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1. Introduction 

 

 

In 2008, Prof. Harald zur Hausen (German Cancer Research Center, Heidelberg, Germany) 

won the Nobel Prize in Medicine “for his discovery of Human Papillomaviruses causing 

cervical cancer” at the beginning of the ‘70s (zur Hausen et al., 1975), giving the necessary 

scientific grounds to the Italian physician Rigoni-Stern’s observations in 1842 about the 

possible sexual transmission of cervical cancer. This event definitely underlined the global 

relevance of the research on HPV and associated diseases.  

 

1.1 Human Papillomavirus (HPV) 

1.1.1 Viral structure and genome organization 

HPVs are small (55 nm of diameter), non-enveloped viruses with an icosahedral proteic 

capsid, belonging to the family of Papillomaviridae. The genome is a circular double stranded 

molecule of DNA (dsDNA) about 8000 bp long, which can be divided in three major regions 

separated by two polyadenilation sites (AE and AL) (Fig. 1) (Zheng & Baker, 2006). The 

early region contains six open reading frames (ORFs) expressed during the early phase of the 

viral cycle, which codify for functional proteins involved in cell cycle deregulation (E5, E6 

and E7), control of viral genome replication and transcription (E1 and E2) and interactions 

with the cytoskeleton (E4). In the late region there are only two genes for the production of 

the major and minor structural proteins of the capsid (L1 and L2, respectively). These two 

regions are under the tight control of two different promoters, the early and the late promoters 

(P97 and P670 in HPV 16), whose activation is strictly dependent on cell differentiation status. 

The third region is the long control region or upper regulatory region (LCR or URR), a 

~850bp long non-codifying region which contains sequences involved in the control of viral 

genes expression and replication (TATA box, enhancer and origin of replication). Here there 

are the four sequences specific for the binding of the viral protein E2 (E2 binding sites, 

E2BSs, 5’-ACCN6GGT-3’) which allow the transcriptional regulation of E6 and E7 

(Androphy et al, 1987). When the concentration of E2 is low, it binds preferably to E2BS1 far 

from the early promoter, leading to E6/E7 expression. As E2 concentration increases, the 

other E2BSs will also be bound by E2, resulting in E6/E7 repression (Hegde, 2002). The 

interaction of E2 with E2BS1 was found to be the most stable interaction compared to binding 
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of E2 to the other binding sites, with E2BS2 in the origin of replication being the least stable. 

In addition to E1 and E2, other cellular transcription factors, such as TFIID, Sp1, Ap1, YY1 

and NF1, can bind to this region influencing E2 binding and viral transcription (Lewis et al, 

1999).  

The viral genome is very compact and can encode multiple proteins by transcribing 

polycistronic transcripts which undergo alternative RNA splicing to express different 

proteins. For example, HPV 16 E6 and E7 pre-mRNAs are transcribed from the same P97 

early promoter as bicistronic E6/E7 pre-mRNAs, and have an intron in the E6 coding region 

with one 5′ splice site and three alternative 3′ splice sites. Splicing of E6/E7 pre-mRNAs by 

alternative utilization of these three 3′ splice sites produce E6^E7, E6*I and E6*II  mRNAs. If 

this intron remains unspliced, the resulting E6/E7 mRNA expresses the oncogenic full length 

E6 (Zheng & Baker, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Predicted structure and genomic organization of HPV 16: function of the codified 

proteins and cellular transcription factors which bind to the LCR (Lazarczyk et al, 2009). 

 

1.1.2 Classification  

Actually, more than 120 Papillomaviruses (PV) have been described based on the isolation of 

complete genome but more are probably to exit. The L1 ORF is the most conserved gene 

within the genome and has been used for the identification of new PV types over the past 20 

years. A new PV isolate is recognized as such if the complete genome has been cloned and 
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the DNA sequence of the L1 ORF differs by more than 10% from the closest known PV type. 

Differences between 2% and 10% homology define a subtype and less than 2% a variant (de 

Villiers et al, 2004). The designation, HPV (number), is only given after isolation and 

characterization of the complete genome. This full-length genome is deposited at the 

Reference Centre for Papillomaviruses (in Heidelberg, Germany) where the genome 

organization and sequence is verified as a new PV type. 

The alpha-, beta- and gamma-genus include the HPV types which have different genomic and 

biological properties (Fig. 2). In fact, HPVs can be divided in two major groups: the 

cutaneous and the mucosal HPV, depending on the type of epithelium which can 

preferentially infect. The alpha-genus include both mucosal and cutaneous HPVs with the E5 

ORF, the beta- and gamma-genus only cutaneous HPVs without E5 ORF. 

 

 

Figure 2 – Phylogenetic tree containing the sequences of 118 Papillomavirus types (human and 

non-human), based on the differences/similarities in the L1 ORFs (de Villiers et al, 2004). Red 

circles underline the genus which include the mucosal and cutaneous HPV types. 
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1.1.3 Viral cycle: productive infection and viral proteins 

As previously mentioned, HPV viral cycle is strictly dependent on the differentiation status of 

the infected host cells and for this reason epithelial raft cultures has been developed to better 

investigate it in vitro (Andrei et al, 2010).  

The normal productive infection starts when the virus reaches the dividing basal cells of the 

epithelium through small lesions, entering in the cytoplasm via clathrin- or caveolin-

dependent endocytic mechanisms (Fig. 3) (Day et al, 2003). The major capsid protein L1 

interacts with heparan sulfate proteoglycans on the cell surface with the involvement of a 

secondary receptor and a possible role for the minor capsid protein, L2. Particles disassemble 

in late endosomes and/or lysosomes, with the transfer of viral DNA to the nucleus being 

facilitated by L2 (Doorbar, 2006). In experimental systems, viral transcripts can be detected 

as early as 12 h post-infection, with mRNA levels increasing over the course of several days. 

In this early part of the infection, the viral genome is a stable episome (not integrated into the 

host genome) and acquires euchromatic structure (association with histones) allowing nuclear 

transcription factors to regulate the viral expression during the productive infection. The 

proteins E1 and E2 are required for its maintenance, replication with the cellular genome 

during the S-phase and segregation (Table 1). Moreover, E2 regulates transcriptional levels of 

E6 and E7 in a dose-dependent manner: these proteins are necessary to drive to and block the 

cell in the S-phase via interactions with p53 and pRb. Upon infection of basal cells, HPV 

genomes are replicated up to 50–100 copies per cell. 

Suprabasal cells normally exit the cell cycle and begin the process of terminal differentiation 

in order to produce the protective barrier that is normally provided by the skin. At the same 

time, HPVs need to amplify their genome and produce new viral particles. What triggers the 

onset of late events is not yet fully understood, but appears to depend in part on changes in the 

cellular environment as the infected cell moves towards the epithelial surface, leading to the 

increase of viral proteins involved in replication (i.e. E1, E2, E4, E5). As E2 increases in 

abundance, occupancy of the remaining sites leads to the displacement of basal transcription 

factors, such as Sp1 and TBP (TATA-box-binding protein), that are necessary for promoter 

activation. It appears that the increase in E2 expression leads eventually to the down-

regulation of E6/E7 expression and to the eventual loss of the replicative environment 

necessary for viral DNA synthesis. E5 is a transmembrane protein which resides 

predominantly in the endoplasmic reticulum, but it can associate with the vacuolar proton 

ATPase delaying the process of endosomal acidification. It is thought that this affects the 
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recycling of growth factor receptors on the cell surface, leading to an increase in epidermal 

growth factor (EGF)-mediated receptor signalling and the maintenance of a replication 

competent environment in the upper epithelial layers. On the other hand, E4 causes cell-cycle 

arrest in G2 phase and antagonizes E7-mediated cell proliferation. 

The events that link genome amplification to the synthesis of the capsid proteins are not yet 

fully understood, but are dependent on changes in mRNA splicing and on the generation of 

transcripts that terminate at the late (rather than the early) polyadenylation site. The assembly 

of infectious virions in the upper epithelial layers is thought to require E2 in addition to the 

capsid proteins L1 and L2, and it has been suggested that E2 may improve the efficiency of 

genome encapsidation during natural infection. L2 localizes to the nucleus by virtue of 

nuclear localization signals located at its N- and C termini and, once there, it associates with 

PML (promyelocytic leukaemia) bodies. Although some PV L2 proteins can associate directly 

with DNA, the specific recruitment of viral genomes to PML bodies is thought to require E2, 

which can associate with viral DNA through its specific recognition sites. L1 assembles into 

capsomeres in the cytoplasm (360 copies of L1 organized into 72 capsomeres with 1 copy of 

L2 in the center) prior to nuclear relocation and is recruited into PML bodies only after L2 has 

bound and has displaced the PML component sp100. 

In the end, virus release requires efficient escape from the cornified envelope at the cell 

surface, which may be facilitated by the E4 protein by disrupting the keratin network and 

affecting the integrity of the cornified envelope. The viral infectious cycle is exclusively 

intraepithelial: there is no viremia and no virus-induced cytolysis or cell death, and viral 

replication and release are not associated with inflammation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Viral life cycle in cutaneous and mucosal epithelia and gene expression in different 

epithelial layers (Doorbar, 2006). 
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Table 1- Viral proteins and their functions (Doorbar, 2006; Ganguly & Parihar, 2009; Hegde, 

2002; Miller et al, 2012). 

Viral 

protein 

Molecular 

Mass (kDa) 

Functions and Interactions 

L1 55-60 
Major protein of the capsid (highly conserved among HPVs) 

Interaction with cell surface receptor 

L2 70 
Minor protein of the capsid 

Important for the efficacy packaging of new particles 

E1 68-75 

ATP-ase and Helicase (highly conserved among HPVs) 

Replication and maintenance of viral genome (binding site: 6 repeated 

AACNAT)  

E2 50 

DNA binding protein (binding site: 5’-ACCN6GGT-3’ in LCR) 

Replication, maintenance  and segregation of viral genomes 

Regulation of E6 and E7 transcription 

Interaction with cellular RPA and DNA polymerase  

E4 17 
Not fully clarified and mostly present as fusion protein E1^E4 

Cell cycle arrest in G2-phase 

E5 8-10 

Transmembrane protein which resides in the endoplasmatic reticulum 

Replication of the viral genome  

Maintenance of the competent replicative environment in the upper 

epithelial layers 

E6 16-18 

Oncoprotein (in high risk-HPV with C-term PDZ-binding domain) 

two zinc-binding domains with two CXXC motifs 

p53 ubiquitin-dependent degradation interacting with E6-associated protein 

(E6AP) 

Activation of cellular telomerase (hTERT)  

Inibition of IRF3 evading immune response, interaction with CBP/p300 

Cell cycle deregulation 

E7 11 

Oncoprotein, low immunogenicity (C-terminus contains a zinc-binding 

domain composed of two CXXC motifs) 

N-term interacts with pRb avoiding its binding to transcription factor E2F 

Interaction with cellular HDACs, HATs, DMTs, AP1, p21, p27, p600 

Inhibition of IRF1 and IRF9 evading immune response  

Cell cycle deregulation (targeting G1/S checkpoint) 

 

1.1.4 Molecular pathogenesis: transforming infection, integration and latency 

In the previous paragraph, we described the productive infection of HPV, which does not 

cause a symptomatic effect nor a high immune response. However, the majority of HPV 

infections (90%) are cleared in 2 years without any complication for the host (Gravitt, 2011). 

But what happens if the infection persists? As we have seen, the key molecules during the 

viral replication are the oncoproteins E6 and E7, which interact with a great number of 

cellular proteins (Tab 1 and Fig 4). In experimental systems these interactions have been 

shown to induce proliferation and eventually immortalization and malignant transformation of 

cells, but the mechanisms which determine the “switch” from productive to transforming 

infection have not been completely understood yet. Since there are differences between E6/E7 
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proteins of different HPV types, actually we distinguish, among the mucosal group, high risk-

HPVs (HR-HPVs), probably HR-HPVs and low risk-HPVs (LR-HPVs), depending on the 

different capacity of HPV types to establish a transforming infection. For example, HR-HPVs 

E6 protein contains a PDZ-binding domain targeting proteins in the cellular membrane-

cytoskeleton interface, disrupting cell junctions and promoting transformation. 

  

 

 

 

 

 

 

 

 

 

Figure 4 – Multi-step pathogenesis of HPV and some of the interactions of viral oncoproteins E6 

and E7 with cellular proteins (Yugawa & Kiyono, 2009). 

 

The crucial point during viral life cycle is the regulation of E6 and E7 expression. If these 

proteins are overexpressed, cell cycle/ mitosis deregulation and suppression of the immune 

response are increased as well, leading to genomic instability and accumulation of mutations 

at different sites (random) of the cellular chromosomes. Together, all these events are 

necessary for cancer development and define the malignant phenotype (multipolar mitoses are 

hallmark of HR-HPV-associated carcinomas) (Muñoz et al, 2006; Yugawa & Kiyono, 2009).  

One of the main consequences of genomic instability during persistent HPV infection is 

random integration of the viral genome into cellular chromosomes through double strand 

breaks (DSBs) (Pett & Coleman, 2007; Pett et al, 2004; Wentzensen et al, 2004). Usually, this 

event occurs in the viral E2 ORF, leading to the complete or partial loss of E2 protein. Since 

E2 is fundamental for the correct regulation of E6 and E7 transcription, viral integration 

contributes to the overexpression of these oncoproteins. More rarely, concatameric integrants 

are observed, where viral copies (including intact E2) are arranged in a head-to-tail fashion 

with partially deleted copies at the 5’- and 3’- ends (Fig 5).   

During the last 20 years, viral integration was thought to be the key mechanism for HPV-

associated cancer development, but the findings of episomal viral DNA in late stage cancers 
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suggested the presence of alternative pathways for oncoproteins overexpression in the 

presence of active E2 (Arias-Pulido et al, 2006; Vinokurova et al, 2008). One of these 

mechanisms have been suggested to have an epigenetic nature, involving methylation of 

citosines (meC) by cellular DNA Methyltransferases (DMTs). In fact, not only DNA 

methylation is a mechanism commonly used by mammalian cells to drive and control gene 

expression, but it has been also shown that E7 can interact with DMT-1 (Burgers et al, 2007) 

and meC in CpG sites in the viral EBSs act as obstacle to E2 binding (Kim et al, 2003; Thain 

et al, 1996). DNA methylation in HPV infected cells may occur in both episomal and 

integrated viral genome as well as in cellular genes, having different roles (Szalmas & Konya, 

2009). At the viral DNA level, it may act as a cellular defence mechanism avoiding foreign 

genes expression; at the host genome level, it may inactivate some key genes involved in the 

control of cellular signalling pathways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Significance of HR-HPV integration detected in cervical carcinomas (Pett & 

Coleman, 2007). 

 

Up to now, we described what happens during a persistent HPV infection, when the virus 

replicates with high titres which can be detected by common diagnostic techniques. However, 

sometimes in a basal stem cell HPV may persist and remain undetectable until triggered to 

differentiate by undetermined stimuli such as wound repair and hormonal regulation (Gravitt, 

2011). This event is called viral latency and it has not been completely understood for HPV. It 

is thought that a few infected basal stem cells may retain HPV episomes, but do not 

differentiate, and these infected cells are unlikely to be sampled using standard exfoliative 
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techniques employed in most epidemiologic studies, which sample only the surface 

epithelium. Moreover, minor fraction of the episomal HPV DNA can be methylated de novo 

and can also be associated with transcriptionally inactive chromatin structure, providing a 

plausible mechanism for latent form of HPV infection (Szalmas & Konya, 2009). Wounding 

may stimulate latently infected basal cells to divide and trigger viral reactivation and 

stimulation of tissue-resident memory T cells.  

 

1.2 Clinical relevance of mucosal alpha-HPVs infection 

Transmission of HPV infection occurs primarily via sexual activity, most commonly vaginal 

and anal intercourse. Other forms of transmission have been occasionally reported such as 

skin-on-skin genital contact, and mother-to-child transmission, but their implication in 

cervical cancer is likely to be marginal. Oral sex can also be a route of HPV transmission.  

HPV infection is very common. Most women in the world will be infected with genital HPV 

at some time in their lives, with a lifetime risk of infection of 50–80%, and peak incidence 

occurs in the 18–30 age group (Stanley, 2010). Even if HPV infection is mainly known 

worldwide for the causative relationship with cervical cancer, during the last 30 years it has 

been also associated to the development of many other diseases in both men and women, with 

different roles of HPV genotypes (Tab. 2).  

The prevalence of genital HPV infection in men is not well established and results from 

studies are difficult to compare because of differences in sampling methods, differences in 

study population, and poor reporting of the presence or absence of clinical lesions. Here we 

describe the most important characteristics of HPV-associated diseases in the anogenital and 

aerodigestive tracts. 

 

Table 2 – Sites of HPV-associated cancers (Kreimer & Chaturvedi, 2011). 

Cancer site 
% attributable 

to HPV infection 
HPV-induced premalignant lesion Screening modality 

Cervix 100 
Cervical intraepithelial neoplasia 

(CIN) 

Cytology, colposcopy, primary 

screening 

Anus 90 Anal intraepithelial neoplasia (AIN) Cytology, High resolution anoscopy 

Penis 40 
Penile intraepithelial neoplasia 

(PIN) 
Cytology/Histology 

Vagina 40 
Vaginal intraepithelial neoplasia 

(VAIN) 
Cytology/Histology 

Vulva 40 
Vulvar intraepithelial neoplasia 

(VIN) 
Cytology/Histology 

Oropharynx  12-72 ? ? 
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1.2.1 Cervical cancer and other HPV-associated diseases in the anogenital region 

CERVICAL CANCER: SQUAMOUS CELL CARCINOMA (SCC) AND CERVICAL 

ADENOCARCINOMA (AdCa) 

The cervix of the uterus is the preferential site of sexual infection by mucosal HPVs and 

undergoes physiological changes according to the age of the woman (before puberty, puberty, 

following puberty, after menopause) due to different hormonal levels. The area of the cervix 

with premalignant potential is the transformation zone, which is formed after puberty and 

corresponds to the site of transition from the columnar glandular epithelium (endocervix) and 

the squamous epithelium (esocervix) (Fig. 6).  

According to World Health Organization (WHO) 2010 statistics, cervical cancer is the 3
rd

 

most common cancer among women worldwide, with 529 409 newly diagnosed cases and 

274 883 deaths every year. However, global incidence and mortality rates vary geographically 

with 452 902 cases (85.5%) of cervical cancers occurring in low-income countries. It is more 

common in metropolitan areas than in rural areas, and the incidence is higher in populations 

with lower socio-economic status and level of education. Central and South America, 

southern and eastern Africa and the Carraiben have the highest incidence of the disease.  

  

 

 

 

 

 

 

 

Figure 6 – Figures showing the location of the squamous epithelium in the exocervix or the 

glandular cells in the endocervix (left) and the spread of cervical cancer through the cervix 

(from normal cervix to cancer) which can be observed during a visual inspection (right). 

 

Carvical cancer development is a long multistep process characterized by well-defined 

clinical stages and we can observe four main step: infection, persistence, progression, and 

invasion (Fig. 7). It is a rare complication of persistent infections with mucosal HPVs, which 

occur in 10% of the cases and are more likely to progress to premalignant lesions (CIN) in 5 

years. Heterogeneity in biology (and definition) still exists in precancerous lesions: a) CIN 1 

is a histopathological diagnosis of HPV infection, and should not be considered as a 
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precancerous lesion. Women with a persistent diagnosis of CIN 1 may progress to CIN 2/3 at 

a rate of 15% over 2 years, b) CIN2 is sometimes produced by non-carcinogenic HPV types, 

and has a sizable regression potential of 40% over an approximately 2-year period. Thus, CIN 

2 represents an equivocal precancerous lesion, but it is treated in some regions to provide a 

safety margin against cervical cancer risk, c) CIN3 (in situ carcinoma, CIS) is the true 

precancerous lesion and progresses to cancer, if untreated, at a rate of around 30% over 20 

years. When high-grade CIN (CIN 2 or worse) is diagnosed, treatment is mandatory. Overall 

treatments are more than 90% effective. 

 

Virtually, all cervical cancer cases are linked to genital persistent infection with mucosal 

HPVs, which is the most common viral infection of the reproductive tract and its prevalence 

in the general population with normal cytology is 11.4% (14.3% in developing regions vs 

10.3% in developed regions) (WHO HPV Summary Report Update 2010). In 1995, the IARC 

monograph working group concluded that there were sufficient evidences for the 

carcinogenicity of HPV 16 and 18 and limited evidences for the carcinogenicity of HPV 31 

and 33. Actually, HR-HPV are HPV 16, 18, 31,33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 73, 

probably HR-HPV are HPV 26, 53, 68, 73 and 82, LR-HPV are HPV 6, 11, 13, 40, 42, 43, 44, 

54, 61, 70, 72, 81 and 89 (Muñoz et al, 2006). HPV 16 and 18 are involved in 70.9% of all 

cervical cancers even if genotype-specific prevalence may vary geographically. Moreover, 

some recent studies have pointed out an important role of different HPV 16 variants, which 

sometimes have increased oncogenicity when compared to the main type (Quint et al, 2010; 

Sichero et al, 2012). The risk factors for acquisition of HPV infection have been historically 

linked to: a) early age at initiation of sexual activity, b) high number of new and recent sexual 

partners, c) high number of partners of the husband or male partner. 

 

Although HPV is a necessary factor in cervical cancer development, there are also some 

cofactors playing a role in progression of HPV infection to cervical cancer. Cofactors 

influencing persistence and progression of HPV infection to advanced high-grade squamous 

intraepithelial lesions and cervical cancer include environmental cofactors, such as long-term 

use of hormonal contraceptives, tobacco smoking, co-infection with other sexually 

transmitted agents (i.e. HSV2 and Chlamydia trachomatis), high parity and diet, and host 

cofactors (i.e. HIV infection and immunosuppression) (Castellsagué et al, 2002; Veldhuijzen 

et al, 2010).   
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Fig. 7 – The phases of cervical cancer development, from normal epithelium to invasive cancer 

through precancerous lesions (CINs) . Infection with HPV 16 and 18 is more likely to lead to 

cancer than other genotypes.  

 

From an histological point of view, cervical cancer can be divided in SCC (~80%) and AdCa 

(~20%). Carcinoma of the cervix has showed a marked decline in developed countries over 

the past 40 years, due to wider implementation of cytological screening and increased 

detection of premalignant disease. Although the decline is mainly attributable to a decrease in 

incidence of SCC, there has also been an increase in relative and absolute incidence of AdCa 

over the same period, especially among young women (age < 45 years). These two types of 

cervical cancers differ not only for epidemiology, but also for prognostic factors and survival 

(10–20% differences in 5-year overall survival rates, with AdCa being more aggressive), 

patterns of dissemination and recurrence, response to treatment and risk factors (AdCa more 

associated to obesity, nullipary and HPV 18) (Gien et al, 2010). Moreover, if for SCC and 

premalignant lesions of the esocervix a good classification and triage guidelines are available, 

it is not the same for AdCa and glandular lesions of the endocervix (Zaino, 2000). Glandular 

dysplasia (or atypical hyperplasia) has been proposed as a pathologic entity on the basis of the 

assumption that glandular lesions progress through a series of lesions of distinctive 

morphology as they acquire the genetic and phenotypic changes of carcinomas similar to 

squamous lesions of the cervix. In situ AdCa (AIS) has consistently been characterized by the 

following histological features: a) preservation of normal glandular architecture; b) 

involvement of part or all of the epithelium lining glands or forming the surface; c) nuclear 

enlargement, coarse chromatin, small single or multiple nucleoli; d) increased mitotic activity; 

and e) variable stratification of nuclei. There is no consensus regarding the criteria for the 
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diagnosis of microinvasive AdCa (MIA): authors generally have chosen a similar definition 

that restricts cases of MIA invasion to less than 5 mm from the basement membrane of the 

surface epithelium. To the situation, there is also a controversial classification for the 

histological types of invasive AdCa. Among mucinous AdCa, the most common is the 

endocervical type, followed by intestinal, signet ring, minimal deviation (MDA) and 

villoglandular type. Endometrioid AdCa may actually be more common than the endocervical 

type and histologically is indistinguishable from its counterpart in the uterine corpus. Other 

less common histotypes are clear cell, serous, mesonephric and adenosquamous AdCa. 

VULVAR AND VAGINAL CANCER 

Vulvar cancer accounts for 3-5% of all genital tract malignancies in women and is primarily a 

disease of the elderly (< 70 years). The aetiology is not well understood, but an association 

with HPV has been shown for multifocal warty or bowenoid lesions in younger populations 

(40%). Vulvar intraepithelial neoplasia (VIN) are the precursor lesions and the most 

important risk factors. On the other hand, SCC are the most common histotype (90%). A 

meta-analysis estimated a HPV prevalence of 76% for VIN and 36% for vulvar carcinomas. 

HPV 16 is the most common detected type (65-93% in VIN and 71% for vulvar cancer) 

followed by HPV 18 (WHO Summary Report Update 2010). 

Primary cancer of the vagina constitutes 2% of all malignant neoplasm of the female genital 

tract, with the same risk factors for cervical neoplasia. Most vaginal carcinoma are secondary, 

arising from primary carcinoma of the cervix, endometrium or rectum and the association 

with HPV infection is around 40%. Vaginal intraepithelial neoplasia (VAIN) are the precursor 

lesions. HPV 16 is the most common type in at least 70% of HPV-positive carcinomas (WHO 

Summary Report Update 2010). 

PENILE CANCER 

Cancer of the penis represents less than 0.5% of cancers in men and the age at the diagnosis is 

> 60 years old. The aetiology seems to be multifactorial, but penile cancer with basaloid and 

warty features have shown the strongest association with HPV infection. Moreover, the 

geographical correlation between the incidence of penile and cervical cancers and the 

concordance of these two cancers among married couples suggested the common aetiology of 

HPV infection. Penile intraepithelial neoplasia (PIN) are the precursor lesions and HPV DNA 

is detectable in approximately 40% of all penile cancers. HPV DNA is detectable among PIN 

with the basoloid histological type, ranging from 75-80% of cases, and decreasing to 30-60% 

among invasive squamous cell carcinomas. HPV 16 is the most common genotype. 



14 

 

ANAL CANCER 

Anal cancer is a rare malignancy arising in the anal canal, largely in the transitional zone 

separating the squamous epithelium of the canal and the mucosal epithelium of the rectum. 

The incidence is particularly high in men who have sex with men and among 

immunosuppressed men and women (HIV infected or transplant recipients). These cancers are 

predominantly squamous cell carcinoma, adenocarcinomas, or basaloid and cloacogenic 

carcinomas. Anal cancer is similar to cervical cancer with respect to overall HPV DNA 

positivity, with approximately 85% of cases associated with HPV infection worldwide. HPV 

16 is the most common detected type, representing 87% of all HPV-positive tumours. HPV 18 

is the second most common type detected and is found in approximately 9% of cases. HPV 

DNA is also detected in the majority of precancerous anal lesions (anal intraepithelial 

neoplasia, AIN) and the prevalence of HPV increases with the severity of the lesion. 

NON-CANCEROUS DISEASE: GENITAL WARTS 

Genital Warts (GWs) can involve the vulva, vagina, urethra, skin of anogenital tract, and 

penis. Having GWs is not associated with mortality and are related to both clinical symptoms 

(itching, burning, discharge, bleeding and pain) and psychosocial problems (embarrassment, 

anger, shame, anxiety and decreased self-esteem). Almost 100% of GWs are associated with 

either HPV 6 or 11. Although these HPV types give rise to benign changes, they can in rare 

cases be associated with malignant lesions such as the rare Buschke-Lowenstein tumours. 

HR-HPV types can be identified in up to 50% of cases, however, HPV 6 and 11 are 

considered the causative agents.  

GWs represent not only a problem for the individual, but also imply significant healthcare 

costs for society. About 1% of the sexually active population harbours GWs at any given 

point in time and up to 17% of women aged 20-29 years have had at least one episode of 

GWs in the past (based on surveys in the Nordic countries of Europe). 

 

1.2.2 Non-anogenital cancers: HPV-associated head and neck squamous cell carcinoma 

The term “head and neck cancer” (HN) includes lesions at several anatomic sites, such as the 

lip, oral cavity, nose and paranasal sinuses, nasopharynx, oropharynx, hypopharynx, larynx, 

oesophagus, salivary glands, as well the soft tissues of the neck and ear and more than 95% of 

them are SCC (HNSCC) (Fig. 7). It is the sixth leading cancer by incidence worldwide. It is 

likely that approximately 600 000 cases will arise this year worldwide, and that only 40–50% 

of patients with HNSCC will survive for 5 years (Peter KC Goon, 2012). On clinical 
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examination, oral SCC lesions may be preceded by mucosal alterations with histologically 

detectable dysplastic changes. However, a malignancy involving a complex genetic process 

may also occur directly “de novo” without any pre-existing clinically detectable mucosal 

changes. All HNSCCs tend to be diagnosed late because there is no pain until the late stages. 

The most important risk factor of head and neck cancer worldwide is smoking, with alcohol 

coming second.  

In 1983, Syrjanen and colleagues provided the first evidence on the presence of HPV 

infection in HNSCC, by analyzing the presence of HPV antigens in 40 oral carcinomas using 

immunohistochemistry, but, up to date, scientists have been able to support only an 

association, not an aetiological role (Syrjänen et al, 1983). Although, at present, HPV 

infection has been established in 20-25% of all HNSCC, the role of HPV in the pathogenesis 

of HNSCC has been controversial mainly because the detection rates of HPV DNA have been 

highly variable among the studies, ranging from 0% to 100% and HPV 16 has been identified 

in 20–90% of the oropharyngeal carcinomas (OPSCCs). These highly variable detection rates 

can be partly explained by variations in the sampling techniques and different HPV detection 

methods.  

Several studies indicate that oral HPV infection is likely to be sexually acquired and it seems 

that HPV-positive tumours form a distinct group within HNSCCs. The aetiological factors 

differ, the tumours are different at the molecular level and the clinical outcome is different, in 

general HPV infected HNSCCs have a more favourable prognosis and response to 

chemo/radiotherapy (Tab. 3) (Leemans et al, 2011; Syrjanen, 2010; Worden et al, 2008). 

Oropharyngeal carcinomas, tonsillar cancers in particular, showed the strongest association 

with HPV, with some 60% being ascribed to HPV (Syrjanen, 2010).  

 

 

 

 

 

 

 

 

 

Figure 8 – Possible sites of incidence of HNSCCs (Miller et al, 2012). 
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HPV involvement in HNSCCs is supported by a series of observations. First, HPV is a virus 

with broad and essential tropism for epithelial tissues. In vitro studies clearly proved that viral 

oncoproteins belonging to HR-HPVs immortalize human keratinocytes, including oral 

keratinocytes. The HR-HPV genotypes can be detected in HNSCC with PCR techniques and 

fluorescence in situ hybridization. In addition, genotype-concordant viral DNA can be found 

in the lymph nodes of patients with metastatic oropharyngeal SCC (OPSCC) (Miller et al, 

2012). 

An interesting study compared gene expression profiles of HPV+ and HPV− oropharyngeal 

cancer and oral cavity cancer (Lohavanichbutr et al, 2009). In oral cavity tumours, no 

significant difference in gene expression was noted when comparing HPV+ and HPV− 

specimens. However, analysis of oropharyngeal tumours shows significant differences (347 

differentially expressed genes) in HPV+ compared with HPV− lesions. Differences were 

particularly common among genes involved in DNA regulation and repair, cell cycle, and 

chemotherapy/radiotherapy sensitivity. These results underscore the observation that HPV+ 

oropharyngeal disease represents a divergent biological entity from HPV− disease. 

 

Table 3 – Different clinical and biological characteristics of HPV-positive and HPV-negative 

HNSCCs (Kostareli et al, 2012; Leemans et al, 2011; Syrjanen, 2010). 

Feature HPV-related HNSCC HPV negative HNSCC 

Incidence Increasing Decreasing 

Age Young Adults Adults 

Aetiology 

Sexual Behaviour 

(Sexual partners, Oral sex,  

age first intercourse) 

Tobacco and/or Alcohol  

consumption 

TP53 Wild type Frequent mutations 

p16 Overexpressed Not expressed 

Genomic aberrations 
Few and some connected 

with improved survival 
Many and widespread 

Predilection site Oropharynx None 

Immunosuppression Related Not related 

5-years Overall Survival ~82% ~35% 

 

However, according to data from different studies recently reviewed by Kostareli (Kostareli et 

al, 2012), also HPV-positive OPSCC are heterogeneous in both biological and clinical 

behaviour, possibly due to differences in viral load and/or viral oncoproteins expression. In 

fact, it has been recently shown that HPV DNA+/RNA- tumours have a worst prognosis 

compared to those HPV DNA+/RNA+ ones (Holzinger et al, 2012). These HPV-related 
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tumours have better survival maybe for the combined effect of phenomena occurring in 

epigenome, genome and expression pattern, which drive alterations in the intracellular 

signalling networks, and the components of tumour microenvironment (angiogenesis, immune 

system, inflammation, etc.) (Fig. 8). For example, wild type p53 enables HPV-related OPSCC 

to respond to DNA damage via apoptosis, making these tumours more sensitive to ionizing 

radiations therapy. On the other hand, infection by HPV may also render these cells more 

visible to the innate immune system leading to a synergistic effect with radiotherapy. But 

further studies are needed to confirm these hypothesis. 

 

1.3 Control and prevention of cervical cancers: diagnosis, screening and vaccination 

Cervical cancer is easily manageable through early diagnosis and treatment, which can 

drastically reduce incidence and mortality. More importantly, cervical cancer can be avoided 

to a large extent by action of both primary and secondary prevention. 

 

1.3.1 Cervical cancer screening 

Cancer screening is a public health intervention undertaken in an asymptomatic population to 

prevent invasive disease and resulting mortality through the early detection of precancerous 

lesions. It is generally accepted that organized screening is more effective and cost-effective 

than opportunistic screening and cervical cancer is the only gynaecologic malignancy that 

currently meets the criteria for screening: a) the time between the appearance of precancerous 

lesions and the occurrence of invasive cervical cancer is long (10-30 years), leaving time for 

detection and treatment, b) treatment of precancerous lesions is less expensive and more 

successful in avoiding death, as compared to the management of invasive cervical cancer.  

A good screening test should be accurate, reproducible, inexpensive, easy to perform and 

follow-up, acceptable and safe and several tests are available for cervical cancer screening: 

cytology (conventional or liquid-based), visual inspection (with acetic acid or Lugol’s iodine) 

and HPV testing (Cuzick et al, 2012). In 1952, Georgios Papanicolau described a cervical 

smear technique capable of detecting abnormal cervical cytology suggestive of cervical 

neoplasia, the Pap test (conventional cytology) (Fig. 9).  

Guidelines for cervical cancer screening program are formulated depending on whether or not 

there is a program already in place, and if so, whether or not this program is successful. The 

most appropriate target age group for a screening program is 25-30-years, because younger 

women may have abnormalities, but they are likely to resolve spontaneously. An interval of 3 
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to 5 years between screening visits is considered appropriate in women with previous 

negative screening results. Women whose previous Pap smear was abnormal should follow 

the cervical diagnostic algorithm established locally. 

 

 

 

 

 

 

 

 

Figure 9 - Georgios Papanicolau (left) and a scheme showing how to collect cervical specimen for 

the Pap test (right). 

 

1.3.2 Techniques for HPV detection in clinical samples: HPV-DNA test 

Recently established guidelines recommend HR-HPV DNA testing in order to improve the 

efficacy of primary cytological screening programs or as triage tests. At present the Hybrid 

Capture 2 (HC2) assay (QIAGEN GmbH, Hilden, Germany), the Cervista test (Hologic, 

Madison, WI, USA), and the Roche Cobas 4800 HPV Test (Roche Inc., Branchburg, NJ, 

USA) are the only tests for the detection of HR-HPV DNA approved by U.S. Food and Drug 

Administration for cervical cancer screening (Tab. 4) (Poljak & Kocjan, 2010). 

Furthermore, specific HPV typing is important for epidemiological studies, assessment of the 

clinical behaviour of particular genotypes, clinical management of women, clinical follow-up 

studies, evaluating prevention strategies, development of new therapies and 

prophylactic/therapeutic vaccines.  

Difference in the carcinogenic potential between the different HR-HPV types and indicate the 

potential value of genotyping in cervical cancer screening. HPV 16, 18, 31 and 33 infection 

and especially HPV 16 persistence were associated with high absolute risks for progression to 

high-grade cervical lesions (Kjær et al, 2010). Moreover, clinical trials conducted to test the 

efficacy of prophylactic vaccines that target two HR-HPV types, HPV 16 and HPV 18, as 

well as the low-risk (LR) HPV 6 and 11 (see next paragraph), require accurate detection of 

genotype-specific HPV infections associated with cancer and precancerous lesions. 

Sequencing of DNA is the gold standard method for accurate viral typing. However, DNA 

sequencing techniques have been facing limitations in typing HPV when the specimen 
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harbours multiple genotypes resulting in non-interpretable sequence data. (Gharizadeh et al, 

2005). 

The most widely used PCR-based methods employ consensus primers that amplify highly 

conserved regions of the L1 or E1 gene or E6 gene, followed to genotype specific 

hybridization by reverse line blot hybridization or microchip format. All hybridization-based 

methods can discriminate HPV types in multiple infections, but can identify only HPV types 

represented by probes. 

Actually, many commercially available CE-marked genotyping HPV DNA tests exist. HPV-

typing assays, such as INNO-LiPA HPV (Innogenetics), Linear Array (Roche) and 

PapilloCheck (Greiner Bio-One GmbH), are commonly used in the follow-up of persistent 

infections to monitor the presence of specific HPV genotypes. Many studies comparing 

different methods for HPV typing noted considerable differences in the type specific 

sensitivities as well as the ability to detect multiple infections between the individual test 

systems (Qu et al, 1997; van Doorn et al, 2002). Moreover, although more sensitive than 

cytology, HPV testing has modest specificity and positive predictive value (PPV) for 

detection of pre-cancerous lesions, and cannot distinguish infections that will resolve from 

those that will progress. Thus, an important question is how to triage HPV-positive women 

and further specific and sensitive biomarkers are necessary to answer.  

Table 4- Most important currently available commercial assays for the multiple detection of -

HPV (Poljak & Kocjan, 2010). 

HR-HPV DNA-based screening tests HPV DNA-based genotyping assays 

  Hybrid Capture 2 HPV DNA (HC2) test (Qiagen)   INNO-LiPA HPV Genotyping (Innogenetics) 

  Cervista HPV HR test (Hologic)   Linear Array HPV Genotyping Test (Roche) 

  Amplicor HPV test (Roche)   EasyChip HPV Blot Kit 

  Care HPV test (Qiagen)   REBA-HPV-ID 

HR-HPV-DNA-based screening assays with 

concurrent or reflex HPV 16 and 

HPV 18 genotyping 

  PapilloCheck HPV-Screening Test (GreinerBio) 

  Clart HPV 2 – papillomavirus clinical arrays 

  HPV GenoArray Test Kit 

  RealTime High Risk HPV test (Abbott)   GeneTrack HPV DNA Chip 

  Cobas 4800 HPV Test (Roche)   GeneSQUARE HPV Microarray 

  Cervista HPV 16/18 Test (Hologic)   Infiniti HPV Assays 

  HR-HPV 16/18/45 Probe Set Test   PANArray HPV Genotyping Chip 

In situ hybridization   HPV DNAChip 

  INFORM HPV (Ventana Medical)   GG HPVCHIP 

  GenPoint HPV Biotinylated DNA Probe (Dako) 

  ZytoFast HPV Probes (ZytoVision) 

  Multiplex HPV Genotyping Kit (xMAP,   

Luminex) 

  HPV OncoTect Test Kit (InCellDx) HR-HPV E6/E7 mRNA-based screening assays 

     PreTect HPV-Proofer 

     NucliSENS EasyQ HPV (bioMérieux) 

   APTIMA HPV Assay (Roche) 
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1.3.3 The prophylactic vaccine 

Antibody generally binds to conformational determinants on structural components of a 

microorganism, and assists with pathogen clearance or protects against reinfection by 

promoting phagocytosis and by neutralizing infectivity. Demonstration that the L1 protein of 

HPV was the most immunogenic viral protein and could self assemble into virus-like particles 

(VLPs) eliciting host protective neutralizing antibody, enabled development of prophylactic 

vaccines designed to prevent HPV associated disease. The commercially available vaccines 

are Gardasil
®
 (Merck & Co.) and Cervarix

®
 (GlaxoSmithKline, GSK). These vaccines are 

produced in yeast or insect cells and induce a polyspecific antibody response which 

recognizes a range of conformational determinants on the viral capsid that are generally 

genotype-specific. In fact, Gardasil
®
 has been developed to protect against HPV 16, 18, 6 and 

11 and Cervarix
®
 against HPV 16 and 18. In several phase III clinical trials, vaccines have 

been shown effective at preventing infection with the HPV types in the vaccine and associated 

premalignant disease of the genital tract for periods of up to five years in previously 

uninfected women. Data on longer term protection, and on protection in men, are awaited 

from ongoing clinical trials (Frazer, 2009).  

Although HPV vaccination provides an opportunity to diminish the global cervical cancer 

incidence and successful vaccination programs are expected to substantially reduce HPV-

related diseases burden, screening programs based on cytology or HPV testing will continue 

as a secondary preventative measure. 

 

1.4 HPV AND IMMUNE RESPONSE: ANTIGENS PRESENTATION, 

IMMUNOPROTEASOME AND THE ROLE OF INTERFERONS (IFNs) 

Both cellular and humoral immune response are essential for the clearance of HPV in the 

infected epithelium. The adaptive immune response to HPV appears slower compared with 

other pathogenic virus infections and recognizes predominantly conformational determinants 

displayed only when the capsidic protein L1 is correctly configured into pentamers as in the 

native virus. Antibodies titres against L1 following natural infection are low, and although 

mucosal antibodies (secretory IgA and IgG) are detected in the previous 12 months of HPV 

detection and may protect against HPV infection, assays are difficult to standardize, limiting 

the utility of serology in HPV diagnosis (Sheu et al, 2007). Moreover, for most of the duration 

of the HPV infectious cycle, there is little or no release into the local milieu of pro-

inflammatory cytokines that are important for dendritic cells (DC) activation and migration, 
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and the essential signals to kick start the immune response in squamous epithelia are absent. 

Together, these facts suggest that HPV may have developed strategies to evade host immune 

mechanisms and there are different possibilities.  

 

The primary mechanism of viral immune evasion for HPV infection is avoidance of antigen 

presentation, which takes place via the MHC Class I pathway (Fig. 10A). Briefly, the 

endogenous antigentic peptides (8-11 amino acid products) generated by the intracellular 

proteolysis machinery (i.e. proteasome) are translocated by the transporter associated with 

antigen processing (TAP1/2 heterodimer) into the endoplasmatic reticulum (ER), where the 

chaperons-dependent assembly of MHC class I molecules occurs. Functional molecules are 

composed by a heavy chain (H), a light chain (2-microglobulin, 2m) and the antigenic 

peptide. The chaperon protein involved in this step is Tapasin. Once the trimolecular complex 

is formed, it is delivered to the cell surface via an exocytic pathway, where cytotoxic T cells 

(CD8
+
 CTLs) are responsible of the sensing of these presented antigens (Hwang et al, 2001). 

The proteasome is a cylindric-shaped protease complex arranged as four axially stacked 

heptameric rings. The subunits of the catalytic core are represented by two homologous gene 

products,  (two outer rings, highly conserved) and  (inner rings, divergent, with enzymatic 

activity). Protein degradation may be performed in ubiquitin- or ATP-dependent as well as -

independent manner. Upon IFNs induction (especially IFN-), the  subunits LMP7, LMP2 

and MECL-1 displace its homologues in the “constitutive” proteasome and assemble in the 

so-called “immunoproteasome” (Fig. 10B). This altered catalytic specificity of the 

proteasome is important for generating peptides that are optimal for binding to MHC class I 

molecules.  

IFNs-induced MHC class I pathway activation can be mediated also by proteins belonging to 

the NLR family (nucleotide-binding domain, leucine-rich repeat) such as the recently 

characterized NLRC-5, which acts as nuclear transcriptional transactivator (CITA) (Meissner 

et al, 2012). 

Absence of cell lysis and systemic viremia during HPV infection and production of 

immunogenic proteins in terminally differentiated layers of the epidermis minimize antigen 

availability for presentation, and also ensure that few pro-inflammatory signals are given to 

generate adaptive immune responses. Moreover, the genomic instability which characterizes 

HPV persistent-infected cells and cervical cancer may alter also the complex genomic HLA 

region affecting genes encoding HLA class I-II molecules (Sheu et al, 2007). 
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Figure 10 – MHC Class I antigen presentation pathway (A) and presenting immunoproteasome-

derived peptides (B) (Neefjes et al, 2011; Spaapen & Neefjes, 2012). 

 

HPV evolved anti-inflammatory and immune inhibitory mechanisms to suppress key steps of 

the type I IFNs pathway, impairing the antigen presentation and T-cells activation (Frazer, 

2009).  

Human type I IFNs (i.e. IFN-α, -β, -and -) have antiviral, antiproliferative, antiangiogenic 

and immunostimulatory properties. Viral functional oncoproteins E6 and E7 interact directly 

with molecules involved in IFNs signalling (Tab. 5 and Fig. 11). For example, E7 inhibits 

IFN-α-mediated signal transduction by binding to IRF-9 (IFN regulatory factor-9), preventing 

its translocation to the nucleus, thereby inhibiting the formation of the ISGF-3 (IFN-

stimulated gene factor 3) transcription complex that usually binds ISRE (IFN-specific 

response element) in the nucleus. Moreover, E7 physically interacts with IRF-1, inhibiting 

IFN- promoter (Koromilas et al, 2001). On the other hand, E6 binds to IRF-3 homodimer 

and inhibits its transcript activation function, preventing transcription of IFN-; binding to 

Tyk2, prevents binding to the cytoplasmic portion of the IFN receptor inhibiting 

phosphorylation of Tyk2, STAT (signal transducer and activator of transcription) 1 and 

STAT2, impairing JAK (Janus kinase)/STAT activation and therefore inhibiting specific 

IFNα-mediated signaling (Stanley et al, 2007). 

 

A B 
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Table 5- List of the proteins involved in MHC class I antigen presentation pathway and IFNs-

mediated antiviral response which are considered in this study and relative functions (Génin et 

al, 2009; Hwang et al, 2001; Meissner et al, 2012). 

Pathway Protein Functions and Interactions 

MHC Class I 

Antigen 

presentation 

HLA 

Heavy chain family including HLA-A, -B and –C  

Highly polymorphic (250 alleles) 

The extracellular domain form a shape-specific peptide-binding 

pocket 

TAP 

ATP binding cassette transporter  

Asymmetric transmembrane heterodimer TAP1/TAP2 in ER 

ATP-dependent transport of peptides in unidirectional manner 

across membranes 

Reversibly regulated via phosphorylation at several conserved 

residues in its cytoplasmatic domain 

Functional polymorphisms to change the peptide pool available for 

binding MHC class I alleles 

Tapasin 

Chaperone protein 

Mediates antigen presentation by interacting with MHC class I 

complex and TAP complex 

Enhances peptide translocation activity of TAP altering the 

competitive advantage of certain antigenic petides 

Interferon 

Responsive Factors  

(IRFs) 

IRF-3 

Constitutively expressed in all cell types 

Harbours DNA binding domain (specific ISREs recognition) 

Active in the phosphorylated homodimeric form and interacts with 

CBP/p300 in the nucleus (transcriptional regulation of Tipe I IFNs 

genes) 

IRF-7 

Constitutive expressed in lymphoid cells and IFN-induced during 

viral infection; most cells express it at very low amount 

Harbours DNA binding domain (specific ISREs recognition) 

Active in the phosphorylated form 

Interacts with CBP/p300 in the nucleus (transcriptional regulation of 

Type I IFNs genes) 

IRF-9 

(p48) 

Interacts with STAT proteins forming a complex (ISGF-3) which 

translocates into the nucleus and stimulate transcription of ISG 

Harbours DNA binding domain (specific ISREs recognition) 

Interferon 

Stimulated Genes  

(ISGs) 

Mx1 

IFN-induced GTPase with antiviral activity 

Accumulates in the cytoplasm of IFN-stimulated cells blocking viral 

replication soon after virus entry 

Targets viral capsid recognizing major capsidic protein 

PKR 
IFN-induced protein kinase with antiviral and antiproliferative 

activity 

OAS1 

IFN-induced 2'-5'-oligoadenylate synthetase 1 

Inhibition of viral replication by recruiting RNASEL 

Different isoforms exist 

Immunoproteasome 

LMP7 

LMP2 

IFN-induced large multifunctional protease 7 and 2 (beta type) 

Related to antigen processing by MHC class I pathway 

MECL-1 
IFN-induced proteasome subunit beta-10 

Related to antigen processing by MHC class I pathway 

CITA NLRC5 

NLR family, containing a N-term CARD domain and C-term 

leucine rich repeats (LRRs). No DNA-binding domain.  

Highly inducible by IFN-. Both cytoplasmatic and nuclear. 

Transcriptional activator of MHC class I genes. 
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Figure 11 – Intracellular type I IFNs signalling (Haller et al, 2007). Briefly, type I IFN binds to 

the receptor (IFNR1 and 2) and transducers signals through the sequential activation of 

receptor-associated kinases Jak and Tyk-2 leading to tyrosine phosphorylation and activation of 

STAT proteins. They associate to IRF-9 in the nucleus, forming the ISGF-3 complex and 

activating IFN-stimulated genes (ISGs) transcription.  

 

1.4.1 IFN- 

IFN- is the last discovered type I IFN which showed constitutively expression in 

keratinocytes and inducible in monocytes and DCs (LaFleur et al, 2001). The gene encoding 

the protein is located in the chromosome 9, adjacent to the type I IFNs cluster and analysis of 

cDNA and genomic sequences from other species failed to identify an orthologous, 

suggesting it may evolved later to play a specific role in humans. Most type I IFNs are 

expressed only upon viral infection and the constitutive expression of IFN-in resting 

keratinocytes is an important different characteristic which may provide a new mechanism of 

host defence. During viral infection, IFN- is up-regulated in keratinocytes. Another distinct 

feature compared to other type I IFNs is that IFN- seems to have a cell surface expression, 

carrying out its signalling and functions in a cell-associated manner, rather than being 

completely secreted (autocrine and juxtacrine, not paracrine effect) (Buontempo et al, 2006).  

Concerning HPV infected cells, it has been recently shown that IFN-expression is inhibited 

in HPV 16 or 18-positive cervical cancer cells by de novo promoter methylation and the viral 

oncoprotein E6, not E7, seems to be involved (Rincon-Orozco et al, 2009). Moreover, since 

its expression is decreased in precursor lesions and abolished in cancers, it has been 

concluded that IFN- repression may be an event occurring early in cervical carcinogenesis.   
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1.4.2 Type I IFNs in cervical cancer therapy 

IFNs are used to treat a broad spectrum of diseases including multiple sclerosis, melanoma, 

some solid tumours, leukaemia and hepatitis. Unfortunately, for cervical cancer and pre-

cancerous lesion treatment, controversial results have been observed in clinical trials (Beglin 

et al, 2009; Koromilas et al, 2001). Theoretically, IFN treatment should result in the clearance 

of HPV lesions and elimination of the virus, even in cases of latent infection. However, it is 

still far from widespread therapy. IFNs have been used successfully in treating patients with 

GW induced by LR-HPV types, but showed mixed results in treating low-grade lesions and 

cancers induced by HR-HPVs. A compilation of studies in vivo indicates that IFN- is more 

effective than IFN- and generally type II IFNs (i.e. IFN-) are more effective than type I. 

From later experiments it has been shown that treatment with IFNs can result in selecting 

cells with integrated copies of HPV DNA making it an ineffective methodology unless it can 

be combined with other therapeutic agents. Since it has been reported that the expression of 

viral oncoproteins, particularly E7, is significantly higher in non responsive patients, it is clear 

that the efficacy of IFNs is strictly dependent upon the level of viral oncogenes and the 

complex interactions between E6/E7 and cellular factors that affect both viral and host gene 

expression.  

The discovering of the new IFN- with similarities, but also differences compared to other 

well known type I IFNs needs further investigation to better define its role in HPV infection 

and carcinogenesis and to assess its potential role as new treatment. 
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2. Aims of the thesis 

 

 

The work presented in this thesis spaces between applied diagnostic and basic research on 

clinical samples and cell lines of cervical cancer and HPV-associated HNSCCs. The main 

aims are the following: 

 

1) evaluate and improve diagnostic procedures for HPV-associated diseases by both assessing 

the performance of a new commercially available type-specific multiple-primer DNA 

sequencing method for HPV DNA genotyping on clinical samples from cervical 

lesions/cancers compared to a well known and diffuse reverse hybridization-based assay, in 

order to evaluate advantages and disadvantages in the clinical diagnostic practice, and 

determining the potential diagnostic value of virological markers, such as viral oncoprotein 

expression, viral load, physical state and DNA methylation, in HPV 16-positive cervical 

adenocarcinoma and HNSCCs in function of the available clinical and epidemiological data;  

 

2) deep the role of HPV 16 in carcinogenesis by using data obtained from the analysis of 

virological markers (in particular viral DNA methylation) in clinical samples and analyzing 

the response to ectopic expression of IFN- in both cervical cancer and HPV-positive 

HNSCCs cell lines.  
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3. Materials and Methods 

 

 

PART 1: COMPARISON OF HPV SIGN GENOTYPING TEST WITH INNO-LIPA 

HPV GENOTYPING EXTRA ASSAY ON HISTOLOGIC AND CYTOLOGIC 

CERVICAL SPECIMENS (Barbieri et al, 2012) 

3.1 Clinical specimens 

Eighty-seven human cervical samples, previously tested by the INNO-LiPA assay, were 

analyzed by the new HPV sign Genotyping Test. Among these, 34 were 10 m thick paraffin-

embedded biopsies belonging to patients with a histological diagnosis of cervical 

adenocarcinoma in situ (AIS) or invasive adenocarcinoma (invasive AdCa) and 53 cervical 

swabs, belonging to patients with a histological diagnosis of squamous cervical intraepithelial 

neoplasia of low (CIN1) or high grade (CIN2+), collected in PreservCyt
®
 medium (Hologic, 

Marlborough, MA, USA). Histological diagnosis was confirmed based on pathology 

consensus review of tissue samples. 

Clinical samples and data used in this study were obtained in the course of institutional 

diagnostic service, investigation described in this study could be carried out on residual 

specimens following diagnostic analysis, provided that all data would be kept anonymous. 

 

3.2 DNA isolation 

Total nucleic acids were extracted following different protocols. For biopsies, after heat 

deparaffinization at 95°C for 10 min and centrifugation at 12000 rpm for 10 min, tissue 

samples were digested with 20 l of proteinase K in 200 l of lyses solution at 56°C for 3 

hours. DNA was extracted with QIAmp DNA Mini Kit (Qiagen, Hilden, Germany) following 

manufacturer’s instructions and eluted in 100 l. For cytological samples, 200 l of each 

specimens was processed with NucliSENSE EasyMag system (bioMérieux, Marcy l’Etoile, 

France), following manufacturer’s instructions, and eluted in 100 l of Elution Buffer. 

Extracted DNA was stored at -80°C. 

 

3.3 INNO-LiPA HPV Genotyping Extra assay (Innogenetics, Ghent, Belgium) 

This assay detects 28 different HPV genotypes, including 18 high-risk HPV (16, 18, 26, 31, 

33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82), 6 low-risk HPV (6, 11, 40, 43, 44, 54, 
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70) and 3 other HPV (69, 71, 74), as well as the HLA-DPB1 gene as internal control for DNA 

quality, simultaneously in a single reaction. The addition of UNG to the amplification mixture 

is a contamination prevention measure. Briefly, 10 l of the extracted DNA were used to 

carry out the PCR with biotinilated SPF10 primers (patent protected), targeting a 65 bp-

fragment of the L1 ORF, in a final volume of 50 l following manufacturer’s instructions. 

Then, 10 l of amplification product are denaturated and hybridized to a nitrocellulose strip, 

with different probes on its surface, specific for one of the possible amplicons using the 

automatic procedure in the Auto-LiPA machine. The hybrid is revealed with a colorimetric 

reaction involving a streptavidin-conjugated alkaline phosphatase and its substrate NBT/BCIP 

(Fig. 12). The obtained pattern of bands is analyzed with the LIRAS
®

 software. Only samples 

positive for any HPV and/or for the internal control were included in the analysis. In case of 

multiple HPV infection and if at least one HR genotype was present, the sample was 

considered as HR. If only LR genotypes were present, the sample was considered as LR. 

 

 

 

 

 

 

 

 

 

Figure 12 – Scheme of the hybridization step of the INNO-LiPA Genotyping extra assay (left) 

and examples of pattern of bands on the nitrocellulose strips (right). 

 

3.4 HPV sign
®
 Genotyping Test (Qiagen, Hilden, Germany) 

This assay is based on a broad-spectrum HPV DNA amplification, using 10 l of sample, in 

real time-PCR (EVA Green
TM

 chemistry) on Rotor-Gene Q (Qiagen, Hilden, Germany). 

Mixed primers targeting an hypervariable region of the HPV L1 ORF and the betaglobin gene 

are used, followed by pyrosequencing with multiple sequencing primers (Fig.13). The melting 

curve analysis allows the semiquantitative determination for the presence/absence of HPV 

DNA. Only HPV positive samples are further analysed by pyrosequencing on the Pyromark 

Q24 system (Qiagen, Hilden, Germany), following manufacturer’s instructions, using 4 
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specific sequencing primers to identify the viral genotypes, with the shortest possible 

sequence-read. The obtained programs are analyzed by the PyroMark Q24 software (SQA 

mode) and the specific pattern recognition software IdentiFire 1.0.5 (Biotage, Uppsala, 

Sweden) is used for library alignment and correct interpretation of the sequencing results as 

manufacturer recommends. For further information about the pyrosequencing principle see 

§3.11.3. 

 

Figure 13 – Scheme representing how the HPV sign test works. Yellow arrows indicate primers 

used for the amplification step and the red arrow the position of the four primers used for the 

sequencing step. 

 

3.5 Genotype specific quantitative real time-PCRs 

Discordant samples for at least one genotype between the two assays were further analyzed by 

home-made genotype-specific quantitative real time-PCRs (Cricca et al, 2007) with 

Quantitect
TM

 SYBR
®
 Green (Qiagen, Hilden, Germany) to obtain a consensus result (2 out of 

3 genotype-concordant results) and to detect the viral load (viral genome copies/reaction). We 

used 9 primer sets separately, designed using Clone Manager Professional Suite software 8.0, 

which amplify a fragment of the E6 ORF of HPV 16, 18, 31, 35, 45, 51, 52, 53 and 66 (Tab. 

6). The choice to amplify these genotypes depended on their epidemiologic and clinical 

importance in our geographic region. Each reaction was carried out in a final volume of 20 l 

with 1X SYBR
®
 Green PCR Master Mix, 0.4 µM each primer and 5 l of sample. The 

amplification program included an initial denaturation step at 95°C for 15 min, followed by 

40 cycles of 15 s at 94°C, 20 s at 50°C and 20 s at 72°C. Data acquisition was performed at 

72°C. Standard curves for E6 were obtained by amplification of 10-fold dilution series of 10
7
 

to 10
1
 copies of plasmids containing the E6 ORF of each HPV genotype in a fixed amount of 

300 ng of human fibroblast DNA. The standard curve for GAPDH was obtained by 

L1 ORF 
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amplification of 10-fold dilution series of 300 ng to 0.3 ng of human fibroblast DNA. The 

dilutions were tested in triplicate and in three different runs. GAPDH gene amplification was 

used to normalise viral load. 

 

3.6 Statistical analysis 

All the samples were merged and analyzed by 2-by-2 tables, dividing them in two different 

categories: biopsies and cervical swabs. Proportions were presented with 95% confidence 

intervals (95% CIs), estimated by standard methods. Agreement between two methods was 

measured by absolute agreement and Cohen’s kappa statistics (k). For the analysis of each 

HPV genotype, proportion of positive agreement (Ppos), which was calculated as (twice the 

number of agreed positives)/(total number of specimens + number of agreed positive – 

number of agreed negatives), proportion of negative agreement (Pneg), which was calculated 

as (twice the number of agreed negatives)/(total number of specimens + number of agreed 

negatives – number of agreed positives) and P values by McNemar’s test were calculated.  

 

Table 6 - Primer sets used for discordant analysis by quantitative real time-PCRs targeting E6 

ORFs of HPV 16, 18, 31, 35, 45, 51, 52, 53 and 66.  

HPV genotype Primers (5’-3’) Position 

HPV 16 
Forward AAAGCCACTGTGTCCTGAAGA 424 bp 

Reverse CTGGGTTTCTCTACGTGTTCT 553 bp 

HPV 18 
Forward GCGGTGCCAGAAACCGTTGAA 422 bp 

Reverse TGCTCGGTTGCAGCACGAATG 539 bp 

HPV 31 
Forward ACGTGTCAAAGACCGTTGTG 420 bp 

Reverse TGGGTTTCAGTACGAGGTCTTC 550 bp 

HPV 35 
Forward AAACCGCTGTGTCCAGTTG 431 bp 

Reverse CCTCGGTTTCTCTACGTGTTG 554 bp 

HPV 45 
Forward CGGTGCCAGAAACCATTGAAC 420 bp 

Reverse TTTCCCTACGTCTGCGAAGTC 567 bp 

HPV 51 
Forward TAGCAGGTCTGTGTATGG 333 bp 

Reverse AACGTCCCGCTATTTCATGG 490 bp 

HPV 52 
Forward GTTTGAGGATCCAGCAACAC 104 bp 

Reverse TTCTTCCAGCACCTCACAC 164 bp 

HPV 53 
Forward GCACCAGCTATGTGAAGTTG 149 bp 

Reverse TGCACACTCCATACGGATAC 303 bp 

HPV 66 
Forward TGGCCATATGCAGTATGTAGGG 282 bp 

Reverse ACGGACATTGACATCGGTAG 438 bp 
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PART 2: VIROLOGICAL MARKERS IN HPV-ASSOCIATED  

CERVICAL ADENOCARCINOMA AND OROPHARYNGEAL CARCINOMA 

 

3.7 Populations  

The investigation described in this study could be carried out on residual specimens following 

diagnostic analysis, provided that all data would be kept anonymous. 

 

3.7.1 Cervical Adenocarcinoma (AdCa) 

The study included 131 patients (age range 24-94 years, mean age 47.5 years, median age 43 

years), afferent to different hospitals in the Emilia-Romagna region (i.e. Bologna, Modena, 

Imola and Cesena) between 1991 and 2011. Clinical and epidemiological data were collected 

and resumed in Table 7. According to the World Health Organization (WHO) classification of 

tumours of the uterine cervix, all the samples were classified for the correspondent 

histological types/subtypes of cervical AdCa. Among 84 invasive AdCa, tumour stage (T 

stage) was available for 51 (60.7%): 90.2% were T1, 7.8% T2 and 2.0% T4. Additional 

information on lymph node involvement (N stage) or metastasis (M stage) was not available. 

 

Table 7 – Clinical and epidemiological characteristic of the cervical AdCa population. 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

*WHO histological classification of the tumours of the uterine cervix (www.screening.iarc.fr) 

  
Cervical AdCa, n (%) 

 Overall 
 

131 (100%) 

Age (years) 
Mean ± SD 47.5 ± 15.6 

Range 24 – 94 

Histological Types 
AIS 47 (35.9%) 

Invasive AdCa 84 (64.1%) 

Histological Subtypes* 

Mucinous 95 

Endocervical 4 

Intestinal 2 

Signet Ring  0 

Minimal Deviation 0 

Villoglandular 4 

Endometrioid 15 

Clear Cells 5 

Serous 2 

Mesonephric 1 

Adenosquamous 3 

CIN-associated 
Yes 27 (20.6%) 

No 104 (79.4%) 
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3.7.2 Oral and Oropharyngeal Squamous Cell Carcinoma (OSCCs and OPSCCs) 

The study included 81 patients (age range 26-88 years, mean age 63.8 years, median age 65.0 

years; 55 males and 26 females), afferent to the Department of Otolaryngology at the 

S.Orsola-Malpighi Hospital in Bologna, between 2001 and 2012 (Tab. 8). Topographic 

locations included malignancies of the oropharynx and oral cavity, in particular tonsils, wall 

of the pharynx, base of the tongue, tongue, floor of mouth and gum.  

 

Table 8 – Clinical and epidemiological characteristic of the OSCCs and OPSCCs population. 

 

 

OSCCs and OPSCCs 

n (%) 

Overall population 

 

81 (100%) 

Age (years) Mean ± SD 63.8 ± 12.0 

 Range 26 - 88 

Gender 
Male 55(67.9%) 

Female 26 (32.1%) 

Seat of the lesion 

Oropharynx (OPSCCs) 75 (92.6%) 

Tonsil 55 (67.9%) 

Base of the tongue 16 (19.8%) 

Wall of the pharynx 4 (4.9%) 

Oral Cavity (OSCCs) 6 (7.4%) 

Clinical stage 
I/II 13 (16.1%) 

III/IV 68 (83.9%) 

T stage 

T1 9 (11.1%) 

T2 36 (44.4%) 

T3 29 (35.8%) 

T4 7 (8.6%) 

N stage N0 14 (17.3%) 

N+ 67 (82.7%) 

Risk factors 
Smoke and/or alcohol 42 (51.9%) 

No 39 (48.1%) 

 

3.8 Cell lines, samples and nucleic acids extraction 

Cervical cancer cell lines CaSki (∼500 integrated copies of HPV 16 genome), SiHa (1–2 

integrated copies of HPV 16 genome) and HeLa (∼400 integrated copies of HPV 18 genome) 

were obtained and grown as monolayers as recommended by the American Type Culture 

Collection, Rockville, MD (DMEM medium, 10% Fetal Calf Serum, 1% SP). These cell lines 

have been widely used as model systems to investigate HPV activity in terms of viral load, 

integration and methylation analysis.  
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For both the populations we collected 10 m thick tumour histological-confirmed paraffin-

embedded biopsies. After deparafinization at 95°C for 15 min and centrifugation for 10 min at 

12000 rpm, the tissue samples were digested with 20 l of proteinase K in 200 l of lyses 

buffer at 56°C for 2/3 hours. DNA was extracted with QIAMP DNA Mini Kit (Qiagen, 

Hilden, Germany) following manufacturer’s instructions, eluted in 200 l (OSCCs and 

OPSCCs) or 100 l (cervical AdCa) of elution buffer (AE buffer) and stored at -80°C. 

 

3.9 HPV Genotyping and mRNA detection 

In order to detect and genotype HPV in our clinical samples, we used the INNO-LiPA 

Genotyping Extra assay (Innogenetics, Ghent, Belgium), following the manufacturer’s 

instructions as previously described (see §3.3). 

Samples positive for DNA of HPV 16, 18, 31, 33 or 45 were considered eligible for HPV 

E6/E7 mRNA detection by real time multiplex nucleic acid sequence-based amplification 

(NASBA). Transcripts of HR-HPV types 16, 18, 31, 33, and 45 were detected by the 

NucliSens EasyQ HPV assay (bioMérieux), according to the manufacturer’s instructions.  

 

3.10 HPV 16 and 18 viral load and physical state 

Samples positive for HPV 16 and/or 18 were further tested to assess the viral load and 

genome integration by real time-PCRs, performed with the Rotor-Gene 3000 analyzer 

(Corbett Research). Primers and TaqMan LNA-probes were designed with ProbeFinder 

software (UniversalProbe Library, Roche) available at the website 

www.universalprobelibrary.com, as previously described (Leo et al, 2009). We performed 

three different real time-PCRs: one targeting a fragment of the E6 ORF, one targeting the 

human betaglobin gene and one targeting the E2 ORF (Table 9). Each reaction was carried 

out in a final volume of 25 l, with 1X Premix Ex Taq
TM

 (TaKaRa), 200 nM each primer, 100 

nM of the specific probe and 5 l of sample. The two-step amplification profile was holding 

at 95°C for 10 sec and cycling at 95°C for 5 sec and 60°C for 30 sec repeated 45 times.  

The E2 ORF is often interrupted when viral genome is integrated in the host cell genome, 

whereas the E6 gene is always intact. Quantification for the copy number of E6 and E2 genes 

was carried out using two standard curves obtained with known concentration of a plasmid 

(pSL1180 vector) containing the HPV 16 full length genome processed in triplicate (Fig. 14). 

The E6/E2 ratio was used to define the physical state of the viral genome: totally (E2/E6=0) 
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or mainly (0<E2/E6<0.5) integrated and totally (E2/E6=1) or mainly (1>E2/E6≥0.5) 

episomal. 

The standard curve for human betaglobin was obtained by amplification of 10-fold dilution 

series of 300 ng to 0.003 ng of Human Genomic DNA (Roche) processed in triplicate. Since 

clinical samples are not homogeneous and we do not know exactly how many tumour 

cells/HPV infected cells are contained, the viral load was expressed as HPV copies/300 ng of 

human genomic DNA (HGD, corresponding to about 50 000 cells). Values >5·10
6
 copies/300 

ng HGD (i.e. ~100 copies/cell) were considered as high viral load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Standard curves used to assess HPV 16 or 18 viral load and physical state. 

Table 9 – Primer pairs and related probes used for the viral load and viral physical state 

analysis by real time-PCR. 

Target Primers (5’-3’) Probe 

HPV 16 E2_hinge_right 
PrL16_E2 CGACTATCCAGCGACCAAG Pb#21 

(CAGAGCCA) PrU16_E2 TGAGTCTCTGTGCAACAACTTAGTG 

HPV 16 E6 
PrL16_E6  TGTTTCAGGACCCACAGGA Pb#115 

(GACCCAGA) PrU16_E6 TTGTTTGCAGCTCTGTGCAT 

HPV 18 E6 
PrU18_E6  CTCGGTTGCAGCACGAAT Pb#104 

(CTGGGCAC) PrL18_E6 GAAAAACGACGATTTCACAACA 

HPV 18 E2 
PrU18_E2  GGTCCACAATGCTGCTTCTC Pb#130 

(CTGGACAC) PrL18_E2 AAAGACCTACGGCCAGACG 

Betaglobin 
PrU betaglo AACTGAAGACAGCAGCAATCAA Pb#77 

(CCACCACC) PrL betaglo TGACATCAGGAAAGACTACACCA 

HPV 18 E6 pb 104 Standard Curve (copies/reaction) 

HPV 16 E6 pb 115 Standard Curve (copies/reaction) HPV 16 E2 pb 21 Standard Curve (copies/reaction) 

HPV 18 E2 pb 130 Standard Curve (copies/reaction) 

Human Betaglobin pb 77 Standard Curve (ng/reaction) 
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3.11 CpG methylation analysis of HPV 16 LCR and 3’L1 by pyrosequencing 

3.11.1 Assay design 

We designed the quantitative methylation analysis by pyrosequencing taking into account 

what was previously described by Rajeevan and colleagues (Rajeevan et al, 2006). This 

bisulfite-based assay was focused on the 19 CpG sites in nucleotide positions 6999-124 of 

HPV 16, a region encompassing the 3’ region of L1 and LCR that includes the enhancer and 

E6 promoter sites (Fig. 15) and the E2 binding sites (E2BSs). Within the LCR, five sites 

(nucleotide positions 31, 37, 43, 52 and 58) are located in the E6 promoter, six sites (positions 

7535, 7553, 7676, 7682 and 7694) are located in the enhancer, and six sites (positions 7233, 

7270, 7428, 7434, 7455, 7461) are in the 5’ region of the LCR. The remaining 4 sites 

(positions 7032, 7091, 7136 and 7145) are located in the 3’ end of L1. CpG site at position 

7434 is lost for Af2 variant due to a G to A change at position 7435. The LCR contains four 

E2BSs, with CpG dinucleotides located at nts 7455, 7461 (E2BS1; ACCGAATTCGGT), 

7862 (E2BS2; ACCGTTTTGGGT; not considered in this study), 37, 43 (E2BS3; 

ACCGAAATCGGT), 52 and 58 (E2BS4; ACCGAAACCGGT) (Snellenberg et al, 2012).  

Amplification and sequencing primers were designed for the sense strand sequence of the 

bisulfite converted DNA using Assay Design Software (Biotage, Inc., Charlottesville, VA). 

To take into account for DNA fragmentation introduced by bisulfite treatment, four different 

amplification reactions were designed to cover all CpG sites in four amplicons (A to D, Table 

10). Since optimal read length of pyrosequencing per primer is limited to <50 nucleotides, 

more than one sequencing primer is needed to cover multiple CpG sites spread >50 

nucleotides within certain amplicons. One primer in each amplification reaction was labelled 

with 5’-biotin. The choice of primer for 5’-biotinylation was based on the direction of 

pyrosequencing (reverse primer biotinylated for forward sequencing and forward primer 

biotinylated for reverse sequencing). 

The dNTPs dispensation order during the pyrosequencing reaction was automatically 

generated by the software. The complete conversion of C to T in a non-CpG site was 

identified in order to ensure the successful modification, by adding a C in the dispensation 

order. If the bisulfite conversion has been completed successfully, there should not be a C 

incorporation in correspondence of this dispensation (i.e. no light signal).  

Cervical carcinoma cell lines CaSki and SiHa with high and low methylation level in the 

LCR, respectively, were kept as models and controls.  

 



38 

 

Figure 15 – Representative scheme of the CpG methylation analysis for the HPV 16 LCR and 

3’L1 ORF. Red arrows represent the amplification primers and green arrows the sequencing 

primers and their directions (forward or reverse). 

 

3.11.2 DNA conversion by bisulfite treatment 

Sodium bisulfite deaminates cytosine residues (C) on single strand DNA molecules and 

converts them into uracils (U), while 5-methyl C (meC) remain protected from conversion 

(Fig. 16). When bisulfite-modified DNA is subjected to PCR amplification, the U are 

converted to thymidines (T) by DNA polymerase in the amplicon. In our study, 500 ng of 

total DNA underwent bisulfite conversion using the EZ DNA Methylation kit (Zymo 

Research, CA) following the manufacturer’s instructions. The bisufite-modified DNA (3 

aliquots of 10 l for each sample) was stored at −80°C. 

 

 

 

 

 

 

Figure 16 – Bisulfite-mediated conversion of non-methylated C in U (left) and the resulting C/T 

single nucleotide polymorphism (SNP) in the PCR product (right). 

 

3.11.3 Amplification and pyrosequencing 

PCR reactions were performed in a final volume of 50 l with the following components: 200 

mM dNTPs mix, 0.5 M each of forward and reverse primers (Table 10), 2.5 mM MgCl2, 

0.62U of Hot Start GoTaq
®
 DNA polymerase (Promega) and 5 l of bisulfite-converted 

DNA. The conditions were the following: enzyme activation at 95°C for 2 min, 50 cycles of 

95°C for 30 s, 55°C for 30 sec (51°C for amplicon A only), 72°C for 30 sec and final 
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extension at 72°C for 10 min (Tab. 11). Correct amplification was checked in 2% agarose gels 

stained with GelRed
TM

 (Biotioum) using 2 l of product. 

 

Pyrosequencing provides a site-specific quantification of methylation at individual CpG sites 

in a reliable and rapid manner. The reaction involves four steps (Fig. 17A): 1) a sequencing 

primer is hybridized to a single-stranded PCR amplicon that serves as a template, and 

incubated with the enzymes, DNA Polymerase, ATP Sulfurylase, Luciferase, and apyrase as 

well as the substrates, adenosine 5' phosphosulfate (APS), and luciferin; 2) the first 

deoxribonucleotide triphosphate (dNTP) is added to the reaction. DNA polymerase catalyzes 

the incorporation of the deoxyribo-nucleotide triphosphate into the DNA strand, if it is 

complementary to the base in the template strand. Each incorporation event is accompanied 

by release of pyrophosphate (PPi) in a quantity equimolar to the amount of incorporated 

nucleotide; 3) the ATP Sulfurylase converts PPi to ATP in the presence of adenosine 5' 

phosphosulfate (APS). This ATP drives the Luciferase-mediated conversion of luciferin to 

oxyluciferin that generates visible light in amounts that are proportional to the amount of 

ATP. The light produced in the Luciferase-catalyzed reaction is detected by a charge coupled 

device (CCD) chip and seen as a peak in the raw data output (pyrogram). The height of each 

peak (light signal) is proportional to the number of incorporated nucleotides; 4) the enzyme 

Apyrase continuously degrades unincorporated nucleotides and ATP. When degradation is 

complete, another nucleotide is added. The addition of dNTPs is performed sequentially. It 

should be noted that deoxyadenosine alfa-thio triphosphate (dATP·S) is used as a substitute 

for the natural deoxyadenosine triphosphate (dATP) since it is efficiently used by the DNA 

polymerase, but not recognized by the Luciferase. As the process continues, the 

complementary DNA strand is built up and the nucleotide sequence is determined from the 

signal peaks in the pyrogram trace (Fig.17B). 

 

In our study, the pyrosequencing analysis was performed using the PyroGold kit and the 

PyroMark
TM

 Q24 system (both Qiagen, Hilden, Germany) as directed by the manufacturer. 

Briefly, 10 to 20 l of each biotinylated PCR product was immobilized on streptavidin-coated 

Sepharose HP beads (AmershamBiosciences, Piscataway, NJ) and the non-biotinylated strand 

removed using the PyroMark
TM

 Q24 Vacuum Workstation and the dedicated reagents. The 

biotinylated single stranded product was annealed to the appropriate sequencing primer (0.4 

M), and then subjected to sequencing using automatically generated nucleotide dispensation 
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A 

B 

Sequence to analyze: 

1 

2 

3 
4 

order for “sequences to analyze” corresponding to each reaction and the sequencing primers 

listed in Table 10. The obtained pyrograms were analyzed using the allele quantification (AQ) 

mode in the PyroMark
TM

 Q24 Software to determine the proportion of C/T or G/A and hence 

methylated and non-methylated cytosines at the targeted position(s). If the sequencing primer 

was forward, the targeted site C/T, on the other hand if the sequencing primer was reverse, the 

target site was G/A. The frequency of G in the antisense strand was equal to C in the sense 

strand. Methylation frequency was reported as the mean (± standard deviation, SD) of two to 

three separate sequencing reactions. 

 

 

 

 

 

 

Figure 17 – Pyrosequencing. (A) Representative scheme of the reaction for a dCTP dispensation 

and incorporation. (B) Example of pyrogram resulted from the analysis of the 5 CpG sites in the 

HPV16 E6 promoter region. The red circle indicates the position of the complete bisulfite-

conversion-control. 

 

3.11.4 Specificity and sensitivity  

The sensitivity of the methylation assay to HPV 16 copy number was evaluated by spiking 

HPV 16 positive CaSki or SiHa cells into HPV negative UT7 cells (leukemia cell lines) prior 

to DNA extraction. In a total cell count of 3×10
6 

cells, dilutions were prepared representing 

one HPV 16 positive cell in the background of 3, 30, 3×10
2
, 3×10

3
, 3×10

4
 and 3×10

5
 negative 

cells (Rajeevan et al, 2006). Bisulfite treatment and pyrosequencing (Amplicon A) was 

performed as described above. Preliminary evaluation of the specificity of the reaction for 

HPV 16 sequences was conducted by analyzing extracts of CaSki, SiHa, HeLa and UT7 cell 

lines. 
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Table 10 – Primers used for the CpG methylation analysis. Primers in bold font are biotynilated at the 5’-end. 

Amplicon Primer Sequence (5’-3’) Sequencing Primer, sequence (5’-3’) Target CpGs 

A 

(178 bp) 

16_E6prom_F GGTGTGTGTAAATAGATTTTGGGTTATA 
S1: AATAATTTATGTATAAAATTAAGGG 31, 37, 43, 52, 58 

16_E6prom_R ATAAATCCTAAAACATTACAATTCTCTT 

B 

(356 bp) 

16_Enhan_F GGTTGTATGTTTTTTGGTATAAAATGTG S2: TGTATATTGTGTTATATAAAATAAA 

 

7676, 7682, 7694 

7535, 7553 16_Enhan_R ACTAACCTTTACACAATTCATATATAAACT S3: GTTAGTAATTATGGTTTAAATTTG 

C 

(146 bp) 

16_5LCR1_F ATTGTGTTGTGGTTATTTATTGTA 
S4: TTTTATACCAAAAAACATAC 

7428, 7434, 7455, 

7461 16_5LCR1_R AAAAACACATTTTATACCAAAAAA 

D 

(390 bp) 

16_3L15LCR2_F TTGGGAAGTAAATTTAAAGGAAA 
S5: GTGTTTGTATGTATGGTATAAT 7270 

S6: ATTATTTTATTTATTTTTATAATTG 7136, 7145 

16_3L15LCR2_R AATAACCACAACACAATTAATAAA 
S7: ATTAAAATTTATATTAGGAA 7091 

S8: TTAGATTAGTTTTTTTTAGG 7032 

 

 

Table 11 – PCR amplification profile (
a
Amplicon A only). 

Step 
Temperature 

(°C) 
Time Cycles 

Enzyme Activation 95°C 2 min 1 

Denaturation 95°C 20 sec 

50 Annealing 51
a
/55°C 30 sec 

Extension 72°C 30 sec 

Final Extention 72°C 10 min 1 
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3.12 Statistical analysis 

For statistical analysis, GraphPad Prism 5 software was used. Fisher’s exact test was used to 

analyze 2x2 contingency tables. For the HPV 16 DNA methylation analysis we used non-

parametric tests such as Mann-Whitney test to compare two groups or Kruskall-Wallis test for 

more than two groups to identify differentially methylated regions or individual CpG sites as 

suggested in Clarke et al, 2012. Differences in overall disease-free survival (DFS) were 

evaluated by using the Kaplan-Meier method and the log-rank test. The cut-off date for 

follow-up was 31
st
 December, 2012. 

Proportions were presented with 95% confidence intervals (95% CIs); P values <0.005 were 

considered statistically significant and all tests were two-tailed. 

 

 

PART 3: ANALYSIS OF THE RESPONSE TO IFN- TRANSFECTION IN 

CERVICAL CANCER AND HPV-POSITIVE HNSCC CELL LINES 

(experiments performed under the supervision of Dr. Bladimiro Rincon Orozco and Prof. Dr. Frank Rösl at the 

Division of Viral Transformation Mechanisms, Research Program in Infection and Cancer,  

German Cancer Research Center, Heidelberg, Germany) 

 

3.13 Cell Lines  

Cervical cancer cell lines CaSki (∼500 copies of HPV 16 genome), SiHa (1–2 copies of HPV 

16 genome), HeLa (∼400 copies of HPV 18 genome) and HNSCC cell lines Cal27 (HPV 16 

DNA positive/RNA negative), SCC25 (HPV 16 DNA positive/RNA negative), UDSCC2 

(HPV 16 DNA positive/RNA positive) and 93V4 (HPV 16 DNA positive/RNA negative) 

were grown at 37°C (5% CO2) in DMEM or RMPI 1640 medium, 10% Fetal Calf Serum, 1% 

Streptomycin-Penicillin. 

 

3.14 IFN- plasmid  

The complete IFN- ORF was previously cloned in the pSecTagA vector (Invitrogen), under 

the control of Cytomegalovirus (CMV) promoter, in order to have an additional Ig leader 

sequence at the N-term of the molecule to improve its secretion, a myc epitope and a (His)6 

tail at the C-term for its purification (Fig. 18). The recombinant protein has a final molecular 

weight of about 35 kDa. 
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Figure 18 – The Invitrogen pSecTagA vector map and its characteristics. 

 

3.15 IFN- transfections and IFN-/IFN- treatments 

Transient transfections were performed in 10 cm petri dishes using 2×10
6
 cells in a final 

volume of 12 ml. Twelve micrograms of plasmid with IFN- or empty vector (mock) were 

diluted in 1200 l of Opti-MEM
®
 (Gibco) and 16 l of Turbofect (Fermentas), following 

manufacturer’s instructions for reverse transfection. Twenty-four hours post-transfection, 

cells were recovered for mRNA and proteins analysis. The respective supernatants were also 

collected by centrifugation at 4°C, 1500 rpm for 10 min and stored at -80°C. 

In order to have a control for the response to IFN-, cells were also treated for 24 h with 1000 

units of commercially available (NIH) IFN- and IFN- and recovered for mRNA analysis. 

 

3.16 mRNA extraction and RT-qPCR analysis 

Total RNA was extracted using the RNeasy kit (Qiagen) with an in-column DNAse digestion 

step, following manufacturer’s instructions. cDNA synthesis was performed following the 

RevertAidTM Reverse Transcriptase protocol (Thermo Scientific). Briefly, 1 g of extracted 

RNA was incubated at 65°C for 5 min with 100 pmol Oligo (dT)18 primer and DEPC-treated 

water up to 12.5 l. Then, 1X Reaction buffer, 20 U RiboLock RNase Inhibitor (Thermo 

Scientific), 1 mM dNTPs mix and 200 U RevertAid enzyme mix were added in a final 

volume of 20 l and the mix incubated at 42°C for 1h. The reaction was terminated by 

heating at 70°C for 10 min. Each sample was tested in a mix with or without reverse 

transcriptase (RT+ or RT-) which underwent hGAPDH amplification by classic PCR (Fw 5’-

GCTCTTGCTGGGGCTGGTGG-3’ and Rv 5’-GCCTTCCGTGTCCCCACTGC-3’, 345 bp) 

to check for the presence of DNA contamination and the good quality of the cDNA.  
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One microliter of cDNA (1:5 dilution of RT+ mix in RNase-free water) was used to carry out 

the qPCR analysis, in a final volume of 20 l, with 1X SYBR Green mix (BioRad) and 200 

nM each primer using the CFX96 Touch
TM

 Real Time PCR Detection System (BioRad) (Tab. 

12). The two-step amplification program was 50°C for 5 min, 95°C for 10 min, 40 cycles 

95°C for 15 sec and 60°C for 1 min. Melting curve analysis with default parameters was used 

to check product specificity.  

The hTBP1 (human TATA box protein 1) expression was used as reference gene 

(housekeeping) to normalize data obtained for the genes of interest (GOI) and, for each cell 

line, results from transfected/treated cells were compared to those from 

untransfected/untreated cells (naïve). The Ct analysis was performed to obtain the fold-

change value (Fc, mean ± SEM of two different transfections analyzed in triplicate).  

 

Table 12 – Primers designed using the Primer-BLAST tool (www.ncbi.nlm.nih.gov/tools/primer-

blast/) and used for the qPCR analysis.  

Target Primer Sequence (5´-3´) Position (bp) 
Amplicon  

size (bp) 

hTBP1 

(housekeeping) 

Forward GAGTCGCCCTCCGACAAAG 
16-119 103 

Reverse GTTTCCTCTGGGATTCCATCG 

hLMP7 
Forward GCTGGCGGTCATGGCGCTAC 

19-125 107 
Reverse AGTCAGGACGGTCCGAGCGA 

hLMP2 
Forward CTGGGACCAACGTGAAGGAG 

435-506 72 
Reverse ATGGCAAAAGGCTGTCGAGT 

hMECL-1 
Forward CACTGAGCTCACCCACAGAG 

680-786 107 
Reverse TAGCTCCAGGGTTAGTGGCT 

hTAP1 
Forward CCCTGCCGGGACTTGCCTTG 

652-861 210 
Reverse GCCGACGCACAGGGTTTCCA 

hTAP2 
Forward CCTGCTCATAAGGAGGGTGC 

1250-1473 224 
Reverse GCTGTCGGTCCATGTAGGAG 

hHLA-B 
Forward CTACCCTGCGGACATCA 

750-988 255 
Reverse ACAGCCAGGCCAGCAAC 

hOAS1 
Forward GGTCAGTTGACTGGCAGCTA 

575-731 157 
Reverse TGAGGCTCTTGAGCTTGGTG 

hPKR 
Forward CCCAGATTTGACCTTCCTGA 

97-206 110 
Reverse ACTTGGCCAAATCCACCTG 

hIRF7 
Forward GGCTGGAAAACCAACTTCCG 

638-708 71 
Reverse CCCGAGTTATCTCGCAGCAT 

hIRF9 
Forward AGCTCTTCAGAACCGCCTAC 

44-176 108 
Reverse CATGGCTCTCTTCCCAGAAA 

hMX1 
Forward CCCCGGTTAACCACACTCTG 

2190-2328 139 
Reverse CGGCTAACGGATAAGCAGGA 

hCyclin E1 
Forward ATACTTGCTGCTTCGGCCTT 

1075-1222 148 
Reverse TCAGTTTTGAGCTCCCCGTC 

hCDK2 
Forward TCCTGAAATCCTCCTGGGCT 

747-897 151 
Reverse CCCCAGAGTCCGAAAGATCC 
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Table 12 – Continue. 

Target Primer Sequence (5´-3´) Position (bp) 
Amplicon 

size (bp) 

hCyclin D1 
Forward CGGACTACAGGGGAGTTTTGTT 

5-70 84 
Reverse ACTCTGCTGCTCGCTGCTA 

hIFNR1 
Forward GGCCCATGGGTGTTGTCC 

196-315 120 
Reverse GACAGACTCATCGCTCCTGT 

hIFNR2 
Forward GGCCATTTCCTAACCTGCCA 

1191-1243 152 
Reverse GGTATAGCCACCGCCACTTG 

hIFN- 
Forward CTGGGAGATTGTCCGAGTGG 

569-705 137 
Reverse TTTGGTGCATTTGCGTAGCC 

hIFN- 
Forward CCTTTGCTCTGGCACAACAG 

26-125 100 
Reverse GTGGAGAAGCACAACAGGAGA 

hNLRC5 
Forward CTCCTCACCTCCAGCTTCAC 

5402-5629 228 
Reverse GTTATTCCAGAGGCGGATGA 

 

3.17 Proteins extraction and Western-blot analysis 

For proteins analysis, cells were washed 2 times in DPBS to remove residual media and 

resuspended in 80-100 l of RIPA buffer (10 mM Tris pH 8.0, 150 mM NaCl, 1 mM EDTA, 

1% NP-40, 0.1% SDS) in ice. The lysate was centrifuged 30 min at 14,000 rpm in a cold 

microfuge (4°C). The supernatant was recovered for the quantification by Bradford assay and 

cooked at 95°C for 10 min with 1X SDS-loading buffer blue (300 mM Tris-HCl pH 6.8, 

12.5% -mercaptoethanol, 5mM EDTA-2Na pH 6.8, 86% Glycerin, 10% SDS). Eighty 

micrograms of proteins were used to run a 15% SDS-PAGE. Semi dry protein transfer was 

performed with the Trans-Blot® Turbo system (BioRad) with buffer Anode I (300 mM Tris, 

10% MeOH, pH 10.4), Anode II (2.5 mM Tris, 10% MeOH) and Cathode (25 mM Tris, 90 

mM Glycerin, 10% MeOH, pH 9.4). 

Membranes were blocked for 1 h with 5% milk in 1X TBS-T buffer (100 mM NaCl, 10 mM 

Tris pH 7.5, 0.1% Tween 20), washed with 1X TBS-T and probed with the following 

antibodies (1:1000 dilution): IFN-κ (Abnova), Mx1 (kindly obtained from Otto Haller, 

University Freiburg), CyclinD1 (Santa Cruz) and Tubulin (Santa Cruz). 

 

3.18 Antiviral activity assay (cytopathic effect reduction assay) 

The antiviral assay of human IFNs is based on the induction of a cellular response in human 

cells, which prevents or reduces the cytopathic effect of an infectious virus. The potency of 

tested IFNs is estimated by comparing its protective effect against a viral cytopathic effect 

with the same effect of the appropriate reference preparation.  
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In this study, Encefalomyocarditis virus (EMCV) has been used in combination with the 

A549 human epithelial lung carcinoma cell line. In a 96 wells plate, A549 cells were seeded 

in a final volume of 100 l of medium (DMEM, 5% FCS) and incubated at 37°C, 5% CO2. 

After 48 h, cells were treated in triplicate with serial 2-fold dilutions (8 dilutions from 1:2 to 

1:256) of supernatant from cells transfected with pSecTagA_IFN- or empty vector, or of 

IFN- reference dilution (NIH). After 24h, the medium was removed and 100 l of the 

properly diluted suspension of EMCV (DMEM, 1% FCS) was dispensed to all wells 

including virus control line, but excluding cell control line. After 44 h, plates were 

microscopically examined to check that the EMCV had caused a cytopathic effect in the virus 

control line. If yes, 1X MTT solution was added to each well and after 4 h cells were lysed 

with lysis buffer. Absorbance at 570 nm was read after at least 12 h of incubation, considering 

as blank the virus control line. Cell viability was expressed considering the cell control line as 

reference (100%). 

 

3.19 Cell proliferation assay 

Cells were collected 24 h post-transfection with IFN-k/mock pSecTagA vector, counted and 

seeded in three 96 wells plates (about 5 000 cells/well in triplicate, medium up to 100 l, one 

plate for each measurement). The plates were followed for 1, 2 and 4 days after seeding (i.e. 

2,3 and 5 days after transfection). At each time point, the medium was replaced with 100 l of 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 1X solution in medium 

without red phenol. After 4 h at 37°C, 5% CO2, cells were lysed with 100 l of lysis buffer. 

The OD at 570 nm (blue) was measured after 12 h incubation and the proliferation index (PI) 

was calculated as follows: 

             Average OD570nm day X 

PI =  

             Average OD570nm day 1 

Results are shown as PI ± SEM at each time point of two separate experiments. 

 

3.20 Statistical analysis 

For data elaboration and statistical analysis, GraphPad Prism 5 software was used. The two-

tailed t-Student test was used to calculate the P values, which were considered statistically 

significant when <0.05 (*), <0.01 (**) or <0.001 (***). 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Phenyl
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4. Results 

 

 

PART 1: COMPARISON OF HPV SIGN GENOTYPING TEST WITH INNO-LIPA 

HPV GENOTYPING EXTRA ASSAY ON HISTOLOGIC AND CYTOLOGIC 

CERVICAL SPECIMENS (Barbieri et al, 2012) 

 

4.1 HPV-detection concordance between HPV sign and INNO-LiPA tests. 

Sixty out of 87 archival samples tested with INNO-LiPA assay were HPV positive (69.0%) 

and 27 were HPV negative (31.0%). Among positive samples there were 34 single infections 

(56.7%) and 26 multiple infections (43.3%).  

After the analysis of the 87 samples by the amplification step of the HPV sign, 53 (60.9%) 

resulted positive and 21 (24.1%) negative for both the assays, with an overall agreement of 

85.1% (k 0.66). On the other hand, there were 13 discordant samples: 7 INNO-LiPA HPV 

positive samples (8.0%) resulted negative with the HPV sign and 6 INNO-LiPA negative 

samples (6.9%) resulted positive. The seven INNO-LiPA-positive cytological samples which 

were negative by HPV sign were 2 CIN2+ and 5 CIN1. On the other hand, the six INNO-

LiPA-negative samples (4 biopsies and 2 swabs) which resulted positive by HPV sign were 

high-grade lesions or tumours (4 AdCa and 2 CIN2+). 

Considering biopsies and cytological swabs separately, we observed more agreement rate for 

biopsies than for cytological specimens (30/34=88.2%, k 0.76 vs 44/53=83.0%, k 0.54, 

respectively). 

 

4.2 HPV genotyping concordance between HPV sign and INNO-LiPA tests.  

For the 53 agreed positive samples, we assessed the concordance for single/multiple 

infections genotyping and results are resumed in Table 13. Twenty-nine samples (54.7%) 

resulted single infections and 3 (5.7%) multiple for both the techniques, with an overall 

agreement of 60.4% (k 0.08). On the other hand, there were 21 discordant samples (39.6%): 2 

INNO-LiPA HPV single infections (3.8%) resulted multiple with the HPV sign and 19 INNO-

LiPA multiple infections (35.8%) resulted single. Splitting our samples in biopsies and 

cytological swabs, we observed that there was less agreement rate for biopsies than for 

cytological specimens (52.9%, k 0.03 vs 63.9%, k 0.09, respectively). 
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Table 14 compares the genotyping results by HPV sign and INNO-LiPA tests considering one 

by one the HPV types detected in all histological and cytological samples. The overall 

agreement rate between HPV sign and INNO-LiPA tests is 95.7%. 

For biopsies, the agreement rate between the HPV sign and the INNO-LiPA tests ranged from 

88.2% for HPV 16 to 97.1% for HPV 18, 35 and 51, with an overall agreement rate of 94.1% 

(k 0.72). There was no statistical evidence of an imbalance in the samples between the two 

assays for each HPV genotyping, as determined by the McNemar’s test. The proportion of 

positive agreements ranged from 0 for HPV 51 to 0.889 for HPV 18. For HPV 16 we 

observed a small P value (0.617), but the concordance resulted substantial (k 0.73). 

For cytological samples, the agreement rate between the two assays ranged from 88.7% for 

HPV 16 and 18 and 100 % for HPV 33, 54 and 59 with an overall agreement rate of 96.0% (k 

0.49). There was no statistical evidence of an imbalance in the samples between the two 

assays for each HPV genotyping. The proportion of positive agreements ranged from 0 for 

many genotypes (40, 45, 52, 53, 66, 73 and 74) to 1.000 for HPV 33, 54 and 59. For HPV 16 

we observed a small P value (0.683), but the concordance resulted substantial (k 0.73). 

 

Table 13 - Concordance between HPV sign and INNO-LiPA assay for single/multiple infections. 

  HPV Sign/INNO-LiPA   

 Total S/S S/M M/S M/M  Agreement rate k 

Biopsies 17 7 6 2 2  9 
0.03 

% 100 41.2 35.3 11.8 11.8  52.9 

Cytolocgical swabs 36 22 13 0 1  23 
0.09 

% 100 61.1 36.1 0.0 2.8  63.9 

Overall 53 29 19 2 3  32 
0.08 

% 100 54.7 35.8 3.8 5.7  60.4 

S= single infection, M= multiple infections 

4.3 Analysis of discordant samples.  

The analysis with qRT PCRs of 30 discordant samples, 9 biopsies and 21 cytological samples, 

revealed the presence false positive (FP) genotypes (n. 20: 4 biopsies and 16 cytological 

swabs) only for the INNO-LiPA assay (Table 15). Among these we found HPV 35 once, HPV 

16, 53 and 66 twice, HPV 18, 31 and 51 three times and HPV 52 four times. 

The 10 false negative genotypes (FN) for the INNO-LiPA assay (4 biopsies and 6 cytological 

swabs) were HPV 31 once, HPV 18 and 45 twice and HPV 16 five times. Interesting, 2 out of 

5 HPV 16 FN samples were defined HPV 16 African variant type 2 by HPV sign. 

Considering the 14 FN genotypes for the HPV sign test (4 biopsies and 10 cytological swabs), 
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they were HPV 18, 31, 45 and 53 twice and HPV 16 and 66 three times. The viral load of all 

FN HPV types with one of two methods, quantified by qRT PCRs, ranged from 5·10
1
 to 8·10

2
 

copies/reaction, as reported in Table 4. 

 

Table 14 - Genotype-specific concordance HPV sign and INNO-LiPA assay. 

  HPV sign/INNO-LiPA    

Sample HPV genotype +/+ +/- -/+ -/-  
Agreement 

rate (%) 
Ppos Pneg 

Exact 

P value
a
 

k 

B
io

p
si

es
 

16 9 3 1 21  88.2 0.818 0.913 0.617 0.73 

18 4 0 1 29  97.1 0.889 0.983 1 0.87 

31 1 0 2 31  94.1 0.500 0.969 0.480 0.48 

35 1 0 1 32  97.1 0.667 0.985 1 0.65 

45 3 1 2 28  91.2 0.667 0.949 1 0.61 

51 0 0 1 33  97.1 0.000 0.985 n.a.
b
 n.a.

b
 

Overall 18 4 8 174  94.1 0.750 0.967 / / 

C
y

to
lo

g
ic

a
l 

sw
a

b
s 

16 13 2 4 34  88.7 0.813 0.919 0.683 0.73 

18 2 2 4 45  88.7 0.400 0.938 0.683 0.34 

31 1 1 3 48  92.5 0.333 0.960 0.617 0.30 

33, 59 1 0 0 52  100.0 1.000 1.000 1 1 

40, 82 0 0 1 52  98.1 0.000 0.990 n.a.
b
 n.a.

b
 

45 0 1 0 52  98.1 0.000 0.990 n.a.
b
 n.a.

b
 

51 1 0 2 50  96.2 0.500 0.980 0.479 0.48 

52, 53 0 0 4 49  92.5 0.000 0.961 n.a.
b
 n.a.

b
 

54 2 0 0 51  100.0 1.000 1.000 1 1 

56 1 0 3 49  94.3 0.400 0.970 0.248 0.38 

66 0 0 5 48  90.6 0.000 0.950 n.a.
b
 n.a.

b
 

70 1 0 1 51  98.1 0.667 0.990 1 0.67 

73 0 3 0 50  94.3 0.000 0.971 n.a.
b
 n.a.

b
 

74 0 0 3 50  94.3 0.000 0.971 n.a.
b
 n.a.

b
 

Overall 23 9 35 1046  96.0 0.511 0.979 / / 

Biopsies + Swabs  

Overall 
41 13 43 1220  95.7% 0.594 0.978 / / 

a
P value determined by McNemar’s test. P values <0.05 were considered statistically significant; 

b
n.a.

 
not applicable; 

- negative; + positive. 

 

After resolution of discrepant results, HPV sign showed an overall genotype specificity of 

100% and a sensitivity of 76.3% [CI 0.65-0.87] and INNO-LiPA showed an overall genotype 

specificity of 97.1% [CI 0.96-0.98] and a sensitivity of 84.5% [CI 0.75-0.94]. However, HPV 

sign revealed a higher sensitivity respect to INNO-LiPA for HPV 16 (90.0%, CI 0.79-1.01 vs 

83.3%, CI 0.70-0.97). The lower sensitivity of HPV sign concerned genotypes 31, 53 and 66. 

In fact, considering genotypes 16, 18, 35, 45, 51 and 52 the sensitivity is 85.0% [CI 0.76-

0.96] for HPV sign respect to 83.3% [CI 0.73-0.94] for INNO-LiPA. 
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Table 15 - Analysis of 30 specimens with discordant results for HPV genotyping between INNO-

LiPA and HPV sign assays, retested with real time-PCRs with primer sets specific for HPV 

16/18/31/35/45/51/52/53/66. 

Samples 
Histological  

definition 

INNO-LiPA 

genotype
a
 

HPV sign 

genotype
a
 

SYBR Green 

Genotype 

(viral load
c
) 

FP/FN  

INNO-LiPA 

FP/FN  

HPV sign 

B
io

p
si

es
 

1 AIS 16 18 18 18 FP 16  

2 
invasive 

AdCa 
Neg 16

b
 16 (4.5∙10

2
) FN 16  

3 AIS Neg 16 16 (8.4∙10
2
) FN 16  

4 
invasive 

AdCa 
31 35 16 16 (2.4∙10

2
) 

FP 31 35 

FN 16 
 

5 AIS 18 35 51 35 18 (6.2∙10
1
) 35 FP 51 FN 18 

6 AIS 16 31 16 16 31 (1.1∙10
2
)  FN 31 

7 
invasive 

AdCa 
16 45 16 16 45 (1.6∙10

2
)  FN 45 

8 AIS 16 45 16 16 45 (9.8∙10
1
)  FN 45 

9 
invasive 

AdCa 
Neg 45 45 (5.4∙10

2
) FN 45  

C
y

to
lo

g
ic

a
l 

sw
a

b
s 

10 CIN1 16 (54) (54) Neg FP 16  

11 CIN2+ 16 18 Neg 16 (1.5∙10
2
) 18 (7.2∙10

1
)  FN 16 18 

12 CIN2+ 16 51 (68) Neg 16 (2.3∙10
2
) FP 51 FN 16 

13 CIN1 16 Neg 16 (1.5∙10
2
)  FN 16 

14 CIN1 66 16 16 (7.2∙10
2
) FN 16 FP 66  

15 CIN2+ Neg 16
b
 16 (3.4∙10

2
) FN 16  

16 CIN2+ (82) 18 18 (8.9∙10
1
) FN 18  

17 CIN1 18 31 53 (73) 53 (9.2∙10
1
) FP 18 31 FN 53 

18 CIN1 18 Neg Neg FP 18  

19 CIN2+ 51 52 66 18 18 (6.1∙10
1
) 66 (1.1∙10

2
) 

FP 51 52 

FN 18  
FN 66 

20 CIN1 31 Neg 31 (1.3∙10
2
)  FN 31 

21 CIN2+ 31 45 45 (1.4∙10
2
) FP 31/FN45   

22 CIN2+ 52 31 31 (1.8∙10
2
) FP 52/FN 31   

23 CIN1 52 (91) Neg FP 52  

24 CIN2+ 16 52 16 16 FP 52  

25 CIN1 66 (70) (70) 66 (5.4∙10
1
)  FN 66 

26 CIN1 66 (70) Neg Neg FP 66  

27 CIN1 16 18 53 16 (42) 16 FP 18 53  

28 CIN2+ 53 (56) (73) 53 (1.6∙10
2
)  FN 53 

29 CIN1 53 Neg Neg FP 53  

30 CIN2+ 16 66 16 16 66 (7.2∙10
1
)  FN 66 

a
HPV genotypes in round brackets were not tested by real time-PCR.

  

b
HPV 16 African variant type 2 for HPV sign. 

c
Viral load is expressed in copies/reaction and reported only for FN discrepant results. 
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PART 2: VIROLOGICAL MARKERS IN HPV-ASSOCIATED  

CERVICAL ADENOCARCINOMA AND OROPHARYNGEAL CARCINOMA 

 

4.4 HPV prevalence and mRNA in cervical AdCa 

According to the INNO-LiPA assay, the overall HPV prevalence in our population was 92.4% 

(121/131), with 22.3% (27/121) multiple infections. Among positive samples, HPV 16 was 

the most prevalent genotype (81/121, 66.9%; 72.8% single and 27.2% multiple infections), 

followed by HPV 18 (42/121, 34.7%; 71.4% single and 28.6% multiple infections), HPV 45 

(10/121, 8.3%; 40.0% single and 60.0% multiple infections), HPV 31 (6/121, 5.0%; 33.3% 

single and 66.7% multiple infections), HPV 35, 51, 52, 53 and 66 (1/121, 0.8% each; 100% 

multiple infections) (Fig. 19). LR-HPV 11 was also detected in 3 samples (2.5%), but always 

involved in multiple infections with other HR-HPVs. HPV 16 and/or 18 alone resulted 

involved in 81.8% (99/121) of the infections. Moreover, all the eligible samples resulted 

positive also for the correspondent mRNA and, in case of multiple infections, the transcript 

belonged to at least one of the HPV genotypes involved. 

Considering the relation between age and infecting genotype, the median age of patients 

infected by HPV was 43 years. Those infected by HPV 16 or 18 alone showed a median age 

of 45 and 39 years, respectively (P=0.07).  

 

 

 

 

 

 

 

 

 

Figure 19- Genotype-specific prevalence among the 121 HPV-positive AdCa. 

 

Concerning the histological classification of cervical AdCa, our population was composed by 

65.7% (86/131) invasive AdCa (median age 48 years) with an overall HPV prevalence of 

89.5% (77/86) and by 34.4% (45/131) AIS (median age 40 years) with an overall HPV 

prevalence of 97.8% (44/45) (P<0.0001 for the age). HPV 16 remains the most prevalent 

genotype in both invasive AdCa and AIS (75.3% and 52.3%, respectively) followed by HPV 
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18 (32.5% and 38.6%, respectively), HPV 45 (7.8% and 9.1%, respectively), HPV 31 (3.9% 

and 6.8%, respectively). HPV 35 and 53 were detected only in AIS (2.3% each) and HPV 51, 

52 and 66 only in invasive AdCa (1.3% each).  

Among patients with cervical AdCa with an associated CIN, 55.5% resulted HPV 16 infected, 

37% HPV 18, 11.1% HPV 31 and 3.7% HPV 45. Most of them are single infections (81.5%).  

 

4.5 HPV 16 and 18 viral load and physical state in cervical AdCa 

Out of 81, 72 HPV 16 (88.9%) and 40/42 (97.6%) HPV 18 positive samples were analyzed 

for both viral load and physical state of the viral genome. 

Concerning the viral load, for HPV 16 positive samples we observed values ranging from 

1.61·10
2
 to 7.09·10

8
 copies of viral genome/300 ng HGD and 61.1% of the samples showed 

values >5·10
6
 copies/300 ng HGD. On the other hand, in HPV 18 positive samples we 

observed values ranging from 1.76·10
1
 to 6.55·10

7
 copies of viral genome/300 ng HGD, but 

31.7% of the samples showed values >5·10
6
 copies/300 ng HGD.  

For the physical state, we found that 13.9% of the HPV 16 positive patients harboured totally 

integrated viral DNA, 16.6% mainly integrated, 34.7% mainly episomal and 34.7% totally 

episomal. Among HPV 18 positive samples, we could observe that 15.0% harboured totally 

integrated viral DNA, 2.5% mainly integrated, 17.5% mainly episomal and 65.0% totally 

episomal.  

Considering the histological classification in AIS and invasive AdCa, we observed that HPV 

16 DNA was totally integrated/mainly integrated in 28.6% and 34.0% (P=0.79) of the cases, 

respectively, and HPV 18 DNA was in the same status in 17.65% and 17.39% (P=1.00) of the 

cases. 

 

4.6 HPV 16 DNA methylation  

4.6.1 Specificity and sensitivity of the HPV 16 DNA methylation analysis 

The specificity of the primers was tested. As it was expected, we could observe the specific 

amplicons A, B, C and D for CaSki and SiHa, but not for HeLa or UT7 cell lines (Fig. 20). 

Concerning sensitivity and reproducibly, pyrosequencing assessed methylation levels in 

samples with one CaSki cell per 300 000 HPV negative cells (Fig. 21) and one SiHa cell per 3 

000 HPV negative cells (data not shown for SiHa cells). This limit of detection, 

corresponding to 2–6 copies of HPV 16 DNA per/3 000 cells, is sufficient to evaluate 

methylation in most clinical samples. 
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Figure 20 - Specificity for HPV 16 DNA amplification of each primer sets used for the 

methylation analysis and respective amplicons in a 2% agarose gel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - Sensitivity of PCR and Pyrosequencing to quantify methylation in CaSki HPV 16 

DNA. (A) Serial dilutions were made as described in materials and methods and used to 

generate amplicon A by PCR. (B) Amplicons from each dilution were sequenced using the 

correspondent primer that detects methylation frequency at positions 31, 37, 43, 52 and 58 in the 

E6 promoter region. Methylation frequency (%) are mean (±SD) of 3 sequencing reactions. 

Overall mean indicates the mean of all dilutions for each CpG site. 

 

4.6.2 HPV 16 DNA methylation pattern in cervical AdCa: a general overview 

Out of 81 HPV 16 positive samples, CpG DNA methylation analysis for the viral LCR and 

3’L1 was possible in 64 (79.0%) (Table 16). The overall methylation frequency in cervical 

AdCa (17.2% ± 19.9% and 28.7% ± 28.0%) is lower than for CaSki cell line in both the 

regions (61.1% ± 23.5% and 42.6% ± 17.5%) and higher than SiHa cells only in the LCR 

(6.3% ± 6.6% and 78.0% ± 3.4%). Focusing the attention on the subregions in LCR, cervical 

AdCa showed a higher mean methylation frequency in the E6 promoter compared to SiHa 
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cells (17.0% ± 23.5% vs 1.6% ± 0.6%, respectively), but we observed high SD, as well as in 

the terminal part of the gene L1.  

Table 16 - Methylation frequency of the HPV 16 LCR and 3’L1 in cell lines and cervical AdCa. 

Region 
CpG site  

(nt) 

Methylation Frequency (%) ± SD 

CaSki SiHa AdCa 

Overall LCR  61.1 ± 23.5 6.3 ± 6.6 17.2 ± 19.9 

E6 promoter 31, 37, 43, 52, 58 83.3 ± 4.3 1.6 ± 0.6 17.0 ± 23.5 

Enhancer 
7535, 7553, 7676,  

7682, 7694 
49.0 ± 18.3 8.6 ± 6.1 12.7 ± 7.9 

5’LCR 
7270, 7428, 7434,  

7455, 7461 
47.7 ± 21.8 9.0 ± 7.4 18.7 ± 16.4 

3’L1 7032, 7091, 7136, 7145 42.6 ± 17.5 78.0 ± 3.4 28.7 ± 28.0 

 

The mean methylation frequency ± SD for each CpG site was plotted as histogram to better 

observe the methylation pattern and possible differences between individual sites (Fig. 22).  

In the E6 promoter region, there are no differences between CpG sites for cervical AdCa 

which have similar values and SD ranging from 16.2% ± 23.5% in CpG 37 to 17.9% ± 23.8% 

in CpG 31. The same homogeneous pattern was observed also SiHa (ranging from 1.4% ± 

0.5% in CpG 37 and 1.8% ± 0.8% in CpG 58), but in CaSki the CpG 37 showed a lower 

methylation frequency than the others (76.9% ± 2.1% vs >82.0%, respectively).  

Considering the enhancer region, the three groups showed again similar patterns with CpGs 

7535 and 7553 (6.5% ± 6.0% and 8.1% ± 5.9% in AdCa; 27.2% ± 2.0% and 31.7% ± 1.9% in 

CaSki; 3.5% ± 0.7% and 4.5% ± 2.1% in SiHa, respectively) lower in mean methylation 

frequency than CpG 7686, 7682 and 7694 (18.7% ± 8.1%, 13.8% ± 5.3% and 17.2% ± 6.3% 

in AdCa; 68.6% ± 2.6%, 55.9% ± 2.7% and 69.1% ± 1.9% in CaSki; 12.0% ± 7.2%, 8.7% ± 

5.5% and 11.3% ± 8.5% in SiHa, respectively).  

On the other hand, in the 5’LCR and 3’L1 we could observe more differences in methylation 

patterns. CaSki, SiHa and cervical AdCa seems to have the same pattern in the 5’LCR (i.e. 

increasing methylation from CpG 7270 to 7461), but CpG 7455 showed the tendency to be 

less methylated than the others in both SiHa and AdCa. Also in the terminal part of the gene 

L1, SiHa and AdCa had the same pattern with CpG 7091 more methylated than the others 

(37.1% ± 28.1% vs 25.8% ± 30.0%, 25.3% ± 26.4% and 26.6% ± 27.3% in AdCa; 89.0% ± 

2.0% vs 78.2% ± 3.1%, 72.7% ± 4.4% and 72.3% ± 3.1% in SiHa). In CaSki, the same 

position is less methylated than the others (15.8% ± 1.6% vs 40.4% ± 1.7%, 58.2% ± 2.9% 

and 55.9% ± 3.0%). 
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Figure 22- Methylation pattern in HPV 16 LCR and 3’L1 in clinical samples of cervical AdCa, CaSki and SiHa cells. 
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4.6.3 Methylation frequency of E2BSs in cervical AdCa 

In order to deepen the role of viral DNA methylation, we first analyzed the methylation 

frequency in the E2BSs (Fig. 23). The median methylation frequency in the EBS1 resulted 

12.5%, significantly higher than E2BS3 (2.3%, P=0.002) and E2BS4 (4.0%, P=0.02). There 

was no difference between E2BS3 and E2BS4 (P=0.27). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 - Overall methylation frequency in the E2BSs in cervical AdCa. Red lines indicate the 

median value for each group (*=P<0.05 and **=P<0.01, Mann-Whitney test). 

 

4.6.4 HPV 16 E6 promoter methylation and clinical/virological data in cervical AdCa 

Focusing the attention on the overall methylation frequency in the E6 promoter region, we 

tried to find a correlation with available clinical and virological data. 

As we noted in the previous paragraph, invasive AdCa showed the tendency to have a higher 

median overall methylation frequency in the E6 promoter compared to AIS (2.8% vs 5.0%, 

respectively; P=0.24).  

Taking into account the viral physical state, patients with totally integrated viral DNA showed 

a median methylation frequency equal to 1.0%, mainly integrated 3.0%, mainly episomal 

8.0% and totally episomal 5.0% (P=0.06; Fig. 24).  
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Figure 24 - Relationship between E6 promoter methylation frequency and viral physical state in 

the E6 promoter region in AdCa. Red lines indicate the median value for each group (P=0.06 

One-way ANOVA, Kruskall-Wallis test). 

 

Analyzing our samples one-by-one, we could observe a group of patients (18/64, 28.1%) with 

a methylation frequency ≥20% (Fig. 25). Among these, 2 were AIS and 16 invasive AdCa 

(P=0.06); 12 mucinous and 6 non-mucinous AdCa (P=0.03); 6 showed low and 12 high viral 

load (P=0.05); 2 harboured integrated or mainly integrated HPV genome and 15 episomal or 

mainly episomal viral DNA (P=0.02) (Fig. 26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 - Methylation frequency in the E6 promoter region: one-by-one analysis of each AdCa 

patient. Green lines indicate patients with mean frequency>20%; black lines indicate patients 

with mean frequency<20%. 
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Figure 26 - Methylation frequency in the E6 promoter region in function of the clinical and 

virological data in cervical AdCa. Red lines indicate the median value for each group and the 

black dashed line indicates the cut-off value (*=P<0.05, Mann-Whitney test).  

 

Considering the 3’L1 region, the patients with higher methyleted E6 promoter showed also a 

high methylation in the 3’L1 region, but they were not the only ones. In addition, there were 8 

patients with a methylation frequency >20% in the terminal part of the gene L1, which were 

not methylated in the E6 promoter (2 AIS and 6 invasive AdCa).  

 

4.7 HPV prevalence in OPSCCs and OSCCs. 

Seventy-five of the 81 patients enrolled for this study (92.6%) were OPSCCs and 6 (7.4%) 

were OSCCs (Table 17). Most of the OPSCCs were carcinomas of the tonsils (55/75, 73.3%). 

Twenty-seven patients (33.3%) resulted HPV negative, whereas 54 patients (66.7%) were 

HPV positive (63.0% HR-HPV and 3.7% LR-HPV). HPV positive patients showed the 

tendency to be younger than negative ones (median age 64.5 years and 70.0 years, 

respectively), but, considering the genders, there are no differences between the two groups. 

Focusing on genotype-specific prevalence among positive samples, HPV 16 was detected in 

44 positive patients (81.5%) and other HR-HPV (HPV 33, 35 and 52) in 9 (16.7%). LR-HPV 

6 was found in 3/54 cases (5.6%) and LR-HPV 11 in 2/54 cases (3.7%). Most of the HPV 

positive samples were characterized by a single infection (50/54, 92.6%) and just 4 were 

multiple infections (7.4%). HPV 16 infections were single in 40/44 of the cases (90.9%) and 

multiple in 4 (9.1%). HPV 6, 33 and 35 were involved only in single infections (each 5.6%), 
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HPV 52 in one single infection (1.8%) and in two multiple infections with HPV 16 (3.7%), 

whereas HPV 11 only in two multiple infections with HPV 16 (3.7%) (Fig. 27).  

Considering the different seats of the lesions, tonsils had a higher percentage of HPV positive 

samples (39/55, 70.9%) than other sites (15/26, 57.7%). Interesting, this difference increased 

looking at only HR-HPV infection (69.1% vs 50.0%, respectively). LR-HPV 6 single 

infections were detected once in tumours of the tonsils and twice in the base of the tongue. 

For what concerns clinical stage, T stage and N stage, we observed a trend showing that HPV 

positive tumours are high-grade tumours (i.e. clinical stage III/IV or N+ samples). Moreover, 

we could analyze the lymph node metastasis for two patients and these samples resulted 

positive for the same viral type detected in the seat of the primary tumour (i.e. HPV 16). 

According to tobacco and alcohol intake, HPV positive tumours seems to belong mainly to 

patients without other typical risk factor for HNSCC development rather than to those with 

(54.4% vs 29.6%, respectively; P=0.02). 

 

 

 

 

 

 

 

 

 

 

 

 Figure 27 - Genotype-specific prevalence among the 54 HPV positive OPSCC/OSCC. 

 

 

Eligible samples were tested by NASBA assay for the presence of viral E6/E7 mRNA and all 

were positive for the correspondent genotype.  

 

Samples belonging to the oral cavity will not be considered for further analysis since they 

were underrepresented in our population and we could detect HPV 16 only in one case. 
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Table 17 – Clinical and epidemiological data for HPV positive and negative patients. 

     a
Fisher’s exact test or Mann-Whitney test (two-tailed). 

 

4.8 HPV 16 viral load and physical state in OPSCCs 

Out of 44, 33 HPV 16 positive samples (75.0%) were analyzed to assess both the viral load 

and the physical state of the viral genome. Concerning the viral load, we observed values 

ranging from 4.32·10
1
 to 1.30·10

8
 copies /300 ng HG, but most of the samples showed values 

>5·10
6
 copies/300 ng HGD. Furthermore, we found that 15.1% of the them harboured totally 

integrated viral DNA, 36.4% mainly integrated, 36.6% mainly episomal and 3.0% totally 

episomal.  

 

  

HPV pos HPV neg 
Statistical analysis

a
 

 

total n n % n % 

Overall population 81 54 66.7% 27 33.3% 
 

Age, years 

     
 

Median 

(range) 

 

64.5  

(26-88)   

70.0  

(45-80)   
P 0.20 

Gender           
M vs F 

P 1.00 
Male 55 37 68.5% 18 66.7% 

Famale 26 17 31.5% 9 33.3% 

Seat of the lesion           OPSCCs vs OSCCs 

Oropharynx (OPSCCs) 75 52 96.3% 23 85.2% P 0.09 

Tonsil 55 39 72.2% 16 59.2% Tonsils vs Other 

Base of the tongue 16 11 20.4% 5 18.6% P 0.31 

Wall of the pharynx 4 2 3.7% 2 7.4% HR-HPV Tonsils vs Other 

Oral Cavity (OSCCs) 6 2 3.7% 4 14.8% P 0.14 

Clinical stage 

 

        
 

I/II 13 7 13.0% 6 22.2% I/II vs III/IV 

III/IV 68 47 87.0% 21 77.8% P 0.34 

T stage           
 

T1 9 6 11.1% 3 11.1% T1/2 vs T3/4 

T2 36 23 42.6 % 13 48.1% P 0.81 

T3 29 20 37.0% 9 33.3% 
 

T4 7 5 9.4% 2 7.5% 
 

N stage           
 

N0 14 7 13.0% 7 25.9% N0 vs N+ 

N+ 67 47 87.0% 20 74.1% P 0.21 

Risk factors           
 

Smoke and/or alchool 42 23 42.6% 19 70.4% Risk factors vs No 

No 39 31 54.4% 8 29.6% P 0.02 
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4.9 HPV 16 DNA methylation pattern in OPSCCs 

Out of 44 HPV 16 positive samples, CpG DNA methylation analysis for the viral LCR and 

3’L1 was possible in 34 (77.3%) (Tab. 18). The overall methylation frequency in OPSCCs 

was lower than for CaSki cell line in both the regions (9.9% ± 11.8% and 30.9% ± 27.8% vs 

61.1% ± 23.5% and 42.6% ± 17.5%, respectively) and higher than SiHa cells only in the LCR 

(6.3% ± 6.6% and 78.0% ± 3.4%). Focusing the attention on the subregions of the LCR, 

OPSCCs showed a higher mean methylation frequency in the E6 promoter compared to SiHa 

cells (9.6% ± 15.1% vs 1.6% ± 0.6%, respectively), but we observed high SD, as well as in 

the terminal part of the gene L1.  

 

Table 18 - Methylation frequency of the HPV 16 LCR and 3’L1 in cell lines and OPSCCs. 

Region CpG site (nt) 
Methylation Frequency (%) ± SD 

CaSki SiHa OPSCCs 

Overall LCR  61.1 ± 23.5 6.3 ± 6.6 9.8 ± 11.8 

E6 promoter 31, 37, 43, 52, 58 83.3 ± 4.3 1.6 ± 0.6 9.3 ± 14.9 

Enhancer 
7535, 7553, 7676,  

7682, 7694 
49.0 ± 18.3 8.6 ± 6.1 7.8 ± 5.0 

5’LCR 
7270, 7428, 7434,  

7455, 7461 
47.7 ± 21.8 9.0 ± 7.4 11.5 ± 10.7 

3’L1 7032, 7091, 7136, 7145 42.6 ± 17.5 78.0 ± 3.4 29.5 ± 27.5 

 

The mean methylation frequency for each CpG site was plotted as histogram to better observe 

the methylation pattern and possible differences between individual sites (Fig. 28).  

In the E6 promoter region, there are no differences between CpG sites for OPSCCs which 

have similar values and SD ranging from 8.9% ± 15.1% in CpG 37 to 10.1% ± 15.7% in CpG 

31. Considering the enhancer region, OPSCCs showed again the CpGs 7535 and 7553 (3.6% 

± 2.3% and 4.9% ± 2.9%) lower in mean methylation frequency than CpG 7686, 7682 and 

7694 (11.7% ± 4.9%, 8.1% ± 3.4% and 11.0% ± 4.6%).  

For the 5’LCR and 3’L1, also OPSCCs showed similar methylation pattern to SiHa: the same 

pattern in the 5’LCR (i.e. increasing methylation from CpG 7270 to 7461), but CpG 7455 

showed the tendency to be less methylated than the others. Also in the terminal part of the 

gene L1, SiHa and OPSCCs had the same pattern with CpG 7091 more methylated than the 

others (38.5% ± 27.3% vs 30.1% ± 29.7% for 7032, 24.5% ± 25.5% for 7136 and 25.7% ± 

26.9% for 7145 in OPSCCs). 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 - Methylation pattern in HPV 16 LCR and 3’L1 in clinical samples of OPSCCs, CaSki and SiHa cell lines (cervical cancer). Green boxes 

indicate the E2BSs. 
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*** 

*** 

4.10 HPV 16 methylation frequency in the E2BSs in OPSCCs 

Analyzing the methylation in the E2BSs, E2BS1 showed a median methylation frequency 

equal to 12.0% which was significantly higher than E2BS3 (2.0%, P<0.0001) and EBS4 

(2.5%, P<0.0001) (Fig. 29). There was no difference between E2BS3 and E2BS4 (P=0.44). 

 

 

 

 

 

 

 

 

 

 

Figure 29 - Methylation frequency in the E2BSs in OPSCCs. Red lines indicate the median value 

for each group (***=P<0.0001, Mann-Whitney test). 

 

4.11 HPV 16 E6 promoter methylation frequency and clinical/virological data in OPSCC 

As we have previously done, we focused the attention again on the E6 promoter region in 

OPSCCs and we tried to find a correlation with available clinical and virological data.  

Concerning the viral physical state, patients with totally integrated viral DNA showed a 

median methylation frequency equal to 3.0%, mainly integrated 3.0%, mainly episomal 2.0% 

and totally episomal 2.0% (P=0.42; Fig. 30).  

 

 

 

Figure 30 - Relationship between E6 promoter 

methylation frequency and viral physical state in 

the E6 promoter region in OPSCCs. Red lines 

indicate the median value for each group (P=0.42 

One-way ANOVA, Kruskall-Wallis test). 
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Analyzing our samples one-by-one, we could observe a group of patients (n 7, 21.2%) with a 

mean methylation frequency in the E6 promoter ≥10% (Fig. 31). Among these, 4 were T1/2 

and 3 T3/4 (P=0.47), 1 was at clinical stage 1/2 and 6 clinical stage 3/4 (P=1.0), all with high 

viral load (P=0.88); 4 harboured integrated or mainly integrated HPV genome and 3 episomal 

or mainly episomal viral DNA (P=0.14), 5 had a history of tobacco/alcohol use (P=0.53) (Fig. 

32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 - Methylation frequency in the E6 promoter region: one-by-one analysis of each 

OPSCCs patient. Green lines indicate patients with mean frequency>10%; black lines indicate 

patients with mean frequency<10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 - Methylation frequency in the E6 promoter region in function of clinical and 

virological data in OPSCCs. Red lines indicate the median value for each group and the black 

dashed line indicates the cut-off value.  
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4.12 Viral physical state and methylation as potential prognostic markers for OPSCCs 

Since for our patients we could recover data about the follow up, virological data such as 

HPV DNA presence/absence, viral integration and E6 promoter methylation were analyzed 

also in function of the disease-free survival (DFS). The median follow-up time for this study 

was 33 months (2.75 years). As shown by the Kaplan-Meier curves, the DFS% of HPV 

positive patient was very similar to those HPV negative, even if in the long-term period (at 

least 5 years) the former group showed a higher proportion (85.66% vs 76.09%, log-rank P 

0.49; Fig. 33A). Stratifying HPV 16 positive patients by viral physical state or viral DNA 

methylation frequency in the E6 promoter region, the DFS proportion revealed larger 

differences. Patients harbouring integrated/mainly integrated viral DNA showed the tendency 

to have a similar prognosis compared to those HPV negative, but worse compared to those 

harbouring episomal/mainly episomal viral DNA (Fig. 33B). Patients with mean methylation 

frequency in the E6 promoter region >10% showed the tendency to have a worse prognosis 

compared to patients with lower methylation frequency or negative for HPV DNA (5-years 

68.6% vs 82.0% and 76.1%, respectively) (Fig. 33C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 – Kaplan-Meier curves used to evaluate virological parameters as prognostic markers 

for DFS in OPSCCs. Hazard ratio (HR) and log-rank P value (Cox model) for each graph are 

listed in the table. (A) HPV presence/absence. (B) HPV 16 DNA integration. (C) HPV 16 DNA 

mean methylation frequency in the E6 promoter region.  

 Virological Parameters HR (95% CI) P 

A 
HPV neg (reference) 1.00  

HPV pos 0.57 (0.12 -2.79) 0.49 

 HPV neg (reference) 1.00  

B HPV 16 Int/Mainly Int 1.08 (0.23-5.07) 0.91 

 HPV 16 Epi/Mainly Epi 6.02 (0.60-60.99) 0.13 

 HPV neg (reference) 1.00  

C HPV 16 E6prom MET 2.73 (0.33-22.65) 0.35 

 HPV 16 E6prom NON MET 1.48 (0.28-7.77) 0.64 
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PART 3: ANALYSIS OF THE RESPONSE TO IFN-TRANSFECTION IN 

CERVICAL CANCER AND HPV 16-POSITIVE HNSCC 

(experiments performed under the supervision of Dr. Bladimiro Rincon Orozco and Prof. Dr. Frank Rösl at the 

Division of Viral Transformation Mechanisms, Research Program in Infection and Cancer,  

German Cancer Research Center, Heidelberg, Germany) 

4.13 Basal IFN- and type I IFNRs expression  

First of all, we checked the basal expression level of IFN- in our target cells. As we can see 

in Figure 34A, in cervical cancer cell lines, we could detect IFN- mRNA only in CaSki 

(reference cell line in this analysis), but not in SiHa and HeLa. Among HNSCCs, SCC25 and 

UDSCC2 cells showed a significantly lower level compared to CaSki (Fc 0.13 ± 0.07, 

P=0.0007; Fc 0.05 ± 0.01, P<0.0001, respectively), but Cal27 and 93V4 cells were negative. 

On the other hand, immortalized keratinocytes expressing only the viral oncoprotein E7 

showed the highest IFN- basal expression level (Fc 311.6 ± 40.5, P<0.002).  

Concerning type I IFNRs expression, SiHa cells were taken as reference (Fig. 34B). Cal27 

cells showed similar expression of IFNR1 (Fc 1.11 ± 0.34), followed by CaSki (0.80 ± 0.01, 

P=0.009), 93V4 (0.56 ± 0.003, P=0.0005), SCC25 (0.48 ± 0.06, P=0.002), HeLa (0.40 ±0.03, 

P=0.0003) and UDSCC2 (0.30 ± 0.003, P<0.0001) having lower levels. For IFNR2, SCC25 

showed significantly higher levels than SiHa (1.72 ± 0.005, P=0.002), in contrast to CaSki 

(0.31 ±0.08, P=0.002), HeLa (0.45 ±0.04, P=0.001), 93V4 (0.93 ±0.06), UDSCC2 (0.22 

±0.05, P=0.002) and Cal27 (0.20 ±0.06, P=0.002) which showed lower levels. 

 

 

 

 

 

 

 

 

 

 

Figure 34 – Characterization of target cell lines for IFN- (A, CaSki cells were taken as 

reference) and type I IFNRs (B, SiHa cells were taken as reference) expression.   
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transfected with the empty vector (mock) retained the basal IFN-expression level; on the 

other hand, cells transfected with the recombinant molecule showed an increase of expression. 

These results have been confirmed also at the protein level (Fig. 35B). 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 35 – Checking IFN- transfections in cervical cancer and HNSCCs cell lines by mRNA 

analysis (A) and Western Blot (B). 
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0.01, P<0.0001) and SiHa IFN- (HLA-A 2.50 ± 0.23 vs 0.98 ± 0.02, P=0.003; HLA-B 2.17 

± 0.40 vs 0.85 ± 0.05, P=0.009; HLA-C 3.32 ± 0.23 vs 1.16 ± 0.03, P=0.0007) (Fig. 37). 

Under IFN- or IFN- treatment we could observe the same tendency for CaSki and SiHa, but 

we detected a response also in HeLa, even if weaker compared to the other cells. For example, 

in SiHa IFN- or SiHa IFN-, immunoproteasome proteins were up-regulated up to 8-times or 

18-times, TAP heterodimer up to 10-times or 36-times and HLA genes up to 6-times or 8-

times, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 – RT-qPCR analysis for genes involved in immunoproteasome and TAP complex in 

cervical cancer cell lines transfected with IFN-/mock or treated with 1000 units of IFN- or 

IFN-.  
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Figure 37 – RT-qPCR analysis for genes involved in MHC class I antigen presentation pathway 

in cervical cancer cell lines transfected with IFN-/mock or treated with 1000 units of IFN- or 

IFN-.  
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On the other hands, after IFN- or IFN- treatment, all the four cell lines responded with a 
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Figure 38 – RT-qPCR analysis for genes involved in immunoproteasome and MCH class I 

antigen presentation pathway in HPV-positive HNSCCs transfected with IFN-/mock or treated 

with 1000 units of IFN- or IFN-.   

 

4.14.2 Antiviral Response 

The same analysis described in §4.14.1 was performed targeting ISGs (Fig. 39A). In 

particular, the Fc for OAS1, MX1, IRF7 and PKR was significantly higher in both CaSki 

IFN- (126.3 ± 7.2 vs 12.22 ± 3.1, P<0.0001; 293.0 ± 9.97 vs 5.12 ± 0.68, P<0.0001; 12.63 ± 

0.91 vs 2.96 ± 0.78, P=0.0007; 4.10 ± 0.17 vs 1.27 ± 0.09, P=0.0001, respectively) and SiHa 

IFN- (27.18 ± 7.42 vs 1.13 ± 0.15, P=0.006; 61.56 ± 5.62 vs 2.15 ± 0.23, P<0.005; 5.42 ± 

0.39 vs 0.55 ± 0.14, P<0.0001; 6.46 ± 0.33 vs 1.92 ± 0.05, P=0.0002, respectively) compared 

to the mock. The results concerning MX1 expression were confirmed also at the protein level 

for both CaSki and SiHa (Fig. 39B). Also IRF9 showed an increase in transcription level in 

both CaSki IFN- (5.33 ± 0.22 vs 1.80 ± 0.36, P<0.0001) and SiHa IFN-(1.76 ± 0.20 vs 

0.60 ± 0.03, P=0.0002). Once again, we could not observe an increase in antiviral response in 

HeLa cells transfected with IFN-. 

HLA-B

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0
2
4
6
8

10
12
20

22

24

26

28 Cal27

SCC25

93V4

UDSCC2
F

c

   * 

LMP7

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0

2

4

6

8

10

12

SCC25

Cal27

93V4

UDSCC2

F
c

TAP1

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0

5

10

15

20
30
40
50

70
80
90

100
Cal27

SCC25

UDSCC2

93V4

F
c

LMP2

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0

2

4

6

8

10
15

30

45

60

75

90 Cal27

SCC25

93V4

UDSCC2

F
c

 ***  *** 

 *** 
 *** 

  ** 
  ** 



71 

 

 *** 

 *** 

MX1

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0
5

10
15
20
25

50

100

250
300
350
400
450

CaSki

SiHa

HeLa

F
c

 *** 

IRF7

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0
1
2
3
4
5
6

10

12

14

16

18

20 CaSki

SiHa

HeLa

F
c

 *** 

 *** 

 *** 

PKR

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

0

1

2

3

4

5

6

7

8

9
CaSki

SiHa

HeLa

F
c

  ** 

 *** 

OAS1

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

U
ntr

an
sf

ec
te

d

m
ock

IF
N
k

IF
N
b
IF

N
g

0
1
2
3
4
5
6

10
15
20
25
30
35

100
200
300
400

CaSki

SiHa

HeLa

F
c

 *** 

 *** 

After treatment with other IFNs, the highest response was observed under IFN- treatment 

rather than IFN-. Briefly, OAS1 and MX1 transcription was increased between 200- and 

450-times in CaSki IFN- and between 10- and 20-times in CaSki IFN-. Considering IRF7 

and PKR, transcription was increased between 18- and 9-times in CaSki IFN- and between 

3- and 4-times in CaSki IFN-. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Figure 39 – RT-qPCR analysis for ISGs in cervical cancer cell lines transfected with IFN-/mock 

or treated with 1000 units of IFN- or IFN-. Western blot for hMX1 in CaSki and SiHa (B).  
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Considering HPV 16-positive HNSCCs, after IFN- transfection we observed a significant 

increase in OAS1 expression in all the four cell lines (Cal27 11.38 ± 0.40 vs 2.03 ± 0.20, 

P=0.002; SCC25 26.81 ± 1.98 vs 2.83 ± 0.11, P=0.0003; 93V4 1.80 ± 0.08 vs 0.89 ± 0.01, 

P=0.0004; UDSCC2 2.40 ± 0.12 vs 1.26 ± 0.05, P=0.0009) (Fig. 40). On the other hand, IRF7 

expression was increased only in Cal27 (2.44 ± 0.05 vs 0.46 ± 0.02, P<0.0001) and SCC25 

(13.47 ± 0.77 vs 1.61 ± 0.07, P=0.0001). Once again, under IFN- or IFN- treatment, all the 

four cell lines responded with a significant increase in genes involved in the antiviral 

response, with a higher effect after IFN- treatment. 

 

 

 

 

 

 

 

 

 

 

Figure 40 – RT-qPCR analysis for some ISGs in HPV-positive HNSCCs transfected with IFN-

/mock or treated with 1000 units of IFN- or IFN-.   

 

4.14.3 IFN- expression  

Since most of these genes are induced also upon IFN- stimulation, we decided to check IFN-

 expression level in IFN-/mock transfected cells. As reported in Figure 41, IFN-

expression was increased in all the IFN- transfected cell lines analyzed in this study, but in 

HeLa. In particular, CaSki IFN- showed the highest up regulation (342.9 ± 11.49 vs 14.58 ± 

1.53, P<0.0001) followed by SiHa IFN- (53.39 ± 0.62 vs 1.29 ± 0.29, P<0.0001), SCC25 

IFN- (25.91 ± 3.53 vs 1.13 ± 0.09 P=0.002), Cal27 IFN- (7.95 ± 0.80 vs 0.87 ± 0.03, 

P=0.0009), UDSCC2 IFN- (4.99 ± 0.91 vs 3.13 ± 0.29) and 93V4 IFN- (2.43 ± 0.10 vs 

0.64 ± 0.13, P=0.0005).  

These results were also confirmed in cervical cancer by the antiviral activity assay performed 

using the supernatants collected from the same transfected cells (Fig. 42). Both the 

supernatants belonging to CaSki and SiHa transfected with IFN- showed a significantly 

higher protection against EMCV infection in A459 cells up to 1/16 dilution compared to 
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supernatants from mock transfected cells. On the other hands, supernatant from HeLa 

transfected with IFN- did not show any antiviral activity. 

 

  

 

 

 

 

 

 

 

 

Figure 41 – IFN- expression in cells transfected with IFN- or empty vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 42 – Antiviral activity assay performed with supernatants collected from cells transfected 

with IFN- or empty vector. 
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4.14.4 NLRC5 expression  

Concerning NLRC5 expression, which is a transactivator of MHC class I genes, we observed 

the higest increase after IFN- transfection compared to untransfected cells in CaSki (4.92 ± 

0.12 vs 1.00 ± 0.03, P<0.0001) followed by SCC25 (2.59 ± 0.04 vs 1.00 ± 0.02, P<0.0001) 

and Cal27 (1.34 ± 0.05 vs 1.00 ± 0.05, P=0.0085), but we could not observe an increase in 

SiHa, 93V4  and UDSCC2 (Fig. 43). 

 

 

 

 

 

 

 

 

 

Figure 43 – NLRC5 expression in cells transfected with IFN- or empty vector. 

 

4.15 Effects of long-term IFN- transfection: proliferation and IFN- expression 

In order to check the effect of IFN- transfection on cell cycle regulation, we first performed, 

for each cell line, the proliferation assay as previously described. We could observe a 

decrease in cells proliferation for SiHa IFN- compared to the mock (PI 3.07 ± 0.09 vs 3.78 ± 

0.25, P=0.02, respectively) and CaSki IFN-, even if not significant (PI 3.62 ± 0.04 vs 3.90 ± 

0.22, respectively) (Fig. 44A). Moreover, analyzing the expression level of some proteins 

involved in cell cycle regulation such as Cyclin E1, CDK2 and Cyclin D1, after 1 or 6 days 

IFN- transfection in SiHa cells we observed a progressive decrease in all the proteins even if 

with some differences (Fig. 44B). In particular, CDK2 and Cyclin D1 decreased after 6 days 

compared to 1 day in both IFN- and mock transfected, but the decrease is more pronounced 

in the presence of IFN- (0.19 ± 0.01 vs 0.23 ± 0.01, P=0.014; 0.30 ± 0.04 vs 0.68 ± 0.07, 

P=0.009, respectively). Results were confirmed at the protein level for Cyclin D1 (Fig. 44C). 

Moreover, SiHa cells also showed a significant decrease in IFN- expression after 6 days 

from IFN- transfection compared to 1 day (4.33 ± 0.10 vs 53.39 ± 0.62, P<0.0001) (Fig. 

45D). This result matches with expression levels of proteins involved in immunoproteasome, 
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                       *** 

antiviral response and MHC class I antigen presentation after 6 days IFN-transfection which 

were not as high as after 1 day (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 – Effect of the long-term IFN-/mock transfection (6 days) in cervical cancer cell lines 

on cell cycle. (A) Proliferation assay for SiHa and CaSki. (B) RT-qPCR analysis of proteins 

involved in cell cycle regulation in SiHa. (C) Western blot for Cyclin D1 expression in SiHa. (D) 

IFN- expression in SiHa.  
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5. Discussion 

 

PART 1: COMPARISON OF HPV SIGN GENOTYPING TEST WITH INNO-LIPA 

HPV GENOTYPING EXTRA ASSAY ON HISTOLOGIC AND CYTOLOGIC 

CERVICAL SPECIMENS (Barbieri et al, 2012) 

 

An accurate tool for HPV typing is important for management of patients with HPV infection 

and studies which analyze benefits and limitations of different commercially available 

methods are very useful. In this study we compared for the first time the new HPV sign
®

 

Genotyping Test and the INNO-LiPA HPV Genotyping Extra assay.  

 

We found a substantial agreement between the assays (85.1%, k 0.66) for HPV detection in 

clinical samples, even if it became moderate considering only cytological swabs rather than 

biopsies (83.0%, k 0.54 and 88.2%, k 0.76, respectively). The overall concordance for 

single/multiple infection detection was poor (60.4%, k 0.07), but this is a problem which other 

groups have handled yet working with sequencing methods (Barzon et al, 2012; Didelot-

Rousseau et al, 2006; Gharizadeh et al, 2003; Gharizadeh et al, 2001; Gharizadeh et al, 2005; 

Zubach et al, 2012). For this reason, Gharizadeh developed a multiple-primer DNA-

sequencing method, which helped to improve HPV co-infection detection by sequencing-

based techniques (Gharizadeh et al, 2003). Moreover, many authors have reported that the 

INNO-LiPA system detects more multiple infections than other PCR based assays (Perrons et 

al, 2005; van Doorn et al, 2002). However, 14 (73.6%) of 19 INNO-LiPA multiple infections 

which were found as single infections by HPV sign agreed for the most clinically relevant 

genotype. Consequently, clinical decisions for the management of these patients, based on 

precancer and cancer risk, are in complete agreement. 

The overall genotype-specific agreement was good for both biopsies (94.1%) and cytologic 

swabs (96.0%). The agreement levels for individual HPV genotypes targeted by both methods 

ranged from 88.2% to 97.1% for biopsies and from 88.7% to 100% for cytologic samples. 

Although overall agreement rates for the detection of 28 HPV types are >90%, it is clear that 

this is driven by the agreement of HPV-negative specimens, as shown through the high 

proportion of negative agreement rates (Pneg > 0.913 for all genotypes and sample types). 
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The observed lower proportion of positive agreement rates for both cytologic samples (Ppos 

0.511) and biopsies (Ppos 0.750) indicate that there are discrepancies in the 2 assays' abilities 

to detect type-specific HPV positives, suggesting differences in assay sensitivity in different 

samples. It is important to note that HPV 40, 52, 53, 66, 74, and 82, detected by INNO-LiPA 

in 20.7% of all samples, were never detected by HPV sign. On the other hand, one HPV 73 

was detected only by HPV sign. 

 

In order to resolve these relevant discrepancies, to further analyze the performance of each 

genotyping assay and to define the sensitivity and specificity of each assay, a consensus 

genotype was defined for each discordant sample after resolution with 9 type-specific qRT 

PCRs. Interestingly, after the analysis of 30 discrepant samples, we assessed that INNO-LiPA 

was concordant with genotype-specific qRT PCRs in 30.0% of the cases and HPV sign in 

56.6%. 

The overall specificity of HPV sign was excellent (100%), and the INNO-LiPA overall 

specificity was good (97.1%). Two INNO-LiPA negative samples were positive for the HPV 

16 African type 2 variant by HPV sign, suggesting a difficulty of the INNO-LiPA assay to 

detect viral intratype variants, which sometimes have an increased oncogenicity when 

compared to the main type (Lichtig et al, 2006; Sichero et al, 2012). Another problem that 

affects hybridization-based techniques is the cross-reactivity between assay probes and 

intratype variants or non-detectable genotypes. For example, in 1 sample, INNO-LiPA 

detected HPV 52 as a single infection, which was not confirmed by genotype-specific qRT-

PCR, and HPV sign detected HPV 91, with a sequence match of 100%. It is well established 

that the SPF10 primer set is much more sensitive for HPV 52 detection than the GP5+/GP6+ 

primer set (van Doorn et al, 2002); in our case, all 4 HPV 52 infections detected by INNO-

LiPA were negative by HPV sign and, surprisingly, genotype-specific real-time PCR 

confirmed the absence of HPV 52 DNA. Furthermore, the 50% (2/4) of the HPV 53 and the 

40% (2/5) of HPV 66 infections revealed by the INNO-LiPA test were not detected by the 

specific qRT PCRs. On the other hand, the overall sensitivity was better for INNO-LiPA than 

for HPV sign (84.5% versus 76.3%), but HPV 16 infections, associated with higher absolute 

risks for progression to high-grade cervical lesions, were better detected by HPV sign (HPV 

sign sensitivity 90.0% [CI 0.79–1.01] versus INNO-LiPA sensitivity 83.3% [CI 0.70–0.97]). 

Furthermore, we observed that INNO-LiPA missed HPV 16 in precancerous lesions (n 3) and 

cervical carcinoma (n 2), but HPV sign missed it only in precancerous lesions (n 3). 



79 

 

The inability to detect some HPV genotypes by HPV sign may be due to the different DNA 

extraction protocols for cytologic samples, as recommended by the manufacturers: an initial 

sample volume of 4 mL of PreservCyt medium is needed for HPV sign compared to only 200 

μL for INNO-LiPA, as was done in our work protocol. Because of the extraction method 

utilized, it may not be possible to obtain, in some samples, the number of copies of viral DNA 

for the optimal execution of the HPV sign test. Moreover, the current study performed the 

assay comparison by testing archival DNA extracted from biopsies and swabs stored at 

−80°C. Nevertheless, the storage of extracted DNA can degrade the viral nucleic acid and 

then reduce HPV detection by HPV sign. 

To confirm this hypothesis with experimental evidence, we analyzed the viral load of HPV 

sign false-negative samples and we observed viral load values very close to or lower than 200 

copies/reaction, which is the value correspondent to the limit of detection of the technique. 

Probably, using an initial sample volume of 4 ml of PreservCyt medium and fresh DNA 

extract by biopsies and swabs should improve the sensitivity of HPV sign. 

 

In conclusion, HPV sign was similar in performance to the INNO-LiPA HPV Genotyping 

assay and it can be used for the detection of clinically relevant HPV genotypes. On the other 

hand, HPV sign has potential advantages in detecting subtypes and variants, the high 

specificity of a sequencing method, and a broad spectrum of detectable HPV types. 
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PART 2: VIROLOGICAL MARKERS IN HPV-ASSOCIATED  

CERVICAL ADENOCARCINOMA AND OROPHARYNGEAL CARCINOMA 

 

5.1 Cervical AdCa 

5.1.1 HPV genotyping as primary virological marker for risk of cervical AdCa 

development 

As it has been previously described, cervical AdCa are rare compared to classic SCC, but less 

studied, more aggressive and frequent in young women who want to preserve their fertility. 

Moreover, their incidence increased during the last 20 years and it has been shown that the 

HPV DNA-test is more significant than Pap-test for assessing disease progression during the 

follow up of women conservatively treated for cervical AdCa (Costa et al., 2012). 

In our population, HPV prevalence was 92.4% (77.7% single infections), in line with data 

published in literature (Castellsague et al, 2006; Li et al, 2011; Seoud et al, 2011). In fact, 

when 8 case-control studies from different countries worldwide (167 cases) were analyzed by 

Castellsagué and colleagues, the overall HPV prevalence was 93.0% (89.0% single 

infections). Concordance was found also for the genotype-specific prevalence, since HPV 16 

was confirmed the most prevalent genotype (66.9%) (de Sanjose et al, 2010; Tornesello et al, 

2011). However, HPV 18 and 45 showed a higher prevalence in cervical AdCa compared to 

SCC (34.7% vs 13.2% and 8.3% vs 4.4%, respectively), confirming these genotypes being 

more associated to AdCa development (data on SCC from (Li et al, 2011). Interestingly, we 

also noted a tendency for HPV 18-infected patients (single infection) to be younger than the 

overall median age or those infected by HPV 16 alone. This is consistent with results 

published by de Sanjose and colleagues and highlights the shorter time-for-progression to 

AdCa of HPV 18 cervical infections. 

Considering the two major histological types, we could observe a significant association 

between HPV 16 and invasive AdCa rather than AIS (75.3% vs 52.3%, respectively, P=0.01). 

On the other hands, HPV 18 and 45 showed only a tendency to be more associated to AIS 

than invasive AdCa (38.6% vs 32.5% and 9.1% vs 7.8%, respectively). Our data are in 

contrast with those obtained by Tawfik El-Mansi and colleagues in Scottish patients, who did 

not note a significant relation between infecting HPV types and tumour invasion (Tawfik El-

Mansi et al, 2006). However, it is well known that geographic variations can influence 

genotype-specific prevalence and associations. 
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Taken together, these results confirm the key role of HPV also in cervical AdCa development, 

with some little differences in genotype-specific prevalence compared to SCC and age-at-

diagnosis which have to be considered by clinicians when the HPV DNA test is performed on 

women with positive Pap-test smear. Moreover, since in our population most of the infections 

were caused by HPV 16 and/or 18 alone (81.8%), the current HPV vaccination campaign 

implemented by the Italian National Health Service from 2008 in the Emilia-Romagna region 

can strongly contribute to the decrease not only of SCC but also of cervical AdCa. 

The presence of HPV DNA or genotyping alone can inform the gynaecologist about the risk 

of cervical cancer development, but cannot distinguish between transient/productive and 

persistent/transforming infection or predict tumour grade, clinical stage, volume, invasion, 

lymph node involvement or prognosis when cancer has developed yet. For this reason, we 

decided to study other virological parameters, such as viral oncoprotein expression, viral load, 

physical state and DNA methylation, to improve the diagnosis of cervical AdCa. 

 

5.1.2 Viral load and physical state seems not to be suitable as diagnostic marker 

The presence of E6/E7 mRNA, that we could detect in all our HPV-positive samples, 

confirms viral activity and capability to produce its oncoproteins, but the association between 

viral load or integration and the different phases of the disease is still debated. Several authors 

have shown that high HPV16 viral load is associated with HSIL and increased risk of cancer 

development (Cricca et al, 2007; Gravitt et al, 2007). However, a longitudinal study published 

in 2010 showed that a single measurement of viral load made at an indeterminate point during 

the natural history of HPV infection, does not reliably predict the risk of acquiring cervical 

neoplasia (Constandinou-Williams et al, 2010). In our study we could detect not only high 

viral loads but also values <10
6
 copies/300 ng HGD in 38.9% of HPV 16- and 68.3% of HPV 

18-positive samples. Since we did not consider precancerous lesions but only cancers, our 

results agreed with Cricca and colleagues, who found viral loads lower in SCC than CIN3 

lesions.  

Concerning the viral physical state, during the last 30 years viral genome integration in 

cellular genome was considered the fundamental event for E6/E7 overexpression and cancer 

development. However, many studies reported HPV DNA in totally episomal form not only 

in precancerous lesions, but also in in situ or invasive carcinomas (Arias-Pulido et al, 2006). 

Our analysis agreed with data published in the mentioned article, confirming the presence of 

totally episomal DNA also in glandular cancerous lesions (about 34.0%). Moreover, the 
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percentage of samples harbouring totally or mainly integrated HPV 16 DNA was found to be 

higher in invasive AdCa compared to AIS (34.0% vs 28.6%). However, the same result was 

not observed for HPV 18 DNA.  

Observing these results, we may consider HPV 16 integration as marker of cervical cancer 

progression in SCC as well as in AdCa and support the hypothesis that viral integration is an 

important but secondary event in carcinogenesis, being rather a consequence of the genomic 

instability due to viral oncoprotein overexpression (Matovina et al, 2009). However, since it is 

very difficult to know how many effectively infected cells are present in a clinical samples 

(contrary to established cell lines) and techniques available to assess both viral load and viral 

physical state are difficult to standardize, we may say that these virological parameters are not 

so suitable in clinical practice as diagnostic marker for early disease/prognosis of cervical 

SCC and AdCa.  

 

5.1.3 Methylation frequency of the early promoter as suitable marker of invasion in 

cervical AdCa 

The key mechanism involved in E6/E7 transcriptional deregulation and HPV-mediated 

carcinogenesis in SCC seems to be CpG methylation, in particular at sites encompassing the 

LCR. In fact, a differential methylation of the HPV 16 LCR during epithelial differentiation 

and neoplastic transformation has been previously reported, suggesting that a shift in viral 

methylome may be the switch from a permissive to a transforming infection (Vinokurova & 

von Knebel Doeberitz, 2011). Moreover, for clinical purposes, evaluating the methylation 

status at specific sites, as opposed to a more global genomic assessment, may yield more 

valuable and predictive information regarding cancer progression.  

Many studies have been performed dealing with HPV 16 DNA methylation in cell lines and 

clinical samples, but most of them are focused on SCC with small size populations and not-

quantitative methods, leading to conflicting and difficult to interpret results (Badal et al, 2003; 

Brandsma et al, 2009; Chaiwongkot et al, 2012; Clarke et al, 2012; Ding et al, 2009; Hong et 

al, 2008; Kalantari et al, 2004; Kim et al, 2010; Mirabello et al, 2012; Snellenberg et al, 2012; 

Sun et al, 2011). For all this reasons, we decided to analyze DNA methylation of the HPV 16 

LCR also in cervical AdCa, using a quantitative method.   

From our analysis, the overall mean methylation frequency in the LCR seems to be higher in 

cervical AdCa compared to previous results obtained by Sun and colleagues using the same 

technique in CIN3+/SCC (~17% vs <5%, respectively) (Sun et al, 2011). Focusing the 
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attention on the E2BSs, we also observed a significant tendency for E2BS1 to be more 

methylated than E2BS3 and 4, which is in contrast with data obtained by Sun, but in 

agreement with those published by other groups (Chaiwongkot et al, 2012; Snellenberg et al, 

2012). Although methylation at the E2BSs interferes with binding of E2, preventing 

transcriptional regulation of viral oncoproteins, it has has little or no effect on binding of other 

transcription factors such as Sp1 (CpG31, near E2BS3) and YY1 (near E2BS1), allowing 

E6/E7 to be efficiently transcribed (Höller et al, 1988; Thain et al, 1996). However, we 

observed wide standard deviations for the methylation frequency, in particular in the early 

promoter, suggesting a heterogeneous methylation in this region among samples and a 

possible relation with clinical/virological parameters. We found a tendency for invasive AdCa 

or non mucinous AdCa to be more methylated in the P97 promoter than AIS or mucinous 

AdCa, leading us to suppose that high methylation frequency in this zone may serve as 

marker of tumour invasion. 

On the other hand, regarding the viral physical state and viral load, we observed a tendency 

for tumours harbouring totally episomal/mainly episomal viral DNA to have higher 

methylation frequency in the E6 promoter and no correlation was found with the viral load. 

These results seems to be in contrast with those showing in CaSki cell lines that integrated-

multi copy viral DNA are silenced by de novo self-methylation to control gene dosage, 

starting from the enhancer and spreading towards the early promoter (De-Castro Arce et al, 

2012). However, if CaSki are established cell lines for which the number of integrated copies 

of viral genome is known, it is not the same for clinical samples. So, methylation of both 

episomal and integrated DNA may have different functions/consequences depending on the 

stage of viral life cycle and cellular conditions.  

 

5.2 Oral and Oropharyngeal SCCs 

5.2.1 HPV 16 is confirmed the most prevalent genotype in OPSCCs 

HPV infection is the necessary cause for cervical cancer development, but it is also associated 

to a well defined subgroup of HNSCCs, in particular OPSCCs, with many unresolved issues 

that have been studied in translational and clinical research during the last 30 years. An HPV-

induced oral/oropharyngeal precancerous lesion has not been identified yet and the presence 

of HPV infection remains the only currently available indicator of future OPSCCs risk. 

However, current guidelines have not incorporated specific treatment modalities for HPV-

related tumours.  
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Actually, many studies have analyzed HPV prevalence in HNSCCs. In our population, HPV 

prevalence was 66.7% which is higher than the overall prevalence published in two meta-

analysis. In fact, Kreimer and colleagues, resuming data obtained in 60 studies from 26 

countries worldwide, presented an HPV prevalence of 35.6% (Kreimer et al, 2005) and 

Mehanna, selecting 269 studies and 19 368 patients, reported 47.7% HPV positive OPSCCs 

(Mehanna et al, 2012). Our result may have been influenced by the high number of tonsillar 

tumours (55/81, 67.9%), known to have the strongest association with HPV (Syrjanen, 2004). 

However, our result agreed with the range of overall prevalence reported in studies performed 

after 2000 (range from 52.9% to 85.7%), highlighting the increased HPV prevalence over 

time, probably due also to an improvement of the sensitivity of the techniques used.  

Agreement was also found concerning the genotype-specific prevalence, since HPV 16 as 

single infection was confirmed the most prevalent genotype among HPV-positive samples 

(81.5%). We did not detect HPV 18, but in three cases HPV 6 as single infections (5.6%). LR-

HPV single infections in HNSCCs has been previously reported yet by Rautava (HPV 6 8.8% 

and HPV 11 2.9%) suggesting a different oncogenic potential of these genotypes compared to 

the cervical region (Rautava et al, 2012). However, this hypothesis has to be deepen with 

further experiments.  

As we mentioned above, tonsillar carcinoma showed the highest association to HPV also in 

our population (69.3%), confirming this anatomical site as the preferential site for HPV 

infection in the oropharynx, maybe due to its histological similarity to the squamous-

columnar junction of the cervical mucosal epithelium. 

 

5.2.2 Preferentially high viral load and mixture of episomal and integrated forms of the 

virus is present in OPSCCs 

There are few and variable data concerning the physical state or copy number of HPV in 

OPSCCs and its significance in these tumours.  

In a descriptive update on the role of HPV in HNSCCs, Goon resumed results obtained by 

five previous studies, reporting that tonsillar carcinoma have higher viral load than non 

tonsillar and higher copy number of episomal viral DNA may be able to induce more rapid 

growth (Peter KC Goon, 2012). On the other hand, he also reported data from a study 

suggesting that a higher viral load (>190 copies/betactin) could be a favourable prognostic 

indicator. In our study, we observed high viral loads (>100 copies/cell) in most of the 
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samples, maybe due to the overrepresented tonsillar carcinoma, without significant 

association with clinical parameters.  

Tonsillar carcinomas have been also reported to have the highest prevalence rate of episomal 

HPV DNA among HPV-positive HNSCCs. We detected prevalently a mixture of both 

integrated and episomal viral DNA and totally episomal genome only in 3 cases, suggesting a 

high heterogeneity and variation in the oncogenic pathways among these tumours.  

 

5.2.3 There are differences in methylation frequency of the LCR among HPV-driven 

OPSCCs 

Actually, in literature there are only two studies dealing with HPV 16 DNA methylation in 

HNSCCs (Balderas-Loaeza et al, 2007; Park et al, 2011). Balderas-Loeza analyzed 12 HPV 

16-positive oral carcinoma with cloning followed by sequencing, finding hypermethylation of 

the LCR in 10 cases. On the other hand, Park, analyzing methylation through the entire viral 

genome in 22 patients with stage III/IV HPV-associated OPSCCs by bisulfite-sequencing 

method, observed a preferential hypomethylation of the LCR, in particular in the enhancer 

and inhibitory E2BSs. Moreover, he found a trend between viral methylation and E6/E7 

expression or viral load, speculating that tumours with high viral loads could have significant 

silencing of the redundant copies through methylation and correspondingly low viral 

oncoproteins expression levels, which may account for improved survival rates. However, 

E6/E7 expression can be influenced by other factors than integration, such as (random) sites 

of integration of the viral genome in the host genome, which may be permissive or not for 

gene expression.  

Results obtained in our study partially agree with those reported above. First of all, we 

confirmed the tendency of high-grade OPSCCs to be unmethylated in >50% of the CpG sites 

in the LCR, in particular in the enhancer and early promoter (Tab. 8, Fig. 29 and 30). 

However, we could observe significantly higher methylation frequency of the E2BS1 

compared to E2BS3 and E2BS4 and seven patients harbouring viral DNA methylation 

frequency in the E6 promoter ranging from 20% to 65%, significantly higher than the overall 

mean (10%). We could not find a statistically significant correlation between mean 

methylation frequency in this 5 CpGs and  tumour stage, clinical stage, viral load or physical 

state, highlighting the complexity of HPV-transforming pathway in OPSCCs.  
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5.2.4 Methylation frequency of the early promoter as suitable prognostic marker in 

OPSCCs 

Treatment options for patients with HNSCCs are multimodal, involving a combination of 

surgery, radiotherapy, and chemotherapy (Peter KC Goon, 2012). The advantage of exclusive 

chemoradiotherapy (CRT) is its potential to preserve speech and swallowing function. It has 

been previously shown that HNSCCs positive for both HPV DNA and RNA have a better 

prognosis or response to CRT compared to completely negative tumours, suggesting an 

important role of the virus in cancer development and opening new horizons in the diagnostic 

field (Holzinger et al, 2012; Worden et al, 2008). Finding virological markers complementary 

to HPV DNA, which might help clinicians to decide for exclusive CRT or surgery as primary 

treatment or predict the good or bad prognosis, would be very useful and might improve both 

survival and quality of life, in particular in presence of young patients (Sharma et al, 2012). 

Recently, it has been proposed that a triple panel p16-IHC/consensus PCR/HR-HPV ISH 

could improve HPV-driven OPSCCs detection in clinical samples (Pannone et al, 2012). On 

the other hand, Holzinger and colleagues tried to find biomarkers useful to reliably determine 

truly HPV-driven OPSCCs in 199 cases, finding viral RNA expression in only 20% of HPV 

16-positive patients and observing that viral load or RNA pattern analysis is better suited than 

p16 expression for prognostic purposes (Holzinger et al, 2012). Although we could detect 

viral transcription in all the HPV 16-positive patients, making them all HPV-driven tumours, 

taking into account the DFS and viral parameters such as viral integration and methylation, 

we noted interesting trends and differences among them. In fact, when DFS was analyzed in 

function of the HPV presence/absence, patients with HPV-driven tumours had the tendency to 

have better 5 years-prognosis compared to HPV-negative ones. However, the Kaplan-Meier 

curves were quite overlapping. For this reason, we further analyzed the DFS dividing the 

HPV 16-driven patients in four groups: patients harbouring a) integrated/mainly integrated 

DNA, b) episomal/mainly episomal DNA, c) early promoter methylation frequency >10% and 

d) early promoter methylation frequency <10%. Concerning viral physical state, integration 

seems to be associated to a bad 5-years prognosis, similar to HPV-negative patients, and high 

methylation frequency in the E6 promoter region even worse. Interestingly, patients 

belonging to this group have not history of alcohol/tobacco use, making HPV infection the 

only risk factor for OPSCCs development. Even if the statistically significant difference was 

not obtained as well, the same trend regarding the association between early promoter 
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hypermethylation and worse prognosis compared to hypomethylation was previously 

observed also by Ding and colleagues in cervical SCCs (Ding et al, 2009).  

From a technical point of view, however, since the methods to analyze the viral physical state 

(frequently real time-PCRs) are difficult to standardize, the analysis of viral DNA methylation 

by PCR followed by pyrosequencing seems to be more suitable for the development of a new 

diagnostic assay.  

 

5.3 A mechanistic suggestion for HPV-mediated carcinogenesis alternative/synergistic to 

integration 

The virus-mediated pathogenesis in both cervical cancer and HNSCCs is less than clear and 

the existence of multiple pathways to carcinogenesis is highly likely. Taken together, our 

results support the hypothesis that high methylation frequency in the LCR influences cervical 

cancer progression. Even if CpG methylation may be performed by both virus and cell, 

having distinct functional consequences and making a simple mechanistic interpretations 

difficult, we may speculate that during a normal productive infection, in basal cell lines, HPV 

uses the cellular machinery to methylate its episomal genome (preferentially the LCR), 

controlling gene expression. For unclear reasons (host factors may be involved), the balance 

between low and excessive methylation frequency may be shifted in favour of the latter, 

leading to cellular transformation (Fig. 45). In particular, in asymptomatic/normal infected 

cells, methylation frequency of the gene L1 and E2BS1 may progressively increase, causing 

L1 silencing, P97 upregulation, E6/E7 overexpression (first step for cellular transformation) 

and genomic instability (favouring viral integration). Then, methylation may spread towards 

the early promoter increasing its frequency also in correspondence of the E2BS3 and E2BS4, 

favouring more and more viral oncoproteins expression even in the presence of intact E2 

(episomal viral genome). So, an excess of methylation frequency in viral genome, combined 

to methylation of other cellular genes (such as hCADM1, hMAL, hTERT in cervical cancer, 

see Overmeer et al, 2011), may start the “short-circuit” during viral productive infection 

leading to cellular breakdown. Once the virus becomes integrated into the host genome, 

methylation patterns may be altered due to complex epigenetic changes in integrated viral 

genomes. 

According to this mechanistic suggestion and our results, methylation frequency at the E2BS1 

may serve as diagnostic marker for pre-cancerous lesions and the same analysis at the E2BS3 
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and 4 (early promoter) as diagnostic marker (invasion or not) for cancerous lesions, at least in 

cervical AdCa or prognostic marker (DFS) in HPV 16-driven OPSCCs. 

 

There are some limitations of these studies that should be discussed. Most importantly, we did 

not analyzed E2BS2 for HPV 16 DNA methylation. This is due mainly to technical reasons, 

but since this is the site with the lowest affinity for E2 binding and it is not involved in viral 

oncoproteins expression, we considered it not so important for our clinical purpose. Then, we 

analyzed only cancerous lesions. It would have been interesting to analyze also precancerous 

lesions, but, unfortunately, for cervical AdCa they are very difficult to obtain and for OPSCCs 

they have not been recognized yet. The number of HPV 16-positive OPSCCs analyzed for 

methylation vs clinical outcome and the time of follow-up which was less than 3 years for 

most of our patients: further studies should include additional centers to increase the size of 

population, longer time of follow-up (at least 5 years) and different types of treatments in 

order to assess the reproducibility of our results. Another limitation is the retrospective 

design; but it is important to note that the treatment regime during the study period was 

standardized and that the majority of the patients during the period were included.  

However, we think that our findings may be a step toward the establishment of individualized 

therapy for patients with both cervical AdCa and HPV-driven OPSCCs. 
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Figure 45 – Scheme summarising the suggested mechanism for HPV-mediated carcinogenesis, alternative/synergistic to viral integration, taking into 

account data previously published in literature (Clarke et al., 2012 and Chaiwongkot et al., 2012) and results obtained in the present study (left). Red 

circles correspond to meCpG sites. We also indicate the possible implications of HPV 16 methylation frequency in the E2BSs as diagnostic or prognostic 

marker in cervical cancer (in particular cervical AdCa) and HPV-associated OPSCCs (right). 
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PART 3: ANALYSIS OF THE RESPONSE TO IFN-TRANSFECTION IN 

CERVICAL CANCER AND HPV 16-POSITIVE HNSCCs 

(experiments performed under the supervision of Dr. Bladimiro Rincon Orozco and Prof. Dr. Frank Rösl at the 

Division of Viral Transformation Mechanisms, Research Program in Infection and Cancer,  

German Cancer Research Center, Heidelberg, Germany) 

 

IFNs are a family of structurally related cytokines successfully applied as biological therapy 

for many human cancers due to its antitumor activity. Since they also have antiviral and 

immunomodulatory effects, IFNs are particularly suitable as additional therapy for 

malignancies having infectious causes, such as cervical cancer or other HPV-associated 

diseases. However, existing IFNs-based therapies showed undesirable side effects (such as 

fever, fatigue and flu-like symptoms) which stimulate researchers to find alternative or 

complementary treatments.  

In 2001, a new type I IFN expressed constitutively in epidermal keratinocytes and, after 

stimulation, in monocytes and DCs has been discovered. It was called IFN- and showed 

autocrine/juxtacrine activity. The few studies carried out to deepen its function in HPV-

infected cells suggested an important role of this molecule in virus-mediated carcinogenesis, 

in particular because of its epigenetic silencing in HPV 16-positive cervical cancer cell lines, 

CaSki and SiHa, as well as clinical specimens (Rincon Orozco et al., 2009).  

 

In this study, we transiently transfected both cervical cancer and HPV 16-positive HNSCCs 

cell lines with a recombinant form of IFN- (cloned into the pSecTagA vector) to analyze the 

effects on the expression of proteins involved in antigens presentation (MHC class I 

pathway), immunoproteasome and antiviral response. Even if weaker than IFN- or IFN- 

treatment, 24 hours post-IFN-transfection, we could observe a significant increase in 

transcription levels of the genes involved in the mentioned pathways, for all the HPV 16-

positive cell lines, compared to both the naïve and mock-transfected, but not for HPV 18-

positive HeLa cells. These effects on ISGs and class I molecules can be attributed to the 

relevant increase of respectively IFN- and NLRC5 expression and, since it has been reported 

that HeLa cells are not able to produce the former molecule, the absence of response is not 

surprising. Moreover, differences in the intensity of the response to IFN- transfection among 

tested cells may be due to differences in the amount of type I IFNR expressed, in particular 

the subunit IFNR1. In fact, CaSki, SiHa and Cal27 cells, which showed higher response to 
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both IFN- transfection and IFN- treatment, showed higher levels of IFNR1 as well. This is 

the subunit mainly involved in starting type I IFNs signalling, since some phosphorilated 

Tyrosines within it serve as docking sites for the recruitment of downstream STAT proteins. 

The antitumor activity of type I IFNs is exerted through different mechanisms and, among 

these, there are senescence induction and antiproliferative properties (Bekisz et al, 2010; 

Chiantore et al, 2012). For this reason, we decided to monitor also the effects of IFN- 

transfection on cell cycle. In cervical cancer, we observed a decrease in proliferation of 

transfected cells after 5 days, which was more evident and statistically significant in SiHa, 

rather than CaSki. This result was confirmed at both mRNA and protein level, since we did 

not detected significant down-regulation of proteins involved in cell cycle progression, such 

as Cyclin D1, CDK2 and Cyclin E1, after short-term transfection (1 day), but after longer 

time (6 days) in SiHa. Interestingly, we observed significantly lower IFN- expression levels 

as well.  

 

Taken together, these results suggest that IFN- has a role in antigens presentation by 

stimulating immunoproteasome formation and, even if less, HLA molecules production in 

HPV 16-infected cells, with more appreciable effects on cervical cancer cell lines rather than 

HPV-associated HNSCCs. This may have important implications, since it has been previously 

reported that the defect for presenting HPV 16 E6 epitopes in cervical carcinoma correlates 

with low expression of HLA class I, LMP2, LMP7, TAP complex and that upregulation of 

selected MHC class I allele expression induced by IFN- correlates with the resolution of 

cervical intraepithelial lesions or HR-HPV DNA clearance in vivo (Evans et al, 2001; Sikorski 

et al, 2004). Favouring the production of these proteins by treatments based on new 

molecules, such as IFN- may be useful for the management of cervical cancer and other 

HPV-associated diseases, even if MHC class I low expression has been recently correlated to 

an increased survival in HPV-positive tonsillar SCCs (Näsman et al, 2013). In fact, the most 

immunogenic HPV 16 E6 epitope (peptide E629-38) would be better exposed on cell surface 

and recognized by the CTLs, activating the immune response against HPV-infected/cancerous 

cells (immunotherapy). Moreover, the antiviral activity of this new type I IFN, which seems 

to be acute and strongly mediated by IFN-, is followed by an antiproliferative effect after a 

long-term exposure to the molecule.  
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All these observations and results have to be confirmed with further experiments. The 

analysis that we performed were a preliminary screening to understand the function of IFN- 

in HPV-infected tumoral cells and its potential utility as new treatment. Our recombinant 

molecule has been designed for biotechnological production in euchariotic cells, such as CHO 

(Chinese hamster ovary) cells. It will be necessary producing and purifying it, in order to treat 

the same cell lines and reproduce the same results obtained by transfection.  
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