Modellistica computazionale di cardiomiociti derivati da cellule staminali umane - Texture descriptor per l'elaborazione di immagini biologiche

Paci, Michelangelo (2013) Modellistica computazionale di cardiomiociti derivati da cellule staminali umane - Texture descriptor per l'elaborazione di immagini biologiche, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Bioingegneria, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5350.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (5MB) | Anteprima

Abstract

Questa tesi indaga due distinti temi di ricerca. Il tema principale (Parte I) è la modellistica computazionale di cardiomiociti derivati da cellule staminali umane, sia embrionali (hESC-CM) che pluripotenti-indotte (hiPSC-CM). Lo scopo di questa parte consiste nello sviluppare modelli elettrofisiologici di hESC-CM e hiPSC-CM al fine di integrare i dati sperimentali disponibili ed ottenere modelli in-silico utilizzabili per studiare/produrre ipotesi/pianificare esperimenti su aspetti ancora poco chiari come il processo di maturazione, la funzionalità del Ca2+ handling e le cause per cui i potenziali d'azione(PA)di hESC-CM/hiPSC-CM mostrino alcune differenze rispetto ai PA di cardiomiociti adulti. Il capitolo I.1 introduce i concetti base su hESC-CM/hiPSC-CM, PA cardiaco e modellistica computazionale. Il capitolo I.2 presenta il modello di PA di hESC-CM in grado di riprodurre il processo di maturazione attraverso due stadi di sviluppo, Early e Late, basato su esperimenti e dati di letteratura. Il capitolo I.3 descrive il modello di PA di hiPSC-CM, in grado di riprodurre i fenotipi ventricular-like ed atrial-like. Questo modello è stato utilizzato per valutare quali correnti siano le principali responsabili delle differenze tra il PA ventricular-like e quello di cardiomiociti ventricolari adulti. Il tema secondario (Parte II) consiste nello studio di texture descriptor per la classificazione di immagini biologiche. Nel capitolo II.1 viene fornita una panoramica dei principali texture descriptor come Local Binary Pattern e Local Phase Quantization. Inoltre viene presentato il concetto di codifica non-binaria e approccio multi-threshold. Il Capitolo II.2 mostra che l'utilizzo della codifica non-binaria e dell'approccio multi-threshold portano ad un incremento delle performance di classificazione su sei dataset di immagini cellulari o di parti subcellulari. Il capitolo II.3 presenta un caso di studio di classificazione di immagini di immunofluorescenza indiretta su cellule HEp2, utilizzate in clinica per il test degli anticorpi antinucleo. Infine vengono riportate le conclusioni generali.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Paci, Michelangelo
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/5350
Data di discussione
12 Aprile 2013
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^