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1. INTRODUCTION

1.1 HISTORICAL HIGHLIGHTS

The extraordinary advances in medical technologgr aecent years have placed imaging at the
centre of cancer diagnosis and assessment but ttheaynformation used to direct patient

management is based almost entirely on morpholbggsessment. However, because of the wide
spread of studies and the increasing interest tifumad data will become an integral component of

routine tumour imaging.

It is well recognized that a tumour cannot growhwiit a blood supply and that assessment of
tumour vasculature provides a measure of tumoureagiyeness as well as insight into other
factors related to prognosis, prediction of respastreatment and risk of recurrence. There are a
lot of functional techniques employed in tumournidal management but multidetector CT
(MDCT) is widely spread for staging tumours andeed remains the workhorse of cancer imaging
today. Computed Tomography imaging is a standaddieehnique used in radiology to visualize
the anatomical structures of the liver and itsest#t pathology, such as liver tumours. Currently,
perfusion CT has become the most interesting tecenfor the quantitative study of liver tumour
angiogenesis. The perfusion CT, a techniqgue whétfuire acquisition of image during contrast
agent injection without table movement, allows tauatify important hemodynamic parameters that

play an important role in diagnosis and staginfjveir tumours.

This thesis is presented in the environment of leancer imaging improvement by the analysis and

application of image processing techniques to Ipaxfusion CT.



Hepatocellular carcinoma (HCC) is the most commatignant liver tumour and is one of the most
common tumours in the world, causing about 1 millgeaths per year. It is well known that liver
tumour tissue is characterized by an increaseddbkupply related to neoangiogenesis. This

process is related with an increase of contrasaimegment on perfusion CT liver images.

Furthermore, primitive liver tumour (HCC) diagngseéssessment and staging are critical because
PET (Positron emission tomography), that repregengold standard functional technique, is not a
useful tool in the diagnosis and follow up of HQ@cause metabolism of glucose in primitive liver
tumour is not different from the surrounding livearenchima. So liver perfusion CT studies are
increasingly advocated as a means to assess tte gfavascularization in HCC patients and to
evaluate variations in perfusion parameters folt@vlocoregional treatments or antiangiogenic

drugs.

1.2  SPECIFIC AIMS AND WORK TASK

The specific aims at the start of the Ph.D. cartdigavere to:

Investigate the basic principles and physics @trlperfusion CT technique

* Investigate the main mathematical modelling usedktive liver perfusion parameters

* Investigate image processing methods to derivaipieni parameters and perfusion maps

» Assess perfusion parameters variability relatedifterent image processing methods

» Assess the value of Standardized Perfusion Valudchwrepresents a new perfusion

parameter, in characterization of arterial HCC uéatsation and generate SPV maps

In clinical application of perfusion CT imagingette are a lot of technical limits, mainly in image

processing analysis, some intrinsic and othersabperelated.



So one of the most crucial steps in adopting tleishnique is the standardization of the

methodology.

Technique’s steps, that are considered in this yarek

1) Definition of the acquisition protocol and choicé mathematical model to obtain liver

perfusion parameters

2) Time Attenuation Curve fitting

3) Variability related to the operator

4) Variability related to the patient, the acquisit®ystem and calibration of the CT.

5) Analysis of image processing technique, i.e. “R@bkdd approach” vs “pixel by pixel

approach, i.e. quantitative value of perfusion map

In fact, Perfusion liver CT is spreading as a uséiactional technique but no consensus has
emerged about the better image acquisition protacdlthe choice of image processing method to
derive tumour liver perfusion parameters. Differemithematical models were applied to obtain
guantitative perfusion parameters from CT perfussmans but the commonly used model for
describing the contrast enhancement perfusion kigrimased on Fick principle, also called “Slope

method”.

Moreover, contrast enhancement and so perfusiaresare influenced by patient’s cardiac output
and weight. However, a wide range of perfusion @thhiques have evolved and the various
commercial implementations advocate different agitjan protocols and processing methods. In
this manuscript we analyze different causes ofabdity related to perfusion CT exams in liver
tumours analysis, testing new algorithms and givoingdelines to reduce the elements of
uncertainty of image processing analysis in the radtarization of HCC arterial

hypervascularization.



Because some authors indicate that a surrogatéidnatmeasurement in Perfusion CT studies (as
Standardized uptake value in PET studies) wouldubeful in characterization of tumour
neoangiogenesis, we have developed an algorithoaltolate from region of interest and pixel-by-
pixel analysis a SPV index. The significance of SiAdWlex in characterization of arterial HCC
vascularisation was also assessed. Such softwan& vbe directly analogous to SUV software
currently implemented on PET system. In conclusialthough Perfusion CT present some
limitations in the processing analysis, this tegaes are becoming an important tool in medical

research and in clinical practice.

The research activities, described in this thelsasje produced scientific results published on
scientific journal or presented at national ancennational congresses. Below the list of all the

publications is reported:

- Papers published on scientific journal:

. M. D’Anto, M. Cesarelli, F. Fiore, M. Romano, P. Bifulco, Xecchione. Sources of
variability in the use of standardized perfusionueafor HCC studies. Open Journal of Medical

Imaging. 2012, 2, 33-40

- Abstract of papers presented at National andratenal congresses:

. M. D’Anto , M. Cesarelli , P. Bifulco , M. Romano , F.Fiar&/.Cerciello , T.Cerciello
“Perfusion CT of the liver: slope method analysiS8&condo Congresso nazionale di Bioingegneria,

Torino 2010, Atti Patron editore. pp. 467-468

. Michela D’Anto, Mario Cesarelli, Paolo Bifulco, Maria Romano, ¥émzo Cerciello,
Francesco, Fiore, Aldo Vecchione. “Study of diffgrdime Attenuation Curve processing in Liver
CT Perfusion”. 10th IEEE International Conferencelmformation Technology and Applications in

Biomedicine Corfu, Greece, 2010, paper N. 101



. Presidente, M. Romano, R. D'Angelo, F. M. RoiaCesarelli, F. FioreM. D'Anto. “A
new procedure to obtain Standardized Perfusion &/alilwo assess HCC vascularization: early

clinical experience” European Congress of Radiolaggnna, 2011

. M. D’Anto, M. Cesarelli, P. Bifulco, M. Romano, R. D’Angel&,Fiore “Parametric
mapping of the Standardized Perfusion Value in kegdlular Carcinoma”, European Congress of

Radiology, Vienna, 2012

. F. Fiore, M. D’Anto, S.V.Setola, P. Bifulco, M. Romano, M. Cesarell;\Cause di
variabilita nell'applicazione dell'indice di perfimme Standardized Perfusion Value nei pazienti con

HCC” 45 Congresso SIRM 2012, Torino

. M. D’Anto, F. Fiore, M. Romano, P. Bifulco, M. Cesarelli ‘IR®ility of perfusion maps in

HCC patients” GNB2012, June 26th-29th 2012, Rortady |



2. LIVER PERFUSION CT

This chapter presents the theory of Liver Perfusidntechnique. The physiological process of liver

tumour vascularisation is described.

2.1 LIVER PHYSIOLOGY

The liver has a unique perfusion system with a dilabd supply. More than two-thirds of the
blood supply comes from the low-pressure portahyvand the rest comes from the high-pressure
hepatic artery. The capillaries of the liver, cdllsinusoid capillaries’, therefore contain a metu

of portal and arterial blood. The sinusoid capyllaystem is very dense, representing almost one
third of the volume of the liver parenchyma. Thel@thelial cells that line the sinusoids are

anatomically and biologically different from endelial cells in other organs.

Hepatic veins
output Calt)

epatic artery Ca(1)
input 1

Liver parenchyma - \

Portal vein
input 2

Cylt)

Figure 1: The liver is supplied more than two-thirdsby the portal vein and less than a third by the hgatic artery. A
transverse slice through the abdomen allows simulteeous measurement of the attenuation in regions ofterst (ROIs) drawn

in the portal vein, in the aorta, and in the livertissue.
They lack a basement membrane and contain fengstraeacteristics that facilitate the transport of

nutrients and macromolecules between the sinusoidghe hepatic parenchyma. The hepatocytes
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lining the sinusoids represent most of the volumie liver parenchyma, and the interstitial space,
called the ‘space of Disse’, is almost virtual, resgenting only 10% of the total liver volume.
Specialized pericytes called stellate cells (ordétls) are located in the space of Disse and wrap
around the walls of the hepatic sinusoids. Regutatif blood flow and vascular resistance in the
hepatic microvasculature are intimately linked. \W#as in most organs the site of blood flow
regulation occurs at arteriolar level, in the liveost of the blood flow enters at low pressure
through the portal vein, and resistance changesracdhe sinusoid. Stellate cells play a roleha t
regulation and control of blood flow through theeli based on their anatomic location and
contractile characteristics by modulating the sindel caliber in response to several vasoactive
endothelium derived mediators including nitric axidNO). The portal supply varies greatly during
the day in relation to bowel activity, with largecreases in the postprandial periods. The total
hepatic blood supply, however, is finely tuned bg so-called ‘hepatic arterial buffer response’,
which is the inverse response of the hepatic atterghanges in portal vein flow. These intrinsic
regulatory mechanisms based on the local conceniraf adenosine tend to maintain total hepatic
blood flow at a constant level, allowing an incee@s the arterial blood supply to compensate for a
decrease in portal supply, and a decrease inarbdood supply in cases of increased portal supply
It is important to note that, in contrast, variasan arterial blood supply cannot be compensayed b

variations in portal supply.

The specific dual perfusion of the liver makes a@rmdifficult to analyze it with contrast-enhanced
imaging than the perfusion of other tissues. THeaanement curve of the liver, after the injection
of a bolus of contrast agent, is the combinationtha® enhancement due to the contrast agent
flowing in the arterial blood and the contrast agftawing in the portal blood. Whereas the
molecules of contrast agent arrive quickly wherytaee delivered to the liver through the arterial
route, they are delayed and diluted by the splacctinculation when they are delivered through

the portal route.
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Many strategies have been developed to take adyatmga the portal lag to separate and quantify
the arterial and portal hepatic perfusions. A caghpnsive review of perfusion imaging of the liver

has recently been published by Pandharipande[ &} al

2.2 BAsIS OF PERFUSION CT

Perfusion CT technique typically requires a baselimage acquisition without contrast
enhancement followed by a series of images acqukest time after an intravenous bolus of
conventional contrast material. Because blood a#tess X-rays uniformly on the scale of the
spatial resolution of a CT scanner, flowing bloadhrmot be differentiated from stationary blood. To
measure tumour perfusion with CT, a contrast agemtjected intravenously, to ‘label’ the blood.
Assuming that the injected contrast is uniformlyxead with blood, tracing blood through the
tumour circulation is equivalent to tracking a ®bf contrast through the tumour. As such, we can
make use of the extensive literature on tracertkisenodelling in the measurement of CT tumour
perfusion. Note that in this thesis we use the $gperfusion and blood flow interchangeably. Blood
flow (F) can be defined as the volume flow ratéblmiod through the vasculature in a tumour. It is

usually expressed in units of ml/min/100g or ml/fhGOmI.

Also, in the diagnosis of tumour or the study afhtwr biology, it is highly advantageous that

besides perfusion we can measure additional fumaitiparameters in the same study.

The fundamental processes underlying CT measuremientmour perfusion and associated
hemodynamic (functional) parameters are the tramspyg blood flow of an intravenously
administered iodinated contrast agent to the tumw@th the current fast CT scanners tissue
contrast concentration can be measured and tragedtione at short intervals to allow detailed
modelling of the distribution of contrast agenttissue. In fact the resulting temporal changes in
contrast enhancement, often displayed as timeuwstem curves (TAC) (Fig. 2) are subsequently

analyzed to quantify a range of parameters th&atethe functional status of the vascular system.

12



Compartmental models and linear systems based ngefbo contrast transport and exchange have
been developed to quantify tumour blood flow, bloemlume, mean transit time, and other

parameters (see the following chapter for details).

300

280 |

200

180

Hu

100

_SD 1 1 1 1 1 1 1 1
o 10 20 30 40 50 &0 70 g0 a0

Figure 2: An example of Time attenuation curve (TAC) This curve has been obtained positioning a ROI (Rgon of interest)
on aorta. Blue points represent means of HU valuésside the ROl and were computed for each slice tfie sequence (at

different acquisition time) to compute a mean tumotTAC.

2.3 PERFUSION CT ASSESSMENT OF HEPATOCELLULAR CARCINOMA (HCC)

Folkman and colleagues [2], in the 1960s, firstppsed the dependence of sustained tumour
growth on angiogenesis, a relationship that coesro be heavily explored today [3][4]. In patients
with cirrhosis, a spectrum of nodules, includingiipae regenerative nodules, dysplastic nodules,
and HCC, can form; differences in their respecbi@d supplies can assist in their detection and
characterization [5][6][7][8]. Regenerative nodyld&e normal liver parenchyma, continue to
receive a majority of their blood supply from thergal vein, whereas the evolution from a low-
grade dysplastic nodule to frank HCC is associat#ld a progression toward increasing arterial

blood supply [5][6][7][8] (Fig 3).
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Figure 3: Diagram shows physiologic basis of perfimn imaging for tumor surveillance. Progressive inease in arterial
versus portal venous supply is associated with bothe evolution from a low-grade dysplastic noduled frank HCC and the

development of a metastasis from a circulating tunrocell.

During this evolution, sinusoidal endothelial sedire recruited to create an arteriolar network tha
gradually replaces normal sinusoidal architectangl this process is known as “capillarization” [5].
At histological analysis, dysplastic nodules andGH@anifest neoarteriogenesis, which takes the
appearance of unpaired or nontriadal arteries, ihatrteries not associated with portal vein
branches [5][7][8]. Vascular endothelial growthttacexpression, a marker of angiogenic activity,
has been found to increase linearly and parallsdevelopment of unpaired arteries [9]; it is
negligible in regenerative nodules, moderate inpthsic nodules, and strong in HCC [9]. Given
this progression, serum vascular endothelial grdatior levels in patients with HCC have been
explored as markers of tumor activity [10] and eesdctors of postoperative tumour recurrence and

survival [11].
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Small tumor Sprouting capillary Growing tumor

Figure 4: Neoangiogenesis process in tumour developnt

Perfusion CT studies are increasingly used in tRHmMaging. This aspect is facilitated by the
current availability, on the market, of multisligpiral CT systems and commercial software
packages and promoted by the diffusion, in routi@cal practice, of anti-angiogenic therapies.
Neoplastic angiogenesis is in fact an importangpostic factor and a promising target for new
treatments, of fundamental importance for monigrinmour growth. Different techniques of

image processing have been employed, in recens,y&arobtain information about angiogenic

characteristics of tumours in a non-invasive wAyong them, CT perfusion is advocated as a
means to assess the grade of vascularisation iauutissue. This is supported by studies, which
have reported a correlation between contrast eminagct parameters and histological
measurements of angiogenesis [12,13]. CT perfusicsso employed to evaluate variations in

perfusion parameters following regional treatmemi®co or antiangiogenic drug$4][15][16].

The clinical value of perfusion CT in the assesdnoéHCC and its correlated hypervascularization
is confirmed by a lot of literature in this fieléh the last two decade numerous studies have
confirmed that perfusion CT is one of the best imggcquisition technique to characterize HCC

lesion [17][18][19].

15



Arterial hypervascularization is considered an mesak aspect to evaluate the grade of
aggressiveness of HCC tumour. In fact tumor HCCicgemesis induce an increase of
vascularisation in tumour which is reflected byaterial blood flow increment in CT perfusion
exams. In normal liver parenchyma arterial hepedimponent is about 20 ml/min/100ml. Values

greater than 40-50 ml/min/100ml are compatible W®C lesion [20][21][22][23][24].
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3. MATHEMATICAL MODELS FOR LIVER PERFUSION QUANTIFICATION
WITH CT

Since perfusion CT has been introduced in clingecattice different mathematical model have been
applied to TAC to obtain quantitative perfusiongmaeters. In this chapter the principles of these

mathematical modelling for liver perfusion quardfiion are described.

3.1 SLOPE-RATIO METHODS

The basic model is very general and since the atoiv of similar techniques by Fick in the 1870’s,
has been applied to tracers as diverse as dyeeamtdhb well as CT contrast. Slope method is based
on a compartmental analysis, often termed a blackamalysis. The contrast material is modelled
as entering an organ via an artery and rapidlyidiging itself uniformly within the blood vessels

and extra cellular space, and then, after a shtetual, starting to leave the organ via a vei® se

Figure 5.

(- ]
1 1 %
Introduction of contrast Instant distribution Drainage via venous
throughout the tissue system a short time

after introduction of
confrast.

Artery

a3 Organ Vein

clt) vt

af) elt) ﬂ vet)

Time (1) Time (1) Time (1)

Contrast

Figure 5: Black box model of flow and typical timeattenuation curves (TAC) , where a(t) is the conceration of contrast
material in arterial blood showing a recirculation peak, c(t) the concentration of contrast materialn the tissue and v(t) the

contrast material concentration in the draining ven.
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A simple approach of this sort can be used to madelcalculate perfusion.
3.1.1 DRAINING VEIN ASSUMPTION METHOD

At any time t, let a(t) be the arterial concentratof contrast agent, v(t) be the venous conceatrat
and c(t) be the tissue concentration within a va@whtissue to be examined. Consider a volume of
tissue, V, corresponding to a voxel and the flowo ithis volume as F. Then by definition, the
perfusion P of the voxel is F/V. Consider the timirval (t, t©t). The amount of tracer arriving in
the voxel is B t[a(t) — v(t)]. This is the change in the amouhtracer in the voxel, i.e. the change

in [V c(t)].
Thus

1. §[c(t)V] = V8[c(t) ] = Fdt[a(t) — v(t) ]
Going to the limit and integrating with respect:to

_F_ c®
2. P= \Y fota(t)dt—fotv(t)dt

concentration

________ | _f;rm dr
e

Tune (1) Tume (1) Time (1)

Tracer

Figure 6: Draining vein assumption Perfusion can bexpressed as tissue concentration at time t, c(fivided by difference

between the area under arterial curve/a(t), and the area under the venous curvdg(t).
Thus if artery, venous and tissue concentratiores adole to be determined, perfusion can be
calculated, see Figure 6. This approach has beed wsth radioactive tracers using probes
positioned over the organ and arterial and vendasdbsampling. Unfortunately few imaging
systems, including standard CT or MRI, can sim@tarsly measure input, output and parenchymal

areas easily.
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To determine perfusion we wish to sample the charfigeacer concentration over a comparatively
short period of time, so we require more rapid imggRapid imaging is generally limited to a

single section of the patient in which it is diffic to obtain an image of the organ, its artery and
vein. Fast electronbeam CT scanners are an exogpothey can very quickly acquire a series of
transaxial slices. They have been used to studfugen, notably cardiac perfusion, using the

formulation described above.

3.1.2 NO VENOUS OUTFLOW METHOD

A more realistic situation is imaging of arteriahda tissue concentrations but not venous
concentrations. If a bolus of tracer is given imeasonably short time, we may assume that the
venous outflow of tracer is negligible for a times$ than the transit time of the tracer through the

organ. Let this time beven . Thus v(t) = O for tdven, so that from equation 2:

3. P =9

<
Faw (t<tven)

To minimize error this ratio is determined when tha@merator and denominator are at their

maximum. Letmax be the time of peak parenchymal contrast concémtrand as long as;
tmax < tven

4 p = il
Jo a(t)dt

If the time for the tracer to complete a loop of #imtire vasculature system is less than the time t
maximum concentration in tissue, the arterial cotregion curve shows peaks due to re-circulation

of the contrast material. The first pass phaseaafrdrast material is often modelled by a gamma
variate fit to avoid the peaks due to re-circalati

The arterial concentration is modelled using themga fit as
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—(t—tp)

S. a(t) =k(t—ty)%e *

Where a(t) is the modelled increase in vasculatrashover baseline, t is the timgjd the arrival

time of the contrast at the vascular region ofrgdgg see Figure 7.

att a*(t)=k(t-ty)* e P

Recirculation of
'\ tracer
/———-\\

Time (1) Time (1)

concentration

Tracer

‘[G‘ aft) dr _[ 0‘ a*() dt

concentration

Tracer

- TN

Time () Time (1)

Figure 7: Arterial gamma variate fit to correct for recirculation. The arterial concentration curve, af), is modelled by a
gamma variate fit, a(t), to limit the effect of the recirculation of the tracer on the area under the arterial curve.

When a gamma variate fit is applied to the artdrmak concentration curve a model of first pass
curve is produced @). This modelled curve does not have the recitboih peaks. Thus the area

under this curve approximates the total contrasiveted to the organ without errors due to

recirculation.
Thus we can calculate:
oo *
6. fO a* (t)dt

which is a measure of the area under the artemafecif we had a tracer that did not undergo re-
circulation. The reason for doing this is to alldwe denominator of Equation 4 to be independent of
tven, the time of venous outflow appearance. There e assumption that the gff) occurs

prior of the recirculation and it is thus unaffettey recirculation of contrast material.

Perfusion is then calculated as
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7. P = c(t)max

~ [Par®at
g L;. a®(t) dt () |max
5 £
2 9
= 3

Time 1) Time ¢t)

Figure 8: Arterial gamma variate area and maximal tssue enhancement.
Thus: Perfusion is the ratio of the maximal tissmdancement to the area under the arterial time

attenuation curve.

In literature, this relationship is variously rafent to as the Sapirstein Principle, the Single
Compartment Formulation or the Mullani-Gould fortibn see Figure 8. This often
underestimates higher values of perfusion withaignous injection because the assumption of “no
venous washout” is violated. Thus to apply this hodtwe require that the time to peak of the
tissue time-density curve (which is related to Whidth of the input bolus) is shorter than the
minimum transit time of the system. The method banapplied to the abdomen using a time
enhancement curve from an aortic region as an tifipoction.” Note that this implies that we
assume that there is no significant broadening estupbation of the time enhancement curve
between the aorta and the afferent arterioles. iBhgenerally the case but the assumption would

fail in the case of a stenosis between the aodalamrelevant afferent arterioles.

3.1.3 GRADIENT METHOD

A variation of this formulation for perfusion car lobtained if we differentiate equations 2 to 4,

obtaining:
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dc(t)

8. Z'Zéfiﬁ5
from equation 2 and
de(t)
9. P =% (t <tven)

from equation 3. Again minimizing the error by ugithe peak value of the denominator and

numerator we use . the time of the peak ‘gradient’ of parenchymal @mtement where jax <

tven. we obtain:

dc(t)
10P = L max

a(®)max

. Peak Gradient of the Tissue Time Enhancement
11 Perfusion =

Peak Arterial Enhancement

This assumes there is minimal distortion of thecubs time enhancement curve in the passage
from the imaged artery and the afferent arteriok2, maxima are identical. Thus it is no longer
necessary to perform a gamma fit of the arteriatetio obtain the area under the curve unaffected

by re-circulation as only the peak value is reqliisee Figure 8.

= aft) | max -S‘fﬂpﬂrr—d c(t)/dt
St .
™ .
B &
T = |
58
3 B
= o
= o -
Time (1) Time (#)

Figure 9: Peak arterial enhamcement and peak gradie of tissue time enhancement curve
However, a gamma fit could still be applied to #réerial time enhancement data to reduce the

underestimation of the peak enhancement due tepdh& falling between two discrete sampling
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points. This gradient approach was proposed byr®eteal.[25][26] for use in nuclear medicine
studies and adopted for dynamic contrast-enhandethyCMiles et al.[27][28][29]. The gradient
method has the advantage that the tissue time-eaimmt curve reaches its peak gradient well
before its peak value. Thus the assumption thae tiseno venous outflow prior to time of the peak
gradient rather than the longer time to peak is ld®ly to be violated. The use of early datum
points to obtain a perfusion value also meansithahaging based modalities there is less likely to
be patient movement due to breathing and may erabige breath hold imaging if the time to
maximum slope for the organ of interest is suffithg short. However this technique is innately
more affected by noise as we are differentiatiregdhta set. The gradient method, while having a
shorter time required to determine the perfusioay rstill have a time to maximum slope that is
longer than the transit time in organs with a shr@msit time. This will lead to the breaking otth
assumption of no venous outflow. The slope of th&ue enhancement curve and the time taken to
reach the maximum slope are dependent on the bolume, the rate of injection and the patient’s

cardiac output.

The figure 10 presents a graphical representatiadgheothree methods for perfusion determination

based on compartmental analysis.
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Figure 10: Schematic representation of compartmentanodel based perfusion calculation methods

3.2 MEASUREMENT OF BLOOD FLOW IN THE LIVER WITH “SLOPE METHOD”; PROBLEMS

AND PROPOSED SOLUTIONS

There are several published studies that have denesl perfusion in the liver. To date these have
principally used the gradient method. The objechige been to attempt to quantify both arterial and
portal perfusion. This requires to separate thecefbf contrast arriving with the arterial bloodrfr

the portal blood arriving a short time later, amtiedmining the magnitude of the two inputs.

3.2.1 TIME OF SPLENIC PEAK METHOD (ALSO CALLED “INDIRECT APPROACH”)

Miles et al. [28] described liver perfusion imaginging CT in 1993 by generating enhancement
curves from regions of interest (ROIs) drawn over liver, the aorta, and the spleen after a bolus

injection of contrast agent.
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Liver enhancement was resolved into arterial andapowenous components by assuming that
maximum splenic enhancement marks the end of tHg aderial phase and the beginning of the

delayed portal venous phase of liver perfusion.

They assumed that prior to the time of the spleeiak there would have been no contrast from the
spleen or other organs feeding the portal veins tiuuntil this time, the liver could be considered
to be supplied with only arterial contrast. Thikwais the arterial perfusion to be determined in the

usual way:
Perfusion = Maximum liver gradient / Maximum argrenhancement

The portal perfusion was calculated from the maxmslope of the remainder of the liver curve

over the arterial enhancement, see Figure 11.

Max. Arterial Slope =dl(t)/dt|pex ¢ <

Max. Portal Slope =dit)/dt|pe t= 1y

concentration

I'racer

It

Time (1) e i
tp= time of 5(1) | max

Figure 11: Arterial and portal perfusion phases ofliver enhancement. a(t) Arterial enhancement. I(tLiver enhancement
curve showing maximal slopes contributing to arterl and portal perfusion. These phases are separatdéy the time of splenic

peak enhancement.
This approach will lead to an underestimate ofgbeal perfusion for two reasons. The maximum
enhancement of the portal blood supply will notthee same as that of the arterial. It will be lower
due to dilution and broadening of the bolus intransit through the spleen and other visceral
organs. In addition the increase in enhancementalthee arrival of contrast in the portal bloodIwil
be masked by the reduction of contrast as theiartdood flows out of the organ. The outflow of
arterial contrast leads to an under estimate of rfeximum slope due to portal contrast.
Nonetheless this approach has shown clinical ytiliiowever the method requires that the spleen

be imaged in the transaxial slice.
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The maximal slopes of the liver time—density curveach phase were divided by the peak aortic
enhancement to calculate both arterial and poedupion (BFa, BFp). The hepatic perfusion index
(HPI), which is the ratio of the arterial perfusitm the total hepatic perfusion (HPI = arterial
perfusion/ arterial + portal perfusion) was alsdcekated. HPI is also known as the ‘Hepatic

Arterial Fraction’.

This technique is simple to implement and can h@iegh to any segment of the liver, as there is no
need to include the portal vein or major portal seéswithin the tissue imaged. However, the
method underestimates portal hepatic flow for teasons: first, the downwards slope of the last
part of the arterial time—attenuation curve is supgosed on the upwards slope of the arriving
portal curve; and second, the maximal slope ofpibrital venous phase of enhancement is divided
by the peak aortic enhancement instead of the pedal enhancement, which is flattened and

diluted after flowing through the splanchnic system

3.2.2 SCALED SPLEEN SUBTRACTION METHOD (ALSO CALLED “DIRECT” APPROACH)

To avoid these limitations, Blomley et al.[30] midelil this approach by subtracting the arterial
phase liver enhancement (modelled after spleniamrgment) from the liver enhancement curve to
give a more ‘accurate’ portal time—attenuation eurlvrom this corrected curve, portal perfusion
was calculated by dividing the slope of the risattenuation during the portal enhancement phase

by peak portal venous enhancement itself.

Liver curve I(t) = bae(t)  F Lyort (1)

Port Slope=dl(t)/dtlme  t=1w
Slope =dlyo(t)/dt |pnm

Ift)

concentration

Tracer

Tl t) f_mfff

o Time (1) . ,i'

Art STope=dl(t)/dt\ng 1<t Slope =diadf)/dt |ma

Figure 12: Liver enhancement curve as the sum of Aetial and Portal phases.
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This ‘corrected approach’, however, has two mamitations.

concentration

s(t) Lowlt) = I8} = [ Linp/sp]
atel
Iit) 'l' :
//\ Liny's; ® 5(1) /_C _’f\

Time (1)

Tracer

Liver cwrve  — scaled splenic curve = model of portal

perfusion curve

Figure 13: Portal enhancement as the difference difer and scaled spleen.

First, it assumes that hepatic arterial and splenltancement curves are similar. Such similarity is
unlikely in view of the unique microcirculation \Winh the spleen, recognized as the mechanism

underlying the transient splenic inhomogeneity ss@mng contrast-enhanced CT.

Second, the technique requires a set of sliceaiong both the portal vein and a part of the splee

to be able to draw ROIs and extract the enhanceowrwnes.

3.2.3 SLOPE METHOD: “COMBINED APPROACH”

This method was introduced by White et al in 200d applied to liver perfusion MRI imaging. By
literature analysis, it is possible to state thved tmain methods have been proposed for deriving
perfusion measurements and HPI from CT time—densitgrmation. Both calculate arterial
perfusion part by dividing the peak gradient in tineer during arterial phase by the peak
enhancement of the aorta, but they differ in tlagiproach to estimating portal perfusion. In the
“indirect” approach portal component is calculdtas the peak gradient in the liver during portal

phase divided by the peak arterial enhancement.

dc(t)

12.BFp = ——port

a(t)max
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Two refinements are made in the “direct” approate arterial component of hepatic uptake is
removed before measuring portal uptake gradiens(iipyracting a scaled enhancement curve from
a purely arterial organ such as the spleen), anfiggen is estimated by dividing this corrected

portal by peak enhancement measured in the patal v

Both techniques have been reported to show dife@®m perfusion between control subjects and
patients with malignancy [30][28][31] but the “éct” method is more physiologically appropriate

and, when applied to dynamic CT, provides portafyseon values in closer agreement to those
derived using other techniques [31]. This methodl$® less subject to errors arising from arterial

washout and recirculation.

In “combined” method, portal perfusion is derivém gradient after subtraction of the arterial
component from the liver curve (as in the directhod), but scaled to the enhancement of the aorta

rather than that of the portal vein.

This approach makes the implicit assumption thsihgle blood concentration of contrast agent is
applicable to both the arterial and portal perfosias in the “indirect” method used for dynamic
CT measurements of the HPI [28]. However, sinca¢tetive hepatic and portal perfusion are both
scaled to the peak of the aortic enhancement cthigescaling factor appears in both the numerator
and the denominator of the HPI and can be omitieidedy when only the HPI values are required.
The “combined” method therefore lends itself toxel-based HPI analyses because it removes the
need for measurement of the aortic and portal ve@icoucentrations of contrast agent. This enables
the HPI analysis to be performed with minimal oparantervention, using rapid lower-resolution
dynamic scans where the portal vein is difficuligolate and where saturation effects in the aorta

are hard to eliminate.

3.3 “DUALINPUT ONE COMPARTMENT MODEL”

Van Beers and Materne have developed a comparthmeatte! with a dual-input [32][33]
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dc
13: dlt(t) = k1q Ca(t) + k1p Cp(t) = koG (1)

in which G, C,, and G are the contrast agent concentrations measuredimerespectively within
the liver, hepatic artery, and portal vein derivemm ROL, and K, kip, and k are the arterial and
portal venous inflow and liver outflow rate condtarBy fitting measured &t), the constants;k

kip, and k can be estimated, and can be used to calculateihepéerial and portal venous
perfusion, mean transit time (MTT) of contrast agémough the liver, and contrast agent
distribution volume within the liver (y). The distribution volume ¥ of contrast agent is used
instead of the hepatic blood volume, because thedlsnolecule contrast agent used in CT leaks
freely and instantaneously across the sinusoidlagpwall, leading to a distribution volume that

associates the hepatic blood volume and part aéxbracellular Disse space.

This compartmental approach assumes that theren i;xsgantaneous mixing of blood in the

capillary compartment.

3.4 “DECONVOLUTION MODEL”

To avoid this assumption in the liver, where thpiltary network is complex and the mean transit
time long, Cuenod et al. [34] have developed a ifipedeconvolution technique. The
deconvolution method considers that the time coafg¢he concentration of contrast agent entering
a tissue is modulated by a transfer function spetif the tissue. This transfer function can be
computed from both the concentration—time curveaftrast agent entering the tissue (input) and
the concentration—time curve of contrast in theugs From that transfer function, the perfusion
parameters of the tissue can be calculated. Thensdetution strategy was introduced into
functional CT by Axel in the 1980s [35]. The spexif of the liver, for this approach, comes from

its dual vascular input. The method is describddvine
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Deconvolution allows the determination of the tletimal impulse response of the tissue, that is, the
time course of concentration that an instantana@gu# of contrast material (impulse input) would

have yielded.

When the contrast agent enters the tissue as didonef time, Ci(t), the time course of the
concentration of contrast throughout the tissueeddp both on the time course of a theoretical
impulse input (instantaneous input) through theuis h(t), and on the actual experimental time
course of contrast input.The concentration—timeveuat the venous outflow, (&), is the

convolution of (t) by h(t):
14.C,(t) = C;(¢t) * h(t)

However, since we cannot measure the time atteruatirve at the venous outflow of the tissue
and can only measure the concentration—time cureertrast into the tissue, we have to infer the
venous outflow time attenuation curve from theuesfme attenuation curve. To do so, we use the

notion of residue function. The integral of h(t) is

15H(t) = [, h(r)dr
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h(t) = dH(t)/dt = -dR(t)idt  Probability density function

Cumulative frequency function

1.0 p===——mmm e

Residue function
R (1) | Rt)=1-H()

Figure 14: Relations between the residue function @®, the cumulative frequency function H(t), and tre probability density
function h(t). The contrast agent that progressivelyeaves the tissue accumulates outside the tissA¢ the venous outlet the
concentration of contrast agent rises progressivelgefore decreasing to zero. The initial value of Rjds normalized to one, as
well, therefore, as the final value of H(t) and therea under the curve h(t)

where H(t) is the fraction of an impulsive inputialin has already left the tissue by time t (Figure
14). It is called the cumulative frequency functitts complementary function is called the residue

function R(t):

16R(t) =1—H(t)

where R(t) is the fraction of the impulsive inpatmaining within its distribution volumen the
tissue at time t. The concentration—time curve tfager remaining in its volume of distribution
within the tissue @t) can be predicted for any type of input functi@t), as the convolution of

Ci(t) by R(t):
17.C,() = C;(t) xR(t)
Because the distribution volumey \6f the tracer is within a larger volume of tissug the

concentration of tracer within the tissue is:
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18.C.(t) = C4(O)Vy

where Vi = V4/V¢ is the fractional dilution volume of the molecaepressed as a percentage of the
total volume of tissue ¥ The concentration of tracer in a voxel of tissLift) is therefore the

convolution of Qt) by R(t), the tissue transfer function(B = [VgR(1)]):
19.6: () = Ci(t) * Ry (2)

After contrast injection, a deconvolution proceas allow the determination ofi({®, knowing the
contrast variation of the tissug(t{} and the input function;&). For finite time sampling steps at

=T, the convolution @) = G(t)*R(t) can be approximated by the following sum:
20.C;(nT) * R,(nT) = T YX=0-1C,(nT — kT)R.(kT)

The category of Weibull functions

—t
21.9(t) = a expr©

has been chosen to represent the tissue transfetidn R(t) because its shape is intermediate
between a falling exponential function and a sgdanetion, resembling the supposed liver curve.
A computer program is necessary to minimize thedrpt& error between the measured tissue
response (nT) at each time nT and the assumed respong@T( after convolution of the

measured input(hT) at each time nT:

kTC

22C;(nT) =TYX=0"1C,(nT — kT) aexp™ b

The program yields the value of the three unknoagtdrs a, b, and c, allowing the estimation of

Ri(t) (equation 19). Since® = V4 R(t) and R(0) = 1, theng& R(0) and R(t) = t)/R¢(0).

When R(t) has been worked out, h(t) can be obtasisdts negative derivative
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dR(t)
dt

23h(t) = —

and the output functiond@) can be calculated.

The mean transit time (MTT) through the vasculat ban be calculated as the first moment (or the

geometric mean) of the calculateg(t

Jy t Co()at

24MTT = 35
Jo Co(®)dt

It can also be calculated as the first moment @fiitippulse response itself:

Jy th(adt

29.MTT = =
Jo h®dt

and even more simply, knowing that,
26.[° h()dt = 1 asMTT = [, th(t)dt

The fractional distribution volume of the traceg,\can be calculated as(®, the initial (maximal)
value of R(t). As expressed above, the fractional distributimlume of the contrast within the

tissue, \4;, is calculated as the initial (maximal) value gftRV4 = R(0).

The blood flow through a unit volume of tissue & F/volume of the organ) expressed as

ml/min/100 ml is measured using the central volihs®rem:

27F, = A‘;;;

Specifically in the liver, the dual blood supplysh® be taken into account for the calculation. The
respective balance between the arterial inpift) @nd venous portal inputy@) of the liver is
expressed as the hepatic perfusion index (HPI)chvtg the ratio of the arterial blood flow (BF
over the total hepatic blood flow BF
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Fa
Fq+Fy

28HPI =

In the liver, arterial and portal blood are mixad the sinusoidal capillaries, and the tissue

concentration—time curve in the liver (referrecdsoG) can be expressed as:
29.0,(t) = [aC,(®) + (1 — @) C,p(D)] * Ry(0)

Algorithms have therefore to minimize the quadratior between the actual tissue respongel

and the assumed responsgr) after convolution of the dual input: (Figurg)1

KT

30.cf(nT) = T3 aCo(nT — kT) + (1 — @)Cy(nT — kT) a exp o 1

The algorithm yields the value of the four unkndfactorsa, a, b, and c, allowing the estimation of
Ri(t) anda = HPI. R(t) allows the calculation of MTT, ¥, and k, and HPI allows the calculation

of F,= HPI x R, and Fp = (1 — HPI) xF

80 |-

AHU

20 |

0 20 40 60 80 100

Time (s)

Figure 15: The time—enhancement curve of the liveexpressed as Hounsfield unit variation (HU) over the (continuous line),
can be separated by the computer using the deconution model into the linear combination of the eay and small
enhancement curve of the arterial supply (crossesand the late and strong enhancement curve of theogtal supply (stars).
The contras enhancement is obtained by subtractingie mean baseline value from the values measuredtime ROIs
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Name Abbreviation Definition Unit

Mean transit time MTT Mean time taken by S
molecules of contrast
agent to flow through

system
Liver distribution LDV Percentage of tissue| % or ml/100 ml of
volume volume in which the tissue

contrast agent
distributes itself

Total hepatic blood Fr Total hepatic blood ml/min/ml of tissue
flow flow
Fr=FatFp
Arterial blood flow BFa Hepatic blood flow of| ml/min/ml of tissue
arterial origin
Portal blood flow Bb Hepatic blood flow of| ml/min/ml of tissue
portal origin
Hepatic perfusion HPI Percentage of total %
index blood flow of arterial
origin
HPI = — D04
BF, + BF;

Table 1: The six main liver perfusion parameters thatan be extracted with functional computed tomograpy (CT)

These parameters are obtained by drawing regiongest (ROIs) on the aorta, the portal vein,
and the liver parenchyma. The liver's ROI has tall®vn as large as possible, avoiding the large
vessels. Then, the three ROIls are replicated bgdhguter on each image of the series to extract
the CT attenuation numbers (expressed as Hounsiiels) over time. The time—attenuation curves
derived from the aorta{), the portal vein gft), and the liver gt) can then be used for calculation

of the six hepatic perfusion parameters.
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4. ANALYSIS OF SOURCES OF VARIABILITY IN PERFUSION CT STUDIES

In this chapter different causes of variabilitygarfusion CT parameters computation are debated
and analyzed. First of all the problem of matheoahtmodel adopted is introduced, due to its
crucial role. Then, analysis were conducted to tstdad elements of variability related to

processing of time attenuation curves once the ifwdebeen selected.

4.1 CHOICE OF MATHEMATICAL MODEL

The analysis of literature reveals that compartalemodels (slope method and dual- input- one
compartment model) are more used than deconvoluatiotiel to obtain liver perfusion parameters.
Moreover they differ in terms of their theoretiealsumptions and susceptibility to noise [12]. Slope
method is based on the assumption that the bolesrdfast agent has to be retained within the
organ of interest at the time of measurement winay result in underestimation of perfusion
values in organs with rapid vascular transit ohwarge bolus injection. Whereas deconvolution
model assumes that the shape of R(t) is a platéhuansingle exponential wash-out. Though this
assumption works well for most of the organs, igiminot be suitable for organs with complex
circulatory pathways such as liver, for which it pseferable to use compartmental analysis.
Deconvolution methods are appropriate for measuriogver levels of perfusion (<
20ml/min/100ml) as they are able to tolerate gremb@ge noise due to inclusion of the complete
time series of images in calculation. This is mattrly beneficial for accurate measurement of
lower perfusion values which are typically seertumours as consequence of treatment response.
But then, the inclusion of all the acquired imagas;h as dual input one compartment model, for
parameters calculation introduces possibilitiesnage misregistration due to motion of the patient.

On the other hand, slope method effectively usesetiimages for perfusion measurement: the
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baseline image and the image immediately beforeadisnt the time of maximal rate of contrast

tissue enhancement and hence patient motion aly wrsignificance.

Both types of modelling, however, are limited b tfact that the venous output is usually not
measurable. Arterial Blood Flow, anyway, can alwagscalculated with slope method even if
portal measurement is impossible (limitation ofurok of coverage of CT system) or difficult
(noisy TAC related to excessive patient’s breathiWige remember that BFis the most important
perfusion parameter to characterize HCC angiogeneand its related to arterial
hypervascularization. For this reason, as will kelaned in the next chapter, BFa computation is
essential to obtain a Standardized Perfusion Vakeful for studying HCC patients. The above
considerations, as well as the results reportethis Section, support the idea that to obtain a
standardized index helpful for analysis of all H@@tients, the use of the slope method is

preferable (or even necessary).

In this research activity, deconvolution model aipon is not analyzed and implemented. On the
contrary, algorithms to implement slope method au@l input one compartment model are
developed and tested. Moreover, to assess the diepes of perfusion parameter, in particular BFa,
from the mathematical method and to understandiwisithe best model in our specific research
context, a comparison between maximum slope andicjoiat one compartment model methods is

made.

4.2 IMAGING STUDIES USED IN THIS THESIS

The results reported in this thesis were obtainech fCT perfusion studies of twenty patients, with
multiple or single hypervascular HCC lesions anthaiit cardiac complications. Three of them
were excluded from all the analysis because of poality in data images, this was due to patient’s
breathing, which, as known, represents an impon@ason of image misregistration in the CT

perfusion of chest and abdomen. Therefore, sevemtaigents (5 women and 12 men; age range, 52
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- 83 years; mean, 69.3 years) were included instihely. The diagnosis of HCC tumour was
achieved on the basis of AASLD (American Associatior the Study of Liver Disease) criteria
using established techniques (RM, MDTC and CEUSkymeans of liver biopsy for some of
them. Weights and other relevant clinical inforroatiwere collected for all patients. A target
untreated lesion was selected on basal CTscandutittontrast). Then, perfusion CT study was
performed for each patient. The project was apmrdyethe scientific technical committee of the
Hospital (National Cancer Institute “Pascale Fouiotid, Naples, Italy) as part of an internal
research project, with note DSC/1957 of 2009, alligmts gave informed consent to undergo

investigation.

Perfusion CT was performed by means of a commér@ahilable scanner (Philips Brilliance 16
slices). The perfusion protocol comprised 30 s¢@0kVp, 250 mAs, 4 x 6 mm slice thickness, 1
second gantry rotation time, 3 s acquisition tim&hich were obtained in correspondence of

tumour lesion. Each image has matrix dimensionslegub12 x 512.

CT perfusion study on localized HCC target lesioasvperformed after injection of 70 ml of
iodinated contrast medium (lomeron, 400 mg of iedder milliliter) at a rate of 4 ml/s followed by
40 ml of saline solution, injected at a rate of Hswia an 18—20-gauge cannula in the antecubital
vein. The following CT parameters were used to aeqgdynamic data: 1-second gantry rotation
time, 90 kV, 250 mAs and 6-mm reconstructed sedtiickness. Patients were instructed to breath

as quietly as possible during the exam to redudsomartifacts.

Our protocol is a compromise between patient’stheabnditions and technical aspects related to
the choice of compartmental analysis methods. Mmamic image acquisition, in fact, includes a
first pass study until 60 second after bolus inggctThis is in accordance with the idea of a uriqu

compartment (intravascular and extravascular spee@ unique “black box”) at the basis of slope

method and dual input one compartment model.
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For compartmental model, presence of image noiseltsein miscalculation of perfusion values
hence a higher mAs value with lower image frequescyreferred with respect to deconvolution

analysis.

Deconvolution method, being less sensitive to naatlews the use of a lower tube current and
allows scanning with higher temporal resolution ][1The typical perfusion protocol for

measurement of perfusion with deconvolution analysiimage acquisition for a total duration of
40- 60sec with 1 sec images every 1 second affection of 40-50ml of contrast at a rate of 4-7

ml/sec with a tube current of 50-100mAs .

The typical image acquisition sequence for compantiad analysis in measurements of perfusion is
for a total duration of 40-60sec with 1 sec imagesry 3-5 sec after injection of 40-50 ml of

contrast at a rate of 7-10 ml/sec with a tube curoé 100-250 mAs [12].

One of the important considerations for adequatesssnent of perfusion of a tissue is the contrast
medium bolus used for the intravenous injectionshrt sharp bolus is essential for adequate
perfusion assessment with compartment method amgteh@ small bolus of 40-50 ml is

administered with a higher injection rate betweda 3 ml/sec.

Because our patients were often under chemothdrapyment and didn’t tolerate high injection

rate to avoid complication, radiologists prefertedet 4 ml/sec as injection rate.

Due to linear relationship of iodine concentrataomd tissue enhancement a higher concentration of
contrast media is preferred (370mg lodine/ ml).if@ease SNR our protocol provides a 400 mg

lodine/ml contrast media.

About the image processing, i.e. the algorithmsetigped, we exported patiet’'s DICOM images

and processed them using Matlab version 7.0.
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4.3 IMAGE PROCESSING METHOD TO DERIVE PERFUSION PARAMETERS

4.3.1 PROCESSING OF TIME ATTENUATION CURVES

Time Attenuation Curve (TAC) represents the tempaeolution of attenuation coefficient
corresponding to a voxel or a Region of InteresdIljRand is proportional to the concentration of
contrast agent in the region occupied by said vaxeROI (in the following we’ll call them
respectively pixel TAC and ROI TAC). Hence, the pamal evolution of the gray value of a
voxel/ROI is proportional to the temporal evolutiohthe average concentration of contrast agent
within the voxel/ROI. ROI TAC can be obtained pmgitng ROI on the anatomical image acquired
during perfusion study in a specific site (i.e.tapporta, liver, spleen) and calculating the midah

value inside the ROI in all temporal slices acailiire

TAC are influenced by acquisition parameters sughha volume and the speed of the bolus of
contrast material injected [12] and its temporahglng is related to the temporal resolution of
acquisition image process. A greater number of esagsults in more data points on TAC and

therefore higher quality perfusion measuremenbalgh the radiation exposure increases.

Pixel and ROI TAC are used as input for algorithmased on mathematical model which compute
functional parameters. So noise on this signaésponsible of inaccurate parameters computation
and bias. Since ROI and pixel TAC exhibit high-tregcy noise, some authors consider smoothing
in the temporal or spatial dimension essentialdaeliable analysis [36][37][38][39][40]. About

pixel TAC, often they are also affected by photansa. When generating TAC from very small

regions or individual pixel, photon noise, in fadostcomes an important matter to take into account.
Random variations in photon numbers cause varighilimeasured attenuation values and hence,
errors in the calculated perfusion values [20]. ldeer, at the best of our knowledge, no research

work faces this matter in a detailed and specifayand, in fact, what is the best TAC processing is
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still a debated topic. Of course, software impletednn commercially available instrumentation

are generally not widely accessible.

Our experimental analysis of the curves has evielgrnthe problem of respiratory misregistration
evidenced by the several peaks on the tumor TAE dseexample of our results reported in figure

16 and 17) in pixel and ROI analysis.
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Figure 16: three pixel TAC represented with differen colours
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Figure 17: Four ROI TAC represented with different colours

Image registration technique and respiratory gatiag been often proposed to solve the proble
respiratory misregistration. Image registratiorhtéque cannot always be applied because o
small volume of coverage of CT system (such akisreearch project) and anyway this technit
introduces an error that have to be quantified.pRa®ry gating requires the use of advan
instrumentation not always available in Hospital @xample a simultaneous ECG recording ot
employment of sensaio record patient movements). Some authors havpopea spatial ar
spatiotemporal filtering to reduce noise in perfusion @lages analyzing and proposing differ
algorithms to guarantee high fidelity of the t-attenuation curves and presing edge and spatial

resolution[38][39][40].

However, an inescapable problem in perfusion Cdistuis that patients usually cannot hold tl

breath for 1 minute or longer, which is the dunatad the imaging procedure. This inevitably le
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to motion artifacts that distort TAC in particufar CT exams in the abdomen. This leads to errors

in perfusion values estimation and artifacts orapwaatric images [12].

Therefore, the original data of perfusion CT must freprocessed before the mathematical
calculation of perfusion parameters can be perfdrii36][37]. Data processing of original data

points influences the shape of the curve and gl¢lad perfusion parameters.

4.3.2 SLOPE METHOD ANALYSIS: INFLUENCE OF TAC PROCESSING

One of the key points in the liver analysis by neahslope method is to assess the peak gradients
of enhancement of the tumour TAC curves. Howeveraging artifacts caused by patient
respiration cause irregularities. Hence some metbodttenuate these irregularities of the time

density curve is required before the peak gradiesmsbe assessed accurately.

Commercial software that implement slope methodsdue give specification about the processing
algorithm implemented. Some of them automaticalgl@ate the maximum slope, others allow
semiautomatic computation. Basama Perfusion softwaermits a manual selection of the
maximum slope on the TAC in arterial and portal gghdo calculate perfusion parameters
[22][41]. The maximum slope can be defined as tleamst inclination of the straight line between
the basal HU value and the maximum HU value on T&Gme software automatically evaluate
maximum slope, others allow manual selection onTiAE of the two points necessary to draw the
straight line. However investigators have not pied details on the implementation of automatic
maximum slope detection algorithms and this makéeuwt results analysis and comparison.
Particularly, processing for definition of startiagd ending points of the straight line to identifg
maximum slope have not been discussed. On the ailde; manual selection introduces a
significant variability due to the definition ofdlstarting and the ending point on the TAC to obtai
the straight line. In a preliminary analysis we édanalyzed an important aspect that can affect the

application of slope method and that, at the béstuo knowledge, has not been yet investigated,
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variability in estimation of BFa values obtainedsemi-automated post-processing of CT perfusion
images. To this aim, we estimated the BFa vartgbdomputed with a semiautomatic algorithm
specifically developed based on a manual seleafothe maximum slope of tumour TAC [42].
TAC can be calculated from circular ROl drawn owaarta, spleen and tumour. According to
literature, BFa (in millimetres per minute per mniétre of tissue) was calculated by dividing the
maximum slope of tumour TAC before the splenic pegkhe peak aortic enhancement [20]. Our
software allows a manual selection of the two Eomecessary to calculate the maximum slope.
Because of the acquisition volume extended on feaonstructed slice, four TAC were obtained
for each ROI. BFa parameter was calculated chodemgumour TAC corresponding to the slice in
which the tumour is more extended. To analyze B&aability, related to slope evaluation, this
parameter was evaluated in the same patient fivestiselecting any time on tumour TAC the two
points necessary to obtain the maximum slope. fBF#e target lesion was calculated using the
developed software five times in the same patignthe same radiologist to asses intra-observer
processing variability. BFa values calculated wotlr algorithm were consistent with BFa HCC

values reported in literature [43]. The mean valaed the range for each patient are reported in

table 2
Patient 1 Patient 2 Patient 3
0.42 0.41 0.76
BFa values 0.36 0.47 0.56
(ml/min/200ml) 0.52 0.35 0.63
0.37 0.45 0.56
0.48 0.52 0.74
Mean 0.43 0.44 0.65
Range 0.36 — 0.5pR0.41 - 0.52 0.56 — 0.76

Table 2: BFa values computed in the three patientsith a semiautomatic algorithm
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The variability in BFa values is due to the marsedection of the two points necessary to calculate
the maximum slope of the tumour TAC. However, wperfusion CT is used to monitor the effects
of anti-angiogenesis drug therapy (to evaluate wWlassation tumour response), the reproducibility
of the technique must be such that the differeretevéen repeated measurements is small relative
to the magnitude of the therapeutic change in perfu For this reason reproducibility of
processing of CT perfusion data is a problem widkdpated that limit the clinical application of
this functional image technique. There are a lotel®ments that influence reproducibility of
perfusion CT software, independently from the madacal methods, such as ROI input selection
[44]. We have investigated the BFa intra-observepraducibility linked to semi-automated
application of the slope method. Obtained resuithlighted the necessity to standardise the
selection of starting and ending points in maximslope assessment. Besides, the analysis of the
curves has evidenced the problem of respiratoryemistration evidenced by the several peaks on

the tumour TAC .
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Figure 18: Peaks on TAC. The red and black lines re@sent two input selection from the operator on theame TAC

Peaks on tumour TAC almost certainly make difi@utomatic detection of the maximum slope.

The manual selection of the maximum slope, althaatfeduces variability, seems to be robust to
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the effect of respiratory misregistration becausdy mwne point, basal HU value, is operator

dependent; in fact, the maximum value is undoutetiintified.

Anyway intra-observer BFa variability in the selent of starting and ending point can be
eliminated if, once the tumour ROI is selected,aatomatic algorithm calculates the maximum
slope of TAC curve. Therefore, these preliminargufes revealed that new algorithms for an

automatic selection of the maximum slope have tmbestigated.

Moreover, in the preliminary approach the problemTAC fitting has not been considered,
analyzing only the problem of slope computatiomignual selection of the line between minimum
and maximum points. It's clear that processing ACTcan facilitate automatic algorithms for slope

computation.

Therefore, successively, algorithms for an autoersgtlection of the maximum slope and the effects

of different TAC processing techniques on BFa awatiicrcomputation have been investigated.

Some authors have studied the problem of TAC psmgsin slope method automatic
implementation. Anyway we underline that no speaiiion were declared about algorithms
employed. Bader et alt [36] pointed out that irdagty of the ROl TAC by motion artifacts caused
an increase in the maximum slope of the curves asd represents a cause of perfusion liver
parameter variability. In particular, they conclddéhat applying slope method to liver, motion
artifacts and the type of data processing influegheeassessment of the arterial, portal venous and
total hepatic perfusion but do not influence measwent of HPI. They compare perfusion values
obtained with a fitting procedure (with a gammairfg) and a smoothing with use of weighted

means algorithm.

Since our preliminary results on the group of thpaéents have showed that variability in slope

selection can be reduced whit an automatic algoritbur idea was to test, according to Bader, the
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effect of different automatic processing on TAC lgpw slope method [45]. We would have

automatic but reliable algorithms which recognifeaively TAC slope.

As first step, to this particular aim, we proposedew algorithm to remove outlier points related to
breathing on TAC before the fitting procedure. Thea evaluated the effects of two fitting

procedures applied to tumour TAC: gamma fittingsaggested by literature [46], and smoothing
spline interpolation. This two automatic procedunese compared with semiautomatic procedure
(manual selection as proposed by Basama). The sibthe line that minimizes the mean square
error was considered as the maximum slope in tleeteel interval. BFa was calculated in the same

patient with these three different data processing.

The comparison of different TAC processing demaitstt that also applying the same
mathematical model (slope method in our case) pemuparameter computation is related to the
employed data processing technique. Results allositaispect were obtained applying tested
algorithms to image of eight patients (six maled amo females; mean age, 66 years; age range,

52-76).

About data analysis on the axial image displayethbysoftware, a circular region of interest (ROI)
was drawn around the liver tumour taking care tontaan the ROI within the boundaries of the

mass. A further ROl was drawn around the aorta.viéda obtained from automated processing of
the aorta and tumour TAC using the previously dbedr method. Irregular points (i.e. peaks on
TAC) are caused by reproducing a fixed ROI on #megoral images of the same anatomical level.
Because of respiratory misregistration in z digctand x-y plane the selected ROI can include in
the others temporal slices (of the same anatomégabn) not only the tumour tissue but also air,
bone or normal liver parenchyma. TAC unreliableadatints were excluded with an algorithm that
eliminates the points in which the first derivagenegative or equal to zero. Negative or zero slope
until the maximum enhancement of the TAC is reaclaeel not consistent with our model. This is

in accordance to the physiological assumption ofiratease of contrast in the tumour that
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corresponds to a continuous increment of HU si@matil the maximum enhancement of the TAC

is reached) [12].

After this processing, the TAC of all patients werecessed with two methods: a gamma fitting

and a smoothing spline interpolation.
The gamma variate function is expressed as [46]:

—(t-top)

3Ly(t) = K(t—ty)%exp &

where K,a andp are fitting parameters.

The gamma variate function has been often use@goribe the dispersion of a bolus as it passes
through a series of compartments [46]. For thiseaait is frequently chosen to fit first-pass data
perfusion studies. Although the gamma variate isggpropriate function to model these situations,
it has several undesirable mathematical propei@banges in the Ky andp parameters affect not
only the rise and fall times of the function, bigcathe location and magnitude of the function
maximum. This makes difficult to anticipate how thenction will be altered by varying the

parameters [46].

The smoothing spline is a method of smoothingirfitta smooth curve from a set of noisy
observations) using a spline function. The smogtisipline estimates the function Il (over the class

of twice differentiable functions) that minimizeetfollowing equation:

32. 370, (Y, —u(x))* +p [ 1" (x)%dx

where p is a smoothing parameter, controlling treeléoff between fidelity to the data and
roughness of the function estimate [47]. The fijtiprocedure was obtained using the "csaps”
MatLab function, where values csaps (X,y,p) rethvalues of the cubic smoothing spline for the

given data (x,y) and depending on the smoothingrpater p from 0 to 1. In this study, p was the
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default value chosen by csaps function. This chaogestified by the goodness of visual inspection
of the results in all patients. Spline interpolatidoesn't make any assumption about the shape of
the TAC and represents a smoothing procedure tiestepres the original shape of tumor liver

pattern [48] [49] reducing undesirable irregulastion the rise of the curve.
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Figure 19: Results of different processing on theasne raw TAC

Automatic evaluation of maximum slope, by meanéref derivate computation, was implemented
over the fitted curves and BFa value was calculagwmatically dividing maximum slope by
maximum enhancement value over aorta TAC. BFa Wsts evaluated for each patient allowing
manual selection on the raw, original TAC (no fifteof two points required to identify the
maximum slope of the tumor TAC. The slope of thestesquares line of the data points (within the

selected interval on TAC) can be assumed as thémax slope (green line plotted on Fig. 20).
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Figure 20: green line represent the maximum slopestected on the TAC

The results obtained showed that TAC are corruptedespiration artifacts, in accordance with

most recent studies [12] [36][49][50].

Irregular points are caused by positioning a fibR@l on image. In the figures 19 and 20 an
example of the effect of the first step of the megd algorithm is shown. In Figure 19, the black
dotted line (original data point) is affected by variation. In Figure 20, the black dotted lise

monotonically increasing. The correction algorithras removed points with zero or negative

derivate.

Once tumour TAC were corrected, gamma and splttiadiwere computed. Gamma fitting wasn't

calculated in five patients because the data pahtained are not coherent with gamma variate
approximation and with chosen parameters. In fgatyma curve has a mono-exponential upslope
and our study showed that is not suitable to remtethe pattern of hepatic tumor enhancement.
Spline smoothing interpolation, on the contraryemtates in all patients undesirable irregularities

following the basic shape of tumor TAC (see Fig [2®)

The BFa values obtained with the different TAC gs®sing methods are displayed in Table 3
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BFa ( spline BFa (gamma fitting) BFa (no fitting with manual
fitting) selection)
Patient 1 1154 - 54.2
Patient 2 120.2 62.4 98.7
Patient 3 119.6 39.3 76.6
Patient 4 85.0 - 43.1
Patient 5 94.6 37.9 52.0
Patient 6 63.1 - 34.3
Patient 7 114.7 - 54.8
Patient 8 80.0 - 51.6

Table 3: BFa values obtained with the different TAC pocessing in eight patient

BFa computed from spline smoothing TAC interpolatwere greater than those obtained with the
other two data processing methods and are morestemnswith BFa values reported in literature in
HCC patient [43]. In fact, gamma fitting procedwauses an underestimation of BFa values
because the end data points of TAC are not welleqipated. This causes a flattening of the curve
slope of the curve. BFa computed from manual seleavere in all patients greater than values
obtained with gamma fitted TAC. However, the estiora of maximum slope, after manual

selection of start and end points, introduces enéurelement of variability [42].

In conclusion, we can state that fitting procedanel automatic detection of the maximum slope
reduces the variability in assessment of perfupemameters due to operator. Moreover, both spline
interpolation and gamma fitting procedure are pealy influenced by our correction algorithm. In

particular, spline interpolation on corrected dadents shows a single up-slope until the maximum

enhancement is reached.
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However, spline interpolation presented some teahndifficulties, for example the automatic
choice of smoothing factor — p value — is partidyldifficult in noisy TAC, such as some of those
derived from images acquired in clinical environtseduring daily practice. Hence, according to
literature, we have considered interesting for aese purposes considering also a moving average
(MA - with five coefficient) still in comparison wh manual selection of the maximum TAC slope.
When applying the two procedure of fitting (splexed MA filter), the TAC slope is obtained with a
liner fitting of three data points relative to tiaximum increment [51].

Since there are not certain guidelines in litemtiBFa obtained with manual selection is here

considered the reference.

The results of the comparison are reported indheviing table 4.

Patient BF,, manual BEF,, spline BE,, MA filter
(ml/min/100ml) interpolation (ml/min/100ml)
GRUPPO 1 (ml/min/100ml) GRUPPO 3
GRUPPO 2
1 80.22 127.5100 84.1100
2 77.3300 180.7700 71.7800
3 69.1200 125.3800 70.8600
4 84.1200 149.1400 85.1000
5 75.3300 113.8700 70.5900
6 79.5600 102.5200 77.7300
7 68.3300 117.2900 86.0100
8 120.4600 159.5900 104.5300
9 108.2000 130.2500 99.4300
10 65.5000 103.7700 64.3300
11 84.2300 100.1200 90.3300
12 55.2200 74.6600 49.4700
13 65.6900 167.5600 89.3400
14 49.0900 84.8000 56.9500
15 88.4300 120.1500 86.0500
16 78.2300 102.4100 80.2200
17 81.2300 129.6200 85.1300

Table 4: BFa values computed with different TAC procssing. The nonparametric Mann-Whitney U test confirmthat results

from group one and three belong from the same popation (statistical significance level of 5%)
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The nonparametric Mann-Whitney U test was usedtopare perfusion parameter (BFa) between
the three groups. Null hypothesis is accepted @lygroup 1 and 3 with a statistical significance

level of 5%.

The results obtained on a larger group of patieot€irm that a moving average with fitting of
three data point with maximum increment to coreptlite slope, represent an automatic and

reliable method to obtain BFa with slope method.

4.4 COMPARISON OF MAXIMUM SLOPE METHOD AND DUAL-INPUT- ONE-

COMPARTMENT-MODEL

The first study about the accord of perfusion CTapeeters related to two commercially available
perfusion computed tomographic (CT) software paekatgmonstrated that there was disagreement
between mathematical model used to estimate tuwamaularity, which indicated the measurement
techniques were not directly interchangeable [32fhough many researchers have stressed the
clinical usefulness of perfusion CT technique thandardization of analytical method, i.e.
definition of the best mathematical model to corepugpatic perfusion parameter, is still matter of
debate [53][54][55]. Kanda et al [53], comparingpaic parameter obtained with maximum slope
method (MS), dual input one compartment model (DQClhd deconvolution method (DM),
conclude that these three analytical method areimtetchangeable. DOCM and DM are less
susceptible to extra hepatic system factor, i.e.,a&gx, cardiovascular risk, arrival time, tratigiie

and liver dysfunction or hepatitis. A correlationefficient of 0,455 (p<0,0001) was calculated to
study the agreement between MS and DOCM. Miyazakale[54] reported results about a
simulation study to compare maximum slope and DOEbhcluding that MS cause a
underestimation of about 60% with respect to DOGIMBFa computation. In another work the
same author [55] conclude that with venous injectBi-a determinated by the MS method was

lower than that obtained by the DOCM method (p<p,05
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No author have analyzed the susceptibility of ti® methods to noise. So the purpose of our
analysis was to study the effect of noise in BRamatation comparing MS (maximum slope) and

DOCM ( Dual input one compartment model) by simolag.

First, we generated CI(t) according to DOCM formsiéting defined values for Kla, K1p and K2 (
in particular Kla value was set to obtain a comesiing BFa values of 113,4). Ca(t) and Cp(t)
were obtained from images acquired in a clinicafyston CT study. In this study andt, were

assumed to be zero for simplicity [54].

Furthermore, to investigate the effect of stat@édtimoise, we added Gaussian noise to the TAC to
generate signal to noise ratios (SNRs) of 20, 26 3. The SNR was given by the standard
deviation of the power of noise free TAC dividedthg standard deviation of the noise generated
from normally distribuited random numbers with zen@an and unit variance. Simulation were

performed 10 times for each condition and the ne@h8D of the estimated BFa were calculated.

Results are reported in the following table 5:

Veffsig/Veffn=20 | Veffsig/Veffn =10 | Veffsig/Veffn=30

SNR=26 SNR=20 SNR=30
BFa (ml/min/200ml) | MS 108,4+11,7 145,1+25,1 98,7+11,3
DOCM | 130,2+12,7 113,9+17,0 131,0+10,5

Table 5: Bfa values evaluated by MS and DOCM analys Results are reported in term of mean and standd deviation of

ten simulation for each SNR conditions. Know valuef BFa is 113,4.

Comparison between hepatic perfusion parametetaated with the two analytical methods were
performed using Wilcoxon-Mann-Whitney test. P<0,0Bas considered significant. BFa
determinate by MS method was lower than that detet® by the DOCM for higher values of

SNR (26 and 30). When the noise is prevalent (SNiRsbpe method algorithm fail and give an
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increment of BFa values. On the contrary mean valb&ined with DOCM have the minor
percentage change from the know BFa value. Ourltsesumggest that our maximum slope
algorithm give bad results in condition of low Si#ercentage change from the know BFa value is
21%). Anyway for other values of SNR (26 and 30faading to literature slope method

underestimate BFa values with respect to DOCM ntef&d][55].
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5.SPV INDEX IN CHARACTERIZATION OF ARTERIAL HCC

HYPERVASCULARIZATION

Primitive liver tumour (HCC) diagnosis, assessnaamd staging are critical because PET (Positron
emission tomography), that represent the gold st@hfiinctional technique, is not a useful tool in
the diagnosis and follow up because HCC tumounateharacterized by an increment of glucose.
So, perfusion CT studies in HCC patients are irginggly advocated as a means to assess the grade
of vascularization to evaluate variations in pedosparameters following locoregional treatments

or antiangiogenic drugs.

One of the specific aim at the start of PhD candigawas to formulate a standardized index, such
as SUV in PET studies, to characterize HCC Hypewasization. In this Chapter we describe the
theory about the SPV index in HCC and analyze ththodology and the causes of variability that

have to be considered before that a reliable usenital practice is possible.

5.1 STANDARDIZED PERFUSION VALUE: HISTORICAL BACKGROUND

SPV index was introduced and applied to lung tuma@scularisation by Miles [56]. This author
underline for the first time that perfusion paraenere largely unaffected by dose, patient weight,
and cardiac output and that a dedicated image sitiqui and relatively complex numeric analysis

are required.

SPV index is defined as

335PV = —L

wb
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where R is tumour perfusion and,fis mean whole body perfusionyfis defined as Cardiac
Output (CO) divided by patient’s body weight (W)r@iac output can be evaluated from perfusion

CT images and defined as dose of contrast (D) €d/loy area under aortic curve (AUC).

The dose of contrast is calculated as below ilhist:

34.D = volume of contrast (ml) X contrastconcentration (%) X Kf actor(%)
ml
where K factor represent the calibration factoe. ithe sensitive of CT system to iodine

concentration.

The SPV is conceptually similar in its derivatianthe SUV used to quantify FDG uptake at PET.
The SUV is used to compare FDG uptake in the tissuénterest with the average uptake
throughout the body. Likewise, the SPV is useddmgare tissue perfusion with average whole-
body perfusion. The results obtained by Miles sleb@weod correlation between SPV and SUV in

patients with lung tumour.

Other clinical studies have demonstrated that P& useful index to characterize lung and breast
tumor vascularisation [56][57][58], but, for all wawow, there are not studies about SPV use in
liver tumor analysis. Moreover there are not stadbput the consistency of the index and the

problem related to technical aspect.

5.2 SOURCES OF VARIABILITY IN THE USE OF STANDARDIZED PERFUSION VALUE FOR

HCC STUDIES

We believe that could be helpful to employ Stantad Perfusion Value (SPV) in HCC perfusion
studies which has the potential to be a usefulingasive marker of angiogenesis. However, before
using SPV in clinical practice, we need to verifg reliability. There are different causes of

variability in applying the SPV index, e.g., thehaical specifications of the CT system employed
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and the image processing system. In this chapteanaby/se the variability of the BFa estimates and
the variability due to the calibration procedurdled CT system, this with the objective of verifyin

how these factors affects SPV values.

5.2.1 MATERIAL AND METHODS

The results are obtained from perfusion MDCT imagfeseventeen HCC patients. The algorithm,
based on maximum slope method, presented in Chaptaxs used to compute BFa and then SPV
values.

According to SPV formula proposed by Miles we idinoe BFa parameter computed with our
algorithm based on slope method as Pt parameter.

As it can see by the following equation

BFy XW

35.5PV = e
Ja®

before the evaluation of SPV, BFa value has to dmputed. In this phase, important causes of

variability are slice and ROI selection [59].

5.2.2 ANALYSIS OF BFA VARIABILITY DUE TO ROl MANUAL SELECTION

Four expert radiologists (each with at least twargeof experience in CT perfusion) were involved
in the processing of the perfusion image dataaegdch patient. They were instructed to choose a
single slice, from the perfusion image data sett best depicted the tumor. Then, a circular ROI
was drawn on the image displayed by the softwéiie,was done in order to include as much of
tumour tissue as possible, still remaining withghboundaries, and to ensure that it did not irelud
large vessels. Once the slice is selected, diftecgoular ROI of different size and in different
position (respecting the inclusion criteria) can dmected on the same patient. Therefore, to
evaluate the variability related to opera-tor-defen ROI selection, each radiologist, repeated, on
the same selected slice and a week apart fromatheh the input procedure (i.e. ROI position and

dimen-sion) four times on the same image set. &on set of measures (same radiologist and same
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patient) mean value and standard deviation of B&laes were computed, finally providing the

percentage of variation coefficient as a concisienasion of variability.

5.2.3 CALIBRATION OF THE CT SYSTEM

To evaluate the SPV index, the computation of takbiation K factor of the CT system was
necessary (please see equation 35) . K factoffiisedeas the slope of the plot of attenuation in HU
vs different con-trast agent concentrations (inligndams per millimetre) [56]. Therefore, the
calibration procedure aims to deter-mine the catibn K factor that characterizes the linear
relationship between the measured attenuation in afdd the concentration of contrast agent
[60][61]. We have carried out a specific procedurevaluate the dependence of the K factor from
the position in the CT scan for our CT system.

We performed our calibration procedure with a ajioal acrylic phantom (Fluke Biomedical)
with five holes. The thickness of the phantom iscib with di-ameter of 32 cm and contains five
pipettes holes (A, B, C, D, E, see Figure 21), ionthe centre and four around the perimeter, 90°

apart and 1 cm from the edge. The inside diamétirecholes is 1.31 cm.

32 cm

Figure 21: Scheme of the phantom used for the califition procedure.

The phantom includes five acrylic inserts for plingpall the holes not filled with pipettes. Contras
agent of 400 mg/ml was diluted in physiological irsal solution to obtain four different
concentrations (6, 9, 12, 15 mg/ml). These coneéinftis correspond to physiological con-
centration in abdomen, liver, spleen and major elesgsuch as aorta and vena porta) when a

contrast agent bo-lus of 70 ml is injected at e raf 4 ml/s. Pipettes with five different
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concentrations of contrast were prepared (0, 6,29,15 mg/ml). The scan parameters were the
same used to obtain patients images in our HCQgierf studies. The phantom was placed on the
scanner table so that the pipettes of contrasttagemre parallel to the z-axis of the CT scannee Th

height of the table was adjusted in order to pasithe phantom at the centre of the CT gantry

(Figure 22).

il

Figure 22: Example of phantom positioning into theCT gan-try.

Our calibration protocol was based on six configuwas (PO, PA, PB, PC, PD, PE) corresponding
to different positions of the pipettes in the ploamt The evaluation of K factors in different
configurations aims to esti-mate its dependencéherposition in the scan field. In configuration
PO, the five pipettes with different contrast camtcations (0, 6, 9, 12, 15 mg/ml respectively) were
inserted in the five holes (A, B, C, D, E) of thegmtom and then scanned simultaneously by means
of a single acquisition using the perfusion protaan sequence. In the other configurations, the
five pipettes were in-serted one at a time in t@e hole (i.e. A correspond-ing to PA, B to PB, C
to PC, D to PD and E to PE con-figuration), and dligers holes were filled with acrylic inserts.
Therefore, for these configurations, five scansewerecessary, each of them with a different
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contrast agent concentration in the pipette, ireotd estimate the K factor corresponding to every
position. Since each TC scan provides 8 imagesf&ctors and their mean and standard deviation
were computed for each configuration. To determieK factor, regions of interest (ROI) were
located by the operator on images in correspondesitteeach pipette containing contrast agent.
The dimensions of the ROI were chosen as largessige and avoiding partial volume effects and
air bubbles generated during preparation of thetewis. For each contrast agent concentration, the
mean values of gray levels (HU units) in each R@tenobtained in the different images. The slope
of a linear least square fit of the five points (KB milligrams per milliliter) gave the calibration

factor.

5.2.4 RESULTS

Results obtained about the estimation of variaghititBFa evaluation are shown in Table 6.

Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4

Y1 (61) RSD, Jiz (o2) RSD: M3 (63) RSD; y (4) RSD,
Patient 1 86.5 (49) 57 873 (15.2) 174 863 (4.0) 46 838.6 (1.5) 17
Patient 2 91.7 4.7 51 89.0 3.7 42 893 (4.0) 45 85.9 (5.1) 59
Patient 3 96.4 (0.6) 0.6 945 (1.5) 16 893 (12.8) 143 983 (2.5) 25
Patient 4 102.3 (4.6) 45 814 (14.0) 172 96.1 (23.4) 243 99.9 2.4) 24
Patient 5 803 (2.3) 29 741 (6.4) 8.6 81.6 (1.3) 16 85.1 (3.1) 36
Patient 6 959 (1.1) 11 938 (30.6) 31.0 1035 (7.1) 69 9222 (16.4) 17.8
Patient 7 921 (2.2) 24 894 (1.5) 17 87.0 (2.9) 33 78.4 (59) 75
Patient 8 946 (0.8) 08 911 (1.3) 14 799 (15.3) 19.1 83.7 (14.2) 17.0
Patient 9 1131 (2.0) L8 1133 (1.8) 16 1134 (29) 26 105.0 (9.5) 9.0
Patient 10 727 (09) 12 694 (12.0) 173 732 (1.1) 15 71.8 4.7 6.5
Patient 11 88.7 (1.0) 1.1 873 (3.5) 40 103.0 (9.3) 9.0 89.6 (0.6) 0.7
Patient 12 912 (1.7) 19 931 (2.0) 21 926 (1.4) 16 89.8 (2.0 22
Patient 13 998 (3.1) 31 96.6 (10.8) 112 101.8 (6.6) 6.5 90.1 (54) 6.0
Patient 14 70.0 (21.5) 30.7 841 (23.4) 278 823 (54) 6.6 86.5 (8.0) 93
Patient 15 60.7 (1.8) 30 61.0 (0.5) 0.8 60.4 (1.7 28 573 (4.3) 75
Patient 16 81.4 (14) L7 784 2.1 27 79.1 (6.4) 5.1 68.1 (1.5) 22
Patient 17 958 (2.6) 27 89.8 (6.5) 72 96.5 (4.8) 5.0 955 2.7 28

Table 6: Results obtained by the four radiologistsn BFaestimation shown as averageu{, standard deviation ¢) and coeffi-

cient of variation in percentage (RSD)
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They indicate that BFa computation is affectedhsy different ROI positioning made by the four
operators. In fact, we obtained a great variabitioth among radiologists for the same patient
(please, see differept values along the lines) and among results obtanyetthe same radiologist
on the same patient (please, sealues).

We computed also RSD as estimation of variabilligerver-dependent, obtaining a mean value of
6.7%.

About the calibration procedure, we found that Ktda depends on the position in the CT gantry.

Obtained statistical parameters are shown in TAlfRSD less than 3%).

i G RSD Min Max

K factor 35.9 1.0 2.8 34.6 37.0

Table 7: Statistics of K factor computed by means ahe extended calibration procedure implemented byhe authors

Finally, we have preliminarily estimated SPV indeference values, by computing them from CT
perfusion exams in the group of seventeen HCC miatiebtaining values in the range 8.0 - 18.3

[62]

5.2.5 DiscussION

Contrast-enhanced CT, in clinical practice, is Gieafly considered as the primary mean for
assessing the therapeutic response of HCC to kmgional treatments, especially after the
introduction of multislice systems [63][64][65]. &CT perfusion technique is quickly spreading in
the field of oncology since it can be simply incomated into routine CT protocols, providing
precious in-formation about tumour grade and argnegis monitoring “in vivo” [50]. However,

beneficial, extensive clinical application of pesion CT requires a reliable use of the technique. |
particular, when it is used for monitoring effecffsa therapy, the reproducibility of the technique

has to be such that the difference between repeaeasurements is small compared to the
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variability due to therapeutic changes [50]. At tlm@ment, there are encouraging preliminary
findings about reproducibility of the methodologydaintra- and inter-observer variability but they
regard only some body regions [66], not including liver.

Software packages involving SPV computation aresicmmed as advantageous in oncological
applications [50], but we believe that the firspigation of SPV index to liver tumor is described
here. At the best of our knowledge, in fact, thare no studies about SPV application in HCC
patients, although perfusion CT studies are widedgd in characterization of liver tumor. We
believe that SPV index could be very helpful irelitumor studies, nevertheless its application in
clinical practice requires a preliminary evaluatiohits reliability. In this study we wanted to
provide details about some limitations of this taghe.

Important is, for example, the variability in SPoheputation. SPV index, normalised respect to CO
and patient’s weight was proposed by Miles [S56tdduce variability relative to these parameters.
However, as can be seen from Equation (35), tleesgli variability due to K and BFa calculation.
BFa computation is mainly related to the subjectpasitioning of the ROI done by a specific
operator. Our results are in accordance with otvaks in which is reported the variability of the
perfusion parameter, related to the processing/sisabf perfusion image [66][67].

The positioning of the ROI consists in manuallyvdreg a circular ROI along tumor margins so to
allow the software to quantify perfusion valueshaitit. It is crucial that the ROI is placed within
tumor margins in all perfusion scan images. By egnence, all images of the study should be
carefully analyzed, preferably in cine-loop modalito ensure that the ROI does not ex-tend
beyond tumour margins and does not include vesael®r surrounding adipose tissue in any of
them. However, this procedure does not solve pnebleslative to patient movements during the
time of acquisition. In fact, it is very difficuto choose a ROI that remains still on the tumaganh
different image. The solution could be the selecbba different ROI for each image; however, this
procedure can be boring for the operator, is timesaming and could introduce other sources of

variability. Therefore, generally (as done alsotfas research work), once drawn a ROI, it should
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be placed in the same position on all the temponalges of the same anatomical level [45].
Because of respiratory misregistration, which repnés an important source of error, as reported
also by other authors, it is possible that thecteteROI can include, in some slices, not only the
tumor but also air, bone or normal liver parenchyma

The calibration of CT systems is a necessary puregdbeing the K factor a parameter included in
the formula for computing the SPV.

Calibration factor depends on the specific CT syséexd on the acquisition parameters (KVp, mAs,
kernel reconstruction) and changes over time. Sautleors [68] proposed to compute K factor for
each patient. Others [60] stated that it would h&lent to calibrate the CT system on the same day
for each quantitative contrast- enhanced study.

However, we consider this recommendation a limitlinical practice, because of the time needed
to calibrate the system. Therefore, in order tofyéi it is possible to avoid a complex calibratio
procedure, we estimated the contribution of K faatariability to the variability of SPV index
respect to the variability due to BFa evaluation.

Calibration factor variance, due to the positionthie gantry, resulted less than BFa variability
(which is more than the double). So, we conclude, tif the daily calibration is preferred, a
simplified protocol, which neglects the dependeuoick factor from the position, may be utilised.
Otherwise, also according to literature, we advicekeep it on the safe side, that calibration
procedure should be repeated about every two wkxka specific CT system, before that the
amount of K factor variation, reported in literay60], becomes comparable with variability due to
BFa estimation, found in our results.

Finally, concerning values of SPV index, we evadathem in seventeen patients in order to
preliminarily verify the accordance between obtdimesults and the theoretical hypothesis that,
being HCC characterised by a higher vascularisagspect to other kinds of tumours, it should
show higher SPV values. We retain to have obtaintgtesting results even though our patients

number was not so large and a direct comparisoh thi¢ SPV values in other organs was not
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possible. In fact, as expected, we found high SBMes (8.0 - 18.3) that characterize the hyper-
vascularised HCC lesion, respect to lung (rangd 1110.36) [56] [57] and breast tumour (range 2.5

- 5.9) [58].

5.2.6 CONCLUSION

The application of SPV index in HCC tumor could &av great potential in the management of
HCC patients. However, to ensure the reliabilitySi#V perfusion index, it is advisable to use
always the same acquisition protocol and to cakbthe CT system with the same measurements
conditions at least every two weeks. Neverthelegshave demonstrated that this aspect can be
neglected until the intrinsic variability of perfaa parameter computation will be reduced.

In conclusion, we suggest the use of SPV indexesit perfusion provides qualitative assessment
of vascularisation and therapeutic effects wheeseqsantitative evaluation can be more useful. The
use of SPV Index could be a feasible and non-ireatol in the management and follow up of
TACE/TAE, PEI, radiofrequency ablation and radioetitation treatment in HCC patients. This
treatments are the most suited in patients with swmgical lesions in early, intermediate and
advanced stage [69]. The response to these lotoradreatments may be evaluated by comparing
the difference in SPV values pre- and post-treatmen

The results of this work represent, in our opinian,important step in the evaluation of the use of
SPV index in liver tumor perfusion studies. Howewse aware that the main limitation of our
study is the small volume of coverage related éitiiage CT system. This volume is limited along
the z-axis by the number of CT detectors used gedgcm for our 16-slice CT system). Anyway, 16

slices CT systems are still widely spread and apgh the follow up of HCC patients [17].
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6. PERFUSION MAPS

We have seen that evaluation of quantitative pararm@bout tumor perfusion, such as blood flow,
by CT perfusion is gaining acceptance in clinicppblcations. “ROI based” analysis can be

considered the gold standard technique to deriamtifative parameters, although it does not allow
to depict the heterogeneous vascularisation of tutissue. On the contrary, “pixel by pixel”

analysis, which has this potentiality, leads oolygutalitative depiction of tumor perfusion by means
of colour scale since still lacks of robust progegsmethods. In this chapter, we propose an
algorithm for parametric estimation (pixel by pixef BFa values and used it for the analysis of a
group of seventeen patients with primary liver tumorhen, we compared obtained BFa values
with those estimated by a “ROI based’approach,diygithe same image processing, to investigate
the reliability of parametric maps computed witle #idgorithm developed. Then an analysis by a
“map based” approach was conducted to compare ¢niermances of pixel by pixel MS and

DOCM algorithm.

6.1 ROI APPROCH VS PIXEL BY PIXEL APPROACH: THE VALUE OF PERFUSION MAP

In literature, the first techniques, used for gitative perfusion evaluation, were based on ansalysi
of average HU variation in regions of interest (RQIdentified manually on the functional images
[10][27][30]. However, perfusion may be heterogamsy distributed and information regarding the
differences may in this way be lost. In order tdaoh more detailed information about perfusion,
several attempts have been made to apply the &inalculations to individual pixel data and the
generated distribution map is often referred tagsarametric image [22][41][70]. Nevertheless,
parametric maps had initially only a qualitativelue because they were used just to help the
radiologist in ROI positioning without validatiori employed processing, so that their reliability as

tool for quantitative estimation of perfusion paeders is still matter of debate. Pixel by pixel
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analysis leads to high variance of the estimate$ \@ariance reduction by posterior spatial
averaging produce variable results.

As we have seen in chapter 3, pixel TAC is noigiet ROl TAC because the effect of by photon
noise. When generating TAC from very small regionandividual pixel, photon noise, in fact,
becomes an important consideration. Random vanstio photon numbers cause variability in
measured attenuation values and hence, errorg icalbulated perfusion values [20]. The problem
of liver perfusion CT map processing is minimallydeessed by other authors at the best of our
knowledge. However some authors have publishedl ddiaut parametric mapping algorithm in
liver and myocardial perfusion MRI studies [51][7dhd cerebral perfusion CT studies. When
processing pixel TACs we have different problemntiROI TAC processing. First of all we have
applied gamma fitting to pixel TAC. Our results sleal that this fitting is not applicable because of
the height noise. Gamma model, infact, is adapiedpresent the first part (upslope) of liver TACs
and represent the dynamic phenomenon of contrpst inith a single upslope. The experimental
analysis of pixel liver and tumour TAC have demasigd that there are two upslope related to
arterial and portal phasé€&samma equation is not a good model for the pixdb.d&pline
interpolation is always applicable to pixel TAC lbée problem is that pixel TAC are noisier than
ROI TAC and the algorithm to remove outlier (propdsand applied to ROI TAC) don’t give good
results. Pixel spline interpolation is more affectey the noise than TAC spline interpolation and

this cause map of poor quality that not simplevalROI positioning.
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Figure 23: BFa map obtained with slope method algdhm

Moreover quantitative value obtained with spliftinfg map overestimate arterial Blood Flow in
primitive liver tumours (mean value in seventeenCH@atient is 320 ml/min/100ml). Our results
suggest that a more reliable algorithms have tmbestigated to obtain quantitative and qualitative

map of BFa in liver tumour.

In this thesis we introduce an algorithm for partrineestimation (pixel by pixel) of BFa values
with slope method. Then, because ROI based appmratioe considered the “gold standard” for

guantitative values, a comparison with our pr@goslgorithm is made to assess the reliability.
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Figure 24 : Flow chart of algorithm used to obtainBFa map according to slope methc

An analysis of correlation between perfusion patansecomputed with a traditional ROI ba:s
approach and thealues computed by means of a p-by-pixel map approach (using the sa

image processing technique) is presel

According to literature [72]before analysis, a double threshold was imposethenmage set t
exclude air and bone (only pixels incld in the range50+200 HU were analyze: For each CT
perfusion image sequence of the liver tumour, iRelwalues at each specific pair of coordinate
all the successive images were extracted to obtane dimensional HU array-D-array), which
represents the pix@lAC. This pixel-TAC was smoothed [36)ith an average filter (5-order
moving-average filter), to reduce noise contribute. Anagrof differences (-D-diff), which

represents the contrast time variation, was thenpcted by the -D-array. Of course, the large
positive element in the 1-DHf array corresponds to the maximum contrast tpasivariation.
Three consecutive data points in tl-D-array, centered around the element correspondirtiyel

largest element identified in R-diff, were then considered. The three consecutivetpowere
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fitted using a linear curve fitting model. The sopf the regression line was considered as the
maximum slope of the pixel-TAC. The procedure wgseated for calculating the up-slope of each
pixel over the whole image. Thus, the image senas reduced to a single image (a parametric
map) where each pixel value corresponds to the maxi up-slope of the TAC at that coordinates.
According to Miles [50], dividing the parametric may the maximum value of aorta-TAC
(computed in a traditional way), we obtained theaBfarametric map. To compute BFa mean,
variance and maximum values, a circular ROl wasqaaon the map in correspondence of the
tumour region. The ROI was chosen to include thgelst possible part of the tumour tissue, while
remaining within its boundaries, and to ensure thdid not include large vessels. The same ROI
choose for the map approach was drawn on the imhgee tumour in the CT perfusion images.
The mean of HU values inside the ROI were comptde@ach slice of the sequence to compute a
mean tumor TAC. The processing used for the mapoaph was applied to this mean curve to
obtain BFa values. BFa values computed using the aparoach were plotted against BFa values
computed by means of the ROI approach. The regresisie shows the agreement between these

values (Goodness of fit: SSE: 194.1 R-square: Adj0sted R-square: 0.89 RMSE: 3.6).

BFavalues "WMAP based appioach”

x| 5 80 == Ell 95 o0 s 110
EFa vzlues "RO| based approach”

Figure 25: Correlation analysis between BFa valuesbtained with “ROI based” and “map based” approach
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Anyway, the values obtained from the map were cgrage higher than those obtained from the
ROI approach. That could probably due to the gresffect of the noise on the processing of the
pixels-TAC. In fact, the presence of breathing,reifegentle, during dynamic imaging, did cause
local errors in BFa estimation due to the movenadrgmall structures between consecutive time
slices, especially around the time of contrastvatriThis effect is a minor problem for ROI

approach, probably for the effect of the mean dpmrainside the ROIl. The R value obtained
supports the idea that the use of an adequate gmiogepermits to obtain reliable BFa maps
compared with the ROI approach. Assessment of qaame parameters by CT perfusion maps is
still an open issue although the wide spread ofupgm technique in clinical practice. We have
developed and tested in a group of 17 HCC pati@mtalgorithm based on slope method to obtain
perfusion maps . The results are in accordancetivitbe obtained with a traditional ROI approach,
using the same image processing algorithm. Thigestg that the developed algorithm could give

useful quantitative information about tumour hegeneeous hypervascularisation.
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Figure 26: A BFa map obtained with the developed spe method algorithm
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6.2 COMPARISON OF MAXIMUM SLOPE METHOD AND DUAL-INPUT-ONE-
COMPARTMENT-MODEL: MAP BASED APPROACH

In this section we analyze and compare algorithased on slope method (MS) and dual-imput-
one-compartment-model (DOCM) analytical model t@aob perfusion map. We have seen that
DOCM requires that in volume of acquisition postaln have to be always included and this aspect
make it not always applicable. On the contrary DOSNhdependent from injection rate of contrast
agent. Our preliminary comparison based on a “R@&8eld approach” have demonstrated that

DOCM method seems to be more robust to noise (kapt€r 4).

A new algorithm based on Linear least squares ndetbbSM) was developed to process pixel by

pixel perfusion CT map according to DOCM [54].

The images of the same five patient were processttdDOCM and MS algorithm (described in
the above paragraph). Quantitative values to coenpyao algorithm are reported in term of mean
and standard deviation of BFa pixel values insidedame ROI (positioned in a region of normal

perfusion) reproduced on the two different map|é&)

Figure 27: Positioning of a ROI on a region of liveparenchima characterized by normal vascularizatio
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BF BF

a a

MS(ml/min/100ml) | DOCM(ml/min/100ml)

u o w o
39,45 5,210 31,68 30,32
44,87 13,60 28,55 29,56
62,32 7,684 27,32 18,77
57,16 6,881 26,36 25,86
64,94 15,86 17,63 12,70

Table 8: BFa values computed with MS and DOCM algothms. 4 and ¢ are respectively the mean and the standard

deviation of pixel values inside the ROI

Because the ROIs were positioned in a region drliparenchyma characterized by uniform

vascularisation to compare the two algorithm SNR defined as the ratio of u aadtable 9)

Wo 10log pio Wy 10log pb
7,572 8,792 1,045 0,191
3,299 5,184 0,966 -0,150
8,110 9,090 1,456 1,632
8,307 9,194 1,019 0,082
4,095 6,123 1,388 1,434

Table 9: Results reported in term of SNR
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The analysis of results demonstrate that SNR vahssociated to MS are lower that those
calculated for DOCM. It means that slope methodrtligm is preferable to compute quantitative

BFa maps.
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Figure 28: BFa map computed on the same patient witMS and DOCM algorithms

The analysis of BFa maps showed that even fromqgtiaitative point of view the MS method
(image on the left) is more reliable: in the rigmage (DOCM) the tumour is not visible and the
spleen appears to be perfused as the liver parareciy the arterial phase (in opposition with the

physiological processes of abdominal perfusion).
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7. CONCLUSION

Improved therapeutic options for hepatocellulaciceoma place greater demands on surveillance
tests for liver disease. Existing diagnostic imggiachniques provide limited evaluation of tissue
characteristics beyond morphology; perfusion CTgimg of the liver has potential to improve this
shortcoming. Perfusion parameters can be obtaipptying mathematical model to TAC, i.e.
contrast agent evolution over the time in a sped¥DI positioned on the images. However, there
are still some difficulties for an accurate andadbte quantification of perfusion parameters due,
for example, to algorithms employed, to tracer kmenodelling methods, to patient’s weight and

cardiac output, to the acquisition system.

In this thesis, new parameters or methods of inééaion and alternative methodologies about liver
perfusion CT are presented in order to further stigate the potential and the limits of this

technique.

Firstly analysis were made to assess the variphiitated to the mathematical model used to
compute BFa values. Results were obtained implangem@tigorithms based on MS and DOCM.
Statistical analysis on simulated data demonstrdtatithe two methods are not interchangeable
regardless of the signal to noise ratio. Anywaypslanethod is the most used model to obtain
perfusion parameters and allow to compute BFa saéil@ays when portal vein is not visible in

perfusion CT scan.

Then variability related to TAC processing in thppkcation of slope method is analyzed. Our aim
was to find an automatic and reliable algorithmctompute TAC maximum slope after TAC
processing. A fifth order smoothing with an automatlgorithm (that calculate the straight line
fitting three points corresponding to TAC maximuncrease) give the best results compared with

manual selection.
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Variability related to the patient, to the acquasitsystem and to the operator which select the ROI
on the images are than analyzed. The consisten&Pbdf index was evaluated and a simplified
calibration procedure was proposed. The applicaifd®PV index allow to identify a clinical range
to characterize HCC. At the end the quantitativluevaof perfusion map was analyzed. ROI
approach and map approach provide related valuBsafand this means that pixel by pixel slope
method algorithm give reliable quantitative resufitso in pixel by pixel approach MS algorithm
present results uncorrelated with DOCM. Moreover MD method give quantitative results

characterized by lower SNR value.

In conclusion, although it presents some limitatiorthe post-processing analysis, liver perfusion
CT techniques are becoming an important tool inrteglical research and clinical practice. The
development of new automatic algorithm for a caesiscomputation of BFa and the analysis and
definition of simplified technique to compute SP¥rameter, would improve the clinical and

scientific information provided by liver perfusi@il analysis.
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