
Alma Mater Studiorum — Università di Bologna

Università degli Studi di Padova

Dottorato di Ricerca in Informatica

Ciclo XXV

Settore Concorsuale di afferenza: 01/B1

Settore Scientifico disciplinare: INF/01

Applicability of Process Mining Techniques in

Business Environments

Presentata da: Andrea Burattin

Coordinatore Dottorato
Prof. Maurizio Gabbrielli

Relatore
Prof. Alessandro Sperduti

Esame finale anno 2013

2

Abstract

This thesis analyses problems related to the applicability, in business en-
vironments, of Process Mining tools and techniques.

The first contribution reported in this thesis consists in a presentation
of the state of the art of Process Mining and a characterization of compa-
nies, in terms of their “process awareness”. The work continues identify-
ing and reporting the possible circumstance where problems, both “prac-
tical” and “conceptual”, can emerge. We identified these three possible
problem sources: (i) data preparation (e.g., syntactic translation of data,
missing data); (ii) the actual mining (e.g., mining algorithm exploiting
all data available); and (iii) results interpretation. Several other problems
identified are orthogonal to all sources: for example, the configuration
of parameters by not-expert users or the computational complexity. This
work proposes at least one solution for each of the presented problems.

It is possible to locate the proposed solutions in two scenarios: the first
considers the classical “batch Process Mining” paradigm (also known as
“off-line”); the second introduces the “on-line Process Mining”.

Concerning the batch Process Mining, we first investigated the data
preparation problem and we proposed a solution for the identification of
the “case-ids” whenever this field is hidden (i.e., when it is not explicitly
indicated). In particular, our approach tries to identify this missing infor-
mation looking at metadata recorded for each event. After that, we con-
centrated on the second step (problems at mining time) and we propose
the generalization of a well-known control-flow discovery algorithm (i.e.,
Heuristics Miner) in order to exploit non instantaneous events. The usage
of interval-based recording leads to an important improvement of perfor-
mance. Later on, we report our work on the parameters configuration for
not-expert users. We first introduce a method to automatically discretize
the space of parameter values. Then, we present two approaches to select
the “best” parameters configuration. The first, completely autonomous,
uses the Minimum Description Length principle, to balance the model
complexity and the data explanation; the second requires human interac-
tion to navigate a hierarchy of models and find the most suitable result.

3

For the last phase (data interpretation and results evaluation), we propose
two metrics: a model-to-model and a model-to-log (the latter considers mod-
els expressed in declarative language). Finally, we present an automatic
approach for the extension of a control-flow model with social informa-
tion (i.e., roles), in order to simplify the analysis of these perspectives (the
control-flow and resources).

The second part of this thesis deals with the adaptation of control-
flow discovery algorithms in on-line settings. Specifically, we propose a
formal definition of the problem, and we present two baseline approaches.
These two basic approaches are used only for validation purposes. The
actual mining algorithms proposed are two: the first is the adaptation, to
the control-flow discovery problem, of a well-known frequency counting
algorithm (i.e., Lossy Counting); the second constitutes a framework of
models which can be used for different kinds of streams (for example,
stationary streams or streams with concept drifts).

Finally, the thesis reports some information on the implemented soft-
ware and on the obtained results. Some proposal for future work is pre-
sented as well.

4

Contents

Part I

Introduction and Problem Description

1 Introduction 21
1.1 Business Process Modeling 21

1.2 Process Mining . 23

1.3 Origin of Chapters . 26

2 State of the Art: BPM, Process Mining and Data Mining 27
2.1 Introduction to Business Processes 27

2.1.1 Petri Nets . 30

2.1.2 BPMN . 32

2.1.3 YAWL . 34

2.1.4 Declare . 36

2.1.5 Other Formalisms . 37

2.2 Business Process Management Systems 38

2.3 Process Mining . 39

2.3.1 Process Mining as Control-Flow Discovery 41

2.3.2 Other Perspectives of Process Mining 53

2.3.3 Data Perspective . 54

2.4 Stream Process Mining . 54

2.5 Evaluation of Business Processes 56

2.5.1 Performance of a Process Mining Algorithm 56

2.5.2 Metrics for Business Processes 58

2.6 Extraction of Information from Unstructured Sources 61

2.7 Analysis Using Data Mining Approaches 64

3 Problem Description 71
3.1 Process Mining Applied in Business Environments 71

3.1.1 Problems with the Preparation of Data 72

3.1.2 Problems During the Mining Phase 74

5

3.1.3 Problems with the Interpretation of the Mining Re-
sults and Extension of Processes 75

3.1.4 Incremental and Online Process Mining 75

3.2 Long-term View Architecture 76

3.3 Thesis Organization . 79

Part II

Batch Process Mining Approaches

4 Data Preparation 83
4.1 The Problem of Selecting the Case ID 84

4.1.1 Process Mining in New Scenarios 85

4.1.2 Related Work . 86

4.2 Working Framework . 87

4.2.1 Identification of Process Instances 89

4.3 Experimental Results . 95

4.4 Summary . 96

5 Control-flow Mining 99
5.1 Heuristics Miner for Time Interval 100

5.1.1 Heuristics Miner . 100

5.1.2 Activities as Time Interval 103

5.1.3 Experimental Results 105

5.2 Automatic Configuration of Mining Algorithm 108

5.2.1 Parameters of the Heuristics Miner++ Algorithm . . 111

5.2.2 Facing the Parameters Setting Problem 113

5.2.3 Discretization of the Parameters’ Values 114

5.2.4 Exploration of the Hypothesis Space 116

5.2.5 Improved Exploration of the Hypothesis Space . . . 118

5.2.6 Experimental Results 121

5.3 User-guided Discovery of Process Models 126

5.3.1 Results on Clustering for Process Mining 127

5.4 Summary . 127

6 Results Evaluation 131
6.1 Comparing Processes . 132

6.1.1 Problem Statement and the General Approach 134

6.1.2 Process Representation 135

6.1.3 A Metric for Processes Comparison 139

6.2 A-Posteriori Analysis of Declarative Processes 142

6.2.1 Declare . 143

6.2.2 An Approach for A-Posteriori Analysis 144

6

6.2.3 An Algorithm to Discriminate Fulfillments from Vi-
olations . 147

6.2.4 Healthiness Measures 150

6.2.5 Experiments . 153

6.3 Summary . 157

7 Extensions of Business Processes with Organizational Roles 159
7.1 Related Work . 160

7.2 Working Framework . 162

7.3 Rules for Handover of Roles 164

7.3.1 Rule for Strong No Handover 165

7.3.2 Rule for No Handover 165

7.3.3 Degree of No Handover of Roles 165

7.3.4 Merging Roles . 167

7.4 Algorithm Description . 167

7.4.1 Step 1: Handover of Roles Identification 167

7.4.2 Step 2: Roles Aggregation 168

7.4.3 Generation of Candidate Solutions 169

7.4.4 Partition Evaluation 171

7.5 Experiments . 172

7.5.1 Results . 174

7.6 Summary . 176

Part III

A New Perspective: Stream Process Mining

8 Process Mining for Stream Data Sources 179
8.1 Basic Concepts . 181

8.2 Heuristics Miners for Streams 183

8.2.1 Baseline Algorithm for Stream Mining 183

8.2.2 Stream-Specific Approaches 185

8.2.3 Stream Process Mining with Lossy Counting (Evolv-
ing Stream) . 190

8.3 Error Bounds on Online Heuristics Miner 192

8.4 Results . 194

8.4.1 Models description . 194

8.4.2 Algorithms Evaluation 195

8.5 Summary . 206

7

Part IV

Tools and Conclusions

9 Process and Log Generator 209
9.1 Getting Started: a Process and Logs Generator 209

9.1.1 The Processes Generation Phase 211

9.1.2 Execution of a Process Model 216

9.2 Summary . 219

10 Contributions 221
10.1 Publications . 221

10.2 Software Contributions . 222

10.2.1 Mining Algorithms Implementation 223

10.2.2 Implementation of Evaluation Approaches 224

10.2.3 Stream Process Mining Implementations 225

10.2.4 PLG Implementation 228

11 Conclusions and Future Work 233
11.1 Summary of Results . 233

11.2 Future Work . 236

Bibliography 237

8

List of Figures

1.1 Example of a process model that describes a general process
of order management, from its registration to the shipping
of the goods. 22

2.1 Petri net example, where some basic patterns can be ob-
served: the “AND-split” (activity B), the “AND-join” (activ-
ity E), the “OR-split” (activity A) and the “OR-join” (activity
G). 31

2.2 Some basic workflow templates that can be modeled using
Petri Net notation. 32

2.3 The marked Petri Net of Figure 2.1, after the execution of
activities A, B and C. The only enabled transition, at this
stage, is D. 32

2.4 Example of some basic components, used to model a busi-
ness process using BPMN notation. 33

2.5 A simple process fragment, expressed as a BPMN diagram.
Compared to a Petri net (as in Figure 2.1), it contains more
information and details but it is more ambiguous. 34

2.6 Main components of a business process modeled in YAWL. 35

2.7 Declare model consisting of six constraints and eight activities. 36

2.8 Example of process handled by more than one service. Each
service encapsulates a different amount of logic. This figure
is inspired by Figure 3.1 in [49]. 39

2.9 Representation of the three main perspectives of Process
Mining, as presented in Figure 4.1 of [67]. 41

2.10 Timeline with the control-flow discovery algorithms pro-
posed in the state of the art of this work. 42

2.11 Finite state machine for the life cycle of an activity, as pre-
sented in Figure 1 of [129]. 47

2.12 Basic ideas for the translation of set of relations into Petri
Net components. Each component’s caption contains the
logic proposition that must be satisfied. 48

9

2.13 An example of EPC. In this case, diamonds identify events;
rounded rectangles functions and crossed circles identify
connectors. 50

2.14 Example of a mined “speghetti model”, extracted from [70]. 51

2.15 Typical “evaluation process” adopted for Process Mining
(control-flow discovery) algorithms. 57

2.16 Four process where different dimensions are pointed out
(inspired by Fig. 2 of [122]). The (a) model represents the
original process, that generates the log of Table 2.2; in this
case all the dimensions are correctly highlighted; (b) is a
model with a low fitness; (c) has low precision and (d) has
low generalization and structure. 59

2.17 Typical modules of an Information Extraction System, figure
extracted from [80]. 62

2.18 Graphical representations of “Manhattan distance” (dM) and
“Euclidean distance” (dE) in a two dimensional space. . . . 65

2.19 Example of Neural Network with an input, a hidden and an
output layer. This network receives input from n neurons
and produces output in one neuron. 65

2.20 Dendrogram example, with 10 elements. Two possible cuts
are reported with red dotted lines (corresponding to values
0.5 and 0.8). 67

2.21 A decision tree that can detect if the weather conditions al-
low to play tennis. 68

3.1 Possible characterization of companies according to their
process awareness and to the process awareness of the in-
formation systems they use. 72

3.2 A possible architecture for a global system that spans from
the extraction phase to the complete reengineering of the
current production process model. 78

3.3 Thesis organization. Each chapter is written in bold red
font and, the white number in the red circle indicates the
corresponding chapter number. 80

4.1 Example of a process model. In this case, activities C and D
can be executed in parallel, i.e. in no specific order. 85

4.2 Two representations (one graphical and one tabular) of three
instances of the same process (the one of Figure 4.1). 86

4.3 This figure plots the total number of chains identified, the
number of maximal chains and the number of chains the
expert will select, given the size of the preprocessed log. . . 97

10

4.4 This figure represents the time (expressed in seconds) re-
quired to extraction chains, given the size of the prepro-
cessed log. 97

5.1 Example of a process model and a log that can be generated
by the process. 102

5.2 Visual representation of the two new definitions introduced
by Heuristics Miner++. 103

5.3 Comparison of mining results with Heuristics Miner and
Heuristics Miner++. 105

5.4 Mining results with different percentages of activities (ran-
domly chosen) expressed as time interval. Already with
50% the “correct” model is produced. 106

5.5 Plot of the F1 measure averaged over 100 processes logs.
Minimum and maximum average values are reported as well.106

5.6 Representation of the process model, by Siav S.p.A., that
generated the log used during the test of the algorithm
Heuristics Miner++. 108

5.7 Graphical representation of the preprocessing phase neces-
sary to handle Siav S.p.A. logs. 108

5.8 Model mined using Heuristics Miner++ from data gener-
ated by model depicted in Figure 5.6. 109

5.9 Unbalancing between different weights of L(h) and L(D|h)

according to the MDL principle described in [26]. The left
hand side figure shows an important discrepancy, the right
hand one does not. 117

5.10 Graphical representation of the searching procedure: the
system looks for the best solution on the simple network class.
When a (local) optimal solution is found, the system tries to
improve it by moving into the complete network space. 120

5.11 Features of the processes dataset. The left hand side plot,
reports the number of processes with a particular number
of patterns (AND/XOR splits/joins and loops). The plot in
the right hand side contains the same distribution versus the
number of edges, the number of activities and the Cardoso
metric [27] (all these are grouped using bins of size 5). . . . 122

5.12 Number of processes whose best hypothesis is obtained with
the plotted number of steps, under the two conditions of the
mining (with 0, 1, 5 and 10 lateral steps). The left hand side
plot refers to the processes mined with 250 traces while the
right hand side refers to the mining using 500 traces. 123

11

5.13 “Goodness” of the mined networks, as measured by the F1
measure, versus the size of the process (in terms of Cardoso
metric). The left hand size plot refers to the mining with 250

traces, while the right hand side plot refers to the mining
with 500 traces. Dotted horizontal lines indicate the average
F1 value. 123

5.14 Comparison of results considering the classical MDL mea-
sures and the improved ones. These results refer to runs
with 10 lateral steps and 10 random restarts. 124

5.15 Performance comparison in terms of Alpha-based metric.
These results refer to runs with 10 lateral steps and 10 ran-
dom restarts. 125

5.16 Distance matrix of 350 process models, generated as dif-
ferent configuration of the Heuristics Miner++ parameters.
The brighter an area is, the higher is the similarity between
the two processes (e.g., the diagonal). The dendrogram gen-
erated starting from the distance matrix is proposed too. . . 128

5.17 The topmost figures represent three dendrograms. The two
Petri Nets are examples of “distant” processes. 128

6.1 Two processes described as Petri Nets that generate the same
TAR sets. According to the work described in [177], their
similarity would be 1, so they would be considered essen-
tially as the same process. 134

6.2 An example of business process presented as a Petri Net
and as a dependency graph. 135

6.3 Representation of the space where the comparison between
processes is performed. The filled lines represent the steps
that are performed by the Alpha algorithm. The dotted lines
represent the conversion of the process into sets of primitive
relations, as presented in this work. 137

6.4 The basic workflow patterns that are managed by the al-
gorithm for the conversion of a process model into set of
relations. The patterns are named with the same codes of
[126]. It is important to note that in WCP-2,3,4,5 any num-
ber of branches is possible, even if this picture presents only
the particular case of 2 branches. Moreover, the loop is not
reported here because it can be expressed in terms of XOR-
split/join (WCP-4,5). 139

6.5 Two processes that are different and contain contradictions
in their corresponding set of relations: they have distance
measure equals to 0. 142

12

6.6 Automata for the response, alternate response and not co-existence
constraints in our running example. 145

6.7 Activation tree of trace
〈
C(1),S,C(2),R

〉
with respect to the

response constraint in our running example: dead nodes are
crossed out and nodes corresponding to maximal fulfilling
subtraces are highlighted . 150

6.8 Activation tree of trace
〈
H(1),M,H(2),H(3),M

〉
with respect

to the alternate response constraint in our running example . 151

6.9 Activation tree of trace
〈
H,M,L(1),L(2)

〉
with respect to the

not co-existence constraint in our example. 152

6.10 Execution time for varying log and trace sizes and the poly-
nomial regression curve associated. 154

6.11 Model discovered from an event log of a Dutch Municipal-
ity. For clarifying, we provide the English translation of
the Dutch activity names. Administratie, Toetsing, Beslissing,
Verzenden beschikking and Rapportage can be translated with
Administration, Verification, Judgement, Sending Outcomes and
Reporting, respectively. 155

7.1 Input and expected output of the approach presented in this
chapter. 161

7.2 Process model of Figure 7.1(a) with weights associated to
every dependency (top), and after the dependencies associ-
ated to handover of roles are removed (bottom). Activities
are thus partitioned into the subsets {A}, {B}, {C}, {D,E}. . . 168

7.3 Representation of the growth of the number of possible par-
titioning, given the number of elements of a set. 170

7.4 Process models generated for the creation of the artificial
dataset. 172

7.5 These charts report the results, for the four models, in terms
of number of significant different partitions discovered. . . 175

7.6 Results, for the four models, in terms of number of signifi-
cant partitioning with respect to the purity value, reported
in bin of width 0.1. 176

8.1 General idea of SPD: the stream miner continuously receives
events and, using the latest observations, updates the pro-
cess model. 181

8.2 Two basic approaches for the definition of a finite log out of
a stream of events. The horizontal segments represent the
time frames considered for the mining. 184

13

8.3 Model 1. Process model used to generate the stationary
stream. 194

8.4 Model 2. The three process models that generate the evolv-
ing stream. Red rounded rectangles indicate areas subject
to modification. 195

8.5 Model 3. The first variant of the third model. Red rounded
rectangles indicate areas that will be subject to the modifi-
cations. 195

8.6 Aggregated experimental results for five streams generated
by Model 1. Top: average (left) and variance (right) values of
fitness measures for basic approaches and the Online HM.
Bottom: evolution in time of average fitness for Online HM
with queues size 100 and log size for fitness 200; curves for
HM with Aging (α = 0.9985 and α = 0.997), HM with Self
Adapting (evolution of the α value is shown at the bottom),
Lossy Counting and different configurations of the basic ap-
proaches are reported as well. 197

8.7 Aggregated experimental results for five streams generated
by evolving Model 2. Top: average (left) and variance (right)
values of fitness measures for basic approaches and On-
line HM. Bottom: evolution in time of average fitness for
Online HM with queues size 100 and log size for fitness
200; curves for HM with Aging (α = 0.997), HM with Self
Adapting (evolution of the α value is shown at the bottom),
Lossy Counting and different configurations of the basic ap-
proaches are reported as well. Drift occurrences are marked
with vertical bars. 198

8.8 Detailed results of the basic approaches, Online HM, HM
with Self Adapting and Lossy Counting (with different con-
figurations) on data of Model 3. Vertical gray lines indicate
points where concept drift occur. 199

8.9 Average memory requirements, in MB, for a complete run
over the entire log of Model 3, of the approaches (with dif-
ferent configurations). 200

8.10 Time performances over the entire log of Model 3. Top: time
required to process a single event by different algorithms
(logarithmic scale). Vertical gray lines indicate points where
concept drift occur. Bottom: average time required to process
an event over the entire log, with different configurations of
the algorithms. 201

14

8.11 Comparison of the average fitness, precision and space re-
quired, with respect to different values of ε for the Lossy
Counting HM executed on the log generated by Model 3. . 202

8.12 Fitness performance on the real stream dataset by different
algorithms. 202

8.13 Performances comparison between Online HM and Lossy
Counting, in terms of fitness and memory consumption. . . 204

8.14 Precision performance on the real stream dataset by differ-
ent algorithms. 205

9.1 The typical “evaluation cycle” for Process Mining algorithms. 210

9.2 Example of derivation tree. Note that, for space reason, we
have omitted the explicit representation of some basic pro-
ductions. 214

9.3 The dependency graph that describes the generated process.
Each activity is composed of 3 fields: the middle one con-
tains the name of the activity; the left hand one and the right
hand one contain, respectively, the value of the Tin and Tout. 215

9.4 Conversion of the dependency graph of Figure 9.3 into a
Petri Net. 215

10.1 The figure on the left hand side contains the configura-
tion panel of Heuristics Miner++, where parameters are dis-
cretized. The screenshot on the right hand side shows the
result of the mining. 223

10.2 Time filter plugin, with traces sorted by starting point and
with a fraction of the log selected. 224

10.3 Screenshot with the distance matrix and the dendrogram
applied to some processes. 224

10.4 Screenshot of the exploration procedure that allows the user
to choose the most interesting process. 225

10.5 On the left hand side there is the output of the log view
Declare Analyzer plug-in. On the right hand side the trace
view details is proposed. 225

10.6 Architecture of the plugins implemented in ProM and how
they interact with each other. Each rounded box represents
a ProM plugin. 227

15

10.7 Screenshots of four implemented ProM plugins. The first
image (top left) shows the logs merger (it is possible to de-
fine the overlap level of the two logs); the second image (top
right) represents the log streamer, the bottom left image is
the stream tester and the image at the bottom right shows
the Online HM. 228

10.8 A sample program for the batch generation of business pro-
cesses using the PLGLib library. 230

10.9 The software PLG. In (a) there is the standalone version, in
(b) there is the ProM plugin. 231

11.1 Contributions, written in red italic font, presented in this
thesis. They are numbered in order to be referenced in the
text. Dotted lines indicate that the input/output is not an
“object” for the final user, instead it represents a method-
ological approach (e.g., a way to configure parameters). . . 234

16

List of Tables

1.1 An example of log recorded after two executions of the busi-
ness process described in Figure 1.1. 22

2.1 Extraction from Table 2 of [86] where some prominent BPM
standards, languages, notations and theories are classified. . 37

2.2 Example of log traces, generated from the executions of the
process presented in Figure 2.16(a). 58

2.3 Tabular representation of true/false positives/negatives. True
negatives are colored in gray because will not be considered. 63

4.1 An example of log L extracted from a document manage-
ment system: all the basic information (such as the activity
name, the timestamps and the originator) is shown, together
with a set of information on the documents (info1 . . . infom).
The activity names are: a1 = “Invoice”; a2 = “Waybill”; a3 =
“Cash order”; a4 = “Carrier receipt”. 88

4.2 Results summary. Horizontal lines separate different log
sources (datasets). The table also shows the total number of
chains, the maximal chains and the chains pointed out by
the expert. 96

5.1 Data structures used by Heuristics Miner++ with their sizes.
AW is the set of activities contained in the log W. 112

6.1 Values of the metrics comparing three process models pre-
sented in this work. The metric proposed here is presented
with 3 values of its α parameter. 142

6.2 Semantics of Declare constraints, with the graphical repre-
sentation. 144

6.3 Activations of Declarative constraints. 147

17

6.4 Results of the analysis approach, applied to real-life event
logs from the CoSeLoG project. The table reports average
activity sparsity, average violation ratio, average fulfillment
ratio and average conflicts ratio. 156

7.1 This table reports, for each log, the rank of the target parti-
tion. Ranking is based on the entropy value. 174

8.1 Performance of different approaches with queues/sets size
of q = 10 and q = 100 elements and x = 1000. Online HM
with Aging uses α1/q = 0.9. Time values refer to the average
number of milliseconds required to process a single event of
the stream generated by Model 3. 203

9.1 All the terminal symbols of the grammar and their meanings.213

18

Part I

Introduction and Problem Description

20

Chapter 1

Introduction

For some years, the usage of information systems has been rapidly grow-
ing, in companies of all kinds and sizes. New systems are moving from
supporting single functionalities towards a business processes orientation.
In Computer Science, a new research area is emerging, called Process Min-
ing, which provides algorithms, techniques and tools to improve those
processes and the systems that are used to put them into action.

1.1 Business Process Modeling

Activities that companies are required to perform, to complete their own
business, are becoming more complex and require the interaction of sev-
eral persons and heterogeneous systems. A possible approach, to simplify
the management of the business, is based on the division of operations in
smaller “entities” and on the definition of the required interactions among
them. The term “business process” refers to this set of activities and inter-
actions.

A simplification of a business process, that describes the handling of an
order for an e-commerce website, is depicted in Figure 1.1. In this case, the
process is represented just as a dependency graph: each box represents an
activity, and connections between boxes indicate the precedence required
when executing activities. Specifically, in the example of the figure, the
process starts with the registration of the order and the registration of
the payment. Once the payment registration is complete, two activities
may execute concurrently (i.e. there is no dependency between them).
Finally, when the “Goods wrapping” and “Shipping note preparation” are
complete, the final “Shipping” activity can start. The conclusion of this
last activity terminates the current process instance too.

Most of the software that are used to define and to help originators in
executing such processes, typically, leave a trace of the performed activi-
ties. An example of such trace (called “log”) is presented in Table 1.1. As
can be observed, the fundamental information – required to perform Pro-
cess Mining – consists of the name of the activity and the time the activity
is executed; moreover, it is important to note that the traces are grouped in

21

Figure 1.1. Example of a process model that describes a general process of
order management, from its registration to the shipping of the
goods.

“instances” (or “cases”): typically, it is necessary to handle several orders
at the same time, and therefore the process is required to be concurrently
instantiated several times too. These instances are identified by a “case
identifier” (or “instance id”), which is another field typically included in
the log of the traces.

Some times, especially small and medium companies do not perform
their work according to a formal and explicit business process; instead,
typically, they execute their activities with respect to an implicit sorting.
Even if such model is not available, the presence of a log of activities is
very frequent. So, the key idea is that a log can exist even if no process

Activities Execution Time

Instance 1

1 Order registration feb 21, 2011 12:00

2 Payment registration feb 22, 2011 09:00

3 Goods wrapping feb 26, 2011 08:30

4 Shipping note preparation feb 26, 2011 09:30

5 Shipping feb 26, 2011 10:15

Instance 2
1 Order registration feb 23, 2011 15:45

2 Payment registration feb 25, 2011 17:31

3 Shipping note preparation feb 26, 2011 08:30

4 Goods wrapping feb 26, 2011 10:00

5 Shipping feb 26, 2011 12:30

Table 1.1. An example of log recorded after two executions of the business
process described in Figure 1.1.

22

model (as shown in Figure 1.1) is present. The aim of Process Mining is
to use such logs to extract a business process model coherent with the
recorded events. This model can then be used to improve the company
business by detecting and solving deadlocks, bottlenecks, . . .

1.2 Process Mining

An ideal Process Mining algorithm, analyzing the log, identifies all the
process instances, then it tries to define some relations among activities.
Considering the example of Table 1.1, “Order registration” is always the
first activity executed; this activity is always followed by “Payment regis-
tration” and this might means that there is a causal dependency between
them (i.e. “Order registration” is required by “Payment registration”).
The algorithm continues and detects that “Payment registration” is some-
times followed by “Goods wrapping” and other times by “Shipping note
preparation” but, in any case, both activities are performed. A possible in-
terpretation of such behaviour is that there is no specific order between the
execution of the last two activities (which can be executed concurrently),
but both of them require “Payment registration”. At the end, “Shipping”
is observed as last activity always executed after “Shipping note prepa-
ration” or “Goods wrapping”. Once all these relations are available, it is
possible to combine them in order to construct the mined model. The al-
gorithm example presented is, essentially, the Alpha algorithm [156] that
will be described in Section 2.3.1.

The procedure presented in the previous paragraph is just an example
to illustrate the general idea of Process Mining: many other algorithms
have been designed and implemented, using different approaches and
starting from different assumptions. However, even if several approaches
are available, many important problems are still unresolved. Some of them
are presented in [160], and here we report the most important ones:

• some process models may have the same activity appearing several
times, in different positions. However, almost all Process Mining
techniques are not able to extract this kind of tasks: instead, they just
insert one activity in the mined model, and therefore the connections
of the mined model are very likely to be wrong;

• many times, logs report a lot of data not used by mining algorithms
(e.g., detailed timing information, such as distinguishing the starting
from the finishing time of an event). This information, however, can
be used, by mining algorithms, to improve the accuracy of mined
models;

23

• current mining algorithms do not perform an “holistic mining” of
different perspectives, coming from different sources: for example,
not only the control-flow, but also a social network with the inter-
actions between the activity originators (creating a global process
description). Such global perspective is able to give many more in-
sights, with respect to the single perspectives;

• dealing with noise and incompleteness: “noise” identifies uncom-
mon behaviour, that should not be described in the mined model;
“incompleteness” represents the lack of some information required
for performing the mining task. Almost all business logs are af-
fected by these two problems, and Process Mining algorithms are
not always able to properly deal with them;

• visualization of mining results: present the results of Process Mining
in a way that people can gain insights in the process.

The key point is that, even if some algorithms solve a subset of the prob-
lems, some of them are not solved yet or, the proposed solutions are not
always feasible. In this thesis we try to tackle some of these problems, in
order to provide viable solutions.

The proposals presented in this document aim at improving the ap-
plicability of Process Mining in real-world business environments. When
these techniques are applied in reality some of the problems listed previ-
ously become evident and new problems (not strictly related to Process
Mining) can emerge. The most outstanding ones are:

P-01 incompleteness: obtaining a complete log, where all the required
information are actually available (e.g. in some applications the case
identifier might be missing). A log which does not contain all re-
quired information, is not useful;

P-02 exploiting as much information, recorded into log files, as possible,
as presented previously;

P-03 difficulties in using Process Mining tools and configuring algorithms.
Typical Process Mining users are not-expert users, therefore it is hard
for them to properly configure all the required parameters;

P-04 results interpretation: generation of the results with an as-readable-
as-possible graphical representation of the process, where all the ex-
tracted information are represented in a simple and understandable
manner. Not-expert users may have no specific knowledge in process
modeling;

24

P-05 computational power and storage capacity required: small and medium
sized companies may not be able to cope with the technological re-
quirement of large Process Mining projects.

The contribution of this thesis is to analyze these problems, and to
propose some possible directions towards their resolution.

Facing P-01

In order to obtain all the information required for the mining, an algorithm
has been defined. This approach, based on relational algebra, is able to
reconstruct a required field (namely, the “case identifier”), whenever it is
missing.

Facing P-02

A new mining algorithm has been defined. This algorithm is able to con-
sider activities as time intervals, instead of instantaneous events. However,
if such information on activities’ duration is not available in the log, per-
formance falls back to the more general case, with no additional cost.

Facing P-03

With a complete log, and a mining algorithm available, we defined two
procedures which allow final users (i.e., not-experts) to get the control of
the mining. Specifically, given a log, we are able to build an exhaustive
set of possible mined model. Then, we present two approaches to explore
this space of models:

• the first consists of a completely autonomous search;

• the second approach requires the user interaction, however this tech-
nique is based on the structure of the final model, and therefore
something the user is able to understand.

Facing P-04

Concerning the interpretation of results, a model-to-model metric is pro-
posed. This metric, specifically designed for Process Mining tasks, is able
to discriminate business models and can be used for clustering processes.
In this thesis, a model-to-log metric is proposed too. Such metric can
give healthiness measures of a declarative process model with respect to
a particular log (i.e., if the behavior observed in the log is consistent with
the given model). Finally, we present an algorithm to group activities

25

belonging to the same role. This information will help analyst to better
understand the mined model.

Facing P-05

Finally, many times a “batch” approach is not feasible and, to address
P-05, a completely new approach is proposed. This new class of tech-
niques allows the incremental mining of streams of events. This approach
can be used in online manner and it is also able to cope with concept drifts.

1.3 Origin of Chapters

Most of the contributions presented in this thesis are based on published
material. Specifically, the material of Chapter 4 is based on [25]. Chapter 5

is based on [20, 19, 5]. The material of Chapter 6 is based on [5, 18].
Chapter 9 is based on [21].

26

Chapter 2

State of the Art: BPM, Process
Mining and Data Mining

This chapter gives a general introduction to the Process Mining field, start-
ing from the very basic notion of business process (Section 2.1). The chap-
ter continues the introductory part with a detailed presentation of the
state of the art of Process Mining, focusing on Control-Flow Discovery al-
gorithms (Section 2.3.1), and finishes describing some approaches for the
evaluation of business processes (Section 2.5).

2.1 Introduction to Business Processes

It is very common, in industrial settings, that the performed activities are
repetitive and have several persons involved. In these cases, it is very
useful to define a standard procedure that everyone can follow. A business
process, essentially, is the definition of such “standard procedure”.

Since the process aims at standardizing and optimizing the activities of
the company, it is important to keep the process up to date and as flexible
as possible, in order to meet the market requirements and the business
objectives.

Business Process

There are several definitions of “business process”. The most famous ones
are reported in [86]. The first, presented in [71] by Hammer and Champy,
states that a business process is:

A collection of activities that takes one or more kinds of
input and creates an output that is of value to the customer. A
business process has a goal and is affected by events occurring
in the external world or in other processes.

In another work, by Davenport [38], a business process is defined as:

A structured, measured set of activities designed to pro-
duce a specified output for a particular customer or market.

27

[. . .] A process is thus a specific ordering of work activities
across time and place, with a beginning, an end, and clearly
identified inputs and outputs: a structure for action.

In both cases, the main focus is on the “output” of the actions that must
take place. The problem is that there is no mention of originators of such
activities and how they are interoperating.

In [106], a business process is viewed as something that: (a) contains
purposeful activities; (b) is carried out, collaboratively, by a group of hu-
mans and/or machines; (c) often crosses functional boundaries; (d) is in-
variably driven by the outside world. Van der Aalst, Weijters and Medeiros,
in [161], gave attention to the originators of the activities:

By process we mean the way an organization arranges their
work and resources, for instance the order in which tasks are
performed and which group of people are allowed to perform
specific tasks.

Ko, in his “A Computer Scientist’s Introductory Guide to Business Process
Management” [86], gave his own definition of business process:

A series or network of value-added activities, performed by
their relevant roles or collaborators, to purposefully achieve the
common business goal.

A formal definition of business process is presented by Agrawal, Gunop-
ulos and Leymann in [3]:

A business process P is defined as a set of activities VP =

{V1, . . . ,Vn}, a directed graph GP = (VP,EP), an output function
oP : VP → Nk and ∀(u, v) ∈ EP a boolean function f(u,v) = Nk →
{0, 1}.

In this case, the process is constructed in the following way: for every
completed activity u, the value oP(u) is calculated and then, for every
other activity v, if f(u,v)(oP(u)) is “true”, v can be executed. Of course, such
definition of business process is hard to be handled by business people,
but is useful for formal modeling purposes.

More general definitions are given by standards and manuals. For
example, the glossary of the BPMN manual [105] describes a process as
“any activity performed within a company or organization”. The ISO 9000 [118]
presents a process as:

A set of activities that are interrelated or that interact with
one another. Processes use resources to transform inputs into

28

outputs. Processes are interconnected because the output from
one process becomes the input for another process. In effect,
processes are “glued” together by means of such input output
relationships.

Right now, no general consensus has been reached on a specific defi-
nition. This lack is due to the size of the field and to the different aspects
that every definition aims to point out.

In the context of this work, it is not important to fix one definition:
each definition highlights some aspects of the global idea of business pro-
cess. The most important issues, that should be covered by a definition of
business process are:

1. there is a finite set of activities (or tasks) and their executions are
partially ordered (it’s important to note that not all the activities are
mandatory in all the process executions);

2. each activity is executed by one or more originators (can be humans
or machines or both);

3. the execution of every activity produces some output (as a general
notion, with no specific requirement: it can be a document, a service
or just a “flag of state” set to “executed”) that can be used by the
following activity.

This is not intended to be another new definition of business process, but
it’s just a list of the most important issues that emerge from the definitions
reported above.

Representation of Business Processes

Closely related to Business Processes is Business Process Management
(BPM). Van der Aalst, ter Hofstede and Weske, in [155], define BPM as:

Supporting business processes using methods, techniques,
and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, doc-
uments and other sources of information.

From this definition, it clearly emerges that two of the most important as-
pects of BPM are design and documentation. The importance of these two
tasks is clear if one thinks about the need to communicate some specific
information on the process that has been modeled. The main benefits of
adopting a clear business model are summarized in the following list:

29

• it is possible to increase the visibility of the activities, that allows the
identification of problems (e.g. bottlenecks) and areas of potential
optimization and improvement;

• grouping the activities in “department” and grouping the persons
in “roles”, in order to better define duties, auditing and assessment
activities.

For the reasons just explained, some characteristics of a process model
can be identified. The most important one is that a model should be un-
ambiguous in the sense that the process is precisely described without
leaving uncertainties to the potential reader.

There are many languages that allow the modeling of systems and
business processes. The most used formalisms for the specification of
business processes have in common to be graph-based representations, so
that nodes, typically, represent the process’ tasks (or, in some notations,
also the states and the possible events of the process); arcs represent or-
dering relations between tasks (for example, an arc from node n1 to n2
represents a dependency in the execution so that n2 is executed only af-
ter n1). Two of the most important graph based languages are: Petri nets
[179, 104, 111, 139] and BPMN [105] 1.

2.1.1 Petri Nets

Petri Nets, proposed in 1962 in the Ph.D. thesis of Carl Adam Petri [112],
constitute a graphical language for the representation of a process. In par-
ticular, a Petri Net is a bipartite graph, where two types of nodes can be
defined: transitions and places. Typically, transitions represent activities
that can be executed, and places represent states (intermediate or final)
that the process can reach. Edges, always directed, must connect a place
and a transition, so an edge is not allowed to connect two places or two
transitions. Each place can contain a certain number of tokens and the dis-
tribution of the tokens on the network is called “marking”. In Figure 2.1 a
small Petri Net is shown; circles represent places, squares represent tran-
sitions.

1 Another language for the definition of “processes” is, for example, the Π-calculus
[176, 108]: a mathematical framework for the definition of processes whose connec-
tions vary based on the interaction. Actually, it is not used in business contexts and
by not-expert users because of its complexity. With other similar languages (such as
Calculus of Communicating Systems, CCS and Communicating Sequential Processes,
CSP) the situation is similar: in general, mathematical approaches are suitable for the
definition of interaction protocols or for the analysis of procedures (such as deadlock
identification) but not for business people.

30

Figure 2.1. Petri net example, where some basic patterns can be observed:
the “AND-split” (activity B), the “AND-join” (activity E), the
“OR-split” (activity A) and the “OR-join” (activity G).

Petri Nets have been studied in depth from many points of view: from
their clear semantic to a certain number of possible extensions (such as
time, color, . . .). A formal definition of Petri Net, as presented, for exam-
ple, in [138], is the following:

Definition 2.1 (Petri Net). A Petri Net is a tuple (P, T , F) where: P is a finite
set of places; T is a finite set of transitions, such that P ∩ T = ∅, and F ⊂
(P× T)∪ (T × P) is a set of directed arcs, called flow relation.

The “dynamic semantic” of a Petri Net is based on the “firing rule”:
a transition can fire if all its “input places” (places with edges entering
into the transition) contain at least one token. The firing of a transition
generates one token for all its “output places” (places with edges exiting
from the transition). The distribution of tokens among the places of a net,
at a certain time, is called “marking”. With this semantic, it is possible
to model many different behaviors, for example, in Figure 2.2, three basic
templates are proposed. The sequence template describes the causal de-
pendency between two activities (in the figure example, activity B requires
the execution of A); the AND template represents the concurrent branch-
ing of two or more flows (in the figure example, once A is terminated, B
and C can start, in no specific order and concurrently); the XOR template
defines the mutual exclusion of two or more flows (in the figure exam-
ple, once A is terminated, only B or C can start). Figure 2.3 proposes the
same process of Figure 2.2 with a different marking (after the execution of
activities A, B and C).

An important subclass of Petri Nets is the Workflow nets (WF-net),
whose most important characteristic is to have a dedicated “start” and
“end”:

Definition 2.2 (WF-net). A WF-net is a Petri Net N = (P, T , F) such that:

a. P contains a place i with no incoming arcs (the starting point of the process);

31

(a) Sequence template. (b) AND template. (c) XOR template.

Figure 2.2. Some basic workflow templates that can be modeled using
Petri Net notation.

Figure 2.3. The marked Petri Net of Figure 2.1, after the execution of ac-
tivities A, B and C. The only enabled transition, at this stage,
is D.

b. P contains a place o with no outgoing arcs (the end point of the process);

c. if we consider t /∈ P ∪ T , and we use it to connect o and i (so to obtain the so
called “short-circuited” net: N = (P, T ∪ {t}), F ∪ {(o, t), (t, i)})), the new net
is strongly connected (i.e. there is a direct path between any pair of nodes).

2.1.2 BPMN

BPMN (Business Process Modeling and Notation) [105] is the result of an
agreement among multiple tool vendors, that agreed on the standardiza-
tion of a single notation. For this reason, now it is used in many real
cases and many tools adopt it daily. BPMN provides a graphical notation
to describe business processes, which is both intuitive and powerful (it is
able to represent complex process structure). It is possible to map a BPMN
diagram to an execution language, BPEL (Business Process Execution Lan-
guage).

The main components of a BPMN diagram, presented in Figure 2.4,
are:

Events: defined as “something that “happens” during the course of a process”;
typically they have a cause (trigger) and an impact (result). Each
event is represented with a circle (containing an icon, to specify some

32

(a) Task (b) Gateways (c) Connectors

(d) Events (e) Sub-process

Figure 2.4. Example of some basic components, used to model a business
process using BPMN notation.

details), as in Figure 2.4(d). There are three types of events: start (sin-
gle narrow border), intermediate (single thick border) and end (double
narrow border).

Activities: this is the generic term that identifies the work done by a com-
pany. In the graphical representation they are identified as rounded
rectangles. There are few types of activity like tasks (a single unit of
work, Figure 2.4(a)) and subprocesses (used to hide different levels
of abstraction of the work, Figure 2.4(e)).

Gateway: structure used to control the divergences and convergences of
the flow of the process (fork, merge and join). An internal marker
identifies the type of gateway, like “exclusive” (Figure 2.4(b), on
the left), “event based”, “inclusive”, “complex” and “parallel” (Fig-
ure 2.4(b), on the right).

Sequence and message flows and associations: connectors between components
of the graph. A sequence flow (Figure 2.4(c), top) is used to indi-
cate the order of the activities. Message flow (Figure 2.4(c), bottom)
shows the flow of the messages (as they are prepared, sent and re-
ceived) between participants. Associations (Figure 2.4(c), middle) are
used to connect artifacts with other elements of the graph.

33

Figure 2.5. A simple process fragment, expressed as a BPMN diagram.
Compared to a Petri net (as in Figure 2.1), it contains more
information and details but it is more ambiguous.

Beyond the components just described, there are also other entities that
can appear in a BPMN diagram, such as artifacts (e.g. annotations, data
objects) and swimlanes.

Figure 2.5 proposes a simple process fragment. It starts on Friday, ex-
ecutes two activities (in the figure, “Receive Issue List” and then “Review
Issue List”) and then checks if a condition is satisfied (“Any issues ready”);
if this is the case, a discussion can take place a certain number of times
(“Discussion Cycle” sub process), otherwise the process is terminated (and
the “End event” is reached, marked as a circle with the bold border). There
are, moreover, intermediate events (marked with the double border): the
one named A is a “throw event” (if it is fired, the flow continues to the
intermediate catch event, named A, somewhere in the process but not rep-
resented in this figure); the B is a “catch event” (it waits until a throw
events fires its execution).

2.1.3 YAWL

YAWL (Yet Another Workflow Language) [153] is a workflow language
born from a rigorous analysis of the existing workflow patterns [154].

The starting point for the design of this language is the identification
of the differences between many languages and, out of this, authors col-
lected a complete set of workflow patterns. This set of possible behaviors
inspired authors to develop YAWL, which starts from Petri Net ad adds
some mechanisms to allow a “more direct and intuitive support of the work-
flow patterns identified” [154]. However, as authors stated, YAWL is not a
“macro” package on top of high-level Petri Nets: it is possible to map a
YAWL model to any other Turing complete language.

34

(a) Atomic and
composite
tasks.

(b) Conditions
(general,
start, end).

(c) Splits and join tasks
(AND, XOR, OR).

...

(d) Cancelation
area.

Figure 2.6. Main components of a business process modeled in YAWL.

Figure 2.6 presents the main components of a YAWL process. The main
components of a YAWL model are:

Task: represents an activity, as in Figure 2.6(a). It is possible to execute
multiple instances of the same task at the same time (so to have many
instances of the process running in parallel). Composite tasks are
used to define hierarchical structure: a composite task is a container
of another YAWL model.

Conditions: the meaning of a condition Figure 2.6(b), in YAWL, is the same
of places for Petri Nets (i.e. the current state of the process). There
are two special conditions, i.e., “start” (with a triangle inscribed) and
“end” (with a square inscribed), like for WF-nets (Definition 2.2).

Splits and joins: a task can have a particular split/join semantic. In partic-
ular, it is possible to have tasks with an AND (whose behavior is the
same of the Petri Net case, presented in Figure 2.2(b)), XOR (same as
Petri Net, Figure 2.2(c)) or OR semantic. In the last case one or more
outgoing arcs are executed2.

Cancellation areas: all the tokens in elements within a cancellation area (the
dotted area in Figure 2.6(d)), are removed after the activation of the
corresponding task (whose enabling does not depend on the tokens
on the cancellation area).

2 In the case of OR-join, the semantic is a bit more complex: the system needs only one
input token, however if more then one token is coming, the OR-join synchronizes (i.e.
waits) them.

35

Low Medical HistoryLow Insurance Check

Contact HospitalHigh Insurance CheckHigh Medical History

Receive Ques�onnaire ResponseSend Ques�onnaireCreate Ques�onnaire

co‐existence

not co‐existence

alternate response not succession

precedenceresponse

Figure 2.7. Declare model consisting of six constraints and eight activities.

2.1.4 Declare

Imperative process modeling languages such as BPMN, Petri Nets, etc.,
are very useful in environments that are stable and where the decision
procedures can be predefined. Participants can be guided based on such
process models. However, they are less appropriate for environments that
are more variable and that require more flexibility. Consider, for instance,
a doctor in a hospital dealing with a variety of patients that need to be han-
dled in a flexible manner. Nevertheless, there are some general regulations
and guidelines to be followed. In such cases, declarative process models are
more effective than the imperative ones [178, 115, 150]. Instead of explic-
itly specifying all possible sequences of activities in a process, declarative
models implicitly define the allowed behavior of the process with con-
straints, i.e., rules that must be followed during execution. In comparison
to imperative approaches, which produce “closed” models (what is not
explicitly specified is forbidden), declarative languages are “open” (every-
thing that is not forbidden is allowed). In this way, models offer flexibility
and still remain compact.

While in imperative languages, designers tend to forget incorporating
some possible scenarios (e.g., related to exception handling), in declara-
tive languages, designers tend to forget certain constraints. This leads to
underspecification rather than overspecification, i.e., people are expected
to act responsibly and are free to select scenarios that may seem out-of-
the-ordinary at first sight.

Figure 2.7 shows a simple Declare model [113, 114] with some exam-
ple constraints for an insurance claim process. The model includes eight
activities (depicted as rectangles, e.g., Create Questionnaire) and six con-
straints (shown as connectors between the activities, e.g., not co-existence).
The not co-existence constraint indicates that Low Insurance Check and High
Insurance Check can never coexist in the same trace. On the other hand,
the co-existence constraint indicates that if Low Insurance Check and Low
Medical History occur in a trace, they always co-exist. If High Medical His-

36

Language Background Notation Standardized Current status

BPDM Industry Interchange Yes Unfinished
BPEL Industry Execution Yes Popular
BPML Industry Execution Yes Obsolete
BPMN Industry Graphical Yes Popular
BPQL Industry Diagnosis Yes Unfinished
BPRI Industry Diagnosis Yes Unfinished
ebXML BPSS Industry B2B Yes Popular
EDI Industry B2B Yes Stable
EPC Academic Graphical No Legacy
Petri Nets Academic Theory/Graphical N.A. Popular
Π-Calculus Academic Theory/Execution N.A. Popular
Rosetta-Net Industry B2B Yes Popular
UBL Industry B2B Yes Stable
UML A.D. Industry Graphical Yes Popular
WSCI Industry Execution Yes Obsolete
WSCL Industry Execution Yes Obsolete
WS-CDL Industry Execution Yes Popular
WSFL Industry Execution No Obsolete
XLANG Industry Execution No Obsolete
XPDL Industry Execution Yes Stable
YAWL Academic Graphical/Execution No Stable

Table 2.1. Extraction from Table 2 of [86] where some prominent BPM
standards, languages, notations and theories are classified.

tory is executed, High Insurance Check is eventually executed without other
occurrences of High Medical History in between. This is specified by the
alternate response constraint. Moreover, the not succession constraint means
that Contact Hospital cannot be followed by High Insurance Check. The prece-
dence constraint indicates that, if Receive Questionnaire Response is executed,
Send Questionnaire must be executed before (but if Send Questionnaire is ex-
ecuted this is not necessarily followed by Receive Questionnaire Response).
Finally, if Create Questionnaire is executed this is eventually followed by
Send Questionnaire as indicated by the response constraint.

More details on the Declare language will be provided in Section 6.2.1.

2.1.5 Other Formalisms

The languages briefly presented in the previous sections, are only a very
small fragment of all the available ones for the definition of business pro-
cesses. In Table 2.1 some standards are proposed, with their background
(either academic or industrial), the type of notation they adopt, if they are
standardized somehow, and their current status.

37

2.2 Business Process Management Systems

It is interesting to distinguish, from a technological point of view, Busi-
ness Process Design and Business Process Modeling: the first refers to the
overall process design (and all its activities), the latter refers to the actual
way of representing the process (from a “language” point of view).

In the Gartner’s position document [75], a software is defined “BPM-
enabled” if allows to work on three parts: integration, runtime environ-
ment and rule engine. When all these aspects are provided, the system is
called “BPMS”. These aspects are provided if the system contains:

• an orchestration engine, that coordinates the sequencing of activities
according to the designed flow and rules;

• a business intelligence and analysis tools, that analyze data produced
during the executions. An example of this kind of tools is the Busi-
ness Activity Monitoring (BAM) that provides real-time alerts for a
proactive approach;

• a rule engine, that simplifies the changes to the process rules and
provides more abstractions from the policies and from the decision
tables, allowing more flexibility;

• a repository that stores process models, components, documents, busi-
ness rules and all the information required for the correct execution
of the process;

• tools for simulation and optimization of the process, that allow the
designer to compare possible new process models with the current
one in order to get an idea of the possible impact into the current
production environment;

• an integration tool, that links the process model to other components
in order to execute the process’ activities.

From a more pragmatic perspective, the infrastructure that seems to be
the best candidate in achieving all the objectives indicated by BPM is the
Service-oriented architecture (SOA) [49, 110, 107].

With the term SOA we refer to a model in which automation logic is
decomposed into smaller, distinct units of logic. Collectively, these units
constitute a larger piece of business logic; individually these can be dis-
tributed among different nodes. An example of such composition is pre-
sented in Figure 2.8.

In [133], a clear definition of “Business Service” is presented:

38

Figure 2.8. Example of process handled by more than one service. Each
service encapsulates a different amount of logic. This figure is
inspired by Figure 3.1 in [49].

A discrete unit of business activity, with significance to the
business, initiated in response to a business event, that can’t
be broken down into smaller units and still be meaningful
(atomic, indivisible, or elementary).

This term indicates the so-called “internal requirements”, of and Informa-
tion System, in opposition to the “external” ones, identified as Use Cases:
a single case in which a specific actor will use a system to obtain a particular busi-
ness service from one system. In authors’ opinion, this separation simplifies
the identification of the requirements and can be considered a method-
ological approach to the identification of the components of the system.

In the context of SOA, one of the most promising technologies is rep-
resented by Web services. In this case, a Web service is going to represent
a complex process that can span even more organizations. With the Web
services composition, complex systems can be built according to the given
process design; however, this is still a young discipline and industries are
more involved in the standardization process.

2.3 Process Mining

Process Mining is an emerging field that comes from two areas: machine
learning and data mining on one hand, process modelling on the other

39

[141]. The output entity of a Process Mining algorithm is a model of a
“process” that is a description of how to perform an operation. More
details on the definition of process have been presented in Section 2.1.

Typically, a process is described inside the documentation of the com-
pany, in terms of “protocols” or “guidelines”. However, these ways of
representing the work (using natural language or ambiguous notations)
are not required to be informative in terms of activities executed in reality.

In order to discover how an industrial production process is actually
performed, one could “follow” the product along the assembly line and
see which steps are involved, their durations, bottlenecks, and so on. In a
general context of business process, this observation is typically not pos-
sible due to a series of causes, for example:

• the process is not formalized (the knowledge about how to execute
it is tacitly spread among all workers involved);

• there are too many production lines, so that a single person is not
able to completely follow the work;

• the process is not going to produce physical entries, but services of
information;

• and other similar problems.

However, most of such processes are executed with the support of in-
formation systems, and these systems — typically — record all the opera-
tions that are performed in some “log files”.

In Figure 2.9, there is a representation of the main components in-
volved in Process Mining and the interactions among them. First of all,
the incarnation aspect (on the top right of the figure) represents the in-
formation system that supports the actual operational incarnation of the
process. Such incarnation can be different from the ideal process definition
and describes the actual process, as it is being executed. The information
system records all the operations that are executed in some event logs.
These observations are a fundamental requirement for the analysis using
Process Mining techniques. Such techniques can be considered as the way
of relating event logs (what is happening) to the analytical model of the
process (what is supposed to happen). Analytical models (depicted on
the left side of Figure 2.9, into the imagination aspect) are supposed to
describe the process but, an operational model is necessary to add the
detailed and concrete information that are necessary for its execution.

“Process Mining” refers to the task of discovering, monitoring and im-
proving real processes (as they are observed in the event logs) with the
extraction of knowledge from the log files. It is possible to distinguish

40

Imagination

Process Mining

Incarnation / Environment

Observation

Operational
Model

Analytical
Model Event Logs

Information
System

Operational
Incarnation

support

protocol
/ audit

Discovery

Conformance

Extension

control

augment

compare
compare

analyze

mine

basis

create

(re-)design

implement

describe

Figure 2.9. Representation of the three main perspectives of Process Min-
ing, as presented in Figure 4.1 of [67].

at least three types of mining (presented in Figure 2.9 as grey boxes with
arrows describing the interaction with other components):

1. Control-flow discovery aims at construction of a model of the pro-
cess, starting from the logs (an a priori model is not required) [162];

2. Conformance analysis: starting from an a priori model, conformance
algorithms try to fit the observations of the actual performed process
in the original model and vice versa, as, for example, presented in
[125];

3. Extension of a model, already available, in order to add information
on the decision points (as presented in [124]) or on the performance
of the activities.

Closely to the possible ways of performing the mining there are the
three possible perspectives: the control-flow (that represents the ordering
of the activities); the organizational or social (that focuses on which per-
formers are involved and how are they related) and the case (how data
elements, related to the process instance, evolve).

2.3.1 Process Mining as Control-Flow Discovery

This section provides some information on the State of the Art for what
concerns Process Mining and, in particular, control-flow discovery algo-
rithms. Since the idea of this section is to provide a “history” of the field,
the contributions are presented according to chronological order.

41

Cook and Wolf 1996 •

Agrawal et al.; Herbst et al. 1998 •

Hwang et al.; Schimm; van der Aalst et al. 2002 •
• 2003 Golani et al.; Weijters et al.

Greco et al.; van Dongen et al. 2004 •
• 2005 Alves de Medeiros et al.

Günter et al. 2007 •

Goedertier et al. 2009 •

Maggi et al. 2011 •

Figure 2.10. Timeline with the control-flow discovery algorithms proposed
in the state of the art of this work.

Figure 2.10 depicts a timeline, where each point indicates one or more
approaches published. It is worthwhile to notice the “evolution” of the
algorithms (the fists generate simple models, without considering noise as
a problem; the latest ones produce complex models and try to deal many
problems). This is not intended as an exhaustive list of all control-flow
algorithms, but it contains only the most important ones.

Cook and Wolf

The first work in the field of Process Mining is recognized in the PhD The-
sis of Jonathan Cook [30] and in other works co-authored with Alexander
Wolf et al. [32, 34, 35, 31, 33]. The main contribution of the work consists
of three different algorithms based on three different approaches: RNet,
KTail and Markov.

All those algorithms are implemented in a tool called Balboa [34]. Bal-
boa is a tool for analyzing data generated from software processes: the
basic idea is to work on “events databases”.

They define an “event” as an action that can be identified and that
is instantaneous (e.g. the invocation, by a user, of a software). For this
reason, an activity that lasts for a certain period of time is described in
terms of two events (“start” and “end”).

RNet The RNet algorithm is based on a Recurrent Neural Network [102].
This type of networks can be seen as a graph with cycles where each node
is a “network unit” (such that, given an input can calculate the correspond-
ing output) and each node is weighted (initially, the weight is low). This

42

network will calculate the output values for all its components at time t
and then, such output, is used as input for the network at time t+ 1. With
such topology it is possible to model the behavior of an automaton: the
final result is not computed on the basis of the input only, but also on the
basis of the previous activity of the hidden neurons. The foremost advan-
tage of such technique is that it is entirely statistical, so it is very robust
to noise. The main drawback, however, is that, in order to be entirely ex-
ploited, this approach requires also “negative examples” (examples that
can not be generated by the process) but, in real cases, it is very hard to
have those information.

KTail The second approach, KTail, differently from the previous one,
is entirely algorithmic. The basic notion, in the whole system, is that a
“state” is defined on the basis of all the possible future behavior. For
example, two strings (as series of activities) can have a common prefix
and, at a certain character, they can diverge one from the other. In this
case, we have two strings with “a common history but different futures”.
Conversely, if two different stories shares the same future then they belong
to the same equivalence class, that represents the automaton states (the
final model constructed is an automaton).

Markov The last approach presented into the Balboa framework is called
Markov. This is a hybrid approach, both statistical and algorithmic. A
Markov model is used to find the probabilities of all the possible pro-
ductions and, algorithmically, those probabilities are converted into an
automaton. The assumptions made by this approach are the following:

• the number of states of the current process is finite;

• at every time, the probability that the process is in one of its states
depends on the current state (Markov property);

• the transition probabilities do not change over time;

• the starting state of the process is probabilistically determined.

The last approach described here, Markov, seems to be the one with
the best results, also because of the probabilistic approach, that allows the
procedure to be noise tolerant.

Agrawal et al.

The approach developed by R. Agrawal, D. Gunopulos and F. Laymann
[3] is considered the first Process Mining algorithm in the context of BPM.

43

In particular the aim of their procedure is to generate a directed graph
G = (V ,E), where V is the set of process activities and E represents the
dependencies among them. Initially, E = ∅, and the algorithm will try to
build a series of boolean function fs such that:

∀ (u, v) ∈ E f(u,v) : Nk → {0, 1}

that, starting from the output of the activity u indicates if v can be the next
one.

For this approach, a process execution log is a set of tuples (P,A,E, T ,O)
where P is the name of the process; A is the name of the activity; E ∈ {start, end}
is the event type; T is the time the action took place; O = o(A) is the output
produced by the activity A, if E = end, otherwise it is a null value.

Dependencies between activities are defined in a straightforward man-
ner: B depends on A if, observing the real executions, it is very common
that A is followed by B and never the vice versa. Since all the activities are
thought as a time interval, it is important to point out what does it mean
that “A is followed by B”. The definition describes two possible cases: (i) B
starts after A is finished; (ii) an activity C exists such that C follows A and
B follows C.

The whole procedure can be divided in two main phases. The first part
is responsible for the identification of the dependencies between activities.
This is done observing the logs and adding the edge (u, v) to E every time
u ends before v starts. A basic support for the noise is provided by count-
ing the times every edge is observed and excluding from the final model
all the edges that do not reach a threshold (parameter of the procedure).
A problem that can emerge is the configuration of the threshold value. A
solution, proposed in the paper, is to convert the threshold into an “error
probability” ε < 1

2 . With this probability, it is possible to calculate the
minimum number of observations required.

The second step of the approach concerns the definition of the condi-
tions required in order to have edges followed each other. The procedure
presented in the paper defines the function f(u,v) which uses the output
values produced as output by the activities: for all the executions of activ-
ity u if, in the same process instance, activity v is executed, then the value
o(u) is used as a “positive example”. The set of values produced can be
used as training set for a classification task. The paper suggests to use de-
cision trees [102] for learning simple rules that can be also understood by
human beings.

44

Herbst and Karagiannis

In the approach presented by Herbst and Karagiannis in [74, 72, 73] a
workflow W is defined as W = (VW , tW , fW ,RW ,gW ,PW) where:

• VW = {v1, . . . , vn} is a set of nodes;

• tW(vi) ∈ {Start, Activity, Decision, Split, Join, End} indicates the “type”
of a node;

• fW : VACT → A is a function for the assignment of nodes to activities;

• RW ⊆ (VW × VW) is a set of edges, where, each edge represents a
successor relation;

• gW : RW → COND are transition conditions;

• PW : RW → [0, 1] are transition probabilities.

with VX, for X ∈ {Start, Activity, Decision, Split, Join, End}, that denotes the
subset VX ⊆ VW of all nodes of type X.

With these definitions, the mining algorithm aims at discovering a
“good approximation” of the workflow that originated the observations.

The workflow is expressed in terms of Stochastic Activity Graph (SAG)
that is a directed graph where, each node is associated to an activity (more
nodes referring to the same activity are allowed) and each edge (that rep-
resents a possible way of continuing the process) is “decorated” with its
probability. Additionally, each node must be reachable from the start and
the end must be reachable from every node. The procedure can be divided
in two phases: the identification of a SAG, that is “consistent” with the set
of process instances observed (the log), and the transformation of the SAG
into a workflow model.

In order to identify the SAG, the procedure described is very similar
to the one of Agrawal et at. [3], and is based on the creation of a node
for all the activities observed and the generation of edges according to the
dependencies observed in the log.

Hwang and Yang

In the solution proposed by S. Y. Hwang e W. S. Yang [77], each activity id
described as a time interval. In particular, an activity is composed of three
possible sub-events:

1. a start event that determines the beginning of the activity;

2. an end event that identifies the activity conclusion;

45

3. the possible write event used for the identification of the writings of
the output produced by the activity.

All these possible events are atomic, so it is not possible to observe two of
them at the same time.

The start and the end event are recorded in a triple that contains the
name of the activity, the case identifier and the execution time. The write
events are composed of the same fields of the other two but, in addition,
contain also information on the written variables and their values.

Two activities, belonging to the same instance, can be described as
“disjoint” or “overlapped”. They are disjoint if one starts after the end
of the other; they are overlapped if they are not disjoint. The aim of the
approach is to find all the couples of disjoint activities (X, Y) such that
X is directly followed by Y: all those couples are the candidates for the
generation of the final dependency graph that represents the discovered
process. Another constructed set is the one with all the overlapped activ-
ities. Starting from the assumption that two activities overlapped are not
in a dependency relation, the final model is constructed adding an edge
between two activities they are observed in direct succession and they are
not overlapped.

In order to identify the noise in the log, the proposed approach de-
scribes other relations among activities and, using a threshold, only the
observations that exceed the given value are considered. Moreover the
output of each activity is proposed to be used for the definition of the
conditions for the splits.

Schimm

In the work by Guido Schimm [129, 128, 162], there is a definition of trace,
as a set of events, according to the described activities life cycle. Such life
cycle, can be considered quite general and is proposed in Figure 2.11. In
the work, however, only the events Start and Complete are considered but
these are sufficient for the identification of parallelisms.

The language used for the representation of the resulting process is
block based [87] where every block can be: a sequence, a parallel operator,
or an alternative operator. An example of a “mined model”, with activities
a, b, c and d is:

A(P(S(a,b), (c,d)),S(P(c,S(b,a)),d))

where S identifies the sequence operator, P the parallel and A the alter-
native. Of course, the same process can be also graphically represented.

The procedure starts finding all the precedence relations, also the pseudo
ones (dependencies that maybe do not exist in the original model, that are

46

Figure 2.11. Finite state machine for the life cycle of an activity, as pre-
sented in Figure 1 of [129].

due to some random behavior such as delays); and then converting all
them into the given model. It is interesting to note that this approach
aims only at describing the behavior contained in the model, without any
generalization.

There is a tool, that implements the given approach, and that can be
downloaded for free from the Internet3.

van der Aalst et al.

The work by van der Aalst et al. [156, 163] is focused on the generation
of a Petri Net model that can describe the log. The idea, formalized in an
algorithm called “Alpha”, is that some relations – if observed in the log
– can be combined together in order to construct the final model. These
relations, between activities a and b are:

• the direct succession a > b, when, in the log, sometime a compares
before b;

• the causal dependency (or follow) a→ b, when a > b and b ≯ a;

• the parallelism a‖b, when a > b and b > a;

• uncorrelation #, when a ≯ b and b ≯ a.

Given sets containing all the relations observed into the log, it is possible
to combine them generating a Petri Net, following the rules presented in
Figure 2.12.

3 At the website: http://www.processmining.de.

47

http://www.processmining.de

(a) A→ B (b) A→ B ∧ A→ C ∧ B‖C (c) A→ C ∧ B→ C ∧ A‖B

(d) A→ B ∧ A→ C ∧ B#C (e) A→ C ∧ B→ C ∧ A#B

Figure 2.12. Basic ideas for the translation of set of relations into Petri Net
components. Each component’s caption contains the logic
proposition that must be satisfied.

Some improvements to the original algorithm [145, 174] allow the mine
of short loops (loop of length one) and implicit places. This approach,
independently from its extensions, assumes that log does not contain any
noise and that it is complete with respect to the follow relation so, if an
activity A is expected to be in the final model directly before B, that it
is necessary that the relation A → B is observed, in the log, at least one
time. Moreover, as can be deduced by this description there is no statistical
analysis of the frequency of the activities. These three observations prevent
the current approach to be applied in any real context.

Golani and Pinter

As in other approaches, the one presented by Mati Golani and Shlomit
Pinter [61, 116] considers each activity as a not instantaneous event, in
the sense that it is composed of a “start” and “end” event. In order to
reconstruct the model, given two activities ai and aj contained into a log,
the procedure define the dependency of ai on aj iff, whenever ai appears
in some execution in the log, aj must appear in that execution sometime
earlier and the termination time of aj is smaller than the starting time of ai.
The notion of time interval is crucial for the application of the procedure
since it analyses the overlaps of time intervals. The presented approach is
quite close to the one by Agrawal et al.

48

Weijters et al.

The control-flow discovery approach by Weijters et al. [161, 159] is called
“Heuristics Miner”. This algorithm can be considered as an extension of
the one by van der Aalst et al. (2002): in both cases the idea is to identify
sets of relations from the log and then build the final model on the basis
of such observed relations. The main difference between the approaches
is the usage of statistical measures (together with acceptance thresholds,
parameters of the algorithm) for the determination of the presence of such
relations.

The algorithm can be divided in three main phases: the identification
of the graph of the dependencies among activities; the identification of
the type of the split/join (each of them can be an AND or a XOR split);
the identification of the “long distance dependencies”. An example of
measure calculated by the algorithm is the “dependency measure” that
calculates the likelihood of a dependency between an activity a and b:

a⇒ b =
|a > b|− |b > a|

|a > b|+ |b > a|+ 1

where |a > b| indicates the number of times that the activity a is directly
followed by b into the log. The possible values of a ⇒ b are in the range
−1 and 1 (excluded); its absolute value indicates the probability of the
dependency and its sign indicates the “direction” of the dependency (a
depends on b or the other way around). Another measure is the “AND-
measure” which is used to discriminate between AND and XOR splits:

a⇒ (b∧ c) =
|b > c|+ |c > b|

|a > b|+ |a > c|+ 1

If two dependencies are observed, e.g. a→ b and a→ c, it is necessary to
discriminate if a is and AND or a XOR split. The above formula is used for
this purpose: if the resulting value is above a given threshold (parameter
of the algorithm), then a is considered as an AND split, otherwise as XOR.

This is one of the most used approaches in real-case applications, since
it’s able to deal with noise and produce generalized relations.

Greco et al.

The Process Mining approach by Gianluigi Greco et al. [64, 63] aims at
creating a hierarchy of process models with different levels of abstraction.

The approach is divided into two steps: in the first one, the traces are
clustered with an iterative partitioning the log. In order to perform the
clustering, some features are extracted from the the log using a procedure

49

Figure 2.13. An example of EPC. In this case, diamonds identify events;
rounded rectangles functions and crossed circles identify con-
nectors.

that identifies the “frequent itemset” of sequence of activities among all
the traces. Once the clustering is complete, a hierarchy (i.e. a tree) is built
containing all the clusters: each node is supposed to be an abstraction
of its children, so that different processes are abstracted into a common
parent.

van Dongen et al.

The approach by van Dongen et al. [167, 166] aims at generating Event-
driven Process Chains (EPC) [45]; this notation does not require a strong
formal framework, among other things, because the notation does not
rigidly distinguish between output flows and control-flows or between
places and transitions, as these often appear in a consolidated manner. An
example of EPC is proposed in Figure 2.13.

In this approach, a model (actually, it is just a partial order, with no
AND or XOR choices) is generated for each log trace. After the set of
“models” is completely generated (so all the traces have been observed),
these are aggregated in a single model. The aggregation is constructed
according to some rules but, intuitively, can be considered as the sum of
the behaviors observed in all the “trace model”.

Alves de Medeiros et al.

The approach presented by Ana Karla Alves de Medeiros and Wil van der
Aalst [39, 147] uses genetic algorithms [102, 8].

In the first step, a random “population” of initial processes is cre-
ated. Each individual of this population is analyzed in order to check
how much it “fits” the given log (in this approach, the fitness criterion is
fundamental). After that, the population is evolved according to genetic
operators: crossover helps combining two individuals; mutation modifies a
single model.

50

PYSY
(complete)
108

0.971
47

PYWZ
(complete)
316

0.917
39

DSYE
(complete)

69

0.667
3

LEWP
(complete)

2
0
1

0.917
27

0.994
197

OSYW
(complete)
181

0.833
41

OSCW
(complete)

94

0.667
31

YWNB
(complete)

84

0.833
19

DSWZ
(complete)

31

0.667
11

ZEZR
(complete)

1
0.5
1

IWLH
(complete)
252

0.99
162

IWNP
(complete)
303

0.527
75

0.986
159

UNYK
(complete)

35

0.667
18

CEOI
(complete)
450

0.88
61

ONIX
(complete)

12

0.8
12

IWOL
(complete)
230

0.968
99

IWDB
(complete)

64
0.588
43

0.75
60

VPMO
(complete)

4

0.5
2

IWOW
(complete)
144

0.857
24

0.964
61

OSIX
(complete)

20

0.5
4

ONXB
(complete)
169

0.75
19

KZWZ
(complete)
224

0.75
15

LEYW
(complete)
115

0.75
14

PYSK
(complete)

83

0.971
38

OSWZ
(complete)

78

0.667
14

YWNA
(complete)
1651

0.75
26

0.968
46

ONWZ
(complete)

340.75
7

YWZP
(complete)

230.667
10

0.987
125

OSZY
(complete)

28

0.8
10

AHCW
(complete)

1

0.5
1

0.955
52

OSVO
(complete)
210

0.769
29

OSIO
(complete)

5

0.667
2

0.991
149

ONYW
(complete)

55

0.8
25

OSPD
(complete)

17
0.5
9

0.923
17

0.5
5

UNHL
(complete)

91

0.979
74

VPPQ
(complete)
184

0.667
11

UNEL
(complete)
155

0.977
86

UNLE
(complete)

41

0.545
18

0.881
36

0.5
16

UNEN
(complete)

44

NEOI
(complete)

15
0.75
9

DNEZ
(complete)

6

0.833
6

0.978
50

YWHY
(complete)

44

0.75
27 YWWY

(complete)
94

0.889
32

0.8
29

YWLY
(complete)
1380.886

53

HQOQ
(complete)
6163

0.667
53

ONOW
(complete)

5

0.5
2

ONZY
(complete)
394

0.992
244

ONVL
(complete)
155

0.756
70

ONZO
(complete)
173

0.956
78

0.955
28

DSYN
(complete)

57
0.921
37

DSYV
(complete)

52

0.939
49

DSPY
(complete)

35

0.8
18

DSLQ
(complete)

30

0.909
16

0.667
10

0.917
13

OSYN
(complete)
106

0.5
7

0.957
52

OSDL
(complete)

80

0.821
28

OSAT
(complete)

8

0.75
5

0.929
19

DSSV
(complete)
234

0.966
50

OSAI
(complete)

8

0.8
5

OSHY
(complete)
224

0.989
153

AHZI
(complete)

68

0.878
50

0.983
88

DSSN
(complete)
304

0.854
129

OSVZ
(complete)

18

0.5
4

APPP
(complete)
9110

0.794
60

0.8
43

0.9
28

1
7387

AHHW
(complete)
197

0.917
76

ONVY
(complete)
160

0.941
53

ZEDS
(complete)
195

0.828
118

XIEO
(complete)
1038

0.929
366

DNLP
(complete)
264

0.929
117

AIVY
(complete)
552

0.941
178

HQQL
(complete)
1153

0.909
379

KZPA
(complete)
224

0.941
100

TUTC
(complete)

23

0.667
23

OSYR
(complete)

190.5
11

OSXZ
(complete)

10

0.5
2

WSII
(complete)

13
0.5
6

YVYW
(complete)

1

0.5
1

AISB
(complete)

4
0.5
3

XIWW
(complete)
1422

0.996
770

YWSM
(complete)
648

0.923
123

AICK
(complete)

56
0.936
49

0.984
165

OSHB
(complete)
231

0.944
65

OSZO
(complete)

61
0.8
28

OSOS
(complete)

35

OSSP
(complete)
358

0.667
17

DSSA
(complete)
238

0.98
147

0.969
66

VPPN
(complete)

2

0.5
1

DSVM
(complete)

29

0.833
12

0.756
42

0.984
128

SVEI
(complete)
302

0.825
38

POZI
(complete)
263

0.8
20

0.932
51

0.991
173

SCEI
(complete)
449

0.944
126

OSOI
(complete)
291

0.981
110

POLA
(complete)
1255

0.923
169

OSLP
(complete)

75

0.8
5

ONCZ
(complete)

11
0.5
2

0.5
5

0.923
89

0.998
871

OSWL
(complete)
103

0.877
54

AISW
(complete)
4300.667

34

ONPI
(complete)
264

0.819
104

LELY
(complete)
126

0.667
12

KZOL
(complete)
166

0.8
36

SPWV
(complete)
114

0.929
28

ONYZ
(complete)

7

0.5
6

OSPL
(complete)

4

0.5
1

0.667
20

0.995
281

YHLH
(complete)
749

0.918
127

0.994
437

AHHJ
(complete)
264

0.972
56

0.942
84

SPWB
(complete)
214

0.938
54

AHBL
(complete)
271

0.981
45

AISY
(complete)
845

0.917
43

DSYA
(complete)

3

0.5
2

0.99
154

AHCA
(complete)
206

0.978
51

0.888
51

0.986
114

0.889
58

DSNA
(complete)
1159

0.833
36

0.857
8

0.997
1054 DSCL

(complete)
30.5

3

DSIC
(complete)

20

0.75
11

LEOJ
(complete)

7

0.667
5

DSRY
(complete)

2

0.5
2

0.5
7

0.667
55

0.986
104

OONO
(complete)

28

0.5
6

0.8
5

0.974
71

ONAZ
(complete)
171

0.909
41

ONHL
(complete)
264

0.974
108

VPHT
(complete)
118

0.975
42

ONYN
(complete)
142

0.942
88

ONIZ
(complete)

230.75
8

LEVN
(complete)

5

0.5
2

VPNY
(complete)

10

0.5
1

0.982
59

VPNH
(complete)
160

0.854
53

0.983
75

ONLW
(complete)
100

0.978
46

UNEA
(complete)
239

0.941
36

VPNE
(complete)

15

0.667
2

0.957
52

0.75
24

0.909
14

0.985
94

NEOW
(complete)

60

0.923
34

NEPL
(complete)

47

0.885
26

0.909
19

0.667
24

NEWN
(complete)

96

0.667
23

0.958
49

0.985
161

KZOO
(complete)

26

0.8
18

OVWZ
(complete)

210.5
6

LEWO
(complete)

2

0.5
2

0.941
37

XISH
(complete)
866

0.833
59

OSEL
(complete)

1

0.5
1

0.9
65

0.995
285

0.833
29

0.667
29

0.8
46

0.997
729

AIVM
(complete)
130

0.667
44

YWOK
(complete)
856

0.998
604

YWVP
(complete)
4690.769

134

AHMK
(complete)

1

0.5
1

0.991
112

0.923
46

0.997
407

YWXB
(complete)
257

0.896
92

0.917
64

0.984
69

SVPZ
(complete)
203

0.98
64

OSAX
(complete)

6

0.833
5

AHNP
(complete)
301

0.993
253

AHMI
(complete)

10

0.875
8

0.997
370

0.8
40

HDEI
(complete)

40

0.5
3

TUII
(complete)

90

0.667
9

0.995
245

0.667
27

0.999
1471

0.812
101

AISI
(complete)
842

0.75
27

IOII
(complete)
243

0.872
43

BKZV
(complete)

4

0.5
1

0.993
158

0.881
73

0.9
62

0.976
47

YWPZ
(complete)

92

0.944
54

CESO
(complete)
123

0.82
45

0.875
85

0.977
55

0.921
40

0.989
123

SCPZ
(complete)
154

0.889
28

DNWZ
(complete)

22

0.667
8

0.994
168

HNRN
(complete)

49

0.944
27

AHZE
(complete)

1

0.5
1

VPPK
(complete)
350

0.904
80

0.986
154

0.9
38

0.909
72

0.964
25

0.984
101

VPHA
(complete)
102

0.9
43

0.981
173

0.978
44

0.909
37

ONOI
(complete)
703

0.667
54

0.941
104

0.966
56

ONHI
(complete)

78
0.947
60

ONHB
(complete)
178

0.952
79

ONHY
(complete)

74

0.983
64

ONNY
(complete)
191

0.938
64

0.988
108

0.75
77

0.75
60

0.998
522

VPHN
(complete)
279

0.867
140

0.985
136

0.75
97

0.985
151

0.75
18

0.985
83

LEJO
(complete)

70.5
5

LEJV
(complete)

2

0.5
1

AHLZ
(complete)

5

0.5
1

PONA
(complete)

65

0.667
11

0.938
38

0.98
91

ONIY
(complete)
117

0.921
70

0.981
70

0.97
43

HQWL
(complete)
221

0.99
165

HQXZ
(complete)

83

0.759
35

0.75
17

1
5207

INCY
(complete)

50

0.812
45

HQXB
(complete)
775

0.909
277

KZZL
(complete)
1427

0.917
270

HQOH
(complete)

59

0.848
59

AIYW
(complete)
114

0.941
67

BLZI
(complete)

3

0.5
3

NWYA
(complete)

1

0.5
1

0.968
47

HQOZ
(complete)
601

0.75
13

HQHI
(complete)
4504

1
4245

INKY
(complete)

93

0.963
44

INLO
(complete)
119

0.885
35

KZOY
(complete)
1220.875

35

0.982
84

LEJE
(complete)

50

0.923
41

LEOO
(complete)

85

0.914
37

LELZ
(complete)

10

0.75
3

0.917
35

LEVL
(complete)
176

0.786
43

0.967
63

ZEPZ
(complete)
141

0.955
121

ZELC
(complete)
304

0.988
128

0.9
117

0.975
109

KZOI
(complete)
107

0.909
42

OVNA
(complete)
155

0.909
21

0.929
253

0.998
629

AIHT
(complete)

87

0.978
53

OVLE
(complete)
107

0.875
16

0.932
53

TURC
(complete)

53

0.95
26

BKXT
(complete)

1

0.5
1

0.929
152

0.909
37

0.977
111

0.923
15

OONV
(complete)

26

0.667
9

0.667
14

0.909
11

OPNO
(complete)

2

0.5
1

0.762
67

0.75
62

0.99
107

AIVJ
(complete)

70.5
1

HQJW
(complete)

2

0.5
1

AIGP
(complete)
877

0.983
85

0.996
445

XISV
(complete)
418

0.917
149

0.929
32

CNNN
(complete)

60

0.743
46

HDEA
(complete)
243

0.727
18

HDWE
(complete)

43

0.833
6

TUGP
(complete)

73

0.688
19

DSCW
(complete)

20

0.667
4

0.944
95

0.957
47

0.917
15

0.994
230

AINO
(complete)
270

0.872
47

ZENC
(complete)
806

0.933
101

0.909
53

0.75
29

0.976
112

HQPI
(complete)

48

0.667
7

0.8
31

0.909
70

INOL
(complete)

530.909
34

0.955
35

0.917
12

INOM
(complete)

44

0.861
38

0.96
27

HQEL
(complete)
256

0.8
16

0.909
385

0.998
390

0.857
50

0.992
205

0.75
14

0.893
42

0.97
30

0.991
187

0.75
32

0.75
37

INVW
(complete)

42

0.727
170.929

22

0.667
5

0.976
41

0.963
47

OVNZ
(complete)
163

0.828
56

0.983
97

HQLE
(complete)
6010

0.833
66

0.941
250

0.934
160

0.996
285

OSOL
(complete)

28
0.667
6

TUXW
(complete)

1

0.5
1

HQQY
(complete)
185

0.962
83

HQLY
(complete)

80

0.902
62

HQLK
(complete)

1

0.5
1

0.896
79

0.909
425

0.998
682

0.981
56

0.857
30

0.667
10

0.845
961

5791

TUWI
(complete)

43

0.667
27

KZEY
(complete)

430.667
18

HQXY
(complete)

12

0.667
4

LEOR
(complete)

4

0.5
3

0.998
651

ZENA
(complete)
1094

0.795
151

0.939
113

0.999
931

0.941
104

0.904
78

0.99
115

0.711
52

0.998
779

KZWN
(complete)

87

0.964
55

0.516
30

LGZI
(complete)

6

0.5
1

0.917
262

0.75
160

0.999
1124

TUJI
(complete)
296

0.889
13

HLPA
(complete)
122

0.75
21

AIHN
(complete)

23

0.667
3

0.909
98

DSPO
(complete)

3

0.5
1

0.833
30

HDOE
(complete)

10

0.5
1

CWNW
(complete)
782

0.667
15

BKZI
(complete)

80.5
1

KZZO
(complete)
111

0.955
46

0.929
74

0.998
689

AINP
(complete)

7

0.5
2

OSIZ
(complete)
161

0.917
28

AIYB
(complete)

2

0.667
2

0.875
80

0.995
312

0.987
171

POZW
(complete)
103

0.933
75

0.8
43

0.933
15

0.933
27

0.97
72

OVBK
(complete)

84

0.932
53

0.941
29

0.964
22

0.955
29

YWWP
(complete)
226

0.994
173

ZEIN
(complete)
887

0.923
15

CWSW
(complete)
177

0.971
34

0.889
59

0.998
743

ZEBZ
(complete)
179

0.917
56

ZEWZ
(complete)

9

0.5
4

HQLI
(complete)

28
0.75
5

0.909
18

0.993
158

IOIK
(complete)

76
0.617
67

0.938
31

0.952
26

DSLI
(complete)

70.5
3

0.881
51

0.989
121

0.667
18

TUMI
(complete)
409

0.995
310

0.923
10

HDPT
(complete)
145

0.833
10

BKMI
(complete)
195

0.923
60

TUMK
(complete)

40

0.571
16

0.848
39

0.986
97

SCNI
(complete)

4

0.5
1

0.917
20

0.944
73

CNAT
(complete)

65

0.95
24

CNNS
(complete)

68
0.889
40

0.794
29

CNIK
(complete)

43

0.971
42

0.941
16

0.923
18

0.938
17

TURI
(complete)

53

0.839
34

0.909
15

TURK
(complete)

42

0.825
38

0.9
20

TUSC
(complete)
166

0.833
17

0.967
36

SPWA
(complete)
129

0.824
72

0.962
45

SPWN
(complete)
120

0.9
74

0.957
45

SPWI
(complete)

99

0.963
72

0.914
46

0.909
27

TUZV
(complete)
308

0.986
119

TUZC
(complete)
390

0.929
148

TUJV
(complete)

92

0.889
28

0.929
14

0.987
101

TUZI
(complete)
395

0.944
252

TUWV
(complete)

5

0.5
1

TUTP
(complete)

24

0.667
4

0.944
2

0.98
119

TUOK
(complete)

44
0.975
42

TUPK
(complete)

66

0.954
65

TUZK
(complete)
207

0.969
156

0.875
43

0.972
34

TUPC
(complete)

18

0.75
8

BKYA
(complete)
153

0.97
55

BKYI
(complete)
160

0.892
93

KZAL
(complete)

2

0.5
2

0.952
37

BKYV
(complete)
144

0.884
109

TUSI
(complete)
306

0.667
10

LEBR
(complete)

10.5
1

0.933
21

BLYI
(complete)
128

0.797
120

0.968
56

0.978
50

0.96
80

0.957
84

0.938
49

BCCC
(complete)

82

0.667
18

TUEW
(complete)
154

0.688
35

TUIV
(complete)

1

0.5
1

0.97
82

0.8
16

HDWP
(complete)

11

0.5
1

TUSK
(complete)

88

0.667
13

0.667
32

0.989
209

0.923
10

0.941
25

0.941
66

0.981
46

0.5
7

0.667
23 0.667

8

0.941
43

0.962
51

TUJC
(complete)
121

0.857
22

0.9
37

0.955
32

TUIC
(complete)

24

0.667
7

TUJP
(complete)
203

0.964
99

0.923
86

TUGV
(complete)

39
0.8
130.923

56

0.986
100

TUJK
(complete)
131

0.852
124

TUMC
(complete)
192

0.8
49

LEBS
(complete)
197

0.833
38

TUAB
(complete)

12

0.5
2

TUYK
(complete)

1

0.5
1

TUKW
(complete)

73

0.833
12

0.955
45

0.5
1

0.667
7

0.955
28

0.75
12

0.981
100

HDPR
(complete)

35

0.594
31

0.8
8

BCCV
(complete)

55

0.75
22

TUGC
(complete)

79

0.667
20

0.989
134

0.857
19

0.875
21

0.964
36

0.8
18

0.955
41

0.75
27

0.967
49

TUGI
(complete)
152

0.986
119

TUGK
(complete)

40

0.857
21

HLPO
(complete)

4

0.5
3

BCCI
(complete)
177

0.989
139

BCCK
(complete)

63
0.923
30

0.993
231

0.917
54

TUTI
(complete)

26

0.667
7

0.5
8

0.5
4

0.5
1

0.75
21

0.998
744

0.917
56

0.992
122

DSLN
(complete)

30

0.917
13

DSLL
(complete)

36

0.759
28

DSZN
(complete)

25

0.958
25

DSLX
(complete)

48
0.87
20

0.889
26

0.947
20

DSZV
(complete)

22

0.957
22

DSLV
(complete)

26

0.952
20

0.95
15

HDOP
(complete)

7

0.5
6

0.667
3

0.8
30

TUMV
(complete)

96

0.75
41

0.938
38

AIWZ
(complete)
116

0.75
14

BKMA
(complete)
130

0.8
29

0.944
69

0.875
53

0.99
129

0.923
44

0.96
80

BKMV
(complete)
143

0.912
66

0.75
17

0.923
14

0.917
45

0.7
14

0.955
17

0.923
17

0.929
18

BCCW
(complete)

4
0.4
4

0.75
19

0.667
28

0.8
28

0.5
3

DSIY
(complete)

14

0.667
4

DSIT
(complete)

13
0.727
13

0.875
8

0.533
10

0.5
2

OSOW
(complete)

6

0.5
2

0.833
10

0.941
17

0.5
2

0.667
3

LECL
(complete)
211

0.75
23

0.991
159

0.75
37

0.99
135

TUIP
(complete)

39

0.75
28

0.667
20

0.909
86

SYPI
(complete)

6

0.667
5

0.976
85

HLPN
(complete)

99

0.8
33

0.8
2

0.98
66

TUIK
(complete)

24

0.842
21

0.889
43

0.917
50

BLOM
(complete)

22

0.522
20

BLAM
(complete)

63

HLPW
(complete)

32

0.833
11

TUQK
(complete)

1

0.5
1

0.889
18

0.857
26

0.833
26

0.977
76

BLBO
(complete)

10
0.5
2

0.75
15

0.929
19

TUWP
(complete)

39

0.944
19

0.5
7

0.923
20

0.545
17

TUWK
(complete)

23

0.938
22

0.667
2

0.667
12

0.958
64

0.857
15

0.75
27

HLPI
(complete)

60.667
4

0.667
7

BKZA
(complete)

1

0.5
1

TUTK
(complete)

13

0.857
13

0.667
7

0.667
12

0.5
2

0.917
31

0.5
2

0.981
111

0.8
11

OSHW
(complete)

4

0.5
1

OSXY
(complete)

10

0.667
2

0.667
40

0.933
30

AHWZ
(complete)

3

0.5
1

0.5
1

0.864
24

0.964
21

0.75
23

0.667
3

0.5
1

0.5
3

0.938
18

0.909
94

0.989
470

HQWP
(complete)

1

0.5
1

0.5
1

LEJC
(complete)

6

0.667
4

0.75
5

NEBI
(complete)

33

0.917
13

0.947
16

NEOO
(complete)

160.562
14

NEEK
(complete)

18

0.9
11

NELT
(complete)

11

0.909
11

NELO
(complete)

13

0.909
10

0.667
6

0.5
3

OSLL
(complete)

61

0.75
16

0.941
35

OSHD
(complete)

17

0.667
6

0.5
10

0.812
30

0.667
8

0.667
8

0.933
13

0.5
2

HLPJ
(complete)

1

0.5
1

ONWL
(complete)

21

0.875
7

0.8
10

0.625
6

0.667
4

0.667
5

0.5
2

BKXI
(complete)

1

0.5
1

BKXA
(complete)

1

0.5
1

0.5
1

0.875
17

0.5
1

0.5
2

0.875
21

0.5
1

0.4
4

0.5
1

0.75
3

0.75
4

0.929
14

0.5
3

0.5
2

0.667
2

0.75
2

0.5
1

0
1

0.667
7

TUAV
(complete)

5

0.5
7

0.25
4

TUAI
(complete)

1

0.5
1

TUAK
(complete)

2
0.5
1

0.5
2

0.5
1

0.8
6

0.96
22

0.5
2

0.5
2

0.667
2

0.5
4

0.5
1

AHMY
(complete)

10

0.889
8

HNWZ
(complete)

15

0.25
2

AHMH
(complete)

9

0.727
9

AHMW
(complete)

8

0.889
8

AHMO
(complete)

8

0.889
8 AHMZ

(complete)
8

0.875
8

AHMN
(complete)

8

0.875
8

0.875
6

0.5
1 0.917

12

0.5
1

0.5
2

SCNA
(complete)

3

0.5
2

SCNK
(complete)

1
0.5
1

0.5
1

0.5
1

0.5
1

0.667
4

0.75
2

0.5
2

0.5
1

0.5
1

0.5
1

0.5
2

0.5
1

0.5
7

0.5
1

0.5
1

0.5
2

TUXK
(complete)

2

0.5
2

0.5
2 0.5

1

0.5
4

0.833
8

0.833
5

0.75
5 0.667

2

0.929
17

0.667
4

0.5
1

0.5
1

0.25
2

PYYW
(complete)

1

0
1

0.5
3

0.5
1

0.5
1

0.5
1

(a) The entire mined process model.

DSYE
(complete)

69

OSYW
(complete)

181

OSIX
(complete)

20

0.5
4

0.987
125

OSZY
(complete)

28

0.8
10

AHCW
(complete)

1

0.5
1

UNHL
(complete)

91

0.979
74

VPPQ
(complete)

184

0.667
11

UNEL
(complete)

155

0.977
86

UNLE
(complete)

41

0.545
18

0.881
36

UNEN
(complete)

44

NEOI
(complete)

15
0.75
9

DNEZ
(complete)

6

0.833
6

ONZY
(complete)

394

0.992
244

ONVL
(complete)

155

0.756
70

ONZO
(complete)

173

0.956
78

0.955
28

DSYN
(complete)

57
0.921
37

DSYV
(complete)

52

0.939
49

DSPY
(complete)

35

0.8
18

DSLQ
(complete)

30

0.909
16

0.667
10

0.917
13

OSYN
(complete)

106

0.5
7

0.957
52

OSDL
(complete)

80

0.821
28

OSAT
(complete)

8

0.75
5

0.929
19

DSSV
(complete)

234

0.966
50

OSAI
(complete)

8

0.8
5

OSHY
(complete)

224

0.989
153

0.878
50

0.983
88

DSSN
(complete)

304

0.854
129

OSVZ
(complete)

18

0.5
4

0.8
43

0.9
28

ONVY
(complete)

160

DNLP
(complete)

264

HQQL
(complete)
1153

0.984
165

OSHB
(complete)

231

0.944
65

OSZO
(complete)

61
0.8
28

DSSA
(complete)

238

0.98
147

0.969
66

VPPN
(complete)

2

0.5
1

DSVM
(complete)

29

0.833
12

0.756
42

0.984
128

POZI
(complete)

263

0.8
20

OSOI
(complete)

291

0.981
110

POLA
(complete)
1255

0.923
169

ONCZ
(complete)

11

0.5
2

0.5
5

0.923
89

0.998
871

OSWL
(complete)

103

0.877
54

AISW
(complete)

4300.667
34

ONPI
(complete)

264

0.819
104

LELY
(complete)

126

0.667
12

0.8
36

SPWV
(complete)

114

0.929
28

ONYZ
(complete)

7

0.5
6

OSPL
(complete)

4

0.5
1

0.667
20

0.5
7

0.974
71

ONAZ
(complete)

171

0.909
41

ONHL
(complete)

264

0.974
108

0.975
42

ONYN
(complete)

142

0.942
88

ONIZ
(complete)

230.75
8

LEVN
(complete)

5

0.5
2

VPNY
(complete)

10

0.5
1

VPNH
(complete)

160

0.854
53

0.983
75

ONLW
(complete)

100

0.978
46

UNEA
(complete)

239

0.941
36

VPNE
(complete)

15

0.667
2

0.957
52

0.75
24

0.909
14

0.985
94

NEOW
(complete)

60

0.923
34

NEPL
(complete)

47

0.885
26

0.909
19

0.667
24

0.941
37

XISH
(complete)

866

0.833
59

OSEL
(complete)

1

0.5
1

0.8
46

0.997
729

AIVM
(complete)

130

0.667
44

OSAX
(complete)

6

0.833
5

0.997
370

0.8
40

HDEI
(complete)

40

0.5
3

TUII
(complete)

90

0.667
9

VPPK
(complete)

350

0.904
80

0.986
154

0.9
38

0.909
72

0.964
25

0.984
101

VPHA
(complete)

102
0.9
43

0.981
173

0.978
44

0.909
37

ONOI
(complete)

703

0.667
54

0.966
56

ONHI
(complete)

78
0.947
60

ONHB
(complete)

178

0.952
79

ONHY
(complete)

74

0.983
64

ONNY
(complete)

191

0.938
64

0.988
108

0.75
77

0.75
60

0.998
522

VPHN
(complete)

279

0.867
140

0.985
136

0.985
151

PONA
(complete)

65

0.667
11

0.938
38

0.98
91

ONIY
(complete)

117

0.921
70

0.981
70

0.97
43

HQWL
(complete)

221

0.99
165

HQXZ
(complete)

83

0.759
35

0.968
47

0.982
84

LEJE
(complete)

50

0.923
41

LEOO
(complete)

85

0.914
37

0.75
3

0.917
35

0.786
43

AIHT
(complete)

87

0.909
37

0.977
111

HDWE
(complete)

43

0.833
6

TUGP
(complete)

73

0.688
19

DSCW
(complete)

20

0.667
4

0.944
95

0.957
47

AINO
(complete)

270

0.872
47

0.857
50

0.992
205

0.75
14

0.97
30

HQLE
(complete)
6010

HQQY
(complete)

185

0.962
83

HQLY
(complete)

80

0.902
62

HQLK
(complete)

1

0.5
1

0.896
79

0.998
682

0.667
10

0.845
961

5791

0.667
27

KZEY
(complete)

430.667
18

HQXY
(complete)

12

0.667
4

LEOR
(complete)

4

0.5
3

TUJI
(complete)

296

0 889

0.987
171

POZW
(complete)

103

0.933
75

0.8
43

0.933
15

0.933
27

0.667
18

TUMI
(complete)

409

0.995
310

0.923
10

HDPT
(complete)

145

0.833
10

BKMI
(complete)

195

0.923
60

TUMK
(complete)

40

0.571
16

TURK
(complete)

42

0.825
38

0.9
20

TUSC
(complete)

166

0.833
17

0.967
36

SPWA
(complete)

129

0.824
72

0.962
45

SPWN
(complete)

120

0.9
74

0.957
45

SPWI
(complete)

99

0.963
72

0.914
46

0.909
27

TUZV
(complete)

308

0.986
119

TUZC
(complete)

390

0.929
148

TUJV
(complete)

92

0.889
28

0.929
14

0.987
101

TUZI
(complete)

395

0.944
252

TUWV
(complete)

5

0.5
1

TUTP
(complete)

24

0.667
4

0.944
2

0.98
119

TUOK
(complete)

44
0.975
42

TUPK
(complete)

66

0.954
65

TUZK
(complete)

207

0.969
156

0.875
43

TUPC
(complete)

18

0.75
8

BKYA
(complete)

153

0.97
55

BKYI
(complete)

160

0.892
93

KZAL
(complete)

2

0.5
2

0.952
37

BKYV
(complete)

144

0.884
109

TUSI
(complete)

306

0.667
10

LEBR
(complete)

10.5
1

0.933
21

BLYI
(complete)

128

0.797
120

0.968
56

0.978
50

0.96
80

0.957
84

0.938
49

BCCC
(complete)

82

0.667
18

TUEW
(complete)

154

0.688
35

TUIV
(complete)

1

0.5
1

0.97
82

0.8
16

HDWP
(complete)

11

0.5
1

TUSK
(complete)

88

0.667
13

0.923
10

0.941
25

0.5
7

0.962
51

TUJC
(complete)

121

0.857
22

0.9
37

0.955
32

TUIC
(complete)

24

0.667
7

TUJP
(complete)

203

0.964
99

0.923
86

TUGV
(complete)

39

0.8
130.923

56

0.986
100

TUJK
(complete)

131

0.852
124

TUMC
(complete)

192

0.8
49

LEBS
(complete)

197

0.833
38

TUAB
(complete)

12

0.5
2

TUYK
(complete)

1

0.5
1

TUKW
(complete)

73

0.833
12

0.955
45

0.5
1

0.667
7

0.955
28

0.75
12

0.981
100

HDPR
(complete)

35

0.594
31

0.8
8

BCCV
(complete)

55

0.75
22

TUGC
(complete)

79

0.667
20

0.989
134

0.857
19

0.875
21

0.964
36

0.8
18

0.955
41

0.75
27

0.967
49

TUGI
(complete)

152

0.986
119

TUGK
(complete)

40

0.857
21

HLPO
(complete)

4

0.5
3

BCCI
(complete)

177

0.989
139

BCCK
(complete)

63

0.923
30

0.993
231

0.917
54

0.667
7

0.5
1

DSLN
(complete)

30

0.917
13

DSLL
(complete)

36

0.759
28

DSZN
(complete)

25

0.958
25

DSLX
(complete)

48
0.87
20

0.889
26

0.947
20

DSZV
(complete)

22

0.957
22

DSLV
(complete)

26

0.952
20

0.95
15

HDOP
(complete)

7

0.5
6

0.667
3

0.8
30

BKMA
(complete)

130

0.8
29

0.944
69

0.875
53

0.99
129

0.923
44

0.96
80

BKMV
(complete)

143

0.912
66

0.75
17

0.923
14

0.917
45

0.7
14

0.955
17

0.923
17

0.929
18

BCCW
(complete)

4

0.4
4

0.75
19

0.5
3

0.875
8

0.833
10

0.941
17

0.5
2

0.667
3

LECL
(complete)

211

0.75
23

0.991
159

0.75
37

0.99
135

TUIP
(complete)

39

0.75
28

0.667
20

0.8
2

0.98
66

TUIK
(complete)

24

0.842
21

0.889
43

0.917
50

BLOM
(complete)

22

0.522
20

BLAM
(complete)

63

0.833
11

TUQK
(complete)

1

0.5
1

0.889
18

0.857
26

0.833
26

0.977
76

BLBO
(complete)

10
0.5
2

0.75
15

0.929
19

TUWP
(complete)

39

0.944
19

0.5
7

0.923
20

0.545
17

0.667
12

0.667
7

0.667
12

0.5
2

OSHW
(complete)

4

0.5
1

0.5
1

0.5
1

NEBI
(complete)

33

0.917
13

0.947
16

NEOO
(complete)

16
0.562
14

N
(com

0.9
11

OSLL
(complete)

61

0.941
35

OSHD
(complete)

17

0.667
6

0.667
8

0.8
10

0.5
1

0.875
17

0.5
2

0.4
4

0.75
3

0.75
4

0.929
14

0.5
3

0.75
2

TUAV
(complete)

5

0.5
7

0.25
4

TUAI
(complete)

1

0.5
1

TUAK
(complete)

2

0.5
1

0.5
2

0.5
1

0.75
2

0.5
2

0.5
1

0.833
5

0.929
17

0.5
1

0.5
1

(b) A fraction of the process.

Figure 2.14. Example of a mined “speghetti model”, extracted from [70].

With this approach, the algorithm iteratively improves the population,
until a suitable candidate is found (“stop criterion”). This approach is
extremely powerful and can extract a huge number of models but, the
main drawback is its huge complexity.

Günter et al.

In [70, 67] Christian Günter and Wil van der Aalst present their new idea
for handling “spaghetti-processes”. These processes are characterized by
an incredible level of flexibility that reduces their “structureness”. Fig-
ure 2.14 presents a mined model (and an enlarged portion of it) based
on the executions of unstructured process: there are many possible paths,
thus an approach that tries to describe the complete process is not correct.

Usually, they propose a metaphor with road maps: in a map that
presents the entire country it does not make any sense to present all the
streets of all the cities; instead, a city-map should propose all those small
routes. The same “abstraction” idea is applied to Process Mining, and is
based on two concepts: significance (behaviors important in order to de-

51

scribe the log) and correlation (two behaviors close one with the other).
With these two concepts, it is possible to produce the final model consid-
ering these heuristics:

• highly significant behaviors need to be preserved;

• less significant, but highly correlated behavior should be aggregated;

• less significant and lowly correlated behavior should be removed
from the model.

The result of their mining approach is procedure that creates an “in-
teractive” dependency graph. According to the user’s requirements, it is
possible to “zoom in”, adding more details, or “zoom out”, creating clus-
ters of activities and removing edges.

Goedertier et al.

In [59], Goedertier et al. present the problem of process discovery from a
new point of view: using not only the “classical” observations of executed
activities, but also with sequence of activities that are not possible.

Essentially all the real-world business logs contain only “positive events”:
behavior that the system does not allow, typically, are not recorded. This
aspect limits the process discovery to a setting of unsupervised learning.
For this reason, authors decided to artificially generate negative events
(behavior not allowed by the model) with the following steps:

1. process instances with the same sequence of activities are grouped
together (to improve efficiency);

2. completeness assumption: behavior that does not occur in the log
should not be learned;

3. induce negative events checking all the possible parallel variants of
the given sequence (permutation of some activities).

Once the log (with positive and negative events) is generated, the system
learns the precondition of each activity (as a classification problem, using
TILDE: given an activity in a particular time, detect if a positive or negative
event takes place). The set of precondition if then transformed into a
Petri Net on the basis of correspondences between language constructs
and Petri Net patterns (these rules are similar to the Alpha miner rules
presented in Figure 2.12).

52

Maggi et al.

The approach by Maggi et al. [94] can be used to mine a declarative
process model (expresses using Declare language, see Section 2.1.4).

The basic idea of the approach is to ask the user which kind of con-
straints to mine (i.e., the Declare templates). Once the user has inserted
all the templates, the system builds the complete list with the actual con-
straints, by applying each template to all the possible combinations of
activities. All constraints are checked against the log: if the log violates
one constraint (i.e. it does not hold for at least one trace), it is removed and
not considered anymore. Once the procedure has completed the analysis
of all the constraints, a Declare model can be built (as the union of all the
holding constraints).

The described procedure provides two parameters (Percentage of Events
and Percentage of Instances) that are useful to define, respectively, the ac-
tivities to be used to generate the candidate constraints, and to specify
the number of traces that a constraint is allowed to violate to be still con-
sidered in the final model. These two parameters are useful to deal with
noise in the data.

Other Approaches

A set of other Process Mining approaches is based on the Theory of Re-
gions (in Petri Nets). Their idea is to construct a finite state automaton
with all the possible states that can be observed into the log and then
transform it into a Petri Net using the Theory of Regions (where “region”
of states with the same input/output are collapsed into a single transition).

2.3.2 Other Perspectives of Process Mining

It is wrong to think Process Mining as just control-flow discovery [78], in-
stead, there are other perspectives that, typically, it is useful to consider.
All the approaches described in the following subsections can provide in-
teresting insights on the process being analyzed, even if they do not con-
sider the control-flow discovery as a problem.

Organizational Perspective

An important side of Process Mining is the social mining [151, 152] (i.e. the
organizational perspective of Process Mining). The social perspective of
Process Mining consists in performing Social Network Analysis (SNA) on
data generated from business processes. In particular, it is possible to dis-
tinguish between two approaches: sociocentric and egocentric approaches.

53

The first consists in analyzing the network of connections as a whole, con-
sidering the complete set of interactions within a group of persons. The
latter approach concentrates on a particular individual and analyzes her
or his set of interactions with other persons.

These relationships are established according to four metrics: (i) causal-
ity; (ii) metrics on joint cases (instance of processes where two individuals
operates); (iii) metrics on joint activities (activities performed by the same
persons); (iv) metrics based on special event types (e.g. somebody sus-
pends an activity and another resumes it).

Conformance Checking

Another important aspect of Process Mining is conformance checking.
This problem is a completely different from both control-flow discovery
and SNA: the “input” of conformance checking consists in a log and a
process model (it can be defined “by hand” or it can be discovered), and it
aims at compare the observed behavior (i.e. the log) with what is expected
(i.e. the model) in order to discover discrepancies.

It is possible to decline the conformance checking in two activities:
(i) business alignment [140, 121] and (ii) auditing [57]. The aim of the first
is to verify that the process model and the log are “well aligned”. The
latter tries to evaluate the current executions of the process with respect to
“boundaries” (given by managers, laws, etc.).

Conformance checking approaches start becoming available for declar-
ative process models too, as described in [90].

2.3.3 Data Perspective

When considering a process model, it can be interesting to consider also
the “data perspective”. This term refers to the integration of the control-
flow perspective with other “ornamental” data.

For example, in [123, 124], authors describe a procedure that is able do
decorate the branches of a XOR-split (for example, of a Petri Net) with the
corresponding “business conditions” that are required in order to follow
that path. The procedure uses data recorded into the log that are related
to particular activities and, using decision trees (Section 2.7), it extract a
logic proposition that holds on each branch of the XOR-split.

2.4 Stream Process Mining

A data stream is defined as a “real-time, continuous, ordered sequence of items”
[60]. The ordering of the data items is expressed implicitly by the arrival

54

timestamp of each item. Algorithms that are supposed to interact with
data streams must respect some requirements, such as:

1. it is impossible to store the complete stream;

2. backtracking over a data stream is not feasible, so algorithms are
required to make only one pass over data;

3. it is important to quickly adapt the model to cope with unusual data
values;

4. the approach must deal with variable system conditions, such as
fluctuating stream rates.

Due to these requirements, algorithms for data streams mining are divided
into two categories: data and task based [56]. The idea of the first ones
is to use only a fragment of the entire dataset (by reducing the data into
a smaller representation). The idea of the latter approach is to modify
existing techniques (or invent new ones) to achieve time and space efficient
solutions.

The main “data based” techniques are: sampling, load shedding, sketch-
ing and aggregation. All these are based on the idea of randomly select
items or stream portions. The main drawback is that, since the dataset size
is unknown, it is hard to define the number of items to collect; moreover it
is possible that some of the items that are ignored were actually interesting
and meaningful. Other approaches, like aggregation, are slightly different:
they are based on summarization techniques and, in this case, the idea is
to consider measures such as mean and variance; with these approaches,
problems arise when the data distribution contains many fluctuations.

The main “task based” techniques are: approximation algorithms, slid-
ing window and algorithm output granularity. Approximation algorithms
aim to extract an approximate solution. It is possible to define error
bounds on the procedure. This way, one obtains an “accuracy measure”.
The basic idea of sliding window is that users are more interested in most
recent data, thus the analysis is performed giving more importance to re-
cent data, and considering only summarization of the old ones. The main
characteristic of “algorithm output granularity” is the ability to adapt the
analysis to resource availability.

The task of mining data stream is typically focused on specific types of
algorithms [56, 175, 2]. In particular, there are techniques for: clustering;
classification; frequency counting; time series analysis and change diagno-
sis (concept drift detection). All these techniques cope with very specific
problems and cannot be adapted to the SPD problem. However, as this

55

work presents, it is possible to reuse some principles or to reduce the SPD
to sub-problems that can be solved with the available algorithms.

Over the last decade dozens of process discovery techniques have been
proposed [142], e.g., the Heuristics Miner [159]. However, these all work
on a full event log and not streaming data. Few works in process mining
literature touch issues related to mining event data streams.

In [83, 84], the authors focus on incremental workflow mining and task
mining (i.e. the identification of the activities starting from the documents
accessed by users). The basic idea is to mine process instances as soon
as they are observed; each new model is then merged with the previous
one so to refine the global process representation. The approach described
is thought to deal with the incremental process refinement based on logs
generated from version management systems. However, as authors state,
only the initial idea is sketched.

An approach for mining legacy systems is described in [81]. In partic-
ular, after the introduction of monitoring statements into the legacy code,
an incremental process mining approach is presented. The idea is to apply
the same heuristics of the Heuristics Miner into the process instances and
add these data into an AVL tree, which are used to find the best holding
relations. Actually, this technique operates on “log fragments”, and not
on single events so it is not really suitable for an online setting. Moreover,
heuristics are based on frequencies, so they must be computed with re-
spect to a set of traces and, again, this is not suitable for the settings with
streaming event data.

An interesting contribution to the analysis of evolving processes is
given in the paper by Bose et al. [16]. The proposed approach, based on
statistical hypothesis tests, aims at detecting concept drift, i.e. the changes
in event logs, and identifying the regions of change in a process.

Solé and Carmona, in [134], describe an incremental approach for
translating transition systems into Petri nets. This translation is performed
using Region Theory. The approach solves the problem of complexity of
the translation, by splitting the log into several parts; applying the Region
Theory to each of them and then combining all them. These regions are
finally converted into Petri net.

2.5 Evaluation of Business Processes

2.5.1 Performance of a Process Mining Algorithm

Every time a new Process Mining algorithm is proposed, an important
problem emerges: how is it possible to compare the new algorithm against
the others, already available in the literature? Is the new approach “bet-

56

Figure 2.15. Typical “evaluation process” adopted for Process Mining
(control-flow discovery) algorithms.

ter” with respect to the others? Which are the performances of the new
algorithm?

The main point is that, typically, the task of mining a log is an “offline
activity” so the optimization of the resources required (in terms of mem-
ory and CPU power) is not the main goal. For these mining algorithms, it
is more important to achieve “precise” and “reliable” results.

The main reason behind the creation of a new Process Mining algo-
rithm is that the current ones do not produce the expected results or, in
other terms, the data analyzed contains information that are different from
what is required. In order to compare the performances of the two control-
flow algorithms, the typical approach lies in comparing the original pro-
cess model (the one that, executed, generates the given log) with the mined
one. A graphical representation of such “evaluation process” is presented
in Figure 2.15.

In the field of data mining, it is very common to compare new al-
gorithms against some published datasets so all the other researchers can
obtain the results claimed by the algorithm creator. Unfortunately, nothing
similar exists for Process Mining: the real “owner” of business processes
(and thus of logs) are companies that, typically, are reluctant to publicly
distribute their own business process data, and so it is difficult to build
up a suite of publicly available business process logs for evaluation pur-
poses. Of course, the lack of extended Process Mining benchmarks is a
serious obstacle for the development of new and more effective Process
Mining algorithms. A way around this problem is to try to generate “re-

57

Frequency Log trace

1207 ABDEI

145 ACDGHFI

56 ACGDHFI

28 ACHDFI

23 ACDHFI

Table 2.2. Example of log traces, generated from the executions of the pro-
cess presented in Figure 2.16(a).

alistic” business process models together with their execution logs. A first
attempt to do such a models and logs generator is presented in [22, 21].

2.5.2 Metrics for Business Processes

When it is necessary to evaluate the result of a control-flow discovery
algorithm, a good idea is to split the evaluation in different aspects. In
[122], four dimensions are presented:

1. the fitness indicates how much of the observed behavior is captured
by the process model;

2. the precision that points out if a process is overly general (a model
that can generate many more sequences of activities with respect to
the observations in the log);

3. the generalization that denotes if a model is overly precise (a model
that can produce only the sequence of activities observed in the log,
with no variation allowed);

4. the structure that indicates the difficulties in understanding the pro-
cess (of course, this measure depends on the language used for rep-
resenting the model and define the difficulties in reading it).

These dimensions can be used for the the identification of the aspects
highlighted in a model. For example, in Figure 2.16 four processes are dis-
played with different levels for the different evaluation dimensions. Sup-
pose, as reference model, the one in Figure 2.16(a), and assume that a log
it can generate is presented in Table 2.2. The process in Figure 2.16(b), is
called “flower model” and allows any possible sequence of activities so,
essentially, it does not define an order among them. For this reason, even if
it has high fitness, generalization and structure, it has very low precision.
The process Figure 2.16(c) is just the most frequent sequence observed in

58

(a) The reference model, good balance among all dimensions

(b) Model with low precision but high fitness, generalization and structure

(c) Model with low fitness and generalization but high precision and
structure

(d) Model with low generalization and structure but high fitness and precision

Figure 2.16. Four process where different dimensions are pointed out (in-
spired by Fig. 2 of [122]). The (a) model represents the origi-
nal process, that generates the log of Table 2.2; in this case all
the dimensions are correctly highlighted; (b) is a model with
a low fitness; (c) has low precision and (d) has low general-
ization and structure.

59

the log, so it has low fitness and generalization but medium precision and
high structure. The process Figure 2.16(d) is a “complete” model, where
all the possible behaviours observed in the log can be reproduce without
any flexibility. This model has low generalization and structure but high
fitness and precision.

In the remaining part of the section some metrics are presented. In
particular, it is possible to distinguish between metrics model-to-log, that
compare a model with a log and metrics model-to-model that compare
two models.

Model-to-log Metrics

These metrics aim at comparing log with the process model that — using
Process Mining techniques — has been derived.

Completeness (to quantify fitness) [65] defines which percentage of the
traces in a log can also be generated by the model;

Parsing Measure (to quantify fitness) [161] is defined as the number of cor-
rect parsed traces divided by the number of traces in the event log;

Continuous Parsing Measure (to quantify fitness) [161] is a measure that is
based on the number of successfully parsed events instead of the
number of parsed traces;

Fitness (to quantify fitness) [125] considers also the “problems” happened
during replay (e.g. missing or remaining tokens in a Petri Net) so
that actions that can’t be activated are punished as the action that
remains active in an improper way;

Completeness (PF Complete) (to quantify fitness) [39] very close to the Fit-
ness, takes into account trace frequency as weights when the log is
replayed;

Soundness (to quantify precision/generalization) [65] calculates the per-
centage of traces that can be generated by a model and are in a log
(so, the log should contain all the possible traces);

Behavioral Appropriateness (to quantify precision/generalization) [125] eval-
uates how much behavior is allowed by the model but is never used
in the log of observed executions;

ETC Precision (to quantify precision/generalization) [103] evaluates the
precision by counting the number of times that the model deviates
from the log (by considering the possible “escaping edges”);

60

Structural Appropriateness (to quantify structure) [125] measures if a model
is less compact than the necessary, so extra alternative duplicated
tasks (or redundant and hidden tasks) are punished.

Model-to-model Metrics

The following metrics aim at comparing two models, one against the other.

Label Matching Similarity [44] is based on a pairwise comparison of node
labels: an optimal mapping equivalence between the nodes is calcu-
lated and the score is the sum of all label similarity of matched pairs
of nodes;

Structural Similarity [44] measures the “graph edit distance” that is the
minimum number of graph edit operations (e.g. node deletion or
insertion, node substitution, and edge deletion or insertion) that are
necessary to get from one graph to the other;

Dependency Difference Metric [7] counts the number of edge discrepancies
between two dependency graph (binary tuple of nodes and edges);

Similarity measure for restricted workflows (graph edit distance) [101] another edit
distance measure, based on dependency graph of the model;

Process Similarity (High-level Change Operations) [91] this measure counts the
changes required to transform a process into another oner one, with
“high level” changes (not adding or removing edges, but “adding
activity between two”, and so on);

Behavioral Similarity (Cosine Similarity for Causal Footprints) [99] is based on
the distance between causal footprints (graph describing the possi-
ble behaviors of a process) and, in particular, calculates the cosine of
the angle between the two footprints vectors (representations of the
causal footprint graph);

Behavioral Profile Metric [88] compares two processes in terms of the corre-
sponding behavioral profiles (characteristics of a process expressed
in terms of relations between activity pairs).

2.6 Extraction of Information from Unstructured

Sources

The task of extracting information from unstructured sources is called In-
formation Extraction (IE) [28, 80, 37]. These techniques can be considered

61

Figure 2.17. Typical modules of an Information Extraction System, figure
extracted from [80].

as a type of Information Retrieval [96] in the sense that they aim at ex-
tracting automatically structured information from unstructured or semi-
structured documents. Typically the core of IT techniques is based on the
combination of Natural Language Processing tools, lexical resources and
semantic constraints; so to extract, from text documents, important facts
on some general entities (that the system needs to know a priori).

The information extraction systems can be divided into two main groups,
based on their approach type: (i) learning systems; (ii) knowledge engi-
neering systems. The first requires a certain number of already-annotated
texts that are used as training set for some learning algorithm. The system
can obtain a certain number of information that can use with new texts.
In the case of knowledge engineering systems, the responsibility for the
accuracy of the extraction is assigned to the developer that has to construct
a set of rules (starting from some example documents) and has to develop
the system.

A typical information extraction system is composed of the compo-
nents presented in Figure 2.17. The first component is responsible for the
“tokenization”: this phase consists in splitting the text in sentences or,
more generally, in “tokens”. This problem does can’t be solved for some
type of languages (such as Chinese or Japanese). The second phase is
composed of two parts: the morphological processing is fundamental for
languages such German where different nouns can be agglomerated into
a single word. The lexical analysis consists in assigning to each token its
lexical role in the sentence; the most important job is the identification of
proper names. Typically, this phase extensively uses dictionary of words
and roles. Parsing consists in removing from the text parts that one is
not interested in and that are characterized by a particular structure (such
as numbers, dates, . . .). The coreference module is useful for identifying
different ways of referring the same entity. Typical problems handled by
this module are:

62

Relevant Not relevant

Retrieved True positives (tp) False positives (fp)
Not retrieved False negatives (fn) True negatives (tn)

Table 2.3. Tabular representation of true/false positives/negatives. True
negatives are colored in gray because will not be considered.

1. name-alias coreference: names and possible variants;

2. pronoun-antecedent coreference: pronouns (like “he” or “she”) are pointed
to the correct entity;

3. definite description coreference: when a description is used instead of
the name of an entity (e.g. “Linux” and “the Linus Torvalds’ OS”).

The domain-specific analysis is the most important step, but is also the
most ad hoc one: it is necessary to define rules for specific cases for extract-
ing common behavior. These rules can be generated manually (Knowl-
edge Engineering) or with machine learning approaches. The last step,
the merging of partial results, consists in creating a single sentence from
more describing the same fact. This step is not necessary, but can help in
presenting the outputs.

Evaluation with the F1 Measure

The basic approaches used to to evaluate the results of an information
retrieval algorithm are based on the concepts of true/false positives/neg-
atives. Table 2.3 presents these basic notions, by comparing the relevant
and retrieved documents.

On top of these concepts, it is possible to define precision and recall.
The first represents the number of documents that are “retrieved” with
respect to the number of documents that are actually relevant; the latter
represents the number of relevant results that have been returned:

Precision =
Relevant, Retrieved

Retrieved
=

tp
tp + fp

Recall =
Relevant, Retrieved

Relevant
=

tp
tp + fn

One of the most commonly used metric for the evaluation of IR tech-
niques is the F1 [96]. This measure consists in the harmonic mean between
precision and recall:

F1 = 2 ·
Precision · Recall
Precision + Recall

.

63

2.7 Analysis Using Data Mining Approaches

Typically, the term “Data Mining” refers to the exploration and the anal-
ysis of large quantities of data, in order to discover meaningful patterns
and rules. Typical tasks of Data Mining are classified, in [12], as:

Classification examining the features of a “new” object in order to assign it
to one of the predefined set of classes (discrete outcomes);

Estimation similar to classification, but deals with continuously valued
outcomes (e.g. regression models or Neural Networks);

Affinity grouping (or association rules) aims at determining how things can
be grouped together (for example in a shopping cart at the super-
market);

Clustering is the task of segmenting a heterogeneous population into a
certain number of homogeneous clusters (no predefined classes);

Profiling simplifies the description of complicated databases in order to
explain some behaviours (e.g. decision trees).

In the next subsections one technique per tasks will be briefly pre-
sented.

Classification with Nearest Neighbor

The idea underpinning the nearest neighbor algorithm is that the proper-
ties of a certain instance are likely to be similar to the ones in its “neigh-
borhood”. To apply this idea a distance function is necessary, in order to
calculate the distance between any two objects. Typical distance functions
are the “Manhattan distance” (dM) and the “Euclidean distance” (dE):

dM(a, b) =
n∑
i=1

|bi − ai| dE(a, b) =

√√√√ n∑
i=1

(bi − ai)
2

where a and b are two vectors in the n-dimensional space. Graphical
representations of these two distances are reported in Figure 2.18. This
space is “populated” with all the pre-classified elements (examples): each
object has a label that defines its class.

The idea is that the classification is obtained selecting the neighbor-
hood of the new instance (typically, a parameter k indicates to select the
first k nearest objects to the current one). Then the class of the new in-
stance is selected as the most common class with respect to the current
neighborhood. For example, if k = 1 then the class of the new instance is
the same class of the nearest one already classified.

64

(a) Two equivalent representations of
dM.

(b) Representation of dE.

Figure 2.18. Graphical representations of “Manhattan distance” (dM) and
“Euclidean distance” (dE) in a two dimensional space.

Input 1

Input 2

. . .

Input n

Output

w1,1

wn,m

Hidden layerInput layer Output layer

Figure 2.19. Example of Neural Network with an input, a hidden and an
output layer. This network receives input from n neurons and
produces output in one neuron.

Neural Networks Applied to Estimation

Artificial Neural Networks are mathematical models that typically are rep-
resented as directed graphs where, each vertex is a “neuron” that can be
directly connected to other neurons. The function of a connection is to
propagate the activation of one unit to the others. Each connection has
a weight that determines the strength of the connection itself. There are
three types of neurons: input (whose signals collect the external input),
output (that will produce the result) and hidden (the ones that are between
the input and the output neurons), as presented in the example of Fig-
ure 2.19.

Each unit has an activation function that combines and transforms all
its input values into signal for its output. A typical activation function

65

is the one that where the output value is very low as long as long as
the combination of all its inputs does not reach a threshold. When the
combination of input is above the threshold, the output is very high.

The training of the network aims at defining the weights of the con-
nections between units (e.g. w1,1 and wn,m in Figure 2.19) so that, when a
new instance is presented to the model the output values can be calculated
and returned as output. The main drawback of this approach is that the
trained model is described only in terms of a set of weights that are not
able to explain the training data.

Association Rules Extraction

An example of an association rules is “if a customer purchases onions and
potatoes than, the same customer, probably will purchase also a burger”.

One of the most common algorithm to extract association rules is Apri-
ori [4] that, given a set of transactions (called itemset), tries to find subsets
of item that are present in many itemset (the basic idea is that a subset of
a frequent itemset must also be a frequent itemset). These “frequent sub-
sets” are incrementally extended until a termination condition is reached
(i.e. there are no more possible extensions).

Starting from the frequent itemset B, the generation of the rules is done
considering all the combination of subsets L and H = B− L. A rule L⇒ H

is added if its confidence (i.e. how much H is observed, given the presence
of L) is above a threshold.

Clustering with Self-Organizing Maps

Self-organizing maps (SOM) can be considered as a variant of Neural Net-
work. It has an input and an output layer; the latter consists of many units
and, each output unit is connected to all the units in the input layer. Since
the output layer is organized as a “grid” it can be graphically visualized.
The most important difference with respect to Neural Networks is that
Self-Organizing Maps use neighborhood function in order to preserve the
topological properties of the input space. This is the main characteristic
of SOM: elements that are somehow “close” in the input space should en-
able neurons that are topologically close in the output layer. To achieve
this result, when a training element is learned, not only the weights of
the winning output neuron are adjusted, but the weights for units in its
immediate neighborhood are also adjusted to strengthen their response to
the input.

The result of the training of a SOM is that it is possible to group to-
gether elements that are close but, as in the case of Neural Networks,

66

0.38

0.68

0.6

0.74

0.57

0.72

0.84

Element 1

Element 3

Element 4

Element 5

Element 6

Element 8

Element 9

Element 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Element 2

Element 7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.78

0.45

Figure 2.20. Dendrogram example, with 10 elements. Two possible cuts
are reported with red dotted lines (corresponding to values
0.5 and 0.8).

there is no way to know what make the members of a cluster similar to
each other.

Clustering with Hierarchical Clustering

Another technique to perform clustering is Hierarchical Clustering. In this
case, the basic idea is to create an hierarchy of clusters. Clearly, a hierar-
chy of clusters is much more informative with respect to unrelated sets of
clusters4. There are two possible approaches to implement Hierarchical
Clustering: Hierarchical Agglomerative Clustering (HAC), and Hierarchi-
cal Divisive Clustering (HDC).

In HAC, at the beginning, each element constitutes a singleton clus-
ter; and each iteration of the approach merges the closest clusters. The
procedure ends when all the elements are agglomerated into a single clus-
ter. HDC adopts the opposite approach: initially all elements belong to
the same cluster, and each iteration splits the clusters until all elements
constitute a singleton cluster.

The typical way to represent the result of Hierarchical Clustering is
using a dendrogram, as shown in Figure 2.20. Every time two elements are

4 In literature, sometimes, techniques generating a hierarchy of clusters and techniques
generating unrelated sets of clusters are identified, respectively, as hierarchical cluster-
ing and flat clustering.

67

Figure 2.21. A decision tree that can detect if the weather conditions allow
to play tennis.

merged, the corresponding lines, on the dendrogram, are merged too. The
numbers close to each merge represent the values of the distance measure
for the two merged clusters.

To extract unrelated sets of clusters out of a dendrogram (as in flat
clustering), it is necessary to set a cut (or threshold). This cut represents
the maximum distance allowed to merge clusters. Therefore, only clusters
with a distance lower than the threshold are considered as grouped. In
the example of Figure 2.20, two possible cuts are reported. Considering
the cut at 0.5, these are the clusters extracted:

{1} {2, 3} {4} {5, 6} {7} {8} {9} {10}.

Instead, the cut at 0.8 generates only two clusters:

{1, 2, 3, 4, 5, 6} {7, 8, 9, 10}.

Profiling Using Decision Trees

Decision trees are data structure (trees) that are used to split collections
of records in smaller subsets, by applying a sequence of simple decision
rules. The construction of a a decision tree is performed top-down, choos-
ing an attribute (the next best) and split the current set according to the
values of the selected attribute. With each iterative division of the set the
elements of the resulting subsets become more and more similar one an-
other. In order to select the “best” attribute a typical approach is to choose
the one that splits the set into homogeneous subsets, however, there are
different formulations of such definition. An interesting characteristic of
decision trees is that each path from the root to a leaf node can be con-

68

sidered as a conjunctions of tests on the attributes’ values; more paths to-
wards the same leaf value encode disjunctions of conjunctions, so a logic
representation of the tree can be obtained. Figure 2.21 represents a deci-
sion tree that can detect if the weather conditions allow to play tennis. The
logic representation of the tree is:

(outlook = ’sunny’ ∧ humidity = ’normal’) ∨
(outlook = ’overcast’) ∨ (outlook = ’rain’ ∧ wind = ’weak’)

This peculiarity of decision trees improves their understandability by hu-
man beings and, at the same time, results fundamental in order to be
processed by third-party systems (e.g. algorithms that need this informa-
tion).

69

70

Chapter 3

Problem Description

This chapter introduces the problems that emerge when Process Mining is
applied in real-world environments. The typical example of problem that
is observed only in logs from real application is the “noise” (behaviours
that should not appear in the final model): not all the algorithms can
effectively deal with such problem.

This chapter introduces the Process Mining field, with some general
notions and an overview of the field; then it continues with the descrip-
tion of the problems that are going to be faced; a possible long-term view
architecture, and it finishes with some general information on the organi-
zation of this thesis.

3.1 Process Mining Applied in Business Environments

Before analysing in detail the Process Mining problems, let us present a
framework to characterize companies: we think it is possible to analyse
two different axes. The first measures the process awareness of the company;
the second measures the process awareness of the information systems used
within the company. We may define a company as process aware when there
is a shared knowledge of business process management, and people of the
company think and act by processes. This does not necessarily imply
that the information systems adopted explicitly support processes. That’s
why, in the second axis, we measure the extent to which the information
systems are process aware.

Figure 3.1 proposes four companies, at the “extreme positions”. It is
worthwhile to note that each of these companies may benefit from pro-
cess mining techniques. For example, if Company 1 or Company 2 decide
to move their organizations towards more structured and process ori-
ented businesses, control-flow discovery approaches are extremely valu-
able. Company 3, on the other side, already has a mature infrastructure: in
this case it might be interesting to evaluate the performances of the com-
pany in order to find possible improvements on the business processes.
Finally, Company 4 can benefit from process mining techniques in several
ways: since the information systems adopted do not “force” any process,

71

Company 1 Company 2

Company 3Company 4

Information Systems

Process Unaware

Information Systems

Process Aware

Company

Process Aware

Company

Process

Unaware

Figure 3.1. Possible characterization of companies according to their pro-
cess awareness and to the process awareness of the information
systems they use.

it might be useful to compare the “ideal processes” with the actual exe-
cutions, or to evaluate the current performance in order to improve the
quality of the executed processes.

In all the scenarios just analysed, when dealing with real-world busi-
ness process, there are a number of problems that may occur. We have
identified three possible “moments of problems”:

1. before starting the mining phase, when the data have to be prepared;

2. during the actual Process Mining executions;

3. after the mining, during the interpretation of the results.

Each of the above phases will be analyzed separately, in the three following
subsections.

3.1.1 Problems with the Preparation of Data

One of the first problems that must be solved is entirely technological.
Specifically, it involves the interoperability between data: the log files pro-
duced by the information systems must be processed by Process Mining
tools. A well-known Process Mining software platform is ProM [157, 170,
164]: it is used by researchers for prototyping new algorithms. This soft-
ware can receive input in two formats: MXML [157] or the recent OpenXES
[68] (both are XML-based and easily to read and understand). The main
difference between the two formalisms is on the “extendibility” of the log:
OpenXES allows the definition of custom extensions, useful for represent-
ing decorative attributes of the log, while MXML does not. Eventually, the
interoperability problem (concerning the ProM tool) has been solved with

72

the implementation of the ProM Import Framework [69]. This tool sup-
ports the definition of extensions (by adding some plugins) that convert
custom log files into MXML or OpenXES.

A possible second problem that may occur is related to the data recorded
by Information Systems. Let’s consider a typical industrial scenario in
which Information Systems are used only to support the process execu-
tions. Many times, these systems are not managing the entire process;
instead, they are used only to handle some activities. A typical example
is Document Management System (DMS): with such software it is pos-
sible to share documents, notify authors about modifications, download
the latest version of a document and so on. In a common scenario, DMSs
are required to be very flexible, in order to allow the possible ad hoc so-
lutions (based on the single case). All the actions executed by the system
are recorded in some log files, however many times DMSs are “process
unaware” (or process-agnostic) and so are their logs: for example, there is
no information on which process and process instance the current action is
referring to, even if the system is “describing” a real business process. This
problem can be summarized as the problem of applying Process Mining
starting from logs generated by process unaware sources. Specifically, this
problem belongs to P-01 (as presented in Section 1.2) and will be named
“case ID selection”.

The final problem is the presence of some “noise” inside the log. Ac-
tually, this issue does not belong to this phase only, but it also spans in
the next one. As presented by Christian Günter, in his Ph.D. thesis [67],
it is possible to identify several “types of noise”. However, independently
from the actual possible observations of noise in the log, a log is said to be
noisy [19] if either:

1. some recorded activities do not match with the “expected” ones, i.e.
there exist records of performed activities which are unknown or
which are not expected to be performed within the business process
under analysis (for example an activity that, in a real environment is
required, but that is unknown to the designer);

2. some recorded activities do not match with those actually performed,
i.e. activity A is performed, but instead of generating a record for
activity A, a record for activity B is generated; this error may be in-
troduced by a bug into the logging system or due to the unreliability
of the transmission channel (e.g. a log written to a remote place);

3. the order in which activities are recorded may not always coincide
with the order in which the activities are actually performed; this
may be due to the introduction of a delay in recording the begin-

73

ning/conclusion of the activity, e.g. if the activity is a manual ac-
tivity and the worker delays the time to record the start/end of the
activity, or to delays introduced by the transmission channel used to
communicate the start/end of a remote activity.

As one can notice, points 2 and 3 of the previous list represent problems
related to the “preparation” of the log, i.e. problems that occur before
the real mining takes place. These problems can hardly be solved because
information, required for the solution, is not available, and it cannot be
extracted or reconstructed. More generally, these problems are located
into a level that is out of the scope of Process Mining (in particular this
information should be already available), so it seems very hard to correctly
reconstruct the missing information.

3.1.2 Problems During the Mining Phase

With the term “mining phase” we refer to all the activities that occur be-
tween the time the log is ready for the mining and the final step that
involves the interpretation of results.

Some of the problems that emerge at this time, have already been men-
tioned: there is the noise issue, so it may happen that sometimes the pro-
cess extracted from the mining phase is not what the process analyst is
expecting (i.e. there can be activities that were not supposed to occur, or
occurring in the “wrong” position).

Another issue, related to this phase, is the problem of process unaware
sources: consider again the example of a DMS. In that case it is possi-
ble that the generated log is not as informative as one would expect. For
example, activities may be described just with the document names han-
dled by the specific activities, and some details may be missing, like the
case identifier. Another problem may occur when considering the oppo-
site scenario: there are too many details about the process that is going
to be analysed. In this case, the Process Mining algorithm has to choose
the correct “granularity” for generating the process model, but it has to
take advantage of all the available information. For example, in [20], any
activity spans over time intervals so, the mining algorithm can exploit this
fact in order to extract a better (in the sense of more precise) model.

The last problem, related to the current phase, is the difficulty in con-
figuring the Process Mining algorithm: in order to be as general-purpose
as possible, such algorithms provide several parameters to be set. For
example, the Heuristics Miner algorithm [161] (that will be described in
Section 2.3.1 and 5.1.1) requires thresholds that are useful for the identi-
fication of the “noise” (only behaviors that generate values greater than a
threshold are considered as genuine). Configuring these parameters is not

74

straightforward, especially for a not-expert user1. The actual problem is
that, typically, the more “powerful” an algorithm is, the more parameters
it requires.

3.1.3 Problems with the Interpretation of the Mining Results
and Extension of Processes

The last type of possible problems emerges when mined process models
are obtained. In this case, there are two issues to tackle.

The first problem is related to the “evaluation” of the mined process:
how can we define a rigorous and standard procedure to evaluate the qual-
ity of the output generated by a Process Mining algorithm? It is possible to
compute the performance of the Process Mining result by comparing the
mined model with the original logs, and then observe the discrepancies
between what is supposed to happen (the mined model) and what actu-
ally takes place (the log). Another important advantage of Process Mining
and, in particular, control-flow discovery is acknowledged when a com-
pany decides to begin a new business approach, based on Model Driven
Engineering [82]: in this case, instead of starting from a new model, it is
possible to use the actual set of activities as they are performed in reality.
In this case, it is very important to bind activities with roles and origina-
tors, so to immediately have an idea, as clear as possible, of the current
situation.

The second issue concerns the representation of the model: the risk
of creating a graphical representation that is dense of data (e.g. activi-
ties, originators, frequencies, dependencies, inputs, outputs, . . .) is that
it will be hard to be understood and, under certain conditions, useless
(mainly because of its cognitive load [100]). The aim is to find the “best”
balance between the information presented in the model and the difficulty
in reading the model itself. A possible way to deal with this problem is
using an interactive approach, where different views can be “enabled” or
“disabled” according to the user needs.

3.1.4 Incremental and Online Process Mining

One of the main aims of Porocess Mining is control-flow discovery, i.e.,
learning process models from example traces recorded in some event log.
Many different control-flow discovery algorithms have been proposed in
the past (see [142]). Basically, all such algorithms have been defined for

1 Please note that with the term “not-expert user” we identify a user with no experience
in Process Mining, but with notions in Business Process Modelling.

75

batch processing, i.e., a complete event log containing all executed activi-
ties is supposed to be available at the moment of execution of the mining
algorithm. Nowadays, however, the information systems supporting busi-
ness processes are able to produce a huge amount of events thus creating
new opportunities and challenges from a computational point of view. In
fact, in case of streaming data it may be impossible to store all events.
Moreover, even if one is able to store all event data, it is often impossi-
ble to process them due to the exponential nature of most algorithms. In
addition to that, a business process may evolve over time. Manyika et al.
[97] report possible ways for exploiting large amount of data to improve
the company business. In their paper, stream processing is defined as “tech-
nologies designed to process large real-time streams of event data” and one of
the example applications is process monitoring. The challenge to deal with
streaming event data is also discussed in the Process Mining Manifesto2

[78].

3.2 Long-term View Architecture

In a long-term view, a possible architecture for exploitation of Process
Mining results is presented in Figure 3.2. The final aim of this example
architecture is to move Small and Medium Enterprises (SME)3 towards
the adoption of “process-centric information systems”. According to the
latest available statistics [53], SMEs, in the European Union, manage most
of the business and this motivates the strong impact that Process Mining
approaches might have in the European market.

Since this long-term view, makes sense only if it is applied in real world
contexts, it is necessary to solve the problems presented in Section 3.1, in
order to apply Process Mining techniques.

Business processes are cross-functional and involve multiple actors and
heterogeneous data. Such complexity calls for a structured and planned
approach, requiring a substantial amount of competence and human re-
sources. Unfortunately, SMEs typically do not have sufficient resources
to invest in this effort. Moreover, many times, SMEs do not own a clear
and formal description of their business processes since such knowledge is
only “mentally held” by few key staff members. It is sufficient that one of
these persons quits the company to create difficulties in the maintenance

2 The Process Mining Manifesto is authored by the IEEE Task Force on Process Mining
(www.win.tue.nl/ieeetfpm/).

3 According to the “Recommendation concerning the definition of micro, small and
medium-sized enterprises” [52], a SME “is made up of enterprises which employ fewer
than 250 persons and which have an annual turnover not exceeding EUR 50 million, and/or
an annual balance sheet total not exceeding EUR 43 million.”

76

www.win.tue.nl/ieeetfpm/

of business processes.
A way to cope with these difficulties is to resort, as far as possible, to

formal models for representing business processes within a model-driven
engineering (MDE) approach. The rigorous adoption of a MDE approach
can lead to an improvement of the productivity in the context of small
and medium-sized companies: it can facilitate the quick adaptation of the
processes to the changes of the market and to better face variations in the
demand for resources. A fundamental issue, however, is how to get useful
models, i.e., models that represent relevant and reliable behavior/infor-
mation about the business processes. There are, at least, three components
of a business process that need to be modeled:

1. artifacts (all the digital documents involved in a business process,
e.g. invoices, orders, database entries, . . .);

2. control-flow (ordering constraints among activities);

3. actors (who is actually going to execute the tasks).

Techniques for the automatic extraction of information from the execution
of business processes for each one of these components have already been
developed: Data Mining, Process Mining, and Social Mining.

Many SMEs, in the European Union, do not take advantage of Pro-
cess Aware Information Systems (PAIS) and prefer to just use information
systems that are not process aware. In addition, for the support of their
activities, many other software are used, such as email, free-text docu-
ments, . . . Of course, many times, a business process is actually driving
these companies, but such knowledge is not encoded into any specifica-
tion.

In the example architecture of Figure 3.2, the idea is to present a sys-
tem that uses many different data-sources from different departments of
a company (e.g. document management systems, mobile devices, . . .).
As presented in the diagram, the architecture is divided into three pack-
ages: ETL, Process Mining and MDE. The first package is responsible for
the Extraction, the Transformation and the Loading of the data from dif-
ferent data-sources into a single “data-collector”. In particular, this data
should be extracted from the sources and then cleaned as much as pos-
sible, in order to get a single and “verified” version of the data. Once a
log is available, it is given as input to the second component: the Pro-
cess Miner. Considering an ideal approach, the result of this phase is a
global process model, where all the aspects are properly described and a
“holistic” merge is applied among all the different perspectives. The pro-
cess model extracted during the second phase can be used in two possible

77

R
eale

n
viro

n
m
en

t
d
ep
lo
y

Enriched process logs (as XES files)

C
o
n
fo
rm

an
ce

an
al
ys
is

Global process representation (takes into account all
the different perspectives)

Log data
collector

Sensors data extractor

Process activity decorator

Typical activity logs extractor

C
o
n
ve
rs
io
n
o
f
d
at
a
an
d

ge
n
e
ra
ti
o
n
o
f
lo
g
fi
le
s

ETL P
ackage

XES extension for spatial
information (from sensors)

XES extension for extra
activity information

Business process executions
Sensors network
Document management systems
Other data sources…

Technology independent, process
and place aware software system

Conversion of the process model
into executable models

Model Driven Engineering elaboration

MDE Package

Interactive representation of all
the process perspectives

Representation as a single, static
and global perspective

Activity

Static information

Shapes Legend

P
ro

ce
ss

M
in

in
g P

ackage

Classical data mining techniques
Classical process mining

algorithms
Constraint programming theory

Holistic merge of all perspectives into a
global one: the actual process descriptor

New organizational mining
algorithms execution

Decoration of process
with extra information

New control flow discovery
algorithms execution

New mining technologies: process, time
and place aware

Input data

E
xt

en
si

bl
e

E
ve

nt
S

tre
am

Figure 3.2. A possible architecture for a global system that spans from the
extraction phase to the complete reengineering of the current
production process model.

78

ways: doing conformance checking analysis (between the model itself and
new logs, in order to monitor the performances of executions) or as input
for a model driven approach that can automatically generate software or
adapt systems to be used in the production environment.

The impact of an implementation of a similar architecture can be im-
pressive: a system that allows the conversion of the actual business into
a process-oriented one, with a very low price can be very important. It
will increase the ability to adapt to the requirements arising from the mar-
ketplace, in order to speed up the rate at which SMEs respond to market
needs and to service or product innovation.

3.3 Thesis Organization

The structure of this thesis is reported in Figure 3.3. In particular, we
are going to analyze all the problems that might occur during a business
Process Mining project. Black texts indicate the objects we deal with in
this context; red texts represent chapters of this thesis; finally, arrows are
used to present connections between entities.

Specifically, the work presented in this thesis is partitioned among
chapters in this way:

• Chapter 4 describes the data preparation phase, indicated in the fig-
ure as “Data Preparation”. This part provides information on how
to convert data coming from legacy and potentially process-unaware
information systems into logs that can be used for Process Mining
purposes;

• Chapter 5 tackles problems related to the actual mining phase, such
as the configuration of control-flow algorithms and the exploitation
of all the data available in the log. In Figure 3.3, these activities are
indicated with: “Control-flow Mining Algorithm Exploiting More Data”,
“User-guided Discovery Algorithm Configuration” and “Automatic Algo-
rithm Configuration”;

• problems related to the evaluation of mining approaches are pre-
sented in Chapter 6. In this chapter, both model-to-model and model-
to-log metrics are proposed. In figure, these activities are indicated
with “Model-to-model Metric” and “Model-to-log Metric”;

• Chapter 7 describes the approach we propose to extend a business
process, given a log, with information on roles;

79

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on 4

Control‐flow Mining 5 Stream Control‐flow Mining 8

Results Evalua�on 6

Process Extension 7

Figure 3.3. Thesis organization. Each chapter is written in bold red font
and, the white number in the red circle indicates the corre-
sponding chapter number.

• in this thesis we also consider problems related to stream control-
flow mining. We undertake this problem in Chapter 8 and it is re-
ported in Figure 3.3 as “Stream Control-flow Mining Framework”;

• Chapter 9 reports problems related to the lack of data and the result-
ing approach for random generation of business processes and logs.
These two activities are represented in the figure as “Random Process
Generator” and “Event Logs Generator”;

• finally, Chapter 10 presents the contributions of this work, both in
terms of scientific publications and software developed.

80

Part II

Batch Process Mining Approaches

82

Chapter 4

Data Preparation

This chapter is based on results published in [25].

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on

Control‐flow Mining Stream Control‐flow Mining

Results Evalua�on

Process Extension

The idea underpinning Process Mining techniques is that most busi-
ness processes, that are executed with the support of an information sys-
tem, leave traces of their activity executions and this information is stored
in the so-called “log files”. The aim of Process Mining is to discover,
starting from these logs, as much information as possible. In particular,
control-flow discovery aims at synthesizing a business process model out
of data.

83

In order to perform such reconstructions, it is necessary that the log
contains a minimum set of information. In particular, all the recorded
events must provide:

• the name of the activity performed;

• the process case identifier (i.e. a field with the same value for all the
executions of the same process instance);

• the time the activity is performed.

This set of information can be considered as the minimum required infor-
mation. However, beside these data, there can be information on:

• the name of the process the activity belongs to;

• the activity originator (if available).

In this context, we consider the name of the process optional because, if it
is not provided, it is possible to assume the same process for all the events.
The same assumption holds for the activity originator.

Typically, these logs are collected in MXML or, recently, in XES files,
so that they can be analyzed using the tool ProM. When Process Mining
techniques are introduced in new environments, the data can be sufficient
for the mining or can lack some fundamental information, as considered
in this chapter.

Let’s assume to have a process unaware Information System, and let’s
assume we have to analyze log data generated from executions of such
system. In this context, it is necessary to distinguish two similar concepts
that are used in different ways: process instance and case ID. The first term
indicates the logical flow of the activities for one particular instance of the
process. The “case ID” is the way the process instance is implemented:
typically, the case ID is a set of one or more fields of the dataset, whose
values identify a single execution of the process. It is important to note
that there can be many possible case IDs but, of course, not all of them
may be used to recognize the actual process.

This chapter presents a general framework for the selection of the
“most interesting” case IDs and then, the final decision, is delegated to
an expert user.

4.1 The Problem of Selecting the Case ID

As already introduced it is worthwhile observing that Process Mining
techniques assume that all logs, used as input for the mining, come from

84

Figure 4.1. Example of a process model. In this case, activities C and D
can be executed in parallel, i.e. in no specific order.

executions of business process activities. In a typical scenario, there is a
formal definition of process (the model is not required to be explicit) that
is “implemented” and executed. Executions of this process are recorded in
log files. Mining algorithms use these log files to generate the final mined
models (possibly different from the original process models).

One of the fundamental principles that underpins the idea of “process
modeling” is that a defined process can generate any number of concur-
rent instances, “running” at the same time. Consider, as an example, the
process model defined in Figure 4.1: it is composed of five activities. The
process always starts executing A; then B; C and D can be performed in
any order and, finally, E is executed. We can observe more than one in-
stance running at the same time so, for example, at time t we can observe
any number of activities executed. Figure 4.2 tries to represent three in-
stances of the same process: the first (ci) is almost complete; the second
(ci+1) is just started and the last one (ci+2) has just completed the first two
activities.

In order to identify different instances, it is easy to figure out the need
of an element that connects all the observations belonging to the same
instance. This element is called “case identifier” (or “case ID”). Figure 4.2
represents it with different colors and with the three labels ci, ci+1 and
ci+2.

4.1.1 Process Mining in New Scenarios

We now want to investigate and apply Process Mining techniques in new
scenarios, specifically, in data generated starting from process unaware
Information Systems.

There is a clear distinction between a process model and its implemen-
tation, and many software tools support the application of a business pro-
cess. Nonetheless, several software systems concur to support the process
implementation, but typically the information they provide is not explic-
itly linked to the process model because of the lack of a case ID. This is
mainly due to business reasons and software interoperability issues.

85

A B C Dci

Aci+1

A Bci+2

Time t

. . .

. . .

. . .

Time Case ID Activity

t− 3 ci A

t− 2 ci B

t− 1 ci C

t− 1 ci+2 A

t ci D

t ci+1 A

t ci+2 B

Figure 4.2. Two representations (one graphical and one tabular) of three
instances of the same process (the one of Figure 4.1).

Consider, for example, Document Management Systems (DMS): they
are widely used in large companies, public administrations, municipali-
ties, etc. Of course, the documents managed with a DMS can be referred
to processes and protocols (consider, for the example, the documents in-
volved in supporting the process of selling a product).

In the following sections we present our idea, which consists of ex-
ploiting the information produced by such support systems, not limiting
to DMSs, in order to mine the processes in which the system itself is in-
volved. The nodal point is that these systems typically do not log explic-
itly the case ID. Therefore, it is necessary to infer this information that
enables to relate the system entities (e.g. documents in a DMS) to process
instances.

4.1.2 Related Work

The problem of relating a set of activities to the same process instance is
already known in literature. In [54], Ferreira and Gillblad presented an
approach for the identification of the case ID based on the Expectation-
Maximization (EM) technique. The most important positive characteristic
of this approach lies in its generality, which allows its execution in all pos-
sible scenarios. However, it suffers of two drawbacks: its computational
complexity; and problems deriving from reaching the local optimum of
the likelihood function.

Other approaches, such as the one presented by Ingvaldsen et al.,
in [50] and in [51], use the input and output produced by the activities
registered in the SAP ERP. In particular, they construct “process chains”
(composed by activities belonging to the same instance) by identifying the
events that produce and consume the same set of resources. The assump-
tion underpinning this approach (i.e., the presence of resources produced

86

and consumed by two “joint” activities) seems too strong for a broad and
general application.

Other works that deal with the same issue are presented in [171], [55],
but all of them solve only partially the problem, or impose specific con-
straints on the environment, and this clearly limits the applicability in
general scenarios. In [109], authors present a detailed review of the litera-
ture on this field and describe a novel approach that allows the collection
of data to be mined. The technique described in this work, however, re-
quires the modification of the source code of the application but this is
not always feasible. An empirical study on an industrial application is
provided as well.

The most important difference between our work and others in litera-
ture is that, in our case, the information on the process instance is “hidden
inside the log” (we do now know which are the fields with the required in-
formation), and therefore it has to be extracted properly. Such a difference
is very important for two main reasons:

1. the settings we required are sufficiently general to be observed in a
number of real environments and;

2. our technique is devised for this particular problem, hence can be
more efficient than others.

4.2 Working Framework

The Process Mining framework we address is based on a set L of log entries
originated by auditing activities on a given system. Each log entry l ∈ L
is a tuple of the form:(

activity, timestamp, user, info1, . . . , infom
)

In this form, it is possible to identify:

• activity the name of the registered activity;

• timestamp the temporal instant in which the activity is registered;

• user (or originator) the agent that executed the registered activity;

• info1, . . . , infom possibly empty additional attributes. The semantics
of these additional attributes is a function of the activity of the re-
spective log entry, that is, given an attribute infok and activities a1,
a2, infok entries may represent different information for a1 and a2;

87

Act. Timestamp User info1 info2 . . . infom
a1 2012-10-02 12:35 Alice A 2010-06-02 . . .
a2 2012-10-02 12:36 Alice A B . . .
a3 2012-10-03 17:41 Bob A 2010-06-03 . . .
a4 2012-10-04 09:12 Charlie A B . . .
a1 2012-10-05 08:45 Eve B 2010-05-12 . . .
a2 2012-10-06 07:21 Alice B A . . .
a3 2012-10-06 11:54 Bob C 2010-02-20 . . .
a4 2012-10-06 15:15 Charlie B A . . .
a1 2012-10-08 09:55 Bob D 2010-03-30 . . .
a2 2012-10-08 10:11 Bob D C . . .
a3 2012-10-09 16:01 Bob C 2010-06-08 . . .
a4 2012-10-09 18:45 Charlie D D . . .

Table 4.1. An example of log L extracted from a document management
system: all the basic information (such as the activity name, the
timestamps and the originator) is shown, together with a set
of information on the documents (info1 . . . infom). The activity
names are: a1 = “Invoice”; a2 = “Waybill”; a3 = “Cash order”;
a4 = “Carrier receipt”.

moreover, the semantics is not explicit. We call these data “decora-
tive” or “additional” since they are not exploited by standard Pro-
cess Mining algorithms. Observe that two log entries, referring to the
same activity, are not required to share the values of their additional
attributes.

Table 4.1 shows an example of such a log in a document management
environment; please note the semantic dependency of attribute info2 on
activities: in case of “Invoice” it may represent a date, in case of “Waybill”
it may represent the account owner name.

The difference between such log entries and an event in the standard
Process Mining approach is the lack of process instance information. More
in general, it can be observed that the source systems we consider do not
implement explicitly some workflow concepts, since L might not come
from the sampling of a formalized business process at all.

In the following we assume a relational algebra point of view over
the framework: a log L is a relation (set of tuples) whose attributes are(
activity, timestamp, originator, info1, . . . , infom

)
.

As usual, we define the projection operator πa1,...,an on a relation R

as the restriction of R to attributes a1, . . . ,an (observe that duplicates are

88

removed by projection otherwise the output would not be a set).
For the sake of brevity, given a set of attributes A = {a1, . . . ,an}, we

denote a projection on all the attributes in A as πA(R). Analogously, given
an attribute a, a value constant v and a binary operation θ, we define
the selection operator σaθv(R) as the selection of tuples of R for which θ
holds between a and v; for example, given a = activity, v = “Invoice”,
and θ being the identity function, σaθv(L) is the set of elements of L hav-
ing “Invoice” as value for attribute activity. For a complete survey about
relational algebra concepts refer to [48].

It is worthwhile to notice that relational algebra does not deal with
tuples ordering, a crucial issue in Process Mining. This is not a problem,
however, because (i) the log can be sorted whenever required and (ii) here
we concentrate on the generation of a log suitable for applying Process
Mining techniques (and not a Process Mining algorithm itself).

From now on, identifiers a1, . . . ,an will range over activities. More-
over, given a log L, we define the set A(L) = πactivity(L) (distinct ac-
tivities occurring in L). Finally, we denote with I the set of attributes
{info1, . . . , infom}.

As stated above, our efforts are concentrated on extracting flow of in-
formation from L, that is, guessing the case ID for each entry l ∈ L,
according to the following restrictions on the framework.

Fixed a log L, we assume that:

1. given a log entry l ∈ L, if a case ID exists in l, then it is a combination
of values in the set of attributes PI ⊆ I (i.e. activity, timestamp,
originator do not participate in the process instance definition);

2. given two log entries l1, l2 ∈ L such that πactivity(l1) = πactivity(l2), if
PI contains the case ID for l1, then it also contains the case ID for
l2 (i.e., process instance attributes set is fixed per activity); this is
implied by the assumption that the semantics of additional fields is
a function of the activity, as stated above.

4.2.1 Identification of Process Instances

From the basis we just defined, it follows that the process instance has to
be guessed as a subset of I ; however, since the semantics is not explicitly
given, it cannot be exploited to establish correlation between activities,
hence the process instance selection must be carried out looking at the
entries πi(L), for each i ∈ I .

Nonetheless, since the semantics of I is a function of the activity, the
selection should be performed for each activity in A(L), for each attribute
in I , resulting in a computationally expensive procedure. In order to

89

reduce the search space, some intuitive heuristics are depicted, their ap-
plication resulted successful in our experimental environment.

Exploiting A-priori Knowledge

Experts of the source domain typically hold some knowledge about the
data that can be exploited to discard the less promising attributes.

Let a be an activity, and C(a) ⊆ I the set of attributes candidate to
participate in the process instance definition, with respect to the given
activity. Clearly, if no a-priori knowledge can be exploited to discard some
attributes, then C(a) = I .

The experiments we carried out helped us define some simple heuris-
tics for reducing the cardinality of C(a), basing on:

• assumptions on the data type (e.g. discarding timestamps);

• assumptions on the case ID expected format, like average length up-
per and lower bounds, length variance, presence or absence of given
symbols, etc.

It is worthwhile to notice that this procedure may lead to discard all
the attributes infoi for some activities in A(L). In the following we denote
with A(C) the set of all the activities that overcome this step, that is

A(C) =
⋃

a∈A(L)
{a | C(a) 6= ∅} .

A(C) contains all the activities which have some candidate attribute, that
is, all the activities that can participate in the process we are looking for.

Selection of the Identifier

After the search space has been reduced and the set C(a) has been com-
puted for each activity a ∈ A(L), we must select those elements of C(a)
that participate in the process instance. The only information we can ex-
ploit in order to automatically perform this selection is the amount of data
shared by different attributes.

Aiming at modeling real settings, we fix a sharing threshold T , and
we retain as candidate those subsets of C(a) that share at least T entries
with some attribute sets of other activities. This threshold must be defined
with respect to the number of distinct entries of the involved activities, for
instance as a fraction of the number of entries of the less frequent one.

Let (a1,a2) be a pair of activities, such that a1 6= a2 and let PIa1 and
PIa2 the corresponding process instances field. We define the function S

90

that calculates the shared values among them:

S(a1,a2,PIa1 ,PIa2) =
∣∣∣πPIa1 (σactivity=a1(L)) ⋂πPIa2 (σactivity=a2(L))

∣∣∣
Observe that, in order to perform the intersection, it must hold |PIa1 | =

|PIa2 |. Using such function, we define the process instance candidates for
(a1,a2) as:

ϕ(a1,a2) = {(PIa1 ∈ P(C(a1)),PIa2 ∈ P(C(a2))) | S(a1,a2,PIa1 ,PIa2) > T }

where P denotes the power set.
Elements of ϕ(a1,a2) are pairs, whose components are those attribute

sets, respectively of a1, a2, that share a number of values greater than T
(i.e. the cardinality of the intersection of PIa1 and PIa2 is greater than T).
In the following, we denote with ϕa the set of all the candidate attribute
sets for activity a, i.e.:

ϕa = {PI | ∃a1 ∈ A(C),PIa1 ∈ P(C(a1)).(PI,PIa1) ∈ ϕ(a,a1)} .

This formula figures out some candidate process instances that may
relate two activities: it is worthwhile noticing, however, that our target is
the correlation of a set of activities whose cardinality is in general greater
than 2. Actually, we want to build a sequence S = aS1 , . . . ,aSn of dis-
tinct activities. Nonetheless, given activity aSi , there may be a number of
choices for aSi+1 , and then a number of process instances in ϕ(aSi ,aSi+1).
Hence, a number of sequences may be built.

We call chain a finite sequence C of n components of the form [a,X],
being a an activity and X ∈ ϕa. Let us denote it as follows:

C = [a1,PIa1] , [a2,PIa2] , . . . , [an,PIan]

such that
(
PIai ,PIai+1

)
∈ ϕ(ai,ai+1), with i ∈ [1,n− 1]. We denote with

Cai the i-th activity of the chain C, and with CPIi the i-th PI of the chain C.
Observe that a given activity must appear only once in a chain, since a

process instance is defined by a single attribute set. Given a chain C ending
with element [aj,PIaj], we say that C is extensible if there exists an activity
ak ∈ A(C) such that (PIaj ,X) ∈ ϕ(aj,ak), for some set X ∈ P(C(ak)).
Otherwise, C is said to be complete. Moreover, we say that an activity a
occurs in a chain C, denoted a ∈ C, if there exists a chain component
[a,X] in C for some attribute set X. Since an activity can occur in more
than one chain with different process instances, in some case we write
PIai,C to denote the process instance of activity ai in chain C. Finally, let
A(C) denote the set of activities occurring in a chain C. The empty chain
is denoted with ⊥.

91

Given a chain C we define the average value sharing S(C) among se-
lected attributes of C as:

S(C) =

∑
1≤i<n S

(
Cai ,Cai+1,C

PI
i ,CPIi+1

)
n− 1

where n denotes the chain length.
All the possible complete chains on L are built according to Algo-

rithm 1 and 2.

Algorithm 1: Build Chains

1 foreach a ∈ A(C) do
2 foreach PI ∈ ϕa do
3 Extend Chain([a,PI]) /* see Algorithm 2 */
4 end
5 end

Algorithm 2: Extend Chain
Input: a chain C = [a1,PI1], ..., [ai−1,PIi−1]

1 foreach ai ∈ A(C) | ai /∈ C do
2 foreach PIi ∈ ϕai | (PIi−1,PIi) ∈ ϕ(ai−1,ai) do
3 C = C, [ai,PIi]
4 return Extend Chain(C) /* recursive call */

5 end
6 end

Algorithm 1 calls Algorithm 2 for all the extensible chains of length
1. Observe that the pseudo code of Algorithms 1 and 2 builds also some
chains which are permutations of one another.

Match Heuristics

In computing the amount of data shared by two activities via function
ϕ, heuristics approaches may help in modeling the complexity of a real
domain. Actually, the comparison performed between values does not
need to be an identity match; instead, a fuzzy match can be implemented.
Guided by this basic heuristics, we can substitute the intersection operator
in ϕwith an approximation of it, whose definition may be domain specific
or not. Simple examples we tested in our experimental environment are:

• equality match up to X leading characters,

92

• equality match up to Y trailing characters,

and their combinations. In general it is possible to use a measure for string
distance.

Results Organization and Filtering

In the previous sections we shown how to compute a number of chains
(i.e., a number of logs); in general, a domain expert is able to discrimi-
nate between “good chains” and less reasonable ones, but this could be
a demanding task. Here we present the problem of comparing different
chains and, in order to address this issue, it is worthwhile to analyze a
methodology that helps restricting the number of possible chains.

Generally, we reject a chain in favor of another one if and only if the
latter contains all the activities of the former, and it is either simpler or it
supports a higher confidence. Example of parameters taken into account
might be:

• the number of attributes in the process instance of a chain component
(recall that each component has the same number of process instance
attributes): a chain that concerns less attributes may be considered
simpler, thus preferable since more readable for a human analyst;

• the cardinality of the shared value between chain components (S(·)):
a chain whose share factor is higher, gives higher confidence; this
parameter could be tuned by a threshold.

Let H be the set of complete chains computed by Algorithm 1 and 2,
without permutations. Given two chains C1 and C2:

C1 = [a1,PIa1] , . . . , [an,PIan]
C2 = [b1,PIb1] , . . . , [bm,PIbm]

in the set H, we define an ordering operator v as:

A v B⇔

∣∣API1 ∣∣ ≥ ∣∣BPI1 ∣∣ if A(A) = A(B) ∧ S(A) = S(B)

S(A) ≤ S(B) if A(A) = A(B) ∧ S(A) 6= S(B)

A(A) ⊆ A(B) otherwise

The operator v defines a reflexive, antisymmetric, and transitive rela-
tion over chains, hence (H,v) is a partially ordered set [130]. For the sake
of simplicity, in the above formulation we do not use any threshold to tune
the value sharing comparison.

The ordering we defined strives to equip the framework with a notion
of “best chains”, i.e., those chains which it is worthwhile suggesting to a
domain expert.

93

Deriving a Log to Mine

For each chain C with positive length, we can build a log L ′ whose tuples
have the form:

(activity, timestamp, user, case ID, process ID)

Please observe that the process instance we selected is a set of at-
tributes, whereas a single one is expected by standard Process Mining
techniques. Hence, a composition function k from a set of values to a sin-
gle one is needed (a straightforward example of k is string concatenation).
The log L ′ is obtained, starting from Ls with the execution of Algorithm 3.

Algorithm 3: Conversion of L to L ′

Input: H: set of chains; k: case ID composition function
1 L ′ ← ∅
2 chainNo← 0

3 foreach C ∈ H do
4 LC ← σactivity∈A(C)(L)
5 foreach l ∈ LC do
6 activity← πactivity(l)

7 timestamp← πtimestamp(l)

8 originator← πoriginator(l)

9 caseid← k
(
πPIactivity,C(l)

)
10 processid← chainNo
11 L ′ ← L ′ ∪ {(activity, timestamp, originator, caseid, processid)}
12 end
13 chainNo← chainNo + 1
14 end
15 return L ′

Observe that the order on the chain components does not influence
the process instance selection. For this reason, in order to build the log
L ′, once all the chains are complete (no more extensible), it is possible to
ignore the chains that are permutations of a given one. Thus, some chains
computed by Algorithm 1 can be discarded.

It is worthwhile observing, however, that maximal elements in the
poset represent different processes. A conservative approach compels us
considering each maximal chain as defining a distinct process. The follow-
ing example illustrates the reason why we chose this approach. Given two

94

maximal chains C1 and C2:

C1 = . . . ,
[
ai−1,PIai−1

]
, [ai,PIai] ,

[
ai+1,PIai+1

]
, . . .

C2 = . . . ,
[
bj−1,PIbj−1

]
,
[
bj,PIbj

]
,
[
bj+1,PIbj+1

]
, . . .

where PIai−1 6= PIbj−1 ; PIai 6= PIbj ; PIai+1 6= PIbj+1 and ai = bj. In other
words, C1 and C2 contain the same activity ai but with different process
instances. Considering C1 and C2 as belonging to the same process is
not desirable, since it can lead to inconsistent control-flow reconstruction.
Hence, each maximal chain defines a process and the domain expert is in
charge of recognizing if different chains belong to the same real process.
During the conversion of L to the process log L ′, we assign as process ID
a chain counter.

4.3 Experimental Results

As explained before, the problem of case ID identification is common to
many businesses and, in particular, we tested our procedure in data com-
ing from the company Siav S.p.A.1. In this case, the existing implementa-
tion is limited to process instances constituted by a single attribute (e.g.,
|PIi| = 1), due both to a-priori knowledge about the domain and compu-
tational requirements. In particular, all the preprocessing steps that re-
duce the search space have been implemented as Oracle store procedures,
written in PL/SQL. Then the chain building algorithms are implemented
in C#. Moreover, for improving performances, we do not compute the
heuristics on the whole log, but on a fraction of random entries.

We tried our implementation on logs coming from a document man-
agement system; the source log is reduced to the form described in Sec-
tion 4.2 after undergoing some preprocessing steps.

We applied the algorithms to real logs obtaining concrete results, val-
idated by domain experts. Table 4.2 summarizes the main information:
please note that the expert chains are always within the set of maximal
chains (computed by the algorithm), since they selected among the fists.
Figure 4.3 shows how chains evolve when the log cardinality scales up: in
particular, notice that the number of chains tends to increase, while the
poset structure tears down the number of chains we presented to the do-
main experts. Figure 4.4 plots the processing time: it is a function of the
log cardinality, of the number of activities in the log (i.e. the number of
possible chain components), and of the number of decorative attributes
(i.e. the number of possible ways of chaining two components).
1 “Siav is a software development and IT services company specialized in electronic document

management. It is an industry specialist in Italy with over 250 people employed and around
3000 installations”. From http://www.siav.com/.

95

http://www.siav.com/

|L ′| |A (L ′)| |I | Time |H| Max. ch. Exp. ch.

10 000 13 26 6s 3 2 1

20 000 39 26 20s 5 2 1

40 000 47 26 1m 40s 8 3 2

60 000 2 18 2s 2 1 0

140 000 4 18 15s 3 1 1

20 000 12 16 40s 3 3 1

30 000 16 16 2m 11 3 1

Table 4.2. Results summary. Horizontal lines separate different log
sources (datasets). The table also shows the total number of
chains, the maximal chains and the chains pointed out by the
expert.

The knowledge of the application domain gave us the opportunity to
implement some heuristics, as explained in Section 4.2.1 and. The follow-
ing criteria were selected in order to reduce the search space:

• a candidate attribute must have a string type (i.e., we discard times-
tamps and numeric types, that in our case mostly represent prices);

• the values of a candidate attribute must fulfill these requirements:

– maximum average length: 20 characters,

– minimum average length: 3 characters,

– maximum variation with respect to the average length: 10.

Finally, we relaxed the intersection operator in ϕ requiring values identity
up to the first leading character and up to 2 trailing characters.

The experiments were carried out on an Intel Core2 Quad at 2,4 GHz,
equipped with 4GB of RAM. The DBMS where the logs were stored was
local to the machine, thus no network overhead has to be considered.

4.4 Summary

This chapter presents an approach for the identification of process in-
stances on logs generated from systems that are not process-aware.

Process instance information is guessed using additional meta-data,
typically available when dealing with software systems, with respect to a
standard Process Mining framework.

96

0
1
2
3
4
5
6
7
8
9

10
11
12

10000 20000 40000

N
u

m
b

er
 o

f
ch

ai
n

s

Log size (|L'|)

Dataset 1

|H|

60000 140000

Log size (|L'|)

Dataset 2

Maximal chains

20000 30000

Log size (|L'|)

Dataset 3

Experts' chains

Figure 4.3. This figure plots the total number of chains identified, the
number of maximal chains and the number of chains the ex-
pert will select, given the size of the preprocessed log.

0

20

40

60

80

100

120

10000 20000 40000

Ti
m

e
re

q
u

ir
ed

 (
se

co
n

d
s)

Log size (|L'|)

Dataset 1

60000 140000

Log size (|L'|)

Dataset 2

20000 30000

Log size (|L'|)

Dataset 3

Figure 4.4. This figure represents the time (expressed in seconds) required
to extraction chains, given the size of the preprocessed log.

The described procedure is entirely based on the information that dec-
orates documents (this work is a generalization of a real business case
related to a document management system, where discovering the pro-
cess instance means correlating different document set), and relies on a
relational algebra approach. Moreover, we deem that our generalization
can be fairly adoptable in a number of domains, with a reasonable effort.

97

98

Chapter 5

Control-flow Mining

This chapter is based on results published in [20, 19, 5].

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on

Control‐flow Mining Stream Control‐flow Mining

Results Evalua�on

Process Extension

This chapter focuses on problems that arise during the actual mining
of a process and two of them will be covered. The first problem lies in
performing mining using data with a “deep granularity”. Specifically we
will consider logs where activities are recorded as time intervals, therefore
with a starting and finishing events. The second problem we tackle is
the complexity in configuring parameters of mining algorithms. We will
propose a couple of solutions, both automatic and user-guided.

99

5.1 Heuristics Miner for Time Interval

This section presents the generalization of a popular Process Mining algo-
rithm, named Heuristics Miner, to time intervals. In particular, it will be
shown that the possibility to use time interval information, when available,
allows the algorithm to produce better workflow models.

Many control-flow discovery algorithms proposed up to now, assume
that each activity is considered instantaneous. This is due to the fact that
usually a single log for each preformed activity is recorded, regardless of
the duration of the activity. In many practical cases, however, activities
involve a span of time, so they can be described by time intervals (couples
of time points). Of course, not recording the duration of activities makes
mining quite hard. In some cases, information about duration of some
activities is available, and it is wise to use this information.

For the reasons just presented, the generalization proposed in this sec-
tion allows the treatment of time intervals. Exploiting this information, a
“better” (i.e. closer to the model that originated the logs) process model
can be mined, without modifying the overall complexity of the original
algorithm and, in addition, preserving backward compatibility.

5.1.1 Heuristics Miner

Heuristics Miner, already briefly presented in Section 2.3.1, is a Process
Mining algorithm that uses a statistical approach to mine the dependency
relations among activities represented by logs.

The relation a >W b holds iff there is a trace σ = 〈t1, t2, . . . , tn〉 and
i ∈ {1, . . . ,n− 1} such that σ ∈ W and ti = a and ti+1 = b. The notation
|a >W b| indicates to the number of times that, in W, a >W b holds (no. of
times activity b directly follows activity a).

The next subsections present a detailed list of all the formulae required
by Heuristics Miner.

Dependency Relations (⇒)

An edge (that usually represents a dependency relation) between two ac-
tivities is added if its dependency measure is above the value of the depen-
dency threshold. This relation is calculated, between activities a and b, as:

a⇒W b =
|a >W b|− |b >W a|

|a >W b|+ |b >W a|+ 1
(5.1)

The rationale of this rule is that two activities are in a dependency relation
if most of times they are in the specifically required order.

100

AND/XOR Relations (∧, ⊗)

When an activity has more than one outgoing edge, the algorithm has to
decide whether the outgoing edges are in AND or XOR relation (i.e. the
“type of split”). Specifically, it has to calculate the following quantity:

a⇒W (b∧ c) =
|b >W c|+ |c >W b|

|a >W b|+ |a >W c|+ 1
(5.2)

If this quantity is above a given AND threshold, the split is an AND-split,
otherwise it is considered to be in XOR relation. The rationale, in this
case, is that two activities are in an AND relation if most of times they are
observed in no specific order (so one before the other and vice versa).

Long Distance Relations (⇒l)

Two activities a and b are in a “long distance relation” if there is a depen-
dency between them, but they are not in direct succession. This relation is
expressed by the formula:

a⇒l
W b =

|a≫W b|

|b|+ 1
(5.3)

where |a≫W b| indicates the number of times that a is directly or indi-
rectly (i.e. if there are other different activities between a and b) followed
by b in the log W. If this formula’s value is above a long distance threshold,
then a long distance relation is added into the model.

Loops of Length one and two

A loop of length one (i.e. a self loop on the same activity) is introduced if
the quantity:

a⇒W a =
|a >W a|

|a >W a|+ 1
(5.4)

is above a length-one loop threshold. A loop of length two is considered
differently: it is introduced if the quantity:

a⇒2
W b =

|a >2W b|+ |b >2W a|

|a >2W b|+ |b >2W a|+ 1
(5.5)

is above a length-two loop threshold. In this case, the a >2W b relation is
observed when a is directly followed by b and then there is a again (i.e.
there exists a trace σ = 〈t1, t2, . . . , tn〉 and i ∈ {1, . . . ,n − 2} such that
σ ∈W and ti = a and ti+1 = b and ti+2 = a).

101

W =
{
〈A,B1,B2,C,D〉5 ; 〈A,B2,B1,C,D〉5

}
(a) Example of process logW with 10 process instances (n indicates n repetitions

of the same sequence).

(b) Example of a possible process model that generates the log
W.

Figure 5.1. Example of a process model and a log that can be generated
by the process.

Running Example

Let’s consider the process model and the log of Figure 5.1. Given the set
of activities {A,B1,B2,C,D}, a possible log W, with 10 process instances,
is presented in Figure 5.1(a) (please note that the notation 〈· · · 〉n indicates
n repetitions of the same sequence). Such log can be generated starting
from executions of the process model of Figure 5.1(b). In the case reported
in figure, the main measure (dependency relation) builds the following
relation:

A B1 B2 C D

A 0 0.83 0.83 0 0

B1 −0.83 0 0 0.83 0

B2 −0.83 0 0 0.83 0

C 0 −0.83 −0.83 0 0.909
D 0 0 0 −0.909 0

Starting from this relation and considering – for example – a value 0.8 for
the dependency threshold, it is possible to identify the split from activity A
to B1 and B2. In order to identify the type of the split it is necessary to use
the AND measure (Equation 5.2):

A⇒W (B1 ∧B2) =
5+ 5

5+ 5+ 1
= 0.909

So, considering – for example – an AND-threshold of 0.9, the type of the
split is set to AND.

The default value for dependency threshold is 0.9, instead for the AND-
threshold it is 0.1.

102

A

ti

B

tj

C

tk

(a) Direct succession relation, >.

A

ti tj

B

tu

(b) Parallelism relation, ‖.

Figure 5.2. Visual representation of the two new definitions introduced by
Heuristics Miner++.

5.1.2 Activities as Time Interval

Heuristics Miner considers each activity as an instantaneous event, either
if each activity spans a certain period.

In order to extend the algorithm to be able to cope with time intervals,
it is necessary to provide a new definition for the direct succession relation
in the time intervals context. With an activity represented as a single event,
we have that X >W Y iff ∃ σ = 〈t1 . . . , tn〉 and i ∈ {1, . . . ,n− 1} such that
σ ∈ W, ti = X and ti+1 = Y. This definition has to be modified to cope
with activities represented by time intervals.

First of all, given an event e let define with activityName[e] the activity
name the event belongs to, and with typeOf[e] the type of the event (either
start or end).

The new succession relationship X>WY between two activities is de-
fined as follow:

Definition 5.1 (Direct succession relation, >). Let a and b be two interval
activities (not instantaneous) in a log W, then

a>Wb iff ∃ σ = 〈t1, . . . , tn〉 and i ∈ {2, . . . ,n− 2}, j ∈ {3, . . . ,n− 1}

such that σ ∈W, ti = aend and tj = bstart and

∀k such that i < k < j we have that typeOf[tk] 6= start.

Less formally, we can say that two activities, to be in a direct succes-
sion relation, must meet the condition for which the termination of the
first occurs before the start of the second and, between the two, no other
activity is supposed to start. A representation of this relation is reported
in Figure 5.2(a).

There is also a new concept to be introduced: the parallelism between
two activities. With the instantaneous activities we have a and b consid-
ered as parallel when they are observed in no specific order (sometimes a

103

before b and other times b before a), so (a >W b)∧ (b >W a). Actually,
this definition may seem odd, but without the notion of “duration”, there
is no straightforward definition of parallelism.

In the new context, considering not-instantaneous events, the defini-
tion of parallelism is easier and more intuitive:

Definition 5.2 (Parallelism relation, ‖). Let a and b be two interval activities
(not instantaneous) in a log W, then

a‖Wb iff ∃ σ = 〈t1, . . . , tn〉 and i, j,u, v ∈ {1, . . . ,n}

with ti = astart, tj = aend and tu = bstart, tv = bend

such that u < i < v ∨ i < u < j.

More intuitively, this definition indicates two activities as parallel if
they are overlapped or if one contains the other, as represented in Fig-
ure 5.2(b).

Referring to the notion of “intervals algebra” introduced by Allen [6]
and the macro-algebra A3 = {≺,∩,�} as Golumbic and Shamir described
in [62], we can think the direct succession relation as the “preceedings”
(a ≺ b) one and the parallelism relation as the “intersection” (a∩ b) one.

We not only modified the notions of relations between two activities,
we also improved the algorithm performance modifying the formulae for
the statistical dependency and to determine the relation type (AND or
XOR).

The new formulation of the dependency threshold is:

a⇒W b =
|a>Wb|− |b>Wa|

|a>Wb|+ |b>Wa|+ 2|a‖Wb|+ 1
(5.6)

the new formulation of the AND relation is:

a⇒W (b∧ c) =
|b>Wc|+ |c>Wb|+ 2|a‖Wb|

|a>Wb|+ |a>Wc|+ 1
(5.7)

In this case, the notation |X‖WY| refers to the number of times that, in
W, activity X and Y are in parallel relation.

In Equation 5.6, in addition to the usage of the new direct succession
relation, we introduced the parallel relation in order to reduce the likeli-
hood to see, in the mined model, the activities in succession relation if in
the log they were overlapped.

In the second formula, Equation 5.7, we inserted the parallelism counter
in order to prefer the selection of an AND relation if the two activities are
overlapped in the log. In both cases, because of the symmetry of the ‖
relation, a factor 2 is introduced for parallel relations.

104

A
start
[1000]

A
complete
[1000]

B
start
[1000]

E
start
[1000]

B
complete
[1000]

C
start
[1000]

E
complete
[1000]

D
start
[1000]

C
complete
[1000]

D
complete
[1000]

F
start
[1000]

F
complete
[1000]

(a) Result using Heuristics Miner.

A
start
[1000]

A
complete
[1000]

B
start
[1000]

E
start
[1000]

B
complete
[1000]

C
start
[1000]

E
complete
[1000]

D
start
[1000]

C
complete
[1000]

D
complete
[1000]

F
start
[1000]

F
complete
[1000]

(b) Result using Heuristics Miner++.

Figure 5.3. Comparison of mining results with Heuristics Miner and
Heuristics Miner++.

With the new formulae, we obtain “backward compatibility” with the
original Heuristics Miner algorithm: if the log does not contain informa-
tion about interval1 the behavior is the same of the classical Heuristics
Miner. This happens because any two activities a and b will never be in
parallel relation, i.e. |a‖Wb| = 0. We can use this feature to tackle logs
with a mixture of activities expressed as time intervals and instantaneous,
improving the performances without losing the Heuristics Miner benefits.

5.1.3 Experimental Results

First Test, with a Single Process

The given algorithm has been implemented in the ProM 5.2 Process Min-
ing framework. In the first test, we tried to generate a random process
with six activities. Each of them is composed of a start and a complete
event. The generated log contains 1000 cases and so, in total, 12000 events
are recorded. Moreover, 10% of the traces contain some noise that, in this
case, consists of a random swap of two events of the trace. Results of the
mining are presented in Figure 5.3. Figure 5.3(a) proposes the Petri Net
extracted out of the log using the “classical version” of Heuristics Miner;
Figure 5.3(b) presets the Petri Net mined using Heuristics Miner++.

Second Test, on Multiple Processes

For the second test, we decided to try our algorithm against a set of differ-
ent processes, to see the evolution of the behavior when only some traces
contains activities as time interval.
1 In case there are no intervals, it is possible to add “special intervals” to the log, where

each activity starts and finishes at the same time.

105

A
start
1000

A
complete
1000

B
start
1000

0.999
921

B
complete
1000

E
start
1000

0.998
654

C
start
1000

0.997
297

E
complete
1000

0.998
655

F
start
1000

0.997
299

C
complete
1000

D
start
1000

0.999
938

D
complete
1000

0.997
294

0.999
669

F
complete
1000

(a) 0% as intervals

A
start
1000

A
complete
1000

B
start
1000

0.982
933

E
start
1000

0.91
172

D
start
1000

0.821
23

B
complete
1000

C
start
1000

0.949
500

E
complete
1000

F
start
1000

0.947
303

C
complete
1000

0.838
129

D
complete
1000

0.966
711

F
complete
1000

(b) 16% as intervals

A
start
1000

A
complete
1000

B
start
1000

0.968
935

E
start
1000

0.909
311

F
start
1000

0.929
13

B
complete
1000

E
complete
1000

C
start
1000

0.923
655

D
start
1000

0.881
245

0.925
333

C
complete
1000

0.868
243

D
complete
1000

0.956
756

F
complete
1000

(c) 33% as intervals

A
start
1000

A
complete
1000

B
start
1000

0.948
934

E
start
1000

0.932
479

B
complete
1000

E
complete
1000

C
start
1000

0.929
768

D
start
1000

0.84
372

C
complete
1000

F
start
1000

0.879
369

0.889
392

D
complete
1000

0.929
803

F
complete
1000

(d) 50% as intervals

Figure 5.4. Mining results with different percentages of activities (ran-
domly chosen) expressed as time interval. Already with 50%
the “correct” model is produced.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F1
 m

ea
su

re
 a

ve
ra

ge
, m

in
 a

n
d

 m
ax

Percentage of Ac�vi�es as Intervals

Figure 5.5. Plot of the F1 measure averaged over 100 processes logs. Mini-
mum and maximum average values are reported as well.

106

The dataset we produced contains 100 processes and, for each of them,
10 logs (with 500 instances each) are generated. Considering the 10 logs,
the first one contains no activity as time interval; in the second only one
activity (randomly different) is expressed as time interval; in the third two
of those are intervals and so on, until all activities are expressed as time
intervals.

The algorithm Heuristics Miner++ has been executed in the logs ob-
serving an improvement of the generated process model proportional to
the number of activities as time intervals. Figure 5.4 presents results of
one particular process, which is mined with different logs (increasing the
number of activities expressed as intervals).

In order to aggregate the results in numerical values, we used the F1
measure, which is described in Section 2.6. In particular, true positives are
the correctly mined dependences; false positives are dependences present
in the original model but not in the mined one; and false negatives are
dependences present in mined model but not in the original one.

It is very clear that, even with very small percentages of activities ex-
pressed as intervals, there is an important improvement in the mining
results.

Application on a Real Scenario

The adaptation of the Heuristics Miner, presented into this section, has
been defined starting from some data given by the company Siav S.p.A.
We tested our approach against their log. In particular, the original model
is the one depicted in Figure 5.6.

Actually, in this case, all activities are expressed in terms of a set of
sub-activities (and, in particular, only the start event of each sub-activity is
recorded) so, during a preprocessing phase only the first and last events of
each activities were selected, as presented in Figure 5.7. This phase gives
a good approximation of the time intervals, even if it is not completely
correct: the end event represent the start event of the last sub-activity and
not the actual end event.

Figure 5.8 shows the result of the mining phase, in which Heuristics
Miner++ has been applied. The final model is quite close to the original
one and only few edges are not mined correctly. Specifically, the first er-
ror is in the dependency between Attivita0 and Attivita11, which is not
supposed to appear. The second problem is the missing loop involving
Attivita10 and Attivita11. Finally, Attivita10 should not be connected to At-
tivita4 however, by analyzing the graph in details, it is possible to see that
this dependency is observed 831 times. Since this value is quite important,
we think this is a misbehavior observed in the log.

107

Figure 5.6. Representation of the process model, by Siav S.p.A., that gen-
erated the log used during the test of the algorithm Heuristics
Miner++.

Ti
m

e

Sub-activity 1

Sub-activity 2

...

Sub-activity n

Start

Complete

Main activity

Figure 5.7. Graphical representation of the preprocessing phase necessary
to handle Siav S.p.A. logs.

5.2 Automatic Configuration of Mining Algorithm

In this section, we propose to face the problem of parameters tuning for the
Heuristics Miner++ algorithm. The approach we adopt starts by recogniz-
ing that the domain of real-valued parameters can be actually partitioned
into a finite number of equivalence classes and we suggest to explore the
parameters space by a local search strategy driven by a Minimum De-
scription Length principle. The proposed result is then tested on a set of
randomly generated process models, obtaining promising results.

When considering real-world industrial scenarios, it is hard to have the
availability of a complete log for a process. In fact, the most typical case is
the one where the log is partial and/or contains some noise.

We define a log as partial if it does not contain a record for all the

108

0.922
1406

Attivita5
start
1465

Attivita5
complete
1465

Attivita61
start
589

0.949
573

Attivita63
start
1465

0.927
1408

Attivita62
start
610

0.966
596

Attivita61
complete
589

Attivita63
complete
1465

Attivita62
complete
610

Attivita7 - Attivita7
start
1465

0.949
572

0.918
1399

0.957
595

Attivita7 - Attivita7
complete
1465

Attivita0
start
1465

Attivita0
complete
1465

Attivita4
start
1465

0.989
454

Attivita10
start
1009

0.995
997

Attivita20
start
1009

0.999
997

Attivita11
start
1009

0.994
168

Attivita30
start
745

0.993
738

Attivita4
complete
1465

Attivita10
complete
1009

Attivita20
complete
1009

Attivita23
start
1009

0.986
900

Attivita22
start
286

0.996
249

Attivita21
start
154

0.992
126

Attivita23
complete
1009

0.977
650

Attivita11
complete
1009

0.999
831

0.93
950

Attivita30
complete
745

Attivita32
start
745

0.91
254

Attivita31
start
429

0.941
335

Attivita22
complete
286

Attivita32
complete
745

0.996
236

0.998
656

Attivita31
complete
429

0.938
407

Attivita21
complete
154

0.992
122

Figure 5.8. Model mined using Heuristics Miner++ from data generated
by model depicted in Figure 5.6.

performed activities; instead, it is noisy if either:

1. some recorded activities do not match with the “expected” ones, i.e.
there exist records of performed activities which are unknown or
which are not expected to be performed within the business process
under analysis (for example an activity that, in a real environment is
required, but that is unknown to the designer);

2. some recorded activities do not match with those actually performed,
i.e. activity A is performed, but instead of generating a record for
activity A, a record for activity B is generated; this error may be in-
troduced by a bug into the logging system or due to the unreliability
of the transmission channel (e.g. a log written to a remote place);

109

3. the order in which activities are recorded may not always coincide
with the order in which the activities are actually performed; this
may be due to the introduction of a delay in recording the begin-
ning/conclusion of the activity, e.g. if the activity is a manual ac-
tivity and the worker delays the time to record the start/end of the
activity, or to delays introduced by the transmission channel used to
communicate the start/end of a remote activity.

While case 1 may be acceptable in the context of workflow discovery,
where the names of the performed activities are not set or known a priori,
cases 2 and 3 may clearly interfere with the mining of the process, leading
to an incorrect control-flow reconstruction (that is a control-flow different
from the one that the process designer would expect). Because of that, it
is important, for a Process Mining algorithm, to be noise-tolerant. This
is especially true for the task of control-flow discovery, where it is more
difficult to detect errors because of the initial lack of knowledge on the
analyzed process.

A well known example of noise-tolerant, control-flow discovery algo-
rithm is Heuristics Miner (and Heuristics Miner++), mentioned above, in
Section 5.1. A typical problem that users face, while using these algo-
rithms, is the need to set the values of specific real-valued parameters
which control the behavior of the mining, according to the amount and
type of noise the user believes is present into the process log. Since the
algorithm constructs the model with respect to the number of observa-
tions in the log, its parameters are acceptance thresholds on frequencies
of control-flow relevant events observed into the log: if the observed event
is frequent enough (i.e., its frequency is above the given threshold for that
event) then a specific feature of the control-flow explaining the event is
introduced. Different settings for the parameters usually lead to different
results for the mining, i.e., to different control-flow networks.

While the introduction of these parameters and its tuning is funda-
mental to allow the mining of noisy logs, the unexperienced user may
find difficult to understand the meaning of each parameter and the effect,
on the resulting model, of changing the value of one or more parameters
from one value to another one. Sometimes, even experienced users find it
difficult to decide how to set these parameters.

The approach we propose starts by recognizing that the domain of
real-valued parameters can be actually partitioned into a finite number of
equivalence classes and we suggest to explore the parameters space by a
local search strategy driven by a Minimum Description Length principle.
The proposed result is then tested on a set of randomly generated process
models, obtaining promising results.

110

5.2.1 Parameters of the Heuristics Miner++ Algorithm

The basic measures of Heuristics Miner++ have already been proposed.
Here we just list the parameters of the algorithm and, for each of them, a
brief description presents the idea underpinning the specific parameter.

Relative-to-best Threshold This parameter indicates that we are going to
accept the current edge (i.e., to insert the edge into the resulting
control-flow network) if the difference between the value of the de-
pendency measure computed for it and the greatest value of the de-
pendency measure computed over all the edges is lower than the
value of this parameter.

Positive Observations Threshold With this parameter we can control the min-
imum number of times that a dependency relation must be observed,
between two activities: the relation is considered only when this
number is above the parameter’s value.

Dependency Threshold This parameter is useful to discard all the relations
whose dependency measure is below the value of the parameter.

Length-one Loop Threshold This parameter indicates that we are going to
insert a length-one loop (i.e., a self loop) only if the corresponding
measure is above the value of this parameter.

Length-two Loop Threshold This parameter indicates that we are going to
insert a length-two loop only if the corresponding measure is above
the value of this parameter.

Long Distance Threshold With this parameter we can control the minimum
value of the long distance measure in order to insert the dependency
into the final model.

AND Threshold This parameter is used to distinguish between AND and
XOR splits (if there is more than one connection exiting from an
activity): if the AND measure is above (or equal) to the threshold, an
AND-split is introduced, otherwise a XOR-split is introduced.

In order to successfully understand the next steps, let’s point out an
important observation: by definition, all these parameters can have values
between −1 and 1 or between 0 and 1. Only the positive observation
threshold requires an integer value that expresses the absolute minimum
number of observations.

111

Data Structure Matrix Size

directSuccessionCount |AW |2

parallelCount |AW |2

dependencyMeasures |AW |2

L1LdependencyMeasures |AW |

L2LdependencyMeasures |AW |2

longRangeDependencyMeasures |AW |2

andMeasures |AW |3

Table 5.1. Data structures used by Heuristics Miner++ with their sizes.
AW is the set of activities contained in the log W.

In the first step of Heuristics Miner++, it extracts all the required in-
formation from the process log; then it uses the threshold parameters de-
scribed above. Specifically, before starting the control-flow model mining,
it creates the data structures presented in Table 5.1, where AW is the set
of activities contained in the log W. All the entries of this data structures
are initialized to 0. Then, for each process instance registered into the log,
if two activities (ai,ai+1) are in a direct succession relation, the value of
directSuccessionCount[ai,ai+1] is incremented, while if they are executed in
parallel (i.e., the time intervals associated to the two activities overlap) the
value of parallelCount[ai,ai+1] is incremented; moreover, for each activity
a, Heuristics Miner++ calculates the length-one loop measure a ⇒W a

and adds its value to L1LdependencyMeasures[a]. Then, for each activities
pair (ai,aj) Heuristics Miner++ calculates the following:

• the dependency measure ai ⇒W aj and adds its value to dependency-
Measures. It must be noticed that in order to calculate this metric
the values |ai>Waj| and |ai‖Waj| must be available: these values cor-
responds to the values found in directSuccessionCount[ai,aj] and
parallelCount[ai,aj], respectively;

• the long distance relation measure a1 ⇒l
W a2 and adds its value to

longRangeDependencyMeasures[a1,a2];

• the length 2 loop measure a1 ⇒2
W a2 and adds its value to L2L-

dependencyMeasures.

Finally, for each triple (a1,a2,a3) the procedure calculates the AND/XOR
measure a1 ⇒W (a2 ∧ a3) and adds its value to andMeasures[a1,a2,a3].

When all these values are calculated, Heuristics Miner++ proceeds
to the real control-flow construction. These are the main steps: first of

112

all, a node for each activity is inserted; then, an edge (i.e. a depen-
dency relation) between two activities ai and aj is inserted if the entry
dependencyMeasures[ai,aj] satisfies all the constraints imposed by Relative-
to-best Threshold, Positive Observations Threshold, and Dependency Thresh-
old.

The algorithm continues iterating through all the activities that have
more than one connection exiting from it: it is necessary to disambiguate
the split behavior between a XOR and an AND. In these cases (e.g., ac-
tivity ai has two exiting connections with activities aj and ak), Heuristics
Miner++ checks the entry andMeasures[ai,aj,ak] and, if it’s above the AND
threshold, it is marked as an AND-split, otherwise as a XOR-split. If there
are more than two activities in the “output-set” of ai then all the pairs are
checked.

A similar procedure is used to identify length-one loop: Heuristics
Miner++ iterates through each activity and checks in the L1Ldependency-
Measures vector if the corresponding measure is greater than the Length-
one Loop Threshold. For the length-two loops the procedure checks, for
each activities pairs (ai,aj), if L2LdependencyMeasures[ai,aj] satisfies the
Length-two Loop Threshold and, if necessary, adds the loop.

The same process is repeated even for the long distance dependency:
for each activity pairs (ai,aj), if the value of longRangeDependencyMeasures
is above the value of the Long distance threshold parameter, then the depen-
dency between the two activities is added.

Once Heuristics Miner++ has completed all these steps, it can return
the final process model. In this case, the final model is expressed as a
Heuristics Net (an oriented graph, with information on edges, which can
be easily converted into a Petri Net).

5.2.2 Facing the Parameters Setting Problem

As already said, it is not easy for a user (typically process miner users
are business process managers, resources managers, or business unit di-
rectors) to decide which values to use for the parameters described above:
she or he may not be an expert in Process Mining, and anyway, also an ex-
perts in Process Mining can have an hard time to figure out which setting
makes more sense.

The main issue that makes this decision difficult is the fact that al-
most all parameters take values in real-valued ranges: there is an infinite
number of possible choices! Moreover, how can it be possible to select
the “right” value for each parameter? Is it preferable to set the parame-
ters so as to generate a control-flow network able to explain all the cases
contained in the log (even if the resulting network is very complex and

113

thus hard to understand by a human), or a simpler, and so more readable,
model (even if it does not explain all the data)?

Here we assume that the user’s desired result of the mining is a “suf-
ficiently” simple control-flow network able to explain as many as possible
cases contained in the log. In fact, if the log is noisy, a control-flow net-
work explaining all the cases is necessarily very complex because it has to
explain also the noise itself (see [149], for a discussion on this issue).

On the basis of this assumption, we suggest addressing the parameters
setting problem by a two step approach:

1. identification of the candidate hypothesis that corresponds to the as-
signments of values to the parameters that induce Heuristics Miner++
to produce different control-flow networks;

2. exploration of the hypothesis space to find the “best solution”, i.e.
generation of the simplest control-flow network able to explain the
maximum number of cases.

The aim of step 1 is to identify the set of different process models
which can be generated by Heuristics Miner++ by varying the values of
the parameters. Among these process models, the aim of step 2 is to
select the process model with the best trade-off between complexity of
the model description and number of cases that the model is not able to
explain. Here, our suggestion is to use the Minimum Description Length
(MDL) [66] approach to formally identify this trade-off. In the next two
sections, we describe in detail our definition of these two steps.

5.2.3 Discretization of the Parameters’ Values

As discussed in the previous section, by definition, most of Heuristics
Miner++ parameters can take an infinite number of values. In practice,
only some of them produce a different model as output. In fact, the size
of the log used to perform the mining can be assumed to be finite, and
thus equations for the various metrics can return only a finite number
of different values. These sets, with all the possible values, are obtained
by calculating the results of the formulas against all single activities, all
pairs, and all triples. Specifically, if we look at the data structures used
by Heuristics Miner++, these are populated with all the results just de-
scribed so they contain all the possible values of the measures of interest
for the given log. Even considering the worst case, i.e. when each activity
configuration has a different measure value, the mining algorithm cannot
observe more than |AW |i different values for parameters described by an
i-dimensional matrix. Since |AW | is typically a quite low value, even the

114

worst case does not produce a huge number of possible values. Thus it
does not make sense to let the thresholds to assume any real-value in the
associated range.

Given a log W, let sort, in ascending order, all the different values
v1, . . . , vs, that a given measure can take. Then, all the values in the ranges
[vi, vi+1) with i = 1, . . . , s constitute equivalence classes with respect to the
choice of a value for the threshold associated to that measure. In fact, if
we pick any value in [vi, vi+1), the output of the mining, i.e. the generated
control-flow network, is not going to change. If the parameters were inde-
pendent, it would be easy to define the set of equivalence classes. In fact,
given n independent parameters p1, . . . ,pn with domains D1, . . . ,Dn, it is
sufficient to compute the set of equivalence classes Epi for each parame-
ter pi, and then obtain the set of equivalence classes over configurations of
the n parameters as the Cartesian product Ep1 ×Ep2 × . . .×Epn . This means
that we can uniquely enumerate process models by tuples (d1,i1 , . . . ,dn,in),
where dj,ij ∈ Dj, j = 1, . . . ,n.

Unfortunately, by definition, Heuristics Miner++ parameters are not
independent. This is clearly exemplified by considering only the two pa-
rameters “positive observation threshold” and “dependency threshold”. If
the first one is set to a value that does not allow a particular dependency
relation to appear in the final model (because it does not occur frequently
enough in the log), then, there is no value for the dependency threshold,
involving the excluded dependency relation, that will modify the final
model. As shown in the example, the lack of independence entails that
the mining procedure may generate exactly the same control-flow network
starting by different settings for the parameters. This means that it is not
possible to uniquely enumerate all the different process models by defin-
ing the equivalence classes over the parameters values as discussed above
under the independence assumption. So, since there is not a bijective func-
tion between process models and tuples of discretized parameters, it is not
possible to efficiently search the “best” model by searching among the dis-
cretized space of parameters. However, discovering all the dependences
among the parameters and then defining a restricted tuple space where
there is a one to one correspondence between tuples and process mod-
els would be difficult and expensive. Therefore, we decided to adopt the
independence assumption to generate the tuple space, while using high
level knowledge about the dependences among parameters to factorize
the tuple space in order to perform an approximate search.

115

5.2.4 Exploration of the Hypothesis Space

We have just described a possible way to construct a set with all values,
for each parameter, that produces distinct process models. As we have
discussed before, each process model mined from a particular parameters
configuration constitutes, for us, a hypothesis (i.e. a potential candidate to
be the final process model). We are, now, in this situation: (a) it is possible
to build a set with all possible parameters values; (b) each parameters
configuration produces a process model hypothesis. Starting from these
two elements, we can realize that we have all the information required for
the construction of the hypothesis space: if we enumerate all the tuples of
possible parameters configurations (and this is possible, since these sets
are finite) we can build the set of all possible hypotheses, which is the
hypothesis space. The second step, described in our approach, requires
the exploration of this space, in order to find the “best” hypothesis.

In order to complete the definition of our search strategy, it remains
to give a formal definition of our measure of “goodness” for a process
model. To this aim, we adopt the Minimum Description Length (MDL)
principle [66]. MDL is a widely known approach, based on the Occam’s
Razor: “choose a model that trades-off goodness-of-fit on the observed data with
‘complexity’ or ‘richness’ of the model”. Let’s take as an example the problem
of communicating through a very expensive channel: we can build a com-
pression algorithm whereby the most frequent words are represented in
the shortest way and, the less frequent have a longer representation. Now,
as first thing to do, we have to transmit the algorithm and then we can use
it to send our encoded messages. We have to pay attention in not building
a too complex (that can handle many cases) algorithm: its transmission
may neutralize the benefits of its use, in terms of total amount of data
to be transmitted. Consider now the set H of all possible algorithms that
can be built and, given h ∈ H, let L(h) be its description size and L(D|h)

will be the size of the message D after its compression using h. The MDL
principle tells us to choose the “best” hypothesis hMDL as:

hMDL = arg min
h∈H

L(h) + L(D|h).

In [26], Calders et al. present a detailed approach to compute Minimum
Description Length for Process Mining. In this case, the model is always
assumed to be a Petri Net. Specifically, the proposed metric shows two
different encodings, for the model and for the log:

• L(h) is the encoding of the model h (a Petri Net), and lies in a se-
quence of all the elements of the net (i.e. places and transitions).

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
ts

Explored models

L(h)
L(D|h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
ts

Explored models

L(h)
L(D|h)

Figure 5.9. Unbalancing between different weights of L(h) and L(D|h) ac-
cording to the MDL principle described in [26]. The left hand
side figure shows an important discrepancy, the right hand one
does not.

For each place, moreover, the sets of incoming and outgoing tran-
sitions are recorded too. The result is a sequence structured as:
〈transitions, places (with connections)〉.

• L(D|h) represents the encoding of the log D and is a bit more com-
plex. Specifically, the basic idea is to replay the entire log on the
model and, every time there is an error (i.e. the event of the log
cannot be replayed by the model), a “punishment” is assigned. The
approach punishes also when there are too many transitions enabled
at the same time (in order to avoid models similar to the “flower
model”, see Figure 2.16(b)).

The same work proposes to weight the two encodings according to a con-
vex combination, so to let the final user decide how to balance the two
weights. We used this approach to guide the search of the best hypothesis.
However, several problems limited the use of such approach. The most
important ones are:

• the reply of the traces is very expensive from a computational point
of view. The approach resulted absolutely unfeasible in industrial
scenarios, with “real data”. For example, after performing several
optimizations and executing a simple model in a controlled environ-
ment the procedure required up to 20 hours for running2;

• the codomain of the values of the two measures (L(h) and L(D|h)) is
not actually bounded (even after the normalization proposed on the

2 These experiments have been performed by Daniele Turato and reported in his M.Sc.
thesis: “Configurazione automatica di Heuristics Miner++ tramite il principio MDL”.

117

plugin implementation3). Moreover, in our examples, we observed
that the values of L(h) and L(D|h) are very unbalanced, therefore
their averaging is not really producing expected effects. An example
of this problem is reported in Figure 5.94.

Because of these problems we “relaxed” the measures of the model
and of the data, so to have lighter versions of them, capable of capturing
the concepts we need.

5.2.5 Improved Exploration of the Hypothesis Space

The parameters discretization process does not produce a large number of
possible values but, since the hypothesis space is given by the combination
of all the parameters’ values, this can become quite large, and finding
the best hypothesis easily turns into a quite complex search problem: an
exhaustive search of the hypothesis space (that will lead to the optimal
solution) is not feasible. So we decided to factorize the search space by
exploiting high level knowledge about independent relations (total and
conditional) among parameters, and to explore the factorized space by a
local search strategy. Let’s start describing the factorization of the search
space.

Factorization of the Search Space

Heuristics Miner++ parameters are not independent. These dependen-
cies can be characterized by listing the main operations performed by the
mining algorithm, and the corresponding parameters:

1. calculation of the length-one loops and check Length-one Loop Thresh-
old and Positive Observations Threshold;

2. calculation of the length-two loops and check Length-two Loop Thresh-
old and Positive Observations Threshold;

3. calculation of the dependency measure and check Relative-to-best
Threshold, Positive Observations Threshold and Dependency Thresh-
old;

4. calculation of AND measure and check AND Threshold;

5. calculation of long distance measure and check Long Distance Thresh-
old.

3 See http://www.processmining.org/online/mdl for more information.
4 See footnote 2.

118

http://www.processmining.org/online/mdl

When more than one parameter is considered within the same oper-
ation, all the corresponding checks have to be considered as in ‘and’ re-
lation, meaning that all constraints must be satisfied. The most frequent
parameter that is verified is the Positive Observations Threshold, occurring
in three steps; under these conditions, if, as an example, the dependency
relation under consideration does not reach a sufficient number of obser-
vations in the log, then the check of parameters Relative-to-best Thresh-
old, Dependency Threshold, Length-one Loop Threshold and Length-two
Loop Threshold can be skipped because the whole check (the ‘and’ with
all other parameters) will not pass, regardless of the success of the single
checks involving the Relative-to-best Threshold, the Dependency Thresh-
old, the Length-one Loop Threshold and the Length-two Loop Threshold.

Besides that, there are some other intrinsic rules on the design of the
algorithm: the first is that if an activity is detected as part of a length-one
loop, then it can’t be in a length-two loop and vice versa (so, checks in step
1 and step 2 are in mutual exclusion); another is that if an activity has less
than two exiting edges then it is impossible to have an AND or XOR split
(and, in this case, step 4) does not need to be performed).

In order to simplify the analysis of the possible mined networks, we
think it is useful to distinguish two types of networks, based on the struc-
tural elements that compose them:

• Simple networks, which include process models with no loops and no
long distance dependencies;

• Complete networks, which include simple networks extended with at
least one loop and/or one long distance dependency.

For the creation of the first type of networks, only steps 3 and 4 (on the
list at the beginning of this section) are involved, and so only Relative-to-
best Threshold, Positive Observations Threshold, Dependency Threshold
and AND Threshold have an important role in the creation of this class
of networks. Complete networks are obtained by adding, to a simple net-
work, one or more loops, by using steps 1 and 2, and/or one or more long
distance dependencies via step 5. It can be observed that, once the value
for Positive Observations Threshold is fixed, steps 1, 2, and 5, are in prac-
tice controlled independently by Length-one Loop Threshold, Length-two
Loop Threshold, and Long Distance Threshold respectively.

Searching for the Best Hypothesis

At this point, the new objective is the definition of the process for the iden-
tification of the “best” model (actually, we have to find the best parameters’

119

“Simple network” space
“Complete network” space

Final solution

Figure 5.10. Graphical representation of the searching procedure: the sys-
tem looks for the best solution on the simple network class.
When a (local) optimal solution is found, the system tries to
improve it by moving into the complete network space.

configuration). There are two issues here: the first is the definition of some
criterion to define what means “best model”. Secondly, there is the prob-
lem of the hypothesis space that is too big to be exhaustively explored. We
are going to start from the latter problem, assuming to have a criterion to
quantify the goodness of a process model.

For what concerns the big dimension of the search space, we start the
search within the class of simple networks and, once the system finds the
“best” local model it tries to extend it into the complete network space.
With this division of the work the system reduces the dimensionality of
the search spaces.

From an implementing point of view, in the first phase, the system
has to inspect the joint space composed only of Relative-to-best Thresh-
old, Positive Observations Threshold, Dependency Threshold and AND
Threshold (the parameters involved in “simple networks”) and, when it
finds a (potentially only local) optimal solution, it can try to extend it intro-
ducing loops and long dependency. In Figure 5.10 we propose a graphical
representation of the main phases of the exploration strategy. Of course,
this search strategy is not complete for two reasons: i) local search is, by
definition, not complete; and ii) the “best” process model may be obtained
by extending with loops and/or long dependencies a sub-optimal simple
network.

Concerning the actual length measures, we studied, as model complex-
ity L(h), the number of edges in the network. This is an easily computable
measure, although it may underestimate the complexity of the network
because it disregards the different constructs that compose the network.
Anyway, this is a good way characterize the description length of the pro-
cess model.

As L(D|h) measure, we use the fitness measure introduced in [146]

120

and, in particular, we opted for the continuous semantics one. Differently
from the stop semantics, the one chosen does not stop at the first error, but
continues until it reaches the end of the model. This choice is consistent
with our objective to evaluate the whole process model. This measure is
expressed as:

fM,W = 0.4 · parsedActs(M,W)

|AW |
+ 0.6 · parsedTraces(M,W)

logTraces(W)

where M is the current model and W, as usual, is the log to “validate”;
|AW | is the number of activities in the log and logTraces(W) is the number
of traces in W; parsedActs(M,W) gives the sum of all parsed activities for
all traces in W and parsedTraces(M,W) returns the number of traces in W
completely parsed by the model M (when the final marking involves only
the last activity).

The search algorithm starts from a random point in the “simple net-
work” space and, exploiting a hill-climbing approach [127], evaluates all
the neighbor simple networks obtained by moving the current value of one
of the parameters up or down of a position within the discretized space
of possible values. If a neighbor network, with a better MDL value, exists
then that network becomes the current one and the search is resumed un-
til no better network is discovered. The “optimal” simple network is then
used as starting point for a similar search in the remaining parameters
space, so to discover the “optimal” complete network, if any.

In order to improve the quality of the result, the system restarts the
search from another random point in the hypothesis space. At the end,
only the best solution among all the ones obtained by the restarts is pro-
posed as “final optimal” solution.

5.2.6 Experimental Results

In order to evaluate our approach we tried to test it against a large dataset
of processes. In order to assign a score to each mining, we built some
random processes and we generated some logs from these models; starting
from these the system tries to mine the models. Finally, we compared the
original models versus the mined ones.

Experimental Setup

The set of processes to test is composed of 125 process models. These
processes were created using the approach presented in Chapter 9.

The generation of the random processes is based on some basic “pro-
cess patterns”, like the AND-split/join, XOR-split/join, the sequence of

121

0

5

10

15

20

25

30

35

 0 2 4 6 8 10 12 14

N
u

m
b

er
 o

f
p

ro
ce

ss
es

Number of pa�erns

Loop
AND split/join
XOR split/join

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
p

ro
ce

ss
es

Measure values

Ac�vi�es
Edges

Cardoso Metric

Figure 5.11. Features of the processes dataset. The left hand side plot,
reports the number of processes with a particular number
of patterns (AND/XOR splits/joins and loops). The plot in
the right hand side contains the same distribution versus the
number of edges, the number of activities and the Cardoso
metric [27] (all these are grouped using bins of size 5).

two activities, and so on. In Figure 5.11 some statistical features of the
dataset are shown. For each of the 125 process models, two logs were
generated: one with 250 traces and one with 500 traces. In these logs, the
75% of the activities are expressed as time intervals (the other ones are
instantaneous) and 5% of the traces are noise. In this context “noise” is
considered either a swap between two activities or removal of an activity.

We tried the same procedure under various configurations: using 5, 10,
25 and 50 restarts. In the implemented experiments, we run the algorithm
allowing 0, 1, 5 and 10 lateral step, in case of local minimum (in order to
avoid problems in case of very small plateau).

The distance of the mined process from the correct one is evaluated
with the F1 measure (see Section 2.6).

Results

The number of improvement steps performed by the algorithm is reported
in Figure 5.12. As shown in the figure, if the algorithm is run with no
lateral steps, then it stops early. Instead, if lateral steps are allowed, the
algorithm seems to be able, at least in some cases, to get out of plateaus.
In our case, even 1 step shows a good improvement in the search. The
lower number of improvement steps (plot on the right hand side), in the
case of 500 traces, is due to the fact, with more cases, it is easier to reach
an optional solution.

The quality of the search mining result, as measured by the F1 measure,

122

0

10

20

30

40

50

60

70

80

90

 1 2 3 4 5 6

N
u

m
b

er
 o

f
p

ro
ce

ss
es

Improvement steps

0 lateral steps
1 lateral steps
5 lateral steps

10 lateral steps

0

10

20

30

40

50

60

70

 1 2 3 4 5 6

N
u

m
b

er
 o

f
p

ro
ce

ss
es

Improvement steps

0 lateral steps
1 lateral steps
5 lateral steps

10 lateral steps

Figure 5.12. Number of processes whose best hypothesis is obtained with
the plotted number of steps, under the two conditions of the
mining (with 0, 1, 5 and 10 lateral steps). The left hand side
plot refers to the processes mined with 250 traces while the
right hand side refers to the mining using 500 traces.

0.5

0.6

0.7

0.8

0.9

1

 0 10 20 30 40 50 60 70 80 90 100

F1
 M

ea
su

re

Cardoso Metric

0.5

0.6

0.7

0.8

0.9

1

 0 10 20 30 40 50 60 70 80 90 100

F1
 M

ea
su

re

Cardoso Metric

Figure 5.13. “Goodness” of the mined networks, as measured by the F1
measure, versus the size of the process (in terms of Cardoso
metric). The left hand size plot refers to the mining with 250

traces, while the right hand side plot refers to the mining
with 500 traces. Dotted horizontal lines indicate the average
F1 value.

123

0

5

10

15

20

25

30

35

40

 1 2 3 4 5

N
u

m
b

er
 o

f
p

ro
ce

ss
es

Improvement steps

α = 0.3
α = 0.5
α = 0.7

Improved

(a) Number of improvement steps.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 0 10 20 30 40 50 60 70 80 90

F1
 M

ea
su

re

Cardoso Metric

α = 0.3
α = 0.5
α = 0.7

Improved

(b) F1 measure of discovered models.

1

10

100

1000

10000

100000

P
ro

ce
ss

in
g

�
m

e
(s

ec
o

n
d

s)

Different Models

α = 0.3 α = 0.5 α = 0.7 Improved

(c) Time required to process different models, with the various techniques. Dotted lines
represent the averages of each approach. Logarithmic scale is used.

Figure 5.14. Comparison of results considering the classical MDL mea-
sures and the improved ones. These results refer to runs with
10 lateral steps and 10 random restarts.

is shown in Figure 5.13. Results for 250 traces are reported in the left hand
side plot, while results for 500 traces are shown in the right hand side plot.
It is noticeable that the average F1 is higher in the 500-traces case. This
phenomenon is easily explainable since, with a larger dataset the miner is
able to extract a more reliable model.

Several tests have been performed considering also the MDL approach
described in [26] (presented in Section 5.2.4)5. However, due to the time
required for the processing of the entire procedure, we considered only a
fraction of our dataset: 93 process models (the simplest ones), logs with
only 250 traces and with no noise. Results are reported in Figure 5.14.

For these experiments we have tried 3 different values of the α param-

5 See footnote 2.

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
lp

h
a‐

b
as

ed
 s

im
ila

ri
ty

Different Models

α = 0.3 α = 0.5 α = 0.7 Improved

Figure 5.15. Performance comparison in terms of Alpha-based metric.
These results refer to runs with 10 lateral steps and 10 ran-
dom restarts.

eter of the “classic” MDL approach (α = 0.3, α = 0.5, and α = 0.7). More-
over, concerning our new MDL definition, we do not divide the hypothe-
sis space in simple and complete networks, but we just looked for the best
model (to have values that can be reliably compared). Figure 5.14(a) pro-
poses the number of improvement steps performed by the two approaches;
Figure 5.14(b) shows the average F1 score of the approaches given a value
of the Cardoso metric and, finally, Figure 5.14(b) presents the execution
times. Please not that the execution times, using our improved approach,
have significantly drop (more than one order of magnitude), whereas the
improvement steps and the F1 measure reveal that there is absolutely no
loss of quality.

For the last comparison proposed, we used a behavioral similarity mea-
sure. The idea underpinning this measure, which will be presented in de-
tails in Section 6.1.3, is to compare all the possible dependencies that the
two processes allow and all the dependencies that are not allowed. There-
fore, the comparison is performed according to the actual behaviors of the
two processes, independently of their edges. Such approach, differently
from the F1, is also able to discriminate AND and XOR connections. Fig-
ure 5.15 shows the similarity values of all the models. In this case (as in the
previous ones), we do not divided the set of models in simple and com-
plete networks. As you can see, our improved approach is not penalized
in any way, with respect to the well founded MDL executions. Instead, for
several processes it seems to be able to obtain even better models.

125

5.3 User-guided Discovery of Process Models

If we have a model-to-model metric available, it is possible to cluster pro-
cesses in hierarchies. We decided to use an agglomerative hierarchical
clustering algorithm [96] with, in this first stage, an average linkage (or
average inter-similarity): in this case the similarity s between two clusters,
c1 and c2, is defined as the similarity of all the pairs of activities belonging
to the two clusters:

s(c1, c2) =
1

|c1||c2|

∑
pi∈c1

∑
pj∈c2

d(pi,pj)

The basic idea of agglomerative hierarchical clustering is to start with
each element in a singleton cluster and, at each iteration of the algorithm,
the two closest clusters are merged into one. The procedure iterates until
a single cluster is created, containing all the elements. The typical way
of representing a hierarchical clustering is using a dendrogram, which
represents how the elements are combined together.

Exploitation of Clustering for Process Mining

A possible way to exploit the clustering technique proposed in this work is
to allow absolute-not-expert analyst to perform Process Mining. In partic-
ular not-expert users can have many problems in the configuration of the
parameters for the mining (these parameters can be real-valued and there
can be no evidence on their contribution on the results6). The present ap-
proach shifts the problem from choosing the best parameters configuration
to selecting the model that better describe the actual process performed.
This is the main reason why such approach can also be called “parameter
configuration via result exploration”. The idea can be split in the following
steps:

1. the system receives a log as input;

2. the space of the parameters can be discretized in order to consider
only the meaningful values (from an infinite space to a finite one);

3. all the distinct models that can be generated starting from the pa-
rameters are generated, so to have an exhaustive list of all the models
that can be inferred starting from the log;

4. all the generated processes are clustered; and

6 There can be dependencies among parameters, so that changing the value of one of
them does not necessarily turn out in a different result.

126

5. the hierarchy of clusters is “explored” by the user by drilling down
on the direction that he/she thinks being the most promising one.

A practical example of the given approach is presented in the following
section.

5.3.1 Results on Clustering for Process Mining

Clustering of business processes can be used to allow not-expert users to
perform Process Mining (as control-flow discovery). A proof of concept
procedure has been implemented.

The approach has been tested on a process log with 100 cases and 46

event classes, equally distributed among each case, with 2 event types.
The complete set of possible business process is made of 783 models that
are generated starting from the possible configurations of the algorithm
Heuristics Miner++.

A complete representation of the clusters generated from such dataset
has not been created because of problems in exporting the image, however,
a representation of a subset of them (350 process models) is proposed in
Figure 5.16. This is a dendrogram representation of the hierarchy that
comes out of the distance function presented in previous sections. The
distance matrix, with distances per each pair of models, is presented as
well.

Concerning the approach “parameter configuration via result explo-
ration”, the idea is to start from the “root” of the dendrogram and “navi-
gate” it until a leaf is reached. Since a dendrogram is a binary tree, every
cluster is made of two sub-clusters that are represented by their corre-
sponding medoids. These two process models (i.e., the medoids) are pro-
posed, at each step, to the user that can decide which is the best “direction”
to follow. In the first steps, the user will be asked to select between models
that are very different each other. As long as the user makes decisions, the
processes to compare will be closer each other, so the user decision can be
based on very different and detailed aspects.

Figure 5.17 reports the dendrogram with α ∈ {0, 0.5, 1}. Hierarchical
clustering has been performed on 10 randomly generated business pro-
cesses. The result is presented in the figure. In the lower part of the same
figure examples of two processes considered “distant” are also reported.

5.4 Summary

This chapter started with the presentation of a generalization of the Heuris-
tics Miner algorithm. This new approach uses the activity expressed as

127

Figure 5.16. Distance matrix of 350 process models, generated as differ-
ent configuration of the Heuristics Miner++ parameters. The
brighter an area is, the higher is the similarity between the
two processes (e.g., the diagonal). The dendrogram gener-
ated starting from the distance matrix is proposed too.

0.38

0.68

0.45

0.6

0.74

0.57

0.72

0.78

0.84

P 1

P 10

P 9

P 8

P 5

P 6

P 4

P 7

P 2

P 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.34

0.45
0.63

0.69

0.76

0.49

0.71

0.74

0.84

P 1

P 10

P 9

P 8

P 5

P 6

P 4

P 7

P 2

P 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.3

0.64

0.45

0.7

0.75

0.4

0.68

0.71

0.84

P 1

P 8

P 9

P 10

P 6

P 5

P 7

P 4

P 3

P 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Dendrograms generated with α = 0, α = 0.5 and α = 1 (from left to right).

A BC D

E

F

G

H I

J

K

L

(b) P 4.

A BC D

E FG

H

I J

K

L

(c) P 10.

Figure 5.17. The topmost figures represent three dendrograms. The two
Petri Nets are examples of “distant” processes.

time intervals instead of single events. We introduced this notion into the
previous algorithm paying attention to the backward compatibility.

The second issue, taken into account in this chapter, deals with the

128

configuration of parameters of mining algorithms. In particular two ap-
proaches are proposed: the first is completely automatic, the second is
user-guided. Specifically, we focused on Heuristics Miner++ and we pro-
posed a way to discretize the parameters space according to the traces in
the log. Then we suggested to perform a constrained local search in that
space to cope with the complexity of exploring the full set of candidate
process models. The local search is driven by the MDL principle to look
for the process model trading-off the complexity of its description with
the number of traces that can be explained by the model. The user-guided
configuration is actually an alternative approach to explore the space of
models: the user explores such space of processes through the medoids
of the clusters resulting as output of the generation of all the models (ob-
tained performing the mining with all the different configurations).

129

130

Chapter 6

Results Evaluation

This chapter is based on results published in [5, 18].

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on

Control‐flow Mining Stream Control‐flow Mining

Results Evalua�on

Process Extension

Process Mining algorithms, designed for real world data, typically
cope with noisy or incomplete logs via techniques that require the ana-
lyst to set the value of several parameters. Because of that, many process
models corresponding to different parameters settings can be generated,
and the analyst gets very easily lost in such a variety of process models.
In order to have really effective algorithms, it is of paramount importance
to give to the analyst the possibility to easily interpret the output of the

131

mining.
Section 5.2.3 proposes a technique for the automatic discretization of

the space of the values of the parameters and a technique for selecting
one among all the models that can be mined. However, presenting just
a single output model could not be enough informative for the analyst,
so the problem appears to be finding a way of presenting only a small
set with the most meaningful results, so that the analyst can either point
out the one that better fits the actual business context, or extract general
knowledge about the business process from a set of relevant extracted
models.

In order to pursue this objective, it is necessary to be able to compare
different process models, so to avoid to present to the analyst too similar
processes. We propose a model-to-model metric that allows the compar-
ison between business processes, removing some of the problems which
afflict other metrics already proposed in the literature. The proposed met-
ric, in particular, transforms a given model into two sets of relations among
process’ activities. The comparison of two models is then performed on
the generated sets.

On the second part of this chapter we will propose a model-to-log
metric, useful for conformance checking. In particular, we will compare a
declarative process model with respect to an event log. We are also able to
provide both “local” and “global healthiness” measure for the given pro-
cess, which can be used by the analyst as input for further investigations.

6.1 Comparing Processes

The comparison of two business processes is not trivial as it requires se-
lecting those perspectives that should be considered relevant for the com-
parison. For example, we can have two processes with same structure (in
terms of connections among activities) but different activity names. In
this case, it is easy, for a human analyst, to detect the underlying simi-
larity, while a machine will hardly be able to capture this feature unless
previously programmed to do that. For this reason, several different com-
parison metrics have been developed in the recent past, each one focusing
on a different aspect and related to a specific similarity measure.

In the context of business Process Mining, the first works that propose
a process metric are [148, 41]. In those papers, process models are com-
pared on the basis of typical behaviors (expressed as an event log). The
underpinning idea is that models that differ on infrequent traces should
be considered much more similar than models that differ on very frequent
traces. Of course, this requires that a reference execution log is needed.

132

In [46], the authors address the problem of detection of synonyms and
homonyms that can occur when two business processes are compared.
Specifically, a syntactic similarity is computed by comparing the num-
ber of characters of the activities names; linguistic similarity depends on
a dictionary of terms and structural similarity is based on the hierarchi-
cal structure of an ontology. These three similarities are combined in a
weighted average. The work by Bae et al. [7], explicitly refers to Process
Mining as one of its purposes. The authors propose to represent a process
via its corresponding dependency graph, which in turn is converted into
its incidence matrix. The distance between two processes is then computed
as the trace of (N1 −N2)× (N1 −N2)

T , where N1 and N2 are the process
incidence matrices. Authors of [165] present an approach for the compari-
son of models on the basis of their “causal footprints”. A causal footprint
can be seen as a collection of the essential behavioral constraints that a
process model imposes. The similarity between processes is computed on
the basis of their corresponding causal footprints, using the cosine simi-
larity. Moreover, in order to avoid synonyms, a semantic similarity among
function names is computed. The idea behind [43] is slightly different
from the above mentioned works as it tries to point out the differences
between two processes so that a process analyst can understand them. Ac-
tually, this work is based on [165]. The proposed technique exploits the
notion of complete trace equivalence in order to determine differences.
The work by Wang et al. [172] considers only Petri Nets. The basic idea
is that the complete firing sequence of a Petri Net might not be finite, so
it is not possible to compare Petri nets in these terms. That’s why the
Petri net is converted into the corresponding coverability tree (guaranteed
to be finite) and the comparison is performed on the principal transition
sequences, created from the corresponding coverability trees. The paper
[177] describes a process in terms of its “Transition Adjacency Relations”
(TAR). The set of TARs describing a process is the set of pairs of activities
that occur one directly after the other. The TAR set of a process is always
finite, so the similarity measure is computed between the TAR sets of the
two processes. The similarity measure is defined as the ratio between the
cardinality of the intersection of the TARs and the cardinality of the union
of them. A recent work [173] proposes to measure the consistency be-
tween business processes representing them as “behavioral profiles” that
are defined as the set of strict order, exclusiveness and interleaving rela-
tions. The approach for the generation of these sets is based on Petri Nets
(their firing sequences) and the consistency of two processes is calculated
as the amount of shared holding relations, according to a correspondence
relations, that maps transition of one process into transitions of the other.

133

(a) (b)

Figure 6.1. Two processes described as Petri Nets that generate the same
TAR sets. According to the work described in [177], their sim-
ilarity would be 1, so they would be considered essentially as
the same process.

[88] describes a metric which takes into account five simple similarity mea-
sures, based on behavioral profiles, as the previous case. These measures
are then compared using Jaccard coefficient.

6.1.1 Problem Statement and the General Approach

The first step of our approach is to convert a process model into another
formalism where we can easily define a similarity measure. We think that
the idea of [177], presented before, can be refined to better fit the case
of business processes. In that work, a process is represented by a set of
TARs. Specifically, given a Petri Net P, and its set of transitions T , a TAR
〈a,b〉 (where a,b ∈ T) exists if and only if there is a trace σ = t1t2t3 . . . tn
generated by P and ∃i ∈ {1, 2, . . . ,n− 1} such that ti = a and ti+1 = b.
For example, if we consider the two processes of Figure 6.1, they have the
same TAR sets: all the possible traces generated by them always start with
the transition named “A” and end with “D”. In the middle, the process
on the left hand side has two AND branches with the transitions “B” and
“C” (so the TAR set must take into account all the possible combinations of
their executions); the right hand side process has two XOR branches, and
they describe all the possible combinations of the activities. Because of this
peculiarity, the pairs of adjacent transitions that both process models can
generate are the same, so their similarity measure is 1 (i.e. they describe
the same process).

The main problem with this metric is that, even if from a “trace equiv-
alence” point of view the two processes in Figure 6.1 are the same (con-
sidering the two TAR sets), from a more practical (i.e. business processes)
point of view they are not: e.g., the second process contains repeated ac-
tivities and, more importantly, if activities “B” and “C” last for a certain
time period (i.e. they are not instantaneous), then it is not the same to
observe them in parallel or in (all the possible) sequences. Moreover, there
are many processes that will generate the same set of traces and a metric

134

(a) Petri Net representation (b) Dependency graph representation

Figure 6.2. An example of business process presented as a Petri Net and
as a dependency graph.

for the comparison of processes should consider them as different.
Similarly to the cited work we also propose to first convert a process

model from a (hard to work with) representation (such as a Petri Net or
a Heuristics Net) into another (easier to handle) one; then the real com-
parison is performed on these new representations. However, in our case
the model is transformed into two sets of relations instead of one. The
comparison is then performed by combining the results obtained by the
comparison of the two sets individually.

6.1.2 Process Representation

The first step of our approach is to convert a given process model into two
sets: one set of relations between activities that must occur, and another
set of relations that cannot occur. For example, consider the process in
Figure 6.2(a), where a representation of the process as a Petri Net is given.
That is a simple process that contains a parallel split in the middle. In Fig-
ure 6.2(b), the same process is given but it is represented as a dependency
graph.

In order to better understand the representation of business processes
we are introducing, it is necessary to give the definition of workflow trace,
i.e., the sequence of activities that are executed when a business process is
followed. For example, considering again the process in Figure 6.2, the set
of all the possible traces that can be observed is

{ABCEFD,ABECFD,ABEFCD,AEBCFD,AEBFCD,AEFBCD}.

We propose to represent such kind of processes using two types of
relations: a first set containing those relations that must hold, the second
set containing those relations that cannot hold. Specifically, we consider
relations (A > B and A ≯ B) which have been already used by the Alpha
algorithm (Section 2.3.1).

More formally, if a relation A > B holds, it means that, in some work-
flow traces that the model can generate, activities A and B are adjacent:

135

let W be the set of all the possible traces of a model, then there exist at
least one trace σ = t1 . . . tn ∈ W, where ti = A and ti+1 = B for some
i ∈ {1, . . . ,n− 1}.

The other relation, A ≯ B, is the negation of the previous one: if it
holds, then, for any σ = t1 . . . tn ∈ W, there is no i such that ti = A and
ti+1 = B. It is important to note that the above relations describe only
local behaviors (i.e., they do not consider activities that occur far apart).
Moreover, it must be noticed that our definition of > is the same as the
one used in [177].

These relations have been presented in [142, 98, 156] and are used by
the Alpha algorithm for calculating the possible causal dependency be-
tween two activities. However, in that case the idea is different: given a
workflow log W, the Alpha algorithm finds all the > relations and then,
according to some predefined rules, these relations are combined to get
more useful derived relations. The specific rules, mined starting from >

are:

1. A→ B, iif A > B and B ≯ A;

2. A#B, iif A ≯ B and B ≯ A;

3. A‖B, iif A > B and B > A.

In this case, the relations> and≯will be called primitive relations, while→, # and ‖ will be called derived relations. The basic ideas underpinning
these three rules are:

1. if two activities are observed always adjacent and in the same order,
then there should be causal dependency between them (→);

2. if two activities are never seen as adjacent activities, it is possible that
they are not in any causal dependency (#);

3. if two activities are observed in no specific order, it is possible that
they are in parallel branches (‖).

Starting from these definitions, it is clear that, given two activities con-
tained in a log, at most one derived relation (→, # and ‖) can hold between
them. In particular, if these two activities appear adjacent in the log, then
one of these relations holds, otherwise, if they are far apart, none of the
relations hold.

Our idea is to perform a “reverse engineering” of a process in order
to discover which relations must be observed in an ideal “complete log”
(a log containing all the possible behaviors) and which relations cannot
be observed. The Alpha algorithm describes how to mine a workflow log

136

Process model P1

Derived relations

Primitive relations

Trace

Process model P2

Derived relations

Primitive relations

Trace

Desired comparison

Actual comparison

Figure 6.3. Representation of the space where the comparison between
processes is performed. The filled lines represent the steps
that are performed by the Alpha algorithm. The dotted lines
represent the conversion of the process into sets of primitive
relations, as presented in this work.

to extract sets of holding relations that are then combined and converted
into a Petri Net. The reverse approach can be applied too, even if it is less
intuitive. So, our idea is to convert a Petri Net into two sets: one with >
and the other with ≯ relations.

To further understand our approach, it is useful to point out the main
differences with respect to the Alpha algorithm. Considering Figure 6.3,
filled lines represent what the Alpha algorithm does: starting from the
log (i.e. the set of traces) it extracts the primitive relations that are then
converted into derived relations and finally into a Petri net model. In our
approach that procedure is reversed and is represented with dotted lines:
starting from a given model (Petri Net or dependency graph, or any other
process model), the derived relations are extracted and then converted
into primitive ones; the comparison between business process models is
actually performed at this level.

Note that, since the naive comparison of trace equivalence is not fea-
sible (in case of loops, the generation of the trace could never stop), we
decided to analyze a model (e.g. a Petri Net or a Heuristics net) and see
which relations can possibly be derived. Given the set of derived relations
for a model, these will be converted into two sets of positive and negative
relations.

The main difference with other approaches in the literature (e.g., [173,
177]), is that our approach can be applied on every modeling language
and not only Petri Net or Workflow net. This is why our approach cannot
rely on Petri net specific notions (such as firing sequence). We prefer

137

to just analyze the structure of the process from a “topological” point of
view. In order to face this problem, we decided to consider a process in
terms of composition of well known patterns. Right now, a small but very
expressive set of “workflow patterns” [126] are taken into account. These
patterns are the ones presented in Figure 6.4.

When a model is analyzed, these derived relations are extracted:

• a sequence of two activities A and B (Figure 6.4(a)), will generate a
relation A→ B;

• every time XOR split is observed (Figure 6.4(d)) and activities A,
B and C are involved, the following rules can be extracted: A →
B, A → C and B#C; a similar approach can handle the XOR join
(Figure 6.4(e)), generating a similar set of relations: D → F, E → F,
D#E;

• every time an AND split is observed and activities A, B and C are
involved (Figure 6.4(b)) the following rules can be extracted: A →
B, A → C and B‖C; a similar approach can handle the AND join
(Figure 6.4(c)), generating a similar set of relations: D → F, E → F,
D‖E.

For the case of dependency graphs, this approach is formalized in Al-
gorithm 4: the basic idea is that given two activities A and B, directly
connected with an edge, the relation A → B must hold. If A has more
than one outgoing or incoming edges (C1, . . . ,Cn) then the following rela-
tions will also hold: C1ρC2, . . . ,C1ρCn, . . . ,Cn−1ρCn (where ρ is ‘#’ if A is
a XOR split/join, ‘‖’ if A is an AND split/join).

Once the algorithm has completed the generation of the set of holding
relations, this can be split in two sets of positive and negative relations,
according to the “derived relations” presented previously. Just to recap,
we have A → B generates A > B and B ≯ A; A#B generates A ≯ B and
B ≯ B; and, finally, A‖B generates A > B and B > A.

Let’s consider again the process P of Figure 6.2. After the execution of
the three “foreaches”, in Algorithm 4 (so before the return of the last line),
Rwill contain all the derived relations that, in the considered example, are:

A→ B A→ E B→ C E→ F C→ D F→ D B‖E C‖F

These will be converted during the return operation of the algorithm into
these two sets:

R+(P) = {A > B, A > E, B > C, E > F, C > D, F > D, B > E,

E > B, C > F, F > C}

138

(a) Pattern WCP-1 (b) Pattern WCP-2 (c) Pattern WCP-3

(d) Pattern WCP-4 (e) Pattern WCP-5

Figure 6.4. The basic workflow patterns that are managed by the algo-
rithm for the conversion of a process model into set of rela-
tions. The patterns are named with the same codes of [126].
It is important to note that in WCP-2,3,4,5 any number of
branches is possible, even if this picture presents only the par-
ticular case of 2 branches. Moreover, the loop is not reported
here because it can be expressed in terms of XOR-split/join
(WCP-4,5).

R−(P) = {B ≯ A, E ≯ A, C ≯ B, F ≯ E, D ≯ C, D ≯ F}
It is important to maintain these two sets separated because of the metric
we are going to introduce on the following section.

6.1.3 A Metric for Processes Comparison

Converting a process model into another representation is useful to com-
pare two processes in a more easy and effective way. Here we propose a
way to use the previously defined representations to obtain a principled
metric. Specifically, given two processes P1 and P2, expressed in terms of
positive and negative constraints: P1 = (R+,R−) and P2 = (R+,R−) they are
compared according to the amount of shared “required” and “prohibited”
behaviors. A possible way to compare these values is the Jaccard similar-
ity J and the corresponding distance Jδ, that is defined in [119], between
two sets, as:

J(A,B) =
|A∩ B|
|A∪ B| Jδ(A,B) = 1− J(A,B) =

|A∪ B|− |A∩ B|
|A∪ B|

For example, it is proven that the Jaccard is actually a distance measure
over sets (so it is not-negative, symmetric and satisfies the identity of in-

139

Algorithm 4: Conversion of a dependency graph into sets of rela-
tions.

Input: G = (V ,E): process as a dependency graph
T : V → {XOR split, XOR join, AND split, AND join}

1 R: set of holding relations
2 foreach (v1, v2) ∈ E do
3 R = R∪ {v1 → v2}

4 end

5 foreach v ∈ V , X = {u ∈ V | (v,u) ∈ E} do
6 foreach (u1,u2) ∈ X× X such that u1 6= u2 do
7 if T (v) is XOR split then
8 R = R∪ {u1#u2}
9 else if T (v) is AND split then

10 R = R∪ {u1‖u2}
11 end
12 end
13 end

14 foreach v ∈ V , X = {u ∈ V | (u, v) ∈ E} do
15 foreach (u1,u2) ∈ X× X such that u1 6= u2 do
16 if T (v) is XOR join then
17 R = R∪ {u1#u2}
18 else if T (v) is AND join then
19 R = R∪ {u1‖u2}
20 end
21 end
22 end

23 return convertRelations(R)

discernibles and the triangle inequality).
Our new metric is built considering the convex combination of the Jac-

card distance for the set of positive and negative relations of two processes:

d(P1,P2) = αJδ
(
R+(P1),R+(P2)

)
+ (1−α)Jδ

(
R−(P1),R−(P2)

)
where 0 ≤ α ≤ 1 is a weighting factor that allows the user to calibrate
the importance of the positive and negative relations. Since this metric is
defined as a linear combination of distances (Jδ), it is a distance itself. It
is important that the given measure is actually a metric, because the final
aim of this work is doing clustering on those business processes.

It is important to note that there are couples of relations that are not

140

“allowed” at the same time, otherwise the process is ill-defined and shows
problematic behaviors, e.g. deadlocks1. Incompatible couples are defined
as follows:

• if A→ B holds then A‖B, B‖A, A#B, B#A, B→ A are not allowed;

• if A‖B holds then A#B, B#A, A→ B, B→ A, B‖A are not allowed;

• if A#B holds then A‖B, B‖A, A→ B, B→ A, B#A are not allowed.

Similarly, considering primitive relations, if A > B holds then A ≯ B

represents an inconsistency so this behavior should not be allowed.

Theorem 6.1. Two processes, composed of different patterns, that do not contain
duplicated activities and that do not have contradictions into their set of relations
(either derived or primitive), have distance measure greater than 0.

Proof. Since the distance measure is calculated on the basis of the two sets
of primitive relations, two processes P1 = (R+P1 ,R

−
P1
) and P2 = (R+P2 ,R

−
P2
)

have a distance measure d(P1,P2) > 0 iff the sets R+P1 , R
+
P2

and R−P1 , R
−
P2

are not pairwise equal. The two sets R+ and R− are generated starting
from the derived relations, and these are created starting from the patterns
observed. If we assume that two processes are made of different patterns,
they will generate different sets of derived relations and thus different sets
of primitive relations. This is going to generate a distance measure, for the
two processes that is greater than 0.

Since the sets of relations are generated without looking at the set of
traces, but just starting from the local structure of the process model, if it
is not sound (considering the Petri net notion of soundness) it is possible
to have “contradictions”.

There is another important aspect that needs to be pointed out: in the
case of contradictions, there may be an unexpected behavior of the pro-
posed metric. However, in case of contradictions, there can be unexpected
behavior. For example, in Figure 6.5, the two processes are “structurally
different”, but have distance measure equals to 0. This is due to the con-
tradictions contained in the set of primitive relations that are generated
because of the contradictions on the derived relations (in both processes
B‖C and B#C hold at the same time). More generally, we have that two dif-
ferent processes have distance measure equals to 0 when their differences
results in contradictions.

Consider the three processes of Figure 6.1(a), 6.1(b) and 6.2. Table 6.1
proposes the values of the TAR metric [177], compared with the ones of
1 It must be stressed that a process may be ill-defined even if no such couples of rela-

tions are present at the same time.

141

Figure 6.5. Two processes that are different and contain contradictions in
their corresponding set of relations: they have distance mea-
sure equals to 0.

Fig. 6.1(a)-6.1(b) Fig. 6.1(a)-6.2 Fig. 6.1(b)-6.2

TAR set [177] 0 0.82 0.82
Our metric, α = 1 0 0.77 0.77
Our metric, α = 0.5 0.165 0.76 0.71
Our metric, α = 0 0.33 0.75 0.66

Table 6.1. Values of the metrics comparing three process models presented
in this work. The metric proposed here is presented with 3

values of its α parameter.

the metric proposed in this work, with different values of its parameter
α. Note that, when α = 1 then only the positive relations are considered;
when α = 0, only negative relations are taken into account; and, when
α = 0.5, the two cases are equally balanced. Moreover, in the situation
presented here, the TAR metric and the metric of this work (with α = 1)
are equal but, generally, this is not the case (when there is some concurrent
behavior, TAR metric adds relations with all the other activities in the
other branches, whereas our metric adds only local relations with the firsts
activities of the branches).

This procedure has been implemented and tested as discussed in Sec-
tion 5.3.

6.2 A-Posteriori Analysis of Declarative Processes

The metric just proposed is a model-to-model metric: it aims at comparing
two process models. However, for conformance checking and evaluation,
we may need to analyze whether the observed behavior matches the mod-
eled behavior. In such settings, it is often desirable to specify the expected
behavior in terms of a declarative process model rather than of a detailed
procedural model. However, declarative models do not have an explicit
notion of state, thus making it more difficult to pinpoint deviations and to
explain and quantify discrepancies.

142

This section focuses on providing high-quality and understandable di-
agnostics. The notion of activation plays a key role in determining the
effect of individual events on a given constraint. Using this notion, we are
able to show cause-and-effect relations and measure the healthiness of the
process.

6.2.1 Declare

Declarative languages can be fruitfully applied in the context of process
discovery [92, 94, 29] and compliance checking [42, 9, 85, 93]. In [150], the
authors introduce an LTL-based declarative process modeling language
called Declare. Declare is characterized by a user-friendly graphical repre-
sentation with formal semantics grounded in LTL. A Declare model is a set
of Declare constraints, which are defined as instantiations of Declare tem-
plates. Templates are abstract entities that define parameterized classes of
properties.

Declare is grounded in Linear Temporal Logic (LTL) [117] with a finite-
trace semantics. For instance, a constraint like the response constraint in
Figure 2.7 can be formally represented using LTL and in particular, it can
be written as �(C ⇒ ♦S) that means “whenever activity Create Question-
naire is executed, eventually activity Send Questionnaire is executed”. In a
formula like this, it is possible to find traditional logical operators (e.g.,
implication ⇒), but also temporal operators characteristic of LTL (e.g., al-
ways� and eventually ♦). In general, using the LTL language it is possible
to express constraints relating activities (atoms) through logical operators
or temporal operators.

The logical operators are: implication (⇒), conjunction (∧), disjunction
(∨) and negation (¬). The main temporal operators are: always (�p, in
every future state p holds), eventually (♦p, in some future state p holds),
next (©p, in the next state p holds) and until (pt q, p holds until q holds).

LTL constraints are not very readable for not-experts. Therefore, De-
clare provides an intuitive graphical front-end for LTL formulas. The LTL
back-end of Declare allows us to verify Declare constraints and Declare
models, i.e., sets of Declare constraints. Table 6.2 presents some Declare
relations, with the corresponding LTL constraints and the graphical repre-
sentation of the Declare language.

For instance, a Declare constraint can be verified on a log by translating
its LTL semantics into a finite state automaton [58] that we call constraint
automaton. Figure 6.6 depicts the constraint automata for the response con-
straint, the alternate response constraint and the not co-existence constraint.
In all cases, state 0 is the initial state and accepting states are indicated
using a double outline. A transition is labeled with the activity triggering

143

Name Constraint
Declare
Representation

Relation Templates

responded existence(A,B) ♦A⇒ ♦B A B

co-existence(A,B) ♦A⇔ ♦B A B

response(A,B) �(A⇒ ♦B) A B

precedence(A,B) (¬BtA)∨�(¬B) A B

succession(A,B) response(A,B)∧ precedence(A,B) A B

alternate response(A,B) �(A⇒©(¬At B)) A B

alternate precedence(A,B) prec.(A,B)∧�(B⇒©(prec.(A,B))) A B

alternate succession(A,B) alt. response(A,B)∧ alt. precedence(A,B) A B

chain response(A,B) �(A⇒©B) A B

chain precedence(A,B) �(©B⇒ A) A B

chain succession(A,B) �(A⇔©B) A B

Negative Relation Templates

not co-existence(A,B) ¬(♦A∧♦B) A B

not succession(A,B) �(A⇒ ¬(♦B)) A B

not chain succession(A,B) �(A⇒©(¬B)) A B

Table 6.2. Semantics of Declare constraints, with the graphical representa-
tion.

it. As well as positive labels, we also have negative labels (e.g., ¬L for state
0 of the not co-existence constraint). This indicates that we can follow the
transition for any event not mentioned (e.g., we can execute event C from
state 0 of the not co-existence automaton and remain in the same state). This
allows us to use the same automaton regardless of the input language. A
constraint automaton accepts a trace (i.e., the LTL formula holds) if and
only if there exists a corresponding path that starts in the initial state and
ends in an accepting state.

6.2.2 An Approach for A-Posteriori Analysis

When analyzing the conformance of a process with respect to a set of con-
straints, it is important to note that constraints can be vacuously satisfied.
Considering again the example of Figure 2.7, if Create Questionnaire never
occurs, then the response constraint holds trivially. This is commonly re-
ferred to as vacuous satisfaction. In this context, we start from the existing

144

0start 1

¬C

C

¬S

S

(a) Response constraint.

0start 1

¬H

H

¬H,¬M

M

(b) Alternate response constraint.

0start
1

2

¬H,¬L

H

L

¬L

¬H

(c) Not co-existence constraint.

Figure 6.6. Automata for the response, alternate response and not co-existence
constraints in our running example.

notion of vacuity detection [10] and we propose an approach for evaluat-
ing the “degree of adherence” of a process trace with respect to a Declare
model. In particular, we introduce the notion of healthiness of a trace that
is, in turn, based on the concept of activation of a Declare constraint.

Vacuity Detection in Declare

In [94], the authors introduce for the first time the concept of vacuity de-
tection for Declare constraints. As just stated, consider, for instance, the
response constraint in Figure 2.7. This constraint is satisfied when a ques-
tionnaire is created and is (eventually) sent. However, this constraint is
also satisfied in cases where the questionnaire is not created at all. In this
latter case, we say that the constraint is vacuously satisfied. Cases where a
constraint is not-vacuously satisfied are called interesting witnesses for that
constraint.

Authors of [89] introduce an approach for vacuity detection in tempo-
ral model checking for LTL; they provide a method for extending an LTL
formula ϕ to a new formula witness(ϕ) that, when satisfied, ensures that
the original formulaϕ is not-vacuously satisfied. In particular,witness(ϕ)
is generated by considering that a path π satisfies ϕ not-vacuously (and

145

then is an interesting witness for ϕ), if π satisfies ϕ and π satisfies a set
of additional conditions that guarantee that every subformula of ϕ does
really affect the truth value of ϕ in π. We call these conditions vacuity
detection conditions of ϕ. They correspond to the formulas ¬ϕ[ψ ← ⊥],
where, for all the subformulas ψ of ϕ, ϕ[ψ ← ⊥] is obtained from ϕ by
replacing ψ by false or true, depending on whether ψ is in the scope of an
even or an odd number of negations. Then, witness(ϕ) is the conjunction
of ϕ and all the formulas ¬ϕ[ψ← ⊥] with ψ subformula of ϕ:

witness(ϕ) = ϕ∧
∧

¬ϕ[ψ← ⊥]. (6.1)

In compliance models, LTL-based declarative languages like Declare
are used to describe requirements to the process behavior. In this case,
each LTL rule describes a specific constraint with clear semantics. There-
fore, we need a univocal (i.e., not sensitive to syntax) and intuitive way to
diagnose vacuously compliant behavior in an LTL-based process model.
Furthermore, interesting witnesses for a Declare constraint could show
very different behaviors. Consider, for instance, the response constraint
�(C⇒ ♦S) and traces p1 and p2:

p1 = 〈C,S,C,S,C,S,C,S,R〉 p2 = 〈H,M,C,S,H,M,R〉.

Both p1 and p2 are interesting witnesses for �(C ⇒ ♦S) (in both traces
�(C ⇒ ♦S) is valid and the vacuity detection condition ♦C is also valid).
However, it is intuitive to understand that in p1 this constraint is activated
four times (because C occurs four times), whereas in p2 it is activated only
once. To solve these issues we introduce the notion of constraint activation.

Definition 6.1 (Subtrace). Let σ be a trace. A trace σ ′ is a subtrace of σ
(σ ′ @ σ) if σ ′ can be obtained from σ by removing one or more events.

Definition 6.2 (Minimal Violating Trace). Let π be a Declare constraint and
Aπ the constraint automaton of π. A trace σ is a minimal violating trace for
Aπ if it is not accepted by Aπ and if every subtrace of σ is accepted by Aπ.

Definition 6.3 (Constraint Activation). Let π be a Declare constraint and Aπ
the constraint automaton of π. Each event included in a minimal violating trace
for Aπ is an activation of π.

Consider, for instance, the automaton in Figure 6.6(a). In this case,
the minimal violating trace is 〈C〉. Therefore, the response constraint in
our running example is activated by C. Moreover, for the automaton in
Figure 6.6(b), the minimal violating trace is 〈H〉 and, then, the alternate
response constraint is activated by H. Finally, for the automaton in Fig-
ure 6.6(c), the minimal violating sequences are 〈L,H〉 and 〈H,L〉. The not
co-existence constraint is, therefore, activated by both H and L.

146

Declare Constraint Activation Events

Relation Templates

responded existence(A,B) A

co-existence(A,B) A,B
response(A,B) A

precedence(A,B) B

succession(A,B) A,B
alternate response(A,B) A

alternate precedence(A,B) B

alternate succession(A,B) A,B
chain response(A,B) A

chain precedence(A,B) B

chain succession(A,B) A,B

Negative Relation Templates

not co-existence(A,B) A,B
not succession(A,B) A,B
not chain succession(A,B) A,B

Table 6.3. Activations of Declarative constraints.

Roughly speaking, an activation for a constraint is an event that con-
strains in some way the behavior of other events and imposes some obli-
gations on them. For instance, the occurrence of an event can require the
occurrence of another event afterwards (e.g., in the response constraint) or
beforehand (e.g., in the precedence constraint). When an activation occurs,
these obligations can refer to the future, to the past or to both. Moreover,
they can require or forbid the execution of other events.

In Table 6.3, we indicate events that represent an activation for each
Declare constraint. Note that events that represent an activation for a
constraint are marked with a black dot in the graphical notation of Declare,
e.g., bothA and B are activations for the succession constraint (as visualized
by the black dots).

6.2.3 An Algorithm to Discriminate Fulfillments from Violations

When a trace is compliant with respect to a constraint, every activation of
that constraint leads to a fulfillment. For instance, recall the two traces:

p1 = 〈C,S,C,S,C,S,C,S,R〉 p2 = 〈H,M,C,S,H,M,R〉.

147

in p1, the response constraint (�(C ⇒ ♦S)) is activated and fulfilled four
times, whereas in p2, the same constraint is activated and fulfilled once.
Notice that, when a trace is not-compliant with respect to a constraint, an
activation of a constraint can lead to a fulfillment but also to a violation
(and at least one activation leads to a violation). Consider, again, the
response constraint in our running example and the trace p3 = 〈C,S,C,R〉.
In this trace, the response constraint is violated. However, it is still possible
to quantify the degree of adherence of this trace in terms of number of
fulfillments and violations. Indeed, in this case, the response constraint
is activated twice, but one activation leads to a fulfillment (eventually an
event S occurs) and one activation leads to a violation (S does not occur
eventually). Therefore, we need a mechanism to point out that the first
occurrence of C is a fulfillment and the second one is a violation.

Furthermore, if we consider trace 〈H,H,M〉 and the alternate response
constraint in our running example, we have that the two occurrences of
H cannot co-exist but it is impossible to understand (without further in-
formation from the user) which one is a violation and which one is a
fulfillment. In this case, we say that we have a conflict between the two
activations.

Algorithm 5: Procedure to build the activation tree
Input: σ: trace; π: constraint
Result: activation tree of σ with respect to π

1 Let T be a binary tree with root labeled with an empty subtrace
2 forall the e ∈ σ (explored in sequence) do
3 forall the leaf l of T do
4 if the subtrace associated to l is not dead then
5 if e is an activation for π then
6 l[left] = new node, subtrace of l
7 l[right] = new node, subtrace of l + e
8 else
9 subtrace of l = subtrace of l + e

10 end
11 end
12 end
13 end
14 return T

In order to identify fulfillments, violations and conflicts for a constraint
π in a trace σ, we present Algorithm 5 that is based on the construction of a
so-called activation tree of σ with respect to π, where every node is labeled

148

with a subtrace of σ. The algorithm starts from a root labeled with the
empty subtrace. Then, σ is replayed and the tree is built in the following
way:

• if the current event in σ is an activation of π, two children are ap-
pended to each leaf-node: a left child labeled with the subtrace of
the parent node and a right child labeled with the same subtrace
augmented with the current activation;

• if the current event in σ is not an activation of π, all leaf-nodes are
augmented with the current event.

At each iteration, each subtrace in the leaf-nodes is executed on the con-
straint automaton Aπ. A node is called dead if the corresponding subtrace
is not possible according to the automaton or all events have been explored
and no accepting state has been reached. Dead nodes are not explored
further and crossed-out in the diagrams. At the end of the algorithm, ful-
fillments, violations and conflicts can be identified by selecting, among the
(not-dead) leaf-nodes, the maximal fulfilling subtraces.

Definition 6.4 (Maximal Subtrace). Given a set Σ of subtraces of a trace σ,
a maximal subtrace of σ in Σ is an element σ ′ ∈ Σ such that @σ ′′ ∈ Σ with
σ ′ @ σ ′′.

Definition 6.5 (Maximal Fulfilling Subtrace). Given a trace σ and a constraint
π, let Σ be the set of the subtraces of σ associated to the not-dead leaf-nodes of the
activation tree of σ with respect to π. Let M ⊆ Σ the set of the maximal subtraces
of σ in Σ. An element of M is called maximal fulfilling subtrace of σ with
respect to π.

Let’s consider an activation a of π in σ, and all its maximal fulfilling
subtraces. Then a is:

• fulfillment if it is included in all the maximal fulfilling subtraces;

• violation if it is not included in any maximal fulfilling subtrace;

• conflict if it is only included in some maximal fulfilling subtraces.

Consider, for instance, the activation tree in Figure 6.7 of the trace:〈
C(1),S,C(2),R

〉
with respect to the response constraint in our running example (reported in
Figure 2.7). The maximal fulfilling subtrace is

〈
C(1),S,R

〉
. We can conclude

that C(1) is a fulfillment, whereas C(2) is a violation.

149

〈 〉

〈 〉

〈S〉

〈S〉

〈S,R〉

〈
S,C(2)

〉
〈
S,C(2),R

〉

〈
C(1)

〉
〈
C(1),S

〉
〈
C(1),S

〉
〈
C(1),S,R

〉
〈
C(1),S,C(2)

〉
〈
C(1),S,C(2),R

〉
Figure 6.7. Activation tree of trace

〈
C(1),S,C(2),R

〉
with respect to the re-

sponse constraint in our running example: dead nodes are
crossed out and nodes corresponding to maximal fulfilling
subtraces are highlighted

Figure 6.8 depicts the activation tree of trace〈
H(1),M,H(2),H(3),M

〉
with respect to the alternate response constraint in our running example.
The maximal fulfilling subtraces are, in this case,

〈
H(1),M,H(2),M

〉
and〈

H(1),M,H(3),M
〉
. We can conclude that H(1) is a fulfillment, whereas H(2)

and H(3) are conflicts.
Finally, Figure 6.9 depicts the activation tree of trace〈

H,M,L(1),L(2)
〉

with respect to the not co-existence constraint in our running example. The
maximal fulfilling subtraces are, in this case, 〈H,M〉 and

〈
M,L(1),L(2)

〉
.

We can conclude that H, L(1) and L(2) are conflicts.

6.2.4 Healthiness Measures

We now give a definition of the healthiness of a trace with respect to a
given constraint. Given a trace σ and constraint π, each event in the trace
can be classified as activation or not based on Definition 6.3. na(σ,π) is
the number of activations of σ with respect to π. Each activation can be
classified as a fulfillment, a violation, or a conflict based on the activation
tree. nf(σ,π), nv(σ,π) and nc(σ,π) denote the numbers of fulfillments,
violations and conflicts of σ with respect to π, respectively. n(σ) is the
number of events in σ.

150

〈
〉

〈
〉

〈M
〉

〈M
〉

〈M
〉

〈M
,M
〉

〈 M,
H

(3
)

〉
〈 M,

H
(3

)
,M
〉

〈 M,
H

(2
)

〉
〈 M,

H
(2

)

〉
〈 M,

H
(2

)
,M
〉〈 M,

H
(2

)
,H

(3
)

〉

〈 H (1
)

〉
〈 H (1

)
,M
〉

〈 H (1
)
,M
〉

〈 H (1
)
,M
〉

〈 H (1
)
,M

,M
〉〈 H (1

)
,M

,H
(3

)

〉
〈 H (1

)
,M

,H
(3

)
,M
〉

〈 H (1
)
,M

,H
(2

)

〉
〈 H (1

)
,M

,H
(2

)

〉
〈 H (1

)
,M

,H
(2

)
,M
〉〈 H (1

)
,M

,H
(2

)
,H

(3
)

〉

Figure 6.8. Activation tree of trace
〈
H(1),M,H(2),H(3),M

〉
with respect to

the alternate response constraint in our running example

151

〈 〉

〈 〉

〈M〉

〈M〉

〈M〉
〈
M,L(2)

〉
〈
M,L(1)

〉
〈
M,L(1)

〉 〈
M,L(1),L(2)

〉

〈H〉

〈H,M〉

〈H,M〉

〈H,M〉
〈
H,M,L(2)

〉
〈
H,M,L(1)

〉

Figure 6.9. Activation tree of trace
〈
H,M,L(1),L(2)

〉
with respect to the not

co-existence constraint in our example.

Healthiness

The healthiness of a trace σ with respect to a constraint π is a quadruple
Hπ(σ) = (ASπ(σ), FRπ(σ),VRπ(σ),CRπ(σ)), where:

1. ASπ(σ) = 1−
na(σ,π)
n(σ) is the activation sparsity of σ with respect to π,

2. FRπ(σ) =
nf(σ,π)
na(σ,π) is the fulfillment ratio of σ with respect to π,

3. VRπ(σ) =
nv(σ,π)
na(σ,π) is the violation ratio of σ with respect to π and

4. CRπ(σ) =
nc(σ,π)
na(σ,π) is the conflict ratio of σ with respect to π.

A trace σ is “healthy” with respect to a constraint π if the fulfillment
ratio FRπ(σ) is high and the violation ratio VRπ(σ) and the conflict ratio
CRπ(σ) are low. If FRπ(σ) is high, the activation sparsity ASπ(σ) becomes
a positive factor, otherwise it is symptom of unhealthiness.

It is possible to average the values of the healthiness over the traces in a
log and over the constraints in a Declare model thus obtaining aggregated
views of the healthiness of a trace with respect to a Declare model, of a log
with respect to a constraint and of a log with respect to a Declare model.

Likelihood of a Conflict Resolution

Consider trace 〈H,M,L(1),L(2)〉 with respect to the not co-existence con-
straint in our running example. The maximal fulfilling subtraces are, in
this case, 〈H,M〉 and 〈M,L(1),L(2)〉 and H, L(1) and L(2) are conflicts. How-
ever, the maximal fulfilling subtraces also contain further information. In
fact, H is included in one of the maximal fulfilling subtraces and L(1) and

152

L(2) in the other one. This means that L(1) and L(2) can co-exist but both
cannot co-exist with H. In this way, we can conclude that either H is a vio-
lation and L(1) and L(2) are fulfillments or, vice versa, H is a fulfillment and
L(1) and L(2) are violations. We call the corresponding maximal fulfilling
subtraces conflict resolutions.

The user can decide how to solve a conflict by selecting a conflict reso-
lution. However, it is possible to provide the user with two health indica-
tors that can support this decision: the local likelihood of a conflict resolu-
tion and the global likelihood of a conflict resolution.

Definition 6.6 (Local Likelihood). Let σ ′ be a conflict resolution of a trace σ
with respect to a constraint π. Let na(σ ′,π) and nf(σ ′,π) be the number of
activations and fulfillments of a conflict resolution σ ′, respectively. The local
likelihood of σ ′ is defined as:

LL(σ ′) =
nf(σ

′,π)
na(σ ′,π)

.

Note that the local likelihood of a conflict resolution is a number in the
interval (0, 1). If we consider again the example described before, we have
that LL(〈H,M〉) = 1

3 and LL(〈M,L(1),L(2)〉) = 2
3 . This means that, more

likely, H is a violation and L(1) and L(2) are fulfillments.
In the following definition a Declare model is a pair D = (A,Π), where

A is a set of activities and Π is a set of Declare constraints defined over
activities in A.

Definition 6.7 (Global Likelihood). Let D = (A,Π) be a Declare model. Let
σ ′ be a conflict resolution of a trace σ with respect to a constraint π ∈ Π. Let
K be the set of the conflicting activations in σ. For each conflicting activation
a ∈ K, let γ(a) be the percentage of constraints in Π where a is a fulfillment, if
a is resolved as a fulfillment in σ ′, or where a is a violation, if a is resolved as a
violation in σ ′. The global likelihood of σ ′ is defined as:

GL(σ ′) =

∑
a γ(a)

|K|
.

The global likelihood of a conflict resolution is a number between 0
and 1. If we consider again the example described before, we have that
GL(〈H,M〉) = 1

6 and LL(〈M,L(1),L(2)〉) = 0. This means that, from the
global point of view, more likely, H is a fulfillment and L(1) and L(2) are
violations.

6.2.5 Experiments

For the a posteriori analysis of a log with respect to a Declare model, we
have implemented the Declare Analyzer, a plug-in of the Process Mining

153

0

2000

4000

6000

8000

10000

12000

14000

200 300 400 500 600 700 800 900 1000

Ex
ec

u
�

o
n

 �
m

e
(m

ill
is

ec
o

n
d

s)

Number of traces

Average exec. �me (5 runs)
y = 0.010x2+ 2.991x + 414.567

(a) Different log sizes.

300

400

500

600

700

800

900

1000

1100

10 20 30 40 50 60 70

Ex
ec

u
�

o
n

 �
m

e
(m

ill
is

ec
o

n
d

s)

Number of events per trace

Average exec. �me (5 runs)
y = 0.228x2‐ 2.177x + 321.852

(b) Different trace sizes.

Figure 6.10. Execution time for varying log and trace sizes and the poly-
nomial regression curve associated.

tool ProM. The plug-in takes as input a Declare model and a log and it
provides detailed diagnostics and quantifies the health of each trace (and
of the whole log).

We evaluate the performance of our approach using both synthetic and
real-life logs. Then, we validate our approach on a real case study in the
context of the CoSeLoG project2 involving 10 Dutch municipalities.

Scalability

In order to experimentally demonstrate the scalability of our approach,
we have performed two experiments. Both these experiments have been
performed on a standard laptop, with a dual-core processor with its power
forced to 1.6 GHz. The presented results report the average value of the
execution time over 5 runs

In the first experiment, we verify the scalability of the technique when
varying the log size. For this experiment, we have generated a set of
synthetic logs by modeling the process described as running example in
CPN Tools3 and by simulating the model. In particular, we used randomly
generated logs including 250, 500, 750 and 1000 traces. The results are
presented in Figure 6.10(a). The plot shows that the execution time grows
polynomially with the size of the logs.

In the second experiment, we evaluate the trend of the execution time
with respect to the length of the traces. For this experiment, we have se-
lected, in the CoSeLoG logs, 6 sets of traces, each composed of 10 traces of

2 Visit http://www.win.tue.nl/coselog for more information.
3 The tool is freely available at http://www.cpntools.org.

154

http://www.win.tue.nl/coselog
http://www.cpntools.org

Administra�eToetsing

Beslissing

RapportageVarzenden beschikking
precedence

not succession

precedence

not succession

precedence

not succession

precedence

succession

response

Figure 6.11. Model discovered from an event log of a Dutch Municipality.
For clarifying, we provide the English translation of the Dutch
activity names. Administratie, Toetsing, Beslissing, Verzenden
beschikking and Rapportage can be translated with Administra-
tion, Verification, Judgement, Sending Outcomes and Reporting,
respectively.

the same length. Figure 6.10(b) shows the results of this experiment. Even
if the size of an activation tree is exponential in the number of activations,
the execution time is polynomial in the length of the traces. Indeed, perfor-
mances get worse when the number of activations is close to the number
of events in a trace. However, from our experience, in practice, this case
is, in general, unlikely. Specifically, the activation sparsity is in most cases
high (see Table 6.4) and, therefore, the number of activations is low with
respect to the number of events in a trace. This means that, from the prac-
tical point of view, the algorithm is applicable. For example, as shown in
Figure 6.10(b), processing 10 traces with 63 events requires slightly more
than 1 second.

In addition, in our implementation we never construct the whole ac-
tivation tree of a trace. This also influences the performances of the ap-
proach. At each step of the algorithm, we keep track only of the maximal
traces without building the nodes corresponding to their sub-traces. These
sub-traces are identified (and evaluated) only when the original maximal
trace is violated (and pruned away).

Case Study

We have validated our approach by performing various experiments us-
ing real-life event logs from the CoSeLoG project. Here, we show results

155

Constraint A
vg

.a
ct

.
sp

ar
si

ty

A
vg

.v
io

la
t.

ra
ti

o

A
vg

.f
ul

fil
.

ra
ti

o

A
vg

.c
on

fli
.

ra
ti

o

precedence(Rapportage, Beslissing) 0.859 0.017 0.982 0

succession(Administratie, Beslissing) 0.735 0.995 0.004 0

precedence(Rapportage, Verzenden) 0.976 0.054 0.945 0

not succession(Verzenden, Rapportage) 0.731 0.000 0.999 0

response(Toetsing, Beslissing) 0.979 0.713 0.286 0

precedence(Beslissing, Verzenden) 0.976 0.164 0.835 0

not succession(Verzenden, Beslissing) 0.836 0 1 0

not succession(Beslissing, Rapportage) 0.614 0.000 0.995 0.004
precedence(Beslissing, Administratie) 0.875 0.261 0.738 0

Averages 0.842 0.245 0.754 0.000

Table 6.4. Results of the analysis approach, applied to real-life event logs
from the CoSeLoG project. The table reports average activity
sparsity, average violation ratio, average fulfillment ratio and
average conflicts ratio.

for the process of handling permissions for building or renovating private
houses for which we have logs from several Dutch municipalities. For the
validation reported here, we have used two logs of processes enacted by
two different municipalities. We first have discovered a Declare model us-
ing an event log of one municipality using the Declare Miner. This model is
shown in Figure 6.11. Then, using the Declare Analyzer, we have analyzed
the degree of adherence of a log of the second municipality with respect to
the mined model. Analysis showed commonalities and interesting differ-
ences. From a performance viewpoint the results were also encouraging:
481 cases with 17032 events could be replayed in 15 seconds.

Results are reported in Table 6.4. The fulfillment ratio is, for almost
all constraints, very high and, therefore, the average fulfillment ratio over
the entire Declare model is also high (0.754). The activation sparsity of
the log is, in most cases, close to 1, indicating a low activation frequency
for each constraint in the model. For the not succession constraint between
Beslissing and Rapportage, the combination of an under average activation
sparsity with a high fulfillment ratio reveals the “good healthiness” of the
log with respect to that constraint.

Nevertheless, the two municipalities execute the two processes in a
slightly different manner (the average violation ratio and the conflict ratio
of the log with respect to the entire Declare model are 0.245 and 0.0005

156

respectively). The discrepancies have mainly been detected for the succes-
sion constraint and for the response constraint in the reference model. Here,
the violation ratio is high. For the succession constraint the high violation
ratio in combination with a low activation sparsity is symptom of strong
unhealthiness.

6.3 Summary

In this chapter we presented two approaches for the evaluation of process
models. In particular a model-to-model and a model-to-log metrics are
proposed.

The first metric, model-to-model, presented in this chapter is new ap-
proach for the comparison of business processes. This approach relies on
the conversion of a process model into two sets of relations: the first con-
tains all the local relations (only between two connected activities) that
must hold; the second with the relations that must not hold. These two
sets are generated starting from the relations of the Alpha algorithm but,
instead of starting from a log and performing abstractions to achieve some
rules, the opposite way is followed: given the model, local relations (ex-
pressed in terms of behavior that is allowed in the log trace) are extracted.
The proposed metric is based on the comparison of these two sets.

The second metric described in this chapter is model-to-log, is a novel
approach to check the conformance of observed behavior (i.e., an event
log) with respect to desired behavior modeled in a declarative manner
(i.e., a Declare model). Unlike earlier approaches, we are able to provide
reliable diagnostics which do not depend on the underlying LTL syntax.
We provided behavioral characterizations of activations, fulfillments, vio-
lations and conflicts. These can be used to provide detailed diagnostics at
the event level, but can also be aggregated into health indicators such as
the fulfillment ratio (fraction of activations having no problems), violation
ratio and conflict ratio. Experiments show that the approach scales well
(polynomial in the size of the log and in the length of the traces). Initial
experiences in a case study based on the event logs of two municipalities
revealed that the diagnostics are indeed very useful and can be interpreted
easily.

157

158

Chapter 7

Extensions of Business Processes
with Organizational Roles

This chapter is based on results published in [24].

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on

Control‐flow Mining Stream Control‐flow Mining

Results Evalua�on

Process Extension

Section 2.3 presents the three basic types of Process Mining, which
are also described in Figure 2.9. Moreover, as stated in Section 2, several
perspectives might be involved in Process Mining. Specifically, it is possible
to concentrate on:

• the control-flow, which is a (possibly graphical) representation of the

159

business process model (i.e., the ordering of activities);

• the organizational perspective, which focuses on the interactions among
activities originators;

• focusing on cases (single process instances) may help identifying pe-
culiarities based on specific characteristics (for example, which case
conditions lead to a particular path of the process model);

• the time perspective is extremely useful to measure and monitor the
process, for example to find bottlenecks or predict the remaining
time of a case.

In this chapter, we concentrate on the extension of a process from the
organizational perspective. Specifically, we present an approach which, given
a process model and a log in input, tries to partition the set of activities of
the process into “swimlanes”. This partitioning is performed by grouping
originators in roles and associating activities with the corresponding role.

The approach proposed in this chapter is based on the identification
of roles and this is, in turn, based on the observation of the distribution
of originators over activities and roles. This division is extremely impor-
tant and gives new detailed insights on the process model (which can be
extracted using discovery techniques). For example, it is possible to com-
pare the actual roles distribution with the mined ones or to analyze the
proposed roles in order to improve the current organization.

The approach proposed in this work, summarized in Figure 7.1, is
composed of two phases: it starts from the original process model and, in
the first phase, each edge of the process model is weighted according to
the corresponding level of handover of role. Edges with weight below a
threshold are removed from the model. Resulting connected components
are considered as belonging to the same role. The second phase of the
approach aims at merging components that, in the original process model,
were not close each other.

7.1 Related Work

The organizational perspective of Process Mining aims at discovery relations
among activity originators. Typically, these activities involve several ap-
proaches, such as classification of users in roles and social network analy-
sis [142].

In [136], Song and van der Aalst present an exhaustive characterization
of organizational mining approaches. In particular, three different types of

160

(a) Original process model.

(b) Expected result, with activities partitioned in roles.

Figure 7.1. Input and expected output of the approach presented in this
chapter.

approaches are presented: a) organizational model mining; b) social net-
work analysis; and c) information flows between organizational entities.

Organizational model mining consists in grouping users with similar
characteristics. This grouping can rely on the similarity of activities per-
formed (task based) or on working together on the same process instance
(case based).

The basic idea of social network analysis [151] is to discover how the
work is handled between different originators. Several metrics are em-
ployed to point out different perspectives of the social network. Examples
of such metrics are the handover of work (when the work is started by a
user and completed by another one), subcontracting (when activities are
performed by user a, then user b and then a again) and working together
(users involved in the same case).

The information collected in social networks can be aggregated in or-
der to produce organizational entities (such as roles or organizational unit).
These entities are useful to provide insights at a higher abstraction level.
Organizational entities are constructed considering a metric and the de-
riving social network and aggregating nodes. These new connections can
be weighted according to the weights of the originating network.

None of the above papers specifically addresses the problem of discov-
ering roles in business processes.

161

7.2 Working Framework

Given a business process P, it is possible to identify its set of tasks (or
activities) A and the set U with all the involved originators (e.g. person,
resources, . . .). In this context, the complete set of observable events, gen-
erated by P, is defined as E = A×U.

A process can generate a log L = {e1, . . . , en}, which is defined as a set
of traces. Each element of the log identifies a case (i.e. a process instance)
of the observed model. A trace e = 〈e1, . . . , em〉 is a sequence of events,
where ej ∈ E represents the jth event of the sequence. With ei ∈ e we
indicate that event ei is contained in the sequence e.

Given a process model P, let D(P) be the set of direct dependencies
(i.e. directed connections) of the process model. For the sake of simplicity,
whenever there is no ambiguity on the process P, we assume D as a syn-
onym of D(P). For example, the set D of the process model depicted in
Figure 7.1(a) is: D = {A→ B,A → C,B → D,C → D,D → E}. We assume
to have the possibility to “replay” activities of traces on the process model
(e.g. [144] proposes an approach for replay).

Given an event e ∈ E, such that e = (a,u), let’s define the typical
projection operators πA(e) = a and πU(e) = u. Moreover, let us define the
operator Ua(L) as:

Ua(L) = {πU(e) | ∃e∈L e ∈ e ∧ πA(e) = a}.

Given a dependency a → b ∈ D, it is possible to define the set of
couples of originators Ua→b(L):
Ua→b(L) = {(πU(ei),πU(ej)) | the replay algorithm identifies a

dependency of a→ b mapped to ei and ej}.

This operator returns the set of couples of originators, in the log L, that
performs the dependency a→ b.

Similar operators are Uaa→b(L) and Uba→b(L). They can be used to get
originators of activity a or b, when they are involved in the dependency
a→ b:

Uaa→b(L) = {ui | (ui,uj) ∈ Ua→b(L)},
Uba→b(L) = {uj | (ui,uj) ∈ Ua→b(L)}.

On all these sets, it is possible to apply the classical Relational Algebra
operators [48]. For example, with the selection operator it is possible to
define:

σ=(Ua→b(L)) = {(ui,uj) | (ui,uj) ∈ Ua→b(L) ∧ ui = uj}.

162

For simplicity, whenever there is no ambiguity on L, we assume Ua,
Ua→b and Uaa→b as a synonyms of Ua(L), Ua→b(L) and Uaa→b(L), respec-
tively.

Given the sets Ua(L), Ua→b(L), and Uaa→b(L), we want to define the
multisets [137] Ua(L), Ua→b(L), and Uaa→b(L) which take into account the
frequency of the originators in L:

Ua(L) = 〈Ua(L), fUa〉 Ua→b(L) = 〈Ua→b(L), fUa→b〉
Uaa→b(L) = 〈Uaa→b(L), fUaa→b〉

where fUa , fUa→b , and fUaa→b are the multiplicity functions, which indicate
the number of times that each element of the corresponding set is observed
in L. For example, given u ∈ Ua(L), fUa(u) returns the number of times
that the originator u performs activity a in L. In this work, the cardinality
of a multiset M = 〈M, fM〉 is defined as the sum of the values of the
multiplicity function, for the elements of the multiset:

|M| =
∑
m∈M

fM(m).

The intersection of two multisetsM1 = 〈M1, fM1〉 andM2 = 〈M2, fM2〉 is
defined as the intersection of the two sets M1 and M2 and the multiplicity
function is defined as the minimum between the multiplicity values:

M1 ∩M2 = 〈M1 ∩M2, min{fM1(x), fM2(x)}〉.

In this context, we will also consider the sum of multisets. Given M1 =

〈M1, fM1〉 andM2 = 〈M2, fM2〉, the sum is defined as:

M1]M2 = 〈M1 ∪M2, fM1(x) + fM2(x)〉.

For the sake of simplicity, we will omit L whenever there is no am-
biguity (e.g, Ua instead of Ua(L)). Moreover, the notation M = {ax,by}
identifies the multiset where a has multiplicity x and b has multiplicity y.

The selection operator σθ can be used also on multisets. For example,
σ=(Ua→b) = 〈σ=(Ua→b), fUa→b〉 (where the multiplicity function is defined
only on elements of the set σ=(Ua→b)).

The problem we try to solve is to find a partition [17] R ⊂ P(A)1 of the
set of activities A, given a log L and the original process P, such that:

•
⋃

R = A, i.e., the partitioning R covers the entire set of tasks A; and

• for each X, Y ∈ R, such that X 6= Y, X ∩ Y = ∅, i.e., all the partitions
are pairwise disjoint.

1 P(A) identifies the powerset of A.

163

From the business point of view, we are requiring that each activity needs
to belong to exactly one role. The partition R identifies the set of roles of
the process. In this context, the term “partition of activities” and “role”
are used as synonyms.

Let |L| be the size of the log, i.e., the number of traces it contains. Given
a log L and an originator u ∈ U, we define |L|u as:

|L|u =
∑
e∈L

|e|∑
i=1

|{ei | πU(ei) = u}|.

In other words, |L|u returns the number of times that originator u executes
activities in L. A similar measure, which also takes into account the role is
|L|uR, where u is an originator and R is a role (i.e. a set of activities):

|L|uR =
∑
e∈L

|e|∑
i=1

|{ei | πA(ei) ∈ R ∧ πU(ei) = u}|.

Finally, given a log L and a partition R, it is possible to define the
multiset of originators involved in the role as:

UR(L) =
⊎
a∈R
Ua(L).

As presented in Section 7.1, approaches for the identification of the
handover of work between originators exist; however, this work proposes
an approach to point out handover of roles and therefore the identification
of roles themselves. This operation is based on activity originators. Specif-
ically, we assume that, under ideal scenarios, there is a clear distinction of
originators performing activities belonging to different roles. However,
it is really difficult to observe such clear distinction in business environ-
ments (i.e., originators are involved in several roles) and thus we need to
resort to a metric to measure the degree of handover between roles. This
and how to define a role are the topics covered by the next section.

7.3 Rules for Handover of Roles

As stated in the previous section, the identification of business roles, as
presented in this work, assumes that an activity is not allowed to belong
to two roles at the same time. Let us recap: given a process P and the
dependency a → b ∈ D(P), Uaa→b(L) is the multiset of originators (with
frequencies) that perform the activity a (as part of the dependency a→ b)
in the log L; and Ua→b(L) identifies the set of couples of originators (with
frequencies) performing a followed (possibly after some time) by b.

164

Given a dependency between two activities we present a couple of
rules which, combined, indicate if there is handover of role between the
two activities. Specifically, the combination of rules indicates a measure of
the expectation of handover between roles.

7.3.1 Rule for Strong No Handover

The first rule is used to identify the absence of handover of role. In this
case, given the multiset Ua→b for a dependency between two activities
a → b, the idea is to check if there are couples (u, v) ∈ Ua→b such that
u = v. If this is the case, it means that there is an originator performing
both a and b. As stated previously, we assume that one person hardly
holds more than one role; thereby there is no handover of role between
subsequent activities performed by the same originator.

7.3.2 Rule for No Handover

The previous rule applies only on very specific situations. More generally,
given a dependency a→ b ∈ D, if the two sets of originators are equal, i.e.
Ua = Ub, we assume there is no handover of role. This rule can be seen as
a weaker version of the previous one: there are originators interchangeably
performing a and b. On the contrary, if Ua ∩ Ub = ∅ then, each activity
has a disjoint set of originators and this is the basic assumption to have
handover of role between a and b.

In typical business scenarios, however, it is very common to have border-
line situations, and that is why a “boolean-valued” approach is not feasi-
ble. In the following, we propose a metric to capture the degree of han-
dover of role between two activities.

7.3.3 Degree of No Handover of Roles

Given a process P a dependency a → b ∈ D(P), and the respective mul-
tisets Uaa→b, Uba→b and Ua→b, it is possible to define the degree of no han-
dover of role wab, which captures the rules above mentioned:

wab(L) =
|Uaa→b(L)∩ Uba→b(L)|+ |σ=(Ua→b(L))|∣∣Uaa→b(L)∣∣+ ∣∣Uba→b(L)∣∣ , (7.1)

The numerator of this equation considers the intersection of the two multi-
sets of originators (to model no handover) plus the number of originators
that perform both activities a and b (to model strong no handover). These
weights are divided by the sum of the sizes of the two multisets of origi-
nators.

165

By definition, Equation 7.1 identifies the absence of handover of role.
Specifically, it assumes values in the closed interval [0, 1], where 1 indicates
there is no handover of roles and 0 indicates handover. Since the ideal case
(i.e., completely disjoint sets of originators for each role) is very unlikely,
we propose to use a threshold τw on the valuewab. Ifwab > τw, then there
is no handover of roles; otherwise the handover occurs. A partition of the
activities can then be obtained by removing from the process model all the
dependencies which corresponds to handovers: connected activities are in
the same element of the partition (see Figure 7.2).

Example 1. Given a process P, a log L, and the dependency a → b ∈ D(P),
assume that:

• Uaa→b(L) = {u11,u12,u13},

• Uba→b(L) = {u11,u12,u13}, and

• Ua→b(L) = {(u1,u1)1, (u2,u2)1, (u3,u3)1}.

The value wab(L) = 1 strongly indicates there is no handover of role in this case.
In fact, as the set Ua→b(L) suggests, the same originator is observed performing
both a and b several times.

Example 2. Let’s now consider a scenario completely different from 1. Given a
process P, a log L, and the dependency a→ b ∈ D(P), assume that:

• Uaa→b(L) = {u11,u12,u13},

• Uba→b(L) = {u14,u15,u16}, and

• Ua→b(L) = {(u1,u4)1, (u2,u5)1, (u3,u6)1}.

The value wab(L) = 0 strongly indicates the presence of handover of role. It can
be seen that the two sets of originators do not share any person and, based on our
assumptions, this is a symptom of handover.

Example 3. Consider now a third example, in the middle between 1 and 2. Given
a process P, a log L, and the dependency a→ b ∈ D(P), assume that:

• Uaa→b(L) = {u11,u12,u13},

• Uba→b(L) = {u11,u12,u14}, and

• Ua→b(L) = {(u1,u1)1, (u2,u4)1, (u3,u2)1}.

In this case, wab(L) = 0.5 so there is no clear handover. Looking at the originator
sets, u1 performs subsequently a and then b, in one case. Moreover, u2 is observed
performing both a and b but not on the same process instance. In this example,
it turns out to be fundamental the value of the threshold τw, in order to decide if
handover of role occurs.

166

7.3.4 Merging Roles

As mentioned in the introductory part, the approach presented in this
context is based on two steps: the first step identifies handover of roles
(through the metricwab and the threshold ρw) which induces a partition of
activities, i.e. roles. Clearly, this way of performing the partitioning is too
aggressive: if the control-flow “comes back” to roles already discovered,
the handover does not entail the creation of a new role. The aim of the
second step is to merge partitions that are supposed to represent the same
role. Given a process P and a log L, the first step generates a partitioning R
of the activities. In order to merge some roles, we propose a metric which
returns the merging degree of two partitions. Given two roles Ri,Rj ∈ R:

ρRiRj(L) =
2|URi(L) ∩ URj(L)|
|URi(L)|+ |URj(L)|

. (7.2)

The basic idea of this metric is the same as presented in Equation 7.1,
i.e., to measure the amount of shared originators between the two roles.
This metric produces values on the closed interval [0, 1] and, if activities of
the two partitions are performed by the same originators, the value of the
metric is 1 (and therefore the two roles are supposed to be the same and
merged). If the roles have no common originators, then the value of ρ is 0
and the roles are kept separated.

Due to the blurry situations that are likely in reality, a threshold τρ is
employed: if ρRiRj(L) > τρ then Ri should be merged with Rj; otherwise
they are considered distinct roles.

7.4 Algorithm Description

In this section, we give some algorithmic details concerning the two previ-
ously described steps. We do this with the help of the process described in
Figure 7.1(a). Moreover, we give an algorithm to generate all “plausible”
partitions of activities (sets of candidate roles).

7.4.1 Step 1: Handover of Roles Identification

The first step of our approach consists in the identification of the partitions
induced by every handover of role. Please note that, in our context, an
handover of role may occur only when the work passes from one activity
to another (i.e., dependencies between activities of the process).

To achieve our goal, given a process P, the algorithm starts by extract-
ing all the dependencies D(P). After that, every dependency is weighted
using Equation 7.1 (the result is reported in Figure 7.2(a)). At this point,

167

(a) Weighted dependencies.

(b) Removed dependencies associated to handover of roles.

Figure 7.2. Process model of Figure 7.1(a) with weights associated to ev-
ery dependency (top), and after the dependencies associated
to handover of roles are removed (bottom). Activities are thus
partitioned into the subsets {A}, {B}, {C}, {D,E}.

we apply a threshold τw. Specifically, we consider a particular dependency
as handover of role only if its weight is less or equal to τw. Every time an
handover is observed, the corresponding dependency is removed from the
process.

Let’s consider again the example process of Figure 7.1(a) and the weights
of Figure 7.2(a). Let’s assume wab ≤ τw, wac ≤ τw, wbd ≤ τw, wcd ≤ τw
and wde > τw. Figure 7.2(b) reports the process obtained after handover
of roles have been removed.

At the end of the first step, four roles have been identified: {A}, {B},
{C}, and {D,E}. These roles correspond to the activities of the connected
components [36] of Figure 7.2(b).

7.4.2 Step 2: Roles Aggregation

As stated previously, the first step of the approach identifies roles which
may be too fine grained. For example, in Figure 7.2(b) each connected
component represents a role, however, as Figure 7.1(b) shows, we actually
want A in the same role of D and E, and we want B together with C. In
this step, we use Equation 7.2 to evaluate if any couple of roles may be
merged.

Algorithm 6 proposes the pseudocode of the procedure used in the
second phase. It requires, as input, a log L, a set of roles (i.e., a partitioning
of activities) R and a value for the threshold τρ. First of all, the algorithm

168

Algorithm 6: Algorithm to perform roles aggregation (i.e. “Step 2”)
Input: Log L; a set of roles R; and threshold τρ ∈ [0, 1]

1 repeat
2 ρmax ← max(Ri,Rj)∈R×R ρRiRj(L)

3 Rρmax ← arg max(Ri,Rj)∈R×R ρRiRj(L) /* Maximals */

4 if ρmax ≥ τρ then
5 Choose (Ri,Rj) ∈ Rρmax /* Selection is performed

considering the couple that maximizes the
number of merged originators, if necessary
the number of merged activities and, finally,
the lexicographical order of role activities.

*/
6 R← (R \ {Ri,Rj})∪ {Ri ∪ Rj} /* Merge Ri and Rj */

7 end
8 until no merge is performed
9 return R

finds the best pairs of roles that can be merged (line 3), i.e., pairs with
maximal ρ. If the best value of ρ is above the threshold τρ, it means that it
is possible to merge two roles. However, several pairs may have the same
maximal ρ. The criterion to select just one pair is to consider the roles that
maximize the number of affected originators. If there are several pairs
with identical ρ values and number of affected originators, we choose the
pair that maximizes the number of merged activities. If we still have more
than one pair, we just pick the first pair according to lexicographical order
of contained activities (line 5). The two selected candidate roles are then
merged. The same procedure is repeated until no more roles are merged
(line 8), i.e., there is no pair with value of ρ above the threshold τρ. Finally,
the modified set of roles is returned (line 9).

7.4.3 Generation of Candidate Solutions

The approach, as presented so far, requires the configuration of two thresh-
olds, i.e. τw and τρ. Little variations in configuration of these parameters
may lead to very different roles. To tackle this problem, we think it might
be interesting to extract all the significant partitioning and propose them
to the user. Given the set A of tasks, the number of possible partitions is
identified by the Bell number [17]. This quantity, given n as the size of the

169

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
p

o
ss

ib
le

 p
ar

�
�

o
n

in
g

Number of elements of a set

Figure 7.3. Representation of the growth of the number of possible parti-
tioning, given the number of elements of a set.

set is recursively defined as:

B(n) =

n−1∑
t=0

(
n− 1

t

)
B(t)

Figure 7.3 presents the explosion of the number of possible partitioning,
given the number of elements of a set.

By construction, the proposed approach requires two parameters: τw

and τρ. The values of these two thresholds are required to be in the interval
[0, 1]; however, it can be seen that only a finite number of values produces
different results (similarly to the problem tackled in Section 5.2.3).

As example, if we consider τw, it is used to remove edges from the
original process. Since the number of edges of a process is finite, there is a
finite number of values of τw that splits activities of the process. The same
observation can be used to enumerate the possible values of τρ.

The algorithm described in Algorithm 7 proposes an approach which
automatically extracts all the significant configurations of τw and τρ and
returns such set of solutions. Specifically, line 2 collects all the significant
values of τw. All these values are used to remove the handover of roles
(line 5-9). In line 11, given the partitioning just obtained, the set of all
significant values for τρ is generated. These are considered for the compu-
tation of step 2 (line 13). The returned result consists of a set with all the
significant partitions (with respect to the log L) that can be extracted.

The algorithm proposed in Algorithm 7 has a worst-case complexity
which is O(n3), where n is number of edges (i.e. dependencies) of the

170

Algorithm 7: Complete algorithm to automatically find all different
partitioning of activities, given a log, and a process model.

Input: Process P; and a log L
1 S← ∅ /* Set of final solutions */
2 Tw ← {wab(L) | a→ b ∈ D(P)}
3 forall the τw ∈ Tw do
4 Copy the process P in P ′

/* Step 1 */
5 forall the a→ b ∈ D(P) do
6 if wab(L) ≤ τw then
7 Remove dependency a→ b from P ′

8 end
9 end

10 R← set of activities in connected components of P ′

11 Tρ ← {ρRiRj(L) | Ri,Rj ∈ R}

12 forall the τρ ∈ Tρ do
/* Step 2 */

13 Rfinal ← Roles Merger (L, R, τρ) /* See Algorithm 6 */

14 S← S∪ {Rfinal} /* Consider the new solution */

15 end
16 end
17 return S

given process model. In fact, it is possible that each dependency of the
process has a different weight wab. The same situation may happen when
considering ρAB: it is possible to have n clusters from step 1, and each
pair of them can have a different value of ρAB. However, it is important
to note that, typically, n is relatively small and, more importantly, is inde-
pendent from the given log. In particular, it is necessary to analyze the log
(linear complexity, with respect to the number of events it contains), but
this operation is performed only once: all the other activities (reported in
Algorithm 7) can use the already collected statistics.

It is possible to sort the set of partitions according to the number of
roles. This ordered set is then proposed to the final user. In this way, the
user will be able to explore all the significant alternate definitions of roles.

7.4.4 Partition Evaluation

A possible way to evaluate the discovered partitions is to use the concept
of entropy [132]. In this context, we propose our measure. Specifically,

171

(a) Model 1. (b) Model 2.

Figure 7.4. Process models generated for the creation of the artificial
dataset.

given R as the current partition, i.e., set of roles (each role is a set of
activities), U as the set of originators, and L as a log, we define an entropy
measure of the partition as:

H(R,L) =
∑
u∈U

∑
R∈R

−
|L|uR
|L|u

log2

(
|L|uR
|L|u

)
. (7.3)

Let us recall that |L|uR is defined as the number of times that activities
belonging to the role R, and performed by user u, are observed in L; and
that |L|u is defined as the number of activities executed by originator u
in the log L. This measure is zero if each originator is involved in one
and only one role. Otherwise, the measure increases with the degree of
mixture of contribution of originators to multiple roles.

7.5 Experiments

The approach just presented has been evaluated against a couple of ar-
tificial dataset. In our datasets, we have the target partitioning (i.e. the
expected roles) and, given a log, our goal is to discover those roles. To
evaluate our results we compare the target roles with the extracted ones
and we use a measure inspired by purity [96]. Let us recall that A repre-
sents the set of activities (or tasks) of the process and that a role is a set of
activities. |R| is the number of activities contained in R. Given the target
partition (i.e. a set of roles) Rt and the discovered one Rd, our degree of
similarity is defined as:

similarity =
1

|Rd|

∑
Rd∈Rd

max
Rc∈Rc

2|Rd ∩ Rc|
|Rd|+ |Rc|

.

The idea behind this formulation is that if the partitioning discovered is
equal to the target, the similarity value is 1, otherwise it decreases.

Four artificial processes have been created (see Chapter 9). These pro-
cesses, two of them shown in Figure 7.4, have been simulated 1000 times.

172

Model 1

Model 1 (Figure 7.4(a)) contains 13 activities divided over 3 roles. A pecu-
liarity of this process is that the workflow starts with activities belonging
to “Role 1” and finishes with other activities belonging to the same “Role
1”. This processes have been simulated to generate five different logs:

1. one with exactly one originator per role;

2. another with exactly two originators per role;

3. the third log is similar to the second but is also includes a “jolly”: an
originator performing all activities;

4. the fourth log contains three originators; all of them are involved
on all activities, however, each role has a “leader”. Given a role, an
activity is executed by its leader with probability 0.5, otherwise all
other originators are equally likely;

5. the last log has 6 originators performing all the activities with a
leader for each role (with the same probabilities of the previous case).

Model 2

Model 2 (Figure 7.4(b)) is composed by 9 activities and 4 roles. In this case,
the process also has a loop of activities within “Role 3”. This process has
been simulated to generate 3 logs:

1. one with exactly one originator per role;

2. another with exactly two originators per role;

3. the last one with 8 originators, all of them involved in all the activi-
ties, with one “leader” per role (with same probabilities of last logs
of Model 1).

Model 3

Model 3 is composed of 17 activities distributed over 4 roles. This process
combines two characteristics of the previous examples: there is both a loop
within the same role and the flow comes back to roles already discovered.
This process has been simulated to generate three logs:

1. one with exactly one originator per role;

2. the second log has four originators, all of them are involved in all
activities but each role has one leader (same probabilities of previous
cases);

173

Logs Rank of target partition

Model 1

1 originator per role 1

2 originators per role 1

2 originators per role – 1 jolly 4

3 originators with leader 4

6 originators with leader 12

Model 2

1 originator per role 1

2 originators per role 1

8 originators with leader 5

Model 3

1 originator per role 1

2 originators per role 1

4 originators with leader 19

Model 4

1 originator per role 1

2 originators per role 1

4 originators per role – 1 jolly 30

Table 7.1. This table reports, for each log, the rank of the target partition.
Ranking is based on the entropy value.

3. the last log is characterized by 8 originators.

Model 4

Model 4 is composed of 21 activities distributed over 4 roles. In this last
case, the flow starts and finishes with activities belonging to the same
roles (so there is a loop). Moreover, this loop is between activities of the
two “externals” roles, so the entire process (and therefore the roles) can be
observed several times on the same trace. This process has been simulated
to generate three logs:

1. one with exactly one originator per role;

2. the second logs has four originators, plus one jolly, involved in all
activities;

3. the last log is characterized by 8 originators.

7.5.1 Results

The first results are presented in Figure 7.5. Specifically, for each log, the
number of different partitions is reported. Please note that this number is
always relatively small. The worst case is observed on the fourth model,

174

0

20

40

60

80

100

1 orig. 2 orig. 2 orig.+jolly 3 orig. 6 orig.

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Logs

(a) Results for Model 1.

0

20

40

60

80

100

1 orig. 2 orig. 8 orig.

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Logs

(b) Results for Model 2.

0

20

40

60

80

100

1 orig. 2 orig. 4 orig. leader

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Logs

(c) Results for Model 3.

0

20

40

60

80

100

1 orig. 2 orig 4 orig.+jolly

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Logs

(d) Results for Model 4.

Figure 7.5. These charts report the results, for the four models, in terms of
number of significant different partitions discovered.

on the log with a jolly. This is what we actually expect: we have a very
low number of originators (just 4) and one jolly involved indiscriminately
in all activities. Moreover, the structure of the process allows having the
same role appearing several times into the same trace.

Figure 7.6 proposes, for the four models, the distribution of the par-
titions according to the corresponding similarity measure (with respect
to target roles). Concerning the logs of Model 1, all the partitions have
similarity values very high, most of them are concentrated on the interval
[1, 0.5]. In the case of Model 2, most of partitions lay on the interval [1, 0.7].
The last two models have a bit wider distribution of values; however, it is
very important to note that in all cases the system extracts the target set of
roles (i.e. there is always a partition with similarity 1).

The last result is presented in Table 7.1. The purpose of this table is
to evaluate the entropy measure. Specifically, for each log, we ranked all
partitions according to the corresponding entropy measure. After that,
we verified the position of the target partition. Results are reported in
Table 7.1 and, as you can see, whenever there is no “confusion” (i.e. one

175

0

2

4

6

8

10

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Similarity values

1 originator per role
2 originators per role
2 originators ‐ 1 jolly

3 originators
6 originators

(a) Results for Model 1.

0

2

4

6

8

10

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Similarity values

1 originator per role
2 originators per role
8 originators per role

(b) Results for Model 2.

0

2

4

6

8

10

12

14

16

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Similarity values

1 originator per role
2 originators per role

4 originators

(c) Results for Model 3.

0

5

10

15

20

25

30

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

N
u

m
b

er
 o

f
si

gn
ifi

ca
n

t
p

ar
�

�
o

n
in

gs

Similarity values

1 originator per role
2 originators per role
4 originators ‐ 1 jolly

(d) Results for Model 4.

Figure 7.6. Results, for the four models, in terms of number of significant
partitioning with respect to the purity value, reported in bin of
width 0.1.

originator is involved in exactly one role), the entropy measure suggests
the desired partition (i.e. the target partition is in first place). Instead,
when the same originator performs several roles, the confusion increases
and it is harder, for our entropy measure, to correctly identify the target
partition (i.e. the target partition is not in first place).

7.6 Summary

This chapter considered the problem of extending a business process model
with information about roles. Specifically, we aimed at discovery a parti-
tioning of activities.

To achieve our goal, we took into account originators and activities
they perform. Measures of handover of roles are defined and employed.

Finally, we proposed an approach to automatically extract only the sig-
nificant partitionings. These set of possible roles can be ranked according
to an entropy measure, so that analyst may explore only first results.

176

Part III

A New Perspective: Stream Process
Mining

178

Chapter 8

Process Mining for Stream Data
Sources

This chapter is based on results published in [23].

Process Mining
Capable Event Logs

Process Representa�on

Model Evalua�on

Process Mining
Capable Event Stream

Data Prepara�on

Control‐flow Mining Stream Control‐flow Mining

Results Evalua�on

Process Extension

The number of installations of Information Systems is increasing more
and more. These systems produce huge amounts of log data such that,
sometimes, existing systems are unable to store and process this generated
logs. Moreover, few processes are in steady-state and, due to changing
circumstances, processes evolve and systems need to be flexible.

179

Since the most used process discovery algorithms have been defined
for batch processing, it is difficult to apply them in such evolving environ-
ments. In this chapter, we will discuss peculiarities of mining a streaming
event data in the context of Process Mining.

The work reported in this chapter presents algorithms for discovering
process models based on streaming event data. In the remainder of this
chapter we refer to this problem as Streaming Process Discovery (or SPD).

According to [2, 13], a data stream consists of an unbounded sequence
of data items with a very high throughput. In addition to that, the follow-
ing assumptions are typically made: i) data is assumed to have a small and
fixed number of attributes; ii) mining algorithms should be able to process
an infinite amount of data, without exceeding memory limits or other-
wise fail, no matter how many items are processed; iii) for classification
tasks, data has a limited number of possible class labels; iv) the amount
of memory available to a learning/mining algorithm is considered finite,
and typically much smaller than the data observed in a reasonable span
of time; v) there is a small upper bound on the time allowed to process an
item, e.g. algorithms have to scale linearly with the number of processed
items: typically the algorithms work with one pass of the data; vi) stream
“concepts” are assumed to be stationary or evolving [169, 175].

In SPD, a typical task is to reconstruct a control-flow model that could
have generated the observed event log. The general representation of the
SPD problem that we adopt in this context is shown in Figure 8.1: one or
more sources emit events (represented as solid dots) which are observed
by the stream miner that keeps the representation of the process model
up-to-date. Obviously, no standard mining algorithm adopting a batch
approach is able to deal with this scenario.

An SPD algorithm has to give satisfactory answers to the following two
categories of questions:

1. Is it possible to discover a process model while storing a minimal
amount of information? What should be stored? What is the perfor-
mance of such methods both in terms of model quality and speed/mem-
ory usage?

2. Can SPD techniques deal with changing processes? What is the per-
formance when the stream exhibits certain types of concept drift?

In this chapter, we discuss the peculiarities of mining a stream of logs
in the context of process mining. Subsequently, we present a general
framework for defining process mining algorithms for streams of logs.
We show how the Heuristics Miner, one of the more effective algorithms

180

Events emi�ed over �me

Stream miner instance

... Network communica�on

Time

...

Figure 8.1. General idea of SPD: the stream miner continuously receives
events and, using the latest observations, updates the process
model.

for practical applications of process mining, can be adapted for stream
mining according to our SPD framework.

8.1 Basic Concepts

The main difference between classical process mining [142] and SPD lies
in the assumed input format. For SPD we assume streaming event data
that may even come from multiple sources rather that a static event log
containing historic data.

In this context, we assume that each event, received by the miner, con-
tains the name of the activity executed, the case id it belongs to, and a times-
tamp. A formal definition of these elements is as follows:

Definition 8.1 (Activity, Case, Time and Event Stream). Let A be a set of
activities and C be a set of case identifiers. An event is a triplet (c,a, t) ∈
C ×A×N, i.e., the occurrence of activity a for case c (i.e. the process instance)
at time t (timestamp of emission of the event). Actually, in the miner, rather than
using an absolute timestamp, we consider a progressive number representing the
number of events seen so far, so an event at time t is followed by another event at
time t+ 1, regardless the time lasts between them. S ∈ (C ×A×N)∗ is an event
stream, i.e., a sequence of events that are observed item by item. The events in S
are sorted according to the order they are emitted, i.e. the event timestamp.

Starting from this definition, it is possible to define some functions:

181

Definition 8.2 (Case time scope). tstart(c) = min(c,a,t)∈S t, i.e. the time when
the first activity for c is observed. tend(c) = max(c,a,t)∈S t, i.e. the time when the
last activity for c is observed.

Definition 8.3 (Subsequence). Given a sequence of events S ∈ (C ×A×N)∗,
it is a sorted series of events: S = 〈. . . , si, . . . , si+j, . . . 〉 where si = (c,a, t) ∈
C ×A×N. A subsequence Sji of S is a sequence that identifies the elements of S
starting at position i and finishing at position i+ j: Sji = 〈si, . . . , si+j〉.

In order to relate classical control-flow discovery algorithms with new
algorithms for streams, we can consider an observation period. An observa-
tion period O for an event stream S, is a finite subsequence of S starting
at time i and with size j: O = S

j
i. Basically, any observation period is

a finite subsequence of a stream, and it can be understood as a classical
log file (although the “head” and “tail” of some cases may be missing).
A well-established control-flow discovery algorithm that can be applied to
an observation period log is the Heuristics Miner, whose main features are
reported in Section 2.3.1.

In analogy with classical data streams, an event stream can be defined
as stationary or evolving. In our context, a stationary stream can be seen as
generated by a business process that does not change with time. On the
contrary, an evolving stream can be understood as generated by a process
that changes in time. More precisely, different modes of change can be
considered: i) drift of the process model; ii) shift of the process model; iii)
cases (i.e., execution instances of the process) distribution change. Drift
and shift of the process model correspond to the classical two modes of
concept drift [16] in data streams: a drift of the model refers to a grad-
ual change of the underlying process, while a model shift happens when
a change between two process models is more abrupt. The change in
cases distribution represents another way in which an event stream can
evolve, i.e. the original process may stay the same during time, however,
the distribution of the cases is not stationary. With this we mean that the
distribution of the features of the process cases change with time. For ex-
ample, in a production process of a company selling clothing, the items
involved in incoming orders (i.e., cases features) during winter will fol-
low a completely different distribution with respect to items involved in
incoming orders during the summer. Such distribution change may sig-
nificantly affect the relevance of specific paths in the control-flow of the
involved process.

Going back to process model drift, there is a peculiarity of business
event streams that cannot be found in traditional data streams. An event
log records that a specific activity ai of a business process P has been exe-

182

cuted at time t for a specific case cj. If the drift from P to P ′ happens at time
t∗ while the process is running, there might be cases for which all the ac-
tivities have been executed within P (i.e., cases that have terminated their
execution before t∗), cases for which all the activities have been executed
within P ′ (i.e., cases that have started their execution on or after t∗), and
cases that have some activities executed within P and some others within
P ′ (i.e., cases that have started their execution before t∗ and have termi-
nated after t∗). We will refer to these cases as transient cases. So, under
this scenario, the stream will first emit events of cases executed within P,
followed by events of transient cases, followed by events of cases executed
within P ′. On the contrary, if the drift does not occur while the process is
running, the stream will first report events referring to complete execu-
tions (i.e. cases) of P, followed by events referring to complete executions
of P ′ (no transient cases). In any case, the drift is characterized by the fact
that P ′ is very similar to P, i.e. the change in the process which emits the
events is limited.

Due to space limitation, we restrict our treatment to stationary streams
and streams with concept drift with no generation of transient cases. The
treatment of other scenarios is left for future work.

8.2 Heuristics Miners for Streams

In this section, we present variants of the Heuristics Miner algorithm to
address the SPD problem under different scenarios. First of all, we present
two basic algorithms where the standard batch version of Heuristics Miner
is used on logs as observation periods extracted from the stream. These
algorithms will be used as a baseline reference for the experimental eval-
uation. Subsequently, a “fully online” version of Heuristics Miner, to cope
with stationary streams, drift of the process model with no transient cases,
and shift of the process model, is introduced.

8.2.1 Baseline Algorithm for Stream Mining

The simplest way to adapt the Heuristics Miner algorithm to deal with
streams is to collect events during specific observation periods and then
applying the batch version of the algorithm to the current log. This idea
is described by Algorithm 8 in which two different policies to maintain
events in memory are considered. Specifically, an event e from the stream
S is observed (e ← observe(S)) and analyzed (analyze(e)) to decide if the
event has to be considered for mining. If this is the case, it is checked
whether there is room in memory to accommodate the event. If the mem-
ory is full (size(M) = maxM) then the memory policy given as input is

183

Algorithm 8: Sliding Window HM / Periodic Resets HM
Input: S event stream; M memory of size maxM; PM memory policy (can

be ‘reset’ or ‘shift’)

1 forever do
2 e← observe(S) /* observe an event, where e = (ci,ai, ti) */

/* Check if event e has to be used */
3 if analyze(e) then

/* Memory update */
4 if size(M) = maxM then
5 if PM is reset then reset(M)

6 if PM is shift then shift(M)

7 end
8 insert(M, e)

/* Mining update */
9 if perform mining then

10 HeuristicsMiner(M)

11 end
12 end
13 end

adopted. Two different policies are considered: periodic resets, and sliding
windows [2, Ch. 8]. In the case of periodic resets all the events contained
in memory are deleted (reset), while in the case of sliding windows, only
the oldest event is deleted (shift). Subsequently, e is inserted in memory
and it is checked if it is necessary to perform a mining action. If mining
has to be performed, the Heuristics Miner algorithm is executed on the
events in memory (HeuristicsMiner(M)). Graphical representations of the
two policies are reported in Figure 8.2.

A potential advantage of the two policies described consists in the pos-

{ Time frame considered

M
in

in
g

�
m

e

Log used for mining

(a) Periodic reset

{ Time frame considered

M
in

in
g

�
m

e

Log used for mining

(b) Sliding window

Figure 8.2. Two basic approaches for the definition of a finite log out of a
stream of events. The horizontal segments represent the time
frames considered for the mining.

184

sibility to mine the log not only by using Heuristics Miner, but any process
mining algorithm (not only for control-flow discovery, for example it is
possible to extract information about the social network) already available
for traditional batch process discovery techniques. However, the notion of
“history” is not very accurate: only the more recent events are considered,
and an equal importance is assigned to all of them. Moreover, the model
is not updated in real-time since each new event received triggers only
the update of the log, not necessarily an update of the model: performing
a model update for each new event would result in a significant compu-
tational burden, well outside the computational limitations assumed for
a true online approach. In addition to that, the time required by these
approaches is completely unbalanced: when a new event arrives, only in-
expensive operations are performed; instead, when the model needs to be
updated, the log retained in memory is mined from scratch. So, every
event is handled at least twice: the first time to store it into a log and
subsequently any time the mining phase takes place on it. In an online
setting, it is more desirable a procedure that does not need to process each
event more than once (“one pass algorithm” [131]).

8.2.2 Stream-Specific Approaches

In this section, we suggest how to modify the scheme of the basic ap-
proaches, so to implement a real online framework, the final approach
is described in Algorithm 9. In this framework, the “current” log is de-
scribed in terms of “latest observed activities” and “latest observed depen-
dencies”. Specifically, we define three queues:

1. QA, with entries in A×R, stores the most recent observed activities
jointly with a weight for each activity (that represents its degree of
importance with respect to mining);

2. QC , with entries in C ×A, stores the most recent observed event for
each case;

3. QR with entries in A×A×R, stores the most recent observed direct
succession relations jointly with a weight for each succession relation
(that represents its degree of importance with respect to mining).

These queues are used by the online algorithm to retain the information
needed to perform mining.

The detailed description of the new algorithm is presented in Algo-
rithm 9. Specifically, the algorithm runs forever, considering, at each
round, the current observed event e = (ci,ai, ti). For each current event,
it is checked if ai is already in QA. If this is not the case, ai is inserted

185

Algorithm 9: Online HM
Input: S event stream; maxQA , maxQC , maxQR maximum memory sizes for queues

QA, QC , and QR, respectively; fWA , fWR model policy; generateModel(·, ·).
1 forever do
2 e← observe(S) /* observe a new event, where e = (ci,ai, ti) */

/* check if event e has to be used */
3 if analyze(e) then

4 if 6 ∃(a,w) ∈ QA s.t. a = ai then
5 if size(QA) = maxQA then
6 removeLast(QA) /* removes last entry of QA */
7 end
8 w← 0

9 else
10 w← get(QA,ai) /* get returns the old weight w of ai

and removes (ai,w) */

11 end
12 insert(QA, (ai,w)) /* inserts in front of QA */
13 QA ← fWA (QA) /* updates the weights of QA */

14 if ∃(c,a) ∈ QC s.t. c = ci then
15 a← get(QC , ci) /* get returns the old activity a of ci

and removes (ci,a) */
16 if 6 ∃(as,af,u) ∈ QR s.t. (as = a)∧ (af = ai) then
17 if size(QR) = maxQR then
18 removeLast(QR) /* removes last entry of QR */
19 end
20 u← 0

21 else
22 u← get(QR,a,ai) /* get returns the old weight u of

relation a→ ai and removes (a,ai,u) */

23 end
24 insert(QR, (a,ai,u)) /* inserts in front of QR */
25 QR ← fWR (QR) /* updates the weights of QR */

26 else if size(QC) = maxQC then
27 removeLast(QC) /* removes last entry of QC */
28 end
29 insert(QC , (ci,ai)) /* inserts in front of QC */

/* generate model */
30 if model then
31 generateModel(QA,QR)
32 end
33 end
34 end

186

in QA with weight 0. If ai is already present in the queue, it is removed
from its current position and moved at the beginning of the queue. In any
case, before insertion, it is checked if QA is full. If this is the case, the
oldest stored activity, i.e. the last in the queue, is removed. Subsequently,
the weights of QA are updated by fWA . After that, queue QC is examined
to look for the most recent event observed for case ci. If a pair (ci,a) is
found, it is removed from the queue, an instance of the succession relation
(a,ai) is created and searched in QR. If it is found, it is moved from the
current position to the beginning of QR. If it is a new succession relation,
its weight is set to 0. In any case, before insertion, it is checked if QR
is full. If this is the case, the oldest stored relation, i.e. the last in the
queue, is removed. Subsequently, the weights of QR are updated by fWR .
Next, after checking if QC is full (in which case the oldest stored event is
removed), the event e is stored in QC .

Finally, it is checked if a model has to be generated. If this is the
case, the procedure generateModel(QA,QR) is executed taking as input the
current version of queues QA and QR and producing “classical” model
representations, such as Causal Nets [143] or Petri Nets.

Algorithm 9 is parametric with respect to: i) the way weights of queues
QA and QR are updated by fWA , fWR , respectively; ii) how a model is gen-
erated by generateModel(QA,QR). In the following, generateModel(·, ·) will
correspond to the procedure defined by Heuristics Miner. In particular it
is possible to consider QA as the counter of activities (to filter out only the
most frequent ones) and QR as the counter of direct succession relations,
which are used for the computation of the dependency values between
pairs of activities. The following subsections presents some specific in-
stances for fWA and fWR .

Online Heuristics Miner (Stationary Streams)

In the case of stationary streams, we can reproduce the behavior of Heuris-
tics Miner as follows. QA should contain, for each activity a, the number
of occurrences of a observed in S till the current time. Similarly, QR
should contain, for each succession (a,b), the number of occurrences of
(a,b) observed in S till the current time. Thus both fWA and fWR must just
increment the weight of the first element of the queue:

fWA((a,w)) =

{
(a,w+ 1) if first(QA) = (a,w)

(a,w) otherwise

fWR((a,b,w)) =

{
(a,b,w+ 1) if first(QR) = (a,b,w)

(a,b,w) otherwise

187

where first(·) returns the first element of the queue.
In case of stationary streams, it is possible to use the Hoeffding bound

to derive error bounds on the measures computed by the online version
of Heuristics Miner. These bounds became tighter and tighter with the in-
crease of the number of processed events. Section 8.3 reports some details
on that.

It must be noticed that if the sizes of the queues are large enough, the
Online Heuristics Miner collects all the needed statistics from the begin-
ning of the stream till the current time. So it performs very well, provided
that the activity distribution of the stream is stationary. However, in real
world business processes it is natural to observe variations both in events
distribution and in the workflow of the process generating the stream (con-
cept drift).

In order to cope with concept drift, more importance should be given
to more recent events than to older ones. In the following we present a
variant of Online Heuristics Miner able to do that.

Online Heuristics Miner with Aging (Evolving Streams)

The idea, in this case, is to decrease the weights for the events (and rela-
tions) over time when they are not observed. So, every time a new event
is observed, only the weight of its activity (and observed succession) is
increased, all the others are reduced. Given an “aging factor” α ∈ [0, 1),
the weight functions fWA (for activities) and fWR (for succession relations)
are modified so to replace all the occurrences of w on the right side of the
equality with αw:

fWA((a,w)) =

{
(a, (αw) + 1) if first(QA) = (a,w)

(a,αw) otherwise

fWR((a,b,w)) =

{
(a,b, (αw) + 1) if first(QR) = (a,b,w)

(a,b,αw) otherwise

The basic idea of these new functions is to decrease the “history” (i.e.,
the current number of observations) by an aging factor α (in the formula:
αw) before increasing it by 1 (the new observation).

These new functions decrease all the weights associated to either an
event or a succession relation according to the aging factor α which deter-
mines the “speed” in forgetting an activity or succession relation, however
the most recent observation (the first in the respective queue) is increased
by 1. Notice that, if an activity or succession relation is not observed for
t time steps, its weight becomes αt. Thus the value of α allows to control

188

the speed of “forgetting”: the closer α is to 0 the faster the weight associ-
ated to an activity (or succession relation) that has not been observed for
some time goes to 0, thus to allow the miner to assign larger values to
recent events. In this way the miner is more sensitive to sharp variations
of the event distribution (concept shift); however the output (generated
models) may be less stable because the algorithm becomes more sensitive
to random fluctuations of the sampling distribution. When the value of
α is close to 1, activities that have not been observed recently, but were
seen more often some time ago, are able to retain their significance, thus
allowing the miner to be able to cope with mild variations of the event
distribution (concept drift), but not so reactive in case of concept shift.

One drawback of this approach is that, while it is able to “forget” old
events, it is not able, at time t, to preserve precise statistics for the last
k observations and to completely drop observations occurred before time
t− k. This ability could be useful in case a sudden drastic change in the
event distribution.

Online Heuristics Miner with Self-Adapting Aging (Evolving Stream)

The third approach explored in this section introduces α as a parameter to
control the importance of the “history” for the mining: the closer it is to
1, the more importance is given to the history. The value of α, should be
decided according to the known degree of “not-stationarity” of the stream;
however, this information might not be available or it might not be fixed
(for example, the process is stationary for a period, then it evolves, and
then it becomes stationary again). To handle these cases, it is possible to
dynamically adapt the value of α. In particular, the idea is to lower the
value of α when a drift is observed and to increase it when the stream seems to be
stationary.

A possible approach to detect the drift is to monitor for variations
on the fitness value. This measure, evaluated at a certain period, can
be considered as the amount of events (considering only the latest ones)
that the current mined process is able to explain. When the fitness value
changes drastically, it is likely that a drift has occurred. Using the drift
detection, it is possible to adapt α according to the following rules:

• if the fitness decreases (i.e. there is a drift) α should decreases too (up
to 0), in order to allow the current model to adapt to the new data;

• if the fitness remains unchanged (i.e. it is within a small interval), it
means that there is no drift so the value of α should be increased (up
to 1);

• if the fitness increases, α should be increased too (up to 1).

189

The experiments, presented on the next section, consider only variations
of α by a constant factor. Alternative update policies (e.g. making the
speed of change of α proportional to the observed fitness change) can be
considered and is in fact a topic of future investigations.

Early explorations seem to reveal that the effectiveness of the α update
policy heavily depends on the problem type (i.e. characteristics of the
event of stream), however this topic still requires more investigations.

8.2.3 Stream Process Mining with Lossy Counting (Evolving
Stream)

The approach presented in this section is an adaptation of an existing tech-
nique, used for approximate frequency count. In particular, we modified
the “Lossy Counting” algorithm described in [95]. We preferred this ap-
proach to Sticky Sampling (described in the same paper) since authors
stated that, in practice, Lossy Counting performs better. The entire proce-
dure is presented in Algorithm 10.

The basic idea of Lossy Counting algorithm is to conceptually divide
the stream into buckets of width w =

⌈
1
ε

⌉
, where ε ∈ (0, 1) is an error

parameter. The current bucket (i.e., the bucket of the last element seen) is
identified with bcurrent =

⌈
N
w

⌉
, where N is the progressive events counter.

The basic data structure used by Lossy Counting is a set of entries of
the form (e, f,∆) where: e is an element of the stream; f is the estimated
frequency of the item e; and ∆ is the maximum possible error. Every
time a new element e is observed, the algorithm looks whether the data
structure contains an entry for the corresponding element. If such entry
exists then its frequency value f is incremented by one, otherwise a new
tuple is added: (e, 1,bcurrent − 1). Every time N ≡ 0 mod w, the algorithm
cleans the data structure by removing the entries that satisfy the following
inequality: f+ ∆ ≤ bcurrent. Such condition ensures that, every time the
cleanup procedure is executed, bcurrent ≤ εN.

This algorithm has been adapted to the SPD problem, using three in-
stances of the basic data structure. In particular, it counts the frequencies
of the activities (with the data structure DA) and the frequencies of the
direct succession relations (with the data structure DR). In order to obtain
the relations, a third instance of the same data structure is used, DC. In
DC, each item is of the type (c,a, f,∆) where c ∈ C represent the case
identifier; f and ∆, as in previous cases, respectively correspond to the
frequency and to the bucket id; and a ∈ A is the latest activity observed
on the corresponding case. Every time a new activity is observed, DA is
updated. After that, the procedure checks if, given the case identifiers of
the current event, there is an entry in DC. If this is not the case a new entry

190

Algorithm 10: Lossy Counting HM
Input: S event stream; N the bucket counter (initially value 1); DA activities set; DC cases set;

DR relations set; generateModel(·, ·).
1 w← ⌈

1
ε

⌉
/* define the bucket width */

2 forever do
3 bcurrent =

⌈
N
w

⌉
/* define the current bucket id */

4 e← observe(S) /* observe a new event, where e = (ci,ai,∆i) */

/* update the DA data structure */
5 if ∃(a, f,∆) ∈ DA such that a = ai then
6 Remove the entry (a, f,∆) from DA
7 DA ← (a, f+ 1,∆) /* updates the frequency of element ai */

8 else
9 DA ← DA ∪ {(ai, 1,bcurrent − 1)} /* inserts the new observation */

10 end

/* update the DC data structure */
11 if ∃(c,a, f,∆) ∈ DC such that c = ci then
12 Remove the entry (c,a, f,∆) from DC
13 DC ← (c,ai, f+ 1,∆) /* updates the frequency and last activity of

case ci */

/* update the DR data structure */
14 Build relation ri as a→ ai
15 if ∃(r, f,∆) ∈ DR such that r = ri then
16 Remove the entry (r, f,∆) from DR
17 DR ← (r, f+ 1,∆) /* updates the frequency of element ri */

18 else
19 DR ← DR ∪ {(ri, 1,bcurrent − 1)} /* adds the new observation */
20 end
21 else
22 DC ← DC ∪ {(ci,ai, 1,bcurrent − 1)} /* adds the new observation */
23 end

/* periodic cleanup */
24 if N = 0 mod w then
25 foreach (a, f,∆) ∈ DA such that f+∆ ≤ bcurrent do
26 Remove (a, f,∆) from DA
27 end
28 foreach (c,a, f,∆) ∈ DC such that f+∆ ≤ bcurrent do
29 Remove (c,a, f,∆) from DC
30 end
31 foreach (r, f,∆) ∈ DR such that f+∆ ≤ bcurrent do
32 Remove (r, f,∆) from DR
33 end
34 end

35 N← N+ 1 /* increments the bucket counter */

/* generate model */
36 if model then
37 generateModel(DA,DR)
38 end
39 end

191

is added to DC (by adding the current case id and the activity observed).
Otherwise, the f and a components of the entry in DC are updated.

The Heuristics Miner can be used to generate the model, since a set of
dependencies between activities is available.

8.3 Error Bounds on Online Heuristics Miner

If we assume a stationary stream, i.e. a stream where the distribution of
events does not change with time (no concept drift), then it is possible
to give error bounds on the measures computed by the online version of
Heuristics Miner.

In fact, let consider an execution of the online Heuristics Miner on the
stream S. Let QA(t), QC(t), and QR(t) be the content of the queues used
by Algorithm 9 at time t. Let caseoverlap(t) = {c ∈ C | tstart(c) ≤ t∧ tend(c) ≥
t} be the set of cases that are active at time t; ∆c = maxt |caseoverlap(t)|;
nc(t) be the cumulative number of cases which have been removed from
QC(t) during the time interval [0, t]; and nc(t) = |QC(t)|+ nc(t). Given
two activities a and b, let ρab ∈ [0, ξab] be the random variable reporting
the number of successions (a,b) contained in a randomly selected trace
in S. With AS and RS we denote the set of activities and successions,
respectively, observed for the entire stream S. Then it is possible to state
the following theorem:

Theorem 8.1 (Error bounds). Let (a ⇒S b), a ⇒S (b∧ c), be the measures
computed by the Heuristics Miner algorithm on a time-stationary stream S, and
(a ⇒St0

b), a ⇒St0
(b∧ c), be the measures computed at time t by the online

version of the Heuristics Miner algorithm on the stream S. If maxA ≥ |AS|,
maxR ≥ |RS|, maxC ≥ ∆c, then with probability 1 − δ the following bounds
hold:

(a⇒S b)

(
E[ρab + ρba]

E[ρab + ρba] + εab(t) +
1

nc(t)

)
−

εab(t)

E[ρab + ρba] + εab(t) +
1

nc(t)

≤ (a⇒St0
b)

(a⇒St0
b) ≤ (a⇒S b)

(
E[ρab + ρba]

E[ρab + ρba] − εab(t) +
1

nc(t)

)
+

εab(t)

E[ρab + ρba] − εab(t) +
1

nc(t)

192

And, similarly, for a⇒ (b∧ c):

(a⇒S (b∧ c))

(
E[ρbc + ρcb]

E[ρab + ρac] + εabc(t) +
1

nc(t)

)
−

εbc(t)

E[ρab + ρac] + εabc(t) +
1

nc(t)

≤ (a⇒St0
(b∧ c))

(a⇒St0
(b∧ c)) ≤ (a⇒S (b∧ c))

(
E[ρbc + ρcb]

E[ρbc + ρcb] − εabc(t) +
1

nc(t)

)
+

εbc(t)

E[ρab + ρac] − εabc(t) +
1

nc(t)

where ∀d, e, f ∈ AS, εde(t) =
√

(ξde+ξed)2 ln(2/δ)
2nc(t) , εdef(t) =

√
(ξde+ξdf)2 ln(2/δ)

2nc(t) ,
and E[x] is the expected value of x.

Proof. Let consider the Heuristics Miner definition (a⇒S b) =
|a>Sb|−|b>Sa|

|a>Sb|+|b>Sa|+1

(as presented in Equation 5.1). Let Nc be the number of cases contained in
St0, then

(a⇒St0
b) =

|a >St0
b|− |b >St0

a|

|a >St0
b|+ |b >St0

a|+ 1
=

|a>
St
0
b|−|b>

St
0
a|

Nc
|a>

St
0
b|+|b>

St
0
a|

Nc
+ 1
Nc

and

(a⇒S b) = lim
Nc→+∞

|a>
St
0
b|−|b>

St
0
a|

Nc
|a>

St
0
b|+|b>

St
0
a|

Nc
+ 1
Nc

=
E[ρab − ρba]

E[ρab + ρba]
.

We recall that X =
|a>

St
0
b|−|b>

St
0
a|

Nc
is the mean of the random variable X =

(ρab − ρba) computed over Nc independent observations, i.e. traces, and
that X ∈ [−ξba, ξab]. We can then use the Hoeffding bound [76] that states
that, with probability 1− δ

∣∣X− E[X]
∣∣ < εX =

√
r2X ln

(
2
δ

)
2Nc

,

where rX is the range of X, which in our case is rX = (ξab + ξba).
By using the Hoeffding bound also for the variable Y = (ρab + ρba), we

can state that with probability 1− δ

E[X] − εX

E[Y] + εY +
1
Nc

≤ X

Y + 1
Nc

= (a⇒St0
b),

193

Figure 8.3. Model 1. Process model used to generate the stationary stream.

which after some algebra can be rewritten as

E[X]

E[Y]

(
E[Y]

E[Y] + εY +
1
Nc

)
−

εX

E[Y] + εY +
1
Nc

≤ (a⇒St0
b)

By observing that (a ⇒S b) = E[X]
E[Y] , rX = rY = (ξab + ξba), and that at

time t, under the theorem hypotheses, no information is removed from
the queues and Nc = nc(t), the first bound is proved. The second bound
can be proved starting from

(a⇒St0
b) ≤ E[X] + εX

E[Y] − εY +
1
Nc

.

The last two bounds can be proved in a similar way by considering
X = (ρbc + ρcb) ∈ [0, ξbc + ξcb] and Y = (ρab + ρac) ∈ [0, ξab + ξac], which

leads to εX =
√

(ξbc+ξcb)2ln(2/δ)
2Nc

and εY =
√

(ξab+ξac)2ln(2/δ)
2Nc

.

Similar bounds can be obtained also for the other measures computed
by Heuristics Miner. From the bounds it is possible to see that, with the
increase of the number of observed cases nc(t), both 1

nc(t) and the errors
εab(t) and εabc(t) go to 0 and the measures computed by the online ver-
sion of Heuristics Miner consistently converge to the “right” values.

8.4 Results

The algorithms presented in this chapter have been tested using four
datasets: event logs from two artificial processes (one stationary and one
evolving); a synthetic example; and a real event log.

8.4.1 Models description

The two artificial processes are shown in Figure 8.3 and Figure 8.4, both are
described in terms of a as Petri Net. The first one describes the complete

194

Figure 8.4. Model 2. The three process models that generate the evolv-
ing stream. Red rounded rectangles indicate areas subject to
modification.

Register

Create Ques�onnaire

Decide High/Low

Send Ques�onnaire

Archive

Skip Response

Receive Response

High Claim Split

High
Insurance Check

High Medical
History Check

Contact Hospital

High Claim Join

Low Claim
Split

Low Medical
History Check

Low Insurance
Check

Low Claim
Join

Prepare
No�fica�on

By Phone

By Email

By Post

No�fica�on Sent

Figure 8.5. Model 3. The first variant of the third model. Red rounded
rectangles indicate areas that will be subject to the modifica-
tions.

model (Model 1) that is simulated to generate the stationary stream. The
second one (Model 2) presents the three models which are used to generate
three logs describing an evolving stream. In this case, the final stream is
generated considering the hard shift of the three logs generated from the
single process executions.

The synthetic example (Model 3) is reported in Figure 8.5. This exam-
ple is taken from [15, Chap. 5] and is expressed as a YAWL [153] process.
This model describes a possible health insurance claim process of a travel
agency. This example is modified 4 times so, at the end, the stream con-
tains traces from 5 different processes. Also in this case the type of drift is
shift. Due to space limitation, only the first process is presented and the
red rectangles indicate areas that are modified over time.

8.4.2 Algorithms Evaluation

The streams generated from the described models are used for the evalua-
tion of the presented techniques. There are various metrics to evaluate the

195

process models with respect to an event log. Typically four quality dimen-
sions are considered for comparing model and log: (a) fitness, (b) simplic-
ity, (c) precision, and (d) generalization [142, 144]. In order to measure how
well the model describes the log without allowing the reply of traces not
generated by the target process, here we measure the performance both in
terms of fitness (computed according to [1]) and in terms of precision (com-
puted according to [103]). The first measure reaches its maximum when
all the traces in the log are properly replied by the model, while the sec-
ond one prefers models that describe a “minimal behavior” with respect
to all the models that can be generated starting from the same log. In all
experiments, the fitness and precision measures are computed over the last
x observed events (where x varies according to log size), q refers to the
maximum size of queues, and default parameters of Heuristics Miner, for
model generation, are used.

The main characteristics of the three streams are:

• Streams for Model 1: 3448 events, describing 400 cases;

• Streams for Model 2: 4875 events, describing 750 cases (250 cases and
2000 events for the first process model, 250 cases and 1750 events for
the second, and 250 cases with 1125 events for the third one);

• Stream for Model 3: 58783 events, describing 6000 cases (1199 cases
and 11838 events for the first variant; 1243 cases and 11690 events
for the second variant; 1176 cases and 12157 events for the third
variant; 1183 cases and 10473 events for the fourth variant; and 1199

cases and 12625 events for the fifth variant).

We compare the basic approaches versus the different online versions of
stream miner, against the different streams.

Figure 8.6 reports the aggregated experimental results for five streams
generated by Model 1. The two charts on top report the averages of the
fitness (left) and the variance (right) for the two basic approaches and the
Online HM. The presented values are calculated varying the size of the
window used to perform the mining (in the case of Online HM it’s the
size of the queues), and the number of events used to calculate the fitness
measure (i.e. only the latest x events are supposed to fit the model). For
each combination (number of events for the mining and number of events
for fitness computation) a run of the miner has been executed (for each
of the five streams) and the average and variance values of the fitness
(which is calculated every 50 events observed) are reported. It is clear,
from the plot, that the Online HM is outperforming the basic approaches,
both in terms of speed in finding a good model and in terms of fitness

196

50100 250 500 750 1000

50100
250

500
750

1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Periodic Resets HM
Sliding Windows HM

Online HM

Window size for mining

Log size for fitness

Fi
tn

es
s

Online HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

50100

250

500

750

1000

Lo
g

si
ze

 f
o

r
fi

tn
es

s

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Sliding Windows HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

Mining window size

50100

250

500

750

1000

Lo
g

si
ze

 f
o

r
fi

tn
es

s

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Periodic Resets HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

Mining window size

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Online HM
Online HM w/ Self Adap�ng Aging

Lossy Coun�ng HM
Online HM w/ Aging (α = 0.997)

Online HM w/ Aging (α = 0.9985)

0.99

1

 0 500 1000 1500 2000 2500 3000 3500

Events observed

α (Online HM w/ Self Adap�ng Aging)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 500 1000 1500 2000 2500 3000 3500

Fi
tn

es
s

Events observed

Online HM
Lossy Coun�ng HM

Sliding Windows HM (q = 100; x = 200)

Periodic Resets HM (q = 100; x = 200)
Sliding Windows HM (q = 750; x = 750)

Periodic Resets HM (q = 750; x = 750)

Figure 8.6. Aggregated experimental results for five streams generated by
Model 1. Top: average (left) and variance (right) values of fit-
ness measures for basic approaches and the Online HM. Bot-
tom: evolution in time of average fitness for Online HM with
queues size 100 and log size for fitness 200; curves for HM
with Aging (α = 0.9985 and α = 0.997), HM with Self Adapt-
ing (evolution of the α value is shown at the bottom), Lossy
Counting and different configurations of the basic approaches
are reported as well.

of the model itself. The bottom of the figure presents, on the left hand
side, a comparison of the evolution of the average fitness of the Online
HM, the HM with Aging (α = 0.9985 and α = 0.997), the HM with Self
Adapting approach and Lossy Counting. For these runs a queues size
of 100 have been used and, for the fitness computation, the latest 200
events are considered. In this case, the lossy counting considers an error
value ε = 0.01. The right hand side of Figure 8.6 compares the basic
approaches, with different window and fitness sizes against the Online
HM and the Lossy Counting approach. As expected, since there is no
drift, the Online HM outperforms the versions with aging. In fact, HM

197

50100 250 500 750 1000

50100
250

500
750

1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Periodic Resets HM
Sliding Windows HM

Online HM

Window size for mining

Log size for fitness

Fi
tn

es
s

Online HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

50100

250

500

750

1000

Lo
g

si
ze

 f
o

r
fi

tn
es

s

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Sliding Windows HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

Mining window size

50100

250

500

750

1000

Lo
g

si
ze

 f
o

r
fi

tn
es

s

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Periodic Resets HM

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

Mining window size

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Dri�s Online HM
Online HM w/ Self Adap�ng Aging

Lossy Coun�ng HM
Online HM w/ Aging (α = 0.997)

0.99

1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Events observed

α (Online HM w/ Self Adap�ng Aging)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fi
tn

es
s

Events observed

Dri�s

Online HM
Lossy Coun�ng HM

Sliding Windows HM (q = 100, x = 200)

Periodic Resets HM (q = 100, x = 200)
Sliding Windows HM (q = 750, x = 750)

Periodic Resets HM (q = 750, x = 750)

Figure 8.7. Aggregated experimental results for five streams generated by
evolving Model 2. Top: average (left) and variance (right) values
of fitness measures for basic approaches and Online HM. Bot-
tom: evolution in time of average fitness for Online HM with
queues size 100 and log size for fitness 200; curves for HM
with Aging (α = 0.997), HM with Self Adapting (evolution of
the α value is shown at the bottom), Lossy Counting and dif-
ferent configurations of the basic approaches are reported as
well. Drift occurrences are marked with vertical bars.

with aging beside being less stable, degrades performances as the value
of α decreases, i.e. less importance is given to less recent events. This
is consistent with the bad performance reported for the basic approaches
which can exploit only the most recent events contained in the window.
The self adapting strategy, after an initial variation of the α parameter, is
able to converge to the Online HM by eventually choosing a value of α
equals to 1.

Figure 8.7 reports the aggregated experimental results for five streams
generated by Model 2. In this case we adopted exactly the same experi-
mental setup, procedure and results presentation as described before. In

198

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Sliding Windows HM (q = 1000; x = 1000)
Periodic Resets HM (q = 1000; x = 1000)

Online HM (win. 1000; fit. 1000)

Online HM w/ Self Adap�ng Aging (q = 1000; x = 1000)
Lossy Coun�ng HM (ε = 0.01; x = 1000)

0.98

0.99

1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Events observed

α (Online HM w/ Self Adap�ng Aging)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Fi
tn

es
s

Events observed
Lossy Coun�ng HM (ε = 0.01; x = 1000)

Lossy Coun�ng HM (ε = 0.025; x = 1000)
Lossy Coun�ng HM (ε = 0.05; x = 1000)

Figure 8.8. Detailed results of the basic approaches, Online HM, HM with
Self Adapting and Lossy Counting (with different configura-
tions) on data of Model 3. Vertical gray lines indicate points
where concept drift occur.

addition, the occurrences of drift are marked. As expected, the perfor-
mance of Online HM decreases at each drift, while HM with Aging is able
to recover from the drifts. The price paid for this ability is a less stable
behavior. HM with Self Adapting aging seems to be the right compromise
being eventually able to recover from the drifts while showing a stable
behavior. The α curve shows that the self adapting strategy seems to be
able to detect the concept drifts.

The Model 3, with the synthetic example, has been tested with the
basic approaches (Sliding Windows and Periodic Resets), the Online HM,
the HM with Self Adapting and the Lossy Counting and the results are
presented in Figure 8.8. In this case, the Lossy Counting and the Online
HM outperform the other approaches. Lossy Counting reaches higher

199

50

75

100

125

150

q, x = 10 q, x = 100 q, x = 500 q, x = 1000

Sp
ac

e
re

q
u

ir
em

en
t

(M
B

)

Configura�ons

Online HM
Online HM w/ Self Adap�ng Aging

Sliding Windows HM
Periodic Resets HM

ε = 0.1 ε = 0.05 ε = 0.01
50

75

100

125

150

Configura�ons (fitness size set to 1000)

Lossy Coun�ng HM

Figure 8.9. Average memory requirements, in MB, for a complete run over
the entire log of Model 3, of the approaches (with different
configurations).

fitness values, however Online HM is more stable and seems to better
tolerate the drifts. The basic approaches and the HM with Self Adapting,
on the other hand, are very unstable; moreover it is interesting to note
that the value of α, of the HM with Self Adapting, is always close to 1.
This indicates that the short stabilities of the fitness values are sufficient
to increase α, so the updating policy (i.e. the increment/decrement speed
of α) presented, for this particular case, seems to be too fast. The second
graph, on the bottom, presents three runs of the Lossy Counting, with
different values for ε. As expected, the lower the value of the accepted
error, the better the performances.

Due to the size of this dataset, it is interesting to evaluate the perfor-
mance of the approaches also in terms of space and time requirements.

Figure 8.9 presents the average memory required by the miner during
the processing of the entire log. Different configurations are tested, both
for the basic approaches with the Online HM and the HM with Self Adapt-
ing, and the Lossy Counting algorithm. Clearly, as the windows grow,
the space requirement grows too. For what concerns the Lossy Count-
ing, again, as the ε value (accepted error) becomes lower, more space is
required. If we pick the Online HM with window 1000 and the Lossy
Counting with ε 0.01 (from Figure 8.8, both seem to behave similarly)
the Online HM consumes less memory: it requires 128.3 MB whereas the
Lossy Counting needs 143.8. Figure 8.10 shows the time performance of
different algorithms and different configurations. It is interesting to note,
from the chart at the bottom, that the time required by the Online and
the Self Adapting is almost independent of the configurations. Instead,
the basic approaches need to perform more complex operations: the Peri-
odic Reset has to add the new event and, sometimes, it resets the log; the
Sliding Window has to update the log every time a new event is observed.

200

1

10

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

P
ro

ce
ss

in
g

�
m

e
p

er
 e

ve
n

t
(m

s)

Events observed

Sliding Windows HM (q = 1000; x = 1000)
Periodic Resets HM (q = 1000; x = 1000)

Online HM (q = 1000; x = 1000)

Online HM w/ Self Adap�ng Aging (q = 1000; x = 1000)
Lossy Coun�ng HM (ε = 0.01; x = 1000)

0

2

4

6

8

10

12

14

q, x = fit. 10 q, x = 100 q, x = 500 q, x = 1000

A
ve

ra
ge

 p
ro

ce
ss

in
g

�
m

e
(m

s)

Configura�ons

Online HM
Online HM w/ Self Adap�ng Aging

Sliding Windows HM
Periodic Resets HM

Figure 8.10. Time performances over the entire log of Model 3. Top: time
required to process a single event by different algorithms (log-
arithmic scale). Vertical gray lines indicate points where con-
cept drift occur. Bottom: average time required to process an
event over the entire log, with different configurations of the
algorithms.

In order to study the dependence of the storage requirements of Lossy
Counting with respect to the error parameter ε, we have run experiments
on the same log for different values of ε, recording the maximum size
of the Lossy Counting sets during execution. Results for x = 1000 are
reported in Figure 8.11. Specifically, the figure compares the maximum
size of the generated sets, the average fitness value and the average precision
value. As expected, as the value of ε becomes larger, both the fitness value
and the sets size quickly decrease. The precision value, on the contrary,
initially decreases and then goes up to very high values. This indicates an
over-specialization of the model to specific behaviors.

As an additional test, we decide to compare the proposed algorithms
under extreme storage conditions which do allow only to retain limited
information about the observed events. Specifically, Table 8.1 reports the

201

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε = 0.01

ε = 0.025

ε = 0.05

ε = 0.075

ε = 0.1

ε = 0.15

ε = 0.2

ε = 0.25

ε = 0.3

0

20

40

60

80

100

120

140

160

180

200

Fi
tn

es
s

/
P

re
ci

si
o

n

M
ax

im
u

m
 s

et
s

si
ze

Queues size
Average fitness

Average precision

Figure 8.11. Comparison of the average fitness, precision and space re-
quired, with respect to different values of ε for the Lossy
Counting HM executed on the log generated by Model 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

Online HM (q = 100; x = 200)
Online HM w/ Self Adap�ng Aging (q = 100; x = 200)

Lossy Coun�ng HM (ε = 0.01; x = 200)

Online HM w/ Aging (α = 0.998)
Sliding Windows HM (q = 750; x = 750)

Periodic Resets HM (q = 750; x = 750)

0.99

1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Events observed

α (Online HM w/ Self Adap�ng Aging)

Figure 8.12. Fitness performance on the real stream dataset by different
algorithms.

average time required to process a single event, average fitness and precision
values when queues with size 10 and 100, respectively, are used. For
Lossy Counting we have used an ε value which approximately requires
sets of similar sizes. Please note that, for this log, a single process trace
is longer than 10 events so, with a queue of 10 elements it is not possible
to keep in queue all the events of a case (because events of different cases
are interleaved). From the results it is clear that, under these conditions,
the order of occurrence of the algorithms in the table (column order) is
inversely proportional to all the evaluation criteria (i.e. execution time,
fitness, precision).

The online approaches presented in this work have been tested also
against a real dataset and results are presented in Figure 8.12. The re-
ported results refer to 9000 events generated from the document man-
agement system, by Siav S.p.A., and run on an Italian bank institute. The

202

Q
ue

ue
si

ze

Sl
id

in
g

W
in

do
w

H
M

Lo
ss

y
C

ou
nt

in
g

H
M

O
nl

in
e

H
M

w
it

h
A

gi
ng

O
nl

in
e

H
M

q = 10

Average Time (ms) 4.66 2.61 2.11 1.97
Average Fitness 0.32 0.28 0.32 0.32

Average Precision 0.44 0.87 0.38 0.38

q = 100

Average Time (ms) 5.79 2.85 1.99 1.91
Average Fitness 0.32 0.51 0.42 0.74

Average Precision 0.42 0.65 0.68 0.71

Table 8.1. Performance of different approaches with queues/sets size of
q = 10 and q = 100 elements and x = 1000. Online HM with
Aging uses α1/q = 0.9. Time values refer to the average number
of milliseconds required to process a single event of the stream
generated by Model 3.

observed process contains 8 activities and is assumed to be stationary. The
mining is performed using a queues size of 100 and, for the fitness com-
putation, the latest 200 events are considered. The behavior of the fitness
curves seems to indicate that some minor drifts occur.

As stated before, the main difference between Online HM and Lossy
Counting is that, whereas the main parameter of Online HM is the size
of the queues (i.e. the maximum space the application is allowed to use),
the ε parameter of Lossy Counting cannot control the memory occupancy
of the approach. Figure 8.13 proposes two comparisons of the approaches
with two different configurations, against the real stream dataset. In par-
ticular we defined the two configurations so that the average memory re-
quired by Lossy Counting and Online HM are very close. The results pre-
sented are actually the average values over four runs of the approaches.
Please note that the two configurations validates the fitness against differ-
ent window sizes (in the first case it contains 200 events, in the second one
1000) and this causes the second configuration to validate results against
a larger history.

The top part of the figure presents a configuration that uses, on aver-
age, about 100MB. To obtain these performances, several tests have been
made and, at the end, for Lossy Counting these parameters have been
used: ε : 0.2, fitness queue size: 200. For Online HM, the same fitness is
used, but the queue size is set to 500. As the plot shows, it is interesting
to note that, in terms of fitness, this configuration is absolutely enough for

203

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

0

50

100

150

200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sp
ac

e
re

q
u

ir
em

en
t

(M
B

)

Events observed

Avgs

Lossy Coun�ng HM Online HM

(a) Configuration that requires about 100MB. Lossy Counting: ε : 0.2, fitness queue size:
200; Online HM: queue size: 500, fitness queue size: 200.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s

0

50

100

150

200

250

300

350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sp
ac

e
re

q
u

ir
em

en
t

(M
B

)

Events observed

Avgs

Lossy Coun�ng HM Online HM

(b) Configuration that requires about 170MB. Lossy Counting: ε : 0.01, fitness queue size:
1000; Online HM: queue size: 1500, fitness queue size: 1000.

Figure 8.13. Performances comparison between Online HM and Lossy
Counting, in terms of fitness and memory consumption.

the Online HM approach instead, for Lossy Counting, it is not. The sec-
ond plot, at the bottom, presents a different configuration that uses about
170MB. In this case, the error (i.e. ε) for Lossy Counting is set to 0.01, the
queue size of Online HM is set to 1500 and, for both, the fitness queue size
is set to 1000. In this case the two approaches generate really close results,
in terms of fitness.

As final consideration, this empirical evaluation clearly shows that –at
least in our real dataset– both Online HM and Lossy Counting are able to

204

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

P
re

ci
si

o
n

Events observed

Online HM (q = 1000; x = 2000)
Online HM w/ Self Adap�ng Aging (q = 1000; x = 2000)

Lossy Coun�ng HM (ε = 0.01; x = 2000)

Sliding Windows HM (q = 1000; x = 2000)
Periodic Resets HM (q = 1000; x = 2000)

Figure 8.14. Precision performance on the real stream dataset by different
algorithms.

reach very high performances, however the Online is able to better exploit
the information available with respect to the Lossy Counting. In partic-
ular, Online HM considers only a finite number of possible observations
(depending on the queue size) that, in this particular case, are sufficient
to mine the correct model. The Lossy Counting, on the contrary, keeps all
the information for a certain time-frame (obtained starting from the error
parameter) without considering how many different behaviors are already
seen.

Note on fitness measure The usage of fitness for the evaluation of
stream process mining algorithms seems to be an effective choice. How-
ever, this might not always be the case: let’s consider two very different
processes P ′ and P ′′ and a stream composed of events generated by alter-
nate executions of P ′ and P ′′. Under specific conditions, the stream miner
will generate a model that contains both P ′ and P ′′, connected by an initial
XOR-split and merged with a XOR-join. This model will have a very high
fitness value (it can replay traces from both P ′ and P ′′), however the mined
model is not the one expected, i.e. the alteration in time of P ′ and P ′′ is
not reflected well.

In order to deal with the problem just presented, we propose the per-
formances of some approaches also in terms of “precision”. This measure
is thought to prefer models that describe a “minimal behavior” with re-
spect to all the model that can be generated starting from the same log. In
particular we used the approach by Muñoz-Gama and Carmona described
in [103]. Figure 8.14 presents the precision calculated for four approaches
during the analysis of the dataset of real events. It should not surprise
to notice that the stream specific approaches reach very good precision
values, whereas the basic approach with periodic reset needs to recom-
pute, every 1000 events, the model from scratch. It is interesting to note
that both Online HM and Lossy Counting are not able to reach the top

205

values, whereas the Self adapting one, after some time, reaches the best
precision, even if its value fluctuates a bit. The basic approach with sliding
window, instead, seems to behave quite nicely, even if the stream specific
approaches outperform it.

8.5 Summary

In this chapter, we addressed the problem of discovering processes for
streaming event data having different characteristics, i.e. stationary streams
and streams with drift.

First, we considered basic window-based approaches, where the stan-
dard Heuristics Miner algorithm is applied to statics logs obtained by us-
ing a moving window on the stream (we considered two different policies).
Then we introduced a framework for stream process mining which allows
the definition of different approaches, all based on the dependencies be-
tween activities. These can be seen as online versions of the Heuristics
Miner algorithm and differentiate from each other in the way they assign
importance to the observed events. The Online HM, an incremental ver-
sion of the Heuristics Miner, gives the same importance to all the observed
events, and thus it is specifically apt to mine stationary streams. HM with
Aging gives less importance to older events. This is obtained by weighting
the statistics of an event by a factor, the α value, which exponentially de-
creases with the age of the event. Because of that, this algorithm is able to
cope with streams exhibiting concept drift. The choice of the “right” value
for α, however, is difficult and different values for α could also be needed
at different times. To address this issue, we finally introduce Heuristics
Miner able to automatically adapt the aging factor on the basis of the de-
tection of concept drift (HM with Self Adapting). Finally, we adapted a
standard approach (Lossy Counting) to our problem.

Experimental results on artificial, synthetic and real data show the ef-
ficacy of the proposed algorithms with respect to the basic approaches.
Specifically, the Online HM turns out to be a quite stable and performs
well for streams, especially when stationary streams are considered, while
HM with Self Adapting aging factor and the Lossy Counting seem to be
the right choice in case of concept drift. The largest log has been used also
for measuring performance in terms of time and space requirements.

206

Part IV

Tools and Conclusions

208

Chapter 9

Process and Log Generator

This chapter is based on results published in [21].

Evaluating Process Mining algorithms may require the availability of
a suite of real-world business processes and their execution logs, which
might be hardly available.

In this chapter we present an approach for the random generation of
business processes and their execution logs. The proposed technique is
based on the generation of process descriptions via a stochastic context-
free grammar whose definition is based on well-known process patterns.
An algorithm for the generation of execution instances is proposed as well.

9.1 Getting Started: a Process and Logs Generator

A critical issue concerning Process Mining algorithms is the evaluation of
their performance, i.e., how well the reconstructed process model matches
the actual process? The ideal setting to perform this evaluation requires
the availability of an as-large-as-possible suite of business processes. Ac-
tually, not only the business process models are required, but also one
or, preferably, more logs created according to the process they refer to.
Starting from them, different Process Mining algorithms can be evaluated
by checking the corresponding results of the mining against the original
models. Figure 9.1 shows visual representation of such evaluation “cycle”.

Unfortunately, it is often the case that just one (partial) log file is avail-
able, while no clear definition of the business process that generated the
log is available. This is because many companies are reluctant to publicly
distribute their own business process data, and so it is difficult to build up
a suite of publicly available business process logs for evaluation purposes.
Of course, the lack of extended Process Mining benchmarks is a serious
obstacle for the development of new and more effective Process Mining
algorithms. A way around this problem is to try to generate “realistic”
business process models together with their execution logs.

We present a new tool developed for the specific purpose of generating

209

Process models

Executions Process logs

Mined process models

Process Mining

Evaluation results of Process Mining algorithm

Figure 9.1. The typical “evaluation cycle” for Process Mining algorithms.

benchmarks. This tool is called “Processes Logs Generator” (or PLG). It
allows to:

1. generate random (hopefully “realistic”) business process models (ac-
cording to some specific user-defined parameters);

2. “execute” the generated process and register each executed activity
in log files.

It is important to stress that in designing PLG, we aimed at two main
results: i) the generation of “realistic” processes, i.e. process models that
resemble as much as possible real-world processes; ii) independence from
specific representation formalisms, such as Petri nets. The first issue was
addressed by using a top-down generation approach (via the definition of
a context-free grammar), where well-known workflow patterns are used
as building blocks. The probability that a pattern occurs into the gener-
ated process model is controlled by the user via parameters associated to
each pattern (i.e., we actually define a stochastic context-free grammar).
The second issue is addressed by the generation of a decorated depen-
dency graph as process model. From such decorated dependency graph it
is then possible to automatically generate specific formal models, such as
a Petri net. Summarizing, we generate a process model by first deriving
a string (i.e., a process description) via our (stochastic) context-free gram-
mar, and subsequently building up a decorated dependency graph from
that process description. The obtained dependency graph can then be fur-
ther transformed into a different formalism, such as a Petri net. Finally,
the dependency graph is used to generate traces for the process.

The idea to generate process models for evaluating Process Mining al-
gorithms is very recent. In [168], van Hee and Zheng, at the Eindhoven
University of Technology, present an approach to generate Petri Nets rep-
resenting processes. Specifically, they suggest to use a top-down approach,

210

based on a stepwise refinement of Workflow nets [158], to generate all pos-
sible process models belonging to a particular class of Workflow network
(Jackson nets). A related approach is presented in [11], where the authors
propose to generate Petri nets according to a different set of refinement
rules. In both cases, the proposed approach does not address the problem
of generating traces from the developed Petri Nets. Tools for the simula-
tion of Petri Nets, such as CPN Tolls [79, 120], allow to simulate Petri Net
and generate MXML logs [40], however, integrating the process generation
with their simulation resulted harder than expected.

9.1.1 The Processes Generation Phase

This section presents the procedure for the generation of a business pro-
cess. In the first subsection we introduce the model used for the descrip-
tion of a generic process and then we present the rules that are involved
in the actual generation phase.

The Model for the Process Representation

Since our final aim is the easy generation of models of business processes,
we decided to use a very general formalism for our process model de-
scription. Petri Net models are unambiguous and in-depth studied tools
for process modeling, however controlling the generation of a complex
process model via refinement of a Petri Net may not be so easy for an
inexperienced user. For this reason, we decided to model our processes
via dependency graphs. A dependency graph can be defined as a graph:

G = (V ,E,astart ∈ V ,aend ∈ V)

where V is the set of vertices and E is the set of edges. The two vertices
astart and aend are used to represent the “start” and the “end” activities of
the process model.

Each vertex represents an activity of the process (with all its possible
attributes, such as author, duration, . . .), while and edge e ∈ E going from
activity a1 to a2 represents a dependency relationship between the two
activities, i.e. a2 can start only after that activity a1 is completed. Let’s
now define, in a straightforward way, the concept of “incoming activities”
and of “exiting activities”.

Consider v ∈ V , the set of incoming activities is defined as:

in(v) = {vi | (vi, v) ∈ E}.

Consider v ∈ V , the set of exiting (or outgoing) activities is defined as:

out(v) = {vi | (v, vi) ∈ E}.

211

From these two definitions we can now define two other simple concepts.
Consider v ∈ V , the value of the fan-in for v is defined as: → deg(v) =

| in(v)|, i.e., the number of edges entering in v. Consider v ∈ V , the value
of the fan-in for v is defined as: deg→(v) = | out(v)|, i.e. the number of
edges exiting from v.

In order to be able to correctly represent i) a parallel execution of more
activities (AND); ii) a mutual exclusion among the execution of more ac-
tivities (XOR), we need to define the functions Tout : V → {AND, XOR} and
Tin : V → {AND, XOR} which have the following meaning: for any vertex
(i.e. activity) a with deg→(a) > 1, Tout(a) = AND specifies that the flow
has to jointly follows all the outgoing edges, while Tout(a) = XOR specifies
that the flow has to follow only one of the outgoing edges. Similarly, for
any activity a with → deg(a) > 1, Tin(a) = AND specifies that the activ-
ity has to wait the flow from all the incoming edges before to start, while
Tin(a) = XOR specifies that the activity has to wait the flow from just one
of the incoming edges before to start.

Using only these two basic types, we can model many real-cases, e.g.
a not-exclusive choice among activities a1, . . . ,an can be modeled by an
XOR activity where each outgoing edge leads to one AND activity for
each possible proper subset of the activities a1, . . . ,an.

Generation of Random Processes

The “decorated” dependency graphs just defined can be used as general
representations for the description of relations between activities. In this
work, however, we are interested in using them to describe business pro-
cesses that are assembled by some common and well-known basic “pat-
terns”. The basic patterns we consider are the followings (they correspond
to the first patterns described in [126]):

• the direct succession of two workflows;

• the execution of more workflows in parallel;

• the mutual exclusion choice between some workflows;

• the repetition of a workflows after another workflow has been exe-
cuted (as for “preparing” the repetition).

Clearly these patterns do not describe all the possible behaviors that can
be observed in reality, but we think that many realistic processes can be
generated from them.

The idea is to start from these simple patterns and to build a com-
plete process in terms of them. We implement this idea via a grammar

212

Symbols Meaning

() used for describing precedence of the operators

x;y sequential connection of x and y
x∧ y parameters executed in parallel (AND)
x⊗ y parameters executed in mutual exclusion (XOR)
x" y repetition of the first parameter x (the second one, y,

can be considered as a “rollback operation”)

astart “start-up” activity
aend “conclusion” activity
a, b, c . . . activity names

Table 9.1. All the terminal symbols of the grammar and their meanings.

whose productions are related with the patterns mentioned above. Specif-
ically, we define the context-free grammar GProcess = {V ,Σ,R,P}, where
V = {P,G,G ′,G",G∧,G⊗,A} is the set of the not-terminal symbols, Σ =

{; , (,),",∧,⊗,astart,aend,a,b, c, . . . } is the set of all terminals (their “inter-
pretation” is described in Table 9.1), and R is the set of productions:

P → astart ; G ; aend
G → G ′ | G"
G ′ → A | (G;G) | (A;G∧;A) | (A;G⊗;A)

G" → (G ′ " G)

G∧ → G∧G | G∧G∧

G⊗ → G⊗G | G⊗G⊗
A → a | b | c | . . .

and P is the starting symbol for the grammar.
Using the above grammar, a process is described by a string derived

from P. It must contain a starting and a finishing activity and, in the
middle, a sub-graph G. A sub-graph can be either a “single sub-graph”
or a “repetition of a sub-graph”. Let’s start from the first case: a sub-
graph G ′ can be a single activity A; the sequential execution of two sub-
graphs (G;G); or the execution of some activities in AND (A;G∧;A) or
XOR (A;G⊗;A) relation. It is important to note that the generation of
parallel and mutual exclusion edges is “well structured”, in the sense that
there is always a “split activity” and a “join activity” that starts and ends
the edges. It should also be mentioned that the system treats the two
patterns (A;G∧;A) and (A;G⊗;A) in a special way, since it sets the value
of Tout of the activity generated by the first occurrence of A to be equal to
the value of Tin of the activity generated by the second occurrence of A,

213

P

astart G

(G;G)

A

a

(G ′ " G)

(G;G)

A; (G∧G);A

b A

c

A

d

e

A

f

A

g

aend

Figure 9.2. Example of derivation tree. Note that, for space reason, we
have omitted the explicit representation of some basic produc-
tions.

i.e. AND for (A;G∧;A) and XOR for (A;G⊗;A).
The repetition of a sub-graph (G ′ " G) is described as follows: each

time we want to repeat the “main” sub-graph G ′, we have to perform
another sub-graph G; the idea is that G (that can even be only a single
activity) corresponds to the “roll-back” activities required in order to pre-
pare the system to repetition of G ′.

The structure of G∧ and G⊗ is simple and expresses the parallel ex-
ecution or the choice between at least 2 sub-graphs. Finally, A is the set
of alphabetic identifiers for the activities (actually, this describes only the
generation of the activity name, but the implemented tool “decorates” it
with other attributes, such as a unique identifier, the author or the dura-
tion). With this definition of the grammar, there can be more activities with
the same name, however all the activities are considered to be different.

We provide a complete example of all the steps involved in the gener-
ation of a process are shown. The derivation tree presented in Figure 9.2)
defines the following string of terminals:

astart; (a; ((b; (c∧ d); e; f)" g));aend

which can be represented as the dependency graph of Figure 9.3. Finally,
it is possible to convert this process into the Petri Net shown in Figure 9.4.

Grammar Extension with Probabilities

In order to allow the control on the complexity of the generated processes,
we added a probability to each production. This allowed the introduction

214

a ⊗ b ∧

c

d

∧ e f ⊗

g

astart aend

Figure 9.3. The dependency graph that describes the generated process.
Each activity is composed of 3 fields: the middle one contains
the name of the activity; the left hand one and the right hand
one contain, respectively, the value of the Tin and Tout.

Figure 9.4. Conversion of the dependency graph of Figure 9.3 into a Petri
Net.

of user defined parameters to control the probability of occurrence into
the generated process of a specific pattern. In particular, the user has to
specify the following probabilities:

π1 for G ′ → A

π2 for G ′ → (G;G)

π3 for G ′ → (A;G∧;A)

π4 for G ′ → (A;G⊗;A)

πl for G" → (G ′ " G)

In addition, for both the parallel pattern and the mutual exclusion pat-
tern, our tool requires the user to specify the maximum number of edges
(m∧ and m⊗) and the probability distribution that calculates the number
of branches to generate. The system will generate, for each AND-XOR
split/join, a number of forks between 2 and m∧ (or m⊗ depending on
which construct the system is populating) according to the given proba-
bility distribution.

At the current stage, the system supports the following probability
distributions: i) uniform distribution; ii) standard normal (Gaussian) dis-
tribution; iii) beta distribution (with α and β as parameters). These proba-
bility distribution generate values between 0 and 1 that are scaled into the
correct interval (2 . . .m∧ or 2 . . .m⊗) and these values indicate the number
of branches to generate.

215

9.1.2 Execution of a Process Model

As already stated, in order to evaluate Process Mining algorithms, we are
not only interested in the generation of a process, but we also need obser-
vations of the activities executed at each process instance, i.e. logs. Here
we explain how we produce these logs from a generated process. Please,
recall that each activity is considered to be different (a unique identifier is
associated to it), even if more activities may have the same name. More-
over, in order to facilitate the generation of logs, each time the system
chooses the production G ′ → A; (G∧G);A for the derivation of a pro-
cess description, it adds to the “split” activity (i.e. the first occurrence of
A) a supplementary field with a link to the “join” activity (i.e. the second
occurrence of A). Consider, for example, the substring a; (b∧ c);d, with
join(a) it is possible to obtain the activity d. The algorithm for the gen-
eration uses also a stack, with the standard functions top (checks the first
element, without removing it), push (adds a new element into the stack)
and pop (removes the first element from the stack).

The procedure used for the generation of an execution of a given pro-
cess is shown in Algorithm 11. The only operation performed is the call
of Algorithm 12 on the first activity of the process using a void stack.

Algorithm 11: ProcessTracer, Execution of a given process.
Input: P: the process model (the dependency graph)

1 a← starting activity of P (the astart action)
2 ActivityTracer(a, ∅) /* described in Algorithm 12 */

Algorithm 12 is a recursive procedure used to record the execution
of the input activity and its successors (via a recursive invocation of the
procedure). The two input parameters represent the current activity to
be recorded and a stack containing stopping activities (i.e., activities for
which the execution of the procedure has to stop), respectively. The last
parameter is used when there is an AND split: an instance of the pro-
cedure is called for every edge but it must stop when the AND join is
reached because, from there on, only one instance of the procedure can
continue.

The procedure of Algorithm 12 has to record the execution of an ac-
tivity and then it has to call itself on the following activity: if the current
activity a is the last one (so deg→(a) = 0) then it can terminate; if a is in
a sequence (so deg→(a) = 1) then we have just to call the same algorithm
on the successor activity. Once we reach a split, for example a XOR split
(a mutual exclusion), the system has just to choose a random activity and

216

Algorithm 12: ActivityTracer, Execution of an activity and all its suc-
cessors.

Input: a: the current activity; s: stack (LIFO queue) of activities

1 if s = ∅ or top(s) 6= a then
2 RecordActivity(a) /* described in Algorithm 13 */
3 if deg→(a) = 1 then
4 ActivityTracer(out(a), s) /* recursive call */
5 else if deg→(a) > 1 then
6 if Tout(a) = XOR then
7 a1 ← random(out(a)) /* rnd outgoing act */
8 ActivityTracer(a1, s) /* recursive call */

9 else if Tout(a) = AND then
10 aj ← join(a) /* join of the current split */
11 push(s,aj)
12 foreach ai ∈ out(a) do
13 ActivityTracer(ai, s) /* recursive call */
14 end
15 pop(s)
16 ActivityTracer(aj, s) /* recursive call */

17 end
18 end
19 end

call itself on it. In the last case, the system has to consider is the AND split
(parallel executions): with this situation it must “execute” all the successor
activities (in a not-specific order) but, in order to execute the AND join,
all successor activities must be completed. For this purpose, when the
procedure is called in the AND split, an extra parameter is passed: this
parameter tells the algorithm to stop just before reaching the AND join
(actually this parameter is a LIFO (Last In First Out) queue because there
can be more AND split/join nested) and then it continues the execution
from the join.

In the case of a split activity, the system chooses randomly the activity
to follow but all the branches are not equally probable: when the process is
generated, each edge, exiting from a split, is augmented with a “weight”:
the sum of all the weights exiting from the same split is always 1. The ran-
dom selection considers these weights as probabilities (the higher is the
weight the more probable is the selection of the corresponding branch).
As just said, these weight are assigned at the creation of the process in
this way: all the exiting branches are (alphabetically) sorted according to

217

the name of the activity they are entering into, and then the weights are
assigned according to a given probability distribution (as for the genera-
tion of the number of branches, the probability distribution available are:
uniform, standard normal and beta). It is necessary to describe the mean-
ing of “selecting a random branch” in the two possible cases (XOR and
AND). If the split is a XOR selection then the meaning is straightforward:
if a branch is selected, it is the only one that is allowed to continue the ex-
ecution; if it is an AND-split then the procedure will sort all the branches
(according to the weight/probability) and then will execute all the activi-
ties in the given order.

The cases just described (discriminating on the value of deg→) are the
only ones the algorithm has to take care of, because all other “high level”
patterns are described in terms of them. For example, a loop is expressed
as a XOR split (where an edge “continues” to the next activity and the
other goes back to the first activity to be performed again). In case of
a XOR split, the selection of the branch to be executed is random; so if
there is a loop (modelled as a XOR split) the execution is guaranteed to
terminate, because the probability of repeating the steps goes to 0.

Algorithm 13 describes the procedure used to record an activity. This
uses the extra information of the activity like its duration (if the activity is
not instantaneous) and it decides when an “error” must be inserted (this is
required to simulate real-case logs). In this context, an error can be either
the swap between the starting time and the end time of an activity or the
removal of the activity itself.

Algorithm 13: RecordActivity, Decoration and the registration of an
activity.

Input: a: the activity to be recorded
1 if activity has to last a time span then
2 Set the end time for a
3 end
4 if activity has to be an “error” then
5 if the error is a “swap” then
6 Swap start time with the end time of a
7 else if the error is a removal then
8 a← NULL

9 end
10 end
11 if a 6= NULL then
12 Register the execution of a
13 end

218

9.2 Summary

In this chapter, we have proposed an approach for the generation of ran-
dom business processes to ease the evaluation of Process Mining algo-
rithms. The proposed approach is based on the generation of process
descriptions via a (stochastic) context-free grammar whose definition is
based on well-known process patterns; each production of this grammar
is associated with a probability and the system generates the processes
according to these values. In addition, we proposed and commented an
algorithm for the generation of execution instances.

219

220

Chapter 10

Contributions

This chapter summarizes the main contributions presented in this thesis.

10.1 Publications

The work presented in this thesis originated some publications. In partic-
ular, the work on data preparation (i.e., discovery of case IDs) has been
published on:

• A. Burattin and R. Vigo, “A framework for semi-automated process in-
stance discovery from decorative attributes”, in IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), 2011, pp. 176–183.

The work on Heuristics Miner++ generated:

• A. Burattin and A. Sperduti, “Heuristics Miner for Time Intervals”,
in European Symposium on Artificial Neural Networks (ESANN),
2010.

The works on the automatic configuration of parameters of Heuristics
Miner++ and the parameters configuration via result exploration have
been published on:

• A. Burattin and A. Sperduti, “Automatic determination of parameters’
values for Heuristics Miner++”, in IEEE Congress on Evolutionary
Computation, 2010;

• F. Aiolli, A. Burattin, and A. Sperduti, “A Business Process Metric
Based on the Alpha Algorithm Relations”, in Business Process Manage-
ment Workshops (BPI), 2011.

The a-posteriori analysis of Declare models generated:

• A. Burattin, F. M. Maggi, W.M.P. van der Aalst and A. Sperduti,
“Techniques for A Posteriori Analysis of Declarative Processes”, in Pro-
ceedings of the 16th IEEE International Enterprise Distributed Object
Computing Conference, 2012.

221

The work on extensions of business processes models with organizational
roles will be published on:

• A. Burattin, A. Sperduti and M. Veluscek, “Business Models Enhance-
ment through Discovery of Roles”, in IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM), 2013.

The work on stream process mining is reported in:

• A. Burattin, A. Sperduti and W.M.P. van der Aalst, “Heuristics Miners
for Streaming Event Data”, in ArXiv CoRR 1212.6383, Dec. 2012.

Finally, the random processes and logs generator is reported on:

• A. Burattin and A. Sperduti, “PLG: a Framework for the Generation of
Business Process Models and their Execution Logs”, in Business Process
Management Workshops (BPI), 2010, pp. 214–219.

Other publications we have worked on are:

• IEEE Task Force on Process Mining (incl. A. Burattin), “Process Min-
ing Manifesto”, in Business Process Management Workshops, 2011,
pp. 169–194;

Moreover, other works are in the publishing process. In particular a paper
with the Stream framework (only Sliding Windows HM, Online HM and
Online HM with Aging) has been submitted to SDM 2013; a technical
report is going to be published at the Technical University of Eindhoven
with the entire Stream framework and we are going to prepare a journal
paper with some improvements on the MDL approach.

10.2 Software Contributions

All the techniques described in this thesis have been implemented in ProM.
Both version 5.2 [164] and 6.1 [170] have been used.

ProM1 is a framework which can be extended and used through a
plugin architecture. Several plugins are available, implementing a series of
Process Mining algorithms. The main advantage in using ProM is to have
all the basic operations (e.g. log input and graphic visualizers) available
in a single and open-source framework. Starting from ProM 6, the default
input format for log files is XES [68]2 (Listing 10.1 proposes a fragment

1 http://www.promtools.org/
2 The IEEE Task Force on Process Mining Meeting, at the BPM 2012 meeting, decided

to start the procedure to let XES (http://www.xes-standard.org/) become an
IEEE standard (http://standards.ieee.org/).

222

http://www.promtools.org/
http://www.xes-standard.org/
http://standards.ieee.org/

Figure 10.1. The figure on the left hand side contains the configura-
tion panel of Heuristics Miner++, where parameters are dis-
cretized. The screenshot on the right hand side shows the
result of the mining.

of XES code), also if MXML [69] is still supported too. ProM is platform
independent and it is written in Java.

Currently, ProM is maintained by the Process Mining Group3 of the
Eindhoven Technical University4.

10.2.1 Mining Algorithms Implementation

The Heuristics Miner++ algorithm, described in Section 5.1, has been im-
plemented in ProM 5. Figure 10.1 proposes a couple of screenshots of
the implementation of Heuristics Miner++. The same figure proposes a
visualization of the parameter discretization. The implementation can be
downloaded from http://www.processmining.it/sw/hmpp.

The automatic approach, described in Section 5.2, has been imple-
mented in ProM 5 but only as a command line application, since it is
supposed to periodically run in an autonomous manner.

Apart from this mining plugins, another “time filter plugin” has been
implemented in ProM 6, as presented in Figure 10.2. The basic idea is
to present a log as a dotted chart [135] (not dots for events, but lines
for traces). It is possible to sort the log according to traces duration or
according to trace starting time. Using two “sliders” the analyst can select
a subset of the current log. Moreover, the plugin gives information on the
percentage of traces and events selected and this allows you, for example,

3 http://www.processmining.org/
4 http://www.tue.nl/

223

http://www.processmining.it/sw/hmpp
http://www.processmining.org/
http://www.tue.nl/

Figure 10.2. Time filter plugin, with traces sorted by starting point and
with a fraction of the log selected.

Figure 10.3. Screenshot with the distance matrix and the dendrogram ap-
plied to some processes.

to select only the top 10% longest traces. Finally, the selected traces can
be exported and this allows the analyst to get more insights on particular
cases (e.g. outliers).

10.2.2 Implementation of Evaluation Approaches

The model-to-model metric, presented in Section 6.1, has been imple-
mented in the standalone application PLG (that will be presented in Sec-
tion 10.2.4). In this case, as can be seen in Figure 10.3, it is possible to see
a graphical representation of the distance matrix between couples of pro-
cesses. Figure 10.4 shows the procedure that allows the analyst to navigate
the process clusters in order to find the most interesting process.

224

Figure 10.4. Screenshot of the exploration procedure that allows the user
to choose the most interesting process.

Figure 10.5. On the left hand side there is the output of the log view Declare
Analyzer plug-in. On the right hand side the trace view details
is proposed.

Concerning the a-posteriori analysis of a log with respect to a Declare
model, described in Section 6.2, we have implemented the Declare Analyzer
ProM plugin. This plugin takes as input a Declare model and a log and
it provides detailed diagnostics and quantifies the health of each trace
(and of the whole log). Figure 10.5 presets a couple of screenshots of this
plugin, in particular the log overview metrics and trace view details are
proposed.

10.2.3 Stream Process Mining Implementations

All the approaches presented in Chapter 8 have been implemented in the
ProM 6.1 toolkit. Moreover, a “stream simulator” and a “logs merger”

225

1 <log openxes.version="1.0RC7" xes.features="nested-attributes"
xes.version="1.0" xmlns="http://www.xes-standard.org/">

2 <trace>
3 <string key="concept:name" value="case_id_0" />
4 <event>
5 <date key="time:timestamp"

value="2012-04-23T10:33:04.004+02:00" />
6 <string key="concept:name" value="A" />
7 <string key="lifecycle:transition" value="Task_Execution" />
8 </event>
9 </trace>

10 </log>

Listing 10.1. OpenXES fragment streamed over the network.

have also been implemented to allow for experimentation (to test new
algorithms and to compose logs).

Communications between stream sources and stream miner are per-
formed over the network: each event emitted consists of a “small log” (i.e.,
a trace which contains exactly one event), encoded as a XES string. An ex-
ample of an event log streamed is presented in Listing 10.1. This approach
is useful to simulate “many-to-many environments” where one source
emits events to many miners and one miner can use many stream sources.
The current implementation supports only the first scenario (currently it
is not possible to mine streams generated by more than one source).

Figure 10.6 proposes the the set of ProM plugins implemented, and
how they interact each other. The available plugins can be split into two
groups: plugins for the simulation of the stream and plugins to mine
streaming event data. To simulate a stream there is the “Log Streamer”
plugin. This plugin, receives a static log file as input and streams each
event over the network, according to its timestamp (in this context, times-
tamps are used only to determine the order of events). It is possible to
define the time between each event, in order to test the miner under dif-
ferent emission rates (i.e. to simulate different traffic conditions). A second
plugin, called “Logs Merger” can be used to concatenate different log files
generated by different process models, just for testing purposes.

Once the stream is active (i.e. events are sent through the network), the
clients can use these data to mine the model. There is a “Stream Tester”
plugin, which just shows the events received. The other plugins support
the two basic approaches (Section 8.2.1), and the four stream specific ap-
proaches (Section 8.2.3 and Section 8.2.2).

In a typical session of testing a new stream Process Mining algorithm,
we expect to have two separate ProM instances active at the same time:

226

Log Streamer

Periodic Resets HM

Sliding Windows HM

Stream Tester

Given a log,
streams events
over the network

Given two logs
appends one after
the other

Online HM

Online HM with Aging

Online HM w/ Self Adap�ng

Lossy Coun�ng HM

Logs Merger

Figure 10.6. Architecture of the plugins implemented in ProM and how
they interact with each other. Each rounded box represents a
ProM plugin.

the first is streaming events over the network and the second is collecting
and mining them.

Figure 10.7 contains four screenshots of the ProM plugins implemented.
The image on top right, in particular, contains the process streamer: the
left bar describes the stream configuration options (such as the speed or
the network port for new connections), the central part contains a repre-
sentation of the log as a dotted chart (the x axis represents the time, and
each point with the same timestamp x value is an event occurred at the
same instant). Blue dots are the events that are not yet sent (future events),
green ones are the events already streamed (past events). It is possible to
change the color of the future events so that every event referring to the
same activity or to the same process instance has the same color. The fig-
ure at bottom left contains the Stream Tester: each event of a stream is
appended to this list, which shows the timestamp of the activity, its name
and its case id. The left bar contains some basic statistics (i.e. beginning
of the streaming session, number of events observed and average number
of events observed per second). The last picture, at bottom right, repre-
sents the Online HM miner. This view can be divided into three parts: the
central part, where the process representation is shown (in this case, as a
Causal Net); the left bar contains, on top, buttons to start/stop the miner
plus some basic statistics (i.e., beginning of the streaming session, number
of events observed and average number of events observed per second);
at the bottom, there is a graph which shows the evolution of the fitness

227

Figure 10.7. Screenshots of four implemented ProM plugins. The first
image (top left) shows the logs merger (it is possible to de-
fine the overlap level of the two logs); the second image (top
right) represents the log streamer, the bottom left image is the
stream tester and the image at the bottom right shows the
Online HM.

measure.
Moreover, Command-Line Interface (CLI) versions of the miners are

available too5. In these cases, events are read from a static file (one event
per line) and the miners update the model (this implementation realizes
an incremental approach of the algorithm). These implementations are
can be run in batch and are used for automated experimentation.

10.2.4 PLG Implementation

The entire procedure described in Chapter 9 has been implemented in sev-
eral tools, developed in Java language. The implementation is formed by
two main components: a library (PLGLib) with all the functions currently
implemented and a visual tool, for the generation of one process. The
idea is to have a library that can be easily imported into other projects and
that can be used for the batch generation of processes. In order to have
a deep control on the generated processes we added another parameter

5 See http://www.processmining.it for more details.

228

http://www.processmining.it

(with respect to the pattern probabilities): the maximum “depth”. With
this, the user can control the maximum number of not-terminals to gener-
ate. Suppose the user sets it to the value d; once the grammar has nested
d instances of G ′, then the only not-terminal that can be generated is A.
With this parameter there is the possibility to limit the maximum “depth”
of the final process.

In the development of this tool we tried to reuse as many libraries
as possible from the ProM tool. For example, we use their sources for
the rendering of the networks; for the conversion into a Petri net. For
storing the execution logs we use MXML. In the visual interface, we also
implemented the calculation of two metrics for the new generated process,
described in [14] (Extended Cardoso metric and the Extended cyclomatic
one).

In Figure 10.8 there is a sample Java program that uses PLGLib to gen-
erate a random process without specifying all the parameters (so, using
the default values) but the maximum depth parameter. After the genera-
tion of the new process, we generate a new log, with 10 execution instances
for the process and store it into a zipped file. After this operation, the pro-
gram stores the process into a file with extension “.plg” (this is a zipped
file containing an XML representation of the process), in order to allow the
loading of the same process for future use. Other functionalities of the li-
brary are: the generation of the corresponding Heuristics net (dependency
graph), of the corresponding Petri Net, the exportation of the process as
dot files [47], and the calculation of the metrics cited above. Finally, let
us recapitulate the current implementations of PLG:

1. PLG standalone6: a software that allows to generate random process
models (saving its representation as Heuristics net, Petri Net and
dependency graph or save the Petri Net in a TPN file) and then can
execute such model in order to generate an MXML log file;

2. PLG-CLI7: command-line version of the PLG standalone, that is use-
ful for the generation of large datasets;

3. PLG-plugin8 a plugin for ProM 6.2, with the same functionalities
of PLG standalone, but that is integrated in the current version of
ProM.

The three version of the PLG are based on the same library “PLGLib”,
which can be downloaded with PLG standalone. Screenshots of the two
6 The software can be downloaded for free and with its Java source code from the

website http://www.processmining.it/.
7 The software can be downloaded for free from http://www.processmining.it/.
8 In the current distribution of ProM 6.2, http://www.promtools.org.

229

http://www.processmining.it/
http://www.processmining.it/
http://www.promtools.org

1 import it.unipd.math.plg.models.PlgObservation;
2 import it.unipd.math.plg.models.PlgProcess;
3 import java.io.IOException;
4

5

6 class PlgTest {
7 public static void main(String[] args) {
8 try {
9 // define the new process

10 PlgProcess p = new PlgProcess("test process");
11 // randomly populate the new process
12 p.randomize(3);
13 // genearte 10 executions and saves them in a ZIP file
14 p.saveAsNewLog("./test-log.zip", 10);
15 // save the generated process, in order to reuse it
16 p.saveProcessAs("./test-process.plg");
17 } catch (IOException e) {
18 e.printStackTrace();
19 }
20 }
21 }

Figure 10.8. A sample program for the batch generation of business pro-
cesses using the PLGLib library.

versions with a graphical user interface (PLG standalone and PLG-plugin)
are presented in Figure 10.9.

230

(a) PLG standalone

(b) PLG-plugin for ProM

Figure 10.9. The software PLG. In (a) there is the standalone version, in
(b) there is the ProM plugin.

231

232

Chapter 11

Conclusions and Future Work

In this work, we tried to identify the key problems that emerge when a
Process Mining project needs to be applied in an organization. The entire
work can be considered as a case study, in which we had the opportu-
nity to closely work with some local companies. This situation gave us
the opportunity to continuously improve our comprehension of the actual
situation.

11.1 Summary of Results

We pointed out few problems that might emerge during different stages
of a project. Specifically, before starting the actual Process Mining phase,
all the information must be available. Typically this is not the case, so it
is necessary to extract such data. Once the log is ready, it is possible to
configure mining algorithms’ parameters. However, our experience with
companies demonstrates that this is a challenging task: users, that are
not-expert in Process Mining, find many difficulties in driving the min-
ing through algorithm’s parameters. Finally, when a model is extracted,
it is necessary to evaluate the result, with respect to the ideal model (e.g.,
protocols or guidelines) or with respect to the log used for mining. More-
over, a process model might be more useful if information on activities
originators and business roles is added too. Apart from all these prob-
lems there is another one which concerns small and medium enterprises:
these companies might have difficulties in storing all the events generated
by their information systems and the analysis of such data can be really
computational power consuming.

Figure 11.1 shows all contributions (red italic font) described in this
thesis with their corresponding input and output dependencies (black
font). These contributions are numbered (gray font, in parenthesis) so
we can reference them in the following paragraphs.

Problems with Data Preparation The first point we addressed, with data
preparation, is the lack of the case ID field in the log. In this thesis we
presented a solution, formalized using a relational algebra approach, to

233

Process Representa�on
(e.g. Dependency Graph, Petri Net)

Legacy, Process‐unaware
Informa�on Systems

Process Mining
Capable Event LogsData Prepara�on

Control‐flow Mining Algorithm
Exploi�ng More Data

Event Logs GeneratorUser‐guided Discovery
Algorithm Configura�on

Automa�c
Algorithm Configura�on

Process Mining
Capable Event Stream

Stream Control‐flow
Mining Framework

Model Evalua�on
(wrt Log / Original Model)

Model‐to‐model Metric Model‐to‐log MetricRandom Process
Generator

Extension of Process Models
with Organiza�onal Roles

(1)

(2)

(3)(4)

(5) (6)

(7)(8)

(9a)

(9b)

Figure 11.1. Contributions, written in red italic font, presented in this the-
sis. They are numbered in order to be referenced in the text.
Dotted lines indicate that the input/output is not an “object”
for the final user, instead it represents a methodological ap-
proach (e.g., a way to configure parameters).

extract this information from decorative meta-data fields (Contribution (1)
in Figure 11.1).

Problems at Mining Time We defined a generalization of one of the
most used Process Mining control-flow algorithms (namely, Heuristics
Miner). In our new version, the algorithm is able to deal with activi-
ties recorded as time intervals, in order to improve the quality of mined
models (Contribution (2) in Figure 11.1). Concerning the configuration of
parameters, we considered the set of parameters of our new mining algo-
rithm (which is the same set of the Heuristics Miner) and we proposed a
procedure for the “conservative discretization” of the possible values of
such parameters (“conservative” in the sense that surely we do not lose
any possible output model). This discrete set of possible values induces
a finite number of mined models. In order to select the “best” model,
out of this set, we proposed two approaches: one completely autonomous
(Contribution (3) in Figure 11.1) and another which requires user interaction
(Contribution (4) in Figure 11.1). In the latter case, processes are clustered in

234

a hierarchy and the analyst is required to navigate the hierarchy by itera-
tively selecting between two branches until a satisfying result is obtained.

Problems with Results Evaluation Concerning the mining results eval-
uation, we proposed two new metrics: one model-to-model metric, and
another which is model-to-log. In the first case (Contribution (5) in Fig-
ure 11.1), we improved an already available model-to-model metric, in or-
der to make it more suitable for comparing models generated by Process
Mining algorithms. We applied this new metric to the procedure for the
exploration of process hierarchies. The model-to-log metric (Contribution
(6) in Figure 11.1), instead, allows the analyst to compare a Declare model
with respect to a given log. Healthiness measures are also proposed in or-
der to have numerical values of adherence of the entire model (or of single
constraints) to the available observations (i.e., the log).

Extension of Process Models with Business Roles In this thesis we have
proposed an approach for the extension of business process models with
roles (Contribution (7) in Figure 11.1). Specifically, our approach, given a
process model and a log, tries to find handover of roles in order to partition
activities in “swim-lanes”. Handover of roles are discovered using specific
metrics and two thresholds allow the system to be robust against presence
of noise in the log.

Store Capacity and Computational Power Requirements To address is-
sues related to store capacity and computation power requirements, we
proposed an online solution which allows the incremental mining of event
streams (Contribution (8) in Figure 11.1). In particular, our approach pro-
vides a framework which is able to incrementally mine a stream of events.
Different instances of this framework are proposed and compared too. All
these solutions have been characterized by their ability to deal with con-
cept drifts: some of them perform better when concept drifts occur, other
are only apt to deal with stationary stream.

Lack of Data In this thesis we also took into account problems related
with the lack of experimental data. We proposed a system which is able to
generate random business processes (Contribution (9a) in Figure 11.1) and
can simulate them (Contribution (9b) in Figure 11.1), producing log files.
This data can be used for evaluation of new Process Mining algorithms.

235

11.2 Future Work

Possible directions and future works are planned for several solutions pre-
sented in this thesis.

Concerning the identification of the case ID, we think it would be in-
teresting to consider not only the value of the case ID candidates, but to
go deeper, to their semantic meaning (if any), which could act as a-priori
knowledge. Moreover, a flexible framework for expressing and feeding
the system with a-priori knowledge is desirable, in order to earn a higher
level of generalization. Then, other refinements are domain-specific: deal-
ing with documents, for instance, we could exploit their content in order
to confirm or reject the findings of our algorithms, when the result confi-
dence is low. Finally, before carrying on these new ideas, we are planning
a wider test campaign on logs coming from other systems.

The automatic extraction of the best model can be improved by increas-
ing the number of explored hypothesis. In particular, a dynamic genera-
tion of the hypothesis space could help to cope with the corresponding
computational burden. Another improvement that we think can be very
useful is the introduction of machine learning techniques, to allow the
system to learn the process patterns to be preferred in the search, and to
improve the “goodness measure” by directly encoding this information.

We plan to work a lot on the stream framework; in particular we are
willing to conduct a deeper analysis of the influence of the different pa-
rameters on the presented approaches. Moreover, we plan to extend the
current approach to mining the organizational perspective of the process.
Finally, from a process analyst point of view, it may be interesting not
only to show the current updated process model, but to only report the
“evolution points” of the process.

Finally, we think that also the process and log generator can be exten-
sively improved: concerning generation of processes, the next goal to be
achieved is a characterization of the space of the processes generated by
our approach, so that who is going to use the system, may exactly know
which space of processes it generates. Another open issue is how much
the generated processes can be considered “realistic”: while using process
patterns for their generation increases the probability to generate a real-
istic process, it would be nice to have control on this factor. An idea, for
tackling this problem, could be to establish the values of some complexity
measures for a given dataset of real business processes and to constrain
the generation of random processes to these values for the given metrics.
Concerning the execution of a process, we think that an important im-
provement is the generation of decorative attributes (such as originator or
activities-related data), in order to simulate a more realistic execution.

236

Bibliography

[1] Arya Adriansyah, Boudewijn van Dongen, and Wil M. P. van der Aalst.
Conformance Checking Using Cost-Based Fitness Analysis. In 2011 IEEE
15th International Enterprise Distributed Object Computing Conference, pages
55–64. IEEE, August 2011. (Cited on page 196)

[2] Charu Aggarwal. Data Streams: Models and Algorithms, volume 31 of Ad-
vances in Database Systems. Springer US, Boston, MA, 2007. (Cited on
pages 55, 180, and 184)

[3] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining Pro-
cess Models from Workflow Logs. In International Conference on Extending
Database Technology, pages 469–483, January 1998. (Cited on pages 28, 43,
and 45)

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In International Conference on Very Large Data, 1994. (Cited
on page 66)

[5] Fabio Aiolli, Andrea Burattin, and Alessandro Sperduti. A Business Pro-
cess Metric Based on the Alpha Algorithm Relations. In Business Process
Management Workshops (BPI). Springer Berlin Heidelberg, 2011. (Cited on
pages 26, 99, and 131)

[6] James F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832–843, 1983. (Cited on page 104)

[7] Joonsoo Bae, Ling Liu, James Caverlee, Liang-Jie Zhang, and Hyerim Bae.
Development of Distance Measures for Process Mining, Discovery, and In-
tegration. International Journal of Web Services Research, 4(4):1–17, 2007. (Cited
on pages 61 and 133)

[8] Nils Aall Barricelli. Esempi numerici di processi di evoluzione. Methodos,
pages 45–68, 1954. (Cited on page 50)

[9] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Veri-
fication for LTL and TLTL. ACM Transactions on Software Engineering and
Methodology, 20(4):1–64, September 2011. (Cited on page 143)

[10] Ilan Beer, Shoham Ben-david, Cindy Eisner, and Yoav Rodeh. Efficient
Detection of Vacuity in Temporal Model Checking. Formal Methods in System
Design, 18(2):141–163, 2001. (Cited on page 145)

237

[11] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. A Bench-
mark Evaluation of Incremental Pattern Matching in Graph Transforma-
tion. In ICGT International conference on Graph Transformations, number i,
pages 396–410, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on page 211)

[12] Michael J. A. Berry and Gordon S. Linoff. Data Mining Techniques. Wiley
Computer Publishing, 2nd edition, 2004. (Cited on page 64)

[13] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernard Pfahringer. MOA:
Massive Online Analysis Learning Examples. Journal of Machine Learning
Research, 11:1601–1604, 2010. (Cited on page 180)

[14] Kristian Bisgaard Lassen and Wil M. P. van der Aalst. Complexity Metrics
for Workflow Nets. Information and Software Technology, 51(3):610–626, 2009.
(Cited on page 229)

[15] R. P. Jagadeesh Chandra Bose. Process Mining in the Large: Preprocessing,
Discovery, and Diagnostics. Phd thesis, Technische Universiteit Eindhoven,
2012. (Cited on page 195)

[16] R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indrė Žliobaitė,
and Mykola Pechenizkiy. Handling Concept Drift in Process Mining. In
Conference on Advanced Information Systems Engineering (CAiSE), pages 391–
405. Springer Berlin / Heidelberg, 2011. (Cited on pages 56 and 182)

[17] Richard A. Brualdi. Introductory Combinatorics. Pearson Prentice Hall, 5th
edition, 2009. (Cited on pages 163 and 169)

[18] Andrea Burattin, Fabrizio Maria Maggi, Wil M.P. van der Aalst, and
Alessandro Sperduti. Techniques for a Posteriori Analysis of Declarative
Processes. In 2012 IEEE 16th International Enterprise Distributed Object Com-
puting Conference, pages 41–50, Beijing, September 2012. IEEE. (Cited on
pages 26 and 131)

[19] Andrea Burattin and Alessandro Sperduti. Automatic determination of
parameters’ values for Heuristics Miner++. In IEEE Congress on Evolutionary
Computation, pages 1–8, Barcelona, Spain, July 2010. IEEE. (Cited on pages 26,
73, and 99)

[20] Andrea Burattin and Alessandro Sperduti. Heuristics Miner for Time Inter-
vals. In European Symposium on Artificial Neural Networks (ESANN), Bruges,
Belgium, 2010. (Cited on pages 26, 74, and 99)

[21] Andrea Burattin and Alessandro Sperduti. PLG: a Framework for the Gen-
eration of Business Process Models and their Execution Logs. In Business
Process Management Workshops (BPI), pages 214–219, Hoboken, New Jersey,
USA, 2010. Springer Berlin Heidelberg. (Cited on pages 26, 58, and 209)

[22] Andrea Burattin and Alessandro Sperduti. Process Log Generator: software
documentation, 2010. (Cited on page 58)

[23] Andrea Burattin, Alessandro Sperduti, and Wil M. P. van der Aalst. Heuris-
tics Miners for Streaming Event Data. ArXiv CoRR, December 2012. (Cited
on page 179)

238

[24] Andrea Burattin, Alessandro Sperduti, and Marco Veluscek. Business Mod-
els Enhancement through Discovery of Roles. In IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM). IEEE, 2013. (Cited on page 159)

[25] Andrea Burattin and Roberto Vigo. A framework for semi-automated pro-
cess instance discovery from decorative attributes. In IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pages 176–183, Paris,
April 2011. IEEE. (Cited on pages 26 and 83)

[26] T. Calders, Christian W. Günther, Mykola Pechenizkiy, and Anne Rozinat.
Using minimum description length for process mining. In Proceedings of
the 2009 ACM symposium on Applied Computing - SAC ’09, pages 1451–1455,
New York, New York, USA, 2009. ACM Press. (Cited on pages 11, 116, 117,
and 124)

[27] Jorge Cardoso. Control-flow Complexity Measurement of Processes and
Weyuker’s Properties. Transaction on Enformatica, System, Science and Engi-
neering, 8:213–218, 2005. (Cited on pages 11 and 122)

[28] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled
Shaalan. A Survey of Web Information Extraction Systems. IEEE Trans-
actions on Knowledge and Data Engineering, 18(10):1411–1428, October 2006.
(Cited on page 61)

[29] Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio
Riguzzi, and Sergio Storari. Exploiting Inductive Logic Programming Tech-
niques for Declarative Process Mining. In Transactions on Petri Nets and Other
Models of Concurrency II, pages 278–295, 2009. (Cited on page 143)

[30] Jonathan E. Cook. Process discovery and validation through event-data analysis.
Phd thesis, University of Colorado, 1996. (Cited on page 42)

[31] Jonathan E. Cook, Zhidian Du, Chongbing Liu, and Alexander L. Wolf.
Discovering models of behavior for concurrent workflows. Computers in
Industry, 53(3):297–319, 2004. (Cited on page 42)

[32] Jonathan E. Cook and Alexander L. Wolf. Automating Process Discovery
through Event-Data Analysis. In International Conference on Software Engi-
neering, pages 73–82. ACM Press, 1995. (Cited on page 42)

[33] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software
processes from event-based data. Technical Report 3, University of Col-
orado, November 1996. (Cited on page 42)

[34] Jonathan E. Cook and Alexander L. Wolf. Balboa: A Framework for Event-
Based Process Data Analysis. In International Conference on the Software Pro-
cess, 1998. (Cited on page 42)

[35] Jonathan E. Cook and Alexander L. Wolf. Event-based detection of con-
currency. ACM SIGSOFT Software Engineering Notes, 23(6):35–45, November
1998. (Cited on page 42)

[36] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. The MIT Press, 2nd edition, September 2001. (Cited on page 168)

239

[37] Jim Cowie and Yorick Wilks. Information extraction. Communications of the
ACM, 39(1):80–91, January 1996. (Cited on page 61)

[38] Thomas H. Davenport. Process Innovation: Reengineering Work Through In-
formation Technology. Harvard Business Press, Cambridge, MA, 1992. (Cited
on page 27)

[39] Ana Karla Alves de Medeiros. Genetic Process Mining. Phd thesis, Technis-
che Universiteit Eindhoven, 2006. (Cited on pages 50 and 60)

[40] Ana Karla Alves de Medeiros and Christian W. Günther. Process Mining:
Using CPN Tools to Create Test Logs for Mining Algorithms. In Proceedings
of the Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools, pages 177–190, 2005. (Cited on page 211)

[41] Ana Karla Alves de Medeiros, Wil M. P. van der Aalst, and Ton A. J. M. M.
Weijters. Quantifying process equivalence based on observed behavior.
Data & Knowledge Engineering, 64(1):55–74, January 2008. (Cited on page 132)

[42] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic
verification of data-centric business processes. In Proceedings of the 12th
International Conference on Database Theory - ICDT ’09, page 252, New York,
New York, USA, 2009. ACM Press. (Cited on page 143)

[43] Remco Dijkman. Diagnosing Differences between Business Process Models.
In International Conference on Business Process Management, pages 261–277.
Springer, 2008. (Cited on page 133)

[44] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Käärik,
and Jan Mendling. Similarity of business process models: Metrics and
evaluation. Information Systems, 36(2):498–516, April 2011. (Cited on page 61)

[45] Marlon Dumas, Wil M. P. van der Aalst, and Arthur H.M. ter Hofstede.
Process-Aware Information Systems. John Wiley & Sons, Inc., Hoboken, NJ,
USA, September 2005. (Cited on page 50)

[46] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring Sim-
ilarity between Semantic Business Process Models. In Proceedings of the
Fourth Asia-Pacific Conference on Conceptual Modelling, pages 71–80, 2007.
(Cited on page 133)

[47] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz and Dynagraph – Static and Dynamic
Graph Drawing Tools. Technical report, AT&T Labs - Research, Florham
Park NJ 07932, USA, 2004. (Cited on page 229)

[48] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Addison-Wesley, 6th edition, 2010. (Cited on pages 89 and 162)

[49] Thomas Erl. Service-Oriented Architecture: Concepts, Technology & Design.
Prentice Hall, 2005. (Cited on pages 9, 38, and 39)

240

[50] Jon Espen Ingvaldsen and Jon Atle Gulla. Preprocessing Support for Large
Scale Process Mining of SAP Transactions. In Arthur H. M. Ter Hofstede,
Boualem Benatallah, and Hye-Young Paik, editors, Business Process Manage-
ment Workshops, pages 30–41. Springer Berlin / Heidelberg, 2008. (Cited on
page 86)

[51] Jon Espen Ingvaldsen and Jon Atle Gulla. Semantic Business Process Min-
ing of SAP Transactions. In Zhaohao Sun and Minhong Wang, editors,
Handbook of Research on Complex Dynamic Process Management: Techniques for
Adaptability in Turbulent Environments, chapter 17, pages 416–429. Business
Science Reference, 1 edition, 2010. (Cited on page 86)

[52] European Commission. Commission Recommendation of 6 May 2003 con-
cerning the definition of micro, small and medium-sized enterprises, 2003.
(Cited on page 76)

[53] Eurostat. European Business: Facts and Figures. European Communities,
Luxembourg, Luxembourg, 2009. (Cited on page 76)

[54] Diogo R. Ferreira and Daniel Gillblad. Discovering Process Models from
Unlabelled Event Logs. In Umeshwar Dayal, Hajo A. Reijers, Johann Eder,
and Jana Koehler, editors, Business Process Management, volume 5701 of
Lecture Notes in Computer Science, pages 143–158, Ulm, Germany, 2009.
Springer. (Cited on page 86)

[55] Diogo R. Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Ferreira.
Approaching Process Mining with Sequence Clustering: Experiments and
Findings. In Gustavo Alonso, Peter Dadam, and Michael Rosemann, edi-
tors, Business Process Management, number 1, pages 360–374. Springer Berlin
/ Heidelberg, 2007. (Cited on page 87)

[56] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy.
Mining Data Streams: a Review. ACM Sigmod Record, 34(2):18–26, June
2005. (Cited on page 55)

[57] Aditya Ghose and George Koliadis. Auditing Business Process Compli-
ance. In Bernd Krämer, Kwei-Jay Lin, and Priya Narasimhan, editors, In-
ternational conference on Service-Oriented Computing, pages 169–180. Springer
Berlin / Heidelberg, 2007. (Cited on page 54)

[58] D. Giannakopoulou and Klaus Havelund. Automata-based verification of
temporal properties on running programs. In Proceedings 16th Annual In-
ternational Conference on Automated Software Engineering (ASE 2001), pages
412–416. IEEE Comput. Soc, 2001. (Cited on page 143)

[59] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust
Process Discovery with Artificial Negative Events. The Journal of Machine
Learning Research, 10:1305–1340, 2009. (Cited on page 52)

[60] Lukasz Golab and M. Tamer Özsu. Issues in Data Stream Management.
ACM SIGMOD Record, 32(2):5–14, June 2003. (Cited on page 54)

241

[61] Mati Golani and Shlomit S. Pinter. Generating a Process Model from a
Process. In Business Process Management, pages 136–151. Springer Berlin /
Heidelberg, 2003. (Cited on page 48)

[62] Martin Charles Golumbic and Ron Shamir. Complexity and algorithms for
reasoning about time: a graph-theoretic approach. J. ACM, 40(5):1108–1133,
1993. (Cited on page 104)

[63] Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining Hierarchies
of Models: From Abstract Views to Concrete Specifications. In Business
Process Management, pages 32–47. Springer Berlin / Heidelberg, 2005. (Cited
on page 49)

[64] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà.
Mining Expressive Process Models by Clustering Workflow Traces. In Ad-
vances in Knowledge Discovery and Data Mining, pages 52–62. Springer Berlin
/ Heidelberg, 2004. (Cited on page 49)

[65] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà.
Discovering Expressive Process Models by Clustering Log Traces. IEEE
Transactions on Knowledge and Data Engineering, 18(8):1010–1027, 2006. (Cited
on page 60)

[66] Peter Grünwald. A tutorial introduction to the minimum description length
principle. MIT Press, 2005. (Cited on pages 114 and 116)

[67] Christian W. Günther. Process mining in Flexible Environments. Phd thesis,
Technische Universiteit Eindhoven, Eindhoven, 2009. (Cited on pages 9, 41,
51, and 73)

[68] Christian W. Günther. XES Standard Definition. www.xes-standard.org,
2009. (Cited on pages 72 and 222)

[69] Christian W. Günther and Wil M. P. van der Aalst. A Generic Import Frame-
work For Process Event Logs. In Johann Eder and Schahram Dustdar, ed-
itors, Business Process Management Workshops, volume 4103 of Lecture Notes
in Computer Science, pages 81–92. Springer, 2006. (Cited on pages 73 and 223)

[70] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy Mining - Adaptive
Process Simplification Based on Multi-perspective Metrics. In G. Alonso,
P. Dadam, and M. Rosemann, editors, Business Process Management, volume
4714 of Lecture Notes in Computer Science, pages 328–343. Springer-Verlag,
2007. (Cited on pages 10 and 51)

[71] Michael Hammer and James Champy. Reengineering the Corporation: A Man-
ifesto for Business Revolution. Harper Business, New York, NY, USA, 1993.
(Cited on page 27)

[72] Joachim Herbst. A Machine Learning Approach to Workflow Management.
In ECML European Conference on Machine Learning, volume 1810, pages 183–
194, 2000. (Cited on page 45)

[73] Joachim Herbst. Workflow mining with InWoLvE. Computers in Industry,
53(3):245–264, 2004. (Cited on page 45)

242

[74] Joachim Herbst and Dimitris Karagiannis. Integrating machine learning
and workflow management to support acquisition and adaptation of work-
flow models. In International Workshop on Database and Expert Systems Appli-
cations, volume 9, pages 745–752, Los Alamitos, CA, USA, June 1998. IEEE
Computer Society. (Cited on page 45)

[75] Janelle B. Hill, Jim Sinur, David Flint, and Michael James Melenovsky. Gart-
ner’s Position on Business Process Management. Technical Report Febru-
ary, Gartner, Inc., 2006. (Cited on page 38)

[76] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random
Variables. Journal of the American Statistical Association, 58(301):13–30, 1963.
(Cited on page 193)

[77] San-Yih Hwang and Wan-Shiou Yang. On the discovery of process models
from their instances. Decision Support Systems, 34(1):41–57, 2002. (Cited on
page 45)

[78] IEEE Task Force on Process Mining. Process Mining Manifesto. In Flo-
rian Daniel, Kamel Barkaoui, and Schahram Dustdar, editors, Business Pro-
cess Management Workshops, pages 169–194. Springer-Verlag, 2011. (Cited on
pages 53 and 76)

[79] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets
and CPN Tools for modelling and validation of concurrent systems. Interna-
tional Journal on Software Tools for Technology Transfer, 9(3-4):213–254, March
2007. (Cited on page 211)

[80] Katharina Kaiser and Silvia Miksch. Information Extraction. Technical Re-
port May, Vienna University of Technology, Institute of Software Technol-
ogy and Interactive Systems, Vienna, 2005. (Cited on pages 10, 61, and 62)

[81] Andre Cristiano Kalsing, Gleison Samuel do Nascimento, Cirano Iochpe,
and Lucineia Heloisa Thom. An Incremental Process Mining Approach to
Extract Knowledge from Legacy Systems. In 2010 14th IEEE International
Enterprise Distributed Object Computing Conference, pages 79–88. IEEE, Octo-
ber 2010. (Cited on page 56)

[82] Stuart Kent. Model Driven Engineering. In Integrated Formal Methods, vol-
ume 2335, pages 286–298, 2002. (Cited on page 75)

[83] Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Incremental Work-
flow Mining Based on Document Versioning Information. In International
Software Process Workshop, pages 287–301. Springer Verlag, 2005. (Cited on
page 56)

[84] Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Incremental Work-
flow Mining for Process Flexibility. In Proceedings of BPMDS2006, pages
178–187, 2006. (Cited on page 56)

[85] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-ma, Holger Pfeifer, and
Peter Dadam. On Enabling Data-Aware Compliance Checking of Business
Process Models. In Proceedings of the 29th international conference on Concep-
tual modeling, pages 332–346. Springer, 2010. (Cited on page 143)

243

[86] Ryan K. L. Ko. A Computer Scientist’s Introductory Guide to Business
Process Management (BPM). Crossroads, 15(4):11–18, June 2009. (Cited on
pages 17, 27, 28, and 37)

[87] Oliver Kopp, Daniel Martin, Daniel Wutke, and Frank Leymann. The Dif-
ference Between Graph-Based and Block-Structured Business Process Mod-
elling Languages. Enterprise Modelling and Information Systems, 4(1):3–13,
2009. (Cited on page 46)

[88] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Behavioral Sim-
ilarity - A Proper Metric. In Stefanie Rinderle-Ma, Farouk Toumani, and
Karsten Wolf, editors, Business Process Management, pages 166–181. Springer
Berlin / Heidelberg, 2011. (Cited on pages 61 and 134)

[89] Orna Kupferman and Moshe Y Vardi. Vacuity detection in temporal
model checking. International Journal on Software Tools for Technology Transfer
(STTT), 4(2):224–233, February 2003. (Cited on page 145)

[90] Massimiliano De Leoni, Fabrizio Maria Maggi, and Wil M. P. van der
Aalst. Aligning Event Logs and Declarative Process Models for Confor-
mance Checking. In Alistair P. Barros, Avigdor Gal, and Ekkart Kindler,
editors, Business Process Management, pages 82–97. Springer Berlin / Hei-
delberg, 2012. (Cited on page 54)

[91] Chen Li, Manfred Reichert, and Andreas Wombacher. On Measuring Pro-
cess Model Similarity based on High-level Change Operations. Technical
report, Centre for Telematics and Information Technology, University of
Twente, 2007. (Cited on page 61)

[92] Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der
Aalst. Efficient Discovery of Understandable Declarative Process Models
from Event Logs. In Proceedings of the 24th international conference on Ad-
vanced Information Systems Engineering, pages 270–285. Springer Berlin Hei-
delberg, 2012. (Cited on page 143)

[93] Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil M. P.
van der Aalst. Monitoring Business Constraints with Linear Temporal Logic
: An Approach Based on Colored Automata. In Proceedings of the 9th inter-
national conference on Business process management, pages 132–147. Springer
Berlin Heidelberg, 2011. (Cited on page 143)

[94] Fabrizio Maria Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. User-
guided discovery of declarative process models. In IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pages 192–199. IEEE,
April 2011. (Cited on pages 53, 143, and 145)

[95] Gurmeet Singh Manku and Rajeev Motwani. Approximate Frequency
Counts over Data Streams. In Proceedings of International Conference on Very
Large Data Bases, pages 346–357, Hong Kong, China, 2002. Morgan Kauf-
mann. (Cited on page 190)

244

[96] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval, volume 35. Cambridge University Press, 1st
edition, June 2008. (Cited on pages 62, 63, 126, and 172)

[97] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela Hung Byers. Big Data: The Next
Frontier for Innovation, Competition, and Productivity. Technical Report
June, McKinsey Global Institute, 2011. (Cited on page 76)

[98] Laura Maruster, Antal van den Bosch, Ton A. J. M. M. Weijters, and Wil
M. P. van der Aalst. Process mining: discovering direct successors in pro-
cess logs. Discovery Science, pages 364–373, 2002. (Cited on page 136)

[99] Jan Mendling, Boudewijn van Dongen, and Wil M. P. van der Aalst. On the
Degree of Behavioral Similarity between Business Process Models. In Work-
shop on Event-Driven Process Chains, pages 39–58, 2007. (Cited on page 61)

[100] George A. Miller. The magical number seven, plus or minus two: Some
Limits on our Capacity for Processing Information. Psychological Review,
101(2):343–352, April 1956. (Cited on page 75)

[101] Mirjam Minor, Alexander Tartakovski, and Ralph Bergmann. Representa-
tion and Structure-Based Similarity Assessment for Agile Workflows. In
Case-Based Reasoning Research and Development, pages 224–238, 2007. (Cited
on page 61)

[102] Tom M. Mitchell. Machine Learning. McGraw-Hill, March 1997. (Cited on
pages 42, 44, and 50)

[103] Jorge Muñoz Gama and Josep Carmona. A fresh look at Precision in Pro-
cess Conformance. In Business Process Management, pages 211–226. Springer
Berlin / Heidelberg, 2010. (Cited on pages 60, 196, and 205)

[104] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989. (Cited on page 30)

[105] OMG. Business Process Model and Notation (BPMN) - Version 2.0, Beta 1. 2009.
(Cited on pages 28, 30, and 32)

[106] Martyn A. Ould. Business Processes: Modelling and Analysis for Re-Engineering
and Improvement. Wiley, New York, NY, USA, 1995. (Cited on page 28)

[107] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal, 16(3):389–
415, March 2007. (Cited on page 38)

[108] Joachim Parrow. Handbook of Process Algebra. Elsevier, 2001. (Cited on
page 30)

[109] Ricardo Pérez-castillo, Barbara Weber, Ignacio Garcı́a-Rodrı́guez Guzmán,
Mario Piattini, and Jakob Pinggera. Assessing event correlation in non-
process-aware information systems. Software & Systems Modeling, pages
1–23, September 2012. (Cited on page 87)

245

[110] Randall Perrey and Mark Lycett. Service-oriented architecture. In Sympo-
sium on Applications and the Internet Workshops, pages 116–119. IEEE Com-
put. Soc, 2003. (Cited on page 38)

[111] James L. Peterson. Petri Nets. ACM Computing Surveys (CSUR), 9(3):223–
252, 1977. (Cited on page 30)

[112] Carl Adam Petri. Kommumkation mit Automaten. PhD thesis, Institut für
Instrumentelle Mathematik, Universität Bonn, 1962. (Cited on page 30)

[113] Maja Pešić. Constraint-Based Workflow Management Systems: Shifting Control
to Users. Phd thesis, Technische Universiteit Eindhoven, 2008. (Cited on
page 36)

[114] Maja Pešić and Wil M. P. van der Aalst. A Declarative Approach for Flexible
Business. In Business Process Management, pages 169–180. Springer Berlin
Heidelberg, 2006. (Cited on page 36)

[115] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling,
and Hajo A. Reijers. Imperative versus Declarative Process Modeling Lan-
guages: An Empirical Investigation. In Business Process Management Work-
shops, pages 383–394. Springer Berlin Heidelberg, 2012. (Cited on page 36)

[116] Shlomit S. Pinter and Mati Golani. Discovering workflow models from
activities’ lifespans. Computers in Industry, 53(3):283–296, 2004. (Cited on
page 48)

[117] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, September
1977. (Cited on page 143)

[118] Praxiom Research Group Limited. ISO 9000 2005 Plain English Definitions,
2009. (Cited on page 28)

[119] Anand Rajaraman and Jeffrey D. Ullman. Mining of Massive Datasets. 2010.
(Cited on page 139)

[120] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen,
Jacob Frank, Martin Stig Stissing, Michael Westergaard, Sø ren Chris-
tensen, and Kurt Jensen. CPN Tools for Editing, Simulating, and Analysing
Coloured Petri Nets. In International Conference on Applications and Theory of
Petri Nets, pages 450–462. Springer Verlag, 2003. (Cited on page 211)

[121] Anne Rozinat. Process Mining: Conformance and Extension. Phd, Technische
Universiteit Eindhoven, 2010. (Cited on page 54)

[122] Anne Rozinat, Ana Karla Alves de Medeiros, Christian W. Günther, Ton
A. J. M. M. Weijters, and Wil M. P. van der Aalst. Towards an Evaluation
Framework for Process Mining Algorithms. BPM Center Report BPM-07-06,
BPMcenter.org, 2007. (Cited on pages 10, 58, and 59)

[123] Anne Rozinat and Wil M. P. van der Aalst. Decision Mining in Business
Processes. Technical report, Business Process Management (BPM) Center,
2006. (Cited on page 54)

246

[124] Anne Rozinat and Wil M. P. van der Aalst. Decision Mining in ProM. In
Business Process Management, volume 4102, pages 420–425. Springer Berlin
Heidelberg, 2006. (Cited on pages 41 and 54)

[125] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of pro-
cesses based on monitoring real behavior. Information Systems, 33(1):64–95,
2008. (Cited on pages 41, 60, and 61)

[126] Nick Russell, Arthur H.M. ter Hofstede, Wil M. P. van der Aalst, and Na-
taliya Mulyar. Workflow Control-flow Patterns: A Revised View. BPM
Center Report BPM-06-22, BPMcenter. org, 2006. (Cited on pages 12, 138, 139,
and 212)

[127] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition, 2002. (Cited on page 121)

[128] Guido Schimm. Process Miner – A Tool for Mining Process Schemes from
Event-Based Data. In Proceedings of the European Conference on Logics in Ar-
tificial Intelligence, pages 525–528. Springer Verlag, 2002. (Cited on page 46)

[129] Guido Schimm. Mining Most Specific Workflow Models from Event-Based
Data. In Business Process Management, pages 25–40. Springer Berlin / Hei-
delberg, 2003. (Cited on pages 9, 46, and 47)

[130] Bernd Schröder. Ordered Sets: An Introduction. Birkhäuser Boston, Boston,
2002. (Cited on page 93)

[131] Nicole Schweikardt. Short-Entry on One-Pass Algorithms. In Ling Liu and
M. Tamer Öszu, editors, Encyclopedia of Database Systems, pages 1948–1949.
Springer-Verlag, 2009. (Cited on page 185)

[132] Claude E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27:379–423 & 623–656, 1948. (Cited on page 171)

[133] Alec Sharp and Patrick McDermott. Workflow Modeling: Tools for Process
Improvement and Application Development. Artech House Publishers, 2nd
edition, 2008. (Cited on page 38)

[134] Marc Solé and Josep Carmona. Incremental Process Mining. In Proceedings
of ACSD/Petri Nets Workshops, pages 175–190, 2010. (Cited on page 56)

[135] Minseok Song and Wil M. P. van der Aalst. Supporting Process Mining
by Showing Events at a Glance. In Workshop on Information Technologies and
Systems (WITS), pages 139–145, 2007. (Cited on page 223)

[136] Minseok Song and Wil M. P. van der Aalst. Towards comprehensive sup-
port for organizational mining. Decision Support Systems, 46(1):300–317, De-
cember 2008. (Cited on page 160)

[137] Apostolos Syropoulos. Mathematics of Multisets. In Cristian Calude,
Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Multi-
set Processing, pages 347–358. Springer Berlin / Heidelberg, 2001. (Cited on
page 163)

247

[138] Wil M. P. van der Aalst. Verification of workflow nets. Application and Theory
of Petri Nets, 1248:407–426, 1997. (Cited on page 31)

[139] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. Journal of Circuits Systems and Computers, 8:21–66, 1998. (Cited on
page 30)

[140] Wil M. P. van der Aalst. Business alignment: using process mining as a
tool for Delta analysis and conformance testing. Requirements Engineering,
10(3):198–211, August 2005. (Cited on page 54)

[141] Wil M. P. van der Aalst. Process Discovery: Capturing the Invisible. IEEE
Computational Intelligence Magazine, 5(1):28–41, 2010. (Cited on page 40)

[142] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. (Cited on pages 56, 75, 136, 160, 181, and 196)

[143] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn van Dongen.
Causal Nets: A Modeling Language Tailored towards Process Discovery. In
CONCUR - Concurrency Theory, pages 28–42. Springer Verlag, 2011. (Cited
on page 187)

[144] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Re-
playing History on Process Models for Conformance Checking and Perfor-
mance Analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(2):182–192, March 2012. (Cited on pages 162 and 196)

[145] Wil M. P. van der Aalst, Ana Karla Alves de Medeiros, Boudewijn van
Dongen, and Ton A. J. M. M. Weijters. Process mining: Extending the α-
algorithm to mine short loops. In Eindhoven University of Technology, Eind-
hoven, 2004. (Cited on page 48)

[146] Wil M. P. van der Aalst, Ana Karla Alves de Medeiros, and Ton A. J. M. M.
Weijters. Using Genetic Algorithms to Mine Process Models: Representa-
tion, Operators and Results. BETA Working Paper Series, 2004. (Cited on
page 120)

[147] Wil M. P. van der Aalst, Ana Karla Alves de Medeiros, and Ton A. J.
M. M. Weijters. Genetic process mining. Application and theory of Petri nets,
3536:48–69, 2005. (Cited on page 50)

[148] Wil M. P. van der Aalst, Ana Karla Alves de Medeiros, and Ton A. J. M. M.
Weijters. Process Equivalence: Comparing Two Process Models Based on
Observed Behavior. In Business Process Management, pages 129–144, 2006.
(Cited on page 132)

[149] Wil M. P. van der Aalst, Christian W. Günther, Vladimir Rubin, Eric H.
M. W. Verbeek, Ekkart Kindler, and Boudewijn van Dongen. Process min-
ing: a two-step approach to balance between underfitting and overfitting.
Software & Systems Modeling, 9(1):87–111, 2008. (Cited on page 114)

248

[150] Wil M. P. van der Aalst, Maja Pešić, and Helen Schonenberg. Declarative
workflows: Balancing between flexibility and support. Computer Science
- Research and Development, pages 99–113, March 2009. (Cited on pages 36
and 143)

[151] Wil M. P. van der Aalst, Hajo A. Reijers, and Minseok Song. Discovering
Social Networks from Event Logs. Computer Supported Cooperative Work
(CSCW), 14(6):549–593, October 2005. (Cited on pages 53 and 161)

[152] Wil M. P. van der Aalst and Minseok Song. Mining Social Networks: Un-
covering Interaction Patterns in Business Processes. In Jörg Desel, Barbara
Pernici, and Mathias Weske, editors, Business Process Management, pages
244–260, Potsdam, Germany, 2004. Springer Berlin Heidelberg. (Cited on
page 53)

[153] Wil M. P. van der Aalst and Arthur H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, June 2005. (Cited
on pages 34 and 195)

[154] Wil M. P. van der Aalst, Arthur H.M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases,
14(1):5–51, 2003. (Cited on page 34)

[155] Wil M. P. van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske.
Business Process Management: A Survey. Lecture Notes in Computer Science,
2678:1–12, May 2003. (Cited on page 29)

[156] Wil M. P. van der Aalst and Boudewijn van Dongen. Discovering Workflow
Performance Models from Timed Logs. In Engineering and Deployment of
Cooperative Information Systems, pages 45–63. Springer Berlin / Heidelberg,
2002. (Cited on pages 23, 47, and 136)

[157] Wil M. P. van der Aalst, Boudewijn van Dongen, Christian W. Günther,
Ronny Mans, Ana Karla Alves de Medeiros, Anne Rozinat, Vladimir Rubin,
Minseok Song, Eric H. M. W. Verbeek, and Ton A. J. M. M. Weijters. ProM
4.0: Comprehensive Support for Real Process Analysis. In Jetty Kleijn and
Alex Yakovlev, editors, Petri Nets and Other Models of Concurrency, pages
484–494. Springer, 2007. (Cited on page 72)

[158] Wil M. P. van der Aalst and Kees M. van Hee. Workflow management: models,
methods, and systems. The MIT press, 2004. (Cited on page 211)

[159] Wil M. P. van der Aalst and Ton A. J. M. M. Weijters. Rediscovering
Workflow Models from Event-based Data Using Little Thumb. Integrated
Computer-Aided Engineering, 10(2):151–162, 2003. (Cited on pages 49 and 56)

[160] Wil M. P. van der Aalst and Ton A. J. M. M. Weijters. Process mining:
a research agenda. Computers in Industry, 53(3):231–244, 2004. (Cited on
page 23)

[161] Wil M. P. van der Aalst, Ton A. J. M. M. Weijters, and Ana Karla Alves
de Medeiros. Process Mining with the Heuristics Miner-algorithm. BETA
Working Paper Series, WP 166, Eindhoven University of Technology, Eind-
hoven, 2006. (Cited on pages 28, 49, 60, and 74)

249

[162] Wil M. P. van der Aalst, Ton A. J. M. M. Weijters, Joachim Herbst,
Boudewijn van Dongen, Laura Maruster, and Guido Schimm. Workflow
mining: a survey of issues and approaches. Data & Knowledge Engineering,
47(2):237–267, 2003. (Cited on pages 41 and 46)

[163] Wil M. P. van der Aalst, Ton A. J. M. M. Weijters, and Laura Maruster.
Workflow Mining: Which processes can be rediscovered? Technical report,
Eindhoven University of Technology, Eindhoven, 2002. (Cited on page 47)

[164] Boudewijn van Dongen, Ana Karla Alves de Medeiros, Eric H. M. W. Ver-
beek, Ton A. J. M. M. Weijters, and Wil M. P. van der Aalst. The ProM
framework: A new era in process mining tool support. Application and
Theory of Petri Nets, 3536:444–454, 2005. (Cited on pages 72 and 222)

[165] Boudewijn van Dongen, Remco Dijkman, and Jan Mendling. Measuring
Similarity between Business Process Models. Advanced Information Systems
Engineering, 5074:450–464, 2008. (Cited on page 133)

[166] Boudewijn van Dongen and Wil M. P. van der Aalst. Multi-phase Process
Mining: Building Instance Graph. In Conceptual Modeling, pages 362–376.
Springer Berlin Heidelberg, 2004. (Cited on page 50)

[167] Boudewijn van Dongen and Wil M. P. van der Aalst. Multi-Phase Process
Mining: Aggregating Instance Graphs into EPCs and Petri Nets. In PNCWB
2005 workshop, pages 35–58, 2005. (Cited on page 50)

[168] Kees M. van Hee and Zheng Liu. Generating Benchmarks by Random Step-
wise Refinement of Petri Nets. In Proceedings of workshop APNOC/SUMo,
2010. (Cited on page 210)

[169] Matthijs van Leeuwen and Arno Siebes. StreamKrimp: Detecting Change
in Data Streams. In Walter Daelemans, Bart Goethals, and Katharina
Morik, editors, Machine Learning and Knowledge Discovery in Databases, vol-
ume LNCS 5211 of LNAI, pages 672–687. Springer, 2008. (Cited on page 180)

[170] Eric H. M. W. Verbeek, Joos Buijs, Boudewijn van Dongen, and Wil M. P.
van der Aalst. ProM 6: The Process Mining Toolkit. In BPM 2010 Demo,
pages 34–39, 2010. (Cited on pages 72 and 222)

[171] Michal Walicki and Diogo R. Ferreira. Mining Sequences for Patterns with
Non-Repeating Symbols. In IEEE Congress on Evolutionary Computation 2010,
pages 3269–3276, Barcelona, Spain, 2010. (Cited on page 87)

[172] Jianmin Wang, Tengfei He, Lijie Wen, Nianhua Wu, Arthur H.M. ter Hofst-
ede, and Jia-Guang Sun. A Behavioral Similarity Measure between Labeled
Petri Nets Based on Principal Transition Sequences. In On the Move to Mean-
ingful Internet Systems, pages 394–401, 2010. (Cited on page 133)

[173] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient Consistency
Measurement Based on Behavioral Profiles of Process Models. IEEE Trans-
actions on Software Engineering, 37(3):410–429, May 2011. (Cited on pages 133
and 137)

250

[174] Lijie Wen, Jianmin Wang, Wil M. P. van der Aalst, Biqing Huang, and Jia-
Guang Sun. A novel approach for process mining based on event types.
Journal of Intelligent Information Systems, 32(2):163–190, January 2008. (Cited
on page 48)

[175] Gerhard Widmer and Miroslav Kubat. Learning in the Presence of Concept
Drift and Hidden Contexts. Machine Learning, 23(1):69–101, 1996. (Cited on
pages 55 and 180)

[176] Jeannette M. Wing. FAQ on Pi-Calculus. December 2002. (Cited on page 30)

[177] Haiping Zha, Jianmin Wang, Lijie Wen, Chaokun Wang, and Jia-Guang
Sun. A workflow net similarity measure based on transition adjacency
relations. Computers in Industry, 61(5):463–471, June 2010. (Cited on pages 12,
133, 134, 136, 137, 141, and 142)

[178] Stefan Zugal, Jakob Pinggera, and Barbara Weber. The Impact of Test-
cases on the Maintainability of Declarative Process Models. In Enterprise,
Business-Process and Information Systems Modeling, pages 163–177. Springer
Berlin Heidelberg, 2011. (Cited on page 36)

[179] R. Zurawski. Petri nets and industrial applications: A tutorial. IEEE Trans-
actions on Industrial Electronics, 41(6):567–583, December 1994. (Cited on
page 30)

251

252

Acknowledgements

I lived the Ph.D. period as an extraordinary and unforgettable journey. I
had the privilege to meet and work with great people, and each of them
taught me a lot. I consider myself very lucky.

I would like to thank, in primis, my supervisor: prof. Alessandro Sper-
duti. He let me dive and explore the fascinating “world of research”, giv-
ing me uncountable opportunities. His continuous, expert, and passionate
guidance incredibly simplified my job. It is a privilege to work with such
a generous person and qualified professor and researcher.

I want to express my authentic gratitude to Roberto Pinelli, from Siav.
He has been always willing to help us, by all means, and many parts of
this thesis are due to the opportunities he gave us.

A special thanks goes to Prof. Wil van der Aalst. Working with him has
been, undoubtedly, one of the most formative experiences. His incredible
professionalism and competence are sources of inspiration for my work.

Also, I’m very thankful to my commissione: Prof. Tullio Vardanega and
Prof. Paolo Baldan, and to my external referees: Prof. Diogo Ferreira and
Prof. Barbara Weber who spent their time to read this thesis and share
with me their useful comments.

Finally, I would like to thank all my colleagues and friends at Univer-
sity of Padova and Bologna, in Siav, and at the AIS group, in Eindhoven.

Infine, ringrazio la mia famiglia per non avere mai lesinato nel darmi fiducia
e serenità, e la possibilità di raggiungere i miei obiettivi.

253

	Introduction and Problem Description
	Introduction
	Business Process Modeling
	Process Mining
	Origin of Chapters

	State of the Art: BPM, Process Mining and Data Mining
	Introduction to Business Processes
	Petri Nets
	BPMN
	YAWL
	Declare
	Other Formalisms

	Business Process Management Systems
	Process Mining
	Process Mining as Control-Flow Discovery
	Other Perspectives of Process Mining
	Data Perspective

	Stream Process Mining
	Evaluation of Business Processes
	Performance of a Process Mining Algorithm
	Metrics for Business Processes

	Extraction of Information from Unstructured Sources
	Analysis Using Data Mining Approaches

	Problem Description
	Process Mining Applied in Business Environments
	Problems with the Preparation of Data
	Problems During the Mining Phase
	Problems with the Interpretation of the Mining Results and Extension of Processes
	Incremental and Online Process Mining

	Long-term View Architecture
	Thesis Organization

	Batch Process Mining Approaches
	Data Preparation
	The Problem of Selecting the Case ID
	Process Mining in New Scenarios
	Related Work

	Working Framework
	Identification of Process Instances

	Experimental Results
	Summary

	Control-flow Mining
	Heuristics Miner for Time Interval
	Heuristics Miner
	Activities as Time Interval
	Experimental Results

	Automatic Configuration of Mining Algorithm
	Parameters of the Heuristics Miner++ Algorithm
	Facing the Parameters Setting Problem
	Discretization of the Parameters' Values
	Exploration of the Hypothesis Space
	Improved Exploration of the Hypothesis Space
	Experimental Results

	User-guided Discovery of Process Models
	Results on Clustering for Process Mining

	Summary

	Results Evaluation
	Comparing Processes
	Problem Statement and the General Approach
	Process Representation
	A Metric for Processes Comparison

	A-Posteriori Analysis of Declarative Processes
	Declare
	An Approach for A-Posteriori Analysis
	An Algorithm to Discriminate Fulfillments from Violations
	Healthiness Measures
	Experiments

	Summary

	Extensions of Business Processes with Organizational Roles
	Related Work
	Working Framework
	Rules for Handover of Roles
	Rule for Strong No Handover
	Rule for No Handover
	Degree of No Handover of Roles
	Merging Roles

	Algorithm Description
	Step 1: Handover of Roles Identification
	Step 2: Roles Aggregation
	Generation of Candidate Solutions
	Partition Evaluation

	Experiments
	Results

	Summary

	A New Perspective: Stream Process Mining
	Process Mining for Stream Data Sources
	Basic Concepts
	Heuristics Miners for Streams
	Baseline Algorithm for Stream Mining
	Stream-Specific Approaches
	Stream Process Mining with Lossy Counting (Evolving Stream)

	Error Bounds on Online Heuristics Miner
	Results
	Models description
	Algorithms Evaluation

	Summary

	Tools and Conclusions
	Process and Log Generator
	Getting Started: a Process and Logs Generator
	The Processes Generation Phase
	Execution of a Process Model

	Summary

	Contributions
	Publications
	Software Contributions
	Mining Algorithms Implementation
	Implementation of Evaluation Approaches
	Stream Process Mining Implementations
	PLG Implementation

	Conclusions and Future Work
	Summary of Results
	Future Work

	Bibliography

