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Preface

Abstract

By pulling and releasing the tension on protein homomers with the Atomic Force

Miscroscope (AFM) at different pulling speeds, dwell times and dwell distances,

the observed force-response of the protein can be fitted with suitable theoretical

models. In this respect we developed mathematical procedures and open-source

computer codes for driving such experiments and fitting Bells model to experi-

mental protein unfolding forces and protein folding frequencies.

We applied the above techniques to the study of proteins GB1 (the B1 IgG-

binding domain of protein G from Streptococcus) and I27 (a module of human

cardiac titin) in aqueous solutions of protecting osmolytes such as dimethyl sul-

foxide (DMSO), glycerol and trimethylamine N-oxide (TMAO). In order to get

a molecular understanding of the experimental results we developed an Ising-like

model for proteins that incorporates the osmophobic nature of their backbone.

The model benefits from analytical thermodynamics and kinetics amenable to

Monte-Carlo simulation.

The prevailing view used to be that small protecting osmolytes bridge the sepa-

rating beta-strands of proteins with mechanical resistance, presumably shifting the

transition state to significantly higher distances that correlate with the molecular

size of the osmolyte molecules. Our experiments showed instead that protecting

osmolytes slow down protein unfolding and speed-up protein folding at physiolog-

ical pH without shifting the protein transition state on the mechanical reaction

coordinate. Together with the theoretical results of the Ising-model, our results

lend support to the osmophobic theory according to which osmolyte stabilisation

is a result of the preferential exclusion of the osmolyte molecules from the protein

iii



backbone.

The results obtained during this thesis work have markedly improved our un-

derstanding of the strategy selected by Nature to strengthen protein stability in

hostile environments, shifting the focus from hypothetical protein-osmolyte inter-

actions to the more general mechanism based on the osmophobicity of the protein

backbone.
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Chapter 1

Introduction

1.1 Atomic Force Microscopy

The atomic force microscope (AFM) has found countless uses for imaging nanos-

tructures and measuring and manipulating matter at the nanoscale.

As an imaging device the AFM works as a scanning probe microscope with

resolution three orders of magnitude better than the optical diffraction limit, pro-

ducing true three-dimensional measurement profiles. Moreover, it is amenable to

the measurement of biological samples since it does not require any special treat-

ments such as carbon/metal coatings that may damage such samples, and it works

under both ambient air and liquid environments. The AFM supports two main

imaging modes of operation. a) In contact mode the force applied by the tip on the

surface is maintained constant during scanning by a feedback mechanism, but it

can easily result in damage to the sample. b) In tapping mode instead the cantilever

is driven to oscillate near its resonance frequency by a small piezo incorporated in

the AFM tip holder. Tapping mode is gentle enough to afford the measurement of

single polymer molecules or supported lipid bylayers. With properly tuned scan-

ning parameters single molecules can maintain their conformation even for hours

[2], allowing accurate measurements to be performed.

The other common use of the AFM is to measure and induce mechanical tension

in the field of force-spectroscopy. In this case force-distance curves are recorded

by measuring the tip-sample interaction as a function of the distance between the

tip and the sample. The AFM has been employed as a force-spectroscopy tool to

1
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measure the disjoining pressure of lubricant nanofilms [2], the mechanical stability

of globular proteins [3], membrane proteins [4], mechano-chemical switches [5] and

even to assess the differentiation potential of stem cells [6].

1.1.1 AFM architecture

Crucial to AFM operation is a cantilever with a sharp tip pointing out at its end

(see Fig. 1.1).

Figure 1.1: Used AFM cantilever. Image from Wikimedia Commons.

The cantilever is commonly made up of silicon nitride and coated with gold,

with a radius of curvature in the nanometres range. When the tip is brought in

the proximity of the sample, forces between the two lead to a deflection of the

cantilever that is assumed to abide by Hooke’s law. In the most common setup

the cantilever deflection is measured using a laser spot reflection onto an array of

photodiodes (see Fig. 1.2), and a beam path several centimetres long serves as an

angle amplifier.

Commercial cantilevers come with spring constants from a few pN/nm to a

few hundred pN/nm. By measuring the deflection with nanometre precision, the

2
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Chapter 1: Introduction

Figure 1.2: Atomic force microscope setup. Image from Wikimedia Commons.

AFM therefore is a force sensor in the piconewton range.

1.1.2 Cantilever calibration

In order to obtain precise force measurements the optical lever sensitivity as well

as the spring constant of the cantilever must be accurately determined.

The optical lever sensitivity is the ratio between cantilever deflection and the

photodiode output voltage difference. Since it depends on the optical properties

of the cantilever and the medium it needs to be measured for each cantilever

by pressing the cantilever onto a hard surface (e.g. glass, mica) at high forces.

Assuming that the substrate does not deform, the cantilever deflection must be

equal to the piezo movement, thereby affording the calculation of the desired ratio.

The Hookean spring constant of the cantilever is expected to be strongly de-

pendent on its thickness, which is very difficult to control during manufacture.

Therefore the thermal tune method [7] is used to estimate the spring constant

of the cantilever starting from the equipartition theorem that relates the average

fluctuation of the cantilever to the thermal energy:

3
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k =
kbT

〈z2
c 〉
, (1.1)

where kb is the Boltzmann constant, T is the absolute temperature and 〈z2
c 〉 is the

square mean cantilever deflection. The value 〈z2
c 〉 is found by fitting the power

spectrum of the cantilever thermal noise, hence avoiding interference from either

non-thermal oscillation at other discrete frequencies or white noise. The typical

relative error is about ± 20% [7, 8], and other calibration methods have also been

developed [9, 10, 11].

1.1.3 Stretching homomeric protein chains

In order to study protein folding and unfolding kinetics with the AFM, constructs

consisting of a tandem repeat of the protein under study are often employed.

There are two main advantages that such a construct offers. a) First, in order to

move the interesting events far away from the surfaces where aspecific interactions

dominate, a longer construct is preferred. b) Second, the tip curvature radius is

about one order of magnitude larger than the studied proteins, and in a homomeric

construct the protein modules forming the bridge with the tip or surface can be

sacrifised, leaving the protein modules in-between for study.

Fig. 1.3 shows some example curves obtained using protocols such as velocity-

clamp, force-clamp, force-ramp or double-pulse velocity clamp with homomeric

(GB1)8 or (GB1)16 constructs, where GB1 stands for the immunoglobulin-binding

domain of streptococcal protein G.

1.2 The osmophobic effect

Throughout all kingdoms of life denaturing stresses are opposed by small organic

molecules known as protecting osmolytes or osmoprotectants. Their presence is

characteristic of both plants and animals that have adapted to environmental ex-

tremes, having been naturally selected to help avoid life-threatening widespread

protein unfolding. Notably, protecting osmolytes make it possible for bdelloid

rotifers, tardigrades, brine shrimp and nematodes to survive under conditions of

complete dessication and enter a state of suspended animation know as cryptobio-

sis.

4
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Figure 1.3: Representative examples of the type of data captured under different AFM

modes of force-spectroscopy operation with (GB1)8 or (GB1)16: protein unfolding under

a) velocity-clamp, b) force-clamp (continuous line) and force-ramp (dashed line), and c)

protein refolding using a double-pulse protocol [12].

It has been proposed that protecting osmolytes destabilise the protein dena-

tured state via an unfavourable interaction of the protecting osmolyte molecules

with the peptide backbone that is exposed upon protein denaturation. This un-

favourable interaction, know as the osmophobic effect, is attenuated by an over-

all favourable interaction of the osmolyte molecules with the protein side-chains,

which is however of lesser magnitude. While hydrophobic interactions, hydrogen

bonding, electrostatic and dispersion forces have long been considered as funda-

5
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mental thermodynamic forces involved in protein folding, osmolytes have little

effect on these forces. Hence the osmophobic effect is separate and complementary

to these more established forces [13].

However, while the thermodynamic osmophobic force is becoming a rather well

accepted theory, little is known about a) the effect of osmolytes on protein fold-

ing and unfolding kinetics, and b) the molecular details by which such effects may

come about. Moreover, some alternative theories have also been proposed for their

mode of action, such as changing folding pathways [14] or bridging the separating

beta strands of proteins under mechanical tension [15, 16]. To understand the

mode of action of osmolytes we employed AFM-based single-molecule force spec-

troscopy (SMFS) and theoretical modelling of proteins in the presence and absence

of various concentrations of osmolytes, as explained in Section 1.3.

1.3 The osmolyte effect studied at the single-

molecule level

In order to study the effect of osmolytes at the single-molecule level we followed a

phased approach with 6 stages, where the last one is a work-in-progress, while the

other 5 have each resulted in a scientific publication:

1.3.1 We developed a Maximum-Likelihood procedure for

fitting Bell’s model to experimental velocity-clamp

protein unfolding forces.

Before using SMFS to investigate the effect of osmolytes, we needed a method to

extract energy landscape information from force-spectroscopy data. Due to a lack

in the literature of fast and accurate methods suitable for this task, we developed

a Maximum-Likelihood estimation procedure to extract the two main parameters

that describe protein unfolding according to Bell’s model, namely the spontaneous

unfolding rate ku(0) and the unfolding distance ∆xu. The method is described in

Chapter 2 and Ref. [17].

6
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1.3.2 We developed open-source software to drive and anal-

yse mechanical protein refolding experiments.

Protein folding complements protein unfolding to describe the energy landscape

of proteins. Therefore we developed open-source software to drive and analyse

protein folding under mechanical tension, and to perform Maximum-Likelihood

estimation of the two main parameters that describe protein folding according to

Bell’s model, namely the spontaneous folding rate kf (0) and the folding distance

∆xf . The software codes and the estimation method are decribed in Chapter 3

and Ref. [18].

1.3.3 Dimethyl sulfoxide (DMSO) enhances the mechani-

cal stability of protein GB1.

Once we could perform and analyse protein folding and unfolding experiments,

we set off to study the effect of osmolytes on these protein kinetic processes. We

started with the protecting osmolyte DMSO. Our experiments showed that DMSO

accelerates the folding and decelerates the unfolding of protein GB1 without shift-

ing the transition state of the protein on the mechanical reaction coordinate. We

noted that since the transition state likely exposes more backbone than the native

state, but less than the denatured state, our experimental results were explainable

by applying the osmophobic effect not only to the native and denatured states, but

also to the transition state of the protein. The experiments and their interpretation

are described in Chapter 4 and Ref. [12].

1.3.4 The osmophobic hypothesis is supported by mechan-

ical unfolding experiments of GB1 in the presence of

glycerol and theoretical calculations with an Ising

model.

In order to see how generic was our finding that DMSO stabilises protein GB1

without shifting its transition state, we decided to look at another osmolyte, an-

other reaction coordinate, and later on (see next section) another protein. We

started by pulling protein GB1 in the presence of the protecting osmolyte glyc-

7
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erol, finding that it stabilises the native state of GB1 against mechanical unfolding

without changing its unfolding distance. To see if this behaviour carries over to a

non-mechanical unfolding process, we extended a protein Ising model with support

for group-transfer free energies, effectively incorporating the osmophobic effect into

the Hamiltonian of the system. We achieved this extension while maintaining ex-

act (polynomial-time) computation of the model’s thermodynamics. Using this

approach we found that the osmophobic effect does not shift the transition state

of GB1 when its energy landscape is projected onto the reaction coordinate defined

by the number of native peptide bonds or the weighted number of contacts. The

experiments together with the theoretical developments are described in Chapter 5

and Ref. [19].

1.3.5 Experiments with protein I27 and glycerol supported

by kinetic Monte-Carlo simulations buttress the os-

mophobic hypothesis.

We pulled protein I27, a human cardiac titin module, in the presence and absence

of glycerol. Contrary to a previous report [15], we found that glycerol molecules

do not increase the unfolding distance of protein I27. We also performed kinetic

Monte-Carlo simulations of the Ising model with support for group transfer en-

ergies by first adding to it worm-like chain (WLC) behaviour while preserving

exactly solvable thermodynamics. The simulations confirmed our previous hy-

pothesis that the osmophobic effect can explain our experimental data. The ex-

periments together with the theoretical developments are described in Chapter 6

and Ref. [20].

1.3.6 Mechanical unfolding of protein GB1 in the presence

of Trimethylamine N-oxide (TMAO) shows that at

low pH effects other than the osmophobic force dom-

inate.

In order to look for evidence of effects other than the osmophobicity of the pro-

tein backbone, we turned to reports of bulk experiments that found protecting

8
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osmolytes to behave like destabilisers in extreme conditions. In particular, it has

been previously found via bulk thermodynamic experiments that TMAO desta-

bilises three different proteins at low pH, when TMAO is positively charged [21, 22].

By pulling protein GB1 across a set of different pH values from 3.5 to 7.0, we found

that at each pH TMAO leaves the unfolding distance of GB1 largely unaffected.

Moreover, we found that TMAO stabilises the native state of GB1 against mechan-

ical unfolding around physiological pH, but at low pH it has a destabilising effect.

We adopted a statistical mechanics model for osmolyte-backbone interactions [1]

to estimate the energetics of the backbone-protonated TMAO interactions. Taken

together with the preliminary experimental results, these findings suggest that ef-

fects other than osmophobic character of the protein backbone dominate at low

pH in the presence of TMAO. More details can be found in Chapter 7.

9
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Chapter 2

Maximum likelihood estimation of

protein kinetic parameters under

weak assumptions from unfolding

force spectroscopy experiments

Adapted with permission from Aioanei D, Samor̀ı B, Brucale M. “Maximum like-

lihood estimation of protein kinetic parameters under weak assumptions from un-

folding force spectroscopy experiments”, Phys Rev E Stat Nonlin Soft Matter

Phys. 2009 Dec;80(6 Pt 1):061916. Copyright (2009) by the American Physical

Society.

2.1 Abstract

Single molecule force spectroscopy (SMFS) is extensively used to characterize the

mechanical unfolding behavior of individual protein domains under applied force

by pulling chimeric polyproteins consisting of identical tandem repeats. Constant

velocity unfolding SMFS data can be employed to reconstruct the protein unfolding

energy landscape and kinetics. The methods applied so far require the specifica-

tion of a single stretching force increase function, either theoretically derived or

experimentally inferred, which must then be assumed to accurately describe the

entirety of the experimental data. The very existence of a suitable optimal force

11
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model, even in the context of a single experimental dataset, is still questioned.

Herein, we propose a Maximum Likelihood (ML) framework for the estimation of

protein kinetic parameters which can accommodate all the established theoreti-

cal force increase models. Our framework does not presuppose the existence of a

single force characteristic function. Rather, it can be used with a heterogeneous

set of functions, each describing the protein behavior in the stretching time range

leading to one rupture event. We propose a simple way of constructing such a

set of functions via piecewise linear approximation of the SMFS force vs. time

data, and we prove the suitability of the approach both with synthetic data and

experimentally. Additionally, when the spontaneous unfolding rate is the only

unknown parameter, we find a correction factor that eliminates the bias of the

ML-estimator while also reducing its variance. Finally, we investigate which of

several time-constrained experiment designs leads to better estimators.

2.2 Introduction

The kinetics of protein unfolding under mechanical stress represent a very impor-

tant topic in the field of biophysics as can be seen in the large number of reviews

surveying the problem [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The

most widely employed model for studying mechanical protein unfolding sees bond

rupture as a decay of a metastable state with reaction kinetics given by

dη

dt
= −k(f(t))η(t) (2.1)

where η(t) is the survival probability up to time t, f(t) stands for the force at time

t and k(f(t)) is the dissociation rate [36]. The dependence of the dissociation rate

on force was given in [37] the analytical formula

k(f) = k0e
αf (2.2)

where α = xβ/(kBT ) with xβ standing for the position of the transition state along

the mechanical reaction coordinate and k0 being the spontaneous dissociation rate.

The two parameters k0 and α are usually extracted by either of two approaches.

The first one, sometimes called the “standard method” (see e.g. [38, 39]), involves

gaussian fits of the rupture force distributions for various loading rates and a

12
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linear regression between the most probable rupture forces and the logarithm of the

loading rate, without taking into account the joint effects of multiple modules that

unfold sequentially in the context of polyproteins. The second approach is based

on Monte Carlo simulations (see e.g. [40, 23, 41, 42, 43, 44, 45]), and in this case

the mentioned joint effects are properly accounted for. However both traditional

methods have intrinsic shortcomings: they either throw away useful information

by summarizing the data into statistics that are not sufficient, or geometrically

fitting as closely as possible quantities that are not of prime interest, such as

linear dependencies or rupture force distributions, rather than focusing directly on

finding the most probable kinetic parameters [46]. To overcome these shortcomings

a Maximum Likelihood (ML) approach has been previously proposed [46, 47].

We have further developed the ML approach in order to address the following

problems:

1. The probability to observe an unfolding event is a contextual feature of

homomeric polyproteins.

2. In real experiments a unique force-time, and likewise force-displacement,

characteristic does not exist (see e.g. [47]). When either the cantilever

tip or the surface is not functionalized, which is often the case, this is in

fact predicted by the theoretical models since they depend on microscopic

parameters that vary based on the length of the subrange under mechanical

stress and even from spot to spot depending on the local properties of the

soft protein layer [48, 49].

3. Choosing one among the many existing theoretical force models for idealized

polymeric chains, as reviewed e.g. in [46, 50, 51, 52, 53], with various cor-

rections of the interpolation formulas [54, 55], is not trivial, and neither is

deriving an empirical force model from the experimental data itself [47].

We tackle the first problem by taking into account the number of not-yet-

unfolded modules when computing the survival probability in Eq. (2.3). We solve

the second problem by allowing in Eq. (2.4) a different force-time function to

describe the stretching time range leading to each unfolding event, as long as they

are considered known (i.e., not introducing nuisance parameters into the likelihood

function). Finally we address the third problem by constructing the force-time

13
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functions in an automated, fully objective way as increasing, continuous piecewise

linear approximations to the AFM-recorded data points, using Eq. (2.13).

We show that α can be estimated just by maximizing the univariate function

in Eq. (2.7), after which k0 immediately comes out from Eq. (2.6). Since the

statistical estimation procedure would not be complete without a way to compute

the uncertainty of the estimated values [56], with Eq. (2.9) we show how to extract

a Bayesian credible region, i.e., a fixed two-dimensional area that contains with

a given probability the random point (k0, α) (see e.g. [57]). The approach is

computationally feasible even for complex theoretical models such as Worm-Like

Chain (WLC) [58, 59] that require numeric integration for the evaluation of the

likelihood function. In fact WLC has never been used before in the context of ML

estimation of kinetic parameters, but it can be easily applied with our framework

by solving Eq. (2.12).

It should be emphasized that it is common practice to fix α to a known value

and estimate only k0 in situations that are believed not to alter the position of the

transition state: replacing water by deuterium oxide [60], certain protein mutations

[61, 62, 44], and stretching proteins under the effect of chemical denaturants [63].

For this particular case we propose the unbiased and more efficient estimator given

by Eq. (2.8).

2.3 Theory

Next we are going to present the analytical form of the likelihood function, we’ll

explain how it can be maximized and how to compute a credible region for the

two parameters.

2.3.1 Likelihood function

When a monomeric protein is stretched starting with time ts, from Eq. (2.1) and

imposing that η(ts) = 1 we obtain

η(t) = exp

[
−
∫ t

ts

k(f(u)) du

]
, t ≥ ts.

For a multimeric construct made up of identical tandem repeats behaving in-

dependently, let’s consider an unfolding event after which, chronologically, there
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are m− 1 ≥ 0 more unfolding events in the SMFS curve. The probability that all

m modules survive becomes

ηm(t) = exp

[
−m

∫ t

ts

k(f(u)) du

]
, t ≥ ts . (2.3)

Assuming that f(t) is continuous and increasing with f(ts) = ys, we can change

the integration domain to force:

ηm(y) = exp

[
−m

∫ y

ys

k(z)(f−1)′(z) dz

]
, y ≥ ys .

The probability density rm(y) to observe a rupture event at force y ≥ ys is

rm(y) = − d

dy
η(y) = mk(y)(f−1)′(y)

× exp

[
−m

∫ y

ys

k(z)(f−1)′(z) dz

]
.

Notation 1 Let n be the total number of unfolding peaks in the whole data set,

and for each unfolding event 1 ≤ i ≤ n we denote by tsi and ysi the time point

and force at which we consider the stretching to start, by ti > tsi and yi > ysi the

rupture time instant and force of rupture, and by mi the number of modules that

will unfold after i in the same curve, plus one. The force-time function for peak i,

from tsi to ti, is described by fi.

Since the unfolding events are independent of each other, the joint probability

density function associated to the rupture forces ~y = (y1 . . . yn) is

L(~y; k) = exp

[
−

n∑
i=1

mi

∫ yi

ysi

k(z)(f−1
i )′(z) dz

]

×
n∏
i=1

mik(yi)(f
−1
i )′(yi) . (2.4)

At this point we introduce α and k0 explicitly into the joint probability density

function by using Eq. (2.2):

L(~y; k0, α) = exp

[
−k0

n∑
i=1

mi

∫ yi

ysi

eαz(f−1
i )′(z) dz

]

×kn0
n∏
i=1

mie
αyi(f−1

i )′(yi) . (2.5)
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Note that fi can be any continuous increasing function. Appendix 2.8.1 con-

tains more details about the computation of the derivative of the inverse force-time

function when the WLC model is assumed (Eq. (2.12)), and explicit formulas for

the likelihood function when applied to the linear force-displacement character-

istic f(t) = κvt (Eq. (2.10)) or the piecewise linear force-time approximation

(Eq. (2.13)).

Briefly, the piecewise linear force-time approximation is a linear interpolation

of a longest increasing subsequence (see e.g. [64, 65]) of the force values reported by

the AFM during stretching, which is computed by removing the minimal number

of data points such that the remaining ones show increasing force with time, and

breaking ties by calling for increased time resolution towards the rupture event

(see Appendix 2.8.1). This approach eliminates most of the noise and it has the

nice theoretical property that if applied to a set of forces that is already increasing,

it becomes a simple linear interpolation.

2.3.2 Point estimation

Regarding L(~y; k0, α) as a function of k0, the conditional maximum-likelihood es-

timate of k0 is the argument for which the function achieves the global maximum

on (0,∞), and can be computed as

k̂0(α) =
n∑n

i=1 mi

∫ yi
ysi
eαz(f−1

i )′(z) dz
. (2.6)

Substituting in Eq. (2.5) we obtain the profile likelihood for α, which needs to

be maximized numerically to obtain the estimator α̂:

Lp(α) = k̂0(α)nexp

[
α

n∑
i=1

yi

]
e−n

n∏
i=1

mi(f
−1
i )′(yi) . (2.7)

While ML-estimators are known to have very good asymptotic properties when

used with i.i.d. (independent and identically distributed) random variables (see

e.g. [66, 67]), our rupture forces yi are not identically distributed because each

unfolding event i is assigned its own ysi, mi and fi. As a result a more complex

theory, such as perhaps that developed in [68] would be needed to study the

asymptotic behavior of our ML-estimators, but a rigorous treatment of the problem

would exceed the scope of the present paper.
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However we do show in Appendix 2.8.2 that when α is fixed and known, and

under the conditions of Proposition 2, which can be shown to hold for the WLC

interpolation formula in Eq. (2.11) and for any force-time function that increases

linearly after an arbitrary time point, the estimator k̂0(α) is biased. For this

situation we propose the following unbiased estimator of k0:

k̃0(α) = (n− 1)k̂0(α)/n, n ≥ 2 . (2.8)

Since V ar[k̃0(α)] = [(n − 1)/n]2V ar[k̂0(α)] the unbiased estimator is also more

efficient.

2.3.3 Bayesian credible region

We show here that the particular shape of our likelihood function makes it feasible

to numerically compute a (rectangular) credible region for (k0, α) containing the

respective point estimates.

A key operation in the numerical computation of credible regions is the ability

to efficiently integrate the likelihood function over (potentially infinite) rectangular

regions. For this purpose we make the following observation:

∫ b

a

xne−cx dx =
1

cn+1

∫ cb

ca

yne−y dy

=
n!

cn+1
[P (n+ 1, bc)− P (n+ 1, ac)]

for any 0 ≤ a < b ≤ ∞, c > 0 and integer n ≥ 0, where P is the incomplete gamma

function defined as

P (h, x) =
1

Γ(h)

∫ x

0

th−1e−t dt, h > 0 .

The integral of the likelihood function on a rectangular region then simplifies
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as:

L
(k0e,αe)
(k0s,αs) =

∫ k0e

k0s

∫ αe

αs

L(~y; k0, α) dα dk0

=

∫ αe

αs

P (n+ 1, k0ec(α, ~y))− P (n+ 1, k0sc(α, ~y))

c(α, ~y)n+1

× exp

[
α

n∑
i=1

yi

]
dα

×n!
n∏
i=1

mi(f
−1
i )′(yi) (2.9)

with

c(α, ~y) =
n∑
i=1

mi

∫ yi

ysi

eαz(f−1
i )′(z) dz .

A (1 − p) credible region of (k0, α) can then be found as a rectangular area

(k0s, k0e)×(α0s, α0e) that includes the point estimates (k̂0, α̂) such that L
(k0e,αe)
(k0s,αs)/L

(∞,∞)
(0,0) =

1− p. That would imply the usage of an improper, unbounded uniform prior dis-

tribution.

Alternatively k0 and α can be restricted to a finite, more physically feasible

region via a (proper) uniform prior distribution, and it is indeed common practice

to do so with Monte Carlo methods which sample only a particular domain of

interest (see e.g. [44]).

2.4 Validation

We present below three applications: a synthetic experiment for the situation

when α is fixed and known, another synthetic experiment to check the suitability

of the linear force-displacement model and the piecewise linear approximation with

WLC-conforming data under a few time-constrained design strategies, and finally

a real SMFS experiment with a well characterized protein.

2.4.1 The unbiased estimator k̃0(α) is indeed a better esti-

mator than the biased one

In order to confirm the theoretical prediction that k̃0(α) is not only unbiased,

but also a better estimator than k̂0(α) in terms of showing smaller Root Mean
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Square Error (RMSE), we simulated pulling a multimeric construct made up of

20 identical modules whose length, spontaneous unfolding rate and position of the

transition state were chosen to match those previously reported for a real protein,

namely the B1 immunoglobulin-binding domain of protein G from Streptococcus

(GB1) [69].

Therefore we used k0 = 0.039 s−1, xβ=0.17 nm, T=301.15 K, and for each n

in 2, ..., 101 we generated 10000 datasets of n unfolding events each following the

linear force vs. displacement characteristic with a cantilever spring constant of

0.07 N/m. The n events were generated giving roughly equal shares to each of the

velocities 2−i 2180 nm/s, i = 0, . . . , 5. The starting force of pulling was randomly

chosen within a range compatible with what is commonly observed experimentally,

and the number of not-yet-unfolded modules was varied between 1 and 20.

Under these conditions the observed mean of k̃0(α) was always very close to

the theoretical expected value of 0.039, even for n=2, while the observed RMSE

went down from about 0.0744 s−1 for n=2 to about 0.0039 s−1 for n=101 (data

not shown). The biased estimator instead showed large bias for small values of

n and higher RMSE all throughout (see Fig. 2.1) thus confirming the theoretical

prediction that the unbiased estimator k̃0(α) is better than the biased estimator

k̂0(α).

2.4.2 Synthetic WLC data is well approximated by the

piecewise-linear function

We performed a more comprehensive simulation in order to compare the ability

to recover the kinetic parameters with the various approaches discussed so far,

when the data are generated by using the WLC model. We focused specifically

on the importance of the intermediate data points from the start of the stretching

process up to the rupture event, which are roughly approximated by the piecewise

linear force-time function, but not taken into account by the widespread linear

force-displacement model.

A second goal of this simulation was to investigate the efficiency of a few differ-

ent experiment designs in terms of spreading a fixed amount of experimental time

across different pulling velocities, and checking which strategy leads to estimates

with better performance.
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Figure 2.1: Ratio of RMSE[k̃0(α)] over RMSE[k̂0(α)] as a function of the number of

unfolding events.

The kinetic parameters and the cantilever spring constant were kept the same

as in the previous synthetic data experiment, while the protein pick-up rate was

set to 100%. Each trial simulated about 107.87 seconds of experimental time

with a surface delay of 200 ms, an approach speed of 4360 nm/s, four unfolding

modules in each curve, a piezo range of 500 nm and 2048 sample points per curve,

all of which are very reasonable values commonly used in real experiments. Six

retraction speeds have been used, namely 125, 249, 545, 1090, 2180 and 4360 nm/s,

and six experiment design strategies were covered: Lowest Speed Only (LSO) with

25 curves at the lowest velocity, Highest and Lowest Equal Number (HLEN) with

22 curves at the lowest speed and 23 at the highest one, Highest and Lowest Equal

Time (HLET) with 12 curves at the lowest speed and 126 at the highest one, All

Speeds Equal Number (ASEN) with 11, 11, 11, 12, 12, and 12 curves respectively,

in increasing velocity order, All Speeds Equal Time (ASET) with 4, 7, 15, 24, 34,

42 curves respectively, in increasing velocity order, and finally Highest Speed Only

(HSO) with 251 curves at the highest velocity. The number of trials was 1000 and

all the data were generated using the WLC interpolation formula of Eq. (2.11)

with a persistence length of 0.35 nm.

The data were analyzed using our ML framework with the following force
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function types: linear force-displacement (L), piecewise linear force (PL), WLC

and finally Gaussian piecewise linear force (GPL). For the last-mentioned one

we kept the rupture force unchanged, to allow for a reasonably fair comparison

to the other approaches, but added noise with a standard deviation of 20 pN

[44] to all the other data points in order to check how well the piecewise linear

force approximation is able to tackle noise by selecting only the longest increasing

subsequence of force values, or indeed how much the remaining inaccuracies matter.

Additionally, we also analyzed the HLEN, HLET, ASEN and ASET data sets

using the “standard method” (SM) as reviewed in [38] and the Monte Carlo

method (MC) analysing the speed dependence of the unfolding force as reviewed

in [40, 45, 42, 43, 44]. Briefly, the “standard method” consists in fitting a lin-

ear dependence between the most probable rupture force and the logarithm of

the loading rate κv. The two kinetic parameters are then computed from the

slope and intercept of the fitting line implicitly adopting the assumption that the

force behavior during stretching can be satisfactorily approximated by the linear

force-displacement characteristic. The Monte Carlo method instead consists in the

simulation of thousands of synthetic curves on a two-dimensional grid of k0 and

xβ parameters, and then selecting the combination of parameters that best match

the experimental mean unfolding force dependence on velocity.

The SM approach produced the worst results where applicable, next followed

by the L approach, the results of both being displayed in Fig. 2.2 and 2.3. The

observed bias was around one-two orders of magnitude for k0 and not too small

for xβ either, therefore raising a signal flag about the dangers of applying the

wrong theoretical force model, in this case using the linear force-displacement

characteristic when the underlying data has been generated using the WLC model.

The assumed general applicability of the linear force-displacement characteristic

has also been previously disproved with experimental data in [47].

Figures 2.4 and 2.5 contain the results for the other methods. Except for a

little bias at the lowest speed, the ML-based WLC approach worked very well, as

expected since the data were generated with the same model, and no noise was

added.

Surprisingly the performance of the PL approach was almost indistinguishable

from that of the WLC-assuming approach. This is quite significant since the PL

approach does not take into account the fact that the data were generated with
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Figure 2.2: Estimation of k0 using the linear force-displacement model. Data were

generated using the strategies LSO, HLEN, HLET, ASEN, ASET and HSO, from left

to right. Estimation was performed using maximum likelihood (L) and the “standard

method” (SM). The dashed horizontal line indicates the actual k0 value used for data

generation. The crosses mark the mean and the error bars extend one standard deviation

in both directions.
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Figure 2.3: Estimation of xβ using the linear force-displacement model. Data were

generated using the strategies LSO, HLEN, HLET, ASEN, ASET and HSO, from left

to right. Estimation was performed using maximum likelihood (L) and the “standard

method” (SM). The dashed horizontal line indicates the actual xβ value used for data

generation. The crosses mark the mean and the error bars extend one standard deviation

in both directions.
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Figure 2.4: Estimation of k0 using GPL, PL and WLC. Data were generated using the

strategies LSO, HLEN, HLET, ASEN, ASET and HSO, from left to right. The dashed

horizontal line indicates the actual k0 value used for data generation. The crosses mark

the mean and the error bars extend one standard deviation in both directions.
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Figure 2.5: Estimation of xβ using GPL, PL and WLC. Data were generated using the

strategies LSO, HLEN, HLET, ASEN, ASET and HSO, from left to right. The dashed

horizontal line indicates the actual xβ value used for data generation. The crosses mark

the mean and the error bars extend one standard deviation in both directions.
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WLC, suggesting that the results might be just as good with data conforming to

any other theoretical model. It means that the time resolution in our synthetic

data, which is typical of AFM instrumentation, is high enough so that the er-

ror performed by making a piecewise linear approximation to the WLC curve is

negligible.

GPL, which is identical to PL except that it receives noisy input, also gave

good results, although the estimates were noticeably more biased than the WLC

or PL ones throughout all design strategies, while the variance was slightly larger.

The bias in the GPL k0 estimate ranged from 2.3% to 3.5%, while for xβ from

1.1% to 2.0%. which in the presence of noise can be considered as very small.

Excluding the unsatisfactory L approach, for each of the other three ML-based

approaches (GPL, PL, WLC) the HLET experiment design strategy showed the

smallest RMSE for both k0 and α when compared to the other five design strategies

(LSO, HLEN, ASEN, ASET, HSO) covered in our simulation. That suggests that

a very efficient experiment design consists in equally splitting the experimental

time across two velocities, one very high and one very low.

Since the Monte Carlo method implies the same WLC model also used to

generate the synthetic data of the simulated time-constrained experiments, the

Monte Carlo method performed quite well (Fig. 2.6 and 2.7). The best experiment

design strategy for MC turned out to be HLEN instead of HLET, followed closely

by the latter one, for both k0 and xβ. Comparing the results of the best design

strategy of each approach, the Monte Carlo method achieved an RMSE about 50%

higher for k0 and 128% higher for xβ compared to our ML-based WLC and PL

approaches, and about 40% higher for k0 and and 74% higher for xβ compared to

GPL, that is, the piecewise linear method with noisy input. We’d like to stress

once more that while the MC approach in our simulation had access to the exact

force model (WLC) with the exact parameters (contour length, persistence length)

used for data generation, for GPL noise was present in the data and no information

whatsoever about the underlying model was available. The difference in statistical

performance is only expected to increase in real experimental settings where the

force response is generated by the (linker-)protein-cantilever system rather than a

unique, known theoretical model.

We can draw four conclusions from this synthetic data experiment. Firstly, the

general applicability of the linear force-displacement characteristic is disproved,
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Figure 2.6: Estimation of k0 using GPL, PL, WLC and MC. The GPL, PL and WLC

data are the same as in Fig. 2.4 and are reproduced here for easy visual comparison.

Data were generated using the strategies HLEN, HLET, ASEN and ASET, from left to

right. The dashed horizontal line indicates the actual k0 value used for data generation.

The crosses mark the mean and the error bars extend one standard deviation in both

directions.

whether applied through either the “standard method” or the maximum likeli-

hood framework. Secondly, the piecewise linear approximation works well with

WLC-conforming data. Thirdly, for a fixed amount of experimental time, using

only the highest feasible velocity to get as many unfolding events as possible is

not the best experiment design strategy; instead it is better to allot half of the

experimental time to a much lower velocity. Fourthly, the ML approach, including

the model-independent piecewise linear approximation, is better than the Monte

Carlo method even when a unique force model exists and is known, as was the

case in our simulation, and the advantage remains solid when noise is added only

to the input of the piecewise linear approach.

2.4.3 GB1 kinetic parameters were correctly recovered from

an SMFS experiment with polyprotein (GB1)8

We further tested our ML approach with experimental data we obtained by pulling

a multimeric construct consisting of eight GB1 modules [69, 49, 70].
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Figure 2.7: Estimation of xβ using GPL, PL, WLC and and MC. The GPL, PL and WLC

data are the same as in Fig. 2.5 and are reproduced here for easy visual comparison.

Data were generated using the strategies HLEN, HLET, ASEN and ASET, from left to

right. The dashed horizontal line indicates the actual xβ value used for data generation.

The crosses mark the mean and the error bars extend one standard deviation in both

directions.

For the experiment, a drop of the (GB1)8-containing solution (20 µL, ∼0.1

g/L) was deposited on a flame cleaned glass coverslip for about 30 min. The

velocity-clamp mechanical unfolding SMFS experiment was performed using Pico-

force AFM with Nanoscope IIIa controller (Digital Instruments, Plainview, NY,

USA) with a V-shaped silicon nitride cantilever (NP; Digital Instruments) whose

spring constant was calibrated by the thermal noise method [8]. The buffer used

was Tris/HCl (10 mM, pH 7.5).

We used the open source project Hooke [71] with locally made modifications

to extract the relevant information from the AFM-recorded files, after which we

applied an automated filtering step mostly based on the protocol specified in [43].

A total of 250 unfolding events passed the filtering stage, about a quarter of them

at a retraction velocity of 125 nm/s, a quarter at 249 nm/s and half at 2180 nm/s.

Making the WLC assumption we obtained the point estimates k0 ' 0.0475 s−1,

xβ ' 0.1661 nm and a 70%-credible region of (0.0415, 0.0653) s−1×(0.1583, 0.1687)

nm, in very good agreement with the values reported in the literature of 0.039 s−1

and 0.17 nm that had been previously extracted from a larger data set consisting
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of 1826 unfolding events via WLC-assuming Monte Carlo simulations [69]. Using

the piecewise linear force-time approach we obtained instead the point estimates

k0 ' 0.0622 s−1, xβ ' 0.1627 nm and a 70%-credible region of (0.0466, 0.0777)

s−1× (0.1576, 0.1677) nm. Each of the two credible regions contains the point

estimates obtained with both approaches. Figure 2.8 shows the piecewise linear

approximation and the WLC fits for a (GB1)8 curve with eight unfolding events

from our experimental data set.

Using the WLC-based Monte Carlo method we obtained similar values of k0 '
0.05 s−1 and xβ ' 0.16 nm. Instead, using the “standard method” for the esti-

mation task we obtained k0 ' 8.1440 s−1, which is two orders of magnitude larger

than expected, and also a smaller distance to the transition state xβ ' 0.1302 nm.

We conclude that when WLC describes well the experimental data, as is the

case with GB1 [69], the estimates obtained via the piecewise-linear approximation

and those extracted by making the WLC assumption are compatible within sta-

tistical uncertainty, while the k0 estimate computed via the “standard method”

can be off by a couple of orders of magnitude.

2.5 Summary

We have set forth an ML framework for the analysis of SMFS experiments with

homomeric polyproteins, where the protein kinetic parameters of the monomeric

module are of interest. For the restricted case when only the spontaneous dissoci-

ation rate is unknown, we found an unbiased estimator that is also more efficient

than the plain ML estimator.

To account for the heterogeneity of force behaviors seen in SMFS experiments

we propose a piecewise linear approximation to the forces recorded by the AFM

during stretching and showed via extensive simulation that the approach is able

to correctly recover both kinetic parameters. That obviates the need to assume

a pre-determined force increase model which, as our tests show, can result in

large estimation errors if the wrong one is chosen, thus disproving the widespread

practice of assuming the linear force-displacement characteristic.

Our framework does however allow one to specify a pre-determined force model,

and we validated this use case in the context of the WLC model with both synthetic

and experimental data. The latter was obtained by pulling a polyprotein made up
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Figure 2.8: (Color online) Experimental curve obtained by pulling the (GB1)8 construct

at v=2180 nm/s. The light blue (light gray) lines meeting in the origin represent WLC

fits. The points interpolated by the thin red (medium gray) lines represent AFM force

readings. The thick black lines are piecewise linear approximations of the longest in-

creasing subsequences of force values. The detachment peak and nonspecific interactions

at the start are not shown.
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of identical tandem repeats of a protein domain that had been previously charac-

terized via WLC-assuming Monte Carlo simulations. By imposing the same WLC

model, from our data set we recovered almost the same kinetic parameters under

the ML framework and also by applying the Monte Carlo method. Since WLC

describes well the behavior of (GB1)8 [69], this confirms the correctness of both

our Monte Carlo implementation and the ML framework we propose. In order to

compare the statistical properties of our approach against the Monte Carlo method

we turned to synthetic data experiments which show that the WLC-assuming ML

estimators are better than the WLC-assuming Monte Carlo estimators in terms of

RMSE.

Without imposing a theoretical force model instead we obtained from the ex-

perimental data a slightly larger spontaneous unfolding rate, but still within the

70%-credible region of the WLC based estimator. The compatibility, but with

some difference, between the two sets of estimates can be at least partly attributed

to the ability of the WLC model (strictly speaking, the approximation formula of

Eq. (2.11)) to describe well, but not perfectly, the behavior of the studied protein.

This constitutes a new approach for testing the applicability of a theoretical force

model to any protein when geometric curve fits by themselves do not provide a

definitive answer.

To do a comparison in terms of statistical performance with the Monte Carlo

method we turned again to synthetic data experiments which proved that our ML

approach, even when used without any information about the underlying force

increase model, and with noise added to the data, performs better than the Monte

Carlo method configured with the correct force increase model that was used for

data generation, with the correct parameters so that no fitting is necessary. This

is a clear proof of the superiority of the ML estimation: it requires less information

as input while at the same time leading to better estimators, even under clearly

disadvantageous conditions.

Finally we approached the problem of long experimental times in two ways.

Firstly, by using ML estimation one is likely to need fewer rupture events for

the estimation task compared to traditional approaches that do not benefit from

the likelihood principle that guarantees that no information is lost. Secondly, our

synthetic data experiments suggest that rather than using the highest feasible

pulling velocity to get as many unfolding events as possible, it’s more efficient to
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also use one much lower retraction velocity, and to allot to the two velocities equal

shares of the experimental time.

2.6 Conclusions

We conclude with a short review of the advantages our proposed method brings

over existing ones:

1. It is particularly well suited for the analysis of experiments where a master

curve cannot be easily identified, such as those involving ligand-receptor

complexes [47] (see Subsection 2.8.1).

2. It is the only method for which an unbiased estimator of the dissociation rate

has been provided when the distance to the transition state is known, thus

making it particularly attractive for the analysis of protein unfolding under

the effect of certain chemical denaturants [63], protein mutations [61, 62, 44]

and different solvents of equal molecule size [60] (see Eq. (2.8)).

3. In all the tested settings it leads to better estimators of the kinetic param-

eters in terms of RMSE when compared to existing methods, even under

disadvantageous conditions (see Subsection 2.4.2).

4. It comes with a clear recommendation about how to design experiments

based on the well accepted statistical criterion of reducing the RMSE of the

obtained estimators (see Subsection 2.4.2).

5. As a simple numerical maximization of a univariate function (see Eq. (2.7)),

point estimation is very fast in practice, in our experience orders of mag-

nitude faster than the more established Monte Carlo method which instead

requires extensive data generation on a two-dimensional grid of parameters.

Because of the generality of the last three mentioned advantages we recommend our

approach as the method of choice in the analysis of all velocity-clamp experiments

with polymers made up of one or more identical domains.
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2.8 Appendix

2.8.1 Application to some force-time functions

We show next how the likelihood function can be computed with two force models

and the piecewise linear approximation.

Linear force-displacement characteristic

Under the linear force vs. displacement characteristic f(t) = κvt the likelihood

function in Eq. (2.5) becomes

L(~y; k0, α) = exp

[
−k0

α

n∑
i=1

mi

κivi
(eαyi − eαysi)

]

×kn0
n∏
i=1

mi

κivi
eαyi . (2.10)

Worm-like chain

The worm-like chain describes the force dependence on the distance over contour

length ratio, and we adopt the well known interpolation formula with less than

10% error proposed in [59]:

f(t) =
kBT

4p

[
(1− x(t)/Lc)

−2 + 4x(t)/Lc − 1
]

(2.11)
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where x(t) = vt− f(t)/κ is the distance at time t [72]. By substitution we get the

cubic equation

−4az3 + [(12a/b+ 4)y + 9a]z2

−[y2(12a/b+ 8)/b+ y(18a/b+ 8) + 6a]z

+y3(4a/b+ 4)/b2 + y2(9a/b+ 8)/b+ y(6a/b+ 4) = 0

(2.12)

where a = kBT/p, b = κLc and z = (f−1)(y) v/Lc.

It’s possible to show that there is exactly one root in the interval of interest

(y/b, 1+y/b), so (f−1)(y) can be obtained without ambiguity. Many ways to solve

the cubic polynomial equation exist, including closed form solutions [73]. Then

(f−1)′(y) can be computed by implicit differentiation, thus making possible the

numerical computation of the likelihood function using Eq. (2.5).

Piecewise linear force

The problem of finding the longest increasing subsequence of a sequence is clas-

sical in computer science, and for this purpose we use an O(n log n) algorithm as

described e.g. in [64]. For completeness we reproduce here our Python adaptation

of the algorithm:

def extract_path(a, s):

max_score = max(s)

path = [0] * max_score

next_score = max_score

for i in range(len(s)):

if s[len(s) - 1 - i] == next_score:

assert next_score == max_score or \

a[len(s) - 1 - i] < a[path[next_score]], (

next_score, max_score, i, a, s, path)

next_score -= 1

path[next_score] = len(s) - 1 - i

assert next_score == 0, next_score

assert mostly_ok(a, path), path
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return tuple(path)

def longest_increasing_subsequence(a):

m = []

s = []

for (ii, t) in enumerate(a):

assert (not m) == (not ii)

bs = bisect.bisect_left(m, t)

j = bs - 1

if 0 <= bs < len(m) and m[bs] == t:

j = bs - 1

assert j == -1 or m[j] < t

else:

assert -1 <= j

if j == len(m) - 1:

m.append(t)

else:

assert t <= m[j + 1]

m[j + 1] = t

s.append(j + 2)

path = extract_path(a, s)

return path

Now let’s consider one unfolding event with the longest increasing subsequence

of forces y1, . . . , yp at increasing times t1, . . . , tp, with yp being the rupture force.

The piecewise linear force-time function is then assembled as

f(t) =


yj + (t− tj)(yj+1 − yj)/(tj+1 − tj),

if tj ≤ t < tj+1, 1 ≤ j < p− 1

yp−1 + (t− tp−1)(yp − yp−1)/(tp − tp−1),

if t ≥ tp−1

.

Assuming that unfolding event i has longest increasing subsequence of force

values (ti1, yi1), (ti2, yi2) . . . (tipi , yipi) with the connection to the notation through-

out the rest of the paper being that (ti1, yi1) = (tsi, ysi) and (tipi , yipi) = (ti, yi),
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the likelihood function can be written as:

L(~y; k0, α) = exp

[
−k0

α

n∑
i=1

mi

pi−1∑
j=1

tij+1 − tij
yij+1 − yij

(eαyij+1 − eαyij)

]

×kn0
n∏
i=1

mi
tpi − tpi−1

ypi − ypi−1

eαyipi . (2.13)

2.8.2 Expectation of k̂0(α) for α fixed

Proposition 2 For α > 0 fixed and n ≥ 2, if
∫∞
ysi
eαz(f−1

i )′(z) dz = ∞ for all

1 ≤ i ≤ n, then E[k̂0(α)] = nk0/(n− 1).

To prove the above result we start from the definition

E[k̂0(α)] =

∫
y1≥ys1...yn≥ysn

k̂0(α)L(~y; k0, α) dy1 . . . dyn .

Using Eq. (2.5), (2.6), and making the changes of variables

xi = k0mi

∫ yi

ysi

eαz(f−1
i )′(z) dz, 1 ≤ i ≤ n

we obtain

E[k̂0(α)] = nk0

∫
x1≥0...xn≥0

exp [−
∑n

i=1 xi]∑n
i=1 xi

dx1 . . . dxn ,

where the multiple integral is equal to 1/(n− 1) according to Lemma 7.

Notation 3 We’ll denote by E1 the well-known exponential integral with its equiv-

alent forms:

E1(u) =

∫ ∞
u

e−x

x
dx =

∫ ∞
1

e−ux

x
dx

Lemma 4 For any real a > 0 and natural number n >= 0 the following holds:∫ ∞
0

(a+ x)nE1(a+ x)dx = −a
n+1E1(a)

n+ 1
+

e−a

n+ 1

n∑
k=0

n!

k!
ak .
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Proof. From

E ′1(u) = −e
−u

u

we can compute

(a+ x)nE1(a+ x) =

(
(a+ x)n+1E1(a+ x)

n+ 1

)′
+

(a+ x)ne−(a+x)

n+ 1
. (2.14)

Note that

E1(u) <

∫ ∞
1

e−ux dx =
e−u

u

from which we deduce that

lim
u→∞

umE1(u) = 0 for all real m. (2.15)

Integrating (2.14) and using (2.15):∫ ∞
0

(a+ x)nE1(a+ x)dx =

− an+1E1(a)

n+ 1
+

e−a

n+ 1

n∑
k=0

(
n

n− k

)
ak
∫ ∞

0

xn−ke−x dx

and knowing that Γ(k + 1) = k! for k ≥ 0 we get the desired result.

Lemma 5 For any integers i, n such that 0 ≤ i ≤ n− 2 the following holds:

i∑
k=0

(−1)kk!

(n− 1) . . . (n− 1− k)
=

1

n
+

(−1)i(i+ 1)!

n . . . (n− i− 1)
(2.16)

Proof. By induction on i.

Lemma 6 For any positive real a and natural n ≥ 1:

In(a) =

∫
x1≥0...xn≥0

e−
∑n

i=1 xi

a+
∑n

i=1 xi
dx1 . . . dxn =

(−1)n−1eaan−1E1(a)

(n− 1)!
+

n−2∑
k=0

(−a)k

(n− 1) . . . (n− 1− k)
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Proof.

I1(a) = ea
∫ ∞
u

e−x

x
dx = eaE1(a)

I2(a) =

∫ ∞
0

e−x2I1(a+ x2)dx2

=

∫ ∞
0

e−x2ea+x2E1(a+ x2)dx2 (by Lemma 4)

= ea(−aE1(a) + e−a) = −aeaE1(a) + 1 (2.17)

I3(a) =

∫ ∞
0

e−x3I2(a+ x3)dx3

=

∫ ∞
0

e−x3(1− (a+ x3)ea+x3E1(a+ x3))dx3

= 1− ea
(
−a

2E1(a)

2
+
e−a

2
(1 + a)

)
=
eaa2E1(a)

2
+

1

2
− a

2

For n ≥ 3 we proceeed by induction on n:

In+1(a) =

∫ ∞
0

e−xn+1In(a+ xn+1) dxn+1 = A+B (2.18)

where:

A =

∫ ∞
0

e−xn+1
(−1)n−1ea+xn+1(a+ xn+1)n−1E1(a+ xn+1)

(n− 1)!
dxn+1(by (4))

=
(−1)neaanE1(a)

n!
+

(−1)n−1

n

n−1∑
i=0

ai

i!
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and

B =
n−2∑
k=0

(−1)k

(n− 1) . . . (n− 1− k)

∫ ∞
0

e−xn+1(a+ xn+1)k dxn+1

=
n−2∑
k=0

(−1)kk!

(n− 1) . . . (n− 1− k)

k∑
i=0

ai

i!
=

n−2∑
i=0

ai

i!

n−2∑
k=i

(−1)kk!

(n− 1) . . . (n− 1− k)

=
1

n
+

(−1)n−2(n− 1)!

n!
+

n−2∑
i=1

ai

i!

n−2∑
k=i

(−1)kk!

(n− 1) . . . (n− 1− k)

=
1

n
+

(−1)n−2(n− 1)!

n!
+

n−2∑
i=1

ai

i!

(
1

n
+

(−1)n−2(n− 1)!

n!
− 1

n
− (−1)i−1i!

n . . . (n− i)

)

=
1

n
+

(−1)n−2(n− 1)!

n!
+

(−1)n−2

n

n−2∑
i=1

ai

i!
+

n−2∑
i=1

(−a)i

n . . . (n− i)
(2.19)

It follows that

In+1(a) = A+B

=
(−1)neaanE1(a)

n!
+

(−1)n−1

n
+

(−a)n−1

n!
+

1

n
+

(−1)n−2(n− 1)!

n!
+

n−2∑
i=1

(−a)i

n . . . (n− i)

=
(−1)neaanE1(a)

n!
+

n−1∑
i=0

(−a)i

n . . . (n− i)
(2.20)

Lemma 7 For any integer n >= 2, the following holds:∫
x1≥0...xn≥0

e−
∑n

i=1 xi∑n
i=1 xi

dx1 . . . dxn =
1

n− 1

Proof. According to Lemma 6 the left hand side integral is equal to:

I =

∫ ∞
0

e−x1

(
(−1)n−2ex1x1

n−2E1(x1)

(n− 2)!
+

n−3∑
k=0

(−x1)k

(n− 2) . . . (n− 2− k)

)
dx1

(2.21)
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Let’s compute the first part.∫ ∞
0

xn−2E1(x) dx =

∫ ∞
1

(∫ ∞
0

xn−2e−ux

u
dx

)
du = (2.22)

=

∫ ∞
1

(∫ ∞
0

yn−2e−y

un
dy

)
du =

∫ ∞
1

(n− 2)!

un
du =

(n− 2)!

n− 1

Meeting together (2.21) with (2.22):

I =
(−1)n−2

n− 1
+

n−3∑
k=0

(−1)kk!

(n− 2) . . . (n− 2− k)
. (2.23)

Putting i = n− 3 in (5), together with (2.23) we have:

I =
(−1)n−2

n− 1
+

1

n− 1
+

(−1)n−3(n− 2)!

(n− 1)!
=

1

n− 1
. (2.24)

2.8.3 Monte Carlo simulations

Standard approaches

There are two Monte Carlo methods that can be used for the estimation of kinetic

parameters. One is used when unfolding data is available at only one retraction

speed, and involves generation of unfolding events on a grid of k0, xb values, fol-

lowed by fitting the experimentally obtained histogram of unfolding forces against

the Monte Carlo simulated one. The other one is used when multiple retraction

velocities are available, and in this case only the most probable unfolding force is

fitted. The combination of parameters that lead to the best fit is then taken as

the solution. A bootstrap Monte Carlo procedure can be used to approximately

normalize the experimental distribution of unfolding forces and to estimate confi-

dence intervals for the two parameters. Alternatively, the mode of the experimental

distribution can be used directly when confidence intervals are not required.

Usually a Monte Carlo setup which is similar to the average experimental

curve is employed, matching the average contour length and the average number

of unfolded modules as in the real experiment. In principle it is also possible to

have a one to one mapping between every single experimental peak to a simulated

peak, matching them in terms of contour length and the starting force of the
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pulling process (after the unfolding of the previous peak), but that is often too

computationally expensive and it is not usually done.

The Monte Carlo simulation is performed as described in [23]. Briefly, the time

range leading to each unfolding event is broken down into a set of small time steps

during which the force is assumed to remain constant. The probability to observe

an unfolding event during time ∆t is:

dPu = mα(F )∆t (2.25)

where m is the number of modules that are still folded and α(F ) is the force

dependent unfolding rate:

α(F ) = k0exp

[
Fxb
kbT

]
(2.26)

Using a random number generator the folded-to-unfolded transition is executed

with probability dPu by the increasing the polymer contour length by the force-

hidden length of one module and decreasing m by one. The time step needs to be

kept small enough so that dPu always stays below one, but generally the smaller

it is, the better. After each time step the updated force is calculated according to

the WLC formula of Eq. 2.11.

Herein we used the Monte Carlo procedure with multiple velocities and we

performed the simulation using one setup chosen to match perfectly the conditions

used for data generation in Subsection 2.4.2. That was possible because all curves

had the same maximum contour length, and peaks have predefined contour lengths

in the synthetic data. The correct kinetic parameters were included in the center

of the grid, with exponentially increasing steps for k0 and a fixed step size of 0.01

nm for xb.

Our approach to synthetic data generation

Little is known about the tradoffs of chosing a smaller or larger time step in the

standard Monte Carlo simulation. In order to make the simulation more accu-

rate, we used numerical integration instead of assuming that the force is constant

over small time steps. To also speed up the computation, we split the force range

from zero to a maximum, never seen in real experiments, unfolding force into

40



i
i

“phd˙thesis” — 2013/3/8 — 12:20 — page 41 — #27 i
i

i
i

i
i

Chapter 2: MLE

8196 equal intervals. For each of the intervals we computed via numerical integra-

tion the probability to observe an unfolding event during the time period when

the force would increase over that particular force range. As compared to the

standard Monte Carlo approach, we move from time quantization to force quanti-

zation, which guarantees us a pre-set unfolding force accuracy. That is important

because via numerical integration we avoid the drawback of approximating the

WLC formula by constant steps all the way until unfolding; instead we use the

WLC formula without any changes, and do not assume that the force stays con-

stant over any amount of time, except for the actual unfolding step. Besides that

the unfolding force is what we aim to extract, not the time of unfolding. Thus it

is better to control the force accuracy rather than the time accuracy.

For each force range, from f1 to f2, we compute:

I(f1, f2) =

∫ f2

f1

eαz(f−1)′(z)dz . (2.27)

We then compute a cumulative array of the I values that we’ll name C. Given

this array, every time we need to generate an unfolding event, we compute:

y = −log(1−min(UniformRandom(0, 1) for i in range(m)))/k0 (2.28)

and then we extract the unfolding force by binary-searching y into the (sorted)

array C.
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Chapter 3

Open source platform for the

execution and analysis of

mechanical refolding experiments

Adapted with permission from Aioanei D, Brucale M, Samor̀ı B. “Open source plat-

form for the execution and analysis of mechanical refolding experiments”, Bioin-

formatics. 2011 Feb 1;27(3):423-5. Copyright (2011) by Oxford University Press.

3.1 Abstract

3.1.1 Motivation:

Single-molecule force spectroscoy (SMFS) has facilitated the experimental investi-

gation of biomolecular force-coupled kinetics, from which the kinetics at zero force

can be extrapolated via explicit theoretical models. The atomic force microscope

(AFM) in particular is routinely used to study protein unfolding kinetics, but only

rarely protein folding kinetics. The discrepancy arises because mechanical protein

refolding studies are more technically challenging.
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3.1.2 Results:

We developed software that can drive and analyse mechanical refolding exper-

iments when used with the commercial AFM setup “Picoforce AFM”, Bruker

(previously Digital Instruments). We expect the software to be easily adaptable

to other AFM setups. We also developed an improved method for the statistical

characterisation of protein folding kinetics, and implemented it into an AFM-

independent software module.

3.1.3 Availability:

Software and documentation are available at

http://code.google.com/p/refolding under Apache License 2.0.

3.2 Introduction

Biochemical reactions commonly proceed via large conformational changes, re-

sulting in a well defined mechanical reaction coordinate on which they can be

monitored. Since force is a determinant factor in the rate of such reactions, single-

molecule force spectroscopy (SMFS) emerged as an invaluable tool in their investi-

gation under mechanical tension [3, 74]. Thanks to its remarkable ability to stretch

and monitor one molecule at a time, SMFS seeks to achieve the long-standing goal

of mapping the energy landscape of biomolecules (e.g. proteins, RNA) on a well

defined reaction coordinate, even for proteins which show irreversible thermal or

chemical unfolding [75].

In particular, protein folding kinetics can be studied at the single molecule level

using the atomic force microscope (AFM). To this end protein modules can be first

unfolded and subsequently allowed to refold while subjected to a “force-clamp”

[76, 77, 78], or they can be directly observed to refold at fixed extension via “lock-in

force spectroscopy” [79]. Such techniques depend on recent technological advances

implemented in custom-built AFMs with very limited availability. Alternatively,

the AFM can be used in the more traditional “velocity-clamp” mode to drive

protein modules to fold under mechanical tension via the “double-pulse protocol”

(see Suplementary Data). Shortly, the distance between the base of the cantilever

44
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Chapter 3: Refolding

and the surface, rather than the stretching force, is maintained constant for some

amount of time allowing previously unfolded protein modules to refold [49, 80, 41].

Despite the widespread availability of AFM instrumentation supporting the

velocity-clamp mode of operation, single molecule folding kinetics studies remain

rather scarce in the scientific literature, likely due to the unavailability of manda-

tory software technology. We fill this gap by making such software freely available.

To validate our software we studied the folding kinetics of protein GB1 [69] and

obtained a kinetics characterisation similar to the previously published one [49].

3.3 Approach

Our software contains three main components:

1. An automated procedure for driving refolding experiments through Nanoscope

v6 software, in conjunction with Picoforce AFM and Nanoscope IIIa con-

troller, Bruker. For each execution of the double-pulse protocol, our soft-

ware instructs the Nanoscope software to execute a “Nanoscope script” and

capture a “Nanoscope strip chart”. Importantly, the actual bending of the

cantilever is detected from the strip chart file and the starting position is ad-

justed accordingly for the next double-pulse so as to counterbalance accumu-

lating drift [81]. Section 1 in Supplementary Data contains more information

on the implemented double-pulse protocol.

2. Offline tools for automated peak identification, force measurements, Worm-

like chain [59] fits and data filtering. Tools are also included for manually

improving the results of some of the automated tasks such as zero-force

baseline and contact point identification.

3. A standalone, AFM-independent offline procedure for the statistical charac-

terisation of protein folding kinetics from mechanical refolding experiments

with homomeric polyproteins, based on the analytical model of Section 3.4.1.
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3.4 Methods

3.4.1 Maximum likelihood estimation of folding kinetic pa-

rameters

We adopt Bell’s approximation [82, 37] to Kramers’ reaction-rate theory [83], which

describes the force-dependent folding rate as kf (F ) = k0
fexp[−F∆xf/(KbT )],

where Kb is the Boltzmann constant, T is the temperature in Kelvin, k0
f is the

spontaneous folding rate and ∆xf is the folding distance. We aim to extract the

last two mentioned parameters from refolding experiments.

Traditionally data was collected in a few fixed configurations, where a config-

uration is defined by the amount of time allowed for refolding and the inferred

force at the start of the waiting period. It was therefore assumed that the same

configuration can be reproduced exactly multiple times, ignoring any variation

between double-pulse protocol executions. It was also assumed that the residual

force remains constant during the waiting time [49, 41], ignoring the fact that it

increases after each folding event. Furthermore, it was assumed that the total

number of modules that could refold is limited by the extension during the wait-

ing period [49], breaking the assumption of the ideal spring cantilever. The mean

and standard deviation of the refolding ratio would then be computed for each

configuration and then fitted to an exponential formula based on Bell’s equation

or to Monte-Carlo simulations based on it, ignoring the fact that such summary

statistics are not sufficient [84], i.e., they do not capture all possible information

about the parameters.

We overcome all the above limitations by introducing a Maximum Likelihood

estimation procedure. Shortly, the stretching force is computed by solving the

WLC cubic equation [17], and the likelihood function is computed as the product

of the probability to observe the actual number of folding events for each double-

pulse protocol execution. The maximum likelihood is then located over a grid

of (k0
f ,∆xf ) values, and estimation errors are computed by case resampling (see

Section 2 in Supplementary Data).
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Figure 3.1: (Colour online) A force-extension trace according to the double-pulse pro-

tocol with the homomeric polyprotein (GB1)16. The lower curve represents the protein

fetching phase, during which the polyprotein attached nonspecifically to the cantilever

and then a total of 15 modules have been subsequently unfolded. The higher curve

is shifted by 260 pN just for display purposes, and it represents the phase where the

same molecule is pulled for the second time. Note that only 15 out of the 16 modules

could have refolded, since one module was not unfolded during the fetching phase. The

vertical dashed line represents the piezo position during the waiting time-lapse relative

to the resting position of the cantilever tip, and its numerical value is shown together

with the length of the time-lapse at the top of the figure. Each WLC fit is shown re-

dundantly shifted higher for display purposes. The contour length at the start of the

waiting time-lapse (before any refolding) is indicated in the bottom-right position.

3.4.2 Folding kinetics of protein GB1

We estimated the kinetic parameters of protein GB1 in buffer Tris/HCl (10 mM, pH

7.5) by performing mechanical refolding experiments with homomeric polyproteins

(GB1)8 and (GB1)16 (see Section 3 in Supplementary Data for experimental data

statistics). A sample trace can be seen in Figure 3.1.

We obtained the kinetic parameters ∆xf = 2.53 ± 0.12 nm and k0
f = 500 ±

85 s−1, errors representing one standard deviation. Our kinetics characterisation

is roughly compatible with previously published values of ∆xf = 2.1 nm and

k0
f = 720± 120 s−1 [49].
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3.5 Discussion

Mechanical refolding experiments can be performed with typical commercial velocity-

clamp AFM instrumentation, and we provide an out-of-the-box software solution

for performing and analysing such experiments in conjunction with Picoforce AFM,

Bruker. We expect our software to be easily adaptable to other AFM setups. In

fact since the analytical model of Section 3.4.1 is not specific to a particular AFM,

its implementation can already be used with refolding data obtained with any

other AFM. Furthermore, we developed all the software in the Java and Python

programming languages to ensure its portability across all major operating sys-

tems.
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Chapter 4

Single-molecule-level evidence for

the osmophobic effect

Adapted with permission from Aioanei D, Lv S, Tessari I, Rampioni A, Bubacco

L, Li H, Samor̀ı B, Brucale M. “Single-molecule-level evidence for the osmophobic

effect”, Angew Chem Int Ed Engl. 2011 May 2;50(19):4394-7. Copyright (2011)

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

4.1 Abstract

Protecting osmolytes play a crucial role in preventing protein denaturation in harsh

environmental conditions of living organisms. Experimental evidence is provided

for a mechanism of protein-fold stabilisation by these molecules that is in accord

with the hypothesis of a backbone-based osmophobic effect.

4.2 Introduction

Organic osmolytes are low-molecular-weight osmotically active compounds, which

are ubiquitous in living systems and are able to modulate protein stability. Among

them, those that act as folding agonists, enhancing the stability of the native

structure of proteins, such as trimethylamine N-oxide, betaine, sarcosine, proline,

trehalose, sucrose, glycerol, sorbitol, and dimethyl sulphoxide (DMSO), are col-

lectively called protecting osmolytes or “chemical chaperones” [85, 86, 87]. One
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Figure 4.1: ∆G=free energy, [O]=osmolyte concentration, χ=unfolding reaction coor-

dinate.

rather puzzling feature of these compounds is that they are able to affect the

folding of very diverse proteins in similar ways, suggesting that they might act

according to a general mechanism [88, 89, 90, 91, 92, 13], in contrast to the more

specific mechanisms employed by chaperone proteins [93, 94]. In fact, the most

widely accepted theory to rationalize their mode of action proposes that the addi-

tion of a protecting osmolyte to water as a co-solvent results in diminished solvent

quality for the protein backbone, thus making intra-peptide backbonebackbone

hydrogen bonds energetically more favorable than those between the backbone

and the solvent [85].

This effect, known as the osmophobic effect, implies that protecting osmolytes

have a universal, indirect mode of action, which does not entail the presence of

any specific binding sites for the osmolyte on the protein in any of its states,

including the folding/unfolding transition state. On the other hand, evidence of

such a direct participation have been recently provided by experimental studies

for specific proteinosmolyte combinations [76, 15, 95, 96].

Herein, we provide experimental evidence, at the single-molecule level, that the

osmolyte DMSO protects the native state of a globular protein against mechanical

unfolding without any active complexation of the osmolyte molecules into its un-

folding transition state. Apart from slowing down the spontaneous unfolding rate

of the protein, we show that the osmolyte also simultaneously accelerates its fold-

ing rate. The kinetic description of the observed stabilization mechanism strongly

supports a backbone-based theory of the osmophobic effect.
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4.3 Results and Discussion

We employed atomic force microscopy (AFM)-based single-molecule force spec-

troscopy (SMFS) [72] to characterize the effect of DMSO on the folding and unfold-

ing kinetics of a globular protein domain, namely the B1 immunoglobulin binding

domain of protein G from streptococcus (herein referred to as GB1), which behaves

as a two-state folding protein on AFM experimental timescales [49, 63, 97, 98].

SMFS mechanical unfolding and refolding [18] experiments were performed on

polyprotein constructs made up of either eight or sixteen tandem repeats of the

GB1 domain [49]. We used buffered solutions with five different concentrations

of DMSO ranging from 0% to 50% v/v (see Section 4.4.1 for the detailed SMFS

experimental methods, and Section 4.4.2 for preparation of protein constructs).

The unfolding experiments were performed using three independent and com-

plementary SMFS modes of operation (Fig. 4.2), which consistently led to the

same result: in the presence of DMSO, the spontaneous unfolding rate of GB1

at zero applied force is negatively correlated with DMSO concentration, meaning

that DMSO kinetically protects the folded state against unfolding. This protec-

tion manifests itself as an increase of the average mechanical unfolding forces at

all loading rates in the velocity clamp SMFS mode (Fig. 4.3a), and a decrease of

the force-dependent unfolding rates in force ramp and force clamp experiments

(Section 4.4.4, Fig. 4.6). The refolding experiments were instead performed using

a variable time lapse, double pulse procedure and showed that DMSO increases the

spontaneous folding rate of GB1 (please refer to Section 4.4.5 for the experimental

details on this procedure).

The data (Fig. 4.3a) make it possible to map the mechanical unfolding en-

ergy landscape of GB1 at each investigated DMSO concentration, extracting (as

detailed elsewhere [17]) the two fundamental kinetic parameters of the widely em-

ployed Kramer two-state model: the distance between the native state and the

transition state along the reaction coordinate ∆xu (Fig. 4.4) and the spontaneous

unfolding rate k0
u in absence of an applied force (see Section 4.4.3 for the data

analysis methods). Importantly, as the reaction coordinate coincides with the di-

rection of elongation of the protein in SMFS mechanical unfolding experiments,

the extracted value of ∆xu is highly sensitive to changes in the geometry of the

transition state [76, 15]. The other parameter of interest, namely k0
u, is exponen-
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Figure 4.2: Representative examples of the type of data captured under different AFM

modes of operation used in our study: protein unfolding under a)velocity-clamp, b)force-

clamp (continuous line) and force-ramp (dashed line), and c)protein refolding using a

custom double-pulse method [18] (described in detail in Ref. [18] and Section 4.4.5).
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Figure 4.3: a)Average mechanical unfolding force by pulling velocity at various DMSO

concentrations (values shown as %v/v). The error bars extend two standard errors of

the mean unfolding force above and below the mean value. (The number of unfolding

events are given in the Table 4.1.) b)Spontaneous dissociation rate and 68.3% confi-

dence intervals with varying DMSO concentration, calculated with a fixed ∆xu value of

0.165nm.
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Figure 4.4: Representation of the unfoldingrefolding energy landscape of a two-state

protein under the effect of a protecting osmolyte (-water only, – water+protecting os-

molyte). Kinetically, a protecting osmolyte accelerates protein folding by increasing

the height of the unfolding activation barrier (∆∆Gu = ∆Gtr,‡ −∆Gtr,N > 0) and de-

creasing the height of the folding activation barrier (∆∆Gf = ∆Gtr,U − ∆Gtr,‡ > 0),

where ∆Gtr,‡, ∆Gtr,N and ∆Gtr,U represent the free energy of transfer from water to the

waterosmolyte mixture of the transition (‡), native (N), and unfolded (U) state, respec-

tively. It follows as a thermodynamical consequence that ∆∆G = ∆Gtr,U −∆Gtr,N =

∆∆Gf + ∆∆Gu > 0, where ∆G is the free energy difference between the unfolded and

native states, therefore generating the inequality commonly referred to as the osmopho-

bic effect.

tially dependent on the height of the unfolding transition barrier ∆Gu according

to the formula k0
u ∝ exp[−∆Gu/(kBT )]. Therefore, the difference in the heights of

the unfolding transition barrier (∆∆Gu) in two different conditions (for example,

DMSO concentrations) can be computed from the logarithm of the ratio of the

values in the two conditions.

The obtained ∆xu values at each DMSO concentration are in very good accord

with previously published ∆xu values of GB1 in absence of DMSO [49]. More

specifically, the ∆xu values remained almost unchanged around a mean value of

0.165nm, without any apparent trend (see Table 4.2). The amount of variation in

∆xu for all tested conditions is small in comparison with the size difference between

the DMSO and water molecules, thus indicating that no DMSO molecules bridge

the gap between the force-bearing beta strands of GB1 in the unfolding transition
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Figure 4.5: Height of the free energy barrier, by DMSO concentration, relative to the

height in absence of DMSO (•), together with the viscosity-adjusted estimates (?). Ver-

tical error bars denote one standard deviation in both directions.

state.

We thus fixed ∆xu to its mean value and performed a single-parameter fit

of across all examined DMSO concentrations. The resulting spontaneous disso-

ciation rate values showed a clear inverse correlation with DMSO concentration

(Fig. 4.3b). Accordingly, a consistent decreasing trend of the computed force-

dependent unfolding rate was observed in force clamp experiments (Fig. 4.6).

These observations demonstrate that the height of the unfolding transition barrier

increases with increasing DMSO concentration. After correcting the data for the

viscosity of DMSO-water mixtures (see Section 4.4.3), the general increasing trend

of ∆∆Gu is still maintained, with some uncertainty only in the low-concentration

range (Fig. 4.5). Therefore, the increase in viscosity alone is not sufficient to ex-

plain the protective effect of DMSO on the native state of GB1 against unfolding.

Similarly, we mapped the folding-energy landscape of GB1 on the mechanical

reaction coordinate in the absence of DMSO and at a DMSO concentration of 30%

v/v, extracting the distance between the unfolded state and the transition state

∆xf (see Fig. 4.4) and the spontaneous folding rate (see Section 4.4.5). The data

both in the absence and presence of DMSO is explained by the common value

∆xf = 2.57 nm (which is compatible with the previously published ∆xf value

of GB1 in absence of DMSO [49]), resulting in k0
f = 546 ± 36s−1 in absence of
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DMSO and k0
f = 693 ± 64s−1 with 30% v/v DMSO. The osmolyte increased the

height of the folding activation barrier by ∆∆Gf = 0.24±0.11kBT which becomes

∆∆Gf = 0.95± 0.11kBT when correcting for viscosity effects (see Section 4.4.5).

Taken together, the results outlined above demonstrate that the protecting

osmolyte DMSO is able to slow down the unfolding kinetics of the globular domain

GB1 by raising the free energy of the transition state with respect to that of the

native state. In particular, they demonstrate that the above effect is obtained

by an indirect mechanism without any apparent complexation of the osmolyte to

the protein in the transition state. Moreover, DMSO also accelerates the folding

rate of GB1 by raising the free energy of the unfolded state with respect to the

transition state. At the same time, the fact that ∆xu and ∆xf values remained

constant across all tested experimental conditions implies that DMSO does not

change the force dependence of the folding and unfolding kinetics, showing that

its mode of action is independent of the effects of mechanical tension on the energy

landscape of the protein.

According to the osmophobic model, a protecting osmolyte disfavors backbone

solvent hydrogen bonding, and therefore it predominantly destabilizes structural

states with a higher number of such bonds, for example, the unfolded state. If

this is true, it would be expected that (i) protecting osmolytes should act on all

the conformations assumed by the protein, and (ii) the magnitude of their effect

should be proportional to the amount of backbone solvent hydrogen bonds therein

[99]. Obviously, the number of intrapeptide bonds is higher in the native state of

a globular protein than in its unfolded state, while its transition state generally

contains an intermediate number of such bonds [100]. Accordingly, a protecting

osmolyte should mostly destabilize the unfolded state, but also to a lesser extent

the transition state [101]. All of the above considerations collectively suggest that

if an indirect, backbone-based osmophobic effect is acting, then the thermody-

namic destabilization effect of the unfolded state should come to be through a

kinetic protection against unfolding (that is, a slower spontaneous unfolding rate),

together with a kinetic facilitation of folding (that is, a faster spontaneous folding

rate; Fig. 4.4). The results of the SMFS experiments described above are in perfect

accord with this picture.

The ability of another protecting osmolyte, glycerol, to slow down the unfold-

ing kinetics of ubiquitin [76] and the I27 immunoglobulin module of human car-
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diac titin [15] was previously demonstrated by single-molecule mechanical studies.

In both cases, the osmolyte molecules were found to actively participate in the

transition-state structure. However, similarly to what we observed with GB1 in

DMSOwater mixtures, a kinetic protection against unfolding was observed in the

two mentioned experiments [76, 15] across a wide range of glycerol concentrations.

As the protection resulted partly from the indirect, backbone-based osmophobic

effect and partly from the more specific -strand bridging phenomenon, from these

previous experiments it was not possible to numerically evaluate or even claim ev-

idence for the osmophobic effect. Preliminary experiments performed by us show

that the solvent-bridging phenomenon observed with I27 in presence of glycerol

does not occur with GB1, thus reinforcing the hypothesis that the formation of

direct proteinosmolyte interactions at the transition state is not an universal phe-

nomenon.

As deviations from the osmophobic mechanism are caused by direct complex-

ation of the osmolyte with specific residues at the transition state (thus making

alternative folding/unfolding pathways available), the fold complexity of a given

protein may influence its susceptibility to show such deviations. Therefore, we ex-

pect that simple and small proteins with low-fold complexity, which lack any fold-

ing/unfolding intermediates (as the GB1 domain examined in this study), should

thus be less prone to show deviations from a purely osmophobic behavior under

the effect of protecting osmolytes.

In summary, using a combination of SMFS-based experimental strategies we

presented to the best of our knowledge the first single-molecule evidence of a

protecting osmolyte slowing down the unfolding kinetics of a globular protein while

concurrently accelerating its folding rate, independently of the mechanical tension

applied and without any complexation in the unfolding transition state. This

observation serves as evidence for a purely indirect backbone-based mechanism for

the osmophobic effect [85, 88, 91].
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4.4 Materials and Methods

4.4.1 Single Molecule Force Spectroscopy Experiments

For the experiments we used two AFM setups. One setup consisted in a Picoforce

AFM with Nanoscope IIIa controller (Digital Instruments, Plainview, NY, USA)

with V-shaped silicon nitride cantilevers (NP; Digital Instruments) whose spring

constant was calibrated by the thermal noise method [8]. Using this setup we per-

formed velocity-clamp mechanical unfolding experiments in mixed water-DMSO

mixtures buffered with Tris/HCl (10 mM, pH 7.5), with DMSO concentrations of

0%, 10%, 20%, 30%, 40%, and 50% v/v, at pulling velocities of 50.1, 100, 198, 513,

969, 2180 and 4360 nm/s. At least three different cantilevers have been used with

each DMSO concentration. Data extraction has been performed using Hooke [71].

With the same setup we also performed refolding experiments using a double-pulse

protocol [18], in the absence of DMSO and with a DMSO concentration of 30%

v/v. Another setup consisted in a custom-built AFM [78]. All the measurements

were carried out in Tris/HCl (10 mM, pH 7.5) buffer. The spring constant of each

individual cantilever was calibrated in solution using the equipartition theorem

[8]. With this setup two kinds of experiments were performed. Force-ramp experi-

ments were performed at a ramping speed of 300 pN/s, covering the same gamut of

DMSO concentrations as the velocity-clamp experiments. Finally force-clamp ex-

periments were performed at constant forces of 50 pN, 75 pN, 100 pN, 150 pN, 200

pN and 250 pN, and the DMSO concentrations covered were 0%, 10%, 20%, 30%

v/v. However for the force-clamp experiments only some selected force-DMSO

concentration combinations were used, as seen in Table 4.4 and Table 4.5.

4.4.2 Preparation of protein constructs

Plasmid pQE80-(GB1)8 encoding GB1 polyprotein was obtained as previously de-

scribed [49]. Briefly, (GB1)8 gene was obtained by iterative cloning of the sequence

on the basis of the identity of the sticky ends generated by BamHI and BglII re-

striction enzymes. Then, (GB1)8 polyprotein was overexpressed in DH5α strain

and purified by Ni2+-affinity chromatography. The purified polyprotein sample

was at a final concentration of 0.34 mg/ml and was stored at -20℃ in PBS buffer

with 0.2% (v/v) sodium azide, diluted with 30% (v/v) glycerol.
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Table 4.1: Number of unfolding events by DMSO concentration and Velocity.

DMSO Velocity [nm/s]

v/v 50.1 100 198 513 969 2180 4360

0% 22 35 28 43 40 112 334

10% 24 45 63 168 196 219 345

20% 6 25 59 69 82 121 239

30% 33 30 54 134 73 83 157

40% 56 50 57 77 112 126 72

50% 58 38 53 100 86 143 104

Table 4.2: Unfolding kinetic parameters of GB1 obtained by maximizing the likelihood

of the unfolding data.

DMSO [v/v] ∆xu [nm] k0
u [s−1]

0% 0.163 0.0419

10% 0.167 0.0307

20% 0.178 0.0126

30% 0.154 0.0289

40% 0.173 0.00686

50% 0.154 0.00770

4.4.3 Analysis of multiple-speed velocity-clamp data

The number of unfolding events in our multiple-speed, multiple DMSO-concentration

velocity-clamp experiments can be found in Table 4.1.

We obtained the two unfolding kinetic parameters via maximum likelihood

estimation using the WLC model [17]. Shortly, for each DMSO concentration, the

unfolding events at all velocities were used to find the most likely distance to the

transition state ∆xu and spontaneous dissociation rate k0
u. The point estimates

thus obtained can be found in Table 4.2.

Fixing the distance to the transition state to the mean value ∆xu = 0.165

nm, the spontaneous dissociate rate k0
u was then estimated, together with 68.3%
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confidence intervals as described in [17] (see Fig. 4.3b).

The zero-force unfolding rate is given by the formula k0
u = Aexp[−∆Gu/(kBT )]

where the prefactor A depends on the vibrational modes inside the metastable

minimum and at the transition state and the friction. [83] Following the approach

of [15], we analyzed our data in two ways. First we considered the prefactor A to

stay constant across different DMSO concentrations, in which case the change in

the height of the unfolding transition barrier relative to its height in the absence of

DMSO was computed with the formula ∆∆Gu(c) = −kBT log[k0
u(c)/k

0
u(0)], with

k0
u(c) standing for the spontaneous dissociation rate at DMSO concentration c.

Second, since the prefactor A is inverserly proportional to solvent viscosity [83],

we also used a more accurate formula that takes into account this effect, namely

∆∆Gu(c) = −kBT log{[k0
u(c) ∗ v(c)]/[k0

u(0) ∗ v(0)]}, where v(c) is the viscosity of

the water-DMSO mixture. We derived the viscosity values by linear interpolation

of the data in [102]. The standard deviations were computed by making the

simplifying assumption that for each DMSO concentration c, the k0
u(c) estimate

comes from a normally distributed population. The ∆∆Gu(c) values uncorrected

for viscosity, together with the viscosity-adjusted ones, are plotted in Fig. 4.5.

4.4.4 Force-ramp and force-clamp experiments

The force-dependent unfolding rate in the force-clamp experiments can be seen in

Fig. 4.6a.

The number of unfolding events by DMSO concentration in force ramp exper-

iments is listed in Table 4.3. The number of unfolding events and traces in the

force-clamp experiments are listed in Table 4.4 and Table 4.5 respectively.

4.4.5 Refolding experiments

We performed refolding experiments and their analysis using in-house developed

software, in conjunction with Nanoscope software v6. A scheme of the double-pulse

protocol can be see in Fig. (4.7).
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Figure 4.6: a) Force-dependent unfolding rate extracted from force-clamp experiments.

The number of unfolding events can be found in Table 4.4. Vertical bars extend one

standard deviation above and below the mean value. b) Average unfolding force at

various DMSO concentrations in force-ramp experiments at 300 pN/nm. The number of

unfolding events can be found in Table 4.3. The error bars extend one standard deviation

of the mean unfolding force above and below the mean value.

Table 4.3: Number of unfolding events by DMSO concentration in force-ramp experi-

ments.

DMSO [v/v] Count

0% 494

10% 117

20% 340

30% 108

40% 134

50% 66
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Table 4.4: Number of unfolding events by DMSO concentration and force in force-clamp

experiments.

DMSO [v/v] Force [pN]

50 75 100 150 200 250

0% 51 69 110 106 55 -

10% - - 28 30 35 -

20% - 10 34 56 21 -

30% - - - 4 30 19

Table 4.5: Number of traces by DMSO concentration and force in force-clamp experi-

ments.

DMSO [v/v] Force [pN]

50 75 100 150 200 250

0% 7 9 17 18 9 -

10% - - 5 5 4 -

20% - 2 6 8 4 -

30% - - - 2 5 3
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Figure 4.7: a) Schematic representation of the movement of the piezo positioner during

one iteration of the double-pulse protocol. During Step 1, the piezo is approached

to the cantilever until it pushes onto its tip for a predetermined distance. In Step 2

the protein is fetched and some of its modules are unfolded. In Step 3 the piezo is

approached again to the cantilever, without touching it, maintaining a predetermined

distance and then it waits there for a given amount of time. In Step 4 the piezo is

retracted, unfolding those modules that did refold in during the time lapse, as well as

all other modules that were not unfolded in Step 2, until complete detachment of the

polyprotein. Steps 1 and 2 constitute the first phase of the double-pulse protocol, while

Steps 3 and 4 constitute the second phase. b) Trace of the real movement performed by

the piezoelectric positioner during one typical experimental iteration of the double-pulse

protocol. The actual duration of the “waiting for refolding” time lapse, and the actual

end-to-end distance of the protein during this interval can be measured directly for each

iteration. The resulting pair of force curves from this iteration are shown in panel c).

Gathered refolding data

In order to efficiently fit Bell’s model one needs to find a couple of configurations

with different waiting extensions (Step 3), and waiting times selected such that
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Figure 4.8: The refolding data in the absence of DMSO, summarized as one point for each

double-pulse protocol execution considered. a) The contour length at the beginning of

the second pulse is plotted against the waiting time. b) The waiting extension is plotted

against the waiting time. c) The waiting extension is plotted against the contour length

at the beginning of the second pulse.

the folding probability is neither too small, nor too high. We varied also the ramp

distance of the first phase, using both higher values compatible only with the dimer

(GB1)16 and smaller values compatible with both (GB1)8 and (GB1)16. With

our approach we can only roughly control these parameters a-priori, but we can

accurately read the actual values a-posteriori, after each execution of the double-

pulse protocol. Fig. 4.8 contains scatterplots of the waiting time for refolding

to happen, the contour length at the start of the waiting period and the piezo

extension during the waiting period in the absence of DMSO, while Fig. 4.9 shows

similar data in the presence of DMSO 30%.

For visualisation purposes only, the data of refolding experiments has been

projected onto three axes which are the amount of extension force computed for

the start of the waiting period, the waiting time for refolding to happen, and the

percentage of modules that refolded, resulting in Fig. 4.10 in the absence of DMSO

and Fig. 4.11 in the presence of DMSO 30% v/v.
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Figure 4.9: The refolding data in the presence of DMSO 30% v/v. The subplots and the

axes are to be interpreted as in Fig. 4.8.

Maximum Likelihood estimation of folding kinetic parameters

We used a Maximum Likelihood procedure for estimating the folding kinetic pa-

rameters, starting from the formula describing the force-dependent folding rate

kf (F ) = k0
f exp[−F∆xf/(KbT )] where k0

f = B exp[−∆Gf/(KbT )] and B is a con-

stant prefactor inversely proportional to solvent viscosity. The procedure takes

into account the fact that after each refolding event, the contour length of the

construct decreases, and therefore the stretching force increases, even if the piezo

is in a constant position at non-zero extension (manuscript in preparation). The

likelihood function has been evaluated on a grid of values ∆xf and k0
f with a

step size of 0.1 nm for the former and 50 s−1 for the latter, together with a local

gradient search. Bootstrapping was used to compute the estimation error.

The most likely folding kinetic parameters in the two conditions, together with

standard errors and the number of molecules considered, can be seen in Table 4.6.

Further clarification of Fig. 4.2c

The lower curve represents the preliminary protein fetching phase, during which

the protein is picked up by the cantilever and stretched up to a fraction of its total
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Figure 4.10: The data collected in the absence of DMSO is projected onto three axes: the

computed force at the start of the waiting period, the waiting time and the percentage

of refolded modules. The colors have been assigned by computing the rank of each

data point in the list of points sorted by time, and then the colors were taken from a

color gradient starting from red (lowest ranks) to green (middle ranks) and blue (highest

ranks).

(detachment) length, resulting in the unfolding of some of its modules (15 out of 16

in this example). The higher curve (shifted by 160 pN for readability) represents

the subsequent phase, during which the same molecule, after a predetermined time

lapse spent at the extension marked by the vertical dashed line, is stretched until

the molecule is released. There are 9 unfolding peaks in the second phase, 8 of

which are in register with peaks 8-15 from the fetching curve, meaning that 8

66



i
i

“phd˙thesis” — 2013/3/8 — 12:20 — page 67 — #40 i
i

i
i

i
i

Chapter 4: DMSO

�50 0 50 100 150 200 250 300
Time [ms]

100

150

200

250

300

350

C
o
n
to

u
r 

le
n
g
th

 [
n
m

]

�50 0 50 100 150 200 250 300
Time [ms]

�20

0

20

40

60

80

100

120

Z
 [

n
m

]

100 150 200 250 300 350
Contour length [nm]

�20

0

20

40

60

80

100

120

Z
 [

n
m

]

F [pN]

0
1

2
3

4
5

6
7

8

t [
m

s]

0

50

100

150

200

250

%

0

20

40

60

80

100

Figure 4.11: The data collected in the presence of DMSO 30% v/v, projected onto three

axes as in Fig. 4.10.

modules managed to refold. The trace was obtained from a dimer of (GB1)8,

having 16 modules in total. Note that only 15 out of the 16 modules could have

refolded, since one module was not unfolded during the fetching phase, and peak 16

corresponds either to the unfolding of the last mentioned module, or of any other

module that was unfolded during the fetching phase and subsequently refolded.

The vertical dashed line represents the extension to which the piezo was moved

after having unfolded the 15 modules, to give them the possibility to refold for

a certain amount of time (not shown). WLC fits have been performed for the

15 peaks of the fetching phase, after which one more contour length has been
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Table 4.6: Folding kinetic parameters of GB1 obtained by maximizing the likelihood of

the refolding data, leaving both parameters free.

DMSO [v/v] No Molecules ∆xf [nm] k0
f [s−1]

0% 331 2.53 ± 0.12 500 ± 85

30% 208 2.61 ± 0.15 702 ± 202

computed by adding 18 nm to the contour length of the 15th peak. The last

mentioned contour length is the length of the construct at the start of the waiting

period. Each of the 16 WLC curves is redundantly shown for a second time shifted

higher, only for display purposes.
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Observing the osmophobic effect

in action at the single molecule

level

Adapted with permission from Aioanei D, Tessari I, Bubacco L, Samor̀ı B, Bru-

cale M. “Observing the osmophobic effect in action at the single molecule level”,

Proteins. 2011 Jul;79(7):2214-23. Copyright (2011) Wiley-Liss, Inc.

5.1 Abstract

Protecting osmolytes are widespread small organic molecules able to stabilize the

folded state of most proteins against various denaturing stresses in vivo. The

osmophobic model explains thermodynamically their action through a preferential

exclusion of the osmolyte molecules from the protein surface, thus favoring the

formation of intrapeptide hydrogen bonds.

Few works addressed the influence of protecting osmolytes on the protein un-

folding transition state and kinetics. Among those, previous single molecule force

spectroscopy (SMFS) experiments evidenced a complexation of the protecting os-

molyte molecules at the unfolding transition state of the protein, in apparent

contradiction with the osmophobic nature of the protein backbone.

We present single-molecule evidence that glycerol, which is a ubiquitous pro-

tecting osmolyte, stabilizes a globular protein against mechanical unfolding with-
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out binding into its unfolding transition state structure. We show experimentally

that glycerol does not change the position of the unfolding transition state as

projected onto the mechanical reaction coordinate.

Moreover, we compute theoretically the projection of the unfolding transition

state onto two other common reaction coordinates, i.e. the number of native pep-

tide bonds and the weighted number of native contacts. To that end, we augment

an analytic Ising-like protein model with support for group-transfer free energies.

Using this model, we find again that the position of the unfolding transition state

does not change in the presence of glycerol, giving further support to the conclu-

sions based on the single-molecule experiments.

5.2 Introduction

5.2.1 The osmophobic effect

Small organic solutes such as polyhydric alcohols, free amino acids and methy-

lamines are employed by several living organisms as a means to enhance protein

stability in stressed conditions of various sorts, including extreme temperatures,

dehydration, high hydrostatic pressure, or the presence of denaturants. They are

almost ubiquitous in all domains of cellular life, for example allowing plant seeds

to remain viable for extremely long periods even when desiccated, animals to func-

tion at the extreme pressure of deep oceans or to go into anhydrobiosis or other

forms of cryptobiosis, and proteins in the human kidney to resist denaturation

despite high urea concentration [103, 88, 104].

These compounds are commonly referred to by several different names em-

phasizing specific facets of their behavior, the most frequently employed being

“chemical chaperones”, “nonionic kosmotropes”, “folding agonists”, and the one

we will use throughout this paper, “protecting osmolytes”. Typical examples of

protecting osmolytes are trimethylamine N-oxide, betaine, sucrose, trehalose, sar-

cosine, sorbitol, proline, glycerol, and dimethyl sulfoxide (DMSO) [105, 13, 106].

A puzzling feature of protecting osmolytes is that their effects are interchange-

able and additive [107], meaning that the stabilization of a protein can be obtained

with a mixture of different osmolytes. This interchangeability, in addition to the

fact that all osmolytes are able to affect the stability of highly diverse proteins in
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the same way, suggests that osmolytes of all sorts act in accord to a common and

therefore general mechanism [88, 13, 91, 85].

The broad thermodynamic principle underlying this general stabilization mech-

anism is a preferential exclusion of the osmolyte from the immediate vicinity of

the protein surface, and it is often referred to as the “osmophobic effect”. As an

example, the addition of a protecting osmolyte to water as a co-solvent mainly de-

creases the solvent quality for the protein backbone, disfavoring backbone-solvent

hydrogen bonding and thus predominantly destabilizing structural states with a

higher number of such bonds, i.e. the unfolded state (U) with respect to the na-

tive state (N) in which the backbone is less exposed. This results in an enhanced

thermodynamic preference for the folded state [108, 92, 109, 110, 1].

Even though the thermodynamic model outlined above is now widely accepted,

the molecular details of the mechanism by which osmolytes influence protein tran-

sition states and activation barriers still remain elusive. However, the putative

mechanism implied by the osmophobic hypothesis is purely solvophobic, and as

such does not require a preferential binding of the osmolyte to any specific site on

the protein. To verify this hypothesis, the influence of osmolytes on the protein

transition states needs to be observed.

Literature focusing on the study of the transition states associated with fold-

ing and unfolding of globular proteins in presence of osmolytes is still quite sparse,

and several of the reported results are apparently in contrast with the simple ther-

modynamical description of osmolyte effect illustrated above. For instance, some

studies reported that the osmolyte can bind to the protein in its folding/unfolding

transition state [96, 76, 15] or that it can effect changes of the reaction pathway

[14, 111]. Conversely, other studies reported that osmolytes stabilize the folded

state of a protein without any appreciable change to the relevant transition state

[99, 112, 113] and are thus in accord with the predictions of the osmophobic model.

Herein, we show experimental evidence of the osmophobic effect in action at

the single molecule level. Via Single-Molecule Force Spectroscopy (SMFS) exper-

iments, we estimate the unfolding kinetics of a small globular protein domain,

finding that glycerol stabilizes it against unfolding without complexation into its

unfolding transition state, as dictated by the osmophobic model. Moreover, we ex-

tend a previously reported Ising-like analytic protein model to make it applicable

to proteins in aqueous osmolyte solutions, finding that its predictions are in good
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accord with the experimental results.

5.3 Materials and Methods

5.3.1 Preparation of protein constructs

Plasmid pQE80-(GB1)8, encoding GB1 polyprotein was obtained as previously

described [49]. Briefly, the (GB1)8 gene was obtained by iterative cloning of the

sequence on the basis of the identity of the sticky ends generated by BamHI and

BglII restriction enzymes. Then, (GB1)8 polyprotein was overexpressed in DH5

strain and purified by Ni2+-affinity chromatography. The purified polyprotein

sample was at a final concentration of 0.34 mg/ml and was stored at -20℃ in PBS

buffer with 0.2% v/v sodium azide, diluted with 30% v/v glycerol.

5.3.2 Single Molecule Force Spectroscopy Experiments

Constant velocity mechanical unfolding experiments were performed with a Veeco

Picoforce Atomic Force Microscope (AFM) equipped with a DI Multimode Nanoscope

IIIa controller (Bruker) and gold-coated, V-shaped silicon nitride cantilevers (NPG

model; Bruker) with nominal spring constant 0.06 N/m. Unfolding experiments

were performed on the homomeric polyprotein (GB1)8 in two different solvent

conditions. In the first condition we used Tris/HCl buffer (10 mM, pH 7.5). In the

second condition we used the same buffer but with the extra presence of glycerol

as a cosolvent, at a concentration of 30% v/v. All the experiments have been

performed at a temperature of approximately 28 C. For the experiments, a drop of

the (GB1)8-containing solution (10 µL, 0.1 g/L) was deposited on a flame cleaned

glass coverslip for about 20 minutes. The fluid cell was then filled with either the

plain buffer or the buffer with glycerol added as a cosolute, and sealed on top of the

coverslip. Thermal tuning was performed in the respective solution to determine

the cantilever spring constant. Pulling experiments were then started after a few

minutes of incubation.

At the constant pulling velocities of 50.1, 100, 198, 513, 969, 2180 and 4360

nm/s we recorded (i) 22, 35, 28, 43, 40, 112, and 334 unfolding events, respectively,

from 2, 2, 2, 2, 2, and 3 different experiments, respectively in plain buffer, and
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(ii) 56, 36, 40, 414, 722, 871, and 79 unfolding events, respectively, from 4, 3, 2,

7, 5, 7, and 3 experiments, respectively with glycerol as cosolvent. Data filtering

and extraction was performed using Hooke [71].

5.3.3 Analysis of the velocity-clamp data

The unfolding kinetics at different velocities were well described by Bells equation

which expresses the dependence of the unfolding rate on the force applied ku(F ) =

ku(0) exp[F∆xu/(kBT )] as an approximation to Kramers reaction rate theory [82]

where ku(0) is the spontaneous unfolding rate in absence of applied force, ∆xu

is the unfolding distance separating the folded state and the unfolding transition

barrier measured along the reaction coordinate, T is the temperature in Kelvin

and kB is Boltzmanns constant. Note that the spontaneous dissociation rate can

be expressed as

ku(0) = A exp[−∆Gu/(kBT )], (5.1)

where A is a prefactor and ∆Gu is the height of the unfolding activation energy

barrier. The prefactor A depends on the vibrational modes inside the metastable

minimum and at the transition state and the friction [83].

Maximizing the likelihood of the data [17] we obtained ∆xu = 0.163 nm in

the absence of glycerol and ∆xu = 0.153 nm in the presence of glycerol 30%

v/v, ignoring viscosity effects (see below). Since the difference is negligible in

comparison to the size difference between the glycerol and water molecules [15, 60]

and within experimental error, we inferred that the presence of glycerol does not

change the characteristic unfolding distance of GB1. Taking into account as well

existing estimates of the unfolding distance of GB1 [17, 69] we fixed the unfolding

distance to ∆xu = 0.165 nm. Using this value we obtained ku(0) = 0.0372 ±
0.0016s−1 in the absence of glycerol and ku(0) = 0.0059±0.0001s−1 in the presence

of 30% v/v glycerol.

If we consider as a first approximation that the prefactor A is not affected by the

addition of glycerol, taking the ratio of the logarithm of the estimated spontaneous

unfolding rates in the two solvent conditions we obtain that the presence of glycerol

at a concentration of 30% v/v increases the unfolding energy activation barrier by

∆∆Gu = 1.84± 0.05kBT .
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5.3.4 Taking into account the viscosity of the 30% v/v

glycerol solution

We computed the viscosity of the 30% v/v glycerol solution at 28℃as 2.357 cP

using a formula reported elsewhere [114].

Immersion in a liquid environment dramatically alters the thermal noise spec-

trum of the cantilever, due to the strong effects of fluid loading [11, 115, 116].

Problems in the determination of the spring constant arise when the resonance

frequency drops to 1 kHz or below, as it happens for soft cantilevers or highly vis-

cous media [11]. However even in the presence of 30% v/v glycerol as a cosolvent

the resonance frequency of our cantilevers stays above 2 kHz, above the frequency

range likely to result in viscosity-induced errors in spring constant determination

that are comparable to the error intrinsic to the thermal tuning method [117].

The measured unfolding forces are underestimated in high-viscosity solutions

due to the viscous drag on the AFM cantilever [118, 119, 120, 121]. A way to

remove this artifact has been recently reported [118]. According to the this pro-

cedure the drag force can be computed as

Fvis = blvliquid − bcvtip, (5.2)

where vliquid is the pulling velocity, vtip is the velocity of the tip, bl and bc

are viscous drag coefficients related to the liquid motion and the bending of the

cantilever (tip motion), respectively. These two parameters depend on tip-surface

separation according to the formulae

bl = 6πηa2
l /(s+ hl) (5.3)

and

bc = 6πηa2
c/(s+ hc), (5.4)

where s is the tip-sample separation, η is the solvent viscosity, al, hl, ac and

hc being parameters to be determined. We extracted the mentioned parameters

by fitting Eq. 5.3, 5.4 to the bl and bc values reported in Fig. 3 of Ref. [118],

obtaining the approximate values al = 24.3 µm, hl = 3.5 µm, ac = 19.8 µm and
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hc = 2.9 µm. We then adjusted the force values collected at each sampled tip-

surface separation in the experimental data taken in 30% v/v glycerol according

to Eq. 5.2. The average unfolding forces at 50.1, 100, 198, 513, 969, 2180 and 4360

nm/s increased by 0.04, 0.12, 0.26, 0.36, 0.65, 1.82, and 6.22 pN, respectively.

After this adjustment we obtained ku(0) = 0.0057 ± 0.0001 s−1 for ∆xu = 0.165

nm.

We also took into account viscosity effects in the calculation of the change of

the unfolding barrier height effected by glycerol 30% v/v since the prefactor A

of Eq. (5.1) is inversely proportional to solvent viscosity [83, 60]. Adjusting the

prefactor by the inverse of the solvent viscosity we obtained our final estimate of

∆∆Gu = 0.84± 0.05 kBT .

5.3.5 A Wako-Saitô-Muñoz-Eaton Ising-like model

We endowed the previously reported WSME Ising-like protein model [122, 123,

124, 125] with support for the free energies of transfer of amino-acid residues from

water to water-osmolyte mixtures, as described below.

According to the WSME model, a protein N+1 amino acids long is described as

a chain of N peptide bonds. The state of the protein is captured by the vector ~m,

where the i-th peptide bond is represented by binary variable mi which has only

two possible values: 1 for a native peptide bond, and 0 for a non-native peptide

bond. Therefore there are exactly 2N states in the WSME model. The effective

free energy of the system reads as

HWSME(~m) = 1K × kBε
∑

1≤i<j≤N

hij

j∏
k=i

mk −KbT

N∑
i=1

qi(1−mi) (5.5)

where 1K is one Kelvin, kB is Boltzmanns constant, T is the temperature, ε is a

dimensionless enthalpic scale, hij ≤ 0 are dimensionless numbers representing the

relative strength of the contact between the i-th and j+1-th amino acids and qi

¿ 0 represents the entropic cost of ordering bond i. The contact strength hij is

commonly defined as 0 if j = i+1, and dqij/5e where qij is the number of pairs of

atoms, the first atom of the pair belonging to amino acid i and the second atom of

the pair belonging to amino acid j+1, that in the native state are closer than 0.4

nm and d·e is the ceiling function [126, 127]. The thermodynamics of the WSME

model can be exactly computed via the transfer-matrix approach [128].
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The fraction of folded molecules can be estimated as

p(T ) = [α(T )− α(∞)]/[α(0)− α(∞)] , (5.6)

where α(T ) is the thermodynamic average of the number of native peptide bonds

at temperature T . At zero temperature we have α(0) = N , while at infinite

temperature the exact expression for the mentioned thermodynamic average[129]

reads as:

α(∞) =
N∑
i=1

[1 + exp(qi)]
−1 . (5.7)

Assuming the entropic costs qi are known, the parameter ε can be fitted by im-

posing the folded fraction to be equal to the experimentally determined folded

fraction at a certain temperature.

For the case qi = ln 2 (see Section 5.3.8), Eq. 5.6 becomes:

p(T ) = 3α(T )/(2N)− 1/2 . (5.8)

The number of native peptide bonds [128, 130] and the weighted number of

native contacts [131]

φ(~m) = −
∑

1≤i<j≤N

hij

j∏
k=i

mk (5.9)

have been proposed as order parameters for monitoring protein folding and unfold-

ing. Assuming equilibrium folding and unfolding dynamics, one can characterize

the height and position of energy barriers on either of these two reaction coordi-

nates.

5.3.6 Extension of the WSME model to study proteins in

aqueous osmolyte solutions

Tanfords Transfer Model has proved very successful at predicting the osmolyte-

induced energetics of protein stability [109]. In order to study the kinetics of

mechanical unfolding under the effect of osmolytes, we apply the Transfer Model

to all the states of the WSME model.

A native stretch is defined as a sequence of consecutive amino acids connected

by native bonds and delimited by two non-native bonds. More formally, the stretch
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delimited by bonds i and j is said to be native if Sij = 1 where

Sij = (1−mi)(1−mj)

j−1∏
k=i+1

mk (5.10)

with 0 ≤ i < j ≤ N + 1 and considering m0 = mN+1 = 0. In the limiting case of j

i = 1 the stretch reduces to one amino acid [126, 127].

Accordingly, we consider each native stretch to have the exact same structure

as in the native state of the full protein, and we add to the effective free energy

of Eq. 5.5 a term representing the free energy of transfer Mij of the native stretch

delimited by peptide bonds i and j, in isolation, relative to the denatured state:

H(~m) = HWSME(~m) +
∑

0≤i≤j−2≤N−1

SijMij (5.11)

with Mij approximated as

Mij =
∑
i<k≤j

[∆grefbb,R[k](A
den
bb,k − A

ij
bb,k)/A

ref
bb,R[k] + ∆grefsc,R[k](A

den
sc,k − A

ij
sc,k)/A

ref
sc,R[k]] ,

(5.12)

where R[k] is the amino acid at position k of the protein chain, grefbb,R[k] is the free

energy of transfer of amino acid R[k] in the reference state (which is determined

by the type of experimental data available see Materials and Methods), Adenbb,k is

the accessible surface area (ASA) of the backbone unit at position k of the protein

chain in the denatured state, Aijbb,k is the accessible surface area of the backbone

unit at position k of the protein chain in the isolated native stretch from peptide

bond i to peptide bond j, Arefbb,R[k] is the accessible surface area of the backbone of

amino acid R[k] in the reference state, and finally grefsc,R[k], A
den
sc,k, A

ij
sc,k and Arefsc,R[k]

are defined similarly to the last four mentioned quantities, with the only difference

that they refer to the side chain rather than the backbone. Note that the procedure

of scaling GTFEs by the accessible surface area has previously proved accurate at

interpreting the thermodynamics of the osmolyte effect [109, 132, 133].

It can be seen in Eq. 5.12 that compared to the original WSME model, the

effective free energy expression in our extended version has one extra term for each

native stretch. Because no terms are introduced that simultaneously involve pep-

tide bonds from multiple native stretches, the transfer matrix approach [128] used

to solve the thermodynamics of the original WSME model is equally applicable our
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extended model. We present next the explicit formulae to compute in polynomial

time the effective free energy as a function of the number of native peptide bonds

and the weighted number of native contacts.

Let us denote by Qij the effective free energy of the native stretch delimited

by peptide bonds i and j (up to a constant term):

Qij/(kBT ) = 1K/T × ε
∑

i<k<l<j
hkl +

j−1∑
k=i+1

qk +Mi,j/(kBT ) , (5.13)

where 0 ≤ i < j ≤ N + 1.

We denote by ~f a two-dimensional vector such that fi,j is either of the two

order parameters of the native stretch delimited by peptide bonds i and j with

0 ≤ i < j ≤ N + 1, namely the number of peptide bonds (j - i - 1) or the weighted

number of contacts (−
∑

i<k<l<j hkl).

We compute recursively the effective free energy Rik(f) (up to a term that is

constant when i stays constant) of the protein subchain consisting of only the first

i peptide bonds and considering only states such that the relevant order parameter

of the subchain has the value p, or, more formally,
∑

0≤k<l≤i+1 Sklfkl = p:

exp[−Rip(~f)/(kBT )] = δp,f0,i+1
exp[−Q0,i+1/(kBT )]

+
∑

(1≤j≤i)∧(fj,i+1≤p≤f0j+fj,i+1)

exp[−Rj−1,p−fj,i+1
(~f)/(kBT )−Qj,i+1/(kBT )], (5.14)

where 0 ≤ i ≤ N and 0 ≤ p ≤ f0,i+1.

Finally, the quantity we look for is the effective free energy Ep of the full chain

considering only the states having the relevant order parameter equal to p, or,

more formally,
∑

0≤k<l≤N+1 Sklfkl = p. This effective free energy is then computed

using the formula

Ep(~f) = RN,p(~f)− kBT
N∑
k=1

qk, (5.15)

where an entropic correction has been included such that Eq. 5.11 and Eq. 5.15

lead to the same partition function:∑
0≤p≤f0,N+1

exp[−Ep(~f)/(kBT )] =
∑

mi∈{0,1},1≤i≤N
exp[−H(~m)/(kBT )]. (5.16)
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5.3.7 GTFE and ASA calculations

To apply Eq. 5.11 to the glycerol 30% v/v solution we used the statistical mechanics

model of Ref. [1] to estimate the transfer free energy of a backbone unit to the

concentration of glycerol 30% v/v, obtaining the value of 0.42 kBT . In this case the

reference state was the backbone unit of the tripeptide Gly-X-Gly, with accessible

surface areas taken from Table (2) in the Supplementary Information of Ref. [109].

Amino acid side-chains were ignored because of the lack of data of free energy of

transfer of side-chain residues to a glycerol 30% v/v concentration.

We computed the backbone ASA of the native stretches using PyMOL with a

probe radius of 0.14 nm, while the ASA of the GB1 backbone in the denatured

state was estimated using ProtSA [134, 135].

5.3.8 Fitting the Ising-like model

We adopted the convention qi = ln 2, which is a commonly adopted value since it

is intrinsic to another more recent WSME extension [127].

We extracted the native structure of protein GB1 from the Protein Data Bank

[136] (PDB code 1PGA [137]). We removed the hetero-atoms from the structure

after which we added the missing hydrogen atoms and flipped amino acid 8 using

MolProbity [138]. Subsequently, the MolProbity optimized structure was used for

all calculations involving the structure of the native state of GB1.

By digitizing the data of Fig. (3a) from Ref. [139] at low salt and pH 7.5 we

obtained the GB1 unfolding temperature as 329.15 K. By fitting this unfolding

temperature into the model we obtained ε = 37.24.

5.4 Results and Discussion

5.4.1 Testing the osmophobic hypothesis at the single-molecule

level

Under mechanical load the effect of mechanical work on the energy landscape is

felt by the transition state structure [60] regardless of its microsecond-long lifetime

[140]. On this basis, Single Molecule Force Spectroscopy (SMFS) mechanical ex-

periments allow mapping the protein energy landscape onto an easily quantifiable,
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geometrically relevant folding reaction coordinate, which coincides with the vector

of force application [3]. Importantly, in contrast to bulk experiments, mechan-

ical unfolding does not require the presence of denaturants that could interact

with the osmolitic analyte. Not only is the size of the activation energy of the

transition state measurable by SMFS experiments, but also a direct measure of

the position of the transition state along the pulling coordinate can be obtained

[76]. Consequently, from such experiments it is possible to gain geometric infor-

mation about the transition state and appreciate its putative movements along the

reaction coordinate in response to different conditions [76, 17].

Recently, J. Fernandez and coworkers employed SMFS experiments to charac-

terize the influence of the osmolyte glycerol on the folding and unfolding kinetics of

ubiquitin [76] and of the I27 module of human cardiac titin [15]. In both cases they

demonstrated that one or more glycerol molecules partake in the unfolding tran-

sition state of the protein. These observations are thus in apparent contradiction

with the osmophobic nature of the protein backbone.

Compared with proteins that commonly do not bear any mechanical function

under physiological conditions, mechanical proteins represent but a small fraction

of the proteins inside cells [69]. However many functionally non-mechanical pro-

teins have mechanical stability. From this category, one of the smallest model pro-

teins that are extensively used in protein stability studies is the B1 immunoglobulin-

binding domain of protein G from Streptococcus, commonly referred to as GB1.

Protein GB1 has been used to study protein-related topics as diverse as electro-

static and salt-screening contributions to protein stability [139], mechanisms of

beta-sheet formation [141], biomimetic materials [142, 98] and even protein aggre-

gation [143, 144]. The existing extensive characterization of the structure, ther-

modynamics and kinetics of GB1 [137, 145, 146, 147, 148, 149, 150, 151, 152, 153],

together with its high mechanical stability [69, 142] and the fact that it unfolds

mechanically without any observable intermediates on AFM time scales make from

GB1 a very compelling choice for the study of the osmophobic effect at the single

molecule level.

Pulling at constant velocity a multimodular construct made up of 8 tandem re-

peats of GB1, which we shall call (GB1)8, characteristic saw-tooth force-extension

curves as seen in Fig. 5.1 are obtained.

The presence of glycerol at a concentration of 30% v/v consistently shifted the
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Figure 5.1: Velocity-clamp force-extension curves of (GB1)8 show a characteristic saw-

tooth pattern in which each peak represents one rupture event. The contour length of

the stretched construct can be extracted from WLC fits before each rupture event, while

the rupture forces provide information about the unfolding frequency.

unfolding force distribution of GB1 to higher forces, as seen in Fig. 5.2. Extracting

the unfolding kinetics of GB1 (please refer to the Materials and Methods section)

we found that glycerol reduces the spontaneous unfolding rate ku(0) of protein

GB1. Moreover, the folded state of GB1 is stabilized by glycerol without chang-

ing the distance ∆xu between the ground state and the transition state along the

reaction coordinate, similarly to what was recently reported for GB1 in DMSO so-

lutions [12]. The expected stabilization of the folded state occurs therefore without

glycerol molecules bridging the critical beta strands at the transition state.

If the effect exerted by osmolytes on protein thermodynamics is indeed caused

by preferential exclusion of osmolyte molecules from the immediate vicinity of the

protein backbone, as proposed by the osmophobic model, it follows that (i) pro-

tecting osmolytes should act on all the conformations assumed by the protein, and

(ii) the magnitude of their effect on a given conformation should be correlated to

the amount of its backbone solvent hydrogen bonds (and thus anticorrelated with

the amount of backbone backbone intrapeptide hydrogen bonds) [99].While some

intrapeptide bonds are present in unfolding transition states of proteins [100], it

is likely that the number of those bonds is higher in the native state, and lower in

the unfolded state [101].

By invoking the activated-complex theory [121, 154] the above solvent-exposure

considerations can be used to predict osmolyte-induced changes to the protein

81



Chapter 5: Thermodynamic Ising-model

	
  
Figure 5.2: Average unfolding force of GB1 at various pulling speeds increases in the

presence of glycerol 30% v/v, and increases again slightly when adjusting for the viscous

drag-force on the cantilever. Only as a guide to the eye we fitted a dashed line to the

average unfolding forces in each condition with a fixed slope of kBT/(∆xu log10(e)) where

e is Eulers constant and ∆xu = 0.165 nm. The formula for the eye-guide fixed slope

has been inspired from the so-called “standard method” of kinetic parameter estimation

[38], and it was not used for the statistical estimation of the kinetic parameters that we

report, which was performed instead via Maximum Likelihood estimation (see Materials

and Methods).
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folding-unfolding transition state and kinetics. The main postulate of the activated-

complex theory is the existence of equilibrium between reactants and the transition

state [155]. From this perspective the thermodynamic stabilization effect of the

native state should, as schematized in Fig. 5.3, also (i) be accompanied by a kinetic

protection against unfolding, (ii) occur without binding of the osmolyte to the pro-

teins unfolding transition state, and (iii) be accompanied by an augmentation of

the proteins folding kinetics, as recently reported for GB1 in DMSO containing so-

lutions [12].Therefore a protecting osmolyte should mostly destabilize the unfolded

state, barely destabilize the folded state, and destabilize the transition state by an

intermediate amount [101]. As outlined above, our results fully conform to this

model, thus providing a single molecule level proof of the capability of glycerol

to stabilize the native state of a globular protein against unfolding without active

complexation into its unfolding transition state.

Previous SMFS experiments showed instead a biphasic dependence of the un-

folding force of protein I27 on glycerol concentration [15]. The average unfolding

force of I27 decreased in presence of concentrations of glycerol up to 30% (v/v),

then increased again with an almost linear trend. This surprising behavior was ex-

plained as coming from the highly nonlinear dependency of the unfolding distance

xu on glycerol concentration, which in turn is caused by glycerol molecules binding

to the unfolding transition state of the protein. A structural model of the unfolding

transition state of I27 was proposed that explains with remarkable accuracy the

above-mentioned nonlinear behavior [15, 69]. According to this model, there are a

limited number N of interaction sites that can be occupied by solvent molecules in

the transition state structure. If glycerol molecules are present at one or more of

the interaction sites then the unfolding distance acquires a larger value ∆xGu , while

it takes the normal value observed in water ∆xWu otherwise. The values ∆xGu and

∆xWu are representative of the size of the glycerol and water molecules, respectively.

Then, the unfolding distance ∆xu for any glycerol concentration is computed as

an average quantity via the formula ∆xu = (Pw)N∆xWu + (1− (Pw)N)∆xGu where

Pw is the water occupancy probability of an interaction site, i.e., 1Pw is the volume

fraction of glycerol in solution. Among all possible values of N, this model was

found to best fit the experimental data when the number of interaction sites is set

equal to the number of hydrogen bonding sites between the force-bearing beta-

strands of I27. Similarly, glycerol molecules have been reported to be involved in
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Figure 5.3: Schematic representation of the themodynamics and suggested kinetic im-

plications of the osmophobic effect on a two-state globular protein. N represents the

native state, U the unfolded state, and ‡ the transition state. In presence of a protecting

osmolyte, the free energy of all states is raised proportionally to their respective amount

of solvent-exposed backbone: ∆Gtr,N < ∆Gtr,‡ < ∆Gtr,U , where ∆Gtr,N , ∆Gtr,‡ and

∆Gtr,U are the free energy of transfer from water to the water-protecting osmolyte

mixture of the native state, the transition state and the unfolded state, respectively.

Thermodynamically, it is known that the protecting osmolyte shifts the equilibrium be-

tween N and U towards N: ∆∆G = ∆Gtr,U∆Gtr,N > 0, where ∆G is the free energy

difference between the unfolded state and the native state. Kinetically, we demonstrate

that a protecting osmolyte (i) increases the height of the unfolding activation barrier:

∆∆Gu = ∆Gtr,‡∆Gtr,N > 0, where ∆Gu is the free energy difference between the tran-

sition state and the native state and that (ii) it does so without any movement of ‡
along the reaction coordinate. Moreover, it is expected that protecting osmolytes also

decrease the height of the folding activation barrier: ∆∆Gf = ∆Gtr,U − ∆Gtr,‡ > 0,

where ∆Gf is the free energy difference between the unfolded state and the transition

state.
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the mechanical unfolding transition state of the protein ubiquitin [76].

The mentioned osmolyte bridging phenomenon makes it very difficult to eval-

uate the magnitude of the osmophobic effect that glycerol has on proteins I27 and

ubiquitin, or even to assert its presence at all. In contrast, as shown in this study,

no such phenomena are induced on GB1 by the same concentration of glycerol that

was previously found to actually depress the unfolding force of I27 to its minimum

observed value (30% v/v). This suggests that the general, solvophobic thermody-

namical force of the osmophobic model can coexist superimposed with other non

standard effects such as binding of the osmolyte at specific protein sites [96, 76, 15]

or modifications of the reaction pathway [14, 111]. Such effects however, are highly

dependent on the specific protein-osmolyte pair and do not represent the general

mechanism of protein stabilization by protecting osmolytes.

5.4.2 Theoretical predictions on the unfolding transition

state in presence of glycerol: extending an Ising-like

protein model

We also tested the osmophobic hypothesis via theoretical considerations based on

an expanded version of a previously reported WSME Ising-like protein model [122,

123, 124, 125]. Our model extension (please refer to the materials and methods

section) takes into account the group transfer free energies (GTFEs) of amino acid

residues [109] from water to osmolyte containing solutions.

Briefly, the free energies predicted by the previously reported WSME model for

each state of the protein chain were modified with an additional term accounting

for the osmophobic effect. This additional term was calculated by imposing an

energetic penalty proportional to the accessible surface area of the protein confor-

mation, as described in detail in the Materials and Methods section.

This expanded model allowed us to project the energy landscape of GB1 onto

two commonly studied reaction coordinates, namely (i) the number of native pep-

tide bonds and (ii) the weighted number of native contacts.In both cases we found

that adding glycerol as a cosolute at 30% v/v (i) lowers the free energy of the

native state with respect to the unfolding transition state, and (ii) does not af-

fect the position of the unfolding transition barrier along the respective reaction

coordinate.
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Figure 5.4: Energy landscape of protein GB1 projected onto the reaction coordinate

given by the number of native peptide bonds in the absence and presence of 30% v/v

glycerol, computed via Eq. 5.14, Eq. 5.15 with fij = j − i− 1, 0 ≤ i < j ≤ N + 1. The

vertical line indicates the unfolding transition barrier, which in both solvents has the

same position with the number of native peptide bonds being equal to 48. The rightmost

points in the graph have a number of native peptide bonds of 55 and represent the fully

native state.

The energy landscape of GB1 as a function of the number of native bonds is

shown in Fig. 5.4. Both in the absence and presence of 30% v/v glycerol, the

main unfolding barrier stays fixed at a number of 48 native peptide bonds. By

comparing the predicted effective free energies of the protein ground state (that is,

the state with the highest number of native peptide bonds) and the transition

state (that is, the state with 48 native peptide bonds), it is then possible to

estimate the transition barrier height. The unfolding barrier increases in this

case by ∆∆Gu = 3.271kBT in the presence of 30% v/v glycerol.

It has been proposed that the weighted number of native contacts is a better

order parameter than the number of native bonds [131]. The energy landscape of

GB1 as a function of the weighted number of native contacts is shown in Fig. 5.5.

Both in the absence and presence of 30% v/v glycerol, the main unfolding barrier

stays fixed at 382 native contacts. The unfolding barrier height increases in this
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Figure 5.5: Energy landscape of protein GB1 projected onto the reaction coordi-

nate given by the weighted number of native contacts θ(~m)defined in Eq. 5.9 in the

absence and presence of 30% v/v glycerol, computed via Eq. 5.14, Eq. 5.15 with

fij = −
∑

i<k<l<j hkl, 0 ≤ i < j ≤ N + 1. The vertical line indicates the unfold-

ing transition barrier, which in both solvents has the same position with the weighted

number of native contacts being equal to 382.

case by ∆∆Gu = 1.758kBT in the presence of glycerol 30% v/v.

5.5 Conclusions

In summary, using the well-established dynamic SMFS experimental strategy we

found single molecule evidence that glycerol can hinder the kinetics of protein

unfolding without playing a bridging effect in the unfolding transition state of a

globular protein. We showed that glycerol does not change the position of the

unfolding transition barrier on the mechanical reaction coordinate.

In order to study the unfolding transition barrier on other reaction coordinates,

we extended an Ising-like protein model with support for the osmophobic effect.

This model predicts that the presence of glycerol does not move the unfolding

transition state on two widely used non mechanical reaction coordinates, further

supporting the osmophobic mechanism hypothesis.
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These observations give further support to the backbone based osmophobic

effect, which has recently been proposed as a new dimension of the protein-folding

problem [88, 91, 85]. The ability of protecting osmolytes to stabilize proteins

without causing displacement of their unfolding transition state may be necessary

for their leaving the functional activity of proteins unaltered.
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Chapter 6

Worm-Like Ising Model for

Protein Mechanical Unfolding

under the Effect of Osmolytes

Adapted from Aioanei D, Brucale M, Tessari I, Bubacco L, Samor̀ı B. “Worm-

like Ising model for protein mechanical unfolding under the effect of osmolytes”,

Biophys J. 2012 Jan 18;102(2):342-50. Copyright (2012) Biophysical Society. Per-

mission for reproduction requested but not yet granted by the completion time of

this thesis.

6.1 Abstract

We show via single-molecule mechanical unfolding experiments that the osmolyte

glycerol stabilizes the native state of the human cardiac I27 titin module against

unfolding without shifting its unfolding transition state on the mechanical reaction

coordinate. Taken together with similar findings on the immunoglobulin-binding

domain of streptococcal protein G (GB1), these experimental results suggest that

osmolytes act on proteins through a common mechanism that does not entail a

shift of their unfolding transition state.

We investigate the above common mechanism via an Ising-like model for protein

mechanical unfolding which adds Worm-like chain behavior to a recent general-

ization of the Wako-Saitô-Muñoz-Eaton (WSME) model with support for group-
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transfer free energies. The thermodynamics of the model are exactly solvable,

while protein kinetics under mechanical tension can be simulated via Monte-Carlo

algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no

shift in the position of the unfolding transition state of GB1 and I27 under the

effect of various osmolytes.

The excellent agreement between experiment and simulation strongly suggests

that osmolytes do not assume a structural role at the mechanical unfolding tran-

sition state of proteins, acting instead by adjusting the solvent quality for the

protein chain analyte.

6.2 Introduction

Throughout the course of evolution, nature has successfully modulated protein

stability using organic osmolytes, which are small molecules that shift the native-

unfolded thermodynamic balance by changing the solvent quality for the protein

chain. This thermodynamic description is commonly referred to as the osmolyte

effect [85]. Even though the thermodynamic model of the osmolyte effect is now

widely accepted, the molecular details of the mechanism by which osmolytes in-

fluence protein kinetics and transition states are still not completely understood.

Mechanistic information about the role of osmolytes in protein folding and

unfolding processes may be obtained by projecting protein transition states onto

a geometrically relevant reaction coordinate. Single-Molecule Force Spectroscopy

(SMFS) has recently become the technique of choice for geometrical mapping of

protein energy landscapes [3]. From protein mechanical unfolding experiments,

SMFS readily provides not only the distance between the native state and the me-

chanical unfolding transition state, commoly referred to as the unfolding distance

∆xu, but also an estimate of the spontaneous unfolding rate ku(0) of the protein

[17].

A previous SMFS study of mechanical unfolding of protein ubiquitin reported

that the presence of glycerol as a cosolvent in aqueous solution leads to an increase

of the protein’s unfolding distance [76]. Other SMFS studies reported that glycerol

[15], ethylene glycol and propylene glycol [16] increase the unfolding distance of

the I27 titin module of the human muscle. Based on the ansatz that the unfolding

distance of proteins may be determined by the bridging length of solvent molecules
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at the unfolding transition state [60, 156], the mentioned SMFS studies concluded

that small osmolyte molecules bridge the critical beta strands of proteins under

mechanical tension, leaving their distinct signature on their unfolding distance.

In particular, since osmolyte molecules are larger than water molecules, the small

osmolytes were reported to increase the unfolding distance of proteins by amounts

that correlate with their molecular size. It should be noted however that larger

osmolytes such as sorbitol and sucrose were instead found to leave the unfolding

distance of I27 unchanged, indicating their inability to partake in solvent bridging

[16].

We challenge the above view that small osmolytes increase the unfolding dis-

tance of proteins and bridge their critical beta-strands in the unfolding transition

state through experimental and theoretical considerations.

1. Experimentally, we show herein that, contrary to what was reported in

Ref. [15], glycerol does not change the unfolding distance of I27. It should

be noted that recent studies by us and others have also shown that the

small osmolytes dimethylsulfoxide (DMSO) [12], glycerol [19] and guani-

dinium chloride (GndCl) [63] do not change the unfolding distance of GB1.

Taken together, these experimental results challenge the view that small

osmolytes increase the unfolding distance of proteins.

2. Theoretically, we have recently shown that an Ising-like model with sup-

port for the osmolyte effect does not exhibit any movement of the unfolding

transition state of GB1 in the presence of glycerol 30% v/v, when projected

thermodynamically onto a commonly-used non-mechanical reaction coordi-

nate [19]. Herein we show that the same lack of movement holds for various

concentrations of DMSO and GndCl, indicating that osmolytes may not

generally produce significant movements of the unfolding transition states

of proteins. Furthermore, we expand the mentioned thermodynamic model

with mechanical unfolding kinetics based on the worm-like chain (WLC)

force-distance relation [58, 59], showing that our Ising-like model exhibits

no significant change in the unfolding distance of GB1 and I27 under the

effect of various concentrations of DMSO, glycerol and GndCl, in excel-

lent agreement with the experimental results presented herein and those of

Ref. [12, 19, 63]. Note that our Ising-like model lacks the expressive power to
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account for any possible structural role of osmolytes at the unfolding tran-

sition state of proteins, while still being able to explain the mentioned ex-

perimental data. Therefore our mechanical unfolding simulations challenge

the view that osmolyte-bridging may be a general phenomenon in nature,

since a structural role of osmolytes at the unfolding transition state is not

necessary to explain the aforementioned experimental results.

In the next two sections we give a general overview of the protein mechanical

unfolding model we propose together with a short overview of how the model

supports the osmolyte effect.

6.2.1 Ising-like protein models with exactly solvable ther-

modynamics

A recent model for protein mechanical unfolding [126, 127, 157], which we shall

refer to as the IPZ model (based on the initials of the authors), was built as a

generalization of the Ising-like Wako-Saitô-Muñoz-Eaton (WSME) protein model

[122, 123, 124, 158, 125, 159]. Like the WSME model that it extends, the IPZ

model has exactly solvable thermodynamics [128, 160] and it has been employed

to investigate protein folding/unfolding kinetics and trajectories by simulating pro-

tein refolding under force-clamp conditions [130] and protein mechanical unfolding

either in the force-clamp [131, 130, 127], force-ramp [126, 127] or velocity-clamp

[131, 161] modes.

The IPZ model takes into account the entropic elasticity of the protein chain

by allowing every WSME state to behave similarly to a freely-jointed chain (FJC)

with the angle between consecutive segments being taken from a finite set, usually

being either zero or π radians [127]. Such an approach comes however with several

limitations:

1. The experimentally observed behavior of unfolded protein chains does not

show significant deviations from the ideal behavior of a worm-like chain under

mechanical tension. Indeed, lock-in force spectroscopy with a resolution of

400 fN has failed to find any such deviations down to a force of 1.7 pN [162].

Therefore the WLC force-distance formula is extensively used in the anal-

ysis of velocity-clamp experiments performed with either the atomic-force

92



i
i

“phd˙thesis” — 2013/3/8 — 12:20 — page 93 — #53 i
i

i
i

i
i

Chapter 6: Kinetic WLC-like Ising model

microscope (AFM) [72] or optical-tweezers [163, 164]. Rather than aiming

at approximating the WLC entropic elasticity, the IPZ model [126, 127, 157]

tries to approximate the FJC entropic elasticity, which differs significantly

at high forces [3].

2. The IPZ model has more states than the WSME model, which may make it

more difficult to obtain statistically representative sets of trajectories during

Monte-Carlo simulations, or to compute exactly the kinetics of small protein

domains [124, 158]. Indeed, for a protein withN peptide bonds, we computed

that the IPZ model has 2 × 3N states when only two possible angle values

are allowed, while the WSME model has the lower number of 2N states. It

should be noted however that this shortcoming may be somewhat mitigated

by the fact that the partition sum over the extra microscopic degrees of

freedom introduced by the IPZ model (relative to the WSME model) can be

computed analytically [127], and through the local equilibrium approach for

kinetic simulations [157, 165].

We address both limitations by introducing an Ising model for proteins under

mechanical tension that dictates that for every WSME state, the end-to-end ex-

tension of the protein chain is given by the WLC average force-distance relation

(see Section 6.3.4). For any fixed stretching force, the number of states of the

model is the same as that of the WSME model. Shortly, a protein state consists

of a set of contiguous native stretches of the peptide chain, contributing to the

contour length with the distance in the native structure of the protein between

the start and end of the stretch. Our worm-like Ising protein model maintains ex-

actly solvable thermodynamics and, in the absence of a stretching force, it reduces

trivially to the WSME-like model it extends.

6.2.2 Incorporating the osmolyte effect into the protein

model

The osmolyte effect has been dissected into groupwise free energy contributions,

with the protein backbone making up most of the protein’s free energy of transfer to

osmolyte-containing solutions [85]. Making use of the group transfer free energies

(GTFEs) of amino acid backbone units and side-chains, a recent extension of the
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WSME model for the osmolyte effect enabled the thermodynamic projection of the

protein energy landscape in the presence of osmolytes onto reaction coordinates

commonly employed to monitor protein folding and unfolding [19].

However, a purely thermodynamic theory cannot directly explain the results

of SMFS experiments in osmolyte-containing solutions, for which a kinetic theory

of protein mechanical unfolding in the presence of osmolytes is needed instead. In

this work we address the effect of osmolytes on GB1 (see Fig. (6.1a)) and I27 (see

Fig. (6.1b)) both at the thermodynamic and kinetic levels. Thermodynamically,

we extend the previous equilibrium analysis of the osmolyte effect projected onto

the reaction coordinate represented by the weighted number of native contacts [19]

to a larger range of osmolytes and osmolyte concentrations for GB1, and we also

apply it to I27 in the presence of glycerol 30% v/v. Kinetically, we use our worm-

like Ising model we propose in Section 6.3.4 to investigate protein mechanical

unfolding in the presence of osmolytes by simulating the mechanical unfolding of

GB1 and I27 under force-clamp and velocity-clamp conditions. We compare the

mechanical unfolding kinetics as predicted by the worm-like Ising protein model in

the presence of varying concentrations of osmolytes, namely DMSO, glycerol and

GndCl, to experimental SMFS data obtained in similar solvent conditions.

6.3 The model

6.3.1 The original WSME formulation

According to the WSME model [122, 123, 124, 125, 128], a protein N + 1 amino

acids long is described as a chain of N peptide bonds. The state of the protein

is captured by the vector ~m, where the i-th peptide bond is represented by the

binary variable mi which has only two possible values: 1 for a native peptide bond,

and 0 for a non-native peptide bond. The effective free energy of the system reads

as

HWSME(~m) = 1K × kBε
∑

1≤i<j≤N

hij

j∏
k=i

mk − kBT
N∑
i=1

qi(1−mi) , (6.1)

where 1K is one Kelvin, kB is Boltzmann’s constant, T is the temperature, ε is a

dimensionless enthalpic scale and hij ≤ 0 are dimensionless numbers representing
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Figure 6.1: (Color online) a) The native structure of GB1 (Protein Data Bank (PDB)

[136] code 1PGA [137]). b) The native structure of I27(PDB code 1TIT [166]) showing

the A, A’ and G strands.

the relative strength of the contact between the i-th and the j + 1-th amino acids

and qi > 0 represents the entropic cost of ordering bond i. The contact strength

hij is commonly defined as 0 if j = i + 1, and −dcij/5e if j > i + 1 where cij

is the number of pairs of atoms, the first atom of the pair belonging to amino

acid i and the second atom of the pair belonging to amino acid j + 1, that in the

native state are closer than 0.4 nm and d·e is the ceiling function [126, 127]. The

thermodynamics of the WSME model can be exactly computed via the transfer-

matrix approach [128] (see also Section 6.3.3 for zero osmolyte concentration).

The fraction of folded molecules is estimated as

pf (T ) = [α(T )− α(∞)]/[α(0)− α(∞)] , (6.2)

where α(T ) is the thermodynamic average of the number of native peptide bonds

at temperature T . At zero temperature we have α(0) = N , while at infinite

temperature the exact expression for the mentioned thermodynamic average[129]

reads as:

α(∞) =
N∑
i=1

[1 + exp(qi)]
−1 . (6.3)

Assuming the entropic costs qi are known, the parameter ε in Eq. (6.1) can
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be fitted by imposing the known value of the folded fraction pf (T ) at a certain

temperature.

6.3.2 Adding the osmolyte effect to the WSME model

Tanford’s Transfer Model has proved very successful at predicting osmolyte-induced

energetics of protein stability [109]. In particular, the procedure of scaling group

transfer free energies (GTFEs) by the accessible surface area has previously proved

accurate at interpreting the thermodynamics of the osmolyte effect [132, 133, 109].

We describe next how the osmolyte effect has been incorporated into the WSME

model by applying the Transfer Model to every WSME state [19].

A native stretch is defined as a sequence of consecutive amino acids connected

by native bonds and delimited by two non-native bonds. More formally, the stretch

delimited by bonds i and j is said to be native if Sij = 1 where

Sij = (1−mi)(1−mj)

j−1∏
k=i+1

mk , (6.4)

with 0 ≤ i < j ≤ N + 1 and taking m0 = mN+1 = 0. In the limiting case of

j − i = 1 the stretch reduces to one amino acid [126, 127].

Accordingly, we consider each native stretch to have the exact same structure

as in the native state of the full protein, and we add to the effective free energy of

Eq. (6.1) a term representing the free energy of transfer Mij of the native stretch

delimited by peptide bonds i and j, in isolation, relative to the denatured state:

HO(~m) = HWSME +
∑

0≤i≤j−2≤N−1

SijMij , (6.5)

with Mij taken as

Mij =
∑
i<k≤j

[
∆grefbb,R[k](A

den
bb,k − A

ij
bb,k)/A

ref
bb,R[k] + ∆grefsc,R[k](A

den
sc,k − A

ij
sc,k)/A

ref
sc,R[k]

]
,

(6.6)

where R[k] denotes the amino acid at position k of the protein chain, grefbb,R[k] is the

free energy of transfer of amino acidR[k] in the reference state (which is determined

by the type of experimental or theoretical data available - see Section 6.4.1), Adenbb,k
is the accessible surface area (ASA) of the backbone unit at position k of the
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protein chain in the denatured state, Aijbb,k is the accessible surface area of the

backbone unit at position k of the protein chain in the isolated native stretch from

peptide bond i to peptide bond j, Arefbb,R[k] is the accessible surface area of the

backbone of amino acid R[k] in the reference state, and finally grefsc,R[k], A
den
sc,k, A

ij
sc,k,

Arefsc,R[k] are defined similarly to the last four mentioned quantities, with the only

difference that they refer to side chains rather than the backbone.

6.3.3 Solving the thermodynamics of the WSME model

and its extension for the osmolyte effect

It can be seen that compared to Eq. (6.1) of the original WSME model, the

effective free energy expression of Eq. (6.5) has one extra term for each native

stretch. Because no terms are introduced that simultaneously involve peptide

bonds from multiple native stretches, the transfer-matrix exact solution to the

thermodynamics of the WSME model [128] is equally applicable when the osmolyte

effect is incorporated. In this section we reiterate the equations to exactly compute,

for two common order parameters, the free energy landscape of the WSME model

extended with the osmolyte effect[19] described in Section 6.3.2, and of the original

WSME model described in Section 6.3.1, which can be seen as the special case of

zero osmolyte concentration.

Let us introduce the notation

Qij = 1K × kBε
∑

i<k<l<j

hkl + kBT

j−1∑
k=i+1

qk +Mij , (6.7)

for 0 ≤ i < j ≤ N + 1.

The two order parameters we consider are the number of native peptide bonds

φ(~m) =
N∑
i=1

mi (6.8)

and the weighted number of native contacts [131]:

θ(~m) = −
∑

1≤i<j≤N

hij

j∏
k=i

mk . (6.9)

We denote generically by ~g a two-dimensional vector such that gij is either of

the two mentioned order parameters of the native stretch delimited by peptide
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bonds i and j with 0 ≤ i < j ≤ N+1, namely the number of native peptide bonds

(j − i− 1) or the weighted number of native contacts (−
∑

i<k<l<j hkl).

Then the effective free energy Ep restricted to the states having the relevant

order parameter (φ or θ) equal to p (more formally,
∑

0≤k<l≤N+1 Sklgkl = p) is

computed as

Ep(~g) = RNp(~g)− kBT
N∑
k=1

qk (6.10)

for 0 ≤ p ≤ g0,N+1 where the quantity RNp(~g) is computed in polynomial time via

the recursion

exp[−Rip(~g)/(kBT )] = δp,g0,i+1
exp[−Q0,i+1/(kBT )]

+
∑

(1≤j≤i)∧(gj,i+1≤p≤g0,j+gj,i+1)

exp[−Rj−1,p−gj,i+1
(~g)/(kBT )−Qj,i+1/(kBT )] , (6.11)

with δ·,· being the Kronecker delta symbol.

The average number of native peptide bonds in the absence of force, which is

needed to fit the parameter ε, follows trivially once the free energy landscape is

computed via Eq. (6.10) for the number of native peptide bonds.

6.3.4 The worm-like Ising model for proteins under me-

chanical tension

Let us represent the amino acid k by its nitrogen, alpha-carbon and carbon of the

carbonyl group as a three-long Nk − Cα,k − Ck sequence. For 0 ≤ i < j − 1 ≤ N

we define the length lij of the native stretch delimited by peptide bonds i and j

as the distance between the midpoint of the Ci and Ni+1 atoms and the midpoint

of the Cj and Nj+1 atoms, making the convention that C0 = N1 and NN+2 =

CN+1 [126, 127]. Although the extensibility of native stretches is not taken into

account[130], in order to get better agreement with the experimental contour-

length increments upon unfolding of individual protein modules in characteristic

velocity-clamp sawtooth patterns, we fix li,i+1 = 0.4 nm [167, 48].

We define the contour length of a WSME state ~m as the sum of the lengths of

its native stretches

L(~m) =
∑

0≤i<j≤N+1

Sijlij(~m) . (6.12)
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In order to introduce mechanical tension into the model we add to the effective

free energy HO (or HWSME in the absence of osmolytes) a potential energy function

that depends on the end-to-end extension x. For a given contour length L and an

acting force f , we fix the end-to-end extension x according to the following WLC

force-distance interpolation relation [59, 58]:

FWLC

(x
L

)
= kBT (4pl)

−1

[(
1− x

L

)−2

+ 4
x

L
− 1

]
, (6.13)

where pl is the persistence length, assumed to be constant all throughout. There-

fore the end-to-end extension becomes x(L, f) = F−1
WLC(f)L.

The force-clamp potential energy takes the form V (L, f) = −ξx(L, f)f =

−ξF−1
WLC(f)Lf , where ξ is a dimensionless scaling factor that is computed by

imposing that the folded fraction has a known value at a given temperature and

force combination.

The velocity-clamp potential energy takes the form V (L, t) = ξ κ
2
[vt−x(κ, L, vt)]2,

where v is the constant velocity of the cantilever, κ is the cantilever spring constant

and x(κ, L, z) is the unique root in the interval [0, L) ∩ [0, z] of the equation

FWLC(x(κ, L, z)/L) = κ(z − x(κ, L, z)) . (6.14)

6.3.5 Solving the thermodynamics under the effect of force

In this section we present the equations that allow one to compute in polynomial

time the effective free energy as a function of the number of native peptide bonds

φ, the weighted number of native contacts θ, and contour length L in the presence

of a stretching force f . Herein we reuse the definitions of Qij (Eq. (6.7)) and ~g

from Section 6.3.3.

The key to polynomial time computation of force-dependent effective free en-

ergies lies in the discretization of the possible lengths of native stretches lij. As

in Ref. [127], we assume that a length scale is chosen such that the size of the set

of all protein subchain contour lengths grows only linearly with increasing protein

size.

It is useful to consider the maximum contour length Di that the protein chain

made up of the first i peptide bonds can take, 0 ≤ i ≤ N . Note that fully

denaturing the protein chain is not guaranteed to lead to the maximum contour
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length because of two reasons. One is due to rounding of the native stretch lengths,

which in general is not guaranteed to preserve the triangle inequality. The other

reason is that we assign to li,i+1 a value not dictated by the three-dimensional

structure of the protein (see Section 6.3.4), which again may, in principle, break

the triangle inequality. The maximum contour length of the first i peptide bonds

can be computed recursively as follows:

Di = max
0≤j≤i

[(1− δj,0)Dj−1 + lj,i+1] . (6.15)

The effective free energy as a function of contour length L and order parameter

p (either the number of native peptide bonds φ or the weighted number of native

contacts θ) in the presence of a stretching force f can be written as

EL,p(~g, f) = UN,L,p − kBT
N∑
i=1

qi − ξF−1
WLC(f)fL (6.16)

for 0 ≤ L ≤ DN and 0 ≤ p ≤ g0,N+1, where UN,L,p is independent of force and it is

computed recursively:

exp[−UiLp(~g)/(kBT )] = δL,l0,i+1
δp,g0,i+1

exp[−Q0,i+1/(kBT )]

+
∑

(1≤j≤i)∧(lj,i+1≤L≤Dj−1+lj,i+1)∧(gj,i+1≤p≤g0,j+gj,i+1)

exp[−Uj−1,L−lj,i+1,p−gj,i+1
(~g)/(kBT )−Qj,i+1/(kBT )] . (6.17)

The average number of native peptide bonds in the presence of force, which is

needed to fit the parameter ξ, follows trivially once the free energy landscape is

computed via Eq. (6.16) for the number of native peptide bonds.

It should be noted that while Eq. (6.16) can be summed at zero force over the

possible L values to yield the same thermodynamic quantities like Eq. (6.10), the

latter equation, specialized for the absence of force, is simply faster to evaluate in

practice, when applicable.

6.3.6 Continuous-time Markov chain approach to kinetics

A necessary condition for Monte Carlo simulations is that the associated kinetics

satisfy the balance condition, i.e., that they leave the Boltzmann distribution in-

variant [168]. Monte Carlo simulations are commonly designed to satisfy an even
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stronger condition called detailed balance [169] that implies reversibility of all tran-

sitions. We adopt the latter approach and define a continuous-time Markov chain

by allowing single-bond flip transitions[158]. More formally, we allow transitions
~mt → ~mh from a tail state ~mt to a head state ~mh whenever the two states differ

by the native status of exactly one peptide bond. By assigning transition rates

according to a detail-balance preserving prescription that depends only on the dif-

ference of the energetic levels of the tail and head states expressed in kBT units,

e.g. the exponential, Metropolis or Glauber transition rate expressions [170], the

continuous-time Markov chain thus defined is in detailed balance with the Boltz-

mann distribution of states. Hereafter we denote the transition rate from tail state
~mt to head state ~mh by the notation

W ( ~mt, ~mh) = W
(

[HO( ~mh)−HO( ~mt)]/(kBT )
)

= τ−1W0

(
[HO( ~mh)−HO( ~mt)]/(kBT )

)
= τ−1W0( ~mt, ~mh) , (6.18)

where τ is the microscopic time scale andW0 is a dimensionless transition rate func-

tion that does not depend on τ . More details about the transition rate prescription

chosen, the starting and ending states of the simulations and the architecture of

the protein constructs simulated in this study can be found in Section 6.4.4 .

Since the number of outgoing transitions from each state is as small as N , for

the simulations it is convenient to use the kinetic Monte Carlo algorithm [171].

According to this algorithm each transition requires the generation of two uniform

random numbers in the interval (0, 1], one used to select the time to the next

transition and the other one used to select one of the outgoing transitions from

the current state (see Section 6.4.3).

6.4 Materials and methods

6.4.1 GTFEs and ASAs

In order to apply Eq. (6.6) at different DMSO concentrations we linearly inter-

polated the experimental transfer free energies of the full amino acids Glycine,

Alanine, Leucine and Tryptophan, computed from the logarithm of solubility ra-
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tios reported in Table 7 of Ref. [172]. The transfer free energies at DMSO con-

centrations of 50%, 40%, 30%, 20% and 10%, respectively, computed as (i) 2.81,

2.21, 1.34, 0.89 and 0.35 kBT , respectively, for Glycine; (ii) 2.20, 1.75, 1.12, 0.73

and 0.30 kBT , respectively, for Alanine; (iii) 1.90, 1.51, 0.97, 0.62 and 0.26 kBT ,

respectively, for Leucine; and (iv) -0.52, -0.41, -0.38, -0.34 and -0.19 kBT , respec-

tively, for Tryptophan. Free energies of transfer for the side-chains of the above

mentioned amino-acids grefsc,R[k] were estimated by subtracting the free energy of

transfer of Glycine, which is denoted by grefbb,R[k] in Eq. (6.6), and set to zero for

all the other sidechains. As reference state we took the full amino acids, which

is compatible with the type of solubility experimental data of Ref. [172]. The

amino acid structures were created and optimized using PRODRG2 [173]. On the

optimized structures we computed accessible surface areas for the backbone unit

Arefbb,R[k] and side chains Arefsc,R[k] of the amino acids using PyMOL [174] with a probe

radius of 0.14 nm.

For glycerol we applied the statistical mechanics model of Ref. [1] to estimate

the transfer free energy of a backbone unit to the concentration of 30% v/v glycerol,

obtaining the value of 0.42 kBT [19]. In this case the reference state was the

backbone unit from the Gly-X-Gly tripeptide, with accessible surface areas taken

from Table 2 in the Supplementary Information of Ref. [109]. Side chains were not

included in the glycerol calculations.

For GndCl we applied the same statistical mechanics model of Ref. [1] to es-

timate the transfer free energy of the backbone unit at GndCl concentrations of

3.04, 2.25 and 1 M, obtaining the values -0.26, -0.20 and -0.10 kBT , respectively.

As for glycerol, the reference state was taken to be the backbone unit from the

Gly-X-Gly tripeptide, and side-chains were ignored.

For urea we used again the statistical mechanics model of Ref. [1] for the

backbone unit of the Gly-X-Gly tripeptide, taken as the reference state. The

transfer free energy of the backbone unit in 4 M urea computed as -0.26 kBT and

we ignored all sidechain contributions.

We computed the ASA of the native stretches split between backbone and

sidechain atoms using PyMOL with a probe radius of 0.14 nm, while the ASA of

the denatured state of GB1 and I27 was estimated using ProtSA [134, 135].
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6.4.2 Fitting the model

We extracted the native structure of GB1 (see Fig. (6.1a)) and I27 (see Fig. (6.1b))

from the Protein Data Bank [136]. We removed the hetero-atoms from the struc-

ture after which we added the missing hydrogen atoms and flipped residue 8 of

GB1 and residue 31 of I27 using MolProbity [138]. Subsequently the MolProbity

optimized structures were used for all calculations involving the structure of the

native stretches of GB1 and I27.

We adopted the convention that all peptide bonds have the same entropic cost

for being in the native state, i.e., qi = q for all 1 ≤ i ≤ N , which is a commonly

adopted assumption with WSME-like models [127, 126, 19]. For any given value

of q, the parameter ε can be obtained by imposing the value of the unfolding

temperature onto the model.

As the unfolding temperature of GB1 we used the value 350.15 K obtained

from a computational study at pH 7 [175]. Note that this unfolding temperature

is higher than the one used in a previous WSME study of GB1 [19], which in

turn was the experimental unfolding temperature of a less thermally stable GB1

mutant [139]. We performed a space search of q to find the value that gives a folded

fraction of GB1 of 1/2 in the presence of 4 M urea at a temperature of 295.15 K

[98]. The simultaneous fit of q and ε led to the approximate values q = 0.59 and

ε = 37.19.

From the previously characterized folding and unfolding kinetics of GB1 under

mechanical tension at 301.15 K [12, 18], we estimated the unfolding force of GB1

to be Fu = kBT ln[kf (0)/ku(0)]/(∆xf + ∆xu) = 14.55 pN where kf (0) is the spon-

taneous folding rate, ku(0) is the spontaneous unfolding rate, ∆xf is the folding

distance and ∆xu is the unfolding distance. Imposing the above mentioned un-

folding force and discretizing the native stretch contour lengths with a resolution

of 0.01 nm we obtained the approximate value ξ = 0.34.

Similarly, we determined the parameters q, ε and ξ for I27 by using the un-

folding temperature of 344.95 K (obtained by digitizing Fig. (6) of Ref. [176] for

pH 7.0), the denaturing concentration of 3.04 M GndCl at 298.15 K [177] and the

unfolding force of 13.7 pN [178] at 298.15 K. We obtained the approximate values

q = 0.64, ε = 41.76 and ξ = 0.35.
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6.4.3 Kinetic Monte-Carlo algorithm

We show next the formulae used to implement the kinetic Monte Carlo algorithm

in the force-clamp and velocity-clamp pulling modes. In what follows, let us denote

the current state by ~mt, the N possible head states by ~mh1 , · · · , ~mhN (the N head

states can be taken in any order) and let u1 and u2 be two uniform random numbers

in the interval (0, 1].

Force-clamp simulations

For the force-clamp case, the time ∆t before the next transition happens is given

by the relation

∆t/τ = −(lnu1)/

[
N∑
i=1

W0( ~mt, ~mhi)

]
, (6.19)

and the transition is performed to head state ~mhh with

h = max
1≤i≤N

{
i

∣∣∣∣ i−1∑
j=1

W0( ~mt, ~mhj)/
N∑
j=1

W0( ~mt, ~mhj) < u2

}
. (6.20)

It becomes clear from Eq. (6.19) and Eq. (6.20) that it is possible to perform force-

clamp simulations without knowledge of the microscopic time scale τ , as long as it

is understood that after the simulation the transition times obtained (∆t/τ) need

to be multiplied by τ for comparison with experimental data.

Velocity-clamp simulations

Let us assume that the current time is ts and that we need to compute the time

to the next transition ∆t, and then we need to find out which of the N possible

transitions is taken. In what follows we use the notation

W0( ~mt, ~mh, y) = W0

(
{HO( ~mh)−HO( ~mt) + ξκ/2[x(κ, L( ~mh), vτy)2 − x(κ, L( ~mt), vτy)2]

−ξκvτy[x(κ, L( ~mh), vτy)− x(κ, L( ~mt), vτy)]}/(kBT )
)
, (6.21)

where x(κ, L, z) is the relevant root of Eq. (6.14) and y ≥ 0 is a dimensionless

quantity.
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The time to the next transition ∆t is given by the unique solution of the

equation:

lnu1 = −
∑N

i=1

∫ ts/τ+∆t/τ

ts/τ
W0( ~mt, ~mhi , y)dy , (6.22)

and the transition is performed to head state ~mhh with

h = max
1≤i≤N

{
i

∣∣∣∣ i−1∑
j=1

W0( ~mt, ~mhj , ts/τ + ∆t/τ)/
N∑
j=1

W0( ~mt, ~mhj , ts/τ + ∆t/τ) < u2

}
.

(6.23)

It becomes clear from Eq. (6.22) and Eq. (6.23) that while knowledge of τ is not

strictly necessary to perform velocity-clamp simulations, knowledge of the prod-

uct vτ is required. Moreover, after the simulation the transition times obtained

(∆t/τ) need to be multiplied by the microscopic time scale for comparison with

experimental data.

Note that while Eq. (6.22) is exact, solving it numerically requires repeated

integration of an integrand that needs to solve numerically Eq. (6.14), and therefore

becomes too slow in practice for low pulling velocities. The performance issue

is circumvented by observing that at least for the exponential, Metropolis and

Glauber transition rate expressions,
∫
W0(ay + b) dy has an analytical form (e.g.,

Eq. (6.25)). Therefore we can solve Eq. (6.22) by performing the integration

on small steps of size ∆f/(κvτ), with ∆f being the desired force resolution, in

each step assuming that x(κ, L, z) is constant and its value is given by solving

numerically Eq. (6.14) at the beginning of the step, adding steps until lnu1 is

exceeded. When that happens, the transition time is found numerically in the

interval of the last added step, assuming again that x(κ, L, z) is constant and

equal to its exact value at the beginning of that last step.

6.4.4 Mechanical unfolding simulations

Throughout all simulations we used the exponential transition rate prescription

W0( ~mt, ~mh) = W0

(
[HO( ~mh)−HO( ~mt)]/(kBT )

)
= exp

(
−[HO( ~mh)−HO( ~mt)]/(kBT )/2

)
.

(6.24)

The exponential transition rate, when composed with a linear function (see
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Section 6.4.3), integrates as∫
W0(ay + b) dy = −2W0(ay + b)/a . (6.25)

The force-dependent unfolding rate ku(f) was estimated as the inverse of the

mean unfolding time over multiple trajectories, according to the formula 〈t(F )〉 =∫∞
0
tku(F ) exp[−tku(F )] dt = 1/ku(F ). Then for each solvent condition separately,

in order to estimate the two unfolding kinetic parameters, namely the spontaneous

unfolding rate ku(0) and unfolding distance ∆xu, we fitted Bell’s equation [37, 82]

on the full range for forces:

ln ku(F ) = ln ku(0) + F∆xu/(kBT ) . (6.26)

Some previous mechanical unfolding with WSME-like models considered the

protein to be unfolded as soon as its extension reaches either half [126, 127, 131] or

two thirds [131] of its maximum value. However WSME-like models tend to be less

cooperative than the real proteins they describe [129], and their low cooperativity

becomes most evident in velocity-clamp simulations where it results in multiple

force-distance peaks for each module (not shown). Therefore we considered a

protein domain to be unfolded as soon as all contacts between the force-bearing

beta strands were lost (see Ref. [161] for a similar approach).

Using the procedure described in Section 6.3.1, the following contacts were

identified between the two force-bearing terminal beta strands of GB1 [179, 180,

49]: (1, 49), (3, 44), (3, 49), (3, 51), (4, 49), (4, 50), (4, 51), (5, 51), (6, 50), (6,

51), (6, 52), (6, 53), (7, 53), (8, 53), (8, 54), (8, 55), (9, 55), (10, 55).

For the GB1 force-clamp mechanical unfolding simulations we used as a starting

state one GB1 domain fully in the native state (mi = 1 for all 1 ≤ i ≤ N) and we

regarded a trajectory as finished as soon as the protein unfolded.

For the GB1 velocity-clamp simulations we obtained the starting state by link-

ing together 8 (eight) GB1 modules using 7 (seven) linker peptide bonds of length

0.4 nm, construct that we shall refer to as (GB1)8. The linker peptide bonds

were fixed in the non-native state all throughout the simulations. The starting

state was constructed by putting in the native state all GB1 (non-linker) peptide

bonds. As soon as a GB1 module unfolded, all its peptide bonds were fixed into

the non-native state. A velocity-clamp trajectory was ended as soon as all the

GB1 modules reached the unfolded state.
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Since I27 unfolds mechanically through a metastable intermediate which has

strand A detached [181], we fixed the state of the peptide bond 10 to denatured all

throughout the simulations so as to avoid any contacts between strands A and G.

Therefore our simulations of I27 describe the unfolding of the intermediate state,

the same process that is most commonly observed in AFM experiments with I27

[61]. Using the procedure described in Section 6.3.1, the following contacts were

identified between the force-bearing beta strands A’ and G of I27’s metastable

intermediate: (11, 82), (11, 83), (11, 84), (12, 83), (12, 84), (12, 86), (13, 83), (13,

84), (13, 85), (13, 86), (14, 86), (14, 87), (14, 88), (15, 85), (15, 86), (15, 87).

For both the force-clamp and velocity-clamp simulations of I27 we used as a

starting state one I27 domain with all peptide bonds except the 10th one in the

native state (mi = 1 − δi,10 for all 1 ≤ i ≤ N) and we regarded a trajectory as

finished as soon as the protein unfolded, i.e., when all its critical contacts were

lost.

The force-step size used for the performance optimization described in Sec-

tion 6.4.3 for velocity-clamp simulations was ∆f = 1 pN. For each unfolding event

we recorded (i) the contour length just before unfolding, which was taken as an

approximation to be the contour length for all the stretching time range since

the previous unfolded event, if any, or otherwise since the start of the trajectory,

(ii) the unfolding force, (iii) the number of modules not-yet-unfolded in the con-

struct (for the multimodular (GB1)8), and (iv) the force immediately after the

previous unfolding event (for the multimodular (GB1)8), or 0 pN for the first

unfolding module in the trajectory. The recorded parameters were then used to

perform Maximum-Likelihood (ML) estimation of the unfolding kinetic parameters

[17].

For the persistence length of Eq. (6.13) we used the fixed value pl = 0.35 nm

[48] all throughout.

6.4.5 Viscosity adjustment of the spontaneous unfolding

kinetics inferred from the experimental data

Kramers theory predicts that

ku(0) = A/γ exp[−∆Gu/(kBT )] (6.27)
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where A is a constant, ∆Gu is the height of the unfolding activation barrier and γ

is the reaction friction [182]. The unfolding free energy difference in two different

conditions, denoted below by superscripts C1 and C2, computes as

∆∆Gu = −kBT ln{[γC1kC1
u (0)]/[γC2kC2

u (0)]}, (6.28)

assuming the prefactor A is the same in the two conditions.

According to Kramers theory, the friction coefficient γ is an abstraction stand-

ing for all the ways by which energy can be dissipated out of the reaction co-

ordinate, direct dissipation into the solvent being but one such mechanism. In

particular, there need not be a simple relationship between γ and solvent viscosity

[182].

The simple relationship

γ = 1/η , (6.29)

where η is the solvent viscosity, was found in a few instances to result in good

agreement with experimental data on protein folding and unfolding [183, 184,

185, 186, 187, 188]. Eq. (6.29) has been sometimes used to account for viscosity

effects in the interpretation of single-molecule mechanical folding and unfolding

experiments [60, 12, 19].

However there is abundant experimental evidence that the dependency of Kramers’

friction coefficient γ on solvent viscosity η is noticeably weaker than 1/η [189, 190,

191, 192, 193, 194, 195]. Herein we adopt another, potentially more accurate for-

mula for the friction coefficient that also takes into account the internal friction of

the protein:

γ = 1/(σ + η) , (6.30)

where σ = 4 cP is an estimate of the protein internal viscosity [195]. Therefore

when comparing to the unfolding activation barrier changes from the SMFS ex-

periments of Ref. [12, 19], the experimentally inferred values reported in Table 6.1

have been re-adjusted for viscosity using Eq. (6.30) instead of Eq. (6.29).

Moreover, the spontaneous rate of unfolding of I27 in the presence of glycerol

30% v/v reported in the last column of Table 6.6 was also adjusted using Eq. (6.30)

(see Section 6.4.9).
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6.4.6 Polyprotein design and expression

We followed the protein construct design proposed by Prof. Julio Fernandez

(Columbia University) for the study of the random coiled titin N2B segment [24].

Chimeric polyproteins were obtained starting from pAFM1-4 and pAFM5-8 vec-

tors, gently provided by Prof. Jane Clarke (Cambridge University) and constructed

according to Ref. [196]. The eight I27 module plasmid was reconstituted from

pAFM1-4 and pAFM5-8, obtaining the pAFM8m vector. The plasmid was trans-

formed into E. coli C41(DE3) cells [197] (obtained from Prof. John E. Walker

(MRC - Dunn Human Nutrition Unit, Cambridge) with the agreement of the

Medical Research Council centre of Cambridge). The cells were grown and the ex-

pression of proteins was induced as described in Ref. [196]. Recombinant proteins

were purified by Ni2+-affinity chromatography in 20 mM sodium phosphate buffer

pH 8, 500 mM NaCl; the elution from resin was obtained with 20 mM imidazole.

After purification the protein was kept at 193.15 K with glycerol 15% v/v.

6.4.7 Single molecule force spectroscopy experiments

Constant velocity mechanical unfolding experiments were performed with a Veeco

Picoforce Atomic Force Microscope (AFM) equipped with a DI Multimode Nanoscope

IIIa controller (Bruker) and gold-coated, V-shaped silicon nitride cantilevers (NPG

model; Bruker) with a nominal spring constant of 0.06 N/m. Unfolding experi-

ments were performed on the homomeric polyprotein (I27)8 in two different solvent

conditions. In the first condition we used standard PBS buffer at pH 7.0. In the

second condition we used the same buffer but in the presence of glycerol as a

cosolvent, at a final concentration of 30% v/v. All the experiments have been

performed at a temperature of approximately 301.15 K. For the experiments, a

drop of the (I27)8-containing solution (5µL, 0.1 g/L) was deposited on a flame

cleaned glass coverslip for about 20 minutes. The fluid cell was then filled with

either the plain buffer or the glycerol-containing buffer, and sealed on top of the

coverslip. Thermal tuning was performed in the respective solution to determine

the cantilever spring constant. Pulling experiments were then started after a few

minutes of incubation.

At the constant pulling velocities of 50.1, 100, 198, 513, 969, 2180 and 4360

nm/s we recorded (i) 12, 24, 32, 27, 39, 148, and 160 unfolding events, respectively,
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from 1, 2, 3, 4, 4, 7 and 7 different experiments, respectively in plain buffer, and

(ii) 15, 24, 93, 124, 133, 151, and 362 unfolding events, respectively, from 1, 3, 5,

5, 5, 3, and 6 experiments, respectively with glycerol as cosolvent. Data filtering

and extraction were performed using Hooke [71].

6.4.8 Adjusting forces for viscosity

We computed the viscosity of the 30% v/v glycerol solution at 301.15 K as 2.357

cP using a formula reported elsewhere [114].

Immersion in a liquid environment dramatically alters the thermal noise spec-

trum of the cantilever, due to the strong effects of fluid loading [11, 115, 116].

Problems in the determination of the spring constant arise when the resonance

frequency drops to 1 kHz or below, as it happens for soft cantilevers or highly

viscous media [11]. However in the presence of 30% v/v glycerol as a cosolvent

the resonance frequency of our cantilevers stays above 2 kHz, above the frequency

range likely to result in viscosity-induced errors in spring constant determination

that are comparable to the error intrinsic to the thermal tuning method [117].

Indeed, by calibrating a set of three cantilevers in both conditions we obtained an

error of about 1.5% between the two conditions.

The measured unfolding forces are underestimated in high-viscosity solutions

due to the viscous drag on the AFM cantilever [118, 119, 120, 121]. A way to

remove this artifact has been recently reported [118]. According to the this pro-

cedure the drag force can be computed as

Fvis = blvliquid − bcvtip , (6.31)

where vliquid is the pulling velocity, vtip is the velocity of the tip, bl and bc

are viscous drag coefficients related to the liquid motion and the bending of the

cantilever (tip motion), respectively. These two parameters depend on tip-surface

separation according to the formulae

bl = 6πηa2
l /(s+ hl) (6.32)

and

bc = 6πηa2
c/(s+ hc) (6.33)
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where s is the tip-sample separation, η is the solvent viscosity, al, hl, ac and

hc being parameters to be determined. We extracted the mentioned parameters

by fitting Eq. (6.32), (6.33) to the bl and bc values reported in Fig. 3 of Ref.[118],

obtaining the approximate values al = 24.3µm, hl = 3.5µm, ac = 19.8µm and

hc = 2.9µm. We then adjusted the force values collected at each sampled tip-

surface separation in the experimental data taken in 30% v/v glycerol according

to Eq. (6.31). The average unfolding forces at 50.1, 100, 198, 513, 969, 2180 and

4360 nm/s increased by 0.01, 0.02, 0.10, 0.22, 0.44, 1.00 and 2.68 pN, respectively.

6.4.9 Extracting the unfolding kinetics of I27 from SMFS

velocity-clamp data

The unfolding kinetics of I27 at different pulling velocities were well described by

Bell’s model given in Eq. (7.3). Maximizing the likelihood of the I27 SMFS data

[17] we obtained ∆xu = 0.25 nm in the absence of glycerol and ∆xu = 0.23 nm in

the presence of glycerol 30% v/v. Since the difference is likely within experimental

error, we inferred that the presence of glycerol does not change the characteristic

unfolding distance of I27. Taking into account as well existing estimates of the

unfolding distance of I27 [41, 60], we fixed the unfolding distance of I27 to ∆xu =

0.25 nm in both conditions, obtaining ku(0) = 0.0013±0.000063s−1 in the absence

of glycerol and ku(0) = 0.0003± 0.000009s−1 in the presence of glycerol 30% v/v.

If we consider as a first approximation that the prefactor A of Eq. (6.27) is

not affected by the addition of glycerol, taking the ratio of the logarithm of the

estimated spontaneous unfolding rates in the two solvent conditions we obtained

that the presence of glycerol at a concentration of 30% v/v increases the unfolding

energy activation barrier of I27 by ∆∆Gu = 1.63± 0.06kBT . By further adjusting

for the viscosity effects on the unfolding kinetics via Eq. (6.30), we obtained our

final experimental estimate of ∆∆Gu = 1.36± 0.06 kBT .
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6.5 Results and discussion

6.5.1 Our SMFS experiments show that glycerol 30% v/v

does not change the unfolding distance of I27

The presence of glycerol at a concentration of 30% v/v consistently shifted the

unfolding force distribution of I27 to higher forces, as seen in Fig. (6.2). Extracting

the unfolding kinetics of I27 as described in Section 6.4.9 we found that glycerol

reduces the spontaneous unfolding rate ku(0) of protein I27 without changing the

distance ∆xu = 0.25 nm between the ground state and the transition state along

the reaction coordinate. The height of the unfolding activation barrier of I27 was

increased in the presence of glycerol 30% v/v by ∆∆Gu = 1.36± 0.06 kBT .

6.5.2 Thermodynamics

We projected the free energy landscape of GB1 onto the non-mechanical reaction

coordinate given by the weighted number of native contacts (see Section 6.3.3),

which has been proposed as a good order parameter for protein folding and un-

folding [131]. We performed the projection in the absence of osmolytes and in the

presence of (i) DMSO 50%, 40%, 30%, 20% and 10% v/v, (ii) glycerol 30% v/v,

and finally (iii) GndCl 2.25 and 1 M, conditions for which SMFS experimental

data are available [63, 19, 12]. The projection of the energy landscape in some of

the mentioned solvents is shown in Fig. (6.3).

If we make the simplifying assumption that the protein diffuses on the chosen

reaction coordinate, we can in principle locate the transition state and measure its

height. But the obtained energy landscape has a high degree of frustration, as seen

in Fig. (6.3), which interferes with the significance and correct determination of

the transition state [199]. Therefore we computed a Boltzmann-weighted moving

average of the energy landscape with a window size of five distinct neighboring

populated reaction coordinate values (see Fig. (6.4)), and we located the transi-

tion state by finding the maximum energetic level with the reaction coordinate

value greater than or equal to 324. For DMSO 50% v/v and DMSO 40 % v/v the

energy landscape as projected onto the weighted number of native contacts does

not show any significant minimum for the unfolded state, making it impossible to

identify a transition state. For all the other conditions, the described procedure
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Figure 6.2: (Color online) Average unfolding force of I27 at various pulling speeds

increases in the presence of glycerol 30% v/v, and increases again slightly when adjust-

ing for the viscous drag-force on the cantilever. Only as a guide to the eye we fitted

a dashed line to the average unfolding forces in each condition with a fixed slope of

kBT/(∆xu log10(e)) where e is Eulers constant and ∆xu = 0.25 nm. The formula for

the eye-guide fixed slope has been inspired from the so-called “standard method” of

kinetic parameter estimation [198], and it was not used for the statistical estimation of

the kinetic parameters that we report, which was performed instead via ML estimation

(see Section 6.4.9).
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Figure 6.3: Energy landscape of protein GB1 projected onto the reaction coordinate

given by the weighted number of native contacts φ(~m), as defined by Eq. (6.9), in the

absence of osmolytes, and in the presence of DMSO 50% v/v, glycerol 30% v/v and

GndCl 2.25 M. The vertical bar at a weighted number of native contacts of 381 denotes

the approximate position of the transition state.

identified the transition state at the same reaction coordinate value of 381 weighted

native contacts and it measured changes in the unfolding activation energy barrier

relative to the absence of osmolytes as indicated in Table 6.1. Although the acti-

vation barrier changes from in-bulk experiments are not necessarily comparable to

those from SMFS experiments, the activation barrier changes estimated from the

thermodynamic analysis based on the weighted number of native contacts agree

qualitatively with the SMFS experimental ones.

We also projected the free energy landscape of I27 onto the non-mechanical

reaction coordinate given by the weighted number of native contacts, in the ab-

sence of osmolytes and in the presence of glycerol 30% v/v. As can be seen in

Fig. (6.5), the energy landscape of I27 shows little unfolding cooperativity, which

is expected considering that I27 has an unfolding intermediate that is stable over

AFM timescales [181]. Therefore this energy projection method does not make it

possible to clearly identify an unfolding transition barrier for protein I27.
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Figure 6.4: Boltzmann-weighted moving average of the effective free energy of pro-

tein GB1 as a function of the weighted number of native contacts φ(~m), as defined by

Eq. (6.9), in the absence of osmolytes, and in the presence of DMSO 50% v/v, glycerol

30% v/v and GndCl 2.25 M. The vertical bar at a weighted number of native contacts

of 381 denotes the approximate position of the transition state.

Solvent ∆∆Gu[kBT ] SMFS ∆∆Gu[kBT ]

DMSO 50% v/v - 1.89

DMSO 40% v/v - 1.00

DMSO 30% v/v 1.19 0.66

DMSO 20% v/v 0.74 0.30

DMSO 10% v/v 0.28 0.04

glycerol 30% v/v 1.71 1.60

no osmolytes 0 0

GndCl 2.25 M -0.82 -2.38

GndCl 1 M -0.41 -0.94

Table 6.1: GB1 activation barrier height changes. The column ∆∆Gu[kBT ] indicates

the activation barrier height change calculated from the thermodynamic analysis based

on the weighted number of native contacts. The last column contains the activation

barrier changes estimated from SMFS velocity-clamp experiments [12, 19, 63], adjusted

for viscosity as described in Section 6.4.5.
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Figure 6.5: Energy landscape of protein I27 projected onto the reaction coordinate

given by the weighted number of native contacts φ(~m), as defined by Eq. (6.9), in the

absence of osmolytes, and in the presence of glycerol 30% v/v.

6.5.3 Kinetics

For protecting osmolytes it holds in Eq. (6.6) that ∆grefbb,R[k] > 0. Therefore they

disfavor microscopic states that are more exposed to solvent, thus slowing the tran-

sitions going from more native-like to more unfolded states according to Eq. (6.24)

and overall slowing down the unfolding kinetics. Conversely, for denaturing os-

molytes it holds that ∆grefbb,R[k] < 0. Therefore they favor the microscopic states

that are more exposed to solvent, speeding up the transition rates going from more

native-like to more unfolded states and overall speeding up the unfolding kinetics.

The simulation results presented next are consistent with this view, and addition-

ally they offer insights into the effect of osmolytes on the unfolding distance of the

studied proteins.

Force-clamp

We performed force-clamp simulations of mechanical unfolding of GB1 with con-

stant forces from 0 pN to 500 pN, inclusive, with a step size of 5 pN, in the absence

of osmolytes and in the presence of (i) DMSO 50%, 40%, 30%, 20% and 10% v/v,

(ii) glycerol 30% v/v, and (iii) GndCl 2.25 and 1 M . We found that in each solvent

condition the logarithm of the force-dependent unfolding rate grows approximately

linearly with force. Previous works of mechanical unfolding via WSME-like mod-
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Figure 6.6: Logarithm of the unfolding rate of GB1 as a function of the stretching force

in two solvent conditions, namely the most destabilizing one and the most stabilizing

one, selected such as to reduce visual clutter. Each point represents the inverse of the

average unfolding time from at least 125 trajectories. Lines correspond to a fit of Bell’s

model via Eq. (7.3).

els have fitted the Bell model only on ranges of forces selected to maximize the

quality of the fit [127, 126, 130, 131]. Since we need to compare the fitted values

between different solvent conditions, in order to remove any bias in the selection

of the fitting force ranges, we adopted the simple approach of fitting over the full

set of forces, even if that results in somewhat lower quality fits, as can be seen in

Fig. (6.6).

Fitting Bell’s model given by Eq. (7.3) to the force-dependent unfolding rates

resulted in negligible variation of the unfolding distance ∆xu among the different

solvent conditions, as seen in Table 6.2. Moreover, the unfolding distance in all

conditions was close to the experimentally measured value of 0.165 − 0.17 nm

[12, 19, 63]. The unfolding barrier height changes are also in qualitative agreement

with the activation barrier changes inferred from the SMFS experiments, which

are indicated in the last column of Table 6.1.

117



Chapter 6: Kinetic WLC-like Ising model

Solvent ∆xu[nm] ∆∆Gu[kBT ]

DMSO 50% v/v 0.134±0.003 1.717±0.279

DMSO 40% v/v 0.133±0.003 1.358±0.279

DMSO 30% v/v 0.131±0.003 0.862±0.279

DMSO 20% v/v 0.131±0.003 0.568±0.279

DMSO 10% v/v 0.129±0.003 0.203±0.279

glycerol 30% v/v 0.130±0.003 0.955±0.279

no osmolytes 0.128±0.003 0

GndCl 2.25 M 0.128±0.003 -0.450±0.279

GndCl 1 M 0.128±0.003 -0.192±0.279

Table 6.2: Mechanical unfolding kinetic parameters from force-clamp simulations. The

column ∆∆Gu[kBT ] is to be compared with column SMFS ∆∆Gu[kBT ] from Table 6.1.

For the force-clamp simulations of mechanical unfolding of I27 we used constant

forces from 0 pN to 200 pN, inclusive, with a step size of 5 pN, in the absence

of osmolytes and in the presence of 30% glycerol v/v. We found that in either

solvent condition the logarithm of the force-dependent unfolding rate shows two

approximately linearly regimes with respect to force. Therefore we fitted Bell’s

model over each linear regime, as seen in Fig. (6.7), selecting the crossover point

between the two regimes by minimizing the total squared fitting error.

For each of the two linear regimes, the unfolding distance showed only negli-

gible variation between the two conditions, while the free energy changes are in

qualitative agreement with the experimentally inferred activation barrier change,

as can be seen in Table 6.3.

Velocity-clamp

We performed velocity-clamp simulations of mechanical unfolding of (GB1)8 with

a cantilever of spring constant 0.06 N/m and velocities of 50.1, 100, 198, 513, 969,

2180 and 4360 nm/s, matching the spring stiffness and pulling velocities of some

previous SMFS velocity-clamp experiments with (GB1)8 in the presence of os-

molytes [19, 12]. Since as described in Section 6.4.3, knowledge of the product vτ

is required for velocity-clamp simulations, we estimated τ by confronting the aver-

age unfolding time from 1000 simulated force-clamp mechanical unfolding traces
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Figure 6.7: Logarithm of the unfolding rate of I27 as a function of the stretching force

in two different solvent conditions. Each point represents the inverse of the average

unfolding time from at least 125 trajectories. Lines correspond to a fit of Bell’s model

via Eq. (7.3) over two different linear regimes, selected for each solvent condition so as

to minimize the total squared error. In the absence of osmolytes the crossing point was

found to be 80 pN, while in the presence of glycerol 30% v/v the crossing point was

found to be 85 pN.

no osmolytes glycerol 30% v/v

I. ∆xu[nm] 0.197±0.045 0.203±0.041

I. ∆∆Gu[kBT ] 0 0.933±0.666

II. ∆xu[nm] 0.718±0.023 0.716±0.025

II. ∆∆Gu[kBT ] 0 1.336±1.179

Table 6.3: Mechanical unfolding kinetic parameters of I27 from force-clamp simulations.

The first three rows refer to the lower-force linear regime, while the last three rows refer

to the higher-force linear regime. The estimation errors represent one standard deviation.

For easy reference, the experimentally inferred ∆∆Gu in the presence of glycerol 30%

v/v is 1.36± 0.06 kBT , as computed in Section 6.4.9.
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Solvent F exp
50.1 [pN] F sim

50.1 [pN] F exp
400 [pN] F sim

400 [pN] F exp
4360 [pN] F sim

4360 [pN]

DMSO 50% v/v 200 350 - - 300 539

DMSO 40% v/v 176 339 - - 256 529

DMSO 30% v/v 172 318 - - 244 515

DMSO 20% v/v 175 311 - - 260 504

DMSO 10% v/v 139 293 - - 240 495

glycerol 30% v/v 195 324 - - 306 519

no osmolytes 119 278 178 - 253 485

GndCl 2.25 M - 259 97 - - 475

GndCl 1 M - 268 148 1 - - 479

Table 6.4: Mean unfolding forces at three velocities from velocity-clamp experiments

[12, 19, 63] and simulations with (GB1)8.

at zero force with the experimentally inferred zero-force mean unfolding time of

GB1 [12], obtaining the approximate value τ = 0.039 s.

The simulated force-distance traces exhibited the characteristic WLC sawtooth

pattern, as seen in Fig. (6.8). In each condition, the average unfolding forces, shown

in Fig. (6.9), increased with increasing pulling velocities, as expected from Bell’s

model. Moreover, average unfolding forces increased with increasing DMSO con-

centration and they decreased with increasing GndCl concentration. The unfolding

forces were however generally higher than the experimental ones (see Table 6.4),

for reasons explained below.

For each solvent condition we performed Maximum-Likelihood (ML) estimation

of the unfolding kinetic parameters by using all velocities simultaneously [17],

with the results being summarized in Table 6.5. The unfolding activation barrier

changes from velocity-clamp simulations are in good agreement with those from

force-clamp experiments indicated in Table 6.2 and the experimental ones indicated

in the last column of Table 6.1. The unfolding distance estimated from velocity-

clamp simulations is smaller than the one estimated from force-clamp simulations

and from SMFS experiments, resulting in unfolding forces much higher than the

experimental SMFS ones at the same velocities. However, the unfolding distance

from velocity-clamp simulations still shows only negligible variation between the

different solvent conditions.
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Figure 6.8: (Color online) Simulated velocity-clamp curve of (GB1)8. The velocity was

969 nm/s, the cantilever spring constant was 0.06 N/m and the solvent had a GndCl

concentration of 2.25 M.

Figure 6.9: (Color online) Average unfolding force vs. pulling velocity in different solvent

conditions for protein (GB1)8. Each point represents the average unfolding force from

at least 125 trajectories.
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Solvent ∆xu[nm] ∆∆Gu[kBT ]

DMSO 50% v/v 0.086±0.0003 1.197±0.052

DMSO 40% v/v 0.086±0.0004 1.018±0.054

DMSO 30% v/v 0.085±0.0004 0.603±0.055

DMSO 20% v/v 0.085±0.0004 0.430±0.057

DMSO 10% v/v 0.085±0.0004 0.145±0.051

glycerol 30% v/v 0.085±0.0004 0.680±0.055

no osmolytes 0.085±0.0005 0

GndCl 2.25 M 0.084±0.0004 -0.355±0.056

GndCl 1 M 0.084±0.0004 -0.245±0.054

Table 6.5: Mechanical unfolding kinetic parameters of GB1 from velocity-clamp sim-

ulations. The estimation errors represent one standard deviation and they have been

computed via a bootstrap (case resampling) procedure, where for each velocity an equal

number of traces were extracted with replacement, at least 100 times. The column

∆∆Gu[kBT ] is to be compared with column SMFS ∆∆Gu[kBT ] from Table 6.1.

For the velocity-clamp mechanical unfolding simulations of I27, we used a single

I27 module, in the absence and presence of glycerol 30% v/v. The simulated force-

distance traces exhibited the characteristic WLC pattern, as seen in Fig. (6.10).

The I27 velocity-clamp simulations showed that the presence of glycerol 30%

v/v increases the average unfolding forces of I27 (see Fig. (6.11)), without caus-

ing any significant movement of the unfolding transition state, producing but a

deceleration of its spontaneous unfolding kinetics (see Table (6.6)). The unfolding

forces from the simulation were also compatible with the range of unfolding forces

from the SMFS experiments, as seen in Fig. (6.2) and Fig. (6.11).

6.6 Conclusion

We showed experimentally that contrary to what has been previously reported,

glycerol does not increase the unfolding distance of I27. In light of previous similar

findings with GB1 in the presence of DMSO, glycerol and GndCl, taken together

these results suggest that there is a general mechanism through which osmolytes

affect the mechanical stability of proteins that does not affect their unfolding

122



i
i

“phd˙thesis” — 2013/3/8 — 12:20 — page 123 — #68 i
i

i
i

i
i

Chapter 6: Kinetic WLC-like Ising model

Figure 6.10: (Color online) Simulated velocity-clamp curve of I27. The velocity was 50.1

nm/s, the cantilever spring constant was 0.06 N/m and the solvent was free of osmolytes.

Figure 6.11: (Color online) Average unfolding force vs. pulling velocity in different

solvent conditions for protein I27. Each point represents the average unfolding force

from at least 1000 trajectories.
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Solvent ∆xu[nm] ∆∆Gu[kBT ] ∆∆Gexp
u [kBT ]

glycerol 30% v/v 0.603±0.004 2.233±0.351 1.36±0.06

no osmolytes 0.590±0.004 0 0

Table 6.6: Mechanical unfolding kinetic parameters of I27 from velocity-clamp simu-

lations. The estimation errors represent one standard deviation and they have been

computed via a bootstrap (case resampling) procedure, where for each velocity an equal

number of traces were extracted with replacement, at least 100 times. The column

∆∆Gu[kBT ] is to be compared with column ∆∆Gexpu [kBT ], the latter indicating the

experimentally inferred activation barrier changes.

distance.

In order to understand if the above general mechanism is based on osmolytes

adjusting the solvation quality for the protein chain, as suggested by the thermo-

dynamic description of the osmolyte effect, we developed an Ising-like model for

protein mechanical unfolding that incorporates the transfer free energy of various

conformations of the protein chain. Notably, our Ising-like model is endowed with

exactly solvable thermodynamics and it satisfies the WLC force-distance relation,

which is a common fingerprint of mechanical unfolding experiments.

When applied to the mechanical unfolding of GB1 and I27 in osmolyte-containing

solutions, our model correctly predicts that osmolytes do not change their unfold-

ing distance. This level of agreement validates our approach for building a micro-

scopic model of protein mechanical unfolding in the presence of osmolytes, and it

strongly suggests that osmolytes may not play a structural role at the unfolding

transition state of proteins, contrary to what has been previously suggested.

6.7 Acknowledgments

We are grateful to Prof. Julio Fernandez for his help in investigating the contrast

between our results of mechanical unfolding of I27 in the presence of glycerol and

those of Ref. [15].

This work was supported by Ministero dell’Università e della Ricerca-Fondo per
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6.8 Note

After this work has been completed, Ref. [15] and Ref. [16] have been retracted

[200, 201].
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Trimethylamine N-oxide has a

strongly pH-dependent effect on

protein mechanical stability

Unpublished (work-in-progress).

7.1 Abstract

We show via single-molecule force spectroscopy that the protecting osmolyte trimethy-

lamine N-oxide (TMAO) in its zwitterionic form enhances the mechanical stabil-

ity of the B1 immunoglobulin-binding domain of protein G from “Streptococcus”

(GB1). Conversely, our experiments at low pH show that the cationic form of

TMAO decreases the mechanical stability of GB1. By fitting an appropriate ki-

netic model we demonstrate that TMAO does not shift the transition state of GB1

at all pH values, indicating that any TMAO-induced differences in the height of

the unfolding barrier may be attributable to non-structural effects such as pro-

tein solvation. Finally, we employ an existing statistical mechanics theory for

protein backbone solvation to support the hypothesis that cationic TMAO may

be preferentially excluded from the protein backbone, though to a lesser extent

than zwitterionic TMAO. These results suggest that at low pH the preferential in-

teraction with protein side-chains may dominate the energetics of TMAO-protein

interactions.
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7.2 Introduction

Across all taxa nature regulates protein stability through a class of ubiquitous

organic compounds called “osmolytes”. “Protecting osmolytes” (e.g., trimethy-

lamine N-oxide (TMAO), betaine, sucrose, trehalose, sarcosine, sorbitol, proline,

glycerol, dimethylsulfoxide) are known to stabilise the native states (N) of proteins

with respect to their denatured states (D). Conversely, “denaturing osmolytes”

(e.g., urea, guanidinium chloride (GndCl)) thermodynamically favour D over N.

According to the “osmophobic effect” theory, protecting osmolytes are excluded

from the peptide backbone thus increasing the population of compact N states

since they expose less backbone to the solvent than D. Although they also exert a

collectively favourable interaction with protein side-chains, this opposing force is

of lesser magnitude than their preferential exclusion from the backbone [202].

Among the protecting osmolytes, TMAO stands out as one of the strongest

universal protein stabilisers in physiological conditions [13, 1, 203]. In fact it

has been recently shown to correctly fold mutant proteins in vivo [204] and to

counteract the effects of urea through a non protein-specific mechanism [205].

However there is also a growing number of studies linking TMAO with various

deleterious effects [206, 207, 208, 209, 210, 211, 212]. For example, the fact that

shallow-water teleosts accumulate less TMAO than deep-water ones even across the

same species [213] has been explained through the ability of protecting osmolytes

to sometimes stabilise protein conformations other than N [214].

Further adding to the elusive nature of this osmolyte [215], in-bulk experiments

have shown that the effect of TMAO on the thermodynamic stability of three

different proteins, namely pancreatic RNase A, hen egg white lysozyme and bovine

apo-α-actalbumin, is highly pH-dependent. More exactly, at pH above TMAO’s

pKa of 4.66 ± 0.10, when its neutral zwitterionic form is preferred, TMAO was

found to stabilize the three mentioned proteins, while at lower pH when its cationic

form is dominant, TMAO was found instead to destabilise them [21]. A later study

has also shown that TMAO destabilises ovine and human prion protein at low pH,

and that it does so to an even stronger extent than urea [22].

To understand to what extent the effect of TMAO on protein stability is gener-

ally pH-dependent we need to expand the set of proteins studied in TMAO-water

mixtures at different pH values. Furthermore, in order to decipher the mechanism
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by which this apparent effect comes about we need to characterise the effect of

TMAO not only on the thermodynamically-accessible N and D states, but also on

the transition states of proteins.

Studies of enzyme inactivation and renaturation kinetics [216, 214, 209, 217,

218] and controversial [219, 220, 221, 222] φ-value analysis [99] notwithstanding,

direct observation of pH-dependent TMAO-induced effects on protein transition

states has yet to be achieved. This endevour requires capturing structural char-

acteristics and energetic levels of microsecond-long protein transition states [140]

for comparison in the presence and absence of TMAO [21].

Single-Molecule Force Spectroscopy (SMFS) has recently emerged as an invalu-

able tool to characterise protein transition states as projected onto the direction of

force application [17, 18]. The availability of such geometric information from me-

chanical experiments allowed us and others to extend the osmophobic effect theory

to explain the speedup of the folding rate and the slowing down of the unfolding

rate of proteins under the effect of protecting osmolytes such as dimethylsulfoxide

[12] and glycerol [19, 20] at physiological pH.

While few intracellular proteins have mechanical function, many proteins with

non-mechanical function do have mechanical stability. From the latter category,

the B1 immunoglobulin-binding domain of protein G from “Streptococcus”, com-

monly referred to as GB1, stands out due to its high mechanical stability [69]

that has been extensively characterised [223, 224]. Being endowed with two-state

behaviour [225] and thermodynamic stability over the large pH range from 2.7

[146] to 11.25 [226] , GB1 is an ideal model system for elucidating the effect of

osmolytes at different pH values. Therefore we pulled GB1 under the Atomic Force

Microscope (AFM) in the presence and absence of TMAO and at varying values

of pH, measuring the unfolding force distribution in each solvent condition.

In order to check if a backbone-based effect would suffice to explain our exper-

imental findings, we turned to a quantitative solvation model based on backbone-

solvent interaction energies. Using just osmolyte polarity and interaction degen-

eracy, this statistical mechanics model has been previously found to predict with

both correlation and slope close to 1 the experimental transfer free energies of

the peptide backbone unit into osmolyte-water mixtures for a representative set

of denaturing and protecting osmolytes, including the zwitterionic form of TMAO

[1]. Feeding a suitable parameterisation of cationic TMAO into the mentioned
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Figure 7.1: (Colour online) Force vs. extension plot obtained by stretching a com-

plete (GB1)8 molecule. The continuous red (light grey) curves and the dashed blue

(medium grey) curve represent Worm-Like Chain (WLC) [58] fits of the force-response

of the polypeptide chain before the unfolding of each GB1 module and before molecule

detachment, respectively.

quantitative backbone solvation model we estimated the sign of the free energy of

transfer of a backbone peptide unit into an aqueous TMAO solution at low pH.

Finally, by meeting the theoretical predictions of the backbone solvation theory

with the experimental single-molecule experiments, we put our findings in the

larger context of previous in-bulk thermodynamic studies of the pH-dependent

effect of TMAO on protein stability.

7.3 Results

We pulled at a constant velocity of 2180 nm/s homopolymer molecules consisting of

8 tandem repeats of GB1, construct we shall refer to as (GB1)8 (see Section 7.5.2),

obtaining characteristic sawtooth force-extension curves as seen in Fig. 7.1. The

experiments were performed in sodium acetate buffer 50 mM at pH 3.5, 4, 5 and

6 and in standard phosphate buffered saline at pH 7, in the presence and absence

of TMAO 2M.

In order to minimise the effect of cantilever thermal calibration errors [117] on

our ability to distinguish the unfolding force distributions of GB1 in the presence

and absence of TMAO we used each cantilever multiple times at the same pH by

switching the buffer back and forth between TMAO 0M and TMAO 2M. For each

such condition we recorded a large number of unfolding events that allowed us to
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Figure 7.2: Unfolding force distributions at pH 3.5 with the same cantilever from top

to bottom in chronological order. The dashed blue (medium grey) and dotted red (light

grey) curves represent the expected histograms of unfolding forces computed with the

Maximum Likelihood (ML) estimates of ∆xu and ku(0) with ∆xu that is either free or

shared between all datasets at the same pH, respectively. Measurement noise was taken

into account according to Eq. 7.10.

extract unfolding force histograms at pH 3.5, 4, 5, 6 and 7 as seen in Fig. 7.3,

Fig. 7.4, Fig. 7.5, Fig. 7.6 and Fig. 7.7, respectively.

By extracting the average unfolding force at each pH value we found that while

TMAO 2M increases the mean unfolding force at pH ≥ 5, it actually lowers the

mean unfolding force at pH ≤ 4, as seen in Fig. 7.8.

For each dataset we performed Maximum Likelihood (ML) estimation [17] of

∆xu and ku(0) with an improved procedure taking into account the measurement

noise (see Section 7.5.1). By pooling together all the estimates for the same solvent

we found that the presence of TMAO 2M in solution does not significantly alter

GB1’s ∆xu at all pH values, as seen in Fig. 7.9.

Since small errors in ∆xu lead to large errors in ku(0), we performed ML es-

timation of ku(0) with shared pH-dependent ∆xu, i.e., one ∆xu for each different

pH, which does not drastically change the quality of the fits, as seen in Fig. 7.3,
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Figure 7.3: Unfolding force distributions at pH 3.5 with three cantilevers a), b) and c),

for each cantilever from top to bottom in chronological order.
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Figure 7.4: Unfolding force distributions at pH 4 with the same cantilever from top to

bottom in chronological order.
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Figure 7.5: Unfolding force distributions at pH 5 with the same cantilever from top to
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Figure 7.7: Unfolding force distributions at pH 7 with the same cantilever from top to
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Figure 7.8: Average unfolding force vs. pH with error bars extending one standard

deviation of the sample above and below the mean value. The black dashed and con-

tinuous red (light grey) lines are a guide to the eye for the average force in the absence

and presence of TMAO 2M, respectively.
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Figure 7.9: (Colour online) Average of ∆xu estimates vs pH with error bars extending
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dashed and continuous red (light grey) lines are a guide to the eye for the average ∆xu

in the absence and presence of TMAO 2M, respectively.
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Fig. 7.4, Fig. 7.5, Fig. 7.6 and Fig. 7.7, indicating that TMAO 2M does not sig-

nificantly change ∆xu of GB1.

In light of extensive evidence that TMAO does not perturb the native structure

of proteins [21, 227, 133, 110, 228], our finding that TMAO 2M does not shift the

unfolding transition state on the main reaction coordinate suggests that a) TMAO

does not change the unfolding pathway of GB1, and b) the structural characteristics

of GB1’s unfolding transition state (TS) remain largely unchanged in the presence

of TMAO.

Therefore at any given pH the difference between the height of the activa-

tion barrier in the presence and absence of the osmolyte ∆∆Gu = ∆Gu(2M) −
∆Gu(0M) can be assigned to the unequal interaction with the solvent of TS rela-

tive to N.

According to Kramers theory the spontaneous unfolding rate is described by

the Arrhenius-like equation ku(0) = A/γ exp[−∆Gu/(kBT )], where A is a constant

prefactor, T is the temperature and γ is the reaction friction that sums up direct

dissipation into the solvent and all other possible means through which energy gets

dissipated out of the reaction coordinate [182]. The formula γ = 1/(σ+η) has been

proposed to describe the reaction friction, where σ is the internal friction of the

protein while η is the solvent viscosity [195]. Lacking an estimate for the internal

viscosity of GB1 and assuming that the presence of TMAO does not affect the

prefactor A, we computed ∆∆Gu for two extreme cases, namely σ = 0 [140, 184]

or σ � η [229], presuming that the “true” value lies somewhere in-between [195].

Both extreme estimates of the protein internal friction σ lead to the observation

that TMAO 2M lowers GB1’s unfolding activation barrier when its cationic form

is the dominant species, and as its zwitterionic form starts to dominate at higher

pH, the effect is reversed (see Fig. 7.10).

In order to elucidate the role of TMAO-backbone chemistry in protein stability

at low pH, we employed the statistical mechanics model of Ref. [1], according to

which the surface area (SA) of an osmolyte is computed with a probe radius

of 1.4 Å, ignoring hydrogen atoms, and assigning positive polarity to nitrogen,

negative polarity to oxygen and neutral polarity to all other atoms. Notably,

the model treats all nitrogens and oxygens as having the same charge magnitude,

while water is considered to consist of equal positive, negative and neutral SAs of

SAw,+ = SAw,− = SAw,0 = 10 Å2. The peptide backbone is considered to have
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Figure 7.10: (Colour online) The continuous green (grey) line labelled ∆xu is a guide to

the eye for the shared pH-dependent unfolding distance of GB1 with error bars extending

two standard deviations of the sample. The dashed blue (medium grey) line labelled

∆∆Gu(σ � η) is a guide to the eye for the change in the activation barrier height caused

by the presence of TMAO 2M uncorrected for viscosity, i.e, assuming a very high protein

internal friction, with error bars extending one standard deviation of the sample. The

dotted red (light grey) line labelled ∆∆Gu(σ � η) is a guide to the eye for the change

in the activation barrier height caused by the presence of TMAO 2M uncorrected for

viscosity, i.e, assuming a very high protein internal friction.
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three interaction sites, one positive (on the nitrogen atom) and two negative (on

the backbone carbonyl oxygen), all of the same charge magnitude. The model has

a tunable parameter which is the interaction energy H > 0 between like-charges,

considering that opposite charges interact with energy −H, and that interactions

involving neutral charges take place at zero energy.

We performed a least-squares fit of the parameter H (see Section 7.5.4) for the

10 (ten) osmolyte descriptions in Table 1 of Ref. [1], obtaining H=1381 cal/mol,

a correlation of 0.98, a regression slope of 0.99 and a small intercept of -1.94

cal/mol. Notably, for 1M zwitterionic TMAO (SAo,+ = 0 Å2, SAo,− = 43.2 Å2,

SAo,0 = 168.4 Å2 [1]) the fitted model predicts a transfer free energy of 88.29

cal/mol, in excellent agreement with the experimental value of 89 ± 2 cal/mol.

In order to parameterise cationic TMAO we considered that the negative SA of

zwitterionic TMAO becomes positive, i.e., SAo,+ = 43.2 Å2, SAo,− = 0 Å2, SAo,0 =

168.4 Å2. The model predicts in this case a transfer free energy of the peptide

backbone unit in 1 M cationic TMAO of 75.26 cal/mol, suggesting that cationic

TMAO is still preferentially excluded from the peptide backbone as compared to

water, though to a lesser extent that zwitterionic TMAO.

7.4 Discussion

Existing studies of the effect of TMAO on protein stability have focused either

on the thermodynamics of the N and D states or on enzyme inactivation and

renaturation kinetics, without directly studying the effect of TMAO on the protein

TS.

By fitting Bell’s model (see Eq. 7.3) to our SMFS experimental data we found

that in the pH range 3.5-7 TMAO does not shift the TS of GB1 on the mechanical

reaction coordinate, suggesting that it does not change its structural characteristics

or the unfolding pathway of GB1. Therefore we could compare the energetic level

of TS relative to N, in the presence and absence of TMAO, ascribing any differences

to non-structural effects such as protein-solvent interactions. We showed that close

to physiological pH when the zwitterionic form of TMAO is dominant the energetic

level of TS is raised with respect to N in the presence of TMAO, while at low pH

when the cationic form is dominant, the energetic level of TS is lowered with

respect to N in the presence of TMAO.
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It is rather well accepted that the osmophobic effect of the peptide backbone

applies to zwitterionic TMAO by raising the energetic levels of both N and D,

but raising the energetic level of D more than it raises the energetic level of N.

Conversely, side-chains exhibit overall a net osmophilic effect, but it is of lesser

magnitude and therefore it is dominated by the osmophobicity of the peptide

backbone [202]. Based on our finding that that the TS of GB1 is structurally

similar in the presence and absence of TMAO, the increased mechanical stability

of GB1 against mechanical unfolding close to neutral pH is also likely a consequence

of the osmophobic nature of the peptide backbone.

Some previous thermodynamic studies of proteins in aqueous TMAO solutions

at low pH found that TMAO destabilises them under its pKa, and at least three

different hypotheses have been proposed to explain this effect. a) One study sug-

gested that cationic TMAO is still preferentially excluded from the peptide back-

bone relative to water, but that at low pH the opposing side-chain contributions

start to dominate, thereby destabilising N with respect to D [21]. Conversely, an-

other study proposed that b) cationic TMAO may preferentially interact with the

peptide backbone, and that c) it may weaken electrostatic interactions which are

distinctly important for the stability of some protein domains [22].

GB1 does not have any salt bridges in solution [226]. In the mechanical clamp

region it has three charged amino acids, namely Lys4, Lys50 and Glu56, the latter

with a pKa of 4.51 (see Table 3 in Ref. [226]) and therefore largely protonated at

pH 3.5 and 4, suggesting that endogenous charged residues of GB1 do not play

a major mechanical stabilisation role of GB1 at low pH, in agreement with the

findings of Ref. [180]. In fact, a 2 M salt concentration was found to thermo-

dynamically stabilise a structure-preserving GB1 variant at low pH (but not at

high pH) [139]. On the basis of these considerations we can rule out weakening

electrostatic interactions as the main reason behind TMAO-induced mechanical

destabilisation of GB1 at low pH.

In order to investigate the relationship of cationic TMAO to the peptide back-

bone we employed a statistical mechanics solvation theory for osmolyte-backbone

interactions. According to this model cationic TMAO is still preferentially ex-

cluded from the peptide backbone, although to a lesser extent than zwitterionic

TMAO. It is known that protecting osmolytes stabilise proteins due to a fine

balance between their preferential exclusion from the protein backbone and their
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preferential interaction with the protein side-chains that is tilted in favour of the

former [202]. Seen in this context, the slightly weaker preferential exclusion of

cationic TMAO from the protein backbone may result in a net destabilising effect

on proteins, in agreement with the ansatz of Ref. [21].

However, in the absence of experimental transfer free energies of the peptide

backbone unit in the presence of TMAO at low pH, we cannot rule out the hypoth-

esis that cationic TMAO may preferentially interact, with respect to water, with

the peptide backbone. In fact, one important objective of our study is strenghtning

the case for such measurements to be performed.

Lastly, in the course of this study we have developed a series of technological

innovations such as a) a method to numerically compute the expected number

density of unfolding events by force for the velocity-clamp pulling protocol with-

out the need for Monte-Carlo simulations (see Eq. 7.8), even in the presence of

measurement noise, b) an ML method to fit Bell’s model to velocity-clamp data

taking into account measurement noise (see Section 7.5.1 and Section 7.5.1), and

c) software tools for peak detection, WLC fitting, curve filtering and kinetic analy-

sis of AFM force-spectroscopy experiments, all of which are made available with a

friendly open-source licence as part of the software package Refolding [18]. More-

over, our observation that the thermodynamics of the backbone solvation theory

of Ref. [1] can be computed in linear time in the number of interaction sites of

both the osmolyte molecule and the peptide backbone (see Eq. 7.15) may afford

more accurate future calculations of osmolyte-backbone electrostatics.

7.5 Methods

7.5.1 Expected number density of unfolding events by force

In this section we develop a simulation-free method to numerically compute the

expected number density of unfolding events as a function of force and to estimate

the kinetic parameters of a protein module, even in the presence of measurement

noise sampled from known truncated normal distribution.
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Theory

Let us assume that we are stretching m ≥ 1 identical protein modules in series with

the force-protocol f(t) starting at time instant ts. Assuming that each module has

the force-dependent unfolding rate ku(f), the survival probability of the construct

reads as (see Eq. 3 in Ref. [17])

smts (t) = exp

[
−m

∫ t

ts

ku(f(u))du

]
. (7.1)

Further assuming that f(t) is invertible and taking f(ts) = ys we can easily

change the domain of integration to force:

smys(y) = exp

[
−m

∫ y

ys

ku(z)(f−1)′(z) dz

]
. (7.2)

Adding in the unfolding rate expression of Bell’s model

ku(f) = ku(0) exp[f∆xu/(kBT )]. (7.3)

we obtain the survival probability

smys(y) = exp

[
−mku(0)

∫ y

ys

exp[z∆xu/(kBT )](f−1)′(z) dz

]
(7.4)

and the density probability to observe an unfolding event becomes

rys(m, y) = −dsmys(y)/dy = mku(0) exp[y∆xu/(kBT )](f−1)′(y)smys(y). (7.5)

For the common case of a WLC polymer pulled at constant velocity v with a

cantilever of spring constant k, the following analytical approximation accurate to

within 3.5% is available for the derivative of the inverse of the force-time function

(see Eq. 4 in Ref. [230]):

(f−1)′(y) = [1/(kL) + h(y)]/(v/L), (7.6)

where k is the spring constant, L is the contour length of the stretched construct

and h(y) is a function that depends on neither k, v or L:

h(y) = 2[1 + y/(kBT/p)]/{(kBT/p)[3 + 5y/(kBT/p) + 8y5/2/(kBT/p)
5/2]}, (7.7)
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with p standing for the persistence length of the protein chain.

Now let’s consider n ≥ 1 such events indexed by the subscript variable 1 ≤ i ≤
n. Then the expected number density of unfolding events by force (i.e., the ideal

histogram) is

C(y) =
n∑
i=1

rys(m, y). (7.8)

For compiling expected histograms of unfolding forces under velocity-clamp

conditions, Monte-Carlo simulation has been so far the main technique spanning

from the first AFM studies [40] to the more recent ones [231]. Taken together,

Eq. 7.5, Eq. 7.6, Eq. 7.7 and Eq. 7.8 constitute a simulation-free method to nu-

merically compute the ideal histogram. Together with ML estimation based on

the likelihood function (see Eq. 4 in Ref. [17])

L(∆xu, ku(0)) =
n∏
i=1

rysi(mi, yi) (7.9)

where the parameters pi, ki, vi and Li are implicitly considered, the above

equations make up a complete solution for simulation-free fitting of the kinetic

parameters ∆xu and ku(0). Section 7.5.1 presents a way to greatly speed-up the

computation of Eq. 7.5 with a piecewise linear approximation of Eq. 7.7.

Now let us consider that the force measurement of an unfolding event may

be affected by error sampled from an appropriately truncated normal distribution

N (0, q2). Then the probability density of Eq. 7.5 must be convoluted as follows:

cys(m,w) =

∫ ∞
ys

rys(m, y)gw−ys(w − y) dy, (7.10)

where gb(·) is the density function of the normal distribution N (0, q2) truncated

at the upper bound b:

gb(x) = φ(x/q)/[qΦ(b/q)]. (7.11)

Here, φ(ξ) = exp(−ξ2/2)/
√

2π is the probability density function of the standard

normal distribution and Φ(·) is its cumulative distribution function.

The expected number density of unfolding events by force and the likelihood

function in this case are the sum respectively the product of the convoluted func-

tions.
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Discrete approximation

Let us consider the definite integral of Eq. 7.5 on an interval [z1, z2]:

I(z1, z2, h) =

∫ z2

z1

exp[y∆xu/(kBT )][1/(kL) + h(y)]/(v/L) dy. (7.12)

We can discretise all the forces onto a finite-size set and then precompute the

integral of Eq. 7.12 on the interval between each two consecutive points. Being

independent of k, v or L, these integrals can then be reused for every unfolding

event for which the stretching starts at a (discrete) force ys ≤ z1 and the unfolding

happens at a (discrete) force y ≥ z2.

A piecewise linear interpolation of h(·) on the finite-size set of forces takes

the following form on each interval between two consecutive points [z1, z2] in the

finite-size set of forces:

h̃(z) = [h(z1)z2−h(z2)z1]/(z2−z1)+[h(z2)−h(z1)]/(z2−z1)z, z1 ≤ z ≤ z2. (7.13)

For each linear segment [z1, z2] of Eq. 7.13 the integral of Eq. 7.12 has the

following analytical form considering h̃(·) to substitute h(·):

I(z1, z2, h̃)(v/L)∆xu/(kBT ) =

{exp[z2∆xu/(kBT )]− exp[z1∆xu/(kBT )]}/(kL)

+ {exp[z2∆xu/(kBT )]− exp[z1∆xu/(kBT )]}[h(z1)z2 − h(z2)z1]/(z2 − z1)

+ {exp[z2∆xu/(kBT )](z2 − kBT/∆xu)− exp[z1∆xu/(kBT )](z1 − kBT/∆xu)}
× [h(z2)− h(z1)]/(z2 − z1). (7.14)

For taking into account the experimental noise, it is of course convenient to

discretise the truncated distribution of Eq. 7.11 on the same finite-size set of forces.

7.5.2 Protein constructs

GB1-polyprotein-encoding plasmid pQE80-pQE80-(GB1)8 was obtained as previ-

ously described [49]. Briefly, the (GB1)8 gene was obtained by iterative cloning,

overexpressed in the DH5α strain of E. coli and purified by Ni2+ chromatography.
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7.5.3 AFM experiments and analysis parameters

Velocity-clamp experiments were performed with a Picoforce AFM equipped with

a DI Multimode Nanoscope IIIa controller (Bruker) and gold-coated V-shaped

silicon nitride cantilevers (NPG model; Bruker) with a nominal spring constant of

0.06 N/m. The temperature inside the cell was about 301.15 K. Cantilevers were

calibrated via thermal tuning according to the equipartition theorem [117].

In order to avoid the effects of both intrinsic [117] and viscosity-induced [11,

115, 116] thermal tuning errors that may hamper the ability to distinguish small

shifts in unfolding force distributions in different solvent conditions, we used each

cantilever at one single pH value, changing the buffer back-and-forth between

TMAO 0M and TMAO 2M, each time performing thermal tuning calibration to

check that the cantilever properties did not suffer drastic changes in time, but

using just one thermal tuning result per cantilever during data analysis.

For the viscosity adjustments in Fig. 7.10 we considered viscosity to be inde-

pendent of pH and took η(0M) = 0.890 and η(2M) = 1.884, obtained by digitising

Fig. 4 from Ref. [232].

Since the zero-force baseline noise is likely to also contribute to the force mea-

surement error, we estimated the standard deviation of the experimental noise q

(see Eq. 7.11) as the standard deviation of the force measured after molecule de-

tachment in the same force-curve. For the discrete approximation of Section 7.5.1

we used force-multiples of 1 pN.

7.5.4 Using the statistical mechanics model of Ref. [1]

Eq. 6 of Ref. [1] computed the average energy as a function of the osmolyte molar

concentration Y by enumerating all possible states of the osmolyte-peptide back-

bone unit system. Since the three interaction sites on the peptide backbone unit,

namely positive N and negative O1 and O2, are independent, the same average

energy can also be computed simply as the sum of the average interaction energy

at each of the three sites on the protein backbone:
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〈EN(Y )〉 =
SA+(Y ) exp[−H/(kBT )]H − SA−(Y ) exp[H/(kBT )]H

SA+(Y ) exp[−H/(kBT )] + SA−(Y ) exp[H/(kBT )] + SA0(Y )

〈EO1(Y )〉 =
−SA+(Y ) exp[H/(kBT )]H + SA−(Y ) exp[−H/(kBT )]H

SA+(Y ) exp[H/(kBT )] + SA−(Y ) exp[−H/(kBT )] + SA0(Y )

〈EO2(Y )〉 = 〈EO1(Y )〉
〈E(Y )〉 = 〈EN(Y )〉+ 〈EO1(Y )〉+ 〈EO2(Y )〉 (7.15)

where SA• is defined as in Eq. 2, Eq. 3 and Eq. 4 of Ref. [1]:

SA•(Y ) = 55.5SAw,• + Y SAo,•. (7.16)

The free energy of transfer of a peptide backbone unit into an 1 M osmolyte

solution is simply the difference ∆gtr = 〈E(1)〉 − 〈E(0)〉. It should also be noted

that Eq. 7.15 is trivially extendable with linear time complexity in both the number

of interaction sites on the peptide backbone unit and on the osmolyte molecule.
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Conclusions

Mechanical processes play central roles in nearly every single aspect of life such

as chromosomal dynamics during the cell cycle, protein translocation, cell move-

ments, assisted protein folding and unfolding and enzyme catalysis. Hoping to

elucidate the underlying molecular mechanisms, SMFS has become the technique

of choice to study the effect of mechanical tension on these processes when applied

according to predefined protocols. The measured effect of mechanical force on a

biochemical process can reveal valuable information on the reaction free energy sur-

face via suitable theoretical models. The mechanical stability of macromolecules in

particular cannot generally be predicted from their thermodynamic stability alone,

and therefore it is inaccessible to bulk experiments and it must be characterised

by direct single-molecule mechanical experiments [74].

We applied such measurements to study the effect of ubiquitous osmolytes on

protein energy landscapes, bringing manifold contributions to the biophysics field.

First, we have tackled the technical difficulties of performing and analysing SMFS

experiments by developing an improved method to fit and compute theoretical

unfolding force distributions and refolding probabilities, and implemented such

codes in open-source software [17, 18]. Second, we experimentally demonstrated

that protecting osmolytes do not bridge the separating beta strands of a protein

under mechanical tension, explaining instead our experimental results by applying

the osmophobic effect applied to the native, transition and denatured protein states

[12]. Third, we incorporated the osmophobic effect into a protein Ising model that

affords exact thermodynamic calculations [19] and fast kinetic simulations [20].
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Fourth, we found that an effect other than the osmophobic one dominates the

protein energetics in the presence of an ubiquitous protecting osmolyte at low pH.

By combining mathematical, computational and experimental techniques this

work has greatly enhanced our understanding of the underlying molecular details

of osmophobic stabilisation and has opened up new avenues for future studies of

more specific osmolyte-protein interactions.
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