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Preface

Before starting my PhD it was usual for me to

hear a strange short sentence: «Random is better

than...». Why is randomness a good solution to a

certain engineering problem? Which applications get

benefits by randomization? I think that the obvious

answers are: because there are many natural phenomena

that are either completely random or present a partially

random characterization; because there are many appli-

cations that work with classes of real signals modeled

by mixed deterministic/random characterization, because

many noise sources are modeled by random processes

or because in many system models a partial random

characterization guarantees useful properties.

There are many other possible answers, and all of

them are related to the considered topic. In this thesis

I will discuss about two crucial topics, focusing the

attention on two specific applications that take advantage

by randomizing some signals involved in intermediate ma-
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nipulations. In particular, advantages are guaranteed by

shaping the second order statistic of antipodal sequences

involved in intermediate signal processing stages.

The first topic is in the area of analog-to-digital

conversion, and it is named Compressive Sensing (CS).

CS is a novel paradigm in signal processing that tries

to merge signal acquisition and compression at the same

time. Consequently it allows to direct acquire a signal in

a compressed form, or to collect its information content

without relying on classical digitalization.

For this reason it is usual to call this signal acquisition

procedure Analog to Information Conversion (AIC). To

obtain its primary goal an AIC needs a priori information

about the signals subject to the information extraction.

AICs based on CS assume that the acquired signals are

sparse, i.e., when they are expressed on a proper basis,

they presents only a few non zero coefficients.

For this class of signals, acquisition at a given time

window can be done by a set of projections on a suitable

set of sensing waveforms, while reconstruction is achieved

by solving an optimization problem relying on the sparsity

assumption.

This is a compressed acquisition scheme because the

amount of needed projections in the considered time

window is significantly smaller than the number of digital

words generated by an analog-to-digital converter that

follows the classical Nyquist/Shannon approach.

In this thesis, after an ample description of the CS

methodology and its related architectures, I will present

a new approach that tries to achieve high compression

by design the second order statistics of the projection

functions.
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The second topic addressed in this thesis is about

personal communication. In this case, the aim is to

guarantee a link between people or process units that

is, in principle, independent of the environment and of

their relative positions. Modern communication systems

must possess the ability to reach a user whatever his

location and speed, thus forcing the consideration of

unsupervised, asynchronous and shared radio channels.

A recognized strategy to obtain these features is

the adoption of ultra-wideband (UWB) systems that fill

large portions of the spectrum with low-power-density

signals, possibly overlapping with different systems and

services from whose point of view they tend to appear

as an increase of the thermal noise floor. An option

to produce and decode UWB signals is direct-sequence

spreading with multiple access based on code division

(DS-CDMA). Such a classical technique [1] may allow

arbitrary spreading and is suitable for extremely simple

implementations of both transmitter and receiver.

Focusing on this methodology, I will address the

coexistence of a DS-CDMA system with a narrowband

interferer that may be either an intentionally emitted

jammer or the abstract resumption of the effects of

a traditional non-UWB service. To do so, among all

the possible performance figures that quantify quality

of communication (e.g., multipath robustness, system

capacity in terms of user number) I concentrate in the

joint effect of both multiple access (MAI) and narrowband

(NBI) interference on a simple matched filter receiver.

I will show that specific scenarios of NBI exist in

which, when spreading sequence statistical properties

are suitably designed, performance improvements are
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possible with respect to a system exploiting chaos-based

sequences minimizing MAI only.

In both introduced topics antipodal sequences with

prescribed second order statistics will be considered for

an improvement in term of global performance. This

motivates the title of this thesis, but the diversity of the

two considered topics suggests a separate discussion.

The first part of this thesis is about CS and a new

proposed methodology on the projecting sequence gener-

ation, while the second one discusses the improvement

produced in a UWB system based on DS-CDMA when

the statistical properties of the spreading sequence are

properly tuned.
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I Compressive Sensing





Chapter

1 Compressive Sensing

This chapter introduces the application of some re-

cently developed signal-processing techniques to the

sensing of physical quantities, i.e., to their conversion into

a sequence of samples that can be processed by a digital

electronic system for the most diverse purposes.

Conventional approaches to this task are based on

the celebrated Shannon-Nyquist theorem [2, 3], stating

that the sampling rate must be at least twice the highest

frequency in the band of the signal (the so-called Nyquist

frequency). This principle is the basis of almost all

methods of acquisition used in nowadays audio and video

consumer devices, in the processing of medical images, in

the operation of radio receivers, etc;

Compressed Sensing (CS) is a recently introduced

paradigm for the acquisition/sampling of signals that

violates the Shannon-Nyquist theorem providing that

additional assumptions can be made.

A bird’s eye view of CS shows that it is based on

3



4 Chapter 1. Compressive Sensing

two general concepts: sparsity, which materializes the

needed additional assumption, and incoherence between

the sampling protocol and the signal structure.

Sparsity expresses the idea that the information con-

tent of a signal can be much less than what is suggested

by its bandwidth, or, for a discrete-time signal, that the

number of its true degrees of freedom may be much

smaller than its time length. Actually, many natural

signals are sparse in the sense that they have a very

compact representation when expressed with respect to

a suitable reference system and are therefore susceptible

to CS.

Incoherence extends the concept of duality between

time and frequency. It is used to formalize the fact that

when two domains are incoherent, objects that have a

sparse representation in the first of them spread their

energy over a wide support when seen from the point of

view of the other domain.

It is evident that the first domain is optimal when it

comes to expressing and characterizing the signal, while

the second is to be preferred for sensing operations since

even a few scattered measurements have the chance of

capturing the signal energy. This is exactly what happens,

for example, when I want to acquire a sinusoidal profile

of unknown frequency. Since such a signal is extremely

sparse in the frequency domain, the only two non-zero

components of its spectral profile are incredibly effective

in representing it. Yet, nobody would randomly probe the

frequency axis at few frequencies with the hope of coming

across the one at which the signal is present, thus being

able to recover the amplitude and phase. Instead, we

know very well that only few samples in the time domain
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are enough to capture all the signal features.

Generalizing all this, a CS acquisition architecture

analyzes the target sparse signal by taking few measure-

ments in the domain in which the energy is widespread

and thus easy to collect. If this is done properly, the

resulting samples can be subsequently processed by

algorithmic means to reconstruct the small representation

in the domain in which the signal is sparse.

The theoretical and practical machinery needed to per-

form CS in realistic conditions is being rapidly developed

to obtain acquisition mechanisms that can be labeled as

Analog-to-Information (AI) converters [4]. In fact, once

the proper domain has been found in the form of a

waveform basis along which signals can be expressed as a

linear combination of few number of non-zero coefficients,

the actual information being carried by the signals will

be found in the positions and the magnitudes of those

coefficients [5] [6] that are the true target of the CS

systems.

To reach a more exhaustive description of the acquisi-

tion and reconstruction procedures, I now introduce the

formalisms about both CS and its corner store concepts:

sparsity and incoherence. Preamble of this discussion is a

brief description of the well know analog signal acquisition

based on the Nyquist-Shannon theorem. These two blocks

wholly summarize this chapter which aims to explain

what compressive sensing is.
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Figure 1.1: the classical acquisition procedure based on the
Nyquist/Shannon theorem.

1.1 Nyquist/Shannon Theorem

As introduced before, the digitization of an analog signal is

usually done by following the Nyquist-Shannon theorem

[2,3].

Let x(t) a generic signal expressed in the time domain;

X (f ) is its Fourier transform:

X (f ) =
∫ ∞

−∞
x(t)e−i2πftdt

where i is the imaginary unit. By this definition, x(t) is a

band-limited signal if X (f ) = 0 for all |f | > B, where B is

the signal band.

All band limited signals x(t) can be represented by a

stream of uniform samples at an interval ∆t. The resulting

sequence is denoted by xj for all possible integer values j,

where xj = x(j∆t). At same time I define the sample rate

fs = 1/∆t. A visual example is shown in Figure 1.1.

A sufficient condition to perfect reconstruct x(t) from

xj is fs > 2B, where the bound 2B is called the Nyquist

rate. Under this assumption, the original signal can be

reconstructed by a simple interpolation, i.e.,

x(t) =
+∞∑
j=−∞

x(j∆t) · sinc
(
t − j∆t
∆t

)
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It is important to highlight that this approach relies on

a sufficient condition and so it is possible to think about

different acquisition schemes capable of providing an ad-

vantage with respect to the Nyquist/Shannon approach.

To reach this aim I formulate these questions:

� Is it possible to represent a generic signal in time

without using sampling?

� Is a different acquisition procedure capable of col-

lecting sufficient signal information to achieve per-

fect reconstruction?

In general an obvious answer to both questions is no.

Both answer might become positive when some other

hypotheses on the input signal are satisfied.

Compressive Sensing is a way to answer both previous

questions. The signal information content is captured

without sampling, while additional hypothesis on the

existence of a sparse representation of the signal hold.

1.2 Compressive Sensing

In the classic approach, based on analog signal sampling,

digital vales are obtained by a convolution between the

input signal and a train of Dirac delta functions. A generic

sample xj is obtained by

xj = ⟨x(t), δ(t − j∆t)⟩ =
∫ +∞

−∞
x(t) · δ(t − j∆t)dt = x(j∆t)

where ⟨·, ·⟩ stands for dot product and ∆t is taken

according to the Nyquist/Shannon theorem.
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Now, let me consider a generic length T time window,

herein a fixed amount of samples n is needed to represent

the signal.

The basic idea of CS is a different choice of the projec-

tion functions needed to obtain the set of samples. Instead

of Dirac delta functions, CS leads for set of functions able

to extract the signal information by fewer projections with

respect to the amount needed by traditional sampling.

Let ϕj with j = {1,2, . . . , m} be the projecting functions

(usually named sensing functions), and y = (y1, y2, · · · , ym)

the measurement vector.

yj =
⟨
x(t), ϕj(t)

⟩
=

∫ +∞

−∞
x(t) · ϕj(t)dt

Compression is achieved when m < n, but in which con-

ditions is it possible to obtain an accurate reconstruction

of the analog signal with only m < n measurements? How

can I design the sensing functions to capture all the signal

information required by the reconstruction stage. And

also, how can I reconstruct the input signal?

Although it is possible to develop CS theory in con-

tinuous time/space, I restrict the analysis to the digital

domain for a clearer description. So, x(t) in a length

T time window is represented by an array x ∈ Rn that

corresponds to the sampled signal at Nyquist/Shannon

frequency and all sampling functions are represented by

the sequences ϕj = {ϕj,1, · · · , ϕj,n} with j ∈ {1, · · · , m} so

that the measurement vector is y = Φx where Φ, called

sensing matrix, denotes an m × n matrix with the vectors

ϕj as rows.

Now, the input signal reconstruction can be achieved

by recovering x from y = Φx, but when m < n it is an ill-

posed inverse problem in general, i.e.,there exist infinite
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(a)

(b)

Figure 1.2: (a)both the input signal x(t) and a projecting function
in a time window; (b) the matrix representation of the acquisition
procedure based on Compressed Sensing.

x̂ ∈ Rn such that Φx̂ = y. To arrive at unique and

correct solution of this inverse problem other hypotheses

are required on the class of signals being acquired; this

means that there exist some classes of signals for which

a unique solution can be found, i.e., signal recovery is

possible.

CS takes into account sparse signals. As mentioned

before, sparse means that all signal instances can be

expressed as a linear combination of few functions in a

proper base. Let Ψ be an n × n matrix whose columns

are vectors of the basis where the signal is always sparse.

The input signal can then be written as x = Ψs, where
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s ∈ Rn is a vector that contains the coefficients of the

signal projection on the columns of Ψ.

Ψ =

ψ1 ψ2 · · · ψn


s = {sj}j=1,··· ,n where sj =
⟨
x, ψj

⟩
=

n∑
i=1

Ψi,jxi

Note that sparsity is not a hard assumption: there are

many classes of signals1 that present this property when

expressed on a proper basis.

Quantify the sparsity level of a proper class of signals

means identifying the maximum amount of simultaneous

non zero coefficients on s for a generic instance. When

a class of signals is K−sparse, for each realization s

contains at most K non null elements. Considering sparse

signals, it is now possible to link the measurement vector

with the sparse representation in Ψ, so that

y = Φx = ΦΨs = As

where A ∈ Rm×n denotes the linker operator between the

measurements contained in y and the sparse vector s. A

visual representation of this procedure is shown in Figure

1.2 (b).

The hypotheses of sparsity can now be used to develop

the reconstruction stage. I am looking for a vector ŝ such

that Aŝ = y, and on all possible vectors ŝ, I am looking for

the sparsest. This corresponds to the next optimization

problem:
ŝ = arg {mina ||a||0}
s.t. Aa = y

(1.1)

1bio-signals, images, radar signals, ultrasound signals and so on.
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yielding the reconstructed input signal by x̂ = Ψŝ.

|| · ||0 represents the l0 norm that correspond to the

amount of non null elements in the basis expansion of x

over Ψ.

Solving an optimization problem based on the min-

imization of the l0 norm is a very hard topic since it

is combinatorial in nature, although there are some

contributions that demonstrate an equivalence between

1.1 and a convex optimization problem based on the

minimization of the l1 norm [7], that is

ŝ = arg {mina ||a||1}
s.t. Aa = y

(1.2)

where the l1 norm of a generic length P vector, p, is

equivalent to ||p||1 =
∑P
i=1 |pi |.

This new optimization problem can easily be solved

with respect to 1.1. There are also many contributions

in literature which present different techniques for the

solution of 1.2. See [5, 8–12] for more details. A more

detailed discussion about reconstruction procedures will

be reported in Chapter 2.

As a conclusion of this introduction to CS I must

explain the last missing piece of CS theory. How are the

sampling sequences ϕj generated to guarantee a correct

reconstruction? The answer is addressed by to two

different arguments:

� incoherence: CS Theory is based on the features

of two set of functions represented by Φ an Ψ. The

coherence measure the largest correlation between
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any two elements of the couple ϕj, ψk defined as:

µ(Φ,Ψ) =
√
n max

1 ≤ j ≤ m
1 ≤ k ≤ n

∣∣∣∣⟨ϕj, ψk⟩∣∣∣∣

By working with normalized vectors, µ is bounded

by [1,
√

(n)]. CS is thought to work with low

coherence values, meaning that a signal with a

sparse representation on the domain Ψ has a dense

representation when it is projected on Φ and so each

projection is able to collect signal information which

is carried out at the reconstruction stage.

� restricted isometry property: as discussed before

A = ΦΨ is the operator that maps the signal in the

sparse domain to its measurements. Imposing the

restricted isometry property on A means working

with an operator able to preserve the Euclidean

length of K-sparse vectors in the measurement

vector y. It also guarantees that s is not in the null

space of A. A more detailed discussion of this aspect

is left to the next chapter.

A guideline for the sensing sequences ϕjs to guarantee

both requirements is: generate ϕj as instances of both

random Gaussian variables or binary/antipodal i.i.d ran-

dom variables [6]. An example of a sampling sequence

that respects both requirements is shown in Figure 1.2

(a). In this case ϕj is taken as a realization of a set of i.i.d.

antipodal random variables.







Chapter

2 Compressive Sensing

Architectures

This chapter aims to highlight relative strengths and

weaknesses of some of the recently proposed ar-

chitectures for hardware implementation of Analog-to-

Information Converters based on Compressive Sensing.

To do so, the most common architectures are ana-

lyzed when saturation of some building blocks is taken

into account, and when measurements are subject to

quantization to produce a digital stream. Furthermore,

the signal reconstruction is performed by established

and novel algorithms (one based on linear programming

and the other based on iterative guessing of the support

of the target signal), as well as their specialization to

the particular architecture producing the measurements.

Performance is assessed both as the probability of correct

support reconstruction and as the final reconstruction

error.

My results help highlighting pros and cons of various

architectures and giving quantitative answers to some

15
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typical design-oriented questions. Among these, I show:

i) that the RMPI architecture and its recently proposed

adjustments are probably the most versatile approach

though not always the most economic to implement; iii)

for each architecture, the trade-off between number of

measurements and number of bits per measurements

(given a fixed bit-budget); iv) pros and cons of the use

of Gaussian vs. binary random variables for signal

acquisition.

2.1 Introduction

Here I will show you design guidelines with the aim to

reduce the gap between theoretical development of CS [5]

[6] for AICs [4] and their hardware implementation.

More precisely, following [5], I will assume that I wish

to acquire analog signals possessing a property called

sparsity, which amounts to know that a basis exists with

respect to which the representation of a signal has a small

number of non-null coefficients as described in Chapter

1. These represent the information content of the signal,

so that sparsity implies that the latter is limited and,

for example, substantially smaller than the waveforms

bandwidth. Furthermore, the above assumption paves

the way for developing AICs [4], i.e. more efficient

circuits/systems for translating the analog signals into

a certain number of bits that are sufficient to reproduce

their information content and which do not follow the

classical Analog-to-Digital conversion framework based

on Shannon-Nyquist theory. In other words, AICs must be

able to identify the above coefficients relying on a number
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of samples (more generally, “measurements”) which is

lower than what the Nyquist criterion would dictate, so

that the number of bits needed to encode the original

signal may be less than what would be entailed by a

straightforward Pulse-Code-Modulated (PCM) stream with

a number of bit-per-sample sufficient to match the same

accuracy requirements.

The fact that the number of bits used is less than

what a conventional ADC would produce to obtain the

same quality by means of a PCM justifies the name

“compressive” and is also the key feature that makes

AICs a promising technique in all the cases in which the

resources allocated to acquisition and/or transmission of

the acquired data are limited.

Starting from the first example in [4], several archi-

tectures of AICs have been proposed in the literature

[13]- [14], all of which enjoy the same theoretical ground,

i.e. the possibility of performing a sparsity-informed

conversion in digital form of the information carried by the

input signal. Needless to say, any real implementation of

any of the above architectures would violate at least some

of those assumptions since, first of all, the unavoidable

saturations and quantizations in real circuits prevent a

truly linear processing of the signal. It is also funda-

mental to stress that the effect on AIC performance of

the above implementation non-idealities can be properly

defined only if one takes into account the result of the

corresponding “decoding”/reconstruction operation, i.e.

the one which that takes the bit stream at the AIC output

and is able to compute the non-null coefficients in the

basis expansion. More specifically, differently with respect

to classical ADCs where this operation is performed by
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low-pass filtering1, one needs to take into account that

when “encoding” is performed via an AIC, reconstruction

must be obtained by inverting an under constrained linear

system of equations when the corresponding matrix obeys

some assumptions [10] [11] and by adopting specifically

designed algorithms [8] [9].

All these ad-hoc solutions are difficult to analyze

from a fully theoretical point of view though they are

demonstrated to work at least in some cases by the

researchers proposing and testing them.

What I do here is a survey of some of the most common

architectures in order to establish a common framework

in which a fair comparison can be made by simulating

them in various operating conditions, thus establishing

pros and cons for all of them.

2.2 Mathematical Model

For an n dimensional vector a = (a0, . . . , an−1)⊤ I define

the support of a as

supp (a) =
{
j = 0, . . . , n − 1|aj , 0

}
its sparsity spar (a) (sometimes indicated as L0 norm) as

the cardinality of supp (a) and its usual p-norm as

∥a∥p =
n−1∑
j=0

∣∣∣aj∣∣∣p
1/p

Sampled in time, the signal x(t) that I want to acquire

is represented by an N-dimensional vector of real numbers

x. Following [5] I will assume that a suitable basis exists

1Plus, possibly, decimation filtering, in case of oversampled ADCs
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whose vectors are the columns of the N ×N matrix Ψ, and

that the signal of interest are K-sparse, which means that

for any instance of x there is an N-dimensional vector α

such that x = Ψα and spar (α) ≤ K.

Starting from x, the acquisition system produces M

measurements by means of a linear projection, i.e., by

correlating the elements of x with some coefficients. By

arranging those coefficients as the rows of theM×N matrix

Φ I obtain an M-dimensional measurement vector y =

Φx. Since the input signal will be corrupted by noise,

what I will acquire is the signal x̃ = x + ν, so that the

measurement vector becomes y = Φx̃ = Φ (Ψα + ν), where

ν is the vector of noise coefficients superimposed to the

samples in x, whose magnitude relative to the signal x

can be accounted for by defining an Intrinsic Signal-to-

Noise Ratio (ISNR) ∥x∥2 / ∥ν∥2.

Since the sparsity basis is a feature of the signal to

acquire, the matrix Ψ is known, so that different AICs

architectures can be distinguished based on how they

build and apply the matrix Φ.

The aim of a proper design of Φ is to guarantee that the

original signal x = Ψα can be reconstructed starting from

the measurements, i.e. that setting Θ = ΦΨ and ξ = Φν

the equation

y = Θα + ξ (2.1)

can be “solved” for α once that y is known.

In addition to the fact that the matrix Θ is M × N
with M ≪ N as it is assumed in any purely theoretical

framework [8,10], finding a solution of (2.1) can in practice

additionally complicated by the fact that i) ν is unknown,

ii) that y is usually available after its analog-to-digital
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conversion and is therefore subject to quantization errors,

and iii) that the multiply-and-accumulate operations

needed to compute correlations may suffer from limited

signal range and thus be corrupted by saturation.

To counter all these problems one classically relies on

the a-priori knowledge that spar (α) ≤ K [10], though

other priors can be added and exploited to increase

reconstruction performance, as recently suggested in

[15, 16] and as I will describe in Chapters 3, 4 and 5.

This is possible since priors help defining a subset of

RN containing all instances of x, so that the acquisition

mechanism should map this subset into the measurement

space RM “quasi-bĳectively” in a sense that will be clarified

in the following.

More precisely [10], when sparsity is one of the priors,

if Θ can be thought of as a realization of a random matrix

with independent entries drawn according to a variety of

distributions, then mapping by means of Θ provides, with

high probability, the needed “quasi-bĳection”. Formally

speaking, I say that a matrix Θ is a Restricted Isometry

(RI) [10] when there is a constant 0 ≤ δK < 1 such that

(1 − δK ) ∥α∥22 ≤ ∥Θα∥22 ≤ (1 + δK ) ∥α∥22 (2.2)

whenever spar (α) ≤ K. Hence, even if the dimensionality

M of the co-domain of a restricted isometry is less than the

dimensionality N of its domain, the mapping of K-sparse

vectors leaves lengths substantially unaltered.

If Θ is made of independent random entries character-

ized by a sub-Gaussian distribution [17,18], then with an

overwhelming probability, it is a restricted isometry with

a constant δK that decreases as M increases [11].
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If Θ is a restricted isometry, once that supp (α) is

known, I may restrict Θ to that domain and obtain an

injective mapping. If the measurements in y additionally

encode information on which of the
(
N
K

)
possible supports

must be chosen, the overall mapping can be reversed to

yield the whole α.

This is why a constant ingredient in the recipes for

all compressive sensing architectures is randomness as a

mean of capturing information that is known to be sparse.

What is usually done is to overlook the fact that theory

puts conditions on the statistical structure of Θ and

design a system in which Φ is random and (hopefully)

transfers its beneficial properties to Θ = ΦΨ.

An important side-effect of this assumption (widely

verified in practice) is that one does not design the

acquisition matrixΦ depending on the specificΨ but relies

on randomness to implicitly “scan” all possible sparsity

bases.

2.3 Reconstruction Algorithms

Once that an “encoding” mapping allowing reconstruction

has been devised, its “inversion” must be obtained by

algorithmic means every time a measurement vector y

comes in.

Though reconstruction mechanisms should be de-

signed jointly with the architectures producing the mea-

surements, they are classically addressed as separate

components of the overall acquisition system. Their devel-

opment and analysis is a flourishing field that has recently

produced strong and general results and taxonomies [8].
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I will here take a very pragmatic approach, con-

centrate on the most frequently adopted methods, and

note that those techniques fall in one of two categories:

optimization-based reconstruction and iterative support-

guessing reconstruction.

Both types of technique are commonly devised and set

up in the noiseless and idealized case (i.e., for ξ = Φν =

0) and with neither quantization nor saturation, and are

proved (or simply seen) to work in more realistic settings.

The key fact behind optimization-based methods is

that, among all the possible counterimages α of the vector

y = Θα the one that I am looking for is the “most sparse”,

i.e., the one for which spar (α) is minimum.

Since I usually have spar (α) ≤ K ≪ N this assumption

is sensible. Moreover, it leads to some elegant results

on the possibility of recovering α by means of simple

optimization problems [10].

More formally, it can be shown that, if Θ is a restricted

isometry with constant δK ≤
√

2 − 1 then, for any ϸ > 0,

the α̂ solution of the optimization problem

min ∥α̂∥1 (2.3)

s.t. ∥Θα̂ − y∥2 ≤ ϸ

is such that

∥α̂ − α∥2 ≤ Cϸ

for some constant C > 0.

Hence, if I use ϸ to bound the maximum magnitude of

the disturbances involved in the measurement process (for

instance by setting it proportional to the variance of the

noise plus that of the quantization error) I can guarantee
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that the reconstruction error vanishes when disturbances

go to zero.

Though not impossible, the straightforward applica-

tion of the above result, depends on a reliable estimation of

the parameter ϸ that quantifies the maximum foreseeable

deviation between the unperturbed measurement and its

actual value in presence of a mixture of known (e.g.,

quantization) and unknown (e.g., noise) disturbances.

It is therefore quite common to substitute ∥Θα̂ − y∥2 ≤
ϸ with Θα̂ = y by implicitly assuming that the system is

working in a relative low-disturbance regime that allows to

assume ϸ ≃ 0. Within this approximation, it is convenient

to re-express the resulting optimization problem within

the framework of linear programming by defining u =

(1, . . . ,1)⊤ and by introducing the auxiliary unknown

vector ℓ = (ℓ0, . . . , ℓn−1)⊤ to write

min u⊤ℓ

s.t.
Θα̂ = y

ℓ ≥ 0

−ℓ ≤ α̂ ≤ ℓ
(2.4)

where vector inequalities are meant to hold component-

wise.

The equality constraints in (2.4) can be adjusted to

cope with specific features of a given architecture or to

take into account quantization or saturation.

In particular, due to quantization, I know that the true

value of the j-th component of y is somewhere in the inter-

val [yj−∆yj/2, yj+∆yj/2] with yj being the value known to the

algorithm and ∆yj the corresponding quantization step.

Hence, in presence of a coarse quantization, it is sensible

to substitute the equality constraints Θα̂ = y in (2.4) with
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y − ∆y/2 ≤ Θα̂ ≤ y + ∆y/2, where ∆y = (∆y0, . . . ,∆ym−1)⊤.

Though it surely models the acquisition procedure with

greater accuracy, this adjustment does not necessarily

lead to improvements and is commonly employed only

when one may expect the various ∆yj to be substantially

different one from the other.

I will indicate the algorithm I use as representative of

optimization-based reconstruction as MinL1.

It is interesting to note that MinL1 works without

any knowledge of the exact value of K further to that

implicit in the number of measurements that must be

enough to allow reconstruction. This may be a plus

in situations where K cannot be exactly determined in

advance. Regrettably, this positive feature is balanced

by the fact that, in general, linear programming solution

is computationally more expensive that other kinds of

iterative reconstruction.

As far an iterative support-guessing reconstruction

is concerned, note that, if supp (α) were known I could

drop the columns in Θ that are surely multiplied by 0

and the corresponding entries in α to obtain an M × K
matrix Θsupp(α) and a K-dimensional vector αsupp(α) for

which y = Θsupp(α)αsupp(α). Since M > K, this is an

over constrained problem that may be effectively (even

“optimally” in case of Gaussian disturbances [19] inverted

by using the Moore-Penrose pseudo-inverse Θ†supp(α) and

computing αsupp(α) = Θ
†
supp(α)y.

Iterative support-guessing methods are, in general,

procedures that alternate a rough, non-necessarily sparse,

solution of y = Θα from which an estimate of supp (α) is

inferred (for example by thresholding on the magnitudes

of the components of the temporary solution) that is
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then exploited in a pseudo-inverse-based step refining the

value.

Though more sophisticated alternatives exists, a refer-

ence algorithm within this class is CoSaMP [9] that has

some definite advantages. First, it works for matrices

Θ that are restricted isometries and, if K is known and

the isometry constant δ2K for vectors with 2K non-zero

components can be bounded by δ2K ≤ c ≤ 0.1, then, given

a tolerance ϸ > 0, the reconstructed vector α̂ satisfies

∥α̂ − α∥2 ≤ Cmax
{
ϸ,
∥α′∥1√
K
+ ∥Φν∥2

}

where α′ is the vector that can be obtained by α by setting

to zero its K/2 largest entries.

The resulting algorithm is provably fast and, beyond

the above formal guarantee on its performance, it is

usually extremely stable and effective in recovering the

original signal. These favorable properties are paid with

the additional assumption that the sparsity of α is known

and that the isometry constant δ2K must be quite low.

In analogy to what happens for optimization-based

reconstruction, CoSaMP can be tailored to specific archi-

tectures. This can be done, for example, if it is known that

errors in the magnitudes of the entries of α are correlated

by an implicit filtering in the acquisition scheme. Such an

effect can be exploited by inserting a filtering step when

passing from support-guessing to pseudo-inversion. More

detail on how this may affect performance reconstruction

will be given in the following.
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2.4 Compressive Sensing Encoders

From the previous discussion, I get that to define a

compressive sensing system I need to describe two stages

� encoder: a hardware system (actually implement-

ing the AIC) and performing some mixed analog-

digital operations on the incoming signal to produce

a stream of bits. The mixed analog-digital operations

are modeled as instance Φ of a random matrix link-

ing the signal samples to the measurements whose

quantization yields the stream of bits transferred

from the encoder to the decoder;

� decoder: an algorithm that takes the incoming bits

and, based on the knowledge of Φ, reconstructs the

original signal.

Note that, in a practical implementation, one may not

want to communicate Φ to the decoder and thus most

often exploits pseudo-random generators with a common

initialization to yield matrices that can be simultaneously

known at both stages.

Saturation and quantization are unavoidable in the

signal path since the communication between encoder

and decoder happens along a digital channel thus im-

plying an ADC block with a finite range (i will assume

[−Vmax , Vmax ] for a certain Vmax ) and a finite number of

levels.

In the following I will consider the number B of bits

generated by the encoder corresponding to the acquisition

of the input signal over a given time interval. This can be

considered as a “bit budget” since it may be partitioned
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1Figure 2.1: Block scheme of an RMPI encoder.

into digital words of different depths corresponding to

different measurements.

2.4.1 Random Modulation Pre-Integration –

RMPI

This is the first and probably the most straightforward

implementation of an AIC [4].

With reference to Figure 2.1 the samples of the

incoming signal xk are multiplied by the quantities Φj,k
for a given j and then fed into an accumulation stage to

yields the value of the j-th measurement yj that is then

quantized by an b-bit ADC and aggregated with all the

other quantized measurements into the stream of bits that

is passed to the decoding stage.
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The implementation of the analog blocks preceding the

ADC offers several options.

The structure of the multiplier depends on the quan-

tities Φj,k: some classical approaches adopt Gaussian

random variables (Gaussian RMPI) and force the deploy-

ment of complete four-quadrant analog multipliers, while

more aggressive approaches suggest to constrain Φj,k ∈
{−1,+1} (antipodal RMPI) so that multiplication can be

implemented by simple switching.

The accumulation stage may be implemented either

as a continuous time integrator or as a switched capac-

itor subcircuit that implicitly matches the discrete-time

operation of the multiplier. In any case, the output of

the accumulating device will be subject to saturation.

Referring to a discrete-time implementation, where yj =∑N−1
k=0 Φj,kxk, and relying on the following assumptions:

i) the elements of x and Φ are independent random

variables; ii) the elements Φj,k of Φ are independent

and identically distributed (either Gaussian or binary

antipodal) random variables, with zero mean and unity

variance, i.e., E
[
Φj,k

]
= 0 and E

[
Φ2
j,k

]
= 1; iii) the

energy of x in the accumulation time window is unitary,

i.e., assuming that the variance of each xk is the same,∑N−1
k=0 E[x2

k ] = 1. Let me consider the random variable

ξj,k =
√
N Φj,k xk, so that yj = 1√

N

∑N−1
k=0 ξj,k. Since the

random variables ξj,k are independent with zero-mean,

thanks to i) and ii)), and have unity variance, due to i)-

iii), for yj the hypotheses for applying the central limit

theorem are satisfied, so that for large N , it converges to

the standard normal distributed random variable. Note

also that this results is signal independent, i.e. it holds

no matter the mean value and the variance of the xk.
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Furthermore, the speed of convergence is large enough

to guarantee that the practical approximation of yj with

a normally distributed random variable is satisfied for

reasonable values of N . As an example, Figure 2.2(a)

reports the observed distribution of the yj for the antipodal

RMPI with N = 256 and where the input signals are a 4-

sparse and a 16-sparse signal with respect to the Fourier

basis, as well as a synthetic ECG signal, generated as

in [20]. All signals have been imposed to satisfy the

condition E
[
x2
k

]
= 1/N , so that, according to my model,

E
[
y2
j

]
= 1. In all cases, the observed distributions are

superimposing with the standard normal one.

Of course, since a normal distribution is not limited,

wherever the input range of the ADC is set, there is an

unavoidable non-zero probability that yj falls out of the

ADC conversion range. I refer to this as static saturation.

Finally, it is immediate to extend the above mathematical

model to the generic time step k (instead of considering

only the final one at k = N − 1), where dynamic saturation

occurs whenever the intermediate accumulated value is

out of the accumulator linear region.

Some theoretical considerations on the effect of static

saturation can be found in [21] while a discussion of both

static and dynamic saturation in the more realistic model

I adopt here has been first proposed in [22]. From the

latter, I get in particular that it is sensible to design the

accumulation stage so that its saturations coincide with

the extrema of the input range of the ADC that I identify

with the interval [−Vmax , Vmax ].

To model the system behavior, I say that, while in the

process of computing the j-th measurement, the circuit

produces the k-th intermediate result yj,k =
∑k
l=0Φj,lxl
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Figure 2.2: (a) Probability distribution density (PDF) of the
value of yj for different input signals in the antipodal RMPI case,
obtained with 1000 trials of a system with M = 96; (b) Average
variation of restricted isometry constant δ′K for the sampling
matrix Φ′ with respect to the reference value δK given by Φ in an
antipodal RMPI system with N = 256, M = 96 and K ∈ {4,8,16}.
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when accumulating the k-th sample, to finally produce

yj = yj,N−1.

Yet, depending on Φ and on the signal samples, there

may be time instants k in which saturation takes place

and causes yj,k , yj,k−1 + Φj,κjxk . If κj is the first of

these instants (i.e., I know that saturation did not affect

the system before κj for the j-th measurement) I have

that yj,κj−1 =
∑κj−1
k=0 Φj,kxk and I can also approximate

yj,κj ≃
∑κj
k=0Φj,kxk ≃ ±Vmax , but certainly yj = yj,N−1 ,∑N−1

k=0 Φj,kxk . In other words, if saturation takes place, the

corresponding measurement is corrupted and, in general,

brings little information on the original signal.

An important design parameter for this particular

AIC is the probability p¬sat of no static saturation when

dynamic saturation did also previously not occur. From

the above consideration, it readily follows that since yj is

normally distributed, then p¬sat = 1 − erfc(Vmax ), where

erfc(·) is the complementary error function. Furthermore,

despite p¬sat is formally defined in absence of dynamic

saturation, as it will be confirmed in Section 2.6, it can

be considered as a sensible indicator of the relative match

between the signal actual range and the system saturation

levels, even though dynamic saturation may first happen

at some κ < N − 1.

Given the above definitions, the first straightforward

design consideration is that, since N is typically in the

order of tens if not hundreds, no design strategy may ac-

tually aim at obtaining p¬sat ≃ 1 since this would require

to increase Vmax to satisfy −Vmax ≤ ∑N−1
k=0 Φj,kxk ≤ Vmax for

any N and x. To cope with this, a fairly simple approach

would be what is referred to in [21] as “democracy” of

the set of measurements, i.e., the fact that, under mild
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conditions, one may assume that the information content

of each measurement is identical. If this were true,

simply discarding saturated measurement would produce

a graceful performance degradation since the acquisition

system would behave as if it were designed to use a

number of measurement equal to the number of the non-

saturated ones. Moreover, non-degraded performance

could be restored by simply taking further measurement

until the original number is reached. Following [22], I will

name this approach as RMPI-SPD since it concretizes in

Saturated Projection Dropping.

Regrettably, perfect democracy only holds between

measurements that are taken as linear combinations of

the samples. Saturation acts as a selector discarding

those that have a larger value while keeping the smaller

ones. From the point of view of the SRN this is clearly

not a democratic behavior and causes non-saturated

measurements to be less useful than those that have to be

dropped and cannot be perfectly replaced by simply trying

more measurements.

To cope with this, one may alternatively think [22]

of exploiting all the information that is still available

as a linear combination of the samples xk, i.e., the

fact that, if saturation first occurs at κj, I have yj,κj ≃∑κj
k=0Φj,kxk ≃ ±Vmax . This allows to replace Φ with a

modified matrix Φ′ in which, the rows corresponding to

saturated measurements have zeros in correspondence of

time instants after the one in which saturation occurs, i.e.

more formally I may set

Φ′j,k =

Φj,k for k = 0, . . . , κj − 1

0 for k = κj, . . . , N − 1
(2.5)
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where κj = N correspond of the case of no dynamic or

static saturation, and

y′j =


yj if no saturation occurred

Vmax if positive saturation occurred

−Vmax if negative saturation occurred

(2.6)

so that the AIC output can be expressed as y′ = Φ′Ψα =

Θ′α.

Note that this solution makes the matrix Φ′ used

for reconstruction a function of the signal samples xk

that caused saturation. Hence, the measurement vector

passed to the decoder must contain also the information

needed to construct Φ′ from the signal-independent Φ.

Assuming that b bits are assigned to the j-th component

of the measurement vector, I decide to reserve 1 bit

to indicate whether saturation happened and use the

remaining bits depending on its value: either b−1 bits for

the quantized encoding of a non-saturated measurement,

or 1 bit to discriminate between positive and negative

saturation along with b − 2 bits dedicated to the encoding

of κj. I will indicate this approach as RMPI-SPW, standing

for Saturated Projection Windowing.

Even if I cannot provide exact results on the RIP for

Φ′, it is worth taking a pragmatic look at this issue by

comparing the RI constant δ′K associated to the Φ′, with

the RI constant δK associated to the original matrix Φ

by means of extensive Montecarlo simulations. To do

so, I use the approach described in [15] which involves

to compute the eigenvalues of the matrices Ψ∗Φ∗ΦΨ and

Ψ∗Φ′∗Φ′Ψ, where ·∗ stand for transpose conjugate.

Figure 2.2(b) reports the average variation over 500

trials of the ratio δ′K/δK as a function of p¬sat varying from
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1 to a value as low as 0.8, when a Fourier basis matrix

has been chosen for Ψ and where N = 256, M = 96 and

K ∈ {4,8,16}, so that the associated Φ is known to be a

RI matrix2. As it can be noticed, when p¬sat ∈ [0.8,1],

so that the number of entries in the matrix Φ′ which are

changed to zero is not too large, δ′K smoothly increases

with respect to δK in all considered examples. This can

be intuitively accepted as a good indication that one can

reasonably expect that Φ′ satisfies condition (2.2) when

p¬sat is not far from 1.

I would like to propose here a further observation. It is

know that RIP property is only a sufficient condition to CS,

but it is not necessary [5]. Once the projection matrix Φ′

is obtained at the decoder, signal reconstruction happens

by usual means though guarantees on the resulting δ′K
are not as strict as for the original Φ.

In fact, the trailing zeros that may appear at certain

rows of Φ′ potentially degrade its ability to behave almost

as an isometry for K-sparse vectors. Yet, as a partial relief

from this concern, I know that Φ′ is signal-dependent and

I get from (2.5) and from the definition of κj that when a

row of Φ′ contains trailing 0s it is because the projection

of the signal along the initial part of the same row was

large enough to cause saturation.

Hence it is sensible to assume that, with high proba-

bility, most of the energy of the signal had already been

extracted by the first part of the row that still enters the

reconstruction procedure.

2The value M = 96, for all considered K values, obeys the theoretical
inequality imposed by RI, i.e., M > CK log( NK ) with C = 4 [10]
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clock ∆k

∆kj
RNG

yjb-bit
bADC

x(t)
x′
kj

∆k

1Figure 2.3: Block scheme of an random sampling encoder.

2.4.2 Random Sampling – RSAM

In classical acquisition systems, samples of the signal are

taken regularly on the time axis at a given rate (usually

not less than the Nyquist one). AICs relying on random

sampling avoid this regularity to produce a number of

measurements that, on the average, are less than those

produced by Nyquist sampling, while still allowing the

reconstruction of the whole signal thanks to sparsity and

other priors.

In principle, sampling instants can happen anywhere

along the time axis. Yet, a straightforward implementa-

tion chooses them among regularly spaced time points

that can be selected by digital means. The result is

schematized in Figure 2.3 where a backward counter is

pseudo-randomly re-loaded each time it reaches zeros,

triggering conversion. Grid spacing, and thus clock rate,

depends on the resolution with which one wants to place

the sampling instants and thus may be expected to be

larger that Nyquist rate.

To translate the above block scheme into formu-

las, say that such the clock identifies a vector x ′ =

(x ′0, . . . , x
′
υ−1, . . . , x

′
υ(N−1), . . . , x

′
υN−1)⊤ that oversamples a
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band limited x(t) by a factor υ with respect to x =

(x0 . . . , xN−1)⊤ containing the Nyquist samples. The two

vectors x ′ and x are linked by x ′ = ΥRSAMx, being ΥRSAM

an upsampling matrix.

With this, the M × N matrix Φ is nothing but the

product Φ = ΣΥRSAM , where Σ is the random sampling

matrix defined by theM time instants k0 < k1 < · · · < kM−1

at which the counter reaches 0 as in

Σj,k =

1 if k = kj

0 otherwise

The resulting sampling follows a so-called renewal-

process in which all the inter-measurement intervals

∆kj = kj+1 − kj are drawn as independent integer ran-

dom variables exponentially distributed in the interval

[∆kmin,∞].

The minimum inter-measurement gap ∆kmin ≥ 1

depends on the speed of the ADC, which must be ready

for a new conversion each time a measurement is taken

so that, by increasing ∆kmin I loosen the constraints on

the ADC implementation. The exponential trend is then

tuned to have an average inter-measurement gap equal to
N
M so that (at least for large N ) I expect an average of M

measurements.

Each of these measurements is commonly quantized

by means of a b-bit ADC to yield the bit stream passed

to the decoder to yield the most straightforward RSAM-

ADC option for an AIC (equivalent to the implementation

proposed in [14]).

Yet, one may note that, since the time between two

measurements changes, the amount of time potentially

available for conversion also changes. This can be
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exploited, for example, by deploying a Successive Ap-

proximation Register that, relying on an hardware much

simpler than that of a full b-bit ADC, exploits the available

time to increase conversion accuracy.

This translates in a RSAM-SAR system [13] in which

each measurement contributes to the bit stream passed

to the decoder with a number of bits that increases as the

time before the next measurement increases.

Since, in principle, I increase accuracy by one bit for

every iteration of the SAR, the j-th measurement yj is

quantized with ∆kj bits. In this situation, it is sensi-

ble to exploit the possibility of embedding quantization

into the equations used by minimization-based decoders.

This can be done by defining ∆yj = 2Vmax2−∆kj , ∆y =

(∆y0, . . . ,∆ym−1)⊤, and, as already highlighted in Section

2.3, use y − ∆y/2 ≤ Θα̂ ≤ y + ∆y/2 instead of equality con-

straints in laying formulating the minimization problem

(2.4).

Though RSAM-ADC and RSAM-SAR treat quantization

in a different way, they are both subject only to the static

saturation due to the finite input range of the conversion

stage. This poses no problem since it can be tackled at

design time by simply rescaling the signal input range as

in conventional acquisition systems.

2.4.3 A note on hardware complexity

It is clear that the above described architectures have

different complexities from an hardware point of view.

Furthermore, given an architecture, many circuital trade-

offs can be arranged by the designer depending on the

target application. Since I want to keep my comparison
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at a high abstraction level, I can consider only a generic

amount of resources required, which can be used as an

indicator either for circuit area, for power consumption,

or for both. An additional hardware parameter which

needs to be addressed is the design effort required from

the designer to implement the AIC. This is an indicator

of how many commercially available components or IP

blocks can be used to design the converter, which has

strong influence on the the design cost of the circuit and

on its possible time-to-market.

Most notably, RMPI is the one requiring probably the

least established circuitry (continuous-time or discrete-

time analog multiply-and-accumulate blocks) and the

largest amount of resources (though serial implemen-

tations can be conceived, their performance is largely

impaired by projecting disjoint time windows of the signals

and that option is not considered here).

On the other extreme, RSAM-ADC is surely the least

complicated to design and implement since they employ

standard blocks (a multi-bit ADC) to which a randomiza-

tion stage is prepended.

Yet, differences in implementation complexity and cost

are difficult to assess without reference to constraints of

a specific application and are intentionally left out of the

scope of the paper.

What I am doing here is to put the various options at

trial in a common arena to highlight respective strengths

and weaknesses.

Though it is easily expected (and confirmed) that

the strengths-vs-weaknesses balance may favor solutions

entailing a larger use of resources, I must leave any

final judgment to the application-aware designer that will
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be able to manage the trade-off between performance

and implementation effort by also addressing issues like

analog/digital partitioning, power budget, etc.

2.5 Simulation Setting

I simulated the previously described AIC architectures

and corresponding decoding stages in a normalized con-

figuration.

Each input x is generated starting from a sparse

vector of coefficients α with N = 256 entries, only K

of which are non-null at the same time, and assuming

that the probability of each of the
(
N
K

)
choices of the

non-null components is equally probable. These non-

null elements are realizations of independent random

variables uniformly distributed in the set [−1,− 1
2 ]∪ [ 1

2 ,1].

This distribution has been selected in order to avoid

components in supp (α) which are too close to zero.

The base matrix Ψ is taken from the family of matrices

Λ(n,ℓ) defined by

Λ(n,ℓ) =


Γ(n) if ℓ = 0Λ(n/2,ℓ−1) 0

0 Λ(n/2,ℓ−1)

 if ℓ > 0

where Γ(n) is the n×n matrix of the orthonormal sinusoidal

base for vectors of n samples, i.e.,

Γ
(n)
j,k =

1
√
n



1 for j = 0
√

2 cos
(
2π jkn

)
for j = 1, . . . , n/2 − 1

(−1)k for j = n/2
√

2 sin
(
2π jkn

)
for j = n/2 + 1, . . . , n − 1
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Most of the simulations are done with Ψ = Λ(N,0) that

is a common choice to present new architectures and

compare performance, yet some numerical evidence for

Ψ = Λ(N,ℓ) with ℓ > 0 is also reported to assess how

much each architecture is sensitive to the concentration of

energy along the time axis, a phenomenon that is known

to impair acquisition based on compressive sensing (see,

e.g., [23]).

In order to allow a fair comparison, the sample vector

x = Ψα is normalized coherently with the design needs of

each architecture. Roughly speaking, I am assuming that

the input signal level is the one which allows the AIC to

achieve the best performance. As in conventional ADCs,

when the input signal level is too high saturation occurs,

conversely, when the level is too low only a small ratio of

the dynamic range is used and the quantization noise is

increased. Note that this assumption allows me also to

avoid the introduction of a new parameter representing

the ratio between the optimum and the actual maximum

level of the input signal, thus avoiding to unnecessarily

complicate notation.

In particular, signals entering the RMPI encoders are

scaled to have unitary energy in the integrating window,

since this makes unitary also the variance of the yj

and thus helps assessing the probability that such an

accumulation saturates the ADC range. Signals fed into

an RSAM encoder are scaled to have unit peak amplitude

thus matching the ADC conversion range.

Finally, x is perturbed by Gaussian noise with a power

controlled by the ISNR parameter, and results for ISNR

ranging from 20dB to 60dB are presented.

When a vector x ′ oversampled by a factor υ is needed,
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it is computed as x ′ = Υx, where

Υj,k = sinc
( j
υ
− k

)
The number of iteration used in CoSaMP was set to

200. This value was chosen since it presents a good

compromise between accuracy and execution time in my

simulation set-up.

Performance is evaluated by matching the recon-

structed vector α̂ with the original vector α and using two

merit figures: the Probability of Support Reconstruction

(PSR) and the Average Reconstruction Signal-to-Noise

Ratio (ARSNR), i.e.,

PSR = Pr
{
supp (α) ⊆ suppmin{α}/5 (α̂)

}

ARSNR(dB) = E
[
dB

( ∥α∥22
∥α − α̂∥22

)]
=E

[
dB

( ∥x∥22
∥x − x̂∥22

)]
where the thresholded support is conventionally defined

as

suppτ (a) =
{
j = 0, . . . , n − 1|||aj | ≥ τ

}
for some suitably small τ. Probabilities and expectations

are estimated by Montecarlo simulations.

Given the achieved ARSNR of the AIC, it may be

sensible to compare the number of bit B used in the AIC

with the number of bit required by a standard PCM coding

to achieve an output SNR equal to the ARSNR.

In a PCM coding based on Nyquist rate sampling (i.e.,

with N samples for each time window) and a total number

of bit equal to BPCM , I can roughly estimate the output

SNR by computing the average number of bits for each

sample

SNRPCM (dB) =
BPCM

N
6.02
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I define the equivalent compression rate γ as the ratio

between BPCM and B when ARSNR=SNRPCM , i.e.

γ =
BPCM

B
=

ARSNR(dB)
6.02

N

B

Clearly, it is convenient to apply CS techniques only

if they result in γ ≥ 1 since γ < 1 implies that the same

quality in signal reconstruction could be obtained by a

simple PCM entailing a smaller number of total bits. As

such, this merit figure is also presented in some of the

pictures in Section 2.6.

Montecarlo simulations are taken over respect to 5000

trials.

2.6 Numerical Evidence

The standardized environment described above can be

employed to test different options for encoding and decod-

ing in a variety of operating conditions as far as sparsity

K, ISNR, total bit budgets B and its partition into M

measurements.

With that, I may explore some areas of the design

space of an AIC and highlight some interesting issues and

guidelines.

2.6.1 Comparison between decoding strate-

gies

A first set of simulations was dedicated to compare per-

formance of the algorithms that I took as representatives

of the two different approaches to signal reconstruction,

i.e., minimization based procedures (MinL1) and iterative

support guessing procedures (CoSaMP).
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The support of α is never explicitly computed in

minimization-based approaches, which exploit the spar-

sity promoting features of the ∥·∥1 norm to simultaneously

obtain an estimate of the support and of the non-null

entries.

On the contrary, as already mentioned in Section 2.3,

iterative support-guessing methods concentrate on the

computation of the support that, once known, is used

to transform the under-constrained inversion problem (in

which the matrix is M × N with M < N ) into an over-

constrained problem (in which the matrix is M × K with

M > K) that can be pseudo-inverted. Since pseudo-

inversion of over-constrained problems is very effective in

rejecting small disturbances, if the support is correctly

guessed then the final estimation α̂ is extremely good.

Figure 2.4 shows how well support reconstruction

works for the two algorithms. The PSR is plotted

against the number of measurements for different levels

of sparsity (i.e., different difficulty of reconstruction).

All the trends clearly highlight a minimum value of M

under which reconstruction is ineffective. Yet, as K

increases, the optimization-based method exhibits better

performance since it achieves the same PSR with a smaller

number of measurements (and thus of total bits). Note

that this happens independently of the encoder and thus

may sensibly be ascribed to the decoding strategy.

Further to that, I investigate whether this difference

in PSR affects ARSNR and how much the performance of

CoSaMP are affected by possible errors on the value of

K with which it is made to work. To do so I consider

an RSAM encoder providing a variable number M of

measurements, each quantized by b = 8 bits, of a signal
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Figure 2.4: The PSR achieved by MinL1 and CoSaMP as a
function of the number of measurements M for different levels of
sparsity K and ISNR=40dB matched by b = 8 bits per measure.
The bit stream comes: (a) from an RMPI encoder, (b) from an
RSAM encoder.
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with ISNR= 40dB and K = 16.

For each M I run CoSaMP instructing it to assume

spar (α̂) = K = 16, spar (α̂) = 1.5K = 24 and spar (α̂) =

2K = 32 (no underestimation of spar (α) is considered

since it causes CoSaMP to always perform very poorly).

Figure 2.5-(a) shows the ARSNR when I focus on

an RSAM encoder (qualitative trends are identical for

the RMPI) and a CoSaMP decoder based on different

assumptions for spar (α̂). The solid curve shows the

ARSNR associated to MinL1 decoding, and can be used

as a reference level. CoSaMP is capable to achieve better

results in terms of ARSNR with respect to MinL1 in all

considered cases, but at same time it suffers form an

higher sensitivity in terms of PSR, which is shown in

Figure 2.5-(b).

It is interesting to note that the reference MinL1 curve

perfectly obeys the theoretical CS framework prediction

that the input signal can be recovered from compressed

measurement if M > CK log10 (N/K). In fact, if I can

consider the signal recovered, once, for example, PSR>

0.99, by setting C = 4 as suggested in [10], I getM > 77.06

and simulation results from Figure 2.5-(b) confirms that

for M = 77 the PSR is equal to 0.991.

When spar (α) = K = 16, I get from Figure 2.4-(b)

that the PSR of CoSaMP is dominated by that of MinL1.

Notwithstanding this, a comparison between the two

methods in terms of ARSNR is clearly in favor of CoSaMP

when its PSR is at least 0.5 (meaning that supp (α) is

correctly recovered at least 50% or the times). This is due

to the pseudo-inversion step in CoSaMP that is dedicated

to (and extremely effective in) computing the values of the

non-null components of α̂ once that they are the same a



46 Chapter 2. Compressive Sensing Architectures

 0

 10

 20

 30

 40

 50

 60  80  100

A
v
e
ra

g
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 S

N
R

 (
A

R
S

N
R

)

M

γ=1

CoSaMP, spar(
^
α)=16

CoSaMP, spar(
^
α)=24

CoSaMP, spar(
^
α)=32

MinL1

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60  80  100

P
ro

b
a
b
ili

ty
 o

f 
S

u
p

p
o

rt
 R

e
c
o
n
s
tr

u
c
ti
o
n
 (

P
S

R
)

M

CoSaMP, spar(
^
α)=16

CoSaMP, spar(
^
α)=24

CoSaMP, spar(
^
α)=32

MinL1

(b)

Figure 2.5: Performance of CoSaMP as a function of the number
of measurements M for K = 16 and ISNR=40dB matched by
b = 8 bits per measure when the bit stream comes from an
RSAM encoder and CoSaMP is run with different assumptions
on spar (α̂). The case of MinL1 decoding is taken as a reference
solid curve.
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those of α.

This property holds until problems in the support-

guessing step of CoSaMP prevail. This is evident by

matching Figure 2.5-(b) with Figure 2.5-(a) for spar (α̂) >

K. As an extreme case, when spar (α̂) = 2K, MinL1 with no

knowledge of K is able to consistently outperform CoSaMP

in both PSR and ARSNR.

The evidence I collect pushes towards a general guide-

line favoring CoSaMP-like methods when support-guessing

is relatively easy while suggesting MinL1-like methods

when support recovery is the critical issue, for example

in biomedical applications.

2.6.2 Gaussian or antipodal modulation

The statistics of the random modulating symbols is a

degree of freedom in the design of architectures that entail

a random modulation, such as RMPI.

Such a degree of freedom may be effectively exploited

to match priors further to sparsity that may be available

in certain applications (see, e.g., [16]) but also to ease

implementation.

In particular, generating, storing and applying to the

sample stream a sequence of Gaussian random variables

implies an expensive circuitry that can be avoided by

resorting to much simpler antipodal random variables

taking values in {−1,+1}.
Actually, in the RMPI case, the distinction between

the two modulations appears to be quite artificial if one

considers that what can be decided by the implementation

is Φ that enters the definition of Θ = ΦΨ. If Ψ is

orthonormal and Φ is made of independent entries, then
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Figure 2.6: Performance of RMPI encoder with Gaussian or
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corresponding ISNR.

Θ is made of independent rows in which entries (that

happens to be linear combinations of independent random

variables with a normalized set of coefficients) distribute

very similarly to Gaussian random variables. Since this

happens independently of the original distribution, Gaus-

sian and antipodal modulations perform in a substantially

equivalent way.

Yet, the evidence I collect by simulation indicates

that no true difference exists. Figure 2.6 reports the

ARSNR obtained when decoding with CoSaMP a bit stream

produced either by an RMPI encoder in various operating

conditions. It is evident that antipodal modulation is

always not worse than Gaussian modulation.

Hence, even if Gaussian modulation is often referred

to even in implementation oriented contributions (see,

e.g., [24, 25]), any optimized design may safely rely on
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the more hardware-friendly (linear feedback shift registers

instead of random-number generators, switches instead

of multipliers) antipodal modulation and aim for the same

final performance.

2.6.3 RMPI specific issues

The most distinctive feature of an RMPI architecture is the

presence of multiply-and-accumulate blocks deployed to

straightforwardly implement CS principles.

The discussion in Section 2.4.1 already highlighted

that such operations are saturation-prone since tend

to increase the dynamic range of the signals. When

saturation happens the information content of the current

measurement may be completely lost if no countermea-

sure is taken.

Actually, once that the input signal range is set (in

terms of its average energy, i.e., variance), the probability

of saturation is linked to the amplitude of the ADC range.

Since the number of bits output by the ADC is finite,

reducing its input range not only eases its implementation

and paves the way for some resource saving (for example,

the increment in the range of the ADC relaxes noise

constraints in the analog stages, allowing a reduction

of biasing currents) but also decreases the quantization

intervals thus increasing resolution. Hence, joint design

of saturation and quantization is a key issue for RMPI

architectures that has been at least partially addressed,

for example, in [22].

Figure 2.7 reports the performance of an RMPI archi-

tecture in which the range of the ADC varies thus varying

the probability of non-saturation p¬sat and, implicitly,
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Figure 2.7: ARSNR (a) and PSR (b) of an RMPI producing M = 96
measurements decoded by CoSaMP for ranges of the ADC such
that the probability of non-saturation (p¬sat ) is 60% or above and
in a signal with K = 16 and various operating conditions as far
as ISNR and b are concerned. The SPD curves are obtained by
dropping the saturated measurements, while the SPW curves are
obtained windowing the projections so that a non-saturated value
is always obtained.
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the resolution with which measurements are quantized.

Decoding is performed by CoSaMP.

The SPD and SPW strategies described in Section 2.4.1

are compared when M = 96 measurements are taken in a

signal with sparsity K = 16, and different condition as far

as ISNR and bit-per-measurements b are concerned.

Figure 2.7-(b) shows that as b increases, SPW becomes

more effective in countering the effect of saturation. In

fact, when b = 5, SPW does not offer any significant

improvement with respect to SPD. This is mainly due to

the fact that the 5-bit word encoding each measurement

should reserve 1 bit to signal whether a saturation has

happened and either 4 bits to encode a non saturated

measurement, or 1 bit to distinguish positive from neg-

ative saturation and 3 bits to encode the time at which

saturation happened. This extremely coarse quantization

of times significantly reduces the amount of information

that can be squeezed from saturated measurements and

makes SPW practically equivalent to SPD.

When b = 8 things are different since SPW is able

to make both PSR and ARSRN raise to sensible levels

for values of p¬sat , for instance in the range [0.7,0.8],

significantly smaller than those needed for SPD, and thus

for ADC ranges definitely narrower. With reference to the

compression ratio γ, note that with N = 256, M = 96

and b = 8, CS is a viable opportunity (i.e., enjoys γ > 1)

only if ARSNR> 18.06dB, a threshold that is achieved for

p¬sat ≥ 0.68 by SPW, and for p¬sat ≥ 0.78 by SPD.

Things get drastically different for b = 10 since in this

case SPW exploits the relative abundance of bits to ensure

that every measurement carry a significant information.

In this case, CS is sensible only for ARSNR> 22.58dB,
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a level that can be achieved by SPW for any p¬sat ≥ 0.6,

while SPD still requires p¬sat ≥ 0.76.

Notice also that, as p¬sat increases (due to the fact

that the ADC range is widened) SPW follows a trend that

is eventually dominated by SPD due to the fact that even

non-saturated measurement are encoded by b − 1 bits

instead of b bits.

In all cases, performance decreases as p¬sat → 1. This

is due to the trade-off between non-saturation and fine

quantization. In fact, to increase p¬sat one must enlarge

the ADC range that eventually becomes so large that the

finite number of bits spent to quantize it produces a too

coarse subdivision.

2.6.4 RSAM specific issues

In principle, the random delay that RSAM architectures

insert between measurements may be thought as a real

quantity. Hence, the grid on which, for the convenience

of the implementation, the ∆kj are taken is potentially a

design parameter.

Given this temporal grid and indicating with υ its

oversampling ratio with respect to the entries of the signal

vector x, the other key design parameter is ∆kmin/υ.

In fact, since no two points on the oversampled grids

whose distance is less than ∆kmin are taken as sampling

instants, ∆kmin/υ defines how slower the ADC in an RSAM

architecture can be with respect to one that must convert

all the components of x at their original rate.

Figure 2.8 reports the ARSN of an RSAM bit stream

decoded by MinL1 for different oversampling υ and ∆kmin/υ

where the encoded signals have ISNR= 20 and K = 4. The
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signals with K = 4 and ISNR= 20.

same profile can be observed changing either the decoding

strategies or K and ISNR.

The fact that performance appears to be invariant with

respect to both parameters suggests that oversampling

is actually unnecessary even if samples are not equally

spaced in time and that a conspicuous relaxation of

the requirements put on the ADC can be obtained until

∆kmin/υ is not too close to N/M .

2.6.5 Bit budget management

When the total bit budget B is assigned, RMPI and RSAM

are able to trade the number of measurements M for the

depth b of the digital word encoding each of them, thus

allowing some performance optimization.

Actually, the M-vs-b trade-off may be seen as a further

incarnation of an abstract trade-off showing itself in many
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fields of information processing, like the exploration-vs-

exploitation trade-off in nonlinear optimization strategies.

The key factor here is the ISNR since it can be intu-

itively accepted that there is little advantage in allocating

bits that are then spent to encode the value of a random

perturbation.

If this may yield a clear guideline in straightforward

acquisition schemes, CS architectures manipulate the

signal in different ways before quantization takes place,

and the optimum granularity of the ADC may be less easy

to anticipate.

Figure 2.9 shows what happens to the performance

of an RMPI architecture when a certain bit budget is

partitioned by using a different number of bits for each

measure.

Figure 2.10 reports the same data for RSAM-ADC

architecture.

Note that all PSR plots are non-increasing in b,

indicating that support reconstruction is easier when the

number of measurements M = B/b is high, i.e., when

most resources are devoted to “exploration” to cope with

the intrinsically combinatorial problem of support finding.

It is then natural to see that, for the largest possible

value of b that maintains such an “exploration” highly

effective, i.e., for the rightmost point of the PSR curves

that still yields a PSR value close to 1, all ARSNR curves

exhibit a maximum. That is the point at which the

maximum effectiveness of the “exploration” pairs with the

highest possible resolution of the measurement, i.e., with

an intense “exploitation” of the available data.

As a first intuition, one may expect that the trade-off

between b and M given B which optimizes the ARSNR is
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Figure 2.9: Performance of an RMPI architecture in terms of (a)
ARSNR and (b) PSR plotted against the number of bits b used
to encode each measurement when the total number of bits is
constrained by the bit budget B. In this case K = 16, ISNR=40dB,
and p¬sat = 0.9.
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Figure 2.10: Performance of an RSAM-ADC architecture in
terms of (a) ARSNR and (b) PSR plotted against the number of
bits b used to encode each measurement when the total number
of bits is constrained by the bit budget B. In this case K = 16
and ISNR=40dB.
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expected to be around b=ISNR/6.02, since the SRN of the

measurements is equal to the ISNR. This is immediate

for the RSAM-ADC; it can also be seen for the RMPI by

applying the central limit theorem as in Section 2.4.1 to

the noisy input signal as defined in Section 2.2. Yet,

performance is influenced by many other parameters,

which may move the optimum far from this expected

point.

By looking at the numerical results in Figures 2.9 and

2.10 I can see how the optimum point it is affected by

B. When B is small it may be sensible to reduce b and

increaseM in order to better satisfies some CS constraints

such as the restricted isometry property. On the contrary,

when B is large, one could get more advantages by

increasing b with respect to increasing M, since when

the number of measurement is large enough to allow

signal reconstruction it is certainly preferable increasing

measurements quality instead of their quantity.

As a final remark, recall that while RSAM-ADC allows

to optimize the trade off between M and b, RSAM-SAR

automatically assigns a different number of bits to every

measurement.

To know whether this automatic assignment is benefi-

cial to the general performance, or must be only suffered

as a side-effect of a lighter architecture (a SAR compared

to a full ADC) I compare RSAM-ADC and RSAM-SAR in

Figure 2.11.

The performance of RSAM-ADC always dominates that

of RSAM-SAR whose automatic bit allocation does not

help reconstruction, especially for large ISNR values and

a small ∆kmin that sets the minimum for the number of

bits of each measurement. Note that the performance
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measurement interval and on B.

of the RSAM-SAR are improved by increasing ∆kmin,

thus pushing bit allocation towards the uniformity that

characterizes the RSAM-ADC option.

For small values of ISNR the performance difference is

strongly reduced. In the specific case of the figure ∆kmin

is large enough to ensure a quantization noise smaller

with respect to the ISNR, and both architectures reach an

ARSNR value similar to the ISNR.

As a conclusion, the trade-off between M and b is a

complex issue, and the optimum point may not be coinci-

dent with what is suggested by intuition, thus hinting the

fact that the signal processing before quantization affects

the trade-off. Furthermore, this optimization is strongly

depended on the ISNR, making a signal independent

analysis impossible.
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2.6.6 General comparison and discussion

As a final step I compare the considered architectures to

establish what is the best performing in a certain number

of operative conditions.

Results are reported in Figure 2.12 for the case in

which K = 16 and ISNR=40dB assuming that K is also

known at the decoder so that CoSaMP is the best decoding

choice.

For each bit budget B, I plot the maximum ARSNR

that can be obtained by (numerically) optimizing M (and

thus b = B/M ) for RMPI and for RSAM-ADC. RMPI is

designed so that p¬sat = 0.9. This plot allows me to see

which of the architectures achieve the best compression

vs reconstruction quality trade-off.

By comparison with the γ = 1 line, it is evident that

all considered architectures makes AIC convenient with

respect to straightforward acquisition. It is also clear

that performance increases as the resources spent in

acquisition increase thus allowing an informed trade-off

once that application specific constraints are known.

Though these performance evaluation are significative,

one of the issues that is not yet clarified is how much they

are “robust” with respect to the basis along which the

original signal is sparse.

It can be intuitively accepted that the sinusoidal basis

I use is a good representative of bases whose waveforms

cover most of of the time interval in which the signal is

observed. Yet, it is well known [23] that if the waveforms

of the basis exhibits some kind of concentration along the

time axis, then compressive sensing becomes increasingly

more difficult (more formally, it requires an increasing
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Figure 2.12: Largest achievable ARSNR for each architecture
plotted against the total bit budget B.

number of measurements).

The formal argument quantifying the above fact can be

paralleled by an independent intuitive argument. Despite

the fact that for abstract signal processing basis choice

is arbitrary, all operations eventually get implemented

by time-domain operations. If these operations are not

time-invariant then the amount of energy collected by the

system from the incoming signals can vary depending on

its support.

From this I get that strategies like RSAM are less

robust with respect to energy concentration along the

time axis since they heavily rely on non-time-invariant

processing: RSAM samples at single points ignoring the

signal even in a strict neighborhood of the sampling

instant.

This is fully confirmed by the numerical evidence

reported in Figure 2.13 in which I adopt Ψ = Λ(256,ℓ) for

ℓ = 0,1,2,3,4. This produces bases whose waveforms
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Figure 2.13: Performance of RMPI and RSAM-ADC when
acquiring a signal characterized by ISNR=40dB with M = 96
measurements quantized with B = 768 bits. The signal is sparse
with respect to a basis whose waveforms have a support covering
a fraction of the acquisition interval equal to 2ℓ for ℓ = 0,1, . . . ,4.
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RMPI RSAM
Performance:
• compression vs quality + +

• sparsity base robustness ++ −
Hardware complexity:
• resources required −− +

• design effort − +

TABLE 2.1: Summary of advantages and disadvantages of the
different architecture analyzed in this paper, both from the signal
processing point of view and from hardware complexity point of
view.

cover 2ℓ of the total time range of N = 256 instants.

Simple visual inspection reveals that RMPI-based pro-

cessing is completely insensitive to the support of the

basis waveforms while the performance of non-time-

invariant methods such as RSAM suffer a consistent

performance decrease as that support decreases.

Obviously, this is a key feature to keep in mind when

selecting an AIC architecture for a particular applica-

tion since, for example, suggests the adoption of RMPI-

based strategies for signals like ECGs (that are usually

decomposed along Gabor atoms whose support is only a

fraction of, say, an heartbeat time) [24–26], while allowing

an extremely parsimonious acquisition of EEGs whose

sparsity can be revealed in close-to-fourier bases [27].

2.7 Conclusion

I took some steps in clarifying relative strengths and

weaknesses of some of the recently proposed architectures

for hardware implementation of AICs based on CS.

Though theoretical support to CS techniques is in
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rapid evolution and gives some fundamental guarantees

on the fact that CS is feasible and may be advanta-

geous over conventional acquisition strategies, coping

with the most basic nonlinearity unavoidable in any real

implementation (i.e., saturations and quantization of the

measurements) and yield fair quantitative comparison

required extensive simulations in an homogeneous envi-

ronment.

Based on numerical evidence, I were able to discuss

some typical issues in AIC design, such as architecture

selection for a particular operative setting, or the par-

titioning of a total bit budget into digital words corre-

sponding to individual measurements. Pros and cons

of each architecture have been discussed, evaluating both

the hardware complexity of all solutions (see Section 2.4.3)

and the performance in terms of ARSNR and PSR (see Sec-

tion 2.6.6). This comparison has been briefly summarized

in Table 2.1.

I were also able to at least envision some more

general guidelines such as, for example, that the RMPI

architecture and its recently proposed adjustments are

probably the most versatile approach though not always

the most economic to implement.





Chapter

3 Energy driven CS and

Rakeness

In this chapter I will show you a different point of view on

sampling sequences characterization. The leveraging

on sparsity has been recently paired [15] with another

technique widely used by engineers to spot information

content in signals, i.e. the uneven distribution of average

energy along properly defined bases (that, in general, are

different from those for which sparsity can be identified) 1

3.1 CS for localized signals

In the following, I will indicate such an uneven distribu-

tion of energy with the term localization and I will observe

that, in general, it provides a different a-priori information

with respect to sparsity. As it is consequently naturally

to expect, I will be able to show that these signal features

allows improved sensing operations.

1A typical example is the class of band-pass signals, which are
localized in the frequency domain, i.e., with respect to the Fourier basis.

65



66 Chapter 3. Energy driven CS and Rakeness

The key assumptions under which this may happen

are that (i) measurements are taken by projecting the

signal onto a proper set of waveforms whose cardinality

is smaller than the dimensionality of the signal, and (ii)

the overall effect of disturbances in the sensing process

(thermal noise, quantization errors, etc.) can be modeled

as a projection-independent error.

When (i) and (ii) hold, a noise-tolerant reconstruction

of the sparse signal from a number of measurements that

is smaller than its dimensionality is commonly achieved

by designing the projection operator so that it is a

restricted isometry (RI), i.e. it approximately preserves

the length of the sparse signal to which it is applied so

that the ratio between the norm of such signal and that

of its projection falls within an interval [
√

1 − δ,
√

1 + δ]

where the RI constant 0 ≤ δ ≤ 1 should be as small as

possible [5] [6].

Roughly speaking this means that, if the measure-

ments come from a RI, the original signal energy is not lost

in the projection and, when acquisition error is added, the

signal-to-noise ratio (SNR) of the samples remains high

enough to perform reconstruction.

This approach and its pairing with localization can be

intuitively explained with reference to a simplified, low-

dimensionality setting in which the signal to acquire a has

three components (a0, a1, a2) and is sparse since only one

of its components is non-vanishing in each realization.

More formally I may assume that aj , 0 with probability

pj for j = 0,1,2 and, obviously, for p0 + p1 + p2 = 1.

Furthermore, when it is non-zero, the j-th component

of the signal is a realization of a random variable with

variance σ2
j for j = 0,1,2.
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(a) (b)

Figure 3.1: A simple CS task using a projection plane designed
by considering only the restricted isometry property (a). A
graphical evaluation of the corresponding restricted isometry
constant (b).

It is worth stressing that the possibility of p0σ2
0 ,

p1σ2
1 , p2σ2

2 implies that localization and sparsity are

two separate concepts. In fact, though a is sparse

by construction, its average energy concentrates on the

axis whose associated pjσ2
j is larger and this concentra-

tion depends on the unbalance between the probability-

variances products.

Since a is sparse, it can be reconstructed by mea-

suring its projection on a two-dimensional plane. To

define it, refer to Figure 3.1-(a) and note that the generic

projection plane passing through the origin defines an

angle θj ∈ [0, π[ with each axis aj for j = 0,1,2. These

angles are such that
∑2
j=0 sin2(θj) = 1.

Any set of angles θj , π/2 for j = 0,1,2 is a feasible

choice. This is shown in Figure 3.1-(b) that reports a
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(a) (b)

Figure 3.2: A simple CS task using an optimized projection
plane designed by merging rakeness and restricted isometry (a).
A graphical evaluation of the corresponding restricted isometry
constant (b).

unit radius circle on the projecting plane, along with the

projections of unit-length segments centered in the origin

and aligned with each of the three axis.

As long as the three projections have no point in

common but the origin (so that, in general, the projections

of the coordinate axes are distinct straight lines) the

retrieval of the original signal in noiseless conditions can

be ensured without complicated algorithms.

When noise comes into play, classical CS theory looks

for planes corresponding to projection operators that are

good RI. To do so, note that the ratio between the length of

a segment aligned with the axis aj and that of its projection

on the plane is cos(θj). Hence, to minimize the RI constant

I should choose each cos(θj) as close as possible to 1, i.e.

θ0 = θ1 = θ2 = sin−1
√

1
3 that is actually the case reported



3.1. CS for localized signals 69

in Figure 3.1.

This choice clearly disregards the actual values of the

probabilities pj and signal powers σ2
j for j = 0,1,2 and

may be suboptimal.

To take these further information into account note

that, since disturbances are introduced in acquiring the

projections, they are independent from the plane. Hence,

I may improve the SNR by choosing a plane that is able

to rake a larger fraction of the signal power. I call

this property rakeness and, in this case, to maximize

it I have to maximize the power of the projection σ2 =

p0σ2
0 cos2(θ0) + p1σ2

1 cos2(θ1) + p2σ2
2 cos2(θ2).

With my assumption and by setting ξj = cos2(θj) for j =

0,1,2 this amounts to maximizing σ2 = p0σ2
0ξ0 + p1σ2

1ξ1 +

p2σ2
2ξ2, subject to the constraint on the θj that becomes

ξ0 + ξ1 + ξ2 = 2. Assuming that p0σ2
0 > p1σ2

1 > p2σ2
2 , this

criterion leads to ξ0 = ξ1 = 1 and ξ2 = 0, i.e., a projections

plane that coincides with the coordinate plane spanned

by a0 and a1.

Clearly, the sheer maximization of the rakeness is not

acceptable since any realization of a in which a2 , 0

would not be captured by the system or, in terms of the RI

property, δ = 1 since the a2 axis belongs to the null-space

of the projection operator.

This toy case highlights that RI and rakeness may be

suboptimal as a design criterion when considered alone

and that improvements may be sought addressing the

trade-off between RI enforcement and rakeness maximiza-

tion.

Such a trade off can be addressed both in a determin-

istic and in a statistical way.

Pursuing the deterministic path, one may choose a
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projecting plane like the one in Figure 3.2-(a) that still

allows signals along a2 to have a non-zero projection but

clearly favors directions with the largest expected power.

Figure 3.2-(b), that is analogous to Figure 3.1-(b) for the

new plane choice, shows that this is detrimental in terms

of the RI constant since the length of the projection of

the segment along a2 is substantially reduced. Yet, the

lengths of the projections of the segments along a0 and a1

are increased and since these are the occurrences carrying

more power on the average, the overall average acquisition

quality may be improved.

The same improvement may be pursued in statistical

terms by assuming that the projecting plane is chosen

randomly at each measurement. In this case, the statistic

of plane choices can be biased so that planes collecting

larger energy are more probable, but planes allowing

the acquisition of less important components are still

possible.

This second setting is particularly interesting since

random projections are already employed to guarantee

good RI properties [17] and the main aim of this contribu-

tion is to show that the trade-off between RI and rakeness

can be addressed by proper design of the statistical

distribution of the projecting directions.

The rest of the chapter is organized as follows. Section

3.2 will define the conversion architecture and lay down

its mathematical model. Section 3.3 introduces more

formally the rakeness and its use as a design criterion.

In doing this, to focus this exposition on application-

oriented considerations, I accept that maximizing the

energy of acquisitions is the right direction to go, thus

postponing the statement of the formal chain of results
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starting from a mathematical definition of localization to a

future contribution. This accepted, Section 3.4 describes

a design path addressing the RI/rakeness trade-off when

the signals to acquire are localized in the frequency

domain, that is by far the most common domain for signal

analysis. Section 3.5 expands that view to include a

generic adaptive domain, that is able to reveal localization

in a large class of signals. A couple of lengthy derivations

are reported in the 3.6.

3.2 System Definition

I will concentrate on systems that perform AI conversion

of sparse and localized signals by means of Random

Modulation Pre-Integration (RMPI) [4].

This scheme sketched in Figure 3.3 acts on signals of

the kind a(t) where t is most usually time but may also

be any other indexing variable.

A "slice" of the signal a (say for −T/2 ≤ t ≤ T/2

for some T > 0) is processed by multiplying it by a

waveform b(t) with a correspondingly sized support. The

waveform b(t) is made by amplitude modulated pulses

whose modulating symbols are chosen from a certain set.

The most hardware friendly choices are rectangular

pulses with antipodal ({−1,+1}) symbols since multipli-

cation can be implemented by a simple arrangement of

switches that nicely embeds, for example, into switched-

capacitor implementations [28]. I had also shown you that

antipodal symbols in place of real Gaussian values do not

produce disadvantages in the decoding stage (Subsection

2.6.2).
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a(t)

bj(t)

t
antipodal PAM sampling waveform

+1

-1

Figure 3.3: Block diagram of RMPI architecture: the signal to
acquire is multiplied by the j-th antipodal PAM waveform and
fed into an integrator whose output is sampled and quantized to
produce the digital conversion of the j-th measurement

The resulting waveform is then integrated or low-pass

filtered to obtain a single value that is converted into a

digital word by conventional means. Note that this further

step also nicely fits into a switched-capacitor implemen-

tation that naturally manages charge integration.

Despite the fact that the rate (for time-indexed signals)

or density (for generic signals) of the pulses may be

very high and even larger than what a Nyquist-obeying

acquisition would require, only the integrated values are

actually converted.

This multiply-and-integrate operation materializes the

scalar product ⟨a(t), b(t)⟩ and can be performed M times

(either serially or in parallel), each time considering a dif-

ferent waveform bj(t) (j = 0, . . . , M−1) that is characterized

by a set of modulating symbols drawn at random with a

certain statistic.

The resulting projections mj =
⟨
a(t), bj(t)

⟩
for j =

0, . . . , M − 1 can be aligned in a measurement vector

m = (m0, . . . , mM−1)⊤. Figure 3.3 exemplifies the signals

and the operations entailed by the acquisition of mj using

antipodal PAM waveforms.
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For what concerns signal reconstruction, I assume

that a is K-sparse, i.e., that there is a collection of N

waveforms uj(t) for j = 0, . . . , N − 1 such that every

realization of a can be written as

a(t) =
N−1∑
j=0

ajuj(t) (3.1)

for certain coefficients aj such that at most K < N of them

can be non-zero at any time.

Plugging (3.1) into the definition of mj I get mj =∑N−1
k=0 ak

⟨
uk(t), bj(t)

⟩
. By defining the vector a = (a0, . . . , aN−1)⊤,

the M × N projection matrix P = [P j,k] = [
⟨
uk(t), bj(t)

⟩
],

and the vector ν = (ν0, . . . , νM−1)⊤ accounting for the total

noise affecting the projections, I have that

m = P a + ν (3.2)

is the reconstruction equality to be solved for the unknown

a with the aid of its K-sparsity. In principle, this could

be done by selecting, among all the vectors a satisfying

(3.2), the one with the minimum number of non-zero

entries. Since this is, in general, a problem subject to

combinatorial explosion, many alternative theoretical and

algorithmic methods have been developed allowing effi-

cient and effective reconstructions [29] [12] [30]. Among

all these possibilities, I will exploit the algorithm described

in [12] in my experiments in Chapter 4.

Note that ν takes into account at least the intrinsic

thermal noise affecting the analog processing of a(t)

and the quantization noise due to digitalization. Since

thermal noise is additive white and Gaussian (AWGN),

its contribution to ν is independent of the projecting

waveforms bj(t) as long as they have constant energy.
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I assume that quantization noise is also approximately

white and independent on the quantized input so that

condition (ii) discussed in Section 3.1 is satisfied.

3.3 RI and Rakeness

To cope with the noise in ν, RI-based design [10] tries to

make the RI constant δ of the projection operator as low

as possible. This can be checked directly from the matrix

P. In fact, since the projection is applied to K-sparse

vectors, I should consider each of the
(
N
K

)
matrices P ′ that

are built selecting K of the N columns of P. If λmin
P′ and

λmax
P′ are respectively the minimum and maximum among

the singular values [31] of P′ I have

δ = max
P′

{
max

[
1 − λmin

P′ , λ
max
P′ − 1

]}
To go further, I define the average rakeness ρ between

any two processes α and ϐ as

ρ(α, ϐ) = κρEα,ϐ

[
|⟨α, ϐ⟩|2

]
(3.3)

where the constant κρ is used to switch the meaning of ρ

from “average energy of projections” (κρ = 1) to “average

power of projections” (e.g., κρ = T−1 for signals observed

in [−T/2, T/2]).

It is worthwhile to highlight that ρ(α, ϐ) depends

on how the second-order features of the two processes

combine. In fact, I may expand the definition as
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ρ(α, ϐ) =

= κρEα,ϐ

[∫ T/2

−T/2

∫ T/2

−T/2
α∗(t)ϐ(t)α(s)ϐ∗(s)dtds

]
= κρ

∫ T/2

−T/2

∫ T/2

−T/2
Eα

[
α∗(t)α(s)

]
Eϐ

[
ϐ(t)ϐ∗(s)

]
dtds

= κρ

∫ T/2

−T/2

∫ T/2

−T/2
Cα(t, s)C∗ϐ(t, s)dtds (3.4)

where ·∗ stands for complex conjugation and the two

correlation functions Cα and Cϐ have been implicitly

defined.

From the toy example in Section 3.1, I know that

choosing the process b that maximizes the rakeness

ρ(a, b) leads to good average SNR of the projections, but

may destroy the RI property making the system insensitive

to some signal components.

To counter this over-tuning effect one may require

that the process b is “random enough” to assign a non-

zero probability to realizations that, despite being sub-

optimal from the point of view of energy collection, allow

the detection of components of the original signal that

would be overlooked otherwise. Actually, this intuitive

approach is fully supported by the existing results on the

RI property. In fact, it is known [17] that if the matrix P

is made of random independent entries, its RI constant is

small with a substantially large probability.

In general, enforcing the randomness of a process can

be a subtle task since the very definition of what is random

(entropic, algorithmically complex, etc.) can be extremely

sophisticated and also dependent more on philosophical

than technical consideration.
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Here, for simplicity’s sake, I limit ourselves to en-

ergy/power considerations and define a measure of the

(non)randomness of a process as its self-rakeness, i.e.,

the average amount of energy/power of the projection of

one of its realization onto another realization when the

two are drawn independently. The rationale behind this

quantification of randomness is that, if ρ(b, b) is high,

then independent realizations of the process tend to align

and thus to be substantially the same, implying a low

“randomness” of the process itself [32].

This definition nicely fits into a mathematical formu-

lation of the design path that increases the rakeness

ρ(a, b) while leaving b random enough. In fact, given

a certain sparse stochastic process a, I determine the

stochastic process b generating the projecting waveforms

to employ in an RMPI architecture by solving the following

optimization problem

maxb ρ(a, b)

s.t.
⟨b, b⟩ = e
ρ(b, b) ≤ re2

(3.5)

where e is the energy of the projection waveforms and r is

a randomness-enforcing design parameter.

Roughly speaking, solving (3.5) will ensure that the

resulting waveforms will have constant energy (due to con-

straint < b, b >= e) paired with the ability of maximizing

the average SNR of the projections (thanks to the capabil-

ity of maximizing the energy of the acquired samples since

I impose that maxb ρ(a, b)) while maintaining the chance

of detecting components of the original signal that carry

smaller amounts of energy/power (thanks to the fact that
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each realization of the process b has ρ(b, b) ≤ re, i.e., low

autocorrelation and thus “large” randomness).

In (3.5), the parameter e acts as a normalization factor,

since if b′ is the solution for e = e′, then b′′ =
√
e′′/e′b′ is

the solution of the same problem for e = e′′.

On the contrary, r is the parameter controlling the

trade-off between the two design criteria I want to blend,

i.e., RI and rakeness. Hence, different values of r lead to

waveform with different final performance.

Regrettably, though it is easy to accept that, thanks

to their ability to maximize the energy of the samples, the

resulting b may be able to increase the performance of

the overall sensing system, the latter may rely (especially

in the reconstruction part) on heavily non-linear and

iterative operations that are difficult to model. For this

reason, though feasible bounds for the parameter r can

(and will) be derived theoretically in Section 3.4 and 3.5,

the choice of its exact value is a matter of fine tuning

of the global system, and it must be determined through

numerical simulation.

3.4 Localization in the frequency do-

main

In this Section I specialize (3.5) to the case in which

the statistical features of a that cause the localization of

its energy/power can be straightforwardly highlighted by

Fourier analysis.

I will concentrate on the time interval [−T/2, T/2] and

set κρ = T−1 in (3.3).
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To express ρ in terms of the frequency-domain features

of the processes α and ϐ in it, let me assume that both of

them are second-order stationary.

Leveraging on this, I may define the single-argument

correlation functions Cα(s − t) = Cα(t, s) and Cϐ(s − t) =
Cϐ(t, s) whose Fourier transforms are nothing but the

power spectra α̂(f ) and ϐ̂(f ) of the two processes.

For ρ(α, ϐ) I obtain

ρ(α, ϐ) =

=
1

2T

∫ T

−T
Cα(p)C∗ϐ(p)

∫ T−|p|

−T+|p|
dqdp

=

∫ T

−T
Cα(p)C∗ϐ(p)

(
1 − |p|

T

)
dp (3.6)

=

∫ T

−T

∫ ∞

−∞

∫ ∞

−∞
α̂(f )ϐ̂∗(g)e2πi (f −g)p

(
1 − |p|

T

)
dpdf dg

=

∫ ∞

−∞

∫ ∞

−∞
α̂(f )ϐ̂∗(g)

∫ T

−T
e2πi (f −g)p

(
1 − |p|

T

)
dpdf dg

=

∫ ∞

−∞

∫ ∞

−∞
α̂(f )ϐ̂∗(g)hT (f − g)df dg (3.7)

where

hT (f ) =
∫ T

−T
e2πi fp

(
1 − |p|

T

)
dp =

sin2(πTf )
π2Tf 2

For simplicity’s sake I may focus on the antipodal

case in which the projection waveforms have a constant-

modulus amplitude (±1), duration T , and thus automat-

ically satisfy the constant energy constraint < b, b >= e

in (3.5) with e = T , needed to make projection tuning

possible.

With this, the power spectrum of the projection wave-

forms can be designed by solving (3.5) re-expressed in the



3.4. Localization in the frequency domain 79

frequency domain. To do so, use (3.7) to rewrite ρ(a, b)

and ρ(b, b) in (3.5) and consider

max
b̂

∫ ∞

−∞

∫ ∞

−∞
â(f )b̂(g)hT (f − g)df dg

s.t.

∫ ∞

−∞

∫ ∞

−∞
b̂(f )b̂(g)hT (f − g)df dg ≤ rT

b̂(f ) ≥ 0

∫ ∞

−∞
b̂(f )df = 1

b̂(f ) = b̂(−f )

(3.8)

where the last three constraints encode the fact that b̂

must be a power spectrum of a unit-power, real signal.

Once that r is fixed, (3.8) can be solved by assuming

that â concentrates its power in the frequency interval

[−B, B] and applying some kind of finite-elements meth-

ods, i.e., approximating all the entailed functions with

linear combinations of basic function elements on which

the integrals can be computed at least numerically.

As an example, select a frequency interval [−B, B]

and partition it 2n + 1 subintervals of equal length ∆f =

2B/(2n + 1) Fj = [j − ∆f/2, j + ∆f/2] for j = −n, . . . , n.

Assume now that b̂(f ) is constant in each Fj and define

χj(f ) as the indicator function of Fj, i.e. χj(f ) = 1 if f ∈ Fj
and 0 otherwise. I have b̂(f ) =

∑n
j=−n bjχj(f ) for certain

coefficients b−n , . . . , bn.

This can be substituted into (3.8) to obtain
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max
b−n ,...,bn

n∑
j=−n

wjbj

s.t.

n∑
j=−n

n∑
k=−n

bjbkWj,k ≤ rT

bj ≥ 0 j = −n, . . . , n

∆f
n∑

j=−n
bj = 1

bj = b−j j = −n, . . . , n

(3.9)

with

wj =

∫ ∞

−∞

∫
Fj

â(f )hT (f − g)df dg

Wj,k =

∫
Fj

∫
Fk

hT (f − g)df dg

This leaves me with the vector of 2n + 1 unknown co-

efficients b−n , . . . , bn that must determined by solving an

optimization problem characterized by a linear objective

function and few linear and quadratic constraints. Plenty

of numerical methods exist for solving such problems even

for large number of basic-elements and thus for extremely

effective approximations (commercial products such as

MATLAB or CPLEX provide full support for large-scale

version of these problems).

Once that the optimum b̂(f ) has been computed, one

may resort to known methods to generate an antipodal

process with such a spectrum exploiting a linear proba-

bility feedback (LPF) [33] [34] [35] [36], some additional

comments will be reported in the Section 4.1. Slices
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of length T of this process can be used as projection

waveforms in an RMPI architecture for the CS of the

original a.

Note that, even if this is needed to arrive at a

final working system, the core of rakeness-based design

concerns the solution of (3.5) for frequency-localized

signals to obtain the best spectral profile of the projecting

waveforms, independently of their physical realization.

How such a spectral profile can be obtained using an-

tipodal PAMs is an implementation-dependent choice,

which allows to realize an hardware system for sparse and

localized signal acquisition which does not require analog

multipliers [15].

As far as the range in which r should vary to admin-

ister the trade off between RI and rakeness, note that,

since ρ(b, b) is a measure of (non)randomness, it must be

minimum when the process b is white in its bandwidth,

i.e., when b̂(f ) = 1/(2B) for f ∈ [−B, B] and 0 otherwise.

Plugging this into (3.7) and defining c = BT one gets

r ≥ rmin =

=
Ci(4πc) + 4πcSi(4πc) − log(4πc) + cos(4πc) − γ − 1

4π2c2

where γ is the Euler’s constant and Ci and Si are

respectively the cos-integral and sin-integral functions.

The quantity rminc is a monotonically and rapidly

increasing function of c with limc→∞ rminc = 1/2. Hence, I

may safely use such an asymptotic value to set 1/(2c) as

a suitable lower bound for r in any practical conditions.

Again, from the meaning of ρ(b, b) I got that it is

maximum when the waveforms produced by the process
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are constant. This implies Cb(τ) = 1 that can be plugged

into (3.6) to obtain

r ≤ rmax =
1
T

∫ T

−T

(
1 − |p|

T

)
dp = 1

Overall, the tuning of the overall system will optimize

performance by choosing r ∈
[

1
2c ,1

]
.

3.5 Localization in a generic domain

Slices of second-order stationary processes (that enjoy a

simple and well-studied characterization in the frequency

domain) do not exhaust the set of signals that I may want

to acquire.

To cope with more general cases assume to work in

normalized conditions such that both the waveforms to be

acquired and the projection waveforms have unit energy,

i.e.,
∫ T

2

− T2
|a(t)|2dt =

∫ T
2

− T2
|b(t)|2dt = 1, where the latter

constrain sets e = 1 in (3.5).

When I comply with this assumption (possibly by

scaling the original signals), if Cx represents either Ca or

Cb, I have that

� Cx is Hermitian, i.e., Cx (t, s) = C∗x (s, t);

� Cx is positive semidefinite, i.e., for any integrable

function ξ (t)

the quadratic form
∫ T

2

− T2

∫ T
2

− T2
ξ ∗(t)Cx (t, s)ξ (s)dtds =

E
[∣∣∣∣∣∫ T

2

− T2
x(t)ξ (t)dt

∣∣∣∣∣2] yields a non-negative result;
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� Cx has a unit trace, i.e.,∫ T
2

− T2
Cx (t, t)dt =

=

∫ T
2

− T2
E[|x(t)|2]dt = E

∫ T
2

− T2
|x(t)|2dt

 = 1.

From this, I know (see e.g. [37]) that two sequences of

orthonormal functions θ0(t), θ1(t), . . . and ϕ0(t), ϕ1(t), . . .

exist, along with the sequences of real non-negative

numbers µ0 ≥ µ1 ≥ . . . and λ0 ≥ λ1 ≥ . . . such that∑∞
j=0 µj =

∑∞
j=0 λj = 1 and

Ca(t, s) =
∞∑
j=0

µjθ
∗
j (t)θj(s) (3.10)

Cb(t, s) =
∞∑
j=0

λjϕ
∗
j (t)ϕj(s) (3.11)

By substituting the generalized spectral expansions for

the two correlation functions (3.10) and (3.11) into (3.4)

one gets

ρ(a, b) =
∞∑
j=0

∞∑
k=0

λjµkΞj,k

ρ(b, b) =
∞∑
j=0

λ2
j

where the real and nonnegative numbers

Ξj,k =

∣∣∣∣∣∣∣
∫ T

2

− T2
ϕj(t)θ∗k(t)dt

∣∣∣∣∣∣∣
2

are the squared modulus of the projections of each ϕj on

every θk (and vice versa).

The orthonormality of the θk guarantees that the sum

of the squared modulus of the projections of ϕj must equal
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the squared length of ϕj itself and thus, since ϕj is normal,

that
∑∞
j=0 Ξj,k = 1. Conversely, from the fact that the ϕj are

orthonormal I have also
∑∞
k=0 Ξj,k = 1.

Hence, the optimization problem (3.5) can be rewritten

in totally generic terms as

max
λ

max
Ξ

∞∑
j=0

∞∑
k=0

λjµkΞj,k

s.t.

λj ≥ 0 ∀j
∞∑
j=0

λj = 1

∞∑
j=0

λ2
j ≤ r

Ξj,k ≥ 0 ∀j, k
∞∑
j=0

Ξj,k = 1 ∀k
∞∑
k=0

Ξj,k = 1 ∀j

(3.12)

Note that the two max operators address separately the

problem of finding an optimal basis (maxΞ) and then the

optimal energy distribution over that basis (maxλ).

As far as the range of r is concerned, assume to know

that J is an integer such that λj = 0 for j ≥ J . It can

be easily seen that max
∑J−1
j=0 λ

2
j subject to the constraints

λj ≥ 0 and
∑J−1
j=0 λj = 1 is 1 and is attained when λ0 = 1

and λj = 0 for j > 0. It is also easy to see that min
∑J−1
j=0 λ

2
j

subject to the constraints λj ≥ 0 and
∑J−1
j=0 λj = 1 is 1/J

and is attained when λj = 1/J for j = 0, . . . , J − 1. Hence,

r ∈ [1/J,1].

In particular, the lower bound r ≥ 1/J rewritten as

rJ ≥ 1 can be read as a general rule of thumb, i.e., the
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more random the process that generates the projection

waveforms, the larger the number of non-zero eigenvalues

in the spectral expansion of its correlation function.

The solution of (3.12) is derived in the Appendix and

depends on the two partial sums

Σ1(J) =
J−1∑
j=0

µj (3.13)

Σ2(J) =
J−1∑
j=0

µ2
j (3.14)

to obtain

ϕj = θj (3.15)

λj = λj(J) =
1
J


1 +

Jµj − Σ1(J)√
Σ2(J) − 1

J Σ
2
1(J)

r − 1
J


(3.16)

which hold for j = 0,1, . . . , J − 1 where J is defined by

J = max
{
j
∣∣∣∣ λj−1(j) > 0

}
(3.17)

By definition, all the eigenvalues λj for j ≥ J are null.

3.5.1 Finite dimensional signals

The special case in which the signal to be acquired can

be written as a linear combination of known waveforms

by means of random coefficients is, for us, extremely

interesting and deserves some further discussion.

Let me assume that (3.1) holds for orthonormal uj (j =

0, . . . , N − 1) and let me compute
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Ca(t, s) =
N−1∑
j=0

N−1∑
k=0

E[a∗j ak]u∗j (t)uk(s) (3.18)

The correlation matrix A = [Aj,k] =
[
E[a∗j ak]

]
is

Hermitian and positive semidefinite, hence it can be

written as A = QMQ† where ·† stands for transposition

and conjugation, M is a diagonal matrix with real non-

negative diagonal entries, and Q is an orthonormal matrix

whose columns are the eigenvectors of A.

With this, I may rewrite (3.18) as

Ca(t, s) =
N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

Q
j,l
M l,lQ

∗
k,l
u∗j (s)uk(t)

=

N−1∑
l=0

M l,l

N−1∑
j=0

Q
j,l
u∗j (t)

N−1∑
k=0

Q∗
k,l
uk(s)

Hence, I may express Ca(t, s) in the form needed for

writing (3.10) and thus the solution of (3.12) by simply

setting θj =
∑N−1
k=0 Q

∗
k,j
uk and µj = M j,j for j = 0, . . . , N − 1.

This straightforward derivation clarifies that, when I

have identified sparseness along a certain signal basis,

the statistic of the coefficients gives me hints on the basis

that may be used to highlight localization. Along this

other basis, localization itself is nothing but the difference

between the lower-index, largest eigenvalues µ0, µ1, . . .

and the others.

A bridge is also built between the general treatment of

rakeness in this Section and the frequency-domain anal-

ysis of the Section 3.4. In fact, if a is substantially band-

limited in the frequency interval [−B, B] and is considered

in the time interval [−T/2, T/2] its realizations may be

well expressed as a linear combination of waveforms

that are the truncated version of prolate spheroidal wave



3.5. Localization in a generic domain 87

functions [38] [39]. It is known that, if c = BT then

N = 2c functions are enough to achieve an approximation

quality that dramatically increases as c → ∞. Hence, the

solution of (3.12) will feature J = N = 2c for values of

r ∈ [1/J,1] = [ 1
2c ,1].

From an operative point of view, whatever analysis

allows me to obtain the generalized spectral expansion of

Ca as in (3.10), i may use (3.15), (3.16), (3.17) and (3.11)

to compute the correlation function Cb of the process

generating the projection waveforms.

To fit this Cb into an actual RMPI architecture, I must

generate a binary or antipodal PAM signal with such a

non-stationary correlation. The details of the mechanism

allowing this are far beyond the scope of this paper and

will be the topic of a future communication.

It is here enough to say that, if the number of

symbols S in each waveform is limited to few tens (say

S < 100), I are able, depending on Cb, to automatically

determine two sets of cardinality s = S(S + 1)/2: the

first set {z0, z1, . . . , zs−1} contains sequences of modulating

symbols, while the second set {ζ0, ζ1, . . . , ζs−1} contains

probabilities, so that
∑s−1
j=0 ζj = 1.

These two sets are such that, if each time a projection

waveform is needed, the modulating symbols in zj are

used with probability ζj, then the resulting process has

the desired correlation.

In any case, let me stress that, as noted before for

frequency-localized signals, the core of rakeness-based

design concerns the solution of (3.5), which is here

described for generically localized signals. Once that the

correlation of the best projection waveforms is determined,

their actual realization depends on implementation as-
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sumption that may vary from application to application.

3.6 Some Proofs

3.6.1 Solution of (3.12)

The first subproblem maxΞ can be solved leveraging on the

fact that it is a linear problems with linear constraints.

Since, in principle, it may involve an infinite number of

variables I should proceed by steps.

Let Pn be the optimization problem

maxΞ
n−1∑
j=0

n−1∑
k=0

λjµkΞj,k

s.t.
Ξj,k ≥ 0 ∀j, k∑∞
j=0 Ξj,k = 1 ∀k∑∞
k=0 Ξj,k = 1 ∀j

so that P∞ is the basis finding subproblem in (3.12).

Since all the series involved in the definition of P∞ are

convergent, I have that, independently of Ξj,k,

lim
n→∞

n−1∑
j=0

n−1∑
k=0

λjµkΞj,k =
∞∑
j=0

∞∑
k=0

λjµkΞj,k

Moreover, since all the summands are positive, the

limit is from below.

Let me now assume to have solved P∞ yielding a value

σ(P∞) corresponding to a certain optimal choice Ξ̂∞j,k.

Given any ϸ > 0 there is a n̄ such that for any n ≥ n̄

0 ≤ σ(P∞) −
n−1∑
j=0

n−1∑
k=0

λjµkΞ̂
∞
j,k ≤ ϸ
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Yet, by solving Pn I get a solution σ(Pn) such that

n−1∑
j=0

n−1∑
k=0

λjµkΞ̂
∞
j,k ≤ σ(Pn) ≤ σ(P∞)

where the last inequality holds since every feasible config-

uration for Pn is also a feasible configuration for P∞.

Altogether I get that for any n ≥ n̄

0 ≤ σ(P∞) − σ(Pn) ≤ ϸ

that is

lim
n→∞

σ(Pn) = σ(P∞)

from below.

From this I know that, if the solutions Ξ̂nj,k of Pn have

a limit, such a limit yields σ(P∞).

To study the solutions of Pn I may first recall that the

polytope

Ξj,k ≥ 0 j, k = 0, . . . , n − 1∑n−1
j=0 Ξj,k = 1 k = 0, . . . , n − 1∑n−1
k=0 Ξj,k = 1 j = 0, . . . , n − 1

is the one characterizing the so-called “assignment” prob-

lems [40] and is well known [41] to have vertices for Ξj,k for

j, k = 0, . . . , n − 1 equal to a permutation matrix. Hence,

let ξ : {0,1, . . . , n − 1} 7→ {0,1, . . . , n − 1} be the bĳection

such that

Ξj,k =

1 if k = ξ (j)

0 otherwise

i have

σ(Pn) =
n−1∑
j=0

λjµξ (j)

for some optimally chosen ξ .



90 Chapter 3. Energy driven CS and Rakeness

Actually, I may prove that such an optimal ξ is the

identity. I do it by induction.

For n = 2 there are only two permutations correspond-

ing to the two candidate solutions σ′ = λ0µ0 + λ1µ1 and

σ′′ = λ0µ1+λ1µ0. Yet, from the sorting of the λj and of the

µj I have σ′ − σ′′ = (λ0 − λ1)(µ0 − µ1) ≥ 0.

This confirms that the optimum solution is the one

corresponding to ξ (j) = j for j = 0,1.

Assume now that this is true for n up to a certain n̄

and that I have solved Pn̄+1 by means of a permutation ξ .

If ξ (0) = ȷ̄ > 0 then σ(Pn̄+1) = λ0µȷ̄ + σ′. Yet, σ′ must

be the value of the solution of a problem with n̄ terms

λ1, . . . , λn̄ and µ1, . . . , µȷ̄−1, µȷ̄+1, . . . , µn̄. Since i assumed

to know how problems with n̄ terms are solved i know

that

σ′ =
ȷ̄∑
j=1

λjµj−1 +

n̄∑
j=ȷ̄+1

λjµj

It is now easy to see that the value λ0µȷ̄ + σ′ of the

alleged solution is actually smaller than
∑n̄
j=0 λjµj.

In fact
n̄∑
j=0

λjµj − λ0µȷ̄ −
ȷ̄∑
j=1

λjµj−1 −
n̄∑

j=ȷ̄+1

λjµj =

= λ0(µ0 − µȷ̄) −
ȷ̄∑
j=1

λj(µj−1 − µj)

= λ0

ȷ̄∑
j=1

(µj−1 − µj) −
ȷ̄∑
j=1

λj(µj − µj−1)

=

ȷ̄∑
j=1

(λ0 − λj)(µj−1 − µj) ≥ 0

Hence, the optimal permutation must feature ξ (0) = 0.

This reduces the solution of Pn̄+1 to the solution of Pn̄ that

i already know to be ξ (j) = j for j = 1, . . . , n − 1.
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In the light of this, every Pn has a solution correspond-

ing to ξ (j) = j for j = 0, . . . , n − 1 and the solution of P∞
is

Ξj,k = δj,k

σ(P∞) =
∞∑
j=0

λjµj

This solves the basis-selection problem and yields

(3.15).

The original (3.12) now becomes

maxλ
∞∑
j=0

λjµj

s.t.
λj ≥ 0 ∀j∑∞
j=0 λj = 1∑∞
j=0 λ

2
j ≤ r

(3.19)

Since the λj are non-negative and sorted in non-

increasing order I have that the set of indexes such that

λj > 0 must be of the kind {0,1, . . . , J − 1} for some

integer J ≥ 0. I also know that, to allow
∑J−1
j=0 λj = 1 and∑J−1

j=0 λ
2
j = r to hold simultaneously i must have r ≥ 1/J

and thus J ≥ 1/r.

Hence, for a given J ≥ 1/r my problem can be recast

into

maxλ
J−1∑
j=0

λjµj

s.t.
λj > 0 j = 0, . . . , J − 1∑J−1
j=0 λj = 1∑J−1
j=0 λ

2
j ≤ r

(3.20)
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Note that the feasibility set of (3.20) for a certain J = J̄

contains points that are arbitrarily close to those of the

feasibility set of (3.20) for any J < J̄ . Hence, to maximize

the rakeness I should try to have J as large as possible.

To determine the J leading to maximum rakeness note

first that, if I drop the randomness constraint
∑J−1
j=0 λ

2
j ≤ r,

the relaxed problem has the trivial solution λ0 = 1 and

λj = 0 for j > 0. Such a solution is not feasible

for the original problem since
∑J−1
j=0 λ

2
j = 1 ≥ r, hence

the corresponding optimum must be attained when the

randomness constraint is active, i.e. for
∑J−1
j=0 λ

2
j = r.

The Karush-Kuhn-Tucker conditions for (3.19) with

the inequality constraint substituted by the equality

constraint are

µj + ℓ′ + ℓ′′λj + ℓ′′′j = 0 ∀j
λj ≥ 0 ∀j∑∞
j=0 λj = 1∑∞
j=0 λ

2
j = r

ℓ′′′j ≥ 0 ∀j
ℓ′′′j λj = 0 ∀j

where ℓ′ is the Lagrange multiplier corresponding to∑∞
j=0 λj = 1, ℓ′′ is the Lagrange multiplier corresponding

to
∑∞
j=0 λ

2
j = r, and ℓ′′′j are the Lagrange multipliers

corresponding to λj ≥ 0 which must hold ∀j.
Since for λj > 0 the constraint ℓ′′′j λj = 0 sets ℓ′′′j = 0 I

know that

λj = −
µj + ℓ′

ℓ′′
(3.21)

for j = 0, . . . , J − 1.

Since the sequences λj and µj are both decreasing, i

must have ℓ′′ < 0 and thus ℓ′ > −µj for j = 0,1, . . . , J − 1,
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i.e., ℓ′ > −µJ−1. Hence,

J = max
{
j | ℓ′ > −µj−1

}
To see how the two parameters ℓ′ and ℓ′′ depend on J

note that they should satisfy the simultaneous equations

∑J−1
j=0

µj+ℓ′

−ℓ′′ = 1∑J−1
j=0

(
µj+ℓ′

ℓ′′

)2
= r

i.e., exploiting (3.13) and (3.14),

Σ1(J) + Jℓ′ = −ℓ′′

Σ2(J) + 2Σ1(J)ℓ′ + Jℓ′2 = ℓ′′2r

Such equations can be solved for ℓ′ and ℓ′′ and the

resulting values substituted in (3.21) to yield (3.16).

3.6.2 Real and nonnegative values in (3.16)

The denominator within the square root is positive when-

ever r > 1/J .

To show that the corresponding numerator is also non-

negative write

JΣ2(J) − Σ2
1(J) =

= J
J−1∑
j=0

µ2
j −

J−1∑
j=0

J−1∑
k=0

µjµk

= J
J−1∑
j=0

µj

µj − 1
J

J−1∑
k=0

µk


Let now ζj = µj − 1

J

∑J−1
k=0 µk. I have that the ζj are

decreasing and such that
∑J−1
j=0 ζj = 0. Hence, there is a j′
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such that
∑j′−1
j=0 ζj =

∑J−1
j=j′ (−ζj) ≥ 0. Hence,

JΣ2(J) − Σ2
1(J) =

= J

j
′−1∑
j=0

µjζj −
J−1∑
j=j′

µj(−ζj)


≥ J
µj′−1

j′−1∑
j=0

ζj − µj′
J−1∑
j=j′

(−ζj)


= J(µj′−1 − µj′)
j′−1∑
j=0

ζj ≥ 0







Chapter

4 Rakeness on ECGs and

small images

In this Chapter I introduce rakeness as a design criterion

to optimize the performance of two acquisition systems,

one that deals with Electro Cardio Graphic (ECG) signals,

which can be easily modeled in the frequency domain as

I did in Section 3.4, and the other that must be described

relying on the generalized spectral expansions in Section

3.5 since its target signals are images.

Despite the fact that the two scenarios are different,

the path i follow in designing an acquisition system based

on CS system is the same and can be summarized in few

steps:

i. identify the basis with respect to which the signal to

acquire is sparse;

ii. identify the basis with respect to which the signal is

localized;

iii. solve (3.5) for a number of possible values r in its

range;

97
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iv. for each value of r, implement an RMPI architecture

exploiting the sparsity revealed in i) and in which

the projection waveforms are as close as possible to

the optimal ones;

v. perform Monte-Carlo simulations to evaluate the

resulting systems and select the best performing

one.

Note that, in the classical design flow of a CS system,

i) is a prerequisite while iv) is tackled once assuming that

the projection waveform are random PAM signals with

independently and identically distributed (“i.i.d.” from

now on) symbols. This is what will be taken as the

reference case to quantitatively assess the improvements

due to rakeness-based design.

In all cases, the performance index is the average

reconstruction SNR (ARSNR), i.e. the average ratio

between the energy of the original signal over the energy

of the difference between the original signal and the

reconstructed one. ARSNR values are always plotted at

the center of an interval accounting for the variances of

the corresponding reconstruction SNRs.

Note also that the implementation constraints (e.g.,

the restriction of projection waveform to PAM profiles with

antipodal symbols) come into play only in iv).

Finally, one may observe that steps iii-v are nothing

but an elementary line-search for the best possible value

of r. As a matter of fact, the values of r for which a

definite improvement can be obtained are easily identified

by means of a very small numbers of trials.

To simulate these scenarios I need two different ran-

dom symbols generators, one is needed to generate
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antipodal random values with a prescribed power spectral

density (it will be used to acquire ECGs). In these cases

the LPF [35] can be used.

The second one is needed to generate random antipo-

dal symbols with a prescribed second order characteri-

zation, this is the 2-Values Random Vectors Generator

(2vRVG).

Both symbols generators will be briefly discussed in

the first two section of this Chapter and then Rakeness will

be applied to the acquisition of ECGs and small images in

the last two Sections.

4.1 Linear Probability Feedback Pro-

cess

As anticipated in the previous chapter, There is a well

defined class of stochastic processes able to generate

a stream of antipodal symbols with prescribed power

spectral density (PSD), i.e.,linear probability feedback

processes (LPF) [33] [34] [35] [36]. The scheme of an

LPF generator is shown in Figure 4.1, where the PSD of

the antipodal values aj is imposed by fixing the internal

coefficients of the filter included in the feedback loop. Now

I will briefly discuss this generator in order to have a

more comprehensible reading about the mechanism used

to generate the sampling sequence needed in ECG signals

acquisition. A complete presentation of the result about

CS based on rakeness on ECG signals is the topic of the

Section 4.3.

The LPF relies on a causal time-invariant linear filter
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with impulse response hk and transfer function

Hm(z) =
m∑
k=1

hkz
−k

Though, in principle, there is no need form to be finite it is

assumed so here. The output of the filter −Hm(z) produces

the process sj = −
∑m
k=1 hkaj−k, assuming

∑m
k=1 |hk | ≤ 1 and

since aj ∈ {−1,1} is such that sj ∈ [−1,1]. The process

sj is then fed into a comparator and matched with the

process zj that is made of independent random thresholds

uniformly distributed in [−1,1]. The comparator yields

antipodal values aj ∈ {−1,1} that are fed back into the

filter to continue generation.

As reported in [36], the PSD Ψa(f ) of aj can be

expressed as:

Ψa(f ) =

∣∣∣∣1 + Hm(e2πif )
∣∣∣∣−2

∫ 1/2

−1/2

∣∣∣∣1 + Hm(e2πif )
∣∣∣∣−2
df

(4.1)

In principle one could use (4.1) to derive hk once Ψa(f )

has been set to a desired PSD profile similar to the one

imposed by the solution of the optimization problem 3.9

for a specific class of input signals. Regrettably, since

inverting (4.1) is a prohibitive task, one can rely on

numerical methods such as the modified gradient descent

[35] or more sophisticated heuristic techniques [36].

When ECG signals are acquired by CS based on

rakeness, m = 10 is sufficient to reproduce the smooth

PSD imposed by the output of the optimization problem

3.9.
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Figure 4.1: the block scheme of the LPF process.

4.2 2-Value Random Vector Genera-

tor

The aim of this section is to derive a stochastic generator

of arrays x = (x0, . . . , xn−1)⊤ with xj ∈ {−1,+1} and a

prescribed cross-correlation. This corresponds to a set

of given numbers |γj,k | ≤ 1 with 0 ≤ j < k < n such that

E[xjxk] = γj,k

In general, all the instances of the n-dimensional real

random vector x are such that x ∈ Xn for a certain finite

set X with |X | elements, in this case X = {−1,+1}.
The system to design is a generator of instances of x

guaranteeing that the 2-nd order statistical correlations

between their components E[xjxk] are as close as possible

to a prescribed correlation γj,k .

This is a variant of the antipodal spectrum synthesis

proposed in [35] and discussed in the previous section,

in that it is equivalent of considering only process values

collected in n subsequent time steps and arranged in the
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Figure 4.2: Block diagram of the 2-value Random Vector
Generator with n = 5, where RNG is a random number generator
uniformly distributed in [0, 1].

vector x for which a possibly non-stationary correlation

(i.e., such that, in general γj,k , γj+l,k+l ) is specified.

The general structure of the generator propose here is

that of a simple lookup-table whose entries are read and

output according to a certain probability distribution.

In particular, once the joint PDF of the random vector

x is given as a function p : Xn 7→ [0,1], I may concentrate

on its support;

P = supp p = {x ∈ Xn | p(x) > 0}

storing it along with the corresponding values of p.

With this data structure, the availability of a simple

source of independent real random variables with a known

PDF (typically uniform in [0,1]) is enough to select which

vector in P is output each time an instance of x is needed,

as it is reported on Figure 4.2.

With such a trivial scheme in mind, the problem

reduces to the determination of p starting from the
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correlation values in such a way that P has the smallest

possible cardinality, i.e., as far as possible from the

obvious upper bound |X |n.
As a first step note that, due to the discrete nature

of the vector x, the correlation between its j-th and k-

th component can be written as E[xjxk] =
∑
x∈Xn p(x)xjxk

for 0 ≤ j < k < n, where the cases j = k, related to

the auto-correlation, have the trivial solution E[xj2] =∑
x∈Xn p(x)x2

j = 1 with xj ∈ {−1,+1}.
With this, I may define ∆j,k = γj,k−

∑
x∈Xn p(x)xjxk as the

individual deviation between the cross-correlation due to

the choice of p and the desired cross-correlations.

I choose to measure the difference between the actual

and desired correlation profiles with:

∆1 =
∑

0≤j<k<n
wj,k

∣∣∣∆j,k ∣∣∣
for some set of positive weigths wj,k with 0 ≤ j < k < n.

Such a difference can be used as a guiding criterion in

the design procedure by solving the following optimization

problem

min ∆1

s.t.

∑
x∈Xn

p(x) = 1

p(x) ≥ 0 for x ∈ Xn
(4.2)

whose variables are nothing but the |X |n values p(x)

assumed by the PDF p at the points in Xn.

Techniques for solving (4.2) will be discussed in the

following subsections.

By now, let me analyze the support of the resulting

p, by recognizing that (4.2) is a linear programming (LP)
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problem. In fact, define the variables δ+j,k and δ−j,k for 0 ≤
j < k < n to lay down the following minimization problem

min
∑

0≤j<k<n
wj,k

(
δ+j,k + δ

−
j,k

)

s.t.

∑
x∈Xn

p(x) = 1

δ+j,k − δ−j,k +
∑
x∈Xn

p(x)xjxk = γj,k 0 ≤ j < k < n

δ+j,k ≥ 0 0 ≤ j < k < n
δ−j,k ≥ 0 0 ≤ j < k < n
p(x) ≥ 0 for x ∈ Xn

(4.3)

This LP problem has |X |n + 2
(
n
2

)
variables that must be

non-negative and must satisfy
(
n
2

)
+1 additional equalities

constraints.

The solution to (4.3) is the same of (4.2). In fact, for

any PDF p, the constraints force ∆j,k = δ+j,k − δ−j,k with

δ+j,k , δ
−
j,k ≥ 0 for every 0 ≤ j < k < n. Once ∆j,k is known,

to minimize the contribution of δ+j,k + δ
−
j,k to the objective

function it is convenient to set either δ+j,k or δ−j,k to zero

(depending on the sign of ∆j,k ) and let the other be the

absolute value of ∆j,k. Hence, what is actually minimized

is the weighted sum of the absolute values of the ∆j,k and

thus ∆1.

The set F of points satisfying the constraints (the so-

called feasibility space) is non-empty since it contains at
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least the point

p(x) = 0 for x ∈ Xn

δ+j,k =

γj,k if γj,k ≥ 0

0 otherwise
for 0 ≤ j ≤ k < n

δ−j,k =

−γj,k if γj,k < 0

0 otherwise
for 0 ≤ j ≤ k < n

and it is bounded since the probabilities and correlations

are bounded, i.e., it is a polytope in R|X |
n+2(n2).

In this case, a basic result of Operation Research,

ensures that a solution of (4.3) exists in one of the vertices

of F .

Since vertices are 0-dimensional subspaces and equal-

ities in (4.3) provide only
(
n
2

)
+1 linear constraints, in each

vertex also |X |n +
(
n
2

)
− 1 non-negativity constraints must

be “active”, i.e. they should hold as equalities zeroing

the corresponding variables. Hence, each vertex and thus

also at least one solution to (4.3) has at least |X |n −
(
n
2

)
− 1

vanishing entries and a support of not more than
(
n
2

)
+ 1

entries. The same holds for the support of p that is a

subset of the support of the solution of (4.3).

This is actually extremely good news since
(
n
2

)
+1 grows

quadratically and not exponentially with n thus making

the stochastic lookup-table approach sensible for non-

negligible values of n.

In this case, once I know that small-support PDFs exist

I may build PDFs with a larger support.

Assume, in fact, that two different PDFs p′(x) and

p′′(x) exist for which the difference between the actual

correlations and the desired ones are ∆′1 and ∆′′1 respec-

tively.
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c= (
w0,1 . . . wn−2,n−1 w0,1 . . . wn−2,n−1 0 . . .0

)
A= 

0 . . .0 0 . . .0 1 . . .1 I(n2) −I(n2) ξ0 . . . ξ|X |n−1

b= 
1 
γ0,0
...

γn−2,n−1

TABLE 4.1: The vectors and the matrix describing the LP implied
by 4.3

Choose an ϸ ∈]0,1[ and set p(x) = ϸp′(x)+ (1− ϸ)p′′(x).

Clearly, p(x) is a PDF, its support is the union of P′ and

P ′′ and, for 0 ≤ j < k < n I may write

∣∣∣∆j,k ∣∣∣ =
∣∣∣∣∣∣∣γj,k − ∑

x∈Xn
p(x)xjxk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ϸγj,k + (1 − ϸ)γj,k

−ϸ
∑
x∈Xn

p′(x)xjxk − (1 − ϸ)
∑
x∈Xn

p′′(x)xjxk

∣∣∣∣∣∣
≤ ϸ

∣∣∣∆′j,k ∣∣∣ + (1 − ϸ)
∣∣∣∆′′j,k ∣∣∣

confirming that the “quality” of the new PDF is comparable

with that of the two generating PDFs.
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4.2.1 Efficient synthesis procedures

The general standard formulation for a LP problem can be

written in matrix terms as

min z = cq

s.t.
Aq = b

q ≥ 0
(4.4)

where z is the real number to minimize that depends

linearly on V non-negative variables collected in the

column vector q through the coefficients contained in the

V -dimensional row vector c. The same variables are also

subject to C equality constraints that are described by

the C × V matrix A and by the the C-dimensional column

vector b.

Now, (4.3) can be mapped into(4.4). To do so in a

systematic way, agree to sort two-index quantities like γj,k
with 0 ≤ j < k < n as γ0,1, γ0,2, . . . , γ1,2, γ1,3, . . . , γn−2,n−1

when they have to be aligned in a single array. According

to this, for any x ∈ Xn define the vector ξ aligning the

values xjxk for 0 ≤ j < k < n and enumerate all such

vectors as ξ0, . . . , ξ|X |n−1 in an arbitrary order.

Relying on these definitions, I may address (4.3) and

note that, in this case, V = |X |n + 2
(
n
2

)
while C =

(
n
2

)
+ 1.

The vectors and matrix defining the LP problem equiv-

alent to the before mentioned criterion are reported in

Table 4.1 where Im is the m ×m identity matrix.

Though extremely efficient tools exist to tackle the LP

problems defined by Table 4.1, it is evident that, when

n increases, the number of columns in the A matrices

increases exponentially. This is a clear mark of the
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combinatorial nature of the problem itself, that ultimately

stems from the fact that I am dealing with discrete-valued

random variables.

Luckily enough, the mapping of combinatorial selec-

tion problems into very huge LP problems is a largely

explored field with established techniques that can be

applied to my cases.

In particular, since I am dealing with matrices with

a huge number of columns, I should look into column

generation methods that directly follow from the properties

of the most celebrated algorithm for solving LP problems,

i.e., the simplex method.

Seen from my point of view (and overlooking all

assumptions and numerical machinery needed to make

it work) the simplex method leverages on the knowledge

that at least a solution of (4.4) exists for which only C of

the V entries of q are non-zero. This means that only C

of the columns of the matrix A are involved in the linear

combination yielding b.

Hence, solving the LP problem amounts to selecting

the right set of columns. Once a set of C columns is

selected (usually called a basis), under suitable non-

degeneracy assumptions, the solution of a linear system of

equalities allows to derive the value of the non-zero entries

of q and thus of the value of z that must be minimized.

The second key point of the method is that, thanks to

the linearity of the problem, optimality can be pursued

in an iterative way by taking any candidate basis and

possibly substituting its elements with new columns one

at a time so that the corresponding value of z decreases

at each substitution.

Hence, the elementary step is made of two actions:
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i. find a column (if any) that can enter the basis to

reduce the value of z;

ii. find the column that can exit from the basis without

impairing the reduction of z.

Assume that the C non-zero entires of q are selected and

that we collect in A′ the corresponding columns of A and

in c′ the corresponding entries of c.

Moreover, indicate with aj the j-th column of A and

with cj the corresponding coefficients in the row vector

c to define the so-called reduced cost of the j-th column

ρj = cj − c′(A′)−1Aj.

The reduced cost ρj is the increase in the objective

function per unit of increase of the variable qj that is

currently set to 0.

From this I get that if ρj ≥ 0 there is no advantage in

setting qj > 0 and thus in introducing Aj in the basis.

Actually, if ρj ≥ 0 for every j such that qj = 0 then the

current solution is the optimal one since no new column

can be substituted into the current basis to reduce z.

On the contrary, any column Aj corresponding to

ρj < 0 is a legitimate candidate entry in the basis. A

common approach to maximize the gain in introducing a

new column, and thus to minimize the number of steps

taken to update any starting basis to the optimal one, is to

select the column Aj that is the solution of the optimization

problem

min ρ = cj − c′(A′)−1Aj

s.t.
Aj is a column ofA

Aj is not a columnA′
(4.5)
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Regrettably, though the objective function of this

subordinate problem is linear, its constraints need not

be so.

In my case, for example, the vast majority of valid

columns are of the kind ξ = (x0x1, x0x2, . . . , xn−2xn−1)⊤

whose corresponding entries in c are zero. Hence, the

optimization problem of choosing the best among these

columns to be substituted into the current basis A′

becomes

min ρ = −c′(A′)−1


x0x0

x0x1
...

xn−1xn−1



s.t.

x0, . . . , xn−1 ∈ X
x0x0

x0x1
...

xn−1xn−1


< A′

(4.6)

that is a quadratic problem (QP) with discrete constraints

xj ∈ X .

Regrettably, even the simplest version of such opti-

mization problems, i.e., the binary QP (BQP), is known to

be NP-complete and thus poses serious problems when n

increases. A common way to reduce the complexity of this

kind of problems is a translation into a linearized form.

To do so, set xj = 2sj − 1 for j = 0, . . . , n − 1 and

sj ∈ {0,1}. Moreover, consider the additional variables

yj,k ∈ [0,1] to write
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min−c′(A′)−1



1

4y0,1 − 2s0 − 2s1 + 1

4y0,2 − 2s0 − 2s2 + 1
...

4yn−2,n−1 − 2sn−2 − 2sn−1 + 1



s.t.

sj ∈ {0,1} for j = 0, . . . , n − 1

yj,k ≥ 0 for 0 ≤ j < k < n
yj,k ≥ sj + sk − 1 for 0 ≤ j < k < n
yj,k ≤ sj for 0 ≤ j < k < n
yj,k ≤ sk for 0 ≤ j < k < n

Actually, it is not surprising that somewhere in the

solution of the problem I must face the problem of

selecting the good choice out of 2n possible choices. In any

case even if the “hard” part of the problem is here I may

probably address up to few tens of bits instead of limiting

to 16. Actually a set of heuristic algorithms are under

investigation and now it is possible to arrive at sequence

with n = 100.

The description of these algorithms is outside the

scope of this discussion and so it will be omitted. Some

results about a real application of this generator can be

found in Section 4.4, where it is used to generate antipodal

random vectors in according to the output of 3.15 - 3.16

when simple images are acquired.

A full description of 2vRVG will be reported in future

communication; if the reader is interested in I invite him

or her by email at mmangia@arces.unibo.it.
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4.3 Acquisition of ECGs

The ECG time shape represents the voltage between two

different electrodes placed on the body at two specific

positions. It records the electrical field produced by

the myocardium, i.e., for each heart beat it cyclically

reports the successive atrial depolarization/repolarization

and ventricular depolarization/repolarization.

The application of CS techniques to ECG acquisition

has been the topic of recent contributions [42] [43] [44]

[25] aimed to either reducing the amount of data needed

to represent the signal in mobile applications or to achieve

an high compression ratio in data storage systems.

In order to demonstrate the effectiveness of rakeness-

based design for CS of ECGs, I need a broad collection

of realistic realizations. To achieve this goal, I used a

synthetic generator of ECGs, thoroughly discussed in [20]

that provides signals not corrupted by noise to which I add

white Gaussian noise with suitable power. The amount

of noise is chosen so that the considered environment is

realistic, but it can be arbitrary from the point of view of

rakeness-based design that is independent of the noise

level.

The generator core is expressed by the following set of

three coupled ordinary differentially equations [20]
ẋ1 = ω1x1 − ω2x2

ẋ2 = ω1x1 + ω2x2

ẋ3 = −
∑

i∈{P,Q,R,S,T}
γiΘi exp

(
− Θ

2
i

2υ2
i

)
− (x3 − x̄3)

(4.7)

Each heart beat is represented by a complete revolution

on an attracting limit cycle in the (x1, x2) plane. The
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TABLE 4.2: Parameters bounds used in the ECG generator.

Index P Q R S T

Θi -75;-65 -20;-5 -5;5 10;20 95;105
γi 1;1.4 -5.2;-4.8 27;33 -7.7;-7.3 0.5;1
υi 0.05;0.45 -0.1;0.3 -0.1;0.3 -0.1;0.3 0.2;0.6

shape of ECG signal is obtained introducing five attrac-

tors/repellors points in the x3 direction in correspondence

to the peaks and valleys that characterize the time shape

of the signal and which are conventionally labeled by P,

Q, R, S and T; furthermore x̄3 in (4.7) represents the mean

value of the generated ECG.

In order to mimic the behavior of ECGs in patients

affected by the most studied cardiac illness, the param-

eters γi , υi and Θi , i ∈ {P,Q,R,S,T}, characterizing each

considered signal are taken from a set of random variables

uniformly distributed within the bounds reported in Table

4.2. In addition, I randomly set the heart rate between

50Hz and 100Hz by property adjusting ω1 and ω2.

Though CS methods are classically developed for

sparse representation with respect to signal bases, they

have a straightforward generalizzation to sparse repre-

sentation with respect to dictionaries, i.e., redundant

collections of non-indipendent waveforms [45] [46].

This is, in fact, the case of ECGs, for which a dictionary

made of Gabor atoms

gs,u,v,w(t) =
1
√
s
e−π(

t−u
s )2

cos(vt +w)

can be used [47] [26].

In my experiment, a total of 507 atoms are used corre-

sponding to different quadruple of parameters (s, u, v,w).
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Figure 4.3: Average spectra of real ECG signals (gray area) and
of the sampling PAM sequences corresponding to the optimum
(solid line) as well as an high (dashed line) and a low value (dash-
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Figure 4.4: Average value of the reconstructed SNR (ARSNR) as a
function of the signal compression ratio N/M between the number
of Nyquist samples and of CS measures. The dashed line refers to
i.i.d. sampling waveforms and the solid line to rakness-optimized
ones.
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This collection of Gabor atoms is obtained using a greedy

algorithm able to extract a limited number of functions

from a broader set [26]. With respect to this dictionary

the sparse representation of a typical ECG heartbeat

waveform requires about 14 non-zero coefficients. Fur-

thermore, in my simulations, T = 1s within which the

signal is sampled N = 256 times (a common choice for

ECG equipments).

To apply the results in Section 3.4, I first compute

the average of the power spectral densities on a huge

amount of ECGs obtained by a famous database of bio-

signals [48]. By this procedure I obtain â(f ), the input of

the optimization problem (3.8). The shape of â(f ) is the

gray profile shown in Figure 4.3. Next, I find the optimum

r as described at the beginning of this Chapter. Figure 4.3

shows the optimum profile for the best value r = 0.038

(solid line) as well as for a smaller value (dash-dotted line)

and for a larger value (dashed line).

Finally the LPF generator mentioned in Section 4.1

is used to produce the antipodal sequences with the

optimized spectral profiles. These sequences are used

to take M measurements in a time window of length T,

to which I add white Gaussian noise to construct the

measurement vector m according to (3.2).

To determine the performance of rakeness based

design, I consider a test set of 2000 synthetic ECG signals.

These signals are acquired by projecting them both on

localized antipodal sequences and on i.i.d. antipodal

sequences (classically employed in CS-based methods and

my reference case). The resulting ARSNRs are shown in

Figure 4.4 as a function of the ratio between the intrinsic

dimension of the signal and the number of CS measures.
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Figure 4.5: Original (solid line) and reconstructed (dashed line)
ECG when i.i.d sampling waveforms are used (plot (a)) and when
rakeness-optimized sequence are exploited (plot (b)). In both
cases N=256 and M=32 and the intrinsic SNR=17dB.
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In both cases the intrinsic SNR is equal to 17dB.

As it can be noticed, rakeness-based design allows

to achieve an improvement of at least 3.5dB in ARSNR

with respect to the i.i.d. case, and even yields denoising

(i.e. and ARSNR larger than the intrinsic SNR) for small

compression ratio values. To give a visual representation

of the improvement, Figure 4.5 reports, for M = 32

(compression ratio equal to 8 respect to a classic ADC at

Nyquist rate), a comparison between an ECG signal and

the reconstructed one for the i.i.d. (a) and rakeness-based

(b) case. Direct visual inspection is enough to confirm the

superiority of my approach.

4.4 Acquisition of small images

In this second case the signal to acquire is a 24 × 24-

pixel image, each pixel value ranging from 0 (black) to 1

(white), which represents a small white printed number or

letter on a black background with a gray-level dithering to

make the curves smoother to the human eye. Number and

letters are randomly rotated and offset from the center of

the image but never clipped.

Although due to random rotations and offsets almost

all pixels have a non-vanishing probability of being non-

zero, a typical image contains only about 85 bright pixels,

so that can be considered sparse in the base of 2-dim

discrete delta functions that evaluate to 1 at a single pixel

position and zero elsewhere. I may thus think of acquiring

them using a RMPI architecture that projects along 24×24

antipodal random grids to obtain measurements that are

enough to reconstruct the image but whose number M is
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Figure 4.6: A sample image, its partition and rearrangement into
a vector containing the value of each pixel.

much less than the number N = 24 × 24 = 576 of the

original pixels.

To simplify the design phase, the generation of the

random grids is done by adjoining 4 × 4 subgrids each

with 6×6 antipodal values whose statistic is optimized by

solving (3.12).

To allow calculations, the values in each subgrid are

rearranged into a 36-dimensional vector as schematically

reported in Figure 4.6, that also highlights the subgrid on

which I will focus in the following.

In that region, and due to the vector rearrangement,

I may list the modulating symbols of the projection

waveform b with bj for j = 0, . . . , 35. The same can be

done for the incoming signal a when it is expressed along

the basis of 2-dim discrete delta’s with coefficients that I

may indicate with aj for j = 0, . . . , 35.

If a = (a0, . . . , a35)⊤, I may follow the development

of subsection 3.5.1 to estimate the 36 × 36 matrix A =

E[aa⊤] by empirical averaging over a training set of 2080
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randomly generated images.

The resulting matrix is reported in graphic form in Fig-

ure 4.7-(a) where, for each pair of indexes j, k = 0, . . . , 35,

a point is laid down whose brightness is proportional to

the values of Aj,k = E[ajak].

The eigenvalues µ0, . . . , µ35 of that A are reported as

the light bars in Figure 4.7-(c). By exploiting (3.16) and

(3.17) for r = 0.047 I get J = 36 and the eigenvalues

λ0, . . . , λ35 reported as dark bars in figure 4.7-(c).

From the eigenvectors of A and these new eigenvalues,

I may construct the correlation matrix of the values in

this projection subgrid. Since the subgrid contains 6 ×
6 = 36 values, its correlation matrix B has dimensions

36 × 36 and is reported in Figure 4.7-(b) in a graphical

form adopting the same convention used to represent the

values of A.

Once that B is known, I can use the 2vRNG to generate

the antipodal grids needed in the acquisition procedure.

The same design process is repeated for each of

the 4 central 6 × 6 regions in the image while the 12

outer subgrids are built from independent and uniformly

distributed antipodal symbols. All the subgrids are finally

compounded in a complete 24 × 24 projection grid.

As a comparison case, projections are also taken by

using i.i.d. symbols for all the elements of the projection

grid.

In both cases, noise is added to the projections before

they take their place in the vector m of M measurements

according to (3.2), and reconstruction is performed using

the algorithm reported in [12].

Figure 4.8 reports the ARSNR (over 3000 trials) of the

reconstructed images and compares the performance of
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Figure 4.7: Correlation matrix of the pixels in one of the four
central regions (a) Correlation matrix of the optimal projection
process (b) Eigenvalues of the above correlation matrices (c).

an RMPI based on rakeness-optimized projections and on

i.i.d. projections for different values of the compression

ratio N/M. In both cases the intrinsic SNR is 17dB.

It is evident from Figure 4.8 that, even if it is exploited

only in the central portion of the images, rakeness-based

design leads to non-negligible improvement of at least

1dB.

A qualitative appreciation of such an improvement can

be obtained from Figure 4.9 in which 5 images (a) are
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Figure 4.8: Quality of the reconstructed images when rakeness-
optimized or i.i.d. projection grids are used in an RMPI
architecture for different compression ratios.

acquired and reconstructed by means of M = 115 over

N = 576 rakeness-optimized projections (b) or by the same

number of i.i.d. projections (c). Reconstruction artifacts

are visibly reduced by adopting rakeness-based design.

4.5 Conclusion

Compressive sensing exploits the fact that, when looked

at in the right domain, the information content of a signal

can be much less than what appears when I look at it in

time or frequency (i.e., the signal is sparse).

Acquisition schemes that exploit sparsity may lead

to considerable advantages in terms of sensing system

design since, for example, if the information content

is much less than the signal bandwidth, sub-Nyquist
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(a)

(b)

(c)

Figure 4.9: Sample images (a) and their reconstruction based
on rakeness-optimized projection grids (b) or on i.i.d. projection
grids (c).

sampling can be employed.

To all this I add the consideration that, in a possibly

different domain, the energy of the signals may be not

uniformly distributed (i.e., the signal is localized) and

when noise is present, it is convenient to adapt the system

to “rake” as much signal energy as possible.

By itself, this is not a novel concept since it appears,

for example, in matched filters and rake receivers used

in telecommunications. Yet, in my context, the efforts

to collect the energy of the signal must be balanced with

the guarantee that all details of its underlying structure

can be captured when immersed in noise. This brings

my to a trade-off that I propose to address in statistical

terms by means of an optimization problem: maximize the
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“rakeness” while obeying to a constraint ensuring that the

measurements are random enough to capture all signal

details.

The topic presented in both this chapter and previous

one develops the formal definition of such problem as well

as its solution for stationary signals whose localization

can be highlighted in the frequency domain, and for more

generic non-stationary signals whose localization is more

evident in suitably defined domains.

The applicability of both techniques is demonstrated

by sample applications to the acquisition of ECG tracks

and small letter images.





Chapter

5 Rakeness and new

architectures

Regarding news in CS, an innovative approach was

introduced by Mamaghanian et al [49]; The main

novelty is a new encoding strategy: the authors propose

a modified version of the well known RMPI architecture,

discussed in Chapter 2, named Spread Spectrum RMPI

(S-RMPI), which is characterized by a pre-modulation of

the input signal before the classical sensing stage. This

step was introduced to reduce the power consumption by

enabling low frequency switching in the sensing stage 1.

In this chapter, I combine this innovative encoding

procedure with rakeness to obtain a further switching

frequency reduction and, at same time, to lower the

amount of projections needed to reach a properly recon-

structed signal. As a test signal for this approach I use

electrocardiograms (ECG), i.e., the same used when S-

RMPI was presented [49], since they represent a good test

class for possible applications in the area of wireless body

1it is possible to halve the internal switching frequency.

125
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sensor networks [25].

It is important to highlight that this approach can be

very useful in all applications that involve fast switching,

such as RF applications. In fact, it yields a lower switching

rate with respect to classical RMPI.

The Chapter is organized as follow: Sec. 5.1 reports

the mathematical model and presents method I propose

to combine S-RMPI with rakeness. Sec 5.2 describes

the considered simulation setting, while Sec. 5.3 reports

results obtained by Montecarlo simulations. After that,

some conclusions end the Chapter.

5.1 Mathematical Models

The encoding strategy of an AIC based on CS is related to a

particular chosen architecture. The one considered here

is the S-RMPI, where all involved signals are referred to

a generic time window of length T . The block diagram

is shown in Figure 5.1-(a) where the input signal x is

represented by a set of samples x ∈ RN acquired at Nyquist

rate which is modulated by a spreading sequence (SS)

expressed as a set of n random antipodal symbols (n ≥ N).

The obtained signal is input to M different branches, all

composed by random demodulators (RD) [4,49].

Each RD is characterized by a specific sensing wave-

form ϕj (j = 1, . . . , M ) made by a sequence of m antipodal

random values, withm ≤ N ≤ n. The output of the S-RMPI

is the measurements vector y ∈ RM sampled at frequency
1/T. Remember that N/T represents the sampling rate of

the input signal, acquired at Nyquist rate, while SS and

ϕj are characterized by chipping frequencies n/T and m/T
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respectively.

From a mathematical point of view, if I impose n =

m = N then I can write y = ΦS x = F x, where Φ ∈ RM,N

represents the sensing matrix composed row by row with

the sensing sequences ϕj and S ∈ CN,N is a diagonal matrix

whose non-null elements are the SS coefficients. The

matrix F = ΦS represents the linear operator that links

the input signal to the measurements vector.

In the more general setting when m , N , n I can

rearrange the model differently. I will do so with the final

goal of reducing the operating frequency of all switches

used in a possible implementation of this architecture.

Therefore, I need to reduce both m and n as much

as possible, noting that n ≥ N to maintain the signal

information before the sensing stage and m < n, which

corresponds to an undersampling factor r = n
m w.r.t. the

Nyquist frequency. With this, mathematical formulation

for the measurements is rearranged as follows:

yi =
n∑
j=1

Sj,j Φi,⌈ jr ⌉ xj

In this case I can write again y = F · x where F ∈ RM,n and

the generic element of F is equal to

Fi,j = Sj,j Φi,⌈ jr ⌉

This approach is equivalent to the classical RMPI

architecture where the sensing matrix is F instead of Φ.

For this kind of model the rakeness optimization problem

can be solved as discussed in Chapter 3. The result of

this procedure, in the more generic case, is the correlation

matrix CF of the stochastic process used to generate the

rows of F . Now, the aim will be to impose CF by fixing



128 Chapter 5. Rakeness and new architectures

x SS

φΜ

φ1
y1

yΜ

T

T

(a)

x y1
yM/p
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(b)

Figure 5.1: block diagram of spread spectrum random mod-
ulation pre-integration (a) and multi spread spectrum random
modulation pre-integration (b).

the correlation matrix of the process used to generate the

rows of Φ and SS.

Forcing the correlation of the product of instances of

two stochastic processes is a very hard topic and it is

outside the scope of this thesis, so I considered a more

pragmatic approach. In the following Φ will be taken as

a collection of i.i.d. antipodal random variables and the

attention will focus on the the statistic of SS.

Let me indicate with CF{j,k} the correlation between two

elements of F in the same row and at columns j and k;
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this is equal to:

CF{j,k} = E
[
F·,jF·,k

]
= E

[
Φ·,⌈ jr ⌉Φ·,⌈ kr ⌉Sj,jSk,k

]
=

=


E

[
Sj,jSk,k

] ⌈
j
r

⌉
=

⌈
k
r

⌉
E

[
Φ·,⌈ jr ⌉Φ·,⌈ kr ⌉Sj,jSk,k

] ⌈
j
r

⌉
,

⌈
k
r

⌉ (5.1)

since Φ·,jΦ·,j = 1 due to the antipodality of the Φj.

In the next subsection, I investigate a possible way

to design F with statistical properties which well match

those required by the solution of the rakeness opti-

mization problem. This will be obtained by tuning the

statistic of the SS symbols and fixing the statistic of Φ as

mentioned above.

5.1.1 S-RMPI based on Rakeness

Considering Φ composed by i.i.d antipodal sequences,

(5.1) can be rewritten as follows:

CF{j,k} =


E

[
Sj,jSk,k

]
with:

⌈
j
r

⌉
=

⌈
k
r

⌉
0 with:

⌈
j
r

⌉
,

⌈
k
r

⌉ (5.2)

where the last equality holds since Fi,j = Sj,jΦi,⌈ jr ⌉ is an i.i.d

random variable for all the j, k couples that verify
⌈
j
r

⌉
,⌈

k
r

⌉
. Following my aim, I fix the SS correlation equal to

the one imposed by the solution of rakeness optimization

problem and as final result the elements on each row of

F have the desired correlation only in the cases where⌈
j
r

⌉
=

⌈
k
r

⌉
.

To preserve most of correlation profile it is necessary

to work with high r values, but this can compromise

the diversity in the sensing, i.e., it may increase the

probability that two or more quite similar row instances in
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F exist. Hence, increasing r means destroying the ability

of sensing sequences to collect information in whole signal

domain. On the other hand, with low r values the lost

spanning ability of the sensing sequences is compensated

by the spreading sequence effect but this results to be

insufficient for r greater than 2 (see [49] for more details).

A toy case is reported in Figure 5.2. The left image

represents the estimated correlation matrix of the process

used to generate the spreading sequences (n = 16). As

sensing sequences I considered i.i.d sequences with r = 4,

which corresponds to a 4 × 4 correlation matrix (the

identity matrix, as shown in the center image). Here

I also report the estimated correlation of the product

between sensing and spreading sequences (the right

image) which confirms the presented formulation of (5.2).

The correlation of F is a block diagonal matrix with m

different r × r blocks in the diagonal, which contain the

same values of the correlation matrix of the stochastic

process used in the spreading sequences generation.

(a) (b) (c)

Figure 5.2: 16 × 16 spreading sequences correlation matrix (a);
4 × 4 i.i.d. sensing sequences correlation matrix (b); 16 × 16
F correlation matrix (c). Note that dark means zero and bright
mean one.
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5.1.2 Multi S-RMPI based on Rakeness

To cope with the diversity reduction imposed by S-RMPI

based on high r values (r > 2) I propose a Multi Spread

Spectrum RMPI (MS-RMPI) approach. The idea is to

use more than one spreading sequence to preserve the

diversity during acquisition. In this way, the probability

that similar rows of F occur is decreased and thus the

MS-RMPI is able to collect more signal information in

the spreading stage. The block diagram of MS-RMPI is

reported in Figure 5.1-(b). It is composed by p different

S-RMPI blocks, where: i) the SSs are generated with the

same statistic, ii) each block producesM/pmeasurements

which can be collected to yield the measurement vector y.

In this paper the improvement associated to MS-RMPI

is shown only by numerical simulations, while a deeper

theoretical analysis on the impact of diversity in the

presented architectures is left for future communications.

5.2 Simulation Setting

As mentioned in before, I use ECGs as the designed class

of signals to test the presented method. It is known that

ECG are sparse both in the discrete wavelet basis (DWB)

[49] and on a dictionary of Gabor Functions (GF) [16,26].

When S-RMPI and MS-RMPI are used for encoding, the

reconstruction based on GF presents a tiny performance

improvement with respect to DWB, so the following results

will be related to the GF case only.

The used signal instances are synthetic ECGs gener-

ated by [20] according to the setting described in Section

4.3, sampled at 256 Hz with a time window equal to 1
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Figure 5.3: average of normalized power spectral density of ECG
signals (dashed curve) and power spectral densities obtained by
solution of rakeness optimization problem (solid curve).

second. The rakeness optimization problem is solved in

the frequency domain by assuming that the ECG process

is cyclostationary. Following the procedure in Section 3.4

one is able to match the ECG spectral profile with that of

the sequence that maximizes the information obtained by

CS.

These two spectral profiles are shown in Figure 5.3:

the dashed line represents the average PSD of the syn-

thetic ECGs and the solid one is the output of the

rakeness optimization problem. It is important to note

that the average PSD of ECGs is close to zero in the high

frequency range, but this does not mean that instances

do not present high pass components, but only that the

probability of such an event is low. Rakeness copes with

this feature by imposing a non-zero PSD of the spreading

sequences also at high frequencies.

In all cases I focus the attention both on i.i.d SSs [49]
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(my reference case) and on localized SSs generated by a

LPF [33–35] where the PSD is the one imposed by the

rakeness optimization problem as mentioned before [16].

The aim is to numerically verify improvements in term of

chipping frequency reduction, i.e., either a reduction of

m or an increase of r, introduced by the combination of

spread spectrum CS and rakeness. To do this I performed

Montecarlo simulations over 2000 trials.

Coherently with the introduced setting, in all consid-

ered instances the original signal was reconstructed by

solving the optimization problem

αr = arg
{
max
α
∥α∥l1

}
s.t y = ΦΨα

so that reconstructed signal is xr = Ψ · αr , where Ψ is the

GF set. All optimization problems were solved by using

the Cplex optimization toolbox [50].

The chosen figure of merit is the probability of suc-

cessful reconstruction (PSR), defined as PSR = Pr(∥α∥ ≥
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20∥α − αr∥).

5.3 Results

First the S-RMPI was simulated with r = {2,4}. The

related results are shown in Figure 5.4. When r = 2 the

system is close to completely destroying the imposed cor-

relation and so the improvement introduced by rakeness

w.r.t. the reference architecture is limited. Furthermore

to reach PSR=1 rakeness is needed. On the other hand,

when r = 4 I note a higher improvement introduced by

rakeness w.r.t. independent spreading sequences but

PSR=1 is never reached.

As discussed in Section 5.1.2, MS-RMPI was intro-

duced to guarantee a correct reconstruction associated

to values of r greater than 2. To verify this assumption,

at first the MS-RMPI was tested by simulation for r = 4.

The PSR trends are shown in Figure 5.5 which clarifies

the advantages introduces by this new approach. Here I

am able to reach PSR=1 using p = 3, i.e., three different

spreading sequences, in both considered environments

either with i.i.d or localized sequences, but localized

sequences reach PSR=1 with a compression rate ≤ 4 while

i.i.d. sequences reach PSR=1 only for compression rate

≤ 2.5.

The case r = 8 was also analyzed, which corresponds

to m = 32 and implies a strong reduction of the chipping

frequency in the sensing. The results in terms of PSR are

shown in Figure 5.6 which shows similar improvement as

Figure 5.5 for r = 4.
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5.4 Conclusions

I demonstrated that combining rakeness with S-RMPI

produces a strong reduction of the internal chipping

frequency in the sensing if a multi spread architecture

is used. In the last presented group of results MS-RMPI

reaches PSR=1 by means of 4 SS at Nyquist rate and 85

projections done with an internal frequency reduced by

a factor 8 with respect to Nyquist. In the same setting,

classical RMPI arrives to PSR=1 only by more than 100

projections, all of them computed at Nyquist rate2.

2classical RMPI needs a minimum amount of projections related to
the sparse level of the input signal K by the low M > CK log10(N/K),
where C is a constant usually equal to 4 or 5. For ECG sparse on GF
and in the considered simulation setting I have K in average greater then
20, so M is around 100.
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Chapter

6 Introduction to

DS-CDMA

This chapter, coupled with the next one, presents a

way to cope with the need of simultaneously rejecting

narrowband interference and multi-access interference in

a UWB system based on direct-sequence CDMA. With this

aim in mind, I rely on a closed-form expression of the

system bit error probability in presence of both effects.

By means of such a formula, I evaluate the effect of

spectrum shaping techniques applied to the spreading

sequences. The availability of a certain number of degrees

of freedom in deciding the spectral profile allows us to cope

with different configurations depending on the relative

interfering power but also on the relative position of the

signal center frequency and the narrowband interferer.

6.1 Introduction

Ultra Wide Band (UWB) systems play a key role in

the efforts devoted to the design of the next generation

141



142 Chapter 6. Introduction to DS-CDMA

communication infrastructure since they may help in

addressing the basic need of a connectivity that should

be, in principle, independent on the environment and as

little supervised as possible.

UWB systems employ signals that feature a very

low power density spectrum in order to appear almost

equivalent to channel natural disturbances. To meet

such a low power density request, and at the same time,

to deliver enough energy to the receivers, UWB systems

fill large portion of the spectrum, thus almost surely

overlapping with other systems or services, being them

either wideband or narrowband.

Coexistence in such shared, unsupervised environ-

ment depends on the ability of narrowband systems to

tolerate an increased noise floor (possibly increasing their

power budget) and on the capability of the wideband sys-

tems to reject narrowband interference (possibly adapting

their transmission scheme to time-varying scenarios).

The point addressed in this part of thesis is the

second one, i.e., when the UWB signals are involved in

a Direct-Sequence spread spectrum transmission with

Multiple Access based on Code Division (DS-CDMA). Such

a classical technique [1] may allow arbitrary spreading

and is suitable for extremely simple implementations of

both transmitter and receiver.

In our scenario, the narrowband interferer may be

either an intentionally emitted jammer or the abstract

subsumption of the effects of a traditional non-UWB

service and, for the sake of simplicity, it is modeled as

a single sinusoidal tone.

Among all the possible figures of merit that quan-

tify the performance of communication (e.g., multipath
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robustness, system capacity in terms of users number

[51]) I concentrate on the joint effect of Multiple Access

Interference (MAI) and NarrowBand Interference (NBI) on

a simple Matched Filter (MF) receiver.

Our starting point is the result reported in [52] that

expresses the performance of a conventional DS-CDMA

system with no multi-access when it is disturbed by

a jamming tone. Such a result is extended to take

into account the presence of a noise-like disturbance

due to other asynchronous users whose spreading codes

cannot be perfectly orthogonal to the useful receiver one

for all the possible time shifts. This disturbance has

been also extensively investigated in classical DS-CDMA

and UWB systems relying on possible spreading codes

optimizations based on chaotic systems (piece-wise affine

Markov maps; see [33, 34] for a survey on chaos-based

sequences generation for various applications), both in

Additive White Gaussian Noise (AWGN) channels [53, 54]

and in presence of multipath [55,56]. The influence of real

pulse shapes has been also taken into account [57–60],

while the ultimate limit of these systems in terms of

Shannon capacity is studied in [61,62].

Here, I extend the results presented in [63] and show

how the rejection of both narrowband interference and

multi-access disturbance can be achieved by the proper

spectrum shaping of the spreading codes towards different

optimal profiles. Furthermore, we here also address the

trade-off between the two optimal designs for different sce-

narios as far as the power of the narrowband jammer and

the number of competing users are concerned. Different

optimal solutions will be found depending on the relative

interfering power but also on the relative positioning of



144 Chapter 6. Introduction to DS-CDMA

the signal center frequency and the jammed frequency.

6.2 System Model

The starting point of our analysis is the model of a stan-

dard asynchronous DS-CDMA system [1, 64] including

transmission module, channel and receiver. Figure 6.1

shows a simplified baseband equivalent scheme including

the effects of thermal channel noise (modeled as AWGN)

and NBI, in addition to MAI. To evaluate system perfor-

mance, let us assume the presence of a common carrier

with frequency fc = ωc/(2π), let U be the total number of

users, and express the generic u-th information signal as

Su(t) = V
∞∑

s=−∞
Sus gT (t − sT ) (6.1)

Figure 6.1: Block diagram of the baseband equivalent scheme of
a UWB asynchronous DS-CDMA system.
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where T is the bit duration, Sus ∈ {−1;+1} is the s-th

information symbol for the u-th user, gT is a rectangular

pulse which is 1 within [0; T ] and zero otherwise, and

where the peak amplitude V is assumed equal for all

users. The signal Su(t) is then multiplied by the spreading

signal

Y u(t) =
∞∑

s=−∞
yusgT/N

(
t − s T

N

)
(6.2)

where N is the spreading factor, yus are the antipodal

spreading symbols of the u-th user and g T
N

is a rectangular

pulse which is 1 within [0; TN ] and 0 outside, and where,

following the approach in [1] [64], I will assume that

the corresponding Spreading Sequence (SS) yu = {yus } is

periodic, with period equal to N .

The resulting signal is then transmitted along the

(baseband equivalent) channel together with the spread-

spectrum signals from the other users. Each transmitter

adopts a different spreading code, assigned at the con-

nection start-up. The receiver is a simple MF which is

made of a multiplier combining the incoming signal with

a synchronized replica of the spreading sequence of the

v-th user and of an integrate-and-dump stage in charge

of extracting the information symbol by correlation.

For each user I consider a different delay tu and

a different phase θu .These quantities are assumed as

uniformly distributed random variables to model trans-

mission from mobile terminals to a fixed base-station.

If I take the v-th receiver as a reference, I can define

the relative delays ∆tuv = tu − tv and the relative phase

∆θuv = θu − θu .

We do this to arrive at the expression of the contribu-

tion of the u-th user to the signal produced by the v-th MF,
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given by

Υuvs =
1

2T

∫ (s+1)T

sT
Su(t − ∆tuv)Y u(t − ∆tuv)Y v(t)ei∆θuvdt

(6.3)

where i is the imaginary unit.

In the following I will assume that the system per-

formance is mainly limited by MAI, thermal noise and

NBI, namely I will suppose that spreading-despreading

sequence synchronization has been achieved, and that

multipath effects are negligible. Despite these simplifying

assumptions, performance computation is quite difficult

in this case, and, in order to obtain a suitable model,

I rely on two previous results corresponding to “corner”

cases where either NBI and thermal noise or MAI are

present alone, as presented in Subsection 6.2.1 and

Subsection 6.2.2, respectively.

6.2.1 Multiple Access Interference

We want to evaluate in terms of bit error probability the

impact of MAI, and to this purpose, I define the partial

cross-correlation function between two generic spreading

sequences yu = {yuk } and yv = {yvk} as

ΓN,τ(yu , yv) =



N−τ−1∑
k=0

yuky
v
k+τ if τ = 0,1, . . . , N − 1

ΓN,−τ(yv, yu) if τ = −N + 1, . . . ,−2,−1

0 if |τ| ≥ N

Exploiting the previous expression, I can use (6.3) to write

the useful signal component as

Ωvs = Υ
vv
s =

VSvs
2T

∫ (s+1)T

sT
[Y v(t)]2dt =

VSvs
2N
ΓN,0(yv, yv) =

VSvs
2
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and the interfering signal component (which depends on

MAI)

Ψvs =

U∑
u,v
u=1

Υuvs =

=

U∑
u,v
u=1

1
2T

∫ (s+1)T

sT
Su(t − ∆tuv)Y u(t − ∆tuv)Y v(t)ei∆θuvdt

(6.4)

We can assume that the information symbols are

independent identically distributed random variable. This

brings us to the following expression [64] [65]

Ψvs =

1
2N

U∑
u,v
u=1

Vei∆θuv
{
Sus−1

[(
∆tuv

T
−

⌊
∆tuv

T

⌋)
ΓN,⌊ ∆tuvT ⌋−N+1(yu , yv)+

(
1−∆t

uv

T
+

⌊
∆tuv

T

⌋)
ΓN,⌊ ∆tuvT ⌋−N (yu , yv)

]
+

+Sus

[(
∆tuv

T
−

⌊
∆tuv

T

⌋)
ΓN,⌊ ∆tuvT ⌋+1(yu , yv)+

(
1−∆t

uv

T
+

⌊
∆tuv

T

⌋)
ΓN,⌊ ∆tuvT ⌋(y

u , yv)
]}

where, ∆θuv ∈ [−π; π] and the normalized delay ∆tuv

T has

been split into a integer part
⌊
∆tuv

T

⌋
and a fractional part

∆tuv

T −
⌊
∆tuv

T

⌋
. Since the interference term is a sum of many

zero-mean independent random variables, I can model it

as zero-mean Gaussian random variable, whose variance
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is equal to [64] [65]

(σv)2 = E[(Ψvs)
2] =

=

U∑
u,v
u=1

(V )2

24N3

N−1∑
j=−N+1

(
2Γ2

N,j(y
u , yv) + ΓN,j(yu , yv)ΓN,j+1(yu , yv)

)

where the expectation E[· ] is taken over the phase ∆θuv,

the delay ∆tuv (that is assumed uniformly distributed in

[−T ; T ]) and the information symbols Sus (that are assumed

independent and equally distributed, so that Sus = −1 and

Sus = +1 have the same probability).

MAI for the v-th link is proportional to (σv)2, so

that I can evaluate the performance in terms of bit-error

probability for the s-th transmitted symbol as Pverr =
1
2 erfc

√
(Ωvs)2/[2(σv)2] = 1

2 erfc
√
V 2/[8(σv)2]. The overall

system performance can be obtained by averaging over all

possible useful users v by defining

BEPMAI = Eyv [Pverr ] =
1
2

Eyv

[
erfc

√
V 2

8(σv)2

]

where Eyv [· ] is the expectation over the set of sequences.

Analytical handing is difficult due the presence of the erfc

function. A common workaround to this is to use the

Standard Gaussian Approximation (SGA) which considers

the spreading codes values as random variables (see [1]

and [66] for an in-depth analysis of this approximation) to

simplify the above expression in

BEPMAI ≈
1
2

erfc

√
V 2

8 Eyv [(σv)2]
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Working on the inner expectation I get [64] [65]

Eyv [(σv)2] =

=
U − 1
3N3

N−1∑
j=−N+1

Eu,v
yu ,yv

[
2Γ2

N,j(y
u , yv) + ΓN,j(yu , yv)ΓN,j+1(yu , yv)

]
so that, by defining R,

R =
1

3N3

N−1∑
j=−N+1

Eu,v
yu ,yv

[
2Γ2

N,j(y
u , yv) + ΓN,j(yu , yv)ΓN,j+1(yu , yv)

]
we come to the final expression

BEPMAI ≈
1
2

erfc

√
V 2

(U − 1)R
(6.5)

which allows us to interpret R as an expected interference-

to-signal ratio per interfering user, i.e., an expected

degradation in system performance when a new user is

added.

The expression of R can be further simplified tak-

ing into account that I are using antipodal symbol for

the spreading sequences. More specifically, assum-

ing second-order stationary sequences, i.e. such that

Eyv [yvmy
v
n] = Eyv [yv0y

v
|m−n|], I may use the auto-correlation

function Ak = Eyv [yv0y
v
k] to write, with few algebraic ma-

nipulation [65], an alternative expression of R depending

only on Ak and N , namely

R =
2

3N
+

4
3N3

N−1∑
k=1

[
(N −k)2A2

k +
(N − k + 1)(N − k)

2
AkAk−1

]
(6.6)

In [67] R is minimized and minimally interfering se-

quences are approximated by those with Ak ≈ rk where r =

−2+
√

3, which can easily be generated by suitable piece-

wise affine Markov maps [33]. In other terms, chaos-based
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spreading sequences can be generated, whose adoption

allows to optimize performance in asynchronous (UWB)

DS-CDMA systems when MAI is the main cause of non-

ideality and I will use this case as a benchmark in our

present study.

6.2.2 Narrowband Interference and Thermal

Noise

For the present study, symbol recovery is hindered not

only by MAI, but also by the presence of thermal noise

and, most important, by an NBI, which models either

an intentional jamming or a conventional non spread-

spectrum transmissions, or both.

For this scenario, I consider the impact of NBI and

thermal noise on v-th user, where the former is expressed

as a single sinusoidal jamming signal
√

2I cos(2πf0t +ϕ0),

of (normalized baseband equivalent) frequency f0, initial

phase ϕ0 and transmitted power I. Hence, relying on

[52] one can compute performance in terms of bit error

probability as

BEPI =
1
2
− 1
π

∫ ∞

0
J0

ω
√
I

C

|Hv(f0)|2
2T

 sinω
ω

e

(
− ω2

4
N0
Eb

)
dω

(6.7)

where J0(ω) is the 0-th order Bessel function of the first

kind, Eb is the transmitted energy per information symbol,

C = Eb/T denotes the corresponding useful received

power, and thermal noise is modeled as a two-sided power

spectral density equal to N0/2. Furthermore, Hv(f ) is the

transfer function of the MF for v-th link and represents

the Fourier transform of (b(t;−1)−b(t;+1)), where b(t;±1)

is equal to a unit-energy waveform used to transmit the
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information symbol −1 or +1. To find its expression, let

us express the unit-energy waveform of the v-th user as

bv(t) =

√
2
NEg

N−1∑
j=0

yvj g T
N

(
t − j T

N

)
so that, exploiting the fact that the a chip waveform energy

is Eg = T/N , the desired transfer function can be written

as

|Hv(f0)| = N
√

2T
∣∣∣∣∣∣sinc(f0 TN )∣∣∣∣∣∣

∣∣∣∣∣∣ N−1∑
s=0

yvse
−2πi f0k T

N

∣∣∣∣∣∣
6.2.3 All causes of error

The aim of this section is to obtain a final expression of

the system performance in terms of bit error probability,

similar to (6.5) and (6.7), and which includes all consid-

ered causes of error at the same time. To do this, I may

first note that, within the limit of validity of SGA, MAI

is a Gaussian random variable whose effect on system

performance is similar to thermal noise. Consequently, I

may equivalently model the effect of both MAI and thermal

noise exploiting (6.7) if I suitably increase the noise power

spectral density from N0 to Ñ0. The same effect of MAI at

the output of the MF is obtained if, taking into account

that
∫ 1/T
−1/T |H

v(f )|2df = C for each SS, we impose

Ñ0

2
=
N0

2
+

(U − 1)R
C

With this, I finally arrive to express the system perfor-

mance in presence of NBI, MAI and thermal noise as

BEPv =
1
2
− 1
π

∫ ∞

0
J0

(
ω

√
I

C
|Hv(f0)|2

2T

)
sinc(ω)·

· exp
(
− ω

2

4
· N0 + 2(U − 1)R/C

Eb

)
dω

(6.8)
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Figure 6.2: Normalized PSD of the chaos-based spreading
sequence minimizing (6.5) (solid line), jamming signal with f0 =
0.1N/T (thick solid line) and ideal PSD of spreading sequences
capable of minimizing the effect of the NBI at the v-th useful user
receiver (dashed line).

As a final remark, I need to note that (6.8) depends on

the particular choice of the spreading sequence of the

v-th useful user. Regrettably the analytic evaluation of

µ(BEPv) = Eyv [BEPv] is prohibitive from an analytic point

of view and I will therefore rely, in Section 7.3, on its

numerical evaluation based on a Montecarlo approach.







Chapter

7 Narrowband

Interference Reduction

The preaviusly chapter ends with an expression of

bit error probability related to a generic user that is

able to take into account all considered causes of error,

thermal noise, NBI and MAI. This is very useful to test

possible strategies that try to produce a performance

increasing in terms of BEP.

In this chapter I will describe you my proposal in terms

of addressing a trade-off between the reduction of the

effects of both NBI and MAI by the shaping of SSs.

7.1 The idea

The main idea to reduce the effect of NBI in a DS-CDMA

UWB communication relies on the dependence of BEPv in

(6.8) on the SS, whose statistical features need thus to be

appropriately chosen to achieve such a goal.

The starting point of our procedure, that is described

in [67] [54], is a chaos-based technique able to generate

155
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antipodal SSs with autocorrelation profile Ak ≈ (−2+
√

3)k,

whose adoption leads to a minimum level of MAI and

therefore of R. Figure 6.2 shows the normalized Power

Spectral Density (PDS) of such sequences (solid line),

which therefore gives an indication of the shape of the MF

transfer function of the receiver. If the vertical thick line

represents the NBI, it is therefore evident that a consistent

part of its power is transferred at the output of the MF,

i.e., at the input of the decision block, thus increasing

the error probability. To cope with this, the most intuitive

solution is to use SSs whose PSD features a stop-band in

a (large-enough) neighborhood of the NBI frequency, as it

is also shown in Figure 6.2 (dashed line).

Note that I have also assumed that the NBI frequency

is fixed and known. This is not a critical hypothesis since

the aim of this work is to minimize the possible interfer-

ence of existing narrowband communication systems on

a UWB system working in the same band.

Two issues are worth mentioning. On the one hand,

independently of the method used to generate spreading

sequences, those satisfying the above PSD condition will

certainly not be the same that minimize R. This will

result in an increased MAI with respect to optimal chaos-

based spreading [67] so that the possibility of achieving an

improvement in performance will critically depend on the

effectiveness in suppressing NBI and on its intensity. On

the other hand, as shown in [33], the (binary) quantized

output of a one-dimensional chaotic map can exhibit

only a low-pass, high-pass or flat PSD, so that SSs with

a PSD similar to the one represented by the dashed-

line of Figure 6.2 can be only obtained through a much

more complex generator. The structure of one of such
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generator, the same mentioned in Section 4.1, will be well

describe in the next Subsection.

7.2 Sequences Generator

To obtain spreading sequences with assigned spectral

profile I will rely on a Linear Probability Feedback Process

(LPF) recently introduced in [33–35], whose scheme is

shown in Figure 7.1 (a). It is based on a causal time-

invariant linear filter with impulse response hk such that

hk = 0 for k ≤ 0 and transfer function

Hm(z) =
m∑
k=1

hkz
−k

Though, in principle, there is no need for m to be a

finite number, I will make this assumption here. The

output of the filter −Hm(z) produces the process xt =

−∑m
k=1 hkyt−k. I will assume that −1 ≤ xt ≤ 1, since, being

the yt antipodal symbols, this is equivalent to impose the

constraint
m∑
k=1

|hk | ≤ 1 (7.1)

The process xt is then fed into a comparator and matched

with the process αt that is made of independent random

thresholds uniformly distributed in [−1,1]. The compara-

tor yields the antipodal values yt ∈ {−1,1} that are fed

back into the filter to allow a continuous generation of

symbols. Assuming the uniform cumulative distribution

function

F (α) =


0 if α < −1
1+α

2 if −1 ≤ α ≤ 1

1 if α > 1
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(a)

(b)

Figure 7.1: (a) Structure of a memory-m antipodal linear
probability feedback process generator, including a finite memory
filter −Hm (z), a random generator and a comparator. (b) Nor-
malized ideal PSD compared with the actual one obtained using
the memory-m antipodal linear probability feedback process
generator.

for each random variables αt in the scheme, I can write

the probability of the current generated symbol yt given

the previous sequence with memory m as

Pr{yt = +1|yt−1, yt−2, . . . , yt−m} =

= F

− m∑
k=1

hkyt−k

 = 1
2

1 − m∑
k=1

hkyt−k

 (7.2)
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As discussed in details in [35], starting from (7.2) a thor-

ough analysis leads to an expression of the normalized

power spectral density of the generated antipodal symbols

yt , namely

Λy(f ) =

∣∣∣∣1 + Hm(e2πif )
∣∣∣∣−2

∫ 1/2

−1/2

∣∣∣∣1 + Hm(e2πif )
∣∣∣∣−2
df

(7.3)

In principle one could use (7.3) to derive hk once Λy(f ) has

been set to a desired PSD profile similar to the one shown

in Figure 6.2. Regrettably, inverting (7.3) is a prohibitive

task. To cope with this I note that if the process yt is fed

into a filter with transfer function 1+Hm(f ), the output is

a white process with power spectral density equal to

P =
1∫ 1/2

−1/2

∣∣∣∣1 + Hm(e2πif )
∣∣∣∣−2
df

so the whitening filter of yt is 1 + Hm(z). From this I get

that −Hm(z) must be the optimum linear predictor of yt
that can be derived minimizing

ϸ2 = E


yt + m∑

k=1

hkyt−k

2 =
= C0,0 + 2

m∑
k=1

Ck−1,0hk +
m∑
k=1

m∑
j=1

Ck−1,j−1hkhj

where Ck,j is the correlation matrix of the process yt ,

defined as

Ck,j = E[yt−kyt−j] =
∫ 1/2

−1/2
Λy(f )e2πi(k−j)f df =

=

∫ 1/2

−1/2
Λy(f ) cos(2π(k − j)f )df
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To solve this problem, I can use the classic approach

based on Yule-Walker equations. Regrettably the solu-

tion, in general, do not satisfy (7.1). A numerical method

such as a modified gradient descent was presented in [35]

and more sophisticated heuristic techniques are used in

[36].

As an example, exploiting the first technique with m =

80 I have been able to obtain spreading sequences whose

normalized PSD is shown in Figure 7.1 (b) (continuous

line). As it can be seen, the shape is almost superimposing

with the target one (dashed line).

Note also that the presented method generates se-

quences with stationary statistical features, but this is

not a limit in our case since I are supposing that the NBI

frequency is fixed and know.

7.3 Numerical Results

As discussed at the end of Section 6.2, Equation (6.8)

shows that the performance of the v-th user in terms of bit

error probability BEPv is actually a random variable that

depends in a non-linear way on the spreading sequence

yv. Consequently, to evaluate the effectiveness of the NBI

reduction methodology proposed in this paper, I must

rely on a statistical characterization of BEPv by means

of Montecarlo simulations.

To collect statistics for the generic v-th user and for

a given system configuration, I first generate 2 × 105

spreading sequences using the LPF discussed in Section

7.2 for a fixed spectral shape. Then I compute the

corresponding instance of BEPv exploiting (6.8), where R is
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(a)

(b)

Figure 7.2: Plot (a) and (b) show the PSD associated to chaos-
based spreading sequences minimizing MAI (continous-line) and
those generated by an LPF with m = 80 targeting stop-bands
with different widths and depths to reduce NBI (dotted and dash-
dotted lines).
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(a)

(b)

Figure 7.3: Plot (c) and (d) show CCDFPverr (10−3) as a function
of the stop-band width and the attenuation factor ρ (related to
the stop-band depth), considering SIR= −12 dB, SNR= 20 dB,
f0 = 0.1N/T , U = 12.

evaluated through (6.6) using the autocorrelation function

corresponding to the chosen spectral profile. As a realistic

setting, following [52], I refer to an asynchronous DS-

CDMA system with T = 100 ns, N = 128 (so that the

spreading bandwidth is N/T = 1.28 GHz), and where the

thermal noise power is relatively low (SNR= Eb/N0 = 20

dB).

As a first step, I consider the relationship between
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Figure 7.4: The CCDFPverr as a function of BEP, with: stop-band
width = 0.03N/T , attenuation factor ρ = 0.62, SIR= −12 dB,
SNR= 20 dB, f0 = 0.1N/T , U = 12.

the bit error probability and the width and depth of the

introduced stop-band in the spectral profile. Figure 7.2 (a)

shows the spectral profile of the generated sequences with

maximum (dashed line) and minimum (dash-dotted line)

width, while Figure 7.2 (b) shows similar figures used to

investigate the role of stop band depth. In both figures the

solid line is the considered benchmark, namely the PSD

profile of chaos-based spreading sequences minimizing

MAI only.

We refer to a system where U = 12 users are present,

with a signal-to-interference-ratio SIR= C/I = −12 dB

and where the NBI is centered in a neighborhood of

f0 = 0.1N/T . In this setting, the NBI plays an important

role and its reduction is therefore expected to show

appreciable effects, making it easier to find an optimum

value of the stop-band width and of the stop-band depth.

Focusing on the stop-band depth, let us define the
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attenuation factor ρ for a fixed NBI frequency, namely

ρ =
PSDchaos−based(f0) − PSDmemory−m(f0)

PSDchaos−based(f0)

The figure of merit I chose is the Complementary Cu-

mulative Distribution Function (CCDF) of BEPv, defined

as CCDFPverr (δ) = Pr{BEPv > δ}, which I will computed

for the typical case of δ = 10−3. Let us refer to the

results shown in Figure 7.3 (a) and (b). Plot (a) represents

CCDFPverr (10−3) as a function of the normalized stop-band

width, clearly showing a minimum for the optimal width

value equal to 0.03N/T (corresponding to 39.322 MHz). It

is worth noting that I investigate only a limited range for

the stop-band width, as shown in Figure 7.2 (a). In fact,

on the one end, for larger stop-bands the resulting SS

profiles would be too much close to uniform and therefore

too different with respect to the one minimizing the effect

of MAI. On the other end, a narrower stop-bands would

bring negligible advantage in NBI reduction.

Figure 7.3 (b) shows that CCDFPverr (10−3) is always

decreasing with the attenuation factor ρ. Hence the

optimal value would apparently correspond to ρ = ρmax =

1, for which PSDmemory−m(f0) = 0. Yet, such a lower value

of PSDmemory−m(f0) cannot be achieved with LPFs, since

they are characterized by an almost-everywhere non-null

PSD [35]. Consequently, for practical purposes, I will

use an upper bound for ρ equal to the maximum value

which guarantees correct generation of the SS via an LPF

(ρ = 0.62 in this setting).

Figure 7.4 represents CCDFPverr (BEP) computed for

the optimal values of the stop-band width and of the

attenuator factor ρ mentioned above. It can be clearly

seen that memory-m sequences always offer an advantage
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(a)

(b)

Figure 7.5: (a) PSD associated to chaos-based spreading se-
quences minimizing MAI (continous-line), and generated by LPF
with m = 80 targeting stop-band with different depth to reduce
NBI (dashed and dot-dashed lines. (b) CCDFPverr (10−3) as a
function of the attenuation factor, considering: SIR= −3 dB,
SNR= 20 dB, f0 = 0.4N/T , U = 20.
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Figure 7.6: The CCDFPverr as a function of BEP, with: stop-band
width = 0.03N/T , SIR= −3 dB, SNR= 20 dB, f0 = 0.1N/T , U =
20.

with respect to chaos-based ones, with an improvement in

reducing CCDFPverr of at least 30%.

As a further step, I analyze the influence on system

performance of the number of users U (on which MAI di-

rectly depends, see (6.5)), of SIR (whose increment reduces

NBI) and of f0. The latter parameter plays a particularly

important role. In fact, since the PSD of optimal chaos-

based spreading is high-pass (see the continuous-line in

Figure 7.2 (a) and (b)), one may intuitively accept that

when f0 < N/2T , the presence of a stop-band introduces

a negligible perturbation of the profile with respect to the

one minimizing MAI. Consequently, as one may expect,

results of all performed numerical simulations confirm

that the optimal width for the stop band is always close

to the one corresponding to the minimum value in Figure

7.3 (a). On the contrary, the influence of ρ is different,

as reported in Figure 7.5 (a)-(b) where, with respect to the

previous case, U = 20, SIR= −3 dB and f0 = 0.4N/T . As

it can be noticed, the optimal value of the attenuation
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factor is ρ = 0.65, i.e., it is no more coincident with

the maximum value compatible with the LPF generation

method.

The associated results in terms of CCDFPverr are shown

in Figure 7.6, where the dashed and the dot-dashed lines

correspond respectively to ρ = 0.65 (optimum value for

BEPv = 10−3) and ρ = 0.12. It is interesting noticing that

the proposed method always improves performance with

respect to chaos-based spreading (continuous-line), but

the actual improvement depends on the choice of ρ.

Given the above results, one may therefore conclude

that, in any given scenario scenario, the presented method

for SS generation offers an advantage with respect to

the classical chaos-based solution, provided that a pre-

liminary study on the influence of the stop-band width

and depth in the SS profile is performed numerically to

evaluate their optimal value.

Finally, Figures 7.7-7.8 represents the expected per-

formance of BEPv as a function of SIR, showing its mean

value and its variance for SNR= 20 dB and stop-band

width equal to 0.03N/T , and where ρ = 0.62, f0 = 0.1N/T

and U = 12 in plots 7.7 (a)-(b), while ρ = 0.65, f0 = 0.4N/T

and U = 20 in plots 7.8 (a)-(b). Overall, memory-

m sequences offer an uniform variance reduction and

a general performance improvement in most operating

conditions.

7.4 Conclusion

In this part of the thesis, I presented a simple method

to reduce the impact of a narrowband interference in
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(a)

(b)

Figure 7.7: Plot (a) and (b) show mean and variance of BEP with:
stop-band width = 0.03N/T , ρ = 0.62, SNR= 20 dB, f0 = 0.1N/T ,
U = 12.

UWB systems based on asynchronous DS-CDMA. The

starting point is given by existing techniques reducing

multi-access disturbances by appropriate chaos-based

spreading codes. Then, the method is focused on shaping

power spectral density of spreading sequences, made by

symbols generated by LPFs.

Power spectral shaping reduces the UWB information

signal in the NBI frequency band, yielding a heavy reduc-

tion of the interference due to overlapping narrowband
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(a)

(b)

Figure 7.8: Plot (a) and (b) show mean and variance of BEP with:
stop-band width = 0.03N/T , ρ = 0.65, SNR= 20 dB, f0 = 0.4N/T ,
U = 20.

transmission. This however causes an increment in multi-

access disturbance with respect to chaos-based spreading

that minimizes MAI, thus implying a trade-off between

rejection of narrowband interference and tolerance of

multi-access interference.

Such a trade-off can be effectively address for different

system configurations depending on the number of simul-

taneous users on the channel, the relative position of the

UWB and narrowband spectra, and on the ratio between
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the power of the localized interferer and the power of UWB

signal.

Numerical results reveal non-negligible improvements

since, whenever SIR≥ 5dB, U ≥ 20 and N = 128, I found

that memory-m sequences guarantee a lower average

BEPv, as well as an higher probability to reach any given

quality link.

Note that in this paper I have assumed that the

NBI frequency is fixed and know, as well as its power

and the number of users in the system. As long as

these parameters are unchanged, I have shown how

to generate spreading sequences in order to maximize

system performance; this solution however does not

ensure anymore the optimum working point when one of

the above parameter changes.

In order to ensure the performance optimization also

in the case of a change in one (or more) of the above pa-

rameters, spreading sequences statistical features should

be recomputed as soon as environmental conditions

change. This is certainly not a problem for new users

added to the system, that may immediately work with

optimized sequences. However, old users (i.e. users

that use spreading sequences optimized for a different

environmental setting) may work with performance that

may be lower with respect to the reference case, i.e. when

sequences are generated with an autocorrelation profile

Ak ≈ (−2 +
√

3)k without taking into account any NBI. To

cope with this, a sequence renegotiation policy has to be

implemented.







Conclusions

In this thesis I reported and discussed the advantage

introduced by designing the statistical properties of the

antipodal sequences involved in both presented scenar-

ios. Before a brief summary of the obtained results,

I would highlight that the use of antipodal sequences

with prescribed second order characterization does not

correspond to a complete upsetting of the presented

systems. In all cases where the involved sequence are

not generated by an LPF process or a 2vRNG, it can be

done be replacing the initial sequence generator one of

them.

On Compressive Sensing

After an ample discussion of both CS theory and its

related architectures (Chapters 1 and 2), I proposed a

different approach to the sampling sequence generation

when the RMPI-based AIC is taken into account. This new

173
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methodology is based on an additional assumption on the

acquired class of signals, that is energy localization.

It is clear that working with localized signals is not

a strong restriction on the signal classes being acquired,

i.e., with the exception of noise, many classes of signals

do not present a uniformly spread in information/energy

content over the entire signal domain.

Working with this assumption, a new guideline was in-

troduced for the sampling sequences characterization,i.e.,

the rakeness. Using rakeness it is possible to determinate

the second order statistic of the spreading sequences

that increase the amount of information/energy collected

in the acquisition stage with the aim of reducing the

minimum amount of projections needed to achieve signal

reconstruction.

After that, I proposed innovative architectures for

AIC, namely the S-RMPI and the MS-RMPI and their

derivations based on rakeness. These new architectures

guarantee comparable performances with respect to RMPI

and at the same time it was obtained a strong reduction

in terms of power consumption by slowing down the

sampling process.

Numerical results were shown at the end of Chapter 4

and 5 ,while a full discussion of rakeness was reported in

Chapter 3.

On UWB system based on DS-CDMA

In the second part of this thesis a relatively simple

technique for shaping the power spectrum of antipodal

sequences was shown effective when used to design the
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frequency profile of the signals transmitted by an UWB

system based on DS-CDMA.

This profile can be adopted to at least partially move

transmitted power out of frequency ranges that are sub-

ject to heavy interference due to overlapping narrowband

transmissions.

In multi-user environments, a trade-off must be ad-

ministrated between rejection of such narrowband inter-

ference and tolerance to multi-access disturbances which

would be minimized by suitable chaos-based spreading

codes.

The effectiveness of the proposed technique depends

on the relative position of the UWB and narrowband

spectra and on the power of the localized interferer.

In general, the analysis reveals non-negligible im-

provements. All results are reported in Chapter 7 and

a related description of both the considered environment

and all studied causes of error at the receiver are illus-

trated in Chapter 6.
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