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1. Regenerative medicine 

 

Bodily tissues are subjected daily to various injuries; however, each tissue has its 

own intrinsic ability to access and repair said damages. In instances where damages 

exceed the tissue’s ability to repair said damages, scar tissue begins to form, an excess 

of which can compromise tissue function. Due to medical progress made within the last 

fifty years, public demand for innovative treatment has increased and patients now 

expect to understand the physical conditions that were present at the onset of the 

disease, in addition to the knowledge of the medical problem at stake. As a result, there 

is currently a large amount of public interest which exceeds solely the knowledge of 

how to promote tissue repair and prevent scar tissue formation. In the last two decades a 

new discipline called regenerative medicine has emerged. The objective of regenerative 

medicine is to develop products which can restore tissue function and prevent scar 

tissue formation.  

Musculoskeletal tissues range from bone, with an elevated ability to regenerate, to 

cartilage, which has a limited ability to self-repair. In ninety nine percent of all simple 

fractures which occur in human subjects, the damaged bone will self-generate to exactly 

its original state in matter of months, given that mechanical stability is provided through 

a rigid cast. On the other hand, damaged cartilage will not heal fully and the formation 

of new fibrous cartilage in the damaged tissue will be observed – even if the subject is 

provided with all of the most advanced therapeutic approaches designed to aid cartilage 

in its self-regeneration (Huey, et al., 2012). The reason such a different clinical outcome 

is observed in human cartilage is most likely due to the peculiar anatomy of each of 

these tissues. While bone is a highly vascularized tissue which undergoes constant 

remodeling, cartilage is the only avascular tissue in the human body and as a result has a 

quite limited capacity for remodeling through self-generation.  

Although bone has a large capacity for self–regeneration, there are certain defects in 

bone, known as critical-size defects, which are difficult to repair. Critical-size defects 

are generally caused by trauma, bone diseases, prosthetic implants, or tumor excision. 

There are also clinical conditions, such as diabetes, age, osteoporosis, and vascular 
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necrosis which cause bone’s capacity for self-regeneration to be compromised. In all 

these circumstances the endogenous process of self-regeneration is not adequate for 

tissue repair and it necessary to intervene clinically. Currently, the highest standard in 

the treatment of bone defects lies in orthopedic surgery which consists of the 

transplantation of autologous bone grafts which are used as osteogenic substitutes. The 

main disadvantage associated with this technique is the limited availability of both the 

autologous material and the number of acceptable cadavers from which said material 

can be harvested.  

In an attempt to solve these problems, the scientific community has been focused on 

developing bone allograft substitutes through the development of new bio-compatible 

materials which improve cell invasion, resulting in the formation of new tissue. This 

method is highly desirable due to the fact that it avoids the use of autologous bone 

grafts.  

Within the last ten years, there has been a dramatic increase in the number of 

publications which are concerned with the production of new biomaterials and with 

their applications in clinical surgery. These biomaterials are made using either synthetic 

or natural polymers which are polymerized in vitro in 3D structure (defined as scaffold), 

a structure which mimics normal human tissue structures. The main advantage obtained 

through the use of these biomaterials is the fact that they can be produced in large 

amounts; however, their drawback is that they lack the ability to induce specific cell 

differentiation. In order to overcome this limitation and to improve cell induction, an 

attempt to combine the use of biomaterials with molecules such as recombinant growth 

factors (bone morphogenic proteins) or differentiation factors (which induce cells to 

differentiate into specific lineages) was carried out by several researchers. However, 

elsewhere in scientific literature it has been reported that in vivo these factors may aid 

cancer development (Carragee, et al., 2011) and/or neurotoxicity (Smith et al., 2008). 

Within the last twenty years, tissue engineering has emerged as an intriguing 

alternative in the field of tissue regeneration. Tissue engineering combines biomaterials 

and mesenchymal stromal cells (MSC) to obtain a graft in vitro which can improve 

tissue regeneration (Manfrini et al., 2012). One advantage in tissue engineering is the 

possibility to use autologous cells, a strategy which avoids both possible tissue rejection 

and negative immune response. However, the drawbacks of said tissue engineering are: 
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1) the existence of low MSC numbers found in the bone marrow generally requires an 

additional laboratory step - namely of cell expansion in order to obtain a sufficient cell 

number and 2) said cell expansion is financially costly and in addition it has been 

reported that cell expansion in vitro can reduce the osteogenic capacity of the MSC 

(Banfi et al., 2000; Jakob et al., 2012). A possible approach which may ameliorate these 

problems would be to eliminate the cell expansion step described in step one above and 

to reduce the process to a single surgical procedure in which cells are isolated and 

concentrated in the same surgical session in which they are implanted.  

Once the tissue with the highest number of progenitor cells has been identified, it is 

possible to surgically harvest said tissue and, using specific instruments, to concentrate 

cells during the same surgical procedure and to inject the product into the tissue defect 

or onto a pre-made scaffold (Di Bella et al., 2010; Mehrkens et al., 2012). This 

innovation could simplify the use of MSC in clinical application, thus eliminating the 

high costs associated with cell expansion. 

In the past, several different clinical trials have been carried out in order to attempt to 

clarify the most beneficial use of MSC and to better understand their contribution to the 

field of tissue regeneration. The results obtained from said trials have been 

contradictory – therefore additional data results must be collected in order to confirm 

the beneficial effects of using MSC in the quest for full bone regeneration. If data which 

has been collected up until this point in time can be confirmed, a breakthrough may be 

on the horizon for the improvement of overall patient quality of life. 
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2. BONE 

 

2.1 The anatomy 

Excluding the sesamoids, the adult human skeleton contains 213 bones. Bone is a 

metabolically active connective tissue which is highly vascularized. By functioning as 

levers to which muscles attach, bone provides structural support as well as facilitation 

of movement in the human body. Bone, as an organ, is also an important factor in 

maintaining mineral homeostasis, acid-base balance, the reservoir of growth factor, 

cytokines and minerals, and the protection of vital organs. In addition, bone is also a site 

for hematopoiesis (Buck and Dumanian 2012a). 

The adult human skeleton is composed 80% cortical bone and 20% trabecular bone; 

however, each bone has a 

different ratio of trabecular to 

cortical bone. The outer part of 

each bone, which is composed of 

a relatively dense mass with a 

low porosity (max 30%), is 

defined as cortical bone. The 

internal part of each bone is 

called cancellous (or 

trabecular) bone and is 

characterized by a higher 

porosity (30-90%) and consists 

of a network of trabecular plates 

and rods which contain blood 

vessels and bone marrow. A 

fundamental characteristic of 

cancellous bone is a higher rate 

of metabolic activity and a 

higher capacity for bone remodeling as compared to cortical bone. Moreover, cortical 

Figure 2.1 A representative image of bone structure (Buck and 

Dumanian 2012a) 
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bone response is higher after mechanical stimuli as compared to that of trabecular bone 

due to the fact that primary bone cells lie on the surface of bone and are in closer 

proximity to circulating growth factors and cytokines. 

Both cortical and trabecular bone is composed of osteons. In the cortical bone these 

osteons are called Harversian systems, while in cancellous bone their name is packets. 

Harversian systems and packets differ in both shape and size.  

Histologically, bone can be classified as either woven or lamellar. Primary/woven 

bone is found in the human embryonic skeleton and is characterized by a disorganized 

and irregular pattern of collagen fibrils and mineralization. Lamellar bone has a highly 

organized structure formed by tightly packed collagen fibrils organized into sheets with 

high mineralization and uniform distribution of osteocytes and bone matrix. This 

structure makes lamellar bone rigid and strong. During its growth, and in the later stage 

of fracture healing, lamellar bone completely replaces woven bone.  

Externally, bone is covered by periostium, a fibrous connective tissue sheath that 

surrounds the outer cortical surface of bone. The only exception occurs at joints, which 

contain blood vessels, nerve fibers, osteoblasts, and osteoclasts. The periostium is 

tightly attached to the outer cortical surface of bone by thick collagenous fibers called 

Sharpey’s fibers, which extend into underlying bone tissue. The endosteum is a 

membranous structure covering the inner surfaces of cortical bone, trabecular bone and 

blood vessel canals (Volkmann’s canals). The endosteum is in contact with the bone 

marrow space, trabecular bone, and blood vessel canals and contains blood vessels, 

osteoblasts, and osteoclasts.  

As previously mentioned, bone is vascularized by a complex network of inter-

osseous canals and sinusoids. Tubular bones, or long bone, have a dual blood supply, 

the predominant of which is obtained via nutrient diaphyseal arteries that often enter the 

middle third of the diaphysis. Successively, they enter the medullary canals and divide 

into two branches. The second source of blood supply to tubular bones is obtained 

through a network of smaller vessels that supply the adjacent joint with blood (Buck 

and Dumanian 2012b). 

Normal bone develops via two mechanisms: the first of which is called 

intramembranous bone formation and is mediated by the inner periosteal osteogenic 

layer of bone and is initially synthesized without the mediation of a cartilage phase. The 



7 

second mechanism, called endochondral bone formation, establishes the synthesis of 

bone on a mineralized cartilage scaffold after epiphyseal and physeal cartilage have 

shaped and elongated the developing organ. With intramembranous bone repair, 

mesenchymal cells differentiate along a pre- osteoblast to osteoblast line while 

endochondral bone formation is characterized by the initial synthesis of cartilage 

followed by the endochondral sequence of bone formation (Shapiro 2008). Deeper 

endochondral ossification is initiated 

by the proliferation of chondrocytes. 

As the chondrocytes proliferate 

(within the proliferative zone), they 

become hypertrophic and release 

alkaline phosphatase, which 

eventually results in chondrocytes 

apoptosis and the release of 

angiogenic factors which function as 

vascular endothelial growth factor. 

The zone of dead chondrocytes (calcification zone) creates a barren matrix which 

promotes capillary in-growth and migration of osteoprogenitor cells that then 

differentiate in osteoblasts and produce bone (Buck and Dumanian 2012a).  

The formation of new bone is essential during both childhood and adolescence; 

however, bone continues to be modeled and remodeled for the entirety of adult life 

which results in the gradual yet fundamental adjustment of the human skeleton to the 

forces that it encounters. 

In order to maintain mineral homeostasis in the human body, bone is exposed to 

remodeling that begins before the birth and continues until death. Bone remodeling 

occurs through the concerted action of cells termed the basic multicellular unit (BMU). 

The BMU consists of osteoclasts which reabsorb bone into the blood stream, osteoblasts 

which form new bone, the osteocytes within the bone matrix, and the bone lining cells 

which cover the bone surface and the capillary blood supply (Figure. 2.2) (Kular et al., 

2012). 

During the remodeling process old bone is replaced by new bone. Bone remodeling 

is essential for it avoids the accumulation of bone micro-damage. In the activation 

Figure.2.2 The BMU unit (Kular et al., 2012) 
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phase, osteoclast precursors are recruited and once in place they undergo differentiation 

and mature. Once osteoclasts are activated they initiate bone matrix reabsorption by 

releasing vesicles containing lysosomal proteases and cathepsin K, which are 

responsible for the digestion of collagen I. Digested bone matrix proteins are then 

internalized by endocytosis, pass through osteoclast cytoplasm and are released into the 

extracellular space where they enter the blood stream (Boyce et al., 2012). The 

activation phase last around two to four weeks in total, immediately after which there is 

a shift between the prominent osteoclast and osteoblast activity. This phase, called the 

reversal phase, is lengthy and last four to six months. During the reversal phase the 

osteoblasts, which are responsible for bone formation, secrete vesicles which 

accumulate both calcium and phosphate. These cells are then entrapped in the newly 

formed matrix and may have one of three different fates: they either undergo apoptosis, 

differentiate further into osteocytes and begin to form an extensive canalicular network 

which is essential for communication between cells in the bone, or become quiescent 

lining cells (Clarke 2008; Kular et al., 2012). 

Within the reversal phase, the balance between osteoclast and osteoblast activity is 

fundamental for the correct maintenance of bone structure. In fact, an increase in 

osteoclastic activity would result in weakened bones and would put the subject at an 

increased risk for bone fractures. On the contrary, if osteoclastic activity is drastically 

reduced, bones will become extremely dense, a condition which is defined as 

osteopetrosis. 

 

2.2 Bone composition 

As previously described, bone tissue is constituted by different cell type that they 

conduct a specific role in the physiology of the organ. 

 

2.2.1 Osteoclasts 

Osteoclasts are the cells responsible for the reabsorption of old bone.  

Osteoclasts are formed from the fusion of mononuclear progenitors of the 

monocytes/macrophage family during osteoclastogenesis. Osteoclast cells are usually 

located close to endosteal surfaces within the Harvesian system as well as on the 
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periosteal surface beneath the 

periosteum. Osteoclasts are rare cells 

in human bone and normally only two 

to three cells are present per 1 µm
3
 of 

bone surface. 

The event most essential to cell 

differentiation activation is the 

production of cytokines and growth 

factors by marrow stromal cells, 

osteoblasts, or T- lymphocytes.  

In order for differentiation to begin, two factors are necessary: macrophage colony-

stimulating factor (M-CSF) and the receptor responsible for the activation of the ligand 

nuclear factor kappa B (NF-kB) RANKL. 

M-CSF is produced by both osteoblast and stromal cells. It functions by binding to 

its receptor, namely c-fms. The interaction between receptor c-fms and M-CSF is 

necessary for the maintenance of cell proliferation, macrophage maturation, as well as 

the survival and differentiation of osteoclast precursors. 

The ligand RANKL, produced by osteoclasts, T cells, and endothelial cells is 

essential for osteoclast formation. It functions by binding to its receptor RANK which is 

present on the membrane of osteoclasts and their precursors and induces the 

trimerization of both molecules (Figure 2.3) (T. L. Burgess et al., 1999; Lacey et al., 

1998). RANKL activity can be inhibited by the presence of soluble Osteoprogerin 

(OPG) which sequesters RANKL and prevents osteoclast differentiation ( Mizuno et al., 

1998). Although the binding of RANKL has been shown to be the essential signal for 

osteoclast differentiation, co-stimulatory pathways are also required for this process. 

NFAT (nuclear factor of activated T cells) and CaMK (calmodulin kinase) are both 

examples of said co-simulatory pathways. 

Once differentiated, osteoclasts interact with bone matrix via integrin receptors. Even 

if the integrins β1 subunit binds collagen, laminin and fibronectin, the main integrins 

subunit involved in resorbing bone is the dimer αvβ3 which binds osteopontin and 

sialoprotein, both of which are found in fully-formed human bone. 

Figure.2.3. A schematic picture of the signaling pathway 

induced during the osteoclast differentiation 
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The subsequent step to this interaction is the polarization of the osteoclast membrane 

and the release of vesicles containing H
+
 and Cl

-
 ions as well as many enzymes 

necessary for bone digestion. The H
+
 ions acidify and dissolve the mineral component 

of bone matrix. Once osteoclasts have completed their work they undergo apoptosis 

within reabsorption lacunae. The exactly molecular signaling which causes this 

apoptosis is still unknown, but it has been shown that a high extracellular percentage of 

Ca
+
 ions can initiate said molecular pathway. 

 

2.2.2 Osteoblasts 

Osteoblasts are the cells responsible for the deposition and formation of new bone. 

As described previously, osteoblasts are recruited in a second phase by factors secreted 

by osteoclasts.  

Within bone marrow there is also a small percentage of stromal cells (known as 

mesenchymal stromal cell) that have the capacity to differentiate into different lineages 

such as bone, cartilage and fat. The commitment of mesenchymal stromal cells to the 

osteoblast lineage requires the activation of the Wnt-canonical pathway and but the 

TGF-β super-family also plays an important role in osteoblast differentiation. In fact, 

TGF-β is essential for the commitment to the osteogenic lineage by way of activation of 

Smad2/3 signaling such as the BMP pathway. 

Mesenchymal stromal cell have a fibroblastic-like shape but once differentiated into 

osteoblasts they acquire a cuboidal phenotype and start to release alkaline phosphatase. 

One can recognize functionally active osteoblasts due to their large nuclei, enhanced 

Golgi structures, and extensive endoplasmic reticulum. These cells are involved in the 

secretion of type I collagen as well as other matrix proteins, all of which are 

fundamental for new bone formation. Once activated, osteoblastic cells can remain 

quiescent osteoblasts lining cells or can become osteocytes. Lining cells form the 

endosteum on both trabecular and endosteal surfaces and underlie the periosteum on the 

mineralized surface (Clarke 2008). 

Osteoblastic cells express different gene repertoires which can be explained by the 

heterogeneity of trabecular micro-architecture at different skeletal sites, anatomic site-

specific differences in disease states, and regional variation in the ability of osteoblasts 

to respond to agents used to treat bone disease. 
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2.2.3 Bone marrow 

Bone marrow (Figure. 2.4) is located within the central cavities of both axial and 

long bones. It consists of hematopoietic tissue islands and adipose cells surrounded by 

vascular sinuses interspersed within a meshwork of trabecular bone. In addition, bone 

marrow accounts for approximately 5% of 

human body weight (Travlos 2006).  

Bone marrow is a major hematopoietic 

organ, a primary lymphoid tissue, and is 

responsible for the production of 

erythrocytes, granulocytes, monocytes, 

lymphocytes, and platelets. 

Bone marrow is vascularized by a dense 

network of capillaries which transport 

nutrients into the center of the bone marrow. The hematopoietic tissue consists of a 

variety of cell types which include blood cells and their precursors, adventitial/ barrier 

cells, adipocytes, and macrophages. These cells have a particular and specific 

organization inside the hemapoietic tissue (Weiss and Geduldig 1991). 

In order for hematopoiesis to occur, a supporting microenvironment must exist and 

said microenvironment must be able to recognize and retain hematopoietic stem cells 

and provide the factors (e.g., cytokines) required to support proliferation, 

differentiation, and maturation of stem cells along committed lineages. The 

hematopoietic microenvironment consists of adventitial reticular cells (e.g., barrier 

cells), endothelial cells, macrophages, adipocytes, and bone lining cells (e.g., 

osteoblasts) and elements of the extracellular matrix (Travlos 2006). 

All these factors influence hemopoiesis and are equally important for the correct 

hemopoietic process to occur.  

 

2.2.4 Bone matrix 

Bone matrix constitutes 90 percent of overall human bone volume. There are four 

main components which make up the bone matrix, namely: inorganic and organic 

matrix (which are the two principal components of bone matrix), lipids, and water. The 

composition of bone matrix is fundamental for the maintenance of mineral homeostasis 

Figure. 2.4 A representation of bone marrow tissue. 
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(calcium, phosphorous, magnesium and calcium) within the human body. The inorganic 

matrix is mainly made up by hydroxyapatite and is responsible for bone stiffness and its 

resistance to compressive forces. The organic part of the bone matrix is composed 

mainly by type I Collagen and is secreted by fully differentiated osteoblasts, but also by 

type III, V and FACIT Collagen (type IX; XII, XIV, XIX, XX and XXI are included in 

this Collagen family). The organic part of the bone matrix is important for the stability 

of extracellular matrices. Traces of non-collagenous proteins such as serum albumin can 

be found in bone matrix, which help in mineralization and the α2-HS-glycoprotein, both 

of which are involved in cell proliferation. In addition, the proteins inteleukin-1 and 6, 

osteocalcin osteonectin, bone sialoprotein (BSP) and bone morphogenetic proteins 

(BMPs) are also all contained within the organic matrix. All these components are 

important for maintenance of a healthy human skeletal apparatus. 

 

Bone represents one of the most metabolically active connective tissues in the human 

body. It is a complex organ and the balance and communication between the activity of 

all cells is fundamental. The sequential phases of osteoblast commitment and 

differentiation are regulated by a variety of complex activities, including hormones, 

growth factors, and mechanical stimuli. A deeper knowledge of bone biology is 

necessary in order to optimize the research connected to bone regenerative medicine. 
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3. Mesenchymal Stromal/Stem Cell (MSC) 

 

3.1 A brief introduction 

The first evidence of the presence of 

non-hemapoietic stem cells in bone 

marrow was reported by Cohnheim in 

1867 (Cohnheim 1867). 

In the late 1960’s Friedenstein and 

coworkers isolated and cultured for the 

first time this cell type from bone 

marrow (Friedenstein, et al, 1966). These 

cells (Figure. 3.1) were able to form 

colonies derived from single cells and 

after a few days these adherent cells of 

heterogeneous appearance, began to proliferate and to differentiate into mature cells of 

mesenchymal lineages such as osteoblast (A. Friedenstein, et al., 1970; Friedenstein 

1976). The initial clones of adherent cells expanded into round-shaped colonies 

composed of fibroblastoid cells, thus the term ‘Colony Forming Unit - fibroblasts’ 

(CFU-f) was coined (Augello, et al, 2010). 

Successively, MSC are found in different adult tissues. In 2001, Zuk published the 

isolation of MSC from adipose tissue from a population of cells with biological 

characteristic similar to bone marrow derived MSC (Zuk et al., 2001). In the last ten 

years, MSC have been identified in tissues including peripheral blood (Zvaifler et al., 

2000), cord blood (Erices, et al., 2000), menstrual blood, amniotic fluid (in’t Anker et 

al., 2003), synovial membrane (De Bari et al., 2003), and placenta (Koo et al., 2012) 

Mesenchymal stromal cell are not a homogenous population but rather are, most 

likely, heterogeous cell cultures which are comprised of a varying amount of committed 

cells. To address the inconsistency between the nomenclature and biological properties 

of this heterogeneous population, the International Society for Cellular therapy has 

suggested that these plastic adherent cells, regardless of the tissue from which they are 

Figure 3.1 A representative picture of bone marrow 

derived MSC in culture. 
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isolated, be termed ‘multipotent mesenchymal stromal cell’, and that the term 

‘mesenchymal stem cell’ should be used only for the subset that meets specified stem 

cell criteria (Horwitz et al., 2005; Baer and Geiger 2012).  

Mesenchymal stromal cell are 

interesting cells because, when 

induced, they are able to differentiate 

into many different lineages (Figure 

3.2). The ability of MSC to 

differentiate in mesodermal lineages, 

such as the osteogenic, adipogenic, 

and chondrogenic lineages, was 

discovered early in the research 

process; however, new evidence 

reveals that these cells are even able to 

differentiate into cardiac (Gnecchi, et al., 2012; Makino et al., 1999), neurogenic (Bae 

et al., 2011; Montzka et al, 2009), and epidermal (Paunescu et al, 2007) lineages. These 

results are intriguing due to their possible application in regenerative medicine and 

tissue engineering which could improve the natural process of healing of tissues.  

 

3.2 Mesenchymal stromal cell characterization 

To classify MSC, The Mesenchymal And Tissue Stem Cell Committee Of The 

International Society For Cellular Therapy proposed, in 2006, four criteria for the 

identification of human mesenchymal stem cell. There criteria are: 1) plastic-adherence 

when maintained under standard culture conditions; 2) ability for osteogenic, 

adipogenic and chondrogenic differentiation; 3) expression of CD73, CD90 and CD105 

and 4) lack of expression of hemapoietic markers (CD14, CD11b, CD34, CD45, CD19 

and CD79) (Dominici et al., 2006;Witkowska-Zimny and Walenko 2011). 

As of today, even the most focused research has yet to discover the key marker for 

the identification of mesenchymal stromal cell. The discovery of this marker could 

reduce problems linked to the isolation and identification of MSC because all of the 

markers described above are also expressed by other cell populations within the human 

body. 

Figure 3.2 Flowchart elucidating possible commitment of 

mesenchymal stromal cell. 
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3.3 Mesenchymal stromal cell differentiation 

As previously described, mesenchymal stromal cell have the ability to differentiate 

into several mesodermal lineages. 

When induced into osteogenic differentiation (using dexamethasone, β-

glycerophosphate and ascorbic acid), MSC begin to express genes and proteins 

associated with the osteoblastic phenotypic as such as Collagen I, osteopontin, 

osteocalcin, Runx2 and BSP , and acquire a morphology comparable to osteoblasts 

(round cells with large nuclei, enhanced Golgi structures and an extensive endoplasmic 

reticulum). Moreover, they begin to deposit extracellular matrix enriched with deposits 

of hydroxyl-epatite, which is characteristic of bone tissue. The evaluation of 

differentiation can be done using alizarin red S (Figure. 3.3 on the left) which stains 

 

 

 

calcium deposits present in the extracellular matrix or by evaluating alkaline 

phosphatase activity in cells post-differentiation. Mesenchymal stromal cells are able to 

differentiate into an osteogenic lineage not only in vitro but also in vivo. Moreover, 

MSC can adhere to and proliferate on specific scaffolds and begin to differentiate. The 

combined use of MSC and scaffold have clinical applications in the repair of bone 

tissue defect which results following a trauma to the body or a cancer excision. 

In the last couple of years there has been a growth in the level of interest in 

reconstructive surgery, especially with regard to the application of soft tissue repair. In 

this field the ability of MSC to differentiate into adipogenic lineages has great 

relevance. Adipogenic differentiation is induced by insulin, isobutylmethylxanthine, 

dexamethasone and indomethacin. However, current literature suggests that there is a 

clear lack of standardization of said induction (Scott et al., 2011). MSC induced into 

Figure.3.3 On the left. Representative micrographs of hMSC after osteogenic differentiation stained with Alizarin Red 

solution. On the center. hMSC after adipogenic differentiation. The lipid droplets are stained with OIL red O solution. On 

the right. hMSC after chondrogenic differentiation. Sections are stained with safranin O solution (Deehan et al., 2012). 
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adipogenic differentiation begin to express genes such as PPARγ, GLUT4, C/EBPβ and 

GPDH. Morphologically, it is possible to observe the presence of lipid vacuoles in 

differentiated cells which can meld to one other (Figure. 3.3 on the center). 

One of the reasons why there is great interest surrounding MSC is due to their 

application in the regeneration of cartilage, the tissue with the lowest ability to self-

regenerate in the human body. Current literature suggests that MSC can differentiate 

into chondrogenic lineages if cultured using a pellet system and in a  medium of a 

serum un-supplemented with dexamethasone, TGF-β1 and ascorbic acid. Under these 

conditions, MSC begin to produce an extracellular matrix formed by collagen X and test 

positive during Safranin O staining (Figure. 3.3 on the right), Alcian Blue and Toluinine 

Blue.  

In addition to their ability to differentiate into mesodermal lineages, MSC have been 

shown by recent literature to contain the ability to differentiate into both neurogenic 

(Cardozo, et al., 2012; Safford K. M. et al., 2002) and cardiogenic (Carvalho et al., 

2012) lineages. Overall, these results are able to improve the main application of 

mesenchymal stromal cell, namely their role within the field of tissue engineering. 

 

3.4 Adipose derived stromal cell 

Adipose tissue in the human body is involved in energy homeostasis since it acts as a 

large scale endocrine organ capable of secreting a wide variety of cytokines, 

chemokines, and adipokines. These molecules are involved in several different 

biological processes such as inflammation, immunity, metabolism (Alexander 2012). In 

2001, the adipose tissue was recognized not only as energy reservoir but also as a rich 

source of multipotent stem cells. Zuk and coworkers were the first to identify 

multipotent stromal cells in adipose tissue (Zuk et al., 2001). 

Stromal Vascular Fraction (SVF) is a mixture of cells such as: MSC, HSC, Treg 

cells, pericyte-EC, mast cells, dendritic cells, and fibroblasts (Tang et al., 2008), all of 

which are isolated using enzymatic dissociation of adipose tissue and several different 

centrifugation steps in order to remove differentiated adipocytes.  

In the past, much research has been focused solely on the use of adipose derived 

stromal cell (ASC) (Katz et al., 2005; Hiroshi et al., 2012) due to the advantages which 

exist in the use of adipose derived stromal cells (Ad-MSC or ASC) as opposed to bone 
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marrow derived mesenchymal stromal cells (BM-MSC). One of these advantages is that 

lipoaspirate is readily available as a discarded by-product of liposuction procedures. 

Compared to that of bone marrow, the harvest of lipoaspirate is simpler and less 

invasive. Moreover, the volume of lipoaspirate 

which can be harvested is significant higher 

than that of bone marrow and the frequency of 

mesenchymal stromal cell in liposuction is 

larger by 2500 fold - an essential pre-requisite 

for stem cell based therapies (Baer and Geiger 

2012b; Fraser et al., 2008; Mizuno et al., 2012; 

Yarak 2010; Gimble et al., 2011). In 2001, 

Gronthos found that BM- and Ad-MSC 

cultures are very similar with regard to 

properties such as proliferation, clonogenicity, 

and expression of the stromal markers CD105, 

CD90 and CD166 (Gronthos et al., 2001). 

However, recently Dmitrieva and coworkers 

observed that these two cultures differ in 

cytokine secretion prolife. In fact, ASC secrete more VEGF, SDF1, MCP1, and TGFβ1. 

Dmitrieva et al also noted that during in vitro expansion, BM-MSC were detected 

during the early onset of senescence while ASC were not expressed at the same point 

(Dmitrieva et al., 2012). 

Despite the large interest in and dedication to adipose derived stromal cells, the in 

vivo localization of these cells is still not fully clarified. It was not until 2009 that Da 

Silva Meirelles observed, using an equine model, that the frequency of ASC in adipose 

tissue is proportional to blood vessel densities (Da Silva Meirelles et al., 2009). 

Recently, Maumus observed that ASC in vivo express sialomucin CD34 yet lack this 

expression during in vitro expansion (Braun et al., 2012; Maumus et al., 2011). 

Immunofluorescence of CD34 within a section of human adipose tissue showed that 

CD34/NG2 positive cells are located close to blood vessels. The results of Maumus et al 

were confirmed by Zimmerlin and coworkers (Maumus et al., 2011; Zimmerlin et al., 

2013). 

Figure. 3.4 IF ASC localication in adipose tissue. 

(Green lectin; CD34: CD34) (Maumus et al., 2011). 



18 

3.5 Mesenchymal stromal cell niche 

In 1978, Schofield proposed the niche concept to describe the physiological 

microenvironment that support stem cells in vivo (Shofield 1978). Many co-culture 

experiments have supported Shofield’s hypothesis which was the starting point for an 

area of new research. A stem cell niche is defined as the microenvironment in which the 

adult stem cells resides and also includes the surrounding cell (Figure. 3.5). Both low 

oxygen content and growth factor gradients provide signals which allow for the 

maintenance of quiescent stem cells and for the  modulation of their activation 

(Kaewsuwan et al., 2012). The mesenchymal stromal cell niche has been identified in 

several different adult tissues as such as 

intestinal, neural and epidermal tissue (Kolf, et 

al., 2007). This niche is able to maintain stem 

cells primarily in the quiescent, un-

differentiated state but can also cause the stem 

stems to become committed to a certain 

lineage. The difference between the un-

differentiated and the committed state is the 

result of a delicate balance between self-

renewal and differentiation (Nwajei and 

Konopleva 2013). 

The regulation of the fate of a stem cell 

with the mesenchymal stromal cell niche is the 

result of the combination of both intrinsic programs and external signals. The different 

cells which are included within bone marrow niche secrete many different molecules 

into the extracellular space. Some of said molecules include sonic hedgehog, Wingless 

proteins, bone morphogenic proteins, fibroblastic growth factors and Notch which 

orchestrates the appropriate fate of all stem cells and their respective lineage 

commitments. 

The data obtained from the study of the composition and the regulation of the 

mesenchymal stromal cell niche in vivo is an important step in improving the system of 

culturing adult stem cells in general and, more specifically, in culturing mesenchymal 

stromal cell. The knowledge of the molecular mechanisms involved in the processes 

Figure. 3.5 Cartoon depicting bone niche. 

Adapted from Nwajei and Konopleva 2013. 
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regarding the preservation of stem cells could be applied during the expansion in vitro 

of the culture of MSC culture for future clinical applications. 
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4. CD34 

 

The CD34 family is constituted by cell-surface transmembrane proteins and consists 

of CD34, podocalixin, and endoglycan. 

Although the biological function of CD34 has not yet been fully clarified, several 

roles have been attributed to the proteins of CD34 family. CD34 is widely accepted as 

marker for the identification and isolation of hemapoietic stem cells (HSCs) even 

though it was proposed as a promoter of the proliferation involved in the blocking of 

cell differentiation and the trafficking and migration of HSCs (Nielsen and McNagny 

2008; Scherberich, et al., 2013). 

The components of the CD34 family 

are not expressed ubiquitously in all 

tissues but rather certain components are 

expressed in certain tissues. In fact, while 

CD34 is expressed in vascular progenitor 

cells and podocalyxin, it is first and 

foremost defined as a marker of kidney 

glomerular epithelial cells. 

Genomic studies have claimed that the 

genes which code for the three proteins 

CD34, podocalyxin, and endoglycan are 

evolutionarily related. 

Each protein is encoded by eight 

exons, and, across the family, individual 

exons code for equivalent protein motifs 

which are consistent in length (Nielsen 

and McNagny 2008). Another similarity 

between these three proteins is the 

intronic distances and the alternative splicing found in each which generates a protein 

lacking much of the cytoplasmatic tail.  

Figure. 4.1. In the panel are represented the CD34 family 

members. (Nielsen 2008) 



21 

 

4.1 The structure 

As described in Figure. 4.1, the 

extracellular domain of CD34, 

podocalyxin and endoglycan includes 

both a serine-, threonine- and proline- 

region that is extensively O-

glycosylated and sialylated, a 

cysteine-bonded globular domain as 

well as a juxtamembrane stalk in the 

extracellular domain. This high level of modification influences the molecular weight of 

the protein which is is estimated to fall between 90-170 KDa.  

The transmembrane domain consists of a single helix which is highly conserved 

between the three proteins as is the cytoplasmic domain which contains phosphorilation 

sites and a PSD- 95- Dlg- ZO-1 (PDZ)-binding domain. 

Even if their domain structures seem quite similar to one another, CD34, 

podocalyxin and endoglycan differ in several notable respects. First of all, the 

extracellular domain is quite different in length amongst the three proteins. For 

example, endoglycan has a couple of cysteine residues in justamembrane domain which 

are most likely involved in homodimerization. CD34 and podocalyxin both lack these 

cysteine residues. 

Cristallografic results suggest that the proteins endoglycan and podocalyxin both 

contain a similar cytoplasmic tail while in the protein CD34 its motif is slightly altered 

– a result which can be linked to a different intracellular ligand binding which exists in 

the protein CD34.  

 

4.2 CD34 family function 

Table 4.1 depicts an overview of the expression of CD34 family members in all 

human cells. It is important to note that the expression patterns of these proteins are all 

unique but at the same time often overlap with one another.  

In some tissues, such as vascular progenitor cells, all three proteins (namely CD34, 

Podocalyxin, and Endoglycan) are present which suggests that their expression is a 

Table 4.1. expression of CD34 family member in the different 

human tissues.  

± weak expression; + expressed and – not expressed. 
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necessity which later prevents serious consequences from occurring. In other cases, 

such as with mast cells (CD34) or with kidney podocytes (podocalyxin), only one 

protein is expressed. 

The sequence connected with the cytoplasmic tail is conserved between the three 

members of the CD34 family, however there are several differences which can be 

explained by referencing specific interactions with intracellular ligands. 

Firstly, a protein related to PDZ-family, namely NHERF, and a Na
+
/H

+
 exchange 

regulator co-factor, namely NHE-RF2, were both found to interact with podocalyxin 

proteins. 

NHERF is a intracellular protein with a ezrin-radixin-moesin (ERM)-binding domain 

and two tandem PDZ domains. The ERM-domain facilitates the interaction between 

NHERF and other ERF family members. 

It is known that ezrin can mediate the interaction between cell surface proteins and 

the actin cytoskeleton (Orlando et al., 2001) and therefore it was hypothesized that both 

podocalyxin and endoglyn were involved in cellular processes such as trafficking, 

transport, and signaling.  

Even though CD34 has a cytoplasmic tail quite similar to the other two family 

members, it does not interact with NHERF-1 and -2. Within progenitor cells it was 

found that CD34 interacts with the adapter protein CRK like (CRK-L). This protein has 

two different domains (SH2 and SH3) which interact with membrane proteins, 

membrane proteins which lack an intrinsic kinase capacity which would enable them to 

activate intracellular pathways directly. Although the role and function of the CD34 

protein was not initially fully understood, the various proteins which bind CD34 suggest 

that the protein CD34 explains various biological roles – roles which are dependent on 

the specific tissues in which the protein is expressed. CD34 used to be described as an 

identification marker of multipotent hemapoietic progenitors cells and it has been 

hypothesized that it is a protein involved in the enhancement of cell proliferation and in 

inhibiting cell differentiation. A scientific paper published in 1996 suggests that after 

stem cells maturation there is a reduction in the level of CD34 expression (Krause et al., 

1996). 
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Furthermore, CD34-knockout mice have less progenitor hemapoietic cells. In 

addition, a proliferation defect of adult-derived progenitor cells was observed in adult 

mice (Cheng et al., 1996) 

Several studies have focused instead on the homing of hemapoietic stem cells. When 

hemapoietic stem cells are infused intravenously, they arrive in the bone marrow where 

they travel between endothelial cells, enter the bone marrow parenchyma, and chemotax 

towards a specific subendosteal niche for the maintenance of said niche (Nielsen and 

McNagny 2008). Experiments using mice have shown that when hemapoietic cells are 

infused with CD34
-/-

, a lesser number of cells were found in the bone marrow as 

compared to the number of cells found in the bone marrow when the cells were infused 

with CD34
+/+

. Moreover, the infusion of CD34
-/-

 into hemapoetic cells (again during 

experiments carried out in mice) created a significant reduction of bone marrow 

repopulation compared to normal cells. 

These results support the hypothesis that CD34 is involved in the migration of HSC 

from endothelial cells to hemapoietic stem cells using niches within the bone marrow. 

Several different papers report data which suggest the involvement of the CD34 

family in many biological processes. For example, there is evidence which shows the 

correlation of CD34 protein and lymphocyte adhesion. Lymphocytes adhesion is 

mediated by L-selectin which recognizes specific glycosilated residues of the 

extracellular CD34 domain (sulfated form of sialyl Lewis X, a tetrasaccharide 

Figure. 4.2. Proposed functions of CD34-family proteins. A). Adhesion in lymphocites is mediated by L-Selectin and a 

specific glycosilation of CD34 extracellular domain. B) If this post trasductional modification is not present, the CD34 

itself inhibits the adhesion. “balance  mechanism” of podocalyxin. C) When  the expression of podocalyxin on  the cellular 

membrane is low, said adhesion is mediated by integrins, but D) when podocalyxin  expression is too high, adhesion 

inhibition results (Nielsen & McNagny, 2008). 
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carbohydrate). This post-translational modification is carried out in very few HEV. even 

if most cells express both CD34 and podocalyxin. The discrepancy between the number 

of cells which express CD34 family members and the number of cells which have the 

ability to modify these proteins post-traslationally represents an exception and not a 

general rule regarding the mechanism of this action. 

 

As was previously notes, podocytes express podocalyxin in the human kidney. In 

order for the kidney to function correctly, a small degree of space must exist between 

the podocyte cells. It was discovered, in the early 1980’s, that the high glycosilation of 

the extracellular domain of podocalyxin induces the correct spacing between said 

podocytes. 

During the early years of the twentieth century, several researchers hypothesized that 

the mechanism associated with podocalyzin is correlated to with its level of expression 

(Nielsen and McNagny 2008). Podocalyxin is usually expressed in apical domain and, 

in this position is able to induce adhesion. On the contrary, when the expression of 

podocalyxin is too high it can move from the apical position to basolateral face – an 

action which reduces the adhesion surface ( Figure 4.2). 

Another aspect of the mechanism which was investigated was the role of 

podocalyxin in cell morphogenesis. Evidence supporting this role was found in 1984 

when Kerjaschki and coworkers  identified podocalyxin on the membrane of kidney 

podocytes and successively associated this discovery with the presence of extensions of 

the body of the cells (Kerjaschki, et al., 1984). Later, the expression of podocalyxin was 

investigated on other cell types and it was found that podocalyxin is frequently 

expressed on the surface of cells (neurons, megakaryocytes) with complex membrane 

extensions, as previously described with regard to kidney podocytes. This new found 

data delineated the general role that podicalyxin plays in cell shape.  

 

Currently, many research groups are focused on the study of CD34 function in order 

to increase general knowledge on this protein and in order to try to link the expression 

of this protein with cell function. Some evidence suggests that the protein CD34 plays a 

role in cell division in HSC fate determination but this hypothesis has yet to be 

confirmed. 
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5. Integrins 

 

Integrins are adhesion molecules which play an important role in many biological 

processes such as cell-cell contact, cell-extracellular matrix interaction, immune 

response, and are also involved with cancer. The name “integrins” originates from the 

capacity of these proteins to establish transmembrane connections which connect the 

cell with the cytoskeleton as well as their 

capacity to activate many intracellular 

signaling pathways. Functioning as 

adhesion molecules, integrins are unique 

due to their ability to dynamically regulate 

their adhesive properties using a process 

termed ‘inside-out signaling’ or ‘priming’. 

During this process, stimuli received by cell 

surface receptors for chemokines, cytokines, 

and foreign antigens initiate intracellular 

signals which in turn impinge on cytoplasmic domains and alter the adhesive properties 

of many extracellular ligands. In addition, ligand binding causes the transduction of 

signals from the extracellular domain to the cell cytoplasm in the classical inside-out 

direction. All of these dynamic properties of integrins are central to their correct 

functioning in the immune system (Luo, et al., 2007). 

In addition to their role in adhesion, integrins are fundamental to the transmission of 

mechanical stresses in the microenvironment. Deformation of the cell membrane, be it 

caused by fluid flow, pressure variations, vibration dynamic strain, or other factors, is 

transmitted to the cytoskeleton via activated integrins (Thompson, et al., 2012). 

Integrins have been identified in metazoa yet have evolved differently in different 

phylia. In vertebrates it is possible to distinguish between eighteen α subunits and eight 

β subunits, which together are able to interact with one other in order to form until 

twenty four different heterodimers (Figure. 5.1) which all are able to bind, each with its 

own specific affinity, a wide range of ligands (Barczyk, et al., 2010). All integrins 

Figure. 5.1 A representative table of integrin 

subunits. 
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connect to microfilaments within the cytoskeleton except for the specific integrans α6 

and β4, which interact with intermediate filaments instead. 

 

 

 

Figure. 5.2. A representative image of integrins subunits. a) synthetic representation of the different domain presents in 

α- and β- subunit; b) 3D representation of integrin subunits; c) and d) Rearrangement of domains during activation of 

integrins that lack c) or contain d) an α I domain ( Luo et al., 2007) 
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5.1 The integrin structure 

Both α- and β-integrin subunits are type I transmembrane (TM) glycoproteins with 

large extracellular domains, single spanning TM domains, and, with the exception of 

β4, are also characterized by short cytoplasmic domains (Figure. 5.2 part a) (Fu, et al., 

2012). 

 

5.1.1 The α- subunit 

The extracellular part of the α- subunit is composed by a domain of around 200 

amino acids known as the I domain or Von Willebrand factor A domain which is the 

major ligand-binding site on integrins. It is important to note that not all α- subunits 

have the I domain; however, when it is present it is located between second and third β 

sheets of the β-propeller. 

The α I domain adopts the dinucleotide-

binding or Rossmann fold, which is 

characterized by α- helices surrounding a 

central β- sheet. There are seven major α- 

helices which exist, and several short α- 

helices that differ between I domain through 

various α subunits. The β- sheet contains 

five parallel β-strands as well as an 

antiparallel one. β-strands and α- helices 

tend to alternate in the secondary structure, 

with the α- helices wrapping around the 

domain in counterclockwise order when 

viewed from the top (Figure 5.3) (Fu, et al., 

2012; Lacey et al., 1998). The α I domain contains a ion binding site known as Metal 

Ion- Dependent Adhesion Site (MIDAS) and the amino acids responsible for the 

coordination of the metal ions are important for ligand binding. 

The N- terminal domain is composed by seven repetitions of around sixty amino 

acids with high homology to one another. In the secondary structure, these repeats are 

organized into a seven bladed β-propeller domain. 

Figure. 5.3 Crystalized structure of α I domain  

( Luo et al., 2007). 
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The main role of this domain is its interaction with β-subunit and, when the α I 

domain is not present, it is also responsible of the ligand binding. 

In summary, we can distinguish the α- subunit as the ‘head part’ (β-propeller domain 

and α I domain) and the C terminal region as the ‘leg part’. The ‘leg’ is composed of 

three different β- sandwich domains called thigh, calf-1 and calf-2. The ‘knee’ is located 

between the first and second domain and is characterized by a short sequence of amino 

acids responsible for the conformational variation during the different states of integrin 

activation.  

 

5.1.2 The β- subunit 

Analogous to the α subunit, the β- subunit looks like a head because it is formed by a 

β I domain inserted in the β- sandwich hybrid domain, which is itself in turn comprised 

within a plexin/ semaphorin/integrin (PSI) domain. The second main domain, while 

shorter compared to the “head” of beta integrin, includes four integrin epidermal growth 

factor- like domains (I- EGF) and a short β-tail. The crystallized structure of αVβ3 has 

established that the ‘knee’, which functions in the movement of the subunit, is located 

between domain 1 and 2 of I-EGF. 

The integrin β I domain is a highly conserved domain of about 240 residues and is 

analogous in structure to the α I domain since it contains a MIDAS domain for the 

binding of Mg
2+

. In the β I domain two additional metal ion-binding sites are present: 

the first one is called the “synergistic metal binding site”(SyMBS) and the second one is 

called the “adjacent to metal ion-dependent adhesion site” (ADMIDAS). Both sites bind 

Ca
2+

 and aid in the coordination of Mg
2+ 

within the MIDAS site. There are two 

additional segments within the β I domain: one is known as the specificity-determining 

loop due to its role in ligand binding and the other helps form a critical interface with α-

subunit β-propeller (Fu et al., 2012). In integrin dimers where the α subunit does not 

have the I domain, the β I domain is fundamental for ligand interaction and is activated; 

however, when the α I domain is present the function of β I domain seems to regulate 

ligand binding within the α I domain. 
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5.1.3 Between inactivated to activated state 

Integrin receptors are able to bind a wide variety of ligands and conversely many 

extracellular matrix (ECM) and cell surface adhesions proteins bind to multiple integrin 

receptors. One possible explanation for this added complexity lies in the evolutionary 

selection of common acidic peptide motifs in ECM proteins which mediate integrin 

binding via coordination to a divalent cation-containing binding pocket (Campbell and 

Humphries 2011). It is possible to define four classes of integrin-ligand combinations 

due to the fact that specific residues of ligands fit into specific sites in either α- or β- I 

domain or in β-propeller domain.  

As described previously, both α- and β-subunits have a transmembrane domain as 

well as a short cytoplasmic domain which are both devoid of enzymatic activity. As a 

result, inside-out signaling by integrins depends largely on the existing interactions with 

neighboring receptors, adaptors, and signaling proteins. 

Within crystallized structures several different research groups observed that 

integrins are able to assume three different conformations known as bent, intermediate 

and open (Figure 5.2). 

Many researchers have hypothesized that integrins do not rest constantly in their 

activated state. Rather, there is evidence which suggests that integrins in the bent 

conformation are indeed inactive.  

Moreover, when the integrin molecules are in the bent conformation, the ligand-

binding pocket may be oriented toward the plasma membrane, thereby impeding ligand 

engagement. However, flexibility at the juxtamembrane domain could enable a 

“breathing” movement for the conversion of bent/inactivated conformation to the 

extended/activated conformation of the integrin. Currently ,the molecular mechanism 

responsible for the change between bent and open conformation is not well understood; 

however, new evidence suggests that the movement of the hybrid domain within the β- 

subunit could be a key passage and a consequence of the conformational change of the I 

domain. Indeed, a swing-out of the hybrid domain away from the α-subunit pulls 

downward on the α7 helix of the β-I domain and favors the upward movement of the α1 

helix (Xiao et al., 2004). The end result of the movement of these two α-helices is a 

change within the β-I domain from an inactivated to an activated state. 
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Besides the translation between the inactivate and the active state of integrin 

molecules, the TM and cytoplasmic domains of both subunits have also been studied. 

In the activation phase, the TM domains seem to separate from each other instead of 

rearranging- an event which may prove to be an important factor in the intracellular 

activation of integrin. 

Recent research has noted that in the inactivated phase, the integrin molecule’s α- 

and β- subunit cytoplasmic domains are close to one another, yet then undergo 

significant spatial reorientation upon inside-out activation – an activation process which 

is induced by phorbol ester or talin head domain. Significant spatial reorientation is also 

observed during outside-in signaling – a process which is induced by ligand binding. 

There is currently a significant amount of evidence available which suggests the 

order of the essential steps involved in the interaction between the integrin molecule’s 

subunits and the specific ligand to which they are binding. There is still much to 

discover, however since the year 1986, when integrins were first discovered, there has 

been a significant increase in the level of interest in said integrin molecules an in the 

investigation of the molecular mechanisms involved in the signaling pathways activated 

by integrins.  

 

5.1.4 Integrin and signaling pathways 

Integrin signaling is critically important in regulation of signal transduction pathways 

through different mechanisms. It is known that most adherent cells come into contact 

with specific substrate for the purpose of their own survival and that the loss of these 

cell-matrix interactions induces cellular apoptosis. The mechanism responsible for 

cellular apoptosis is essential for it causes the avoidance of excessive cell growth in 

inappropriate tissues and/or sites. This survival signaling involves phosphatidylinositol-

3-kinase (PI3K)-mediated protein kinase B (PKB/AKT) activity. When α6β4 integrin 

binds specific ligands, it activates NFkB-mediated survival signals in specific cultures. 

We know that integrins which are not ligand bound have the ability to trigger cellular 

apoptosis of fully adherent cells through the use of recruitment and activation of 

caspase-8 – a fact which indicates that a given integrin profile is uniquely specific to its 

ECM environment and that this specificity is essential for the cells survival (Huveneers 

et al., 2007). 
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This cell-extracellular matrix interaction is fundamental for cell proliferation and 

differentiation. First of all, recent literature cites several different pathways through 

which integrin molecules are connected to the cell cycle progression. In fact, integrins 

which bind ECM residues stimulate a FAK/Src signaling complex at said sites of 

adhesion. In other cases, some α-subunits are coupled to the Src family Fyn kinase. 

Once activated, Fyn kinases recruit and activate Shc which creates a link to the ERK 

pathway. The last ‘pathway’ is the activation of PKC or PAK as mediated by integrin 

adhesion which in turn induces the activation of MEK. In differentiation processes, 

adhesion to specific substrates enables the modification of specific genes which are 

involved in differentiation. The inhibition of the formation of contracting myotubes by 

an embryonic myoblast by way of integrin-blocking antibodies is an example of the 

specificity of intercellular modification which is possible (Menko and Boettiger 1987). 

In osteoblastic differentiation, ECM-integrin-activated signals are responsible for the 

activation of Mitogen-Activated Protein Kinase (MAPK). Fibronectin and Collagen 

promote an increase in the activation of MAPK pathway, while the interaction of 

Vitronectin and integrin causes an osteogenic effect which must be associated with 

another mechanism (Hidalgo-bastida, et al., 2010).  

 

5.1.5 Integrins and their role in regenerative medicine 

As was previously described, the integrin-ECM interaction is an important factor in 

the differentiation of mesenchymal stromal cells into mesodermal lineages. 

In order to understand its possible application in regenerative medicine, it is 

fundamental to understand this mechanism fully. 

Many clinical applications combine the use of bioengineered materials and 

mesenchymal stromal cells to help damaged tissues regenerate. The use of biomaterials 

together with specific peptides can help in the differentiation process of mesenchymal 

stromal cells – a process which has been fully investigated in certain specific tissues. 

In 2004, Salasznyk published a research paper in which he described how the 

adhesion of vitronectin to collagen can induce the osteogenic differentiation of bone 

marrow derived mesenchymal stromal/stem cells. Salasznyk et al observed that only the 

seeding of BM-MSC on coating plates alongside these two molecules induces said 

osteogenic differentiation (Salasznyk, et al., 2004). 
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Seeing as integrins are the primary link between cells and their extracellular matrix, 

the composition of the ECM is also a key aspect in the determination of the optimal 

conditions for hMSC differentiation. Most of the cell adhesion studies which have been 

conducted for MSC agree that fibronectin is the most effective compared to other ECM 

components. This increased attachment can be explained by fibronectin’s ability to 

recognize twenty different binding receptors on integrin molecules (Hidalgo-bastida, et 

al., 2010). 

Mesenchymal stromal cells either modulate integrin expression in order to respond to 

cell culture conditions or they express specific integrins as a consequence of 

differentiation. The investigation of the molecular pathways involved in the regulation 

process described above is fundamental if we are to further clinical applications in the 

future.  

In a paper published in 2001, Frith and coauthors hypothesized that through a clearer 

understanding of the changes made to both hMSC integrin expression and ECM 

composition during differentiation, biomaterials could be tailored to match such 

changes and thereby differentiation could be optimized (Frith et al., 2012). Frith and 

coworkers observed that during osteogenic differentiation there is an increase in the 

expression of collagen -I and –IV as well as a reduction of fibronectin. Moreover, 

during the adipogenic differentiation process they observed a similar increase of 

Collagen –I and –IV production however as accompanied by an additional secretion of 

laminin. In this paper Frith also analyzed the expression of all integrin subunits at 

different time point during both the differentiation processes. In this way he was able to 

observe that after seven days of osteogenic induction, there was a significant increase in 

the expression of the α5 subunit which is involved with fibronectin even though during 

the differentiation process, MSC expressed collagen and not fibronectin. The hypothesis 

presented by Frith is that the α5 subunit is essential in the initiation of the induction 

process and that then other mechanisms were implicated in the modulation of integrin 

expression (Frith et al., 2012). 

Other reports have investigated mesenchymal stromal cells and the effects of low 

oxygen levels in the expression of integrins. It has been reported that MSC in vivo 

reside in the bone marrow as well as in other tissues where the oxygen concentration is 

lower compared to in vitro conditions. This notable difference in oxygen concentration 
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could be cause for an altered phenotype and characteristic. In a paper published in 2012, 

Saller observed an upregulation of all alpha integrins during hypoxia conditions 

compared to normal oxygen concentration conditions. HMSCs favor hypoxic condition 

in terms of stemness and migration (Saller et al., 2012). 

All the results from this study suggest that integrins are highly regulated by many 

different external factors yet also play an important role in the cell biology of 

mesenchymal stromal cells.  
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Aim of the work 

In the late of 1960s, Friedenstein identified in the bone marrow a population of cells 

able to adhere to plastic and to differentiate in the main mesenchymal lineages 

(Friedenstein, et al, 1966). These cells were later defined as mesenchymal stromal cell 

(MSC) and they have been intensively investigated. In the last decade different groups 

have identified mesenchymal stromal cells in other tissues, like fat (Zuk et al., 2001b), 

dental pump (Gronthos, et al., 2000) and other adult tissues (Fukuchi et al., 2004; Patki, 

et al., 2010). 

The wide range of differentiation potential of MSC, the possibility of their 

engraftment, their immunosuppressive effect, and ability to extensively proliferate in 

culture led to an increasing clinical interest in the use of MSC in numerous pathologic 

situations through either intravenous infusion or site-directed administration alone or 

associated with specific biomaterials. 

It is known that not all human tissues have the same ability to regenerate themselves 

after an injury or after a trauma. Some tissues, like skin and bone, for example, display 

a high ability to regenerate, but others, like cartilage, are not able to repair damages. In 

order to use MSC for clinical applications, it is fundamental to expand them ex vivo. In 

fact, MSC frequency in vivo is very low: in the bone marrow only 0,001% of cells are 

MSCs while this percentage increase to 3% in the fat tissue (Fraser, et al., 2008). 

In according to Good Manufacturing Practice guidelines, ex vivo expansion of MSC 

consists of cyclic phases where cells are seeded in culture dishes at a fixed density and 

are left to growth until they reach a 60-70% of confluency. Cells are passaged using 

enzymes like collagenase or trypsin, and either replaced up to obtain a enough number 

of MSC for clinical applications. The safety for the patient is the main concern 

associated to expanded in vitro cells. 

Whether this procedure affects the genomic and/or chromosomal instability of cells 

is controversial and conflicting data have been published about this topic (for a review 

see Ferreira et al., 2012). Most likely transitory alteration of the karyotype appears 

during culture. At the moment there are not enough data to fully understand all the 

possible implications that these transitory alteration have on the safety of the cells. 
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However, it must be noticed that so far none was able to demonstrate that cells with 

altered karyotype cause tumour formation in experimental animal models 

(Choumerianou et al., 2008; Izadpanah et al., 2008; Safwani, et al., 2012) nor tumour 

formation in patients that have been implanted with MSC has ever been published (Lalu 

et al., 2012). For this reason several groups are focused to define in details all 

parameters, including cell culture medium, cell density, passage and so on, which can 

be critical during expansion phase. 

In the last 10 years, there is an increase of interest in the study of the in vivo 

environment where MSC are located. The most accepted hypothesis is that the 

environment where MSC are, may contribute to maintain their progenitor properties 

properties and their capacity to differentiate in different lineages (Kaewsuwan, et al., 

2012) 

In this study, we aimed at establishing an in vitro niche for adipose-derived MSC 

(Ad-MSC or ASC) in order to maintain their progenitor properties during expansion. 

Furthermore, we identified potential regulators of the maintenance of ASC progenitor 

properties. Long-term cultures of ASC, without passaging after reaching cell confluence 

in order to allow cell-extracellular matrix and cell-cell interactions, were established 

and passaged ASC were used as control. 

 

This type of culture could be applied model to determine the molecular pathways 

involved to preserve the characteristics of ASC in vivo, which would be useful for their 

application in regenerative medicine approaches. Another interesting aspect would be 

the standardization of the cell expansion procedure, which would allow to obtain cells 

with similar properties for each patient. 
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Materials and methods 

 

Adipose derived mesenchymal stromal cell (ASC) isolation 

Adipose tissue, in the form of liposuction or excision samples, was obtained from 11 

donors after informed consent from the patient and following protocol approval by the 

local ethical committee (ref nr. EK 78/07 universitatsspital Basel). The tissue was 

digested for 60 minutes at 37°C in 0.15 % (W/V) Collagenase NB 6 GMP Grade from 

C. histolyticum (0.12 U/mg collagenase, PZ activity at 25°C, SERVA Electrophoresis 

GmbH, Germany) diluted in Phosphate Buffered Saline (PBS, Gibco). After 

centrifugation at 190 g for 10 min, the lipid-rich layer was discarded and the cellular 

pellet was washed once with PBS and it was filtered through 100 µm nylon-mesh 

strainer (BD Falcon; BD Biosciences, San Diego, http://www.bdbiosciences. com) to 

remove fibrous debris. For analysis, red blood cells were lysed by incubation for 2 min 

in a solution of 0.15 M ammonium chloride, 1 mM potassium hydrogen carbonate (both 

Merck, Darmstadt, Germany, www.merck-chemicals.com) and 0.1 mM EDTA (Fluka 

Analytical, Sigma-Aldrich Chemie GmbH, Buchs, Switzerland). The resulting SVF 

(Stroma Vascular Fraction) cells were then re-suspended in complete medium (CM), 

consisting of α-MEM supplemented with 10% of foetal bovine serum (FBS), 1% 

HEPES, 1% Sodium pyruvate and 1% of Penicillin-Streptomycin-Glutamin (100x) 

solution (all from Gibco), nucleated cells were stained with Crystal Violet (diluted 1:50 

with phosphate buffer solution Sigma) and counted by using a Neubauer chamber 

(Güven et al., 2012). 

 

ASC Cell Culture 

After isolation, SVF is seeded at a density of 2000 cells/cm
2
. At a subconfluent 

density, cells are washed once with PBS, detached using trypsin 0,05% (Gibco) for 

5min at 37% and its activity is blocked by complete medium. The cellular suspension is 

centrifuged at 1500rpm for 3 min. The pellet is re-suspended in CM and counted using a 

Neubauer chamber. The ASC are seeded at passage 1 (P1) at a density of 1700 cells/cm
2
 

until Passage 5 (PASS condition) in CM conditioned with FGF-2. 
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For the Unpass condition, ASC are seeded at a density of 2000 cells/cm
2
 in a 

T150cm
2 

flask (TPP, Techno Plastic Product, Switzerland) and left in the same flask for 

28 days changing medium twice per week. 

To value the ability of our cells to create a niche in vitro we seeded Pass/Unpass 

condition in Petri dishes at a density of 1700 cells/cm
2
 and we left to reach the 

confluency (approximately one week) (Ctrl). One Petri per condition are left for 2 

weeks more (Treated) and cells are characterized by FACS analysis. 

 

Colony Forming Unit –fibroblast (CFU-f) assay  

To value the clonogenic capacity of ASC we have plated them at low density (5 

cells/cm
2
) in CM with FGF 5ng/mL, after SVF isolation and every passage. We 

changed medium twice for week for two weeks. At the end we washed once with PBS, 

fix for 10min in 4% formalin and stained with crystal violet (Sigma) for 5 min. CFU-f 

frequency of freshly isolated ASC determines the initial number of ASC present in 

SVF. 

 

Flow citometry analysis and flow cytometry sorting assay 

Single cell suspensions ( ≥10
5 

cells) were washed once with PBS 5% FBS (FACS 

buffer) and re-suspended in FACS buffer with saturating concentration of 

fluorochrome-conjugated antibodies against the indicated proteins or an isotype control 

(dilution 1:100) listed in the table below and incubated for 30min at 4°C. At the end of 

the incubation we washed cells twice with FACS buffer and analyzed using 

FACSCalibur flow cytometer (Becton, Dickinson and Company). For each sample, at 

least 30000 list mode events were collected. The results are analyzed using Flow Jo 

software. 

In the case of FACS sorting cells are washed with FACS buffer supplemented with 

2mM EDTA (Sigma) and stained for the specific antibody for 30min 4°C. The ASC are 

sorted according to the specific expression of the selected markers (CD34, CD49e and 

CD73). 
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Antibody Provided by Antibody Produced by 

CD29-PE BD Pharmingen CD49f AbD Serotec 

CD34-APC BD Pharmingen CD51/61-APC BD Pharmingen 

CD49a-PE BD Pharmingen CD73-PE BD Pharmingen 

CD49b-FITC BD Pharmingen CD90-FITC BD Pharmingen 

CD49c-PE BD Pharmingen CD105-FITC AbD Serotec 

CD49d-PE BD Pharmingen CD146-PE BD Pharmingen 

CD49e-PE BD Pharmingen IgG1 PE BD Pharmingen 

IgG1 FITC BD Pharmingen IgG1 APC BD Pharmingen 

Table 1. List of fluorochrome-conjugated antibody used for Flow cytometry analysis. 

 

Adhesion assay 

Untreated 60 well plate (Nunclon Surface, Nunc) were coated for 1 hour at room 

temperature with human laminin (L-4544, Sigma Aldrich), rat tail Collagen 1 (354249, 

BD Bioscences), human fibronectin (F-0895, Sigma Aldrich) and human plasma 

vitronectin purified protein (CC080, Millipore). All proteins are diluted at final 

concentration of 40µg/mL in Phosphate Buffered saline (PBS, Gibco) 0,01% Tween-20 

(P-1379, Sigma Aldrich). Washed the wells with PBS and blocked unspecific sites 

using 5% dried milk in PBS 0,2% Tween-20 for 30min at room temperature. Discarded 

the solution and washed twice with PBS (Salasznyk et al., 2005). 

Cells are collected after tripsinization, blocked by serum-containing medium and 

counted using a Neubauer chamber. We transferred 1x10
5
 cells in a 1,5mL tube, 

centrifuged at 1500rpm for 3min, discarded the medium and washed twice in PBS. The 

cell pellet is re-suspended in Dulbecco’s Modified Eagle Medium (DMEM, Gibco), to a 

final concentration of 100cells/µL and plated 10µL of cellular suspension in the wells 

and left to adhere for 30 min at 37°C 5% CO2. To remove unbound cells, wells were 

then filled with PBS and inverted the plate and plotted it dry with clean paper. The wells 

were then washed twice this PBS. The bound cells were fixed by 4% formalin for 

10min at room temperature, discarded the fixation solution and washed twice this PBS, 

stained with 0,1% Crystal Violet for 15min and washed twice with tap water. The 

bound cells are then acquired using a light microscopy and counted using ImageJ 

software. 
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Osteogenic differentiation 2D 

Osteogenic differentiation was induced in 2D cultures as previously described 

(Jaiswal, et al, 1997). Briefly Pass and Unpass cells were seeded in 96-well plate (TPP, 

Switzerland) at a density of 3000 cells/cm
2
 in α-MEM supplemented with 10%FBS 

until the confluency, then we started the osteoinduction using medium composed by α-

MEM supplemented with 10% FBS, 10mM β-glycerophosphate (Sigma), 10nM 

dexamethasone (D-2915, Sigma) and 0,1mM L- Ascorbic acid-2-phosphate (Sigma). 

We induced cells for three weeks changing medium twice per week. 

 

Readout: Cells layers cultured in osteogenic medium were analized using 

OsteoImage Bone mineralization Assay (Lonza, Switzerland) as described in the 

datasheet. Briefly, cells are washed with PBS and fixed with 4% formalin for 20min at 

room temperature. After fixation, we washed twice the wells with diluted wash buffer 

(1X). We Added 100µL to each well of diluted staining reagent and incubated 30min 

protected from light. At the end of the incubation, discard the reagent buffer and wash 

the wells three times with wash buffer leaving wash buffer in the well for 5min. 

 

Adipogenic differentiation 

Adipogenic differentiation was induced in 2D cultures as previously described 

(Barbero, et al, 2003). Briefly, cells were seeded at a density of 3000 cells/cm
2
 and 

cultured in complete medium until the confluence. The medium was then supplemented 

with 10µg/mL Insulin (provided by the Hospital), 1µM Dexamethasone, 100µM 

indomethacin (I-7378, Sigma) and 500µM 3-isobutyl-1-methyl xanthine (Sigma) 

(Adipogenic induction medium) for 72 hours and subsequently with 10µg/mL insulin 

(adipogenic maintenance medium) for 24 hours. The 96-hour treatment cycle was 

repeated four times. 

 

Readout: Adipogenic differentiation was evaluated using Oil Red O staining 

(Sigma), which shows the presence of triglyceride deposits. In brief at 21 days from the 

adipogenic induction, ASC cultures were washed with PBS, fixed in paraformaldehyde 

4% for 10 min and stained with three volumes of Oil Red O (0,3% in isopropanol) and 

two volumes of H2O for 15 min at room temperature. Adipogenic-differentiated cells 
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were recognized by their characteristics being round shaped and containing lipid 

droplets and we acquired representative fields using contrast microscope (Olympus 

IX50 camera Color View Olympus). To perform the quantification of triglyceride 

accumulation, Oil Red O was solubilized with 100% isopropanol and the optical density 

(Perkin Elmer Elisa reader) was measured with a spectrophotometer at 500 nm. 

Experiments for the quantitative assessment of adipogenic differentiation were 

performed in triplicate in cells from different donors (Donzelli et al., 2011). 

 

Chondrogenic differentiation 

The chondrogenic differentiation capacity of ASC cells was investigated in pellet 

culture by using a chemically defined, serum-free medium, consisting of DMEM 

containing 4.5mg/ mL D-glucose, 1mM sodium pyruvate, 10mM HEPES buffer, 

100U/mL penicillin, 100mg/ mL streptomycin, and 0.29mg/mL L-glutamine (all from 

Gibco) further supplemented with ITS
+1

 (10mg/mL insulin, 5.5mg/mL transferrin, 

5ng/mL selenium, 0.5mg/mL bovine serum albumin, and 4.7mg/mL linoleic acid), 

1.25mg/mL human serum albumin, 0.1mM ascorbic acid 2-phosphate, and 10
-7

 M 

dexamethasone (all from Sigma), and 10ng/mL TGF- b1(R&D). Aliquots of 5x10
5
 cells 

were centrifuged at 250 g for 5min in 1.5mL polypropylene conical tubes (Saarstedt) to 

form spherical pellets and were cultured for 3 weeks at 37°C 5% CO2. 

 

Readout: Some pellets were fixed and paraffin embedded, and then 7µm sections 

were serially stained with hematoxylin and safranin-O and we acquired representative 

fields using microscope (Leitz Dialux 20). 

 

Osteo-induced adipose derived mesenchymal stromal/stem cells for 

implantation with actifuse. 

To test the ability of adipose derived mesenchymal stromal cell (ASC) to produce 

bone in vivo we cultured the cells for two weeks in a dish with osteogenic medium. At 

the end of the pre-induction, we discarded the medium and washed once with PBS. To 

detach cells from the plastic cells were treated for 15min at 37°C with 0,3% collagenase 

type II and we collected detached cells in a tube. After the treatment with collagenase, 

ASC were exposed to trypsin 0,5% for 5 min at 37°C and the trypsin activity was 
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blocked with complete medium. The cells obtained were passed by a 100 µm strainer, 

counted and aliquoted 10
6
 cells for each tube and then centrifuged at 1500 rpm for 5 

min. Meantime, we prepared tripsin (40mg/ml) and fibrinogen solution (12U/mL). 

In a well of a 96-well plate we added a “fixed” volume of actifuse granules 

(Baxtersurgery, Apatech LDH), we re-equilibrated the granules with medium and then 

added cells and the two solution and wait for 10min at 37°C 5%CO2. At the end of the 

incubation, we detached the obtained constructs from the surface and we implanted 

them in nude mice as described below (in vivo experiments in nude mice). 

 

Three- dimensional perfusion cultures 

For the direct perfusion of a cell suspension through the pores of 3D scaffolds we 

used a bioreactor system developed by Cellec (Cellec, Basel, Switzerland). As shown in 

the picture below, scaffolds were placed in silicon chambers 

(one scaffold per chamber) that were positioned at the 

bottoms of two silicon columns and connected through a U-

shaped tube at their base. The silicon columns allow oxygen 

exchange. Flow of the cell suspension was induced with the 

use of a vacuum pump and the flow rate regulated with a 

flow meter. The direction of flow was reversed when the 

fluid level in one column reached an optical sensor placed 

near the top of each column. The sensor detected the cell 

suspension, actuating a pair of solenoid valves, switching the vacuum to the opposite 

column, and therefore reversing the direction of fluid flow. Because scaffolds were 

press-fit into the chamber, the cell suspension could not deviate around the scaffold and 

was therefore forced to flow through its pores. The bioreactor was oriented vertically to 

avoid cells from settling onto the glass columns as would occur if in horizontal oriented 

(Wendt, et al., 2003). 

SVF, Pass and Unpass cells were perfused at a velocity of 3 ml/minute through 

porous hydroxyapatite ceramic scaffolds (ENGIpore; Fin-Ceramica Faenza, Faenza, 

Italy, http://www.finceramica.it) with an average porosity of 83% ± 3% and the size of 

8-mm diameter, 4-mm-thick disks (2,5x10
6
 cells per disk when we seeded SVF, while 

10
6
 cells per disk in PASS and Unpass condition) in DAF medium (10

-8
 dexamethason, 
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5ng/mL FGF-2 and 0,1mM ascorbic acid). The day after the seeding we changed the 

intensity of perfusion from 3ml/min to 1mL/min. After 3 days, the initial cell 

suspension was totally removed and replaced by fresh DAF medium. After two 

additional days of perfusion with cell-free medium, the resulting constructs were 

implanted in nude mice as described below (Scherberich, et al, 2007). 

 

In vivo experiments in nude mice 

ENGIpore ceramic scaffolds were cutted in half, rinsed in PBS, placed in a 12-well 

plate, and incubated at 37°C for 2 h with 3 mL of 0.12 mM MTT [3(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma, St. Louis, MO] to 

assess the spatial distribution of cells. MTT is converted by the mitochondria from a 

soluble yellow salt into an insoluble purple formazan salt and can therefore give a 

qualitative assessment of the location of cells within the scaffold (Wendt et al., 2003). 

Some other constructs were implanted in the subcutaneous tissue of nude mice (CD1 

nu/nu, Charles River, www.criver.com). 

 

Assessment of bone formation following in vivo implantation 

Twelve weeks after implantation, the mice were sacrificed by inhalation of CO2. The 

maintenance, surgical treatment and sacrifice of animals were performed in strict 

application of the guidelines from the local veterinary agency (Kantonales Veterinäramt 

Basel-Stadt, permission #1797). The constructs were harvested, fixed in a 4% formalin 

buffer overnight and subjected to slow decalcification in 7 % w/v EDTA and 10% w/v 

sucrose (both from Sigma-Aldrich) at 37°C on an orbital shaker for 7-10 days, paraffin-

embedded and sectioned at different levels (7-µm-thick sections). 

 

Readout: 

Sections were stained with Hematoxilin and Eosin (H&E) and observed 

microscopically to detect the formation of bone tissue for qualitative analysis (Leitz 

Dialux 20). Briefly, to re-hydrate the fixed tissue are necessary 3 steps in ultraclear to 

deparaffinate the slides, two steps in ethanol 100%, one in ethanol 96%, one step in 

ethanol 70% and one in ethanol 50% (90sec/each). After these steps, wash with tap 

water and then 3 stain with hematoxilin mayer (Medite) for three times and a final step 
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of washing. The second phase is to bath slides with HCl-alcohol 0,2% and water with 

NH4 and then to stain them with eosin 0,2% (J. T. Baker) three times. Three final 

washing steps in ethanol 96%, 96% and 100% (respectively) and three step in 

ultraclear. 

 

Trichrome de Masson – aniline blue variation (reactifs RAL). Trichromic 

staining combines three stains: a nuclear stain (Haemalun), a cytoplasmic stain (a mix 

of acid stains: ponceau fuchsin) and a specific stain for collagen (another acid stain: 

aniline Blue). Briefly, the slides are dewax and then re-hydrate (as described in of 

hematoxilin and eosin staining); stain with mayer Haemalum for 10 minutes, rinse with 

water and then stain with Ponceau funchsin solution for and incubate for 5 minutes; 

successively rinse in two baths of 1% acetic water, fix the stain in a bath of 

Phosphomolybdic acid for 3 minutes and stain in Aniline blue solution for 5 minutes. 

At the end of staining differentiate the slides in alcohols and dip in a bath of toluene or 

xylene and micrographs are captured of representative fields (Leitz Dialux 20).  

 

RNA extraction and cDNA retrotrascription 

Total RNA was extract from cell pellet stored at -80ºC according to NucleoSpin 

RNA II protocol (Macherey-Nagel, http://www.mn-net.com/). Briefly, sample is 

homogenized and the cells are lysed and RNases are inactivated. The lysate is then 

filtrate and acid nucleics (RNA and DNA) are captured in the silica membrane. The 

next step is digested DNA and finally dilute highly pure RNA which is quantify using 

NanoDrop (Thermo scientific,). 

For cDNA retrotrascription we used Omniscript enzyme (Qiagen) and the protocol is 

described in the table below and the final volume is 20 µL. 

Component 
µL 

(x1 sample) 

Random primers (Promega) 0,8µL 

dNTPs (10X) 2µL 

Buffer (10X) µL 

RNA (0,5 µg)+ 

H2O DEPC treated 
14.2µL 

enzyme 1µL 

 

Incubate the reaction for 60min at 37ºC and then store at -20ºC. 
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Rq- PCR 

The cDNA obtained from the retrotrascription, was used as template for Rq-PCR. 

For a single reaction the final reaction volume is 20 µL and it is composed by: cDNA 

(4µL of the entire volume of retrotrascribed product diluted 1:4 with H2O DEPC), 

Master mix (12,5 µL), assay on demand (or primer FW, RV and probe9 and H2O DEPC 

to 20 µL. 

Primers for OCT4/POU5F1 (octamer-binding transcription factor 4 ), KLF4 

(Krueppel-like factor 4), Nanog, Sox2 are provided by Applied biosystem (Assay on 

demand); primers and probe for GADPH. The amplification reaction was carried out in 

96 well plate in a ABI prism 7300 (Applied byosistem, Paisley, UK). The results 

obtained are normalized to that of GADPH. 

 

Immuno Fluorescence (IF) 

Immunofluorescence staining was performed on 50 µm-thick frozen section of 

human fat tissue. Sections are fixed in cold acetone at -20°C for 10 min. Successively 

they are washed twice with PBS and let’s to dry at RT. The slides are incubated for 1 hr 

in a blocking solution (PBS 0,3% Triton and 2% goat serum) and then stained for 1 hr at 

the dark for the following antibodies and dilutions : CD49e (BD Pharmingen) at 1:50 

and fibronectin (Abcam ) at 1:100. At the end of the incubation, sections are washed 

with PBS+ 0,3% triton and then incubated for 1hr with secondary antibody diluted 

1:200. Three washing steps and then sections mounted. 

Fluorescence images were taken with 40x and 60x objectives on Nikon A1 laser 
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Results 

 

Clonogenic ability 

Adipose derived mesenchymal stromal cell (ASC) display the ability to form 

colonies when plated at low density on tissue culture plastic. These colonies are the so 

called colony forming unit-fibroblast (CFU-f). 

The standard protocol for expansion of ASC for research and clinical applications, 

dictate that when cells arrived at a subconfluent density (70%) they were detached from 

plastic and expanded in new flasks (Pass cells). It has been described that ASC lose 

their pluripotency during in vitro expansion (Muraglia, et al., 2000). In our hypothesis, 

3D culture and cell-cell and cell-matrix interactions are fundamental for maintenance of 

ASCs properties. To allow these interactions, we decided to culture ASC for 28 days in 

the same dishes without passaging, reaching confluence and producing extracellular 

matrix (Unpass cells). 

Unpass and Pass cells, were first analyzed for their clonogenic capacity. As 

described in the Figure I.1, Unpass cells displayed a significant increase of 

clonogenicity compared to Pass cells.  

 

 

 

 

 

 

 

 

 

 

 

Figure I.1 The graph represents the results of “colony- forming unit efficiency” (CFU-e) of 6 donors in triplicate. Data are 

analyzed using one way ANOVA followed by unpaired t test (p<0,0001). 
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To investigate whether the increased number of colonies was due to a lower number 

of doublings performed by Unpass cells as compared to the control condition, 

cumulative doubling number and clonogenicity was determined.  

Unpass cells divided less in 28 days (9,47±1,29) compared to Pass cells (25,79±3,25) 

(Figure I.2a). As shown on Figure I.2b at a comparable number of doublings (P0), Pass 

cells displayed already a decreased amount of colonies, indicating that Unpass were 

able to better preserve their clonogenic capacity despite expansion. 

 

 

 

 

 

Unpass cells have higher level of expression of stemness genes 

It has been previously described that stem cells express high levels of specific genes 

related to the maintenance of their pluripotency. NanOg, Sox2 , KLF4 and Oct4. 

NanOg, Sox2 and Oct4 (knows as POU5F1) are transcription factors involved in the 

maintenance of undifferentiated embryonic stem cells and somatic cells can be 

reprogrammed into induced pluripotent stem cells (iPSCs) by their transient ectopic 

overexpression (Bernhardt, et al., 2012). 

Different papers have described an upregulation of these genes in MSC obtained 

from different tissues (Liu et al., 2009). For this reason we investigated the expression 

of NanOg, Sox2, KLF4 and Oct4 in Unpass and Pass cells. 

 

Figure I.2. a) The graph represents the cumulative doublings numbers of 11 donors in Unpass condition and during the 

normal culture. Data are analyzed using1way ANOVA followed by Bonferroni’s multiple comparison test (p<0,01); b) 

Colony forming unit efficiency of 6 donors. Data were analyzed using 1way ANOVA followed by Bonferroni’s multiple 

comparison test (p<0,01). 
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The results, shown in Figure I.3, indicate that, compared to the Pass condition, 

Unpass cells expressed higher mRNA levels of the analyzed genes.  

 

 

 

 

 

 

 

 

 

 

 

 

Unpass cells have an increased osteogenic, adipogenic potential. 

ASC, after expansion in vitro, preserve their property to differentiate in different 

mesodermal lineages and recently it has been described that they can differentiate also 

in non-mesodermal lineages as for example cardiac (Vunjak-Novakovic et al., 2010) 

and neurogenic cells (Safford et al., 2002). To investigate whether the expression of the 

stemness genes described above in Unpass cells correlated with increased functional 

properties, differentiation potential towards the adipogenic, chondrogenic and 

osteogenic lineage was assessed. As control Pass cells and P0 cells (to compare the 

same number of doublings) were used. After 4 cycles of adipogenic induction, 

differentiation was evaluated using morphological techniques described at materials and 

methods section. For qualitative assessment, we stained the intracellular lipid droplets 

using OIL RED O, which was then quantified. As shown in Figure I.4, in the Unpass 

condition, ASC were able to form a significant higher number of adipocytes compared 

to Pass or P0 ASC.  

 

 

 

 

Figure I.3 The graph represents data obtained from real time PCR for three different donors. The values are normalized 

as a ratio between Unpass and Pass condition. 
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For osteogenic differentiation, ASC were induced for three weeks with osteogenic 

growth factors and then hydroxyapatite deposit s were quantified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. I.5. OsteoImage quantification after 3 weeks of osteogenic differentiation. Data are obtained from three donors and 

are analyzed using 1way ANOVA followed by Bonferroni’s multiple comparison test (p<0,05). 

Figure. I.4. Adipogenic differentiation of hASC. a)Control untreated hASC (CTRL) and adipogenic induced ASC (ADIPO) 

were stained with Oil Red O after 4 cycles of induction. Micrographs are representative of different experiments performed 

with cells from three donors. b) Oil Red O was solubilized and optical density read at 500 nm to obtain a quantitative 

assessment of adipogenesis. The experiment was performed in triplicate with cells from three different donors and data are 

expressed as mean+standard deviation. 
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The quantification of the hydroxyapatite deposits confirmed that Unpass Cells have 

an increased capacity to differentiate towards osteogenic lineage in vitro. ASC, which 

were expanded for one passage (P0 cells) had a reduced capacity to differentiate, 

similarly to Pass cells. 

 

 

 

 

To determine chondrogenic differentiation capacity, ASC were cultured in a pellet 

system in serum free medium and in presence of TGF-beta1. The results show that were 

not able to produce cartilaginous matrix since no Safranin O staining could be observed 

in any of the conditions (Figure I.6). This could be explained with some reports present 

in the literature according to which this medium does not activate specific molecular 

pathway fundamental for the chondrogenic differentiation in ASC. 

 

Osteogenic differentiation in vivo. 

ASC, as bone marrow-derived MSC, have been investigated for their possible 

application in bone tissue engineering. For this reason it is fundamental to determine 

ASC bone forming capacity in vivo. For this purpose two different models were used. In 

the first approach, we pre-differentiated Unpass and Pass cells in the osteogenic lineage 

in vitro for two weeks, then we mixed them with silicated tricalcium phosphate granules 

(actifuse granules) and the constructs were implanted subcutaneously in atimic mice for 

12 weeks. 

 

 

 

Figure. I.6 Micrographs of cells pellets after the staining with safranine solution. The absence of staining suggests that 

during three weeks of differentiation ASC does not differentiate. Pictures are representative of three different donors. 
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Histological analysis showed that Unpass ASC have produced slack collagen fibers 

which were not visible in Pass condition. Furthermore, we did not observe the presence 

of osteoblastic lacunae (Figure I.7) in any of the conditions. 

Observing these results our hypothesis was that the biomaterial and the process was 

not ideal for our cells. Based on a paper published in 2007 (Scherberich et al., 2007) we 

decided to change model and to use ceramic scaffold and not granules of actifuse and to 

replace the static culture with a perfusion system (described in material and methods 

section). 

MTT assay was performed after after 5 days of seeding on half of the construct to 

evaluate the efficacy and homogeneity of the seeding (data not shown). 

Half scaffold was implanted subcutaneously in atimic mice for 10 weeks. As control 

in these experiments we used stromal vascular fraction (SVF) to reproduce the results 

obtained in the paper from Scherberich et al (Scherberich et al., 2007). 

After 10 weeks, SVF and Unpass cells were able to form dense collagenous matrix 

characterized by the presence of osteocyte lacunae, whereas Pass cells only generated 

fibrous tissue within the scaffold pores (Figure I.8). These results taken together 

indicate that Unpass cells were able to maintain their in vivo bone forming capacity 

despite the expansion on plastic.  

Figure I.7 Hematoxylin and eosin staining of 7µm sections of construct after explantation (10X objective). 
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Phenotipic characterization 

To investigate whether the increased osteogenic capacity was related to a specific 

phenotype, Unpass cells were characterized for expression of different surface markers 

(Table I.1). We observed that 20% of Unpass cells expressed CD34, which was instead 

not detectable in Pass cells. CD34 belongs to the sialomucin family and it has been used 

as a marker of endothelial cells and hematopoietic stem cells (Nielsen & McNagny, 

2008). More recently, Maumus and coworkers (Maumus et al., 2011) claimed that ASC 

in vivo are characterized by the expression of CD34, which is lost upon expansion in 

Figure I.8. Mibrographs of scaffold sections after in vivo implantation. On the left there are a representative image of 

tissue after Hematoxylin & eosin staining. On the right, sections were stained with Masson trichrome, specific for 

Collagen I. The micrographs are representative of two donors.(10X objective in all images accept for the image on the 

top on the right and in the middle on the left( 20X objective)). 
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vitro. We hypothesized that the presence of a subpopulation CD34+ cells could explain 

the differences in stemness gene expression, clonogenicity and differentiation capacity 

in Unpass cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CD34+ subpopulation characterization 

To test this hypothesis, Unpass ASC were sorted according to the expression of 

CD34. CD34+ and CD34- were then analyzed for their clonogenic capacity and for the 

expression of stemeness genes. 

 

 

Markers Unpass Pass 

CD29 + + 

CD34 20%+ - 

CD49a - + 

CD49b - + 

CD49c - + 

CD49d - + 

CD49e + ++ 

CD49f - - 

CD41/61 + + 

CD73 + + 

CD90 + + 

CD105 - + 

CD146 - - 

Table I.1 The list of markers tested in ASC . 
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As shown in Figure I.9, CD34+ and CD34- displayed the same clonogenicity and no 

difference was observed for the expression of the transcription factors NanOg, Sox2, 

Oct4 and KLF4 (Figure I.10) 

 

 

 

 

 

 

 

 

 

 

 

To assess the capacity to differentiate in vitro, CD34+ and CD34- cells were cultured 

in presence of osteogenic growth factiors. The results indicate that amount of 

hydroxyapatite deposits was comparable between the two conditions (Figure I.11), 

suggesting that CD34 expression does not identify a population of early progenitors 

with Unpass ASC. 

 

Figure I.9 The graph represents the data of colonies-forming unit-efficiency in Unpass, Pass and the two subpopulation 

(CD34+ and -.) The data are results of 5 different donors and are analyzed using 1way ANOVA followed by Bonferroni’s 

comparable multiple test (p<0,01). 

Figure I.10 The graph represents the levels of gene expression normalized to CD34- cells. 
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After osteogenic differentiation in vitro we investigated also their ability to make 

bone in vivo. However, no difference was observed in the capacity CD34+ and CD34- 

cells to form bone tissue in vivo. In fact, as shown in the pictures in Figure I.12, only 

fibrous tissue was found in both conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

Many membrane markers are not stable expressed during life of a cells but they can 

be modulated in response to a specific environment or an external stimuli. The results 

obtained from the characterization of CD34 population have suggested that CD34 is not 

stably expressed by Unpass cells but rather modulated. 

Figure I.11. Quantification of hydroxyapatite deposits with OsteoImage Assay kit. The data are obtained from three 

different donors. 

Figure I.12 Hematoxylin and eosin staining of paraffin embedding sections after in vivo implantation. The tissue is fully 

cellularized and we can distinguish few collagen fibers. Micrographs are representative of three different donors. 
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To confirm this hypothesis we investigated the expression of CD34+ and CD34-

populations after sorting. Interestingly, after 5 days of culture, positive cells no longer 

expressed CD34, which was instead upregulated after 14 days of culture (Figure I.13). 

Negative cells also expressed CD34 when they reached confluency (14 days).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, our results show that CD34 expression does not identify a early 

progenitor population with Unpass ASC, but that it can be modulated according to 

culture conditions.  

 

 

Figure I.13. FACS data of a representative experiment. On the top there are two plots of CD34 + population: on the left 

after 5 days from the FACS sorting and on the right after 14 days of culture. At the bottom, two plots are the 

characterization of CD34- populationafter 5 days and 14 days from the sorting respectively of the left and on the right. 
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Different adhesion properties 

Phenotypical characterization showed that Unpass e Pass cells differ in the 

expression of integrins, which have been involved in the interaction with the 

extracellular matrix. 

In particular, Unpass cells only express low levels of α5 (Fibronectin receptor) and 

β1, whereas Pass cells express all integrins, including collagen receptors, and especially 

higher levels of α5. Surface marker analysis were confirmed by adhesion assays (Figure 

I.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To investigated whether Unpass ASC displayed a similar phenotype compared to 

freshly isolated ASC, SVF cells were analyzed for the expression of integrins. 

Interestingly, similarly to Unpass cells, Stroma Vascular Fraction cells only express 

integrin α5 (involved in fibronectin interaction) and β1 (involved in the 

heterodimerization and activation of integrins) and both at low levels,. Also in this case 

we correlated FACS results with adhesion functional assay. (Figure I.15b). 

 

Figure. I.14. The graph represents the adhesion assay data obtained from three different donors. It highlights the difference 

in the adhesion between Unpass and Pass cells. Analysis was done using 1way ANOVA followed by Bonferroni’s 

comparative multiple test (p<0,001).  
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The expression of CD49e (integrin α5) in SVF cells suggests that in vivo ASC might 

be in contact with a matrix rich in fibronectin. Vessel lumens are rich in fibronectin and 

recently ASC have been localized in a perivascular position (Maumus et al., 2011). To 

show CD49e expression in vivo, human fat tissue was stained for α5 integrin and for 

fibronectin. As shown in Figure I.16 cells positive for α5 (red cells) were localized close 

to vessels (fibronectin coating, green), confirming a perivascular position of ASC in 

vivo. 

 

 

 

 

 

 

 

Fig. I.15 a) FACS data plots of StromaVascular Fraction (SVF). The double staining with CD73 and integrin described the 

level of expression in ASC just isolated. b) Functional experiment of adhesion assay which confirmed FACS data. As 

negative control we coated plate with 3% light milk. Data are analysed using 1way ANOVA followed by Bonferroni’s 

comparative multiple test (p<0,0001). The results are representative of three different donors. 
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These results taken together indicate that Unpass ASC preserve their progenitor 

properties, such as clonogenicity, gene expression and differentiation ability. Moreover, 

Unpass ASC display a similar phenotype as compared to freshly isolated ASC. 

Furthermore, we investigated α5 role in the adhesion in SVF cells and we showed that 

fibronectin receptor is involved in the first adhesion to plastic (data not shown). 

In order to determine whether α5 integrin could be used to isolate ASC from SVF 

cells, we performed a sorting according to the double expression of CD49e (fibronectin 

receptor) and CD73 (mesenchymal marker). We found that only CD49e+/CD73+ cells 

are the clonogenic cells (Figure I.17) 

 

Figure. I.16. Micrograph represents a vessel in human adipose tissue. In green is stained fibronectin fibers which cover 

the blood vessel, while in red are stained cells positive for the expression of α5. (Blue DAPI for nuclei).The image was 

acquire with 60X objective. 

DAPI; CD49e; Fibronectin 

Figure I.17. Images of colonies-forming unit-efficiency after the sorting of stroma vascular fraction according to their 

expression of CD73 and CD49e. The images are representative of two different donors. 
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Discussion 

 

MSC have raised the interest of the scientific community for their capacity to 

extensively proliferate ex-vivo and to differentiate into the main mesodermal lineages.  

Although MSC were firstly identified in the bone marrow, more recently adipose 

tissue has been described as a promising source of pluripotent progenitors because of its 

abundance, easy accessibility and minimal donor site morbidity In bone marrow only 

the 0,01-0,001 % are mesenchymal stromal cells while in liposuction this percentage is 

increased up to 3% (Fraser et al., 2008). Adipose derived MSC (ASC) are isolated from 

the stromal vascular fraction (SVF), which is the result of enzymatic dissociation of 

adipose tissue obtained from liposuction procedure. The SVF contains different cell 

type: leukocytes, erythrocytes, vascular endothelial, pericytic cells but also multipotent 

mesenchymal cells, which are referred to as adipose derived stem/stromal/progenitor 

cell (ASC) (Scherberich, et al, 2013). These cells showed similar biological features as 

compared to bone marrow derived MSC. 

In vivo ASC are localized close to blood vessels (Maumus et al., 2011; Zimmerlin, et 

al, 2013), but it still remains unclear whether the microenvironment plays a role in the 

maintenance of their progenitor properties. 

During the expansion phase in vitro, ASC are seeded on plastic until they reach a 

sub-confluent density (around 60-70%). They are then enzymatically detached from the 

flasks and re-seeded at a specific cell density in new flasks. This process does not allow 

the formation of the extracellular matrix which is continually disrupted and does not 

reproduce the in vivo situation. The aim of the present study was to establish a more 

physiological environment allowing cell-to-cell and cell-to-matrix interactions. For this 

purpose ASC were cultured for 28 days without passaging after reaching confluency. 

Our results show that Unpass ASC could better preserve their clonogenic and 

differention capacity compare to ASC which underwent standard in vitro expansion. In 

our project was also important to define whether Unpass ASC display a similar 

phenotype compared to freshly isolated ASC. Several reports have described phenotypic 

characteristics of ASC after expansion in vitro (Braun et al., 2012; Goessler et al., 
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2008) and controversial results have been described for ASC phenotype in vivo. Two 

recent papers have described that ASC in vivo, are located close to blood vessels ( Da 

Silva Meirelles, et al, 2009; Maumus et al., 2011; Zimmerlin et al., 2013). Maumus 

firstly identified the expression of CD34 in ASC in vivo. This sialomucin was identified 

as marker of vascular endothelial progenitor cells (Andrews, et al, 1989; Nielsen & 

McNagny, 2008) but very little is known about its possible role in adipose derived cells. 

It was observed that CD34 is expressed only in vivo while adipose stromal cell lose to 

express it during expansion and proliferation in vitro. Interestingly, in Unpass ASC 20% 

of cells expressed this marker, suggesting that the maintenance of in vivo properties like 

higher clonogenicity, stemness gene expression, and differentiation could be linked to 

the expression of this glycoprotein. However, the results obtained have refuted this 

hypothesis: CD34+ cells did not display increased clonogenic capacity, nor a higher 

ability to differentiate in mesodermal lineage. 

From the analysis of phenotypic characteristics of ASC freshly isolated from adipose 

tissue, we observed that they express only integrin α5, which recognize the fibronectin -

RGD sequence. In adipose tissue we found cells positive for this integrin (Figure I.16) 

close to blood vessel suggesting that these cells are ASC. 

Integrins are cell surface receptors involved in adhesion of the cell and play a major 

role in the connection between extracellular matrix and cell. Cellular function and 

phenotype are influenced by external stimuli, like fluid flow, pressure variations, 

vibration dynamic strain or changing in the microenvironment, and they are transmitted 

to the cells by the activated integrins. Different manuscripts described that integrins are 

differently regulated in mesenchymal stromal cell as response to various conditions, like 

differentiation, oxygen concentration, and so on (Hidalgo-bastida, et al., 2010; 

Salasznyk,et al., 2004; Saller et al., 2012). 

Surprisingly, Unpass cells, like freshly isolated ASC , only express integrin α5. On 

the contrary, the expression of the α1-α6 integrins, which are involved in the binding to 

collagen, laminin, and vitronectin, was observed in Pass cells. Moreover, Unpass cells 

and ASC from SVF express integrin α5 at lower level compared to the Pass condition. 

In literature it has been reported that non adherent BM-MSC express low level of 

integrin α5 and they correlated this low expression with an higher osteogenic potential 

(Baksh, et al, 2007). Furthermore, Yu and coworkers demonstrated in a recent paper 
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that the integrin α6 regulates proliferation and differentiation capacities through 

PI3K/AKT/p53 activity. They revealed, also, the crosstalk between the pluripotency 

genes OCT4 and SOX2 and CD49f in hMSCs and hESCs. (Yu et al., 2012). Some 

preliminary results obtained in our study (data not shown) show that when Unpass ASC 

are induced in osteogenic differentiation they start to express more integrin α5, which is 

in accordance with data from literature (Hamidouche, et al., 2010; Fromique et al., 

2012). These results can strengthen our hypothesis that, when ASC are cultured in 

Unpass conditions, they display a less committed committed phenotype. The data of 

colony formation of SVF cells after double sorting for CD73 (marker of mesenchymal 

stromal cells) and CD49e (integrin α5) confirmed that ASCs positive for CD49e are 

clonogenic.  

To support our work another interest aspect is that Unpass ASC like ASC in vivo do 

not express CD105, which is instead upregulated during in vitro culture on plastic (Data 

not shown) (Braun et al., 2012b). This membrane protein is known as co-activator of 

TGF-β1 pathway and it seems to correlate with a more committed phenotype. Taken 

together, these aspects suggest that culture of ASC without disruption of the 

extracellular matrix, but promoting cell-to-cell and cell-to-matrix interactions, can 

preserve their stemness and phenotypic properties. 

These results are important from a biological point of view because they suggest a 

fundamental role of the in vivo microenvironment in the maintenance of ASC 

progenitor features. From a clinical point of view, instead, our data suggest alternative 

culture conditions to expand ASC ex vivo and increase the performance of these cells in 

regenerative medicine applications.  
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PART II 

 

Labeling of Human Mesenchymal Stromal Cell 

with a new generation of  

magnetic nano-particles: 

effect on cell biology. 
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Aim of the project 

 

In the last twenty years there has been an increase of interest in mesenchymal 

stromal cell (MSC) and their possible application in tissue engineering and regenerative 

medicine. Adult stem cell transplantation provides a new strategy for the treatment of a 

wide range human diseases and organ failure, indeed. The plasticity of MSC has been 

fully investigated and their ability to differentiate in different lineages, such as 

osteoblasts, adipocytes, or chondrocytes, is essential to regenerate musculoskeletal 

tissues. 

Mesenchymal stromal cell can be isolated from different tissues such as bone 

marrow or adipose tissue and they have been described to repair damaged tissues in 

vivo. Moreover, MSC display immunosuppressive activity, being able to: inhibit T cell 

proliferation in vitro, inhibit the function of both naïve and memory T cells, suppress 

the development of monocyte-derived dendritic cells in an in vitro system (Zhang et al., 

2004). Furthermore, several studies have proved that allogeneic MSC have been 

transplanted without graft rejection or major toxicities (Reinders et al., 2013; Ryan, et 

al., 2005). 

At the moment, many studies aim to determine the fate of mesenchymal stromal cells 

after transplantation. In vivo tracking of stem cells is crucial for assessing their homing, 

migrational dynamic, differentiation processes and regeneration potential. Super-

paramagnetic iron oxide nanoparticles (SPION) have been frequently used to track 

MSC in vivo because of their biocompatibility and their traceability with non-invasive 

magnetic resonance (Guo et al., 2012). The goal of this project, is to label human 

mesenchymal cell with magnetic nano-particles in order to load them on magnetic 

scaffolds upon application of a magnetic field. For this reason prof. Matteo Santin and 

coworkers have developed a new generation of magnetic nano-particles. The novelty in 

this case is the envelope. Indeed, the Fe
+
 central core of magnetic nano-particles is clad 

by a layer of hyperbranched poly(epsilon-lysine) dendrons (G3CB) (Galli et al., 2012). 

G3CB interact with the glycocalix of the cellular membrane avoiding the internalization 

of the beads. The hypothesis is that if the beads are not internalized by the cells they 
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cannot have cytototoxic effect or modify the abilities of mesenchymal stromal cell to 

proliferate and differentiate.  

We first focused on the optimization of the labeling protocol. Then we investigated 

the possible cytotoxic effects of G3CB MNP on proliferation and differentiation 

potential of human MSC.  
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Materials and Methods 

 

Bone marrow derived mesenchymal stromal cell (MSC) culture 

MSC are obtained from bone marrow aspirates of three different donors. Briefly, 

bone marrow aspirate was diluted one to one using phosphate buffer (PBS) solution and 

centrifuged for 5 min at 2000 rpm. After the centrifugation, it was discarded the same 

volume of PBS previously added and the cells are counted after staining with crystal 

violet solution using a Neubauer chamber. Mononuclear cells are then seeded in plastic 

dishes at a density of 2,5 *10
6 

cells/60mm dish and mesenchymal stromal cell are 

obtained according to their characteristic to adhere to plastic. 

MSC are expanded complete medium (CM), consisting of α-MEM supplemented 

with 10% of foetal bovine serum (FBS), 1% HEPES, 1% Sodium pyruvate and 1% of 

Penicillin-Streptomycin-Glutamin (100x) solution (all from Gibco), and conditioned 

with FGF-2. At a sub-confluent density, cells are washed once with PBS, detached 

using trypsin 0,05% (Gibco) for 5min at 37% and its activity is blocked by complete 

medium. The cellular suspension is centrifuged at 1500 rpm for 3 min. The pellet is re-

suspended in CM and counted using a Neubauer chamber. The MSC are seeded at 1700 

cells/ cm
2
. 

 

Labeling of hMSC with G3CB-MNP nano-particles 

To re-suspend the magnetic nano-particles (G3CB, MNP), we added 0,5mL of 

Ethanol 100% in eppendorf containing 3,5 mg of beads and we placed the tube in an 

ultrasonicating bath and we left to allow an homogenous solution. Occasional vortexing 

during the ultrasonication accelerated the re-suspension. 

Meantime, we detached MSC, as previously described, and counted them. Cells were 

resuspended in a 50mL tube with an appropriate volume of medium (CM) to reach a 

final concentration of 4*10
4
 cells/mL. 

The following step was to add to each tube the amount of MSC to reach the 

appropriate quantity for the number of cells. We tested three different concentrations of 
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beads: LOW (21,6 µg/mL for 3*10
4
 cells), MEDIUM (43,2 µg/mL for 3*10

4
 cells) and 

HIGH (86,4 µg/mL for 3*10
4
 cells).  

The cells were incubated at 37 °C, 5% CO2 on an orbital shaker (100 rpm) for three 

different time points: 5 min, 15 min and 30 min. 

At the end of the incubation it was applied a magnetic field for 10 min to separate 

magnetized from non-magnetized cells and after we collected in a new tube the medium 

containing non-magnetized cells.  

Magnetic and non magnetic cells were centrifuged for 5 min at 1500 rpm and then 

both cells were counted to identify the percentage of magnetized cells. 

We re-suspended the magnetized cells in CM supplemented with FGF-2 and seeded 

in tissue culture dishes. 

 

Evaluation of cytotoxicity 

To value the cytotoxic effect of the labeling on MSC, after the labeling we seeded 

approximately 6 *10
3
 cells/well in a 6 well plate. After 24hr, 48hr and 72hrs from the 

labeling we discarded the medium and incubated the cells for 20 min at 37 °C 5% CO2 

with Propidium Iodide solution (Sigma Aldrich) diluted 1:20 with CM-FGF-2. At the 

end of the incubation the medium was changed and we observed cells using microscope 

(Olympus IX50 con  camera Color View Olympus) at bright light and using UV lamp. 

Next step was count live and dead cells for each field and quantify the viability 

percentage . 

 

Proliferation  

After the labeling magnetized-MSC were seeded in tissue culture dishes at the 

density of 3000 cell/cm
2
. 

To value a possible effect of the labeling on the cell proliferation we allowed the 

proliferation rate for later two passages. 

To calculate the proliferation rate we used the following rule: 

Log2 (N/ N0)/t 

Where N is the number of cells obtained after a fixed time,  

N0 is the number of cells seeded at time 0, 

And t is the time between two passages. 
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Osteogenic Differentiation 

Osteogenic differentiation was induced in 2D cultures as previously described 

(Jaiswal, et al., 1997). Briefly were seeded in 6-well plate (TPP, Switzerland) at a 

density of 3000 cells/cm
2
 in α-MEM supplemented with 10% FBS to reach the 

confluency, then we started the osteo-induction using medium composed by α-MEM 

supplemented with 10% FBS, 10mM β-glycerophosphate (Sigma), 10nM 

dexamethasone (D-2915, Sigma) and 0,1mM L- Ascorbic acid-2-phosphate (Sigma). 

We induced cells for three weeks changing medium twice per week. 

 

Readout: Osteogenic differentiation was evaluated using Alizarin Red staining 

(Sigma Aldrich) which show extracellular hydroxyl-apatite deposits. Briefly, after 14 

days of differentiation osteogenic medium was discarded and cells layer wash once with 

PBS and fixed with 4% formalin for 10 min at room temperature. At the end of the 

fixation step, cell layer was rinsed extensively with distill H2O. Meantime, 2% alizarin 

red solution is made, dissolving the power in distill H2O filter the solution with paper 

filter. Before to use it, we checked the pH of the solution would be 4.1-4.3. 

Cells layer was incubated with Alizarin red solution for 10 min at room temperature 

and when the solution was removed we washed twice with ethanol 100% and we 

acquired representative fields using contrast microscope (Olympus IX50, Color View 

Olympus) 

 

Read out: The quantification of the total calcium present in the matrix produced by 

MSC during osteogenic differentiation was evaluated using a dispensable kit (Calcium 

quantification kit CA-590, RANDOX). Briefly, the monolayer of cells after two weeks 

of induction was washed twice with PBS and HCl 0,5N in each well was added and 

cells were scratched using a tip. The cell lysate obtained was transferred in a eppendorf 

and they were shaken for 3 hours at 4°C on a orbital shaker. At the end of the incubation 

the solution was spun at 1000 rpm for 5 min. The supernatant was collected in a new 

tube and stored at -20°C until the analysis. We prepared a working solution with the 

equal part of two component: component R1 (calcium buffer) and component R2 

(Calcium chromogen). In a 96 well plate we distributed 5µL of cell lysate and then 

added 195µL of the working solution and then the absorbance was read at 575 nm. The 
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standard curve was prepared using Calcium/Phosphate- CaP at 5 different concentration 

0-100 µg/mL and it was treated as a sample. 

 

Adipogenic Differentiation 

Adipogenic differentiation was induced in 2D cultures as previously described 

(Barbero, et al., 2003). Briefly, cells were seeded at a density of 3000 cells/cm
2
 and 

cultured in complete medium until the confluence. The medium was then supplemented 

with 10µg/mL Insulin (provided by the Hospital), 1µM Dexamethasone, 100µM 

indomethacin (I-7378, Sigma) and 500µM 3-isobutyl-1-methyl-xanthine (Adipogenic 

induction medium) for 72 hours and subsequently with 10µg/mL insulin (adipogenic 

maintenance medium) for 24 hours. The 96-hour treatment cycle was repeated four 

times. 

 

Readout: Adipogenic differentiation was evaluated using Oil Red O staining 

(Sigma), which shows the presence of triglyceride deposits. In brief at 21 days from the 

adipogenic induction, MSC cultures were washed with PBS, fixed in formalin 4% for 

10 min and stained with three volumes of Oil Red O (0.3% in isopropanol) and two 

volumes of H2O for 15 min at room temperature. Adipogenic differentiated cells were 

recognized by their characteristics being round shaped and containing lipid droplets and 

we acquired representative fields using contrast microscope (Olympus IX50 Color View 

Olympus) To perform the quantification of triglyceride accumulation, Oil Red O was 

solubilized with 100% isopropanol and the optical density was measured with a 

spectrophotometer at 500 nm. Experiments for the quantitative assessment of 

adipogenic differentiation were performed in triplicate in cells from different donors 

(Donzelli et al., 2011). 
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Results 

 

Optimization of cell labeling 

The labeling of mesenchymal stromal cell with G3CB -functionalized magnetic 

nano-particles is a very important step to be optimized. In a recent publication, the 

labeling with MNP was performed on adherent cells at different time points, up to 24h 

of exposure (Jasmin et al., 2011). 

Our hypothesis, instead, was that the G3BC functionalization could shorten the 

labeling time and that the attachment of the particles to the membrane would avoid their 

internalization. As control, non-functionalized MNP (only Fe
+
 core) were used. 

Moreover, the labeling was performed on cell suspension to test its feasibility in a 

potential intra-operative approach. To evaluate the efficiency of the labeling and the 

possible differences between G3CB-MNP and non-functionalized MNP, we tested three 

different time points, 5, 15 e 30 minutes. 

After 5 min of exposure more than 60% of MSC were labeled with the G3CB-MNP 

and this percentage increase up to 80% after 15 min, remaining stable over time (Figure 

II.1). On the contrary, only 20% of cells were labeled with non-functionalized MNP and 

this percentage did not increase even after 30 min of labeling (Figure II.1). 

 

 

 

 

 

 

 

  

Figure II.1 Labeling of human mesenchymal stromal cell after 5, 10 and 15 minutes of exposure to G3CB or MNP. Data 

were analyzed using 2way ANOVA test followed by Bonferroni post test (p<0,01). 
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As shown in Figure II.2, G3CB-functionalized beads were able to aggregate on the 

cell membrane, due to the presence of poly-lisine dendrons. Cell morphology did not 

change compared to control (not labeled) cells. In the presence of non-functionalized 

MNP no aggregates were observed, but the MNP were internalized affecting cell 

morphology.  

To assess whether the concentration of MNP could affect the labeling process, we 

tested three different concentrations of G3CB (defined as low, medium and high). As 

shown in Figure II.3, after 30 min of exposure more than 80% of MSC were labeled 

with all of the three concentrations of G3CB-MNP tested, indicating saturation of the 

process even at the lower concentration. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.3. The graph represents the percentage of labeled cells after 30min of exposure to three different G3CB-MNP 

concentrations. 

Figure II.2. Representative micrographs of mesenchymal stromal cell after the labeling with G3CB-MNP and not 

functionalized MNP. As control we took a picture of not labeled MSC. The arrows show in particular the magnetic nano-

particles in both cases. 
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Labeling of MSC with G3CB-MNP has not a cytotoxic effect 

To investigate whether exposure of MSC to G3CB-MNP was cytotoxic, MSC 

viability was investigated from day 1 to day 3 after the labeling. 

As shown in Figure II.4, MSC viability was around 100% , indicating that G3CB-

functionalized MNP did not affect MSC survival. 

 

 

 

 

 

 

 

 

 

 

 

G3CB-MNP labeling does not affect the MSC proliferation 

With the next experiment we evaluated if MNP-labeling of MSC can alter their 

ability to proliferate. 

 

 

 

 

 

 

 

 

 

 

After labeling MSC were cultured for two passages and the proliferation rate was 

determined. The results obtained from three donors, confirmed that G3CB-

functionalized MNP did not affect MSC proliferation (Figure II.5). 

Figure. II.4. The graph represents the results the % cell viability of MSC exposed to different concentrations of G3CB three 

days after the labeling. 

Figure II.5. A schematic representation of the MSC proliferation. Data are representative of three indipendent experiments. 
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G3CB-MNP labeling does not influence differentiation potential of human 

mesenchymal stromal cell 

MSC can be induced to differentiate toward different mesodermal lineages, such as 

osteoblasts, adipocytes, chondrocytes as well as non-mesodermal lineages (cardiac 

cells, neurogenic cells, and so on).The maintenance of their multipotency during ex vivo 

manipulation is fundamental for their application in regenerative medicine. Therefore, 

we investigated the effect of G3CB labeling also on the maintenance of the 

differentiation capacity. For this purpose, labeled MSC were exposed to osteogenic and 

adipogenic differentiation media. 

 

Labeled MSC were able to differentiate towards to osteogenic lineage in vitro, as 

evidenced by calcium deposits stained by Alizarin Red (Figure II.6a) Differentiation 

was also assessed by the quantification of the calcium deposits in the matrix (Figure 

II.6b). 

 

Figure II:6. a) Arizarin red staining of G3CB-functionalized mesenchymal stromal cell after two weeks of differentiation. 

(4X objective) Micrographs are representative of different experiments performed with cells from three donors. b) 

Quantification of the calcium deposited by MSC in the extracellular matrix during osteogenic differentiation.  
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Figure II.7 a) Oil RED O staining of lipid droplets after four cycles of adipogenic diffentiation (10X objective). Micrographs 

are representative of different experiments performed with cells from three donors. b) Oil Red O was solubilized and optical 

density was read at 500 nm to obtain a quantitative assessment of adipogenesis. The experiment was performed in triplicate 

with cells from three different donors and data are expressed as mean+standard deviation. 

Under adipogenic conditions, MSC labeled with the G3CB MNP were also able to 

differentiate into adipocytes, at the same extent of control cells (Figure II.7). 

 

These results together confirmed that the labeling of MSC with G3CB-functionalized 

MNP, does not affect their ability to differentiate toward the osteogenic and adipogenic 

lineage.
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Discussion 

 

Mesenchymal stromal cell are a promising candidate for regenerative medicine 

approaches. Critical-sized bone defects are generally caused by trauma, bone diseases, 

prosthetic implant revision or tumor excision. The consequent bone tissue loss cannot 

be repaired by physiological regenerative processes and mesenchymal stromal cell have 

been applied in clinical trials to improve tissue regeneration (Calori, et al., 2011; 

Panseri, et al., 2012). 

The success of stem cell therapies in patients requires methods to assess their bio-

distribution, their fate after infusion and their contribution to regenerate tissues. 

Magnetic Resonance Imaging (MRI) could be an excellent tool for high resolution 

visualization of the fate of MSC and recently several publications have focused on the 

combined use of mammalian cells and super-paramagnetic nano particles (SPION) 

(Ahrens, et al, 2003; Guzman et al., 2007). However, further investigation about the 

effect of SPION incorporation by stem cells is essential for their approval in clinical 

applications (Jasmin et al., 2011) 

In this project, the effects of a new generation of magnetic nano-particles on MSC 

biology were investigated. These nano-particles, developed by the group of Matteo 

Santin (Brighton University), have a Fe
+
 core upholstered with a monolayer of 

hyperbranched poly(epsilon-lysine) dendrons (G3CB). This modification allows the 

interaction with the glycocalix of the cell membrane avoiding their internalization and 

all possible drawback effects resulting by the internalization. 

The potential application of MSC labeled with G3CB MNP will be to develop a new 

method to seed cells on a magnetic scaffold applying a magnetic field. 

The protocol used in this study is different from those previously described. Several 

publications focused on the labeling of mammalian cells with SPION. These methods 

apply long time of incubation (24 hours or more) and cells in adhesion (Guo et al., 

2012; Jasmin et al., 2011). The main innovation with G3CB-functionalized nano-

particles is that the time of incubation was significantly reduced, since the labeling of 

60% of the cells was already obtained after 5 minutes of incubation. On the contrary, 



92 

only 20% of the cells were labeled with control beads (MNP). Moreover, cells were 

labeled in suspension on an orbital shaker, indicating that this procedure could be used 

in an intra-operative approach. The percentage of labeled cells could be increased up to 

80% after 30 minutes of exposure and G3CB-MNP were always localized on the cell 

membrane. The number of cells labeled with control MNP, instead, remained stable at 

20% even after a longer incubation, indicating that the time points tested were not 

appropriate to increase the percentage of labeling. The results obtained from the 

labeling of MSC with three different concentrations of G3CB MNP shows that, after 30 

minutes of exposure, the percentage of labeled cells is similar in all concentrations, 

indicating saturation even at the lower concentration. Furthermore, assays to determine 

cytotoxicity, and maintenance of proliferation and differentiation capacity showed that 

labeling of MSCs did not affect their progenitor properties.  

Our results show the feasibility of a potential application of G3CB nano-particles in 

clinical trials.  
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