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ACRONYMS

IK1 inward rectifier K+ current

INa Na+ current

IKr rapid delayed rectifier K+ current

IKs slow delayed rectifier K+ current

ICaL L-type Ca2+ current

ICaT T-type Ca2+ current

Ito transient outward K+ current

If funny current

INaK Na+ /K+ pump

INaCa Na+ /Ca2+ exchanger

IpCa sarcolemmal Ca2+ -ATPase

IbCa Background Ca2+ current

Iup Sarcoplasmic Reticulum (SR) uptake current

Irel SR release current

Ileak SR leakage current

Istim Stimulus current
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6 Acronyms

AP Action Potential

APA Action Potential Amplitude

APD Action Potential Duration

APD10 APD at 10% of repolarization

APD30 APD at 30% of repolarization

APD40 APD at 40% of repolarization

APD50 APD at 50% of repolarization

APD70 APD at 70% of repolarization

APD80 APD at 80% of repolarization

APD90 APD at 90% of repolarization

CaMK Ca2+/calmodulin-dependent protein kinase II

Chr 3R4S-Chromanol 293B

CM cardiomyocyte

Cm Membrane capacitance

DDR Diastolic Depolarization Rate

EAD Early After Depolarization

EB Embryod Body

EC excitation/contraction

F Rate of spontaneous beating

hESC human embryonic stem cell

hiPSC human induced pluripotent stem cell

hESC-CM human embryonic stem cell-derived cardiomyocyte

hiPSC-CM human induced pluripotent stem cell-derived cardiomyocyte
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Acronyms 7

LQTS Long QT Syndrome

MDP Maximum Diastolic Potential

Nifed Nifedipine

ORd O’Hara - Rudy

Peak Peak Voltage

SR Sarcoplasmic Reticulum

TTX Tetrodotoxine

Vc Cell volume

Vmax Maximum Upstroke Velocity

VmaxCa,upstroke Ca2+ transient Maximum Upstroke Velocity

VmaxCa,decay Ca2+ transient Maximum Decay Velocity

VSR Sarcoplasmic Reticulum volume

ANA Antibody Antinucleus

ASM Angular Second Moment

AUC area under the ROC curve

FUSr fusion by sum rule between MLQPr and MLPQ3

FUSu fusion by sum rule between MLQPu and MLPQ3

GLCM Grey Level Co-occurence Matrix

HAR Haralick features

IIF Indirect Immunofluorescence

L(3) LPQ with radius = 3 pixels

L(5) LPQ with radius = 5 pixels

L(3+5) concatenation of the bins extracted by L(3) and L(5)
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8 Acronyms

LBP Local Binary Pattern

LE Locate Endogenous

LPQ3 single LPQ with ternary coding

LPQ Local Phase Quantization

LPQ3 LPQ with ternary coding

LQP Local Quinary Pattern

LQPu LQP with uniform mapping

LT Locate Transfected

LTPu single LTP with uniform mapping

LTP Local Ternary Pattern

MLPQ3 Multi-Threshold LPQ3

MLQP Multi-Threshold LQP

MLQPr Multi-Threshold LQP with rotation invariant uniform mapping

MLQPu Multi-Threshold LQP with uniform mapping

MLTPu Multi-Threshold LTP with uniform mapping

RU(8) rotation invariant uniform bins extracted using LBP with radius =

8 pixels

RU(16) rotation invariant uniform bins extracted using LBP with radius =

16 pixels

RU(8+16) concatenation of the bins extracted by RU(8) and RU(16)

STFT Short Term Fourier Transform

SVM Support Vector Machine

U(8) uniform bins extracted using LBP with radius = 8 pixels

U(16) uniform bins extracted using LBP with radius = 16 pixels
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Acronyms 9

U(8+16) concatenation of the bins extracted by U(8) and U(16)

VE Methods to compute the LTP proposed by Véscei at al. in Comput

Bio Med 2011; 41(6): 313-25.

VLQ VE method applied to LQP

MV1 VE variant where a different threshold is calculated for each class

in each dataset
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GENERAL INTRODUCTION

The main focus of this thesis deals with the mathematical modelling of the electro-

physiology of human stem cells differentiated towards cardiomyocytes. Starting

from the last decades of the twentieth century, challenging hopes about new treat-

ments for tissues and organ replacements, commonly gathered under the name

of regenerative medicine, were raised by seminal works such as [1, 2]. Evans

et al. [1] showed in 1981 the feasibility of isolating pluripotent stem cells from

mouse embryos and the ability of these cells in differentiating both in-vitro and

in-vivo by generating teratomas, while in 1998 Thomson et al. [2] succeeded in

isolating pluripotent stem cell lines from human embryos, i.e. human embry-

onic stem cells (hESCs). Moreover in recent years, Yamanaka’s [3] and Thom-

son’s [4] groups were able to reprogram somatic cells from mice and humans into

pluripotent cells capable to differentiate into various tissues. Dealing with hu-

man induced pluripotent stem cells (hiPSCs) brings several advantages, such as

the patient-specificity, the disease-specificity and no use of embryos thus avoiding

ethical issues.

The weak capability of adult heart of regenerate and undergo extensive repair

increased the interest in differentiating human stem cells into cardiomyocytes to

be used to create in-vitro cardiac tissue useful for replacing damaged myocardial

areas, e.g. after infarction. Although functional cardiomyocytes can be differen-

tiated, namely human embryonic stem cell-derived cardiomyocytes (hESC-CMs)

and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs),

they are not used for treatments and therapies yet, but they already represent

well-established in-vitro models for basic research in electrophysiology and phar-

maceutical studies.

13



14 General introduction

Supporting the in-vitro practice with in-silico models can represent a strategic

choice, that has potential to reduce the number of costly and time consum-

ing in-vitro experiments. In-silico models could help in verifying hypotheses,

in formulating new ones as well as in planning new experiments. The cur-

rent models of the adult cardiac Action Potential (AP) result inadequate in

describing the hESC-CM/hiPSC-CM electrophysiology, due to the differences

between hESC-CMs/hiPSC-CMs and adult myocytes such as (i) the immaturity

of hESC-CMs and hiPSC-CMs, (ii) their spontaneous electrical activity, i.e. APs

firing without an external stimulus [5, 6], and (iii) the different AP shape [5, 6].

The first aim of this thesis is developing new models of the AP of hESC-CMs

and hiPSC-CMs useful for a deeper understanding of their electrophysiological

properties and their development, also in order to fill the gap between in-vitro

and in-silico models.

This thesis investigates also a secondary topic, the use of texture descriptors

for biological image processing. The author’s interest on this topic was born

during the preliminary processing of datasets of hESC and hiPSC images and

constantly grew until texture analysis became an independent line of research

during the Ph.D. education, worth to be detailed in a dedicated part of this

thesis. Usually, texture descriptors and texture analysis were commonly used

for biometric applications such as face recognition [7] or fingerprint matching [8]

but their use resulted successful also on diagnostic images. For instance in [9]

the Local Binary Pattern (LBP) operator was used to discern between normal

parenchyma and tumoral masses in mammographic images, or in [10] LBP was

used to assign a seriuosness score to endoscopical images of celiac patients. The

second aim of this thesis is assessing the discriminant power of new variants of

the state of the art texture descriptors (such as LBP or Local Phase Quantiza-

tion (LPQ)) based on non-binary codings, in particular in classifying biological

(cellular and sub-cellular) images.

Walkthrough

Because of the dual line of research followed in this thesis, it was organized in

two distinct parts. Part I deals with the modelling of the AP of hESC-CMs and

hiPSC-CMs while Part II investigates new variants of texture descriptors useful

for biological image processing applications.
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General introduction 15

Part I outline

In Chapter 1 a brief overview on hESC/hiPSC isolation and differentiation into

cardiomyocytes (CMs) is exposed: the aim of this section is not to fully describe

the stem cell universe, but to provide the reader with the basic ideas about the

biology of hESCs and hiPSCs only, which will result useful in the comprehen-

sion of the rest of Part I. For the same reason, also the basic concepts about

CM electrophysiology and AP modelling are summarized. The first computa-

tional model developed during this Ph.D. , the hESC-CM model, is detailed in

Chapter 2: this model represents the first model in literature trying to provide

a comprehensive description of the electrophysiology of hESC-CMs and repro-

ducing APs and Ca2+ transients at two different developmental stages, identified

during the hESC-CM maturation process [6]: Early (between 15 and 40 days of

differentiation) and Late (between 50 and 110 days of differentiation). Moreover

it was tested also in reproducing the AP morphologial changes due (i) to the

application of 2 of prototypical current blockers and (ii) to the coupling with a

fibroblast model. This study was carried out in collaboration with the Univer-

sity of Florence (Italy). Chapter 3 describes the second computational model

developed during this Ph.D. , the hiPSC-CM model, able to reproduce the AP of

two different phenotypes, the ventricular-like and the atrial-like phenotype [5].

Moreover it was validated also against 4 different current blockers and finally

applied to formulate specific hypotheses about the ionic currents responsible of

the differences between hiPSC-CM and adult CM APs. In order to speculate on

what ventricular-like hiPSC-CMs lack with respect to adult ventricular CMs, we

merged the hiPSC-CM model with the state of the art O’Hara-Rudy model of

adult ventricular cell [11].

Part II outline

Chapter 1 presents a brief introduction about the usage of texture descriptors,

in particular for biological and diagnostic applications and afterwards describes

the basic operators used in the following chapters of Part II such as Haralick

features, LBP and LPQ as well as their variants making use of non-binary cod-

ings [12] and of the multi-threshold approach. Chapter 2 is focused on the use

of non-binary codings for the LBP and LPQ operators, in particular the ternary

coding and the quinary coding, and on the multi-threshold approach. The aim

of this chapter is providing a well assessed feature set for classifying biological

Ph.D. Thesis



16 General introduction

data sets. In fact 6 datasets of subcellular parts (mostly protein localization)

and of cells (hESC-CMs and hiPSC-CMs) were classified showing the effective-

ness of non-binary codings and of the multi-threshold approach [13]. Chapter 3

shows a further application of non-binary coded and multi-thresholded texture

descriptors, in fact a classification method is proposed for the staining patterns

observable during the Antibody Antinucleus (ANA) test. This work was born

due to the clinical need of quantifying (i) the level of fluorescence from Indirect

Immunofluorescence (IIF) pictures and (ii) the staining patterns observable in

those pictures. If the first activity is not difficult for an expert human observer,

the second one results to be critical thus making the use of an automated system

helpful for the physician.

Bibliography

[1] Evans M, Kaufman M. Establishment in culture of pluripotential cells from

mouse embryos. Nature 1981;292(5819):154–156.

[2] Thomson JA. Embryonic Stem Cell Lines Derived from Human Blastocysts.

Science 1998;282:1145–1147.

[3] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Ya-

manaka S. Induction of pluripotent stem cells from adult human fibroblasts

by defined factors. Cell November 2007;131(5):861–872.

[4] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian

S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA.

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells.

Science 2007;318(5858):1917–1920.

[5] Ma J, Guo L, Fiene S, Anson B, Thomson J, Kamp T, Kolaja K, Swanson

B, January C. High purity human-induced pluripotent stem cell-derived

cardiomyocytes: electrophysiological properties of action potentials and ionic

currents. Am J Physiol Heart Circ Physiol November 2011;301(5):H2006–

H2017.

[6] Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME. Devel-

opmental changes in cardiomyocytes differentiated from human embryonic

Michelangelo Paci



General introduction 17

stem cells: a molecular and electrophysiological approach. Stem Cells 2007;

25(5):1136–1144.
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CHAPTER

ONE

A BRIEF OVERVIEW ON HUMAN PLURIPOTENT

STEM CELLS, THE CARDIAC ACTION

POTENTIAL AND ITS COMPUTATIONAL

MODELLING

1.1 Human stem cells and differentiation into car-

diomyocytes

This section does not have the ambition to fully review the wide universe of human

stem cells, instead it aims to provide the basic information of what a stem cell

is and the necessary details to focus the in-vitro models we turned into in-silico

models in chapters 2 and 3. According to the definition reported in [1] “a stem

cell is a cell that can continuously produce unaltered daughters and also has the

ability to produce daughter cells that have different, more restricted properties”.

In spite of the informality of this definition, it implies two fundamental properties

of stem cells:

� self-renewal, the ability to go through numerous cycles of division that

repeatedly generate at least one daughter equivalent to the mother cell

with latent capacity for differentiation [1];

� potency, the range of commitment options available to a cell [1], i.e. the

capacity to differentiate into specific and specialized cells.

21



22 I.1. About human pluripotent stem cells and the cardiac AP

The different levels of potency characterizing stem cells were summarized in [1, 2]:

� totipotent, sufficient to form the whole organism. They can differentiate into

embryonic and extra-embryonic cell types, i.e. all the lineages necessary to

construct a complete organism. Totipotent cells derive from the fusion of a

sperm cell and an egg cell.

� pluripotent, able to form all the body cell lineages. They can differentiate

into all the embryonic cell types but not into the extra-embryonic ones, i.e.

they can produce all the body cell lineages including the 3 germ layers (eg.

embryonic stem cells).

� multipotent, can differentiate into diverse but closely related cell types,

which constitute an entire tissue (eg. haematopoietic stem cells).

� oligopotent, can develop into two or more lineages within a tissue (eg. a

neural stem cell that can create a subset of neurons in the brain).

� unipotent, can form only a single lineage but still are characterized by self-

renewal, thus they are fundamentally different from non-stem cells (eg.

spermatogonial stem cells, muscle stem cells).

1.1.1 Human embryonic stem cells

Human embryonic stem cells hESCs are pluripotent cells derived from in-vitro

fertilized-spared human embryos, derived in 1998 by Thomson et al. [3, 4]. After

the fertilization of the human oocyte, a rapid sequence of divisions of the zygote

(cleavage) happens, thus producing a packed cluster of totipotent cells of the

same size of the original zygote. Three days after fertilization, the morula state

is reached and the outer cells start detaching from the inner cells, thus reshaping

the morula as a hollow ball of cells. Between days 5 and 6 the blastocyst stage is

reached and two primary elements are present:

� the trofoblast i.e. the external cell layer, surrounding the blastocyst cavity

(blastocoel), whose development results in the placenta and other structures

necessary for the in-utero development of the embryo;

� the inner cell mass which gives rise to the embryo itself. hESCs are har-

vested from the inner cell mass and their isolation results in the destruction

of the embryo.

Michelangelo Paci



I.1.1 Human stem cells and differentiation into cardiomyocytes 23

About 16 days after fertilization, the inner cell mass undergoes the gastrulation

process, which leads to the formation of the 3 germ layers. Each germ layer is

able to differentiate into a limited number of phenotypes:

� the endoderm, i.e. the internal layer, producing hepatic/pulmonary/vesical/...

tissues;

� the mesoderm, i.e. the intermediate layer, producing osseus/muscular/cardiac/...

tissues;

� the ectoderm, i.e. the external layer, producing dermal/nervous/... tissues

Since hESCs are cells from the inner cell mass (Fig. 1.1) they can differentiate

into the tissues produced by the 3 germ layers and their pluripotency raised hope

for future cellular therapies as well as discussion on the ethics of the usage of

human embryos.

1.1.2 Human induced pluripotent stem cells

Human induced pluripotent stem cells hiPSCs are pluripotent cells derived by

reprogramming the DNA of human somatic cells [5, 6]. This procedure was tested

first by Takahashi et al. [7] on adult mouse fibroblasts and then it was performed

on adult human dermal fibroblasts [5] producing hiPSCs. Four pluripotent genes

were introduced in human fibroblasts by lentiviral vectors:

� Oct-3/4 is fundamental in maintaining pluripotency and it is one of the

responsible of the embryonic stem cell differentiation potential [8];

� Sox2 is a transcription factor crucial for self-renewal and pluripotency of

undifferentiated embryonic stem cells [9];

� Klf4 another factor required for embryonic stem cell pluripotency and self-

renewal [10];

� c-Myc is a proto-oncogene which was demonstrated to be implicated in the

generation of hiPSCs by Takahashi et al. [5, 7].

hiPSCs were also produced by Nagakawa et al. [11] removing c-Myc and by

Thomson et al. [6] by using Lin28 and Nanog instead of c-Myc and Klf4. These

new procedures were developed since in [12] it is shown that about 20% of mices
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24 I.1. About human pluripotent stem cells and the cardiac AP

Figure 1.1: Harvesting embryonic stem cells from a developing embryo.
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I.1.1 Human stem cells and differentiation into cardiomyocytes 25

generated by using induced pluripotent cells developed tumors imputable to the

reactivation of c-Myc which was hypothesized acting as a reprogramming booster

instead of a controller of pluripotency maintenance. In exchange, these new re-

progamming procedures show lower efficiency than the original one: in [11] is

reported that their procedure got 16 colonies out of the 3.5×105 reprogrammed

cells while the original technique got 1000 colonies out of the 0.5×105 repro-

grammed cells. Several tests were performed successfully on hiPSCs in terms of

morphology, gene and protein expression, differentiation potency, etc. to assess

the similarity of hiPSCs and hESCs. hiPSCs show some advantages than hESCs:

� no ethical issues, since no human embryos are used;

� patient-specific cells culturing is possible, since hiPSCs have the same genome

as the person whose cells have been reprogrammed. It reduces the risk of

rejection in the perspective of regenerative medicine;

� having patient-specific cells from diseased patient allows the production of

specific disease models, as reported in [13–15].

1.1.3 Stem cell differentiation into cardiomyocytes

Since this first part of this Ph.D. thesis deals with the computational modelling of

hESC-CMs and hiPSC-CMs, a summary of the best known differentiation meth-

ods of human pluripotent stem cells into CMs follows [16]. A family of methods

consists in inducing the spontaneous differentiation of hESCs and hiPSCs towards

the cardiac phenotype exploiting the formation of Embryoid Bodies (EBs), i.e.

three-dimensional aggregates of pluripotent stem cells. Pluripotent stem cells

are initially dissociated to small cell clusters and removed from the environment

supporting their undifferentiated state, thus allowing the differentiation towards

the 3 germ layers. Then cells are allowed to aggregate into EBs and after few

days the EBs are plated on culture plates [17], thus making them proliferating in

planar way. In [16] 3 main techniques are reported to promote the formation of

EBs:

� aggregation of enzimatically dissociated cells cultured in suspension in the

culture medium [18];

� the hanging drops methods, i.e. pipetting small drops of single cell suspen-

sion on the cover of a petri dish and inverting the cover on top of the dish,
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26 I.1. About human pluripotent stem cells and the cardiac AP

thus letting the drops hanging due to the surface tension [19];

� the forced aggregation method, which simulates the hanging drops practice

by making the cells aggregate by centrifugation [20].

About 1 day (24 -36 hours) after the EBs plating, spontaneously beating areas

appear in the EBs: this is a macroscopic marker of the cardiac differentiation of

the beating fraction of the EBs. In hESC differentiation the EB-based techniques

were reported to have lower efficiency (8.1% of EBs spontaneously beat) than

in murine stem cells differentiation (80-90% of EBs spontaneously beat) [21].

Another differentiation method, not involving the formation of EBs consists in

culturing the pluripotent cells with mouse endodermal-like cells, which secrete

differentiation inducing factors even if the specific factors themselves are not

clearly known yet [22]. One more technique consists in inducing by growth factor

the formation of mesodermal-like and endodermal-like cells since mesoderm is the

germ layer originating the cardiac tissue and the endoderm is the source of the

inducing signals [16]. All these differentiation methods are low efficiency processes

as shown in [16], where differentiation tests on diverse hESC lines had efficiency

oscillating between 2.9% - 9.4% for the cultures with mouse endodermal-like cells

and between 1.6% - 12.5% for the EB method (efficiency measure reported as total

number of beating areas / total number of cell aggregates). These data make the

development of more efficient methods necessary, especially in the perspective of

using hESC-CMs or hiPSC-CMs usable tools for pharmacological studies and for

future cell therapies.

As stated in section 1.1.2, it is possible to produce hiPSC-CMs not only from

healthy donors, but also from patients carrying particular genetic mutations, thus

enabling the production if in-vitro models for the study of specific pathologies.

Nowadays, many studies are focusing on the Long QT Syndrome (LQTS), a

pathology delaying the heart repolarization (see section 1.2) and resulting in a

prolonged QT interval in the ECG. The abnormal repolarization may lead to

irregular heartbeats and evolve in syncope, faintness and finally in ventricular

fibrillation [23]. Several gene mutations can induce the LQTS and some of them

are currently under investigation by using hiPSC-CMs produced from LQTS-

positive patients:

� in [15] hiPSC-CMs are used as in-vitro models for the most common type of

LQTS, LQT1, which reduces the repolarizing slow delayed rectifier current

Michelangelo Paci



I.1.2 The cardiac action potential 27

IKs, because of the mutation of the KCNQ1 gene encoding for the IKs

channel;

� [13, 14] focus on the LQT2 syndrome which affects the KCNH2 gene en-

coding for the channel of the fast delayed rectifier current IKr and results

in a smaller repolarizing current;

� in [24] they were able to produce LQT8 hiPSC-CMs carrying the mutation

to the CACNA1C gene encoding for the depolarizing L-type Ca2+ current

ICaL channel, whose weakened voltage-inactivation is responsible for a sus-

tained ICaL [23].

One great advantage in using hiPSC-CMs is thus the opportunity for researchers

of producing pools of cells carrying exactly the mutation / pathology to be in-

vestigated.

1.2 The cardiac action potential

The following section is a summary based on the detailed review by Walker et

al. [25], reporting the basics about the cardiac AP and the ionic currents, pumps

and mechanisms generating it. Finally some details about the hESC/hiPSC-CM

APs are included. The cardiac muscle is a highly organized tissue, made of diverse

cell types such as smooth muscle cells, fibroblasts and CMs. CMs represent the

functional unit for the myocardial contraction and they are required to contract

according to a precise scheme, in order to supply an appropriate pump action

and blood perfusion. [26].

The cardiac tissue contraction is consequence of the excitation/contraction

(EC) coupling: when a CM produces an AP, i.e. the membrane depolariza-

tion due to the ion transfer across the cell membrane itself, the intracellular

Ca2+ concentration increases in response to the electrical excitation. The in-

creased Ca2+ activates the myofilaments consequently initiating the crossbridge

mechanism and finally resulting in the cell shortening (a more detailed description

of this phenomenon will be provided at the end of this section). The myocardial

contraction is the result of the coordinated activation and shortening of the single

CMs throughout the heart. The AP assumes different shapes according to the

location in the heart of the CM responsible of its firing (Fig. 1.2), but the most
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28 I.1. About human pluripotent stem cells and the cardiac AP

representative model to expose the AP genesis and the mechanisms involved is

the ventricular AP, reported in Fig. 1.3.

Figure 1.2: Illustrative representation of AP waveforms recorded in different
regions of the human heart; displacement in time reflects the temporal sequence
of propagation. Figure adapted from [27].

The four different phases of the AP are represented in Fig. 1.3 and each of

them corresponds to the activation and the inactivation of specific ionic currents

and pumps. During Phase 4 the CM membrane potential is kept stable to its

resting value (about -90 mV) by 4 mechanisms. Primarily the inward rectifier

K+ current (IK1) allows an influx of K+ ions, whose equilibrium potential mainly

sets the CM membrane potential, since in Phase 4 the cell membrane is basi-

cally permeable to K+ only. The Na+ /K+ pump (INaK) is an ATP-dependent

pump which moves 3 Na+ into the extracellular space and 2 K+ into the in-

tracellular compartment, thus resulting into an outward current. INaK trans-

ports both Na+ and K+ against their concentration gradients by consuming ATP.

The Na+ /Ca2+ exchanger (INaCa) is a bidirectional transport which exchange 1

Ca2+ for 3 Na+ exploiting both the concentration gradients of Na+ and Ca2+ ;

together with the sarcolemmal Ca2+ -ATPase (IpCa) it contributes in balanc-

ing the intracellular Ca2+ and consequently in maintaining the resting potential.
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I.1.2 The cardiac action potential 29

Figure 1.3: The 5 phases of the ventricular AP: (0) depolarization, (1) early
(fast) repolarization, (2) plateau phase, (3) late (slow) phase of repolarization
and (4) return to the resting membrane potential.

When the CM membrane potential reaches its voltage threshold (about -60 mV),

it abruptly increases to about 40 - 50 mV and results in the upstroke, or Phase

0. The upstroke is generated by the Na+ current (INa), a fast Na+ influx along

Na+ concentration and electrical gradients. In Phase 1 INa rapidly inactivates

while the transient outward K+ current (Ito) activates producing a transient ef-

flux of K+ along the electrochemical gradient: especially in ventricular cells, Ito
induces the typical spike-and-dome shape. Phase 2 is characterized by the AP

plateau, sustained by the L-type Ca2+ current (ICaL): this current activates dur-

ing the upstroke but reaches its peak value during the plateau phase since ICaL has

slower dynamics than INa. ICaL is also involved in the EC coupling. Phase 3 rep-

resents the repolarization of the membrane potential and it is induced by the rapid

delayed rectifier K+ current (IKr) and the slow delayed rectifier K+ current (IKs).

At the end of Phase 2, first the rapid IKr channels and later the slower IKs

channels open allowing the K+ influx along the concentration gradient. In this

phase the inward currents are inactivated and the delayed rectifier K+ currents

are responsible for the restoration of the resting potential [25].

Although this thesis is not dealing with the CM mechanics, it is worth to detail

a bit more the EC coupling, i.e. how the electrical and the mechanical aspects are

bounded and how the AP leads to the CM contraction. The elements involved in

this phenomenon are the L-type Ca2+ channels, the T-tubules, the Sarcoplasmic

Reticulum (SR) and the sarcomeres. T-tubules are invaginations of the cell mem-

brane which make the L-type Ca2+ channels and the SR Ca2+ discharge system
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closer. The SR is an intracellular membrane network storing Ca2+ at high con-

centration (1.5 - 3 mM [28]) and regulating the cytosolic Ca2+ concentration. It

contains two components fundamental for the Ca2+ homeostasis: the SERCA-2

and the Ca2+ release channels. The sarcomere represents the CM contractile unit,

composed of thick and thin filaments made by myosin and actin respectively; in

presence of high Ca2+ concentration this structure shortens its resting length (1.8

to 2.4 µm) by the crossbridge mechanism, allowing the cellular contraction [25].

During Phase 0, when the AP fires, the ICaL channels open and Ca2+ flows

into the CM. This small Ca2+ influx (trigger Ca2+ ) is not sufficient to start the

crossbridge mechanism, but it is enough to trigger the Ca2+ release from the SR

through the SR Ca2+ release channels, which increases the cyosolic Ca2+ by about

100-fold. The cycle of crossbridge formation continues until Ca2+ is restored to

its basal condition: this is mainly done by the ATP-dependent SERCA-2 pump,

which moves the Ca2+ from the cytosol into the SR, where Ca2+ is buffered by

the Ca2+ -binding protein calsequestrin. Moreover cytosolic Ca2+ is extruded

into the extracellular space by INaCa and by IpCa, which is activated by the

complex formed by the binding of calmodulin to intracellular Ca2+ [25]. All these

mechanisms make the intracellular Ca2+ concentration change, thus producing

Ca2+ transients usually associated with APs.

1.2.1 Stem cell derived cardiomyocytes show different ac-

tion potential shapes than adult myocytes

APs produced by hESC-CMs and hiPSC-CMs show some differences than adult

APs, due to their immature or incomplete stage and the underway maturation

process. The most evident diversities regards the spontaneous APs produced by

hESC-CMs and hiPSC-CMs which in adult heart can be found in nodal cells only

and some morphological features such as the more positive Maximum Diastolic

Potential (MDP) or the smaller Maximum Upstroke Velocity (Vmax) [29, 30].

Moreover as shown by their adult counterparts, hESC-CMs and hiPSC-CMs

exhibit heterogenic AP shapes, usually classified as ventricular-like, atrial-like

and nodal-like according to their resemblance to the respective adult pheno-

types [13, 30] (Fig. 1.4). In [3] is shown that the expression of some ion channel

genes and current intensity change during hESC-CM maturation (eg. increased

ICaL, Ito, IK1 and reduced funny current (If)), suggesting that they reach a more

mature state with time in culture. These aspects will be deepened in chapters 2
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and 3.

Figure 1.4: The hESC-CM and hiPSC-CM APs classes: (a) ventricular-like,
(b) atrial-like and (c) nodal-like. All the panels refer to spontaneous APs. Ex-
perimental traces from [30].

1.3 The Hodgking & Huxley approach to the ac-

tion potential modelling

In this final section a brief summary of the Hodgkin & Huxley formalism, we used

in chapters 2 and 3, is reported. The Hodgkin & Huxley model is a mathematical

model reproducing a neuronal AP, its initiation and its propagation [31]. Al-

though the original Hodgkin & Huxley model deals just with one cellular species,

it created a well assessed formalism to describe the AP, applied also to the car-

diac AP [32–36]. The AP expression as function of time (Vm(t)) is obtained by

integrating the fundamental equation

dVm
dt

= −Iion
Cm

(1.1)

where Cm represents the membrane capacitance and Iion the sum of all the ionic

currents. The generic ionic current flowing through the membrane is represented

as

I = xa · yb ·Gmax · (Vm − Er) (1.2)

where x(t, Vm) and y(t, Vm) represent the activation and inactivation gating vari-

ables respectively, Gmax is the maximum conductance and Er the resting poten-
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tial for the specific ionic specie computed as the Nernst potential

Er =
RT

zF
· ln [ion]o

[ion]i
(1.3)

The generic gating variable x(Vm, t) can be expressed in 2 equivalent forms (Eqs.

1.4 and 1.7). The first formulation

dx

dt
= αx(1− x)− βxx (1.4)

highlights the meaning of x and 1−x as the fractions of open and closed channels

respectively, in order to reproduce the transitions from the closed state to the

open state and vice-versa. If the values of either αx or βx depend on Vm, then the

state of the gate is voltage-dependent as well as time-dependent. By imposing

αx =
x∞
τx

(1.5)

and

βx =
1− x∞
τx

(1.6)

equation 1.4 can be reformulated as

dx

dt
=
x∞ − x
τx

(1.7)

in order to highlight the dynamic sense of the gating variable x(Vm, t). The

steady-state

x∞ =
αx

αx + βx
(1.8)

represents the value to which x tends at a certain voltage and it is usually obtained

by fitting the experimental data using a sigmoid function

x∞ =
1

1 + e
Vm−Vh

K

(1.9)

where Vh is the voltage of half activation and K is the gradient of activation.

Figure 1.5 shows how the steady-state gating variable is sensitive to Vh and K.

The time constant

τx =
1

αx + βx
(1.10)
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means how fast the gating variable x reaches its steady state x∞.

Figure 1.5: Illustrative examples of a generic steady-state gating variable with
diverse values of the voltage of half activation Vh and the gradient of activation
K.
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[2] Schöler RH. The Potential of Stem Cells: An Inventory. In Knoepffler N,

Schipanski D, Sorgner SL (eds.), Humanbiotechnology as Social Challenge.

Ashgate Publishing, Ltd., 2007; 28.

[3] Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME. Devel-

opmental changes in cardiomyocytes differentiated from human embryonic

stem cells: a molecular and electrophysiological approach. Stem Cells 2007;

25(5):1136–1144.

[4] Thomson JA. Embryonic Stem Cell Lines Derived from Human Blastocysts.

Science 1998;282:1145–1147.

[5] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Ya-

manaka S. Induction of pluripotent stem cells from adult human fibroblasts

by defined factors. Cell November 2007;131(5):861–872.

Ph.D. Thesis



34 BIBLIOGRAPHY

[6] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian

S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA.

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells.

Science 2007;318(5858):1917–1920.

[7] Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse

Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell August

2006;126(4):663–676. ISSN 00928674.

[8] Niwa H, Miyazaki J, Smith aG. Quantitative expression of Oct-3/4 defines

differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics

April 2000;24(4):372–376. ISSN 1061-4036.

[9] Fong H, Hohenstein Ka, Donovan PJ. Regulation of self-renewal and pluripo-

tency by Sox2 in human embryonic stem cells. Stem Cells August 2008;

26(8):1931–1938. ISSN 1549-4918.

[10] Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like factor 4 (Klf4)

prevents embryonic stem (ES) cell differentiation by regulating Nanog gene

expression. The Journal of biological chemistry March 2010;285(12):9180–

9189. ISSN 1083-351X.

[11] Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita

K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripo-

tent stem cells without Myc from mouse and human fibroblasts. Nature

biotechnology January 2008;26(1):101–106. ISSN 1546-1696.

[12] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent in-

duced pluripotent stem cells. Nature July 2007;448(7151):313–7. ISSN 1476-

4687.

[13] Lahti AL, Kujala VJ, Chapman H, Koivisto AP, Pekkanen-Mattila M,

Kerkela E, Hyttinen J, Kontula K, Swan H, Conklin BR, Yamanaka S, Sil-

vennoinen O, Aalto-Setala K. Model for long QT syndrome type 2 using

human iPS cells demonstrates arrhythmogenic characteristics in cell culture.

Dis Model Mech November 2011;5(2):220–230. ISSN 1754-8403.

[14] Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C.

Drug evaluation in cardiomyocytes derived from human induced pluripotent

Michelangelo Paci



BIBLIOGRAPHY 35

stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J April

2011;32(8):952–962.

[15] Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, Dorn
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Abstract

Background

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) hold high po-

tential for basic and applied cardiovascular research. The development of a reli-

able simulation platform able to mimic the functional properties of hESC-CMs

would be of considerable value to perform preliminary test complementing in

vitro experimentations.

Methods

We developed the first computational model of hESC-CM AP by integrating our

original electrophysiological recordings of transient-outward, funny, and sodium-

calcium exchanger currents and data derived from literature on sodium, calcium

and potassium currents in hESC-CMs.

Results

The model is able to reproduce basal electrophysiological properties of hESC-CMs

at 15-40 days of differentiation (Early stage). Moreover, the model reproduces

the modifications occurring through the transition from Early to Late develop-

mental stage (50-110, days of differentiation). After simulated blockade of ionic

channels and pumps of the sarcoplasmic reticulum, Ca2+ transient amplitude was

decreased by 12% and 33% in Early and Late stage, respectively, suggesting a

growing contribution of a functional reticulum during maturation. Finally, as a

proof of concept, we tested the effects induced by prototypical channel blockers,

namely E4031 and nickel, and their qualitative reproduction by the model.

Conclusions

This study provides a novel modelling tool that may serve useful to investigate

physiological properties of hESC-CMs.

Keywords

Embryonic Stem Cells, Computer Simulation, Action Potential, Pharmacology.

2.1 Background

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are pluripotent

cells derived from the blastocyst stadium of human embryos, having the potential

to differentiate in all the three embryonic germ layers [1]. Many studies have been
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carried out to identify the most advantageous strategies to drive the differentia-

tion towards the desired cell phenotypes thus allowing valuable investigations in

basic research and suggesting useful perspectives for regenerative purposes. In

the cardiovascular field, hESCs provide a powerful tool to clarify key develop-

mental steps of cardiac embryogenesis [2], to develop reliable in vitro models for

drug toxicity screening [3] and are considered a promising source for cell-based

therapies in pathologies such as myocardial infarction or pace-maker center dys-

function [4]. Studies involving hESCs differentiated toward the cardiac phenotype

are rather demanding due to difficulties such as i) low efficiency process of dif-

ferentiation [5]; ii) dishomogeneity of cell phenotypes; iii) laborious phenotypic

characterization, e.g. via patch-clamp or multicellular and multi-electrode array

recordings [6–8]. Another complication arises from the observation that hESCs,

like fetal CMs, are electrophysiologically immature [6]; their properties evolve

during in vitro culturing [6], a phenomenon which appears to be regulated by

interactions with non-cardiomyocytes in embryoid bodies (EBs) [9].

To date extensive information is available mostly as unsystematic mass of basic

electrophysiological properties of different hESC lines differentiated toward the

cardiac lineage and on the modifications occurring during maturation or upon

exposure to different drugs or chemicals. Nonetheless, no attempt was done to

systematize current knowledge to fully evaluate the impact of individual key ionic

currents and of excitation-contraction coupling mechanisms on basic physiology

in hESC-CMs [10–13].

Computational modelling represents a consolidated approach in cardiac research

to simulate the electrophysiology of single cell or cell-made tissue [14] and the

modifications induced by chemicals and drugs. This approach usually comple-

ments in-vitro and in-vivo experimentation to create a compelling tool able to

predict physiological responses, abnormal reactions to drug application and to

formulate new hypotheses.

The aim of this work is to develop a computational model of AP of H1-hESC-CMs

allowing to follow the maturation process. Due to the shortage of measurements,

especially at advanced developmental stages, this model can help to infer devel-

opmental mechanisms not obvious from the bare measurements.

Data on membrane ionic currents for this cell line coming from our original mea-

surements of transient outward potassium, funny, sodium-calcium exchanger cur-

rents, and data from literature on sodium, calcium and potassium currents in

hESC-CMs were integrated into the model. To take into account the presence of
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non-cardiac cells in intact EBs, a further model assessment is proposed by cou-

pling the hESC-CM model with modelled fibroblasts and evaluating their impact

on the AP. The formulated model simulates i) the main basic AP features and

ii) the developmental changes documented during in vitro maturation.

2.2 Methods

Methods for hESC-CM culture, differentiation and electrophysiological recording

are described in Supplementary Methods on page 163. hESC-CM were included

in the Early or Late group according to differentiation time, i.e. from 15-40 and

50-110 days, respectively [6].

2.2.1 The hESC-CM AP model and its transition from

Early to Late stage of development

The starting point in developing the hESC-CM model was a modified version

[15] of the TenTusscher model of human adult ventricular CM [16], this parent

model was then largely modified by changing the formulation of almost all the

currents to incorporate all the available data on hESC-CMs and by adding two

currents (If and ICaT) that are not present in the adult ventricle. Following the

classical Hodgkin-Huxley formulation [17], the cell electrophysiological behaviour

is described by Eq. 2.1:
dV

dt
= −Iion

Cm
, (2.1)

where V is the membrane potential, Cm the membrane capacitance and Iion the

sum of all the membrane currents. Details on each current are in the following

subsections.

Properties of ion currents based on our recordings or derived from literature

data on hESC-CMs were integrated into the model to reproduce Early and Late

hESC-CM APs. Where data from hESC-CMs were not available, observations

in ESC-derived or embryonic CMs from different species were considered. Al-

though ionic channels undergo complex regulation at a transcript level, the I/V

relationship of most currents does not change among different developmental

stages [18–22]. Hence, we assumed that developmental changes in each current,

Ixx, are determined mainly by its quantitative change, which can be represented

by setting a variable fraction (ratio, RaIxx) of the current maximal conductance
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in the adult model. Table 2.1 summarizes the maximal conductance values for

the main currents in the model.

2.2.2 Sodium current (INa)

Our INa formulation slightly changes the original adult model (Eqs. S3, S6

and S8, in Supplementary Methods on page 163). The steady-state inactiva-

tion was changed according to Satin et al. data on inactivation dynamics of

H9.2-hESC-CMs at the Early stage of differentiation (Fig. 2.1a) [27].

As also reported in [23] for rodent ESC-CMs we considered a small expression of

INa at the Early stage and full expression at the Late one; the expression at the

Early stage was further reduced with respect to [23] (from 0.08 to 0.038) in order

to fit properly our experimental Vmax and the Action Potential Duration (APD).

RaINa = 0.038 (Early); RaINa = 1 (Late)

2.2.3 L-type calcium current (ICaL)

Due to lack of specific data on ICaL at the Early stage, we tuned the permeability,

the Ca2+ dependent inactivation gate, fCa (Eqs. S25-S31), the time constant of

the voltage dependent inactivation gate, τf (Eq. S33), and the steady-state

activation gate, dinf (Eq. S19) to reproduce the experimental features of AP, in

particular APD.

We then slightly modified dinf in order to fit our experimental recordings of ICaL

at Late developmental stage (Fig. 2.1b, Late stage, n=1), whereas inactivation

parameters became equal to those of adult CMs in the Late stage formulation.

We maintained the ratio between Late and Early conductances proposed in [23]

based on data in mice and guinea pigs:

RaICaL= 0.25 (Early); RaICaL = 0.422 (Late)

2.2.4 T-type calcium current (ICaT)

At variance with the adult model, we included ICaT, on the basis of different

experimental evidence. First, ICaT was reported to be highly expressed during

fetal heart development and gradually decline after birth, becoming restricted to

the conduction and pacemaker cells [28]. Secondly, ICaT is functionally expressed
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Table 2.1: Main developmental changes of ionic currents. Maximum
conductances, currents and fluxes for Early and Late human embryonic stem
cell-derived and adult ventricular cardiomyocyte models. The species considered
for the Early and Late date are reported. Adult data refers to the TenTusscher
model [16]. �new measurements and data; §values chosen to reproduce at best
the AP shape; * not only the maximal conductance/current was changed but
also the current formulation (see Supplementary Methods on page 163). EXP:
experimental data; MOD: used for modelling.

Parameter (units) Early Late Adult [16] Species [Ref.]

Ito
Gto (S/F) 19.2929 48.702 294 human, EXP, �;

max conductance human, MOD, [16]

IKr
GKr (S/F) 288.0 134.4 96 rat, guinea pig, EXP, [23]

max conductance human, MOD, [16]

If*
Gf (S/F) 49 20.913 - human, EXP, [6]

max conductance

IK1*
GK1 (S/F) 240.523 1154.508 5405 human, EXP, [6]

max conductance human, MOD, [16]

ICaL*
GCaL (dm3/(F·s)) 0.0438 0.0739 0.175 mouse, EXP, [23]

permeability human, EXP. [6]
human, MOD, [16]

ICaT
GCaT (S/F) 45.8 9.16 - human, EXP, �

max conductance rabbit, MOD, [24]

INaCa
* ImaxNaCa (A/F) 17500 18240 1000 human, EXP, �

max current human, MOD, [16]

INa
GNa (S/F) 563.844 14838 14838 mouse, EXP, [23]

max conductance human, MOD, [16]

IKs
GKs (S/F) 15.7 15.7 157 human, EXP, [25]

max conductance human, MOD, [16]

INaK
ImaxNaK (A/F) 0.9534 1.1305 1.362 mouse, EXP, [26]

max current human, MOD, [16]

IpCa
GpCa (S/F) 0.825, § 0.825, § 25 human, MOD, [16]

max conductance

Iup
ImaxUp (mM/s) 0.0565 0.1403 0.425 mouse, EXP, [23]

max flux human, MOD, [16]

Irel
ImaxRel (mM/s) 0.274 9.88 24.7 mouse, EXP, [23]

max flux human, MOD, [16]

Ileak
ImaxLeak (1/s) 0.0004 0.024 0.08 mouse, EXP, [23]

max rate human, MOD, [16]

IbCa
GbCa (S/F) 0.118, § 0.592, § 0.592 human, MOD, [16]

max conductance
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in mouse ESC and is downregulated during cardiac differentiation: ICaT channel

subunits Cav3.1 and Cav3.2 expression decreased to approximately 46% and 24%,

respectively, at 23.5 days of differentiation with respect to 9.5 days [29]. Finally,

our qualitative RT-PCR measurements in H1-hESC-CMs show a clear expression

of Cav3.1 and Cav3.2 at both stages (Fig. 2.1c). We used the ICaT formulation

proposed in [24] in their sinoatrial node cell model, with progressively decreasing

scaling factors for the maximal conductance:

RaICaT= 0.25 (Early); RaICaT = 0.05 (Late)

2.2.5 Transient outward (Ito), rapid and slow delayed rec-

tifier (IKr, IKs) K+ currents

Ito properties were based on original data obtained in H1-hESC-CMs. Fig. 2.1d

shows the I/V relationship for peak K+currents evoked by depolarizing steps

in Early and Late CMs (median data and interquartile, n=10 Early stage and

n=9 Late stage). A 10 mV positive shift was applied to experimental data to

account for the use of Cd2+ to block ICaL, as done by [30]. According to our

previous observations [6], Ito activation properties are similar to those described

in native cardiac cells. Maximum conductances and steady-state activation were

calculated by fitting experimental data (Fig. 2.1d and Eq. S43):

RaIto= 0.065622 (Early); RaIto = 0.165653 (Late)

In accordance with various in vivo and in vitro experimental data in fetal guinea

pigs [20], rats [31, 32], and mice [33], IKr maximal conductance was greater than in

the adult CMs and it decreased during maturation, we chose the specific expres-

sion ratios in order to mimick MDP and the APD at the different developmental

stages:

RaIKr= 3 (Early); RaIKr = 1.4 (Late)

IKs conductance in the Early developmental stage was set in order to achieve a

good fitting of the I/V curve (Fig. S1) obtained by [25] on Early hESC-CMs.

On the basis of data on embryonic murine heart [19, 23], where Early and Late

developmental stages seem to share the same IKs conductance, a single value of

RaIKs was used:

RaIKs = 0.1 (Early and Late);
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2.2.6 Inward rectifier K+ current (IK1)

In hESC-CMs IK1 is very small but not absent at the Early stage, then it in-

creases during the development, as also reported for rat and guinea pig [23].

Conductances were identified according to our previous data [6], showing a ratio

between Late and Early current density at -90 mV of 5.42. In order to reduce the

MDP we set in our model a ratio of 4.8, within the variability of our data and

introduced a shift of the voltage dependence for the inward rectification factor,

xk1 inf (Eqs. S67-S69), without modifying the current reversal potential.

RaIK1= 0.0445 (Early); RaIK1 = 0.2136 (Late)

2.2.7 Funny current (If)

A key step of the formulation of a specific hESC-CM model consisted in inte-

grating the hyperpolarization-activated cyclic nucleotide-gated or funny current,

that is reported to be one of the main contributor for the spontaneous beating of

pacemaker cells [34] and hESC-CMs [6]. If formulation (Eqs. S71-S73) and con-

ductance were obtained by fitting recordings performed on Early H1-hESC-CMs

(Fig. 2.1e, Early stage, n=4). For the Late stage, in accordance to our previous

data [6], we assumed that current density decreased over maturation to an ex-

tent equal to the drop of cumulative HCN transcript expression (Fig. 2.1e, inner

panel): the estimated ratio between Early and Late stage was 2.34.

RaI= 0.5389 (Early); RaIf= 0.23 (Late)

2.2.8 Sodium-potassium pump (INaK) and sodium-calcium

exchanger (INaCa)

Since data on hESC-CM INaK were not available, maximal current density was

set taking into account its influence on the diastolic depolarization rate (DDR)

and frequency of spontaneous beating (F) and reflecting the maturation related

growth of INaK expression according to experiments by [26] on mouse ESC-CMs:

RaINaK = 0.7 (Early); RaINaK = 0.83 (Late)

As far as INaCa is concerned, we used original experimental data from H1-hESC-CMs.

Voltage ramp (from 120 to +50 mV) protocols elicited an almost linear INaCa I/V

relationship (Fig. 2.1f, n= 6) that showed an inward and outward mode at both

developmental stages. Fitting of experimental data led to modify the original

maximal current density and the extra factor α in the INaCa expression [16]:
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RaINaCa = 17.50 (Early); RaINaCa = 18.24 (Late)

α=0.8 (Early), α=0.38 (Late)

2.2.9 SR currents

The maximal values for the uptake (Iup), release (Irel) and leakage (Ileak) cur-

rents were tuned to simulate the ryanodine induced reduction of Ca2+ transient

amplitude reported in [11] at the Early and in [12] at the Late stage. Increases in

maximal current densities at the Late stage were based on the rodent ESC-CM

model [23].

RaIUp = 0.133 (Early); RaIUp = 0.33 (Late)

RaIRel = 0.0111 (Early); RaIRel = 0.4 (Late)

RaIleak = 0.005556 (Early); RaIleak = 0.3 (Late)

2.2.10 Sarcolemmal calcium pump, IpCa, and background

current, IbCa

Since data about these currents are not available, we chose the following values

to reproduce at best the AP shape:

RaICap=0.033 (Early and Late);

RaIbCa=0.2 (Early); RaIbCa=1 (Late);

2.2.11 Cell capacitance and dimensions

Median values of measured cell membrane capacitance were used to set cell di-

mensions (see Supplementary Methods on page 163).

2.2.12 Sensitivity analysis

A sensitivity analysis was performed according to the procedure reported in [35,

36], opportunely adapted to our model. The main differences with respect to [35]

are: (i) our hESC-CM model is not stimulated by an external source and (ii) we

concentrate our analysis on the impact of the ratios RaIxx on the AP shape. One

ratio was varied at time by -20%, -10%, +10% and +20% respectively.

Considering the following ratios (parametrs) “p”

p={RaINa, RaICaL, RaIf, RaIto, RaIK1, RaIKr, RaIKs, RaINaK, RaINaCa}
and the AP features (characteristics) “c”
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Figure 2.1: Currents: experimental data and model fitting. (a) INa inactivation
for Early hESC-CMs. (b) ICaL normalized current-voltage (I/V) curve (Late
stage). (c) Cav3.1, Cav3.2 and GADPH expression (ICaT) for H1-hESC-CMs.
(d) Ito I/V curves. (e) If I/V curves and HCN quantitative expression (inset).
(f) INaCa elicited by a voltage ramp protocol.
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c={MDP, Vmax, APD30, APD50, APD70, APD90 , DDR, F},
computed after 300 seconds of simulation (assuming the steady state condition)

the indexes percentage of change (Dc,p,a), sensitivities (Sc,p,+20%and Sc,p,−20%)

and relative sensitivities (rc,p,+20% and rc,p,−20%) were calculated as follows:

Dc,p,a =
(Cp,a + Ccontrol)

Ccontrol
· 100 (2.2)

Sc,p,+20% =
Dc,p,+20%

0.2
, Sc,p,−20% = −

Dc,p,−20%

0.2
(2.3)

rc,p,+20% =
Sc,p,+20%∣∣Sc,p,+20%

∣∣
max,c

, rc,p,−20% =
Sc,p,−20%∣∣Sc,p,−20%∣∣max,c

(2.4)

Splitting the original Sc,p and rc,p [35] was necessary since several tests resulted

in no spontaneous APs, thus making impossible calculating the AP features and

all their Dc,p,a. However, for each ratio at least one Dc,p,a (Dc,p,+20%orDc,p,−20%)

was available thus allowing to get the asymmetrical sensitivities.

2.2.13 Interaction with in-silico fibroblasts

In order to preserve intracellular milieu and cell-to-cell communication, AP record-

ings were not performed on single cells but on EBs, aggregates containing different

cell phenotypes among which hESC-CMs and fibroblasts. To test the interaction

between these kinds of cells and assess the effect on AP simulation, an additional

mammalian fibroblast model, resistively coupled to the hESC-CM, was developed

according to [37–39]. To this aim, the hESC-CM membrane potential equation

was modified as follows:

dV

dt
= −Cm · Iion +Nf · Igap

Cm
, (2.5)

Igap = Ggap(V − Vfibro), (2.6)

where Vfibro is the fibroblast potential, Ggap is the conductance of the hESC-CM-

fibroblast coupling (Ggap = 1 nS [37]) and Nf is the number of coupled fibrob-

lasts. Details on the fibroblast model are reported in the Supplementary Methods

on page 163 (Eqs. S92-S94).
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2.2.14 Drug simulations

To reproduce the inhibition of SR Ca2+ release and the consequent Ca2+ transient

reduction in ryanodine experiments the simulation was performed zeroing Iup and

Irel . To simulate E4031 (IKr blocker) and nickel (ICaT, IKr and INaCa blocker)

effects, in steady state conditions, a step reduction of conductance for the targeted

currents was implemented in the model. The amount of conductance reduction

for each current, which is reported in the Results Section, was chosen within the

range of blocking action of the drug in order to better reproduce the specific

experimental result obtained on a single cluster of hESC-CMs.

2.2.15 Numerical implementation

Differential equations were implemented in MATLAB (The MathWorks, Natick,

MA) and solved using ode15s.

2.3 Results

2.3.1 The hESC-CM model

Fig. 2.2a shows simulated AP profiles for Early hESC-CMs obtained using our

model: the modifications introduced with respect to the adult ventricular model

were sufficient to elicit spontaneous beating. A comparison with experimental

Early AP profiles obtained on intact EBs by multicellar recordings is provided

in Table 2.2: a global comparison was done by calculating typical morpholog-

ical parameters (AP features) for both experimental and simulated APs. This

analysis demonstrated that our hESC-CM model was able to reproduce most of

the experimental AP features, including Action Potential Duration (APD) at 30

(APD30), 50 (APD50), 70 (APD70) and 90% (APD90) of repolarization, Vmax, F

and the DDR. Simulated and experimental data differed for the MDP, which is

more negative in the simulation.
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Figure 2.2: Simulated action potentials for (a) Early and (b) Late hESC-CMs
clusters.

Table 2.2: Action potential features of experimental and simulated ac-
tion potentials. Delta %, Late VS Early; APD, action potential duration; Vmax

maximum upstroke velocity; MDP maximum diastolic potential; DDR diastolic
depolarization rate; F frequency. Data reported as median and interquartile. All
the experimental action potential features were measured on hESC-CM AP at
the Early and Late stage [40].

Early Late Delta %
Exp Sim Exp Sim

APD30% (ms) 117 (107÷132) 121 163 (84÷256) 165 + 40 + 36
APD50% (ms) 169 (149÷184) 163 258 (148÷374) 224 + 53 + 37
APD70% (ms) 205 (181÷219) 191 325 (179÷465) 283 + 59 + 48
APD90% (ms) 229 (216÷241) 225 419 (223÷506) 350 + 83 + 56
Vmax (mV/s) 4610 (3308÷5612) 4123 5566 (5198÷7047) 5620 + 42 + 36

MDP (mV) -55 (-62÷-37) -76 -51 (-62÷-42) -73 -7 - 4
DDR (mV/s) 14.4 (11.1÷28.4) 9.7 9.9 (8.0÷11.1) 7.1 - 31 - 27

F (bpm) 27 (23÷53) 29 22 (20÷29) 24 - 17 - 17
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2.3.2 Transition from Early to Late stage of development:

effects of maturation

The simulated AP profile at the Late stage and the comparison with experimental

APs obtained on intact EBs by multicellar recordings are reported in Fig. 2.2b

and Table 2.1, respectively. These results show that the changes introduced in

the model parameters between the Early and Late stage allow to reproduce the

documented [6] maturation effects on AP shape. In particular, during the transi-

tion from the Early to the Late stage, APD and Vmax increase while spontaneous

rate and slope of diastolic depolarization decrease.

2.3.3 Spontaneous firing and action potential shape depen-

dence on current conductances

The sensitivity analysis performed on the Early and Late models was aimed to

assess how variations in the maximum conductances of the most important mem-

brane currents affect (i) the phenomenon of spontaneous beating and (ii) the AP

shape. The spontaneous firing activity was not triggered at the Early stage in 2

tests only: RaICaL-20% and RaINaCa+20%. At the Late stage the spontaneous

activity showed to be sensitive to more currents: the firing activity was triggered

but stop after few dozens of seconds of simulations for RaINa+20%, RaICaL-20%,

RaIf-20%, RaIK1+20%, RaIKr+20%, RaINaK+20% and RaINaCa+20%. When

the spontaneous beating allowed to reach a steady state condition, the AP fea-

tures absolute/relative sensitivities were computed (Fig. 2.3) as reported in the

Methods section. At the Early stage MDP is affected by the inward ICaL, INaCa

(inward during the late-repolarization) and the outward IKr. The effect of If is

extremely small, since at the MDP potential it is not activated yet, due to its

high time constant. Also the IK1 effect is small since at this developmental stage

the IK1 expression is low. The Late stage shows a more stable MDP (maximum

variations: 7-8 %), but the IK1 effect is stronger, as consequence of a maturation-

related increment in IK1 expression. As expected, Vmax is mainly affected at

both stages by the inward currents mainly acting during the upstroke: INa and

ICaL while the rate of spontaneous beating resulted to be more sensitive to ICaL,

INaK, INaCa, If (Early stage) and IK1 (Late stage). ICaL, INaK and IK1 had the

most strong effect on DDR and F at both stages; these AP features show also an

important sensitivity to If increments at the Early stage. It is interesting to note
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Figure 2.3: Relative sensitivity maps for the Early (a) and Late (b) models. AP
features (rows) VS ratios RaIxx (columns) used to rescale the maximum conduc-
tances/currents/fluxes were considered. For each RaIxx the relative sensibilities
at -20% and + 20% were taken into account. White color indicates maximum
relative sensitivity of a particular AP feature among all ratios, whereas black
indicates AP feature and ratio are independent. White X indicates the absence
of spontaneous firing during a particular test. Percentages in each white box
indicate the maximum absolute sensitivity of the AP feature correspondent to
that row for all ratios. Negative sign indicates that AP feature and ratio vary
inversely.
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that also INaCa reduction increase DDR and F at both stages but particularly at

the Early one: a smaller INaCa (inward during late-repolarization) makes MDP

more negative (-81 mV vs -76 mV, RaINaCa-20% and control respectively) allow-

ing a greater activation of If and thus increasing both DDR and F. Variations of

the outward currents IK1 and INaK show the role of these currents in stabilizing

the diastolic potential and, at the Late stage, increments block the spontaneous

beating. APD is mainly affected by the inward currents ICaL and INa, by INaCa

(outward during the upstroke), INaK (Late only) and the outward IKr, especially

during the late-repolarization. At the Early stage, the APD decreases after ICaL

increments: this counterintuitive result can be explained by using the model. In

fact, it is due to a higher AP peak (20 mV vs 8.3 mV, RaICaL+20% vs control):

the higher reached membrane potential allows a stronger IKr activation thus re-

ducing APD. At the Late stage this phenomenon is not present, since in the AP

peak increment is smaller (34.2 mV vs 30.2 mV, RaICaL+20% vs control), and IKr

itself is smaller due to maturation. This different contribution of inward/outward

currents to APD likely underlies the diverse APD rate-dependence (Fig. S2).

2.3.4 Coupling with fibroblasts

In order to partially overcome the discrepancy in MDP between the model and

the experimental measurements, we introduced the contribution of fibroblasts,

which are an essential component of EBs also for CM maturation. To assess the

relevance of this issue in our model, we considered a simple system composed

of a single hESC-CM coupled with 1 and 2 fibroblasts for each stage. Changes

in basal AP due to fibroblast coupling are reported in Fig. 2.4a and 2.4c, for

the Early and Late phase, respectively, while a quantification of these changes

is summarized in Fig. 2.4b and 2.4d. Changes in most of the AP features as a

function of fibroblast number were similar between the two stages. In particular,

we observed an increment in DDR and rate while APA decreased. The effect on

APD was different in the two stages. In the Early hESC-CM, lacking the plateau

phase, the major effect is an inward current flowing from the coupled fibroblasts

into the hESC-CM during the late repolarization phase, when hESC-CM mem-

brane potential is negative to the fibroblast resting potential, promoting slowing

of repolarization and APD increase. In the Late hESC-CM, showing significantly

longer AP with respect to Early, the effect of an outward current, flowing towards

coupled fibroblasts at depolarized potential and promoting hESC-CM repolariza-
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tion and APD decrease, is also important. The overall result in Late hESC-CM

is a decrease of APD30 and APD50 whereas APD70 and APD90 were almost not

affected by coupling with fibroblasts. Importantly, as the number of coupled

fibroblast increases from 0 to 2, a small rising of MDP occurred both at Early

(-76 to -73 mV) and Late stage (-73 to -72mV). This effect was accompanied by

a reduction of Vmax at Early (4123 to 3443 mV/s) and Late stage (5620 to 2554

mV/s). At the same time, the membrane potential of coupled fibroblasts mimics

the hESC-CM AP (data not shown), oscillating between -74 and 4 mV at the

Early and between -72 and 26 mV at the Late stage.

2.3.5 Intracellular calcium

To assess the relevance of RyR-mediated SR Ca2+ release in our model, we sim-

ulated cytoplasmic Ca2+ oscillations in control conditions and after blockade of

Ca2+ release. In control conditions, the Early model showed intracellular Ca2+

diastolic and systolic concentrations of 0.026 µM and 0.141 µM, respectively,

with an amplitude of the transient of 0.115 µM. The mean rate of decay was

0.123 µM/s while the maximum upstroke velocity (VmaxCa,upstroke) was 1 µM/s

and the maximum decay velocity (VmaxCa,decay) was 0.52 µM/s. Control val-

ues for the Late model were 0.063 µM and 0.506 µM for diastolic and systolic

concentrations, 0.443 µM and 0.340 µM/s for amplitude and mean rate of decay.

VmaxCa,upstroke was 13 µM/s and VmaxCa,decay was 1.4 µM/s. The blockade of the

SR channels and pumps reduced the Ca2+ oscillation amplitude by only 12% at

the Early stage, whereas the RyR-induced reduction was larger, 33%, at the Late

stage (Fig. 2.5a and 2.5b). These results are similar to those reported experimen-

tally in H1-CMs by [11] after 18-24 days and by [12] in cells assessed 30-40 days

“post-beating”, likely corresponding to 50 days of total time of differentiation.

A more detailed comparison was performed between the data reported in [11]

on caffeine-sensitive H1-CMs and our Early stage, also considering the transient

elicited in [11] in stimulation condition. In order to compare the experimental and

simulated VmaxCa,upstroke and VmaxCa,decay in control conditions we normalized

them using the amplitude of the transient, since experimental data were reported

in terms of fluorescence while ours as concentration values. Estimating from [11]

transient amplitude 0.16 F340/380 and VmaxCa,upstroke 1.5 F340/380/s we got

a normalized VmaxCa,upstroke of 9.3 1/s. Normalizing our Early VmaxCa,upstroke,

our model reproduced 8.7 1/s. Comparing in the same manner theVmaxCa,decay
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Figure 2.4: Electrical coupling between human embryonic stem cell-derived
cardiomyocyte and fibroblasts. (a, c) Effects on APs, Early and Late stage re-
spectively, of a variable number (Nf ,) of fibroblasts. (b, d) Consequent changes
of AP features, Early and Late stage respectively: both stages show an incre-
ment of the rate of spontaneous beating and an APA reduction. APD is slightly
prolonged at the Early stage (especially APD70 and APD90) while at the Late
stage the fibroblast effects are minor, showing only a slight reduction of APD30.
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(estimated experimental VmaxCa,decay 0.3 F340/380/s) we got 1.9 1/s vs 4.5 1/s,

respectively experimental [11] and simulated. The last comparison regards the

reduced VmaxCa,decay value after RyR application: in [11] an experimental value

of 70% was reported, while our model simulated 78%.

Figure 2.5: Simulation of the reduction of calcium transient amplitude under
the effect of Ryanodine at Early (a) and Late (b) stages.
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2.3.6 Drug simulations

Finally, we performed a preliminary test of the qualitative reproduction of the

main effects on AP of well-established channel blockers. E4031 is known to pro-

long cardiac AP through IKr selective blockade. We tested the effect of E4031 on

a single spontaneously beating cluster of hESC-CMs at Early stage and observed

a progressive decrease of the pacing frequency, a depolarization of MDP and an

increase of APD involving all phases of repolarization (Fig. 2.6a, left). These

effects were fast on our experimental system and after 60 s from drug applica-

tion the cluster showed a complete stop of its spontaneous electrical activity and

beating [6]. To simulate this effect in our model, GKr was decreased by 50%

of its Early value and this resulted in AP prolongation (Fig. 2.6a, right). In

fact the AP lengthening measured at different values of repolarization were 12%

(APD30), 18% (APD50), 47% (APD70) and 110% (APD90). In the simulation

MDP was also depolarized by 4%, in accordance with a weaker contribution of

repolarizing current, and frequency was reduced by 27%. In our model a decrease

of IKr current larger than 50% produced a block of spontaneous beating, similarly

to what observed experimentally [6].

In a single cluster of hESC-CMs at the Late stage, application of E4031 pro-

duced a fast depolarization of MDP and a remarkable increase in spontaneous

rate with characteristic small amplitude oscillations of membrane potential (Fig.

2.6b, left). At this stage, simulation was obtained by 60% reduction of GKr that

resulted in AP modifications qualitatively similar, even if smaller, to those ob-

served experimentally. In particular, rate was increased by 97%, APD70 by 19%,

APD90 by 65%, MDP was depolarized by 17% (Fig. 2.6b, right).

At millimolar concentration nickel is well known to largely block INaCa and ICaT.

Furthermore, it has also been reported to block at a very high extent IKr in

sinoatrial node cells [41]. All these currents are involved in different phases of

spontaneous beating generation and AP. In the Early stage, application of nickel

produced a marked MDP depolarization, a sustained Action Potential Ampli-

tude (APA) reduction and an increase of spontaneous rate, which lasted unal-

tered over time (Fig. 2.6c, left). Conversely, at the Late stage, nickel first slowed

down and then blocked completely electrical activity (Fig. 2.6d, left). At both

stages, simulations were performed reducing ICaT and IKr by 90% and INaCa by

75% of their initial values. The effects on APA, MDP and beating rate detected

at the Early stage were well reproduced (Fig. 2.6c, right). Blockade of sponta-
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neous activity observed at the Late stage was also clearly mimicked in our model

(Fig. 2.6d, right).

2.4 Discussion

The major aim of this work was to develop a mathematical model able to repro-

duce the basal electrophysiological properties of hESC-CMs and the modifications

induced by in vitro maturation. This approach, has been applied for the first time

to hESC-CMs and the model represents the first computational tool for study-

ing the fundamental physiology of hESC-CMs, in particular those derived from

the H1 cell line. Moreover, introducing the contribution of fibroblasts we ap-

proached the simulation of the properties of beating intact EBs, which represent

the elementary functional unit able to promote electrophysiological maturation of

hESC-CMs and therefore suitable for screening ion channel blockers and assessing

the cardiac safety of drugs.

We reached the goal of reproducing the spontaneous AP profile of hESC-CMs,

strongly focusing on the modifications occurring during the transition of intact

EBs from the Early to the Late developmental stage. Specifically, we reproduced

key modifications documented experimentally on intact EBs by multicellular

recordings, including the decrease of spontaneous AP frequency in association

with a reduced DDR, meaning that the automaticity was slowed down during

simulated maturation, similarly to experimental observations. The maturation-

related increase of APD was also satisfactorily mimicked by our model, thus

reflecting the modifications identified for many ionic currents occurring during in

vitro maturation. Of note, we chose this specific electrophysiological approach

on intact EBs due to several advantages, including the preservation of tissue

architecture that allows the detection of single cell transmembrane voltage re-

sulting also from the contribution of neighbouring cells. The latter, beside non

myocytic cells, may be represented by CMs with similar or different phenotypes,

with a relative composition of different phenotypes depending mainly from the

developmental stage under evaluation. In fact Early hESC-CMs have a rather

homogeneous phenotype (mostly sinus nodal like) that progresses into different

phenotypes in the Late phase (atrial, ventricular and sinus nodal). Therefore,

our experimental and simulation data readily reflect the degree of phenotype

dishomogeneity in most of AP parameters, resulting from the contribution of in-

dividual CMs at different stages (throughout the developmental process) and the
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Figure 2.6: Effects of current blocking with E4031 and Nickel. Single experi-
ments (left) and simulations (right) on the effect of 10 µM E4031 (IKr blocker)
and of 2 mM Nickel (INaCa, ICaT, IKr blocker) at Early (a, c) and Late (b, d)
stages.
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fate (ventricular, atrial or nodal). To further confirm this statement, the median

measurements of AP duration at different percentage of repolarization have a

lower interquartile range in the Early phase compared to the Late (see table 2.2).

Based on the integration into our model of original and literature data on different

ionic currents, some considerations can be drawn on their role in the hESC-CM

development.

Ito is known to play a key role during the early repolarization phase leading to the

notched shape and plateau phase present in human adult ventricular and atrial

cells [42]. In our experimental conditions we found that Ito density increased

from the Early to the Late phase. This result is in line with our previous data

demonstrating a functional and molecular up-regulation of Ito during hESC-CMs

maturation. It further confirms that this channel is a fundamental marker of

functional CM maturation among mammalians [6]. These modifications were

favourably integrated in our model, thus demonstrating their positive contribu-

tion to its final formulation. However, our measurements of Ito showed substantial

current density also for negative potentials. For this reason Ito half-maximal ac-

tivation was shifted from 20 to -5 mV (Fig. 2.1d) whereas the steepness of the

model curve was kept slightly greater than the experimental one, as already done

and discussed in the adult model [16].

A different set of original data integrated in our model is related to If. It is

an inward current involved in the generation of spontaneous electrical activity,

identified and characterized in our previous study on H1-hESC-CMs [6]. In the

present study we further characterized this current identifying its functional rel-

evance over an extended period of time. We calculated maximal conductance

for the Early stage and extrapolated its value at the Late one on the basis of

a cumulative reduction of HCN total transcript. Although functional properties

of currents do not uniquely depend on the amount of channel transcript/s, we

hypothesised that If density is likely to decrease during hESC maturation on the

basis of different experimental evidences. First, the rate of spontaneous beating

and the slope of the diastolic depolarization decrease with maturation (Table 2.2);

secondly, If downregulation is a well established marker of functional maturation

of native CMs [43, 44]. These observations led us to integrate in our model a If
contribution declining over maturation time. As observed for Ito, this implemen-

tation had a positive effect on the model mimicking properties. As shown in Fig.

2.3, modulation of If mainly affects in the model the rate of spontaneous beating

and the DDR at both stages but especially at the Early one. The Late stage
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represented a scenario characterized by a smaller If and which evolves towards

cells with no automaticity, so the 20% reduction of RaIf led to no spontaneous

activity.

Experimental evidence documents the occurrence of developmental changes of

INaCa in different animal models, with maximal current density lowering through-

out maturation [23]. In humans, INaCa expression peaks at mid-gestation, over-

coming that of the adult heart [45]. In hESC-CMs, [11] reported that INaCa

expression in the Early phase is higher with respect to that found in human fetal

and adult ventricular CMs. This evidence is in line with our experimental results

(see Fig. 2.1f), showing larger current density both in Ca2+ outward and inward

modes, at the Early stage with respect to the Late one. By contrast, a recent

study [46] performed on a similar model led to opposite results, i.e. maximal

current occurring in the Late stage. The explanation for such a difference is not

obvious; diverse developmental window and/or cell phenotypes (ventricular and

atrial vs ventricular) may account for these discrepancies. Model-based analysis

showed that at both stages INaCa (Fig. 2.3) modulation affects basically all the

AP features (tests with RaINaCa-20%) and the occurrence of spontaneous beating

(tests with RaINaCa+20%).

Other relevant maturation-related current modifications introduced in our model

are consistent with previous observations in rodent ESC-CMs. In particular IKr

decrease and INa increase confirmed to be important to achieve AP changes such

as AP prolongation and increase in Vmax observed with hESC-CM development.

As expected INa had the strongest influence on Vmax while IKr had a considerable

effect on the APD, especially in the latest phases of the repolarization (see Fig.

2.3).

The sensitivity analysis summarized in Fig. 2.3 helps in assessing the maturation-

related effects on the spontaneous contractile activity of hESC-CMs, in particular

showing that at the Late stage it is more sensitive to current variations that at the

Early stage. At the Early stage the reduction of the depolarizing ICaL (necessary

for the upstroke) and the increment of INaCa (inward current during the late-

repolarization) caused the spontaneous beating stop. In addition to the reduced

ICaL and increased INaCa tests, the Late stage showed no spontaneous beating

also for increments of the main repolarizing currents IKr, IK1, IKs and INaK,

thus supporting the hypothesis of a weakening of the spontaneous depolarization

during maturation. Moreover, also the effect of the 20% If reduction at the Late

stage is indicative of this mechanism since If was already reduced during the
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transition from the Early to the Late stage.

We also tested coupling of fibroblasts with the hESC-CM model. Our hypothesis

was that such approach could improve the quality of simulated APs that are gen-

erated by a complex system comprising CMs embedded in a cluster of different

cells, such as fibroblasts. Indeed, one specific AP feature predicted by our model

(MDP) differed substantially with respect to the experimental data. At both

developmental stages, effects of coupling were small and consisted of MDP depo-

larization and increase of DDR and frequency. These effects can be explained by

observing that during diastole fibroblast membrane potential is less negative with

respect to that of CMs, causing a small depolarizing current flowing into CMs.

Although limited, these modifications collectively move our simulation towards

the experimental measurements, therefore improving the mimicking potential of

our model. On this basis, it would be interesting to explore the possibility to

enlarge the cell network by including different cell phenotypes (e.g. endothelial

cells) possibly present in vivo. Globally, our results are in line with similar stud-

ies [37], where coupling of the TenTusscher model to fibroblasts led to a slightly

depolarized resting potential, reduced APA and to the electrotonic modulation

of the fibroblast potential by the coupled CM.

Recently, increasing attention has been focused on the development and mat-

uration of the SR activity in hESC-CMs. Accumulated evidence points to a

significant activity of Ca2+ release from SR [11, 12], even if less organized and

regulated than in mature CMs. In fact, while in the Early phase H1-hESC-CMs

express SERCA2a, other proteins such as calsequestrin, triadin and junctin are

almost absent [47]. Moreover, at 40-50 days of differentiation, T-tubules re-

main undetected on the sarcolemma, suggesting a topological environment dif-

ferent from mature, where Ca2+ influx through Ca2+ channels in the T-tubule is

tightly associated with sarcoplasmic RyR channels [10]. Overexpression of calse-

questrin in H1-hESC-CMs failed to induce the growth of T-tubules even though

SR load and Ca2+ transient amplitude became more similar to those of mature

CMs [48]. Simulations of Ca2+ transients using our model led to results fully

consistent with the experimental data reported above. In fact, upon blockade

of Ca2+ release from SR we found a decreased Ca2+ transient amplitude by 12%

in the Early, and by 33% in the Late phase, similarly to the results reported

experimentally [11, 12]. Overall, these results indicate that in the Early stage

Ca2+ cycling is mainly governed by sarcolemmal fluxes, while upon maturation

Ca2+ release from SR increases its contribution moving toward a functional inte-
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gration with sarcolemma to generate rhythmic activity. This evidence is in line

with recent data obtained in late-stage mouse ESC [47] and further extends the

predictive potential of our model to intracellular Ca2+ handling processes. Simu-

lated block of Ca2+ release also increased the oscillation frequency (see Fig. 2.5);

we are not aware of experimental reports on this specific aspect in hESC-CMs

which, on the other hand, seems in contrast with the effect of RyR knock out

in ESC-CMs [49]. However, in the same conditions, a consistent increase in

the frequency of AP-induced Ca2+ transients is apparent also in [12] (Fig. 2.6),

thus suggesting that further investigation supported also by model based analysis

might provide mechanistic insights on this issue.

In our model, simulations of channel blockers were aimed to test, as a proof of

concept, a qualitative reproduction of the main experimentally AP modifications

observed in preliminar experiments. In the case of IKr, a reduction in the maxi-

mal conductance simulated the application of E4031. This operation altered AP

shapes quite similarly to what observed in the experiment, despite the fact that

simulated AP prolongation was far less pronounced at the Early stage while at

the Late stage MDP was more negative with respect to the experimental trace.

Importantly, our model replicates the effect of E4031 on the frequency of sponta-

neous beating, which decreases in the Early stage and markedly increases in the

Late one.

Our experiments using 2 mM nickel were simulated by a relevant blockade of

INaCa, ICaT and IKr in the model, in accordance with the lack of selectivity of

nickel at this concentration and the high levels of block reported for these cur-

rents. At the Early stage simulations and experimental recording similarly show

a residual electrical activity slightly different in frequency and amplitude (see

Fig. 2.6c); nonetheless, both results suggest that residual currents are sufficient

to drive a repetitive potential oscillation of small amplitude occurring at depo-

larized potentials. For the Late stage experimental traces and simulations show

a complete block of spontaneous activity (see Fig. 2.6d) occurring at negative

potential values, opening the hypothesis that in this phase, where other depolar-

izing currents such as If are downregulated, INaCa plays a key role in sustaining

the spontaneous activity. Our results are consistent with those of similar exper-

iments [46] performed with 5 mM nickel, a concentration expected to exert a

higher level of channel blockade. In fact, with this higher nickel concentration no

Ca2+ transients due to spontaneous activity were recorded at any developmental

stage.
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2.4.1 Limitations

The main limitations of our work are related to i) the shortage of data and ii)

the variability of phenotypes. We built an AP model for human embryonic stem

cells derived cardiomyocytes. However, many data to build the model are taken

from published experimental work on different animal species. The crossbreeding

process of data from human and animal CMs represented a compulsory choice for

our model, since some current properties expressed in the adult ventricular cells

were unknown or not sufficiently characterized in hESC-CMs. A more accurate

numerical model of “human” embryonic stem cells derived cardiomyocytes would

require further experimental investigations. This should be considered as a first

step in the effort of mathematically describing the ESC-CM electrophysiology

aimed at capturing the qualitative mechanisms.

The choice of a specific human adult ventricular AP model as the basis for the

hESC-CM model could be perceived as a limitation of the present work. We

chose as the “starting point” for the development of our model a modified ver-

sion of the TenTusscher model [15], in which IKr, IKs and ICaL were changed with

respect to their original formulation. From this starting point, in order to repro-

duce developmental changes in each current we modulated (through the RaIxx
ratios) the current maximal conductances. But at the same time the kinetic of

several currents were changed based on data from ESC-CMs: INa, ICaL, Ito,IK1,

INaCa. Moreover, two relevant membrane currents that were not present in the

adult ventricular model (ICaT and If) were incorporated in our model. All these

modifications reduced the actual impact on the final results of the initial choice of

the starting point. A sensitivity analysis with respect to the choice of the parent

model was far beyond the scope of the present work. It is also worth noting that

the modification of the Ten Tusscher model allowed the correct prediction of APD

shortening at higher [Ca2+ ]o [15]. All the more recent models (e.g. [50]) show

unrealistic APD prolongation upon increase of extracellular calcium. This aspect

is particularly relevant for our study, in which we had to reproduce intracellular

AP recordings obtained with 2.7 mM Ca2+ in the external solution [40].

The difference in MDP between experiments and simulations is a limitation, pos-

sibly related to an incomplete description of the complex interconnection within

the EBs. For example, in simulating AP recorded from EBs, only CM to fi-

broblast coupling has been considered. Other variables, such as CM to CM gap

junctions likely contribute to the AP properties of EBs. However, such a term
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would dramatically complicate the system of differential equations and goes be-

yond the scope of the present work.

2.5 Conclusions

In conclusion, this study provides the first modelling tool able to simulate the

membrane AP, the associated intracellular Ca2+ handling properties and the

modification occurring over the maturation process of hESC-CMs. The simula-

tion of the transition from Early to Late developmental stage involved: increas-

ing Ito density, declining If contribution, decreasing INaCa current density, IKr

decrease and INa increase. Moreover, an increasing contribution to Ca2+ cycling

of the Ca2+ release from SR was pointed out.

We expect to overcome inherent limitations present in the model by further ex-

perimental investigations exploring unknown properties of basic physiology of

hESC-CMs, possibly including different stem cell lines. Also, the combined use

of novel pharmacological/simulated challenges will be useful to implement and

validate the predictive potential of the model. Finally, novel challenges come

from studies (including drug testing) in CMs from induced pluripotent stem cells

carrying genetic mutations [51, 52]; the development of disease-specific cell lines

for genetic cardiac disorders prompts toward the refinement of this mathematical

modelling to address future directions in this field.
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Abstract

The clear importance of human induced pluripotent stem cell derived cardiomy-

ocytes (hiPSC-CMs) as an in-vitro model highlights the relevance of studying

these cells and their function also in-silico . Moreover, the phenotypical differ-

ences between the hiPSC-CM and adult myocyte action potentials (APs) call for

understanding of how hiPSC-CMs are maturing towards adult myocytes. Using

recently published experimental data, we developed two computational models

of the hiPSC-CM AP, distinguishing between the ventricular-like and atrial-like

phenotypes, emerging during the differentiation process of hiPSC-CMs. Also, we

used the computational approach to quantitatively assess the role of ionic mecha-

nisms which are more likely responsible for the not completely mature phenotype

of hiPSC-CMs. Our models reproduce the typical hiPSC-CM ventricular-like and

atrial-like spontaneous APs and the response to prototypical current blockers,

namely tetrodotoxine, nifedipine, E4041 and 3R4S-Chromanol 293B. Moreover,

simulations using our ventricular-like model suggest that the interplay of imma-

ture INa, If and IK1 currents is the main responsible for spontaneous beating in

hiPSC-CM whereas a negative shift in ICaL activation causes the observed long

lasting AP. In conclusion, this work provides two novel tools useful in investigat-

ing the electrophysiological features of hiPSC-CMs, whose importance is growing

fast as in-vitro models for pharmacological studies.

3.1 Introduction

The role of computational modelling in cardiac cell electrophysiology has become

more and more important in recent years, enabling deeper understanding of the

cardiomyocyte (CM) function. This, together with the growing available com-

puting power, sparked the development of a large variety of mathematical models

representing the in-silico versions of almost all the in-vitro models used in the ex-

perimental practice. Diverse animal models (rabbit [1], guinea pig [2], canine [3])

were produced, as well as human models deeply focusing on the characteristics of

different cardiac phenotypes, e.g. ventricular [4–7] and atrial [8] cardiomyocytes.

Recently, stem cell-derived cardiomyocytes appeared as a new promising in-vitro

model [9, 10], especially in the perspective of regenerative medicine in order to re-

store the functionality and repair damaged or infarcted cardiac areas. Moreover,

the role of specific human CMs as in-vitro drug models is increasing. Human em-
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bryonic stem cell-derived cardiomyocytes (hESC-CMs) seem to be a promising

tool, anyway the ethical issues about using human embryos in scientific research

slowed this research down.

Recent studies [11, 12] showed that it is possible inducing pluripotency, i.e.

the power of differentiating into all the tissue composing the embryo but not

into the extra-embryonic tissues, in somatic cells such as fibroblasts. The ba-

sic procedure consists in introducing genetic factors (such as OCT3/4, SOX2,

KLF4 and c-Myc22 or OCT4, SOX2, NANOG and LIN2829) into the non-

originally pluripotent cells: these cells were thus named induced pluripotent

stem cells. Experiments on human somatic cells showed the feasibility in dif-

ferentiating human induced pluripotent stem cells (hiPSCs) into cardiomyocytes

(hiPSC-CMs) [13]. This procedure offers various advantages: (i) no ethical issues,

(ii) patient-specificity [14] of the produced cells, valuable in terms of autologous

transplantation without rejection issues, (iii) disease-specificity [15, 16] of the

hiPSC-CMs. Even if hiPSC-CMs are not used in clinical practice yet, they are

considered a very promising in-vitro model for pharmacological studies and drug

tests [17, 18].

This new in-vitro model shows some relevant differences with respect to the adult

myocytes such as the spontaneous electrical activity, i.e. APs firing without an

external stimulus, or the shorter duration of the AP [17]: so models of adult

cardiac AP result inadequate in describing the hiPSC-CM electrophysiology. A

new, specific, in-silico model of hiPSC-CM AP would be extremely useful in

order to investigate their physiological properties.

In order to fill this gap, we developed a novel model of hiPSC-CM, based on

the experimental data, recently published in Ma et al. [17] , also discriminating

among ventricular-like and atrial-like hiPSC-CMs. To test our model and its

performance, we challenged our model by reproducing experimentally recorded

changes in the AP shape due to specific current blockers. Finally, we used the

computational approach to quantitatively assess the role of ionic mechanisms

which are more likely responsible for the not completely mature phenotype of

hiPSC-CMs. This was done by analysing several hybrid models built by inserting

one “adult current” into the hiPSC-CM model.
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3.2 Materials and Methods

3.2.1 Ventricular-like and atrial-like hiPSC-CM models

Our ventricular-like and atrial-like hiPSC-CM models follow the classical Hodgkin

& Huxley scheme, taking into account the following currents:

C
dV

dt
= −(INa+ICaL+If +IK1 +IKr+IKs+Ito+INaCa+INaK +IpCa−Istim)

(3.1)

where C is cell capacitance, V the membrane voltage and Istim represents the

stimulus current. Currents were formulated according to the framework reported

in [7, 19], with the exception of ICaL, whose structure was taken from [21]; current

parameters were then tuned to properly fit the hiPSC-CM experimental data.

Experimental data for INa, ICaL, If, Ito, IK1, IKr and IKs were derived from Ma

et al. [17], who recorded these currents on hiPSC-CMs cultured for 30 - 32 days

and then cryopreserved; patch clamp recordings of APs and currents were per-

formed on hiPSC-CMs 4 - 21 days post-thaw [17]. For each of these currents

(i) we found a basic fitting for the available data by simulating the same volt-

age clamp protocols used during the experiments (Fig. 3.1 and 3.2) and (ii)

since recordings were obtained from a mixture of ventricular-like, atrial-like and

nodal-like hiPSC-CMs we scaled the basic fitting parameters to take into account

the phenotypical heterogeneity affecting the voltage clamp data. Formulation for

the remaining membrane and sarcoplasmic reticulum (SR) currents, as well as

parameters not directly derivable from Ma et al. [17], were adapted from a previ-

ous model of hESC-CM [19] and scaled in case of known differences between

ventricular and atrial cells. The differences in current formulations between

ventricular-like and atrial-like models are detailed in the following subsections

and summarized in Table 3.1. All model equations and parameter values are

provided in the Appendix 2 on page 181.

In control conditions, ventricular-like and atrial-like APs were simulated with

Istim=0, i.e. reproducing spontaneous firing activity, as reported in Ma et al. [17].

The comparison between experimental and simulated APs was performed by com-

puting the following AP morphological features (AP features): rate of sponta-

neous beating (F), maximum diastolic potential (MDP), peak voltage (Peak), AP

amplitude (APA), maximum upstroke velocity (Vmax) and AP duration at dif-

ferent percentages of repolarization (APD10, APD30, APD90). As an additional
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AP feature, the AP shape factor rappAPD defined by Ma et al. [17] as

rappAPD =
APD30 −APD40

APD70 −APD80

was included in Table 3.2: this feature represents a threshold for discriminating

among ventricular-like and atrial-like hiPSC-CMs.

3.2.2 Fast sodium current (INa)

Our INa formulation is based on the I/V, activation (G/Gmax) and inactivation

(I/Imax) curves measured by Ma et al. [17] at 35-37◦C (basic fittings in Fig. 3.1a

and 3.1b). To discriminate between the ventricular-like and atrial-like phenotypes

we referred to Li et al. [20]: in particular we took into account the higher current

density in the atrial phenotype with respect to the ventricular one by choosing

the ratio GNamax,ventricular-like/GNamax,atrial-like ' 0.6. This was implemented by

scaling the basic current conductance by 0.65 for the ventricular-like and by 1.1

for the atrial-like model.

3.2.3 L-type calcium current (ICaL)

The voltage clamp ICaL recordings (I/V, activation and inactivation curves) re-

ported by Ma et al. [17] were performed at room temperature; the basic fittings

are reported in Fig. 3.1c and 3.1d. ICaL voltage-dependent gate time constants

are based on the TenTusscher model [21] , and on Grandi et al. [22] ,while the

Ca2+-dependent gate time constant is based on our hESC-CM model [19] . Be-

fore integrating the ICaL formulation into the models, time constants were scaled

considering a Q10 factor of 2.1 [7]. We considered the differences in the activation

and inactivation curves reported in Camara et al. [23] between the ventricular and

atrial phenotypes, in particular the half-voltages of the steady-state activation

and voltage-dependent inactivation for the atrial-like ICaL were slightly shifted

by 3.1 mV and 0.8 mV, respectively, towards positive potentials. Moreover, the

voltage-dependent fast inactivation time constant was doubled in the atrial-like

model with respect to the ventricular-like one. No differences in current den-

sity were taken into account since Camara et al. [23] reported current data only,

without considering the greater ventricular than atrial myocyte membrane ca-

pacitance [8]; moreover Hatano et al. [24] did not found any significant difference

in the specific ICaL density.

Ph.D. Thesis



78 I.3. Mathematical modelling of hiPSC-CM AP

Figure 3.1: Basic fitting of the characteristics of INa, ICaL and If; all the exper-
imental data from Ma et al. [17]. (a) Peak INa I/V curve. (b) INa steady state
activation and inactivation curves. (c) Peak ICaL I/V curve. (d) ICaL steady
state activation and inactivation curves. (e) Peak If I/V curve.
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3.2.4 Hyperpolarization-activated Cyclic Nucleotide-gated

funny current (If)

The basic fitting of If is shown in Fig. 3.1e; in the ventricular-like and atrial-like

models If was scaled to take into account also the presence of nodal-like cells in

the recorded samples. Since nodal cells show a stronger expression of If than

ventricular and atrial myocytes [25] we scaled the maximum If conductance by

0.7 both for the ventricular-like and atrial-like phenotypes.

3.2.5 Transient outward (Ito), rapid and slow delayed rec-

tifier (IKr, IKs) currents

The basic fitting of the Ito current density is shown in Fig. 3.2a. The main

difference we considered between the ventricular-like and atrial-like Ito currents

was the greater outward current reported by Amos et al. [26] in human atrial

cells: thus we considered the ratio Gtomax,ventricular-like/Gtomax,atrial-like=0.5.

The basic fitting of the two delayed rectifier currents IKr and IKs are reported in

Fig. 3.2b, 3.2c and 3.2d. No significant differences between the ventricular and

atrial phenotype were found in literature.

3.2.6 Inward rectifier current (IK1)

IK1 was formulated as in [7, 19] and it is characterized by one time-independent

inactivation gate. IK1 data from Ma et al. [17] were reproduced using the same

experimental voltage ramp protocol and reported in Fig. 3.2d. As reported in

Amos et al. [26] and Schram et al. [27] ventricular cells in guinea pig and human

show a greater IK1 than atrial cells. We scaled the basic IK1 fitting by 1.1 for the

ventricular-like and by 0.66 for the atrial-like phenotype.

3.2.7 Sodium calcium exchanger (INaCa), sodium potassium

pump (INaK) , sarcolemmal calcium pump (IpCa) and

SR currents

For INaCa, INaK, IpCa and SR currents no data were available in Ma et al. [17],

so we based their formulations on our previous model of hESC-CM, optimizing

them to get the best AP shape. In particular, we referred to Wang et al. [28] for

the INaCa and INaK differences between ventricular and atrial cells.
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3.2.8 Membrane capacity and volumes

The mean membrane capacity from Ma et al. [17] of 88.7 pF was scaled according

to Grandi et al. [8] to reproduce a greater capacitance for the ventricular-like

than for the atrial-like hiPSC-CMs. In detail, the ventricular-like and atrial-like

hiPSC-CM capacities were set to 98.716 pF and 78.662 pF thus reproducing the

capacity ratio of 0.7976. The cellular volumes were scaled accordingly (see Table

3.1).

Figure 3.2: Basic fitting of the I/V curves of (a) Ito, (b) IKr, (c) IKs and (d)
IK1; all the experimental data from Ma et al. [17].
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Table 3.1: Differences between the ventricular-like and atrial-like
hiPSC-CM models. Comparison of the parameters changing between the
ventricular-like and atrial-like models. GNa,bas , Gf,bas , Gto,bas , GK1,bas : maxi-
mum conductances in the basic fitting. Vhd,bas , Vhf,bas , Vhf2,bas : half potentials
of the voltage dependent activation and inactivation gates of ICaL. τ f2 : time con-
stant of the fast voltage-dependent inactivation of ICaL; Cm,bas : mean membrane
capacitance. INaCaMax,ventr, INaKMax,ventr: maximum current in the ventricular-
like model. IupMax,ventr , IrelMax,ventr : maximum fluxes in the ventricular-like
model. Vc , VSR: cellular and SR volumes. GP: guinea pig. H: human. †: values
optimized to reproduce the best AP shape. !: scaled coherently with the Cm.

basic fitting,
data from Ma et
al. 14

Ventricular-like Atrial-like units Ref.

INa GNa,bas= 6212.6 0.65*GNa,bas=
4070.1

1.1*GNa,bas=
6887.8

S/F GP [20]

ICaL Vhd,bas= -9.1 Vhd,bas= -9.1 Vhd,bas+3.114=
-5.986

mV GP [23]

Vhf,bas= -26 Vhf,bas= -26 Vhf,bas+0.774=
-25.226

mV GP [23]

Vhf2,bas= -32 Vhf2,bas= -32 Vhf2,bas+0.774=
-31.226

mV GP [23]

τ f2,bas τ f2,bas 2*τ f2,bas ms †
If Gf,bas= 57.118 0.7*Gf,bas=

39.99
0.7*Gf,bas= 39.99 S/F H [25]

Ito Gto,bas= 59.81 0.5*Gto,bas=
29.9

1*Gto,bas= 59.81 S/F H [26]

IK1 GK1,bas= 25.59 1.1*GK1,bas=
28.15

0.66*GK1,bas=
16.89

S/F H [26]

Cm Cm,bas= 88.7 1.113*Cm,bas=
98.716

0.887*Cm,bas=
78.662

pF H [8]

INaCa - INaCaMax,ventr=
6125

0.35*INaCaMax,ventr=
2143.8

A/F H [28]

INaK - INaKMax,ventr=
1.0896

0.8*INaKMax,ventr=
0.8717

A/F H [28]
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basic fitting,
data from Ma et
al. 14

Ventricular-like Atrial-like units Ref.

Iup - IupMax,ventr=
1.4016

0.2564*IupMax,ventr=
0.3594

mM/s †

Irel - IrelMax,ventr=
1.0154

1.3514*IrelMax,ventr=
1.3722

mM/s †

Vc - Vc = 8752.718 Vc = 6975.437 µm3 !
VSR - VSR = 583.728 VSR = 465.199 µm3 !

3.2.9 Current blocker simulations

AP shape changes due to the action of current blockers were investigated on

stimulated ventricular-like hiPSC-CMs as done experimentally by Ma et al. [17]:

experiments regarded Tetrodotoxin (TTX), E4031, Nifedipine Nifed) and 3R4S-

Chromanol 293B (Chr).

We simulated these experiments by reducing the maximum conductance of the

current targeted by the specific blocker by 50%, 70% and 90% , thus simulating

diverse blockade levels. The stimulation protocol is the same used in Ma et

al. [17]: constant pacing rate 1 Hz with depolarizing pulses of 5 ms duration and

550 pA amplitude.

Additional simulations of current blocker effects with the atrial-like model are

reported in the Appendix 2 on page 191.

3.2.10 Replacing adult currents into the ventricular-like

hiPSC-CM model

We implemented INa, Ito, ICaL, IK1, IKr and IKs from the O’Hara-Rudy (ORd)

adult ventricular cell model [6] to test their effects on the ventricular-like AP if

used to replace the original hiPSC-CM currents. Since there is no data on the

Ca2+ /calmodulin-dependent protein kinase II (CaMK) mechanism acting on the

membrane currents in hiPSC-CMs, we did not implemented the CaMK part for

the ORd formulations of INa, Ito and ICaL.

Our tests were performed by simulating the AP after replacing each adult current,

one by one, into the ventricular-like hiPSC-CM model. Two more tests were

done: (i) since in adult ventricular cells no functional If is found in physiological

conditions, we set to 0 the maximum If conductance and (ii) finally we put the
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adult currents all together into the ventricular model, with If=0.

3.3 Results

3.3.1 Spontaneous Action potentials.

Simulated traces of the spontaneous ventricular-like and atrial-like APs, are re-

ported in Fig. 3.3a and 3.3c, respectively. Qualitative comparison with repre-

sentative experimental AP profiles reported in Fig. 3.3b and 3.3d shows that

simulated APs mimic experimental recordings of both the phenotypes. Experi-

mental traces from Ma et al. [17].

A quantitative comparison between the experimental and simulated APs is re-

ported in Table 3.2 in terms of the AP features detailed in the Materials and

Methods section. Our models reproduced the main differences between the

ventricular-like and atrial-like hiPSC-CMs reported by Ma et al. [17]: (i) greater

frequency (shorter interval) of firing for the atrial-like model; (ii) longer APD and

greater APA and MDP for the ventricular-like model; (iii) rappAPD respectively

greater and smaller than the threshold value of 1.5 for the ventricular-like and

atrial-like models. The membrane currents generating and shaping the AP, and

the intracellular ionic concentrations are also reported in Fig. 3.4 and 3.5.

3.3.2 Current blocker simulations

Simulation of the effects of current blockers, by using the ventricular-like model,

is shown in Fig. 3.6 together with a qualitative comparison between the AP

changes observed in our simulations and recorded during Ma et al. [17] experi-

ments. We also report in Table 3.3 the effects of blockers for all the conditions

in which the AP features, resulted significantly affected in the experiments. The

comparison is still qualitative, since we did not select our maximum conductance

reductions based on the dose-response characteristics of each blocker. TTX acts

on INa, the main responsible of the upstroke, thus a strong TTX-induced blockade

produces an important shift in time of the AP peak (Fig. 3.6a), making the ICaL

contribution to the upstroke critical. The main influence of INa and its blockade

is on the Vmax, since by blocking the 90% of INa, Vmax is dramatically reduced

by 83%. The ICaL role in sustaining the AP plateau is highlighted by the exper-

iments and simulations about Nifed, which causes the reduction of all the APDs
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(Table 3.3) and triangulates the AP profile (Fig. 3.6b). E4031 blocks selectively

IKr, thus lengthening prevalently the APD (Table 3.3 and Fig. 3.6c). Finally,

simulations of the IKs blocker Chr show that it only induces a small prolongation

of the APD (Table 3.3 and Fig. 3.6d). All the simulation results were consistent

with the experimental ones. In Appendix 2 on page 191, additional simulations

of current blocker effects on the atrial-like AP shape are reported. These results

are consistent with those detailed in this section.

Table 3.2: Comparison between spontaneously beating ventricular-like
and atrial-like hiPSC-CM AP morphological features. Experimental and
simulated AP features for the ventricular-like and atrial-like models. †: in Ma et
al. [17] no frequencies were reported, but intervals; for an easier comprehension
we converted the interval data also in frequency. !: rappAPD<1.5: atrial-like,
rappAPD>1.5: ventricular-like.

AP feature units Ventricular-like Atrial-like
EXP SIM EXP SIM

Cycle
Length

s 1.7±0.1 1.79 1.2±0.2 1.04

F† bpm 35.3±2.2 36.2 50±10 57.9
MDP mV -75.6±1.2 76.7 -73.5±1.5 -72.5
Peak mV 28.3±1.0 28.0 26.7±1.4 26.3
APA mV 104.0±1.1 104.7 100.2±2.1 98.7
Vmax V/s 27.8±4.8 27.8 26.2±3.9 26.6
APD10 ms 74.1±4.8 53.3 60.8±5.5 57.2
APD30 ms 180.0±10.7 235.8 123.1±10.3 133.2
APD90 ms 414.7±21.8 404.7 286.2±21.2 284.5
rappAPD! - 2.5±0.2

(>1.5)
3.43 1.1±0.1

(<1.5)
1.15

3.3.3 Moving towards the adult ventricular cell by insert-

ing adult membrane currents.

The aim of this last simulation study is the analysis of the current-based dif-

ferences between ventricular-like hiPSC-CMs and adult ventricular CMs which

have the greatest influence in moving the ventricular-like AP towards the adult

one. In order to investigate the role of the membrane currents in determining

the immature phenotype of hiPSC-CMs we compared the main currents (INa,
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Figure 3.3: Simulated and experimental spontaneous AP traces for (a,b) the
ventricular-like and (c,d) the atrial-like models. Experimental traces (b) and (d)
were taken from Ma et al. [17]. Both experiments and simulations are reported
in the same scale for comparison. No external stimulation was used (Istim = 0).
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Figure 3.4: Ventricular-like steady state spontaneous AP, ionic currents and
concentrations. No external stimulation was used (Istim = 0). (a) membrane
potential. (b) INa. (c) ICaL. (d) If. (e) intracellular Na+ concentration. (f) IK1,
IKr and IKs. (g) Ito and INaK. (h) INaCa. (i) intracellular Ca2+ concentration.
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Figure 3.5: Atrial-like steady state spontaneous AP, ionic currents and concen-
trations. No external stimulation was used (Istim = 0). (a) membrane potential.
(b) INa. (c) ICaL. (d) If. (e) intracellular Na+ concentration. (f) IK1, IKr and
IKs. (g) Ito and INaK. (h) INaCa. (i) intracellular Ca2+ concentration.
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Figure 3.6: Simulated and experimental traces of stimulated APs (Istim = 550
pA) under effect of prototypical current blockers. Experimental traces were taken
from Ma et al. [17]. (a) TTX acts on INa, producing an important shift in time
of the AP peak, (b) Nifed blocks ICaL and causes the reduction of all the APDs
and triangulates the AP profile. (c) E4031 blocks selectively IKr lengthening
prevalently the APD. (d) IKs blocker Chr does not have any significant effect on
the AP shape.
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Table 3.3: Quantification of the effects of current blockers on the
simulated action potentials and comparison with experimental data.
Comparison between AP changes experimentally recorded by Ma et al. [17] and
simulated using our ventricular-like model. The stimulation protocol is the same
reported in section 3.2.9. Values in the Experiments column (means ± SE)
represent the % of the experimental control value. Values in the Simulations
column are given as % of the simulated control values. This table is based on
the significative data (P<0.05) reported in Ma et al. [17] and it aims to provide
a qualitative comparison only, since we did not directly compare the real blocker
concentrations with our reduction of the maximum conductances.

AP features Experiments Simulations

Vmax TTX 3 µM 41.2±11.2 50% GNa 37.48
TTX 10 µM 16.7±1.8 30% GNa 17.61
TTX 30 µM 16.8±2.0 10% GNa 16.78

APD50 E4031 30 nM 109.1±3.7 30% GKr 155.05
E4031 100 nM 113.4±3.9 10% GKr 188.33

APD90 E4031 30 nM 140.3±7.6 30% GKr 147.85
E4031 100 nM 170.4±13.6 10% GKr 174.51

APD50 Nifed 3 nM 84.6±2.4 70% GCaL 72.58
Nifed 10 nM 70.3±6.1 50% GCaL 64.95
Nifed 30 nM 65.7±3.0 30% GCaL 50.30
Nifed 100 nM 45.4±4.5 10% GCaL 32.97

APD90 Nifed 3 nM 89.4±1.0 70% GCaL 76.76
Nifed 10 nM 78.4±4.4 50% GCaL 71.16
Nifed 30 nM 74.0±2.3 30% GCaL 61.83
Nifed 100 nM 58.2±5.4 10% GCaL 49.13
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Ito, ICaL, IK1, IKr and IKs) in our hiPSC-CM ventricular-like model with their

corresponding adult version, as formulated in the ORd model [6] of the adult ven-

tricular AP (Fig. 3.7).Then, we simulated the substitution into our hiPSC-CM

ventricular-like model of each individual currents with the adult one.

The I/V curve for the adult INa (Fig. 3.7a) results to be pretty similar to our

ventricular-like INa but insertion of the adult INa into our hiPSC-CM ventricular-

like model results in a stop of the spontaneous firing, which is not shown by adult

myocytes. This result can be ascribed to the fact that the adult steady state ac-

tivation, as described in the ORd model [6], is shifted towards positive potentials

by 7.6 mV with respect to the hiPSC-CM one. Because of this difference the par-

tial diastolic depolarization is not sufficient to reach the potential at which the

INa activation can elicit the AP upstroke. In case of external stimulation of the

hiPSC-CM model with the adult INa the AP basically overlaps the spontaneous

hiPSC-CM AP (see the first AP in Fig. 3.8a). The adult ICaL (Fig. 3.7b) I/V

is shifted towards positive potentials with respect to our venticular-like formula-

tion, due to steepest and positively shifted steady-state activation (by ∼5 mV,

not shown): its replacement into our model resulted into a deep shortening of

the AP, which also translated into a shortening of the cycle length of the sponta-

neous beating (Fig. 3.8b). The adult IKs (Fig. 3.7c) and Ito (Fig. 3.7d) resulted

rather similar to our currents and their effects on the AP shape are negligible

(not shown). The adult IKr I/V curve was quite different than ours (Fig. 3.7e),

in particular it is significantly smaller for negative potential steps and greater

than our IKr for positive potentials. Its main effect is a shorter APD (Fig. 3.8c).

The I/V curve for IK1 (Fig. 3.7f) shows basically the same peak amplitude, but

the peak itself is negatively shifted by about 38 mV. The strongly smaller IK1 for

potentials greater than -60 mV affected dramatically the AP shape, letting some

early afterdepolarizations (EADs) arise (Fig. 3.8d). As for the spontaneous firing

phenomenon, also the If current is distinctive of the immature myocytes and it

disappears during maturation [10]. So we tested the effect of If removal from

the ventricular-like model, which resulted in the stop of the spontaneous beating

and a stable potential of -87 mV. In case of no If, by providing an external stim-

ulus to the model, the global shape of the AP is still close to the shape of the

spontaneous AP but the MDP is much more negative (Fig. 3.8e). The last test

aimed to asses the effects of all the adult membrane currents (plus If removal)

combined together into our model, without changing the membrane capacity, the

subcellular compartimentalization and calcium handling. A stimulus current of
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Figure 3.7: Comparison of the major ionic currents between the the experimen-
tal data from the mixed phenotyped hiPSC-CMs by Ma et al. [17] (dots) their
basic fitting (dashed line), our ventricular-like model (solid line) and the ORd
model of adult human ventricular myocyte (dash dotted line). If no dashed line
is reported, ventricular-like data correspond to basic fitting data. (a) ORd INa

I/V curve is similar to our ventricular-like INa but its intensity is smaller in the
ranges [-60, -40] and [-10 40] mV. (b) ORd ICaL I/V curve is smaller than ours
for potential steps smaller than 0 mV and it is greater than ours for voltages
greter than 0 mV. (c) ORd IKs and (d) ORd Ito I/V curves are rather similar
to ours. (e) ORd IKr I/V curve was quite different than ours, in particular ORd
IKr is significantly smaller for negative potential steps and greater than our IKr

or positive potential steps. (f) The I/V curve for IK1 shows basically the same
peak amplitude, but the peak itself is negatively shifted by about 38 mV.
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1500 pA was used to elicit the APs, since no spontaneous beating was observed.

With respect to our hiPSC-CM ventricular-like model, this hybrid model showed

an AP morphology (Fig. 3.8f) closer to the ORd adult ventricular AP (our hy-

brid model vs ORd model): (i) resting potential -88.8 vs -88 mV, (ii) Peak 49 vs

42 mV, (iii) APD70/APD90 200/233 vs 255/275 ms.

3.4 Discussion

The major aim of our work consisted in developing a hiPSC-CM model focused

on the electrophysiological characteristics shown by these cells. Since the first

pluripotency induction protocols on human adult cells were published [11, 12],

the interest in hiPSCs culturing, production and application grew rapidly due to

some clear practical advantages with respect to hESCs. In particular the patient-

specificity of hiPSCs can be exploited for patient-specific drug development, since

hiPSCs carry the same genetic mutations of the donor, as reported in Yazawa et

al. [29] and Matsa et al. [16] for the illustrative Timothy and LQT syndromes

respectively. In this framework, we applied for the first time to hiPSC-CMs the

mathematical and computational approach to describe their fundamental elec-

trophysiology. A previous model of hiPSC-CM was recently published by Zhang

et al. [30] in order to study how to compensate the LQT1 induced APD length-

ening observed in hiPSC-CMs. Their approach started from the TenTusscher

2004 model [7] were they introduced INaL and If and changed the maximal con-

ductances of ICaL, IK1 and IKr. In spite of the valuable simulations this model

provided, the revised values of the TenTusscher model were assigned artificially

to achieve a closer matching between the simulated and experimental APs. We

chose a different approach, starting directly from the current data characterized

in Ma et al. [17].

Similar to human cardiac myocytes, hiPSC-CM APs have different morphologies

that are usually categorized [14–16] as ventricular-like, atrial-like or nodal-like.

Since the ventricular-like and the atrial-like are the most commonly observed we

decided to develop two different hiPSC-CM models, using literature data to iden-

tify the ionic currents most likely contributing to differentiate the ventricular-like

from the atrial-like AP. Also we tested which currents are more likely different

in the ventricular-like cells with respect the adult phenotype. This was possi-

ble in simulation by developing hypothetical hybrid models of partially mature

ventricular CMs.
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Figure 3.8: Effects of the virtual replacement of each adult ionic current into
the ventricular-like model. Ventr-like: the spontaneous APs simulated by our
hiPSC-CM ventricular-like model. Adult: the stimulated AP simulated by the
ORd adult ventricular model. Ventr-like+adult Ixx: APs simulated by replacing
the Ixx current in our ventricular-like model with its adult version. In (a), (e)
and (f) external current stimulation was necessary since no spontaneous beating
was produced after current substitution, whereas in (b), (c) and (d) spontaneous
APs (Istim = 0) are reported. (a) The adult INa stops the spontaneous APs.
Under stimulation the elicited APs match the original ventricular-like APs. (b)
Adult ICaL inclusion into our model results into a shortened APD and a greater
frequency of spontaneous beating and APA. (c) IKr inclusion induces a shortening
of the APD. (d) The major effect of using adult IK1 is the onset of EADs in case
of Istim = 0. By doubling the adult IK1 conductance, the spontaneous beating
stops and under stimulation no more EADs appear. (e) Absence of If stops the
spontaneous APs. Under stimulation MDP moves towards the adult MDP. (f)
Replacement of INa, ICaL, Ito, IKr, IKs and IK1 with their adult versions and If =
0. Since the model does not show spontaneous APs, it is stimulated by Istim =
1500 pA the AP morphology moves closer to the adult ventricular AP: resting
potential -88.8 vs -88 mV, Peak 49 vs 42 mV, APD70/APD90 200/233 vs 255/275
ms.
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Our models were validated against the available experimental data ranging over

the spontaneously produced APs and the effects of current blockers on the AP

shape under an external stimulus. The comparison between the experimental and

simulated AP features reported in Table 3.2 shows how the two models are match-

ing the real APs. In particular both the ventricular-like and the atrial-like models

match the experimental rate of spontaneous beating, MDP, Vmax, APA, Peak,

APD90 and can be correctly classified based on the threshold rappAPD=1.5.

The only relevant discrepancy can be found in the ventricular-like model where

APD10 and APD30 don’t match their experimental values: especially the simu-

lated APD30 is about 50 ms longer than the experimental one. The mismatching

in rappAPD is thus attributable to these differences in APD at the lower repo-

larization percentages and consequently our model is fully compliant with the

discriminating rule for the ventricular-like phenotype (rappAPD > 1.5). but it

reproduces an AP “slightly more ventricular-like” than the ventricular-like cells

do (3.43 vs 2.5 ± 0.2).

We also simulated, the effect of the prototypical current blockers tested by Ma et

al. [17] (TTX, Nifed, E4031 and Chr), by reducing the maximum conductances

of the current affected by the blocker. All our tests qualitatively agreed with the

experimental data (Fig. 3.6) and the measurements on our simulated APs (Table

3.3) confirm that the model behaves accordingly to Ma et al. [17] measurements,

which show that INa, ICaL and IKr blockades affect significantly the AP shape by

inducing (i) the reduction of the Vmax, (ii) the shortening and (iii) the lengthening

of the APD respectively. IKs blockade did not affect significantly the AP shape

either in the experiments or in the simulations , consistently with the marginal

role of the IKs current in the human cardiac AP under basal conditions (without

adrenergic stimulation).

The second aim of our work consisted in using the ventricular-like model to

investigate which are the differences between hiPSC-CMs and adult CMs in terms

of currents and which of these differences are more relevant in order to reproduce

an adult AP. In particular the most evident differences are: (i) the spontaneous

firing activity, (ii) a more positive MDP, (iii) a very prolonged APD. It was thus

a particular intriguing test for our model changing the main membrane currents

with their adult formulations (adapted from the ORd model [6]) and see if the

AP of this hybrid ventricular-like model moves closer to the adult ventricular AP.

In the adult heart only specialized cells show a spontaneous electrical activity,

since this phenomenon is canceled out during maturation in ventricular and atrial
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cells. We were able to stop this spontaneous activity in hiPSC-CM by removing

the If from the model, reproducing its downregulation observed during the my-

ocyte maturation [31]: this supports the hypotesis that If has an important role

in the automaticity of hiPSC-CMs as already observed in hESC-CMs [10]. More-

over, the arrhythmogenic power of this current should be considered when aim-

ing to use ventricular-like hiPSC-CMs for drug testing or regenerative medicine.

Another interesting observation emerging from our simulations is that the spon-

taneous beating in hiPSC-CMs is due to 2 combined mechanisms: a) the insta-

bility of the resting potential with the consequent slow depolarization and b) an

increased excitability due to the negative shift of the INa activation. Indeed, two

simulated conditions were both separately able to stop spontaneous beating: a)

stabilization of resting potential by If current silencing (see Fig. 3.8e) (or alter-

natively by IK1 overexpression) and b) reduced excitability by positive shift of

INa activation (see Fig. 3.8a).

As expected, the current affecting more the MDP resulted to be IK1 but, rather

surprisingly, by replacing the hiPSC-CM IK1 with the adult ORd IK1, MDP

became more negative, but this did not stop completely the automaticity of the

cell, rather inducing EADs as showed in Fig. 3.8c. It is often thought, even not

yet proven, that increasing the quantity of IK1 current in these cells might be

sufficient to obtain a stable adult ventricular phenotype. Our results point out

that the ORd IK1 (Fig.3.7f), should have a doubled maximum conductance to

be able to stop the spontaneous APs. In that condition, providing an external

stimulus (550 pA in our tests), the model produces APs without EADs (data not

shown).

ICaL is known to act mainly to sustain the AP plateau. Replacing the hiPSC-CM

ICaL with the adult ORd ICaL, which is smaller especially at the negative po-

tentials (Fig. 3.8b), the AP shortens significantly approaching the physiological

range for adult ventricular myocytes. This has to be combined with a stronger

ORd IKr for positive potentials (Fig. 3.7e), which means a further APD shorten-

ing contribution.

The combination of the adult currents and the absence of If led to a model with

no automaticity, characterized by an AP morphology similar to that observed in

adult ventricular CMs (Fig. 3.8f).

One limitation of our work could appear to be the uniqueness of the data source:

in fact we focused principally on the work of Ma et al. [17] since it was the most

comprehensive report about hiPSC-CM membrane currents and APs, whereas
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other works, such as Matsa et al. [16] or Lahti et al. [15], focused on specific

currents, especially K+ current for the study of LQT syndromes. We justify our

choice considering that the uniformity of experimental conditions and method-

ologies offered by a complete work like Ma et al. ’s [17] represents a more stable

basis for the development of a computational model. In conclusion, this study (i)

provides two models of hiPSC-CM reproducing the ventricular-like and atrial-like

spontaneous APs, (ii) shows that such models also satisfactorily reproduce the

response to several current blockers and (iii) suggests a set of membrane currents

that can be ascribed for (some) of the differences identified between ventricular-

like hiPSC-CMs and adult ventricular cells.
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CHAPTER

ONE

OVERVIEW ON TEXTURE DESCRIPTORS

According to the initial idea of this Ph.D. , the modelling part on hESC-CMs

should have been coupled with a collateral image processing study, aimed to extract

morphological and textural information related to the maturation of hESC-CMs.

The final goal would have been a functional evaluation of the differentiation of

hESCs towards the cardiac phenotype by morphological and electrophysiological

data. However, during the Ph.D. studies, while the modelling part started focus-

ing also on hiPSC-CMs, the characterization of the hESC maturation by means of

image processing was abandoned due to the following issues with the available im-

age dataset: (i) few hESC images; (ii) the maturation time for each cell was not

recorded while building the dataset; (iii) cell morphology was affected by the adhe-

sion to the culturing plates. Nevertheless, preliminary processings on hESC-CM

and hiPSC-CM image datasets strenghtened the author’s interest on texture anal-

ysis and texture descriptors and this resulted in the following independent line of

research.

The importance of texture analysis as a branch of computer vision has been

cleared from decades [1]: traditionally used for face recognition [2], fingerprint

matching [3] and other biometric purposes, it has proven to be extremely valuable

and effective in the medical and biological fields as well, e.g. polyp detection in

colonoscopy images [4]. It is easy to understand the success of texture analysis
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since almost every image contains texture and the continuous development in

image acquisition technology made high-resolution pictures available. There is

not unique quantitative definition of texture, even if various qualitative explana-

tions were published. Different attempts are reported in literature [1, 5–7] and

reviewed in [8]:

� “We may regard texture as what constitutes a macroscopic region. Its

structure is simply attributed to the repetitive patterns in which elements

or primitives are arranged according to a placement rule.” [5]

� “A region in an image has a constant texture if a set of local statistics or

other local properties of the picture function are constant, slowly varying,

or approximately periodic.” [6]

� “The image texture we consider is non figurative and cellular [...] An image

texture is described by the number and types of its(tonal) primitives and

the spatial organization or layout of its (tonal) primitives [...] A funda-

mental characteristic of texture: it cannot be analyzed without a frame of

reference of tonal primitive being stated or implied. For any smooth gray-

tone surface, there exists a scale such that when the surface is examined, it

has no texture. Then as resolution increases, it takes on a fine texture and

then a coarse texture.” [1]

� “The notion of texture appears to depend upon three ingredients: (i) some

local ”order” is repeated over a region which is large in comparison to

the order’s size, (ii) the order consists in the non random arrangement

of elementary parts, and (iii) the parts are roughly uniform entities hav-

ing approximately the same dimensions everywhere within the textured

region.” [7]

The essential ideas are thus: (i) the presence of repetitive primitives (patterns)

having the same size everywhere in the textured region and (ii) the non-random

spatial organization of patterns in a region larger in comparison with pattern

size [9]. Many texture descriptors were developed, as reviewed in [10], and among

this great variety we summarize the approaches used in this thesis:

� methods based on the Grey Level Co-occurence Matrix (GLCM), such as

Haralick features [1] (section 1.1);
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� neighborhood based methods, computed directly on the image using a shift-

ing neighborhood (square, rectangular, circular, ...) such as Local Binary

Pattern (LBP) (1.2) and its variants Local Ternary Pattern (LTP) [11]

and Local Quinary Pattern (LQP) [12] (section 1.3). We include among

the neighborhood based texture descriptors also the Local Phase Quanti-

zation (LPQ) [13] computed on the Fourier transform phase information

extracted from the neighborhood (section 1.4).

In particular the LBP descriptor [14] achieved great success in the Computer

Vision field, especially for its strength in detecting textural and structural infor-

mation. In medical imaging LBP was successfully applied for several applications,

eg. an automated Marsh-like scoring system for coeliac disease applied to endo-

scopic images [15] or mass detection in mammographic images [16]. The LBP

descriptor finds application also in biology, eg. for classifying different cellular

phenotypes [17].

1.1 Haralick features (HAR)

Haralick texture features [1] are calculated from the GLCM. GLCM is a square

matrix with dimension Ng, where Ng represents the number of grey level in the

image. Each element (i, j) represents the number of times an element of intensity

i is adjacent, considering a distance of d pixels, to a pixel of intensity j, normalized

by the total amount of the comparison made in order to have each p(i, j) in the

[0, 1] range

G =


p(1, 1) p(1, 2) · · · p(1, Ng)

p(2, 1) p(2, 2) · · · p(2, Ng)
...

...
. . .

...

p(Ng, 1) p(Ng, 2) · · · p(Ng, Ng)

 (1.1)

Since four different adjacency angles θ = {0◦, 45◦, 90◦, 135◦} can be used, four

different GLCMs can be calculated (Fig. 1.1). From each GLCM 13 features can

be extracted, thus having 52 features computed along the four directions depicted

in Fig. 1.1. Here we report just some of them to provide the main idea behind

these features (see Fig. 1.2 the complete formulation of the whole feature set is

available in [1]):

� Angular Second Moment (ASM) is a measurement of the homogeneity of
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Figure 1.1: The four adjacency directions for GLCMs with distance d = 1.

the image. It helps quantify the distribution of values in the GLCM. In

a homogeneous image there are few dominant gray-tone transitions thus

the GLCM will have few elements of large magnitude and the ASM will

be larger. On the contrary, for a non-homogeneus image the GLCM will

contain a large number of small elements and the ASM will be smaller.

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2 (1.2)

� Contrast is a measure of the amount of local variation present in the image.

Ng−1∑
n=0

n2{
Ng∑
i=1

Ng∑
j=1

p(i, j)}, |i− j| = n (1.3)

� Correlation measures the linear-dependece of gray-tones in the image. A

high correlation value indicates that the pixels in an image have similar

tonal values [18].

1

σxσy

Ng−1∑
i=0

Ng−1∑
j=0

(i− µx)(j − µy)p(i, j) (1.4)

where

µx =

Ng−1∑
i=0

ipx(i) (1.5)

µy =

Ng−1∑
j=0

jpy(i) (1.6)
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σ2
x =

Ng−1∑
i=0

(i− µx)2px(i) (1.7)

σ2
y =

Ng−1∑
j=0

(j − µy)2py(i) (1.8)

and px, py are the marginal distribution associated with p(i, j).

Figure 1.2: Haralick textural features for two different category images. Due
to its non-homogeneity Fig. 1.2b has a lower ASM than Fig. 1.2a. Since there
is a large amount of local variation in Fig. 1.2b than in Fig. 1.2a, the first
one has a greater contrast value. For both the images, the correlation features
is higher in the vertical 90◦ direction; especially 1.2b shows defined structures
along the 90◦ direction, thus having a higher correlation along this line. Figure
1.2a and 1.2b from the from the Bonn BTF (2003) database. Available online at
http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/.

1.2 Local Binary Pattern (LBP)

The LBP operator [14] has become one of the most appreciated and useful texture

operators in the literature due to its high descriptive power and its invariance
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to local grayscale variations. The basic LBP assumption is that an image is

constituted by micropatterns.

1.2.1 Basic formulation

In its original form, the LBP operator is defined as a label for each pixel in the

image on the basis of a circular neighborhood of P pixels of grey level qp and

radius R around the central pixel of gray value qc, as follows:

LBP (P,R) =

P−1∑
p=0

s(qp − qc)2p (1.9)

where

s(x) =

{
1, x ≥ 0

0, x < 0
(1.10)

Thus, the extracted binary codes are represented in the histogram form, useful to

describe texture patterns in the studied image. Usual neighborhoods (Fig. 1.3)

are based on the following (P,R) values:

� (8, 1)→ 28 features;

� (16, 2)→ 216 features;

� (24, 3)→ 224 features;

Figure 1.3: LBP neighborhoods for different (P,R). Central pixel in black,
neighborhood pixels in grey. Figure adapted from [17].
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1.2.2 Rotation invariant LBP

The basic LBP(P,R) operator is affected by rotation, since the gray values qp
move when the image is rotated. Values {q0, ..., qP−1} are always taken starting

from the gray value of element (0; R) to the right of qc thus rotating a particular

binary pattern results in a different LBP(P,R) value, except for those patterns

made of only 0s (or 1s) which remain constant. In [14], a rotation invariant

version of LBP, was defined:

LBP ri(P,R) = min{ROR(LBP (P,R), i) | i = 0, 1, ..., P − 1} (1.11)

where ROR(x, i) performs a circular bit-wise right shift on the P -bit number i

times. For example, in case of P = 8, all the pattern containing only one bit

set to 1 (eg. 00000001, 00000010, 00000100, ...) are gathered under the label

00000001. The 36 unique rotation invariant LBP in case of P=8 are summarized

in Table 1.1.

Table 1.1: The 36 rotation invariant LBP. Table adapted from [19].

Pattern Index

00000000 0
00000001 1
00000011 2
00000101 3
00001001 4
· · · · · ·

01111111 34
11111111 35

1.2.3 Uniform LBP and Uniform Rotation Invariant LBP

In [14] it was observed that most of the texture information of an image, some-

times over 90 %, is provided by a small subset of the LBP patterns characterized

by few spatial transitions, i.e. bitwise 0/1 changes: to reflect this property they
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Figure 1.4: The uniform rotation invariant LBP in case of a 8 pixel-sized neigh-
borhhod (LBP riu2(8, R)). Black circles correspond to the 0 bit value and white
circles to the 1 bit value. Figure adapted from [14].

are called “uniform”. Uniformity is formalized as U(“pattern”)

U(LBP (P,R)) = |s(qP−1−qc)−s(q0−qc)|+
P−1∑
p=0

|(s(qp−qc)−s(qp−1−qc)| (1.12)

and it corresponds to the occurrence of bitwise 0/1 changes in the “pattern”. Fig.

1.4 reports the “uniform” patterns among the 36 rotation invariant patterns in

case of neighborhood (8, 1). They represent templates for specific micro-features

such as bright spot (0), flat area or dark spot (8), and edges of various curvatures

(1-7) [14]: patterns 000000002 and 111111112 have U = 0, while the other seven

patterns have U = 2 as there are exactly two 0/1 transitions in the pattern.

All the other patterns in Table 1.1 have U ≥ 4, thus they cannot be considered

“uniform”.

“Uniform” patterns can be selected from the basic LBP (see section 1.2.1)

or from the rotation invariant LBP (LBP ri, see section 1.2.2). In both cases

one unique label is assigned to each “uniform” pattern, while all the other “non-

uniform” patterns are gathered under one additional “miscellaneous” label.

Extraction of “uniform” patterns from the basic LBP results in P 2−P +2+1

labels as shown in [20], leading to the LBPu2 operator: for example, using the

(8, 1) neighborhood results in 58 “uniform” patterns, thus 59 possible labels.

In [14] the “uniform” version of the rotation invariant LBP is proposed as

gray-scale and rotation invariant texture descriptor and it is formalized as follows:

LBP riu2(P,R) =

{∑P−1
p=0 s(qp − qc)2p if U(LBP ri(P,R)) ≤ 2

P + 1 otherwise
(1.13)

In a circularly symmetric neighborhood of P pixels, only P+1 rotation invariant

“uniform” binary patterns can be composed: a unique label (reported inside each
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pattern in of Fig. 1.4) is assigned to each of them corresponding to the number

of “1” (white circles in Fig. 1.4) in the {0, 1, ..., P} pattern, while the “non-

uniform” patterns are grouped under the P+1 label, thus producing P+2 values.

In texture analysis, the histogram of the pattern labels over a texture sample

is commonly used as a feature vector (Fig. 1.5) and by using LBP riu2(P,R)

instead of LBP (P,R) or LBPu2(P,R) or LBP ri(P,R) the amount of features is

dramatically reduced. For example, by considering the typical neighborhoods in

Fig. 1.3, it results:

� (8, 1)→ 10 features;

� (16, 2)→ 18 features;

� (24, 3)→ 26 features;

Figure 1.5: Feature extraction from the original image (a) by LBP riu2(8, 1), 10
features, (b) the image after the labeling by LBP riu2(8, 1) and (c) the resulting
LBP riu2(8, 1) histogram (in abscissa the bin number, in ordinate the number of
occurrences of the given bin). Figure 1.5a from the 2D HeLa dataset available
online at http://murphylab.web.cmu.edu//data/#2DHeLa [21].
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1.3 Local Ternary (LTP) and Quinary (LQP) Pat-

tern

LTP [11] is based on the same idea of the canonical LBP but it tries to reduce its

sensitivity to noise, especially in near-uniform image regions. In fact, the main

weakness of the LBP operator is that the binary s(x) function thresholds exactly

at the intensity value of the central pixel qc. To overcome this weakness, in [11]

the use of a ternary coding was proposed. The ternary coding is achieved by

introducing the threshold τ in the canonical LBP s(x) function which becomes:

s(x) =


1, x ≥ τ
0, |x| ≤ τ
−1, x ≤ −τ

(1.14)

Due to the length of the ternary coding, the original LTP code is split into a

positive and a negative LBP code (Fig. 1.6). The use of the ternary coding

requires the threshold τ to be set. The threshold selection is a critical task in

order to reduce the sensitivity to noise of this new operator: in [11] threshold was

set manually (τ = 0.1 or 0.2) and this is usually done to get the best performance

in specific problems, but some automatic adaptive procedures were also proposed

in [15] by exploiting local statistics such as mean value and standard deviation

inside each neighborhood.

The goodness of this idea led also to the proposal of more complex codings,

such as the LQP operator proposed in [12], which exploits two thresholds τ1 and

τ2, thus allowing the s(x) function to assume values in [-2; -1; 0; 1; 2]:

s(x) =



2, x ≥ τ2
1, τ1 ≤ x < τ2

0,−τ1 ≤ x < τ1
−1,−τ2 ≤ x < −τ1
−2, x < −τ2

(1.15)

The quinary pattern is then split into four binary patterns and the histograms

that are computed from these patterns are then concatenated. In case the uniform

rotation invariant mapping and the typical (P,R) neighborhoods presented in

section 1.2.3 are applied to LQP, it results:
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Figure 1.6: LBP vs LTP. Extraction of LBP and LTP from a typical circular 3
by 3 neighborhood. The LTP code is split into its negative (LTP−) and positive
(LTP+) parts.

� (8, 1)→ 40 features;

� (16, 2)→ 72 features.

� (8, 1) and (16, 2)→ 112 features;

1.4 Local Phase Quantization (LPQ)

LPQ is another important operator for analysis of textural information based on

the blur invariance of the Fourier Transform Phase. In this section the basics

about LPQ are reported, the full formulation is detailed in the original article of

Ojansivu et al. [13]. The spatially invariant blurred version g(x) of an original

image f (x) can be expressed as

g(x) = f(x) ∗ h(x) (1.16)
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where x= [x,y ]T represents the spatial coordinate vector and h(x) the blur. Thus,

in the Fourier space, this means

G(u) = F(u) ·H(u) (1.17)

where G(u), F (u) and H (u) are the Fourier transformed versions of g(x), f (x)

and h(x) respectively while u= [u, v ]T is the frequency coordinate vector. The

phase of G(u) is expressed by

∠G(u) = ∠F(u) + ∠H(u) (1.18)

and if the blur h(x) is centrally symmetric H (u) is always real-valued, thus its

phase is

∠H(u) =

{
0, H(u) ≥ 0

π,H(u) < 0
(1.19)

meaning that the original and the blurred images have the same phase at those

frequencies which make H (u) positive. The LPQ operator is based on the above

properties of blur invariance. It uses the local phase information extracted using

the 2D Short Term Fourier Transform (STFT) computed over a square neighbor-

hood Nx of size M by M (usually M = 3 or M = 5 pixels) at each position x of

the image f( x):

F (u,x) =
∑
y∈Nx

f(x− y)e−j2πu
Ty = wu

Tfx (1.20)

where wu is the basis vector of the 2-D STFT at frequency u, and fx is a vector

containing the M2 image samples from the neighborhood Nx. Only four frequency

vectors are considered: u1 = [a,0]T , u2 = [0,a]T , u3 = [a,a]T and u4 = [a,-a]T ,

where the scalar frequency a is small enough to reside below the first zero crossing

of H (u) that satisfies

∠G(u) = ∠F(u), for all H(u) ≥ 0. (1.21)

By assigning

Fcx = [F(u1,x),F(u2,x),F(u3,x),F(u4,x)] (1.22)

and

Fx = [Re{Fcx}, Im{F
c
x}]T , (1.23)
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then the corresponding 8 by M2 transform matrix is

W = [Re{wu1,wu2,wu3,wu4}, Im{wu1,wu2,wu3,wu4}]T (1.24)

and thus,

Fx = W fx. (1.25)

After computing Fx for all the image position, the resulting vectors are quantized

using the following scalar quantizer

qj =

{
1, fj ≥ 0

0, fj < 0
(1.26)

where fj represents the j-th component of Fx and the quantized coefficients are

transformed into integers between 0-255 by the binary coding

b =

8∑
j=1

qj2
j−1 (1.27)

These integer values are then organized into a 256-bin histogram representing the

feature vector useful for classification tasks.

1.5 LPQ with ternary coding (LPQ3)

As for LTP, the LPQ3 operator is formulated as follows:

qj =


1, fj ≥ ρ · τ

0,−ρ · τ ≤ fj ≤ ρ · τ
−1, fj ≤ −ρ · τ

(1.28)

where fj is the j-th component of Fx, ρ is the standard deviation of the all fj
and τ is a threshold. The quantized coefficients are then represented as integers

in the interval 0 - 255 using the following binary codings:

b+ =

8∑
j=1

(qj == 1)2j−1 (1.29)
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and

b− =

8∑
j=1

(qj == −1)2j−1 (1.30)

b+ and b− values are then summarized in two distinct 256 bins histograms and

the two histograms are then concatenated thus providing a 512 valued feature

vector, useful for classification task.

1.6 The Multi-threshold approach

The use of ternary and quinary codings requires respectively one threshold (τ)

or a couple of thresholds (τ1, τ2). The Multi-Threshold approach consists in

choosing a set of different τ for the ternary coding (or a set of different (τ1, τ2)

for the quinary coding), in order to (i) extract one feature set for each threshold

(or couple of thresholds), (ii) use each feature set to train a different classifier

and (iii) fuse all these results according to a fusion rule (vote, sum, ...) [9, 22].

Exploiting this approach we defined two new texture descriptors: the Multi-

Threshold LQP (MLQP) and Multi-Threshold LPQ3 (MLPQ3) [22]. In their

original formulation we used:

� 25 couples of thresholds for MLQP, chosen as τ1 = {1, 3, 5, 7, 9} and τ2 =

{τ1 +2, ..., 11} (eg. if τ1 = 1 then τ2 = {3, 4, 5, 6, 7, 8, 9, 10, 11} and if τ1 = 9

then τ2 = 11).

� 9 thresholds for MLPQ3, chosen as τ = {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}.

In particular, we focused on the multi-threshold approach combined with support

vector machines (SVM) as classifiers.

In its original form, a SVM is a binary classifier which learns the boundary be-

tween samples of two different populations by (i) transforming the input training

feature vector into a multi-dimensional feature space and (ii) finding an optimal

separating hyperplane in order to split the two populations. When a testing sam-

ple is classified by a SVM, the algorithm returns one label corresponding to the

class (+1/-1) and one decision value (or score) corresponding to the distance of

the sample to the hyperplane. Additional details are reported in Chapter 2.

As an example, the implementation of MLQP with SVMs is here reported (im-

plementation of MLPQ3 follows the same scheme). Since binary SVMs are used,
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the “one against all” strategy is employed in order to classify a multi-class (m

classes) dataset; the steps are:

� training m SVMs for each of the 25 feature sets from the training data;

� classifying each of the 25 feature sets (from the testing data) with its own

group of m SVMs, getting m partial decision values (one decision value for

each of the m classes);

� adding the 25 partial decision values corresponding to the m-th class, thus

getting m different final decision values;

� assigning the class out of them classes according to the greater final decision

value.
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2.1 Goal of the study

The aim of this work is to assess the classification performance of new variants

of the Local Binary Pattern (LBP) operator based on non-binary codings for

biological image classification. Our goal is to provide a well-assessed feature

set that can be used for cell and tissue analysis. In this work we test LBP,

Local Ternary Pattern (LTP), Local Quinary Pattern (LQP) and Local Phase

Quantization (LPQ) jointly with Support Vector Machine (SVM) and the random

subspace of SVMs on six different datasets of cellular data. We show that the best

approaches are Multi-Threshold LQP (MLQP) and the combination of MLQP

and Multi-Threshold LPQ3 (MLPQ3).

2.2 Methods

2.2.1 Texture descriptors

The following texture descriptors were tested:

� LTP (see section 1.3) with different values for the threshold τ ;

� LQP (see section 1.3) with different values for the thresholds τ1 and τ2;

� LPQ (see section 1.4) with different values for the thresholds τ j ;

� The method proposed by Vécsei et al. in [1]. It is based on LTP with

an adaptive threshold estimated from the pixel standard deviation of each

single image compared with the average standard deviation of the pixel

intensities within the texture patches in the training set. Moreover, our

variants (details in section 2.3.2) were also tested.

2.2.2 Classifiers

Two different classification approaches were tested: one stand-alone SVM and

the random subspace of SVMs.

Support Vector Machine

The SVM algorithm was developed during the 1990’s for industrial purposes

[2, 3], and it was applied for different applications, such as face [4] and object [5]
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recognition. In its basic form, a SVM is a binary classifier which learns the

boundary between samples of two different populations, projecting the samples

into a multi-dimensional feature space and drawing a separating hyperplane.

Advantages in using a SVM include (i) the capability of managing huge feature

vectors, (ii) low risk of overfitting due to the maximized distance between the

hyperplane and the closest samples, and (iii) the flexibility offered by various

kernel functions (linear, radial, polynomial, etc.).

The random subspace

The random subspace method was introduced in [6] and consists in training

Nc classifiers with randomly built subsets Ti from the original training set T.

Considering l samples (1 ≤ l ≤ L) and c classes (1 ≤ j ≤ c), from the original

d -dimensional training set

T = {( xl, tl)|1 ≤ l ≤ L}, xl∈Rd, tl∈C={1,...c},
the d × k -dimensional subsets

Ti = {( Pi( xl), tl)|1 ≤ l ≤ L, 1 ≤ i ≤ Nc}
are generated, where Pi( xl) represents the random selection of k × d features

(0 ≤ k ≤ 1 ) from the d features of the sample l. The classification results of the

Nc classifiers are then combined according to a fusion rule (e.g., vote rule, sum

rule, etc.) [7]. In this study Nc = 50 and k = 0.5.

2.2.3 Datasets

Tests were performed on 6 datasets of sub-cellular parts (eg. organelles) or whole

cells (eg. different cell lines).

2D HeLa

The 2D HeLa dataset1 [8] (Fig. 2.1) contains 862 single cell images from flu-

orescence microscope acquisitions on HeLa cells. Images are 16 bit greyscale

and 512 by 382 pixels in size. The whole dataset includes 10 different classes

corresponding to 10 diverse stainings:

� Actin filaments (98 images);

� Endosomes (84 images);

1available for download at http://murphylab.web.cmu.edu//data/#2DHeLa
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� Endoplasmic reticulum (86 images);

� Golgi giantin (87 images);

� Golgi GPP130 (85 images);

� Lysosome (91 images);

� Microtubules (91 images);

� Mitochondria (73 images);

� Nucleolus (80 images);

� Nucleus (87 images).

Figure 2.1: 2D HeLa dataset [8] illustrative samples (from left to right): Actin
filaments, Endosomes, Microtubules.

LOCATE ENDOGENOUS mouse sub-cellular organelles (LE)

This dataset2 [9, 10] (Fig. 2.2) contains images of endogenous proteins or features

of specific organelles from mouse cells, stained with fluorescent antibodies or other

probes. Images are 8 bit greyscale and 768 by 512 pixels in size. The 10 located

organelles are:

� Actin;

� Endoplasmic Reticulum;

� Endosome;

2available for download at http://locate.imb.uq.edu.au/
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� Golgi;

� Lysosome;

� Microtubules;

� Mitochondria;

� Nucleus;

� Peroxisome;

� Plasma Membrane.

For each organelle/class, about 50 images were acquired; as a result, the whole

dataset includes 502 images, each containing up to 13 cells.

Figure 2.2: Locate endogenous dataset [9, 10] illustrative samples (from left to
right): Actin, Nucleus, Plasma membrane.

LOCATE TRANSFECTED mouse sub-cellular organelles (LT)

This dataset3 [9, 10] (Fig. 2.3) contains images of epitope- or fluorescence-tagged

protein transiently expressed in the specific organelle and subsequently detected.

Images are 8 bit greyscale and 768 by 512 pixels in size. In addition to the

10 classes contained in the LOCATE ENDOGENOUS dataset, the supplemen-

tary Cytoplasm class is included. For each organelle/class about 50 images were

acquired. The whole dataset includes 553 images each containing up to 13 cells.

3available for download at http://locate.imb.uq.edu.au/
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Figure 2.3: Locate transfected dataset [9, 10] illustrative samples (from left to
right): Actin, Nucleus, Plasma membrane

STEM

This dataset (Fig. 2.4) was created from 100 movies of beating cardiomyocytes

derived from hESCs and hiPSCs acquired in contrast phase microscopy (no stain-

ing and no dissociation or breaking up the cells) at the Institute of Biomedical

Technology, Tampere, Finland. From each movie, 100 single cell frames were ex-

tracted, thus the whole dataset contains 10000 images. Images are 8 bit grayscale,

and range in size (66 - 292) by (80 - 282) pixels. The dataset includes 2 classes:

� hESC (1700 images from 17 cells);

� hiPSC (8300 images from 83 cells).

Figure 2.4: STEM dataset illustrative samples (from left to right): hESC,
hiPSC.
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CHO

This dataset4 [11] (Fig. 2.5) contains 327 fluorescent microscopy images from

Chinese Hamster Ovary cells. Images are 16 bit grayscale and 512 by 382 in size.

Classes included in this dataset are:

� Giantin (77 images);

� Hoechst (69 images);

� Lamp2 (97 images);

� Nop4 (33 images);

� Tubulin (51 images).

Figure 2.5: CHO dataset [11] illustrative samples (from left to right): Hoechst,
Nop4, Tubulin.

RNAi

This dataset5 (Fig. 2.6) contains 200 fluorescence microscopy images of fly cells

subjected to a set of gene-knockdowns using RNAi. The cells are stained with

DAPI to visualize their nuclei. Images are 16 bit grayscale and 1024 by 1024 in

size. Ten genes were selected, and their Gene IDs are used for the class names.

Each class contains 20 images.

4available for download at http://murphylab.web.cmu.edu//data/#2DCHO
5available for download from http://ome.grc.nia.nih.gov/iicbu2008/rnai/index.html
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Figure 2.6: RNAi dataset illustrative samples (from left to right): CG03733,
CG03938, CG12284.

2.2.4 Classification protocols

Two classification protocols were used:

� the 5-fold cross validation for the 2D HeLa, LE, LT, CHO and RNAi

datasets;

� the Movie Leave One Out protocol for the STEM dataset. Due to the

structure of the STEM dataset (as reported in 2.2.3) a canonical leave one

out would have left pictures of the cell to be classified in the training set

and biased the classification. The Movie Leave One Out protocol uses 99

calls (9900 images) as training set and 1 cell (100 images) as test set. This

procedure is iterated for all the 100 cells.

The performance indicators are the accuracy for multi-class datasets and the

area under the ROC curve (AUC) for the STEM dataset.

2.3 Experimental results

Before presenting the specific results, a brief overview of the performed tests is

here proposed:

� standard texture descriptors (uniform LBP, uniform rotation invariant LBP

and LPQ) are used the 6 datasets in order to provide a baseline for the next

tests. Both the stand-alone SVM and the random subspace of SVMs were

used;
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� the non-binary coded variants of the previous descriptors and their multi-

threshold versions were tested, as well as the method proposed in [1]. The

vote rule was used as fusion rule both for the multi-threshold approach and

for the random subspace;

� finally, we changed the fusion rule for the multi-threshold approach and

the random subspace with the sum rule. Moreover we tested two different

combinations of the best multi-threshold descriptors.

2.3.1 Classification using standard texture descriptors

Table 2.1 reports the performances of the following standard texture descriptors:

� U(x), uniform bins extracted using LBPu2(8, 1) (x=8) and LBPu2(16, 2)

(x=16) (the length of the feature vector is 59 in case of U(8) and 243 in

case of U(16));

� U(8+16), concatenation of U(8) and U(16) (the length of the feature vector

is 59+243 = 302);

� RU(x), rotation invariant uniform bins extracted using LBP riu2(8, 1) (x=8)

and LBP riu2(16, 2) (x=16) (the length of the feature vector is 10 in case

of RU(8) and 18 in case of RU(16));

� RU(8+16), concatenation of RU(8) and RU(16) (the length of the feature

vector is 10+18 = 28);

� L(x), standard LPQ with neighborhood radius x=3 or x=5 (the length of

the feature vector is 256 in both cases);

� L(3+5), concatenation of L(3) and L(5) (the length of the feature vector is

512).

Each cell in Table 2.1 contains two values: the performance obtained by a stand-

alone SVM and the performance obtained by a random subspace of SVMs (within

brackets). Two performance indicators were used: the accuracy for the multi-

class datasets and the area under the ROC curve for the STEM dataset. The

AVG row in Table 2.1 reports the average performance for each texture descrip-

tor: in spite of the weak mathematical meaning of this average, a unique global

performance index is useful to compare the different descriptors.
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130 II.2. Non-Binary Descriptors for Cellular Image Classification

Table 2.1: Comparison among standard texture descriptors. The per-
formance indicators are AUC (%) for the STEM dataset and Accuracy (%) for
the other datasets. Values for stand-alone SVM, in brackets for random subspace
of SVMs.

U(8) U(16) U(8+16) RU(8) RU(16) RU(8+16) L(3) L(5) L(3+5)

HeLa
82.4 86.7 87.1 84.2 88.0 89.3 81.7 83.6 88.3

(83.7) (86.8) (87.2) (82.1) (88.7) (90.0) (83.8) (83.9) (86.3)

LE
87.6 90.2 91.6 80.4 87.6 89.6 82.0 82.4 85.6

(88.6) (89.6) (90.0) (77.2) (88.6) (89.8) (85.8) (83.2) (83.8)

LT
78.4 80.9 82.2 73.6 77.5 80.4 86.4 85.3 86.7

(81.8) (82.4) (82.6) (70.4) (79.3) (81.6) (86.7) (87.3) (87.8)

CHO
96.9 97.5 97.2 96.0 96.0 98.1 95.6 91.0 97.8

(96.6) (96.6) (96.9) (95.6) (96.6) (97.5) (96.3) (92.3) (96.0)

RNAi
70.0 77.0 77.5 63.3 70.0 75.0 71.0 68.5 72.5

(73.0) (76.5) (78.0) (66.5) (69.5) (76.0) (67.5) (69.0) (74.0)

STEM
80.3 64.7 69.1 79.4 83.6 87.9 79.8 74.7 76.6

(78.1) (69.7) (69.3) (76.4) (81.7) (86.0) (72.1) (70.2) (71.6)

AVG
82.6 82.8 84.1 79.4 83.8 86.7 82.8 80.9 84.6

(83.6) (83.6) (84.0) (78.0) (84.1) (86.8) (82.0) (81.0) (83.2)

2.3.2 Classification with new texture descriptors

In Table 2.2 we compare:

� LTPu, single LTP with uniform bins U(8+16), the threshold optimized for

each dataset, only the best results are reported;

� MLTPu, all the single LTP with uniform mapping (LTPu) (τ={1,3,5,7,9})
are combined by vote rule;

� LQPu, single LQP with uniform bins U(8+16), only the best results are

reported;

� MLQPu, MLQP with uniform bins U(8+16), 25 couples of thresholds (

τ1={1,3,5,7,9} and τ2={τ1+2, τ1+3,. . . , 11}) and fusion by the vote rule;

� MLQPr, MLQP with rotation invariant uniform bins RU(8+16), 25 couples

of thresholds ( τ1={1,3,5,7,9} and τ2={τ1+2, τ1+3,. . . , 11}) and fusion by

the vote rule;

� VE, the method proposed in [1], based on LTP and adaptive threshold;
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� VLQ, VE applied to LQP, τ1 estimated as in VE and τ2 = 2× τ1;

� MV1, multi-threshold variant of VE. For each class a different threshold is

computed not using all the training images but only those images belonging

to that class;

� LPQ3, only the best results are reported;

� MLPQ3, with 9 thresholds (τj={0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}) and

fusion by the vote rule.

In Table 2.2 the AVG row reports the average performance for each texture

descriptor on all the datasets, while AVG2 doesn’t consider the STEM dataset

(it is useful for comparison with tests reported in 2.3.3). The best performance is

obtained by MLQPr. Moreover, we note that in these tests the random subspace

of SVMs exploiting the vote rule does not improve the performance of the stand-

alone SVM.

2.3.3 Changing the fusion rule

Due to the low performance of random subspace of SVMs combined by the vote

rule, additional tests using the sum rule to combine the SVMs into a new random

subspace. The sum rule is used also as fusion rule for MLQPu or MLQPr and

MLPQ3. Moreover, two additional combination of texture descriptors are tested,

namely

� FUSu, fusion of MLQPu and MLPQ3 by the sum rule;

� FUSr, fusion of MLQPr and MLPQ3 by the sum rule.

The STEM dataset is not used in this test due to its large dimension which would

have resulted in high computational load.

The results reported in Table 2.3 lead to the following considerations:

� also in these tests the random subspace does not improve significantly the

classification performance;

� the multi-threshold approaches obtain better results with respect to the

previous tests where the vote rule was used;

� MLQPr outperforms MLQPu;

� the best approach is FUSr.
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132 II.2. Non-Binary Descriptors for Cellular Image Classification

Table 2.2: Comparison among the non-binary coded and multi-
threshold texture descriptors. The performance indicators are AUC (%)
for the STEM dataset and Accuracy (%) for the other datasets. Values for
stand-alone SVM, in brackets for random subspace of SVMs.

LTPu MLTPu LQPu MLQPu MLQPr

HeLa
85.3 89.1 90.1 87.9 91.1

(85.3) (89.5) (90.3) (89.2) (92.3)

LE
92.8 94.2 95.6 95.0 98.6

(91.4) (94.6) (95.6) (94.8) (98.4)

LT
85.6 90.9 91.1 92.7 98.1

(84.3) (90.6) (90.6) (92.9) (98.1)

CHO
98.4 97.9 98.1 98.8 99.1

(98.4) (98.2) (97.9) (98.8) (99.3)

RNAi
72.0 73.0 77.5 75.5 86.0

(72.5) (71.5) (78.5) (77.0) (88.0)

STEM
81.5 83.5 84.1 84.0 88.5

(82.7) (84.0) (84.5) (84.8) (89.2)

AVG
85.9 88.1 89.4 89.0 93.6

(85.8) (88.1) (89.6) (89.6) (94.2)

AVG2
86.8 89.0 90.5 90.0 94.6

(86.4) (88.9) (90.6) (90.5) (95.2)

VE VLQ MV1 LPQ3 MLPQ3

HeLa
86.0 86.4 89.3 90.5 92.3

(86.1) (87.2) (90.3) (90.6) (92.9)

LE
94.0 93.8 95.2 97.8 98.6

(94.4) (93.6) (95.0) (96.8) (98.4)

LT
87.3 90.6 91.3 93.1 95.3

(87.3) (90.7) (91.8) (92.0) (95.1)

CHO
97.2 97.5 97.5 96.3 96.9

(96.6) (97.5) (97.9) (96.3) (96.9)

RNAi
68.0 67.5 70.5 78.5 65.5

(63.0) (68.0) (71.0) (79.0) (70.5)

STEM
82.0 83.0 84.2 85.5 86.0

(82.6) (82.9) (84.5) (85.2) (86.0)

AVG
85.8 86.5 88.0 90.3 89.1

(85.0) (86.7) (88.4) (90.0) (90.0)

AVG2
86.5 87.2 88.8 90.9 89.7

(85.5) (87.4) (89.2) (91.2) (90.8)
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Table 2.3: Comparison among the multi-threshold texture descriptors
with sum rule. Accuracy (%) obtained using sum rule to combine the classifiers.
Values for stand-alone SVM, in brackets for random subspace of SVMs.

MLQPu MLQPr MLPQ3 FUSu FUSr

HeLa
90.23 92.56 93.72 94.53 93.95

(90.23) (93.02) (93.60) (94.30) (94.07)

LE
97.80 98.20 98.80 98.80 98.40

(97.80) (98.20) (98.80) (98.80) (98.80)

LT
96.36 98.00 98.36 97.82 98.55

(96.55) (98.18) (98.00) (98.00) (98.36)

CHO
98.77 99.38 99.08 100 100

(99.08) (99.38) (99.08) (100) (99.69)

RNAi
85.62 90.63 74.38 86.25 91.87

(85.00) (87.50) (76.88) (87.50) (91.88)

AVG
93.75 95.75 92.87 95.48 96.55

(93.73) (92.25) (93.27) (95.72) (96.56)

2.3.4 Comparison with other descriptors and methods

In this section, we compare our results with other descriptors and classifiers rep-

resentative of the state of art (Table 2.4), focusing in particular on those works

using the same datasets investigated in this paper, thus providing a quantitative

benchmark. In [12], the HeLa, CHO and RNAi datasets were used to assess the

performances of a Multi Layer Perceptron (stand-alone and random subspace

methods) trained with the Grey Level Co-occurence Matrix second-order statis-

tics. A comparison between their best classification results obtained with the

random subspace and our results using the random subspace of SVMs shows that

our MLQPr feature set produces better results on HeLa (91.20% vs 93.02%) and

CHO (98.86% vs 99.38%) datasets while it fails on the RNAi dataset (91.03% vs

87.50%). Conversely, FUSr shows the best results on all these datasets with the

following classification rates: HeLa (94.07%), CHO (99.69%) and RNAi (91.88%).

In [13] a set of four global and two local descriptors obtained the following accu-

racies on the HeLa, LE and LT datasets respectively: 95.8%, 99.5% and 97.0%.

But these results were obtained via concatenation. The best results for one single

descriptor were 90.8%, 95.7% and 91.8%.

Ph.D. Thesis



134 II.2. Non-Binary Descriptors for Cellular Image Classification

Table 2.4: Comparison with other paper results. Accuracy (%) resulted
using different classifiers (conc.: concatenated descriptors, single: single descrip-
tors). a [12]; b [13].

Our best
descriptors

Zhanga Nannib

MLQPr FUSr conc. single

HeLa 93.02 94.07 91.20 95.8 90.8
CHO 99.38 99.69 98.86 — —
RNAi 87.50 91.88 91.03 — —
LE 98.20 98.80 — 99.5 95.7
LT 98.18 98.36 — 97.0 91.8

2.4 Discussion and Conclusion

In this work we applied non-binary coded texture descriptors, such as LTP and

LQP, for sub-cellular structure and stem cell image classification, in particular

focusing on the threshold selection. Starting from the best texture descriptors

in literature, we compare different approaches changing the coding (from binary

to ternary and quinary) and the threshold selection (dataset optimized threshold

or multiple thresholds). Changing the coding from binary to ternary improves

the classification performances on four of the six proposed datasets (data refer

to Tables 2.1 and 2.2, stand-alone SVM): LE (91.6% vs 92.8%), LT (82.2% vs

85.6%), CHO (97.2% vs 98.4%) and STEM (69.1% vs 81.5%). Changing the

coding from binary to quinary improves again the results for all the datasets

with the sole exception of RNAi: HeLa (87.1% vs 90.1%), LE (91.6% vs 95.6%),

LT (82.2% vs 91.1%), CHO (97.2% vs 98.1%) and STEM (69.1% vs 84.1%). The

use of the multi-threshold approach (fusion by the vote rule) results in better

classification than the single-threshold descriptors as reported in Table 2.2: MV1

vs VE in each dataset, MLTPu vs LTPu in each dataset except CHO, MLPQ3 vs

LPQ3 (the only exception is RNAi whose poor result biases the average accuracies

AVG and AVG2 in Table 2.2).

Among all the tested descriptors, MLQPr achieves the highest performance: it

gets the best results on LE, LT, CHO, STEM and RNAi datasets (see Table

2.2) both with the stand-alone SVM and the random subspace of SVMs. This
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suggests that the refined pattern partition, due to the quinary coding, combined

with the lower correlation and amount of rotation invariant uniform patterns with

respect to the uniform patterns, allows for better classification. The prevalence

of MLQPr still remains using the sum rule instead of the vote rule, even if the

influence of the random subspace of SVMs on the classification result is weak in

this case. In addition, the highest accuracy reached by MLQPr in five out of the

six proposed datasets leads us to consider our approach representative for the

classification problem of cellular and sub-cellular images. Moreover, we studied

the fusion between MLQP with MLPQ3 which shows an accuracy higher than

MLQP alone (see Table 2.3) at the cost of a higher computational load: in fact

the main drawback of FUSr is the computation time, which makes FUSr not

suited for real time applications. For example, LQP extraction from one image

of the 2D HeLa dataset takes approximately 3 seconds with a Duo P8600. In our

opinion, FUSr could be used in real time applications if a TESLA GPU is used

for feature extraction. Since the six tested datasets are representative of a quite

large variety of biological classification problems, from sub-cellular to cellular

identification, we can conclude that new non-binary coded variants of standard

texture descriptors and their combinations provide improved results in biological

image classification.
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Abstract

In this work we propose a set of texture descriptors for a high performance

HEp-2 cells classification system. Our approach is based on two recently pro-

posed texture descriptors (Multi-Threshold LQP (MLQP) and Multi-Threshold

LPQ3 (MLPQ3)) and the Haralick features, all managed by using support vec-

tor machines SVMs. Our results show that our ensemble drastically outper-

form baseline methods local binary/ternary patterns: the average error rate is

2.4% using the 10-fold cross validation. The system here proposed has been

submitted to the Contest on HEp-2 Cells Classification (http://mivia.unisa.it/

hep2contest/index.shtml) hosted by the International Conference on Pattern Recog-

nition (ICPR) 2012.

3.1 Introduction

ANA test is a commonly used test in screening of rheumatic diseases such as

drug-induced lupus, Systemic Lupus erythemathosus and Scleroderma [1]. These

antibodies can be used for a huge variety of substrates and staining techniques:

a common application is IIF microscopy on human epithelial-2 (HEp-2) cells [2].

IIF slides are examinated by the physician at the fluorescence microscope and

the diagnosis requires to assess both the fluorescence intensity and the staining

pattern [3]. While the first step can be achieved by assigning a semi-quantitative

score with respect to positive and negative controls contained in each slide, the

second step, performed on the positive (and sometimes on the weakly positive)

slides, can be difficult for a human observer. At the most used dilution [2, 4] the

staining patterns are not easily detectable and classifiable thus texture analysis

integrated into a computer-aided diagnosis system could be a valuable help for

physicians. The most commonly described nuclear staining patterns are [5]:

� homogeneous: the interphase nuclei and the chromatin of mitotic cells show

a homogeneous staining, specific for Systemic Lupus erythemathosus;

� speckled: a fine to coarse nuclear staining of the interphase cell nuclei;

� nucleolar: large coarse speckled staining inside the nucleus;

� cytoplasmic: fluorescent filaments crossing the cell length;
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� centromere: discrete speckles spread everywhere in the interphase nuclei.

In this paper the staining pattern classification method proposed for the HEp-

2 Cells Classification Contest (http://mivia.unisa.it/hep2contest/index.shtml) hosted

by the ICPR 2012 is described.

3.2 Methods

3.2.1 Dataset

The whole HEp-2 cell dataset (MIVIA HEp-2 images dataset, http://mivia.unisa.it)

[6] is constituted by 28 images (color, 24 bits, resolution of 1388 × 1038 pixels)

acquired by means of a fluorescence microscope and containing 1457 cells. The

training dataset provided to the HEp-2 cell classification contest participants and

used in this study consists in 14 out of the 28 images for a total 721 cells (see

http://mivia.unisa.it/hep2contest/dataset.shtml). In details the HEp-2 dataset

is divided in the as follows (pattern: whole dataset, training dataset;):

� Centromere: 388, 208;

� Coarse Speckled: 239, 109;

� Cytoplasmatic: 128, 58;

� Fine Speckled: 225, 94;

� Homogeneous: 345, 150;

� Nucleolar: 257, 102;

Each image is 24 bits color and it is provided together with its segmentation

mask. For the purpose of this study, each training picture was converted in 8

bits grayscale before applying the segmentation mask.

3.2.2 Texture descriptors

In this work we characterize each image with three descriptors: Multi-Threshold

LQP (MLQP), Multi-Threshold LPQ3 (MLPQ3) and Haralick features (HAR):

� MLQP was calculated using 25 threshold couples (τ1={1,3,5,7,9} and τ2={τ1+2,

τ1+3, . . . , 11});
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� MLPQ3 was calculated using 5 thresholds (τ2={0.2, 0.4, 0.6, 0.8, 1});

� HAR was managed as a stand-alone descriptor: features were extracted

exploring the GLCM matrix according to four directions (0◦, 45◦, 135◦ and

90◦), with d=1.

The multi-threshold approach was implemented as reported in Chapter 1.6 and

finally the three scores resulted from MLQP, MLPQ3 and HAR were combined

by the sum rule.

3.2.3 Classifiers and classification protocol

We used SVMs as classifiers and a 10-fold cross validation for testing the texture

descriptors, in particular the 10-fold is performed 10 times and the average results

are reported.

3.3 Experimental results

The first experiment was aimed at assessing the performances of some standard

texture descriptors. Table 3.1 refers to the following nine standard texture de-

scriptor:

� U(x), uniform bins extracted using LBPu2(8, 1) (x=8) and LBPu2(16, 2)

(x=16) (the length of the feature vector is 59 in case of U(8) and 243 in

case of U(16));

� U(8+16), concatenation of U(8) and U(16) (the length of the feature vector

is 59+243 = 302);

� RU(x), rotation invariant uniform bins extracted using LBP riu2(8, 1) (x=8)

and LBP riu2(16, 2) (x=16) (the length of the feature vector is 10 in case

of RU(8) and 18 in case of RU(16));

� RU(8+16), concatenation of RU(8) and RU(16) (the length of the feature

vector is 10+18 = 28);

� L(x), standard LPQ with neighborhood radius x=3 or x=5 (the length of

the feature vector is 256 in both cases);
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� L(3+5), concatenation of L(3) and L(5) (the length of the feature vector is

512).

The best performance was obtained by RU(8+16).

Table 3.1: Classification accuracy (%) of the nine standard texture
descriptors.

U(8) U(16) U(8+16) RU(8) RU(16) RU(8+16) L(3) L(5) L(3+5)

88.39 92.89 93.75 85.28 90.78 94.07 91.40 86.57 93.13

The second test (Table 3.2) was aimed to assess the performances of two non-

binary coded texture descriptors, namely LTP [7] and LPQ3, thus providing

a basis for a comparison with results of the multi-threshold approach (Table

3.3). It is particularly interesting the result of LPQ varying the threshold τ :

values greater than 1 degrade the classification performances, thus in the next

tests MLPQ3 thresholds belong to interval [0; 1]. It is worth noting that LTP

outperforms LBP and LPQ3 outperforms LPQ.

Table 3.2: Accuracy (%) of texture descriptors LTP and LPQ3.

τ 1 3 5 7 9 τ 0.2 0.6 1 1.4 1.8

LTP 94.56 93.17 89.76 85.85 86.19 LPQ3 94.69 94.79 86.50 81.60 79.90

Table 3.3 summarizes the results achieved by the three chosen descriptors. MLQP

obtained an accuracy of 96.50%, while MLPQ3 got 95.22%.We emphasize that

MLQP and MLPQ3 outperformed LTP and LPQ3 respectively.

The fusion by the sum rule between MLQP and MLPQ3 resulted in an accuracy

of 97.00%. HAR got an accuracy of 95.51% while the global fusion MLQP +

MLPQ3 + HAR obtained 97.57%.

Table 3.3: Accuracy (%) of the descriptors chosen for the HEp-2 Cells
Classification Contest.

MLQP MLPQ3 HAR MLQP+ MLQP+ MLQP+MLPQ3+
MLPQ3 HAR HAR

Accuracy 96.50 95.22 95.51 97.00 96.50 97.57
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3.4 Discussion and conclusions

The aim of this study was to provide a texture descriptor set useful for HEp-2

cell staining pattern classification. In [8] the classification rate on a population

of 1222 patients was 90% for the positive only samples and 85% for the positive

and weak samples. The performance degradation is clear when the university

laboratory cohort of 924 patients is considered: the agreement comparing the

visually and automatically defined patterns was 90.1% for the positive samples,

but 74.3% only for the weak samples. In [9] the classification success rate on a

population of 1041 patients was 83.1%.

Our approach, in its most complete formulation MLQP+ MLPQ3 + HAR shows

a 97.57% accuracy on images of both positive and intermediate fluorescence, out-

performing these previous studies. Especially we show that the multi-threshold

approach combined with the quinary coding improves the performance of LBP

(see Table 3.1) and LTP (see Table 3.2). Our algorithm was placed 13th out of the

28 methods proposed for the ICPR 2012 Contest on HEp-2 Cells Classification.
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GENERAL CONCLUSIONS

During the Ph.D. studies the author was involved in different and intriguing

research topics, but in this thesis only the two main lines of research are exposed,

shaping the thesis itself in the unusual form of a volume organized in two different

parts. In this chapter we report conclusions that can be extracted from part I

and part II.

In Part I we focused on human stem cell-derived CMs from the perspective of

single cell computational modelling. In particular two types of CMs were in-

vestigated: hESC-CMs and hiPSC-CMs. Since 1998 when Thomson et al. [1]

discovered how to extract pluripotent cells from human blastocysts, interest and

high hopes arose as well as criticisms about the ethical issues and the applica-

bility (eg. the hESC-CM safety itself and how to deliver the pluripotent cells

in the damaged areas of the heart, as focused in [2]), which dampened the ini-

tial enthusiasm. In 2006/07 a new boost to research on human pluripotent stem

cells arrived from the two seminal works of the groups of Shinya Yamanaka [3]

and James Thomson [4] who were able, following two different protocols, to pro-

duce human pluripotent stem cells from adult somatic cells, sweeping the ethical

doubts away and introducing new valuable elements such as the patient-specificity

and the disease-specificity. On the contrary new questions arose:

� will differentiated hiPSC-CMs develop into a fully functional adult pheno-

type or will they just remain in an immature state?

� are hiPSC-CMs really safe for cellular therapies (the tumor issue reported

in [5, 6])?
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Diverse studies reported the feasibility of deriving CMs from hiPSCs, but on

the contrary the ventricular-like and atrial-like hiPSC-CMs introduced in section

1.2.1 and described in chapter 3 still show relevant differences with respect to

adult CMs, especially in terms of spontaneous beating and the slightly differently

shaped APs (longer APD, more negative MDP). From the computational point

of view, modelling hESC-CMs and hiPSC-CMs resulted an extremely challenging

task since the beginning for the following reasons:

� with the exception of preliminary modelling works, such as [7], whose re-

sults were very helpful in developing our models, no specific hESC-CM or

hiPSC-CM models were available in literature;

� the shortage of available experimental data from stem cell-derived CMs,

especially hESC-CMs, and their high variability;

� open-questions about hESC-CM and hiPSC-CM electrophysiology, e.g. the

functionality of the SR and of the Ca2+ handling system.

Our hESC-CM model is a first attempt to integrate the available data on hESC-CM

currents and Ca2+ handling, replicating also the maturation process through the

two developmental stages Early and Late [8]. We showed how the maturation

process affects the automaticity of the beating, which resulted to be a more ro-

bust mechanism at the Early stage than at the Late one, as expected in the

context of immature cells maturing towards the mature phenotype (eg. a small

increment of the repolarizing K+ currents IKr, IKs and IK1 blocks the sponta-

neous APs). The role of If as a pacemaker current has already been debated [9]

but interestingly also INaCa showed to cover a decisive role in the automaticity.

INaCa is an inward current during the late repolarization phase, opposing the

repolarizing K+ currents, on the contrary it is an outward current during the up-

stroke/depolarization, thus opposing the two main depolarizing currents, namely

INa and ICaL. Consequently it is no surprising that an INaCa increment blocks the

spontaneous beating in the hESC-CM. In the Late model, the simulated block-

ade of INaCa by nickel or its simple zeroing stops the automaticity as well: in a

scenario of a reduced (by maturation) If, INaCa has a key-role in mantaining the

spontaneous beating. Moreover our model confirmed that a functional but still

immature Ca2+ handling system is already present at the Early developmental

stage, but the Ca2+ cycling is mainly governed by the sarcolemmal fluxes (eg.

ICaL and INaCa) as suggested by the only 12% reduction of the Ca2+ transient
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amplitude during the blockade of the Ca2+ release from the SR. At the Late stage

a greater contribution of SR to Ca2+ cycling is confirmed by the 33% reduction

of the Ca2+ transient amplitude. Interestingly, the experimental data we used for

comparison [10, 11] were not initially taken into consideration during the model

development, thus providing a further validation in terms of the Ca2+ transient

shape (amplitude, Ca2+ transient Maximum Upstroke Velocity (VmaxCa,upstroke)

and Ca2+ transient Maximum Decay Velocity (VmaxCa,decay)).

As we stated in chapter 2, this model suffers some limitations especially due

to the lack of experimental data from CMs derived from HUMAN stem cells.

Thus the compulsory choice was using also data from animal ESC-CMs: this

led to two hybrid/“not fully human” models. Although this approach could

appear inconsistent, it was already extensively used in the past for human CM

models, such as the Courtemanche model [12] where guinea pig and rabbit data

completed the experimental basis for the model development, or the Priebe model

[13] where the ionic pumps and exchangers were derived from a previous guinea

pig ventricular model [14].

In chapter 3 we presented our hiPSC-CM model, developed coincidentally dur-

ing the same year Prof. Shinya Yamanaka and Prof. John B. Gurdon won the

Nobel Prize for “the discovery that mature cells can be reprogrammed to be-

come pluripotent” [15]. Unlike the hESC-CM model, during the development of

the hiPSC-CM model we were facilitated by the solid set of experimental data

published by Ma et al. [16], which allowed us also to discriminate between the

atrial-like and the ventricular-like cells, and by the experience of the previous

hESC-CM model. In addition of an improved ability in simulating current block-

ers effect, this model was used to provide a potential answer to the question

“which are the main current differences between hiPSC-CMs and adult CMs and

which of these are more relevant in order to reproduce an adult AP?”. Under-

standing how far hiPSC-CMs are from adult CMs is fundamental, since they are

already used in basic research as an in-vitro model for a better comprehension

of their physiology and as disease-specific models for channel mutations, eg. for

LQT syndromes [17, 18]. We focused on the ventricular-like hiPSC-CM since this

is the most commonly observed phenotype during hiPSC differentiation into CMs

(29 out of 40 hiPSC-CMs [18], 32 out of 59 hiPSC-CMs [16]) and thus we started

a computational study mixing our model with the adult currents extracted from

the recent O’Hara-Rudy model [19] of an adult ventricular cell (details in chapter

3). Our simulations suggested that the interplay of immature INa, If and IK1 is

Ph.D. Thesis



152 General conclusions

the main responsible for the spontaneous beating in hiPSC-CMs while the ICaL

activation shift towards negative potentials is the responsible of the observed pro-

longed APD. In this analysis we did not focus on the INaCa role, since specific

data from hiPSC-CMs was not available, thus we used our previous data from

hESC-CMs.

During these studies we retraced the first steps that from the first seminal CM

models developed during the ’60s and the ’70s, eg. the generic mammalian ven-

tricular AP model of Beeler and Reuter [20], led to high-detailed models describ-

ing the AP for specific species (Shannon/rabbit [21], Pandit/rat [22], Tentuss-

cher/human [23]) also distinguishing on the basis of the cell/fiber location (eg.

atrial, ventricular, endocardial or epicardial). Future models could also include

gender-related differences, eg. the greater prolongation of the APD in response

to K+ current blockers in preparations from females, which result at the macro-

scopic level in diverse QTc intervals (women>men) or a different risk for devel-

oping bradycardia-related Torsades de Pointes (women>men) [24]. We started

with the hybrid hESC-CM model, then we moved to the hiPSC-CM model based

on a fully human dataset and describing two different phenotypes. Due to the

growing interest in human stem cells, more specific forms of specialization and

clustering of computational models will be possible along with new experimental

measurements.

The secondary research topic of this Ph.D. thesis is the application of texture de-

scriptors to biological image processing. In particular we took into consideration

datasets of cellular and subcellular parts. Most of the used datasets (HeLa [25],

CHO [26], etc.) are publicly available and commonly used as benchmarks to assess

and compare the discriminant power of texture descriptors. The main conclusion

of this study is that the combination of a non binary coding (ternary/quinary)

and the multi-threshold approach, detailed in 1, improve the discriminant power

among the various classes of the considered datasets. The first point was already

studied in [27, 28] and confirmed by our results, but the threshold selection re-

sulted controversial: the usual approach consists in optimizing the threshold for

the specific problem/dataset, even if some attempts of an automatic threshold

selection based on local and global statistics were proposed [27]. In our approach

we overcome these difficulties by choosing a set of threshold (ternary coding) or a

set of couples of thresholds (quinary coding) on the assumption that each feature

set computed by a specific threshold/couple can catch some specific information
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not identifiable by the other feature sets from the processed image. Even if in

thesis we mostly dealt with benchmark datasets, texture analysis and the use

of texture descriptors are finding application also in the diagnostic field, even if

they are far to become a standard clinical tool. Anyway the idea of a computed

aided diagnostic system is promising, not in terms of replacement of the human

physician, but to assist him in decisions and in the identification of features or

peculiarities hard to be seen also by trained radiologists. In this sense not only

standard descriptors are used for medical image processing (eg. [29] for breast tu-

mor or [30] for brain lesions) but new descriptors are developed for more specific

applications, such as in [27] for coeliac disease-related damages in duedonoscopy

images or in [31] for chest CT images.
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of ventricular- and atrial-like human induced pluripotent stem cell derived

cardiomyocytes, submitted.

� M. Paci, L. Nanni and S.Severi, An ensemble of classifiers based on dif-

ferent texture descriptors for texture classification, Journal of King Saud

University (Science), in press.

� M. Paci, L. Nanni, A. Lahti, K. Aalto-Setälä, J.Hyttinen and S. Severi,

Non-Binary Coding for Texture Descriptors in Sub-Cellular and Stem Cell

Image Classification, Current Bioinformatics, in press.

� M. Paci, L. Sartiani, M. Del Lungo, M. Jaconi, A. Mugelli, E. Cerbai and

S. Severi, Mathematical modelling of the action potential of human em-

bryonic stem cell derived cardiomyocytes, BioMedical Engineering OnLine

2012;11:61.

Conference proceedings

� M. Paci, J. Hyttinen and S. Severi, A Novel Model of the Action Poten-

tial of Ventricular-like Human Induced Pluripotent Stem Cell-derived Car-

diomyocytes, Computing in Cardiology 2012, Krakow (Poland), September

2012, Comput Cardiol. 2012;39:289-292.

157



158 List of original publications

� M. Paci, J Hyttinen and S. Severi, Computational modelling of human

induced pluripotent stem cell derived cardiomyocytes, Bioengineering Ital-

ian Group, Third Congress, Rome (Italy), June 2012, Proceedings: pp.

151-152.

� M. Paci, L. Nanni, A. Lahti, S. Severi, K. Aalto-Setälä and J.Hyttinen,
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SUPPLEMENTARY METHODS: MATHEMATICAL

MODELLING OF THE ACTION POTENTIAL OF

HUMAN EMBRYONIC STEM CELL DERIVED

CARDIOMYOCYTES

Human ESC culture and differentiation

The human embryonic stem cell (hESC) line H1 from WICELL RESEARCH IN-

STITUTE (Madison, WI) was cultivated following WICELL protocols. Briefly,

undifferentiated hESCs were grown on irradiated mouse embryonic fibroblasts

and passaged once a week using collagenase and mechanical dissociation. Propa-

gation medium was composed of DMEM/F12 supplemented with 20% Serum Re-

placement, 1% penicillin-streptomycin, 1% non-essential amino-acids (NEAA), b-

mercaptoethanol (SIGMA-ALDRICH CHEMIE, Buchs, Switzerland), L-Glutamine

and 4 ng/ml human bFGF. Embryoid bodies (EBs) formation was obtained from

hESC colonies incubated with collagenase and gently scraped in differentiation

medium (KnockOut-DMEM supplemented with 20% Defined FBS (HYCLONE

LABORATORIES South Logan, UT), 1% penicillin-streptomycin, 1% NEAA,

L-Glutamine and b-mercapto-ethanol). EBs were cultured for 4 days in Costar

ultra-low attachment 6-well plates (CORNING, Schiphol-Rijk, The Netherlands),

with medium change every 2 days. EBs were then plated on gelatin-coated 6 cm-

dishes and medium was changed every 2-3 days.
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Cell isolation

Beating clumps were dissected from embryo bodies using a microscalpel and di-

rectly placed into the solution used to perform intracellular recordings. Alterna-

tively, they were digested with 1 mg/ml collagenase B (ROCHE, Basel, Switzer-

land) in PBS supplemented with 30 mM calcium for 15-20 minute at 37◦C with

pipetting every 5-10 min. Dissociated cells were then plated on gelatin-coated

dishes in differentiation medium and used for patch-clamp recordings.

Patch-clamp recordings

The experimental set-up for patch-clamp (whole-cell) recording and data acqui-

sition was similar to that described previously [1]. Briefly, the patch-clamped cell

was superfused by means of a temperature-controlled (37◦C) micro-superfusor al-

lowing rapid changes of the solution bathing the cell. Patch-clamp pipettes, pre-

pared from glass capillary tubes (HARVARD APPARATUS, Edenbridge, UK) by

means of a two-stage horizontal puller (SUTTER INSTITUTE, Sacramento, CA,

model P-87), had a resistance of 2-3 MW when filled with the internal solution.

Cell membrane capacitance (Cm) was measured by integrating the capacitance

current recorded during a ±10 mV hyperpolarizing pulse from a holding potential

of -70 mV, as previously reported [1]. Series resistance and membrane capacitance

were compensated in order to minimize the capacitive transient. Transient out-

ward potassium current (Ito) was evoked by steps from -40 to +70 mV (holding

potential -70 mV), after a pre-step to -40 mV to inactivate sodium current (INa).

Ito was measured as the difference between peak outward current at the begin-

ning of the depolarizing step and the steady state current at the end of the step,

and normalized with respect to Cm. The funny current (If ) was evoked by hy-

perpolarizing steps from -50 to -130 mV (holding potential -40 mV). Steady-state

values of current were calculated by fitting current traces to a mono-exponential

function. If amplitudes were measured as the difference between the extrapo-

lated value at the steady state and that at the beginning of the test pulse, and

normalized with respect to Cm, as reported elsewhere [2]. Sodium-calcium ex-

changer (INaCa) current was elicited with an ascending voltage ramp (from -120

to +70 mV, holding potential -40mV). Current was defined as the difference cur-

rent in the absence and presence of NiCl2 (2 mM) and amplitude was normalized

to whole cell capacitance.
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Intracellular recordings

The experimental set-up for intracellular recordings and data acquisition was sim-

ilar to that described previously [2]. Briefly, spontaneously beating EBs were fixed

on bottom of a perfusion chamber, thermostatically controlled at 33− 35◦C and

superfused a constant-flow. Embryoid body electrical activity was recorded using

a standard electrophysiological techniques, as previously reported [3]. Briefly, the

recording electrode consisted of a short Ag/AgCl pin that was partly inserted

into a floating glass microelectrode containing 3 M KCl and connected to the

headstage of the amplifier. An Ag/AgCl pellet served as reference electrode in

the perfusion chamber. The tip resistance of the microelectrode ranged between

30 and 40 MW. The recording microelectrode and the reference electrode were

connected through a high input impedance amplifier (BIOMEDICA MANGONI,

Pisa, Italy) interfaced with a computer. The microelectrode was slowly moved

into the chamber under microscopic inspection with the use of a micromanipu-

lator. The electrode potential was compensated to zero in the bathing solution.

Spontaneous APs were digitized by an A/D converter and analyzed off-line with

Iox software (EMKA TECHNOLOGY, Falls Church, VA).

Solutions

Normal Tyrode’s solution (in mM): NaCl 140; KCl 5.4; CaCl2 1.8; MgCl2 1.2;

D − glucose 10; HEPES 5 (pH 7.35 with NaOH).

Modified Tyrode’s solution for If current (in mM):NaCl 140, KCl 25, CaCl2 1.5,

MgCl2 1.2, BaCl2 2, MnCl2 2, 4− aminopyridine 0.5, glucose 10, HEPES −
NaOH 5 (pH 7.35); this solution allowed the reduction of interference from other

currents, i.e. ICaL , ICaT , IK1 and Ito. Modified Tyrode’s solution for Ito cur-

rent: normal Tyrode’s solution plus CdCl2 0.5 mM.

Pipette solutions for AP, Ito, If (in mM): K − Aspartate 130; Na2 − ATP 5,

MgCl2 2, CaCl2 5, EGTA 11, HEPES −KOH 10 (pH 7.2). Pipette solutions

for ICaL (in mM): Mg − ATP 5, EGTA 15, TEA − Cl 20, HEPES 10, CsCl

125, (pH 7.20 with CsOH).

Solution for INaCa current (in mM): NaCl 128; CsCl 10; CaCl2 2; MgCl2 1;

Na −HEPES 10; Glucose 10; Lacidipine 10; SITS 100 ; Ouabaine 0.5. (PH

7.4 with CsOH); this solution allowed the reduction of interference from other

currents, i.e. ICaL, ICl, INaK .
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Pipette solutions for INaCa (in mM): CsCl 120; CaCl2 3; MgCl2 0.5; HEPES

20; Mg −ATP 5; BAPTA(K+) 4 5; (PH 7.25 with CsOH)

External solution for intracellular recordings (in mM):NaCl 125, KCl 4, NaHCO3

25, NaH2PO4 0.5, MgSO4 1.2, CaCl2 2.7, Glucose 1 (pH 7.2 when gassed with

5% CO2/95%O2.

Pipette solution for intracellular recordings (in mM): KCl 3

Formulation of the hESC-CM model

Model Parameters

RaIxx represents a variable fraction (ratio), of the current maximal conductance

in the adult model ( [4], except where differently specified). Time constants in

ms.

Nao = 150.5 (mM)

Ko = 4 (mM)

Cao = 2.7 (mM)

Nai = 7 (mM)

Ki = 140 (mM)

Cai = 0.0002 (mM)

CaSR = 0.2 (mM)

gCaL = 0.175×RaICaL (dm3/(F × s))

RaICaL =

{
0.25 , Early

0.422 , Late
(dimensionless)

gbca = 0.592 ×RaIback(S/F )

RaIback =

{
0.2 , Early

1 , Late
(dimensionless)

Buf c = 0.25 (mM)

Bufsr = 10 (mM)
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Kbufc = 0.001 (mM)

Kbufsr = 0.3 (mM)

Kup = 0.00025 (mM)

Vleak = 0.08 ×RaIleak (1/s)

RaIleak =

{
0.005556 , Early

0.3 , Late
(dimensionless)

Cm = 185 ×RaCm (pF ) =

{
41 pF,Early (30 cells)

33 pF, Late (26 cells)

RaCm =

{
0.22162 , Early

0.17838 , Late
(dimensionless)

Vc = 16404×RaCm (um3)

Vsr = 1094 ×RaCm (um3)

V maxup = 0.425×RaIup (mM/s)

RaIup =

{
0.133 , Early

0.33 , Late
(dimensionless)

arel = 16.464 (mM/s)

brel = 0.25 (mM)

crel = 8.232 (mM/s)

RaIrel =

{
0.0111 , Early

0.4 , Late
(dimensionless)

τg = 2 (ms)

KpCa = 0.0005 (mM)

gpCa = 0.825 ×RaIpCa(A/F )

RaIpCa = 1 (dimensionless)

gNa = 14838 ×RaINa(S/F )
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RaINa =

{
0.038 , Early

1 , Late
(dimensionless)

gK1 = 5405×RaIK1 (S/F )

RaIK1 =

{
0.0445 , Early

0.2136 , Late
(dimensionless)

F = 96485.3415 (C ×mM)

R = 8.314472 (J/(M ×K))

T = 310 (K)

gKr = 96 ×RaIKr(S/F )

RaIKr =

{
3 , Early

1.4 , Late
(dimensionless)

L0 = 0.025 (dimensionless)

Pkna = 0.03 (dimensionless)

gKs = 157×RaIKs (S/F )

RaIKs = 0.1 (dimensionless)

KNaCa = 1000 ×RaINaCa(A/F )

RaINaCa =

{
17.50 , Early

18.24 , Late
(dimensionless)

Ksat = 0.1 (dimensionless)

KmCa = 1.38 (mM)

Km ai = 87.5 (mM)

α =

{
0.8 , Early

0.38 , Late
(dimensionless)

γ = 0.35 (dimensionless)

KmNa = 40 (mM)

Kmk = 1 (mM)
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PNaK = 1.362 ×RaINaK(A/F )

RaINaK =

{
0.7 , Early

0.83 , Late
(dimensionless)

gto = 294×RaIto (S/F )

RaIto =

{
0.065622 , Early

0.165653 , Late
(dimensionless)

gf = 90.926×RaIf (S/F )

RaIf =

{
0.5389 , Early

0.23 , Late
(dimensionless)

τf = 1900 (ms)

Membrane Potential

dV

dtime
= −Iion =

= −
(
IK1 + Ito + IKr + IKs + ICaL + INaK + INa + INaCa + IbCa + IpCa + ICaT +If

)
(S1)

Na+ current, INa

INa = gNa ·m3 · h · j · (V − ENa) (S2)

INa, h gate

hinf =


1√(

1+e
V+73
5.6

) ,Early

1(
1+e

V+71.55
7.43

)2 ,Late
(S3)

αh =

{
0.057 · e

−(V+80)
6.8 , if V < −40

0, otherwise
(S4)
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βh =

 2.7 · e0.079·V + 3.1× 105 · e0.3485·V , if V < −40
0.77

0.13·
(
1+e

V+10.66
−11.1

) , otherwise (S5)

τh =
2.8

αh + βh
(S6)

dh
dtime =

hinf−h
τh

(S7)

INa, j gate

jinf =


1√(

1+e
V+73
5.6

) ,Early

1(
1+e

V+71.55
7.43

)2 ,Late
(S8)

αj =

{
(−25428·e0.2444·V −6.948×10−6·e−0.04391·V )·(V+37.78)

1+e0.311·(V+79.23) , if V < −40

0, otherwise
(S9)

βj =

{
0.02424·e−0.01052·V

1+e−0.1378·(V+40.14) , if V < −40
0.6·e0.057·V

1+e−0.1·(V+32) , otherwise
(S10)

τj = 1
αj+βj

(S11)
dj

dtime =
jinf−j
τj

(S12)

INa, m gate

minf = 1(
1+e

−56.86−V
9.03

)2 (S13)

αm = 1

1+e
−60−V

5

(S14)

βm = 0.1

1+e
V+35

5

+ 0.1

1+e
V−50
200

(S15)

τm = αm · βm (S16)
dm

dtime =
minf−m

τm
(S17)

L-type Ca2+ current, ICaL

ICaL = gCaL·d·f ·fCa·4·V ·F 2

R·T ·

(
Cai·e

2·V ·F
R·T −0.341·Cao

)
e
2·V ·F
R·T −1

(S18)
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ICaL, d gate

dinf =


1

1+e
12.5−V

12.5

,Early

1

1+e
16−V
12.8

,Late
(S19)

αd = 1.4

1+e
−35−V

13

+ 0.25 (S20)

βd = 1.4

1+e
V+5

5

(S21)

γd = 1

1+e
50−V

20

(S22)

τd = αd · βd + γd (S23)
dd

dtime =
dinf−d
τd

(S24)

ICaL, fCa gate [5]

αfCa =


1

1+(Cai+0.00011
0.000325 )

8 ,Early

1

1+( Cai
0.0006 )

8 ,Late
(S25)

βfCa =


0.1

1+e
Cai+0.00011−0.0005

0.0001

,Early

0.1

1+e
Cai−0.0009

0.0001

,Late
(S26)

fCa =


0.2

1+e
Cai+0.00011−0.00075

0.0008

,Early

0.3

1+e
Cai−0.00075

0.0008

,Late
(S27)

fCa nf =

{
αfCa+βfCa+fCa+0.23

1.46 ,Early
αfCa+βfCa+fCa

1.3156 ,Late
(S28)

τfCa = 2 (S29)
dfCa
dtime = constfCa · fCainf−fCaτfCa

(S30)

constfCa =

{
0, if

(
fCainf > fCa

)
and (V > −60)

1, otherwise
(S31)

ICaL, f gate [5]

finf = 1

1+e
V+20

7

(S32)
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τf =

 100 , Early(
1125 · e

−(V+27)2

240 + 80 + 165

1+e
25−V

10

)
·

(S33)

·

{ (
1 + 1433 · (Cai − 50× 10−6)

)
, df
dtime > 0

1 , otherwise
, Late

df
dtime =

finf−f
τf

(S34)

T − typeCa2+ Current, ICaT [6]

ICaT = gCaT · dCaT · fCaT · (V − ECa) (S35)

ICaT , dCaT gate

dCaT inf = 1

1+e−
V+26.3

6

(S36)

τdCaT = 1

1.068·e
V+26.3

30 +1.068·e−
V+26.3

30

(S37)

ddCaT
dtime =

dCaT inf−dCaT
τdCaT

(S38)

ICaT , fCaT gate

fCaT inf = 1

1+e
V+61.7

5.6

(S39)

τfCaT = 1

0.0153·e−
V+61.7

83.3 +0.015·e
V+61.7
15.38

(S40)

dfCaT
dtime =

fCaT inf−fCaT
τfCaT

(S41)

Transient outward current, Ito

Ito = gto · r · s · (V − EK) (S42)

Ito, r gate

rinf =
1

1 + e
−5−V

1.8

(S43)
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τr = 9.5 · e
−(V+40)2

1800 + 0.8 (S44)
dr

dtime =
rinf−r
τr

(S45)

Ito, s gate

sinf = 1

1+e
V+20

5

(S46)

τs = 85 · e
−(V+45)2

320 + 5

1+e
V−20

5

+ 3 (S47)

ds
dtime =

sinf−s
τs

(S48)

Rapid delayed rectifier K+ current, IKr

IKr = gKr ·
√

Ko
5.4 ·Xr1 ·Xr2 · (V − EK) (S49)

IKr, Xr1 gate [5]

V1/2 = 1000 · (−R·T
F ·Q · ln

(
(1+Cao

2.6 )
4

L0·(1+Cao
0.58 )

4

)
− 0.026) (S50)

xr1inf = 1

1+e
V1/2−V

7

(S51)

αxr1 = 450

1+e
−45−V

10

(S52)

βxr1 = 6

1+e
V+30
11.5

(S53)

τxr1 = αxr1 · βxr1 (S54)
dXr1
dtime =

xr1inf−Xr1
τxr1

(S55)

IKr, Xr2 gate

xr2inf = 1

1+e
V+88

24

(S56)

αxr2 = 3

1+e
−60−V

20

(S57)

βxr2 = 1.12

1+e
V−60

20

(S58)

τxr2 = αxr2 · βxr2 (S59)
dXr2
dtime =

xr2inf−Xr2
τxr2

(S60)
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Slow delayed rectifier K+ current, IKs [5]

IKs = gKs ·Xs2 ·

(
1 + 0.6

1+
(

3.8×10−5

Cai

)1.4
)
· (V − EKs) (S61)

IKs, Xs gate

xsinf = 1

1+e
−5−V

14

(S62)

αxs = 1100√
1+e

−10−V
6

(S63)

βxs = 1

1+e
V−60

20

(S64)

τxs = αxs · βxs (S65)
dXs
dtime =

xsinf−Xs
τxs

(S66)

Inward rectifier K+ current, IK1

αK1 =
0.1

1 + e0.06·(V−15−EK−200)
(S67)

βK1 = 3·e0.0002·(V−15−EK+100)+e0.1·(V−15−EK−10)

1+e−0.5·(V−15−EK) (S68)

xK1inf =
αK1

αK1 + βK1
(S69)

IK1 = gK1 · xK1inf ·
√

Ko
5.4 · (V − EK) (S70)

Hyperpolarization activated funny current, If

If = gf ·Xf · (V − Ef ) , Ef = −17(mV ) (S71)

If , Xf gate

xf inf = 1

1+e
102.4+V

7.6

(S72)
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dXf

dtime
=
xf inf −Xf

τf
(S73)

Na+/K+ pump current, INaK

INaK =

PNaK ·Ko
Ko+Kmk

·Nai
Nai+KmNa

1+0.1245·e
−0.1·V ·F
R·T +0.0353·e

−V ·F
R·T

(S74)

Na+/Ca2+ exchanger current, INaCa

INaCa =
KNaCa·

(
e
γ·V ·F
R·T ·Nai3·Cao−e

(γ−1)·V ·F
R·T ·Nao3·Cai·α

)
(KmNai3+Nao3)·(KmCa+Cao)·

(
1+Ksat·e

(γ−1)·V ·F
R·T

) (S75)

Ca2+ dynamics

Irel =
(

arel·CaSR2

brel2+CaSR2 + crel

)
· d · g (S76)

Iup =
Vmaxup

1+
Kup2

Cai
2

(S77)

Ileak = Vleak · (CaSR − Cai) (S78)

ginf =


1

1+( Cai
0.00035 )

6 , if Cai ≤ 0.00035

1

1+( Cai
0.00035 )

16 , otherwise
(S79)

dg
dtime = constg · ginf−gτg

(S80)

constg =

{
0, if (ginf > g) and (V > −60(mV ))

1, otherwise
(S81)

Caibufc = 1

1+
Bufc·Kbufc

(Cai+Kbufc)
2

(S82)

Casrbufsr = 1

1+
Bufsr·Kbufsr

(CaSR+Kbufsr )
2

(S83)

dCai
dtime = Caibufc ·

(
Ileak − Iup + Irel −

(ICaL+ICaT+IbCa+IpCa−2·INaCa)
2·Vc·F · Cm

)
(S84)

dCaSR
dtime =

Casrbufsr ·Vc
Vsr

· (Iup − (Irel + Ileak)) (S85)
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Ca2+ pump current, IpCa

IpCa =
gpCa·Cai
Cai+KpCa

(S86)

Ca2+ background current, IbCa

IbCa = gbca · (V − ECa) (S87)

Reversal potentials

ENa = R·T
F · ln

Nao
Nai

(S88)

EK = R·T
F · ln

Ko
Ki

(S89)

EKs = R·T
F · ln

Ko+Pkna·Nao
Ki+Pkna·Nai (S90)

ECa = 0.5·R·T
F · ln Cao

Cai
(S91)

Interaction with in silico fibroblasts

AP of hESC-CM coupled to Nf fibroblasts evolves according to:

dV

dt
= −Cm · Iion +Nf · Igap

Cm
(S92)

where Iion represents the global current density across the hESC-CM membrane

and Igap the current flowing through the gap junction.

Igap = Ggap · (V − Vfibro) (S93)

Vfibro: fibroblast potential;

Ggap = 1 (nS): conductance of the hESC-CM - fibroblast coupling [7];

Nf : number of coupled fibroblasts;

The fibroblast AP evolves according to

Michelangelo Paci



Appendix 1 177

Figure S1: I/V curve for IKs, obtained with the following protocol: 2 second-
test pulses from -40 to 60 mV from an holding potential of -40 mV [8].

dVfibro
dt

= −Cfibro · Ifibro(Vfibro)− Igap
Cfibro

(S94)

(S94)

Cfibro = 1.6 (pF): fibroblast capacity;

Ifibro(Vfibro): fibroblast global transmembrane current density;

In particular, Ifibro(Vfibro) is the sum of the four currents identified by Mac-

Cannell et al. (delayed rectifying K+ current, inward rectifying K+ current,

Na+/K+ pump current, and background Na+ current) [7]. The background

Na+ current conductance GbNa changed from 0.0095 nS/pF to 0.003 nS/pF.

We set this parameter in order to equal the integrated Na+ influx through the

leak pathway to the Na+ efflux through the Na+/K+ pump. We assume this

discrepancy to be caused by differences in the cardiomyocyte model.
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Figure S2: APD90 rate dependence. The used protocol consisted in 300 s with
amplitude 0 pA, thus leaving the model reaching spontaneously its own steady
state, and then 300 s of stimulation at constant Cycle Length and amplitude
300 pA; then APD90 was computed. At the Early stage no significant APD90
dependence to the stimulus was noticed, while at the Late stage a physiological
dependence starts to appear for Cycle Lengths greater than 0.6 s.
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Figure S3: APs and currents at the Early and Late stages.
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SUPPLEMENTARY METHODS: COMPUTATIONAL

MODELS OF VENTRICULAR-LIKE AND

ATRIAL-LIKE HUMAN INDUCED PLURIPOTENT

STEM CELL DERIVED CARDIOMYOCYTES

Formulation of the hiPSC-CM model

All the time constants in ms

Extracellular and intracellular ionic concentrations

Nao = 151 (mM)

Ko = 5.4 (mM)

Cao = 1.8 (mM)

Nai =

{
10 (mM) , V entricular − like

14.75 (mM) , Atrial − like

Ki = 150 (mM)

Cai = 0.0002 (mM)

CaSR = 0.3 (mM)
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Cell size and dimensions

Cm =

{
98.7109 (pF ) , V entricular − like
78.6671 (pF ) , Atrial − like

Vc =

{
8752.72 (um3) , V entricular − like
6975.44 (um3) , Atrial − like

Vsr =

{
583.73 (um3) , V entricular − like
465.20 (um3) , Atrial − like

Maximum conductances and currents

gNa =

{
4.0701e3 (S/F ) , V entricular − like
6.8878e3 (S/F ) , Atrial − like

gCaL = 8.5502e− 5 (m3/(F · s))

gto =

{
29.9038 (S/F ) , V entricular − like
59.8077 (S/F ) , Atrial − like

gKr = 29.8667 (S/F )

gKs = 2.041 (S/F )

gK1 =

{
28.1492 (S/F ) , V entricular − like
16.8895 (S/F ) , Atrial − like

gf = 39.9826 (S/F )

PNaK =

{
1.0896 (A/F ) , V entricular − like
0.87168 (A/F ) , Atrial − like

KNaCa =

{
6125 (A/F ) , V entricular − like
2143.75 (A/F ) , Atrial − like

arel = 16.464 (mM/s)

brel = 0.25 (mM)

crel = 8.232 (mM/s)
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V maxup =

{
1.4016 (mM/s) , V entricular − like

0.35938 (mM/s) , Atrial − like

Vleak = 4.4444e− 4 (1/s)

gpCa = 0.4125(A/F )

Other constants

Bufc = 0.25 (mM)

Bufsr = 10 (mM)

Kbufc = 0.001 (mM)

Kbufsr = 0.3 (mM)

Kup = 0.00025 (mM)

KpCa = 0.0005 (mM)

F = 96485.3415 (C ×mM)

R = 8.314472 (J/(M ×K))

T = 310 (K)

L0 = 0.025 (dimensionless)

Pkna = 0.03 (dimensionless)

Ksat = 0.1 (dimensionless)

KmCa = 1.38 (mM)

Km ai = 87.5 (mM)

α = 3.571429 (dimensionless)

γ = 0.35 (dimensionless)

KmNa = 40 (mM)

Kmk = 1 (mM)
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Initial conditions

h0 = 0.75 ( dimensionless)

j0 = 0.75 ( dimensionless)

m0 = 0 ( dimensionless)

d0 = 0 ( dimensionless)

fCa0 = 1 ( dimensionless)

f1,0 = 1 ( dimensionless)

f2,0 = 1 ( dimensionless)

r0 = 0 ( dimensionless)

q0 = 1 ( dimensionless)

Xr10 = 0 ( dimensionless)

Xr20 = 1 ( dimensionless)

Xs0 = 0 ( dimensionless)

Xf0 = 0 .1 ( dimensionless)

g0 = 0 ( dimensionless)

V0 = −70 · 10−3 (V )

Membrane Potential

dV

dtime
= −Iion =

= − (IK1 + Ito + IKr + IKs + ICaL + INaK + INa + INaCa + IpCa + If ) (S1)

Na+ current, INa

INa = gNa ·m3 · h · j · (V − ENa) (S2)
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INa, h gate

hinf = 1√(
1+e

V+72.1
5.7

) (S3)

αh =

{
0.057 · e

−(V+80)
6.8 , if V < −40

0, otherwise
(S4)

βh =

 2.7 · e0.079·V + 3.1× 105 · e0.3485·V , if V < −40
0.77

0.13·
(
1+e

V+10.66
−11.1

) , otherwise (S5)

τh =

{
1.5

αh+βh
, V < −40mV

2.542 , V ≥ −40 mV
(S6)

dh
dtime =

hinf−h
τh

(S7)

INa, j gate

jinf = hinf (S8)

αj =

{
(−25428·e0.2444·V −6.948×10−6·e−0.04391·V )·(V+37.78)

1+e0.311·(V+79.23) , if V < −40

0, otherwise
(S9)

βj =

{
0.02424·e−0.01052·V

1+e−0.1378·(V+40.14) , if V < −40
0.6·e0.057·V

1+e−0.1·(V+32) , otherwise
(S10)

τj = 7
αj+βj

(S11)
dj

dtime =
jinf−j
τj

(S12)

INa, m gate

minf = 1(
1+e

−34.1−V
5.1

)1/3 (S13)

αm = 1

1+e
−60−V

5

(S14)

βm = 0.1

1+e
V+35

5

+ 0.1

1+e
V−50
200

(S15)

τm = αm · βm (S16)
dm

dtime =
minf−m

τm
(S17)

L-type Ca2+ current, ICaL

ICaL = gCaL·4·V ·F 2

R·T ·

(
Cai·e

2·V ·F
R·T −0.341·Cao

)
e
2·V ·F
R·T −1

· d · f1 · f2 · fCa (S18)
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ICaL, d gate

dinf =


1

1+e−
V+9.1

7

, V entricular − like
1

1+e−
V+5.986

7

, Atrial − like
(S19)

αd = 1.4

1+e
−35−V

13

+ 0.25 (S20)

βd = 1.4

1+e
V+5

5

(S21)

γd = 1

1+e
50−V

20

(S22)

τd = αd · βd + γd (S23)
dd

dtime =
dinf−d
τd

(S24)

ICaL, fCa gate

αfCa = 1

1+( Cai
0.0006 )

8 (S25)

βfCa = 0.1

1+e
Cai−0.0009

0.0001

(S26)

γfCa = 0.3

1+e
Cai−0.00075

0.0008

(S27)

fCa i nf =
αfCa+βfCa+fCa

1.3156 (S28)

τfCa = 2 (ms) (S29)
dfCa
dt = constfCa · fCainf−fCaτfCa

(S30)

constfCa =

{
0, if (fCainf > fCa) and (V > −60 (mV ))

1, otherwise
(S31)

ICaL, f1 gate

f1inf =


1

1+e
V+26

3

, V entricular − like
1

1+e
V+25.226

3

, Atrial − like
(S32)

τf1 =

(
1102.5 · e−

[
(V+27)2

15

]2
+

200

1 + e
13−V

10

+
180

1 + e
V+30

10

+ 20

)
· (S33)

·

{ (
1 + 1433 · (Cai − 50× 10−6)

)
, df
dtime > 0

1 , otherwise

df1
dtime =

f1inf−f1
τf1

(S34)
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ICaL, f2 gate

f2inf =


0.67

1+e
V+35

7

+ 0.33 , V entricular − like
0.67

1+e
V+31.226

7

+ 0.33 , Atrial − like
(S35)

τf2 =

(
600 · e−

(V+25)2

170 + 31

1+e
25−V

10

+ 16

1+e
V+30

10

)
·

{
1, V entricular − like
2 , Atrial − like

(S36)

df2
dtime =

f2inf−f2
τf2

(S37)

Transient outward current, Ito

Ito = gto · r · q · (V − EK) (S38)

Ito, r gate

rinf = 1

1+e
22.3−V

12

(S39)

τr = 14.40516
1.037e0.09·(V+30.61)+0.369e−0.12·(V+23.84) + 2.75352 (S40)

dr
dtime =

rinf−r
τr

(S41)

Ito, q gate

qinf = 1

1+e
V+53

13

(S42)

τq = 39.102
0.57e−0.08·(V+44)+0.065e0.1·(V+45.93) + 6.06 (S43)

dq
dtime =

qinf−q
τq

(S44)

Rapid delayed rectifier K+ current, IKr

IKr = gKr ·
√

Ko
5.4 ·Xr1 ·Xr2 · (V − EK) (S45)

IKr, Xr1 gate

V1/2 = 1000 ·
(
−R·T
F ·Q · ln

(
(1+Cao

2.6 )
4

L0·(1+Cao
0.58 )

4

)
− 0.019

)
(S46)

xr1inf = 1

1+e
V1/2−V

4.9

(S47)

αxr1 = 450

1+e
−45−V

10

(S48)

βxr1 = 6

1+e
V+30
11.5

(S49)

τxr1 = αxr1 · βxr1 (S50)
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dXr1
dtime =

xr1inf−Xr1
τxr1

(S51)

IKr, Xr2 gate

xr2inf = 1

1+e
V+88

50

(S52)

αxr2 = 3

1+e
−60−V

20

(S53)

βxr2 = 1.12

1+e
V−60

20

(S54)

τxr2 = αxr2 · βxr2 (S55)
dXr2
dtime =

xr2inf−Xr2
τxr2

(S56)

Slow delayed rectifier K+ current, IKs

IKs = gKs ·Xs2 ·

(
1 + 0.6

1+
(

3.8×10−5

Cai

)1.4
)
· (V − EKs) (S57)

IKs, Xs gate

xsinf = 1

1+e
−20−V

16

(S58)

αxs = 1100√
1+e

−10−V
6

(S59)

βxs = 1

1+e
V−60

20

(S60)

τxs = αxs · βxs (S61)
dXs
dtime =

xsinf−Xs
τxs

(S62)

Inward rectifier K+ current, IK1

αK1 = 3.91

1+e0.5942·(V−EK−200) (S63)

βK1 = −1.509·e0.0002·(V−EK+100)+e0.5886·(V−EK−10)

1+e0.4547·(V−EK) (S64)

xK1inf = αK1

αK1+βK1
(S65)

IK1 = gK1 · xK1inf ·
√

Ko
5.4 · (V − EK) (S66)

Hyperpolarization activated funny current, If

If = gf ·Xf · (V − Ef ) (S67)
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If , Xf gate

xfinf = 1

1+e
V+77.85

5

(S68)

τf = 1900 (ms) (S69)
dXf
dtime =

xfinf−Xf
τf

(S70)

Na+/K+ pump current, INaK

INaK =

PNaK ·Ko
Ko+Kmk

·Nai
Nai+KmNa

1+0.1245·e
−0.1·V ·F
R·T +0.0353·e

−V ·F
R·T

(S71)

Na+/Ca2+ exchanger current, INaCa

INaCa =
KNaCa·

(
e
γ·V ·F
R·T ·Na3i ·Cao−e

(γ−1)·V ·F
R·T ·Na3o·Cai·α

)
(Km3

Nai+Na
3
o)·(KmCa+Cao)·

(
1+Ksat·e

(γ−1)·V ·F
R·T

) (S72)

Ca2+ dynamics

Irel =
(
arel·Ca2SR
b2rel+Ca

2
SR

+ crel

)
· d · g ·

{
0.0411 , V entricular − like
0.0556 , Atrial − like

(S73)

Iup =
Vmaxup

1+
K2
up

Ca2i

(S74)

Ileak = Vleak · (CaSR − Cai) (S75)

ginf =


1

1+( Cai
0.00035 )

6 , if Cai ≤ 0.00035

1

1+( Cai
0.00035 )

16 , otherwise
(S76)

dg
dtime = const2 · ginf−gτg

(S77)

τg = 2 (ms) (S78)

const2 =

{
0, if (ginf > g) and (V > −60 (mV ))

1, otherwise
(S79)

Caibufc = 1

1+
Bufc·Kbufc

(Cai+Kbufc)
2

(S80)

Casrbufsr = 1

1+
Bufsr·Kbufsr

(CaSR+Kbufsr )
2

(S81)

dCai
dtime = Caibufc ·

(
Ileak − Iup + Irel −

(ICaL+IpCa−2·INaCa)
2·Vc·F · Cm

)
(S82)

dCaSR
dtime =

Casrbufsr ·Vc
Vsr

· (Iup − (Irel + Ileak)) (S83)
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Ca2+ pump current, IpCa

IpCa =
gpCa·Cai
Cai+KpCa

(S84)

Na+ dynamics

dNai
dtime = −Cm · INa+3INaK+3INaCa

F ·Vc

Reversal potentials

ENa = R·T
F · ln

Nao
Nai

(S85)

EK = R·T
F · ln

Ko
Ki

(S86)

EKs = R·T
F · ln

Ko+Pkna·Nao
Ki+Pkna·Nai (S87)

ECa = 0.5·R·T
F · ln Cao

Cai
(S88)

Ef = −17 (mV ) (S89)

Current blocker simulations with the atrial-like

model

Additional simulations of the effect of Tetrodotoxine (TTX), Nifedipine (Nifed),

E4031 and 3R4S-Chromanol 293B (Chr) were performed with the atrial-like

model. The stimulation protocol is constant pacing rate 80 bpm (1.3333 Hz)

with depolarizing pulses of 5 ms duration and 550 pA amplitude. Results are

consistent with those obtained with the ventricular-like model: (i) TTX (INa

blocker) produces an important shift in time of the AP peak (Fig. S4a); (ii)

Nifed (ICaL blocker) causes the reduction of the APDs and triangulates the AP

shape (Fig. S4b); (iii) E4031 (IKr blocker) lengthens the APD (Fig. S4c); (iv)

Chr (IKs blocker) does not affect significantly the AP shape (Fig. S4d).
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Figure S4: Simulations of the effects of the 4 current blockers on the atrial-like
AP.
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