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Abstract (English version)

In this thesis we have studied and developed solutions to common issues re-

garding widefield microscopes , facing the common problem of the intensity

inhomogeneity of an image and dealing with two strong limitations: the impos-

sibility of acquiring either high detailed images representative of whole samples

or deep 3D objects.

First, we cope with the problem of the non-uniform distribution of the light

signal inside a single image, named vignetting , making the objects of the

image hardly comparable. In particular we proposed, for both light and flu-

orescent microscopy, non-parametric multi-image based methods, where the

vignetting function is estimated directly from the sample without requiring

any prior information. After getting flat-field corrected images, we studied

how to fix the problem related to the limitation of the field of view of the

camera, so to be able to acquire large areas at high magnification. To this

purpose, we developed mosaicing techniques capable to work on-line. Start-

ing from a set of overlapping images manually acquired, we validated a fast

registration approach to accurately stitch together the images previously flat-

field corrected. Finally, we worked to virtually extend the field of view of

the camera in the third dimension (i.e., the z -dimension), with the purpose

of reconstructing a single image completely in focus, stemming from objects

having a relevant depth or being displaced in different focus planes. To pursue

this goal, a stack of images is typically acquired by scanning the objects in z.

Several methods have been proposed in literature to estimate the in-focus re-

gions in each image of the stack to reconstruct one image completely in focus.

After studying the existing approaches for extending the depth of focus of

the microscope, we proposed a general method that does not require any prior

information. In order to compare the outcome of existing methods, different

standard metrics (Universal Quality Index, Signal to Noise Ratio and Mean
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Squared Error) are commonly used in literature, applied on stacks of synthetic

images endowed with ground truth. However, no metric is available in real

cases to compare different methods, where a reference ground truth is not at

one’s disposal. First, we validated a metric able to rank the methods as the

Universal Quality Index does, but without needing any reference ground truth.

Second, we proved that the approach we developed performs better in both

synthetic and real cases.

The thesis contains data and methods that we have partly published in 3

scientific journals and 6 international conference proceedings. All the source

codes and related material are achievable upon request.



Abstract (Italian version)

In questa tesi abbiamo studiato e sviluppato soluzioni a questioni comuni in

materia di microscopia a campo largo. In particolare abbiamo affrontato

il problema della non omogeneitá dell’intensitá delle immagini acquisite e due

forti limitazioni: l’impossibilitá di acquisire immagini ad alto dettaglio rappre-

sentative o dell’intero campione o di oggetti 3D con spessore non trascurabile.

Per prima cosa abbiamo studiato le caratteristiche del problema denominato

vignettatura , relativo alla distribuzione non uniforme del segnale di luce

all’interno di ogni singola immagine che rende gli oggetti presenti difficilmente

paragonabili. In particolare abbiamo proposto, sia per la microscopia a luce

sia per la microscopia a fluorescenza, metodi non parametrici dove la fun-

zione di vignettatura é stimata utilizzando un insieme di immagini acquisite

direttamente dal campione, senza richiedere alcuna informazione aggiuntiva.

Dopo aver sviluppato metodi per ottenere immagini con distribuzione uniforme

di intensitá, abbiamo studiato come risolvere il problema legato alla limitata

dimensione del campo di vista della telecamera, al fine di essere in grado di ac-

quisire una singola immagine ad alto ingrandimento rappresentativa dell’intera

area del campione osservato. A questo scopo abbiamo sviluppato tecniche di

mosaicatura in grado di operare on-line con l’acquisizione delle immagini.

Partendo da una serie di immagini acquisite manualmente, avendo cura che

ci fosse sempre una certa percentuale di sovrapposizione tra due immagini

seguenti, abbiamo validato un approccio di registrazione in grado di creare ve-

locemente un mosaico allineando accuratamente le singole immagini acquisite,

precedentemente corrette dall’effetto di vignettatura. Infine, abbiamo studi-

ato come estendere virtualmente il campo di vista della telecamera lungo la

terza dimensione (la dimensione z ), con lo scopo di poter ottenere singole im-

magini completamente a fuoco o di oggetti aventi uno spessore rilevante o di

un insieme di oggetti posizionati su differenti piani di messa a fuoco. Gen-
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eralmente, per raggiungere questo obiettivo una sequenza di immagini viene

acquisita scansionando in z gli oggetti e diversi metodi sono stati proposti in

letteratura per stimare prima le regioni a fuoco in ogni singola immagine e a se-

guito per ricostruire l’immagine completamente a fuoco sfruttando le regioni a

fuoco precedentemente identificate. Dopo aver studiato i vari approcci esistenti

per estendere la profonditá di messa a fuoco del microscopio, abbiamo

proposto un metodo generale che non richiede alcuna informazione a priori.

Per confrontare i risultati dei diversi metodi, in letteratura sono tipicamente

usate diverse metriche comuni (indice di qualitá universale, rapporto segnale

rumore ed errore quadratico medio) sfruttando immagini sintetiche dotate di

veritá di riferimento. Tuttavia nessuna metrica in grado di confrontare diversi

metodi analizzando i risultati ottenuti usando immagini reali dove non é pre-

sente l’immagine di veritá. In primo luogo abbiamo validato una metrica in

grado di classificare i diversi metodi in accordo all’indice di qualitá universale

ma senza bisogno di alcuna veritá di riferimento. Poi, sfruttando la metrica

validata e sequenze di immagini sintetiche, abbiamo dimostrato che il metodo

che abbiamo sviluppato risulta essere il migliore tra tutti quelli testati per

estendere la profonditá di messa a fuoco.

Questa tesi contiene dati e metodi in parte giá pubblicati in 3 riviste scientifiche

e 6 atti di conferenze internazionali. Tutto il materiale citato, compreso il

codice sorgente dell’implementazione dei metodi, é fornito su richiesta.
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Chapter 1

Introduction and thesis

overview

Fig. 1.1: Widefield microscope. Schematic representation of the principal compo-
nents

Nowadays, the extent of human knowledge is widening by managing from

macro to nano. In the infinite big, we are able to remotely drive a robot to

collect materials on Mars. In the infinite small, we manage the human DNA

to prevent severe illness. In particular, these great goals of the humanity are

brought from a general improvement on every contributing science. And there

is a common fundamental line in the improvement of every single science: the

possibility to perform measurements. This is the fundamental key point of the
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Chapter 1. Introduction and thesis overview

MICROSCOPES

ELECTRON OPTICAL

CONFOCAL WIDEFIELD

LIGHT FLUORESCENCE

PHASE-CONTRAST

BRIGHTFIELD

...

Fig. 1.2: Microscoscopes taxonomy. Simplified schematic tree diagram of common
microscope types

general knowledge improvement. Measuring a phenomenon, we become able to

study, and often also to control and modify that phenomenon. In particular,

in this thesis we focus our attention on one limit of the human knowledge,

the infinite small, where there is a main instrument of measurement: the

microscope (Fig. 1.1) [1].

Lens systems and microscopes are used in science from the sixteenth century,

always increasing their magnification capabilities [2]. Now, in the twenty-first

century, we are in the middle of two Ages of microscopes: the Age of micro

and the Age of nano. The magnification factor has become so high that we

can look into a single micro cell and study nano particles [3]. Furthermore,

so many variants of microscopes have been realized that is also difficult to

define a proper taxonomy [4]. In Fig. 1.2 a simplified schematic tree diagram

is proposed, organized in the upper part accordingly to the technology, then

to the imaging techniques.

As expected, there is not a general microscopy technique suitable for all pur-

poses [5]. Before choosing the microscope fulfilling our requirements, we need

to define our goal: what do we want to see. For instance, looking at a high mag-

nification the cell shape does not help for defining an animal species (Fig. 1.3).

Accordingly, the wide range of different microscopes available is the answer

to visualize different particular characteristics of the substances. Neverthe-

less, despite the wide availability of many different microscopes and the new

technology continuously improving the performance of devices, there are still

2



Chapter 1. Introduction and thesis overview

Fig. 1.3: Microscope and measure. The choice of the measurement instrument is
always tight to what we want to measure. Cartoon by Gary Larson.

problems and limitations that have to be faced [6].

In this thesis, we focus our attention on optical widefield microscopy, the most

present in biological laboratories. This class of microscopes can be subdivided

into more groups according to the illumination source used to visualize the

substance (Fig. 1.4), typically rays of given wavelength in the human visible

spectrum (Light Microscopy [7], 700 ηm - 400 ηm) or, more extensively, from

the infrared to the ultra violet (Fluorescence Microscopy [8], 1000 ηm - 1 ηm).

These microscopes are principally used in brightfield and phase-contrast [9]

to visualize the morphology of micrometric cells and, in fluorescence, to high-

light nanometric particles or cell structures. As far as the general widefield

microscopy is concerned, limitations are often related to the area’s extension

achievable in one single image at the desired resolution and to the visualization

of deep objects, characterized by a relevant z -dimension (e.g., large 3D mul-

ticellular aggregates). Moreover, there are problems arising from the uneven

distribution of the signal in the field of view. Furthermore, specifically in flu-

orescence microscopy, problems such as photo-bleaching and quenching effect

3



Chapter 1. Introduction and thesis overview

Fig. 1.4: Light spectrum. The Human visible light is between 700 ηm - 400 ηm.
From Wikipedia: electromagnetic spectrum.

limit the concept to consider a microscope an instrument of measurement. The

lofty objective of this thesis and of all the methods generally proposed in liter-

ature to fix problems or relax limitations, is to improve technology, techniques

and knowledge in order to make the microscope more and more an accurate

quantity measuring system [10].

This thesis deals with three main common issues of the widefield microscopy:

• correction for the uneven distribution of the signal

• acquisition of an image of a large area at a high magnification

• visualization of deep objects

The keywords related to these issues are respectively: vignetting, mosaicing

and depth of focus.

VIGNETTING: the uneven fall-off of the image intensity (Fig. 2.1). This

problem affects all the images acquired with a widefield microscope, making the

distribution of the signal non homogeneous. If no correction is accomplished,

the images are almost useless for quantitative analyses. Often, to correct for
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Chapter 1. Introduction and thesis overview

vignetting, reference images are acquired in advance to characterize the signal

distribution and use the function estimated as a normalization factor. Never-

theless, several reasons make this solution infeasible. The vignetting problem

is analyzed in both light (brightfield and phase-contrast) and fluorescence mi-

croscopy and multi-image based methods to estimate the vignetting function

from the sample itself are proposed.

MOSAICING: the stitching of a set of images aiming at virtually extending

the limited field of view of the camera (Fig. 4.1). The final result is a mosaic

having at least the same pixel resolution of the source images and a large

final represented area. Mosaicing is a very common technique, used in many

applications such as panoramic photography, satellite imaging and biological

applications. Accordingly, many methods are proposed in literature to obtain

accurate mosaics in microscopy. Several of them relied on priors, like the shifts

between the images. A non-parametric method is proposed to stitch together

images manually acquired with a standard widefield microscope, even though

not coupled with a motorized x -y stage.

DEPTH OF FOCUS: key parameter of optical system, sometimes also called

depth of field (Fig. 5.1). In the data sheet of the lens, it is normally expressed

in µm. It represents the distance between focal planes in the z -dimension,

where objects keep sharp or in focus. An object is considered in focus when

it is particularly sharp, clear and, in general, good-looking. This parameter is

a strong limitation for the system, because it makes the acquisition of sharp

images of deep objects infeasible. Several methods are proposed in literature

to overcome this limit, but it is particularly difficult to compare the results

due to the lack of the “ground truth”, that is a gold standard assumed to

be the “truth”. In particular, a metric based on the Universal Quality Index

that does not require the ground truth is validated. Then, the methods at the

state of the art are compared meanwhile proposing a new solution that does

not require prior information on the images acquired nor heavy computational

burden.

This thesis is organized as follows:

Chapter 2 discusses the vignetting problem in all the details regarding light

microscopy. After an introduction on causes and effects, the state-of-the-art

methods are presented and compared. Then, a multi-image based method to
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Chapter 1. Introduction and thesis overview

estimate the vignetting function from the sample itself is proposed, overcoming

the other approaches considered.

In Chapter 3 the vignetting is analyzed in fluorescence microscopy. Usually,

problems like photobleaching, quenching and background behaviour make the

methods proposed in light microscopy ineffective. After an exhaustive analy-

sis of the available solutions, two different methods to correct the images by

the vignetting effect are proposed. In the first one, the vignetting function is

estimated from a large set of images acquired in advance. In the second one,

an ensemble of vignetting functions (instead of a single one) is estimated (reg-

istering a set of overlapping images) and a non linear correction is proposed

instead of the linear one commonly used.

Chapter 4 presents the mosaicing technique as a solution to easily extend

the field of view of digital cameras coupled with microscopes. In particular,

although the images are acquired with a microscope not coupled with a motor-

ized x -y stage, the proposed general purpose registration approach works at

subpixel, yielding highly accurate mosaics. The focus of this work it is not nec-

essarily the advancing of the state of the art. Rather, it represents a functional

stage for testing the different vignetting correction approaches. Nevertheless,

at the same time a solution for building mosaics on-line using non-automated

microscopes is proposed.

Chapter 5 is related to the depth-of-focus parameter. It is presented as a

strong constraint of the microscopes for a certain type of biological analyses.

A pretty fast method to extend the depth of focus is proposed. Furthermore,

a new metric is proposed to compare the state-of-the-art methods without

requiring the ground truth, typically not at one’s disposal.

Concluding remarks and hints for possible future work are reported and dis-

cussed in Chapter 6.

The work developed in this thesis has been carried out with the:

• Computer Vision Group (CVG), II Faculty of Engineering, University of

Bologna, Bologna, Italy. Director: Dr. Alessandro Bevilacqua

in partnership with the following institutions and laboratories:

6



Chapter 1. Introduction and thesis overview

• Osteoarticular Regeneration Laboratory, Rizzoli Orthopaedic Institute

(IOR), Bologna, Italy. Director: Dr. Enrico Lucarelli

• Laboratory of Biosciences, Istituto Romagnolo per lo Studio e la cura dei

Tumori (IRCCS-IRST), Meldola (Forĺı-Cesena), Italy. Director: Dr. Wai-

ner Zoli

• Laboratory of Radiobiology, Istituto Romagnolo per lo Studio e la cura

dei Tumori (IRCCS-IRST), Meldola (Forĺı-Cesena), Italy. Director: Dr. An-

na Tesei

• Light Microscopy and Screening Center, Eidgenössische Technische Ho-

chschule Zürich (ETHZ), Zurich, Switzerland. Responsible of Image Pro-

cessing: Dr. Peter Horvath

the activities have been carried out in the following two projects:

• STAMINAL - characterization of STem cells through support for Auto-

matic analysis of the MIcroscopic images in pre-cliNicAL therapy (par-

tially granted by IRCCS-IRST)

• ADVANCE - Automatic non-invasive system based on high content anal-

ysis to Detect and characterize VitAl meseNchymal stem Cells in a

spatio-temporal contExt (partially granted by IOR)

In particular, I spent the first year for implementing and validating the mosaic-

ing technique, then used to test the different vignetting correction approaches.

In the following two years I have deeply explored the research field of vignetting

correction in both light and fluorescent microscopy, yielding to innovate the

state of the art. In the same time, I worked on the field of the extension of

depth of focus for the visualization of deep objects, comparing the existing

approaches and proposing a new effective solution. The developed methods

and the obtained data have been partly published in 3 scientific journals and

are presented in 6 international conference proceedings. All the source codes

and related material are distributable upon request [11].

The 3-year PhD course in Information Technology was granted by the Ad-

vanced Research Center on Electronic Systems (ARCES), University of Bologna,

Italy.
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Chapter 2

Vignetting in light microscopy

Fig. 2.1: Vignetting effect. Inhomogeneous distribution of the image intensity.
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- A. Bevilacqua, F. Piccinini, A. Gherardi, Vignetting correction by exploiting an optical microscopy image
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optical microscopy. 8th Annual IEEE Symposium on Computational Intelligence in Bioinformatics and

Computational Biology (CIBCB), Paris, France, April 11-15, 2011, pp. 49-54
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Chapter 2. Vignetting in light microscopy

2.1. Introduction

2.1 Introduction

Nowadays, light microscopes coupled with digital cameras are part of the ordi-

nary basic equipment of all biological laboratories, where most of the biological

routine examinations regard cell cultures and histological samples. The accu-

racy of the microscope system, meant as an ensemble of illumination source,

condenser, filters, lens and camera sensors, has become particularly high even

using cheap components, this making quantitative imaging examinations enter

in daily routine [10]. Accordingly, great benefits in the biology research can

derive from improvements in the image acquisition system as corrections of

early errors still present [12].

Typically, the images acquired with light microscopes are characterized by a

radial fall-off of brightness intensity from the principal point towards the image

borders [13]. This undesirable property, intrinsic to optical systems, is known

as vignetting and represents one of the most common early problems that af-

fects digital imaging [14] and, in particular, subsequent processing stages such

as segmentation [15] and object tracking [16]. The problem is far more empha-

sized in quantitative imaging, where taking into account the vignetting effect

is mandatory to achieve reliable intensity measurements [17] or to compare

images achieved in subsequent times [18]. From a visual point of view, the

problem becomes particularly evident in mosaicing, where several images are

stitched together to fix the problem related to the narrowness of the field of

view of the camera [19, 20]. In fact, the registered images are not corrected for

vignetting effects, the seams in the stitching zones become clearly notable [21],

misleading visual and automated analysis [22, 23].

The ideal condition to have a negligible vignetting effect is called Köhler illumi-

nation [24, 25]. However, in real cases, many sources of vignetting contribute

to find a fall-off of the image intensity [26]. In [27] are reported the main

sources of vignetting classified according to the following four sources.

Natural vignetting, radial falloff due to geometric optics. Different regions

of the image plane receive different irradiance. For simple lenses, these effects

are sometimes modeled as a falloff of cos4(θ) [28, 29], where θ is the angle

at which the light exits from the rear of the lens. Note that in all lenses, the

distance from the exit pupil to the image plane changes when the focus distance

is changed, so this component varies with focus distance. The cos4 law is only
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an approximation which often could not be enough to model properly camera

and lenses in real applications.

Pixel vignetting, radial falloff due to the angular sensitivity of digital optics.

This type of vignetting, which affects only digital cameras, is due to the finite

depth of the photon wells in digital sensors, which causes light striking a photon

well at a steeper angle to be partially occluded by the sides of the well.

Optical vignetting, radial falloff due to light paths blocked inside the lens

body by the lens diaphragm. It is also known as artificial or physical vi-

gnetting. This is easily observed by the changing shape of the clear aperture

of the lens as it is viewed from different angles, which reduces the amount of

light reaching the image plane. Optical vignetting is a function of aperture

width: It can be reduced by stopping down the aperture, since a smaller aper-

ture limits light paths equally at the center and edges of frame. Some lens

manufacturers provide relative illuminance charts that describe the compound

effects of natural and optical vignetting for a fixed setting of each lens.

Mechanical vignetting, radial falloff due to certain light paths becoming

blocked by other camera elements, generally filters or hoods attached to the

front of the lens body.

To summarize, the term vignetting refers to radial falloff from many sources

(sketched in Fig. 2.2). In light microscopy, the non-uniformity of the light rays,

the interaction between light and sample, dust on the lens and lens’s impurities,

misalignments of components, angular sensitivity of the digital sensor and

its response function, altogether alter the ideal effect of vignetting over the

acquired image.

In the last decades, with the increase of microscopy image analyses, many ap-

proaches have been proposed to correct the effect of vignetting. The extensive

list of methods is reported in Sect. 4.2. Each of them relies on some constraints

or prior information and there is no general solution to fix the problem.

The most trivial but common approach is acquiring in advance an image of

a homogeneous reference object. The curvature of the brightness intensity,

perceptible in the captured images, can be considered a direct representation

of the vignetting function and used to calibrate the system. To this purpose,

images of Empty Field (EF) are typically used in light microscopy [30, 31].
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LAMP SPECIMEN OPTICS CAMERACOLLIMATOR

Fig. 2.2: Vignetting sources. In light widefield microscopy the light flow can be
sketched as so: the light rays arising from a source, typically a standard lamp,
are collimated to obtain a more flat wavefront to illuminate the specimen. After
the light-sample iteration, the rays transmitted through optics (like the lens of
the objective) reach the sensor of the image acquisition system, typically a CCD
camera. Several sources of vignetting can be highlighted by analyzing the light
flow: the light wavefront that reaches the specimen is not perfectly flat, the lens
act according to the theoretical cos4 law and the spatial sensitivity of the camera’s
sensor is not perfectly constant.

However, several reasons could make this approach difficult to apply [32, 31],

besides considering that acquiring a reference image is an additional operation

and it could be tricky for microscope users. First, the time elapsing between

the acquisition of the image of the reference object and the subsequent images

to be corrected could induce the systems conditions to change (e.g., due to

drifts of some component) without the operators awareness. Also, a reference

object could not be at one’s disposal, for example, when using specific dyes

in fluorescence microscopy or when the sequence to be corrected has been

acquired elsewhere without any reference image. Finally, since acquiring a

reference object and the target images must be accomplished in separate stages,

freeing oneself from the need of using reference objects could open the door

to useful applications. For example, in case of exploratory investigations of

specimens, mosaicing could start at any time as soon as a region of interest

is detected. On the contrary, it could be impracticable stopping the session,

acquiring an EF and then retrieving the region of interest.

To overcome these problems, several methods have been devised which do

not rely on reference images. Some approaches rely on parametric models

and are typically grounded on theoretical and physical proprieties of the light

distribution [33, 34], for example the cos4 law of the scene radiance decreasing.

However, this prior information neglects shape changes on the vignetting curve

due to impurities on the lens, dust on lens, optical or mechanical non-idealities
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like optical axis and holder being not perpendicular or the principal points not

falling in the geometric center of symmetry of the image.

In order to include also the above mentioned sources of shape changes in vi-

gnetting estimation, several image based methods have been proposed. The

most trivial ones are those based upon the assumption that the uneven illu-

mination simply stems from an additive low frequency signal [14, 35]. Accord-

ingly, low pass filtering techniques are proposed to extract such a signal from

the image. Accordingly, they only work in situations where vignetting effects

are very strong when compared to the range of the signal. Often, methods

trying to estimate the vignetting function from a single image require the use

of strong priors such as the radial symmetry of vignetting [36] or the center

of the vignetting function coinciding with the numerical center of the image

coordinates [37]. Furthermore, errors in crucial steps of the process, such as

the segmentation of the image regions, lead to a large bias in the estimated

vignetting function. Moreover, in some cases the information contained in the

single image cannot be enough to estimate a dense vignetting function.

Using more images could permit to exploit more information, thus making the

task to estimate the vignetting function faster [38], more reliable and more

robust [39]. In fact, several multi-image based methods have been proposed

to estimate the vignetting function starting from a sequence of images ac-

quired under stable microscope set-up conditions. However, most of the ap-

proaches still rely on priors such as the need of overlapping views of an arbitrary

static scene in order to have the same object acquired under different points of

view [40, 27]. Accordingly, this restricts the applicability of these methods: as

a matter of fact, only a few of them can be generically employed in widefield

microscopy and even fewer can work in brightfield and phase contrast images

characterized by a very low contrast [41, 42, 38, 43]. A more extensive analysis

of these multi-image based methods is reported in Sect. 2.2.

In order to relax the priors of the methods analyzed, we propose a nonparamet-

ric multi-image based method, conceived for light microscopy applications even

though the images are characterized by a very low contrast. The vignetting

function is simply estimated starting from a sequence of images acquired un-

der the same microscope setup conditions. It is computed over a background

(consisting of regions free of interesting objects like cells or tissue) built in-

crementally using a background segmentation algorithm developed on purpose
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and validated with extensive test experiments. The method is based on the

assumption that the background is more homogeneous than the foreground.

The estimated function is then used to correct the brightness intensity curva-

ture of the images. It is worth noticing that no prior information about the

microscope optics or the acquisition system is required. The method is then

suitable to tackle the vignetting problem even in real-time applications. In

fact, the images used to determine the vignetting function can be acquired

after starting normal operators inspection activities, and then kept and cor-

rected in their turn. For instance, this could be useful to build mosaics in real

time. The experiments were carried out using both cell cultures and histo-

logical specimens, which cover the most relevant part of the biological routine

examination performed with widefield microscopes. Also, a thorough and in-

teresting comparison with results achieved using reference vignetting functions

is discussed. Besides offering visual evaluation, we also propose a quantitative

analysis using several different metrics that proves the effectiveness of our

method in reducing vignetting: in fact, several times it results to be the best,

even outperforming the correction based on EF.

2.2 State of the art

To face the vignetting effect many different approaches have been published.

Each of them relies on some constraints or prior information. There is no a

general solution to fix the vignetting problem in each case, but for every sit-

uation there are several paths that can be followed. In this section, different

meaningful approaches to face the problem regarding vignetting and flat-field

correction are listed. Not all of them are easily applicable in widefield mi-

croscopy (considering both light and fluorescence microscopy) and even less

are suitable for real-time applications, in which reducing the computational

time is an important goal. Despite that in this section we give an extensive

overview.

Depending on how the vignetting function is estimated, we classify the methods

into three groups:

• using a reference object
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• single-image based methods

• multi-image based methods

If a reference object is used, the fundamental step is the acquisition of an

additional image that is considered a direct representation of the vignetting

function. Typically, more images regarding the reference object are acquired

and the median surface is computed to estimate a robust vignetting function.

The first group can be further subdivided into categories depending on the

type of the reference object used:

• empty field [32, 30, 44, 45, 46, 31, 47, 48]

• calibration slide [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]

• specific homogeneous object(s) [62, 63, 64, 65, 66, 67, 68, 69, 70, 71]

In the second group, we insert the methods that use only the information

contained in a single image to reconstruct the vignetting function. They can

be subdivided in the following methods:

• simply based on filtering steps [14, 72, 73, 74, 35]

• using images to determine the parameters’ values of a pre-fixed vignetting

model [75, 76, 33, 77, 78, 34]

• using particular advanced image processing to determine the vignetting

function, typically exploiting the information based on the brightness

distribution of the intensity values in segmented image regions [72, 36,

37, 79, 80]

However, the limited data contained in a single image makes a reliable estimate

of the vignetting function difficult to be constructed.

Finally, we report some important multi-image based methods. These methods

are particularly interesting because typically they can reconstruct an estimate

of the vignetting function that is more robust than the methods listed above,

also just for collecting a better statistic using a set of several images instead a

single one. We can subdivide the multi-image based methods into the following
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subclasses:

• methods based on the fundamental assumption that the vignetting is a

simple additive low frequency signal [41, 42, 39, 38]

• methods that reconstruct a dense background surface and use it as the

vignetting function, supposing that the background expresses the same

illumination pattern of the foreground [43, 81, 82]

• methods where advanced image processing are required to estimate the

vignetting function extracting information from image objects and/or

different regions [83, 40, 84, 27, 85, 86]

In particular, only few multi-image based methods could be actually employed

in widefield microscopy, especially in fluorescence microscopy:

• Can et al. (2008) [41]: here, the percentage of the foreground in the image

sequence is assumed to be known and even constant among the different

images. Moreover, the foreground objects (considered as regions contain-

ing cells or tissues) are assumed similar and quite homogeneous and the

foreground values always higher than the background ones. Exploiting

these priors, the authors propose an algorithm to define whether each im-

age value belongs to foreground or background. For each (x,y) position

the vignetting function is then calculated by computing the mean value

of the foreground pixels. Exploiting the same ideas and the input param-

eter regarding the percentage of foreground, the approach could be also

extended to estimate the background surface as the mean value of the

lower-intensity pixels. The approach sounds good, although requiring

as a prior the knowledge of the percentage of foreground is strong as-

sumption. Furthermore, the percentage of foreground is assumed pretty

constant in each image. An error in the percentage evaluation could

mislead the estimation of the vignetting and the background surfaces,

taking into account for both foreground and background only the subset

of the most noisy values (if the percentage of foreground is under esti-

mated) or outliers (if the percentage of foreground is up-estimated). The

code is not available, and no hints are given for parameters set up (e.g.,

the order of the polynomial fitting). Accordingly, a specific study of the

parameters should be carried out to make the method work with one’s
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own images.

• Jones et al. (2006) [42]: in this work, a sequence of images is analyzed

in z and the mean value for each (x,y) pixel position is suggested as a

good estimation of the vignetting function. The same approach is also

followed by Shariff et al. [38]. The fundamental assumption is that in

the image sequences the percentage of background areas is negligible

in comparison to the foreground. If this does not happen the method,

being based on the search of the z -mean values, works only if the ranges

of foreground and background values are both evenly distributed around

the same mean value. Although this last condition could be true for some

cell cultures, it rarely holds in histological specimens since the range of

tissue values is far different from the range of background values and

typically is not uniformly distributed. The method is implemented in

CellProfiler, a free open source image analysis software widely used in

the medical-biological field [87, 88].

• Vokes and Carpenter (2001) [43]: the presented method is conceptually

really trivial, because it is based just on a simple background estimation

stage, assuming that in florescence the background values are always the

lowest ones in the images. Although this is true in fluorescence images, in

brightfield and phase contrast microscopy imaging this is not necessarily

granted. For example, in cell culture images acquired in brightfield or

phase contrast, often cells show intensity values lower than values of

culture medium. To estimate the vignetting function the images are

divided in small regions and the background is reconstructed using the

minimum value for each region. Then, it is supposed that the background

shows the same illumination pattern as the foreground and the images are

simply flat-field corrected using the reconstructed background surface.

The method is implemented in CellProfiler and to correct the images the

authors offer the choice of subtracting or dividing by the reconstructed

background.

• Lindblad and Bengtsson (2001) [82]: the vignetting function is assumed

to be proportional to the curvature of the background surface, recon-

structed from each input image and finally obtained by averaging the

single surfaces. The crucial step is the foreground/background segmen-

tation performed using a global thresholding approach. The authors
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proposed an interesting segmentation solution based on the analysis of

the standard deviation of the image histogram, but its applicability de-

pends on number and size of the foreground objects. To reconstruct the

dense background surfaces the authors presented an iterative fitting tech-

nique based on cubic B-spline applied on the sparse grid of background

values. The surface reconstruction becomes more robust by weighting

pixels that more likely are background. Similar approaches are present

in the literature to estimate the vignetting function simply by median

filtering or by fitting a polynomial surface [39].

2.3 Methods

Starting from the general camera image model proposed in [85, 86, 40, 83, 27,

84], we define a generic image I according to Eq. 2.1:

I(x,y) = r(G · V(x,y) · L(x,y)) (2.1)

where r is the camera response function, G is the camera gain due to expo-

sure, V(x,y) is the spatially variant vignetting function, L(x,y) represents the

power radiated from the scene and (x,y) is the pixel coordinate. In particular,

in brightfield microscopy L is function of the transmitted light and in phase

microscopy it is the transmitted light spatially modified by the phase shift

due to the refractive index of the specimen. Without loss of generality, r is

here considered as being linear and spatially invariant, although Eq. 2.1 can

be easily generalized for nonlinear response functions.

If the vignetting function is perfectly known, to correct the acquired images

dividing them for V is enough. This pixel-wise division is known as flat-

field [66, 64, 65, 68, 6] or retrospective correction [13, 89] and Eq. 2.2 represents

the general form of the flat-field correction formula in widefield microscopy.

IFFC(x,y) =
I(x,y)− B(x,y)

V(x,y)− BV (x,y)
· NC (2.2)

IFFC(x,y) is the output image flat-field corrected. I(x,y) is the original input

image undergoing vignetting. V(x,y) is the vignetting function. B(x,y) and

BV (x,y) represent the “background noise” referred to I(x,y) and V(x,y), re-
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spectively. In light microscopy, B(x,y) and BV (x,y) are typically coincident

and they are constituted by the image acquired closing the camera’s shut-

ter [66]. Their values are orders of magnitude lower than I and V and for this

reason they are often neglected [34, 72], as in the present work. Instead, in

fluorescence microscopy typically B(x,y) is an image reconstructed from empty

regions in the specimen without cells, while BV (x,y) is the noise related to the

object, or the matter, used to estimate V(x,y). For instance, if V(x,y) has

been estimated using a homogeneous fluorescence calibration slide, BV (x,y) is

an image from a non-fluorescent object (usually, water). Often, B and BV are

considered as being Gaussian noise and they are replaced in the formula by

their mean value [66]. Also in fluorescence microscopy sometimes they could

be of the same nature and range values, thus assuming B and BV being co-

incident [47, 68]. Or else, in some applications they could be negligible with

respect to I(x,y) and V(x,y) and they are neglected, accordingly [90, 63, 72]. In

the remaining cases, these terms are erroneously not considered. Finally, NC is

a Normalization Constant used to adjust the range of IFFC [65] and it is often

computed as the formula denominator’s mean value [51, 91, 69] or the median

value [81] or the mean value of the vignetting function only [47]. Hereafter,

VN is referred as the vignetting function normalized to its mean value. Fur-

thermore, to enhance the contrast of IFFC(x,y), for example to avoid reduction

of the range of values after the flat-field correction, a simple image stretching

stage could be performed using the min-max values of I(x,y). In practice, the

formula is often used according to the information at one’s disposal.

To estimate the vignetting function, we start by analyzing a sequence of im-

ages acquired under the same microscopes set-up conditions. Ideally, an image

can be always subdivided into two complementary regions, foreground and

background, where the foreground usually represents the objects of interest.

In optical microscopy, as already mentioned, the main part of the routine ex-

amination is performed on cell culture or histological samples. Accordingly,

as the foreground we consider cells and tissues and as the background cul-

ture medium and glass, respectively (Fig. 2.3). It is worth noticing that the

background is widely homogeneous compared to the foreground and using a

homogeneous object to estimate the vignetting function is trivial, since the

brightness intensity curvature is directly proportional to this function.

The fundamental step of the proposed method is the dense background re-

construction achieved through a nonparametric approach. The images of the
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Fig. 2.3: Background segmentation. (a): two phase contrast widefield images:
the first is related to a cell culture of mesenchymal stem cells (top), the second to a
histological sample of a bone tissue (bottom). The contrast of the images has been
stretched to improve visualization. (b): frequency of intensity levels of the images
reported in Fig. 2.3a. In x the intensity values in grey levels. In y, the frequency
values. In these types of images, the values of background and foreground lie in
the same range. Thus, it is not possible to separate background from foreground
using common approaches related to histogram analysis. (c): background image
masks (in white) in Fig. 2.3a. These masks are obtained exploiting the proposed
method to detect and segment the background values using a spatial approaches
based on the first derivative.

sequence are first stored into a stack and the background is detected using a

segmentation step based on the first derivative. Uncertain pixels, like those

near the foreground regions, are discarded. A subsequent z -median filter is

performed on the extracted regions and the obtained curve can be consid-

ered a good reconstruction of the background. Finally, in order to attenuate

the noise typically present in the acquired images, a final spatial filtering is

performed. The vignetting function is then estimated starting from the recon-

structed background and subsequently normalized to the mean value of the

obtained curve (see the algorithm pipeline highlighted in Fig. 2.4)).

In this approach, two particular stages must be analyzed in detail: the back-

ground segmentation, based on the first derivative of the single images, and

the dense background reconstruction, necessary in case holes are present due

to groups of (x,y) pixel position not having any correspondent background

value.
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Fig. 2.4: Algorithm pipeline. Schematic flow chart of the proposed algorithms
pipeline. Sequence acquisition: the method is multi-image based and exploits a
sequence of images acquired under the same system set-up. Background segmen-
tation: based on the first derivative mask. Background reconstruction: to obtain
a dense surface though a z -median filtering and a low-order fitting. Vignetting
estimation: to perform a spatial filtering of the dense background followed by a
final normalization. Images correction: standard flat-field correction.

2.3.1 Background segmentation

Typically, to segment the background by excluding the foreground, the images

histogram is analyzed to look for bimodalities and to see if two distributions

exist that can be separated. In this case, several local [92, 93] or global [94]

methods are used to define a suitable threshold value. Unfortunately, these ap-

proaches do not provide effective results if there is a large overlapping between

the value distributions of background and foreground, which often happens in

low contrast brightfield images (Fig. 2.3b).

To avoid these problems, in the proposed algorithm the histogram analysis of

the original image is left out in favor of a spatial analysis: the assumption that

in widefield microscopy the background is quite homogeneous yields the values

of the first derivative in the backgrounds regions always lower than those in

the foreground. Accordingly, the algorithm extracts the image background

regions through analyzing the first derivative. Typically, not only the objects

borders express a high first derivate, but also the objects internal structures

can have values higher than the background. By processing the derivative

masks through applying a global threshold, a subsequent strong morphological

opening and a final removal of small size regions (area filtering), it is easy to

obtain reliable masks where the presence of foreground and uncertain pixels is

negligible (Fig. 2.3c). According to this approach, detecting all the background

pixels is not crucial; what is fundamental is that all the pixels definitively

detected, except a negligible number, belong to the background. However, at

the same time we have to include enough background pixels so that the final

reconstruction is dense.
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Therefore, we have devised a strategy to achieve a suitable threshold value Th

for derivative, that yields a good trade-off. To this purpose, we started by

computing the mean value of the first derivative in a ROI manually selected

from the image background. Subsequently, we chose for Th three times the

value estimated that experimentally has been shown to be a suitable choice.

Furthermore, it is worth remarking that this value is not too sensitive: using

lower values (e.g., the double) could only yield slightly larger holes in the

background masks.

2.3.2 Dense background reconstruction

One of the most important step of the proposed algorithm is the reconstruction

of the dense 2D background surface. This stage is basically composed of three

main operations:

• extraction of the background regions from all the single images of the

sequence,

• calculation of the mean value for the (x,y) pixel positions using the pixel

labeled as background only,

• closing any remaining holes due to lack of background in those (x,y) pixel

positions.

In particular, the last step is required if some (x,y) pixel positions exist where

no image contains background. In this case, the obtained curve would not be

dense and would contain several holes. For instance, this happens when using

images of a cell culture with 100% confluence (with the term confluence we

mean the percentage of the area occupied by “objects”, i.e., not background.

100% confluence means completely full of cells).

To avoid this problem, the simplest solution is to ask the operator to acquire

more images until each (x,y) pixel position of the entire area is covered with

enough backgrounds contributions. When this is not possible, such as when

the images are processed off-line, a fine choice is fitting the nondense 2D back-

ground surface with a low order polynomial and filling the holes with the

estimated data without altering the values in the dense regions. Choosing a
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low order polynomial is the best choice because the vignetting function typi-

cally assumes quite a regular trend: as a matter of fact, strong local changes

can be attributed to lens impurities or dust. Nevertheless, to infer this miss-

ing information in correspondence of holes is almost always possible. That is,

fitting gives good results only if holes are small and sparse. Otherwise, in case

of too large holes, the lack of data would require parametric methods and our

approach would lose its applicability.

2.4 Materials and tools

To test the method, 2 synthetic and 4 real-world image sets of different con-

tents have been used. The synthetic images reproduce cell cultures at different

confluences (60% and 80%). The real-world images regard living Mesenchymal

Stem Cells (MSC), living Human Embryonic Kidney (HEK) cells and fixed his-

tological specimens of bone and lung tissues. The cell cultures were contained

in commercial plastic six-well plates and the histological tissues were placed on

glass slides with mounting medium. The confluence of the MSC images used

in the experiments was about 30%. All the images were acquired employing

a diffused non automated widefield microscope, where the Köhler alignment

is performed periodically. In particular, we used an inverted Nikon Eclipse

TE2000-U endowed with a Nikon DXM1200 charge-coupled device (CCD) cam-

era. The vision sensor is a 2/3” CCD, with approximately 1.3 Mpixels, square,

with 6.7µm side. The response function is almost linear, as it happens for most

of the present industrial CCD cameras coupled with microscopes. The images

were acquired either in phase contrast or brightfield. The objective used was

always a Nikon Plan Fluor 10×/0.30 Ph1 DLL ∞/0.17, a standard lens char-

acterized by 10× magnification factor with a numerical aperture of 0.30 and

the phase plate mounted in the lens focal plane. To acquire brightfield images

no additional component was used, whereas the corrected condenser annulus

diaphragm (Ph1) was aligned during the acquisition of phase contrast images.

The final image size was fixed at 512×640 pixel resolution, and the images

were saved as Bitmap (BMP format, RGB, 8-bit/channel). Each acquired im-

age was then converted to grayscale using two open source image processing

software widely cited in literature: ImageJ [95, 96] and GIMP ( c© The GIMP

Team, [97]). The algorithm is written in MATLAB ( c© The MathWorks, Inc.,

Massachusetts, USA) and it is distributable upon request [11].
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2.5 Experimental results

The experiments aim at assessing the improvements that the proposed method

described above yields in terms of vignetting removal: the outcome is com-

pared with those achieved by flat-field correcting the images using reference

vignetting functions obtained from EF, culture medium free of cells and glass

slide without any tissue.

Five different types of experiments were performed.

First, the method was assessed using different images, manually segmented by

an expert operator, in order to get the backgrounds “ground truth”. The term

“ground truth” is typically used in Pattern Recognition, mainly in supervised

classification tasks, to define the pattern being considered as the true one.

Hereafter, the definition is also extended to Image Processing mainly referring

to the output of a manual segmentation task.

Second, the vignetting functions, estimated using stacks of synthetic images,

and the ground truth ones, were statistically compared to evaluate how the

confluence and the number of images could affect the reconstruction.

Third, the shapes of the vignetting functions, estimated using stacks of real

world images, were compared with those of the reference vignetting functions.

Fourth, the flatness of the background of some representative images belong-

ing to the real world sequences was evaluated before and after the flat-field

correction, performed using the estimated and reference vignetting functions,

according to the formula of Eq. 2.2.

Fifth, although the improvements in removing the vignetting effect yielded

by our flat-field correction method can be perceived visually, they were even

measured on both background and foreground, using sequences of overlapping

images in mosaics.
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2.5.1 Experiment 1: quality of the background segmen-

tation

The goal of the proposed background segmentation is to detect the background

while minimizing the false positive pixels. This means that discarding several

background pixels is acceptable. The goal is that the pixels finally labelled as

background ones are reliable, almost without any foreground pixels erroneously

included in the segmented region. To prove the specificity of the background

segmentation, the foreground ground truth of the representative images, re-

lated to different cell cultures and histological specimens, was obtained through

a manual segmentation performed by an expert operator. It is worth noting

that manual segmentation is a very time consuming task. For each image,

the background automatically segmented with the proposed method and the

foreground ground truth was compared. Of course, the best result is to obtain

a background mask where no foreground pixels are included. In practice, this

means that there should not be any overlapping region between the foreground

mask manually segmented and the background mask obtained automatically.

To this purpose, the results regarding 4 different images, representative of

those achievable with a widefield microscope in phase contrast or brightfield,

are presented. In particular, these few images are really representative as the

whole sets used because in cell culture images the main feature is represented

by a very low contrast culture medium, while each histological sample shows

the same texture in the whole specimen as far as the uniformity of background

is concerned. The first image represents a culture of MSC (Fig. 2.3a top),

the second regards fixed unstained bone tissue (Fig. 2.3a bottom), the third

refers to HEK cells (Fig. 2.5a top) and the last regards lung tissue stained with

Hematoxylin and Eosin (Fig. 2.5a bottom). In particular, the first two images

are characterized by quite a general low contrast.

The first two columns of Tab. 2.1 report the threshold values of the first im-

age derivative yielding 1% and 5% of foreground pixels erroneously detected

as being background (false positives). Regarding the parameters of the pro-

posed segmentation algorithm, in all the experiments we used a disk-shape

kernel (morphological structuring element) with 9 pixels radius for morpho-

logical opening and then removed the regions smaller than 15×15 pixels. In

particular, the MSC images are typically characterized by a very low contrast,
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SEGMENTATION

MANUAL

SEGMENTATION d DIFFERENCES

Fig. 2.5: Comparison between automatic and manual background segmentation.
(a): images of HEK cells (top) and a lung tissue histology (bottom). The con-
trast of the images has been stretched to improve visualization. (b): background
masks (in white), obtained using the proposed automatic background segmentation
algorithm: the percentage of false positive is below 5%. (c): reference masks of
background manually segmented by an expert microscopist. (d): images represent-
ing in different colours the differences between the masks obtained manually and
automatically. In green the pixels where the masks present both background or
both foreground values. In blue the pixels where the mask automatically obtained
presents foreground and the mask manually obtained presents background values.
In red the false positive pixels where the mask automatically obtained presents
background and the mask manually obtained presents foreground values. Only few
pixels for each figure result red.

threshold value [gray levels] mean of the first derivative

set
limit false limit false

area 1 area 2 area 3
positive < 1% positive < 5%

MSC 5.5 7.5 2.2 2.1 2.1
HEK 22.5 37.5 2.4 2.2 2.3
BONE 8.5 11.5 2.3 2.2 2.3
LUNG 8.5 27.5 2.1 2.2 2.2

Tab. 2.1: Threshold values for the background segmentation. The foreground
pixels erroneously included in the background masks (false positive) were counted
using four different types of images depicting: MSC, HEK cells, bone tissue, and
lung tissue. To this purpose, the masks obtained using the proposed algorithm to
automatically detect and segment the background were compared with the ground
truth. The first two columns report the first derivatives threshold value yielding a
false positive rate of 1% and 5%. The last three columns report the mean values
of the first derivative, calculated in three background ROIs manually selected.

even when acquired in phase contrast, mainly due to their nature of being flat

adherent cells, therefore tending to settle in a very thin layer. For compar-
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ison purposes, we acquired two images of nuclei and actina filaments, both

referring to adherent cells, that is MSC and osteosarcoma bone cells (Saos-2

by ATCC, coming from standard commercial line, catalog no. HTB-85) using

Nikon Eclipse Ti confocal microscope equipped with a digital CCD DS-QiMC

camera and a Plan Apo VC 60× Oil DIC N2 lens (Fig. 2.6). In these types

a b

c d

Fig. 2.6: Depth dimension of Mesenchymal Stem Cell. Comparison between fluo-
rescence images regarding Mesenchymal Stem Cells (MSC) (a, c) and osteosarcoma
bone cells (Saos-2) (b, d), acquired at 60× using a confocal microscope. The cells
nuclei are highlighted in blue, using DAPI, while in green the Actina filaments us-
ing FITC. (a) and (b) are 3D plots of the acquired stacks of slices. Images (c) and
(d) report the top view and the (x,y) depth projections of the volume maximum
intensities. The depth dimension of the MSC is about half of the Saos-2: 3.9µm
and 8.1µm respectively.

of images, it is quite difficult even for an expert biologist to manually segment

the foreground. This is the reason why the lowest values, reported in the first

two columns of Tab. 2.1, are related to the MSC images. A derivative thresh-
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old value Th = 7.5 (expressed in gray levels) was experimentally proved as

being the minimum value to obtain in each image a maximum false positive

rate of 5%, which could be more than an acceptable value. Furthermore, it

is worth noticing that for all the images used in the test, except for the MSC

images, the false positives related to this threshold value are lower than 1%.

As mentioned before, to define a fair threshold value for the first derivative, a

correct strategy could be to manually segment some background ROIs in the

image and to compute the mean of their first derivative. This value, multiplied

by a positive correction factor, could be considered a good threshold. The last

three columns of Tab. 2.1 report the mean values of the first derivative of three

background regions, manually selected for each image. All the values are at

least three times lower than Th = 7.5 (i.e., ≤ 7.5/3), hereafter chosen as the

first derivative threshold for each image. Figs. 2.3c and 2.5b report the back-

ground masks determined using our algorithm and related to the four tested

images.

2.5.2 Experiment 2: vignetting estimation in function

of number of images and cell confluence

As already stated in Sect. 2.3, the confluence of images affects the reconstruc-

tion of the vignetting function. For instance, the proposed method fails in case

of images of cell cultures with 100% confluence, where no background region

is present. To analyze how confluence and number of images of the processed

stack affect the reconstruction, we employed some stacks of synthetic images

where cell cultures are artificially simulated. The images were built using

an image generator implemented in MATLAB. Cells and debris are simulated,

over a flat background, by randomly displacing in the field of view two different

types of chessboard. The number of cells and debris depends on the required

confluence. The vignetting function we built artificially, with the purpose of

setting up a ground truth in the subsequent simulations, is then applied by

multiplication to the synthetic images obtained, followed by the application of

Added White Gaussian Noise (AWGN) with mean 0 and standard deviation

(std) 4. We used the grey levels image generator to obtain stacks of images

with 512×640 pixel size at 60% and 80% cell confluences (Fig. 2.7a). In par-

ticular, the higher confluence value was selected as an upper bound, because

in real world cases obtaining good results using a stack of images with higher
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Fig. 2.7: Relation between vignetting, confluence and number of images. (a): a
generated synthetic image characterized by a confluence value of 60%. (b): 3D plot
of the biquadrate function used to simulate the vignetting in the synthetic images.
(c): trends of the mean absolute difference between the vignetting functions esti-
mated with the proposed method and the ground truth, related to the confluence
and the number of images of the stack processed.

confluences is very challenging, due to the small percentage of background

available. To build the images we used a perfectly flat background (gray value

set at 85), while for cells and debris we used two different square-shape black

and white chessboards (each black or white square of 2×2 pixels), with ex-

ternal chessboards’s side of 51 and 3 pixels, respectively. The values could be

considered representative for MSC and debris visualized using 10× microscope

lens. The vignetting function was obtained using a 2D biquadric distribution

(Fig. 2.7b) with normalized values ranging between about 0.5 and 1.5 and the

maximum value in the center of the field of view. Finally, the vignetting func-

tions, reconstructed using the proposed method and stacks of different number

of images, were statistically compared with the vignetting function of ground

truth by computing the pixel-wise mean absolute difference (the sign differ-

ences would compensate with each other giving a mean values near to zero).

For each confluence (60% and 80%) and number of images (we choose sets of

3, 5, 7, 9, and 11 images) we built five different stacks.

The graph of Fig. 2.7c collects the worst achieved results among the five stacks
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analyzed for each fixed number of images. Using lower confluence value (60%)

the vignetting function estimated is very similar to the ground truth just using

stacks of three images only. Using 80% confluence the results are expectedly

worse, but with a stack of 7 images only the mean absolute difference with the

ground truth is as low as 2%. These results prove that also when using high

confluence images the proposed method is capable to excellently reconstruct

the vignetting function, by always exploiting a very small number of images.

The synthetic image stacks free of vignetting and noise are distributable upon

request [11].

2.5.3 Experiment 3: comparison of shapes of different

vignetting functions

The goal of this experiment is to estimate how much the vignetting functions

estimated from the images themselves resemble the reference ones. To this

purpose, we used several sequences of images acquired in the same day, by

using the same equipment set-up, including lamp voltage and exposure time.

In particular, we propose the results obtained using two sequences of images:

the first one is made of 13 images of a MSC culture, while the second one is of

about 15 images of a histological sample of bone tissue. For each sequence, the

percentage of (x,y) pixel positions is less than 2% where at least three images

gave a background contribution. The vignetting functions estimated with the

proposed method were compared with the reference ones estimated from EF,

culture medium only and a part of a glass slide where no tissues are present.

To obtain the reference vignetting functions, dozens of images were acquired

for each of them and a simple z -median filtering was performed for each (x,y)

pixel position. It is worth noticing that the sequence of 13 MSC images and

the images referring to the culture medium only came from two different wells

of the same commercial plastic six-well plate and the images related to the

glass slide came from the same specimen slide of bone tissue cited above, but

from regions free of tissue. To be able to compare the different functions, each

of them is first normalized by its mean value (V iN). The Absolute Difference

Normalized Metric (ADNM), an absolute pixel wise subtraction between two

different surfaces, normalized by the range interval of the first one (according

to Eq. 2.3), has been computed between each normalized vignetting function
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and the one estimated from the EF, normalized by its mean value (EFN).

ADNM(x, y) =
‖EFN(x, y)− V iN(x, y)‖

max(EFN)−min(EFN)
(2.3)

The mean value and the std of the ADNM give us information about the

relative discrepancy [98] of the different functions.

Fig. 2.8 shows the different vignetting functions used for comparison. The
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Fig. 2.8: Vignetting functions shapes. The first row reports the 3D plots of the
surfaces of the vignetting functions estimated from: (a) EF, (b) glass slide free of
tissue, (c) culture medium only. All these functions are obtained by performing a
simple z -median filtering on a stack of acquired images. The second row reports
the vignetting functions estimated from: (d) a histological sample of bone tissues,
(e) a culture of MSC. The last two estimations were obtained using the proposed
algorithm. All the functions were normalized to their specific mean value, so the
z -axis of the 3D plots is relative to the normalized unit (n.u.) of the intensity
values.

asymmetry is mainly due to the loss of the Köhler alignment. It is evident that

the three reference vignetting functions (Figs. 2.8a and 2.8c) obtained using a

simple z -median filtering are noisier than the two obtained using the proposed

method (Fig. 2.8d and 2.8e). This is due to the fact that no spatial filtering was

performed in the former functions. As a matter of fact, the following ranking

based on the ADNM evaluation was expected. From best (smallest mean and

std values) to worst results: vignetting function estimated from a glass slide
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free of tissue, the histological sample with bone tissue, the cell culture, the

culture medium without any cell inside. The reason why the best result was

achieved with the glass slide is obvious: a glass slide and an EF behave almost

in the same way as far as the transit of the light is concerned. For the same

reason, one could expect the second best results for the histological sample:

the proposed algorithm reconstructs the function starting from the background

region and in a histological sample the background regions are glass regions free

of tissue. The culture medium present in both cell culture and culture medium

is a very different substrate from an EF: in this case, the light must cross a

significant volume of medium and the lower plastic support of the wells plate.

The worst result is the one obtained using the culture medium only, without

cells inside, because the vignetting function estimated from it was obtained

with a simple median z -filter, without any segmentation step that removes the

debris present in the medium. Instead, the algorithm performed in the second

sequence, the one referring to the cell culture, contains a segmentation step

where both cells and debris are removed: in this case the vignetting function

is estimated from a less noisy subset of pixels. Tab. 2.2 reports the mean value

and the std of the ADNM computed for each V iN obtained.

ADNM
set mean [%] std [%]

GLASS SLIDE 3.20 2.18
BONE TISSUE 3.35 2.67
MSC CULTURE 5.45 4.17

CULTURE MEDIUM 6.30 4.60

Tab. 2.2: The Absolute Differences Normalized Metric (ADNM, Eq. 2.3) was
performed using the reference vignetting functions, estimated from EF images,
and those estimated from: a glass slide without any tissue, a histological sample of
a bone tissue, a culture of MSC, a culture medium without any cell inside. Columns
report the percentage values of mean and std of the obtained ADNMs.

2.5.4 Experiment 4: effectiveness of image correction

using different vignetting functions

The flat-field correction, performed using the vignetting function, aims to com-

pensate the fall-off of the images brightness. Theoretically, if the true function
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is known, the correction would lead to obtain vignetting free images, with vi-

gnetting curve being perfectly flat. Therefore, to determine which functions

lead to obtain the best result, the flatness of several images was evaluated using,

in the flat-field correction, all the different five estimated vignetting functions,

including the three of reference and the two estimated with our algorithm (that

had already been compared in the experiment discussed in Sect. 2.5.3). An

image of a perfectly homogeneous object, undergoing low vignetting effects,

is characterized by a very narrow distribution of intensity values with a small

std (due to the camera noise only). In widefield microscopy, the background

in images regarding cell cultures and histological specimens can be considered

a pretty homogeneous object. To assess which vignetting function leads to the

best flatness (lowest value), the std of the distribution of the local mean values,

computed on a square moving window, has being considered. As the side of

the window we chose 10% of the largest side of the original images, this being

compatible with the size of a cell visualized at a magnification factor 10×. To

this purpose, 7 images of a MSC culture and 7 of a histological specimen with

bone tissue were selected. These images were acquired by exploiting the same

culture and specimen analyzed in Sect. 2.5.3, but they are not included in the

sequence used to estimate the vignetting functions. Each image was manually

segmented to extract some background regions that were then used to evaluate

the flatness, before and after the different flat-field corrections. Actually, the

size is the same for all the images and the flatness is always computed locally

using a patch of the same size. This yields comparable results.

Fig. 2.9 presents the 3D visualizations of the local mean values of the back-

ground region manually segmented from one out of the fourteen images (Fig. 2.9a),

selected as the representative. The vignetting effect is manifestly apprais-

able (Fig. 2.9b). After the flat-field corrections, it becomes particularly flat

(Fig. 2.9c). No visual difference is visible between the 3D visualizations of the

background after the different flat-field corrections.

Tab. 2.3 reports the flatness values of the background of all fourteen selected

images, evaluated before and after the flat-field correction performed with the

different vignetting functions. Of course, all the correction methods yield an

improvement with respect to the values related to the original distributions

where no correction was performed. Due to the small difference between some

values for both types of images, dividing the tested vignetting functions into

two groups for each type of images is fairer than decreeing a single winner.
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Fig. 2.9: Flat-field correction on single images. (a): an image of a histologi-
cal specimen of a bone tissue (in the upper left corner). The background covers
about 75% of the image. (b): 3D plot of the distribution of the local mean values
of the background, calculated on moving square ROIs with size set at 5% of the
maximum dimension of the original image. (c): the same 3D plot of the distribu-
tion of the local mean values, calculated using the image flat-field corrected with
the vignetting function estimated from EF (Fig. 2.8a). The vignetting effects are
strongly attenuated, yielding a pretty flatter means distribution.

flatness
set vignetting function image 1 image 2 image 3 image 4 image 5 image 6 image 7

MSC

no correction 2,03 2,10 1,49 1,88 1,84 1,65 1,93
empty field 1,19 0,94 1,02 0,82 0,89 0,86 0,89
glass slide 1,17 0,88 0,96 0,76 0,85 0,74 0,85

culture medium 0,63 0,69 0,71 0,45 0,58 0,65 0,58
bone tissue 1,24 0,99 1,15 0,85 0,96 0,83 0,97
MSC culture 0,54 0,49 0,83 0,51 0,48 0,69 0,47

BONE

no correction 2,40 2,20 1,62 2,10 1,87 2,44 2,38
empty field 0,26 0,29 0,63 0,57 0,29 0,24 0.24
glass slide 0,18 0,23 0,61 0,51 0,10 0,10 0,15

culture medium 0,78 0,72 1,12 1,08 0,94 0,75 0,64
bone tissue 0,34 0,33 0,64 0,59 0,16 0,29 0,39
MSC culture 0,76 0,86 1,13 1,12 0,97 0,71 0,63

Tab. 2.3: Image flatness using different vignetting functions. To evaluate which
vignetting function yields the best results in terms of vignetting correction, the
background region of 7 images of a culture of MSC and 7 images of a histological
sample of bone tissue were analyzed. Toflatness of each image was evaluated before
and after the flat-field correction performed using all the five different vignetting
functions reported in Fig. 2.8. For each image, the best value obtained (i.e., the
lowest one) is reported in bold. For each type of images, the values of the group
achieving the better results are reported in green.

Therefore, the first group is composed of the vignetting functions that yield

the best results (in Tab. 2.3 the values of the first group are reported in green),

while the second group contains functions yielding the worst ones. As regards

the 7 images of the MSC culture, the best values are achieved by the vignetting
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functions estimated from the culture medium and from the images themselves.

As regards the bone tissue, the best value is always achieved by the vignetting

function estimated from the glass slide. Nevertheless, also those estimated

from EF and the sequence itself lead to far better results than those estimated

with the other two vignetting functions. In practice, the vignetting function

estimated from the culture medium only and the vignetting function estimated

from the background of the MSC images are estimated using always the same

“object”, the culture medium. Accordingly, obtaining similar result using the

two vignetting functions was expected. The same discussion is valid also for the

three vignetting functions estimated using empty field, glass slide and back-

ground of the bone tissue images. In these cases, the vignetting function is

estimated always from regions without anything in the light path, or at maxi-

mum a thin slice of glass. In particular, for both types of images, the vignetting

functions estimated from the whole sequences (the testing images excluded)

using our method fall into the group yielding the best results. From a general

point of view, this produces a remarkable outcome: estimating the vignetting

function from the images themselves always yields a good vignetting correc-

tion. Comparing the values of the two type of images reported in Tab. 2.3, it is

worth noticing that after the flat-field correction the background of the MSC

images are characterized by generally worse flatness values than the bone tissue

images. The main cause is due to the background of the MSC images including

“noise” (thick plastic plate and volume of culture medium with debris), while

the background of the bone tissue consists of thin coverslip and glass slice only.

Consequently, a more homogeneous background lowered flatness. In general,

assuming a main linear behaviour of the vignetting function, a higher image

mean value yields a more emphasized vignetting curvature. Also, when no

correction is performed, the overall curvature of the vignetting gives the main

contribution to the lack of flatness, accordingly. This is confirmed by com-

paring the values before correction in the “no correction” rows of Tab. 2.3) of

MSC and bone tissue images, where the latter are always higher.

2.5.5 Experiment 5: numerical analysis of flat-field cor-

rection using mosaics

Besides studying and measuring the effects of vignetting correction in terms

of global flatness, we focus our attention on the effect on a typical application
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that emphasizes the effect of vignetting, that is mosaicing of images. In fact,

when two or more images are stitched to create a mosaic, the seams in the

stitching zones become particularly evident if the vignetting effects are not

compensated. To build a mosaic using a manual stage, the single images to be

stitched have to overlap and the overlapping regions represent a meaningful

test-bed to assess the effectiveness of the vignetting correction. Theoretically, if

the stitched images are previously perfectly flat-field corrected, no photometric

misalignments should be visible. In this experiment, we compared mosaics

of the same set of images, before and after being corrected using the five

vignetting functions already used in the previous experiments. Several images,

taken from the MSC culture and the bone tissue sample already used in the

experiments dealt in Sect. 2.5.3 and Sect. 2.5.4, were aligned and analyzed

both visually and numerically. The first group of mosaics created is composed

of 7 MSC images while the second group is made of mosaics of 6 bone tissue

images. The percentage of overlapped area in each couple of sequent frames

is between 15% and 75%. The images used in the two groups of mosaics were

acquired under the same setup conditions as the ones used to estimate the

vignetting functions, but they are not included in the sets used before.

While Chap. 4 describes the whole mosaicing approach we conceived and im-

plemented, in this section we provide just a summary of the main character-

istics. The mosaics of images are built incrementally, finding out the trans-

formation matrices that link couples of subsequent images (according to the

Frame-to-Frame approach [99]). In particular, we used translative matrices

and to find out the x -y shift we found matches between significant features of

the images (we used the Shi-Tomasi corner points [100] and the Lucas-Kanade

tracker [101]). All the images are aligned in the domain of the reference frame

(in our case, the first image acquired) and each new input image overwrites

the mosaic being built. The transformation matrices have been estimated us-

ing the original uncorrected images, but they have been used to built all the

mosaics, also those referring to corrected images, so to have the same probable

geometrical misalignments. In this way, it is possible to separate photomet-

ric and geometric effects and to determine which mosaic yields the best tonal

alignment.

In particular, we considered the Back Projection (BP) of each original image

(I ) aligned into the mosaic, and its part overlapped by the mosaic (Overlapped

Part - OP). Fig. 2.10 provides a visual schematic representation to understand
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2

Fig. 2.10: Component images and overlapped parts of the mosaic. Here it is
provided a visual schematic representation to understand better howOPn is defined
for each image In back-projected into the mosaic. In this example, the position of
each image is coloured using different grey intensities and the borders are reported
in red. The border of the image I2, back-projected into the mosaic (BP2), is
highlighted in yellow. The contained regions coloured in magenta, cyan and blue
constitute OP2 and they represent the contained mosaic’s regions overwritten by
images Ii, i > 2.

better how OPn is defined for each image In back-projected into the mosaic.

Practically speaking, every time a image In is back-projected (in Fig. 2.10 BP2

is defined by the yellow border), we considered only the pixels of the mosaic

in OPn that are overwritten by subsequent images Ii with i > n (OP2 are the

coloured regions in Fig. 2.10), since the difference between BPn and OPn where

In contributes is always 0. Accordingly, using the warping matrices previously

estimated, we back-projected on the mosaics all the stitched images, but the

last one (no image overwrites the mosaic after the last is stitched).

To provide a numerical assessment of the effect of the different vignetting

correction, three widely diffused metric indexes were used [102]. The first one

is the Mean Squared Error (MSE ) [103], defined according to Eq. 2.4:

MSE(OP,BP ) =

∑
x

∑
y[OP(x, y)− BP(x, y)]2

P
(2.4)

P is the number of pixels of OP (and BP). In particular, we defineMSE (OP,BP )
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as the MSE computed using OP(x,y) and BP(x,y). The second index is the

Signal to Noise Ratio (SNR) [104] defined in Eq. 2.5:

SNR(OP,BP ) = 10log10

∑
x

∑
y OP(x, y)

2

P ·MSE(OP,BP )

(2.5)

The last index considered is the Universal Quality Index (UQI ), a quality

index [105] which is designed by modeling any image distortion as a combi-

nation of three factors: loss of correlation, luminance distortion and contrast

distortion (Eq. 2.6).

UQI(OP,BP ) =

(
v(OP,BP )

σOP · σBP

)
·

(
2 · µOP · µBP

µ2
OP + µ2

BP

)
·

(
2 · σOP · σBP

σ2
OP + σ2

BP

)
(2.6)

µOP , µBP , σOP , σBP and v(OP,BP ) are mean, std and covariance, respectively,

of OP(x,y) and BP(x,y). Although the UQI is defined mathematically and

no human visual system model is explicitly employed, the authors proved that

it could evaluate the quality of images similarly to what the human visual

perception does [106].

Fig. 2.11 shows the two mosaics created by registering the original, not cor-

rected, images (Fig. 2.11a, Fig. 2.11c) and the ones flat-field corrected using

the vignetting function estimated from EF (Fig. 2.11b, Fig. 2.11d). No differ-

ence is visible to the naked eyes between the mosaics created using the different

tested vignetting functions (accordingly not shown). Nevertheless, the bene-

fits introduced by the flat-field corrections are evident just at first sight: the

seams are widely attenuated and the stitching zones can be hardly detected.

Tab. 2.4 reports the values referring to the metric indexes calculated consid-

ering in the same time all the pixels of the back-projected and the overlapped

parts of the built mosaics. In particular, only for this experiment we compared

at the same time all the pixels of the back-projected and the overlapped parts

of the mosaics, estimating for each index a single value only. These data are

used to numerically evaluate which vignetting function yields the best results

(lowest MSE and highest SNR and UQI ). As expected, the data show that all

the corrections improve the mosaics created using the original images. First,

MSE and UQI for the mosaics of the bone tissue are always higher because the

dynamic range of the MSC images is limited as against the other images. In

fact, under the same misalignment conditions, a wide dynamic range of the im-

ages causes higher local differences than a narrow range and the human visual
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c d
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MOSAICS BUILT USING 
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Fig. 2.11: Flat-field correction on mosaics. Mosaics created using two different
sets of images: the first is made of 7 images of MSC, the second of 6 images
of a bone tissue. The percentage of overlapped regions in couples of subsequent
frames ranges from 15% and 75%. In (a) and (c) two mosaics built using original
images are reported. In (b) and (d), the same mosaics built using the same set of
images previously flat-field corrected using the vignetting function estimated from
EF (Fig. 2.8a). No difference in visual quality is detectable at sight between the
mosaics created using the different vignetting functions (shown in Fig. 2.8). The
contrast of the images has been stretched (using the same Look-Up-Table for (a)
and (b) and for (c) and (d)) to improve visualization.

perception is better for well contrasted images. Furthermore, according to the

Eq. 2.4, images with a high MSE are characterized by a low SNR. Regarding

MSC mosaic, there are no relevant differences between the results obtained

with the different vignetting functions, but it is worth noticing that the best

results are those related to the vignetting function estimated stemming from

the images themselves. On the other side, it was quite unexpected to find

out that the worst result is related to the vignetting function estimated from

the culture medium. However, this could be due to the vignetting function
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metrics
set vignetting function MSE SNR UQI

MOSAICS MSC

no correction 18.15 29.31 0.7469
empty field 8.30 32.78 0.8606
glass slide 8.44 32.70 0.8587

culture medium 8.78 32.50 0.8544
bone tissue 8.21 32.83 0.8644
MSC culture 7.69 33.09 0.8691

MOSAICS BONE

no correction 25.05 28.92 0.9490
empty field 12.06 31.97 0.9606

glass slide 12.22 31.92 0.9602
culture medium 14.44 31.22 0.9549

bone tissue 12.31 31.88 0.9598
MSC culture 14.02 31.34 0.9558

Tab. 2.4: Quality of mosaics. Three different quality metric indexes, MSE, SNR
and UQI were evaluated on several mosaics created using two different sets of
images: the first referring to MSC, the second to bone tissue. In order to determine
which vignetting function leads to the best mosaic only in terms of tonal correction,
they were built by keeping the registration matrices fixed for all of them. The data
related to the not corrected images and to those flat-field corrected using five
different vignetting functions (Fig. 2.8) are reported for both subsets of images.
The best results (lower MSE, higher SNR and UQI ) are shown in bold.

being the one estimated from the noisiest images: for the culture medium a

simple z -median filter was performed without any spatial filtering or outlier

removal step and the images of culture medium are full of corpuscles and de-

bris which were taken into account in the vignetting function estimation. This

is also the most probable reason why this vignetting function yields the worst

results even with the mosaic of the bone tissue. In fact, in this second mosaic

the results obtained with the different vignetting functions are spread over

a wider interval. As done for the experiment of Sect. 2.5.4, it is possible to

split the results related to the different vignetting functions into two groups

here too and, again, the best results are achieved by the vignetting functions

estimated from EF, glass slide and images themselves. As a final remark, it

is worth noticing how estimating the vignetting function with the proposed

method starting from the images themselves almost always yields the best vi-

gnetting correction and, when not, it is comparable with that achieved with

the reference functions.
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2.6 Conclusion and future work

2.6.1 Conclusion

The main goal of this study is to make the users of light microscopes aware of a

common problem typically neglected that affects all the acquired images: the

uneven fall-off of the brightness intensity, namely vignetting. The effect of vi-

gnetting could be particularly problematic for quantitative image analyses and

also several image processing steps like segmentation or object tracking can

severely undergo this effect. The mathematical formulation of the vignetting

problem, intrinsic to the image acquisition system, was explained before in-

troducing the flat-field correction formula widely used in literature to correct

for this unwelcome effect. The previous work was extensively analyzed, show-

ing strengths and weaknesses of each class of methods. Usually, the approach

widely used in literature and in the common practice in order to obtain the

vignetting function is to acquire in advance an image of a homogeneous ref-

erence object. Despite the simplicity of this solution, the reference object is

not always at one’s disposal, besides requiring the microscope’s user to per-

form one additional operation before each acquisition session. Furthermore,

the estimated vignetting function could not be the best to correct images of

cell cultures and histological samples, that represent the most used samples in

the biological routine examinations.

Arising from these considerations, we focused our study on developing and

assessing a novel method, also suitable for real-time applications, to estimate

the vignetting function directly from the sequence of the images to be cor-

rected. The fundamental task consists on an accurate yet simple background

segmentation step based on the first derivative masks of the images of the se-

quence. The vignetting function is then estimated through a median filtering

performed on the background regions extracted from the stack. Finally, the

flat-field correction is accomplished normalizing each image by the vignetting

function, according to the standard correction formula.

To prove the effectiveness of the proposed method, different types of experi-

ments were performed.

The accuracy of our background segmentation algorithm was tested in the
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first experiment, using representative microscopic images. The percentage of

false positive pixels (i.e., pixels belonging to foreground) remained lower than

5% even for images with very a low contrast. This proves that the proposed

segmentation algorithm can be used to detect reliable background pixels.

To evaluate how the image confluence and the number of images in the pro-

cessed stacks affect the reconstruction result, several synthetic stacks were

generated and analyzed. Just using stacks with 7 high confluence images only,

the mean absolute difference between the estimated vignetting function and

the ground truth stays below 2%. In practice, this means that the method can

use even a very small set of images to estimate the vignetting function.

The performances of the flat-field correction was assessed using single repre-

sentative microscopic images, where the background was manually segmented.

The “flatness” of the background regions was computed before and after the

different corrections. Our method almost always achieved the best result (or,

at least comparable), this proving the effectiveness of our method to flat-field

correct the background of images representative of a wide class of biological

samples.

In the last experiment, we considered the mosaicing application as a useful

benchmark to study the effects of vignetting on whole images. In particular,

two mosaics were built with and without vignetting correction in order to

measure the improvement of the different methods in the flat-field correction

of the whole images. Different metric indexes were calculated in overlapping

regions of mosaics, displaced in different parts of the field of view. Again, the

best performances were obtained using our vignetting function estimation and,

in a limited number of cases, they were comparable with those achieved with

gold-standard functions.

On the whole, the experiments demonstrate that, for cell cultures, using the

vignetting function built on a given sequence of images to correct the images

themselves constitutes always the best solution, although it could not yield

the flattest background. As far as the histological samples are concerned, the

best corrections are obtained using reference objects, although the outcomes

of our method are comparable.

The content of this chapter was partly published in [107, 108, 109, 110].
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2.6.2 Future work

Several steps should be deepened to improve the overall performance of the

proposed algorithm.

To increase the number of the background contribution for each (x,y) pixel po-

sition, an assisted approach could rely on the microscope user. For instance,

the operator could be asked to move towards regions containing more back-

ground and then continue acquiring more images until a prefixed amount of

contributions is achieved for each (x,y) pixel position. In order to achieve a

completely automated solution to build the background, it is important to

better analyze how much information is needed to obtain good statistics in

order to reconstruct a more accurate background. This topic is strictly related

to camera and system noise as well as to the nature of the background itself.

In particular, the camera and system noise could be better simulated in the

synthetic images used to analyze how confluence and number of images affect

the vignetting estimation. Furthermore, a different approach, better than us-

ing a polynomial fitting to cope with probable holes in order to obtain a dense

background, could be devised, this playing an important role on the estimation

of the final vignetting function.

For a more detailed analysis of the quality of the obtained results, in terms

of image correction achieved by different vignetting functions, a more specific

quantitative index could be conceived to better represent the image flatness.

The standard deviation of the distribution of the local mean values we proposed

could be a good index to estimate the images “flatness”, but it is application

or parameter dependent (the size of the object being analyzed) and could be

improved.

Finally, the method could be further extended to be suitable to flat-field cor-

rect even fluorescence images. However, the nature of these images is very

different from brightfield and phase contrast ones and the proposed algorithm

should be arranged to comply with fluorescent images. First, the background

in fluorescent images should be theoretically non fluorescent or, at least, char-

acterized by a fluorescent signal very different from that “expressed” by the

cells stained with specific dyes. Accordingly, the vignetting function must be

estimated directly analyzing the foreground of each image, rather than from

the background. Second, the foreground fluorescent signal is quite flat: the
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Vignetting in fluorescence

microscopy

Fig. 3.1: Vignetting effect in fluorescence microscopy. The intensity of the cells
is function of the coordinate position in the acquired images

- F. Piccinini, A. Bevilacqua, K. Smith, P. Horvath, Vignetting and photo-bleaching correction in automated

fluorescence microscopy from an array of overlapping images. 10th IEEE International Symposium on

Biomedical Imaging (ISBI), San Francisco, CA, USA, April 7-11, 2013
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3.1 Introduction

As stated in Chap. 2, every image acquired using a widefield microscope is

affected by vignetting. Such distortion is always present and often it is se-

vere, despite the efforts of manufacturers to minimize it. The vignetting effect

is particularly problematic if the images are acquired for quantitative anal-

yses [6, 10], because the distribution of the signal into the single images is

non-homogeneous and different represented objects could not be really com-

parable (Fig. 3.2). Accordingly, the presence of the vignetting effect can not

be neglected in High Content Screening (HCS) analyses [38].
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Fig. 3.2: Vignetting effect. Due to the vignetting effect, the distribution of the
signal into the single images is non-homogeneous. In particular, (a) is related to an
image of a fluorescent calibration slide, theoretically with a perfect homogeneous
dyes distribution. Under the figure is reported the intensity plot of the average
intensity along the x direction. The same curve is reported also in the plot in the
right, where are reported the intensity values in grey levels. The distribution of
the signal is far along to be flat. In (b) is shown a fluorescent image regarding the
cell cytoplasm of a field of view full of cells. The conclusion for (a) is still valid.

HCS combines the efficiency of high throughput screening with the power of
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fluorescence microscopy to extract quantitative data from complex biological

systems with subcellular resolution [39]. HCS is applied from basic research

to drug discovery, including genome-wide RNA interference screens, as well as

compound screening. To correct the acquired images by the uneven distribu-

tion of the signal is fundamental to perform reliable measurements. In fact, in

fluorescent microscopy inaccurate measures of the signal emitted from the sin-

gle cells could severely mislead understanding of a whole experiment [111]. For

instance, in genome-wide RNA interference screens, fluorescent-dye reporters

are typically used to understand the role of the single RNA interferences. Cells

are seeded in different wells and, for each well, a single RNA interference is

used. Different intensity levels point out different behaviours of the cells and

detecting a wrong intensity level could yield to attribute a wrong role to the

specific RNA interference, hampering the whole screen [112]. Furthermore,

other factors could affect the images making them not comparable [113], such

as the intensity decay of the illumination source (arc lamps may decrease up

to fifty per cent over their lifetime, e.g. over 1000 hours) and photobleach-

ing. In particular, photobleaching is that phenomenon for which the intensity

of the signal emitted by fluorescent proteins weakens due to photochemical

destruction of the fluorophores due to multiple excitations.

In fluorescence microscopy (differently to what happens in light microscopy)

the signal received by the camera is that emitted by the sample on a given

wavelength after being activated by a different wavelength source. Typically

emitting and activating signals are non-linearly related. Accordingly, in fluo-

rescence microscopy the radiation-matter (i.e, sample) interaction plays a key

role to determine an uneven signal distribution.

The different flat-field correction methods differ mainly in the approach used to

estimate the vignetting function and in the underlying assumptions. In Chap. 2

Sect. 2.2 we gave an overview on the main classes and the flat-field correction

formula used in widefield microscopy has been extensively explained in Chap. 2

Sect. 2.3. In general, in fluorescence microscopy the most widespread approach

for estimating the vignetting function is through the acquisition of a reference

image of a homogeneous fluorescent sample, for instance from a dye solution or

a Fluorescence Calibration Slide (FCS). In principle, this is the most desirable

approach because it directly measures the vignetting effect as deviations a de-

viation from an expected uniform illumination field. However, non-linearities

and practical considerations make the estimation of the vignetting function via
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a reference image problematic and, in fact, can risk a loss in the quality of the

data. The fluorescent reference and the specimen have different biophysical

properties and, consequently, they alter the illumination field differently. This

results in a misestimation of the vignetting function. Furthermore, acquiring

images of the reference is quite difficult and time-consuming, requiring an ex-

pert to carefully set the focus of the microscope, exposure time, etc. Lastly,

the intensity of arc lamps, which are often used as light sources, decreases

considerably over time. For large screens where image acquisition can last

hundreds of hours, this can invalidate previous calibrations, making it neces-

sary to periodically interrupt the automatic procedure to acquire new reference

images.

To overcome these limitations, some methods estimate the vignetting function

directly by image data. The most widely used flat-field correction approaches

for HCS are the multi-image based methods implemented in CellProfiler [87,

88], two of which are described below. CellProfiler’s default flat-field correction

method, hereafter referred to as CPmean, estimates the vignetting function as

the mean intensity computed over the collection of images [42]. This method

makes the implicit assumption that the background signal (light emitted by the

culture medium, shot noise, dark noise, and read noise) is negligible. However,

in practice this assumption does not hold. In the second approach, hereafter

referred to as CPboth, the vignetting function is estimated as in CPmean, but

it also employs a model of the background built using the local minimum inten-

sities from the image collection [43]. While this more sophisticated approach

attempts to model the background signal, the minimum operator is sensitive

to outliers. Furthermore, CPmean and CPboth estimate the foreground at

a given location as the mean of all images at that location, while the data

belonging to the foreground only (meant as the fluorescence intensity of the

cells only) should be considered. As a result, CellProfiler’s estimate of the

vignetting function is corrupted by large contributions from the background.

Analyzing these considerations about the foreground estimation, to correctly

obtain a representative vignetting function we proposed two new multi-image

based methods to correct the vignetting effect conceived to work in fluorescence

microscopy.

In the first method (hereafter, LCBM - Linear Correction Based Method) the

vignetting function is estimated using the median foreground signal arising
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from a large set of non-overlapping images, in order not to undergo photo-

bleaching effects. The number of required images depends on the foreground

confluency (percentage of the field of view occupied by cells) although, in

general, the large sets of images, typically acquired in HCS, represent a per-

fect input for the proposed method. Accordingly, no additional acquisition is

required. The standard flat-field correction formula (Eq 2.2) is used to cor-

rect the images, considering the term BV (x,y) as corresponding to B(x,y) and

NC as the mean value of V−B. The estimated vignetting function is assumed

as being representative of the whole intensity range, leaving probable non-

linearities of the system out of consideration. In particular, we proposed a

two-step non-parametric approach to estimate V(x,y) and B(x,y) by explic-

itly separating foreground and background of the input images. In brief, in

the first step we extracted the background by assigning each (x,y) position the

mode of the distribution of the intensity values for each image at that position.

The second step of our approach leverages information from the background

to construct a more accurate estimate of the foreground and, consequently, of

the vignetting function. At each (x,y) location, images with a pixel intensity

lower than B(x,y)+gap (whose value definition will be clear afterwards) are

discarded, and the remaining pixels are assumed to belong to the foreground.

After applying an outlier removal step, V(x,y) is estimated by computing the

mean illumination level of the remaining foreground pixels.

In the second flat-field correction method we propose (hereafter, nLCBM -

non-LCBM), the assumption that a single vignetting function is representa-

tive of the entire intensity range is overcome by considering that fluorescence

microscopy can emphasize non-linear behaviours of vignetting due to for in-

stance interaction radiation-matters and camera response function. In partic-

ular, we propose a non-parametric multi-image based correction method and

an acquisition scheme which can be implemented in any widefield fluorescent

microscope, even being manual and not equipped with a x -y motorized stage.

The main concept of our approach is to measure how the intensity of a par-

ticular object varies when it is re-positioned at different displacement within

the image. This is accomplished by moving the microscope holder during the

acquisition step and collecting a set of overlapping images surrounding the

first image acquired (thus considered as the “central image”). In this way, the

objects of the scene are represented in different (x,y) positions of the images

acquired. It means that any pixel belonging to the central image also appears

in a series of other images. This collection of appearance variation provides
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us with a sparse representation of the vignetting. We exploited such sparse

representations to robustly estimate the vignetting function at each image lo-

cation and intensity level by grouping data from similar intensity levels. The

flat-field correction is then accomplished simply by dividing each intensity level

of the input images with the coupled vignetting function (normalized by its

mean value). Theoretically, the method could yield improvements over the

first method proposed, thanks to the non-linear correction. Despite that, the

additional acquisition of the set of overlapping images have to be performed,

this representing an additional task for the microscope’s user.

To assess the effectiveness of the proposed methods we performed several ex-

periments. In particular, we compared the results achieved by LCBM and

nLCBM with those obtained flat-field correcting the images according to three

widely used approaches:

• CPmean

• CPboth

• standard flat-field correction using the vignetting function estimated

from FCS and the background surface estimated using images from re-

gions completely free of cells (hereafter, FCSM - Fluorescent Calibration

Slide Method)

To perform the experiments, we used an extensive dataset of images of a human

genome-wide RNA interference screen. The screen was performed on fixed

HeLa cells with the Red Fluorescent Protein (RFP) used to highlight the Actin

filaments into the cells. Using a microscope equipped with a x -y motorized

stage, we acquired different sets of images, with different characteristics (all

the details are in Sect. 3.3). In particular, to quantify the vignetting correction

efficiency we performed two different experiments.

In the first experiment, the median foreground surface estimated using a set of

non-overlapping images have been compared before and after being flat-field

corrected according to the different methods tested. In particular, the flatness

of the median foreground surfaces has been considered as the most important

parameter to be measured to decree which method yields the best correction

meant as the flattest signal distribution.
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In the second experiment, we used a set of overlapping image pairs and we

computed the Root Mean Squared Error (RMSE ) between the overlapping

regions. In this way the entire image is analyzed and both the foreground and

background regions are considered, even if the background is of low interest

in fluorescence microscopy. In practice, with this experiment we studied how

the vignetting affects the whole single images and how much it is attenuated

by the different correction approaches. The lower RMSE value achieved is

representative as the best flat-field correction. Accordingly, the different tested

approaches have been ranked to decree which method yields, on average, the

best correction of the whole single images.

The performance of the methods, assessed through the different experiments

and the analysis of the achieved results proved the effectiveness of both the

proposed methods to achieve a flat-field, even outperforming methods using

reference samples.

3.2 Methods compared in the experiments

To compare the two approaches we propose with the methods typically used

in literature we chose as the representative one the methods implemented in

CellProfiler. CellProfiler is a free open source image analysis software widely

used in the medical-biological field. Various built-in functions and modules

are implemented and two of which, “Correct Illumination - Calculate” and

“Correct Illumination - Apply”, are those devoted to compensate for the vi-

gnetting effect in microscopy images. The first module is used to estimate

the vignetting function exploiting the image data set being analyzed, so to

achieve one image as the representative of the non-uniformity distribution of

the intensity values in the single images. The second module is used to per-

form the flat-field correction, based on division or subtraction between the

input image and a given vignetting curve. In addition, the module permits to

manage image normalization and rescaling options. Thanks to the many pa-

rameters and combinations available in these two modules, diverse approaches

can be devised to calculate and to apply the vignetting function. For a fair

comparison with the multi-image based method we are proposing, we chose

two CellProfiler’s multi-image approaches built using the facilities offered by

the two modules.
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In CPmean, the “Correct Illumination - Calculate” module is used to estimate

the vignetting function starting from a sequence of images belonging to the

same plate and fluorescent channel. To do that, the algorithm implemented

inside CellProfiler simply provides the intensity mean value of the stack for

each (x,y) pixel position. As stated by the authors, this solution works only

if the foreground objects are evenly distributed across the images and cover

most of the camera’s field of view. The images are flat-field corrected by

simply performing a pixel wise division between the original images and the

estimated vignetting function, post filtered with a Gaussian kernel (by let-

ting the software choose automatically the morphological structuring element

-kernel- size) and normalized by its mean value. In particular, the flat-field

correction formula used is reported in Eq. 3.1:

IFFC(x,y) =
I(x,y)

V(x,y)
· V̂ (3.1)

where the bar over a variable means its mean value. Accordingly, V̂ is the

mean value of the estimated vignetting function.

In CPboth, CellProfiler was used to reconstruct the background starting from

the same image stack used to estimate the vignetting function. The algorithm

to reconstruct the background, implemented in the “Correct Illumination -

Calculate” module, is based on the estimation of the local minimum values,

performed separately for each single image of the stack, followed by a search of

the lowest local minimum value of the stack in each (x,y) pixel position [43].

In this case, the flat-field correction was performed again using the “Correct

Illumination - Apply” module, according to the Eq. 3.2:

IFFC(x,y) =
I(x,y)− B(x,y)

V(x,y)− B(x,y)
· V̂− B+ B̂ (3.2)

B̂ is used to bring the intensity of the images back to the original range. In

practice, in CPboth each input image I(x,y) is normalized using the vignetting

function V(x,y) estimated in CPmean after subtracting the estimated back-

ground surface B(x,y) from both I(x,y) and V(x,y).

In the screenshot items of Fig. 3.3 is reported as the CellProfiler’s parameters

have been set inside the module “Correct Illumination - Calculate”, to obtain

the vignetting function (Fig. 3.3a) and the background surface (Fig. 3.3b)

used in the configurations tested. In particular, we always used the default

parameters, also for the final Gaussian filter performed on the raw surfaces
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a b

Fig. 3.3: Screenshots of the CellProfiler Correct Illumination modules. The re-
ported screenshots summarize the parameters imposed to obtain the vignetting
function (column a) and the background surface (column b) according to the meth-
ods CPmean and CPboth.

estimated.

It is worth noting that we used the CellProfiler modules also to perform pilot

experiments for testing other configurations, such as the CPboth method but

without subtracting the B(x,y) term in the denominator and/or the multi-

plicative constant of Eq. 3.2. However, the results obtained have been always

worse than the ones achieved using the two configurations explained above.

FCSM is the last method used in our comparisons. In this method the standard
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flat-field correction formula is typically used neglecting BV term 3.3:

IFFC(x,y) =
I(x,y)− B(x,y)

V(x,y)
· V̂+ B̂ (3.3)

Practically speaking, computing BV (x,y) would require one additional acqui-

sition by the microscope’s user and, in practice, the term is almost always

neglected. In addition, for the FCSM we performed exploratory experiments

to test different configurations, such as the lack of the term B(x,y), but the

results obtained were always worse than those attained using the configuration

explained above.

3.3 Materials

The experiments have been performed using fluorescence images of fixed HeLa

cells, where the Actin filaments were stained with RFP. Cells have been seeded

into standard plastic 384-well plates (in each plate, the wells are arranged in

a 16×24 matrix). The biological assay was a human genome-wide RNA inter-

ference screen (data courtesy of Light Microscopy and Screening Centre, ETH

Zurich, Switzerland). Accordingly, cell in different wells can express a differ-

ent behaviour. The microscope used to acquire the images was an inverted

ImageXpress Micro Widefield (Molecular Devices, United States), with a mo-

torized x -y stage endowed with a 12-bit CoolSNAP HQ digital CCD camera

(Photometrics, United States) and a Plan Fluor ELWD lens with 20× magni-

fication. Images have been acquired with a pixel resolution of 0.3225µm/pixel.

The image resolution was 1392×1040 pixels, 12-bit grey levels intensity, and

they have been saved in TIFF format, with lossless compression. The cells

confluency was generally pretty high: approximately by a visual inspection we

can say that more than 50% of the images have a confluency higher than 70%.

Using the automated microscope, we acquired 6 sets of images with different

characteristics:

• Set A: 9 non-overlapping images × 208 different wells, for a total amount

of 1881 images.

• Set B : a stack of 1583 still images inside a single well (never imaged

before).
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• Set C : a set of 1583 overlapping images randomly acquired with a mini-

mum 5% shift in x, y respect to the first image acquired.

• Set D : a set of 252 images of different fields of view referring to a RFP

commercial FCS (FluorRef, United States).

• Set E : a set of 37 images of fields of view free of cells containing culture

medium (background) only.

• Set F : 100 image pairs, using 100 wells never used before (one pair from

each well), imposing a 25% overlapping between each pair (shift of 50%

for both image sides).

The shutter time was by default set to 100 ms and the lamp intensity has

not been changed nor adjusted during the acquisition. However, the protein

concentration inside the FCS was particularly high and the emitted signal

resulted particularly intense. Accordingly, in order to achieve images that

were not completely saturated, this required to change the exposure time to 5

ms and the intensity of the lamp just to acquire the images of Set E.

The different sets of images have been acquired for different purposes. In

particular, in the experiments performed we used:

• A subset of 500 random images of Set A (hereafter, Set A1 ) for esti-

mating the vignetting function and the background surface according to

CPmean, CPboth and LCBM (all the details given in Sect. 3.4).

• The first 500 images of Set B and C to estimate the vignetting functions

according to nLCBM (all the details in Sect. 3.5)

• Set D and E to perform the standard flat-field correction using the vi-

gnetting function estimated from FCS and the background surface esti-

mated using images from field of views free of cells

• Set F and another subset of 500 images randomly chosen (and never

used before) from Set A (hereafter, Set A2 ) to assess the quality of the

different methods in to the different experiments

In particular, to estimate the vignetting function from the FCS and the dense
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background surface estimated using images free of cells, we simply estimated

the median surface (analyzing for each (x,y) pixel position the z -intensity

histogram of the stack built with the images acquired) arising from Set D and

E, respectively.

The experiments have been performed using to an off-the-shelf PC (Intel Core

i5, CPU 2.27 GHz, 4 GB RAM). All the images used in the experiments and

the codes of the developed algorithms can be provided on request [11].

3.4 Method based on linear correction

In the first proposed method, LCBM, the vignetting effect is faced following a

linear correction approach and using the standard flat-field correction formula

(Eq 2.2). In particular, the vignetting function is estimated using the median

foreground signal arising from a large set of non-overlapping images, in order

not to undergo photobleaching effects. To obtain a representative dense fore-

ground surface, the cells confluency and the number of used images play a key

role. Deciding the number of images required is a tricky task. If the set of

images to be flat-field corrected is small, an additional large set of more images

have to be acquired to be able to estimate in advance the vignetting function

according to this method. However, the large sets of images typically acquired

in HCS are enough to be used in input to the proposed method, and no extra

acquisition is required.

In the method we propose the vignetting function and the background surface

is estimated by explicitly separating the foreground and background of the

input images. In particular, both vignetting and background are directly de-

rived stemming from the images themselves and without exploiting any prior

information.

3.4.1 Background modelling

Ideally, an image can be always subdivided into two complementary regions,

foreground and background, where the foreground usually represents the ob-

jects of interest. Accordingly, separating foreground from background is the
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first step of any segmentation procedure. In fluorescent images, this is usually

achieved by detecting the background, since it has more uniform properties

that make its detection easier, and the foreground is derived as the comple-

ment. In order to allow our approach to address the widest class of fluorescent

images, we kept the method for the background modelling as the most general

purpose as possible. Accordingly, we built a non-parametric model of the back-

ground, starting from the stack of images typically at one’s disposal in HCS.

Through analyzing the z -histogram for each (x,y) pixel position it is possible

to estimate the 2D background that embodies both the effects of the camera

noise and of the shade fluorescence of the culture medium. In fluorescence

imaging, the variance of the background is far lower than the variance of the

foreground. Therefore, the high number of images being analyzed in HCS is

more than enough to build a significant statistics regarding the distribution

of the background values for each (x,y) pixel position. Furthermore, in fluo-

rescence microscopy even the intensity of the background pixels is always far

lower than the foreground one, this often yielding noisy bimodal histograms.

Accordingly, for each (x,y) pixel position we assumed the intensity correspond-

ing to the first global peak of the z -histogram as the representative background

value. As far as the implementation is concerned, for each z -histogram we com-

puted the first derivative and we analyzed the sign function to search peaks

and valleys for detecting the first maximum peak. A z -histogram of a ran-

domly chosen (x,y) pixel position and the 3D profile of the background surface

are shown in Fig. 3.4. The final background is then obtained by simply filter-

ing the raw surface estimated performing a common median 5× 5 filter. Our

approach to model the background is robust and general. The only case where

it fails is when the cell confluency in each image is very high. For instance,

in exploratory experiments we saw that mean cell confluency higher than 95%

could be problematic. However, so a high confluence is rare and in that case

we suggest to acquire one more image made of background only, manually

selecting a field of view free of cells.

3.4.2 Vignetting estimation

Stemming from the z -histogram of each pixel we aim to define, for each (x,y)

pixel position, a threshold to separate foreground from background. In general,

the distribution of the background values is either quite symmetric around its
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Fig. 3.4: Model of background. Starting from the stack of images (a), the back-
ground is modelled analyzing the z -histogram for each (x,y) pixel position (b).
The range of values of the background is lower and narrower than the range of the
foreground, so the background is modelled searching for the first global peak of
histograms for each (x,y) pixel position. Different (x,y) pixel positions are charac-
terized by different z -histogram (c). In particular, the histograms are characterized
by a very similar shape but they are shifted. By collecting the intensity values of
the peaks in a 2D mask (d) is possible to reconstruct a dense robust background
very quickly.

maximum peak m or at most slightly right-skewed, since the foreground values

are most likely higher thanm. Let p be the minimum grey level value estimated

for each (x,y) pixel position. gap is the distance in grey levels between m and

p (Eq. 3.4):

gap = m− p (3.4)
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The threshold T is computed as T = m+gap, this being adaptive for each (x,y)

pixel position. To filter out local noise estimations of gap, we used for each

(x,y) position a fixed value, determined as the mean value plus 3 standard

deviation (std) of the gap values estimated. In order to achieve a reliable

estimate of the foreground curvature, for each (x,y) pixel position the median

value has been chosen (Fig. 3.5). Finally, the foreground surface was denoised
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Fig. 3.5: Model of foreground. Once the background is reconstructed, it is possible
to determine the foreground values for each (x,y) pixel position. These values
are extracted sorting the stack (a) and using the background as threshold. For
each (x,y) pixel position, the median of the remaining z -histogram values is a
good approximation of the vignetting function. In (b) is reported a schematic
representation of a line profile of the foreground estimation given by its intersection
with the plane π for a x-line at a fixed y coordinate. The black line represents the
x-values of background for that y coordinate. The black-dotted line the threshold
used to separate foreground from background. The green line represents the median
of the z -histogram values labelled as foreground. In (c) is reported the 2D mask
of the foreground values, used as vignetting function.

using first a median filter to remove possible isolate peaks followed by a mean

filter to remove high frequency components. For both filters the side of the

square kernel mask has been fixed to 10% of the image’s largest side, this being

compatible with the size of a cell visualized at a magnification factor 10×.

3.4.3 Linear flat-field correction

Referring to the standard flat-field correction formula (Eq 2.2), we used as

V(x,y) and B(x,y) the foreground and background surfaces estimated as ex-

plained above. In addition, since the input image and the foreground curve

undergo the same systematic error, we subtracted B(x,y) by both numera-

tor and denominator. Accordingly, BV (x,y) is considered as corresponding to
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B(x,y). The standard formula thus becomes the same reported in Eq. 3.2,

where NC is the mean value of V−B. In this way, the estimated vignetting

function is assumed representative of the entire intensity range without con-

sidering possible non-linearities of the system, such as the camera response

function and circuitry of the camera sensor.

3.5 Method based on non-linear correction

The second proposed flat-field correction method (nLCBM ) models spatial

and radiometric non-linear vignetting properties, yielding a near perfect vi-

gnetting correction in any given intensity level. The assumption that one

single vignetting function can be representative of the entire intensity range

is abandoned in order to consider a non-linear flat-field correction approach.

An ensemble of representative vignetting functions is estimated using overlap-

ping images acquired directly from the sample, using a fluorescent microscope,

whether it is equipped with a x -y motorized stage or not. Our approach re-

lies on measuring the intensity of the same objects acquired at different image

displacements (Fig. 3.6), by simply moving the microscope stage to achieve

a set of overlapping images surrounding the first image acquired (considered

as the “central image”, Fig. 3.7). As a result of the acquisition procedure,

any given pixel belonging to the central image appears at different displace-

ments in a series of other images. The collection of variations of appearance

of objects expected as being unchanged provides us with a sparse represen-

tation of the vignetting function. We exploited such sparse representation to

robustly estimate the vignetting function at each image location and intensity

level by grouping pixels with a similar intensity level. However, in fluorescence

microscopy acquiring repeated images of the same objects make them to be

affected by the so called photobleaching, that is a non-linear intensity decay

of the emission light due to the destruction of fluorophores. Accordingly, be-

fore computing the vignetting functions, we needed to model the decay so to

recover the intensity values before photobleaching. To this purpose, we ac-

quired a sequence of still images then arranged into a stack. In particular, we

acquired the same number of images of the set used for the vignetting estima-

tion. The decay of the intensity value of each pixel is used to obtain reference

pixel-based time (time=image number) intensity curves and couples of values

made of actual and target (i.e., starting) intensities. The latter is then used to
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Fig. 3.6: Object’s intensity depending on the position in the image. Our ap-
proach learns the vignetting effect by observing the intensity’s change of an object
acquired at different image displacements. In this Figure, a fluorescent cell with a
homogeneous signal undergoes a change in appearance, due to vignetting, as the
position of the lens changes.
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Fig. 3.7: Non-linear flat-field correction method: acquisition strategy. A set of
images are manually acquired trying to capture all the images overlap the first
acquired. The images are acquired in a random order.

normalize the actual intensity values of the set of overlapping images acquired

to estimate the vignetting functions. As a consequence, our method results in
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a set of vignetting surfaces built for different intensity levels. The non-linear

flat-field correction of the input images is then performed pixel-wise, by simply

dividing each intensity level of the input images with the coupled vignetting

function (normalized by its mean value). Theoretically, the method can im-

prove the first method proposed (LCBM ), mainly thanks to the non-linear

correction performed, though an additional acquisition of a set of overlapping

images must be done and this requires to perform one more operation by the

microscope’s user.

In Fig.3.8 a schematic flow chart of the proposed approach’s pipeline is pre-

Acquisition of

images partially

overlapped 

Acquisition of

still images

Phot-bleaching 

decay estimation 

Photo-bleaching 

correction

Vignetting

functions

estimation

Non-linear

flat field 

correction

Fig. 3.8: Schematic flow chart of the non-linear flat-field correction method. First,
a set of partially overlapped images is acquired directly from the sample, manually
moving the microscope. Then, another set made of the same number of images is
acquired with still microscope. This second set is used to estimate the photobleach-
ing decay curves required to correct the set of partially overlapped images. Finally,
the ensemble of vignetting functions is estimated to be subsequently employed to
perform the flat-field correction of the images then acquired.

sented. Going more in detail, we can subdivide the flat-field correction ap-

proach in the following three stages:

• Photobleaching modelling

• Vignetting functions estimation

• Non-linear flat-field correction

3.5.1 Photobleaching modelling

To precisely estimate the vignetting functions, measuring the intensity of the

same objects in a set of different overlapped images, the images must be photo-

bleaching corrected in advance. To this purpose, we used a stack of still images

(Fig. 3.9a). The decay curves have been estimated simply looking at the in-

tensity changes for each pixel position. For better statistical significance, the
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Fig. 3.9: Modelling of the photobleaching decay. (a): to evaluate the intensity
decay due to photobleaching a sequence of still images is acquired, without moving
the microscope. The intensity values decrease as the number of images acquired
increase. (b): the intensity decay curves due to the photobleaching effect are built
using the time sequence of the intensity changes for every (x,y) pixel position. The
curves are then used as intensity normalization function to recover the pixel values.

curves obtained were binned and interpolated to obtain robust decay curves

for every intensity value present in the first images of the sequence (Fig. 3.9b).

Finally, we corrected by photobleaching each other acquired image mapping

back to the intensity of the first acquired image all the intensity values. To

this purpose, the estimated photobleaching decay curves are used as a normal-

ization factor.

3.5.2 Vignetting functions estimation

The ensemble of representative vignetting functions is estimated measuring

the intensity of the same objects acquired at different image displacements. In

particular, a representative vignetting function for each different intensity level

in the first image is achieved through registering the overlapping images ac-

quired. For the global registration of the images we used a simple approach: we

compared the first image acquired (the central image), considered as reference,

with the remaining images, using the Phase Correlation algorithm (details can

be found in Appendix 6) to estimate the registration. In particular, image

pairs with less than 10% of overlap or with a mean difference in the overlap

higher than 5% of the whole intensity range have been discarded to avoid

possible registration errors. We repeated the process choosing a few more dif-

ferent images as the new reference. In order to obtain less noisy registrations,
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we computed the median between the different registrations gathered. Once

the registrations have been computed, for each pixel of the central image it is

possible to obtain a vignetting surface. In particular, stating from the sparse

representation of the vignetting surface, we estimated the dense representation

using Thin Plate Spline (TPS) fitting. Nevertheless, to reduce the computa-

tional complexity in the experiments performed we binned the intensity range

in levels equally spaced (we binned into 100 levels, recalling that the images

are 12-bit depth). Again, to bound the computational burden, for each level

we chose 10 pixels (with the lowest gradient, from the central image) to be

used to estimate as many surfaces. The pixels chosen have the lowest gradi-

ent, since pixels from high-gradient regions are particularly sensitive to small

registration errors (Fig. 3.10). Finally, in order to make the ultimate vignetting
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Fig. 3.10: Disadvantage of high intensity gradient pixels. Due to small registration
errors, surfaces estimated using pixels from high gradient regions (bottom left) can
result noisy if compared with the surface estimated using pixels from homogeneous
intensity regions (bottom right).

function estimated for each level more robust, it has been achieved by simply

computing the average of the single surfaces estimated.

3.5.3 Non-linear flat-field correction

The standard model for the vignetting correction assumes a linear image for-

mation model. Correction is accomplished by removing the additive B(x,y)
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term, then normalizing the image by the vignetting function (Eq. 2.2). In

case of the proposed non-linear approach, a set of vignetting functions related

to different intensity levels are estimated. Accordingly, the non-linear flat-

field correction is accomplished for each intensity level and the formula can be

written as reported in Eq. 3.5:

IFFC(x,y) =
I(x,y)

VI(x,y)(x,y)
· ̂VI(x,y) (3.5)

where (x,y) are the image plane coordinates. Since not all the grey levels have

their own vignetting function (due to the finite range of the central image and

quantization needed to reduce computational burden) each surface VI(x,y) is

estimated through bilinear interpolation of the two adjacent curves previously

estimated, whose intensity value in the (x,y) position is the closest one to that

in the corresponding position of I. A specific pixel of VI(x,y) in position p and

q is then indicated as VI(x,y)(p,q). Using the given formula, each pixel of the

original image is vignetting corrected by a specific vignetting function.

3.6 Experimental results

In order to compare the effectiveness of LCBM and nLCBM with that achieved

by the other approaches mentioned in Sect. 3.2, we carried out two different

experiments. In the first experiment, we measured the flatness of the median

foreground surface, extracted from a set of non-overlapping images, before and

after being corrected according to the different methods tested. This gives us

a quality measure of the general effectiveness of the different flat-field correc-

tions: the ideal outcome of any correction method is a perfectly flat signal

distribution of the foreground (in fluorescence the background signal is typi-

cally neglected). Instead, in the second experiments we used overlapping im-

age pairs to quantitative monitoring the effectiveness of the different flat-field

corrections on the entire image, considering both foreground and background

regions. The overlapping regions represent a meaningful test-bed to assess the

effectiveness of the vignetting correction: theoretically, no photometric mis-

alignments should be visible if the stitched images are perfectly flat. To this

purpose we used the RMSE on the overlapping regions, that gives an aver-

aged measure of the images’ differences. This permits to assess how much the

different correction approaches attenuate the vignetting effect on the whole

image.
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As already stated in Sect. 3.3, for both the experiments we used the vignetting

function estimated from Set D and the background surface estimated from

Set E as the references for the standard flat-field correction using FCS and

the background estimated using images free of cells (both used in FCSM ).

To estimate the vignetting function and the background surface according to

LCBM, CPmean and CPboth, we used the 500 images of Set A1. Instead, to

estimate the set of vignetting functions according to nLCBM, we used the first

500 images taken from both Set B and C.

3.6.1 Flatness of the foreground signal

In the first experiment, in order to measure the flatness of the median fore-

ground surface we used the 500 images of Set A2. In particular, in order to

obtain the foreground mask we segmented the images using as a global thresh-

old the maximum value of the background surface estimated directly from the

images using the CellProfiler module already explained in Sect. 3.2. Despite

the simplicity of the segmentation method, we can say that the masks obtained

are good enough for our purpose (Fig. 3.11). Then, we arranged the 500 images

into a stack and computed the z -median foreground surface, before and after

flat-field correction performed according to the different methods. Finally, the

flatness of the median foreground surfaces has been achieved through comput-

ing the std of the distribution of the local means of the surface, computed on a

square moving window whose side has been fixed at 10% of the largest side of

the images, this being compatible with the size of a cell visualized at a magni-

fication factor 10×. The lowest flatness value indicates the method achieving

the general better flat-field correction of the foreground signal distribution.

The flatness values obtained by correcting the 500 images of Set A2 according

to the different methods are reported in Tab. 3.1. Furthermore, the simple std

UNCORRECTED FCSM CPmean CPboth LCBM nLCBM
flatness 3.33 3.52 2.21 2.37 1.75 1.81

σ 4.22 4.41 3.59 3.74 3.05 3.15
Rank 5th 6th 3rd 4th 1st 2nd

Tab. 3.1: Flatness and std of the foreground distribution before and after the
different flat-field corrections.

68



Chapter 3. Vignetting in fluorescence microscopy

3.6. Experimental results

Fig. 3.11: Foreground masks. To segment the foreground of the single images
referring to Actina filaments we simply used as global threshold the maximum
value of background surface estimated using CellProfiler.

(σ) values of the median foreground surfaces are reported in the second line.

The two lower flatness values are those related to LCBM and nLCBM, this

proving the effectiveness of both the methods to flat-field correct the distribu-

tion of the foreground signal. The third line of Tab. 3.1 reports the rank of the

method according to the flatness values achieved, that is the same achieved by

σ. The worst result is not due to the original images, but to FCSM. This can be
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explained directly looking at the 3D visualization of the foreground surfaces.

Fig. 3.12 reports 3D visualizations of the median foreground surfaces obtained
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Fig. 3.12: Median foreground signal distributions. The reported surfaces are the
3D representation of the median foreground signal distribution estimated using
the images uncorrected (a) and corrected according to FCSM (b), CPmean (c),
CPboth (d), LCBM (e) and nLCBM (f).

flat-field correcting the original images according to the different methods.

Even at sight, it is possible to confer that the flattest surfaces are the two

related to LCBM and nLCBM. Furthermore, it is particularly interesting to

note that FCSM strongly over-corrected the median foreground surface and

this is probably the reason why their flatness and σ are the worst ones.
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3.6.2 Flatness of the whole images

In the second set of experiments we used the 100 overlapping image pairs of

Set F to compute the RMSE (according to Eq. 3.6) only in the overlapping

region of each image pair, before and after correcting the images according to

the different flat-field correction methods tested (Fig. 3.13).

RMSE(OP,BP ) =

√∑
x

∑
y[OP(x, y)− BP(x, y)]2

P
(3.6)

BP(x, y) and OP(x, y) are 2D matrices related to the Back-Projected (BP,

overlapping part) and Overlapped Part (OP), respectively, and P is their

number of pixels The RMSE has been chosen since the differences we want to

b c

a

Fig. 3.13: Overlapping image pair. (a): a pair of overlapping uncorrected images
used for testing. (b): a close-up of the uncorrected test pair reveals the effect of
vignetting where the images are stitched. (c): vignetting is noticeably reduced
in the same region after flat-field correction (in this case performed according to
nLCBM ).

measure are well distributed all over the images and no spikes or significant
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local changes are present. The histogram of the sign differences has typically a

Gaussian distribution (Fig. 3.14). The RMSE permits to assess how much the
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Fig. 3.14: Frequency histogram of the sign differences in the image overlapping.
In x the intensity values in grey levels related to the sign differences obtained
subtracting a pair of overlapping regions. In y, the frequency values.

different correction approaches attenuate the vignetting effect on the whole

image, meant as both foreground and background regions (although typically

the background is not analyzed in fluorescent microscopy). In particular, first

we corrected by photobleaching the second image of each image pair, according

to the method explained in Sect. 3.5.1. Then, we computed three different

indices:

• the average RMSE : average value of the RMSE achieved in the 100 image

pairs

• the average improvement: computed by normalizing each single RMSE

value by the RMSE achieved by the original uncorrected images and

then subtracting to 1 the obtained value.

• the ranking score: a score based on how many times a given method

ranked first (i.e., obtained the best RMSE value), second, etc.
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In Tab. 3.2 the ranking scores, the average RMSE values (meanstd), the aver-

age improvements and the methods rank (computed according to the average

RMSE, the average improvement and the number of the 1st positions achieved

by the different methods) are reported. Although the rank obtained (reported

UNCORRECTED FCSM CPmean CPboth LCBM nLCBM
Score 1st position 0 2 1 4 74 19
Score 2nd position 0 7 13 15 23 42

Score 3rd position 0 18 22 35 2 23
Score 4th position 0 26 30 32 1 11
Score 5th position 4 47 30 14 0 5
Score 6th position 96 0 4 0 0 0
RMSE (mean±std) 15.41±3.82 13.14±3.64 13.15±3.45 13.05±3.58 12.85±3.60 12.98±3.60
Average improvement − 15.14% 14.12% 15.68% 17.07% 16.09%

Rank 6th 4th 5th 3rd 1st 2nd

Tab. 3.2: Ranking scores, average RMSE, average improvement and methods’
rank computed using 100 overlapping image pairs.

in the last line of Tab. 3.2) is different from that reported in Tab. 3.1, the two

best methods still are LCBM and nLCBM. As expected, LCBM still achieved

the best results (in 75%), since the main bahaviour of vignetting is linear, but

25% is spread out of the other methods. Accordingly, we performed deep anal-

ysis of the remaining methods, also performing additional experiments to go

through the motivation of some behaviours. Some considerations are reported

below for each method tested, and these could help to better understand the

results of Tab. 3.2.

Method ranked 5th: CPmean

As highlighted in the row “Score 6th position” of Tab. 3.2, CPmean is the only

method achieving scores even worse than the uncorrected images. The reason

could be that CPmean is the only method that does not provide a background

subtraction and correct each intensity level of the images by a single vignetting

function (see Eq. 3.1). Accordingly, to use CPmean to correct images contain-

ing a large percentage of background is not a good choice. To confirm that,

we sorted the image pairs according to the percentage of background in their

overlapping region. In fact, in the 5 image pairs having the lowest foreground

percentage, CPmean for 4 times achieved the worst RMSE. The RMSE values

achieved by the different method in the 5 lower-foreground-percentage image
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pairs are reported in Tab. 3.3:

Foreground percentage UNCORRECTED FCSM CPmean CPboth LCBM nLCBM
3% 3.02 2.52 4.62 2.58 2.36 2.81
13% 5.22 5.03 6.15 5.04 4.92 5.04
23% 7.60 7.03 7.87 7.00 6.99 7.09
35% 8.85 7.98 8.36 7.76 7.68 7.69
42% 9.29 8.77 9.33 8.67 8.60 8.65

Tab. 3.3: RMSE values in the 5 lower-foreground-percentage image pairs. For
each row the worst RMSE value is underlined.

Method ranked 4th: FCS

Probably, the motivation standing behind the 4th rank position achieved by

FCSM is the nature of the object used to estimate the vignetting function: a

slide with an huge amount of fluorescent dye, whose intensity is much higher

than the sample’s one. Also, in the presence of negligible non-linearities of

the system, to estimate the vignetting function using a higher intensity signal

could be not a good choice if the vignetting function has to be used afterwards

to correct intensity signals far lower. To prove that the intensity range of the

source used to estimate the vignetting function plays a key rule, we studied

the two cases where FCSM ranked first (row “Score 1st position” of Tab. 3.2).

Looking at the overlapping area of the two image pairs (Fig. 3.15), we immedi-

ately noted that they were characterized by a large amount of background and

very bright spots of intensity. The vignetting function estimated from the FCS

could be right for flatting the bright spots of the intensity. In addition, the

background subtraction (see Eq. 3.3) should help correcting images with large

amount of background. Images characterized by bright spots and large amount

of background are typically high contrast images. Accordingly, to prove the

effectiveness of FCSM for flat-field correcting high contrast images, we com-

puted the std (often used as a contrast measure) of the overlapping regions

of the 100 image pairs and we sorted the RMSE values according to the std

values obtained. The two times the FCSM was the best fall in the first 12 high

contrast image pairs, this pointing out the good tendency of FCSM to correct

images with bright spots and large amount of background. However, a deeper

characterization of the method should be carried out through a multi-feature

analysis based, for instance, contrast, intensity distribution, range intervals.
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Fig. 3.15: Overlapping areas of the image pairs where FCSM performed as the
best method. They are characterized by a significant amount of background and
very bright spots of intensity.

Method ranked 3rd: CPboth

CPboth is very similar to CPmean, but the background subtraction should fix

the problems discussed dealing with CPmean. In particular, we analyzed how

the different methods flat-field correct the background. To this purpose, we

reused the 100 image pairs of Set F, but this time we computed the RMSE

using only in the background pixels in the overlapping regions. In Tab. 3.4, the

ranking scores, the average RMSE values (meanstd), the average improvements

and the methods rank (computed according to the average RMSE and the

average improvement achieved by the different methods) are reported. As

UNCORRECTED FCSM CPmean CPboth LCBM nLCBM
Score 1st position 0 13 21 53 12 1
Score 2nd position 1 31 6 27 31 4
Score 3rd position 3 33 8 11 30 15
Score 4th position 6 15 9 7 18 46

Score 5th position 17 7 36 2 9 29
Score 6th position 73 1 20 0 0 6
RMSE (mean±std) 8.03±2.93 6.75±2.43 7.10±2.05 6.60±2.39 6.77±2.45 6.96±2.43
Average improvement − 15.24% 6.51% 16.86% 15.13% 11.96%

Rank 6th 2nd 5th 1st 3rd 4th

Tab. 3.4: Ranking scores, average RMSE, average improvement and rank com-
puted considering the background pixel of 100 overlapping image pairs.

expected in background, CPboth was the method achieving the best average

RMSE, average improvement and the highest number of lower RSME (the best
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score achieved 53 times). It means that the model of background estimated

in CPboth is accurate and the background subtraction performed is a crucial

task for the flat-field correction of the background. However, we must recall

that this affects also in the evaluation of the RMSE in the whole images.

Method ranked 2nd: nLCBM

We know from Tab. 3.4 that nLCBM does not work too well for flat-field

correcting the background (it was the best one time only). This is probably

due to the absence of non-linearities in the intensity range of the background,

where typically the fluorescent signal is mainly related to the autofluorescence

of the culture medium or small fluorescent particles (corpuscles or debris)

free of moving in the liquid. Furthermore, looking at the set of vignetting

functions estimated, one can see that the functions do not cover the entire

range of the images. In particular, the mean value of the highest vignetting

function is far lower than the maximum values of the images to be corrected.

According to Eq. 2.2, also the values higher than the mean values of the highest

vignetting function estimated are corrected using that function and this could

yield errors. To prove that nLCBM does not work properly with images with

high intensity values, we first sorted the 100 image pairs according to the

mean intensity value of their overlapping region. Then, we checked how many

times nLCBM achieved the lower RMSE, dividing the images into four groups

(of equally spaced intensity levels) according to their mean value (the first

group has the highest mean). As reported in Fig. 3.16, nLCBM achieved

only 2 scores in the interval containing the images with the highest mean

intensity value. It proves that nLCBM is not able to flat-field correct properly

images characterized by high intensity values. Furthermore, to obtain 0 score

in the last interval (containing the images with the lowest mean intensity

value) proves again that nLCBM does not work well with images containing

large amount of background. To conclude, we can state that to increase the

representativeness of the set of vignetting functions estimated, a set of images

covering an intensity range larger than the range of the images to be corrected

must be acquired.

Method ranked 1st: LCBM
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Fig. 3.16: Histogram score of nLCBM. We sorted the image pairs according to
their mean intensity value in the overlapping region, then we checked how many
times (scores) nLCBM achieved the lower RMSE, dividing the images into 4 groups
of equally spaced intensity levels (the first group has the highest mean). Over the
bars is reported the number of images included in the intensity interval and the
score percentage.

The method is general purpose and always performed well. Nevertheless, the

results reported in Tab. 3.4 proved that CPboth provides a better background

model and using it in LCBM could yield slight improvements.

3.7 Conclusion and future work

3.7.1 Conclusion

In this chapter we described the two methods we developed to flat-field correct

images acquired with widefield fluorescence microscopes. The first method we

proposed (LCBM ) estimates the vignetting function using a large set of (non-

overlapping) images, like those typically acquired in high content screenings.
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The flat-field correction is performed according to the standard linear approach

where the background subtraction is performed first and the images are then

corrected (“done flat”) by normalizing by the vignetting function. Instead,

in the second method (nLCBM ) the linear approach is abandoned in favor of

a non-linear approach, where each intensity level of the images is corrected

by its own vignetting function. A set of vignetting functions is estimated

using a sequence of overlapping images, acquired moving the microscope holder

around a central image. The presentation of the same objects in different

image’s coordinates gives a sparse representation of the vignetting functions.

In particular, the images are registered and a vignetting function is estimated

for each intensity level present in the central image. The estimated vignetting

functions are then representative of the non-linearities of the system. The flat-

field correction is then performed pixel-wise, simply normalizing each pixel of

the images by the related vignetting function.

We compared the two proposed methods with different approaches widely used

in literature by carrying out two different experiments. The purpose of the first

experiment was finding out which method achieved the best result in the flat-

field correction of the median foreground surface estimated using a set of non

overlapping images. The reason behind this choice is that in fluorescence mi-

croscopy usually the background is neglected and the only interesting signal

is the foreground, meant as the signal emitted by the cells. Accordingly, the

method achieving the flattest foreground surface could be considered the best

method to correct the vignetting effect in fluorescence. LCBM achieved the

best result, immediately followed by nLCBM. Furthermore, the result achieved

using fluorescent calibration slides (the most largely used approach in litera-

ture) was very interesting and somehow unexpected: the foreground surface

result overcorrected and less flat than the one referring to the original uncor-

rected images.

To analyze also the effectiveness of the different approaches in the flat-field

correction of the whole images, considering both foreground and background

regions, we performed a second experiment where we computed the Root Mean

Squared Error (RMSE ) in the overlapping regions of 100 image pairs, before

and after the different flat-field corrections. The overlapping regions repre-

sent a meaningful test-bed to assess the effectiveness of the vignetting correc-

tion. We considered as the best method the one obtaining the lower differ-

ence between the overlapping regions (no photometric misalignments should
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be present if the stitched images are perfectly corrected). Both LCBM and

nLCBM overcome the other method tested and still LCBM was the method

achieving the best results, since the main behavior of vignetting is linear. With

other additional experiments, we proved that LCBM performed better than

nLCBM mainly in two cases: in images characterized by a large amount of

background and in images containing high-intensity values. In the first case

nLCBM forces to seek non-linearities where probably they are really negligi-

ble and this acts as noise enhancement. In the second case, nLCBM was not

able to reliably correct the high values because in the experiments performed

the range of values of the images used to estimate the vignetting functions

resulted narrower than the range of the images to be corrected. Accordingly,

the highest vignetting function estimated was used as the normalization factor

of all the pixels with higher intensity, this yielding errors.

The content of this chapter was partly published in [114].

3.7.2 Future work

Both of the methods we proposed can be improved. In particular, the experi-

ment performed computing the RMSE in the background regions only showed

that CPboth provides a better background model than that in LCBM. Accord-

ingly, the background modelling of LCBM could be improved, even directly

using the same model implemented in CPboth. Furthermore, we should im-

prove the method to find out how many images are required to obtain accurate

vignetting and background surfaces according to LCBM. Such analysis could

be crucial to provide the microscope users with hints regarding the usability

of LCBM.

As for nLCBM, the algorithm implemented could be optimized to speed up the

registration process of the overlapping images acquired, improving the global

registration strategy to perform at subpixel accuracy, for instance using the

Shi-Tomasi corner points and the Lucas-Kanade features Tracker [100]. In ad-

dition, better fitting techniques to obtain the dense vignetting surfaces ought

to be devised to achieve more realistic vignetting functions. The experiments

with background correction proved that the non-linear correction approach is

not a good solution. This is probably due to the main linear nature of the vi-

gnetting in the background. Accordingly, to split the flat-field correction into
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two different approaches, providing a linear approach for correcting the back-

ground values and the non-linear approach only for the foreground, could be

the right strategy bringing some improvements. Finally, the trade-off between

accuracy of the estimated vignetting functions and the number of overlapping

images and the relation between the intensity range of the images to be cor-

rected and the range of the images used to estimate the vignetting functions
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Fig. 4.1: Mosaic of satellite images from the soil of Mars.
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4.1 Introduction

One of the main features of every camera is the Field Of View (FOV ), meant as

the part of the scene shown in a single acquired image. Its finiteness represents

a strong limitation for several reasons [115] in different fields like surveillance

systems [116], aerospace and satellite monitoring [117] and microscopic speci-

men analysis [20]. Mathematically, the FOV of a digital camera is defined by

three parameters: the number of pixels of the sensor, the area of the pixels

and the magnification factor used (Eq. 4.1).

FOV =
pixels× area

magnification2 (4.1)

In particular, area and number of pixels are fixed constraints for each camera,

so the FOV results inversely proportional to the magnification factor. Accord-

ingly, there is a trade-off between the size of the area represented in an image

acquired in a single shot and the magnification factor used. Consequently,

acquiring a single image representative of a wide scene with a high pixel’s

resolution is not feasible.

The FOV becomes a strong limitation in several cases. For instance, a narrow

FOV makes to acquire images of a cell culture at high magnification impossi-

ble. Moreover enough cells are needed to have a good statistic [118]. Usually,

to overcome this limitation a set of overlapping images is acquired and used

to build a mosaic, that is a large image where the original component images

are stitched together in a larger one having the same resolution. In this way,

it is possible to obtain a single detailed image (the final mosaic) representative

of a wide scene [62]. In order to recover the relationships among the different

views of the scene proper algorithms are used to find out invariant features

then used as references. The main goal is to align (i.e., register) different im-

ages of the scene in a common and scene-consistent reference point of view, by

estimating the transformations connecting corresponding patterns of the scene

matching in the different views. In particular, Image Registration of multiple

views constitutes a very complex and challenging research field for the scien-

tific and academic research community [119]. In microscopy, the task becomes

even more complex when there is an additional need: to obtain the mosaics in

real-time along with the sample observation. This because the operators often

need to achieve information on the whole sample directly during the inspection
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(often non repeatable), in order to decide how to proceed further.

The number of publications concerning image mosaicing methods is huge. For

instance, in 2008 the Annotated Computer Vision Bibliography listed 362 pa-

pers only in the Mosaic Generation chapter [120]. Nevertheless, mosaicing is

still considered an open issue for many applications [121]. [122, 123, 124, 125]

present an extensive overview of different registration methods. Furthermore,

many open-source and commercial software tools can be employed to obtain

image mosaics [126, 127, 128, 120]. To assign the different mosaicing methods

to a proper class is not the focus of this work. Despite that, in Sect. 4.2 we

try to give a short overview on the main classes.

In this work, we are interested to mosaicing methods for 2D images acquired

with widefield microscopes, where the motion between scene and camera is

near traslative only, with rotations prevented by the manufacture of the micro-

scopes’ holder. Furthermore, the scene objects (typically cells and tissue) can

be considered, with a good approximation, as being still and non-deformable

throughout the examination time of the specimen. Many methods available in

this application field exploit prior information about the registration like the

(micrometer) shift between the acquired images, available using automatized

acquisition systems like microscopes coupled with motorized x -y stage. Never-

theless, since the accuracy of the motorized x -y stage is typically in the order

of 1µm, therefore to obtain pixel or sub-pixel alignment’s accuracy (dependent

of the resolution coefficient, but typically lower of 1µm for high magnifications)

proper registration techniques are always required [129, 130]. In addition, the

methods are often application-optimized.

Despite many methods have been proposed in the literature, there is no free

open source mosaicing method suitable to build mosaics in real-time while

images are acquired with non-motorized widefield microscopes. Accordingly,

starting from the existing approaches, we implemented our approach in a soft-

ware capable to work on-line and easy to use for testing different algorithm’s

combinations and tonal corrections. In particular, in this work we describe

such an approach used to build on-line mosaics of microscopic images, that is

by reading images from disk but using methods extensible to real-time applica-

tions. The method is conceived to work with histological samples and cell cul-

tures (that cover the most relevant part of the routine examinations performed

in the biological laboratories) acquired with light microscopes. Nevertheless,
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simply adding a correction stage for photo-bleaching, it can be easily extended

to general widefield microscopes. The method exploits visual information only

and it relies on an efficient image registration method, robust to the presence of

outliers and global photometric artefacts, such as those due to the vignetting

effect. As a consequence, it does not need automated equipment or prior infor-

mation, and preserves final photometric and geometric consistency in spite of

the manual motion of the microscope holder. The only assumption regards the

objects present in the images: they are considered still and non-deformable.

Considering the mean time of specimen’s observations, the assumption can be

realistic even for living cells. The limited computational requirements of our

method makes it suitable for a future implementation for real-time applica-

tions. As a matter of fact, our approach could be implemented and optimized

to build the mosaic interactively during the sample observation, providing the

users with an immediate visual feedback on the explored area and “freezing”

the sample condition of the precise time of the analysis (sometimes needed

but not reproducible). In Sect. 4.3 the detailed presentation of the method is

reported, according to the different stages of the general paradigm of the local

image registration approaches previously presented. It is worth noting that the

main purpose of this work is not necessarily the improvement of the state of the

art. Rather, it represents a functional stage for testing the different vignetting

correction approaches explained in Chaps. 2 and 3. Nevertheless, we dedicated

a specific chapter for this issue, thinking that providing all the details of the

mosaicing method would be necessary for the reader to better understand the

experimental results. In particular, we implemented an effective solution for

creating on-line mosaics by using non-automated microscopes where each pa-

rameter regarding warping model, tonal correction and registration strategies

can be handled by the user also to provide a numerical assessment of different

configurations used in the vignetting correction.

Besides, we validated the proposed mosaicing method by performing several ex-

periments under different working conditions. We used sets of images of histo-

logical samples as well as living cell cultures to assess the quality of the mosaics

obtained using different warping models and tonal adjustments. The analysis

of joint tonal and geometrical registration errors proved that the method can

be effectively employed to obtain mosaics on-line.
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4.2 State of the art

Image Mosaicing represents a well studied topic in the Computer Vision re-

search community, and accordingly a high number of works have been pub-

lished in the last three decades [131].

The mosaicing methods can be firstly classified according to the environmental

working domain (outdoor [132], indoor [133]), the applicative field (e.g., Medi-

cal/biological [124] such as microscopy [134]), or the dimensionality of objects

(3D [135, 120] or 2D [20, 136]). Furthermore, the algorithms employed in these

contexts have different hardware requirements and degrees of automation [19,

137, 138]. In general, images to be registered are usually extracted from a

video [139, 140, 141] or acquired as sequence of views of the same scene [19,

20, 126]. The overlapping between the different views, object’s deformation

[142] and illumination changes [143] affect the robustness requirements of the

matching stage. Information about the relative motion (traslative, rotative,

stationary, etc.) between scene and camera guides the selection of the proper

warping model and properties of the scene objects, like motion and presence

of deformable objects [144], affect the registration strategy.

In general, the paradigm of image registration almost always works according

to following different stages [122, 123]:

• Feature Detection. To be able to find the relationship between differ-

ent views of the same scene, salient image properties have to be detected

and matched with repeatability under different conditions. In other

words, the chosen feature (or features) must be preserved in presence

of geometric transformations, photometric changes, noise, etc. Mainly,

two approaches are followed to find salient image properties in differ-

ent views: a featureless dense (also called area-based) or a local sparse

approach. In the first case, image properties of a given region, poten-

tially extended to the entire image, are used. Generally this approach is

based on the intensity of all the pixels of the image, without searching

for specific features. Instead, the second approach relies on the detection

of local features, that are localized patterns with some image’s property

different from their surrounding neighbourhoods. The properties usu-

ally employed to extract (and localize) these patterns fall in the spatial

(colour, texture, image gradients and their orientation, etc.), frequency
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(e.g., Fourier Transform) or space-frequency domain (e.g., Wavelet coeffi-

cients, etc.). Since these methods do not work directly on image intensity

but rather on derived invariant properties, they are generally more ro-

bust to noise and changes in lighting conditions. The resulting structures

can be regions, contour lines or even local patches (e.g. corner points),

with different levels of semantic relevance. A wide literature exists that

addresses local structures like corners, edges and . . . [145].

• Feature Matching. In order to derive the transformation matrix relat-

ing to the different views of the scene, the patterns detected in the single

views have to be related for finding the correspondences. The most im-

portant property of a matching method is certainly the robustness, since

a sufficient number of correct correspondences must be achieved, avoid-

ing false matchings that could mislead the next image registration stage.

Following the main Feature Detection approaches aforementioned, two

groups of methods can be outlined for the Feature Matching. The first

methods, typical coupled with the featureless approach, perform exhaus-

tive search in the whole image domain, using likelihood metrics typically

employed for template matching directly on image pixel values. The

main drawback of these correlation methods is the computational effort

required for the exhaustive search of the image patterns to be matched.

The second group of methods aim at matching more complex descriptors,

generally derived from the sparse detected patterns. These matching

methods can be primarily classified into two categories: geometry-based

and feature-space. The geometry-based matching methods employ simi-

larity measurements using geometric properties of the detected features.

High-level descriptors, like contours, can be matched using even their

local properties (e.g., the curvature). The feature-space matching meth-

ods rely on matching of the k -dimensional feature descriptors as points

of k -dimensional vector space. These vectors generally represent the ap-

pearance of localized regions and they are matched according to some

defined metric distance. High-dimensional features, being more separa-

ble, retain a more discrimination power, but make the matching stage

more computationally expensive.

• Warping Model Estimation. Once image correspondences are com-

puted, they can be used to infer the warping transformations linking

the different views. Generally, hypotheses about the sensor model, the
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motion model and the scene structure (rigid, deformable, planar, etc.)

are necessary in order to avoid degenerate configurations that can cause

ambiguity. The mapping transforms can be global (valid in the whole

image domain) or local (referred to local regions). Here, our applica-

tive domain allows us to focus our attention to rigid transformation for

non-deformable objects. The research in this field has been character-

ized by a great effort towards fully automatic approaches, working for

uncalibrated cameras in presence of general scene structures and auto-

matically detecting degenerate configurations for accurately estimating

the “correct” scene model using model selection criteria. This goes in the

direction of jointly estimating the relative pose parameters between the

camera (or cameras) and the scene and/or reconstructing the geometric

structure of the scene, preserving scene consistency and accuracy. This is

generally achieved by minimizing non-linear cost functions on the global

dataset, typically the whole image sequence or a large subset of acquired

images. Accordingly, this often requires the application of iterative mini-

mization algorithms on the whole sequence to be known in advance. This

typically prevents these methods from running in real-time.

• Image Warping and Stitching. The registration of the images in a

common reference frame is finally obtained by warping all the single im-

ages according to the estimated transformations. Generally, a tonal ad-

justment is performed in advance in order to preserve in the single views

the photometric consistency of the scene taking into account different

lighting conditions [146]. Chaps. 2 and 3 of this thesis, dedicated to the

vignetting correction, better explain the different approaches mainly used

for flat-field correcting the intensity of the single acquired images. Other

methods work on histogram matching [147] or blending techniques [90,

21] to attenuate tonal inhomogeneities among the different images to be

registered. Once tonal alignment has been performed (except for blend-

ing that is a post-processing technique), image warping can be done

following different interpolation methods. Seams in the stitching zones

are attenuated proportionally to the effectiveness of both the vignetting

correction and the geometric registration. It is worth noting that for

some Feature Matching methods the vignetting correction can strongly

influence the accuracy of the registration. For instance, the area-based

methods introduced into the Feature Detection stage of Sect. 4.3.2 are

simply based on the intensity values of the image pixels, and in presence
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of strong vignetting curvature the difference of the intensities between

different regions could produce mismatches. In general, but especially for

the area-based methods, to perform the tonal adjustment of the acquired

images before the geometric Image Registration is strongly suggested.

According to the above stages, many different combinations have been used

to develop different methods reported in the literature, often specific for some

application contents.

One of the first solution to build mosaics also in microscopy dates back to 1983

and it presents the multiresolution spline technique originally proposed in [148].

In this multiscale approach, the images to be stitched are distorted and jointed

together with smooth seams. The images are decomposed in subimages by

filtering/resizing and the same-level subimages, of the original images to be

stitched, are separately mosaicked using a weighted average method to avoid

seams in the border of the overlapping regions. In practice, each subimage is

multiplied by a weighting function which decreases monotonically across its

border. The mosaicing method proposed depends on the percentage of image

overlapping and on the range of frequencies of the images to be stitched. For

this reason, it could be applicable with a high difficulty to the brightfield images

of living cells, since they usually are very low contrast images and details lay in

a very narrow range of frequencies. No technique is proposed to estimate the

shift between the different images to be stitched. Furthermore, the photometric

changes are simply attenuated and the vignetting problem is not specifically

tackled. Accordingly, despite the high visual quality of the final mosaics, they

result not to be suitable for quantitative analyses. More specifically, as far

as mosaicing in light microscopy is concerned, most works’ purpose has often

been to provide visually pleasant mosaics through post processing the whole

image sequence.

Since the first solutions to the present days both featureless dense correlation-

based methods [149, 150] or sparse feature-based approaches [127, 21] have

been widely employed in the registration stage, depending on the computa-

tional and accuracy application requirements. A first class of algorithms fol-

low a dense featureless registration approach with likelihood error function

based on pixel image intensities and they result computational intensive. The

methods proposed in [151] and [152] are conceived to be used necessarily with

high-precision motorized x -y stages. Data obtained with motorized stage con-
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trollers [151] and mosaic initialization through manual alignment [152] are used

for a coarse geometric registration, while global tonal and geometric alignments

are performed by minimizing a cost function over the pixel intensities of the

whole image stack. Accordingly, these methods work in batch mode, at the

end of the images acquisition stage. A second class of algorithms relies on

sparse feature-based registration approaches, detecting and matching salient

regions in consecutive images. The algorithm described in [153] utilizes Harris

detectors [154] to identify salient points and normalized moment of inertia as

their feature descriptor. This method is applied to single couples of images

while general issues regarding the mosaic generation (consistency of photo-

metric and geometric registration) are not addressed in by the authors. The

method proposed in [21] uses wavelet-based edge correlation to detect feature

points and normalized cross correlation for their matching. This method is not

conceived for on-line mosaicing since it needs global registration to achieve an

accurate mosaic.

Typically, the registration of the different views is done according to either

global (e.g., energy minimization [139], global projection [155], graph-based

[136]) or local [145] approaches and the performance goes from batch [156] to

real-time [157] applications. The warping parameters are estimated, in most

of cases, starting with sequential pair-wise registration followed by global reg-

istration performed on the whole image sequence or on a large subset [123].

Global registration is generally performed by minimizing non linear cost func-

tions containing many unknowns, depending on the extent of overlapping ar-

eas, the number of features, the number of views and the complexity of the

motion model. Works in [158, 140, 150] follow this approach, using iterative

optimization in a bundle adjustment fashion. Accordingly, the computational

burden of the minimization process and, above all, the need of a large set of

frames require off-line processing.

As far as mosaicing in microscopy is concerned, most works’ purpose has often

been to provide visually pleasant mosaics through post processing the whole

image sequence, typically using blending techniques [157, 138, 90, 21]. Only

few mosaicing methods consider explicitly the vignetting effect [129, 156, 62]

and propose interesting solutions [19, 20] for tonally registering the images

obtaining visually pleasant mosaics suitable also for quantitative analyses [63,

111, 55, 159].
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To conclude, we analyze several freely available mosaicing tools that can be

used to obtain mosaics of microscopy images:

• ImageJ [95, 160] Stitching Plugin [126]. Starting from a set of 2D or 3D

overlapping images, the mosaic reconstruction is made pairwise comput-

ing subpixel translation among the images. The user can also define an

approximate layout of the final mosaic to speed up the registration pro-

cess. The algorithm is not optimized and it is particularly computational

expensive.

• Autostitch [127]. In [156] the software tool Autostitch, developed for out-

door panoramic image generation, is tested on microscopic image stacks

acquired during manual and motorized motion of the microscopes holder.

Autostitch is based on SIFT [85] detection and matching to increase ro-

bustness. It is really user-friendly and widely used. Despite that, it

suffers of problems of image merging [133].

• MosaicJ [128]. A semiautomated method which requires the user to

manually align the images for a subsequent fine registration stage. It is

implemented in Java and the software is available as ImageJ plugin. This

work being focused on accuracy performance. The images are pixel-wise

registered using a dense featureless approach, thus resulting in a high

computational burden that prevents this method to be used in real-time.

• XuvTools [120]. This is a reliable fully-automated stitching software for

3D datasets of fluorescence images. The toolset is written in templated

C++. Before a fine registration, the whole set of images is automatic

analyzed to define an approximate layout of the final mosaic and this re-

quires a high computational effort. Then a Seams in the stitching zones

are attenuated by a bleaching correction at the borders. The main limi-

tation is the assumption regarding translations only between the images.

It is worth noting that all the above mentioned mosaicing tools work off-line

and provide blending techniques to reduce intensity inhomogeneities between

the images stitched, but none of them takes the vignetting effect explicitly into

consideration.
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4.3 Methods

In this section, we describe our approach for building on-line mosaics of mi-

croscopic images. As stated above, the method is developed for images of

histological specimens and cell cultures acquired with light microscopes, but it

can be easily extended to widefield microscopy. The method starts analyzing

(on-line or off-line) pairs of acquired overlapping images. It exploits visual

information only and it relies on an efficient image registration method based

on matching of corner points, that are robust to the presence of outliers and

photometric artefacts, such as the vignetting effect. As a consequence, it does

not need automated equipment or prior information, and preserves photomet-

ric and geometric consistency during the manual motion of the microscope

holder. The only assumption regards the properties of the objects present in

the images: they are considered not in motion and non-deformable. In the

next Sects., we describe the proposed mosaicing approach following the differ-

ent stages of the general paradigm of image registration presented in Sect. 4.1.

4.3.1 Pre-processing

Before going inside the detail of the geometric registration, we focus our at-

tention on the tonal alignment of the acquired images. As the first step, every

acquired image is flat-field corrected to obtain a set of consistent views of the

same scene, without non-uniformity of the signal distribution inside the sin-

gle images. Generically, the Köhler illumination [24] is only theoretical and all

the acquired images are characterized by an uneven distribution of the “illumi-

nation” signal (evident as intensity’s curvature), usually known as vignetting

effect (Fig. 4.2). If the images are stitched together without performing an ap-

propriate correction, seams in the stitching zones of the final mosaic would be

evident (Fig. 4.3a). Many methods have been proposed in the literature to cor-

rect the vignetting effect (see Chap. 2). The most trivial and commonly used

approach in light microscopy is to acquire in advance an image or a sequence

of images of an empty field and using the surface obtained as the vignetting

function to normalize the intensity of every subsequent acquired image [109].

The standard flat-field correction formula already introduced in Sect. 2.3 is
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Fig. 4.2: Curvature of the image’s intensity. The vignetting effect causes a cur-
vature on the intensity of the acquired images. (a): schematic 2D and (b): 3D
representation of the intensity curvature of the median surface of a stack of images
acquired in brightfield from an empty field is proposed.

a b

Fig. 4.3: Visual comparison between mosaics built with and without vignetting
correction. (a): mosaic of 6 images of living mesenchymal SC, acquired using in
phase contrast microscopy. If no vignetting correction is performed, seams in the
stitching zones are pretty evident and they can mislead segmentation or automatic
analysis. (b): the same mosaic corrected using the vignetting function estimated
from empty field. Seams are almost negligible.

here reported for completeness (Eq. 4.2):

IFFC =
I

V
V (4.2)
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I is the original acquired image, V is the vignetting function, V is the mean

value of V , IFFC is the final flat-field corrected image. After the correction,

the seams in the stitching zones result strongly attenuated (Fig. 4.3b). In our

approach, the acquired images are first converted in grey levels (in case they

are multichannel) and then are flat-field corrected, just before the geometrical

registration stage. It is worth notice that our method can be employed also to

work with colour images, which are flat-field corrected by normalizing all the

channels with the same vignetting function. However, further strategies have

to be adopted to avoid problems such as the generation of pseudo colours [157,

33, 90, 161, 162, 163, 72].

4.3.2 Feature Detection

We developed our method to work on-line with the image acquisition, also for

planning an extension for real-time applications in the future. Accordingly,

to use local-sparse features that do not require high computational time to

be extracted and matched [164]. In particular, we employed the Shi-Tomasi

features (corner points characterized by a high intensity gradient) [100], robust

and easy to track also in presence of geometric transformations, photometric

changes, noise, etc (Fig. 4.4). In particular, Shi and Tomasi proposed a stable

corner detector analyzing the condition number of the pseudo-Hessian matrix

(also named auto-correlation matrix) performed on image patch G(·) of sizes

W , centered on points (x, y) of the reference image, being Ix, Iy the local

components of image gradient (Eq. 4.3):

G(x, y) =




∑
i∈W

(Ix(xi, yi))
2

∑
i∈W

(Ix(xi, yi)I
y(xi, yi))

∑
i∈W

(Ix(xi, yi)I
y(xi, yi))

∑
i∈W

(Iy(xi, yi))
2


 (4.3)

The image patch can be characterized according to the eigenvalues λ1 and λ2

of G(·) as:

• a flat region, if both λ1 and λ2 are small in value;

• an edge, if one eigenvalue is high in value, showing image variability in

that specific direction;
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Fig. 4.4: Shi-Tomasi features. Shi and Tomasi proposed a stable detector for
corner points easy to track and robust also in presence of some geometric trans-
formations, photometric changes, noise, etc. The corner points are based on the
highest eigenvalues of the image.

• a corner, if both λ1 and λ2 are high in value.

The G matrix is well conditioned if the eigenvalues do not differ too much. At

the same time, the eigenvalues must be greater than a certain threshold λmin

in order to be reliable and not capture noise (Eq. 4.4):

min(λ1, λ2) > λmin (4.4)

Practically speaking, the minimum eigenvalue is computed for each of the

reference image pixels, yielding an eigenvalue map. Non-maxima suppression

is performed on this map on a local pixel’s neighbourhood, and the remaining

samples are thresholded by a strength value λmin. Finally, the corners are

chosen spatially spread, rejecting on the map those locations spatially close to

stronger corners.

In our approach two subsequent acquired images are always supposed to over-

lap. This is generally true if the images are extracted from videos or if the

mosaic is built in real-time with the image acquisition. In particular, between

each pair of subsequent images there must be a minimum of 10% of overlap-

ping. In our approach, to perform the registration between each current image
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and the previous one, first the Shi-Tomasi corner points are detected sepa-

rately in both the images, then the correspondences among the corner points

extracted in the two views are estimated.

4.3.3 Feature Matching

According to previous stage, to estimate the correspondences of the features de-

tected in the subsequent views we employed the Lucas-Kanade Tracker (LKT)

for two main reasons. First, it is the best one to define the correspondences us-

ing the Shi-Tomasi corner points. Second, it works with subpixel accuracy with

excellent time performance (Fig. 4.5). The LKT is based on the early work of

Fig. 4.5: Correspondence between corner points using LKT. Used to estimate the
correspondences between features detected in the different views. It is the best one
to define the correspondences using the Shi-Tomasi corner points and it works with
subpixel accuracy with good time performance.

Lucas and Kanade [101], then fully developed by Tomasi and Kanade [165] and

clearly explained by Shi and Tomasi in [100]. Practically speaking, this widely

used tracker aims at estimating local optical flow displacements using a lin-

ear approximation of spatial and temporal variations of the image intensity. In

the last two decades, LKT has been used in very different applicative domains,

such as robotics, face recognition, vehicle tracking [166]. Its main advantages

are the efficacy, even without the claim of generality, and its computational
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simplicity, which makes the method suitable even for hardware implementa-

tions on old generation devices. In brief, given a local image patch centred

on the pixel (x,y), let us suppose that the optical flow constraint equation is

fulfilled between two acquisition instants (t, t+ δt) (Eq. 4.5):

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (4.5)

Then, for small motion offsets the local unknown displacement vector v=(vx, vy)

(assumed locally constant for that image patch) among the image pair (I, J)

can be found by minimizing the likelihood Sum Squared Difference (SSD) score

(Eq. 4.6):

ε(v) =
∑

W

(I(x, y)− J(x+ vx, y + vy))
2 (4.6)

in a neighbourhood W of the feature location. Accordingly, the optimum vopt
is found for the vector v satisfying Eq. 4.7:

∂ε(v)

∂v

∣∣∣∣
v

= [0 0] (4.7)

Expanding Eq. 4.7 according to its Taylor series approximation for small dis-

placements, after some passages Eq. 4.8 is found for vopt:

vopt = G−1 · b (4.8)

being G the auto-correlation matrix in Eq. 4.3 and b a term containing spa-

tial and temporal (that is between the images under registration) derivatives

(see [167]). The Shi-Tomasi feature detector ensures that the problem ex-

pressed by Eq. 4.8 is well conditioned. The LKT method estimates the vector

v and uses it iteratively for a subsequent small signal linearization, until the

algorithm converges or a maximum number of iterations is reached. This algo-

rithm can reach subpixel accuracy but cannot handle robustly too large image

displacements. Pyramidal implementation of this algorithm [167] aims at cop-

ing with this issue, working on more pyramidal levels on which estimating

“small” displacement vectors, then back propagated to higher pyramid lev-

els up to the original image. However, this approach can lead even to false

matchings when “similar” interest points are spread along the image. For this

reason, we used the global area-based method named Phase Correlation (all

the details in Appendix 6) as a bootstrap step for providing a guess value for

the tracker initialization [168].
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4.3.4 Warping Model Estimation

The warping transformation between two images can be estimated starting

from point correspondences between the two views. In general, the warping

transformation depends on the geometrical configuration linking camera mo-

tion and scene, and no assumption about the model can be made if no priors

about camera motion and scene structure are given. In this section some basis

knowledge about the two-view geometry [119] are briefly recalled, since gen-

erally pair-wise (sequential) registration approaches are required for on-line

applications. Fundamental concepts of homography estimation and epipolar

geometry are addressed for completeness.

Epipolar Geometry constitutes the general approach to projective geometry

between two views. The fundamental epipolar equation is reported in Eq. 4.9:

I1i · F · I0i = 0 (4.9)

which represents a necessary condition once two sets I0i and I1i of i = 1,. . . , C

corresponding image points, are established between the two views (I0,I1).

The Fundamental matrix F is independent from scene structure and retains

the camera’s relative pose. Accordingly, it can be estimated from image cor-

respondences. Estimation of the F is subject to ambiguity when degenerate

configurations are encountered. Structural degeneracy is met when the struc-

ture of the scene is planar, while pose degeneracy is encountered when the

two camera centres almost coincide, as for small baselines or pure camera ro-

tations. In these two cases the epipolar geometry can be simplified to planar

projective geometry. According to the theory of planar registration, for pure

camera rotations (independently from the scene structure) and planar regions

(independently from the camera pose) - an approximation that holds also for

scenes distant from the camera - image correspondences are linked through the

projective homography matrix HI1
I0 according to the homogeneous Eq. 4.10:

I1i = HI1
I0 · I0i =



h11 h12 h13

h21 h22 h23

h31 h32 h33


 · Ii (4.10)

where the parameter h33 is typically forced to the value 1 to avoid of repre-

senting equivalent transformations given by matrices multiple of others. Ac-
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cordingly, homography has only 8 degrees of freedom. Furthermore, homo-

graphies are endowed with a group structure so that their composition is still

a homography. With these hypotheses, given at least 4 non collinear point

correspondences, the entries vector h of the homography parameters can be

estimated according to the Direct Linear Transform (DLT) method. DLT aims

at estimating the homography parameters rearranging Eq. 4.10 so that a linear

system in 8 unknowns can be written (Eq. 4.11):

A · h = 0 (4.11)

where the entries of the matrix A are function of the image correspondence

coordinates (see [119] for details). The vector h is estimated solving typi-

cally in a least square sense the (usually overdetermined) constrained problem

(Eq. 4.12):

min
∥∥A · h

∥∥ = 0 ,
∥∥h

∥∥ = 1 (4.12)

The considerations regarding the model estimation are valid assuming that cor-

respondences are affected only by measurement errors, that is related to image

features really corresponding to the same point in the scene matched with

a limited accuracy. However, the matching algorithms can also return false

matchings that alter this distribution and can dramatically affect the model

estimation stage. Outliers can be due to the registration algorithm, as it hap-

pens when (false) matchings are established between points related to different

parts of the scene, or to the presence of migrating impurities corpuscles and

slight modifications of not stable structures. Furthermore, the holder guide

could not be planar and the depth of focus would not be spatially uniform, so

that corresponding points in different views can present out-of-focus blurring

effects. Accordingly, robust model estimation requires the image correspon-

dences to be filtered, so that outliers are removed and the model computed on

a robust support only [169]. To this purpose, the RANSAC algorithm [170]

has been widely employed in the Computer Vision literature (details in Ap-

pendix 6).

The acquisition conditions, the scene model and the camera model should

be taken into account for the selection of the warping model. The system

can be modelled as composed of a fixed (projective) camera which observes

the manual rigid movement of the microscope holder. The thickness of the

specimen (some microns) being negligible with respect to the lens working

distance (some centimeters), the scene can be considered planar. Under these
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conditions, the parallax effect can be neglected and corresponding features

(I0i, I1i) on two consecutive views (I0, I1) are related by a projective planar

homography P I1
I0 according to the homogeneous Eq. 4.10, here recalled for

completeness (Eq. 4.13):

I1i = P I1
I0 · I0i =



p11 p12 p13
p21 p22 p23
p31 p32 1


 · I0i (4.13)

with ‖p‖=1. Thus, proceeding by a set of at least 4 non collinear feature match-

ings in the system of Eq. 4.13, the estimation of this 8-parameter transform

would be required in general. In our case study, two additional approxima-

tions can be considered as satisfied. First, the depth-extension of the scene

(the biological sample) is small if compared with the average distance from

the sample and the camera principal point. Second, the imaged points of the

scene can be considered close to the optical axis due to the “small” field of

view of the camera. Under these hypotheses, the perspective camera model

can be relaxed to the affine model AI1
I0 expressed by Eq. 4.14:

I1i = AI1
I0 · I0i =



a11 a12 a13
a21 a22 a23
0 0 1


 · I0i (4.14)

and the parameters to be estimated decrease to 6. Moreover, by proceeding

with this complexity reduction approach, we can suppose to neglect the me-

chanical play of the holder (that can be affected by drift effects due to its

continuous use) and the relative deviation of the camera optical axis from the

normal to the holder. This yield to conceive a translative model T I1
I0 , shrinking

the number of parameters to be estimated to 2, that are the x and y translation

components (Eq. 4.15):

I1i = T I1
I0 · I0i =



1 0 ∆x

0 1 ∆y

0 0 1


 · I0i (4.15)

In Table 4.1 the main features of these global transformation models (Fig. 4.6)

are summarized. The estimation of these models is carried out by solving

their (typically overdetermined) system, according to Eq. 4.11. It is worth

remarking that the estimation procedure of the warping transform is quite
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Model k Cmin H

Projective 8 4 P=



p11 p12 p13
p21 p22 p23
p31 p32 1


 , ‖p‖=1

Affine 6 3 A=



a11 a12 a13
a21 a22 a23
0 0 1




Translative 2 1 T=



1 0 ∆x
0 1 ∆y
0 0 1




Tab. 4.1: Properties of the warping models employed in this context. k is the
number of parameters (degrees of freedom) of the model, Cmin is the minimum
number of correspondences needed to estimate the model.

Fig. 4.6: Global transformation models. From left to right: original image, rigid,
affine and projective transformation’s representation.

sensitive to the presence of outliers (false matchings) and to the percentage of

the overlapping area between two consecutive frames.

4.3.5 Image Warping and Stitching

Once the pair-wise matrix HI0
I1 relative to the global predesigned transforma-

tion model has been estimated, it is used to perform the final warping of the

image I1 in the domain of the image I0. Using a concatenation of matrices,

every image can be warped in the domain of a reference image. In particular,

we have chosen as mosaic reference frame the first image acquired (I0) Ac-

cordingly, the mosaic warping matrix for the nth frame, HI0
In, defined by the

relation (Eq. 4.16):

I0 = HI0
In · In (4.16)
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can be obtained by incrementally chaining, through the matrix right-productory

operator (Eq. 4.17):

HI0
In =

n∏

i=1

H
I(i−1)
In = HI0

I1 · . . . ·H
I(n−1)
In (4.17)

This “Frame-to-Frame” (F2F, [99]) incremental approach is prone to dead

reckoning effects, due to the accumulation of the estimation errors, that can

turn to increase geometric deformations and misalignments. This effect is more

evident for long looping path sequences, where frames of revisited areas of

the scene can present a visible misalignment with the frames already mapped

into the mosaic. As discussed above, generally a global registration of the

collected frame is required to compensate for these effects. However, this

would require to know all the image sequence in advance and would result

in a computational intensive optimization stage. Alternatively, a “Frame-to-

Mosaic” (F2M) approach [171, 132, 172] can be used, this permitting to reach a

good trade off between the accuracy of the resulting mosaic and computational

performances. According to this approach, the current nth frame is registered

not only with the previous (n− 1)th frame, but also with the mosaic built up

to that point. Let the F2M matrix between In and I0 be M I0
In. The corrective

contribution is estimated by registering Bn, the warp version of In defined

according to Eq. 4.18:

Bn = M I0
I(n−1) ·H

I(n−1)
In · In (4.18)

with the corresponding area Cn of the mosaic built by stitching the image

I(n − 1) as the last one, according to the F2F registration. Being HCn
Bn the

F2F matrix taking into account this corrective term, M I0
In becomes (Eq. 4.19):

M I0
In =

n∏

i=1

H
I(i−1)
Ii ·HCi

Bi = HI0
I1 ·H

C1
B1 · . . . ·H

I(n−1)
In ·HCn

Bn (4.19)

Accordingly, in the F2M approach In is warped in the domain of I0 according

to Eq. 4.20:

I0 = M I0
In · In (4.20)

This further registration has the advantage of compensating mis-registrations

at a reduced computational cost, since it requires only one more LKT stage, fed

by the estimated model resulting from the F2F registration. Accordingly, the

101



Chapter 4. Mosaicing

4.4. Materials

application of the Phase Correlation stage, more computationally expensive,

is not needed at this point.

Once the final mosaic warping matrix has been computed, the nth image is

then warped into the mosaic reference frame, using bilinear interpolation, and

merged into the mosaic using a stitching approach, that is replacing the under-

lying pixel values. Typically, blending approaches are used to remove seams

in the stitching zones [90, 21]. Nevertheless, if particles in adjacent frames

are in motion, using blending they are shown as blurring objects in the final

image. In the literature, this problem is known as ghosting effect [157, 138,

173]. In order to avoid it, we chose to employ the stitching approach mentioned

above instead blending. Moreover, in microscopy image mosaics the seams are

mostly due to vignetting and shading effects. Our flat-field correction stage

compensates for these artefacts, this permitting to create a visually pleasant

mosaic while keeping the high geometric accuracy achieved by our registration

method.

4.4 Materials

In order to assess the quality of the proposed mosaicing approach, image se-

quences of biological samples have been acquired using standard non-motorized

widefield microscopes widely employed in research labs. In particular, we

have utilized an inverted Nikon Eclipse TE2000-U microscope equipped with

a Nikon DXM1200 digital camera able to perform live acquisition at 640×512

pixel resolution, 8-bit gray levels intensity. The system has been connected

to an off-the-shelf PC (Intel Core i5, CPU 2.27GHz, 4GB RAM). Fig. 4.7

summarizes the framework used in our experiments. During our experiments,

a magnification factor of 100× has been applied (lens used 10×, magnification

of the camera 10×), this resulting in a spatial resolution of 1.0152µm/pix. All

the images have been acquired in phase contrast mode.

Typically, the most trivial but common approach for correcting the inhomo-

geneous light signal in a single image is acquiring in advance an empty field

image and using its intensity curvature as normalization factor. Accordingly,

before positioning the specimen on the holder, empty field images have been

acquired for several seconds (yielding a stack of 60 elements) in order to es-
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Fig. 4.7: The system used in our experiments. The inverted microscope Nikon
Eclipse TE2000-U has been equipped with a Nikon DXM1200 digital camera. The
system has been connected to an off-the-shelf PC.

timate the vignetting function, meant as the median surface of the stack of

images. Then, during the acquisition of the sample’s images, the holder has

been moved manually to mimic a real specimen inspection.

To assess the performance of our algorithm in different working conditions

we acquired two different sets of overlapping images. The first set consists

of images of living mesenchymal Stem Cells (SC) characterized by very low

contrast and low confluency (Fig. 4.8). The second set refers to a histologi-

cal sample of an altered Bone Tissue (BT), characterized by the presence of

background regions among connected structures (Fig. 4.9). The cells were

contained in commercial plastic six-well plates and the bone tissue was placed

on glass slides with mounting medium. The confluence of the MSC images

used in the experiments is about 30%. From both sets, we chose a subset of

images to build a looping path with an overlap between the first and the last

image aligned into the mosaics. The percentage of overlap between every pair

of subsequent selected images always ranged between 15-85%. In particular,

to build the mosaics we used subsets of 30 SC and 40 BT images (named SC30

and BT40, hereinafter) (Figs. 4.10 4.11).

The mosaics have been built off-line for testing the performance of different

setups of the algorithm’s parameters. In particular, we compared the mosaics

obtained:
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Fig. 4.8: Eight images (640 × 512, 8-bit gray levels) of living mesenchymal stem
cells used in the experiments. They are characterized by very low contrast.

Fig. 4.9: Eight images (640 × 512, 8-bit gray levels) of fixed bone tissue. The
background regions are constitute by empty glass free of tissue.

• with and without the tonal alignment (performing or not the flat-field

correction of the input images using the vignetting function estimated

from the empty field)

• using the F2F or the F2M geometric registration approach

• according to the translative or affine or projective transformation model
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1

30

Fig. 4.10: Mosaic building path of the selected 30 images regarding mesenchymal
SC. The direction of the alignment is pointed out with yellow arrows. There is
an overlap between the first (represented as the brightest one) and the last (the
darkest one) image aligned (looping path).

4.5 Metrics

Due to the lack of the mosaic ground truth [174], it is not so trivial to as-

sess which is the best parameter combination to build mosaics using a general

widefield microscope. Furthermore, the best parameters combination depends

on the context, meant as foreground confluency, percentage of overlapping

between two consecutive images, size of the final mosaic, number and path

of the aligned images. According to the translative motion of the widefield

microscope’s holder, the translative warping model should be a good choice,

but angular drift could make the affine or even the projective model a better

choice. To numerically compare the different mosaics obtained according to

different parameter combinations, we proposed two different types of evalua-

tion. The first evaluation takes in consideration the joint tonal and geometric

registration error, meant as a value combination of the effects of both tonal

and geometrical registration error [175].

Here, we recall that we adopted a stitching strategy where each image is over-
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1
40

Fig. 4.11: Mosaic building path of the selected 40 images of an histological sample
of BT. The direction of the alignment is pointed out with yellow arrows. There is
an overlap between the first (represented as the brightest one) and the last (the
darkest one) image aligned (looping path).

written by the overlapping subsequent ones. In particular, we computed the

Root Mean Squared Error (RMSE, Eq. 4.21, [103]) between the Back Projec-

tion (BP) of each original image (I ) registered into the mosaic, and its part

overlapped by the mosaic itself (Overlapped Part - OP).

RMSEn =

√∑
x

∑
y[OPn(x, y)− BPn(x, y)]2

P
(4.21)

n = 1,. . ., N − 1, with N the number of images registered into the mosaic. In

Eq. 4.21 we just consider the pixels (x,y) of the OP that are really overwritten.

Practically speaking, P is the number of pixels of OPn that were overwritten

by Ii with i > n. Logically, RMSEn evaluated between BPn and OPn pixels

where In contributes would be always 0. In particular, the RMSE has been

evaluated for N − 1 pairs BPn and OPn. Of course, no images overwrite

the mosaic’s parts where the last image IN is aligned. Computing the N − 1

RMSE s contributes to obtain a good statistic, because it is like comparing

N − 1 different mosaics, even if these are not fully uncorrelated due to the

dead reckoning effect. Fig. 4.12 provides a visual schematic representation
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2

Fig. 4.12: Representation of the displacement of images composing the mosaic
evaluated. The position of every image aligned is coloured using a different grey
intensity. The borders of the aligned images are reported in red. To compute the
RMSE 2, the image I2 (its border is highlighted in yellow) is back-projected into
the mosaic and only the areas coloured in light magenta, cyan and blue are used
to compute the error value.

of the image displacements to understand better how the RMSEn has been

evaluated for each image In registered into the mosaic.

The second type of evaluation aims to perform a quantitative comparison be-

tween the different mosaics, considering the geometrical registration error only.

To this purpose, in all the mosaics, the first image was considered two times,

at the beginning and at the end, also being the last image aligned through

a simple F2F registration. To obtain a measure of the geometric registration

error, we computed the Normalized Euclidean Norm (NEN ) of every global

warping registration matrix obtained (Global Matrix - GM ), after subtracting

the Identity Matrix (IM ) as normalization factor (Eq. 4.22).

NEN =

√√√√
E∑

e=1

(GM(e)− IM(e))2 (4.22)

E is the number of elements of the matrices GM and IM. For the transla-
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tive, affine and projective models E = 9. Theoretically, in presence of no

registration errors NEN= 0. Accordingly, the model yielding the final best

geometrical registration is that obtaining the lower NEN 2
N .

4.6 Experimental results

The experiments aim at assessing the quality of the proposed mosaicing ap-

proach according to the different algorithm’s configurations. In particular, we

carried out experiments to verify the improvements in the mosaics built ac-

cording to the tonal and the F2M registration. To this purpose, the RMSE

values have been computed using different mosaics built with the same sets

of images but changing the algorithm’s configuration: whether the flat-field

correction is performed or not and the geometric registration is F2F or the

F2M. Finally, to decree which warping model is the better choice, we com-

pared the mosaics built with the same sets of images, but alternatively using

the translative, the affine or the projective warping model. In particular, we

compared the different warping models, closing the path by registering as last

image the first image of the mosaics and we used NEN as a quantitative met-

ric. In the next subsections we first show the results obtained using the set of

images named SC30, then those pertaining the set BT40.

4.6.1 Flat-field correction

The 30 images of the set SC30 have been registered accordingly to all the

possible arrangements of tonal alignment, geometric registration and warping

model. Mean (µ) and standard deviation (std, σ) of the RMSE values com-

puted using the first 29 images are reported in Tab. 4.2. For each combination

of warping model and geometric registration, the mosaic obtained perform-

ing the flat-field correction achieved on average always lower (hence, better)

RMSE than the corresponding mosaic obtained without performing the flat-

field correction (rows 1 and 2 of Tab. 4.2 versus rows 3 and 4, respectively).

In other words, the µ values are typically lower when the flat-field correction

is performed. This because the more the images are flat, the more the inten-

sity difference in the images overlapping is lower in average. As far as the σ
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RMSE values (µ±σ)
Algorithm’s Model
configuration Translative Affine Projective

1: F2M with flat-field correction 2.67±0.98 2.05±0.20 2.02±0.16
2: F2F with flat-field correction 3.49±1.34 2.13±0.25 2.12±0.28
3: F2M without flat-field correction 4.43±0.85 4.31±1.23 4.30±1.19
4: F2F without flat-field correction 4.96±1.31 4.18±0.76 4.29±0.95

Tab. 4.2: RMSE values using SC30. Mean and standard deviation of the RMSE
values computed using the images of the set SC30.

is concerned, for affine and projective models one can see that flat-field cor-

recting lowers its value by a factor of three times, yielding a better stability

to better RMSE values. An exception can be seen for the translative model

where, in spite of a clear improvement of RMSE, σ slightly worsens, pointing

out a better stability in the worst results. As expected, this proves that the

flat-field correction always improves the mosaic. Figs. 4.13 and 4.14 report the

Fig. 4.13: Mosaic SC30 without flat-field correction. The mosaic has been ob-
tained by aligning the images of the set SC30 according to the translative model,
F2F registration, no flat-field correction.
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Fig. 4.14: Mosaic SC30 with flat-field correction. The mosaic has been obtained
by aligning the images of the set SC30 according to the translative warping model,
F2F registration, flat-field correction.

mosaics achieved with translative warping and F2F registration. The mosaic

in Fig. 4.14 is obtained by flat-field correcting the input images. Seams in

the stitching zones are strongly attenuated and the improvement is visually

evident.

4.6.2 F2M registration

Tab. 4.2 shows that for each combination of warping model and geometric reg-

istration, the mosaics obtained with the flat-field correction achieve on average

always a lower RMSE. Starting from the analysis of the flat-field corrected mo-

saics, we want to prove the effectiveness of the F2M registration versus the F2F.

In particular, we analyze the RMSE values reported in the rows 1 and 2 of

Tab. 4.2. For every combination of warping models the RMSE values achieved

by the mosaics built according to the F2M registration are always lower (for

both µ and σ). The improvement achieved by the F2M registration can be

appreciated also by a visual inspection of the mosaics. Figs. 4.15 and 4.16

report the mosaics obtained using the projective model according to configu-
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Fig. 4.15: Mosaic SC30 according to the F2F registration. The mosaic has been
obtained aligning the images of the set SC30 according to the projective warp-
ing model, flat-field correction and F2F registration. Inside the red box a detail
highlighted in Fig. 4.17(a).

ration in rows 1 and 2, respectively. The two details highlighted in Fig. 4.17

show the improvement caused by the better alignment brought by F2M regis-

tration. Moreover, it is not obvious to obtain the best result performing F2M

registration without the flat-field correction of the image. In fact, the non-

homogeneity of the image intensity can have a bad influence on the geometric

registration and F2M could also be worse than F2F. This happened, for ex-

ample, for the mosaics obtained without the flat-field correction and according

to the affine and projective models (column 2 and 3 of Tab. 4.2: value in row

3 versus row 4), where the average achieves better (lower µ) and more stable

(lower σ) RMSE values in the mosaics built without flat-field correcting.

4.6.3 Warping models

In the last section we proved the effectiveness of the flat-field correction and

the F2M registration (especially when coupled) in the creation of the mosaic.

Now, we focus our attention on the choice of the warping model. First, we an-
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Fig. 4.16: Mosaic SC30 according to the F2M registration. The mosaic has
been obtained aligning the images of the set SC30 according to the projective
warping model, flat-field correction and F2M registration. Inside the red box a
detail highlighted in Fig. 4.17(b).

a b c

Fig. 4.17: Comparison between two details of mosaic SC30. (a): this figure
highlights a detail of Fig. 4.15. The border of the cell is not continuous due to a
misalignment caused by F2F registration. (b): detail of Fig. 4.16. It refers to the
same regions of (a), but the border of the cell is now continuous, due to perfect
alignment typically obtained when the F2M registration is employed. (c): detail
from the first image aligned into the mosaics. It is shown as ground truth. No
misalignment is visible comparing (b) and (c).
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alyze the values related to the mosaics built according to the F2M registration

and the flat-field correction, proving to be the best choice to build mosaics.

The first row of Tab. 4.2 reports µ and σ of the 29 RMSE values related to

the mosaics built with translative, affine and projective warping model. The

translative model brought the worst results (also confirmed by a larger std)

on average. This proves that the mechanical motion of the holder and the

relative deviation of the camera’s optical axis from the normal to the holder

is not so neglectable as expected. On the contrary, values for the affine and

projective models are similar, meaning that the assumptions staying behind

the affine model hold for a general widefield microscope. Looking to the first

two rows of Tab. 4.2, it is worth noticing that on average with flat-field correc-

tion the translative model is always the worst one while the projective model

is the best one, although it is not true for mosaics built without the flat-field

correction. This is not completely unexpected, because without performing

the flat-field correction the geometric registration could be less accurate due

to the non-homogeneity of the image intensities and F2M registration could

also perform worst than F2F (row 3 of Tab. 4.2 versus the value reported in

row 4) and the projective model can not result as being the best choice. For

the mosaics obtained without the flat-field correction and according to the

F2F registration (row 4 of Tab. 4.2) the best and most stable result (consid-

ering both RMSE µ and σ) was achieved by the affine model. Nevertheless,

analyzing the results referring to the mosaics obtained according to the F2M

registration (value reported in row 3 of Tab. 4.2), we can see that the lowest µ

value is achieved when using the projective model and the lowest σ is obtained

with the translative model, this meaning a greater stability of the latter one.

In addition, the mean values achieved by the affine and projective models are

always lower than those related to the translative model. Accordingly, con-

trarily to what expected and often repeated in the literature, we have proved

that to create mosaics of images with a widefield microscope the affine or the

projective models are more suitable than the translative one.

To confirm this finding and to better compare the mosaics obtained according

to the different warping models, for every mosaic we performed an additional

registration step: we registered the first image also as the last one (always

using a simple additive F2F registration) and we computed NEN (Eq. 4.22)

on the global registration matrix obtained. The RMSE is considered a joint

tonal and geometric metric because it depends on both the tonal and geo-

metric registration errors. On the contrary, NEN is a quantitative measure
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regarding the geometric registration only. Theoretically, a perfect looping path

registration should generate an identity matrix. NEN measures the distance

between the obtained registration matrix and the identity. Tab. 4.3 reports

NEN values
Algorithm’s Model
configuration Translative Affine Projective

F2M with flat-field correction 2.18 1.68 1.07

Tab. 4.3: NEN value using SC30. NEN values computed using the images of the
set SC30.

the NEN values achieved by registering the images according to the different

tested warping models. As one can see, the highest NEN is achieved by the

translative model, while the projective model is definitely the best.

4.6.4 Results using the histological specimen

For a more generic analysis, we performed the same experiments also using the

images of the set BT40. Being these images characterized by a higher contrast

and more details as against images of living cells, feature detection and match-

ing tasks result easier to be performed. As done for the set SC30, the 40 images

of the set BT40 have been aligned according to the algorithm’s configuration

reported in Sect. 4.6.1. µ and σ of the 39 RMSE values are computed using

the first 39 images registered into the mosaics are reported in Tab. 4.4. As

expected, all the considerations made for the set SC30 still hold. The flat-field

correction always brings an improvement. Figs. 4.18 and 4.19 report the mo-

saics obtained according to F2F registration and translative warping model.

The mosaic in Fig. 4.19 is obtained performing the flat-field correction. F2M

performs better than the F2F for all the transformation models (Fig. 4.20). In

addition, it is worth remarking that the translative model always performed

the worst. It is interesting to note that for this set the RMSE values relative

to the mosaics built according to the affine and the projective model are of-

ten characterized by same µ and σ. This is probably due to a very accurate

feature detection and matching, due to a high contrasted texture. This min-

imizes errors of the parameters’ estimation of the two models, both being a
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RMSE values (µ±σ)
Algorithm’s Model
configuration Translative Affine Projective

a: F2M with flat-field correction 6.64±2.46 2.31±0.19 2.31±0.19
b: F2F with flat-field correction 7.52±3.70 2.91±1.77 2.96±1.92
c: F2M without flat-field correction 8.00±2.74 4.45±1.04 4.43±1.04
d: F2F without flat-field correction 8.62±3.74 4.58±1.22 4.58±1.22

Tab. 4.4: RMSE values using BT40. Mean and standard deviation of the RMSE
values computed using the images of the set BT40.

Fig. 4.18: Mosaic BT40 without flat-field correction. The mosaic has been ob-
tained aligning the images of the set BT40 according to the translative warping
model, F2F registration, no flat-field correction.

good approximation of the reality for the widefield microscopes.

To analyze more in detail the different warping models, we leaved the analysis

of a joint tonal and geometric error such as the RMSE in favor of the analysis

of NEN that measures the geometrical registration error only. As done for

the set SC30, for every mosaic we performed and additional registration step

registering the first image as the last one and computing the NEN on the
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Fig. 4.19: Mosaic BT40 with flat-field correction. The mosaic has been obtained
aligning the images of the set BT40 according to the translative warping model,
F2F registration, flat-field correction.

global registration matrix obtained. Tab. 4.5 reports the NEN values achieved

NEN values
Algorithm’s Model
configuration Translative Affine Projective

F2M with flat-field correction 0.48 0.31 0.31

Tab. 4.5: NEN value using BT40. NEN values computed using the images of the
set BT40.

by registering the images (flat-field corrected and using the F2M registration)

according to the different warping models. As for the set SC30, the highest

NEN (worst result) is again achieved by the translative model, making the

projective (or affine) model more suitable for creating mosaics with a widefield

microscope.
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4.6.5 Histological sample versus cell culture

In this section we carry out a comparative analysis of the results achieved using

the BT images versus the SC ones. Generically, histological sample images are

characterized by a higher contrast and more details than cell culture images.

Figs. 4.21 and 4.22 report the grey level histograms of the mosaic in Figs. 4.13

and 4.18, respectively, normalized by the total number of pixels of the mosaics.

The values at boundaries of the range of the main intensities (defined according

to µ ± 3σ) are reported in red. The histograms of the other mosaics built

according to the different algorithm’s configurations are comparable.

The main intensity range (6σ) of the BT images is four times as much as

the one of the SC images (BT: raw range ≈200 grey levels, 6σ interval≈120

grey levels; SC: raw range ≈120 grey levels, 6σ interval≈30 grey levels). The

RMSE is based on intensity differences. The larger range of the BT images

is the main cause of the higher RMSE values reported in Tab. 4.2 versus the

ones in Tab. 4.4 (see Tab. 4.6 for a quick comparison). In fact, being standard

Algorithm’s Model
configuration Translative Affine Projective

SC30
RMSE values (µ±σ)

1: F2M with flat-field correction 2.67±0.98 2.05±0.20 2.02±0.16
2: F2F with flat-field correction 3.49±1.34 2.13±0.25 2.12±0.28
3: F2M without flat-field correction 4.43±0.85 4.31±1.23 4.30±1.19
4: F2F without flat-field correction 4.96±1.31 4.18±0.76 4.29±0.95

NEN values
F2M with flat-field correction 2.18 1.68 1.07

BT40
RMSE values (µ±σ)

a: F2M with flat-field correction 6.64±2.46 2.31±0.19 2.31±0.19
b: F2F with flat-field correction 7.52±3.70 2.91±1.77 2.96±1.92
c: F2M without flat-field correction 8.00±2.74 4.45±1.04 4.43±1.04
d: F2F without flat-field correction 8.62±3.74 4.58±1.22 4.58±1.22

NEN values
F2M with flat-field correction 0.48 0.31 0.31

Tab. 4.6: Summary of the RMSE and NEN values of the sets SC30 and BT40.
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deviation also a contrast metric, comparing the σ values of the two histograms

is clear that the BT images are characterized by a higher contrast (BT: σ≈20;

SC: σ≈5). The feature detection and matching stage guides the registration.

Images with a high contrast are simpler to register thanks to a number of

more robust features that make the matching task more accurate. The lower

NEN values yielded by the mosaics using BT confirm the better registration

accuracy than the SC mosaics.

4.6.6 Computational performance

In the experiments the images have been aligned into the mosaics off-line. Nev-

ertheless, the method chosen as well as its computational performance makes

the algorithm suitable for on-line processing and, in the future, for real-time

applications, allowing building the mosaic directly during the specimen’s in-

spection. The tests have been performed using an off-the-shelf PC (Intel Core

i5, CPU 2.27GHz, 4GB RAM) processing 640 × 512 8-bit gray levels images

stored on the hard disk. In particular, the computational cost of the Phase

Correlation stage is approximatively 250 ms, and 250 ms more are due to the

matching and warping stages. The most intense computational burden is due

to mosaic updating and visualization, that increases as the size of the mosaic.

We measured the elapsed time needed to build a 40 image mosaic according to

the most CPU intensive registration configuration (full-resolution, F2M, pro-

jective model) and the average computational time was 10 sec per frame. No

part of the algorithm has been optimized and the strategies adopted for efficient

rendering and visualization of the mosaics are beyond the scope of the thesis.

Since at the moment the algorithm is implemented on a research prototype,

we are confident that a further optimization stage can be applied to improve

on the computational performances also towards real-time, compliantly with

the common user behavior.
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4.7 Conclusion and future work

4.7.1 Conclusion

In this work we developed a software tool to build mosaics of images acquired

with general non-motorized widefield microscopes. The focus of the work was

not necessarily the improvement of the state of the art. Rather, the pur-

pose was defining, setting up and implementing a methodology for testing and

comparing different vignetting correction approaches. In addition, we took the

opportunity to assess different registration approaches and warping models. In

fact, we implemented and deeply validated interesting solutions for the on-line

mosaic creation, releasing a software that can easily exploited by users to test

different algorithm’s configuration. In particular, we used images of histologi-

cal specimens and cell cultures, that cover the most relevant part of the routine

examinations performed in the biological laboratories, and we tested the al-

gorithm using two different geometric registration strategies (frame-to-frame

and frame-to-mosaic) and three different global warping models (translative,

affine and projective).

We performed several experiments to validate the proposed mosaicing method

under different parameters’ setups. The analysis of the proposed joint tonal

and geometrical registration errors results in three main conclusions. (i) First,

as expected the tonal correction always improves the final mosaics. Also,

mosaics of flat-field corrected images are visually more pleasant because the

seams in the stitching zones are strongly attenuated. Furthermore, the flat-

field correction helps the next stage of geometric registration, because the

feature detection and matching steps are more accurate when the images to

be registered are normalized so to be characterized by a homogeneous signal

distribution. (ii) Second, by using mosaics of images flat-field corrected we

compared two different geometric registration strategies: frame-to-mosaic and

frame-to-frame. We confirmed that the frame-to-mosaic registration performs

better and the most relevant improvements are realized when working with

vignetting corrected images. (iii) Third, analyzing the joint tonal and geo-

metrical error and the geometrical registration error alone we proved that the

assumption regarding the perpendicularity of the microscope’s holder to the

optical axis in general does not hold. In fact, we found the projective warp-

ing model being the most suitable choice to build microscopy image mosaics.
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Besides, we showed that the affine model, rather than the translative one, can

be also a good solution, but this mainly depends on three issues: working dis-

tance between the camera principal point and the observed specimen typology,

amplitude of angular inclination of the holder and relation between the incli-

nation of the holder and its motion direction. In particular, as far as the latter

issue concerned, the worst result is obtained if the images are acquired moving

the holder along the direction of its maximum inclination. To conclude, if no

prior information regarding the instrumentation system is available, we sug-

gest to employ the projective warping model coupled with the frame-to-mosaic

geometric registration of tonal corrected images as the best solution to build

mosaics of images acquired with widefield, even non-automated, microscopes.

Finally, the experiments performed and the obtained results proved that the

method could be effectively employed to obtain mosaics on-line, after a proper

optimization.

The realized software prototype and all the images used in the experiments

can be provided on demand [11].

The content of this chapter was partly published in [23, 22].

4.7.2 Future work

Several improvements can be considered as future work. First, a strategy

for flat-field correcting the single images has to be devised to effectively ob-

tain color mosaics. At this moment, the colour images are flat-field corrected

normalizing all the channels with the same vignetting function. A better so-

lution could be to analyze separately each channel for estimating its specific

vignetting function. Furthermore, to fix problems such as the generation of

false colours, a dynamic remapping look-up-table can be used to provide a sin-

gle RGB colour for each grey level of the converted original image. A second

improvement regards the extension of the method from light microscopy to

general widefield microscopy, fluorescent microscopy included. The proposed

method also works to build mosaics of fluorescent images, but the photobleach-

ing decay is not considered and in the final mosaic the objects imaged more

times present an intensity decay. Furthermore, the photobleaching can have

a bad influence on the feature detection and matching stage, producing non-

accurate alignments. In order to develop a mosaicing approach that could be
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robust also with fluorescent images, these must be normalized to have the same

intensity distribution. A solution based on vignetting correction only is not

enough, since also the photobleaching effects have to be compensated. This

could be accomplished using a function estimated arising from a set of intensity

grey level based decay curves. Finally, the approach proposed to compare the

different warping models can be utilized to develop an application providing a

feedback on the inclination status of the microscope’s holder. The translative

model could give some results as the projective model in case the holder is

perfectly perpendicular to the microscope’s optical axis. This knowledge and

the proposed mosaicing approach could be employed together to develop a

user-friendly application to calibrate the microscope.
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b
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Fig. 4.20: Comparison between two details of mosaic BT40. (a): this figure
highlights a detail from the mosaic obtained by aligning the images of the set ac-
cording to the projective warping model, flat-field correction and F2F registration.
The border of the tissue is not continuous due to a misalignment caused by F2F
registration. (b): detail from the mosaic obtained aligning the images using the
projective model, flat-field correction and F2M registration. It is the same region
depicted in (a), but the border of the tissue is now continuous, due to perfect
alignment obtained with the F2M registration. (c): detail from the second image
aligned into the mosaics. It is shown as ground truth. No misalignment is visible
comparing (b) and (c).
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Fig. 4.21: Frequency of intensity levels of the SC mosaic reported in Fig. 4.13.
In x the intensity values in grey levels (minimum and maximum value reported in
red). In y, the frequency values.
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Fig. 4.22: Frequency of intensity levels of the BT mosaic reported in Fig. 4.18.
In x the intensity values in grey levels (minimum and maximum value reported in
red). In y, the frequency values.
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Chapter 5

Depth of focus

Fig. 5.1: Depth of focus. Due to a narrow depth of focus the storm troopers are
in different focus levels.

- F. Piccinini, A. Tesei, W. Zoli, A. Bevilacqua, Extended depth of focus in optical microscopy: assessment

of existing methods and a new proposal. Microscopy Research and Technique, 15(11): 1582-1592, 2012

- F. Piccinini, A. Tesei, W. Zoli and A. Bevilacqua, Extending the Universal Quality Index to assess N-image

fusion in light microscopy. International Journal of Bioelectromagnetism, 14(4): 217-222, 2012
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5.1 Introduction

In widefield microscopy, the most relevant part of the biological routine exam-

inations is performed by focusing the sample at the beginning and changing

it during the inspection, in order to keep the parts of the sample at different

depths sharp. In particular, glass slides and multi-well plates represent most

of the common holders used to contain biological samples, typically tissues

and cell cultures. While specimens are “planar” and lie in one single focal

plane, multi-well plates have a z -dimension that cannot be neglected. Also,

the latter can contain non-adherent cells that are distributed in a volume of

culture medium, besides the well’s bottom being not perfectly flat. In this

case, the cells can lie in more focal planes and, depending on the magnification

factor, they can be also thicker than the depth of focus (or depth of field) of

the system, meaning that it is not possible to acquire a whole cell completely

in-focus in one single image [177]. This is a well known problem in biological

imaging with common light microscopes, where algorithms for extending the

depth of focus through digital processing have regularly been proposed since

the 1970s [178, 179, 180]. Furthermore, if the final composite images are not

obtained for visual purposes only, the fusion process can represent the early

stage of other applications [181], such as 3D reconstruction [182, 183, 184]

and virtual extension of the camera’s field of view (see Chap. 4). In all these

cases, the performance of the fusion stage has important consequences for the

accuracy of the entire process.

A microscope’s depth of focus is a function of the wavelength of the light

source and the numerical aperture of the lens [185]. To understand how these

parameters affect the depth of focus it is necessary to analyze its mathemat-

ical formulation. Physically, the depth of focus (d) for thin lenses is defined

according to Eq. 5.1:

d =
λ

ri · sin2 α
(5.1)

where λ is the (monochromatic) wavelength of the light source, α the semi-

aperture of the angle subtended at the lens by an object and ri the refractive

index of the medium interposed between optics and specimen. In particular,

ri can depend on many different materials and substances that are crossed

by the light rays. Typically, air or oil is between the tip of the lens and the

holder of the sample. In addition, if it is a glass slide, a plastic coverslip is
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placed over the samples. Instead, in case of multi-well plates, a lid seals the

wells (usually made of plastic) that often, during inspections, contain air and

culture medium. The denominator of Eq. 5.1 can be written also as a function

of the numerical aperture NA, for thin lenses defined according to Eq. 5.2:

NA = ri · sinα (5.2)

The depth of focus is inversely related to the magnification factor M of the

used lens [186] (Eq. 5.3):

NA = constant ·M (5.3)

indicating that it is impossible to acquire complete 2D in-focus images of ob-

jects characterized by a wide z -dimension, e.g. multicellular spheroids [187]

(Fig. 5.2), or even single cells using high-magnification lens.

Fig. 5.2: Lung cell spheroid (bronchosphere). It is not possible to acquire a single
completely in-focus image of objects characterized by a wide depth, such as the
multicellular spheroid, using standard light microscopes. Moving the microscope’s
holder in the z -direction it is possible to acquire optical slices at different focus
levels, thus achieving different in-focus regions of the object. The images show
a couple of z -aligned slices pertaining to a bronchosphere, acquired in brightfield
using a standard light microscope. In this case, the magnification factor was 10×
and the spheroid’s diameter is 422 pixels ≈ 270 µm. In the left image, small
particles near the major spheroid are in-focus, whereas they are blurry in the right
one, where the circular crown at the border of the spheroid is in-focus.

Numerous methods have been proposed in literature to extend the micro-

scopes’ depth of focus through digital processing. Usually, such methods start
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by building a stack of images acquired by simply shifting the microscope’s

holder along the optical axis (z -direction) to achieve optical sections (slices

with adjacent in-focus regions) of the specimen [188]. If the dimensions of

the object are much larger than the depth of focus, only a small portion of

each slice will be in-focus and different regions of the object will be in-focus

in different slices. Generally, the extended depth-of-focus methods aim at re-

covering the in-focus pixels from each single slice of the stack and at building

the final single composite image (mainly informative and suitable for visual

inspection or quantitative analyses performed on the whole cell) by combining

information through image fusion processing [189]. Commonly, they rely on

the assumption that the slices of the stack are perfectly z -aligned and that the

objects of interest are still. A tentative classification of the different methods

yields two different groups, each based on their working domain:

• Spatial domain. Historically, these approaches were the first to appear

in literature. Generally speaking, a pivot rule [178, 179, 190] based on

properties of single pixels [191, 192] or their neighborhoods [185, 188] is

followed to determine for each (x,y) position the in-focus slices between

the images acquired at different z positions of the holder.

• Frequency domain. The fundamental assumption is that among the dif-

ferent representations of the same scene, the most in-focus image contains

more details and thus more high frequency components. Therefore, to

reconstruct the final in-focus image, the local high-frequency components

are analyzed between the slices of the stack. These approaches were first

used at the beginning of the 1990s to deal with application domains not

including microscopy [193, 194]. Since then, numerous other approaches

based on wavelet [186] or curvelet transforms [177] have been proposed.

A review of literature image fusion methods of both classes was published

by [184].

The large number of extended depth-of-focus methods proposed in literature

and the lack of validated approaches to compare them makes the choice of

the best method for one’s need quite difficult [195]. Numerous quality metrics

have been developed to numerically compare images and evaluate performance

of fusion algorithms [196, 197, 198]. One widely used index is the Universal

Quality Index (UQI ) proposed by the authors in [105]. Although UQI is not
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explicitly based on any representation of the human visual system, the authors

show that it is the index representing the image quality most closely resembling

that of human visual perception. This metric requires a reference ground

truth to be evaluated, which may not always be available in experimental

settings [199]. To overcome this problem, a widely used extension of the UQI

metric was proposed by the authors in [106]. This metric, known as Piella’s

Metric (PM), does not require any reference and enables methods based on the

fusion of only two information sources to be compared. A further extension

of PM was proposed by [200]. This metric, hereafter referred to as UQIN,

is suitable to compare performances of methods where N images are used to

obtain the final composite image. Although both PM and UQIN metrics are

conceived to be extensions of UQI s, no exhaustive analyses have been carried

out to study the correlation between their numerical output and that of the

original UQI s.

In the present thesis a new extensive evaluation approach to numerically com-

pare the performance of extended depth-of-focus methods is proposed. The

experiments were carried out using stacks of both synthetic and real images.

In particular, the approach followed to analyze the final composite image built

using real ones provides an important strategy to help operators choosing the

most suitable method for their own purposes. A new extended depth-of-focus

method (hereafter called Depth Of Focus Extender - DOFE) for both gray-

levels and colour images is also proposed, based on a spatial pixel-wise analysis

of the source images used to obtain the composite image. Despite the simplicity

of the proposed implementation, the experimental results obtained using syn-

thetic stacks show that the method gives a better quality performance than

state-of-the-art methods. With regard to real stacks, visual and numerical

analyses indicate that results are at least comparable to those of the other

methods considered.

5.2 State of the art

Many methods have been proposed in literature during the last decades to

extend the microscopes’ depth of focus. Despite that, only few are freely

available and can be practically used in light microscopy. Aiming at assessing

the quality of the proposed method, we compared the results achieved with
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those of five other different extended depth-of-focus software tools. Four are

widely used methods and implemented in ImageJ [96], one of the most common

open source programs used for image processing. In particular, Stack Focuser

(SF) and Depth From Focus (DFF) are available directly from the ImageJ

Plug-In web section and the other two software tools from the website of

the Biomedical Imaging Group (BIG) of the Ecole Polytechnique Federale de

Lausanne (EPFL) [201]. They are calledComplex Wavelet-Based Method

(CWBM) and Model-Based Method (MBM). The last compared software

tool is a very promising method based on CURvelet transform and it is

implemented in MATLAB (hereafter referred to as CUR method).

SF [202] works in the spatial domain and it is based on three steps: first, each

image of the stack is processed using a spatial median filter (fixed size 3×3)

and the Sobel edge detector to find out the in-focus regions. Second, assuming

that the regions near an in-focus edge are also in-focus, a spatial maximum

filtering is performed on each image to propagate the local maximum values.

Finally, a maximum z -selection is made to build the indexed map containing,

for each (x,y) position, the index of the image from which the pixel is taken to

be copied into the composite one. The software also works on colour images by

analyzing each channel separately. It permits and requires one input parameter

only to be changed (i.e., the dimension of the squared kernel (morphological

structuring element) for the spatial maximum filter, by default set to 11).

DFF [203] uses a quality metric called “sharpness index” [185] to detect in

the spatial domain the in-focus regions on slices, before allowing maximum z -

selection to be made (similarly to SF). The sharpness index is based on a sliding

window analysis using a squared kernel. This index weights the effect of the

corner pixels to be the same as the orthogonal ones and sums the magnitudes

of the differences. Within the software, the kernel side of the sharpness index

is by default set to 3.

CWBM [186] exploits the complex wavelet transform to locally analyze and

define the in-focus regions of each single image of the stack subsequently used

to build the final composite image. A number of input parameters are required,

e.g. filter size and number of decomposition scales, although default values are

suggested.

MBM [182] deals with the extension of the depth of focus as a deconvolution
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optimization problem where the texture of the object and its topography are

jointly estimated in an iterative process. The Point Spread Function (PSF)

of the system is required as an input parameter, but the authors affirm that

their approach is fairly insensitive to this parameter. They also claim that the

approximation method proposed to estimate the PSF results in a composite

image without any significant loss in accuracy. The resulting composite image

is of a very high quality, paying a higher computational cost when compared

with wavelet-based approaches.

CUR implements an image fusion method that works in the frequency do-

main [177]. Starting from the assumption that an in-focus region contains

more high frequencies than blurry regions, the authors used the curvelet trans-

form [204] to separate the high frequency image content and to reconstruct

the final composite image stemming from the in-focus regions. The coeffi-

cients with the highest absolute value at each position, orientation and scale

are selected to ensure that the most salient image features throughout the

stack are preserved. This maximum absolute value selection rule is similar

to those typically used in wavelet-based image fusion methods, but thanks to

the high directional sensitivity of the curvelet transform the method achieves

high average performance. CUR is implemented in MATLAB using functions

obtainable upon request from the authors’ website [205]. Our CUR implemen-

tation is achievable upon request [11].

It must be stressed that almost all the parameters of the methods tested were

left at the default values suggested by authors. The best parameter setting was

selected through dedicated test analyses only for the number of decomposition

scales in CWBM, finally fixed at six scales.

5.3 Methods

As explained in Sect. 5.1, all the extended depth-of-focus methods suitable for

microscopy applications start by exploiting a stack of optical sections of the

specimen, acquired by moving the microscope’s holder along the optical axis

(the z -direction) and assuming that the imaged objects are still. Historically,

the first methods proposed in literature were those working in the spatial do-

main and, according to [182] and [186], their quality performance should be
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overcome by those of the frequency-based approaches. Nevertheless, their sim-

plicity and ease-of-use make them very attractive. Taking into consideration

the different solutions proposed in literature, we conceived and designed a new

easy-to-use method to obtain high quality fused images. Typically, all the

spatial approaches are based on two consecutive fundamental steps: detection

and fusion of the in-focus regions of a stack of optical sections of the specimen

to obtain a final composite in-focus image [179, 190].

We analyzed the different solutions proposed for both detection and fusion

step and, as the rule for the detection of the in-focus regions, we assumed that

for each region the best in-focus image, between more representations (optical

sections) of the same scene (still objects), is defined as the image containing

more details for that specific region [206]. Accordingly, to define the best in-

focus image for each region we opted the simplest way to enhance details: a

standard derivative process using the common x -y central derivative, typically

computed as root of the sum of the squared of the output masks, obtained

convolving the image in both the directions by the 3-pixel linear structuring

element with coefficients 0.5, 0, −0.5. To this purpose, a Sobel edge detection

process, which performs the image filtering and edge enhancement stages in one

step, is widely employed in literature [184]. However, for the sake of usability,

we decided to separate the image filtering stage from the edge enhancement.

In particular, for each single image of the stack firstly we computed the x -y

central derivative obtaining a new image containing in each pixel position the

derivative value (hereafter called as to derivative mask). Then, we computed

a simple mean filter of large size (size set by default to 15×15 pixels) on the

derivative mask obtained, to filter out the high local derivative values due to

noise. This permits to propagate the influence of small areas characterized by

high derivative, based on the assumption that regions of contiguous object are

in-focus in contiguous images.

Regarding the fusion step, a maximum selection rule is typically followed to

combine the detected in-focus regions in order to obtain the final in-focus im-

age [184]. The natural choice would be to perform for each (x,y) pixel position

the selection of the higher z -value of the stack composed by the derivative

masks obtained before. However, it was decided to aim for something more

effective. First, we built a index-map reporting for each (x,y) pixel position

the number of the derivative mask containing the higher z -value. Second, we

performed a majority filter on the map [186, 194]. The majority filter is similar
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to a mode-filter. In particular in such a filter, if more than half of the pixels

contained in the squared sliding window (with size set by default to 5×5 pix-

els) have the same value, that value is attributed to the pixel in the center of

the window. Essentially the majority filter, again motivated from the physical

assumption that objects in neighboring regions are in-focus in neighboring im-

ages, was performed to promote the continuity of the value of adjacent pixels.

Finally, the composite image was built by exploiting the index-map and by

copying for each (x,y) pixel position the intensity value in the original image

pointed out by the index-map.

Mathematically, the final in-focus Image (I ) is built according to Eq. 5.4:

I(x, y) = Sn(x, y); n = index-map(x, y) (5.4)

where Sn, n = 1, . . . , N is one of the N images aligned into the analyzed stack.

For a RGB colour space extension, a simple suggestion would be to prepare a

three-channel matrix for the final composite image and to copy the vector con-

taining the original RGB values from the image pointed out by the index-map

for each (x,y) pixel position. In this case, the index-map is created as explained

above, but with the original colour images pre-converted into gray-level. Mi-

croscopic images are usually characterized by predominant colours, especially

if staining dyes or fluorescence proteins are used, and the standard RGB to

gray-level conversion can lead to a substantial information loss. Where pre-

dominant colours exist, an optimal solution is to replace the standard weighting

coefficients, in the standard RGB to gray-level conversion formula, with those

obtained through the principal component analysis of the three channels of

the original image, using the Karhunen-Loéve transform [186, 177]. Using this

strategy, the predominant colours of the images are preserved and the final

gray-level representation retains higher information content, yielding an image

with more contrast and saliency.

DOFE is fully implemented in MATLAB and it is available on request [11].
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5.4 Quality metrics

Several metrics are used in literature to evaluate the output of image fusion

methods and an extensive overview is provided in [59] and [195]. Some of the

most widely employed metrics in image processing are Mean Squared Error

(MSE ), Signal to Noise Ratio (SNR) and Universal Quality Index (UQI ) (al-

ready introduced in Sect. 2.5.5). MSE and SNR are also used in data and

signal analysis and in image processing. We define MSE (G,I) and SNR(G,I) the

MSE and the SNR of the images G and I. The specific formulas are reported

for completeness in Eqs. 5.5 and 5.6, respectively.

MSE(G,I) =

∑
x

∑
y[G(x, y)− I(x, y)]2

P
(5.5)

SNR(G,I) = 10log10

∑
x

∑
y G(x, y)2

P ·MSE(G,I)

(5.6)

G is the reference ground truth, I is the image to be evaluated (here, the final

composite image), (x,y) is the pixel coordinate and P is the number of pixels

of G and I.

Conversely, UQI is a metric used for image evaluation only. It is designed

by modeling any image distortion as a combination of three factors: loss of

correlation, luminance distortion and contrast distortion, according to Eq. 5.7:

UQI(G,I) =

(
v(G,I)

σG · σI

)
·

(
2 · µG · µI

µ2
G + µ2

I

)
·

(
2 · σG · σI

σ2
G + σ2

I

)
(5.7)

µG, µI , σG, σI and v(G,I) are mean, standard deviation and covariance, re-

spectively, of the images G and I. The first component is the well known

correlation coefficient which measures the degree of linear correlation. The

second and the third components measure luminance distortion and contrast

distortion of G and I, respectively [105]. A common characteristic of these

three metrics is that they require a reference ground truth to evaluate image

quality. Unfortunately, this is often unavailable in fusion problems aimed at

reconstructing one real world, in-focus image [199]. To overcome such a prob-

lem, [106] proposed a UQI extension (PM) that is suitable for estimating the

quality of composite images using only two input slices of the stack, without

the need for a reference ground truth. PM was then extended by [200] to

another metric, UQIN, suitable for exploiting not just two slices but all the
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N frames of the stack. The basic version of the UQIN metric is reported in

Eq. 5.8:

UQIN(S1,...,SN ,I) =
1

|T |

∑

w∈T

N∑

n=1

γ(Sn|w)UQI(Sn,I|w) (5.8)

where Sn is a image out of the N slice used to build the final composite image

I (for PM, N=2), w is a small Region Of Interest (ROI) of the collection T in

which the image is subdivided and γSn
(w) is defined according to Eq. 5.9:

γ(Sn|w) =
Y(Sn|w)∑N

n=1 Y(Sn|w)

(5.9)

where Y(Sn|w) is the local saliency of the image Sn, typically defined as the

image variance in the ROI w. Three different versions have been proposed

for both PM and UQIN, by simply introducing different weighting functions

applied to the equation terms. Eq. 5.10 reports the formula for UQIN2, the

second version of UQIN :

UQIN2(S1,...,SN ,I) =
1

|T |

∑

w∈T

N∑

n=1

Cwγ(Sn|w)UQI(Sn,I|w) (5.10)

The weighting function is defined according to Eq. 5.11:

Cw =
Y(S1,...,SN |w)∑N

n=1 Y(S1,...,SN |w)

(5.11)

where Y(s1,...,sN |w) is the overall saliency inside window w, considering all the

images s1, . . . , sN , and it is defined as the maximum of the of the Y(sn|w) with

n = 1, . . . , N . Finally, UQIN3 (the last version of the UQIN ) is reported in

Eq. 5.12:

UQIN3(S1,...,SN ,I) = UQIN2(S1,...,SN ,I)
(1−β) · UQIN2(Se

1
,...,Se

N
,Ie)

β (5.12)

where Se
n and Ie are the edge version of the corresponding images and β is the

edge contribution parameter.

It is worth noting that typically the methods’ ranks computed according to

UQIN, UQIN2 and UQIN3 result different [106]. To overcome the lack of a

standard metric to rank different methods, we propose a new metric simply by

exploiting the basic definition of UQI. On the basis of [105], the standard UQI

aims at mimicking the human visual perception to assess similarity between
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images. Ideally, an in-focus image obtained from an extended depth-of-focus

method should be corrected for the blurring effect within the defocused regions

in each slice of the processed stack, where only a portion of each slice is in-focus.

Accordingly, the more effective the extended depth-of-focus method, the higher

the contribution in terms of blur compensation retained by the final composite

image with respect to each slice. By quantifying these contributions in terms

of image dissimilarities, a better-quality final composite image should be more

dissimilar, on average, from the processed slices, thus yielding a higher image

dissimilarity score. Following this assumption, we defined the new metric

Average UQI (hereafter, AUQI ). AUQI is defined as the average of the N

values obtained computing theUQI value between the obtained final composite

in-focus image f and the N slices sn of the original stack [207, 208]:

AUQI(s1, . . . , sN , f) =
1

N

N∑

n=1

UQI(sn, f) (5.13)

AUQI and the standard UQI are proposed as global indexes, without an im-

plemented weighting function. Instead, all the versions of UQIN are defined as

weighted local indices and this could play an important role in image rankings.

Our MATLAB implementation of MSE, SNR, standard UQI, the different

versions of UQIN and AUQI are available on request [11].

5.5 Materials

We used several synthetic and real image stacks, representing slices of fixed

objects acquired by moving the microscope holder at different z -positions,

to perform an extensive analysis of the quality performance achievable with

DOFE. In particular, the synthetic stacks permitted us to exploit all the com-

mon quality metrics such as UQI, MSE and SNR, which require a reference

ground truth, not available when using real stacks [196]. The synthetic stacks

(of eight images each) were constructed starting from five images, with very

different contents, taken from the Brodatz texture database [209]. In particu-

lar, we used images D13, D22, D23, D61, D112 (Fig. 5.3). D13 and D61 can

be considered similar to bone tissue, D22 to a lung biopsy, and D61 and D112

to cell cultures.
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D13 D22 D23 D61 D112

Fig. 5.3: Brodatz textures. Gray images from the Brodatz textures database [209]
used to build the synthetic stacks of slices utilized in the experiments to compare
the performance of the different extended depth-of-focus methods tested. From
left to right: D13, D22, D23, D61, D112. D13 and D61 can be considered similar
to bone tissues, D22 could recall a lung biopsy, and D61 and D112 cell cultures.

To build the synthetic stacks of partially-unfocused slices we exploited the

specific function available through the MBM interface and previously used by

the authors in [182, 186]. This function simulates the acquisition of images

at different focal planes, by projecting the original 2D Brodatz texture T(x,y)

used as a template onto a 3D Surface S(x,y). In practice, the objects in the

scene are considered as not being in motion and the image acquisition stage is

simulated by moving the microscope’s holder in the z -dimension (constant x

and y) only. The images are acquired at constant depth intervals. The single

synthetic images are built according to the following steps.

1. The 3D shape of the projection surface is by default defined as a “dome”,

with S(x,y) defined by the biquadratic function (Eq. 5.14):

S(x,y) =

[
1−

(
2x

W
− 1

)2
][

1−

(
2y

H
− 1

)2
]

(5.14)

W and H are width and height of T(x,y) and x -y the pixels’ coordinate.

For each x -y, S(x,y) represents the z -position of the surface of the dome

according to the three axis of the Cartesian reference system (topography,

bottom of Fig. 5.4a).

2. The intensity values of T(x,y) are orthographically projected onto S(x,y)

(top of Fig. 5.4a). In practice, T(x,y) represents the intensity value in

each 3D coordinate on the dome surface.
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3. In order to simulate the optical system the volume of the dome is then

convolved with a spatially-variant Gaussian Point Spread Function (PSF)

with size increasing as the defocus distance increases (Eq. 5.15):

PSF(x,y,z) =
1

2πτ 2
e−

x2+y2

2τ2 (5.15)

with τ by default defined as reported in Eq. 5.16:

τ = 0.2 + 1.3 |z| (5.16)

4. Finally, the single synthetic images are obtained by sampling the dome

volume at constant depth intervals with using linear interpolation along

the z -dimension (Fig. 5.4b).

� � �
Fig. 5.4: Slices from synthetic stacks. The synthetic stack of slices was built using
a function implemented in ImageJ and available through the MBM interface. In (a
top) the original image is shown (Brodatz texture D23), projected on a 3D surface
(a bottom). In (b) the eight z -aligned synthetic slices obtained by sampling the
3D volume of Fig. 5.4a.

For real stacks, the objects are scanned by moving the microscope holder along

the z -direction and images are (manually) acquired at prefixed constant dis-

tances. To build a wide real testbed we collected several stacks with very dif-

ferent content. In particular, we used the following four stacks (used by [182]

and [186] and kindly furnished upon request): eye of the fly (32 14-bit im-

ages of 1280×1024 pixels), Peyer’s plaques from the intestine of the mouse (20

colour images of 1996×1450 pixels), pancreatic buds stained with peroxidase

(17 colour slices of 400×400 pixels, extracted from a video) and a laser welding

(13 colour images of 1024×768 pixels). In addition, we acquired a stack of slices

in brightfield referring to multicellular spheroids of human lung cells [187]. The
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microscope was a Zeiss Axiovert 200 coupled with a Zeiss Achroplan 10× 0.25

NA lens in air immersion and a Zeiss AxioCam MRc CCD camera. In order to

obtain a ROI of 611×531 pixels containing the larger spheroid, the images were

cropped. The z -stack consisted of 26 colour images with a z -step of 5µm. It

is worth noting that all the real stacks represented very different objects and

also other parameters such as microscope, depth of focus and z -steps differ

among stacks. Hereafter, these stacks will be referred to as FLY, INTES-

TINE, PANCREAS, LASER and LUNG (Fig. 5.5). Tab. 5.1 summarizes the

FLY INTESTINE PANCREAS LASER LUNG

Fig. 5.5: Slices from real stacks. Images from the real stacks of slices used in the
experiments. In each slice only few regions are in-focus. The reported images are
taken from the middle of the stacks and are converted into gray-levels. From left
to right: eye of the fly, intestine of the mouse, pancreatic bud, laser welding and
lung cell spheroid.

characteristics of the real stacks of images used in the experiments.

set number of images image size pre-processing origin
FLY 32 1280×1024 none BIG EPFL [182]
INTESTINE 20 1996×1450 none BIG EPFL [182, 186]
PANCREAS 17 400×400 extracted from a video BIG EPFL [186]
LASER 13 1024×768 none BIG EPFL
LUNG 26 611×531 cropped from original original images

larger images personally acquired

Tab. 5.1: Characteristics of the real stacks of images used in the experiments.

5.6 Experimental results

To assess the effectiveness of the proposed approach we used both synthetic

and real stacks of images. The synthetic stacks are provided with ground truth,
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that is the original image used to obtain the defocused ones. Accordingly, to

evaluate as the output of the different methods differ from the ground truth it

is possible to use standard metrics like UQI, SNR and MSE. Nevertheless, to

evaluate the output of the different methods using also real sets of images we

need a metric able to rank the methods without requiring a reference ground

truth. To this purpose, first we validated a metric able to rank the output

of the methods as the standard UQI does, here without requiring a reference

ground truth, then we evaluated the output of the different methods using the

new validated metric and the different sets of real images available.

5.6.1 Experiments with the synthetic stacks

In order to compare the performance of DOFE with that of state-of-the-art

methods (reported in Sect. 5.2), the metrics UQI, SNR and MSE were eval-

uated (Tab. 5.2) using the different final composite images and the related

METRIC, SET DOFE SF DFF CWBM MBM CUR
UQI, D13 0.9945 0.9943 0.9676 0.9938 0.9915 0.9925
UQI, D22 0.9895 0.9892 0.9548 0.9889 0.9837 0.9843
UQI, D23 0.9974 0.9972 0.9691 0.9970 0.9961 0.9964
UQI, D61 0.9965 0.9963 0.9663 0.9958 0.9949 0.9953
UQI, D112 0.9922 0.9919 0.9433 0.9911 0.9885 0.9891
SNR, D13 26.52 26.32 18.95 26.03 24.68 25.23
SNR, D22 24.49 24.39 18.10 24.27 22.71 22.89
SNR, D23 29.19 28.89 18.71 28.63 27.46 27.83
SNR, D61 29.75 29.47 19.90 28.98 28.11 28.44
SNR, D112 29.09 28.94 20.35 28.58 27.50 27.75
MSE, D13 51 53 291 57 78 69
MSE, D22 95 98 415 100 144 138
MSE, D23 22 23 244 25 33 30
MSE, D61 16 17 153 19 23 21
MSE, D112 38 39 282 42 54 51
RANKING 1st 2nd 6th 3rd 5th 4th

Tab. 5.2: Methods ranking using synthetic stacks. UQI, SNR and MSE values
achieved by comparing the ground truths with the final composite images obtained
with the six methods tested are reported. In particular, five different synthetic
stacks were built using Brodatz textures D13, D22, D23, D61 and D112. The same
ranking was obtained for each stack and metric, as shown in the bottom row of the
table.

ground truths (i.e., the Brodatz textures used to build the stacks). The best
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values for all the images, that is the highest UQI and SNR and the lowestMSE,

were always achieved by DOFE. Looking at Tab. 5.2, last row, it is worth not-

ing that for each stack the ranking (from the best to the worst method) was

the same for all the metrics. Although achieving the same ranking for all three

metrics was not expected, it often occurs [108, 22, 107] and in such cases the

obtained ranking of methods can be considered both meaningful and reliable

due to the number of consensus achieved. Analyzing the data in Tab. 5.2, it

can be seen that the best numerical values, achieved by DOFE, were always

followed by the ones achieved by SF, that is the method most similar to DOFE.

In addition, all the methods generally yielded comparable results, except DFF

whose numerical results were by far the worst, as the visual analysis confirms

(Fig. 5.6). As matter of fact, what can be easily detected in extended depth-

a b c d e

GROUND TRUTH DFF EDOF

Fig. 5.6: Visual analysis of synthetic images. (a) and (b): unfocused slices of the
stack artificially built using the Brodatz texture image D23. (c): zoomed detail of
the ground truth image D23 related to the ROI pointed out by the white square
in (a) and (b). (d) and (e): same details as (c), but from images obtained using
DFF and DOFE, respectively.

of-focus applications are visually poor results, such as a final composite image

containing manifest noise, Airy discs or artifacts produced, for example, by

diffraction and aliasing [185] (Fig. 5.6).

5.6.2 Analysis of metrics for real stacks

There is no reference metric to compare the results of the different extended

depth-of-focus methods in real cases, where logically the stacks are not pro-

vided of ground truth. In particular, the different versions of UQIN are com-

monly used in extended depth-of-focus applications, but their performance are

not completely clear. Accordingly, it was decided to use the synthetic stacks
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(provided with ground truth) to evaluate the three different versions proposed

for UQIN in order to analyze the performance of the metrics and, in partic-

ular, to compare thoroughly UQIN and UQI. Tab. 5.3 reports the ranking of

METRIC, SET DOFE SF DFF CWBM MBM CUR
UQIN, D13 4th 5th 6th 3rd 1st 2nd

UQIN, D22 4th 3rd 6th 5th 1st 2nd

UQIN, D23 4th 5th 6th 3rd 1st 2nd

UQIN, D61 3rd 4th 6th 5th 1st 2nd

UQIN, D112 3rd 4th 6th 5th 1st 2nd

UQIN2, D13 5th 3rd 6th 4th 1st 2nd

UQIN2, D22 4th 3rd 6th 5th 1st 2nd

UQIN2, D23 5th 4th 6th 3rd 1st 2nd

UQIN2, D61 4th 3rd 6th 5th 1st 2nd

UQIN2, D112 4th 3rd 6th 5th 1st 2nd

UQIN3, D13 4th 3rd 6th 5th 1st 2nd

UQIN3, D22 4th 3rd 6th 5th 1st 2nd

UQIN3, D23 4th 3rd 6th 5th 1st 2nd

UQIN3, D61 3rd 4th 6th 5th 1st 2nd

UQIN3, D112 3rd 4th 6th 5th 1st 2nd

Tab. 5.3: Rankings achieved using the metrics UQIN, UQIN2 and UQIN3. UQIN,
UQIN2 and UQIN3 ranking values were achieved by comparing the images of the
five synthetic stacks built using Brodatz textures with the different final composite
images created by the six different methods tested. As the parameters required to
compute the third version of UQIN, UQIN3, we used a sliding windows of 9 × 9
pixels and β=1. It is worthy of note that the ranking achieved was always different
from that previously obtained using the standard UQI (reported in the bottom
row of Tab. 5.2).

methods according to the UQIN values obtained using a sliding windows of

9× 9 pixels and β=1 for the third formula of UQIN (see Eq. 5.12). The same

ranking achieved with the standard UQI (reported in the last row of Tab. 5.2)

was never obtained, showing that UQIN and UQI evaluate images differently,

in contrast to what was expected as UQIN is considered as an UQI extension.

This was further confirmed by the last experiment carried out where we com-

pared the performance of UQIN and UQI by replacing f (the output in-focus

images) with the respective ground truth images in Eqs. 5.8 5.10 5.12. Sur-

prisingly, the results obtained were not the highest as expected. It is worthy

of note that the worst results were always obtained with DFF.

To overcome the lack of a suitable approach to rank methods when working

with real stacks, we propose a new approach based on the metric previously

defined as AUQI. As described in Sect. 5.6.1, in extended depth-of-focus ap-
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plications it is fairly easy to visually judge whether a method yields a bad

result. Starting from this assumption, we developed an effective approach to

estimate the ranking of extended depth-of-focus methods, with the same eval-

uation performance as the standard UQI and without the need of a reference

ground truth. First, on the basis of the visual quality of the final images f , we

discarded the methods clearly yielding poor results. It is worth noting that to

visually discard in advance the methods obtaining poor results is fundamental

to avoid errors in the evaluation of the methods’ rank. Second, AUQI was

computed between f (one for each method no previously discarded) and the

N slices sn of the original stack. Finally, the methods’ rank was obtained by

attributing the lowest AUQI value to the best method, the second worst AUQI

to the second best method, and so on (among those not previously discarded

by visual analysis).

Tab. 5.4 shows the AUQI values and the final ranking obtained using the syn-

METRIC, SET DOFE SF DFF CWBM MBM CUR
AUQI, D13 0.8822 0.8823 // 0.8831 0.8917 0.8897
AUQI, D22 0.6538 0.6541 // 0.6543 0.6688 0.6674
AUQI, D23 0.9220 0.9223 // 0.9230 0.9274 0.9270
AUQI, D61 0.9306 0.9308 // 0.9315 0.9360 0.9354
AUQI, D112 0.8250 0.8253 // 0.8258 0.8363 0.8353
RANKING 1st 2nd // 3rd 5th 4th

Tab. 5.4: AUQI from the synthetic stacks. AUQI values achieved by comparing
the images of the five synthetic stacks built using Brodatz textures with the in-focus
images obtained by the six methods tested. Values relating to the DFF method
are not reported as they were visually poor and discarded beforehand. The bottom
row reports the method ranking for all the stacks. As one can see, it corresponds
to that achieved with the standard UQI (last row of Tab. 5.2).

thetic stacks, only discarding the DFF method which always yielded a visually

poor result. In particular, the ranking obtained was the same for all the stacks

and equivalent to the one achieved using the standard UQI. Furthermore, us-

ing the reference ground truths as in-focus images and calculating the AUQI,

the obtained values were always lower than the ones reported in Tab. 5.4, as

expected, this representing a further proof of the reliability of AUQI. It is

worth noting that a crucial step of this ranking approach is the elimination of

methods yielding for instance visually poor results. Without this step, some

errors in ranking estimation may occur: a final composite image containing

noise or artifacts could be very different from the original blurred slices of
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the stacks. Consequently, computing the AUQI between such an image and

the stack of the slices could lead to a very low value. Analyzing the data in

Tab. 5.4, once again can be observed that the best values (i.e., lowest AUQI )

for all the stacks, achieved by DOFE, were very similar to those of SF (second

ranking for all the stacks).

5.6.3 Experiments with real stacks

As stated previously, fully in-focus ground truth images are not available for

the stacks of real slices. Consequently, the quality of the output image of

extended depth-of-focus methods cannot be measured simply by exploiting

the standard UQI (or SNR or MSE ). The evaluation approach conceived and

discussed in Sect. 5.6.2 (based on the AUQI evaluation and preceded by a

fundamental visual analysis) showed that for synthetic stacks it is possible to

achieve the same final ranking obtained with UQI. This prompted us to use

our approach to evaluate extended depth-of-focus methods in real world cases.

It is worthy of note that, unlike the synthetic stacks, stacks of real slices (ac-

quired with different hardware - microscopes and cameras - and a different

z -step between the slices) may also yield different ranking of methods for each

stack analyzed. Furthermore, the synthetic stacks are simply an approxima-

tion of the real world where, for example, the PSF is space-variant in the three

dimensions and depends on several parameters such as the spectrum of the

light source. Or else, the distance between coverslip and the surface of the ob-

ject [210] and out-of-focus areas that are not correctly modeled by a Gaussian

filter. In the light of such considerations, using the real stacks could result in

some methods ranking different from that estimated using the synthetic stacks.

Fig. 5.7 shows the final composite images obtained using the six methods tested

on the five stacks of real slices. Again, through visual analysis it can be seen

that for each stack DFF always yielded poor results. Tab. 5.5 reports the

AUQI values and Tab. 5.6 shows the ranking obtained by simply discarding

the images pertaining to DFF. As expected, method ranking was dependent

on image set, this yielding rankings different from those achieved with the

synthetic stacks. The best results were always achieved by SF and once by

DOFE.
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Fig. 5.7: Final in-focus images from real stacks. Final in-focus images obtained
from the stacks of real slices using all six software tested. Left to right columns
show images relating to: eye of the fly, intestine of the mouse, pancreatic bud, laser
welding and lung cell spheroids. The final composite images obtained using DOFE
are reported from the first to the last rows, for each stack: SF, DFF, CWBM,
MBM and CUR. Simple visual analysis is sufficient to see that the worst results
were always obtained using DFF (images in the third row).

5.7 Conclusion and future work

5.7.1 Conclusion

Extending the depth of focus is a well-known need in microscopy, where it

is impossible to acquire a single completely in-focus image of objects char-

145



Chapter 5. Depth of focus

5.7. Conclusion and future work

METRIC, SET DOFE SF DFF CWBM MBM CUR
AUQI, FLY 0.9021 0.8996 // 0.9062 0.9086 0.9096

AUQI, INTESTINE 0.8286 0.8278 // 0.8542 0.8466 0.8393
AUQI, PANCREAS 0.9410 0.9413 // 0.9557 0.9561 0.9495

AUQI, LASER 0.9278 0.9271 // 0.9306 0.9422 0.9413
AUQI, LUNG 0.8557 0.8524 // 0.8947 0.8692 0.8904

Tab. 5.5: AUQI from the real stacks. AUQI values achieved by comparing the
images of the five real stacks with the composite images obtained with the six
methods tested. The values relating to the DFF method are not reported as they
were visually poor and discarded beforehand.

METRIC, SET DOFE SF DFF CWBM MBM CUR
AUQI, FLY 2nd 1st // 3rd 4th 5th

AUQI, INTESTINE 2nd 1st // 5th 4th 3rd

AUQI, PANCREAS 1st 2nd // 4th 5th 3rd

AUQI, LASER 2nd 1st // 3rd 5th 4th

AUQI, LUNG 2nd 1st // 5th 3rd 4th

Tab. 5.6: Method rankings using real stacks. This table reports the method
rankings based on the AUQI values of Tab. 5.5. The values relating to the DFF
were discarded beforehand as they were visually poor. It is worthy of note that the
first two positions were always achieved by DOFE and by SF.

acterized by a wide depth, such as multi-cell spheroids. Although numerous

methods have been proposed in literature to fulfill this need, the frequent lack

of a reference ground truth and of a validated approach makes it difficult to

define the method that can yield the best results in real applications. However,

the wavelet-based methods are widely used and often considered better than

those working in the spatial domain. Despite this, simplicity and ease-of-use

of the spatial-based methods make them very attractive. Starting from this

consideration, we designed a new spatial-based method where in-focus regions

of the images are detected by performing a simple derivative step and the final

composite image is built using a maximum rule and a number of filtering stages.

We then selected five widely used state-of-the-art software and compared their

performance with that achievable by DOFE. The experiments performed us-

ing synthetic stacks of slices, with ground truth, showed that DOFE performs

better than the state-of-the-art ones. In order to extend the assessment to

real cases, we first focused our attention on some metrics proposed in litera-

ture as UQI extensions, finding out that they are not capable of ranking the
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method in the same way as the standard UQI does. Then, we validated a new

approach to evaluate extended depth-of-focus methods which do not require

a ground truth and exploit all the N images of the stack. The experiments

showed that the rankings obtained on the basis of our new approach were the

same achieved by the standard UQI. This confirms that our approach can be

used to evaluate extended depth-of-focus methods in real world cases. We

thus decided to use this new approach to see how DOFE works in real cases.

The results achieved using real stacks proved that, despite its simplicity, the

performance achieved by DOFE is at the very least comparable with those

of the state-of-the-art methods. Also, it shows that spatial-based approaches

may perform better than, or at least comparably to, wavelet-based methods,

thus partially disproving what is reported in a significant part of literature.

The method implementation and all the metrics used in the tests are available

on request [11].

The content of this chapter was partly published in [211, 212].

5.7.2 Future work

Several open issues still remain. First, as far as colour processing is concerned,

there are no validated approaches in literature to assess which is the best ex-

tended depth-of-focus method. One working hypothesis could be to transform

final colour images into grey levels, but this would lead to an information loss,

whose consequences should be assessed. A second strategy could be converting

the images in the HSI (Hue Saturation Intensity) colour space and using the

I channel instead of the grey levels. Again, this represents an information loss,

but the I channel could be a more reliable representative of the original colour

images. Finally, the extended depth-of-focus algorithm implemented in this

thesis should be improved in terms of speed performance and memory saving.
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Conclusion

In this thesis, we focused our attention on the microscope, the main instrument

of measurement of the infinite small. In particular, we have considered com-

mon issues regarding the widefield microscope, the most common one in the

biological laboratories. This instrument is the basic device for the daily work

of thousands of biologists over the world. Nowadays, the different potential

analyses carried out via microscope are truly countless. Furthermore, many

current limitations could be solved simply by a better interaction between bi-

ologists and engineers. As a biomedical engineer working along side biologists

I have had the opportunity to see the daily problems that my colleagues have

to face using the microscope. This has been the reason that stirred up my

work aiming at developing effective solutions to meet three main requirements

regarding the usage of widefield microscopes:

• obtaining images that can be compared even if acquired at different times

• increasing the field of view of the camera to acquire high-resolution im-

ages of the whole sample

• visualizing a single image everywhere in-focus, even of deep objects

The main goal of the thesis was to deeply analyze the very early cause of

the appearance changing of images, that is the vignetting problem, in both

light and fluorescent microscopy. The vignetting has been known in literature

for decades, but it was never strongly deepened in microscopy. “Flattening”
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the image illumination is an early process and fixing the vignetting problem

would be beneficial to most of the everyday analyses carried out through using

imaging techniques. In this thesis, sample-oriented solutions for both light and

fluorescent microscopy are presented to estimate the intensity curvature to be

corrected directly from the images, even considering non-linear effects, never

faced before. In particular, in the method proposed to correct brightfield and

phase-contrast images, agreeing that most of the vignetting effects have a linear

behavior, the images are simply flatted according to the curvature estimated.

A similar approach was proposed also for fluorescent images where, however,

non-linear effects could be appraisable making the image curvature depending

on intensity grey levels. Accordingly, we proposed a second solution where

an ensemble of vignetting curves for different grey levels are estimated. In

particular, this represents the first method to correct the images in fluorescence

microscopy even considering the non-linear behavior of the vignetting. The

obtained results proved that the proposed methods perform better than the

approaches typically used in literature. Also, it is worth noticing that we

proved that in fluorescence using the gold standard (i.e., calibration slides)

could even worsen the signal distribution, without user’s awareness. This is a

very important finding, considering the number of works in literature proposing

solutions employing the gold standard.

The second common issue we tackled is due to the limited field of view of

the microscope’s camera, that prevents from acquiring a single high-detailed

image representative of the whole sample. To overcome this limitation, we de-

veloped a mosaicing technique for stitching images and building on-line large

mosaics, having at least the same pixel resolution of the source images. At the

beginning, the mosaicing software was conceived in this thesis just as a tool for

testing and comparing different vignetting corrections, registration approaches

and warping models. That is, the focus was not the improvement of the state

of the art. Rather, we proposed a practical working solution to obtain mosaics

with widefield microscopes. Afterwards, we have implemented different trans-

formation models proving that, contrarily to what is often claimed, the most

suitable model to create mosaics of images with a widefield microscope is the

projective model and not the translative one.

Once studied how to normalize the images and to extend the planar camera’s

field of view, as the third topic we dealt with the extension of the field of

view on the z -dimension. Although numerous methods have been proposed
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in literature to extend the depth of focus of the microscopes, the lack of a

validated approach makes it difficult to define the method that can yield the

best result for a given application. Yet more in the real world, where reference

images to be compared do not exist. After studying the different existing

approaches, we developed a method merging the best concepts. Our main

contributions in this field can be summarized as follows. First, we validated

a metric to compare the outcome of the different methods without requiring

a reference image. Second, we developed an effective solution to extend the

camera’s depth of focus, obtaining single images completely in-focus, even of

very deep objects.

Finally, as far as the fluorescence microscopy is concerned, we also dealt with

photo-bleaching degradation, arising from multiple acquisition of same field of

view, proposing a solution for its characterization and an effective approach to

compensate its effects.

For the sake of clarity, running the risk of redundancy, we summarize the main

achievements of this thesis as follows.

Scientific:

• the first study regarding the non-linear vignetting correction in microscopy

• to have proved that the projective model, rather than the translative

one, is the most suitable to create mosaics of images also with manual

widefield microscopes

• a simple yet effective approach to fill in the gaps in the lack of a metric to

compare the results of different extended depth-of-focus methods without

requiring a reference image

Technical:

• methods and tools to achieve vignetting free images and to compare

different vignetting correction approaches

• a method, and its implementation, to achieve a mosaic of microscopic

images acquired by moving the holder manually
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• implementation of a new effective method to achieve one in-focus image

of deep objects, starting from a sequence of images manually acquired

at different focus planes

Technological:

• fixed an early processing problem, such as vignetting, this effecting the

overall microscope calibration procedures

• extended via software the field-of-view of the microscope’s camera

• extended via software the microscope depth of focus to allow users ac-

quiring sharp images also of deep objects

In particular, the extended depth-of-focus tool and the algorithm regarding

the vignetting correction for every light microscope are freely available directly

from the websites of the scientific journals where we part submitted our work.

To conclude, it is often stated that the best researches are those closing existing

problems, opening new research fields at the same time. Although we do not

pretend to have definitively closed the problem of vignetting in microscopy,

this thesis starts the studies regarding the non-linearities of vignetting in both

light and fluorescence microscopy. Nevertheless, results, software tools and

publications born thanks to the work summarized in this thesis have enriched

the state of the art. Microscopists and biologists have now at their disposal

methods and techniques helping them to better understand the outcome of

their researches and, desirably, to extend them with new inquiry, by performing

novel experiments thanks to a better exploitation of their microscope.
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Appendix

In the following sections the details of widespread image processing algorithms

are reported. Due to the general applicability of these algorithms in many

different contexts, it was preferred to create a specific appendix instead of

providing the chosen implementation details inside the different Chapters of

the thesis.

Phase correlation

The Phase Correlation algorithm [213] in its original formulation is based on

the Fourier Shift Theorem. It states that given a pair of images I(x, y) and

J(x, y) of the same size, related by a global translation (Eq. a):

I(x, y) = J(x−∆x, y −∆y) (a)

their Discrete Fourier Transforms FI(u, v), FJ(u, v) obey to Eq. b:

FI(u, v) = FJ(u, v) · e
−2πi(u∆x+v∆y) (b)

The Normalized Cross Power Spectrum R(u, v) can be expressed factoring out

the phase difference as reported in Eq. c (the symbol ∗ represents the complex

conjugate):

R(u, v) =
FJ(u, v) · F

∗

I (u, v)

|FJ · F ∗

I |
=

FJ(u, v) · F
∗

J (u, v) · e
+2πi(u∆x+v∆y)

|FJ · F ∗

J |
= e+2πi(u∆x+v∆y) (c)

The magnitude of an imaginary exponential is always one, and the phase of

FJ ·F
∗
J is always zero. The Correlation Surface CS(x, y) can be thus obtained
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Phase correlation

applying the Inverse Fourier Transform (Eq. d):

CS(x, y) = F−1(R(u, v)) = F−1(e+2πi(u∆x+v∆y)) = δ(x+∆x, y +∆y) (d)

The inverse Fourier transform of a complex exponential is a Kronecker delta δ

(i.e. a single peak). Accordingly, the global translation vector (∆x, ∆y) can

be estimated as the x -y position of the maximum peak in CS(x, y) (Eq. e):

(∆x,∆y) = argmax(x,y)CS(x, y) (e)

Practically speaking, in the Phase Correlation algorithm the steps to find the

best match between a pair of images are the following [176]:

1. converting to grey levels the two input images I(x, y) and J(x, y), having

the same M×N (rows × columns) size

2. computing their Discrete Fourier Transform, resulting in FI(u, v) and

FJ(u, v), two complex M×N matrices

3. computing the Normalized Cross Power Spectrum R(u, v), forming the

cross power spectrum FIF
∗
J and dividing it by its modulus

4. computing the Correlation M×N Surface CS(x, y) as Inverse Fourier

Transform of the phase difference matrix

5. defining the (x,y) position of the highest peak in CS as the x -y transla-

tive shift between the images I(x, y) and J(x, y)

The output of the Phase Correlation algorithm in his basic version is the global

translation components at pixel level accuracy between two input images of

the same size. It has been extended also to image rotation [214] and small

changes in scale [215], and to subpixel level accuracy [216]. It is quite robust

to additive noise, blurring artefacts and changes in lighting conditions (thanks

to the normalization in Eq. c). Furthermore, the algorithm has been extended

to work also with the contours of the images only to be even more robust and

faster [168]. However, the presence of additional geometric distortions, noise

and not negligible modifications in the image content can introduce further

spurious incoherent peaks in the Correlation Surface, that can even return
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wrong results in the estimation of the motion parameters.

In order to handle the presence of multiple peaks, in our Phase Correlation im-

plementation (Matlab code distributable upon request [11]) several additional

steps have been implemented:

• every input image is pre-processed subtracting its minimum value. This

works to enhance the Signal to Noise Ratio

• the Correlation Surface CS(x, y) has been denoised setting to 0 all the

values lower than the mean value plus 3 times the standard deviation

(σ)

• for every region containing values different to 0 only the maximum value

is kept. All the other values are set to 0

• only at maximum the 3 higher peaks are analyzed

• a score based on the mean of the fourth-power differences (cost function)

on the overlapping areas of the two input images is used to decree who is

the best peak (the one with the minimum score), also checking the wrap

around of the peak’s coordinates

• all the peaks (or their wrap around) that generate a shift higher of the

95% are discarded. This is a control on the maximum shift checked (in

both the x and y directions) between the two input images

Here, we want to stress that using as the cost function the mean of the fourth-

power differences works as a pivot rule in case of input images with a lot of

background and few objects: the fourth-power of the differences increases the

separability between signal and noise, making the thresholding stage easier.

Even though being quite heuristic, this strategy has proved to be quite robust

even with images decimated by a factor of two, this being important to speed

up the algorithm.
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RANSAC

RANSAC is an abbreviation for “RANdom SAmple by Consensus”. It is a

robust iterative method to estimate parameters of a mathematical predeter-

mined model using a set of noisy observed data containing also outliers. The

meaning of robustness is precisely meant in the sense of good tolerance to

completely erroneous observations possibly present in the collection of exper-

imental data. In particular, RANSAC is a non-deterministic algorithm that

produces a reasonable result only with a certain probability, increasing with

the number of iterations. The algorithm was first published by Fischler and

Bolles at Stanford Research Institute International in 1981 [170].

The algorithm finds application in a wide spectrum of data analyses related to

the estimation of model’s parameters in the field of artificial vision as the fea-

ture matching, alignment of images, etc. In particular, we exploited RANSAC

to estimate the parameters of the fundamental matrix using a set of noisy

data (corresponding features between two different views of the same scene).

A basic assumption is that the data consists of “inliers”, i.e., data whose dis-

tribution can be explained by some set of model parameters, and “outliers”

which are data that do not fit the model. In addition to this, the data contains

noise. The outliers can come, e.g., from extreme values of the noise or from

erroneous measurements or incorrect hypotheses about the interpretation of

data. RANSAC assumes that, given a (usually small) set of inliers, there ex-

ists a procedure which can estimate the parameters of a model that optimally

explains or fits this data. The algorithm is simple and powerful, it operates in

the same time by eliminating outliers while estimating the parameters of the

predesigned model. It works iteratively until reaching a termination condition

according to the following steps:

• Step 1: sampling of experimental data. The minimum subset of needed

observations is uniformly and randomly extracted from the set of avail-

able samples. Each observation has the same probability of being selected

(the concept of uniform sampling) and the number of needed observa-

tions depends on the Degrees Of Freedom (DOF) of the predesigned

model. For instance, searching a plane in the space using a set of points

requires at least the selection of three points because three are the DOF

necessary to uniquely describe a plane in the space. To select a larger
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number of observations involves inherent inefficiency of the algorithm,

because the likelihood of extracting all inlier samples decreases as the

number increases.

• Step 2: parameters estimation. Estimation of the parameters’s values

related to the DOF of the predesigned model using only the minimum

subset of needed data (selected according to the previous step).

• Step 3: evaluation of the estimated parameters. The quality of the

estimated parameters’s values is evaluated using the whole set of available

data. Typically a cost function is used as a metric for comparison of

different estimations of the parameters of the predesigned model. A cost

function widely used is the count of the number of the experimental data

agreeing with the estimated parameters, barring a tolerance threshold.

The set of estimated parameters that collects the greater consensus is

considered the one most appropriate for the predesigned model.

In particular, these are three fundamental parameters of the RANSAC algo-

rithm:

• Tolerance threshold of the cost function. It determines whether an indi-

vidual input point supports the computed model (Step 3).

• Percentage of agreement. It is related to the discrimination of a valid

set of parameters estimated for the predesigned model. It represents the

percentage of consensus achieved when the model is evaluated on the

whole data set. It can be used as termination criterion.

• Iteration count. It is the maximum number of iterations before the model

with greatest support is finally chosen. It represents a possible termina-

tion criterion of the algorithm.

Finally, when the set of estimated parameters achieving the higher consensus

is decreed, the final set of parameters is estimated using not only the minimum

number of needed observations, but all the input data considered inliers for

the last set of parameters estimated. This to obtain a more robust parameter

estimation of the predesigned model.

In our experiments, as input data we have N pairs of corner correspondences
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(xn
i , xn

j ), n = 1 . . . N , between two views (Xi and Xj) of the same scene.

RANSAC is exploited to estimate the parameters of the warping model H

(translative, affine or projective) between the two views. As the cost function

we use the distance between of the original data xn
i and its reprojected version

H × xn
j . The tolerance threshold, to consider a pair of corners inlier of the

computed model parameters, is set to 2 pixels. The number of inliers for every

estimated set of parameters is used as coefficient of agreement. We fixed 1500

as the maximum number of sets of computed parameters, since it has been

experimentally determined as being a fair value representing a good trade-off

between computational cost and accuracy of the model.
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