carried out to test the proposed solution. The tur-

bine characteristics reported in 6.3.3 have been considered, moreover, the following non-

idealities and bounds have been added to account for a realistic pitch actuator: a first

order dynamics between pitch command and actual pitch position with a time constant

τ = 20ms, a slew rate limitation at ±10◦/s and a limited pitch angle range, β ∈ [0, 60]◦.

Finally, in order to prove the proposed solution effectiveness for actual wind energy conver-

sion systems, a discrete-time implementation of the controller has been carried out; taking

into account the common performances of turbine controllers, a sampling time Ts = 4ms

has been selected for the considered case of study.
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Figure 6.4: Simulation results for a wind energy conversion system benchmark.
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In Fig. 6.4(a) up and down high wind steps have been reproduced, in order to test the

stability domain of the proposed solution, it’s further to notice that pejorative conditions

with respect to those considered for stability analysis in 6.3.2 has been considered; a slowly

varying reference speed covering the entire nominal range has been adopted, and a wind

step from 10 to 30 m/s, causing an initial error χ̃(tstep) > χ̃max has been produced. The

reference tracking is ensured even when an abrupt wind speed increase occurs and the

power limit is reached, causing the generator torque to drop, hence it can be reasonably

assumed that the stability properties of the proposed solution go beyond the basin of at-

traction theoretically estimated in 6.3.2.

In Fig. 6.4(b) the benefits produced by taking into account system thermal dynamics,

mentioned in 6.2.2, are clearly shown. Starting from a wind speed not requiring any

torque-power limitation, a wind step, such that the torque saturation limit is exceeded,

is produced. It can be noted how the generator torque reaches higher values than the

maximum RMS value TGRMSmax for few seconds, then, when the torque dynamic bound

decreases due to receding horizon thermal constraints, the proposed controller starts pitch

angle variation with a quite smooth trajectory, according to time-varying torque bound.

Finally, Fig. 6.4(c) reports the results obtained integrating the MPPT algorithm sketched

in 6.4, with the discrete-time controller. In order to test the reliability of the MPPT

algorithm, realistic turbulent wind speed conditions have been reproduced, by adding a

stochastic component, generated according to the widely accepted Von Karman spectrum

representation ([38]), to the wind speed mean value. It can be noted how the optimal an-

gular speed ωopt =
V λopt

R is tracked quite accurately by the perturb and observe algorithm

when the wind speed is lower then the rated value, then, when power saturation, caused

by the wind step at time 2000s, occurs, the angular speed is steered to the constant value

ω = 7.6 rad/s to reduce generator power losses, while the torque-pitch coordinated action

limits the captured power. During the last part of the simulation the wind speed drops

below the rated limit and the MPPT algorithm is restarted to track the new optimal power

value.
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Chapter 7

Polar Coordinates Observer for

Robust line grid parameters

estimation under unbalanced

conditions

In this chapter adaptive observers are designed to cope with the problem of es-

timating amplitude, phase and frequency of the main component of three-phase

line voltage, under unbalanced conditions. Different solutions, corresponding to

particular reference frame selections are discussed, the convergence properties

are formally proved, and a careful sensitivity analysis w.r.t harmonic distortion

and the so-called negative sequence voltage components, generated by voltage un-

balancing, is carried out. In this respect is is showed how a nonlinear adaptive

solution obtained exploiting a synchronous coordinates set can improve robustness

to unbalancing with respect to traditional solutions

7.1 Problem statement

Accurate three-phase line voltage information is required for high performance control of

power electronic applications, in particularly the correct reconstruction of phase-angle is of

utmost importance for control purpose. An example of such applications has already been

discussed in ch. 2 for what concerns Shunt Active Filter;indeed, both the unconstrained

current controller and the proposed anti-windup scheme have been designed exploiting a

suitable coordinates transformation, which bring the system into a synchronous reference

frame aligned with the line voltage vector.

In order to perform such change of coordinates, accurate informations on the line phase-

angle and frequency need to be available (see 2.7). The same considerations apply for

other power conditioning equipment such as statcom VAR compensator or Uninterrupt-

able Power Supplies (UPS). Obviously phase-angle is not available for measurement and
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7.1. Problem statement

need to be reconstructed by elaborating the phase voltage signals. The estimation method

should be able to accommodate frequency fluctuations, not so uncommon in industrial en-

vironments, and could be expected to be even more significant in the next generation

more complex and smart grid networks. Furthermore the estimate has to be robust to

source voltage disturbances. Beside harmonics distortion, a typical grid condition to deal

with in power applications is voltage unbalance ([121]); this situation occurs when several

single-phase loads are connected to a distribution system, the fluctuating power required

by each of these loads can produce unbalance in power system, moreover, if a voltage sag

takes place in one or two phases of a three-phase power system, it produces a temporary

unbalancement [122].

Representing the three phase system with the method of the symmetrical components, it

is possible to show that voltage unbalance generates voltage terms rotating with oppo-

site phase respect to the mains voltage, for this reason they are usually called negative

sequence or counter rotating components [123]. Even though the European regulation

limits the amount of supply voltage sags ([124]), and several countries introduced specific

power quality regulation ([125], [126]), the sensitivity to negative sequence disturbances

has to be considered in order to accomplish the estimation accuracy needed in most of the

applications.

Various solutions are commonly employed for phase-angle estimation; Phase Locked Loop

(PLL) based solutions are broadly adopted, however, from a control theory standpoint,

also several estimation algorithms have been proposed. In [127] a least squares estimation

algorithm is presented, while in [128] a sensorless estimation algorithm for a specific PWM

rectifier is proposed.

Here nonlinear adaptive observers of the line voltage main component are considered;

as mentioned, beside adaptation with respect to modifications of line frequency (slowly-

varying variations of few percents around the nominal value are admissible), the key

estimation objectives is to ensure high selectiveness with respect to line voltage harmonics

and, at the same time, robustness to negative sequence at line frequency. Two different

solutions, first proposed in [43], are presented. The first one is straightforwardly derived

by LTI model of the line voltage in the so-called “stationary reference-frame”, adding a

suitable adaptation law for the line frequency. By means of mathematical analysis and

simulations, it is shown that, adopting pseudo-linear techniques, it is hard to achieve at

the same time robustness to negative sequence and good selective behavior with respect

to. harmonics. The second solutions exploits nonlinear line voltage model expressed in a

generic “synchronous reference frame” which is enforced to be aligned to the actual main

voltage vector by means of suitable adaptation laws. It will then be showed how, in this

case, an easy tuning can be performed in order to guarantee both high selectiveness and

robustness to negative sequence.

The chapter is organized as follows. In Section 7.2 the line voltage models are recalled,

adding the negative sequence representing unbalanced conditions, and the observer objec-

tive are defined. In Section 7.3 the first adaptive solution, based on stationary reference-
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UNDER UNBALANCED CONDITIONS

frame representation is presented along with a detailed analysis on its selectiveness and

robustness with respect to the above defined voltage disturbances. In Section 7.4 the

nonlinear adaptive solution, referred to synchronous reference frame representation of line

voltage, is presented with design and stability analysis details. Also in this case the ro-

bustness and selectiveness properties are carefully discussed via analysis and simulations.

7.2 Line voltage model and adaptive estimation problem

statement

An ideal three phase source voltage system is composed by a balanced tern xa = Vmcos(ωt),

xb = Vmcos(ωt+
2π
3 ), xc = Vmcos(ωt+

4π
3 ), according to standard two-phase planar rep-

resentation of three-phase terns the following model for xa, xb, xc can be defined

ẋα = −ωxβ , xα(0) = Vm

ẋβ = ωxα, xβ(0) = 0





xa

xb

xc




 =






1 0

−1
2

√
3
2

−1
2 −

√
3
2






[

xα

xβ

] (7.1)

this model is usually referred to as two-phase line voltage representation in stationary ref-

erence frame (see Fig. 7.1). Differently, introducing a further coordinates transformation

[

xα

xβ

]

= T (θ)

[

xd̄
xq̄

]

, T (θ) =

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

]

(7.2)

where T (θ) is a time varying rotation matrix with θ̇ = ω and θ(0) = 0, a rotating reference

frame having the d-axis aligned with the voltage vector is obtained. Therefore the so-called

line voltage representation in synchronous reference frame (referred as d̄ − q̄) is derived,

and bard, q̄ stand respectively for direct and quadrature axis (see Fig. 7.1). It is further to

recall that such coordinates set are commonly exploited in power electronic applications,

e.g. they have already been used in ch. 2 to represent the shunt active filter state variables.

Here these models are extended to describe unbalanced line voltages; if a negative sequence

(also denoted as counter-rotating component) arises, the line voltage phases change as

follows: xa = Vmcos(ωt)+Vmcrcos(−ωt+ϕ), xb = Vmcos(ωt+
2π
3 )+Vmcrcos(−ωt+ 2π

3 +ϕ),

xc = Vmcos(ωt +
4π
3 ) + Vmcrcos(−ωt + 4π

3 + ϕ), hence the stationary and synchronous

reference frame representations can be rewritten as

ẋα = −ωxβ ẋαcr = ωxβcr

ẋβ = ωxα ẋβcr = −ωxαcr





xa

xb

xc




 =






1 0

−1
2

√
3
2

−1
2 −

√
3
2






([

xα

xβ

]

+

[

xαcr

xβcr

]) (7.3)
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Figure 7.1: Geometric representation of the three-phase line voltage models.
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ẋd̄ = 0, xd̄(0) = Vm

ẋq̄ = 0, xq̄(0) = 0




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


 =


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
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xd̄
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]

.

(7.5)

Line voltages xa, xb, xc are usually measurable, then xα, xβ in (7.1), in ideal conditions,

or xα+xαcr, xβ+xβcr in (7.3), under unbalanced conditions, can be assumed equivalently

measurable.

Relying on these line voltage vector representations, different types of phase-angle observer

can be realized, in general the following objectives have to be accomplished

1. Capability to track the grid frequency in the range of variation specified for supply

systems;

2. Selective behavior to reject voltage harmonics components;

3. Robustness to negative sequence component to properly work under unbalanced

conditions.

7.3 Standard adaptive observer in a two-phase stationary

reference frame

A natural starting point for an adaptive estimation scheme, is to consider a LTI observer

related to stationary reference-frame model (7.1), and then add angular frequency adap-

tation (assuming small variations of actual frequency with respect to the nominal one).
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The resulting adaptive observer can be expressed as

˙̂xα = −ω̂x̂β + να

˙̂xβ = ω̂x̂α + νβ

˙̂ω = νω

(7.6)

where νω is the adaptation law to be designed, while να and νβ are stabilizing terms.

Defining the estimation errors x̃α = xα− x̂α, x̃β = xβ − x̂β, ω̃ = ω− ω̂, the error dynamics

are given by
˙̃xα = −ω̃x̂β − ω̂x̃β + ω̃x̃β − να

˙̃xβ = ω̃x̂α + ω̂x̃α − ω̃x̃α − νβ

˙̃ω = −νω

(7.7)

then the following result, establishing also a tuning rule for the adaptation laws, can be

claimed

Proposition 7.3.1 Consider system (7.7) and define the frequency adaptation law νω as

νω = −x̃αx̂β + x̃βx̂α, να = k1x̃1 − k3x̃2, νβ = k2x̃2 + k3x̃2 (7.8)

then, for any positive k1, k2, k3, system (7.7) is globally asymptotically stable at the origin.

Proof Consider the following candidate Lyapunov function

V =
1

2
(x̃2α + x̃2β + ω̃2)

taking its time derivative along the trajectories of (7.7) yields

V̇ = −x̃αω̃x̂β − x̃αν1 + x̃βω̃x̂α − νβx̃β − ω̃νω (7.9)

which, replacing νω and να, νβ with (7.8) becomes

V̇ = −k1x̃21 − k2x̃
2
2 ≤ 0 (7.10)

thus, global asymptotic stability follows from direct application of La Salle’s invariance

principle.

7.3.1 Simulation results and sensitivity considerations

Beside frequency adaptation, the objectives outlined in 7.2 require a selective behavior

with respect to harmonics and rejection of negative sequences. Suitable gains selection

could lead to such characteristics. For the former objective, recalling the LTI observer

which can be obtained from (7.6) with νω = 0, “low” values of k1 and k2 would lead to

large selectiveness. Hence simulations were carried out, considering an ideal voltage with

amplitude 220VRMS and angular frequency w = 2π50rad/s, while gains of the proposed

observer were set to k1 = k2 = 0.0315 and k3 = 0.6283. Fig. 7.2(a) shows the performance

obtained when the ideal line voltage is perturbed with a 100Hz harmonic, rotating in the
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Figure 7.2: Estimation performances of the adaptive observer designed in the two-phase

stationary reference frame.

same direction of line voltage vector, with amplitude of 15V (very large w.r.t. practical

cases). Large robustness of the proposed solution can be noticed, according to what ex-

pected form gains selection.

For what concerns the sensitivity to negative sequence, a further simulation scenario has

been realized. In Fig. 7.2(b) the simulation results show the observer behavior under

a negative sequence disturbance of 15V. The system shows a high sensitivity to nega-

tive sequence disturbances, the frequency estimation is affected by a huge error and the

voltage amplitude is far from the ideal value, with an error up to 60V. Hence clear dis-

turbance amplification can be observed. The unexpected behavior to negative sequence

disturbances can be investigated performing a linearization of the error dynamics (7.7)

at the origin, and exploiting analysis tools for LTI systems. Note that this is equivalent

to remove frequency adaptation and assume a known line angular frequency, recovering a

standard LTI solution.

A transfer function matrix representation of the linear observer is helpful to carry out the

sensitivity analysis. Considering the measured voltages xα, xβ as, possibly perturbed, in-

puts, and the estimated voltages x̂α, x̂β as outputs, the observer model can be summarized

as follows

[

x̂α

x̂β

]

=

[

G11 G12

G21 G22

][

xα

xβ

]

(7.11)
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Figure 7.3: Sensitivity analysis of two-phase stationary reference frame observer.

In order to analyze the observer harmonic response with respect to positive rotating (also

referred as positive sequence) harmonics and negative sequences, the relationships between

xα(jω) and xβ(jω) in both conditions need to be considered. In particular, for positive se-

quences xβ(jω) = e−j π
2 xα(jω), while for negative sequences xβ(jω) = ej

π
2 xα(jω). Hence,

considering the symmetry of the transfer function matrix, the following SISO transfer

functions can be used to analyze the sensitivity, G11 + G12e
−π

2 , for positive sequences;

G11 + G12e
π
2 for negative sequences. The corresponding Bode diagrams are reported in

Figs. 7.3(a)-7.3(b), respectively. From the frequency domain analysis the high sensitivity

to negative sequence components, previously highlighted for the adaptive observer, is con-

firmed. Moreover, it seems that, for this kind of observer, robustness to negative sequence

and selective response cannot be ensured with the same set of parameters. Formal proof

of such result is not available, but many attempts to change the gain parameters support

such conjecture.

7.4 Nonlinear adaptive observer in a synchronous polar co-

ordinates reference frame

In order to overcome the lack of robustness to unbalanced conditions enlighten in the pre-

vious sections for simple observers designed in the stationary reference frame. The main

idea is to define an observer in a generic rotating reference frame (referred as d− q), and

to made it to asymptotically converge towards the synchronous model (7.5) in the d̄ − q̄
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reference frame.

In this respect, a generic reference frame rotation T (θ̂) is defined, similarly to what re-

ported in (7.2), with an angle θ̂ and angular frequency ω̂ s.t.
˙̂
θ = ω̂. Applying the

corresponding rotation to (7.1), the following generic d − q model of the line voltage is

obtained
ẋd = −(ω − ω̂)xq

ẋq = (ω − ω̂)xd.
(7.12)

Then the following adaptive observer model (including θ̂ and ω̂ dynamics) is proposed

˙̂
A = νA ω̂ = νω + ˆ̄ω

˙̄̂ω = ηω
˙̂
θ = ω̂

x̂d = Â, x̂q = 0

(7.13)

this solution can be alternatively thought as a sort of polar coordinates observer, where it

is worth noting that a sort of PI structure has been adopted for the θ̂ estimation in order

to recover the initial unknown phase-angle value, while ˆ̄ω can be considered as the actual

angular frequency estimation of the proposed observer.

Defining ω̃ = ω − ˆ̄ω, x̃d = xd − Â, x̃q = xq yields the estimation error dynamics

˙̃xd = −(ω̃ − νω)(x̃q)− νA

˙̃xq = (ω̃ − νω)(x̃d + Â)

˙̃ω = −ηω

(7.14)

then the following results, regarding the adaptation laws design for the estimate asymptotic

convergence can be stated

Proposition 7.4.1 Consider system (7.14) and define the adaptation terms as

ηω =
1

γ
Âx̃q, νω =

k1

Â
x̃q, νA = k2x̃d (7.15)

then, for arbitrary positive values of k1, k2, γ, the origin of system (7.14) is asymptotically

stable.

Proof Consider the following candidate Lyapunov-like function

V =
1

2
(x̃2d + x̃2q + γω̃2), γ > 0

its time derivative along the trajectories of (7.14) is

V̇ = (ω̃ − νω)Âx̃q − ω̃γηω − νAx̃d

replacing the control terms νω, ηω, νA defined in (7.15) the time derivative of V becomes

V̇ = −k1x̃2q − k2x̃
2
d (7.16)

which is negative semi-definite for arbitrary positive values of k1, k2. Thus x̃d, x̃q asymp-

totically tend to zero. Then, from direct application of Barbalat’s lemma ([15] ch. 8), it

can be concluded that limt→∞ V̇ = 0 therefore limt→∞ ω̃ = 0, and the equilibrium point

at the origin of the error system (7.14) is asymptotically stable.
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7.4.1 Gains selection, sensitivity analysis and simulations

In order to select a set of gains k1, k2, γ which ensures selectivity and rejection to counter

rotating components (i.e. negative sequences), the system (7.14) is linearized around the

origin, assuming the estimated amplitude Â to have the correct value. Two disturbance

components dd, dq are added to the system and considered as inputs, in this way the

response to negative sequence can be characterized. Bearing in mind this consideration,

and using (7.15), the linearized model reads as

d

dt






x̃d

x̃q

ω̃




 =






−k2 0 0

0 −k1 Â

0 − Â
γ 0











x̃d

x̃q

ω̃




+






−k2 0

0 −k1
0 − Â

γ






[

dd

dq

]

. (7.17)

Differently from the solution presented in 7.3, thanks to the diagonal block structure of the

state matrix in (7.17), the parameter k2 can be separately designed from the parameters

k1, γ. This property allows to obtain strong selectivity and negative sequence rejection at

the same time. A low value for the parameter k2, which characterize the error dynamic

x̃d , is adopted in order to have a selective response. Errors on xq and frequency are

characterized by a second order dynamic which can be varied by means of k1 and γ. This

gains value can be chosen to set the resonance frequency much lower than the mains volt-

age frequency, and to introduce an attenuation of about 20dB for the negative sequence

disturbances.

Similarly to what in 7.3.1, a frequency response analysis can be carried out considering

the relation between dd and dq in the case of interest. In particular dq(jω) = e−j π
2 dd(jω)

for positive rotating harmonics and dq(jω) = ej
π
2 dd(jω) for negative sequences. The fol-

lowing gains have been selected k1 = 1, k2 = 1 × 10−4, γ = 10 for the observer, while

the same line parameters considered in 7.3.1 have been adopted. Owing to the structure

of the linearized model and the selected gains, Bode diagrams with respect to positive

rotating harmonics and negative sequences are very similar. In Fig. 7.4(a), 7.4(b) fre-

quency response to negative sequences of x̃q, and ω̃ are reported, respectively. Resonance

is present at very low frequencies, while in the range of interest, around the line angular

speed 50Hz, and its multiples, very large attenuation is provided. The frequency response

of x̃d is not reported since, being completely decoupled from the other variables, can be

arbitrary shaped and it is obviously less critical.

Simulations of the nonlinear adaptive observer with the proposed gain selection has been

performed, the same conditions of 100Hz voltage harmonic and negative sequence pertur-

bation, described in 7.3.1 have been considered. The estimate ˆ̄ω has been initialized to

2π40 rad/s., while the voltage amplitude estimate Â has been initialized to the 80% of

its actual value. Figs. 7.5(a)-7.5(b) show the observer behavior under a 100Hz positive

rotating harmonic and a negative sequence component, respectively. As expected from

the analysis of the linearized system, a strong rejection of the voltage disturbances can be

noticed in both conditions. Therefore, this observer scheme results much more suitable

to work under unbalanced three phase systems than the one derived from the two phase
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Figure 7.4: Sensitivity analysis of the polar coordinates observer.

stationary representation of line voltage.

The approach can be further extended to accomplish a perfect rejection of oltage un-

balancing effects, by augmenting the synchronous observer dynamcis with the negative

sequence model (7.3). Redefining the adaptation laws, that would be augmented with two

additional terms related to the negative sequence vector estimation, it is possible to sepa-

rate the main component of the perturbed measured voltage from the the counterrotating

term given by the unbalancing (see [43] for further details).
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Figure 7.5: Polar coordinates observer estimation performances.
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Chapter 8

Polar Coordinate Observer for

Position and Speed estimation in

Permanent Magnet Synchronous

Machines

In this chapter the polar coordinates observer framework is extended and specified

for rotor speed and position reconstruction in Permanent Magnet Synchronous

Machines. The reference frame adopted in the observer is pushed toward the

synchronous one by forcing it to be intrinsically aligned with the estimated back-

emf vector. This approach does not require model-based stator flux dynamicsfor

estimation, leading to improved robustness properties w.r.t measurement uncer-

tainties. Stability analysis is carried out by using singular perturbation approach.

Effective tuning guidelines are drawn exploiting insightful linearization of the

nonlinear adaptive observer.

8.1 Introduction

Permanent Magnet Synchronous Machines (PMSM) are a class of electrical machines com-

monly used for a wide range of applications. Vector control methods are usually adopted

to ensure an efficient regulation; they require the knowledge of the rotor position, and,

when a speed loop is implemented, the rotor speed feedback is also needed.

The desire of reducing the cost and the number of components, improving, at the same

time, the system reliability, has stimulated the research towards sensorless control al-

gorithms. A natural approach is to augment the system with an observer and feed the

controller with the estimated variables.

An intense research activity has been carried out to cope with this issue, some monographs

have been dedicated to it ([129], [130]) where nonlinear and adaptive control solutions have

been applied to electrical drives regulation. Despite the topic is quite mature, there is still
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research activity aimed to improve estimation performance under some well known critical

conditions. Two main methodologies can be outlined in the specific literature; the first,

usually referred as signal-based, includes all the approaches based on high frequency volt-

age signals injection, used to get complete position information by exploiting the magnetic

saliency (see [131], for instance). The second category, usually referred as model-based,

covers methods where nominal models of PMSM are exploited in different ways to re-

construct the rotor magnet position and speed through the back-emf induced on stator

windings.

Solution belonging to this family are commonly preferred, especially in medium or high

speed range of operation. In fact, it is well known ([132], [133]) that at low speed values,

the performance of model-based methods abruptly degrade due to a lack of observabil-

ity of the system. Another common problem of these approaches is the sensitivity to

parameters uncertainty, again particularly relevant at low speed. These two drawbacks

become even more significant when a linear approximation of the machine model is taken

to design the estimation system, hence the research effort has been devoted to develop

nonlinear observers for this kind of application. Beside the classical solutions based on

open-loop integrations of some system dynamics (typically the stator flux dynamics) or

on extended Kalman filters (see [134] among the others), some other interesting solutions,

aimed to cope with the above stated issues, have been proposed. Significant approaches,

concerning analysis and improvement of robustness with respect to parameters uncertain-

ties, have been presented along with some discussions on the stability properties of the

adopted nonlinear schemes (see [135], [136], [137]). Recently, a pair of solutions, presented

in [132] and [138] respectively, have cast the estimation problem into modern nonlinear

observer design techniques ([139], [140]), in order to provide a rigorous formal stability

analysis.

Here a novel and simple position and speed observer for PMSM, first formulated in [44]

is described. Taking the cue from the approach presented in 7.4, the idea is to build an

observer in a generic reference frame, imposing a representation for the beck-emf vector

equivalent to the one it would have in the so-called synchronous coordinates, which for

PMSM is commonly selecte to be aligned with beck-emf vector itself. At the same time the

beck-emf amplitude has to be reconstructed from the measured stator currents, along with

the rotor speed and position. The main advantage of this solution is that no pure inte-

gration of the stator dynamics is required, since the stator current dynamics are exploited

as indirect measurement of the back-emf vector. This leads to an intrinsic robustness to

many kinds of voltage and current measurement uncertainties. Time scale separation be-

tween the stator current dynamics and the remainder of the observer dynamics is induced

to provide practical semiglobal asymptotic stability.

The chapter is organized as follows. In Section 8.2 the standard model of PMSM in the

so-called synchronous reference frame is recalled and the general objectives for position

and speed sensorless reconstruction are reported. In Section 8.3 the proposed observer

is presented and stability analysis is carried out using singular perturbation approach.
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Then, similarly to what in 7.4.1, some tuning guidelines are derived by insightful analysis

of the estimation error linearized dynamics. Section 8.5 ends the chapter with signifi-

cant simulation tests that testify the properties of the proposed method under different

scenarios.

8.2 PMSM Model and estimation problem definition

According to standard planar representation of three-phase electric motors [129], the

PMSM electro-magnetic model can be represented in a generic 2-phase u-v reference frame

rotated by an angle ǫ0 with respect to a static reference frame aligned to the stator wind-

ings

i̇u = −R
L
iu + ω0iv +

ωφv
L

+
uu + du

L

i̇v = −R
L
iv − ω0iu − ωφu

L
+
uv + dv
L

φ̇u = −(pω − ω0)φv

φ̇v = (pω − ω0)φu

(8.1)

where ω0 = ǫ̇0 is the angular speed of the arbitrary selected reference frame u-v; p are

the pole pairs; R,L are stator winding resistance and inductance; ω is the actual rotor

mechanical speed; iu, iv are the stator currents; φu, φv are the components given by the

projection in the considered reference frame of the rotor magnet flux vector, whose am-

plitude will be indicated as Φ. In this framework, θ, such that θ̇ = ω and θe, such that

θ̇e = pω, can be used respectively to represent the mechanical and the so-called electrical

angle of the rotor magnet flux vector with respect to the static stator-aligned reference

frame. Finally, uu + du and uv + dv give the voltages applied to the stator windings.

Usually, stator voltages are actuated by means of switching power converters (such as in-

verters) and direct measurements are not available or not highly accurate. For this reason

the voltages have been split into the sum of the ideal expected values uu, uv and two

terms du, dv which account for measurement errors and/or inverter non-idealities (such as

Dead-Time effect, IGBT/MOS voltage drop).

With no loss of generality, one polar pair is assumed, therefore ω will be the so-called

electrical rotor speed and the mechanical angle, θ, and the electric one, θe, will be the

same.

As it is well known, [129], defining a reference frame d-q with the d-axis aligned with the

rotor flux vector, the model (8.1) reads as follows

i̇d = −R
L
id + ωiq +

ud + dd
L

i̇q = −R
L
iq − ωid −

ωΦ

L
+
uq + dq
L

φ̇d = 0

φ̇q = 0

(8.2)
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For this kind of coordinate frame, the speed ω0 and angle ǫ0 become exactly the electrical

rotor speed ω and the rotor flux vector angle θ. Therefore, similarly to what in 7.2 for

three-phase line voltage representation, this reference frame is usually referred to as syn-

chronous reference frame.

In sensorless control of PMSM a fundamental issue is to estimate the rotor flux vector angle

θ and speed ω, since no direct measurements are available. This is crucial to build stan-

dard and also some kind of advanced speed-torque controllers based on field-orientation

principles, [129]. Usually, in model-based approaches, speed and position estimation task

is performed by defining a suitable observer exploiting the electromagnetic model of the

PMSM, while no relevant information is assumed available on the mechanical model of

what connected to the machine rotor. On the other hand, the speed dynamics is as-

sumed much slower than the electromagnetic one, therefore the speed is assumed constant

(or slowly varying) in stating the above-mentioned estimation problem. Beside the basic

problem, also the estimation of the amplitude of the rotor magnetic flux vector is often

considered to enable very accurate torque control accounting for flux amplitude variations

along time or due to different working temperatures [129]).

Bearing in mind these considerations, the following general objectives can be defined for

an observer based on the electromagnetic model of PMSM.

1. Guaranteeing estimation of rotor magnet vector position, θ, and speed ω along with

its amplitude Φ, under constant rotation conditions, assuming stator currents and

expected stator voltages available from measures and actuations, respectively, and

considering null voltage uncertainties (these conditions will be referred as nominal

conditions);

2. Achieving as large as possible bandwidth in the estimation of the speed ω in order

to compensate for the lack of knowledge of the mechanical model and cope with

variable speed conditions;

3. Obtaining large voltage disturbances rejection, i.e. attenuation of the dd, dq distur-

bances.

8.3 Nonlinear adaptive observer based on a synchronous

reference frame

The basic idea of the proposed approach, is similar to what already showed in (7.4). Here

the observer is built by imposing in a generic reference frame the model (8.2) which is

valid only in the synchronous one, then feedback estimation laws are designed in order to

push the angle and the speed of the adopted reference toward θ and ω of the synchronous

frame. Therefore, the proposed observer reference frame can be seen as an estimation of

the synchronous one and, in the following, it will be denoted as d̂ - q̂ with angle θ̂ and

speed ω̂ with respect to static stator reference frame.

154



8.3. Nonlinear adaptive observer based on a synchronous reference frame

An additional important step in the above defined procedure is a coordinate change high-

lighting the back-emf as state variable. For this purpose define χd̂ = ωφd̂ and χq̂ = ωφq̂,

then the synchronous model (8.2) can be revised leading to the following observer in the

d̂ - q̂ reference frame
˙̂id̂ = −R

L
id̂ + ω̂iq̂ +

ud̂
L

+ ηd

˙̂iq̂ = −R
L
iq̂ − ω̂id̂ −

Â

L
+
uq̂
L

+ ηq

˙̂
A = νa

˙̄̂ω = ηω

ω̂ = ˆ̄ω + νω

˙̂
θ = ω̂

(8.3)

where id̂, iq̂ and ud̂, uq̂ are the stator currents and expected voltages, available from

measurements, and the actuator commands and reported in d̂-q̂ frame; Â is the estimation

of the back-emf ωΦ in (8.2); while the meaning of îd̂, îq̂, θ̂ and ω̂ is straightforward.

Differently, ηd, ηq, νa, ηω and νω are feedback terms defined as follows, for observer

convergence

ηd = kpĩd̂, ηq = kpĩq̂, νa = −Lk1kpĩq̂,

ηω = γ
Â

Lkp
ĩd̂, νω = k2

Â

Lkp
ĩd̂

(8.4)

where ĩd̂ = id̂ − îd̂, ĩq̂ = iq̂ − îq̂. As in (7.13), a sort of PI structure has been adopted

for the estimation of θ̂, but just ˆ̄ω will be considered as output speed estimation of the

proposed observer. Finally, the PMSM model can be expressed in the observer reference

frame as follows

i̇d̂ = −R
L
id̂ + ω̂iq̂ +

χq̂

L
+
ud̂ + dd̂
L

i̇q̂ = −R
L
iq̂ − ω̂id̂ −

χd̂

L
+
uq̂ + dq̂
L

χ̇d̂ = −(ω − ω̂)χq̂ +
ω̇

ω
χd̂

χ̇q̂ = (ω − ω̂)χd̂ +
ω̇

ω
χq̂

(8.5)

where χd̂ χq̂ underscore the back-emf projections in the considered frame, according to

the previous definitions.

Note that in model (8.5) also dd̂, dq̂ and ω̇ are reported to highlight the effect of voltage

uncertainties and non-constant speed conditions.

8.3.1 Stability analysis

The convergence analysis of the proposed estimation scheme will be carried out assuming

nominal conditions defined in Objective 1 at the end of 8.2, hence the disturbances on

the actuated voltages and the perturbation introduced by a non constant rotor speed,

appearing in (8.5), will be neglected. However, these additional input signals will be
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considered in 8.4 for observer gains tuning, according to objectives 2-3 stated at the end

of 8.2.

A model to suitably represent the behavior of the observation error can be defined by

considering the current errors ĩd̂ and ĩq̂, previously introduced, and adding the following

errors variables related to the estimation of the back-emf components and speed

χ̃d̂ = χd̂ − Â , χ̃q̂ = χq̂ , ω̃ = ω − ˆ̄ω (8.6)

By subtracting (8.3) from (8.5), disregarding dd̂, dq̂, ω̇, the dynamics of the above defined

estimation errors is the following

˙̃id̂ = −ηd +
χ̃q̂

L

˙̃iq̂ = −ηq −
χ̃d̂

L
˙̃χd̂ = −(ω̃ − νω)χ̃q̂ − νa

˙̃χq̂ = (ω̃ − νω)(χ̃d̂ + Â)

˙̃ω = −ηω

(8.7)

Exploiting the adaptation laws defined in (8.4) and defining the following change of co-

ordinates χ̃d̂1
= χ̃d̂/Lkp, χ̃q̂1 = χ̃q̂/Lkp, νa1 = νa/Lkp, Â1 = Â/Lkp and ǫ = 1

kp
, system

(8.7) reads as

ǫ˙̃id̂ = −ĩd̂ + χ̃q̂1

ǫ˙̃iq̂ = −ĩq̂ − χ̃d̂1

˙̃χd̂1
= −(ω̃ − k2Â1ĩd̂)χ̃q̂1 + k1ĩq̂

˙̃χq̂1 = (ω̃ − k2Â1ĩd̂)(χ̃d̂1
+ Â1)

˙̃ω = −γÂ1ĩd̂

(8.8)

This can be easily seen as a standard singular perturbation model ([15] ch. 11), where

the time scale separation between the current error dynamics and the back-emf and speed

error dynamics is parametrized by the gain kp. Therefore, assuming a sufficiently high

value of kp has been chosen (more details will be given in the following), the problem

of the estimates convergence can be approached by considering the overall system as the

interconnection of a fast subsystem, represented by the current error variables (̃id̂ ,̃iq̂), and

a slow subsystem given by the other dynamics (χ̃d̂1
, χ̃q̂1 , ω̃).

According to [15] and [76], we start by studying the so-called boundary layer system,

related to the fast dynamics. First, define the quasi steady-state value for the current

errors, obtained as the solution of the fast subsystem when ǫ = 0, it results ĩd̂ = χ̃q̂1(t),

ĩq̂ = −χ̃d̂1
(t). Then, defining yd = ĩd̂ − χ̃q̂1 , yq = ĩq̂ + χ̃d̂1

, t = ǫτ , after some computation,

consisting in freezing the slow varying variables by setting ǫ = 0, the following boundary

layer system is obtained
dyd
dτ

= −yd,
dyq
dτ

= −yq (8.9)

It is trivial to verify that the origin of (8.9) is globally exponentially stable, uniformly

in both the slow variables and the time, since it is a LTI system with an Hurwitz state
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matrix.

Now, the focus is put on the reduced dynamics obtained by substituting the fast variables

id̂, iq̂ with their quasi steady-state, ĩd̂ = χ̃q̂1(t), ĩq̂ = −χ̃d̂1
(t), in the slow dynamics given

by the last three equations in (8.8). Note that the quasi steady-state definition enlightens

how the current errors can be used as indirect measure of the back-emf estimation errors,

thanks to time scale separation imposed by kp. After some computation the following

reduced system results

˙̃χd̂1
= −(ω̃ − k2Â1χ̃q̂1)χ̃q̂1 − k1χ̃d̂1

˙̃χq̂1 = (ω̃ − k2Â1χ̃q̂1)(χ̃d̂1
+ Â1)

˙̃ω = −γÂ1χ̃q̂1

(8.10)

To investigate the stability of (8.10) consider the Lyapunov candidate function V = 1
2(χ̃

2
d̂1
+

χ̃2
q̂1
+ ω̃2

γ ), taking its derivative along the system trajectories yields

V̇ = −k1χ̃2
d̂1

− k2Â
2
1χ̃

2
q̂1 (8.11)

which is negative semi-definite for any positive values of k1, k2. Therefore, from direct

application of Barbalat’s lemma, it can be stated that limt→∞ V̇ = 0, limt→∞ ˙̃χd̂1
= 0 and

limt→∞ ˙̃χq̂1 = 0. Therefore, the origin of the reduced dynamics is globally asymptotically

stable.

From the previous considerations and using the singular perturbation results as formulated

in [76], the following properties for the overall estimation error dynamics (8.8) can be

drawn.

Proposition 8.3.1 For the system (8.8), replacing for simplicity current coordinates, ĩd̂,

ĩq̂, with the above defined yd = ĩd̂ − χ̃q̂1, yq = ĩq̂ + χ̃d̂1
, there exist two class KL functions

βf and βs such that, for each δ > 0 and for every compact sets Ωf ⊂ R
2 and Ωs ⊂ R

3,

there exists ǫ∗ such that ∀ǫ = k−1
p ∈ (0, ǫ∗], the following inequalities hold

‖[yd(t), yq(t)]T ‖ ≤ βf
(
‖[yd(0), yq(0)]T ‖, t/ǫ

)
+ δ ∀[yd(0), yq(0)]T ∈ Ωf (8.12)

‖[χ̃d̂1
(t), χ̃q̂1(t), ω̃(t)]

T ‖ ≤ βs

(

‖[χ̃d̂1
(0), χ̃q̂1(0), ω̃(0)]

T ‖, t
)

+ δ ∀[χ̃d̂1
(0), χ̃q̂1(0), ω̃(0)]

T ∈ Ωs

(8.13)

Hence, semiglobal practical stability can be stated for the overall error dynamics (8.8),

provided that a sufficiently large kp has been selected.

8.4 Tuning rules for the proposed solution

The time scale separation properties derived in 8.3.1 and the general objectives defined in

8.2 can be induced applying some gain tuning guidelines for the adaptation laws of the

proposed observer. A preliminary step toward this goal is to rewrite the error dynamics
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(8.7) taking into account the voltage disturbances and the perturbation given by non-

constant speed as follows

˙̃id̂ = kp(−ĩd̂ + χ̃q̂1) +
dd̂
L

˙̃iq̂ = −kp(̃iq̂ + χ̃d̂1
) +

dq̂
L

˙̃χd̂1
= −(ω̃ − νω)χ̃q̂1 − νa1 +

ω̇

ω
(χ̃d̂1

+ Â1)

˙̃χq̂1 = (ω̃ − νω)(χ̃d̂1
+ Â1) +

ω̇

ω
χ̃q̂1

˙̃ω = −ηω + ω̇

(8.14)

The origin of the system, [χ̃d̂1
χ̃q̂1 ω̃] = 0, is an equilibrium point, and linearizing the

system near the origin the following LTI system is obtained

˙̃id̂ = kp(−ĩd̂ + χ̃q̂1) +
dd̂
L
, ˙̃iq̂ = kp(−ĩq̂ − χ̃d̂1

) +
dq̂
L

˙̃χd̂1
= −νa1 + ω̇Φ1

˙̃χq̂1 = (ω̃ − νω)Φ1ω (8.15)

˙̃ω = −ηω + ω̇

where Φ1 = Φ/Lkp. The variable ω̇ can be seen as an input acting on ˙̃ω and ˙̃χd̂1
and it

is useful to evaluate the sensitivity of the error variables to the variable speed, i.e. the

observer bandwidth. Other inputs in the dynamics (8.15) are the voltage disturbances dd̂
and dq̂, also the sensitivity to such variables will be considered.

Applying to the error system (8.15) the results deriving from singular perturbation prop-

erties enlightened in 8.3.1, the following quasi-steady state equations can be considered

(with some abuse of notation)

−ĩd̂ + χ̃q̂1 +
dd̂
Lkp

≈ 0, −ĩq − χ̃d1 +
dq̂
Lkp

≈ 0 (8.16)

Hence, the following linearized reduced error dynamics can be derived

˙̃χd̂1
= k1(−χ̃d̂1

+ dq̂/Lkp) + ω̇Φ1

˙̃χq̂1 = ωΦ1ω̃ − k2(ωΦ1)
2 (χ̃q̂1 + dq̂/Lkp)

˙̃ω = −γωΦ1

(
χ̃q̂1 + dd̂/Lkp

)
+ ω̇

(8.17)

with the following state matrix AR and input matrix BR with respect to the input vector

[dd̂ dq̂ ω̇]
T

AR =






−k1 0 0

0 −k2(Φ1ω)
2 Φ1ω

0 −γÂ1 0




 , BR = 1

Lkp






0 k1 Φ

−k2(ωΦ1)
2 0 0

−γωΦ1 0 Lkp




 (8.18)

State matrix AR in (8.18) has the following eigenvalues

λ1 = −k1, λ2,3 =
k2(ωΦ1)

2

2

[

−1±
√

1− 4γ

k22(ωΦ1)2

]

. (8.19)
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It is possible to find the value of k2, γ to impose damping (δ) and angular natural frequency

(ωn) for the eigenvalues λ2,3 using the following equations

k2 =
2ωnδ

(ωΦ1)2
, γ =

1

(ωΦ1)2

[

ω2
n(1− δ2) +

k22(ωΦ1)
4

4

]

(8.20)

With these formulas at hand, and bearing in mind the introduction of this section the

tuning parameter must be chosen to cope with:

1. Frequency separation, between fast dynamics of ĩd̂1 , ĩq̂1 and slow dynamics of χ̃d̂1
,

χ̃q̂1 , ω̃;

2. High Bandwidth Observer, for good estimation during speed variations, i.e. low

sensitivity to ω̇;

3. Disturbance rejection for high robustness to common disturbances due to Inverter

non-idealities, i.e. low sensitivity to dd̂, dq̂.

Obviously, frequency separation can be obtained choosing large kp. The upper bound for

this parameter is usually related to the common discrete time realization of the observer.

In fact, kp represents the bandwidth for the current îd̂, îq̂ reconstruction.

High observer bandwidth can be obtained acting on k1, k2 and γ but, actually, this is in

contrast with disturbance rejection requirement.

First of all, a good practice is to chose k1, k2 and γ such that they identify three distinct

eigenvalues for the matrix AR, to avoid ill conditioned problems. k1 is related only on

the bandwidth of the χ̃d̂1
dynamic. Its value must be chosen to be lower than the faster

dynamic imposed by kp (e.g. k1 = kp/50), recalling that a low value for this parameter

produces a low sensitivity to ω̇.

k2 and γ can be chosen to impose damping (δ) and angular natural frequency (ωn) of λ2,3

eigenvalues of the reduced order system, as reported in (8.20). For the value of ωn, the

same considerations as for k1 hold, i.e. ωn must be lower than the fast dynamic imposed

by kp (e.g. ωn = kp/80), but not too low to not compromise the observer bandwidth. The

damping of the eigenvalues λ2,3 (δ < 1) can be chosen to lightly augment the frequency

of the eigenvalue related to it, but its major effect is to introduce a resonant frequency

behavior, giving low disturbance rejection for a particular disturbance band frequency.

For what concerns the disturbance rejection, a preliminary task is the identification of the

disturbance band frequency. Inverter non-idealities introduce voltage disturbances with

frequencies n-times the actual electrical frequency, and from practical experiments for the

main disturbance component n = 6. The worst case is at low electrical frequency, for

which also disturbances are at low frequency.

8.5 Simulation results

In order to prove the effectiveness of the proposed approach for permanent magnet electri-

cal machines sensorless control, simulation test have been carried out plugging the observer

159



Chapter 8. POLAR COORDINATE OBSERVER FOR POSITION AND SPEED ESTIMATION IN

PERMANENT MAGNET SYNCHRONOUS MACHINES

PMSM parameters

Motor inertia J [Kgm2] 0.04

Nominal angular speed ωnom [rad/s] 300

Rotor flux Φ [Wb] 1

Nominal torque Tnom [Nm] 5

Stator resistance R [Ω] 2.5

Stator inductance L [H] 0.1

Number of pole pairs p 1

Table 8.1

in a typical field-oriented control scenario, namely the estimated speed (ˆ̄ω) and angular

position (θ̂) are used to feed the following standard speed controller designed in the d̂− q̂

reference frame
T ∗
el = kpωω̃ + η, η̇ = kIωω̃

ud̂ = kpd̂ĩd̂ + ξd̂ − Liq̂ + Â, ξ̇d̂ = kId̂ĩd̂

uq̂ = kpq̂ ĩq̂ + ξq̂ + Lid̂, ξ̇q̂ = kIq̂ ĩq̂

ĩd̂ = id̂ − i∗
d̂
, i∗

d̂
= 0

ĩq̂ = iq̂ − i∗q̂ , i∗q̂ =
T ∗ ˆ̄ω

Â
.

(8.21)

A benchmark permanent magnet electrical machine, defined by the parameters reported

in Tab.8.1, has been considered. The observer gains, tuned according to linear analysis

discussed in 8.4, are: kp = 3030, k1 = 60.6, k2 = 4503, γ = 927050. The initial estimate

value is set to zero for all the estimated variables, in order to confirm, by simulation, the

convergence property of the observer. Fig.8.1 shows the obtained results, a variable speed

reference trajectory ω∗ (see Fig. 8.1(a)) and load torque (TL in Fig. 8.1(b)) steps have

been reproduced in order to test also the observer dynamic behavior. It can be noted

how the angular speed and position estimates are quickly recovered during reference and

load torque changes, even when slow speed region is crossed, consequently also the speed

controller is able to ensure a good tracking response (see Fig. 8.1(c)). Therefore the

solution can be suitably extended and specifically tuned for realistic electrical machines

applied in timely topics such as wind energy conversion systems presented in ch. 6,

simulations tests regarding this possibility have been already carried out and reported

in [44].
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(c) Speed tracking and position estimation errors.

Figure 8.1: Simulation results of sensorless speed control using the proposed observer.
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Appendix A

Mathematical Tools

This appendix provides an overview of the mathematical tools commonly exploited to

formulate and solve the LMI-constrained optimization problems, that as reported in 1, 4,

arises in modern anti-windup solutions and explicit saturated control design techniques.

The three kind of convex and quasi-convex optimization problems that most commonly

appear in the formulations of the above mentioned problems are presented, then a simple

algorithm for their solution is introduced, and more advanced solution techniques, nowa-

days adopted to efficiently solve the considered class of problems, and generally suitable

to deal with generic nonlinear convex problems, are sketched for sake of completeness.

Finally the two mathematical tools; Schur complement and S-Procedure, deeply exploited

throughout 1, 4 and 5 to cast nonlinear inequality constraints into LMIs, will be formally

presented.

First we give some preliminary definitions; a generic LMI can be expressed as

F (x) := F0 +
m∑

i=0

xiFi > 0 (A.1)

where x ∈ R
m are the decision variables, Fi are symmetric given matrix, and the in-

equality symbol means that F (x) is positive definite. Equation A.1 is a sort of explicit

representation of the LMI, while often problems are formulated letting the matrices to be

the variables, e.g. the Lyapunov equation ATP +PA < 0, with A given and P = P T as a

variable. This equation can be readily put in the form of A.1, defining a basis P1, . . . , Pm

for the m × m symmetric matrix ad taking F0 = 0, Fi = −ATPi − PiA. However, for

both notation and computational reasons, it’s often convenient to keep the LMI in its

condensed form.

In equation A.1 a strict inequality has been considered, however, in many cases, we need

to deal with non strict conditions, i.e F (x) ≥ 0. If the strict LMI F (x) is feasible, than we

say F (x) ≥ 0 is strictly feasible (constraint qualification condition, [75]), and the feasible

set of the nonstrict LMI will be the closure of the the feasible set of the strict LMI. Thus

we can simply solve the optimizations problems replacing the non-strict constraint with

its strict version. When F (x) ≥ 0 is feasible but not strictly feasible, then the previous

procedure cannot be followed, by the way, we can note that if the strict inequality is un-
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feasible and its strict version is feasible, two possible pathological situations are present.

The first is when the non-strict inequality implicitly defines an equality constraint, the

second if the matrix F (x) has a constant nullspace (i.e F (x) is always singular). Bearing

in mind this considerations, we can state that any feasible non strict LMI can be reduced

to a strictly feasible inequality condition, by eliminating the implicit equality constraints

and removing any constant nullspace.

Formally we can say that, for any F (x) ≥ 0, there exist a matrix A, a vector b, and a set

of matrices F̃ (z) (defined according to A.1) such that

F (x) ≥ 0 ⇔ Az + bx, F̃ (z) ≥ 0 (A.2)

where F̃ (z) ≥ 0 is either strictly feasible or unfeasible. The matrix A and the vector

b define the implicit equality constraints, while the matrix F̃ (z) is the original set of

inequalities with the constant nullspace removed.

A.1 LMI feasibility problem, Eigenvalue Problem and Gen-

eralized Eigenvalue Problem

Here some standard convex and quasi-convex problems arising in control theory are pre-

sented. The most basic problem we can think about is to determine if a set of linear

matrix inequalities F (x) > 0 is feasible, i.e there exist a xfeas such that F (xfeas) > 0.

This problem is usually refereed as LMI problem, a classical example is the simultane-

ous stability problem arising for polytopic LDIs. Another common convex problem is the

so-called eigenvalue problem (EVP), where the objective is to minimize the maximum

eigenvalue of a matrix, which depends affinely on a variable, subject to an LMI constraint.

Formally a generic EVP is formulated as

min
x

λ

s.t. λI −A(x) > 0, B(x) > 0
(A.3)

A, B are symmetric matrices depending on the decision variable x. Equivalently an EVP

can arise in the form of minimizing a linear function subject to an LMI

min cTx

s.t. F (x) > 0
(A.4)

which reduces to an LP problem if F (x) is composed with all diagonal matrices. Another

equivalent form for the generic EVP, commonly appearing in control problems is

min λ

s.t. A(λ, x) > 0
(A.5)

where A is affine in (x, λ).

A third standard problem arising in control theory applications is the so-called general-

ized eigenvalue problem (GEVP) which consist in minimizing the maximum generalized
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eigenvalue of a pair of matrices that depends affinely on a variable, subject to an LMI

constraint. A GEVP can be expressed as

min λ

s.t. λB(x)−A(x) > 0, B(x) > 0, C(x) > 0
(A.6)

where A, B, C are symmetric matrices depending affinely on x. Equivalently we can

express this as

min λmax(A(x), B(x))

s.t. B(x) > 0, C(x) > 0
(A.7)

where λmax(A(x), B(x)) denotes the largest eigenvalue of the matrix B−1/2AB−1/2. Hence

we can see that this is a quasi-convex problem, since the constraint is convex (LMI) while

the objective function is quasi-convex, however, as it will be showed in the next section,

there exist reliable algorithms to solve this particular kind of nonlinear problem.

As for the EVP problem, the GEVP problem can appear in a third equivalent form

min λ

s.t. A(x, λ) > 0
(A.8)

where A is affine in x for fixed λ and viceversa, furthermore it satisfies the monotonicity

condition w.r.t λ.

A.2 The ellipsoid method and interior point methods

The problems defined in the previous section can be efficiently (polynomial time) solved

with a simple algorithm based on the approximation of the region containing the optimal

point, by means of smaller and smaller ellipsoids. For this reason it is usually referred

to as the ellipsoid method. In order to present the basic insight behind the method, it

will be assumed that the problem has at least an optimal point, hence the constraints

are feasible. Roughly speaking, the idea is to start with an ellipsoid E0 containing the

optimal point. Than the ellipsoid is cut by a plane passing through its center, this means

that the optimal point will be guaranteed to lie on one of the two half-spaces defined by

the cutting plane. Hence we can compute a vector g(0) (defining the cutting plane), such

that the optimal point will lie in
{
z | g(0)T (z − x(0)) < 0

}
. The next step is to compute

the smallest ellipsoid (minimum volume) E(1) containing the half-ellipsoid corresponding

to E(0) ∩ g(0)T (z − x(0)) < 0, which is guaranteed to contain the optimal point. The

procedure can then be iterated by slicing the ellipsoid E(1) with a cutting plane.

It’s further to notice that the minimum volume ellipsoid contained in an half-ellipsoid can

be expressed analytically ([75]), if we consider the generic half-ellipsoid

E =
{
z | (z − a)TA−1(z − a) ≤ 1, gT (z − a) ≤ 0

}
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we can state that it’s contained in the minimum volume ellipsoid

Ê =
{

z | (z − â)T Â−1(z − â)
}

≤ 1,

where
â = a− (Aĝ)/(m+ 1)

ĝ = g/
√

gTAg

Â =
m2

m2 − 1

(

A− 2

m+ 1
AT ĝT ĝA

)

.

(A.9)

Therefore, if the algorithm is initialized with x(0) and A(0) such that the resulting ellipsoid

is ensured to contain the optimal point, we only need to define how to compute a cutting

plane at each step.

For the LMI problem, if x is unfeasible, there exist u such that

uT
(

F0 +

m∑

i=1

Fi(x)

)

u ≤ 0. (A.10)

Defining the components of g as gi = −uTFiu, we can state that for any z such that

gT (z − x) ≥ 0, we have

uT
(

F0 +
m∑

i=1

Fi(x)

)

u ≤ uTF (x)u− gT (z − x) < 0. (A.11)

It follows that every feasible point lies in the half-space
{
z | gT (z − x) < 0

}
, and thus g

define a cutting plane at the point x for the LMI problem.

Now consider the EVP
min cTx

s.t. F (x) > 0
(A.12)

if x is unfeasible we can compute g as for the LMI problem, while if x is feasible g = c

defines a cutting plane, since all the points belonging to the half-space
{
z | cT (z − x) > 0

}

have an objective function greater than x, and they cannot be optimal.

Similar reasoning can be done to define a cutting plane for the GEVP; consider the ex-

pression in eq. A.7, if x is unfeasible we know how to define the cutting plane with the

method for the LMI problem. If x is feasible, picking a vector u 6= 0 such that

(λmax(A(x), B(x))B(x)−A(x))u = 0

gi = uT (λmax(A(x), B(x))Bi(x)−Ai(x))u
(A.13)

we see that g defines a cutting plane for the GEVP. Finally note that for a generic convex

problem subject to LMI constraints, a cutting plane is defined by the gradient of the objec-

tive function, this directly stems from the convexity first order condition for differentiable

functions ([91]).

The ellipsoid method is still adopted for its low simplicity, however, in the last decades

it has been outdated by more efficient interior point algorithms, among those, a pretty

popular method, exploited also to compute effective approximated solutions of non-convex
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problems (see [81], [82]), is the so-called method of centers. It’s based on the following

definitions; consider the LMI in equation (A.1), we define the barrier-function φ(x) as

φ(x) =







log det(F (x)−1) F (x) > 0

∞ otherwise
(A.14)

assuming that the problem has a nonempty and bounded feasibility set, the above defined

function is convex, thus it has a unique minimizer x∗ = argminx φ(x), x
∗ is usually referred

as the analytic center of the LMI, and it can be computed by means of standard Newton’s

method. As far as concerns the EVP problem in the form of eq. (A.12), we can considering

an equivalent feasibility problem

cTx < λ, F (x) > 0 (A.15)

which is feasible for each λ > cTxopt. Therefore we can define the analytic center for

problem (A.15) as

x∗(λ) = argmin
x

(

log det(F (x)−1) + log
1

λ− cTx

)

(A.16)

the curve x∗(λ), for λ > cTxopt is called the path of centers, and it can be shown that the

limit of the minimizing sequence defined by (A.16), for λ = λopt is the optimal point xopt.

The method of centers, for the EVP, can be specified:

• Initialize the algorithm with x(0), λ(0) s.t. (A.15) is feasible.

• Compute λ(k+1) = (1− θ)cTx+ θλ(k)

• Compute x(k+1) = x∗(λ(k+1))

where the parameter θ lies in the range [0, 1], and it is used to ensure that the current

iterate x(k) satisfies the inequality cTx < λ(k+1).

This method reduces the EVP problem to solve a sequence of unconstrained convex prob-

lem, which is usually done by Newton’s method, allowing to exploit the particular structure

of the problem, and reducing the computational effort. However in its standard formula-

tion, the method of centers has not a polynomial convergence, but it can be made to con-

verge polynomially with some modifications, for further details about these topic, stopping

criterion and unfeasibility detection methods see [81] and reference therein. More efficient

interior point algorithms, usually referred as primal-dual algorithms can be adopted to

solve the convex problems described in this section, in [91] a rather comprehensive survey

of this kind of approach can be found.

A.3 Schur complement and S-Procedure

In this section we define two mathematical tools that are often adopted to formulate

LMI constrained optimization problem starting from standard problems arising in control
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system theory.

In many practical cases, convex nonlinear inequalities can be converted to LMI by using

the so-called Schur complement ([12]);

Lemma A.3.1 Given two symmetric matrices Q, R, and S having the same number of

row as Q and the same number of columns as R, then the LMI condition
[

Q S

ST R

]

> 0 (A.17)

is equivalent to the nonlinear matrix condition

Q− SR−1ST > 0, R > 0 (A.18)

a typical example of the Schur comlement application regards the maximum singular value

matrix norm condition ||Z|| ≤ 1. Eventhough it’s nonlinear in the matrix variable Z, it can

be expressed as the LMI

[

I Z

ZT I

]

> 0, noting that ||Z|| ≤ 1 is equivalent to I−ZTZ > 0

and then applying the above lemma.

Another useful tools, extensively used in robust control literature is the so called S-

procedure. In some problems, we find that some quadratic function must be negative

whenever some other quadratic functions are all negative. With the S-procedure, we can

replace this problem by one inequality to be satisfied by introducing some positive scalar

variables to be determined. In it’s most generic formulation S-procedure reads as

Lemma A.3.2 Consider a family of quadratic functions Fi(ξ) in the form Fi(ξ) = ξTPiξ+

2uTi ξvi, i = 0, . . . p, where Pi = P T
i , then if there exist numbers τ1, . . . τp ≥ 0 such that

∀ξ, F0(ξ)−
p
∑

i=1

τiFi(ξ) ≥ 0 (A.19)

then the following holds.

F0(ξ) ≥ 0 ∀ξ s.t. Fi(ξ) ≥ 0, i = 1, . . . p. (A.20)

The nontrivial converse holds if p = 1 and F1(ξ
∗) > 0 for some ξ∗.

A variation of S-procedure involving strict inequalities and quadratic forms can be estab-

lished as follows

Lemma A.3.3 Let Pi, i = 0, . . . , p be symmetric matrices, and consider the following

condition

ξTP0ξ > 0, ∀ξ 6= 0 s.t ξTPiξ ≥ 0, i = 1, . . . , p (A.21)

it’s easy to see that if there exist τ1, . . . τp ≥ 0 such that

P0 −
p
∑

i=1

τiPi > 0 (A.22)

then (A.21) holds. The converse is true when p = 1 if for some ξ∗, ξ∗TP1ξ
∗ > 0.
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A.4 Finsler’s and Elimination Lemma

A property closely related to the previously presented S-procedure is the so called Finsler’s

lemma whose statement is reported in the following

Lemma A.4.1 Given two real symmetric matrices P , A if the quadratic inequality

xTPx > 0 (A.23)

holds for any x 6= 0 such that xTAx = 0, then there exist a scalar λ such that

Q− λA > 0 (A.24)

Finsler’s lemma is exploited to derive onother useful lemmma, the so called elimination

lemma [75], used to reformulate matrix inequalities eliminating some of the original vari-

ables

Lemma A.4.2 Consider the matrix inequality

T (x) +W (x)FV T (x) + V (x)F TW T (x) > 0 (A.25)

with T ∈ R
n×n, and W , V , F of suitable dimension. Assume that T , W , V are inde-

pendent from F and denote with W⊥(x), V ⊥(x) the orthogonal complements of W (x),

V (x) respectively. Then (A.25) holds for some F and x = x0 if and only if the following

inequalities are satisfied for x = x0

W⊥(x)T (x)W⊥(x) > 0

V ⊥(x)T (x)V ⊥(x) > 0.
(A.26)

Furthermore, by applying lemma A.4.1 we can state that there exists λ ∈ R such that

T (x)− λV (x)V (x)T > 0

T (x)− λW (x)W (x)T > 0
(A.27)

A.5 Sector characterization for saturation and deadzone non-

linearities

The most common way to deal with saturation and deadzone nonlinearities for anti-windup

purposes or to derive sufficient stabilizability and stabilization conditions for saturated

control systems is by means of the so called sector characterization stemmed from absolute

stability arguments. In general the following definition [15] can be given

Definition A memoryless nonlinearity φ(u) is said to belong to the sector [K1 K2] where

K1 = diag {α1, α2, . . . , αm}, K2 = diag {β1, β2, . . . , βm} if

(φ(q)−K1q)
T (φ(q)−K2q) ≤ 0. (A.28)
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then it’s easy to verify that the decentralized symmetric saturation function defined in

(1.1) and the associated deadzone function dz(u) = u− sat(u) belong respectively to the

conic sectors [0, Im], [−Im 0] (see Fig. A.1 for the geometric interpretation). Therefore

(A.28) is specialized to the following inequality for what concerns the saturation function

p = sat(u)

pTW (p− u) ≤ 0 (A.29)

with W an arbitrary diagonal positive definite matrix. While as far as the deadzone

nonlinearity q = dz(u) is concerned, the following characterization holds

(u+ q)TWq ≤ 0. (A.30)

The above conditions are pretty straightforward to prove, for the sake of completeness we

pi

ui

(a) Sector characterization of satu-

ration nonlinearity.

qi

ui

(b) Sector characterization of dead-

zone nonlinearity.

Figure A.1: Global sector conditions of saturation and deadzone nonlinearity.

motivate condition (A.29), similar reasoning can be made for (A.30). When p = sat(u) = u

then (A.29) applies with the equality, while if p 6= u, by definition (1.1), the sign of (p−u)
is opposite to the sign of u which is equal to the sign of p, hence the product is always

negative. The above condition are global, that is they hold for any u ∈ R
m, however, to

obtain significant results for the regional analysis of saturated systems, it is profitable to

derive less conservative sector characterizations. Among all the fruitful ideas proposed in

the literature, here the generalized condition (1.2.1) for the deadzone nonlinearity, defined

to present the main results concerning direct linear anti-windup approach is reported along

with the proof (see [12] for other possible solutions).

For convenience we recall the condition

q(u)TS−1(q(u) + ω) ≤ 0 (A.31)

that is satisfied for for any positive diagonal matrix S ∈ R
m×m, and for any u and ω that

are elements of the set S(usat) := {u ∈ R
m, ω ∈ R

m : −usat ≤ u− ω ≤ usat}, and . As

showed in 1.2, the above inequality can be made either global or local depending on the

choice of the parameter ω. The proof of lemma 1.2.1 proceed as follows [141]

Proof Assume that u and ω belong to the set S(usat), then we have usat − ui − ωi ≥ 0

and −usat − ui + ωi ≤ 0, i = 1, . . . ,m. The following cases can be outlined
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• If ui > usat it follows q(ui) = usat − ui < 0. Hence, since by assumption Ti,i > 0, we

obtain q(ui)Ti,i(usat − ui + ωi) = q(ui)Ti,i(q(ui) + ωi) ≤ 0

• If −usat ≤ ui ≤ usat, it follows q(ui) = 0 and (A.31) holds with equality for any T

• If ui < −usat, then q(ui) = −usat − ui > 0. Hence, since by assumption Ti,i > 0, we

obtain q(ui)Ti,i(−usat − ui + ωi) = q(ui)Ti,i(q(ui) + ωi) ≤ 0

finally we can conclude that q(ui)Ti,i(q(ui) +ωi) ≤ 0 ∀i = 1, . . . ,m for any ω, u belonging

to S(usat).
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Appendix B

Some Considerations on Practical

PI Anti-Windup Solutions

Here some practice-driven guidelines for the anti-windup of SISO proportional integral

controllers are briefly discussed, particular attention is paid to the case of non symmetric

saturation bounds. Even if the formalism reported in ch. 1 can be in principle adopted, its

non conservative extension to non symmetric bounds, i.e without shrinking the saturation

symmetric limit to the smallest value of the asymmetric ones, can be not trivial, and for

simple controller structure like a PI it is possible to derive simpler and effective specific

approaches.

The generic structure of a PI controller is recalled, underscoring the proportional part,

denoted as P , and the integral term, denote as I, for convenience

u(t) = kpx(t)
︸ ︷︷ ︸

P

+

∫ t

t0

kix(τ)dτ

︸ ︷︷ ︸

I

.
(B.1)

Assume the control input is constrained to range on [um, uM ] with um ≤ 0, uM ≥ 0. The

standard anti-windup approach implemented in most of the industrial applications, consist

in freezing the integral term when the control effort hit the saturation bounds, according

to the following law

IAW =







∫ t
t0
kix(τ)dτ if uuc ∈ [um, uM ]

satuM
um

(u)− P otherwise
(B.2)

where satuM
um

(·) is a scalar saturation function, enforcing the control input limitation,

defined similarly to what in (5.25), while uuc denotes the unconstrained control action

given by (B.1). In this way the windup of the integral term during the saturation period is

prevented, and it’s easy to verify that the overall control action calculated replacing I in

(B.1) with IAW in (B.2), will always lie inside the limits. However this simple strategy is

not suitable for high performance anti-windup, as required by modern formulation, indeed,

under some conditions, the above simple approach can lead to undesired system behaviors.

To motivate this claim consider the scenario when the proportional action alone, exceeds
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the saturation limit. In this case, performing strategy (B.2) could lead to reverse the

sign of the original unconstrained integral control action; e.g assume to have P, I > 0

and P > uM by (B.2) it follows IAW = uM − P < 0. Despite in practice this extreme

scenarios are rare, formally avoidance of such undesired behavior should be guaranteed,

as it can cause very sluggish or even unstable responses. A simple countermeasure is to

saturate also the proportional term before using it to compute IAW , hence strategy (B.2)

is modified as

IAW =







∫ t
t0
kix(τ)dτ if uuc ∈ [um, uM ]

satuM
um

(uuc)− satuM
um

(P ) otherwise
(B.3)

and the overall control input is rewritten as

u(t) = satuM
um

(P ) + IAW (B.4)

Such strategy ensures to always keep the coherence between the unconstrained and sat-

urated integral action, in the worst case scenario the integral reset to zero. In (B.3) the

priority is given to the proportional action, since all the available control effort is assigned

to it in case strong saturation conditions, causing P /∈ [um, uM ], take place. However,

depending on the specific applications, it can be profitable to preserve part of the control

authority for the integral action, for example if a partially known constant disturbance is

acting on the system. However it is easy to change the partitioning rule in (B.3), according

to a desired trade-off between the proportional and the integral action, it suffices to limit

the proportional term inside a set [u′m, u
′
M ] which is strictly contained inside the original

bounds [um, uM ].

The improved anti-windup scheme (B.3) poses an additional issue, when the proportional

and integral terms have opposite signs, adopting the saturated law (B.4) yields an un-

desired shed of the proportional action, especially if non symmetric saturation bounds

are considered. In this respect, a significant example is the wind turbine speed controller

proposed in 6; it has been remarked how a motoring behavior of the turbine should be

avoided, in this respect the lower bound for the control effort u defined by (6.13) and

(6.14) is set to zero. Now consider the case when the proportional action is negative since

the actual speed is following the reference, while the integral part, that can be thought as

an estimate of the mean aerodynamic torque, is positive. Applying (B.4) would lead to

reset the proportional term even if uuc = P + I ∈ [um, uM ], this is clearly unacceptable,

since the proportional term has a crucial stabilizing role as showed in 6.3.2.

These considerations can be clearly generalized to other class of systems, therefore, the

simple anti-windup strategy given by (B.3), (B.4) need to be refined considering the sign

of the unconstrained proportional and integral terms. A possible anti-windup solution,

preventing the undesired saturation of the proportional action when the overall control

effort lies inside the admissible region, and, at the same time, avoiding to reverse the sign
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of the unconstrained integral part, is the following

IAW =







∫ t
t0
kix(τ)dτ if uuc ∈ [um, uM ]

satuM
um

(uuc)− satuM
um

(P ) if (uuc /∈ [um, uM ]) & sign(P ) = sign(I)

satuM
um

(I) if (uuc /∈ [um, uM ]) & sign(P ) 6= sign(I)

(B.5)

u(t) = satuM
um

(P + IAW ). (B.6)

Roughly speaking, when the proportional and the integral terms have opposite signs and

saturation occurs, the overall control effort, in the direction given by sign(I) is assigned

to the integral action, while the proportional term is left unchanged since it will steer the

sum P + IAW towards the opposite direction, and this overall action is eventually saturate

according to (B.6). While if the two control components have the same sign, the same

integral anti-windup strategy as in (B.3) is performed, so that the integral contribution is

reduced but the same direction as the ideally unconstrained one is maintained.
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