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Abstract

Beamforming entails joint processing of multiple signals received or transmitted

by an array of antennas. The design of this technique and the implementation

challenges associated with it depend on the configuration of the array itself and on

its application objectives, which can be related to a very broad domain of diverse

scenarios and engineering problems.

This thesis addresses the implementation of beamforming in two distinct systems,

namely a distributed network of independent sensors, and a broad-band multi-beam

satellite network.

With the rising popularity of wireless sensor networks as a new tool to inter-

act with the physical world, scientists are taking advantage of the flexibility and

portability of these devices, which come with very low implementation costs. Sim-

plicity and miniaturization, however, are inevitably intertwined with scarce power

resources, which must be carefully rationed to ensure successful measurement cam-

paigns throughout the whole duration of the application. In this scenario, distributed

beamforming translates into a cooperative communication technique, allowing nodes

in the network to coordinate to emulate a virtual antenna array seeking power, direc-

tivity, or diversity gains in the order of the size of the network itself, when required

to deliver or receive a common message signal, or multiplex streams of data for or

from multiple independent terminals. In order to achieve a desired beamforming

configuration, however, all nodes in the network must agree upon the same phase

and frequency reference, which is challenging in a distributed set-up where all de-

vices have independent local oscillators. The first part of this thesis presents new

algorithms for phase alignment, which prove to be more energy efficient than exist-

ing solutions. Performance of these schemes is also analytically characterized in the

absence and in the presence of impairments such as fading and thermal noise, and

compared to previously proposed solutions based on random search paradigms.

With the ever-growing demand for seamless and continuous broad-band connec-
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tivity, satellite systems have the great potential to guarantee service where terrestrial

systems still can not penetrate. In order to satisfy the constantly increasing demand

for throughput, satellites are equipped with multi-fed reflector antennas to resolve

spatially separated signals which co-exist on the same time and frequency slots.

Users are then multiplexed in space, similarly to what happens for cellular terrestrial

networks. However, incrementing the number of feeds on the payload corresponds to

burdening the link between the satellite and the gateway with an extensive amount

of signaling, and to possibly calling for much more expensive multiple-gateway in-

frastructures. This thesis focuses on an on-board non-adaptive signal processing

scheme denoted as Coarse Beamforming, whose objective is to reduce the communi-

cation load on the link between the ground station and space segment, by projecting

feed signals on a sub-space, and thus by reducing the need for spectral resources on

the feeder link. The scenario considered is the forward link of a multi-beam, single-

gateway, broad-band satellite network, and the impact of Coarse Beamforming on

the performance of interference management schemes implemented at the ground

station is evaluated.
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Introduction

0.1 Motivation and Goals

This thesis focuses on the application of beamforming techniques in two distinct

scenarios:

1. A network of distributed and independent sensors.

2. A broadband multi-beam satellite system.

Scenario 1 represents, for instance, a Wireless Sensor Network (WSN), where

beamforming translates into a collaborative communication procedure denoted as

Distributed Beamforming (DBF). According to this technique, a cluster of simple

radiating devices is able to coordinate and consequently emulate a more complex

and better performing virtual antenna array with potential power and directivity

gains in the order of the number of cooperating nodes, with the objective of deliver-

ing a common message signal to the receiver. The benefits related to this technique

are manifold, such as enhanced energy efficiency of communication, improved com-

munication range, interference rejection, and ability to spatially multiplex streams

of data. The drawback of this scheme is related to the strain in terms of network

coordination needed to shape the desired beam pattern in space. This in fact is not

a trivial task to pursue, since all cooperating elements are independent and spatially

distributed, hence with autonomous local oscillators. The system does not have a

unique phase and frequency reference, as it naturally happens for a centralized an-

tenna array, and this makes synchronization a critical and absolutely necessary issue

to be tackled. This thesis focuses on the problem of distributed phase synchroniza-

tion, and presents new synchronization schemes which yield reduced overhead and

complexity with respect to already existing solutions.

Scenario 2 represents a network composed by a space segment, i.e., a satellite,

and a ground component, i.e., a gateway (GW). The goal of this system is to provide
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interactive broadband services to a number of users located in the satellite coverage

area. In order to boost system throughput, the satellite has to be equipped with a

multi-fed reflector antenna which can steer multiple directive beams on the coverage

area, and thus resolve spatially separated signals which co-exist on the same time

and frequency slots. As intuition suggests, this comes with an increase in system

complexity, which burdens the communication link between the satellite and the GW

(feeder link) with an extensive amount of signaling. This thesis focuses on the study

of a fixed on-board signal processing technique called Coarse Beamforming (CB),

which, while still keeping payload complexity low, aims at reducing the amount of

signals to be exchanged between the ground and the space segments, and thus at

making a more efficient use of the spectral resources available on the feeder link.

Scenario 1: Novel Contributions

In order for a distributed network of sensors to achieve a desired beamforming con-

figuration, and thus to shape a particular beampattern in space, each node has to

correctly process its outgoing (or incoming) signal. We here assume that the signals

are narrow-band, hence this processing translates into locally applying a complex

coefficient to the outgoing (or incoming) signal which yields the joint effect of a

phase rotation and an amplitude scaling. We consider the case where the network

has to steer a single beam, i.e., a maximum of radiation, in the direction of the

receiver to successfully deliver a common message signal. Thus, the shaping of the

beampattern has to comply with a single constraint, which is maximizing the signal

strength in one direction. This condition is verified when all the transmitted signals

achieve electromagnetic coherence at destination.

This work presents innovative, efficient, non-power-draining, fast, simple, and

distributed phase-synchronization methods. This thesis puts forth two families of

closed-loop algorithms which rely on quantized feedback from the receiver, and on

the availability of predefined sets of phase adjustments that nodes can locally apply

to their outgoing signals. The main idea that lies beneath these methods is that

each node has to locally tune its signal phase, and the choice of the best phase

adjustment is driven by the receiver’s feedback. The available phase shifts result

from a uniform quantization of the phase range [0, 2π) which can be coarsely or finely

quantized, according to the chosen resolution of the synchronization procedure. A

finer quantization, as will be shown in the following sections, translates into better



0.1 Motivation and Goals 3

beamforming gains, but requires more resources in terms of time to synchronize, or

feedback channel bandwidth.

We denote our synchronization schemes as follows:

• Deterministic Joint Activation (DJA).

• Successive Deterministic Distributed Beamforming (SDDB).

The keyword Deterministic emphasizes the fact that the applicable phase corrections

are extracted from predefined sets of possible values.

The performance of these synchronization schemes is evaluated in terms of achiev-

able levels of Received Signal Strength (RSS) in given time frames. We compare our

methods to a random synchronization procedure known in the literature as the Ran-

dom 1-Bit-Feedback (R1BF) algorithm [1], and we show how, at the small price of a

slightly increased level of network coordination, our approach outperforms R1BF in

terms of time to achieve coherence, thus introducing less overhead due to phase syn-

chronization. This is crucial for both energy saving policies, and for counteracting

the effect of oscillator dynamics.

According to the DJA phase synchronization method, sensors perform, in turns,

one after the other, phase rotation tests to their outgoing signals, on the basis of

the chosen phase resolution. The receiver measures the RSS relative to the joint

transmissions of all nodes after each of these phase adjustments, sending a one-bit

feedback to inform the node whether the tested shift has improved or worsened

the best achieved RSS until that moment. The node chooses the phase adjustment

relative to the last positive feedback. Clearly, the finer the resolution of the set of

possible phase adjustments is, the more time consuming the phase synchronization

procedure becomes.

The following points summarize the main outcomes of the work relative to the

DJA approach:

• Comparison in a static channel scenario, via Monte-Carlo, with the R1BF

algorithm.

• Comparison in a time-varying channel scenario, via Monte-Carlo, with the

R1BF algorithm.

• Introduction of a hybrid synchronization approach which combines different

synchronization routines, both deterministic and random, with a view to im-
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proving the convergence of the overall phase synchronization process, and to

maintaining signal alignment in the case of time-varying channel fluctuations.

According to the SDDB algorithm, the receiver successively estimates the com-

plex carrier relative to each sensor, and sends a quantized phase correction to each

node so to align its phase to a fixed local bias. The number of feedback bits de-

pends on the available capacity on the feedback link, and it determines the number

of possible phase adjustments that the receiver can feedback to the nodes, i.e., the

resolution. When only one bit of feedback is allowed, the receiver can only tell the

node whether to flip or not its phase to sum constructively with the rest of the car-

riers. For SDDB, we also include Additive White Gaussian Noise (AWGN) in the

model and we show that its impact on the synchronization performance can not be

disregarded, as it is in the literature on random distributed phase synchronization.

The performance of the SDDB algorithm is evaluated in terms of the achievable RSS

for given Signal-to-Noise Ratio (SNR) levels and given quantization resolutions.

The main outcomes relative to the study of SDDB are:

• Analytical performance characterization of the SDDB algorithm in the absence

of noise.

• Analytical performance characterization of the SDDB algorithm in the pres-

ence of noise with particular focus on the low- and high-SNR regimes.

• Analytical performance characterization of the SDDB algorithm in the pres-

ence of fading and noise, with emphasis on the low- and high-SNR regimes.

• Performance comparison with R1BF via Monte-Carlo.

• With a view on analytically comparing the performance of SDDB with the

R1BF, we also derive an upper bound for the RSS obtained during the R1BF

procedure, and characterize its usefulness.

Scenario 2: Novel Contributions

We consider a hybrid on-board/on-ground architecture, where both the satellite and

the GW actively participate in signal processing for serving a set of users on the

coverage area, spatially divided into multiple-beam cells. We focus on the Forward

Link (FL) of this system. The GW jointly implements beamforming and interference

mitigation techniques (precoding), and the role of the on-board processing is to
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guarantee that only a subset of the original stack of signals that the GW should

forward to the space component, can be relayed to the satellite, in order to reduce

bandwidth consumption on the feeder link. The satellite processing is fixed, in order

not to burden the payload with excessive computational complexity, and we study

the effect of this on-board processing on the performance of the precoder in terms

of spectral efficiency and availability.

We propose two CB techniques based, respectively, on Discrete Fourier Trans-

form (DFT), and Principal Component Analysis (PCA). Roughly, the concept of

CB can be associated with a projection on a subspace. When the GW processes the

user signals according to the joint beamforming and precoding algorithm, a stack of

feed signals is produced, which must be relayed to the satellite: each of these signals

must then be injected in each one of the antenna feeds. If CB is implemented, these

signals, before being transmitted to the satellite, are projected on a subspace defined

by a subset of dimensions of the DFT or the PCA basis. We call feedlets the result of

this projection. The satellite then applies the inverse transform, reconstructing the

feed signals from the feedlets. Clearly, this comes with a certain degree of feed sig-

nal degradation, according to the cardinality of the stack of feedlets. The following

points summarize our novel contributions:

• We propose two different CB techniques based on DFT and PCA, respectively.

• We conduct a preliminary analysis to measure feed signal degradation as a

consequence of compression both in case of an ideal analog and digital feeder

link.

• We extend the analysis to the GW to User Terminals (UTs) link and consider

a joint precoding and CB implementation scheme evaluating its impact on

system spectral efficiency and availability when the feeder link is analog and

ideal.

0.2 Thesis Outline

This thesis consists in two parts, namely, Part I, which focuses on Distributed Beam-

forming and Part II, which focuses on Coarse Beamforming. Chapters 1, 2, and 3,

are included in Part I, and they provide an overview on distributed arrays and on

distributed phase synchronization, the description and the analysis of our synchro-

nization schemes, and concluding remarks, respectively. Chapters 4, 5, 6, and 7, are
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included in Part II, and they provide a description of the hybrid space/ground pro-

cessing considered architecture, a description of the preliminary study on Coarse

Beamforming, of the impact of Coarse Beamforming on interference mitigation

schemes, and concluding remarks, respectively.

The work relative to Part II of this thesis has been carried out in collaboration

with the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), under the

supervision of Dr. Bertrand Devillers, in the framework of the SatNEx III project,

funded by the European Space Agency (ESA).
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Part I

Distributed Beamforming





Chapter 1

Background on Distributed

Beamforming

1.1 Centralized Beamforming

An array is a configuration of individual antennas which need to be coordinated

to form a spatial filter. The objective of this system is to achieve successful trans-

mission (or reception) of a signal in a desired direction in space, and effective null

pointing, i.e. cancellation of signals (both in transmission and in reception), towards

other target directions. A beam is transmission (and/or) reception of energy that is

concentrated in a particular direction. Beamforming is a signal processing technique

which foresees the combination of radio signals transmitted (or received) by a set of

antennas to create the effect of a large directional antenna to counteract the effects

of noise and interference. The desired signal can in fact be spatially separated from

other interfering and unwanted signals, and since the array gain scales with the num-

ber of devices, the effect of noise is considerably reduced. The useful signal in a target

direction is enhanced by constructive combination, whereas noise or interference are

rejected by destructive combination. The information related to how the array ra-

diates (or receives) power in space is contained in its beampattern, which combines

the spatial characteristics of the array with the radiating capabilities of the single

devices. The beampattern can be considered as a mapping between field strength

and direction, and, because of reciprocity, it is the same for transmission and recep-

tion. When the signals are narrow-band, beamforming is implemented by choosing

appropriate complex weights that multiply the outgoing (or incoming) signals at

each sensor. A centralized array is a system where all elements are interconnected,
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and locked to a unique time, frequency, and phase reference. Arrays can be uniform,

i.e., the elements are uniformly placed along an imaginary line, plane, or sphere, or

non-uniform. In array theory [2], mathematical models are derived to show how the

interplay among the number of sensors, their spacing, the beamforming coefficients,

and the signal wavelength, determines the shaping of the beampattern in space, and

hence the array performance. Ideal beamforming weight vector calculation yields

the exact desired beampattern, when the geometry of the system is known a priori.

When the array is random, the positions of the elements are random variables, and

so is the beampattern. Random array theory embraces the study of the statistical

properties of beampatterns generated by random arrays [3–11].

1.2 Motivation for Distributed Beamforming

The miniaturization trend dictated by Moore’s law is allowing for decreasing volumes

and costs of given computing capacities thus boosting the popularity of WSNs [12].

Researchers are in fact taking advantage of the achievements of the semiconductor

technology by designing exceptionally small sensing devices that will be engaged in

the intriguing task of monitoring and observing, in an increasingly accurate manner,

any physical phenomenon of interest. In a very near future, science will be fully

equipped with smart, miniature nodes that will communicate over wireless links,

and that will greatly expand the spectrum of potential observations and enhance

granularity of surveillance by naturally blending into the environment, harmonizing

with the surrounding world, and unobtrusively seeping in remote and inaccessible

areas to provide reliable data. WSNs are thus paving the way for new interactions

between technology and physical world and the potential benefits they can bring to

society are manifold , namely:

• Enhanced forms of productivity (including manufacturing and agriculture) [13,

14].

• More reliable infrastructure and means of transport [15,16].

• Improved emergency response.

• Reinforced homeland security [17–19].

• Smart home energy management [20].

• Close environmental and habitat monitoring [21–23].
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• Health monitoring [24].

The history of WSNs finds its roots in passive logging systems that required manual

download of collected data. Nowadays, WSNs have the potential to offer more effi-

cient, autonomous, reconfigurable, less intrusive, less expensive, and easy to deploy

systems where sensors convey acquired data to elected sinks through wireless links.

Clearly, simplicity and miniaturization come with some drawbacks: sensors are

in fact resource constrained devices, with limited processing speed, restricted stor-

age capacity, low communication bandwidth, and limited battery life span. In order

to maximize the network’s life time, applications should run in harmony with strict

energy efficient policies, that must limit power consumption thus preserving battery

charge. Single-node communication happens to be highly inefficient since the signal

transmitted from a typically low-cost isotropic antenna is undirected and, conse-

quently, only a fraction of the transmitted power becomes useful for communication

purposes. Moreover, the transceiver is the most power-consuming element in a sen-

sor, thus a more efficient use of this resource is desirable. Under these circumstances,

collaboration comes as a compelling solution when a common message, usually the

result of a sensing campaign, must be relayed to a receiver.

Cooperation and beamforming can then be merged into a single concept: Dis-

tributed beamforming. The distributed network of sensors emulates a virtual array

to shape a specific beampattern in space, seeking power and directivity gains in

the direction of the receiver, spatial diversity [25], and possibly null-pointing to-

wards other target directions [26], as shown in Figure 1.1. This approach has been

proven to be extremely power efficient: authors in [27] show how, in a network of N

nodes, the power efficiency achieved with cooperative beamforming scales at least

by a factor of
√
N . This means that each node can spend 1/

√
N times the energy

needed in a single-user channel to transmit at the same communication rate. In

addition, practical implementations of distributed beamforming have been proven

to be effective, [28] to considerably boost network throughput.

1.3 Challenges for Distributed Beamforming

For a cluster of distributed nodes, emulation of a virtual array is not trivial. As op-

posed to a centralized scenario, in fact, where all elements naturally share a common

phase and frequency reference, and where a fixed and regular geometry guarantees

tight control on the relative phase shifts among elements, this distributed set up
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Figure 1.1: The concept of Distributed Beamforming: a wireless sensor network

becomes a virtual array to steer a beam towards the receiver.

faces new challenges. Each node has in fact its own and independent local oscillator,

with random initial phase as well as phase noise and carrier frequency inaccuracy,

and sensor locations are typically unknown. In addition, nodes must agree upon

a common message before implementing beamforming. The difference between a

centralized and a distributed beamformer is schematically represented in Figure 1.2.

The following issues must then be tackled:

• Carrier frequency synchronization: all the local oscillators must oscillate with

the same carrier frequency in order to avoid as much as possible phase drift

due to imperfect carrier synchronization.

• Carrier phase synchronization: each local oscillator has an unknown initial

phase which has to be compensated for successful beam steering.

• Time synchronization: in order to successfully beamform a common message

signal, nodes must share the same time reference.

• Message sharing: nodes must agree upon a common message signal which

corresponds to the information to be relayed to the receiver.

Ideal beamforming weight computation for shaping a particular beampattern in

space is thus quite challenging: even if there were a unique phase and frequency

reference across the system, nodes should have to have Channel State Information

(CSI), which, in a distributed set-up, may be unfeasible because of its excessive

overhead. Moreover, even if all the sensors were somehow able to achieve perfect

beamforming configuration, their local oscillators, having independent drifts, would
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(a) Centralized Array (b) Distributed Array

Figure 1.2: A graphical representation of the difference between a centralized and a

distributed array.

cause progressive misalignment of the signals, thus preventing them from maintain-

ing the desired beampattern shape over time.

1.4 Distributed Arrays

Distributed beamforming has been studied in the context of relay Amplify and

Forward (AF) networks and Multiple Input Single Output (MISO) architectures.

Typically, in both cases, the main goal of the distributed antenna is to steer a

directive beam in the direction of the receiver to achieve SNR and thus capacity

gains, or directivity gains, and thus enhanced spatial filtering capabilities. In a relay

set up the virtual array facilitates the communication of a source and a destination

pair, hence the source broadcasts its message signal to the collaborating nodes, and

differently, in a MISO architecture, nodes have to agree upon a common message

before transmission. This can be done with consensus algorithms [29], or with

ad hoc cross-layer schemes which aim at minimizing information sharing overhead

specifically for collaborative beamforming [30–32]. Researchers have devoted many

efforts to studying the performance of distributed arrays, in situations where the

nodes have different degrees of CSI knowledge and different power constraints.

In the context of a source-destination pair with an AF multiple-relay network

implementing single beam steering, authors in [33] focus on the case where there is

perfect local CSI at the relays, at the receiver, and at the transmitter (when there is

a direct link between transmitter and receiver). In addition, a per-node power con-

straint is considered, in order to take into account the fact that independent devices

may have different battery requirements. This work presents a collaborative beam-

steering protocol where the nodes not only adjust the phases of their transmissions,

but also their transmit powers to optimize network performance. Follow-up work
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considers the cases where nodes have knowledge of only second-order statistics [34],

first-order and second-order channel statistics [35], or quantized information on the

channels [36]. Authors in [37] consider imperfect CSI at the sender, and they design

beamforming weights to maximize the worst-case SNR at the destination. Work

in [32] then focuses on the case of multiple sources, and in [38] authors consider a

threshold decode and forward relay network where the relays have multiple antennas.

In [39], a MISO network is considered, and minimization of average transmitted

power is performed when full CSI at transmitters is available through a feedback

channel. Also, optimal adaptive transmission strategies are developed and optimal

quantizers are designed when the sensors only have quantized CSI, or when they

have full local channel state information, but quantized CSI relative to the rest of

the transmitters. Authors in [25] then show how DBF is beneficial for realizing

spatial diversity, and they analyze a network with multiple sub-clusters of nodes

that have to transmit different data streams to non-cooperating receivers, preventing

undesired terminals from falling into their spot beams.

In [40], a signal reversing mechanism for beamforming weight computation is

suggested. According to this scheme, the receiver sends a pilot to the network

of nodes, and each sensor uses the reversed version of this beacon to modulate

its message signal, in order to compensate the channel, which is assumed to be

reciprocal. A practical experiment is also described to measure the beamforming

gain obtained by a network of two sensors.

Authors of [41–43] study the impact of distributed beamforming on carrier-sense

multiple access networks where collaborating nodes can give rise to the hidden beam

problem, i.e., users that fall in a null direction of a beampattern shaped by other

nodes might wrongly sense that the medium is free and transmit, creating unwanted

interference. Interesting approaches are proposed to control the power of the side

lobes in order to prevent this problem from arising, and to allow the network to im-

plement collaborative beamforming thus benefiting from more energy-efficient com-

munication.

The properties of average beampatterns created by nodes randomly distributed

in space is studied thanks to the theory of random arrays [44–49].

The aim of the above-mentioned works is to derive strategies for distributed

beamforming weight computation with different network constraints, different ob-

jectives, and different degrees of CSI, or to study the performance of distributed

antennas, according to the random position of the sensors. The underlying assump-
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tion, though, is that there is a common phase reference across the system, and that

the frequency drift is negligible. Some of these works extend their results to the

case of non-perfectly-synchronous nodes [27, 36], and they evaluate the impact of a

certain degree of phase misalignment on network performance. However, these re-

sults are built upon the assumption that the collaborating nodes have agreed upon a

unique phase and frequency reference, and possible performance degradation due to

lack of synchronization are due to bounded phase offsets from the common reference.

Hence, ad hoc phase and frequency synchronization algorithms are required for the

network to behave as a collaborative antenna.

1.5 Overview on Distributed Phase Synchronization

This thesis focuses on the issue of distributed phase synchronization, considering

that all the carriers have been locked to the same frequency. This can be achieved

with ad hoc distributed frequency synchronization schemes, e.g. [50]. Clearly, in

realistic scenarios, frequency synchronization can be achieved with a certain level

of accuracy. Work in [51] investigates the effect of frequency mismatches on the

performance of a distributed beamformer. This section provides an overview of the

state of the art on distributed phase synchronization. Chapter 2 then presents the

schemes we propose. Phase-alignment schemes can be classified as follows:

• Closed-loop methods: the synchronization procedure is driven by one-bit or

full feedback from the receiver.

• Time-slotted round-trip methods: a beamforming configuration is achieved

after bouncing across the network, in a time-slotted fashion, a pilot beacon

sent from the receiver or from one of the source nodes.

• Node-selection procedures.

• Open-loop methods: the network synchronizes without the cooperation of the

receiver.

• Blind methods: no synchronization is performed, but the natural phase drift

of the oscillators is exploited to eventually achieve a desired beamforming

configuration.
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Closed-loop Phase Synchronization

One-bit feedback

In [1, 52–54] a closed-loop, distributed, and iterative phase synchronization proce-

dure, called Random 1-Bit Feedback (R1BF) algorithm, is presented. Performance

is evaluated in terms of the improvement of the Received Signal Strength (RSS),

i.e., the intensity of the useful part of the aggregate signal at the receiver, as the

distributed synchronization procedure unfolds. In other words, the aim of these al-

gorithms is to enable the network to steer a beam in the desired direction in space by

successively adjusting the phase of the transmitted signals according to the policy

dictated by the algorithm. Clearly, the faster the received signals achieve coher-

ence, the better in terms of energy consumption since less signaling is required for

synchronization.

According to the R1BF algorithm, nodes apply, independently from one another

and simultaneously, random phase adjustments to their signals. On the basis of one

bit of feedback from the receiver, which informs the network if the set of random

perturbations has improved or worsened the RSS, the nodes decide whether to main-

tain or discard the introduced phase shifts. This randomized process is carried out

until the received phases achieve a desired level of coherence. Authors in [1] show

that, for a wide variety of probability distribution functions (PDFs) for the phase

adjustments, the procedure leads to asymptotic coherence with probability one. An

analytical framework is provided in [55] to analyze the convergence of the R1BF

algorithm by considering it as a random search algorithm.

The invention of this scheme triggered a considerable quantity of follow-up work.

An extension for both phase and frequency synchronization is presented in [56],

together with an experimental verification on 60-GHz wireless sensors. In [57] and

[58], a signed variation of the R1BF algorithm is introduced to improve convergence:

if nodes receive a negative feedback, they change the sign of the tested phase shifts

and apply them before starting a new test. A further enhancement of this method

is described in [59], where, in case of positive feedback, the nodes insist on applying

the successful shift until the signal starts worsening again, and in case of negative

feedback, they adopt the same strategy but by inverting the sign of the shift. In [60]

this application is extended to a multiuser scenario, where M separate clusters of

nodes have to communicate with M distinct receivers. In this work, distributed

beampattern shaping is used to implement SDMA schemes: the network is divided
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into M sub-clusters of nodes that have to multiplex M independent streams of

data to M non-cooperating receivers. A first attempt to incorporate the effect of

Additive White Gaussian Noise (AWGN) on the random synchronization process

was made in [61]. In this work, authors prove that the random procedure does not

converge to 1 (which is the maximum normalized RSS), as the noiseless algorithm,

but it converges to a value between 1/
√
N , where N is the number of nodes in the

network, and 1. The value 1/
√
N corresponds to the normalized beamforming gain

when all the nodes have uniformly distributed phases in [0, 2π). New versions and

improvements of R1BF are also contained in [62–65], and practical implementations

have been proven to be possible, even on commodity hardware with low-quality

oscillators [66].

A half duplex amplify and forward relay network is considered in [67]: an adap-

tive beamforming scheme based on predefined sets of deterministic perturbations of

the beamforming weights driven by a one-bit feedback from the receiver is presented.

Authors in [68] analyze the problem of distributed beamforming from an infor-

mation-theoretic point of view, providing a lower bound for the time required to

achieve phase coherence at destination in a binary signaling case, where nodes can

either flip or not their phases, on the basis of a one bit of feedback from the receiver.

Full feedback

In [69], the received signal is considered as composed by a sum of complex signals,

each one relative to the aggregate transmissions from a sub-cluster of nodes. The

receiver estimates the magnitude and the phase of the signals relative to each cluster,

and the objective is to align these signals in phase. As opposed to the R1BF algo-

rithm, the feedback is based on the complex signal, and not only on the magnitude,

and it is directed to subsets of nodes.

In [70] a closed-loop phase tracking routine based on Code Division Multiple Ac-

cess is proposed to achieve coherent combining of signals transmitted from a cluster

of distributed antennas. The receiver acts as the phase and frequency reference and

sends a reference signal to the nodes. The nodes bounce this signal back, and the

receiver calculates phase pre-compensation values to be fed back to the nodes. The

effect of partitioning the transmitted energy between synchronization symbols and

data packets is investigated, by observing its impact on the data bit error rate.

In [71], distributed transmit beamforming is evaluated in a state-space dynamic

framework, where the effects of stochastic clock drift and of unpredictable kinematics
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are taken into account during the tracking procedure which is driven by full feedback

from the receiver. Numerical results show how near-ideal beamforming performance

is obtained, as long as the period between successive training routines is sufficiently

small.

Time-slotted round-trip synchronization

A time-slotted round-trip procedure for carrier synchronization is presented, in var-

ious versions, in [72–75]. This scheme relies on the fact that if a beacon is sent from

the receiver and bounced across the network of nodes before being sent back to the

receiver itself, it will experience the same phase shift as if it covers the inverse route.

Hence, all nodes forward to the receiver beacons that have been bounced across the

network and that will all have experienced the same phase shift once they reach

the receiver again. The time to synchronize is 2 × N time slots, where N is the

number of nodes in the network, and this approach requires an extensive amount of

signaling, which results in network power consumption. In this work, authors take

into account phase and frequency estimation errors due to AWGN, as well as the

effect of phase noise during beamforming. Regarding the latter impairment, they

also quantify the amount of time during which the distributed beamformer provides

an acceptable level of carrier phase alignment.

Node-selection procedures

Node selection procedures that sort transmitters on the basis of their mutual phase

alignment to efficiently create an array out of a useful subset of nodes are also

analyzed in [76–79].

In [77], a virtual array is formed by selecting an appropriate subset of nodes in the

network, whose signals, without having to be synchronized, are already sufficiently

aligned to sum coherently at the receiver. In this case, the receiver is assumed to

have global CSI, i.e., knowledge of all the channels relative to each node. The case

of imperfect CSI due to noisy estimation is considered, and its impact is evaluated

on the performance of the distributed beamformer for different SNR values.

Open-loop Synchronization

When communication with the receiver is considered too costly with respect to intra-

cluster communication among sensors, open-loop synchronization schemes allow for

alignment procedures which do not involve exchange of signals with the receiver.
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Open-loop methods are described, for example, in [50, 80]. In [50] a master-slave

scheme is presented: the main idea is that a master node is elected in the distributed

network of sensors, and all the cooperating devices have to lock to the master’s

reference carrier signal. The master broadcasts a reference beacon to all the slaves,

and the slaves lock their local oscillators to this signal. This method is successful

provided that the nodes are able to pre-compensate the phase mismatch of the

received reference signal due to the phase response of the RF amplifiers, and to

the propagation delay. The former is a fixed and precisely known offset, which

can be corrected for. In order to compensate for the latter, calibration procedures

are required. In [80], nodes exchange signals in a round-robin fashion to estimate

their relative positions, provided that the receiver provides each node with coarse

information relative to its positioning.

Blind Approaches

Typically, in a distributed network, one of the main impairments for distributed

beamforming is the oscillators’ drift in time [81], which causes progressive carrier

misalignment and consequent loss of coherence of the signals in the direction of the

receiver. An interesting blind zero-feedback distributed beamforming is presented

in [82, 83]. Here, the natural misalignment of the carriers is exploited to reach a

suitable set of beamforming gains. Expression for the probability of alignment are

derived for specific carrier offset distributions, and it is shown how the probability

of alignment decreases as the size of the network increases.





Chapter 2

New Algorithms for Distributed

Phase Synchronization

2.1 Our Contribution on Phase Synchronization

Part I of this thesis presents innovative distributed phase synchronization algorithms.

Reduction of synchronization overhead with respect to R1BF has been the main

driver of our approach, and we here present two closed-loop schemes, namely De-

terministic Joint Activation (DJA) and Successive Deterministic Distributed Beam-

forming (SDDB) which rely on successive and deterministic phase update strategies

to steer a maximum of radiation in the direction of the receiver. Nodes are entitled

to apply to their signals one out of a choice of predefined phase adjustments, and

the selection of the best shift is controlled by the receiver’s feedback, which can be

1 or more bits. The difference between the two approaches is that, in case of DJA,

all nodes repeatedly and jointly transmit beacons to the receiver while performing

phase tests in a one by one fashion, and the receiver, by measuring the RSS of

the cooperative transmission, informs each node, with one bit of feedback, whether

the introduced phase adjustment has improved the quality of the signal or not. For

SDDB, nodes, in turn, send pilot signals to the receiver which feeds back a quantized

phase correction message to align each node’s signal to a fixed local bias. As high-

lighted in [84], one of the main limitations of the R1BF is its slow convergence rate.

Although its convergence to the maximum achievable gain has been proven in [1,55],

the time length to reach signal alignment may be far too long in comparison with

realistic network constraints. This means that the synchronization procedure itself

not only introduces substantial latency, but burdens the network with an extensive
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amount of signaling, which translates into precious energy consumption. We begin

by showing how, at the expense of one extra bit of feedback, convergence of the

R1BF can be improved. Then we show how, with our deterministic routines, at

the price of a slight increase of network coordination, not only the synchronization

latency is substantially shortened, but the power consumption is also drastically re-

duced. In the study of SDDB, we include the analysis of the effect of AWGN on the

synchronization procedure. Surprisingly, given that the defeat of noise is one of the

main drivers for DBF, all previous analyses of R1BF disregarded the impact of this

impairment on the synchronization procedure. A very recent attempt to evaluate

the effect of AWGN on the R1BF scheme has been proposed in [61], but this analysis

does not quantify the impact of noise on the achievable gain of the algorithm.

2.2 General System Model and Assumptions

In the next sections, we will be discussing the R1BF algorithm from [1], and our

deterministic schemes: DJA and SDDB. In this section, we present the general

system model that is common to these approaches. We will then adapt this model

to each particular algorithm in its corresponding section.

The following assumptions are made, in line with previous works on phase syn-

chronization:

A1) Nodes are unaware of their own locations, of the position of the receiver, and

of channel-state information (CSI).

A2) All devices are equipped with an isotropic antenna.

A3) All sensors transmit at the same power to ensure fairness in network power

consumption.

A4) Since the receiver’s distance is considered to be much greater than the radius

of the network itself, path losses are considered to be the same for all nodes.

A5) There is no multipath and thus the effect of the channel amounts to a phase

rotation, random and static for each node. This could represent, for instance,

situations where the receiver is a satellite or an elevated cell site.

A6) All nodes are locked to the same carrier frequency fc, and frequency drift is
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considered negligible1. Hence, the phase shift of each local oscillator is also

static and modeled as uniform in [0, 2π).

A7) Sensors share a common time reference, i.e., time synchronization is present

throughout the whole network.

In order to steer a beam towards the receiver, each transmitter should multiply

its signal by an appropriate complex beamforming weight to compensate for both

the channel rotation and the misalignment due to the local oscillator’s phase off-

set. If each node had perfect knowledge of this phase compensation, the optimal

beamforming weights could be applied and the signals would perfectly align in the

target direction. In a distributed set up however, obtaining full CSI may not be

feasible. To bypass this obstacle, we consider iterative closed-loop synchronization

procedures where each transmitter can locally adjust the phase of its signal based

on a low-rate feedback it receives from the destination. The phase adjustment is

equivalent to multiplying the signal by a complex, unit-magnitude beamforming co-

efficient with a properly-selected phase. The type of feedback and the type of local

phase adjustments depend on the chosen synchronization protocol.

Let Na be the number of active devices in a given time-slot. The channel phase

rotation and the phase offset of the local oscillator for node i are absorbed into a

single variable, ψi. In turn, the phase rotation that each transmitter has applied

to its signal at time t is denoted by φi[t]. During synchronization, nodes transmit

unmodulated carriers (beacons), so the complex signal at the receiver is given by

r(t) = ej2πfct
Na
∑

i=1

ej(ψi+φi[t]) + n(t) (2.1)

where n(t) is a complex Gaussian random variable, with mean zero and variance σ2,

representing the noise at time t. The value of Na is fixed throughout the synchro-

nization.

After down conversion and sampling, at the end of time slot m the resultant

complex vector relative to the useful, i.e., noiseless, signal is

R[m] =

Ns[m]
∑

i=1

ej(ψi+φi[m]) (2.2)

1A frequency offset will actually be present, and this translates into a maximum time window

within which phase coherence can be assumed to be maintained. Loss of coherence has a detri-

mental effect on the beamforming gain, and this calls for re-synchronization. This thus becomes a

requirement on maximum convergence time.
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where Ns[m] is the number of nodes that have been involved in the synchronization

procedure up to time slot m. The only component in this expression that is locally

tunable by each transmitter is the phase of the beamforming weight. The RSS at

the end of time slot m, given the superposition of Ns[m] carriers, is simply

|R[m]| =

∣

∣

∣

∣

∣

∣

Ns[m]
∑

i=1

ej(ψi+φi[m])

∣

∣

∣

∣

∣

∣

. (2.3)

We define the RSS normalized to the total number of nodes N in the network as

|R̂[m]| , |R[m]|
N

(2.4)

and we dub it normalized RSS (NRSS). The NRSS is maximized when ψi+φi[m] =

Υ[m], ∀i, where Υ[m] is an arbitrary constant. The objective is to adjust φi[m] in

order to obtain an optimal set of beamforming weights that result in received signal

phases that are as close as possible to this condition of coherence.

2.3 Random 1-Bit Feedback Synchronization

The authors in [1] present a random procedure for phase synchronization, called

R1BF, ignoring the noise term in (2.1). According to an iterative paradigm, at

the beginning of each time slot, all sensors simultaneously apply a random and

independent phase adjustment to their carriers. On the basis of a one-bit feedback

from the receiver, they decide whether to maintain or discard the introduced phase

shifts: the feedback is a “keep” signal if the set of phase adjustments has improved

the RSS, or a “discard” signal otherwise. Assuming φi[m − 1] is the best known

carrier phase at the ith sensor at time slot m, each transmitter applies a random

phase adjustment denoted as δi[m], taken from a predetermined PDF f∆i
(·), striving

for a potentially better phase. The applied phase increments are independent over

time and across nodes. The tested phase for the ith node at time slot m is then

φtesti [m] = φi[m− 1] + ∆i[m]. (2.5)

The corresponding RSS, |R[m]|test, is given by (2.3), replacing φi[m] with φtesti [m]

and Ns[m] with N . The receiver measures |R[m]|test and sends a feedback signal

indicating whether the introduced phase shifts have improved the quality of the

signal or not, i.e., if |R[m]|test is greater or smaller than |R[m − 1]|, which is the

best value for the RSS up to time slot m. The update process for φi[m] can be
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summarized as follows:

φi[m] =

{

φtesti [m], |R[m]|test > |R[m− 1]|
φi[m− 1], |R[m]|test ≤ |R[m− 1]|

(2.6)

The value for the record of the best observed RSS is also updated as

|R[m]| = max (|R[m]|test, |R[m− 1]|) (2.7)

This procedure is iterated and stops only once the RSS has reached a particular

threshold value. Phase synchronization is thus achieved in a completely distributed

fashion. No network coordination is required, and the receiver only has to estimate

the strength of the aggregate of all the signals.

In [1], authors develop an analytical framework to characterize the average be-

havior of the NRSS as R1BF takes place. This elegant analysis considers the set-

ting described in Section 2.2, where carriers are synchronized in frequency, with

constant (but unknown) phase offsets between transmitters, and constant (but un-

known) channel gains. The distributed random adaptation of the phases is shown

to converge to coherence with probability one, for a vast range of perturbation dis-

tributions, and the dynamics of the algorithm are established. The latter result is

based on the Central Limit Theorem to show that when the number of transmit-

ters is large enough, the effect of the phase perturbations translates into an additive

Gaussian perturbation on the resultant signal, and on the Gibbs conditioning princi-

ple of statistical mechanics, which allows for deriving a probability distribution that

is plausibly applicable to the received phases, under the feedback algorithm. This

analysis, however, completely disregards the impact of noise in the convergence.

2.4 Random 2-Bits Feedback Synchronization

In [1], authors show that the convergence rate of the R1BF procedure can be maxi-

mized by optimizing the variance of the distribution of the phase shifts f∆i
(·). It is

in fact shown that the convergence of the algorithm only depends on the variance

of this distribution, and not on the type of distribution itself. An expression for the

optimal value of variance is provided, which depends on the value of NRSS. Hence,

optimal convergence rate can be achieved only if the nodes are able to fine tune

this parameter at each iteration. This would though require soft feedback from the

receiver.
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In order to improve the convergence of the R1BF algorithm, but without a drastic

increase in the rate of the feedback, we propose a 2-bits feedback scheme, and we

denote it with R2BF. With two bits of feedback the nodes can acquire information

not only on the increase or decrease of the RSS, but also on its quality. In particular,

it is useful to spend the extra bit to refine the RSS increase information:

00 : RSS decreased.

01 : RSS increased and far from its maximum.

10 : RSS increased and half way from its maximum.

11 : RSS increased and close to its maximum.

Obviously the terms far, half way, and close must correspond to specific intervals

of the RSS dynamic range. The receiver is assumed to have a way to estimate the

maximum achievable RSS in order to be able to provide this feedback. On the basis

of this additional information, nodes can take action by adjusting the variance of the

distribution of the random phase shifts in a predefined set of three values. As also

shown in [1], initially, when nodes start the synchronization process and the RSS is

typically far from its maximum, high values of variance allow large phase jumps and

let nodes search for the best phase shift in a wider range. As the RSS increases and

becomes closer to its maximum, a smaller variance allows finer phase jumps in order

not to scatter the received phasors away from their positions (possibly decreasing

the RSS) and to search for the best phase value in a smaller range. We consider ∆i

to be uniformly distributed in [−π/β,+π/β] where:

β = β1 if RSS < ξ1

β = β2 if ξ1 ≤ RSS < ξ2

β = β3 if ξ2 ≤ RSS < ξ3

and parameters ξi are predefined thresholds, which are used when the RSS increases.

The ξ3 threshold is not strictly necessary but it is used as a stopping criterion. We

denote this procedure as the R2BF algorithm. Figure 2.1 compares the convergence

of R1BF and R2BF through Monte Carlo simulations (105 trials) for a network of

N = 100 nodes. Different NRSS curves are depicted for R1BF corresponding to β

being 4, 20, and 40, respectively. For R2BF, parameters β1, β2, and β3 are set to

4, 7, 12, respectively. As can be seen, the NRSS curve relative to R2BF always lies
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Figure 2.1: R1BF compared to R2BF via Monte-Carlo simulations, N = 100.

above the R1BF curve, showing that simply increasing the feedback by one bit is

beneficial for the random synchronization procedure.

2.5 Deterministic Joint Activation

The improvement in terms of convergence brought by R2BF may not be enough for

practical applications. Aiming at even faster convergence, DJA imposes tighter con-

trol on phase trajectories. To exemplify the concept, we begin by an ideal case with

purely soft feedback. The receiver, being able to estimate each carrier separately,

could in fact feedback the information relative to exact phase rotation each node

should apply to its signal in order to achieve perfect alignment with the other carri-

ers at destination. Although this algorithm reaches optimal performance, ideal soft

feedback may be unfeasible in a distributed set up, and even a quantized version may

require too much overhead. We therefore introduce simplified versions which follow

a similar philosophy, but with a complexity comparable to the random solutions,

i.e. a single bit. Each node is entitled to apply one phase shift, out of a predefined

deterministic set of possible values, which depends on the chosen resolution. We

identify this set as

SK =

{

k × 2π

K
, k = 0, . . . ,K − 1

}

(2.8)
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where K is the number of possible phase shifts, assumed to be a power of two, i.e.,

K = 2b where b is the number of bits available for feedback. Alternatively, we can

construct WK , the set of all possible beamforming weights for a given K, as follows:

WK ,

{

wk = ej k
2π
K , k = 0, . . . ,K − 1

}

. (2.9)

The idea is to select the best rotation as the one that allows to improve as much as

possible the RSS. This is the fundamental principle that lies beneath the determin-

istic approach.

The following steps summarize the flow of the deterministic algorithm:

• All nodes transmit to the receiver during the initialization time slot.

• The receiver measures the initial RSS, and stores it as |R[0]|.

The following steps are carried out for each node in the network:

• Node i rotates its signal by k2π/K as allowed by SK (the first test is for k = 1).

• All nodes transmit to the receiver.

• The receiver compares the new RSS value with the best value of RSS stored

up to that moment, and if the rotation of node i has improved the quality of

the RSS, the receiver sends a positive feedback and memorizes the new RSS

as the best possible value; otherwise the feedback is negative and no action is

taken.

• These three steps have to be repeated for the shifts in SK for k = 1, . . . ,K−1.

• At the end of all the possible phase tests, on the basis of the received feedback,

node i decides which phase shift should be finally applied to its signal.

Figure 2.2 provides an illustrative representation of how the DJA algorithm works.

Figure 2.3 represents a comparison, through Monte Carlo simulations (105 trials)

between DJA and R1BF. After 1+(K−1)×N time slots, i.e., the time required for

all the nodes to perform their phase tests, the DJA algorithms stop, whereas R1BF

continues to run until all the phases reach perfect alignment, or until a stopping

criterion, defined by the specifics of the application, is verified. As can be seen, DJA

offers a much faster convergence with respect to R1BF. After only N time slots,

more than 60% of the maximum possible gain is achieved, and after 3×N time slots

the NRSS is within 1 dB away from its maximum. R1BF needs more than double

the time to reach the gains achieved by DJA with K = 2, and K = 4, respectively.
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Figure 2.2: A schematic representation of how the DJA algorithm is performed.
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Figure 2.3: R1BF compared to DJA via Monte-Carlo simulations, N = 100.
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Figure 2.4: Two Hybrid solutions for phase synchronization, evaluated via Monte-

Carlo simulations, N = 100.

2.6 The Hybrid Approach

The DJA approach shows a steep growth rate, but it is limited by an NRSS ceiling.

Therefore, a further idea is to combine in sequence two different algorithms, such as

a deterministic one and a random one, or two deterministic ones. We can define this

way of proceeding as a hybrid approach. It is possible to create many combinations.

We propose, as an example, the two following ones. DJA with K = 2 followed by

R1BF: the random approach aims at improving the NRSS that the deterministic

algorithm is able to achieve in N time slots. This can be interpreted as a fast coarse

synchronization (phasors can only be rotated by π) followed by a finer one, given

by R1BF with β = 20. DJA with K = 2 followed by DJA with K = 4: the second

stage aims to improve the NRSS that the first approach is able to achieve in N time

slots. This method can also be interpreted as the binding of a coarse synchronization

with a finer one. Figure 2.4 depicts Monte Carlo curves (105 trials) relative to these

two hybrid approaches, and it shows how the NRSS achieved by DJA with K = 2

can be considerably improved, at the expense of a wider time frame allocated for

synchronization.
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2.7 Time-Varying Channel

This section focuses on the evaluation of the performance of R1BF, R2BF, and

DJA in a time-varying scenario, where the effect of signal propagation is subject to

time-dependent fluctuations. Hence, assumption A5 in Section 2.2 does not hold

any more, but a new channel model is introduced. We show through Monte-Carlo

simulations how R2BF and DJA perform with respect to R1BF in these conditions.

Here, channel fluctuations are time-dependent, and cause the transmitted signals

to loose their alignment over time. The received signal quality is then subject

to deterioration, and this must be taken into account throughout the course of

the synchronization procedure. The time-varying channel model we use is the one

described in [52], and we adapt our algorithms to these new time-varying conditions.

We compare the synchronization procedures we propose with the random solution

in [52], which is an adaptation of R1BF to time-varying channel conditions, and show

how our DJA approach outperforms the random one. Performance is evaluated not

only in terms of RSS growth at the receiver, as in the static case, but also in terms

of the capability of the algorithm to counteract misalignment over time. We show

how our deterministic methods prove to have very good tracking capabilities with

respect to the random approach, since they allow for much faster convergence. The

faster the RSS grows at the receiver, the more efficient the synchronization process

is, since less signaling, and thus less energy expense, is required for the nodes to

correctly align their phases.

We here comply to all the assumptions relative to system model described in

Section 2.2, except for assumption A5 relative to the channel phase effect. In

Section 2.2 in fact, the effect of the channel is considered to be static, but we now

consider it to be subject to random fluctuations. We use the channel drift model

suggested in [52], which is a random walk with non Gaussian increments. The

channel phase response for transmitter i at time slot m is modeled as follows:

ψi[m] = ψi[m− 1] +Di[m]. (2.10)

The drift process Di[m] is modeled as independent and identically distributed across

sensors, stationary and uncorrelated in time, with a distribution fDi
(·) which is

considered uniform in [−π/α,+π/α]. The relation to practical cases depends on the

value attributed to α.

If the channel fluctuates, received phases are prone to misalignment over time,

thus the best transmitted phase must also be tuned to maintain acceptable signal
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quality at destination. The RSS, in fact, will tend to decrease on average if no

measure is taken to counteract phase drift due to channel variations. In [52], the

R1BF algorithm is adapted to this dynamic scenario and the procedure takes place

as follows:

1) At time slot m− 1, transmitters are aware of the best introduced beamform-

ing phase rotation φi[m − 1], and meanwhile the receiver keeps an estimate

Ebest[m− 1] of the best achievable RSS. The RSS in fact has random fluctua-

tions due to channel drift, so the receiver can only estimate its value.

2) At time slot m each transmitter generates the random phase shift ∆i[m], and

applies the phase rotation to its signal so that φtesti [m] = φi[m−1]+∆i[m], as

shown in (2.5). Thus, the received phase, in the presence of the time-varying

channel drift, becomes:

φi[m− 1] + ψi[m− 1] + ∆i[m] +Di[m]. (2.11)

3) The receiver measures the RSS, |R[m]|test, with the received phase represented

in (2.11) and broadcasts to the nodes a single bit of feedback that is set to

1 if the RSS in the current time slot is better than the estimated best RSS

Ebest[m− 1], and 0 otherwise.

4) If the feedback bit is 1, Ebest[m] is updated with the new measured value of

RSS, |R[m]|test, and transmitters update their best phase adjustment φi[m]

accordingly; if the feedback bit is 0, the receiver multiplies Ebest[m − 1] by a

factor q < 1 to reflect the expected signal deterioration due to the channel

behavior, and nodes discard the applied phase shifts ∆i[m].

5) This process is re-iterated in the following time slots.

The received phases are subject to two different kinds of variations: the ones applied

by the transmitters, and the unknown time-varying channel responses. The update

procedure can be expressed as follows:

Ebest[m] =

{

|R[m]|test, |R[m]|test > Ebest[m− 1]

q Ebest[m− 1], otherwise

φi[m] =

{

φtesti [m], |R[m]|test > Ebest[m− 1]

φi[m− 1], otherwise
(2.12)



2.7 Time-Varying Channel 35

Clearly this tracking version of R1BF does not converge to a precise value of

RSS, but it reaches a dynamic steady state, where the tendency of the channel drift

is compensated by the phase adjustments, applied to preserve coherence.

Figure 2.5 displays a comparison between the R1BF and the R2BF algorithms

via Monte-Carlo (105 trials). A network of N = 100 nodes is considered, their initial

phases before synchronization are uniformly distributed in [−π,+π], and parameter

q is set to be 0.9. The distribution of the applied random shifts is uniform in

[−π/β,+π/β], and for R1BF parameter β is set to be 20, whereas for R2BF it can

have the three following values: 5, 10, 25, which correspond to the NRSS being

below 20% of its maximum, between 20% and 50%, and above 50%, respectively.

The distribution of the channel drift is uniform in [−π/α,+π/α], and α is set to 20.

As can be seen from the graph, a wider variance for the applied phase shifts in the

initial stage of the algorithm provides a better NRSS growth rate.

Figures 2.6 and 2.7 represent the behavior of the R1BF and the R2BF algorithms

via Monte-Carlo (105 trials) for different variances of the distribution of the channel

drift. Parameter β is set as for Figure 2.5. As can be seen, both approaches seem

to have a ceiling for the NRSS, which sets the performance limit in the presence

of channel drift. The R1BF appears to be more robust to channel drift. This is

probably due to the fact that R2BF never actually uses the value 25 for parameter β,

since the NRSS never goes beyond 30% of its maximum. Hence, the algorithm keeps

using a wide variance for the distribution of the random phase adjustments, which

does not prove to have a good behavior in counteracting channel phase variations.

We adapted the DJA algorithm in order for it to face time-varying conditions.

The two following steps are carried out during initialization:

• All nodes transmit to the receiver.

• The receiver measures the RSS, and stores it as Ebest[0].

All the nodes then carry out the following procedure, which is described for a generic

node:

1) Node i rotates its signal by a particular angle allowed by the chosen set of

phase shifts, SK , defined in (2.8).

2) All nodes transmit to the receiver at time slot m.

3) The receiver compares the RSS with Ebest[m−1], and if the introduced rotation

at node i has improved the quality of the RSS, the receiver sends a positive
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Figure 2.5: Comparison between R1BF and R2BF in presence of a time-varying

channel drift, with parameter α = 20. Parameter β is set to 20 for R1BF, whereas

it is set to be 5, 10, 25 for R2BF according to the NRSS achieved value. N = 100.
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Figure 2.6: R1BF in presence of a time-varying channel drift, with different values

for parameter α. Parameter β is set to 20, and N = 100.
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Figure 2.7: R2BF in presence of a time-varying channel drift, with different values

for parameter α. Parameter β is set to be 5, 10, 25, and N = 100.

feedback and memorizes as Ebest[m] the current RSS; otherwise the feedback

is negative and no action is taken.

• Steps 1, 2, 3, have to be repeated for the shifts in SK corresponding to k =

1, . . . ,K − 1.

• At the end of all the possible phase tests, on the basis of the received feedback,

node i decides which phase shift should be applied.

• If none of the phase shifts is to be performed, i.e. the feedback has always been

0, the receiver multiplies Ebest[m−1] by q, to estimate signal deterioration due

to the time-varying channel conditions.

This procedure can be iterated over time, to counteract misalignment due to channel

drift.

Figure 2.8 depicts the NRSS growth in time for the random approaches and the

deterministic approaches in a time frame of 103 time slots. Monte-Carlo simulations

have been run with 105 iterations. As already stated in the previous section, the

simulation scenario is built considering a network of N = 100 nodes whose initial

phases are uniformly distributed in [−π, π]. This configuration yields an initial value

for the NRSS, which of course is very low since carriers are far from being coherent.

In the DJA case, as the algorithm starts, in every time slot the effect of the channel
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drift affects each carrier, whereas the phase rotation due to the beamforming weight

is applied to one vector at a time (in particular, the one which corresponds to the

node that is going through the phase testing procedure). On the receiver side, the

RSS is measured at each time slot, and the stored RSS value is updated according

to the strategy described above for DJA adapted to a time-varying scenario. On

the basis of the feedback, the node chooses the appropriate shift from the set of

possible ones. Parameter q is set to 0.9, and, as stated before, the distribution of

the channel drift fDi
(·) is modeled for each channel as uniform in [−π/α+π/α], with

α = 20. The DJA algorithm has a predefined length in time, which corresponds to

the number of time slots needed for all the transmitters to perform the phase shifts.

It is then necessary to re-iterate each of these algorithms to keep track of channel

variations, and possibly counteract phase misalignment.

As can be seen, in these conditions random methods are not capable of raising

the RSS above a certain threshold, which, for the chosen parameters, corresponds

roughly to 30% of its maximum. This behavior has slight dependence on the vari-

ance of the distribution of the channel phase shifts, as depicted in Figure 2.6 and

Figure 2.7. This leads us to the conclusion that random methods are not appropri-

ate for a time-varying scenario. On the contrary, deterministic phase updates allow

for much greater value of NRSS to be achieved. Precisely, as the number of possible

phase shifts grows, the maximum achievable NRSS grows as well. This makes sense,

since it means that each transmitter can choose among a wider range of phase ad-

justments for its carrier. Although, a richer set of available phase adjustments also

yields to an increase in time for synchronization. As an example, DJA with K = 2

reaches approximately 38% of the maximum NRSS in 100 time slots (which is the

time needed for all the nodes to complete one synchronization round), and DJA

with K = 4 achieves more than 50% of the maximum in 300 time slots (which is the

time needed to complete one synchronization round). A trade-off is then required

between time for carrier alignment, and maximum achievable NRSS.

Deterministic methods as well have an NRSS ceiling. In fact, after a certain

number of iterations, the achieved level of NRSS tends to stabilize. This means

that the algorithm has reached some form steady state, and it can only compensate

the drifts without excessively improving received signal quality. We then propose

a variation of DJA with K = 2, with the objective of seeking an improvement in

terms of maximum achievable NRSS. We chose K = 2 to start with, since it has

the steepest growth rate, and the lowest NRSS ceiling. We introduce successive
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Figure 2.8: R2BF in presence of a time-varying channel drift, with different values

for parameter α. Parameter β is set to be 5, 10, 25, and N = 100.

stages of finer synchronization with increasing K, which becomes: {4, 8, 16}. Each

of these advanced synchronization stages is run twice, i.e. the advanced algorithm

is iterated twice for each value of K. The testing procedure is still the one described

above for the deterministic algorithms, adapted to a time-varying channel. This

method proves to have very good performance in terms of time-varying tracking

of the channel, and of NRSS improvement in time, as shown in Figure 2.8. We

call this method Advanced DJA (ADJA). In fact, it allows for a very steep NRSS

growth in its initial stage, and, although the steepness of the curve decreases as

successive stages take over, still a continuous improvement of the NRSS is detected

in the observed time frame of 103 time slots. Also, during the first 300 time slots,

the NRSS achieved is always greater than the one achieved with the rest of the

algorithms, and at that point in time it reaches approximately 53% of the maximum

value of NRSS.

2.8 Successive Deterministic Distributed Beamforming

We here introduce our new energy-efficient phase synchronization procedure, which

we denote as Successive Deterministic Distributed Beamforming (SDDB). The power

consumption due to signaling for phase alignment is drastically reduced with respect

to R1BF and to previous deterministic solutions. In this algorithm, sensors transmit



40 New Algorithms for Distributed Phase Synchronization

successively and independently from one another and the receiver is thereby able to

estimate each node’s signal separately. Each sensor only wakes up during its assigned

time slot to perform synchronization, while all the others remain in power-saving

mode. The goal for the receiver is to align the useful part of each received signal

as closely as possible to an arbitrary phase bias. Without loss of generality, we can

set this phase bias to be zero. The objective of the receiver is then to align the

signals of all nodes to the real axis. The procedure stops after N slots, i.e., when all

nodes have synchronized. Ideally, if an infinite number of bits were available for the

feedback, the receiver could inform each node which exact phase shift to apply to

align perfectly to the real axis. We will show that, in the absence of noise, with as

few as two bits of feedback (i.e., with four possible phase shifts), beamforming gains

within 1 dB of the maximum can be achieved. As mentioned earlier, this approach

drastically reduces the power consumption for the training procedure with respect

to R1BF and to previous deterministic solutions. In the latter cases, in each time

slot, Na = N , i.e., all sensors are always active and transmitting beacons. These

schemes potentially allow for cooperative transmission of information even during

the synchronization procedure, and they are potentially more adaptive to time-

dependent phase drift due to channel variations or oscillator dynamics, but have

larger energy overhead. In SDDB, the synchronization stage and the cooperative

transmission stage are disjoint, but Na = 1 in each time slot, meaning that network

power consumption per time slot is reduced by a factor of N .

Each node is entitled to apply one phase shift, out of the predefined deterministic

set of possible values, defined in (2.8), and which corresponds to the set of all possible

beamforming weights for a given K, defined in (2.9).

Without loss of generality, we can assume that nodes get activated in the same

order as their assigned index, i.e., at time slot m, the mth node is the active node

transmitting its beacon to the receiver. The receiver then observes

r[m] = ejψm + n[m] (2.13)

which is the down-converted and sampled version of the received signal defined in

(2.1), when Na = 1. Since we are focusing on the feedback decision in one particular

time slot, which is independent from all other time slots, for simplicity of notation

we drop the index m. Denoting the useful part of the complex received signal by v,

the received signal r can be rewritten as

r = v + n. (2.14)
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Figure 2.9: Illustrative representation of how SDDB performs. The receiver estima-

tes the complex signal of one node at a time while the rest of the network remains

in power saving mode.

For a given feedback rate, b, the phase space is divided into K = 2b regions. Let Dk

denote the kth region corresponding to all the phase values in [∠wk −π/K , ∠wk +

π/K), where ∠wk = 2πk/K as defined in (2.9). If r falls within Dk, the transmitted

signal should be multiplied by w∗
k in order to be rotated back towards the real axis.

The receiver will then send b bits of feedback, communicating the phase shift that

has to be applied to the node’s signal. Thus, the phase rotation, φ, that the sensor

should apply to its signal will have one of the values contained in SK , as given in

(2.8). The new received phase for the synchronized node will then be:

ψ̃ , ψ + φ (2.15)

where φ = −∠wk. At the end of the synchronization procedure, when all the N

nodes have been synchronized, the final NRSS, according to (2.3) and (2.4), can be

written as

|R̂N,K | =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

ejψ̃i

∣

∣

∣

∣

∣

(2.16)

where the phases ψ̃i are the received phases after synchronization. Figure 2.9 is a

schematic representation of the SDDB algorithm.
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2.9 Analysis of the SDDB Algorithm

2.9.1 Noiseless Scenario

If the noise is negligible, v can be estimated exactly. For a given K, the optimum

beamforming weight ŵk out of the set in (2.9) is

ŵk = argmin
wk∈WK

‖v − wk‖2. (2.17)

For K = 4, this is graphically illustrated in Figure 2.10(a), where region boundaries

are marked with dashed lines. In Figure 2.10(a), v falls in D1, hence w1 will be

chosen and φ = −π/2. Without noise, the synchronized phases ψ̃i are independent

and uniform in D0, i.e., in [−π/K,+π/K). This is because the unsynchronized

phases ψi are uniform in [0, 2π) and the decision in (2.17) is noiseless, hence all

the nodes will receive the correct information relative to their beamforming weight.

This will then lead their synchronized phases to be uniformly distributed around

the bias and to yield the best achievable NRSS for a given K. The performance is

limited exclusively by the resolution K, and it is therefore of interest to characterize

how the NRSS behaves as a function thereof. The following result informs of that

behavior.

Proposition 1 In the absence of noise, the expected value of the NRSS behaves as

E

[

|R̂N,K |
]

= 1−
(

1− 1

N
+

1

N3

)

π2

6K2
+ o

(

1

K2

)

. (2.18)

Proof: See Appendix B.

Taking advantage of the fact that the number of nodes is typically large, we

can further derive a lower bound on E[|R̂N,K |] that is very tight for values of N of

interest and exact for N → ∞.

Proposition 2 In the absence of noise, the expected value of the NRSS satisfies

E

[

|R̂N,K |
]

≥ E

[

ℜ(R̂N,K)
]

(2.19)

=
K

π
sin
( π

K

)

(2.20)

where ℜ(·) denotes real part.

Proof: See Appendix B.
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Figure 2.10: Example of phase quantization: using SK is equivalent to quantizing

the phase space in K regions.

Indeed, since without noise the synchronized angles are uniformly distributed

around zero, the corresponding imaginary parts cancel out as N → ∞.

Figure 2.11 compares the NRSS obtained through Monte-Carlo simulation for

increasing K, with its expansion in Proposition 1 and with the lower bound in

Proposition 2. A number of 105 Monte-Carlo iterations has been considered to

obtain the average NRSS for different values of K. As can be seen, the lower bound

is very tight already for N = 100. Figure 2.12 illustrates the tightness of the lower

bound in Proposition 2 with K = 2, which is the worst case. Since we have shown

that the tightness increases with both K and N , the bound becomes in fact exact

if either of them grows without bound. The plot in Figure 2.12 represents the

achievable gain as a function of Ns, i.e., the number of synchronized nodes. This

shows what the achievable normalized gain would be if Ns nodes were transmitting,

and it is obtained by multiplying (2.20) by Ns/N .

Next, the second raw moment of |R̂N,K | is characterized.

Proposition 3 In the absence of noise,

E

[

|R̂N,K |2
]

=
1

N
+
N − 1

N

(

K

π

)2

sin2
( π

K

)

. (2.21)

Proof: See Appendix C.

Using Proposition 3, the variance of |R̂N,K | can be easily established.
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Figure 2.11: Achievable NRSS with SDDB in noiseless conditions, with N = 100,

as a function of K: Monte-Carlo simulation results compared with the analytical

expressions in Propositions 1 and 2.
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Figure 2.12: Lower bound for the achievable NRSS for SDDB when K = 2; expres-

sion (2.20) is used; N = 100.
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2.9.2 Impact of Noise

When the noise term in (2.14) is not negligible, the receiver will have to choose wk

based on the noisy received signal, r, as follows:

ŵk = argmin
wk∈WK

‖r − wk‖2. (2.22)

However, since the actual goal of the receiver is aligning v, the useful part of r, there

will be a non-zero probability of making an incorrect decision. Choosing a wrong

phase shift will not yield the optimum NRSS that is achievable for a given K.

Achievable NRSS for Finite K

Let us first investigate the effect of noise on the NRSS when K is finite, which

corresponds to the practical cases of constrained capacity on the feedback link.

Invoking the polar representation

r = AejΘ (2.23)

the decision in (2.22) now depends exclusively on Θ. If Θ falls within Dk, the signal

for the node in question will be multiplied by w∗
k. Clearly, this can lead to a wrong

decision, as shown in Figure 2.10(b). Due to the noise, therefore, the synchronized

phases are no longer uniformly distributed and are not even necessarily within D0.

In this case, the distribution of the synchronized phases and, as a result, the NRSS

will depend on the received SNR. We define the per-node SNR as

γ ,
1

σ2
(2.24)

and denote the SNR-dependent normalized resultant by R̂N,K,γ. The result that

follows is a counterpart to Proposition 2, but with noise accounted for. As in the

noiseless case, the bound is tight for values of N of interest and exact for N → ∞.

Proposition 4 In the presence of noise,

E

[

|R̂N,K,γ|
]

≥ K

2π

∫ + π
K

− π
K

K−1
∑

k=0

cos

(

ψ′ − k
2π

K

)

pDk|ψ=ψ′ dψ′ (2.25)

where pDk|ψ=ψ′ is the probability that Θ falls within Dk conditioned to ψ being ψ′,

namely

pDk|ψ=ψ′ = Prob{Θ ∈ Dk|ψ = ψ′} =

∫ k 2π
K

+ π
K

k 2π
K

− π
K

fΘ|ψ=ψ′(θ)dθ (2.26)
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where

fΘ|ψ=ψ′(θ) =
1

2π
e−γ

{

1 + 2eγ cos
2(θ−ψ′)√γπ cos(θ − ψ′)

[

1−Q
(

√

2γ cos(θ − ψ′)
)]}

(2.27)

with Q(·) the Gaussian Q-function

Q(x) ,
1√
2π

∫ +∞

x
e−

z2

2 dz. (2.28)

Proof: See Appendix D.

For γ → ∞, the right-hand-side of (2.27) becomes a delta function at θ = ψ′

which reduces (2.25) to the noiseless expression in Proposition 2 and, as mentioned

at that point, the performance becomes limited only by the finite granularity K.

Particularly insightful is the analysis in the low- and high-SNR regimes. The

former is representative of the conditions in which an actual sensor network neces-

sitating of distributed beamforming might have to operate, and the latter serves as

a bridge to the noiseless results presented earlier.

Proposition 5 At low SNR,

E

[

|R̂N,K,γ |
]

≥
√

γ

π

K

2
sin
( π

K

)

+ o(γ). (2.29)

Proof: See Appendix D.

Figure 2.13 exemplifies the lower bound for the achievable NRSS in the presence

of noise for K = 2; the exact expression in (2.25) is represented, together with its

low- and high-SNR expansions respectively (2.29) and (2.20). Figure 2.14 presents

the same result for K = 4. In both figures, the curve obtained through Monte-

Carlo simulation is also represented. The average NRSS is considered for different

values of SNR, ranging from −15 to +20 dB. Except for very low SNR, the bound

is very tight. Figure 2.15 compares the lower bound with Monte-Carlo curves (105

trials) obtained with different values of nodes in the network, N , more specifically

for N = 20, 50, 100, and for K = 2. As can be seen, for values of SNR of relevance,

such as the interval [−5,+5] dB, the bound appears to be tight even for small N and

small K. Clearly, the bound becomes more accurate as the number of nodes in the

network increases. Figure 2.16 represents angular histograms for different values of

SNR, and for K = 2. When the SNR is low, the phases remain spread out because

of the high probability with which noise prevents the receiver from reporting the

correct feedback. At high SNR, in contrast, the final distribution is fairly uniform

over the correct slice of the plane (for K = 2).
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Figure 2.13: Lower bound for the achievable NRSS for SDDB forK = 2 as a function

of the SNR with its approximations for γ → 0, shown in (2.29) and γ → ∞, shown in

(2.20); the curve obtained through simulation is also represented, with 105 Monte-

Carlo iterations; N = 100.
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Figure 2.14: Lower bound for the achievable NRSS for SDDB forK = 4 as a function

of the SNR with its approximations for γ → 0, shown in (2.29) and γ → ∞, shown in

(2.20); the curve obtained through simulation is also represented, with 105 Monte-

Carlo iterations; N = 100.
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Figure 2.15: Lower bound for the achievable NRSS for SDDB with K = 2 as a func-

tion of the SNR compared with Monte-Carlo simulations (105 trials) with different

values of N .
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Figure 2.16: Angular histograms for SDDB with resolution K = 2 for different SNR

values.
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As can be appreciated, the combination of the low- and high-SNR expressions is

valid over a fairly wide range of SNRs.

Achievable NRSS for K → ∞

With infinite resolution, the regionsDk collapse to punctual real phase values. There

is no constraint on the capacity of the feedback link and thus the performance is lim-

ited exclusively by noise. As it turns out, this limiting behavior is approached closely

with modest values of K, which reinforces the value of the resulting expressions.

Proposition 6 The expected value of |R̂N,∞,γ | satisfies

E

[

|R̂N,∞,γ|
]

≥ e−γ/2

2

√
πγ
(

I0

(γ

2

)

+ I1

(γ

2

))

(2.30)

where I0(·) and I1(·) are the modified Bessel functions of first kind of order 0 and

1, respectively.

Proof: See Appendix E.

The low- and high-SNR behaviors with noise and infinite resolution are obtained

by expanding Proposition 6. At low SNR, the right-hand side of (2.30) behaves as

√
πγ

2
+ o

(

γ2
)

(2.31)

while, at high SNR, it behaves as

1 + (1 + e−γ)O

(

1

γ

)

. (2.32)

Figure 2.17 compares (2.30), (2.31), (2.32), and the curve obtained through

Monte-Carlo simulation. The lower bound for the achievable NRSS is plotted as a

function of the SNR. It can be seen that (2.31) closely matches (2.30) below roughly

−5 dB while (2.32) closely matches it above roughly 5 dB.

2.10 Performance Comparison: Random v. Determini-

stic

In this section, we compare the random and the SDDB approaches both without and

with noise. The curves again are the result of Monte-Carlo simulation campaigns

with 105 iterations. A network of N = 100 nodes is considered, and the initial

phases prior to synchronization are modeled as uniform in [0, 2π).
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Figure 2.17: Achievable NRSS for SDDB when K → ∞ as a function of the SNR

expressed in (2.30), and its approximations for γ → 0, expressed in (2.31), and γ →
∞, expressed in (2.32); the curve obtained through simulation is also represented,

with 105 Monte-Carlo iterations; N = 100.

2.10.1 Noiseless Scenario

In Figure 2.18, the noiseless performance of the random algorithm (R1BF, cf. Sec-

tion 2.3), is illustrated in terms of the NRSS improvement over time. A window of

450 time slots is considered. The distribution for the random shifts f∆i
(·) is uniform

in [−π/β,+π/β] for every i, and the curves for distinct values of β are shown. As

can be seen, a larger variance allows for a very rapid NRSS increase in the initial

stages, but at the price of a slow eventual convergence. In contrast, smaller vari-

ances yield a very low initial growth rate, in return for faster convergence as the

NRSS approaches its maximum. Authors in [1] show how an adaptive behavior im-

proves convergence. In this case, nodes can adjust the variance of the distribution,

optimizing it at each iteration according to the NRSS value. But this approach is

practically unfeasible since it would require the nodes to have full knowledge of the

NRSS at each step, and thus the receiver to send a much higher-rate feedback. By

considering the variance of this distribution to be fixed, we relate to a more practical

and realistic case.

Figure 2.19 is related to SDDB without noise (cf. Section 2.9.1), presenting the

NRSS as a function of the number of activated and synchronized devices, Ns[m],
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Figure 2.18: NRSS for R1BF without noise, with N = 100, and f∆i
(·) uniform in

[−π/β,+π/β] for every i.

as given in (2.4). The plot can also be interpreted as a function of time, since

nodes are synchronized successively (one per time slot) and thus the curves indicate

the NRSS that would be attained by the activated nodes after a certain number

of rounds. The first value of each curve corresponds to a single-node transmission,

and the last value (Ns[m] = N) is the NRSS achieved when the complete network

is beamforming. The different curves correspond to different resolutions, K. When

the receiver can only send one bit of feedback (K = 2), the achievable NRSS is 4

dB away from the maximum achievable value. When K = 4, the attainable NRSS

is within 1 dB of the maximum. As K increases even further, the improvement

becomes minute. Hence, the most relevant cases are (i) K = 2, when the feedback

rate is 1 bit and a fair comparison with R1BF is possible, (ii) K = 4, which shows

that simply adding one more feedback bit, SDDB yields very high gains after only

N time rounds, and (iii) K → ∞, which approximates well all the remaining values

of K.

Figure 2.20 presents a noiseless comparison between R1BF and SDDB. The graph

depicts the NRSS as a function of time (for SDDB, recall, the NRSS at a given time

slot m indicates the NRSS achieved by m synchronized nodes). The R1BF curves

correspond to different values of β, and the curves for SDDB represent the cases K =

2 and K = 4. During the first time slot, all the unsynchronized nodes in R1BF yield

an initial normalized gain of 1/
√
N . For SDDB, in turn, the initial gain corresponds
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Figure 2.19: NRSS for SDDB without noise, parametrized by K; N = 100.

to a single-node transmission. With one bit of feedback, SDDB starts outperforming

R1BF after 50 time slots and it becomes roughly 4 dB better after 100 slots. This

comparison is for β = 4, which is the best choice for R1BF in this time frame. This

improvement comes with an increase of network coordination with respect to R1BF.

Nodes in fact have to be indexed and they must transmit in a predefined order.

Indexing can be done once, when the network is deployed. Transmitting in turn can

be achieved with a token passing mechanism, or the feedback itself could trigger the

progressive awakening of each sensor. At the price of an extra feedback bit, SDDB

starts outperforming R1BF after only 30 time slots, becoming roughly 8 dB better

after 100 time slots. In addition, recall, SDDB has an N -fold power saving factor

per time slot. A time frame of an order of magnitude larger is required for R1BF

to achieve gains comparable to the ones achieved by SDDB in 100 time slots. As

mentioned in Section 2.2, in practical scenarios the phase of each local oscillator

drifts over time, causing progressive carrier misalignment and consequent loss in

terms of beamforming gain. Both oscillator dynamics and frequency mismatches

due to imperfect carrier synchronization have to be taken into account and properly

modeled to identify the time interval within which quasi-static oscillators’ phase can

be assumed, identified as Oscillators’ Coherence Time (OCT). The OCT interval

then determines the rate of periodic phase re-synchronization in order to maintain

tracking, according to the level of tolerance of the application. The problem of
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modeling phase drift has been studied, for example, in [50] and [74]. In both these

works, the drift is modeled as a non-stationary Gaussian process with zero mean

and a time-dependent variance. For instance, in [74] the time-dependent variance of

the drift σ2d(t) is expressed as σ2d(t) = c∆t, where c is a parameter dependent on the

physical properties of the local oscillator and is measured in rad2 × Hz, and ∆t is

the considered time frame in seconds. This model is based on the work in [85]. As

stated in [74], for low-cost radio-frequency oscillators, parameter c ranges from 1 to

20 rad2×Hz. Taking c = 10 as the typical drift parameter, for a network of N = 100

nodes, it can be verified that the beamforming gain experiences a 5 dB decrease with

respect to the value achieved after phase synchronization, in a time frame of 100

ms. Clearly signals continue experiencing misalignment during the synchronization

procedure itself, hence, reduction of convergence time is mandatory, and this is

exactly the issue we address in this work. Moreover, when phase drift is severe, or

when the size of the network is so large that carrier synchronization requires long

time spans, adaptive tracking methods can be employed, such as DJA, described in

Section 2.5, which have been proven to be very robust against channel drift. Since

the statistics of the phase drift are known, ad hoc phase re-alignment routines can

be tailored to the application requirements. These are all very interesting points

that pave the way for future developments of this work.

2.10.2 Noisy Scenario

Figure 2.21 represents a comparison (through simulation) between the R1BF and

SDDB schemes when the SNR is low, specifically 0 dB, which corresponds to σ2 = 1,

in a time frame of 100 time slots. As in the noiseless case, SDDB outperforms R1BF,

although the gap between them is somewhat smaller. Still, in order for R1BF to

achieve a gain comparable to what SDDB achieves in 100 time slots, a time frame

of an order of magnitude longer is required. The R1BF curves are for β = 4, 10, 20,

respectively, whereas the SDDB curves are for K = 2 and K = 4. After 80 slots,

SDDB with one feedback bit starts outperforming R1BF with β = 4, which is the

best performing one, and the gap is roughly 2 dB. With two bits of feedback, the

crossover occurs after less than 50 slots and the final gap increases to roughly 5 dB.
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Figure 2.20: Noiseless comparison between R1BF and SDDB, with different shift

distributions for R1BF (f∆i
(·) uniform in [−π/β,+π/β] for every i), and K = 2, 4

for SDDB; N = 100.
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Figure 2.21: Simulated comparison between R1BF and SDDB in the presence of

noise; f∆i
(·) uniform in [−π/β,+π/β] for every i; N = 100.
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2.11 SDDB with Fading

In this section we consider the case where the signals from each sensor do not

arrive with equal gain at the receiver. This happens when, for instance, the signals

experience multipath. More specifically, we rewrite (2.2) as

R[m] =

Ns[m]
∑

i=1

Gie
j(ψi+φi[m]) (2.33)

where the effect of the channel results, as before, in a static phase rotation, ψi,

uniform in [0, 2π), and in a gain Gi. We assume all the Gi are independent and

identically distributed random variables, and their distribution is a Rayleigh PDF

with parameter p:

fG(g) =
g

p2
e
− g2

2p2 (2.34)

Expression (2.13), i.e. the signal received at time slot m, relative to one of the

nodes of the network, thus becomes:

r[m] = Gejψm + n[m] (2.35)

where, as stated before, n[m] is complex AWGN with variance σ2.

In a more compact form, expression (2.14) becomes

r = Gv + n. (2.36)

As explained in Section 2.8, for a given feedback rate, b, the phase space [0, 2π)

is divided into K = 2b regions. Let Dk denote the kth region corresponding to all

the phase values in [∠wk − π/K , ∠wk + π/K), where ∠wk = 2πk/K as defined

in (2.9). If r falls within Dk, the transmitted signal should be multiplied by w∗
k in

order to be rotated back towards the real axis. The receiver will then send b bits of

feedback, communicating the phase shift that has to be applied to the node’s signal.

Thus, the phase rotation, φ, that the sensor should apply to its signal will have one

of the values contained in SK , as given in (2.8). The new received phase for the

synchronized node will then be ψ̃, defined in 2.15.

At the end of the synchronization procedure, when all the N nodes have been

synchronized, the final NRSS can be written as

|R̂N,K,γ,p| =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

Gie
jψ̃i

∣

∣

∣

∣

∣

(2.37)

where R̂N,K,γ,p denotes the NRSS in the presence of noise and fading.
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Figure 2.22: Example of phase quantization: using SK is equivalent to quantizing

the phase space in K regions.

2.11.1 Noiseless Scenario

If the noise is negligible, Gv can be estimated exactly. For a given K, the optimum

beamforming weight out of the set in (2.9) is

ŵk = argmin
wk∈WK

‖Gv − wk‖2. (2.38)

For K = 4, this is graphically illustrated in Figure 2.22(a), where region boundaries

are marked with dashed lines. In Figure 2.22(a), Gv falls in D1, hence w1 will be

chosen and φ = −π/2. Without noise, the synchronized phases ψ̃i are independent

and uniform in D0, i.e., in [−π/K,+π/K). This is because the unsynchronized

phases ψi are uniform in [0, 2π) and the decision in (2.38) is noiseless, hence all the

nodes will receive the correct information relative to their beamforming weight. This

will then lead their synchronized phases to be uniformly distributed around the bias

and to yield the best achievable RSS for a given K, and a given fading distribution.

The performance is limited exclusively by the resolution K and by the fading, and it

is therefore of interest to characterize how the NRSS behaves as a function thereof.

We here denote R̂N,K,p as the noiseless K- and fading-dependent resultant signal.

The following results informs of that behavior.

Taking advantage of the fact that the number of nodes is typically large, we can

derive a lower bound on E[|R̂N,K,p|] that is very tight for values of N of interest and

exact for N → ∞.

Proposition 7 In the absence of noise, and in the presence of fading, the expected
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value of the NRSS satisfies:

E

[

|R̂N,K,p|
]

≥ E[ℜ(R̂N,K,p)] (2.39)

= E[G]
K

π
sin
( π

K

)

(2.40)

Proof: See Appendix F.

Indeed, since without noise the synchronized angles are uniformly distributed

around zero, the corresponding imaginary parts cancel out as N → ∞.

Proposition 8 In the absence of noise and in the presence of fading, the expected

value of the NRSS behaves as:

E[|R̂N,K,p|] = E[G]− π2

6K2

(

E[G]− 1

N

E[G2]

E[G]
+

1

N2

(

E[G3]

E2[G]
− E

2[G2]

E3[G]

)

− 1

N3

E[G4]

E3[G]

)

+ o

(

1

K2

)

. (2.41)

Proof: See Appendix F.

Figure 2.23 compares the NRSS obtained through Monte-Carlo simulation for in-

creasing K, with the results relative to Propositions 7 and 8. A number of 105

Monte-Carlo iterations has been considered to obtain the average NRSS for differ-

ent values of K, and p has been set to be 1/
√
2. As can be seen, the lower bound is

very tight already for N = 100.

2.11.2 Fading with Noise

When the noise term in (2.36) is not negligible, the receiver will have to choose wk

based on the noisy received signal, r, as expressed in (2.22).

However, since the actual goal of the receiver is aligning Gv, the noiseless part

of r, there will be a non-zero probability of making an incorrect decision. Choosing

a wrong phase shift will not yield the optimum NRSS that is achievable for a given

K, and a given p.

Achievable NRSS for Finite K

The case of finite K corresponds to the cases of constrained capacity on the feedback

link. The decision in (2.38) now depends exclusively on Θ, which is the phase of

r, as shown in (2.23). If Θ falls within Dk, the signal for the node in question
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Figure 2.23: Achievable NRSS with SDDB in noiseless conditions with fading

(Rayleigh parameter p = 1/
√
2), with N = 100, as a function of K: Monte-Carlo

simulation results compared with the analytical expressions in Propositions 7 and

8.

will be multiplied by w∗
k. Clearly, this can lead to a wrong decision, as shown in

Figure 2.22(b). Due to the noise, therefore, the synchronized phases are no longer

uniformly distributed and are not even necessarily within D0. In this case, the

distribution of the synchronized phases and, as a result, the NRSS will depend on

the received SNR. We recall the per-node SNR definition in (2.24) and we denote

the SNR- and fading-dependent normalized resultant by R̂N,K,γ,p. The result that

follows is a counterpart to Proposition 7, but with noise accounted for. As in the

noiseless case, the bound is tight for values of N of interest and exact for N → ∞.

Proposition 9 In the presence of noise,

E

[

|R̂N,K,γ,p|
]

≥K

2π

∫ + π
K

− π
K

∫ +∞

0

K−1
∑

k=0

g cos

(

ψ′ − k
2π

K

)

· fG(g)pDk |ψ=ψ′,G=g dψ
′dg (2.42)

where pDk|ψ=ψ′,G=g is the probability that Θ falls within Dk conditioned to ψ being

ψ′, and to G being g namely

pDk|ψ=ψ′,G=g = Prob{Θ ∈ Dk|ψ = ψ′, G = g} =

∫ k 2π
K

+ π
K

k 2π
K

− π
K

fΘ|ψ=ψ′,G=g(θ)dθ (2.43)
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where

fΘ|ψ=ψ′,G=g(θ) =
1

2π
e−γg

2
{

1 + 2eγg
2 cos2(θ−ψ′)√γπg cos(θ − ψ′)

[

1

−Q
(

√

2γg cos(θ − ψ′)
) ]}

(2.44)

Proof: See Appendix G.

For γ → ∞, the right-hand-side of (2.44) becomes a delta function at θ = ψ′

which reduces (2.42) to the noiseless expression in Proposition 7 and, as mentioned

at that point, the performance becomes limited only by the finite granularity K,

and by fading.

We now proceed with the analysis in the low-SNR regime.

Proposition 10 At low SNR,

E

[

|R̂N,K,γ,p|
]

≥
√

γ

π
Kp2 sin

( π

K

)

+ o(γ) (2.45)

Proof: See Appendix H.

Figure 2.24 exemplifies the lower bound for the achievable NRSS in the presence

of noise and fading for K = 2 and p = 1/
√
2; the exact expression in (2.42) is

represented, together with its low- and high-SNR expansions respectively (2.45) and

(2.40). Figure 2.25 presents the same result for K = 4. In both figures, the curve

obtained through Monte-Carlo simulation is also represented. The average NRSS

is considered for different values of SNR, ranging from −15 to +20 dB. Except for

very low SNR, the bound is very tight. As can be appreciated, the combination of

the low- and high-SNR expressions is valid over a fairly wide range of SNRs.

Achievable NRSS for K → ∞

With infinite resolution, the regionsDk collapse to punctual real phase values. There

is no constraint on the capacity of the feedback link and thus the performance is

limited exclusively by noise and fading. As stated in Section 2.9.2, this limiting

behavior is approached closely with modest values of K, which reinforces the value

of the resulting expressions.

Proposition 11 The expected value of |R̂N,∞,γ,p| satisfies:

E

[

|R̂N,∞,γ,p|
]

≥
∫ ∞

0

∫ +π

−π
g cos θfΘ|G=g(θ|G = g)dθdg (2.46)
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Figure 2.24: Achievable NRSS with SDDB (K = 2) with noise and fading (Rayleigh

parameter p = 1/
√
2), with N = 100, as a function of the SNR: Monte-Carlo

simulation results compared with the analytical expressions in Propositions 7, 9,

and 10.
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Figure 2.25: Achievable NRSS with SDDB (K = 4) with noise and fading (Rayleigh

parameter p = 1/
√
2), with N = 100, as a function of the SNR: Monte-Carlo

simulation results compared with the analytical expressions in Propositions 7, 9,

and 10.
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where

fΘ|G=g(θ|G = g) =
1

2π
e−g

2γ

[

1 + eg
2γ cos2 θ2g

√
πγ cos θ

(

1−Q
(

√

2γg cos θ
))

]

(2.47)

Proof: See Appendix I.

Proposition 12 At low SNR, the NRSS behaves as follows:

E

[

|R̂N,∞,γ,p|
]

≥√
γπp2 + o(γ). (2.48)

Proof: See Appendix I.

Proposition 13 At high SNR, the NRSS behaves as follows:

E

[

|R̂N,∞,γ,p|
]

≥E[G]. (2.49)

Proof: This derives from taking the limit for K → ∞ of (F.7)

Figure 2.26 compares (2.46), (2.48), (2.49), and the curve obtained through

Monte-Carlo simulation. The achievable NRSS is plotted as a function of the SNR.

It can be seen that (2.48) closely matches (2.46) below roughly −5 dB while (2.49)

closely matches it above roughly 5 dB.
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Figure 2.26: Achievable NRSS with SDDB (K → ∞) with noise and fading (Rayleigh

parameter p = 1/
√
2), with N = 100, as a function of the SNR: Monte-Carlo

simulation results compared with the analytical expressions in Propositions 11, 12.



2.12 Upper Bound for R1BF 63

2.12 Upper Bound for R1BF

The objective of this section is to find an upper bound for the NRSS achieved

with R1BF, and modeled in [1]. The aim is to find a function of time that upper

bounds the performance of R1BF, which is described with a recursive function in [1].

Ultimately, a comparison with expression (2.20) is provided. This comparison is

made without considering AWGN, since the study in [1] is based on a noiseless

model.

In [1], R1BF is analyzed by means of stochastic approximation theory [86]:

• A recursive expression characterizes the average behavior of the NRSS at every

iteration of the algorithm: the NRSS at time slot m is the NRSS at time slot

m− 1 plus an increment which depends on the NRSS at time slot m− 1. An

expression for the increment is provided, and this model very closely approxi-

mates the Monte-Carlo simulations of the algorithm, for different numbers of

nodes in the network, and different statistics of the random phase adjustments.

• The rate of convergence depends on the variance of the distribution of the

random phase shifts (not on the type of the distribution itself).

• The value of the variance of the random shifts is optimized so that the average

increase at every time slot is maximized. An expression (which depends on

the NRSS) for the optimized value of variance is provided.

We here derive a function of time which upper bounds the curve obtained with

the recursive evolution of the NRSS for the R1BF algorithm, in the case where the

variance of the distribution of the random phase shifts is fixed throughout the whole

synchronization process. This is the more realistic condition in which a sensor

network would actually be operating, since tuning this variance requires a richer

feedback, being this parameter NRSS-dependent. We now describe the way we

derive the upper bound for the NRSS obtained with R1BF, and we provide evidence

of the fact that it upper bounds the recursive function, although the rigorous proof

of this claim is still not quite complete.

The following points summarize the key steps of our analysis:

• Firstly, we provide an upper bound for the first NRSS increment which, when

added to the initial value of NRSS, provides the NRSS at time slot 1. The

first NRSS increment is the maximum one (the curve representing the average

normalized NRSS increase is in fact concave).
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• Using this upper bound, we solve a second order non homogeneous differential

equation to find a function of time which upper bounds the recursive NRSS

function.

• The result of the second order differential equation is a tangent function. We

then define the upper bound as the tangent function up to its saddle point,

which is its concavity region, and from that point in time on, we define it as

a properly defined straight line, to maintain the concavity of the curve.

The system model is the one described in Section 2.2, but with noise not accounted

for, and the R1BF synchronization procedure of [1] is illustrated in Section 2.3. For

simplicity, we here adopt the notation used in [1], by denoting with the symbol ym

the NRSS at time slot m. By using (2.3) and (2.4), ym can be written as:

ym =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

ej(Φi[m])

∣

∣

∣

∣

∣

. (2.50)

since here Ns[m] = N , and where Φi[m] , ψi+φi[m]−ψ0[m], being ψ0[m] the angle

of the complex resultant at time slot m. For convenience, authors in [1] work with

rotated phases: each phase is de-rotated by ψ0[m], so that the resultant always lies

on the real axis. This shift has no impact on the NRSS dynamics.

The behavior of the NRSS is modeled, according to stochastic approximation

theory, as follows:

ym+1 , ym + hm(ym) with y0 =
1√
N

(2.51)

where hm(ym) denotes the increment which depends on the NRSS at time slot m.

The expected increment of the NRSS is given by the following analytical expression:

hm(ym) = σℜ[m]i

(

ym(1− χm)

σℜ[m]

)

(2.52)

where:

i(x) ,
1√
2π
e−

x2

2 − xQ(x) (2.53)

and where:

Q(x) =

∫ ∞

x

1√
2π
e−

t2

2 dt (2.54)

is the complementary cumulative distribution of a standard Gaussian random vari-

able. σℜ[m] represents the mean deviation in the NRSS because of the random

perturbations ∆i[m] applied at time slot m, and is given by:

σℜ[m]2 =
1− χ2

m − ρmkm(ym)

2N
(2.55)
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where

χm = E[cos(∆i[m])], (2.56)

ρm = χ2
m − E[cos(2∆i[m])], (2.57)

and

km(ym) , E [cos(2Φ1[m])|ym] (2.58)

is the mean value of the cosine of 2Φ1[m] conditioned to ym, where Φ1[m] is the

received phase relative to node 1.

The following assumptions and conjectures are made on the distribution of the

received phases Φ1[m], . . . ,ΦN [m]:

• Conditioned on ym, the phases Φi[m] are identically distributed, interchange-

able random variables.

• On the basis of the Gibbs conditioning principle of statistical mechanics, it is

conjectured that the received phases Φi[m] follow an exp-cosine distribution

when conditioned to the NRSS.

• The use of the Gibbs principle of statistical mechanics implies conditional inde-

pendence of the Φi[m], which is not strictly true under the feedback algorithm.

• Because of the properties of the exp-cosine distribution, and since, based on

the conjecture, km(ym) only depends on y and not on m, k(y) is given by:

k(y) ≡ I2 (η(y))

I0 (η(y))
(2.59)

where I2 and I0 are the modified Bessel functions of orders 2 and 0, respec-

tively, and the function η(y) is such that I1(η)
I2(η)

= y, where I1 is the modified

Bessel function of order 1. This derives from the properties of the exp-cosine

distribution.

Intuitively, if the NRSS is large, the received phases can be expected to be close to

zero (i.e. close to alignment, since, without loss of generality, the system is always

rotated on the real axis), and thus k(y) to be close to 1. On the other hand, for

small NRSS the phases are expected to be far from alignment, thus distributed in

[0, 2π], so in this case k(y) is close to zero.

As stated above, we here consider that the variance of the distribution f∆i
(·)

is fixed, and not optimized at each step, according to the optimized expression

provided in [1]. Tuning this variance would in fact require a much richer feedback
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than the simple 1 bit, which is the main feature of this algorithm. Hence, parameter

χm is here not time-dependent, and the subscript m can thus be dropped yielding

the symbol χ:

χ = E[cos(∆i)], (2.60)

where we assume, without loss of generality, that ∆i is uniformly distributed in

[−π/β,+π/β] for every i. The NRSS behavior in fact only depends on the variance

of this distribution, and not on the actual PDF.

At the very first iteration of the R1BF algorithm, y1 is obtained as follows:

y1 = y0 +

√

1− χ2

2N

(

1√
2π
e
− y20(1−χ)2

2σℜ[0] − y0(1− χ)

σℜ[0]
Q
(

y0(1− χ)

σℜ[0]

)

)

(2.61)

At this point:

• k0(y) = 0 (since it is the mean value of the cosine of the i-th received phase:

at the beginning they are all uniform in [0, 2π] so this value is zero), and it

can be neglected from (2.55), thus:

σℜ[0] =

√

1− χ2

2N
(2.62)

• χ = E[cos(∆i)] = (β/π) × sin(π/β).

The first increment is then as follows:

h0(y0) = σℜ[0]

(

1√
2π
e
− y20(1−χ)2

2σ2
ℜ
[0] − y0(1− χ)

σℜ[0]
Q
(

y0(1− χ)

σℜ[0]

)

)

(2.63)

The first increment is the maximum possible one, since it is shown in [1] that hm(ym)

is a decreasing function of y. By defining, for simplicity:

p , σℜ[0] (2.64)

q , (1− χ) (2.65)

(2.63), according to (2.52), then becomes:

h0(y0) = p

(

1√
2π
e
− 1

2

(

q

p
y0

)2

− q

p
y0Q

[

q

p
y0

])

(2.66)

by expanding h0(ξ) for ξ → 0 we get:

h0(ξ) =
p√
2π

− q

2
ξ +

q2

2p
√
2π
ξ2 +O(ξ)3 (2.67)
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We define:

F(ξ) ,
p√
2π

− q

2
ξ +

q2

2p
√
2π
ξ2 (2.68)

which approximates h0(ξ) for ξ → 0. By defining the parameters:

a , −q
2

(2.69)

b ,
−q2

2p
√
2π

(2.70)

k ,
−p√
2π

(2.71)

we use the expression on the right hand side of (2.68) to write the following second

order non-homogeneous differential equation:

dY(t)
dt

= aY(t)− bY2(t)− k with Y(0) = y0 =
1√
N

(2.72)

The objective is to find an expression for Y(t), which is a candidate upper bound for

(2.51), as long as certain conditions discussed below are verified. Equation (2.72)

is a known differential equation, and it is called logistic differential equation with

constant harvesting. There are three different possible solutions for this equation,

depending on the relationship among coefficients. Because of how a, b and k are

defined in (2.69), (2.70), (2.71), we have that 4bk > a2 always. In fact:

4bk = 4

( −q2
2p

√
2π

)( −p√
2π

)

=
q2

π
(2.73)

a2 =
q2

4
(2.74)

hence, 4bk > a2 is always verified. As a consequence, the solution of Equation (2.72)

is:

Y(t) = a

2b
−

√
4bk − a2

2b
Tan

[

t

2

√

4bk − a2 − c

]

(2.75)

where parameter c depends on the initial condition as follows:

c = Arctan

[

2bY(0) − a√
4bk − a2

]

(2.76)

By reconverting the parameters in terms of p and q we have:

Y(t) =
√

π

2

p

q
+

√
2π

√

1

π
− 1

4

p

q
Tan

{

t

2

√

1

π
− 1

4
q

−Arctan





1
√

1
π − 1

4

(

1

2
− q

p

y0√
2π

)





}

. (2.77)
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By writing the solution of the logistic equation with constant harvesting in terms of

the parameters of the algorithm used in Equation (2.61) we obtain:

Y(t) =
√

π(1 + χ)

4N(1− χ)
+

√

π(1 + χ)

N(1− χ)

√

1

π
− 1

4
Tan

{

t

2
(1− χ)

√

1

π
− 1

4

−Arctan





1
√

1
π − 1

4

(

1

2
−
√

(1− χ)

π(1 + χ)

)





}

(2.78)

The solution (2.78), being a tangent function, has asymptotes, and the expression

of the time instant t1 relative to the first asymptote is the following:

t1 =
2(π2 + c)√
4bk − a2

(2.79)

=
1

√

1
π − 1

4 (1− χ)







π + 2Arctan





1
√

1
π − 1

4

(

1

2
−
√

(1− χ)

π(1 + χ)

)











(2.80)

Strangely, expression (2.80) does not depend on the number of nodes N , but it

depends only on parameter χ which is related to the distribution of the phase shifts

∆i. Clearly, the result in (2.78) is as a potential useful upper bound only in the

concavity region of (2.78).

Figure 2.27 depicts the position of the asymptote as a function of β, considering

that the distribution of the shifts ∆i is uniform in [−π/β,+π/β]. Figures 2.28, 2.29,
and 2.30, represent (2.78) for different values of N , and β. As can be seen, the

position of the asymptote (2.79) only depends on β.

In order for (2.78) to serve as an upper bound for the NRSS for R1BF, two

conditions must be verified:

• Condition C.1: The function F(ξ) has to be greater than the expression of the

first increment expressed in (2.66), hence, the following must hold:

F(ξ) ≥ h0(ξ) (2.81)

for ξ ∈ [1/
√
N, 1], which is the range of interest for the NRSS.

• Condition C.2: Since the function Y(t), in the range [0, t1), goes from being

concave to convex, in its concavity region it must be more concave than the

NRSS curve for R1BF, obtained from (2.51). This can be proven by showing

that with the random synchronization, the time to achieve the value of NRSS

corresponding to Y(ts), which is Y(t) calculated in its saddle point ts, i.e., the

point in time where from concave it becomes convex, is greater than ts.
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Figure 2.27: Position of the asymptote (2.79) as a function of β.
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Figure 2.28: Expression (2.78) for different values of N , and for β = 2. As can be

seen, t1, shown in (2.79), does not change with N .
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Figure 2.29: Expression (2.78) for different values of N , and for β = 4. As can be

seen, t1, shown in (2.79), does not change with N .
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Figure 2.30: Expression (2.78) for different values of N , and for β = 10. As can be

seen, t1, shown in (2.79), does not change with N .
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Verification of Condition C.1

First of all, we can notice that F(ξ) and h0(ξ) are equal for ξ = 0:

F(0) =
p√
2π

(2.82)

h0(0) =
p√
2π

(2.83)

Also, by observing the first derivatives:

d

dξ
h0(ξ) = −q

2
Erfc

[

q√
2π
ξ

]

(2.84)

d

dξ
F(ξ) = −q

2
+

q2

p
√
2π
ξ (2.85)

we can see that, for ξ = 0, they are both equal to − q
2 . We here use the Erfc function

instead of the Q function for simplicity of calculation. In any case, the Erfc and

the Q function comply to the following relation: Erfc(x) = 2Q(
√
2x), so their use is

equivalent. As can be seen, (2.84) is always negative, since the argument of the Erfc

function is always positive, and there is a minus in front of it. On the other hand,

(2.85) is always increasing and it becomes positive for ξ ≥
√

π
2
p
q . Also, if we look at

the second derivatives:

d2

dξ2
h0(ξ) =

q2

p
√
2π
e
− q2

2p2
ξ2

(2.86)

d2

dξ2
F(ξ) =

q2

p
√
2π

(2.87)

we can see that, in this case also, they are both equal to q2

p
√
2π

for ξ = 0. We can

then see how (2.86) is always decreasing, whereas (2.87) is a constant. We can thus

state that, at least in the range of interest, which is for y0 ≤ ξ ≤ 1, F(ξ) > h0(ξ),

whereas for 0 ≤ ξ ≤ 1, F(ξ) ≥ h0(ξ). These results are also shown in Figures 2.31,

2.32, 2.33.

Verification of Condition C.2

In [1] an upper bound is calculated for the convergence time. More precisely, an

upper bound for the time to achieve a certain value of normalized NRSS is provided.

This is calculated by first finding a lower bound for the optimized convergence rate

(i.e. the increment (2.52), which depends on the NRSS and on the optimized variance

of the phase shifts). Differently, we need an upper bound for the convergence rate,

to use this result to lower bound the time to achieve a certain value of NRSS, by
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Figure 2.31: Comparison between (2.68) and (2.66).
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Figure 2.32: Comparison between the first derivatives of (2.68) and (2.66).
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Figure 2.33: Comparison between the second derivatives of (2.68) and (2.66).

following the same steps as in [1]. Unfortunately, the upper bound we derived in

(2.81), does not satisfy one requirement, needed to complete this proof. In order

to upper bound the convergence rate, in fact, we need an upper bound for the

convergence rate which is monotone decreasing, in order to be able to use a modified

version of the proof of Theorem 3 in [1], which is based on the inverse function

theorem. The analytical verification of this condition remains an open problem.

NRSS Upper Bound for R1BF

As can be seen, considering the range [0, t1), where, as stated above, t1 is the position

of the first asymptote, the tangent function in expression (2.78) is zero for t = t0,

where:

t0 =

2Arctan

(

1
√

1
π
− 1

4

(

1
2 −

√

1−χ
π(1+χ)

)

)

√

1
π − 1

4 (1− χ)
(2.88)

is the time instant relative to the saddle point of (2.78). The first derivative of

(2.78) is:

Y ′(t) =
1

2

(

1

π
− 1

4

)

√

π(1 + χ)

N(1− χ)
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]

. (2.89)
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The value of (2.89) in t0 is the following:

Y ′(t0) =
1

2

(

1

π
− 1

4

)
√

π

N
(1− χ2) (2.90)

since Sec2(t0) = 1.

If condition C.2 is verified (and we here conjecture that it is) the following straight

line:

s(t) =

√

π(1 + χ)

4N(1 − χ)
+

(

1

2

(

1

π
− 1

4

)
√

π

N
(1− χ2)

)

(t− t0) (2.91)

is an upper bound for the NRSS obtained with the recursive expression (2.51) for

R1BF, when t ≥ t0. In order to cover a time frame which goes from t = 0 to,

potentially, infinity, we define U(t) as follows:

U(t) ,

{

Y(t), 0 < t ≤ t0

s(t), t0 < t <∞
(2.92)

which upper bounds the recursive expression (2.51).

Results

The series of graphs depicted in Figures 2.34- 2.39 represents:

• The NRSS for SDDB with K = 2, according to (2.20) (black line, with trian-

gular markers)2.

• The NRSS for R1BF obtained with the recursion (2.51) (red line, with circular

markers, except for Figures 2.37 and 2.39 in which it is represented by a red

line only).

• The upper bound derived in (2.92) (blue line, with square markers).

These plots are obtained with different values of N , precisely 10, 102, and 103, and

different values of β, namely 2 and 20.

The following observations are in order:

O.1 For a given value of N , the tightness of the bound increases as β increases,

i.e., as the variance of the distribution of the random shifts f∆(·) decreases.
2As in Figure 2.19, the NRSS is represented as a function of the number of activated and

synchronized devices, Ns[m], as given in (2.4). The plot can also be interpreted as a function of

time, since nodes are synchronized successively (one per time slot) and thus the curves indicate the

NRSS that would be attained by the activated nodes after a certain number of rounds.
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O.2 For a given value of β, i.e., for a given variance for f∆(·), the tightness of the

bound decreases as N increases.

O.3 The bound in (2.92) is useful when the following condition is verified:

K

π
sin
( π

K

)

> U(N). (2.93)

The left hand side of (2.93) is the lower bound of the NRSS achieved with

SDDB with a given resolution K, at the N -th step of the algorithm. The right

hand side of (2.93) is the upper bound for the NRSS achieved with R1BF after

N time slots. As a consequence, the gain G in dB in terms of NRSS achievable

with SDDB with respect to R1BF after N time slots is simply:

G = 20log10

(

K

π
sin
( π

K

)

)

− 20log10 (U(N)) (2.94)

Clearly, the tighter the NRSS bound for R1BF is (we have already shown in

Section 2.9.1 that the lower bound for SDDB is tight), the more accurate the

expression of the gain is. Figures 2.40, 2.41, and 2.42 represent G in dB as N

varies. As can be seen from the graphs, for very large networks of nodes, the

bound looses its tightness, and the gain becomes negative.

O.4 In [1], authors derive a model to optimize the variance of f∆(·) in order to

maximize the NRSS increase at each step. The value of the variance of f∆(·)
depends on the NRSS, and it changes at each step of the algorithm. It can be

seen how the variance decreases as the algorithm unfolds, and, for example,

for N = 10, β > 10 after 90 iterations, and for N = 102 and 103, β > 10

after 200 iterations. Hence, having to choose a fixed value for β, since, in

practical cases, this parameter is not tunable, unless full feedback is available,

it is better to choose a value of β which ensures convergence to a larger value

of NRSS, instead of selecting a value which allows for a rapid initial increase of

the NRSS, but a very slow convergence rate in the later stages of the algorithm.

This can also be noticed by observing Figure 2.18.

We can thus conclude that, for useful values of β for a fixed-variance R1BF approach,

and for reasonable network sizes, i.e. with N in the order of hundreds of nodes, the

bound (2.92) is useful, and the gain obtained by using SDDB with respect to R1BF

is quantifiable with (2.94).
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Figure 2.34: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 10, β = 2.
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Figure 2.35: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 10, β = 20.
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Figure 2.36: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 100, β = 2.
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Figure 2.37: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 100, β = 20.
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Figure 2.38: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 1000, β = 2.
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Figure 2.39: The upper bound (2.92) is compared to the recursion (2.51) and to the

NRSS for SDDB with K = 2 obtained through (2.20); N = 1000, β = 20.
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Figure 2.40: Gain obtained by using SDDB with K = 2 with respect to R1BF with

β = 4 at the end of the SDDB synchronization round as the network size N changes.
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Figure 2.41: Gain obtained by using SDDB with K = 2 with respect to R1BF

with β = 20 at the end of the SDDB synchronization round as the network size N

changes.
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Figure 2.42: Gain obtained by using SDDB with K = 2 with respect to R1BF with

β = 4 at the end of the SDDB synchronization round as the network size N changes.



Chapter 3

Conclusion for Part I

Part I of this thesis has tackled the problem of phase synchronization for a network

of distributed sensors that have to cooperatively emulate a large antenna array to

steer a maximum of radiation towards the receiver. New closed-loop algorithms,

identified as DJA and SDDB, and based on deterministic local phase adjustments

driven by quantized feedback from the receiver, have been presented and have been

shown to have better convergence performance with respect to the random solution

proposed in [1], which we considered as benchmark.

DJA entails joint and repeated transmissions of synchronization pilots from all

the nodes in the network, and nodes, in turn, perform phase tests by locally adjust-

ing the phase of their outgoing beacon according to fixed pre-defined sets of possible

phase shifts. The receiver measures the RSS relative to each phase test, and sends

one bit of feedback for each test to inform the node whether the applied adjust-

ment has improved or worsened the quality of the RSS. The time to synchronize is

proportional to the number of nodes in the network, and the energy consumption

due to phase alignment is proportional to N2, where N is the size of the network.

This approach has been shown to be robust to time-varying channel drift, since the

feedback is based on the state of the resultant signal at each step.

SDDB is a more energy efficient solution for phase alignment, since each node

transmits only once in its assigned time slot, and the receiver sends a quantized

feedback which represents the phase adjustment that the node has to apply to align

its signal to a fixed bias, locally known at the receiver. The energy consumption is

proportional toN , and the number of feedback bits depends on the available capacity

on the feedback channel. It has been shown that, with only 1 bit of feedback, the

achievable final gain is within 5 dB from the maximum, whereas with 2 bits of
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feedback the final gain is only 1 dB away from the maximum. Analytic expressions

that characterize the behavior of the NRSS as SDDB unfolds have been put forth,

in the absence and presence of AWGN at the receiver and without and with flat

fading. Our analysis is innovative since AWGN had never been incorporated in the

model for R1BF synchronization, except for the attempt in [61]. The work in [61]

though, does not quantify the gain achievable by R1BF in the presence of AWGN.

The difference between DJA and SDDB does not only consist in the amount

of energy consumption required to complete a synchronization cycle. Since DJA

continuously involves all the nodes in the network in the synchronization proce-

dure, this allows for potential cooperative transmission of information during the

alignment procedure itself. Moreover, the feedback is a function of the actual state

of the resultant, which means that this approach is potentially more adaptive to

channel and oscillator drift. The energy overhead though, could be too large. Dif-

ferently, when SDDB is implemented, the synchronization stage and the cooperative

transmission stage are disjoint but the gain in terms of energy overhead is highly

compelling.

We have put forth an analytic expression, (2.92), which we conjecture upper

bounds the NRSS dynamics for R1BF. The motivation for this was to be able to

rigorously quantify the performance gain obtained by using a deterministic approach

instead of the random one. The completion of the proof that expression (2.92) upper

bounds (2.51) is an open problem. However, simulation results validate our claim.

The bound expressed in (2.92) is useful for a wide range of shift distributions, and

for network sizes which can vary from tens to hundreds of nodes.

The following points pave the way for future developments of this work:

• Evaluation of the impact of having multiple antennas at the receiver on DJA

and SDDB performance.

• Evaluation of the impact of nobility of the sensors on the synchronization

capabilities of DJA and SDDB.

• Design of periodic phase re-alignment procedures, specifically tailored for given

statistics of oscillator dynamics, and given accuracies of frequency synchroniza-

tion.

• Study of the convergence of DJA and SDDB in the presence of multiple spatial

constraints, i.e., not only with the unique objective of maximizing the signal
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in the direction of the receiver, but also of reducing interference in other direc-

tions, similarly to the work in [65], where the convergence of R1BF has been

studied in these conditions.
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Coarse Beamforming





Chapter 4

Coarse Beamforming for

Multi-Beam Satellite Networks

4.1 Motivation for Coarse Beamforming

A key enabler for greatly enhancing throughput in next generation satellite systems

is to deploy a large number of beams on the coverage area in order to take advantage

of Space-Division Multiplexing (SDM), as well as Frequency- and Time- Division

Multiplexing (FDM and TDM). As a consequence, the same sub-band in the same

time slot can be reused across the served area since interference is, ideally, suppressed

by highly directive beams. This allows for potential reuse of the whole system

bandwidth on each beam cell on the coverage area.

In reality the effect of side lobes in the beam radiation patterns severely ex-

acerbates interference, and with a view on counteracting inter-beam interference,

predefined patterns for the reuse of frequencies among beams have to be employed.

Conventionally, different bands are assigned to beams with adjacent footprints,

as their radiation patterns partially overlap. An essential parameter for describ-

ing this circumstance is the number of colors Nc in the frequency reuse pattern

(Nc ∈ N, Nc ≥ 1) which corresponds to the number of disjoint frequency bands

used on the coverage area. However, the benefit in terms of throughput brought by

a full frequency reuse pattern can be achieved by resorting to appropriate interfer-

ence mitigation policies, which have proven to be promising [87], and which only

come with a slight increase of complexity in terms of signal processing techniques

at the gateway.

In order to achieve a multiple-beam type radiation pattern, the satellite is
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equipped with a multi-fed reflector antenna, and beamforming is implemented by

linearly combining feed signals with complex coefficients [88]. Different system ar-

chitectures can be envisaged according to where beamforming processing is carried

out. Conventional beamforming techniques, either analog or digital, that completely

rely on the payload’s processing potential (space beamforming) are nowadays far be-

yond the state of the art [89]. Yet, when beamforming is fully implemented at the

ground segment (on-ground beamforming), and the number of feeds is greater than

the number of users, the gateway and the satellite must engage in extensive com-

munication efforts since they have to exchange the whole set of feed signals that

have to transit from ground to space and vice-versa [90]. Although this solution

may seem compelling, since it drastically reduces payload complexity, and allows to

take advantage of full on-ground processing flexibility, it requires a large amount of

feeder link spectral resources, since feed signals must be frequency multiplexed both

on the up-link and the down-link of the feeder link. In these circumstances, an ex-

cessive bandwidth requirement could lead to the design of a costly multiple gateway

infrastructure, that might be inefficient also from the point of view of interference

management.

As an alternative, in order to minimize the cost of network deployment, a hybrid

space/ground architecture has the potential to offer a good degree of flexibility and

efficiency by foreseeing the presence of a stage where the stack of feed signals is

projected on a sub-space. This reduces the cardinality of the set of signals to be

exchanged between space and ground, and consequently spectral requirements on

the feeder link are relaxed [89]. The concept of mapping feed signals on a sub-

space was introduced in [91], and [92] describes a feed-signal selection procedure

based on the location of the active users, in order to make a more efficient use of

only a sub-set of feed signals out of the pool of available ones. The work in [93]

describes a hybridized space/ground beamforming scheme, with the objective of

reducing the amount of circuitry required to process on ground all the satellite

signals. A processing scheme on the payload is envisaged to obtain a subset of

signals out of the full stack of feed signals. A similar idea is described in [94]. In

this thesis, as further described in Section 4.2, we turn this concept into a practical

application, devising two schemes for space processing. The hybrid space/ground

architecture we consider is depicted in Figure 4.1, and it foresees the presence of a

fixed processing scheme to be implemented on board the payload. Since this space

processing is non adaptive, it keeps payload complexity affordable. We refer to this
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Figure 4.1: Hybrid Space/Ground Processing Architecture

fixed on-board processing as Coarse Beamforming (CB).

4.2 The Hybrid Architecture

We focus on a hybrid space/ground architecture with a view on evaluating the

impact of Coarse Beamforming implementation in the forward link of a broad-band

multi-beam satellite network in terms of system performance. The following points

summarize the contribution of this thesis:

1) Two different Coarse Beamforming techniques are proposed, based on Dis-

crete Fourier Transform (DFT) and Principal Component Analysis (PCA),

respectively.

2) A preliminary analysis is conducted to measure feed signal degradation as a

consequence of compression both in case of an ideal analog and digital feeder

link.

3) The analysis is extended to the gateway to User Terminals (UTs) link, a joint

precoding and Coarse Beamforming implementation scheme is considered, and

its impact on system spectral efficiency and availability is evaluated when the

feeder link is analog and ideal.

Point (2) has been an important stepping stone whose promising results have led to

developing the full system analysis mentioned in point (2). In our preliminary and
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simpler set up, which is described in Chapter 5, we consider the gateway to satellite

link, i.e. the feeder link. Ground processing consists in fixed beamforming and feed

signal compaction. As a consequence of this processing, a set of intermediate signals,

which we refer to as feedlets and whose cardinality is smaller than the number of

antenna feeds, has to be forwarded to the space segment. Once the satellite receives

the feedlets, it reconstructs feed signals with a fixed processing matrix. The block

diagram in Figure 4.2 represents this scheme. For this scenario we measure the

level of mismatch between the on-board reconstructed feed signals and the original

set (obtained when no dimension reduction of the space takes place) as a function

of the number of feedlets. We consider both analog and digital feeder link cases.

Clearly, in case of digital feeder link, the mismatch is also a function of the adopted

quantization strategy. Sections 5.2 and 5.3 consider the cases where compression is

based on PCA and DFT, respectively.

Since the results deriving from this study are promising, in Chapter 6 we extend

the analysis to the full gateway to UTs link. In this scenario ground processing con-

sists in an adaptive precoding technique to mitigate interference among users and

to allow for the use of a full color frequency reuse scheme and Coarse Beamforming

is implemented on board to produce feed signals. In order to restrain payload com-

plexity, this on-board processing scheme has to be fixed and non-channel-adaptive.

By taking into account the fixed space processing scheme, the precoder produces a

set of feedlets, whose cardinality depends on the dimensions of the on-board Coarse

Beamforming matrix. Once signals are sent to the satellite, the Coarse Beamform-

ing matrix is then used for feed signal reconstruction. This scheme is represented

with a block diagram in Figure 4.3. Section 6.3 considers PCA- and DFT-based

Coarse Beamforming, respectively, for the full scenario case. Spectral efficiency and

availability are the metrics used to evaluate system performance as functions of the

cardinality of the feedlet set.

The parameters relative to this system were kindly provided by the European

Space Agency (ESA) in the framework of a study on next-generation broad-band

satellite systems [95–97].

Notation: Boldface upper case letters denote matrices and boldface lower case

letters refer to column vectors. We denote by (·)H the Hermitian transpose. The

N × N identity matrix is denoted by IN . We use the notation Q(·) to denote the

quantized version of a vector. The symbol 0N denotes a column vector of N zero

elements, and the symbol 0N×M denotes an N ×M matrix of zero elements.
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Chapter 5

Preliminary Study of Two

Coarse Beamforming Techniques

We now evaluate the impact of compression on reconstructed feed signals in the

forward link of a multi-beam satellite system by means of a mismatch measure that

we denote as Signal to Distortion Noise Ratio (SDNR). This figure of merit evaluates

reconstructed feed signal degradation as a consequence of dimension reduction of the

feedlet sub-space. We analyze two compression techniques based on DFT and PCA,

respectively. The idea that underlies this approach is that the number of feeds

exceeds the number of users, and plus adjacent feed radiation patterns partially

overlap. As a consequence, the relevant information can be packed more efficiently

and represented by fewer coefficients in an appropriate representation domain. As

a result of ground processing, the gateway forwards to the satellite a number of

feedlets which is smaller than the number of antenna elements. If no processing

took place on board, i.e. if the satellite were just a transparent forwarding unit, the

whole stack of feed signals would have to be multiplexed and transmitted on the

feeder link from the gateway to the space segment. Instead, the dimension of the

subspace on which feed signals are projected corresponds to the number of signals to

be frequency multiplexed on the feeder link. The smaller this dimension, the greater

the gain in terms of bandwidth compaction, but the lower the SDNR will be. A

trade off must then be sought between compaction gain and acceptable SDNR level.

We assume that the feeder link is perfectly calibrated and noiseless 1.

1Quantification of performance loss when this assumption is violated is material for future de-

velopment of this study.
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5.1 System Model

We assume TDM, FDM and SDM in the user link such that at a given time slot, for a

given frequency sub-band, the gateway is simultaneously serving a set of users whose

cardinality depends on the adopted frequency reuse (FR) factor and on the number

of beam cells. We focus on the forward link, and we assume that the coverage area

is divided in K beam cells, thus the number of served users per carrier amounts to

K/Nc. The multi-fed reflector on board the satellite is equipped with N antenna

elements, with N > K, and feed signals are obtained through linear combinations

of the user signals. A pictorial representation of this scenario can be observed in

Figure 4.1. We consider both the analog and the digital scenario: when the feeder

link is digital, feedlets must be quantized so that they can be coded with digital

streams of data. We consider uniform quantization of the real part and imaginary

part of each of the signals with three different values for the number of quantization

levels ( 24, 28, 216). The N × 1 vector of feed signals x can be written as follows:

x = Bs (5.1)

where s is the K×1 vector of the complex user signals modeled so that the following

expressions hold:

E[s] = 0K (5.2)

E[ssH ] = IK (5.3)

and B is a fixed beamforming matrix of dimension N × K, provided in [98]. The

following expressions define the M × 1 vectors of feedlet signals for the analog and

the digital cases, respectively:

fa = Cx (5.4)

fq = Q(Cx) (5.5)

where C is an M × N matrix with M ≤ N which implements on-ground compres-

sion and it is designed according to the chosen compaction strategy. Subscripts a

and q denote the fact that we are considering the analog case and the digital case,

respectively. In the analog case, elements in fa are exactly the outputs of Cx com-

putation. In the digital case, the real part and the imaginary part of the feedlet

signals are uniformly quantized, i.e. the dynamics of the signals are divided into

intervals. Each interval has an assigned value, and all the signals that fall into that

interval are mapped on the same value. Vector fq represents this mapping.
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By multiplexing a number M < N of signals on the feeder link, bandwidth

compaction is achieved. In order to assess the effect of this bandwidth compaction

on the feed signals, we define a figure of merit called SDNR to measure the mismatch

between the vector of feed signals and the vector of on-board reconstructed feed

signals of dimensions N × 1, obtained by applying the following transform to the

feedlets:

x̂a = CHfa (5.6)

x̂q = CHfq (5.7)

where CH is of dimensions N ×M , and it is used to undo compaction. This results

in x̂a and x̂q which are the reconstructed feed signals for the analog and the digital

cases, respectively. Evidently SDNR is a function ofM , and also of the quantization

strategy in the digital case, and we define it as:

SDNRa =
E[|x|2]

E[|x− x̂a|2]
(5.8)

SDNRq =
E[|x|2]

E[|x− x̂q|2]
(5.9)

Clearly in these conditions, if C were of dimensions N × N , and if it satisfied

the condition CCH = IN , reconstruction would be perfect for the analog case. A

degree of mismatch would still be present in the digital case because of the effect of

quantization.

5.2 PCA-based Compression

Since the Karhunen-Loève transform (KLT) has good energy compacting properties,

we have chosen this approach for compression. More specifically, we call Z the N×N
covariance matrix of the feed signals, defined as follows:

Z = E[(x− E[x])(x− E[x])H ] (5.10)

It is easy to see that Z, in this setting, is equal to BBH . In fact:

Z = E[(Bs− E[Bs])(Bs − E[Bs])H ] (5.11)

= BBH (5.12)

where (5.1) has been used, and (5.2) and (5.3) have been taken into account. Also

E[B] = B since B is deterministic. The following decomposition holds [99]:

Z = ALAH (5.13)
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where A is an N ×N matrix whose columns are the N eigenvectors of Z, and L is

an N × N diagonal matrix whose diagonal elements are the eigenvalues of Z. We

design compression using a subset of M eigenvectors as a basis for the subspace on

which feed signals are projected. We call Cklt the M ×N compression matrix, and

we build it as:

Cklt = AH
M (5.14)

where the expression AM denotes a subset of M columns of A. The way this subset

is chosen is further explained in Section 5.4. As a consequence, theM×1 vectors of

feedlet signals for the analog and the digital cases respectively, in case of KLT-based

compression, have the following expressions:

fa,klt = Ckltx = CkltBs (5.15)

fq,klt = Q(Ckltx) = Q(CkltBs) (5.16)

The following expressions account for the on-board reconstructed feed signals in case

of KLT-based compression:

x̂a,klt = CH
klt fa,klt (5.17)

x̂q,klt = CH
klt fq,klt (5.18)

where x̂a,klt and x̂q,klt represent the N × 1 vectors of reconstructed feed signals for

the analog and the digital case respectively.

5.3 DFT-based Compression

Compression based on DFT transform foresees the use of the discrete Fourier basis

to build the matrix C. We denote as D the N × N DFT basis. Element (m, j) of

matrix D can be written as follows:

D(m,j) =
1√
N
e

2πi
N

(j−1)(m−1) (5.19)

where e
2πi
N is an N -th root of unity. We design the M × N compression matrix C

as follows:

Cdft = DM (5.20)

where DM is a subset of M rows of D. The compression is implemented as follows:

fa,dft = Cdftx = CdftBs (5.21)

fq,dft = Q(Cdftx) = Q(CdftBs) (5.22)
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where (5.21) and (5.22) are the expressions for the feedlets in the analog and digital

cases, respectively.

More specifically, the m-th feedlet has the following expression for, respectively,

the analog and digital cases:

fa,dft,m =
1√
N

N
∑

j=1

xje
2πi
N

(j−1)(m−1) (5.23)

fq,dft,m = Q





1√
N

N
∑

j=1

xje
2πi
N

(j−1)(m−1)



 (5.24)

The reconstructed feed signals are:

x̂a,dft = CH
dft fa,dft (5.25)

x̂q,dft = CH
dft fq,dft (5.26)

where x̂a,dft and x̂q,dft represent the N × 1 vectors of reconstructed feed signals for

the analog and the digital case, respectively, for the DFT-based compression.

5.4 Choice of the Basis for the Subspace

The design of the compression matrix C consists in truncating the KLT basis or

the DFT basis, yielding (5.14) and (5.20), in order to obtain a subset of M < N

vectors to span a subspace on which feed signals are projected. Considering a subset

of vectors out of A and D corresponds to neglecting some chosen dimensions in

the spaces spanned by these two matrices. In order to maximize the SDNR, it is

desirable to discard those dimensions along which feed signals have the smallest

possible degree of variation, i.e., those vectors corresponding to the feedlets with

smallest magnitude. We refer to this method as sorting. Another approach is to

blindly keep the first M vectors of the given basis, and discard the rest. We refer

to this method as non sorting. The latter does not maximize the SDNR for a given

M , but it minimizes the complexity of the signal compaction stage. In fact, if C is

adaptive, this means that CH also has to follow the variations of C in terms of which

basis vectors have been used, and this increases the complexity of the payload, and

of the signaling between gateway and satellite.
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5.5 Comparison between PCA- and DFT-based Com-

pression

In this section we compare performance in terms of SDNR as a function of the

Compaction Ratio (CR) which we define as follows:

CR =
N −M

N
(5.27)

CR ranges from 0 (no compaction, i.e. M = N) to 1 (full compaction, i.e. M =

0). Figures 5.1 and 5.2 represent a comparison between analog and digital cases,

for DFT- and KLT-based compression, respectively. The compression matrices are

obtained according the sorting criterion, i.e. the vectors corresponding to the less

important coefficients in terms of magnitude were the first ones to be discarded.

These are those dimensions that carry the least amount of information. Three

different uniform quantization strategies have been considered for the digital case

with 24, 28, 216 quantization levels respectively for both the real and the imaginary

part of the complex feedlet signals. It can be seen how, for the same value of CR,

the SDNR improves as the number of quantization levels rises. Clearly the analog

case yields the best performance in terms of SDNR for a specific value of compaction

ratio. Figures 5.3 and 5.4 represent a cross comparison between the two techniques.

KLT and DFT are compared in both the analog and digital cases. It can be seen

how, for the analog case, for a given value of CR, the KLT performs much better in

terms of SDNR with respect to the DFT. This is not surprising, since KLT provides

a basis whose vectors represent those dimensions along which the observed signal

admits most of its variation. It is in fact naturally designed to yield a basis that

naturally captures most of the necessary information along few useful dimensions.

The DFT basis instead, is a fixed basis whose advantage consists in the fact that

there is no need for a calibration or initialization stage where the statistics of the

feed signals have to be acquired to create the compression matrix. In the digital

case, for 216 quantization levels, KLT still greatly outperforms DFT. But as the

number of quantization levels decreases the performance gap reduces. The SDNR

for the KLT, for low values or CR, has an apparently peculiar behavior (completely

flat up to CR = 35%), although it can be easily justified by observing the structure

of Z, which is shown in (5.11) and (5.12). In fact, the Singular Value Decomposition

(SVD) of the beamforming matrix B is:

B = RTWH (5.28)
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where R and W are unitary matrices of dimensions N×N , and K×K respectively.

The columns ofR andW are the left and the right singular vectors respectively. The

columns of R and W are orthonormal, meaning that RHR = IN and WHW = IK .

Matrix T is diagonal of dimensions N ×K and it has K non zero diagonal elements,

which are the singular values of B. We can write Equation (5.12) as follows:

BBH = RTWHWTHRH (5.29)

= RTTHRH (5.30)

The matrix TTH is an N ×N diagonal matrix, and it has only K non zero values.

By comparing Equation (5.13) and Equation (5.30) we have:

A = R (5.31)

L = TTH (5.32)

Considering Equation (5.1), the following expression holds for the feed signals:

x = RTWHs (5.33)

By considering Equation (5.33), the following observations are in order:

• The product WHs, which we denote as v, yields a K × 1 vector of non-zero

components.

• The product Tv yields an N × 1 vector, with only K non zero entries (the

first K components).

• Considering Equation (5.14) and Equation (5.31), and assuming that AH
M is

built with the first M columns of A, applying compression to x is equivalent

to obtaining the vector of feedlets as follows:

fa,klt = RH
MR

[

v

0N−K

]

(5.34)

=
[

IM 0M×N−K
]

[

v

0N−K

]

(5.35)

• According to the value of M , fa,klt can be written as follows:

fa,klt =

[

v

0N−K

]

if M = N (5.36)

fa,klt =

[

v

0M−K

]

if K ≤M ≤ N (5.37)

fa,klt = v if M = K (5.38)
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Figure 5.1: Comparison among quantization strategies and analog case in terms of

SDNR as a function of the compression ratio for the DFT.

Consequently, a space spanned by K eigenvectors of Z (as long as they are the ones

corresponding to the non zero eigenvalues) is sufficient to describe the feed signals

with the KLT. As long as K < M < N , there is no potential loss (except for the one

due to quantization in the digital case), i.e., the SDNR is potentially infinite. Then,

since K = 100, it can be seen that for CR = 35% which corresponds to M = 100,

i.e., N −M = 55, the SDNR starts decreasing very drastically. Hence, we can state

that with the KLT, bandwidth compression up to 35% comes with no compression

loss.

In Figure 5.5 we represent a comparison between the sorting and the non sorting

paradigms for the analog case. Clearly sorting comes with better performance in

terms of SDNR for a fixed value of CR, although it requires greater complexity.

It also appears as the KLT is more robust to non sorting. This is due to the fact

that, for how the KLT basis is constructed, the basis vectors are ordered increasingly

according to the values of the eigenvalues. Thus, the basis already comes with an

implicit sorting criterion.
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Figure 5.2: Comparison among quantization strategies and analog case in terms of

SDNR as a function of the compression ratio for the KLT.
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Figure 5.3: Comparison among quantization strategies in terms of SDNR as a func-

tion of the compression ratio for the DFT and the KLT in the digital case.
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Figure 5.4: Comparison between DFT and the KLT in the analog case.
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Figure 5.5: Comparison between the sorting and non sorting paradigms for signal

compression



Chapter 6

Joint Feeder Link Bandwidth

Compaction and Precoding

Up to this point, we have conducted a preliminary study with the objective of eva-

luating the effect of bandwidth reduction on the quality of on-board reconstructed

feed signals. Bandwidth compaction was achieved by projecting feed signals on a

subspace of reduced dimensions. The considered subspace was obtained through

truncation of the DFT or the KLT basis. We considered a simplified feeder link

scenario with a fixed beamforming matrix.

In this chapter we have a view on evaluating the impact of bandwidth reduction

on a complete gateway to UTs system where, instead of fixed beamforming, adaptive

interference mitigation policies are adopted at the gateway in order to allow for a full

color frequency reuse scheme (Nc = 1). Space processing, i.e., Coarse Beamforming,

is meant to yield feed signal reconstruction from a subset of intermediate feedlets

and ground processing is designed to adaptively mitigate interference with linear

precoding. Coarse Beamforming has to be fixed and non channel adaptive, in order

to keep payload complexity low. The introduction of a fixed processing scheme on

board the satellite to reconstruct feed signals from the subset of feedlets has an

impact on the design of the precoding matrix that has to take into account a new

equivalent channel which also includes the effect of Coarse Beamforming. The effect

of non-adaptive space processing reflects on the cardinality of the set of signals that

are to be sent from the gateway to the satellite. The channel-dependent precoder

produces a number of feedlets which is in accordance with the dimension of the fixed

Coarse Beamforming basis used on board the payload. Considering the regularized

channel inversion precoder [100], we evaluate system performance in terms of spectral
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efficiency and availability as functions of the dimension of the subspace on which

feed signals are projected. We still design the Coarse Beamforming schemes along

the lines of PCA and DFT. PCA is now based on the SVD of the mean channel

matrix.

The set up we are suggesting, and the way these signal processing techniques

are arranged and deployed in the system, yielding a hybrid space/ground processing

structure, with a view on a more efficient use of the feeder link bandwidth, is highly

innovative and beyond the state of the art, and it could become a breakthrough in

the design of next generation satellite systems.

6.1 System Model

In the forward link of the considered broad-band satellite system a single gateway

provides service to a set of fixed UTs, located on the coverage area. We assume FDM,

TDM, and SDM in the user link, together with full frequency reuse (Nc = 1) such

that, for a given frequency band, at each time slot, the gateway is simultaneously

serving a subset of K users, where K is also the number of beam cells deployed on

the coverage area. The vector of received signals at the UTs can then be written as

follows:

y = Hx+ n (6.1)

where y is a K × 1 vector containing the received signals at each UT, x is a N × 1

vector which contains the on-board transmitted feed signals, n is a K × 1 vector

containing the stack of noise components. The user link channel matrix H is of size

K × N , and it accounts for the feed radiation patterns (element hi,j of the matrix

represents the complex gain of feed j corresponding to the position of user i), path

loss, rain fading, and its elements are normalized so that elements of n have unit

variance. The vector of feed signals is derived as follows:

x = CHf (6.2)

where CH is the non channel adaptive Coarse Beamforming matrix of size N ×M ,

and f is a M × 1 vector containing the stack of feedlets. We consider the feeder link

to be analog, and perfectly calibrated and noiseless. At the gateway, adaptive linear

precoding takes place, and the expression for f is the following:

f = Fs (6.3)
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where F is the M ×K precoding matrix, and s is the K × 1 vector containing the

user symbols. The expression for the received signal thus becomes:

y = HCHFs+ n (6.4)

= HeqFs+ n (6.5)

where Heq can be considered as an equivalent channel matrix, of dimensions K ×
M , which takes into account the channel on the user link, and the effect of space

processing. A schematic view of the system under examination is depicted in Figures

4.1 and 4.3.

6.2 Linear Precoder Design

In this section we first briefly describe the linear precoder that we consider in this

work. We use the regularized inversion of the channel approach [100], and the

corresponding M ×K precoding matrix can be written as:

F =
√
γ Heq

H

(

HeqHeq
H +

K

P
IK

)−1

(6.6)

where the value of constant γ has to comply with the transmit power constraint:

trace(CHFFHC) ≤ P (6.7)

where P denotes the total transmit power. We assume that Heq is known at the

gateway. The corresponding symbol vector estimate ŝ is then obtained as ŝ =

(
√
γ)−1y by inserting (6.6) into (6.5).

Before tackling the problem of designing the fixed Coarse Beamforming matrix

CH , we link the problem considered in this section with the preliminary study

presented in Chapter 5. By inserting Heq = HCH into (6.6), we get

F =
√
γ CHH

(

HCHCHH +
K

P
IK

)−1

, (6.8)

from which we see that the considered scheme (on-ground precoding and on-board

Coarse Beamforming) depicted in Figure 4.3 is equivalent to the preliminary analysis

scheme of Figure 4.2 if we replace B by
√
γ HH

(

HCHCHH + K
P IK

)−1
. That is,

instead of having a fixed beamforming matrix B as in Section 5, we consider here the

presence of a channel adaptive precoding which also takes into account the choice

of the on-board Coarse Beamforming matrix.
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6.3 Joint Precoding and Coarse Beamforming

The mean squared error (MSE) on the symbol of user k is defined as:

ǫk = E[|ŝk − sk|2]. (6.9)

The sum MSE (SMSE) associated with the precoder (6.6) can be shown to be

SMSE =

K
∑

k=1

ǫk

=
K

P
trace

(

(HeqCCHHeq
H +

K

P
IK)(HeqHeq

H +
K

P
IK)

−2

)

=
K

P
trace

(

(HCHCCHCHH +
K

P
IK)(HCHCHH +

K

P
IK)

−2

)

(6.10)

We now analyze the effect of the Coarse Beamforming matrix CH on the system,

and in particular taking the SMSE as a performance measure. CH , recall, is of

size N ×M , with M ≤ N . Obviously, the performance of the system is maximized

(i.e. the SMSE (6.10) is minimized) if all feed signals are available on ground. This

corresponds to when no Coarse Beamforming is performed on board, i.e. CH = IN ,

in which case the SMSE reduces to:

SMSE =
K

P
trace

(

(HHH +
K

P
IK)

−1

)

(6.11)

=

K
∑

k=1

K
P

|σk|2 + K
P

(6.12)

where σ1, . . . , σK denote the singular values of H. That is, σ1, . . . , σK are the diag-

onal elements of the wide matrix Σ defined by the following singular value decom-

position (SVD) of the channel matrix:

H = UΣVH (6.13)

The rank of H is precisely the rank of the diagonal matrix Σ, or equivalently the

number of non-zero singular values. We consider that in this decomposition the

singular values are sorted in a decreasing order. Now, a careful analysis of (6.10)

leads to the following observations:

O.1 If M = N , any unitary matrix CH (such that CHC = IN ) achieves (6.12).

This extreme case is trivially understood by the fact that the precoder can

perfectly pre-compensate the effect of any unitary matrix CH .
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O.2 If K ≤ M ≤ N , the SMSE (6.12) can be achieved by designing CH = VM ,

where VM denotes the first M columns of V. However, it is important to

note that this solution does not comply with the non adaptability of space

processing, since VM is not a fixed matrix but instead it is channel-dependent.

O.3 If M < K, the SMSE (6.12) cannot be achieved, the reason being that the

precoding is carried out in a space of smaller dimension than the number of

users.

In the framework of PCA, the Singular Value Decomposition (SVD) can be used to

partition anN -dimensional vector space into dominant and non-dominant subspaces.

This corresponds to reducing the number of dimensions of the space that contains

the useful information, and keeping a subspace, which actually consists in those

dimensions along which data points exhibit most variation. This is why we elected

the SVD as a Coarse Beamforming tool for this scenario. If matrix CH were channel-

adaptive, it could be designed according to what was stated in O.2. But since CH

can not be adaptive, in order to implement a fixed on-board processing scheme, we

design matrixCH on the basis of the SVD decomposition of themean channel matrix

H̃. This is related to the presence of correlation among feed radiation patterns and

to the considered spatial distributions of users. We use the mean channel matrix

since CH cannot be adaptive, and it has to be designed in order to be as suitable

as possible for any channel realization. In order to obtain H̃, in fact, matrix H is

averaged over different configurations of users on the coverage area which is assumed

to be divided into K cells 1. One UT per cell is considered, with a random position

within its assigned area. Consequently, the K users that are simultaneously served

at a given time slot and in a given frequency band are reasonably spread over the

coverage area. Since each UT is confined to its assigned cell area, and the mean

channel matrix H̃ is averaged over the set of random positions that each UT can have

within its region, it is legitimate to assume that the channel matrix H does not vary

much around H̃. This assumption justifies our non adaptive Coarse Beamforming

technique based on the SVD of the mean channel matrix. Since the mean channel

matrix H̃ of dimensions K ×N can be written as:

H̃ = ŨΣ̃ṼH (6.14)

1In order to identify the cell regions, we used the fixed beamforming scheme provided by ESA,

although this matrix has not been used to process the user signals in this scheme.
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matrixC has been designed as a subset ofM < N columns of Ṽ, considering that the

singular values of H̃ are in decreasing order. We call CH
svd the Coarse Beamforming

matrix relative to this approach, and it can be written as follows:

CH
svd = ṼM (6.15)

where ṼM denotes the matrix obtained by extracting the first M columns of Ṽ.

In a similar fashion as in Chapter 5, the simulation results will compare the SVD-

based Coarse Beamforming in (6.15) with a DFT-based Coarse Beamforming. We

design the latter by using a truncated version of the N ×N DFT matrix D defined

in Equation (5.19). More precisely, the fixed DFT-based Coarse Beamforming is

defined as follows:

CH
dft = DM (6.16)

where DM denotes the N ×M matrix obtained by considering the M first columns

of D.



Chapter 7

Results and Conclusion for Part

II

In this chapter we present simulation results and draw a conclusion. We consider

two performance metrics: (i) spectral efficiency (bits/s/Hz) and (ii) non availabil-

ity, i.e. the probability that the link associated with a given user is not available,

which happens when the Signal to Interference-plus-Noise Ratio (SINR) falls below

the SINR needed to support the lowest modulation and coding mode of the con-

sidered standard. Both these metrics are deduced from Table 7.2, which provides

a one to one relationship between the required received SINR and the efficiency1

(bits/symbol) achieved by the different adaptive modulation and coding modes in-

cluded in the DVB-S2 standard, for a packet error rate (PER) of 10−6. The working

points have been extrapolated from the PER curves reported in the DVB-S2 guide-

lines document [101], with some additional approximate implementation losses [87].

The rest of the parameters used in the simulation are summarized in Table 7.1.

We base our analysis on an antenna radiation pattern (i.e. the {hi,j} ) provided

in [98]. This corresponds to an array fed reflector antenna with N = 155 radiating

elements, or feeds. As previously mentioned in Section 6.3, UTs are assumed to

be reasonably spread over the coverage area, and to be located in different cells.

K = 100 cells are assumed to be deployed on the coverage area, i.e. 100 users per

carrier and per time slot are simultaneously served. Since the channel matrix H

accounts for the antenna radiation patterns, it varies as users vary their positions.

As mentioned in Section 6.2, the precoder has been designed according to the

regularized channel inversion approach [100]. Two different Coarse Beamforming

1Excluding efficiency loss due to preamble and pilot insertion.
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schemes based on SVD and DFT respectively are considered, relative to Equations

(6.15) and (6.16). Figures 7.1 and 7.3 depict performance in terms of average spectral

efficiency per user as a function of P . Figures 7.2 and 7.4 depict curves of probability

of non availability as a function of P . Graphs in Figures 7.1 and 7.2 are obtained in

the presence of SVD-based Coarse Beamforming for different values of M , as well as

fixed beamforming provided by ESA (i.e. when CH = B) and, as a benchmark, the

case of absence of Coarse Beamforming is inserted (i.e. CH = IN ). Graphs in Figures

7.3 and 7.4, on top of this, add performance with DFT-based Coarse Beamforming.

From Figures 7.1 and 7.2 it can be noticed that, in case of SVD-based Coarse

Beamforming, performance is lower bounded by the case where CH = B, and upper

bounded by the case where adaptive precoding is implemented at the gateway, and no

Coarse Beamforming is implemented on board. This is the case where satellite and

gateway exchange the full set of feed signals. Bandwidth compression clearly comes

with some performance loss, since the dimension of the feed signal space is reduced.

A trade off must be sought between performance loss, and compression gain. It

can be observed from Figures 7.3 and 7.4 that DFT-based Coarse Beamforming

implemented jointly with precoding performs worse than the SVD-based Coarse

Beamforming case. It even performs worse than the fixed beamforming scheme when

M = 100. This is coherent with the results described in Section 5.5. PCA, in fact,

offers a basis which naturally captures the characteristics of the signal it is meant to

describe. It is not surprising then that for a given value of M , the spectral efficiency

and the probability of availability obtained with SVD-based Coarse Beamforming

are better than what is obtained with the DFT-based Coarse Beamforming.

As a conclusion, we can state that this work has tackled the issue of feeder link

bandwidth compression in the forward link of a broad-band multi-beam satellite sys-

tem. In order to reduce spectral requirements on the feeder link when the number of

on-board antenna feeds exceeds the number of users, we suggest a hybrid architec-

ture where a fixed non-channel-adaptive processing scheme is implemented on board

the payload. This allows to relax bandwidth requirements on the feeder link and to

keep payload complexity low by projecting the set of feed signals on a subspace of re-

duced dimensions, but it comes with a degree of degradation of the feed signals. We

first evaluated the impact of signal compression on the quality of reconstructed feed

signals, and we showed how a KLT-based compression outperforms the DFT-based

scheme. We then considered a complete gateway to UTs system, with interference

mitigation techniques implemented at the ground segment. In this set-up we ob-
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served the impact of space processing, which we refer to as Coarse Beamforming,

on the performance of the precoder in terms of spectral efficiency and availability.

We considered SVD- and DFT-based Coarse Beamforming for this scenario, and we

showed how the SVD-based Coarse Beamforming outperforms both the DFT-based

scheme and the fixed beamforming scheme provided by ESA. As a general conclu-

sion, we can state that PCA is the most appropriate tool to deal with feeder link

bandwidth reduction, although it comes with increased complexity with respect to

the DFT-based scheme. PCA- and DFT-based approaches have been the object of

this study, but of course we are not claiming that these methods are optimal in terms

of the trade-off that can be achieved between bandwidth reduction and signal degra-

dation. A very interesting further development of this work would certainly consist

in exploring different transforms, and make cross-comparisons among the different

Coarse Beamforming schemes by taking into account factors like complexity and

performance limits. Additionally, our work is based on the assumption of perfect

channel estimation. A more in-depth study should take into consideration channel

estimation errors as well as antenna calibration errors to evaluate the robustness of

the Coarse Beamforming approach against imperfect parameter estimation, and to

be able to answer to questions such as: For a given SDNR target, which estimation

noise can we tolerate in order to have a certain Compression Ratio for the feeder

link bandwidth? Finally, this work is based on real antenna pattern data provided

by ESA. An analytical study based on closed form expressions of the antenna gains

would provide more general conclusions, and more rigorous expressions for the per-

formance limits. An optimal splitting scheme could then be devised to provide the

maximum possible compression for a given SDNR target.
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Figure 7.1: Spectral efficiency: subspace dimension varies from 100 to 155 for SVD-

based Coarse Beamforming
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Figure 7.2: Availability: subspace dimension varies from 100 to 155 for SVD-based

Coarse Beamforming
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Figure 7.3: Spectral efficiency: subspace dimension varies from 100 to 155 for SVD-

and DFT-based Coarse Beamforming
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Figure 7.4: Availability: subspace dimension varies from 100 to 155 for SVD- and

DFT-based Coarse Beamforming



Table 7.1: User Link System Parameters

Parameter Value

Satellite height 35786 Km (geostationary)

Satellite longitude, latitude 10◦ east, 0◦

Satellite antenna architecture Array Fed Reflector

Number of feeds N 155

Feed gain patterns hi,j provided by ESA

Number of beams (K) 100

Beamforming matrix B provided by ESA

UTs location distribution Uniformly distributed

Frequency on user link 20 GHz (Ka band)

Total service bandwidth BT 125 MHz

Roll-off factor 0.25

Polarization 1

UT antenna gain G2
R 41.7 dBi

UT clear sky G2
R/TClearSky 17.68 dBi/K
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Table 7.2: Considered Modulation and Coding Modes and Required SINR

ModCod Efficiency Required SINR [dB]

mode Info bit / symbol (with approx. impl. losses)

QPSK 14 0.5 -2.72

QPSK 13 2/3 -1.52

QPSK 12 1 0.73

QPSK 35 1.2 1.93

QPSK 23 4/3 2.83

QPSK 34 1.5 3.78

QPSK 56 5/3 4.83

8PSK 35 1.8 5.33

8PSK 23 2 6.43

8PSK 34 2.25 7.63

16APSK 23 8/3 9.95

16APSK 34 3 11.20

16APSK 45 3.2 12.05

16APSK 56 10/3 12.60

32APSK 34 3.75 14.58

32APSK 45 4 15.08

32APSK 56 25/6 16.18
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Appendices





Appendix A

Centralized Beamforming

Classical array analysis deals with centralized beamformers. This section refers to

the theory in [2]. Centralized antenna arrays play an important role in many areas,

namely:

• Radar

• Radio Astronomy

• Sonar

• Communications

• Direction-finding

• Seismology

• Medical diagnosis and treatment

Spatial Filtering

The filtering properties of the system can be expressed in terms of a dependence upon

angle or wavenumber and the beamforming coefficients are designed to enhance or

reject signals according to their spatial dependence. In case of narrow band signals,

the beamforming coefficients are complex scalars, which have the effect of scaling

and phase rotating the outgoing or incoming signal. The configuration of sensors is

then denoted as a phased array. Different array geometries can be envisaged, such

as linear, planar and volumetric. The two aspects of centralized array design that

determine the performance of the spatial filter are the geometry of the system, and
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Figure A.1: Spherical Coordinate System.

the choice of the complex weightings of the data at each sensor. The fixed geometry

guarantees tight control of the relative phase shifts among elements, and the system

is naturally locked to a unique phase and frequency reference. As a consequence, the

beampattern is a deterministic function of the number of sensors, their positions,

and their beamforming coefficients.

A spherical coordinate system, shown in Figure A.1, is characterized by the three

parameters θ, φ, and r which are, respectively, the polar angle, the azimuthal angle,

and the radial distance from the origin. The relationships between rectangular and

spherical coordinates are the following:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

An array is a configuration of N sensors scattered in the 3-dimensional space.

An example of an N -dimensional array is shown in Figure A.2. The position of

sensor i can be identified with a 3-dimensional vector pi:

pi =









ri sin θi cosφi

ri sin θi sinφi

ri cos θi









. (A.1)

When a plane wave, with velocity of propagation c, impinges on the array, its di-

rection can be identified by vector a, as shown in Figure A.2, and represented as
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Figure A.2: N -dimensional array with plane-wave input.

follows:

a =









− sin θi cosφi

− sin θi sinφi

− cos θi









. (A.2)

The wavenumber k is defined as:

k =
2π

λ
a (A.3)

where λ is the wavelength of the plane wave. The array-manifold vector, which

incorporates the spatial characteristics of the array is defined as follows:

vk(k) =















e−jk
Tp0

e−jk
Tp1

...

e−jk
TpN−1















. (A.4)

In a phased array, sensors adjust the incoming or outgoing signal with a complex

weight, in order to create the desired beampattern in space. The complex weight

vector can be denoted as:

wH =
[

w∗
0, w

∗
1, . . . , w

∗
N−1

]

. (A.5)

The frequency-wave-number response function of the array is:

Υ(λ,k) = wHvk(k). (A.6)
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Figure A.3: Beampatterns for ULAs with d = λ/4, and different values of the

number of elements, N .

The beampattern of the array is the frequency-wave-number response function of

the array evaluated versus the direction:

B(λ : θ, φ) = Υ(λ,k)|k= 2π
λ
a(θ,φ). (A.7)

The Uniform Linear Array

When the N sensors are all located on the z-axis, with uniform spacing equal to d,

the array is linear and uniform. If the center of the array coincides with the center

of the system, the positions of the i-th node is:

pi =









0

0
(

i− N−1
2

)

d









(A.8)

where i = 0, . . . , N − 1.

If, in addition, the array is uniformly weighted, the following condition applies:

wi =
1

N
, ∀i = 0, . . . , N − 1 (A.9)

the expression of the beampattern is:

Bθ(θ) =
1

N

sin
(

N
2

2π
λ cos θd

)

sin
(

1
2
2π
λ cos θd

) , 0 ≤ θ ≤ π (A.10)
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Figure A.4: Beampatterns for ULAs with d = λ/2, and different values of the

number of elements, N .
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Figure A.5: Beampatterns for ULAs with d = λ, and different values of the number

of elements, N .
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Figure A.6: Beampatterns for ULAs with d = 2λ, and different values of the number

of elements, N .



126 Centralized Beamforming

Performance measures

Beampattern parameters:

• 3-dB beamwidth (the Half Power Beam Width, HPBW).

• Distance to first null.

• Distance to first sidelobe.

• Height of first sidelobe.

• Location of remaining nulls.

• Rate of decrease of sidelobes.

• Grating lobes.

Array parameters:

• Directivity.

• Array gain versus spatially white Gaussian noise.

• Sensitivity and the tolerance factor.
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Proof of Propositions 1 and 2

For notational compactness, let us define

x ,
1

N

N
∑

i=1

cos ψ̃i (B.1)

y ,
1

N

N
∑

i=1

sin ψ̃i (B.2)

where ψ̃1, . . . , ψ̃N are independent random variables, identically and uniformly dis-

tributed in [−π/K,+π/K) and the NRSS is simply
√

x2 + y2. For K → ∞, clearly

x→ 1 and y → 0. Thus, we expand the NRSS around x = 1 and y = 0 obtaining

√

x2 + y2 =x+
3

2
y2 − 3

2
xy2 +

1

2
x2y2 +O

(

y3
)

+O
(

y3
)

(x− 1) +O
(

y3
)

(x− 1)2

+O
(

(x− 1)3
)

. (B.3)

We now take expectations over ψ̃1, . . . , ψ̃N . For the first term in (B.3),

E [x] =

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

cos ξi

)

fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN (B.4)

=
1

N

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

cos ξi

)

dξ1 · · · dξN (B.5)

=
K

π
sin
( π

K

)

(B.6)

= 1− π2

6K2
+ o

(

1

K2

)

. (B.7)



128 Proof of Propositions 1 and 2

For the second term, in turn,

E
[

y2
]

=

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN (B.8)

=
1

N2

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

sin ξi

)2

dξ1 · · · dξN (B.9)

=
K

2πN

(

π

K
− 1

2
sin

(

2π

K

))

(B.10)

=
π2

3NK2
+ o

(

1

K2

)

(B.11)

and, for the third term,

E
[

xy2
]

=

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

cos ξi

)(

1

N

N
∑

i=1

sin ξi

)2

· fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN (B.12)

=
1

N3

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

cos ξi

)(

N
∑

i=1

sin ξi

)2

dξ1 · · · dξN (B.13)

=
K

3πN2
sin3

( π

K

)

+
N − 1

N2

K2

2π2
sin
( π

K

)

(

π

K
− 1

2
sin

(

2π

K

))

(B.14)

=
π2

3N2K2
+
N − 1

N2

π2

3K2
+ o

(

1

K2

)

(B.15)

Finally, the fourth term in (B.3)

E
[

x2y2
]

=

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

cos ξi

)2(

1

N

N
∑

i=1

sin ξi

)2

· fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN (B.16)

=
1

N4

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

cos ξi

)2( N
∑

i=1

sin ξi

)2

dξ1 · · · dξN

(B.17)

=
K

32πN3

(

4π

K
− sin

(

4π

K

))

+
N − 1

N3

K2

4π2

(

π2

K2
− 1

4
sin2

(

2π

K

))

+
4

3

N − 1

N3

(

K

2π

)2

sin4
( π

K

)

+ 2
(N − 1)(N − 2)

N3

(

K

2π

)3

4 sin2
( π

K

)

(

π

K
− 1

2
sin

(

2π

K

))

(B.18)
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=
π2

3K2N3
+
N − 1

N3

π2

3K2
+
N − 1

N3

π2

3K2
+ 2

(N − 1)(N − 2)

N3

π2

3K2

+ o

(

1

K2

)

(B.19)

By putting together (B.7), (B.11), (B.15), and (B.19), the expectation of Equa-

tion (B.3) gives (2.18). This proves Proposition 1.

Proposition 2 follows from neglecting the imaginary part of R̂N,K , in which case

E[|R̂N,K |] is given directly by (B.6).
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Appendix C

Proof of Proposition 3

The second raw moment of |R̂N,K | equals

E

[

|R̂N,K |2
]

=

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

cos ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN

+

∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN )dξ1 · · · dξN

(C.1)

=
1

N2

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

cos ξi

)2

dξ1 · · · dξN

+
1

N2

(

K

2π

)N ∫ + π
K

− π
K

. . .

∫ + π
K

− π
K

(

N
∑

i=1

sin ξi

)2

dξ1 · · · dξN . (C.2)

The first term in (C.2) yields

K

4πN
sin

(

2π

K

)

+
1

2N
+

(

K

π

)2 N − 1

N
sin2

( π

K

)

(C.3)

whereas the second term in (C.2) was already evaluated in Appendix B, Eq. Equa-

tion (B.10). The result equals the claim of Proposition 3.



132 Proof of Proposition 3



Appendix D

Proof of Propositions 4 and 5

Let us lower bound E[|R̂N,K,γ|] with E[ℜ(R̂N,K,γ)] by first finding the distribution

of Θ. The received complex signal r in (2.14) can be written as

r = cosψ + nℜ + j(sinψ + nℑ) (D.1)

where, if z is a complex scalar, zℜ and zℑ represent its real and imaginary part,

respectively. For a given ψ = ψ′, rℜ and rℑ are independent Gaussian random

variables with variance σ2/2 and mean cosψ′ and sinψ′, respectively. The PDF of

r conditioned on ψ = ψ′ is

fr|ψ=ψ′(ρ) =
γ

π
e−γ((ρℜ−cosψ′)2+(ρℑ−sinψ′)2). (D.2)

Based on (D.2), the joint PDF of A and Θ, conditioned on ψ = ψ′, is then [102]

fA,Θ|ψ=ψ′(a, θ) =
γ

π
ae−γ(a

2+1−2a cos(θ−ψ′)) (D.3)

and, integrating over a, we obtain the marginal PDF of Θ conditioned on ψ = ψ′ as

fΘ|ψ=ψ′(θ) =

∫ +∞

0
fA,Θ|ψ=ψ′(a, θ)da (D.4)

=
γ

π
e−γ sin

2(θ−ψ′)

∫ +∞

0
ae−γ(a−cos(θ−ψ′))2da. (D.5)

The integration in (D.5) gives (2.27). The result in (2.25) represents E[ℜ(R̂N,K,γ)]

because of the following: for a given ψ′, depending on the noise realization, the

received signal may fall in any of the K different regions. If Θ falls within Dk,

a phase shift of 2πk/K will be applied to the signal, and the phase of its useful

part will be ψ′ − 2πk/K. Hence, the useful part of each node’s signal becomes a

weighted sum of K cosines, whose phases are ψ′ − 2πk/K, for k = 0, . . . ,K − 1,
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and whose weights correspond to the probability of Θ being in the corresponding

decision region Dk. The expression is then averaged according to the distribution of

ψ that we consider uniform in [−π/K,+π/K). Due to the symmetry of the system,

this is equivalent to considering ψ uniformly distributed in any of the K regions.

Proposition 4 is thus proven.

For low SNR, (2.27) expands as

fΘ,γ|ψ=ψ′(θ) =
1

2π
+

√
γ
cos(θ − ψ′)

2
√
π

+ γ
(2 cos2(θ − ψ′)− 1)

2π
+ o(γ) (D.6)

and, plugging (D.6) into (2.26), we obtain

pDk,γ|ψ=ψ′ =
1

K
+

√

γ

π
sin
( π

K

)

cos

(

ψ′ − k2π

K

)

+
γ

2π
sin

(

2π

K

)

cos

(

2ψ′ − k4π

K

)

+ o(γ). (D.7)

By using (D.7) in (2.25), we obtain:

E

[

|R̂N,K,γ|
]

≥ 1

π
sin
( π

K

)

K−1
∑

k=0

cos

(

2kπ

K

)

+

√

γ

π

K

8π
sin
( π

K

) [

4π + 2 sin

(

2π

K

)

·
K−1
∑

k=0

cos

(

4kπ

K

)

]

+ γ
K

12π2
sin

(

2π

K

)K−1
∑

k=0

cos

(

2kπ

K

)

[

3 sin
( π

K

)

+ sin

(

3π

K

)(

2 cos

(

4kπ

K

)

− 1

)

]

+ o(γ). (D.8)

Expression (D.8) can be simplified by observing that, for every K

K−1
∑

k=0

cos

(

2πk

K

)

=
1

2

K−1
∑

k=0

(

ej
2πk
K + e−j

2πk
K

)

=
1

2

(

1− ej2π

1− ej
2π
K

+
1− e−j2π

1− e−j
2π
K

)

= 0. (D.9)

This is also valid for the summation of cos(4kπ/K) terms in (D.8). Hence, the

coefficients that multiply the terms of orders 0 and 1 in the expression (D.8) are

always zero, and this simplification yields (2.29). This proves Proposition 5.



Appendix E

Proof of Proposition 6

Without loss of generality, we can fix ψ = 0, which is equivalent to fixing any other

value in [0, 2π). With that r = 1 + n and (D.2) becomes

fr|ψ=0(ρ) =
γ

π
e−γ((ρℜ−1)2+ρ2

ℑ
), (E.1)

from which fA,Θ|ψ=0(a, θ) in turn becomes

fA,Θ|ψ=0(a, θ) =
a

π
γe−γ(a

2+1−2a cos θ) (E.2)

and the distribution of Θ conditioned on ψ = 0 is given by

fΘ|ψ=0(θ) =

∫ +∞

0
fA,Θ(a, θ)da (E.3)

=
γ

π
e−γ sin

2 θ

∫ +∞

0
ae−γ(a−cos θ)2da. (E.4)

The integration in (E.4) gives

fΘ|ψ=0(θ) =
1

2π
e−γ

{

1 + 2eγ cos
2 θ√πγ cos θ

[

1−Q
(

√

2γ cos θ
)]}

. (E.5)

In order to de-condition (E.5), the following integration can be carried out:

∫ +π

−π
fΘ(θ − ψ′)δ(ψ′)dψ′ = fΘ(θ) (E.6)

because ψ is conditioned to having a punctual deterministic value, and hence its

distribution is a delta function.

The first raw moment of the real part of R̂N,∞,γ can be written as

E

[

ℜ
(

R̂N,∞,γ

)]

=

∫ +π

−π
cos θfΘ(θ)dθ. (E.7)
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This derives from the fact that the node will rotate its vector exactly by θ, which is

the phase observed at the receiver. As a consequence, instead of remaining on the

real axis, as it would if the feedback were correct, its phase is centered on zero with

distribution fΘ(·). In order to integrate (E.7), we proceed as follows: reordering the

terms in (E.5), we write

fΘ(θ) =
1

2π
e−γ +

√

γ

4π
e−γ sin

2 θ cos θ +

√

γ

4π

(

1− 2Q(
√

2γ cos θ)
)

e−γ sin
2 θ cos θ

(E.8)

and we then define the integrals

I1 ,
1

2π
e−γ

∫ +π

−π
cos θdθ (E.9)

I2 ,
√

γ

4π

∫ +π

−π
e−γ sin

2 θ cos2 θdθ (E.10)

I3 ,
√

γ

4π

∫ +π

−π

(

1− 2Q(
√

2γ cos θ)
)

e−γ sin
2 θ cos2 θdθ (E.11)

such that (E.7) is simply I1+I2+I3. Obviously, (E.9) is zero and (E.11) is also zero

because the integrand is an odd function for θ ∈ [−π,+π). In turn, (2.30) admits

the closed form that constitutes the claim of Proposition 6.



Appendix F

Proof of Propositions 7 and 8

For notational compactness, let us define:

x ,
1

N

N
∑

i=1

Gi cos ψ̃i (F.1)

y ,
1

N

N
∑

i=1

Gi sin ψ̃i (F.2)

where ψ̃1, . . . , ψ̃N are a set of independent and identically distributed random vari-

ables, uniform in [−π/K,+π/K) and Gi are Rayleigh distributed with parameter

p. The NRSS is simply
√

x2 + y2. For K → ∞, when N is large enough, clearly

x→ E[G] and y → 0.

Thus, we expand the NRSS around x = E[G] and y = 0 obtaining

√

x2 + y2 =x+
3

2E[G]
y2 − 3

2E2[G]
xy2 +

1

2E3[G]
x2y2 +O

(

y3
)

+

O
(

y3
)

(x− E[G]) +O
(

y3
)

(x− E[G])2 +O
(

(x− E[G])3
)

. (F.3)

We now take expectations over ψ̃1, . . . , ψ̃N . For the first term in (F.3), we have:

E[x] =
1

N
E

[

N
∑

i=1

Gi cos ψ̃i

]

(F.4)

=
1

N

N
∑

i=1

E[Gi]E
[

cos ψ̃i

]

(F.5)

= E [G]E
[

cos ψ̃
]

(F.6)

= E[G]
K

π
sin
( π

K

)

(F.7)

= E[G]

(

1− π2

6K2
+ o

(

1

K2

))

. (F.8)
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For the second term in (F.3), we have:

E[y2] =
1

N2
E





(

N
∑

i=1

Gi sin ψ̃i

)2


 (F.9)

=
1

N2

N
∑

i=1

G2
iE

[

sin2 ψ̃i

]

+
1

N2

N
∑

i=1

N
∑

j=1
j 6=i

GiGjE
[

sin ψ̃i sin ψ̃j

]

(F.10)

=
1

N
E[G2]

(

1

2
− K

4π
sin

(

2π

K

))

(F.11)

=
E[G2]

N

(

π2

3K2
+ o

(

1

K2

))

. (F.12)

For the third term in (F.3), we have:

E[xy2] = E





1

N3

(

N
∑

i=1

Gi cos ψ̃i

)(

N
∑

i=1

Gi sin ψ̃i

)2


 (F.13)

=
1

N3
E









(

N
∑

i=1

G3
i cos ψ̃i sin

2 ψ̃i

)









N
∑

i=1

N
∑

j=1
j 6=i

GiG
2
j cos ψ̃i sin

2 ψ̃j

















(F.14)

=
1

N2

(

E[G3]E[cos ψ̃ sin2 ψ̃] +NE[G]E[G2]E[cos ψ̃]E[sin2 ψ̃]
)

(F.15)

=
E[G3]

N2

K

3π
sin3

( π

K

)

(F.16)

+
1

N
E[G]E[G2]

K

π
sin
( π

K

)

(

1

2
− K

4π
sin

(

2π

K

))

(F.17)

=
1

N2

(

E[G3]
π2

3K2
+NE[G]E[G2]

π2

3K2

)

+ o

(

1

K2

)

. (F.18)

For the fourth term in (F.3), we have:

E[x2y2] = E





1

N4

(

N
∑

i=1

Gi cos ψ̃i

)2( N
∑

i=1

Gi sin ψ̃i

)2


 (F.19)

=
1

N4
E

[(

N
∑

i=1

G2
i cos

2 ψ̃i +

N
∑

i=1

N
∑

j=1
j 6=i

GiGj cos ψ̃i cos ψ̃j

)

(F.20)

·
(

N
∑

i=1

G2
i sin

2 ψ̃i +

N
∑

i=1

N
∑

j=1
j 6=i

GiGj sin ψ̃i sin ψ̃j

)]

(F.21)

=
1

N4
E

[

N
∑

i=1

G4
i cos

2 ψ̃i sin
2 ψ̃i +

N
∑

i=1

N
∑

j=1
j 6=i

G2
iG

2
j cos

2 ψ̃i sin
2 ψ̃j (F.22)
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+ 2

N
∑

i=1

N
∑

j=1
j 6=i

G3
iGj cos ψ̃i sin

2 ψ̃i cos ψ̃j (F.23)

+
N
∑

i=1

N
∑

j=1
j 6=i

N
∑

l=1
l 6=i,l 6=j

GiGjGl cos ψ̃i cos ψ̃j sin
2 ψ̃l

]

(F.24)

=
1

N3

(

E[G4]E[cos2 ψ̃ sin2 ψ̃] +NE
2[G2]E[cos2 ψ̃]E[sin2 ψ̃] (F.25)

+ 2NE[G3]E[G]E[sin2 ψ̃ cos ψ̃]E[cos ψ̃] (F.26)

+N2
E[G2]E2[G]E2[cos ψ̃]E[sin2 ψ̃]

)

(F.27)

=
E[G4]

N3

(

1

8
− K

32π
sin

(

4π

K

))

(F.28)

+
1

N2
E
2[G2]

(

1

4
− K2

16π2
sin2

(

2π

K

))

(F.29)

+
2

N2
E[G3]E[G]

K2

3π2
sin4

( π

K

)

(F.30)

+
1

N
E[G2]E2[G]

K2

π2
sin2

( π

K

)

(

1

2
− K

4π
sin

(

2π

K

))

(F.31)

=
π2

3K2N3

(

E[G4] +NE
2[G2] + 2NE[G3]E[G] (F.32)

+N2
E[G2]E2[G]

)

+ o

(

1

K2

)

(F.33)

By putting everything together, according to (F.3), we obtain (2.41).
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Appendix G

Proof of Proposition 9

The received complex signal in (2.36) can be rewritten as:

r = G cosψ + nℜ + j(G sinψ + nℑ) (G.1)

For a given ψ = ψ′, and G = g, rℜ and rℑ are independent Gaussian random

variables with variance σ2/2 and mean g cosψ′ and g sinψ′, respectively. The PDF

of r conditioned on ψ = ψ′ and G = g is

fr|ψ=ψ′,G=g(ρ) =
γ

π
e−γ((ρℜ−g cosψ′)2+(ρℑ−g sinψ′)2). (G.2)

Based on (G.2), the joint PDF of A and Θ, conditioned on ψ = ψ′ and G = g is

then [102]

fA,Θ|ψ=ψ′,G=g(a, θ) =
γ

π
ae−γ(a

2+g2−2ag cos(θ−ψ′)) (G.3)

and, integrating over a, we obtain the marginal PDF of Θ conditioned on ψ = ψ′

and G = g as

fΘ|ψ=ψ′,G=g(θ) =

∫ +∞

0
fA,Θ|ψ=ψ′,G=g(a, θ)da (G.4)

=
γ

π
e−γg

2 sin2(θ−ψ′)

∫ +∞

0
ae−γ(a−g cos(θ−ψ

′))2da. (G.5)

The integration in (G.5) gives (2.44).
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Appendix H

Proof of Proposition 10

For low SNR, the marginal PDF of Θ conditioned on ψ = ψ′ and G = g in 2.44, can

be expanded as follows:

fΘ|ψ=ψ′,G=g(θ) =
1

2π
+
g cos(θ − ψ′)

2
√
π

√
γ +

g2 cos (2(θ − ψ′))
2π

γ + o(γ) (H.1)

By plugging H.1 into 2.43 we obtain:

pDk|ψ=ψ′,G=g =
1

K
+

√

γ

π
g sin

( π

K

)

cos

(

ψ′ − k2π

K

)

+
γ

2π
g2 sin

(

2π

K

)

cos

(

2ψ′ − k4π

K

)

+ o(γ). (H.2)

By using H.2 in 2.42 we obtain:

E

[

|R̂N,K,γ,p|
]

≥ p√
2π

sin
( π

K

)

K−1
∑

k=0

cos

(

k2π

K

)

+

√

γ

π

K

4π
sin
( π

K

)

p2

[

4π − 2 sin

(

2π

K

)K−1
∑

k=0

cos

(

4kπ

K

)

]

+ γ
K

4π2

√

π

2
p3 sin

(

2π

K

)K−1
∑

k=0

cos

(

k2π

K

)

[

3 sin
( π

K

)

+ sin

(

3π

K

)(

2 cos

(

4kπ

K

)

− 1

)

]

+ o(γ) (H.3)

Since
∑K

k=0 cos
(

k2π
K

)

is zero for every K, as shown in Section D, expression H.3

reduces to 2.45. Proposition 10 is thus proven.
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Appendix I

Proof of Propositions 11 and 12

Without loosing generality, ψ can be fixed to be zero. Hence, (G.2) becomes:

fr|ψ=0,G=g(ρ) =
γ

π
e−γ((ρℜ−g)2+ρ2

ℑ
). (I.1)

Based on (I.1), the joint PDF of A and Θ, conditioned on ψ = 0 and G = g is

then [102]

fA,Θ|ψ=0,G=g(a, θ) =
γ

π
ae−γ(a

2+g2−2ag cos θ) (I.2)

and, integrating over a, we obtain the marginal PDF of Θ conditioned on ψ = 0 and

G = g as

fΘ|ψ=0,G=g(θ) =

∫ +∞

0
fA,Θ|ψ=0,G=g(a, θ)da (I.3)

=
γ

π
e−γg

2 sin2 θ

∫ +∞

0
ae−γ(a−g cos θ)

2
da. (I.4)

The integration in (I.4) yields 2.47, since, by de-conditioning with respect to ψ,

which has as PDF a Delta distribution centred at zero, the function is not affected

by any changed as shown in Section D, Eq. (E.6). This then proves Proposition 11.

At low SNR, (2.47) can be expanded as follows:

fΘ|G=g(θ|G = g) =
1

2π
+
g cos θ

2
√
π

√
γ +

g cos 2θ

2π
g2 + o(γ). (I.5)

By plugging I.5 into (2.46), expression (2.48) is obtained.
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