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Chapter 1- Introduction 
 
1.1 Calcium-silicate MTA based cements 
 
Endodontic therapy consists in the management of several tissues such as pulp tissue, 

periodontal tissue, periapical bone and dentine. These tissues are often contaminated 

by blood, periapical exudates and biological fluids which may compromise the 

setting reaction and stability of many  materials employed for endodontics. An ideal 

orthograde or retrograde filling material should be non toxic,  noncarcinogenic, 

nongenotoxic, biocompatible with the host tissues, insoluble in tissue fluids, and 

dimensionally stable (Torabinejad 1996, Ribeiro 2008).  

The existing materials used in endodontics did not posses these ideal characteristics, 

especially in clinical application the moist highly affects the sealing ability and 

stability of endodontic cements. For these reason mineral trioxide aggregate (MTA) 

was developed and recommended initially as a root-end filling material and 

subsequently has been used for pulp capping, pulpotomy, apexogenesis, apical 

barrier formation in teeth with open apexes, repair of root perforations, and as a root 

canal filling material. 

Calcium-silicate MTA cements are biocompatible bioactive hydrophilic materials 

(Gandolfi 2009-2011) and are able to release calcium and hydroxide ions. The 

calcium releasing and the alkalinization of surrounding environment have been 

demonstrated as the main factor of  calcium-silicate MTA cement chemical and 

biological properties.  
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1.2  Chemical Properties  

 

MTA based cements contains a fine hydrophilic powder of Portland cement with 

radiopacifyng agent such as bismuth oxyde (camilleri 2005). The main constituents 

of the hydrophilic powder are     tricalcium silicate (3CaOSiO2), tricalcium 

aluminate (3CaO•Al2O3), dicalcium silicate (2CaOSiO2)and only for GrayMTA 

(GMTA) tetracalcium alluminoferrite (tetracalcium aluminoferrite 

4CaOAl2O3Fe2O3)  (Islam 2006).  

The MTA cements setting reaction is trigged by the mixing of the hydrophilic 

powder with water. The hydration of calcium silicate and aluminate causes the 

formation of a porous solid gel (Camilleri 2007) with calcium and hydroxide ions  

(CH) release. The precipitated CH produce an high alkalinization of surrounding 

environments during the hydration steps. 

The ideal powder-to-liquid ratio was set in 3:1 (Torabinejad 1993), in order to 

obtain a proper setting reaction. It has been demonstrated that physical and chemical 

properties of MTA cement might be negatively affected by changing in 

powder/liquid ratio, method of mixing, pH of the environment and temperature 

(Watts 2007, Islam 2006, Gandolfi 2009). 

Unfortunately MTA cement setting  is over 170 minutes (Gandolfi 2009) much 

longer than clinical requirement, so the long setting time is one of the major 

drawbacks (Gandolfi 2010, Parirokh 2010). 
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1.3 Biocativity 

  

As reported by Kokubo & Takadama (2006) a bioactive material can bind to living 

bone by the formation of a bone-like apatite layer on its surface in the body 

environment.  

The hydroxyapatite (HA) is the main inorganic component of human hard tissues 

such as bone, dentine and enamel with a Ca/P molar ratio of 1.67 and a structure very 

similar to that of natural apatite. 

The bioactivity of calcium-silicate cement was first suggested by Sarkar (2005), and 

later confirmed by Coleman (2007), Tay and Pashley (2007), and Gandolfi (2010). In 

these studies MTA cements were immersed in phosphate buffered solutions (PBS) in 

order to simulate the body fluids (SBF) interaction such as blood, saliva and cervical 

fluids. 

During the hydration steps of   calcium-silicates the Ca ions released combine with 

the P ions of the SBF forming calcium-phosphates precipitation on the cement 

surface. The OH- ions released from the CSH phase contribute to the alkalinization 

of the surrounding environment and induce the amorphous Ca-P precipitates to 

mature into a B-type HCA phase (Gandolfi 2010). 

Hydroxyapatite is biocompatible and osteoconductive, so the bioactivity (i.e. apatite 

formation ability) of MTA based cements might give a significant clinical advantage 

over the other commercial cements in rootend or root-perforation reparation.  
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Setting time and expansion in different soaking media of  
experimental accelerated calcium-silicate cements and 
ProRoot MTA  

Maria Giovanna Gandolfi, Bio, DSc, PhD,a,b Francesco Iacono, DDS,a Kelli Agee, BS,c  

Francesco Siboni, BS,a Franklin Tay, BDS, PhD,c David Herbert Pashley, DMD, PhD,c and 
Carlo Prati, MD, DDS, PhD,a Bologna, Italy, and Augusta, GA  
UNIVERSITY OF BOLOGNA AND MEDICAL COLLEGE OF GEORGIA  

 

Objectives.  The setting time and the expansion in deionized water, phosphate-buffered saline (PBS), 20% fetal bovine  
serum (FBS)/80% PBS or hexadecane oil of experimental accelerated calcium-silicate cements and ProRoot MTA were  
evaluated.  
Study design.  Different compounds such as sodium fluoride, strontium chloride, hydroxyapatite, and tricalcium  
phosphate were separately added to a basic experimental calcium-silicate cement to test their effect on setting and  
expansion.  

The initial and final setting times were determined using appropriate Gilmore needles. A linear variable  
differential transformer (LVDT) device was used to test the restricted hygroscopic linear expansion over 180 minutes of 
cements immersed in different solutions. Results were statistically compared using a 2-way ANOVA test (cement type 
versus solution type).  
Results.  All experimental cements showed initial setting times between 28 and 45 minutes and final setting times 
between 52 and 80 minutes. MTA showed a final setting time of 170 minutes. Final setting time of all experimental 
cements was faster than MTA.  

All cements showed slight (0.04%-0.77%) expansion in water, PBS, or FBS/PBS. Only fluoride-containing  
cement showed a significant expansion in water (6.68%) and in PBS (6.72%). The PBS/FBS contamination significantly 
reduced the expansion of fluoride-containing cement (2.98%) and MTA (0.07%). In contrast, cements showed a slight 
shrinkage when immersed in hexadecane, especially fluoride-containing cement.  
Conclusions.  The study demonstrated that: (1) the setting time of calcium-silicate cements may be effectively reduced;  
(2) the expansion is a water dependent mechanism owing to water uptake, because no expansion occurred in cements  
immersed in oil; (3) a correlation between setting time and expansion in water and PBS exists; (4) fluorine-containing  
cement showed a significant expansion in water and in PBS; (5) the immersion in FBS/PBS strongly reduced the  
expansion of MTA and fluoride-doped cement suggesting that fluid contamination (ie, blood) during surgical  
procedures may greatly affect the expansion of some calcium-silicate cements. (Oral Surg Oral Med Oral Pathol Oral  
Radiol Endod 2009;108:e39-e45) 
 

 

Calcium-silicate cements (like ProRoot MTA [mineral  
trioxide aggregate] and other Portland-based cements)  
are mainly composed of hydrophilic particles of dical- 
cium silicate and tricalcium silicate. They are hydraulic  
cements able to set in presence of blood or other fluids.  
They have been proposed in dentistry as root-end and  
root perforation repair materials and later as pulp-cap- 
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ping agents and root canal sealers.1,2  However, these  
materials present some disadvantages, such as pro- 
longed setting time and poor handling when used as  
root-end fillings.3 A root-end filling material should set  
as soon as it is placed in contact with oral hard tissues  
to allow dimensional stability of the restoration and to  
confer adequate strength to avoid displacement during  
restorative procedures. Recent studies attempted to im- 
prove the physical and chemical properties of calcium- 
silicate cements in regard to their relatively slow setting  
time.4-14 To reduce setting time and extend their clin- 
ical use, new calcium-silicate materials may be de- 
signed by adding different compounds. Experimental  
cements demonstrated adequate in vitro marginal adap- 
tation and sealing ability8,15,16 and good biocompatibil- 
ity9,10 and bioactivity by formation of an apatite coating  
layer when immersed in phosphate-containing solu- 
tions.17 

e39  
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Table I.  Composition of experimental cements 
Designations Composition  

WPC (control)  White Portland cement (thermally and 
mechanically treated), calcium sulphate, 
calcium chloride 

TC1 WPC and montmorillonite 1 wt% 
TC2 WPC and montmorillonite 2 wt% 
TC5 WPC and montmorillonite 5 wt% 
TC-TCP WPC, montmorillonite 1 wt% and tricalcium 

phosphate 5 wt% 
TC-HA WPC, montmorillonite1 wt%, and hydroxyapatite 

5 wt% 
TC-Sr WPC, montmorillonite 1 wt% and strontium 

chloride 5 wt% 
TC-CaP WPC, montmorillonite 1 wt%, calcium hydrogen 

phosphate 4 wt% and calcium carbonate 2 wt% 
TC-F WPC, montmorillonite 1 wt% and sodium fluoride 

1 wt% 

 

 

 

ProRoot MTA is often placed in moist environments  
where it can take up more water than might be ideal.  
The presence of different moisture during surgical ap- 
plication (such as blood, plasma, and other fluids) can  
modify the physical properties of these materials.3,18 

The purpose of this study was to investigate the 
setting times and the linear expansion between the 
initial and final setting times of experimental acceler- 
ated calcium-silicate cements and ProRoot MTA after 
immersion in various soaking solutions such as phos- 
phate-buffered saline (PBS), fetal bovine serum (FBS), 
hexadecane oil, and deionized water. 
 
MATERIALS AND METHODS 

A white Portland cement (CEM I Aalborg, Aalborg,  
Denmark) was used as base material for the experimen- 
tal calcium-silicate cements because it contains the  
same  active  components  of  white  ProRoot  MTA  
(Dentsply, Tulsa, OK) that was used as control. The  
compositions of the experimental cements are shown in  
Table I. 
 
Setting time 

The setting time of calcium-silicate cements and  
MTA was determined using Gilmore needles (ASTM  
International, West Conshohocken, PA) in accordance  
with ASTM standard C266-0719  with the following  
exceptions. Ten grams of cement were mixed instead of  
650 g (because of the high cost of materials). The  
experimental  cements  and  MTA  were  mixed  with  
deionized water (powder:liquid ratio of 3:1) on a glass  
slab with a stainless steel spatula. The mixtures were  
placed into a mold measuring 14 mm in diameter and 
2.5 mm in thickness instead of the 13-mm thickness  
required by the ASTM standard. Room temperature, 

December 2009 
 

dry powders, mixing glass, and mixing water were  
maintained at 23  3°C. The mold was completely  
filled and the excess material was removed to obtain a  
flat surface. The samples were then stored in the gas  
phase of a sealed chamber containing a saturated solu- 
tion of magnesium nitrate hexahydrate to hold the rel- 
ative humidity (RH) at 50% as required by ASTM  
standard19 and maintained at 37°C. The temperature of  
37°C was used instead of 23°C19 because the cements  
inserted in root canals are set at physiological temper- 
ature. The use of an electronic hygrometer (Hanna  
Instruments, Model HI9065/C, Woonsocket, RI) con- 
firmed that the gas phase above this solution had a 
relative humidity of 50% 1%. 

The initial setting time represents the time required 
by the test cement to set and rigidify enough to support 
the lighter Gilmore needle; the final setting time is the 
time necessary for the test specimen to bear the heavier 
Gilmore needle without appreciable indentation. 

The initial setting time was measured using a Gil- 
more needle weighing 113.4 g with a tip diameter of 
2.12 mm. After the initial setting time was measured,  
the specimens were tested every 10 minutes with a  
Gilmore needle weighing 453.6 g with a tip diameter of 
1.06 mm. As the final setting time approached, speci- 
mens were tested every minute to determine the exact  
final setting time. The test was repeated 3 times for  
each material and the means were statistically com- 
pared using a 1-way analysis of variance (ANOVA) test  
seeking significant differences. When significant differ- 
ences were found, they were identified and compared  
using Tukey multiple comparison tests at  0.05. 

 

Expansion 
A linear variable differential transformer (LVDT)  

device was used to test the expansion of each material  
during 180 minutes. Before starting the expansion mea- 
surements the samples were stored (immediately after  
mixing) for 30 minutes at 37°C and 50% RH, to avoid  
the deterioration of cement surface by the LVDT probe. 

Aluminium stock was milled to create cylindrical  
wells measuring 11 mm in diameter and 5 mm in depth  
(volume of 475 mm3). The mold was only open at the  
top to constrain the material displacement in the verti- 
cal direction in a manner similar to its use in reverse  
root-end fillings. The materials were mixed and placed  
into the mold as described previously. Samples were  
stored for 30 minutes in an incubator at 37°C and 50%  
RH to set the cements. 

A thin coating of a viscous cyanoacrylate was placed  
on the bottom side of the aluminium wells to fix it  
beneath the contact probe (Fig. 1) of an LVDT device  
(Model TMS-2, Perkin Elmer, Boston, MA). A weight  
pan on top of the LVDT was loaded with 0.01 N of  
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Table II.  Initial and final setting times of cements 
Cement Initial setting time Final setting time 

WPC 31 2a,d 55 3h 

TC1 36 1b,c 70 1i,k 

TC2 31 2a,d 52 1h 

TC5 33 3a,b 64 1j,k 

TC-TCP 39 1c,f 71 2i 

TC-HA 30 1a,e 66 2k 

TC-Sr 28 1d,e 65 2k 

TC-CaP 39 2c,f 80 3l 

TC-F 45 1g 77 3l 

MTA 41 1f 170 2m 

Initial and final setting times of cements stored at 37°C and 50% 
relative humidity. 

 
 
 
 
 

Fig. 1. Schematic figure of LVDT used to test the linear  
constrained expansion of cements immersed in different so- 
lutions. 
 
 
 

force. This was necessary to balance the buoyancy of a  
hydraulic damper system to keep the probe in contact  
with  the  cement  during  dimensional  changes.  The  
LVDT has a sensitivity of  0.5 m over a range of  
4 mm. 

The expansion of the cements was evaluated 6 times 
in 4 different solutions: (A) deionized water, (B) PBS 
(Mediatech Inc, Herndon, VA), (C) 20% FBS (Medi- 
atech Inc) mixed with 80% PBS, and (D) hexadecane 
oil (Fisher Chemicals, Fair Lawn, NJ). 

The samples were removed from the incubator and 
then covered by these solutions approximately 1 minute 
after the probe contacted the surface of the cement. The 
materials remained covered by 1 of the 4 test solutions 
until the experiment was finished. A computer logged 
the probe position every 3 seconds for 180 minutes and 
the expansion of the samples was monitored as a func- 
tion of time. The results were statistically compared by 
using a 2-way ANOVA test (type of cement as one 
factor versus type of solution). 

RESULTS  
Setting time 

The initial and the final setting times of the cements  
are shown in Table II. The final setting times of all  
calcium-silicate cements were faster than MTA. All the  
materials tested demonstrated initial setting times be- 
tween 28 and 45 minutes. TC-Sr had the shortest initial  
setting time (28  1 minute). Cement containing hy- 
droxyapatite (TC-HA) showed an initial setting time of 
30 1 minute, similar to TC2 (31 2 minutes) and 

Different superscript letters indicate significant differences  (P  
.005). N  3. 
MTA, mineral trioxide aggregate; other acronyms per Table I. 

 

 

 

WPC (31 2 minutes). Longer initial setting times 
were obtained with TC-TCP (39 1 minute), TC-CaP 
(39 2 minutes), and MTA (41 1 minute), whereas 
TC-F was 45 1 minute. The final setting times of  
all the experimental materials were between 52 and 
80 minutes, whereas MTA required 170 2 minutes 
(P .05). 

 

Expansion 
Pilot experiments using LVDT on the materials be- 

ginning 10 minutes after initial mixing revealed that the  
surface texture of the cements deteriorated within 30 to 
60 minutes when any of aqueous solution was placed  
on the cements. For this reason, a humid environment  
(50% RH) was used to set the cements (for 30 minutes  
at 37°C) before sample immersion. None of the exper- 
imental cements or MTA showed any shrinkage in  
aqueous  solutions.  All  materials  exhibited  variable  
amounts of linear expansion in water, varying from 
0.06% 0.00% for TC5 to 6.68 0.83 for TC-F  
cements (Table III). When the cements were covered  
with 20% FBS/80% PBS, TC-TCP and TC-CaP ex- 
panded significantly more than in PBS, whereas TC-F  
and MTA were more dimensionally stable (Table III).  
When initial setting times were plotted against cement 
expansion in water or PBS (water P .005, PBS P  
.05) significant correlations were found (water R2 

0.67, PBS R2 0.46) (Fig. 2). 
 

DISCUSSION 
The study investigated the linear expansion between  

the initial and the final setting times of MTA and  
experimental cements in different soaking solutions.  
MTA and the experimental cements contain the same  
active hydrophilic compounds, mainly dicalcium sili- 
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Table III.  Expansion (positive values) and shrinkage (negative values) of cements 
Cement Water PBS 80% PBS/20% FBS Hexadecane 

WPC 0.10 0.03a 0.22 0.08b 0.12 0.04a 0.06 0.02c 

TC1 0.23 0.00a 0.22 0.09a 0.25 0.06a 0.07 0.02b 

TC2 0.07 0.04a 0.14 0.05a 0.15 0.05a 0.12 0.01b 

TC5 0.06 0.00a,b 0.14 0.07a 0.13 0.04a 0.04 0.01b 

TC-TCP 0.27 0.10a 0.04 0.01b 0.29 0.03a 0.22 0.03c 

TC-HA 0.24 0.09a 0.28 0.12a 0.33 0.05a 0.10 0.01b 

TC-Sr 0.17 0.03a 0.08 0.01b 0.16 0.03a 0.11 0.02c 

TC-CaP 0.31 0.10a 0.50 0.16a 0.83 0.22b 0.14 0.03c 

TC-F 6.68 0.83a 6.72 0.88a 2.98 0.13b 0.48 0.06c 

MTA 0.77 0.27a,b 1.04 0.25b 0.07 0.05a,b 0.15 0.03a 

Expansion (positive values) and shrinkage (negative values) during 150 minutes of cements immersed in water, PBS, FBS/PBS and hexadecane.  
Values are % linear expansion. Groups identified by different superscript lowercase letters in horizontal rows are significantly different at P  
.05. N 10. 
PBS, phosphate-buffered saline; FBS, fetal bovine serum; MTA, mineral trioxide aggregate; other acronyms per Table I.  

 

 

Under the conditions of this study (50% RH and  
37°C), the experimental cements showed an initial set- 
ting time of 28 to 45 minutes, whereas MTA showed an  
initial setting time of 41 1 minute, which was faster 
than TC-F (45 1 minute). MTA was used as a 
comparison material to establish the consistency of  
our results with previous investigations. The results  
of this study are in agreement with the prolonged  
final setting time of MTA previously reported.4,20-23  

Ber et al.4 showed a final setting time of 202 minutes,  
which was greater than the time reported by Tor- 
abinejad et al.1 (175 minutes), but they used a Vicat  
needle. Islam et al.21 using a Gilmore needle, found  
a setting time of 140 minutes and 175 minutes for 

Fig. 2. Initial setting times plotted against cement expansion  
in water or PBS. Significant correlations were found. In water  
P  .005 and R2  0.67; in PBS P  .05 and R2  0.46. 
 
 
 

cate and tricalcium silicate, that allow the materials to 
set in presence of water or other fluids. 

To investigate the setting time, all specimens were 
stored in a chamber at 37°C with 50% RH, to avoid 
both water uptake and dehydration of the samples, as 
required by the ASTM specifications.19 

The setting time of specimens stored at 37°C and  
25% RH was previously assessed in the pilot study. In  
these conditions, the setting time occurred too rapidly  
because of water loss from the specimens. The com- 
parison of the results obtained from the 2 different  
humidity conditions (ie, 25% versus 50%) revealed the  
direct proportionality between RH and setting time.  
That is, at 25% RH, the time the cements needed to  
reach the initial and final setting time was exactly  
half of the time required to reach the setting time at  
50% RH. 

white MTA and grey MTA, respectively. The results  
of the present study indicated a final setting time of  
MTA of 170  2 minutes. The use of different  
needles with differing weights (300 g Vicat versus  
453.6 g Gilmore needle), humidity conditions, and  
temperatures may be responsible for the differences  
in setting times.24 

The  experimental  material  exhibited  final  setting 
times between 52 and 80 minutes, which were all faster 
setting than MTA. The inclusion of CaCl2 in the com- 
position of all experimental cements reduced the setting 
time, according to earlier studies.4,11,25 

The montmorillonite seemed to delay the final setting  
time in TC1. According to previous studies on glass- 
ionomer and calcium-phosphate cements26,27 and in  
cements used as building materials,28 montmorillonite  
was added to improve the dimensional stability of ce- 
ments. Montmorillonite is a phyllosilicate mineral (de- 
rived from deposits of weathered volcanic ash) charac- 
terized  by  high  and  irreversible  swelling  capacity  
owing to water adsorption.29,30 The effect of montmo- 
rillonite on initial and final setting times and expansion  
was negligible.  
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Other chemical compounds have been proposed by 
earlier investigations to modify the setting time and the 
expansion and to improve the biological properties of 
different cements.17,31-38 

The  experimental  materials  containing  strontium  
chloride (TC-Sr) and apatite (TC-HA) had shorter set- 
ting times, whereas the cements containing tricalcium  
phosphate (TC-TCP) and calcium hydrogen phosphate  
(TC-CaP) had slightly longer initial setting times, al- 
though much lower than MTA. Interestingly, the inclu- 
sion of NaF substantially increased the initial setting  
time of cement. 

The hygroscopic linear expansion of cement samples  
was investigated after 30 minutes of setting before  
immersion in the different solutions (deionized water,  
PBS, 80% PBS-20% FBS, and hexadecane oil). Our  
clinical experience suggested that 30 minutes is the  
time required for MTA preparation, its insertion in a  
suitable consistency, and periapical surgical flaps re- 
placement. Storm et al.39 measured the linear con- 
strained expansion by LVDT and reported a slight  
linear expansion of 0.47% for gray MTA (GMTA), 
0.04% for white MTA (WMTA), and 0.24% for port- 
land cement when the specimen were submerged in  
water immediately after mixing. The linear expansion  
values of our experimental cements are within the same  
order of magnitude of those obtained by Storm et al.39  

except for TC-F that showed a 6.7% linear expansion in  
water. This expansion may explain the optimal sealing  
ability demonstrated by this cement in a microleakage  
study.16  Water-soluble F increased the water-penetra- 
bility of cement paste. Fluorine may cause the hardened  
cement paste by promoting the formation of a porous  
structure with increased total pore volume and volume  
of large capillary pores. A likely explanation for the  
retardation of setting by F may be (1) fluorine that  
dissolves from NaF during hydration, precipitates as  
fine crystals of CaF2; (2) the formation of water-insol- 
uble protective film of CaF2 on the surface of cement  
minerals suppressing the water penetration inside min- 
erals and their dissolution/hydration and of movement  
of ions; (3) the formation of calcium-silica-fluorine  
complexes (containing SiF6  groups) by reacting sili- 
cate ions with F dissolved from NaF additive. 

Water was used as a control because calcium-silicate  
Portland cements set by reacting with water. During  
hydration and setting, these cements can react with  
phosphate ions present in solutions to form hydroxyap- 
atite crystals on their surface, as recently proposed by  
different studies.40-44  We expected this may occur on  
the cement immersed in PBS. Most biological fluids  
such as blood and plasma contain a complex mixture of  
proteins that can adsorb to cement surfaces. FBS was  
used because of its similar biochemical composition to 
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human serum to simulate a more in vivo-like condi- 
tion.45 We mixed 20% FBS with 80% PBS to simulate  
body fluids. Others previously used pure bovine serum  
albumin.45 

Expansion of calcium-silicate Portland cements is  
thought to be because of water and fluid sorption or  
other hydrolytic events. This can not occur in oil (wa- 
ter-free soaking solution). We used hexadecane as an  
example of a very pure oil to act as a negative control. 

The immersion in FBS/PBS significantly reduced the 
expansion of TC-F, WPC, and MTA compared with the 
immersion in PBS. It is likely that the serum proteins 
adsorbed to the cements and reduced the dimensions of 
their surface porosities.46 

The  significant  positive  correlation  between  con- 
strained linear expansion in water and initial setting  
time was observed in samples stored in water and in  
PBS. The longer it takes a cement to rigidify sufficient  
to support the lighter Gilmore needle, the more expan- 
sion occurs. A delayed water uptake may be responsi- 
ble for longer setting time and higher expansion. After  
the initial setting time, it is unlikely that more dimen- 
sional change can occur by water uptake because the  
increasing stiffness of the cement opposes further di- 
mensional changes. 

The water-free hexadecane oil was used to determine  
if the expansion of these cements was a result of water.  
The slight expansion showed by the cements in the  
presence of water and the slight shrinkage detected in  
presence of hexadecane indicates the expansion was a  
result of the consequence of water uptake suggesting a  
water-dependent mechanism. The slight shrinkage of  
the cements immersed in hexadecane was probably  
because of dehydration of the cement surface by oil. 

 

CONCLUSIONS 
All the experimental accelerated calcium-silicate ce- 

ments showed setting time values suitable for root-end 
filling  surgical  procedures (30-40 minutes)  and  for 
other clinical applications where short setting time is 
required, such as in root perforations. 

A correlation between setting time and expansion 
was demonstrated in water and PBS. 

The expansion is a water-dependent mechanism at- 
tributable to water uptake, because no expansion oc- 
curred in cements immersed in oil. 

The expansion may occur inside the surgical sites in  
presence of physiological fluids and may play a positive  
role in improving the sealing ability, an essential prop- 
erty for the endodontic filling materials. Only fluoride- 
containing cement showed a significant expansion. 

The  inclusion  of  additional  chemical  compounds  
produced small changes in setting time and expansion,  



 16 

OOOOE 
e44 GandolÞ et al. 
 

so they may be added in the composition to improve the 
biological properties of the cements. 
 

The authors express their gratitude to Fabiola D’Amato 
and Michelle Barnes for providing secretarial support. 
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Push-out strength of modified Portland cements and resins  

FRANCESCO IACONO , DDS, MS,  MARIA  GIOVANNA GANDOLFI , MBIOL, DSC, MBIO, PHD,  BRADFORD HUFFMAN , BS, J 

EREMY SWORD , BS,  KELLI AGEE , BS,  FRANCESCO SIBONI , DDS,   FRANKLIN TAY , BDSC (HONS), PHD,  
CARLO PRATI , MD, DDS, PHD  &   DAVID  PASHLEY , DMD, PHD  

ABSTRACT : Purpose:  Modified calcium-silicate cements derived from white Portland cement (PC) were formulated to test  
their push-out strength from radicular dentin after immersion for 1 month. Methods:  Slabs obtained from 42 single-rooted  
extracted teeth were prepared with 0.6 mm diameter holes, then enlarged with rotary instruments. After immersion in  
EDTA and NaOCl, the holes were filled with modified PCs or ProRoot MTA, Vitrebond and Clearfil SE. Different  
concentrations of phyllosilicate (montmorillonite-MMT) were added to experimental cements. ProRoot MTA was also  
included as reference material. Vitrebond and Clearfil SE were included as controls. Each group was tested after 1 month  
of immersion in water or PBS. A thin-slice push-out test on a universal testing machine served to test the push-out strength  
of materials. Results were statistically analyzed using the least squares means (LSM) method. Results:  The modified PCs  
had push-out strengths of 3-9.5 MPa after 1 month of immersion in water, while ProRoot MTA had 4.8 MPa. The push-out  
strength of PC fell after incubation in PBS for 1 month, while the push-out strength of ProRoot MTA increased. There  
were no significant changes in Clearfil SE Bond or Vitrebond after water or PBS storage. (Am J Dent 2010;23:43-46).  

CLINICAL SIGNIFICANCE  : Incorporation of phyllosilicate in the experimental Portland cements did not improve the pushout 
strength compared to the commercially available ProRoot MTA. PBS immersion decreased the push-out strength of 
modified Portland cements while ProRoot MTA exhibited higher push-out strength after immersion in PBS.  

: Dr. Francesco Iacono, Department of Oral Sciences, Alma Mater Studiorum, University of Bologna, Via San Vitale  
59, 40125 Bologna, Italy. E- : francesco.iacono@hotmail.it 

Introduction PCs. A dentin adhesive and a resin-modified glass-ionomer 
cement were used as control materials. All the materials were 

Modified Portland cements (PCs) like mineral trioxide  
aggregate (MTA) have multiple uses in dentistry.1-4 These  
materials contain tricalcium and dicalcium silicate, and con- 
sist of a powder of fine hydrophilic particles that sets in water.  
Several studies are available on the chemical and physical  
properties of these materials.5-7 Many authors agree that a  
significant feature of these materials is their ability to create  
an adequate seal.8-10 Evidence of the interaction of Portland  
cements with phosphate buffered saline (PBS) resulting in the  
formation of hydroxyapatite (HA) crystals11,12 indicates that  
these cements can create HA in physiological tissue fluids.13 

Although PC-based cements fulfill most of the requirements  
for an endodontic filling material, their working properties are  
less than ideal. When these cements are mixed with water, the  
resulting cement pastes are difficult to handle and the setting  
times are long. Calcium chloride has often been incorporated in  
PC-based cements as an accelerator to shorten the setting time  
with a minimal impact on their physical properties or lea- 
kage.14-16 Calcium chloride and phyllosilicatea (montmorillo- 
nite)-containing materials based on Portland cement were re- 
cently developed for endodontics to improve handling and  
physical characteristics and extend the clinical applications.  
The new materials showed improved in vitro properties such as  
marginal adaptation and sealing ability9,17 and biocompatibil- 
ity.18,19 These studies used phyllosilicate clay as a plasticizing  
agent to improve the handling characteristics and dimension  
stability of the PC-based cements. 

The ability of endodontic materials to resist deformation 
of established seals via micromechanical retention or friction 
is essential to the survival of the material-dentin interface 
during intraoral tooth flexure.20 

This study assessed the push-out strength of modified 

evaluated after 1 month of incubation in water or PBS. The 
null hypothesis was that the push-out strength does not differ 
in the modified PCs and ProRoot MTA. 

Materials and Methods 

Sample preparation - Forty-two single-rooted teeth extracted  
for orthodontic/periodontal reasons were collected under a  
protocol reviewed and approved by the Human Assurance  
Committee of the Medical College of Georgia. For each tooth,  
a 0.90 ± 0.10 mm thick longitudinal slab was prepared by  
making buccolingual cuts perpendicular to the longitudinal  
axis of the tooth using a slow-speed diamond sawb under  
water-cooling. A 0.6 mm drill bit was used to prepare pilot  
holes in the radicular dentin. Each pilot hole was carefully  
drilled so that it was equidistant from the cementum and the  
canal wall. Six pilot holes were prepared for each tooth. Each  
hole was then enlarged using a size 40, 25 mm long 0.04 taper  
Profile nickel titanium rotary instrument.c A miniature drill  
press was configured so that the Profile files penetrated to the  
D16 diameter of the rotary instrument along the surface of the  
tooth slab. This permitted preparation of 252 truncated holes  
that simulated standardized circular defects. The tooth slabs  
were  immersed  in 17%  EDTA  and  ultrasonicated  for 5  
minutes to remove the smear layer created during the hole- 
shaping procedures. The slabs were then immersed in 6.15%  
sodium  hypochlorite (NaOCl)  and  ultrasonicated  for 5  
minutes to dissolve organic debris. 

The 42 root slabs containing 252 holes were divided into  
seven groups, each containing 36 holes: Group I was filled  
with white PC (CEM Id) mixed with anhydrous calcium  
sulphate and calcium chloride (PC1); Groups II, III and IV  
(PC2, PC3, PC4, Table 1)  were filled with the  same modified  
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Table 1. Composition of tested materials..  
____________________________________________________________________________________________________  

Code Composition 
____________________________________________________________________________________________________ 

PC1 White Portland cement (thermally and mechanically treated), 
calcium sulphate, calcium chloride 

PC2 Same as PC1 but with addition of 1% phyllosilicate 
PC3 Same as PC1 but with addition of 2% phyllosilicate 
PC4 Same as PC1 but with addition of 5% phyllosilicate 
ProRoot Same as PC1 but with addition of bismuth oxide for radiopacity 

MTA     sterilization and sieving to narrow particle size.  
Vitrebond   Polyacrylic acid with pendent vinyl goups and diphenyliodonium  
 chloride to make it light curable, plaus acid-susceptable glass  
 fillers.  
Clearfil SE  Primer:  hydroxyethyl methacrylate (HEMA), water, ethanol, 10- 
 methacryloyloxydecamethylene phosphotic acid (MDP);  

Adhesive: HEMA, MDP, dimethacrylates.  
____________________________________________________________________________________________________  

 

Portland  cement  but  mixed  with  1,  2  and  5  wt%  of  
phyllosilicate.a The experimental modified PCs are patented  
formulations (University Patent EP 07425074.7 and USA  
US60/900.467; extension PCT/EP2008/051583) designed and  
prepared at the Centre of Biomineralogy, Crystallography and  
Biomaterials.e Group V holes were filled with ProRoot MTA,c  

Group VI holes were filled with Vitrebondf and Group VII 
holes were  filled  with  Clearfil  SE  Bond.g  The  PCs and  
ProRoot MTA were mixed with a powder/liquid ratio of 3/1.  
Vitrebond and Clearfil SE Bond were used according to the  
manufacturer’s  recommendations,  and  cured  with  a  LED  
light-curing unit (Elipar FreeLight 2f) with an output intensity  
of 600 mW/cm2. All cavities from one tooth slab were filled  
with one type of cement or adhesive. Each tooth slab was  
placed over a Mylar strip,h which in turn was placed over a  
microscope glass slide. The cement material was forced into the  
cavities with a small spatula so that each hole was filled to  
excess with the material. The surface of the tooth slab was then  
covered  with  another  Mylar  strip  and  a  glass  slide.  The  
assembly was secured with binder clips so that excess material  
was expressed laterally from the surface and bottom Mylar  
strips. The assemblies were transferred to a humidity chamber  
to be stored under 100% relative humidity for 48 hours. The  
surfaces of each tooth slab were polished with 800-grit silicon  
paper under water to remove excess material. 

Push-out strength - The push-out strength of the material was  
investigated  after 1  month  of  incubation  in  water  or  in  
phosphate buffered saline (PBS). To prevent microbial growth, 
0.02% sodium azide was included in the solutions. 

The push-out strength of the set root canal sealers was  
evaluated using a thin-slice push-out test design according to  
the method of Chandra & Ghonem.21 Prior to testing, the  
thickness of each tooth slab was measured using a pair of  
calipers. A 0.7 mm diameter carbon steel cylindrical plunger  
was used for the push-out test. The plunger was attached to a  
100 N load cell connected to a universal testing machine  
(Vitrodyne, Model V1000 Universal Testeri). All specimens  
were loaded at a cross-head speed of 0.6 mm/minute. 

The push-out device consisted of a clear Plexiglas platform  
with a vertical cylindrical channel, which served as the support  
for the tooth slab and provided space for the vertical movement  
of the plunger through the truncated hole (Fig. 1). To ensure  
optimal alignment of the plunger with the sealer-filled hole, a  
horizontal channel was drilled through the Plexiglas platform  
into the vertical channel  (Fig. 1). A  fiber  optic  light guide was 

Fig. 1. Diagram of the clear plastic push-out platform mounted below the 0.7 
mm diameter steel plunger that in turn was mounted on a 100 N load cell. Note 
the hole in the platform is directly beneath the plunger. A fiber-optic light guide 
inserted into a horizontal channel in the plastic plate provides high intensity 
illumination of the restored truncated hole during alignment procedures. 

inserted into the horizontal channel to provide high intensity 
illumination of the restored truncated hole during the alignment 
procedure. 

Statistical analysis of strength tests - Push-out strength of the  
materials was computed by dividing the maximum load (N)  
derived from the load displacement curve by the material- 
dentin interfacial area (mm2) and expressed in megaPascals  
(MPa). Initial attempts to analyze the data with a two-way  
ANOVA (material vs. storage media) revealed that the data  
were not distributed normally, had unequal variances and had  
significant interactions. Therefore, the data were analyzed using  
the least square means (LSM) method. Least square means are  
the expected value of group means that one expects for a  
balanced  design  involving  the  group  variable,  with  all  
covariates held at their mean value. The variance in the LSM  
value are given in standard error of the mean (SEM) instead of  
standard deviation (SD). Multiple comparisons of the LSM  
were   performed   by   the   Holm-Sidak   method.   Statistical  
significance was set in advance at = 0.05. The power of the  
LSM test was 1.0 for material, 0.9 for storage media and 0.85  
for material vs. storage media. 

Results 

The push-out strength results are shown in Fig. 2. The  
mean 1-month  push-out  strength  of  PC1  was 10  MPa  
regardless of the storage solution (water or PBS). By contrast,  
PC2 had a very low push-out strength after 1 month of  
storage. When PC3 specimens were tested, although their  
mean values  were lower than those of PC1 due to their  
relatively high variance, they were not significantly different  
from PC1, and they did not change in water or PBS. Portland  
cement 4 (PC4) 1-month push-out strengths in water or PBS  
did not significantly differ from those of PC1-2.  ProRoot MTA  
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Table 2. Push-out strength of test materials in PBS or water. 
____________________________________________________________________________________________________ 

Material Time Storage Push-out strength (MPa)* 
____________________________________________________________________________________________________ 

PC1 + 0% ps 1 month PBS 12.3 ± 1.5 c 
PC2 + 1% ps 1 month PBS 1.3 ± 1.2 a 
PC3 + 2% ps 1 month PBS 7.0 ± 1.3 b 
PC4 + 5% ps 1 month PBS 8.4 ± 1.4 b 
Pro Root MTA 1 month PBS 11.6 ± 1.6 c 
Vitrebond 1 month PBS 24.2 ± 1.2 d 
Clearfil SE Bond 1 month PBS 21.2 ± 1.6 d 
PC1 + 0% ps 1 month Water 9.5 ± 1.4 c 
PC2 + 1% ps 1 month Water 3.1 ± 1.5 a 
PC3 + 2% ps 1 month Water 6.5 ± 1.2 b 
PC4 + 5% ps 1 month Water 5.1 ± 1.2 b 
Pro Root MTA 1 month Water 4.8 ± 1.4 b 
Vitrebond 1 month Water 19.7 ± 1.2 d 
Clearfil SE Bond 1 month Water 25.4 ± 1.1 d 
____________________________________________________________________________________________________ 

*Values are least squares ± standard error of the mean. PC = Portland cement, 
ps = phyllosilicate. 
Values identified by different letters are significantly different (P< 0.05). 

push-out strength was twice as high (P< 0.05) in PBS as in 
water (Table 2). 

The two resin-based restoratives, Vitrebond and Clearfil SE 
Bond had significantly (P< 0.05) higher push-out strengths than 
those of the modified PCs, and their bond strengths were 
unaffected by time or storage solution (Fig. 2). 

Discussion 

The present study assessed the 1-month push-out strength of  
phyllosilicate-modified Portland-based cements formulated to  
improve their handling characteristics. Montmorillonite is a  
phyllosilicate mineral (deriving from deposits of weathered  
volcanic ash) formed by stacked silicate sheets (two silica- 
oxygen tetrahedral sheets sandwiching an aluminium or mag- 
nesium octahedral sheet) interposed by water and exchangeable  
interlayer cations (charge-balancing counterions). Montmoril- 
lonite is characterized by high cation exchange ability, swelling  
capacity and strong adsorption. Because of its hydrophilic  
nature the montmorillonite swells with the addition of water  
and may expand considerably due to water penetrating the  
interlayer molecular spaces and concomitant adsorption. Swel- 
ling produces an increase in the 001 interlayer d-spacing.22  

Crystalline swelling of 2:1 layer phyllosilicates is a thermo- 
dynamically irreversible process23,24 and dehydration (removal  
of interlayer water) is an endothermic reaction starting below  
150°C.22  Previous  studies  included  montmorillonite  in  the  
composition of glass-ionomer and bone substitute cements.25,26 

Shrinkage is a detrimental problem affecting many cements  
and is responsible for gap formation and marginal sealing  
reduction. The irreversible swelling of montmorillonite may  
counteract the shrinkage and enhance dimensional stability over  
time. With the exception of PC2 in water and PBS, push-out  
strength did not differ among the modified PCs and ProRoot  
MTA. Thus, the null hypothesis is accepted, except for PC2. 

The use of 1 mm thick root slabs perforated by standardized  
truncated cone holes made all holes for rinsing identical,  
rinsing with EDTA/NaOCl lasted exactly the same time, and  
all specimens were tested with the same-sized plunger. We  
previously found that there were no regional differences in the  
dislocation resistance of modified PCs among the coronal,  
middle and apical thirds of the radicular dentin, so that data  
from all regions, including the  sclerotic dentin along the  apical 
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Fig. 2. Push-out strength (MPa) of modified Portland cements PC1-PC4, 
ProRoot MTA, Vitrebond and Clearfil SE Bond. The height of each bar 
represents the mean value of 10 specimens. Half brackets indicate plus one 
standard   deviation.   Different   lower   case   letters   indicate   significant 
differences (P< 0.05) between groups tested after 1 month of immersion in 
water or phosphate buffered saline (PBS). 

thirds of the root canal, could be pooled.27 

Several studies have used thin slice push-out tests to  
evaluate the dislocation resistance of root filling materials.28-35  

Our study adopted a modified push-out protocol specifically  
designed to examine the retentive potential of pure sealer  
materials in radicular dentin.27 Gancedo-Caravia & Garcia- 
Barbero36 demonstrated that humidity increased the push-out  
strength of ProRoot MTA. Huffman et al27 compared the  
push-out strength of an experimental calcium silicate-based  
root canal sealer, AH Plus Jet and Pulp Canal Sealer. They  
demonstrated  a  higher  push-out  strength  of  the  calcium  
silicate-based  cements,  particularly  after  storage  in  PBS  
wherein  carbonated  apatites  may  be  formed  along  the  
material-radicular dentin interface,37 improving the frictional  
resistance38 of the cement to dislocation. 

Modified PCs resist displacement from dentin due to the  
intrinsic roughness of EDTA/NaOCl treated radicular dentin,  
the intrinsic roughness of the cements, and their intrinsic  
cohesive strength. There is some micromechanical retention  
due to interfacial friction and the cohesive shear strength of  
cement particles extending into microscopic undercuts in the  
dentin. As displacement force is applied to these cements  
vertically, it creates shear stress on the cement particles within  
dentin  undercuts.  When  these  shear  stresses  exceed  the  
cohesive strength of the material, the bulk cement is vertically  
displaced slightly but may stop as another cement particle  
encounters another dentin undercut. 

The effect of immersing calcium-silicate cements in PBS  
on a push-out test was first tested by Huffman et al27 and then  
in the present study. Neither the resin-based material nor  
those  of  the  PC-based  materials  Clearfil  SE  Bond  and  
Vitrebond  push-out  strengths  were  significantly  different  
when stored in water vs. PBS, except for Pro-Root MTA. Pro- 
Root MTA stored in water gave lower push-out strengths (P< 
0.05)  than  those  stored  in  PBS  (Table  2,  Fig.  2).  The  
biocoating of apatite formed on the surface of Pro-Root MTA  
after immersion in PBS12,27 may modify the retention and  
friction of cements on dentin walls. ProRoot MTA showed  
results not statistically different  from  white  Portland  cement  
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the active ingredient in white ProRoot MTA.39 The incorpora- 
tion of phyllosilicate (MMT) in white Portland cements (PCs) 
did not improve the push-out strength of these materials 
compared  to  commercially  available  ProRoot  MTA.  The 
push-out strength of ProRoot MTA was significantly higher 
(P< 0.05) after immersion in phosphate buffered solution, 
suggesting that simulated body fluids play an important role 
in increasing its mechanical properties. Further investigations 
are  necessary  to  evaluate  the  chemical  and  mechanical 
transformation of white MTAs induced by PBS. 
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Abstract 

Camilleri  J, Gandolfi MG, Siboni F, Prati C. Dynamic 

sealing ability of MTA root canal sealer. International Endodon- 

tic Journal, 44, 9-20, 2011. 

Aims To evaluate (i) the sealing ability of two sealers,  
mineral  trioxide  aggregate  sealer (MTAS)  and  Pulp  
Canal Sealer (PCS), used with gutta-percha utilizing the  
fluid filtration method, (ii) leaching and surface char- 
acteristics in Hank’s balanced salt solution (HBSS) over  
a period of time. 
Methodology Surface characteristics in HBSS were  
evaluated under the scanning electron microscope after 
1 and 28 days, and the leaching of both sealers were  
assessed by inductively coupled plasma atomic absorp- 
tion spectrometry (ICP-AAS). In addition, 24 single  
rooted  extracted  teeth  were  root  filled  using  warm  
vertical compaction with either MTAS or PCS used as  
sealers  with  gutta-percha.  Four  teeth  were  used  as  
positive  and  negative  controls.  Sealing  ability  was 
 
 
 
 
 
Introduction 

Mineral trioxide aggregate (MTA) is used primarily to  
seal lateral root perforations (Lee et al. 1993, Pitt Ford  
et al. 1995) and as a root-end filling material (Tora- 
binejad et al. 1995, 1997, Chong et al. 2003, Saunders  
2008). MTA can also be used for a variety of other  
applications (Schwartz  et al.1999,  Torabinejad  &  
Chivian 1999) including pulp capping (Pitt Ford et al.  
1996, Bakland 2000, Aeinehchi et al. 2003, Faraco  
Junior  &  Holland 2004)  and  as  a  dressing  over 
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evaluated after 1 or 28 days using the fluid filtration 
method. 
Results Mineral trioxide aggregate sealer exhibited  
crystalline deposits rich in calcium and phosphorus on  
its  surface  when  in  contact  with  a  physiological  
solution.  These  crystalline  deposits  were  absent  in  
PCS  and  on  MTAS  stored  at  100%  humidity.  The  
sealing ability of MTAS was similar to that of PCS. 
Conclusions The  novel  sealer  based  on  mineral 
trioxide aggregate had comparable sealing ability to a 
proprietary brand sealer cement. In contact  with a 
simulated body fluid, the MTA sealer released calcium 
ions  in  solution  that  encouraged  the  deposition  of 
calcium phosphate crystals. 

Keywords: endodontic sealer, fluid filtration, induc- 
tively  coupled  plasma,  mineral  trioxide  aggregate,  
Portland cement, Pulp Canal Sealer, scanning electron  
microscopy. 

Received 27 March 2010; accepted 13 May 2010 

 

 

 

 

pulpotomies in permanent teeth (Holland et al. 2001)  
and  during  apexification  procedures (Witherspoon  
et al. 2008). It is a bioactive material that produces  
calcium hydroxide (Camilleri 2007, 2008a), which is  
released in solution (Fridland & Rosado 2003, Tano- 
maru-Filho  et al. 2009)  and  induces  formation  of  
hydroxyapatite  structures  in  simulated  body  fluid  
(Sarkar  et al. 2005,  Bozeman  et al. 2006).  Newer  
developments of MTA include its use as a root canal  
sealer. Currently, three MTA sealer formulations are  
available; Endo-CPM-Sealer (EGEO srl, Buenos Aires,  
Argentina),  MTA  Obtura (Angelus,  Soluço˜es  Odon- 
tológicas,  Londrina  PR,  Brazil)  and  ProRoot  Endo  
Sealer (Dentsply  Maillefer,  Ballaigues,  Switzerland).  
The composition of CPM sealer after mixing is reported  
to  be 50%  MTA  (SiO2,  K2O, Al2O3,  SO3,  CaO  and  
Bi2O3), 7% SiO2, 10% CaCO3, 10% Bi2O3, 10% BaSO4, 
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1% propylene glycol alginate, 1% propylene glycol, 1%  
sodium citrate and 10% calcium chloride (Gomes-Filho  
et al. 2009). MTA-Obtura is a mixture of white MTA  
with a proprietary viscous liquid (Monteiro Bramante  
et al. 2008). ProRoot Endo Sealer is calcium silicate- 
based endodontic sealer. The major components of the  
powder of ProRoot Endo Sealer are tricalcium silicate  
and  dicalcium  silicate,  with  inclusion  of  calcium  
sulphate as setting retardant, bismuth oxide as radiop- 
acifier and a small amount of tricalcium aluminate.  
Tricalcium  aluminate  is  necessary  for  the  initial  
hydration reaction of the cement. The liquid compo- 
nent consists of viscous aqueous solution of a water- 
soluble  polymer (Weller  et al. 2008,  Huffman  et al.  
2009). The use of water-soluble polymers mixed with  
materials based on Portland cement added to the water  
to improve the workability has been reported (Camilleri  
et al. 2005a, Camilleri 2008b,c,d,e). The polymer did  
not seem to affect the biocompatibility of the materials  
(Camilleri  et al. 2005a,  Camilleri 2008e),  and  the  
hydration characteristics were similar to those reported  
for MTA (Camilleri 2009). 

Sealers  based  on MTA have  been  reported to  be  
biocompatible, stimulate mineralization (Gomes-Filho  
et al. 2009),  and  encourage  apatite-like  crystalline  
deposits along the apical and middle thirds of canal  
walls (Weller et al. 2008). These materials exhibited  
higher  push-out  strengths  than  Pulp  Canal  Sealer  
(PCS) particularly after storage in simulated body fluid  
(Huffman et al. 2009) and had similar sealing proper- 
ties to epoxy resin-based sealer when evaluated using  
the fluid filtration system (Weller et al. 2008). 

Root  canal  sealers  are  used  in  conjunction  with  
gutta-percha to fill root canals in various methods,  
namely cold lateral condensation, warm vertical com- 
paction or carrier-based techniques. The function of the  
sealer is to obliterate discrepancies such as grooves and  
lateral depressions (Zielinski et al. 2008) that cannot be  
filled  with  gutta-percha,  to  improve  the  marginal  
adaptation  to  the  dentinal  walls (Cobankara  et al.  
2006) and to fill lateral canals (Venturi et al. 2005).  
The final root filling should prevent microleakage and  
bacterial  contamination (Siqueira  &  Rocas 2007).  
Gutta-percha is impermeable; thus, any leakage occurs  
at  the  sealer  to  gutta-percha  and  sealer  to  tooth  
interfaces (Hovland & Dumsha 1985). Microleakage is  
routinely assessed by leakage to tracers, namely dyes  
(Beckham  et al. 1993,  Zaia  et al. 2002),  bacteria  
(Barthel  et al. 1999)  and  endotoxin (Trope  et al.  
1995). Alternatively, the assessment can be performed  
using  a  fluid  filtration  device (Wu  et al. 1998a, 
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Bouillaguet et al.  2008).  The fluid filtration method  
has already been used to evaluate the sealing ability of  
ProRoot MTA used for root-end filling with (Bates et al.  
1996, Tang et al. 2002) and without (Pelliccioni et al.  
2007) the use of water for hydration, furcation repair  
(Weldon et al. 2002, Hardy et al. 2004), and ortho- 
grade plugs (Martin et al. 2007). It has also been used  
for MTA Angelus (De-Deus et al. 2007) and MTA Bio, a  
laboratory-controlled  water-based  cement (De-Deus  
et al. 2007, 2008). The sealing ability of sealers based  
on MTA namely ProRoot Endo Sealer (Weller et al.  
2008), other variants of MTA (Gandolfi et al. 2007)  
have also been evaluated with this method. 

The aim of this study was to evaluate the sealing  
ability of two sealers, MTA sealer and PCS, used with  
gutta-percha utilizing the fluid filtration method as well  
as  leaching  and  surface  characteristics  in  Hank’s  
balanced salt solution (HBSS) over a period of time. 

Methodology 

Materials used in this study included PCS (Kerr-Hawe  
S.A., Bioggio, Switzerland) and mineral trioxide aggre- 
gate sealer (MTAS). The MTAS consisted of a mixture of  
80% white Portland cement (Aalborg white, Aalborg,  
Denmark) and 20% bismuth oxide (Fischer Scientific,  
Leicester,  UK).  The  PCS  was  mixed  according  to  
manufacturer’s  instructions,  whilst  the  MTAS  was  
mixed  in  water  to  powder  ratio  of 0.30 with  an  
addition  of 20 lL g)1 of  cement  of  water  soluble  
polymer (Degussa Construction Chemicals, Manches- 
ter, UK) added to the mixing water (Camilleri 2009).  
The materials were tested after immersion in a simu- 
lated body fluid namely Hank’s Balanced salt solution  
(HBSS H6648; Sigma-Aldrich, Gillingham, UK). The  
composition of the HBSS was (g L)1) 0.4 KCl, 0.06  
KH2PO4  anhydrous,  0.35  NaHCO3,  8.0  NaCl,  0.05  
Na2HPO4 anhydrous and 1.0 d-glucose. 

Scanning electron microscopy of the cements 

Diskettes 10 mm in diameter and 1 mm high of PCS  
and MTAS were prepared. Half the diskettes were cured  
at 100% humidity and the other half were cured in  
HBSS for either 1 or 28 days. Surface morphology was  
evaluated after 1 and 28 days under the environmen- 
tal scanning electron microscope (ESEM Zeiss EVO 50;  
Carl Zeiss, Oberkochen, Germany) and X-ray energy  
dispersive analysis (EDX) at an accelerating voltage of 
20 kV  was  performed  using  a  secondary  electron  
detector (EDAX, Oxford INCA 350 EDS detector). The 
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elemental analysis (weight % and atomic %) of the 
specimens  was  performed  applying  ZAF  correction 
method. The powders of each cement type were also 
analysed by EDX. 
 

Evaluation of leaching 

The chemical analysis of the cement products released  
into simulated body fluid was performed using induc- 
tively-coupled plasma atomic absorption spectroscopy  
(Varian Medical Systems, Palo Alto, CA, USA). The PCS  
and MTAS were mixed in a similar way as the previous  
experiments producing diskettes 10 mm in diameter  
and 1 mm high. Six diskettes for every material tested  
were prepared. The specimens were cured for 24 h at 
37  C  and  100%  humidity  after  which  they  were  
weighed to an accuracy of 0.0001 g and immersed in  
either 3 mL water or HBSS in closed sterile containers  
(Labplex,  Birmingham,  UK).  The  specimens  were  
removed  after  1,  14  and  28 days.  Containers  filled  
with  water  and  HBSS  were  used  as  controls.  The  
leachates  were  analysed  for  aluminium,  bismuth,  
calcium,  silicon,  silver  and  zinc.  The  amount  of  
leachate was calculated in lg g)1 by using the follow- 
ing formula: 

Amount of leachate per weight of  cement =  

 amount of leachate per litre  0:003  1000 
weight of cement pellet 

 

Evaluation of sealing ability 

Sample preparation 
Twenty-four single-rooted teeth extracted for periodon- 
tal reasons were used. The study was performed on two  
experimental groups consisting of 10 teeth in each  
group. Four teeth were used as positive and negative  
controls. The teeth selected had similar dimension of  
root-apex namely a size 30 K-file, a similar diameter  
of root canal, no sclerotic dentine, circular cross-section  
of canal and no elliptic section, absence of caries and  
previous root fillings, absence of lateral canals and root  
curvature. 

Radiographs were taken in the bucco-lingual and  
mesio-distal  directions  to  establish  the  canal  shape  
(circularity  of  cross-section)  and  to  determine  the  
presence of any root curvature and lateral canals. The  
teeth  were  decoronated,  and  the  root  length  was  
standardized  to 12 mm.  The  root  canals  were  
accessed, and canal patency was established using a  
size 15 K-file.  Instrumentation  was  performed  to 
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0.5 mm  short  of  the  radiographic  apex  using  the  
crown-down technique with ProTaper rotary nickel- 
titanium instruments (Dentsply Maillefer). The apical  
preparation was performed to a size 30 master apical  
file. The diameter of root-apex was standardized in all  
samples with a size 30 K-file. The canal was irrigated  
with 10 mL  of 5%  NaOCl (Ogna,  Milano,  Italy)  
between instruments followed by 2 mL EDTA (Glyde  
file prep; Dentsply Maillefer, Montigny de Bretonneux,  
France) to remove the smear layer. The canals were  
dried with paper points and a master Gutta-percha  
cone (Dentsply  Maillefer)  was  fitted  to  length  and  
checked for tug-back. The canals were coated with the  
sealers under study using a size 20 reamer rotated  
anticlockwise. The master cone was coated with sealer  
and placed in the canal to working length. The cone  
was cut to the orifice and compacted with System B  
plugger (Sybron Endo, Orange, CA, USA) leaving a  
space of 2 mm coronally. Each root was radiographed  
to  establish  the  adequacy  of  filling.  An 18-gauge  
needle  inserted  across  a  plexiglass  platform  was  
introduced in the canal orifice and the root samples  
were  attached  to  the  platform  with  cyanoacrylate  
glue. The external root surface was coated with two  
layers of nail varnish (Paris, Bellure, Belgium) to seal  
the surfaces. For the positive control, the root canals  
of two teeth were cleaned and shaped as described  
earlier and filled with a master cone and no sealer.  
The  negative  control  was  prepared  as  described  
earlier, filled with gutta-percha and PCS and the apex  
was  sealed  off  with  bonding  agent (Scotchbond;  
3M ESPE, Milan, Italy) and nail varnish. The plexi- 
glass support and tooth assembly was placed in 10 mL  
of  HBSS  keeping  the  free  end  of  the  needle  
un-immersed to mimic the clinical situation, where  
the coronal end of the tooth is not in contact with  
biological fluids. The samples were stored at 37 C in  
sealed containers. 

 

Leakage evaluation 
The  set-up  was  connected  to  a  fluid  conductive  
system working at a hydraulic pressure of 6.9 kPa to  
measure  fluid  movement (Fig. 1);  the  system  used  
was  as  reported  previously (Gandolfi  et al. 2007,  
Pelliccioni  et al. 2007)  The  fluid  filtration rate  was  
measured  over three  4-min periods at  1-min inter- 
vals  and  the  mean  calculated.  The  results  were  
expressed as lL min)1. The following procedure was  
repeated  after 1 and  28 days  following  root  filling.  
The specimens were kept at 37 C and the HBSS was  
changed weekly. 
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Figure 1 Set-up for determination of sealing ability using a fluid conductive system. 
 

Statistical analysis 

The data was evaluated using spss (Statistical Package 
for the Social Sciences) software (SPSS Inc., Chicago, IL, 
USA). Analysis of Variance (anova) with P = 0.05 was 
used to perform multiple comparison tests. 
 

Results 
 
Scanning electron microscopy of the cements 

The results for the scanning electron microscopy for  
both MTAS and PCS are shown in Fig. 2. The MTAS  
powder  had  a  granular  surface  appearance  with  
elongated bismuth oxide particles interspersed within  
the  structure (Fig. 2A1).  EDX  analysis  showed  the  
material to be composed of calcium, silicon, aluminium  
and bismuth (Fig. 2A2). The PCS had a larger particle  
size distribution (Fig. 2A3) and was composed of zinc  
and silver (Fig. 2A4). Immersion of MTAS in HBSS  
resulted in a crystalline deposition over the cement  
surface after 7-day immersion (Fig. 2B3, B5) and also  
after 28-day  immersion (Fig. 2C3)  in  HBSS.  These  
crystalline deposits were not present in the MTAS cured  
at 100%  humidity (Fig. 2B1,  C1).  The  crystalline  
deposits were mainly composed of calcium and phos- 
phorus (Fig. 2B4,  B6)  initially,  with  sodium  and  
chlorine peaks at later curing times (Fig. 2C4). The  
pulp canal sealer surface demonstrated considerable 
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porosity (Fig. 2B7, B9, C5, C7). The curing method did 
not affect the PCS surface and its chemical composition 
(Fig. 2B8, B10) at an early age. At 28 days, however, a 
chlorine peak was observed in the PCS cured at 100% 
humidity (Fig. 2C8). 

Evaluation of leaching 

The results for leaching of both sealers in water and in  
HBSS are shown in Table 1a,b, respectively. The levels  
of sodium and phosphorus ions in HBSS blank solution  
and the ions detected in both materials are shown in  
Table 2. MTAS leached a high level of calcium ions in  
both  soaking  solutions.  The  calcium  ion  release  
increased  with  time  and  the  levels  were  higher  in  
water than in HBSS. Bismuth was also released in  
solution with more bismuth being released in HBSS  
than in water. PCS leached zinc and silica in solution.  
This leaching was more marked in water. Both sealers  
had high levels of sodium when soaked in HBSS, but  
the levels of phosphorus were high for PCS but much  
lower and reducing to practically below detection limits  
at 28 days for MTAS. 

Evaluation of sealing ability 

The sealing ability of the two sealers evaluated using  
the fluid filtration method is shown in Fig. 3. There was  
no difference between the two sealers both at 7 days 
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Powders  
 

(a1) (a2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a3) (a4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Scanning electron micrographs and X-ray energy dispersive analysis of A: powders (1,2): mineral trioxide aggregate 
sealer (MTAS), (3, 4): pulp canal sealer (PCS); B: materials cured for 7 days, (1-6): MTAS, (7-10): PCS, (1,2,7,8): cured at 100% 
humidity, (3-6,9,10): cured in Hank’s balanced salt solution (HBSS); C: materials cured for 28 days, (1-4): MTAS, (5-8): PCS, 
(1,2,5,6): cured at 100% humidity, (3,4,7,8): cured in HBSS; (·1.5K magnification). 

 

 

(P = 0.301) and at 28 days (P = 0.381). The negative 
control exhibited little or no leakage, whilst the positive 
control  demonstrated  a  high  level  of  leakage  that 
increased over the 28-day period. 
 

Discussion 

In  this  study,  a  new  material  based  on  MTA  was  
investigated.  This  novel  material  was  composed  of  
Portland cement and bismuth oxide, which were mixed  
with water and a water-soluble polymer. PCS was used  
as control. This material was chosen because it had a  
powder and liquid formulation and has been used for a  
long time in clinical dentistry. The PCS powder was  
reported to be composed of 34% ZnO, 25% Ag, 30% 
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resins,  11% thymol iodide and the liquid of Canada  
balsam and eugenol (Kerr data sheet). The peaks for  
zinc and silver were also demonstrated in this study.  
MTA powder is constituted of tricalcium and dicalcium  
silicate,  tricalcium  aluminate  and  bismuth  oxide  
(Camilleri 2007,  2008a).  Elemental  composition  of  
MTAS reported in this study is similar to the elemental  
composition  published  for  ProRoot  MTA (Camilleri  
et al. 2005b, Asgary et al. 2006). Pulp canal sealer  
was characterized by a porous structure as demon- 
strated by the environmental scanning electron micro- 
scope. Contact of PCS with a simulated body fluid had  
no effect on the surface characteristics of this material.  
On the other hand, a crystalline deposit consisting of  
calcium and phosphorus was present on the MTAS 
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7 day curing  
 

(b1) (b2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b3) (b4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b5) (b6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2b(1-6) (Continued).  
 
 

surface when the MTA sealer was in contact with a leaching. These calcium ions bind to the phosphates 
simulated body fluid. MTAS released a high level of that are present within the simulated body fluid. This 
calcium ions in solution as indicated by the results of again was verified from the ICP results, where the 
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(b7) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2b(7-10) (Continued). 

 

 

phosphate ions were depleted over the 28-day period  
for MTAS but higher levels were registered for PCS. The  
deposition of calcium phosphates in the form of apatite  
and carbonated apatite has already been reported for  
MTA (Sarkar et al. 2005, Bozeman et al. 2006, Tay  
et al. 2007, Reyes-Carmona et al. 2009, Taddei et al.  
2009,  Gandolfi  et al. 2010)  and  Portland  cement  
(Coleman et al. 2007) in contact with simulated body  
fluids. 

The  sealing  ability  of  the  two  sealers  used  in  
conjunction with gutta-percha was assessed using fluid  
filtration. This method is an established method used  
for  the  determination  of  permeability  of  dentine  
(Pashley et al. 1983, Tao et al. 1991) and has also  
been adapted to be used for the evaluation of sealing  
ability of dental materials including MTA used as a 
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root-end filling material (Bates et al. 1996, Tang et al.  
2002) and as a root canal sealer cement in conjunction  
with gutta-percha (Weller et al. 2008). It is superior to  
the other methods of evaluation of coronal microleak- 
age; it is nondestructive and allows long-term evalua- 
tion of the filling. The results of sealing ability obtained  
using the fluid penetration method are similar to other  
test methods (Souza et al. 2008) and assessment of root  
fillings  using  bidirectional  radiographs (Wu  et al.  
2009). This method does not employ the use of tracers,  
which may affect the sealers under test (Ahlberg et al.  
1995, Wu et al. 1998b, Camilleri & Pitt Ford 2008).  
Fluid filtration is more reliable than the standard dye  
penetration method of evaluating sealing ability of root  
canal sealers (Camps & Pashley 2003). A pressure of 
1 psi (6.895 kPa) was used in this study instead of the 
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28 day curing  
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Figure 2c(1-6) (Continued). 
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(c7) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2c(7-8) (Continued). 
 

Table 1 Elements leached out in lg g)1 of Pulp Canal Sealer  
(PCS) and mineral trioxide aggregate sealer (MTAS) after 1, 14  
and 28 days in water (a), Hank’s balanced salt solution 
(HBSS) (b) 

PCS MTAS 

(c8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In  this  study,  nickel-titanium  rotary  instruments  
were used to prepare the root canals in conjunction  
with gutta-percha cones that matched the taper of the  
canals. It has been demonstrated that the apical sealing  
ability of matched-taper single-cone root fillings was  

Element 
detected 1 day 14 days 28 days 1 day 14 days 28 days 

(a) 
Ag 0.0 0.0 0.0 0.0 0.0 0.0 
Al 0.0 0.0 0.0 2.1 0.2 0.0 

Bi 0.0 0.0 0.0 3.7 5.6 3.9 
Ca 0.0 0.0 0.0 4904 6867 7050 
Si 102.9 101.0 79.3 0.0 0.0 0.0 
Zn 0.8 68.6 179.4 0.0 0.0 0.0 
 

(b) 
Ag 0.0 0.0 0.0 0.0 0.0 0.0 

Al 0.0 0.0 0.0 0.5 0.0 0.0 
Bi 0.0 0.0 0.0 27.2 7.4 58.9 

Ca 0.0 0.0 0.0 2619 5597 5939 
Si 0.0 2.2 54.1 37.2 0.0 43.4 

Zn 0.0 0.0 0.0 0.0 0.0 0.0 
 

 

physiological  pressure  through  dentine,  which  is 
1.3 kPa (Camps et al. 1997) to enhance apical leakage 
and to obtain detectable leakage values. 

comparable  with  that  of  lateral  condensation  and  
Thermafil techniques (Inan et al. 2009). A number of  
publications have reported the sealing ability of PCS  
using the fluid filtration method (Yared & Bou Dagher  
1996, Dagher et al. 1997, Pommel et al. 2003, Bouil- 
laguet et al. 2008). All the different sealers tested did  
not fully prevent fluid flow (Bouillaguet et al. 2008).  
The sealing ability was reported to reduce with time  
(Bouillaguet et al. 2008) and also to increase with time  
(Dagher et al. 1997). PCS was also reported to have a  
similar or better sealing ability to resin-based sealers  
(Yared & Bou Dagher 1996, Pommel et al. 2003) and  
conversely  in  other  studies  using  the  same  testing  
methodology it performed worse than the resin-based  
sealers (Adanir et al. 2006, Bouillaguet et al. 2008). In  
this study, the novel sealer MTAS has a sealing ability  
similar to PCS and the sealing ability decreased with  
time, whilst that of PCS showed the trend to increase  
with time. Conversely, research conducted on a novel  

 
 
Table 2 Solution concentration of ions in parts per million (ppm) detected in Hank’s balanced salt solution (HBSS) and Pulp canal 
Sealer (PCS) and mineral trioxide aggregate sealer (MTAS) after 1, 14 and 28 days 
 

Element 
detected HBSS 

PCS 

1 day 14 days 28 days 

MTAS 

1 day 14 days 28 days  

Na 3289 3755.6 3725.2 3495.8 3929.3 3477.3 3303.3 
P 25.4 26.1 28.7 17.1 5.1 0.0 0.37 
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Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F (2006) A 
qualitative X-ray analysis of white and grey mineral trioxide 
aggregate using compositional imaging. Journal of Materials 
Science Materials in Medicine 17, 187-91.  
Bakland  LK  (2000)  Management  of  traumatically  injured 
pulps in immature teeth using MTA. Journal of the California 
Dental Association 28, 855-8.  
Barthel CR, Strobach A, Briedigkeit H, Gobel UB, Roulet JF  
(1999)  Leakage  in  roots  coronally  sealed  with  different  
temporary fillings. Journal of Endodontics 25, 731-4.  
 Bates CF, Carnes DL, del Rio CE (1996) Longitudinal sealing  
ability of mineral trioxide aggregate as a root-end filling  
material. Journal of Endodontics 22, 575-8.  

Beckham BM, Anderson RW, Morris CF (1993) An evaluation 
Figure 3 Permeability measurement of teeth obturated with 
gutta-percha and either Pulp Canal Sealer or mineral trioxide 
aggregate sealer immersed in HBSS after 1 and 28 days from 
obturation ±SD. 

 

sealer  based  on  MTA  namely  ProRoot  Endo  Sealer 
demonstrated the superior sealing ability of this mate- 
rial comparable to resin-based sealers and better than 
PCS (Weller et al. 2008). 
 

Conclusions 

The novel sealer based on mineral trioxide aggregate  
had comparable sealing ability to a proprietary brand  
sealer cement. In contact with a simulated body fluid,  
the  MTAS  released  calcium  ions  in  solution  and  
encouraged the deposition of calcium phosphate crys- 
tals. 
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a b s t r a c t 

Aim.  An innovative light-curable calcium-silicate cement containing a HEMA-TEGDMA- 

based resin (lc-MTA) was designed to obtain a bioactive fast setting root-end filling and  

root repair material. 

Methods.  lc-MTA was tested for setting time, solubility, water absorption, calcium release, 

alkalinizing activity (pH of soaking water), bioactivity (apatite-forming ability) and cell  

growth-proliferation. The apatite-forming ability was investigated by micro-Raman, ATR- 

FTIR and ESEM/EDX after immersion at 37◦ C for 1-28 days in DPBS or DMEM + FBS. The 

marginal adaptation of cement in root-end cavities of extracted teeth was assessed by  

ESEM/EDX, and the viability of Saos-2 cell on cements was evaluated. 

Results. lc-MTA demonstrated a rapid setting time (2 min), low solubility, high calcium release 

(150-200 ppm) and alkalinizing power (pH 10-12). lc-MTA proved the formation of bone- 

like apatite spherulites just after 1 day. Apatite precipitates completely filled the interface 

porosities and created a perfect marginal adaptation. lc-MTA allowed Saos-2 cell viability 

and growth and no compromising toxicity was exerted. 

Signi“cance.  HEMA-TEGDMA creates a polymeric network able to stabilize the outer surface  

of  the  cement  and  a  hydrophilic  matrix  permeable  enough  to  allow  water  absorp- 

tion.  SiO− /Si-OH  groups  from  the  mineral  particles  induce  heterogeneous  nucleation  

of apatite by sorption of calcium and phosphate ions. Oxygen-containing groups from  

poly-HEMA-TEGDMA provide additional apatite nucleating sites through the formation of  

calcium chelates. The strong novelty was that the combination of a hydraulic calcium- 

silicate powder and a poly-HEMA-TEGDMA hydrophilic resin creates the conditions (calcium  
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release and functional groups able to chelate Ca ions) for a bioactive fast setting light- 

curable material for clinical applications in dental and maxillofacial surgery. The first and  

unique/exclusive light-curable calcium-silicate MTA cement for endodontics and root-end  

application was created, with a potential strong impact on surgical procedures.  

© 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. 
 

 

 

 

 

1. Introduction 
 
Bacteria penetration into root canal is responsible for pulpitis  

and periapical tissue inflammation which may evolve in api- 

cal granuloma, cystic lesions and large bone defect [1]. These  

lesions require the removal of infected dentin root-apex and  

large portions of periapical bone tissue [2] and the filling of the  

root-apex cavity with a root-end sealing material preferably  

biocompatible, osteoconductive or osteoinductive. The failure  

rate of surgical root-end therapy with conventional materials,  

such as zinc-oxide cements and silver-amalgam, was reported  

approximately as 8-24% [3-6]. The consequences are bone  

resorption and tooth extraction. Millions of persons are sur- 

gically treated for endodontic diseases. The success of the  

endodontic treatment allows to keep the tooth functionality. 

Calcium-silicate hydraulic cements conventionally defined  

MTA (mineral trioxide aggregate) cements have been clinically  

proposed as root-end materials [2,7,8], and prospective studies  

have reported a failure of 9.8-16% at 1 year [3,9] and 8% at 2  

years [4,9]. 

The biological behavior and the apatite-forming ability (i.e. 

bioactivity) of MTA cements have been recently adequately 

documented [10-22]. 

The main clinical limitation of MTA cements is the long set- 

ting time [23-25] and the consequent risk for a fast dissolution  

and removal of the cement and wash-out of the fresh (not- 

set) cement [25] from the surgical site of root-end obturation  

due to the blood and fluid contamination at the apical region  

of root canal. The incorporation of light-curable resins has  

been proposed for many materials, such as the resin-modified  

glass-ionomer cements, to improve mechanical properties  

and reduce setting time. The reduced setting time of MTA  

materials may extend their clinical use and make their appli- 

cation advisable in extremely wet and blood-contaminated  

surgical sites. 

HEMA  (2-hydroxyethyl  methacrylate)  is  a  hydrophilic  

monovinyl monomer (i.e. it contains a single C  C double  

bond, Fig. 1). Its polymer poly-HEMA is a hydrogel widely used  

together with other methacrylic resins in biomedical applica- 

tions. Poly-HEMA can imbibe large amounts of water (from 10  

to 600%) by swelling without dissolving, due to the hydrophilic  

pendant groups of the molecule (Fig. 1); it has been extensively  

tested for bioactivity [26-29] and biocompatibility [30]. 

TEGDMA  (triethyleneglycol  dimethacrylate,  Fig.  1)  is  a 

hydrophobic monomer that contains two C  C double bonds; 

its introduction into the resin formulation allows the forma- 

tion of covalent crosslinks after curing and thus tight networks 

and solid structures [31]. 

Bioactivity of calcium-silicate Portland cements and other  

MTA materials such as ProRoot MTA has been recently demon- 

 

 

 

 

 

strated  [10-16].  An  essential  requirement  for  a  bioactive  

material is the formation of a biologically active bone-like  

apatite layer on its surface in a biological environment [32]. 

The concept of bioactivity is closely correlated with bioint- 

eractivity, i.e. the ability to exchange information within a  

biological system [33]. This means that a bioactive material  

reacts chemically with body fluids in a manner compatible  

with the repair processes of the tissue. 

The examination of apatite formation on a material in a  

simulated body fluid (SBF) is a commonly accepted method to  

predict the in vivo bone bioactivity of a specific material [34]. 

The aim of the study was to characterize an innovative  

light-curable resin-modified calcium-silicate cement (lc-MTA),  

containing  a  HEMA-TEGDMA-based  anphiphilic  resin  as  

organic light-curable matrix and a calcium-silicate powder,  

specifically designed for applications in contact with bone  

and dentin for oral surgery and dentistry. The goal was to  

obtain a material with more adequate characteristics and  

properties for applications in wet apical cavities contami- 

nated by blood during the preparation of a bone window,  

as  it  occurs  during  root-end  surgery  procedures  and  root  

repair procedures. Chemical-physical properties, i.e. setting  

time, solubility, water absorption, calcium release, alkalinizing  

activity  were  evaluated.  The  in  vitro  apatite-forming  abil- 

ity was assessed by ESEM/EDX, micro-Raman and ATR-FTIR  

techniques after soaking in phosphate-containing solutions.  

Osteoblast-like cells (Saos-2) were used to estimate the bio- 

logical compatibility of solid cements and cement extracts. 
 

2. Materials and methods 
 

2.1. Sample preparation 
 

The light-curable resin-modified calcium-silicate cement (lc- 

MTA)  was  prepared  by  mixing  a  calcium-silicate  cement  

powder (wTC-Ba) and an anphiphilic light-curable resin liq- 

uid phase (Gandolfi MG & Prati C, patent of the University of  

Bologna). 

The wTC-Ba powder was constituted by di- and tricalcium- 

silicates,  tricalcium  aluminate,  barium  sulfate,  calcium  

sulfate  and  calcium  chloride;  it  was  prepared  by  a  con- 

ventional melt-quenching technique [35]. The liquid phase  

contained 2-hydroxyethyl methacrylate (HEMA), triethyleneg- 

lycol dimethacrylate (TEGDMA), camphorquinone (CQ) and 

ethyl-4-(dimethylamino)benzoate (EDMAB). 

To obtain the wTC-Ba cement, the wTC-Ba powder was  

mixed  with  Dulbecco’s  phosphate  buffer  solution (DPBS, 

Lonza, Lonza Walkersville Inc., Walkersville, MD, USA, cat. no. 

BE17-512) for 30 s in a powder/liquid ratio of 3:1.  
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Fig. 1 - Chemical structure, name and acronym of the used monomers. 
 

 

To obtain the lc-MTA cement, the wTC-Ba powder was  

mixed with the liquid phase for 30 s in a powder/liquid ratio of 

4:1 and light-cured for 120 s with a halogen lamp (T-LED elca, 

Anthos Cefla, Imola, Italy). 

A commercial hydraulic calcium-aluminosilicate Portland  

cement named ProRoot MTA (white ProRoot MTA, Dentsply  

Maillefer, Tulsa, Ok, USA—lot no. 08003395) was used as refer- 

ence (a reference material is required by ISO 7405 clause 3) [36]  

since biocompatible osteoconductive material [7,37]. ProRoot  

MTA powder was mixed with the supplied deionized water for 

30 s in a powder/liquid ratio of 3:1. 

Vitrebond  (3M  ESPE  AG,  Dental  Products,  St.Paul,  MN,  

USA—lot.  no. 70-2010-2611-2)  is  a  resin-modified  glass- 

ionomer cement and was used as light-curable control (a  

positive control is required by both ISO 7405 and ISO 10993- 

5 clause 3) [36,38] since is a material able to evoke a positive 

or reactive response (i.e. cytotoxic material) [39]. The cement 

was prepared according to the manufacturer directions and  

light-cured for 30 s with a halogen lamp. As stated by the man- 

ufacturer, Vitrebond is composed by a fluoro-aluminosilicate 

powder (constituted by SiO2, AlF3, ZnO, SrO, Na3AlF6 (criolite), 

NH4F, MgO, and P2O5) mixed with a light-curable liquid (con- 

taining polyacrylic acid with pendant methacrylate groups  

(PAA), 2-hydroxyethylmethacrylate (HEMA), water and pho- 

toinitiator camphorquinone) [40]. 

Standard  cell  culture  plastic  surface  (Tissue  Culture  

Polystyrene, TCPS) was used as negative control since a mate- 

rial that proved a non-reactive response in the test system as  

required by both ISO 7405 and ISO 10993-5 clause 3 [36,38]. 

Once mixed, all cements were compacted to the excess  

into PVC molds (8 mm in diameter and 1.6 mm thick). The  

wTC-Ba and ProRoot MTA were cured at 37
◦
C and 98% rela- 

tive humidity. For solubility, calcium release and alkalinizing  

activity tests, the samples were cured (at 37
◦
C and 98% rel- 

ative humidity) for a period corresponding to 70% of final  

setting time, i.e. 40 min for wTC-Ba and 117 min for ProRoot  

MTA (period of time 50% longer than the setting time stated 

 

 

by the manufacturer, according with ISO6876 clause 7.7.2.) [41] 

and then demolded. 

The  lc-MTA and  Vitrebond  specimens  were  light-cured 

through a mylard streep (Directa Matrix Strips, Directa AB, 

Upplands Vasby, Sweden) and immediately demolded. 

The obtained cylindrical specimens (8 mm in diameter, 

1.6 mm thick and 0.3 g of weight) exposed an exchange sur- 

face of 90.43 ± 0.01 mm2  (upper surface   r2 = 50.24 mm2  and 

lateral surface 2r  h = 40.19 mm2). 
 
 

2.2. Setting times 

The initial and final setting times of the cements were evalu- 

ated using Gilmore needles according to ASTM C266-03 and  

ADA  specifications  [42,43].  Briefly,  the  Gilmore  initial  set- 

ting time was the elapsed time (min) between the mixing  

of the cement with liquid and the first penetration mea- 

surement that does not mark the specimen surface with a  

complete circular impression. As the initial or final setting  

times approached (i.e. no indentation), the specimens were  

tested every minute to determine the exact Gilmore setting  

time. The initial setting time needle was 113.4 g in weight  

and 2.12 mm in tip diameter. After the initial setting time was  

measured, the specimens were tested every 5 min with the  

final setting time needle with a tip diameter of 1.06 mm and a  

weight of 453.6 g. 

The wTC-Ba and ProRoot MTA samples were removed from  

the curing chamber (37
◦
C and 98% relative humidity) and  

immediately tested for setting time to prevent the dehydra- 

tion of cement surface. The lc-MTA and Vitrebond samples  

were light-cured (for 120 or 60 s, respectively) and immedi- 

ately tested for setting time to standardize the polymerization  

level and to prevent any polymerization progress. Each sam- 

ple was used only for one penetration/indentation test and  

then discarded. A large number of samples were used to find  

the approximate initial and final setting times of the cements.  
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Their exact evaluation was performed on three replicates for 

each material. 
 

2.3. Solubility 
 
The solubility of the materials was determined using the  

method described in ISO 6876 [41]. The mass of the cements  

was measured gravimetrically using an analytical balance (Bel  

Engineering series M, Monza, Italy) with an accuracy of 0.001 g  

after 1, 14 and 28 days of soaking in deionized water or in  

DMEM + FBS, i.e. Dulbecco’s modified eagle medium (DMEM,  

Lonza, Lonza Walkersville Inc., Walkersville, MD, USA, cat. no.  

12-604) added with 10% fetal bovine serum (FBS, Lonza, Lonza  

Walkersville Inc., Walkersville, MD, USA, cat. no. DE14-801E).  

Each weight measurement was repeated three times. 

The  specimens  (n = 5  for  each  material)  were  weighed 

(Initial weight) and placed in sealed cylindrical polystyrene  

holders (3 cm high and 4 cm in diameter) containing 5 mL  

of  deionized  water  or  DMEM + FBS,  at  37
◦
C.  At  the  pre- 

determined intervals, the samples were removed from the  

solutions, blotted dry at 37
◦
C for 48 h, i.e. till the weight was 

stable and then weighed and finally discarded. 

The solubility (percentage weight variation,   W%) at each 

time t was calculated according to the following equation: 

dry weight at time  t − initial weight 

 

a selective temperature compensated electrode (Sen Tix Sur 

WTW, Weilheim, Germany). Calcium release was measured 

using a calcium probe (Calcium ion electrode, Eutech instru- 

ments Pte Ldt, Singapore) after addition of 0.200 mL (2%) of 

ionic strength adjuster (ISA, 4 mol/L KCl, WTW, Weilheim, 

Germany) to the collected soaking medium (10 mL). 

The probes were inserted into the soaking media at room 

temperature (24
◦
C) under magnetic stirring. Each measure- 

ment was repeated three times. 

The obtained results (setting time, solubility, water absorp- 

tion, calcium release and pH) were statistically analyzed. The  

1-way analysis of variance (ANOVA) was used to test for dif- 

ferences among the groups. Tukey’s HSD (honestly significant  

differences) test was used in conjunction with ANOVA to  

determine the statistical significance of the differences. 
 

2.6. In vitro apatite-forming ability (bioactivity) 
 
The ability of the different materials to form apatite on their  

surface was tested in vitro  as an index of bioactivity [33,34].  

Bioactivity tests were carried out in DPBS [12-16]. DPBS is a  

physiological-like buffered (pH 7.4) Ca- and Mg-free solution  

with the following composition (mM): K+  (4.18), Na+  (152.9),  

Cl
−
  (139.5), PO43−  (9.56, sum of H2PO4−  1.5 mM and HPO42− 

8.06 mM). 
W% = initial weight × 100 

Each specimen (0.3 g weight) was immersed in 5 mL of  
DPBS (DPBS/cement ratio 17 mL/g) [10] in a sealed cylindrical 

2.4. Water absorption 

The water uptake was determined gravimetrically. The speci- 

mens (n = 5 for each material) were placed in sealed containers  

containing 5 mL of deionized water and maintained in a cab- 

inet at 37
◦
C under static conditions. The wet weight was  

recorded throughout a 24-h time period. At pre-determined  

intervals  (1, 6h and 1 day) the specimens were carefully  

removed from water, wiped free from any visible surface mois- 

ture (blotted on filter paper for 3 s to remove the surface water)  

and immediately weighed (within 30 s to eliminate the influ- 

ence of desiccation). After the last endpoint (24 h) the samples  

were dried at 37
◦
C until the weight was stable and then the dry  

weight was recorded. Each weight measurement was repeated  

three times using an analytical balance (Bel Engineering series  

M, Monza, Italy). 

The water absorption at each time t was calculated accord- 

ing to the following equation: 

water absorption 
 

=
wetweightattimet−dryweightat24h 

× 100 
dry weight at time  24 h 

 

2.5. Alkalinizing activity and calcium release 

Cement specimens (n = 5 for each material) were prepared  

as previously described and immersed in 10 mL of deionized 

water (pH 6.8) in polypropylene sealed containers stored at  

37
◦
C. After 3 and 24 h and 7, 14 and 28 days soaking water  

was collected and renewed. 

A multi-parameter  laboratory  meter  (inoLab  750  WTW,  

Weilheim, Germany) previously calibrated with standard solu- 

tions was used. The pH of soaking water was measured using 

polystyrene holder (3 cm high and 4 cm in diameter) and was  

maintained at 37
◦
C until the pre-determined endpoint time (1,  

7, 14, and 28 days). The storage media were renewed at each  

endpoint. 

Additional samples were soaked in DMEM + FBS (i.e. the  

same medium used for cell culture) for 1 and 7 days, as  

control specimens for cell culture studies. DMEM is a cell cul- 

ture medium containing salts (calcium chloride, potassium  

chloride, magnesium sulfate, sodium chloride, sodium bicar- 

bonate and monosodium phosphate) and rich in vitamins  

(folic acid, nicotinamide, riboflavin and B-12), amino acids and  

glucose. 

At the established endpoint times, the disks were analyzed 

by micro-Raman, ATR/FTIR spectroscopy and ESEM/EDX. 

To evaluate the possible bioactivity of poly-HEMA, poly- 

TEGDMA and poly-HEMA-TEGDMA polymers, a still debated  

subject [44 and references cited therein] additional resin sam- 

ples  composed  of  pure  poly-HEMA  or  pure  poly-TEGDMA  

or pure poly-HEMA-TEGDMA were prepared by light-curing  

under the same experimental conditions used for lc-MTA. The  

specimens were soaked for 4 weeks in a metastable calcifying  

medium at pH 7.3 containing Ca2+  and PO43−  ions in a Ca/P  

ratio of 1.67, according to Chirila et al. [45] and analyzed by  

FTIR. 
 

2.6.1.   Micro-Raman spectroscopy 
Micro-Raman spectra were obtained using a Jasco NRS-2000C  

instrument (Jasco Inc., Easton, MD, USA) connected to a micro- 

scope with 20× magnification. In these conditions the laser  

spot size (i.e. the excitation source) was a few microns. All  

the spectra were recorded in back-scattering conditions with 

5 cm
−1 spectral resolutions using the 488 nm blue line (Innova  

70, Coherent Inc., Santa Clara, CA, USA) with a power of 50 mW.  
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A 160 K frozen CCD detector from Princeton Instruments Inc.  

(Trenton, NJ, USA) was used. To minimize the variability deriv- 

ing from possible sample inhomogeneity, at least five spectra  

were recorded on five different points of both the upper sur- 

face and inner fractured side of each specimen. Due to the high  

fluorescence of Vitrebond upon excitation in the visible range  

(i.e. at 488 nm), the Raman spectra were recorded using a Nd3+- 

YAG laser emitting in the near-infrared region (1064 nm) with  

a Bruker MultiRam Fourier Transform FT-Raman spectrome- 

ter (Bruker Optik GmbH, Ettlingen, Germany) equipped with  

a cooled Ge-diode detector. The focused laser beam diame- 

ter was about 100 m, the spectral resolution 4 cm
−1, and the  

laser power at the sample about 300 mW. The Raman spectra  

were recorded on wet cement samples (i.e. when maintained  

in their storage media) as well as on unhydrated cement pow- 

ders and poly-HEMA-TEGDMA resin polymerized under the  

same conditions used for lc-MTA samples. 
 

2.6.2.   ATR/FTIR spectroscopy 
IR spectra were recorded on a Nicolet 5700 FTIR (Thermo Fisher  

Scientific Inc., Waltham, MA, USA), equipped with a Smart  

Orbit diamond attenuated total reflectance (ATR) accessory  

and a DTGS detector; the spectral resolution was 4 cm
−1 and  

the number of scans was 64 for each spectrum. The ATR area  

had a 2 mm diameter. The IR radiation penetration was about 

2 microns. To minimize the variability deriving from possible  

sample inhomogeneity, at least five spectra were recorded on  

five different points of both the upper surface and inner frac- 

tured side of each specimen. IR spectra were also recorded on  

unhydrated cement powders and poly-HEMA-TEGDMA resin  

polymerized under the same conditions used for lc-MTA. 

To evaluate the presence of interactions between the resin  

and the silicate component, unhydrated samples composed  

of wTC-Ba (20%) and resin (80%) were prepared and analyzed. 

Before IR analysis, the poly-HEMA, poly-TEGDMA and poly- 

HEMA-TEGDMA samples tested for bioactivity were dried. 
 

2.6.3.   ESEM/EDX surface analysis 
The samples were examined with an Environmental Scan- 

ning  Electron  Microscope  ESEM  (ESEM  Zeiss  EVO  50,  Carl  

Zeiss,  Oberkochen,  Germany)  connected  to  a  secondary  

electron detector for Energy Dispersive X-ray analysis EDX  

(Oxford INCA 350 EDS, Abingdon, Oxfordshire, UK) computer- 

controlled  software  Inca  Energy  Version 18,  using  an  

accelerating  voltage  of 20-25 kV.  The  elemental  analysis  

(weight % and atomic %) of the samples was performed apply- 

ing ZAF correction method. At 25 kV acceleration, the X-ray  

electron beam penetration of ESEM/EDX (inside a material  

with a density of about 3 g/cm3) proved to be 2.98 m and con- 

sequently the volume excited and involved in the emission of  

characteristic X-rays from the constituting elements must be  

considered 10 m3. The disks were placed directly onto the  

ESEM stub and examined without any form of preparation  

(the specimens were not coated for this analysis) and then  

inspected under wet conditions by ESEM/EDX as previously  

described [15]. 
 

2.6.4.   Marginal adaptation 
To evaluate the morphology and the marginal adaptation of  

materials to dentin, freshly extracted single-rooted human 

 

teeth were instrument and a root-end cavity was prepared  

at apical area, according to previous studies [46] and filled  

with lc-MTA (n = 6) or ProRoot MTA (n = 4) or wTC-Ba (n = 6)  

or Vitrebond (n = 4). After preparation, the filled roots were  

immersed in DPBS at 37
◦
C and inspected in wet conditions  

under ESEM/EDX after 10 min, 24 h and 28 days of storage.  

EDX was used to evaluate the formation of calcium phosphate  

deposits or any surface change. Optical microscopy (Motic,  

Motic Incorporation Ltd., Hong Kong) was also used to observe  

the restoration of filled roots. 
 

2.7. Cell culture and testing 
 

Each material was layered on a 13 mm diameter ThermanoxTM  

Plastic coverslip (Nalgene, Nunc International, NY, USA) to  

obtain disks. Mechanical vibrations were used to make the  

surface flat and regular. The surface area of each disk was 

1.9 ± 0.1 cm2, the weight was 0.3 ± 0.02 g. 

The sample disks of wTC-Ba and ProRoot MTA were left to 

cure at 100% humidity and 37
◦
C for 2 h, to obtain a partial set- 

ting of the cements, before their immersion in culture medium 

for the in vitro experiments. 

The  biological  compatibility  of  the  new  silicate-based 

cements  has  been  tested  in  vitro  by  challenging  Saos-2  

osteoblast-like cells (Istituto Zooprofilattico Brescia, Italy) with 

cements as solids and with cement extracts [20,38]. 
 

2.7.1.   Test on extracts (indirect toxicity test) 
The indirect toxicity evaluation was performed by extraction  

method. The extracts were obtained using extract conditions  

(24 h at 37
◦
C) and extraction vehicle (culture medium with  

serum) in accordance with ISO recommendations (ISO 7405  

clause 6, ISO 10993-5 clause 4 and ISO 10993-12 clause 10)  

[36,38,47]. A higher extraction ratio (1.9 cm2/mL expressed as  

surface area of the sample/extractant volume or 0.3 g sam- 

ple/mL expressed as mass of the sample/extractant volume)  

higher than that suggested by ISO 10993-12 clause 10 [47] was  

used. 

Saos-2 cells (5 × 103 per well) were seeded in 96-well flat- 

bottom microplate. After 5 h at 37
◦
C to allow cell adhesion, 

0.2 mL of pure extract was added to the wells. Cell viability of 

four replicate samples (n = 4) was assessed by Alamar Blue test 

at 1 and 3 days. 
 

2.7.2.   Test on solid materials (direct-contact toxicity test) 
Each cement disk was placed in a well of a 24-well polystyrene  

plates (Costar,  Cambridge,  MA,  USA).  Pre-wetting  of  the  

cement surfaces was obtained by covering the cements with 

1 mL of complete culture medium for 24 h at 37
◦
C. At 24 h the 

medium was collected and stored at −80
◦
C to be used as an  

extract of the material [38]. 

The culture medium was a modification of Eagle’s medium 

(DMEM, Sigma-Aldrich Corp., St. Louis, MO, USA) containing 

10% fetal bovine serum (Sigma-Aldrich Corp.) and 1% peni- 

cillin/streptomycin (10,000 U penicillin, 10 g streptomycin,  

25 g amphotericin B/mL, Sigma-Aldrich Corp.). 

Cells were inoculated on cement surface at a plating den- 

sity of 20 × 103 cells/cm2. After an adhesion time of 30 min, 

the cells were carefully covered with the complete medium  

and incubated at 37
◦
C, 5% CO2 and saturated humidity.  
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Three samples for each cement were used in replicate  

experiments, with cells seeded on polystyrene plates (TCPS)  

without cement used as negative controls. The viability of cells  

was assessed by Alamar Blue assay in six replicate samples  

(n = 6) and by Neutral red test in three replicates (n = 3) after 1, 

3 and 7 days of culture. 
 

2.7.3.   Cell viability and proliferation 
Alamar  blue  (intracellular  redox  status,  i.e.  the  metabolic  

activity) and neutral red (membrane integrity) non-destructive  

tests were performed to measure cell vitality and proliferation,  

i.e. as indicators of the degree of cytotoxicity caused by the test  

material. 

Alamar  blue  assay    provides  measures  of  the  metabolic 

rate and the maximal functional capacity of mitochondrial  

respiratory-chain and was used for quantifying in vitro viabil- 

ity of cells and as an indicator of cell health. The nontoxic and 

stable nature of the Alamar blue dye allows continuous mon- 

itoring of cultures over time and permits long-term exposure 

of cells without negative impact. 

Alamar blue assay is quantitative with respect to time pro- 

viding information on the ability of metabolically active cells 

to convert the reagent into a fluorescent and colorimetric  

indicator. The amount of fluorescence or absorbance is propor- 

tional to the number of living cells and corresponds to the cell 

metabolic activity. Damaged and nonviable cells have lower 

innate metabolic activity and thus generate a proportionally  

lower signal than healthy cells. 

Alamar  blue  assay  uses  a  visible  blue  fluorogen  probe 

resazurin, which is reduced to a red fluorescent compound  

(resorufin) by cellular redox enzymes of the mitochondrial  

respiratory-chain. Viable cells continuously convert resazurin 

to resorufin, thereby generating a quantitative measure of via- 

bility and cytotoxicity. 

At pre-determined intervals of culture (1, 3, and 7 days),  

200 L of Alamar blue dye (BioSource International, Camarillo,  

CA, USA) was added to the culture wells (1:10 v/v). After 4 h of  

incubation at 37
◦
C, 100 L of culture medium (supernatant) of  

each well was transferred to a 96 well-plate, and fluorescence  

(oxidation of Alamar blue) in the sample and control wells  

were read at 490 excitation-540 emission wavelengths using  

a Cytofluor 2350 fluorimeter (Millipore Corporation, Bedford,  

MA, USA). 

The results of replicate samples (n) were recorded as rela- 

tive fluorescence units (RFU) and expressed mean ± standard  

deviation. Statistical analysis was performed by the nonpara- 

metric one-way ANOVA test (with a p value <0.05 considered  

as significant). 

Neutral red uptake cytotoxicity assay , recommended by the  

ISO 10993-5 annex A [38] is based on incorporation of the  

supravital neutral red dye into living cells with storage of the 

neutral red dye in the lysosomes of viable, uninjured cells.  

Alterations of the cell surface or the sensitive lysosomal mem- 

brane lead to lysosomal fragility. Such changes produced by 

toxic substances cause decreased uptake and binding of neu- 

tral red dye, making it possible to distinguish among viable, 

damaged or dead cells. This test provides a sensitive signal of 

both cell integrity and growth inhibition. 

Viable cells take up the dye by active transport and incor- 

porate the dye into lysosomes, whereas non-viable cells do 

 
 

Table 1 - Initial and final setting times (mean ± standard  
deviation, n = 3 for each material) determined by Gilmore 
needles [42,43] at 37

◦
C and 98% relative humidity. 

lc-MTA and Vitrebond were light cured for 120 and 30 s, 
respectively. Data with the same superscript letter do  
not differ significantly (p > 0.01). 

Materials Initial setting Final setting time 
time (min) (min) 

lc-MTA 2±0a 2±1a 

wTC-Ba 31 ± 3b 57 ± 3c 

ProRoot MTA 36 ± 3b 168 ± 5d 

Vitrebond 1±0a 1±0a 

not take up the dye. The incorporated dye is then liberated  

fro the cells in an acidified solution. Ai increase of decrease 

in the number of cells of their physiological state results in a 

concomitant change in the amount of dye incorporated by the 

cells in the culture. 

Following culture onto cements the cells were incubated for  

2h with neutral red medium, i.e. neutral red dye (100 g/mL)  

dissolved in serum free medium (DMEM). Cells were then  

washed with phosphate buffered saline (PBS) and added with  

of 1 mL of elution medium (EtOH/AcCOOH, 50%/1%) followed  

by gentle shaking for 10 min to achieve complete dissolu- 

tion. Aliquots of the resulting solutions were transferred to  

96-well plates and absorbance at 540 nm was recorded using  

the microplate spectrophotometer system (Spectra III Tecan,  

Austria). 

The results, recorded as optical density, were expressed as 

mean ± standard deviation of replicate samples (n) and statis- 

tically analyzed with the nonparametric one-way ANOVA test 

with a p value <0.05 considered as significant. 
 

3. Results 
 

3.1. Setting times 
 

Table 1 shows the initial and final setting times of the cements 

determined using Gilmore needles. 

The lc-MTA cement showed statistically shorter initial and  

final setting times than both conventional calcium-silicate  

MTA cements (wTC-Ba and ProRoot MTA), i.e. 120 s of light  

curing exposition were enough to create an external polymer- 

ized layer able to resist to the Gilmore needles. Vitrebond, the  

control light-curable material, exhibited a setting time of 60 s. 

wTC-Ba showed a statistically shorter final setting time  

than ProRoot MTA (57 ± 3 vs 168 ± 5 min). 
 

3.2. Solubility 
 

Table 2A reports the solubility, i.e. the % weight variation  

( W%) of the tested cements (ISO 6876 [41]) after 1, 14 and 28 

days of soaking in deionized water. All the cements displayed a 

loss of material (a weight loss, i.e.   W% < 0) increasing over 

soaking time. lc-MTA showed the statistically lowest solubility 

at all times. wTC-Ba and ProRoot MTA proved higher weight 

loss than lc-MTA and Vitrebond. No statistically significant dif- 

ferences were found comparing ProRoot MTA vs wTC-Ba while 

statistically significant differences were measured comparing 

Vitrebond vs both wTC-Ba and ProRoot MTA.  
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Table 2 - Solubility (mean ± standard deviation, n = 5 for each material) expressed as percentage weight variation (  W%) 
after different times of soaking at 37

◦
C in (A) deionized water (ISO6876) [41] and (B) DMEM + FBS. Different superscript 

letters denote significant differences (p < 0.01). 

Materials W% at 1 day W% at 14 days W% at 28 days 

(A) 

lc-MTA −5.2 ± 1.13a −6.34 ± 0.85a −7.38 ± 1.39a,b 

wTC-Ba −17.17 ± 1.69d −20.16 ± 3.33d,e,f −22.02 ± 2.85e,f 

ProRoot MTA −18.34 ± 0.51d,e −20.65 ± 1.72d,e,f −22.54 ± 1.49f 

Vitrebond −9.44 ± 0.44b,c −11.04 ± 0.82b,c −11.42 ± 1.51c 

(B) 

lc-MTA −3.64 ± 1.51a 6.25 ± 2.91d 6.67 ± 1.36d 

wTC-Ba −11.52 ± 1.22c −5.22 ± 3.48a,b 3.94 ± 3.26d 

ProRoot MTA −11.50 ± 2.81c −4.06 ± 0.48a 3.62 ± 1.12d 

Vitrebond −9.20 ± 2.59b,c −4.19 ± 0.43a −3.30 ± 0.23a 

A different trend of weight variation was observed when  

the samples were immersed in DMEM + FBS (Table 2B). After 

1 day, lc-MTA, wTC-Ba and ProRoot MTA showed a lower  

weight loss in DMEM + FBS than in deionized water while Vit- 

rebond showed the same weight loss in both media. lc-MTA  

displayed a loss of material only after 1 day of immersion  

in DMEM + FBS while wTC-Ba and ProRoot MTA specimens  

showed a reduction of weight till 14 days. lc-MTA showed an  

increment of weight since 14 days, while wTC-Ba and Pro- 

Root MTA displayed an analogous behavior only at 28 days.  

Vitrebond underwent weight loss over all the period. 
 

3.3. Water absorption 
 
The results of water uptake (n = 5 for each material) are shown 

in Table 3. All the materials revealed an increase of water  

uptake from 1 h to 1 day. lc-MTA absorbs more water (weight 

increase of approx 3%) than the other materials. 
 

3.4. Alkalinizing activity and calcium release 
 
Table 4 shows the pH of soaking water after immersion of  

the cements. The pH values of water increased from 6.5 to  

approximately 11.0 already after 3 h of immersion of lc-MTA,  

wTC-Ba and ProRoot MTA samples. This time of analysis was  

selected because it corresponds to the final setting time of Pro- 

Root MTA. After 14 days of immersion, ProRoot MTA showed  

a significant reduction of the alkalinizing activity (pH 7.8),  

while wTC-Ba and lc-MTA were still able to noticeably basify  

the soaking water after 28 days (pH values of 9.2 and 9.8,  

respectively). Differently, Vitrebond slightly acidified the soak- 

ing medium until 1 day, and then the pH increased to 7.0 after 

7 days and decreased again to 6.4 after 28 days. 

Calcium release and cumulative calcium release are shown  

in Table 5 and Fig. 2, respectively. Table 5 reports the calcium  

release at 3 h (immediately after final setting of ProRoot MTA) 

and 1, 7, 14 and 28 days. Early release of calcium was very  

high for lc-MTA (211 ppm) and wTC-Ba (271 ppm) while sta- 

tistically lower for ProRoot MTA (32 ppm). Vitrebond did not  

release calcium ions, according to its composition devoid of  

calcium. Calcium release (Table 5) showed a different trend in  

the first 7 days of soaking. lc-MTA still showed a high calcium  

release after 7 days of soaking (145 ppm), wTC-Ba showed a  

drastic reduction of calcium release after 1 day (77 ppm) and  

ProRoot MTA showed a low calcium release (35-16 ppm) during  

the whole soaking time. Cumulative calcium release (Fig. 2)  

was significantly higher for lc-MTA (537 ppm) than wTC-Ba  

(437 ppm) and ProRoot MTA (121 ppm). 
 
 

3.5. In vitro bioactivity tests 
 

3.5.1.   Micro-Raman analyses 
Fig. 3 reports the Raman spectra of the cements aged in DPBS. 

Band assignments have been given according to the literature 

([13,14, and references cited therein]. 

The  spectra  of  unhydrated  wTC-Ba  and  ProRoot  MTA  

revealed the presence of calcium carbonate as calcite and/or  

aragonite, calcium sulfate (as gypsum and/or anhydrite), alite,  

belite as well as barium sulfate in the former and bismuth  

oxide in the latter. If compared with the wTC-Ba powder, Pro- 

Root MTA powder showed a higher amount of calcite and/or  

aragonite and lower quantities of calcium sulfate, prevalently  

as anhydrite; moreover, the silicate component was more crys- 

talline, as revealed by the higher resolution of the alite and  

belite bands. 

The Raman spectra recorded on the surface of the lc-MTA,  

wTC-Ba and ProRoot MTA cements after one day of aging in  

DPBS showed with different relative intensities the marker  

band of apatite at about 960 cm
−1; in the same spectral range,  

no spectral changes were observed for Vitrebond. The spec- 

trum of the lc-MTA surface displayed the bands typical of  
 
 
 

Table 3 - Water absorption (mean ± standard deviation, n = 5 for each material) after different times of soaking in 
deionized water. Different superscript letters indicate statistical significant differences (p < 0.01). 

Materials 1h 6h 1 day 

lc-MTA 9.61 ± 1.14a,b 11.96 ± 1.27a,b 12.94 ± 1.60a 

wTC-Ba 12.07 ± 1.61a,b 12.26 ± 1.69a,b 13.87 ± 1.63a 

ProRoot MTA 11.67 ± 3.90a,b 12.11 ± 3.45a,b 13.96 ± 3.92a 

Vitrebond 8.17 ± 0.47b 9.57 ± 0.63a,b 10.77 ± 0.36a,b 
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Table 4 - Values of pH (mean ± standard deviation, n = 5 for each material) of soaking water after immersion of the 
cements for different times. No coincidence in the superscript letters indicates significant differences (p < 0.01). 

Materials 3h 1 day 7 days 14 days 28 days 

lc-MTA 10.6 ± 0.1c 11.7 ± 0.2a 10.5 ± 1.0c,d 9.6 ± 1.0e 9.8 ± 0.7e 

wTC-Ba 11.5 ± 0.2a,b 11.4 ± 0.1a,b 10.8 ± 0.6b,d 93 ± 05f 9.2 ± 0.7f 

ProRoot MTA 11.5 ± 0.1a,b 11.5 ± 0.4a,b 11.2 ± 0.8a,b,c 75 ± 0.1g 8.2 ± 0.2f,g 

Vitrebond 5.9 ± 0.1l 6.0 ± 0.1h,i 7.0 ± 0.2i 6.7 ± 0.1h,i 6.4 ± 0.4i,l 

Deionized water 6.8 ± 0.4i 7.0 ± 0.1i 7.1 ± 0.1i 6.6 ± 0.1i 6.9 ± 0.1i 

 

Table 5 - Calcium released (mean ± standard deviation, expressed as ppm, n = 5 for each material) in soaking water after 
immersion of the samples for different times. Superscript letters indicate statistical significance (p < 0.01). 

Materials 3h 1 day 7 days 14 days 28 days 

lc-MTA 211 ± 20.7 134 ± 4.0c 145 ± 13.2c 28 ± 4.6a,b 19 ± 11.9a,d 

wTC-Ba 271 ± 57.9 77 ± 9.1 49 ± 38.0b 28 ± 8.6a,d 12 ± 8.6a,d 

ProRoot MTA 32 ± 4.5a,b 35 ± 2.3b,d 24 ± 3.8a,b 14 ± 2.7a,d 16 ± 2.9a 

Vitrebond 1 ± 0.9a 0 ± 0.5a 1 ± 0.9a 1 ± 0.5a 0 ± 0.4a 

Deionized water 1 ± 1.0a 1 ± 0.6a 2 ± 0.6a 1 ± 0.6a 1 ± 0.6a 

 

a B-type carbonated apatite (in particular the component at  

1070 cm
−1) superimposed to those weaker due to the cement 

components and calcite; the lc-MTA cement appeared to form 

the thickest deposit, as revealed by the highest intensity ratio 

between the bands of apatite and belite (at about 960 and  

855 cm
−1, respectively). 

At increasing storage times, the deposit became progres- 

sively thicker on all the calcium-silicate cements: the bands  

of the cement components progressively weakened while the  

bands typical of a B-type carbonated apatite progressively  

appeared. After 28 days of aging, ProRoot MTA appeared to  

be characterized by less mature apatite deposits than the  

experimental cements, as revealed by its HPO42− ion band at  

about 1000 cm
−1. No changes were observed in the spectrum  

recorded on the surface of Vitrebond after 28 days of aging in  

DPBS. 

The portlandite (i.e. Ca(OH)2) band at 360 cm
−1 was never  

detected on the surface of the cements, due to its release  

into the storage medium which increased its pH (data not  

reported). However, the portlandite component was revealed  

in the inner area of all the lc-MTA and wTC-Ba cements until 28  

days of aging. No portlandite component was detected either  

in ProRoot MTA (due to the overlapping of the strong bands 

 

of bismuth oxide) or Vitrebond. The spectra recorded in the  

interior of ProRoot MTA clearly showed the formation of ettrin- 

gite, as hydration product of calcium sulfate and tricalcium  

aluminate. In the experimental cements this component was  

not spectroscopically revealed due to the interference of bar- 

ium sulfate; however, ettringite was observed since the early  

stages of hydration in both wTC cement (i.e. the corresponding  

cement free from barium sulfate) [13-15] and in its composite  

with poly-HEMA-TEGDMA. 

The CSH phase (i.e. the hydration product of alite and  

belite), which shows a broad and very weak Raman band, was 

detected with higher intensity in the experimental cements  

than in ProRoot MTA. 
 
 

3.5.2.   ATR/FTIR analyses 
Figs. 4 and 5 report the IR spectra of the cements aged in  

DPBS and DMEM + FBS, respectively. Band assignments have  

been given according to the literature [13 and references cited  

therein]. 

IR spectroscopy confirmed the Raman findings on the com- 

position of the unhydrated powders. In ProRoot MTA, calcium 

carbonate was prevalently present in its aragonite form.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 - Cumulative calcium release (ppm) in deionized water.  
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Fig. 3 - Raman spectra of lc-MTA, wTC-Ba, ProRoot MTA and Vitrebond after different times of aging in DPBS. The spectra of the 

unhydrated cements and resin are reported for comparison. The bands assignable to barium sulfate (Ba), calcite (C),  

aragonite (Ar), anhydrite (An), gypsum (G), belite (B), alite (A), ettringite (E), resin (R), apatite (Ap), bismuth oxide (Bi), and  

portlandite (P) are indicated.  
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Fig. 4 - IR spectra of lc-MTA, wTC-Ba, ProRoot MTA and Vitrebond after different times of aging in DPBS. The spectra of the 

unhydrated cements and resin are reported for comparison. The bands due to portlandite (P), barium sulfate (Ba), calcite (C), 

aragonite (Ar), anhydrite (An), gypsum (G), ettringite (E), hydrated calcium silicate gel (CSH), newly polymerized silicates  

(CxS), belite (B), alite (A), resin (R), and apatite (Ap) are indicated.  
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Fig. 5 - IR spectra recorded on the surface of lc-MTA, wTC-Ba and ProRoot MTA after 1 and 7 days of aging in DMEM + 10% 

FBS. The bands due to barium sulfate (Ba), calcite (C), aragonite (Ar), resin (R), and amorphous calcium phosphate (ACP) are 

indicated. 
 

 

After one day of aging in DPBS, the IR spectra of lc-MTA 

and ProRoot MTA surfaces showed the presence of an apatite 

and calcite/aragonite deposit about 2 microns thick: no bands 

of the underlying cement were observable for ProRoot MTA, 

while for lc-MTA weak bands due the resin and barium sul- 

fate components were visible. On wTC-Ba, the apatite deposit 

appeared thinner than on the other calcium-silicate cements, 

as revealed by the lower intensity of the apatite bands, and the 

detection of prominent components due to calcite/aragonite, 

CSH silicate phase and barium sulfate. 

After aging in DPBS for 14 and 28 days, the surface spectra 

of ProRoot MTA, lc-MTA and wTC-Ba showed the presence of a 

B-type carbonated apatite and a small quantity of calcite. No 

bands of the underlying cement were observed. 

With regard to Vitrebond, the spectral changes observed on 

the surface of the cement were analogous to those detected  

in its interior and thus not ascribable to the formation of an  

apatite deposit, according to the chemical composition of the 

cement lacking in calcium. 

The IR spectra recorded until 28 days of aging in the inter- 

nal region of the experimental cements and ProRoot MTA  

showed the presence of portlandite, ettringite (observable only 

 

 

for ProRoot MTA according to Raman results) and CSH phase,  

in addition to belite and calcite/aragonite. No portlandite was  

observed for Vitrebond, according to its chemical composition.  

After one day of aging, cement polymerization appeared more  

advanced for the experimental cements than ProRoot-MTA, as  

revealed by the higher wavenumber of the CSH band observed  

for the former. 

The IR spectra of lc-MTA, wTC-Ba and ProRoot MTA sur- 

faces after 1 and 7 days in DMEM + FBS showed the presence 

of a high quantity of calcite/aragonite deposit, together with 

lower amounts of amorphous calcium phosphate; after one  

day of aging, the spectrum of the lc-MTA surface still showed 

bands due to the resin and barium sulfate. 

To assess the occurrence of resin-mineral ions interactions,  

a just-prepared lc-MTA cement was analyzed and its IR spec- 

trum is shown in Fig. 6; the spectra of the just polymerized  

poly-HEMA-TEGDMA resin and unhydrated wTC-Ba powder  

are reported for comparison. As can be easily seen, in the  

spectrum of lc-MTA (Fig. 6, spectrum c), the 1640 cm
−1 band  

due to the C  C group of the HEMA and TEGDMA monomers  

(Fig. 1) is significantly weaker than in the spectrum of the resin  

(Fig. 6, spectrum a); this result suggests that in lc-MTA the  
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Fig. 6 - IR spectra of the just polymerized poly-HEMA-TEGDMA resin (a), unhydrated wTC-Ba powder (b) and just-prepared 

lc-MTA cement (c). 
 

 

resin attained a higher polymerization degree than in the pure 

poly-HEMA-TEGDMA resin. 

In lc-MTA, the band due to the OH group (prevalently  

attributable to the OH stretching vibration of HEMA com- 

ponent, Fig. 1) is shifted to lower wavenumber values with  

respect  to  the  pure  resin  (from  3460  to  3415 cm
−1);  also  

the band due to silicate groups (SiO44−  stretching vibration)  

shifted downwards with respect to the wTC-Ba unhydrated  

powder (from 874 to 863 cm
−1). Both these trends indicate the  

presence of hydrogen bond interactions between silicate and  

OH groups of HEMA. 

The possible formation of Si-O-C covalent bonds has been 

taken into account. These groups are characterized by strong 

absorptions near 1100 cm
−1 [48], i.e. in a spectral range covered 

by strong bands due to barium sulfate. Therefore, to clar- 

ify this aspect, a composite containing wTC (i.e. cement free 

from barium sulfate) and poly-HEMA-TEGDMA was prepared 

and analyzed (spectrum not reported): no spectral features  

ascribable to the formation of Si-O-C bonds were observed,  

in agreement with other authors [44]. 

To evaluate the possible bioactivity of pure poly-HEMA,  

pure  poly-TEGDMA  and  poly-HEMA-TEGDMA  polymers,  

the  resins  were  soaked  for  4  weeks  in  a  metastable  cal- 

cifying medium, according to Chirila et al. [44,45]. At this  

time, the samples that were transparent at the beginning,  

appeared  slightly  opaque  (the  most  opaque  sample  was  

poly-HEMA);  their  IR  spectra  are  reported  in  Fig. 7.  The  

bands at about 1025, 600 and 560 cm
−1  revealed that all the 

 

 

samples were covered by an apatite deposit that appeared  

inhomogeneous  and  of  different  thicknesses  on  the  var- 

ious  samples,  but  always  thinner  than  2 m (due  to  the  

detection of the bands of the polymeric components). On  

the basis of the relative intensity of the apatite bands, it  

can be deduced that the thickness of the deposit decreased  

along the series: poly-HEMA (the 963 cm
−1  band was also  

detectable) > poly-HEMA-TEGDMA > poly-TEGDMA. 

The spectra corresponding to poly-HEMA (Fig. 7A) appeared  

particularly interesting. Upon apatite deposition, some poly- 

mer bands underwent wavenumber shifts and/or intensity  

changes.  As  reported  in  the  figure,  the  most  signifi- 

cant changes involved the bands at about 3350 cm
−1  (OH  

stretching vibration), 1700 cm
−1  (C  O stretching vibration),  

1270-1248-1150 cm
−1 (C-O-C stretching vibrations), 1070 cm

−1  

(C  O stretching vibration). Since control and soaked samples  

were characterized by similar polymerization degrees, these  

changes can be ascribed to the chelation of calcium ions. 

Similar changes have been observed also for poly-TEGDMA  

and poly-HEMA-TEGDMA (Fig. 7B and C); however, for these  

polymers, the polymerization degree of control and soaked  

samples appeared different, so that spectral changes could be  

due to both calcium chelation and polymerization progress. 

 

3.5.3.   In vitro dentin marginal adaptation: ESEM…EDX 
and OM analyses 
The morphology of cement-dentin interface in fresh restora- 

tions soaked 10 min in DPBS (Figs. 8 and 9a and b) was analyzed  
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Fig. 7 - IR spectra of poly-HEMA (A), poly-TEGDMA (B) and poly-HEMA-TEGDMA (C) resins after soaking for 4 weeks 

according to Chirila et al. (black). The spectra of control samples are reported for comparison (gray).  
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Fig. 8 - Morphology and chemical composition and marginal adaptation of lc-MTA filling human roots after 10 min (a-c), 

24 h (d-f) and 28 days (g-i) of soaking in DPBS at 37
◦
C. 

 

 

using ESEM/EDX. A first evaluation was made immediately  

after restoration. The margins of all cements resulted free  

from porosities or gaps, suggesting the optimal adaptation to  

dentinal cavity walls of all cements. EDX on lc-MTA, wTC-Ba  

and ProRoot MTA (not shown) revealed calcium (Ca), silicon 

(Si) and phosphorous (P) peaks (Figs. 8 and 9c) while on Vitre- 

bond aluminum (Al), Si, zinc (Zn) and fluorine (F) peaks were 

detected (not shown). 

After 24 h of immersion in DPBS a great amount of precipi- 

tates completely covered the surface, the margin and partially  

also the peripheral dentin surface of lc-MTA (Fig. 8d and e),  

wTC-Ba (Fig. 9d and e) and ProRoot MTA (Fig. 10a and b). All  

margins resulted filled and crowded by apatite deposits. EDX  

revealed Ca and P peaks, while Si was completely absent on the  

surface of lc-MTA and wTC-Ba (Figs. 8 and 9f) and still detected  

on  ProRoot  MTA  (Fig.  10c).  The  lc-MTA,  wTC-Ba  and  Pro- 

Root MTA displayed similar morphology at the cement/dentin  

interface-margin; lc-MTA showed a thicker apatite layer. Vitre- 

bond surface showed irregular precipitates and EDX displayed  

Al, Si, Zn and F, and also traces of Ca and P (Fig. 10f-h). 

Additional  apicected,  root-filled  maxillary  roots  soaked  

for 24 h in DPBS were observed by optical microscopy; they  

showed the presence of a thick layer formed on the apex  

(Fig. 11a-d). 

After 28 days in DPBS a thick layer of apatite was detected  

on lc-MTA (Fig. 8g and h), wTC-Ba (Fig. 9g and h) and ProRoot  

MTA (Fig. 10d), either on their surface, or at the cement-dentin  

interface, or on the adjacent dentin. All margins resulted filled 

 

 

and covered by apatite deposits. EDX revealed Ca and P peaks 

(Figs. 8, 9i, and 10e). Vitrebond showed the presence of irregu- 

lar deposits and EDX revealed the presence of Al, Si, Zn, F, and 

detected weak Ca and P peaks (Fig. 10i and l). 
 

3.5.4.   ESEM/EDX analysis of cement disks 
The ESEM/EDX inspection of freshly prepared samples of lc- 

MTA, wTC-Ba and ProRoot MTA revealed the presence of a 

water film when evaluated at 9.9 Torr pressure, 100% RH and 

4
◦
C. The water film completely masked the cement surface.  

At 3.9-2.9 Torr and 40-0% RH the cement surface appeared 

completely smooth with few nanosized porosities. Cements  

observed at 2.9 Torr in wet environment showed many ran- 

domly oriented needle-like crystalline formations immersed 

and embedded in a sort of gel matrix. 

EDX  analyses  of  freshly  prepared  lc-MTA  and  wTC-Ba  

revealed the presence of Ca and Si peaks and traces of barium 

(Ba), Al and sulfur (S). ProRoot MTA displayed Ca, bismuth (Bi)  

and Si peaks while Vitrebond showed Al, Si, Zn and F peaks. 

After 24 h in DPBS the surface of all lc-MTA, wTC-Ba and  

ProRoot MTA samples was covered by a newly formed calcium  

phosphate layer consisting of aggregated apatite spherulites  

(0.5-1 m diameter). Little porosities were observed on the  

surface. 

EDX on lc-MTA and wTC-Ba surface revealed the presence  

of Ca and phosphorus (P), chlorine (Cl) and sodium (Na) peaks  

and the disappearance of Si, S, Ba and Al peaks, suggesting  

the formation of a deposit thick enough to mask the dense  
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Fig. 9 - Morphology and chemical composition and marginal adaptation of wTC-Ba filling human roots after 10 min (a-c), 

24 h (d-f) and 28 days (g-i) of soaking in DPBS at 37
◦
C. 

 

surface of the cement. EDX analysis of inner area of fractured 

samples showed the presence of Ca, Ba, Si and S. The surface of 

ProRoot MTA displayed Ca, P, Cl and Na while the inner area of 

fractured samples showed Ca, Si, S, Bi and Al peaks. Vitrebond 

surface showed Al, Si, Zn and F peaks. 

After 28 days the entire surface of lc-MTA cement (Fig. 12a  

and b) resulted covered by a thick porous apatite deposit con- 

sisting of large spherulites (1-2 m in diameter), so that the  

dense cement surface was completely hidden. EDX showed  

Ca and P, traces of Na and Cl. Similar results were obtained  

for wTC-Ba (Fig. 12c and d) and ProRoot MTA (Fig. 12e and f)  

surfaces. 

Differently, Vitrebond disks soaked for 28 days in DPBS 

(Fig. 12g and h) showed the absence of apatite precipitates.  

EDX revealed Si, Al, Zn, F and traces of Mg and Cl. 

 
 

3.6. Cell viability 
 

3.6.1.   Response to the extract exposure 
Alamar  blue  assay  uses  a  visible  blue  fluorogen  probe  

resazurin, which is reduced to a red fluorescent compound  

(resorufin) by cellular redox enzymes. Viable cells continu- 

ously convert resazurin to resorufin, thereby generating a  

quantitative measure of viability and cytotoxicity. The amount  

of fluorescence is estimated proportional to the number of  

living cells and corresponds to the cell metabolic activity. 

The exposure of Saos-2 cells to the extracts showed the  

increase of the cell viability and number with time for all the 

materials’ extracts (Fig. 13A). 

No statistical differences were detected at 24 h in the via- 

bility of cells exposed to the extracts of any calcium-silicate  

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 - Morphology and chemical composition and marginal adaptation of ProRoot MTA (a-e) and Vitrebond (f-l) cements 

filling human roots after 24 h and 28 days of soaking in DPBS at 37
◦
C.  
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Fig. 11 - Optical microscopy observation of the morphology of retro-filled roots surface, obturated with lc-MTA (a and b) or 

wTC-Ba (c and d) and soaked in DPBS for 24 h. Apatite deposits are visible on the surface of cements and on adjacent dentin. 
 

 

material and controls, while the exposure to the extracts of  

Vitrebond allowed a statistically lower cell viability, suggesting 

the presence of damaged and nonviable cells. The data of lc- 

MTA, wTC-Ba and ProRoot MTA were all statistically different 

from Vitrebond at 1 day. 

Statistically lower viability value was detected after 3 days 

of exposure to the extracts of lc-MTA compared to wTC-Ba and 

ProRoot MTA extracts. No statistical differences were obtained 

between lc-MTA and Vitrebond at 3 days. 
 

3.6.2.   Response to the solid cements 
All the materials showed a statistically reduced viability and  

cell number compared to the control TCPS. However, cell  

response on TCPS was measured to check the viability and pro- 

 

 

liferation of Saos-2 along the experiments, and was not used 

as control surface against the cement surface since the reac- 

tion of cells to the chemistry and to the (smooth) surface area 

of the culture plastic cannot be compared with the response  

to the 3D rough surface of the cements. 

Similar results were obtained using two different assays of  

cell cytotoxicity, i.e. Alamar blue reduction (metabolic activ- 

ity, Fig. 13B) and neutral red uptake (membrane integrity,  

Fig. 13C). 

The viability and cell number increased with time for Saos- 

2 cultured onto wTC-Ba and ProRoot MTA (Fig. 13B and C). 

At 24 h and 3 days the viability on the calcium-silicate  

cements was similar while was statistically lower on Vitre- 

bond (Fig. 13B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 - ESEM/EDX analyses of sample disks soaked 28 days in DPBS at 37
◦
C showing the formation of apatite (bioactivity) on 

the surface of lc-MTA (a and b), wTC-Ba (c and d) and ProRoot MTA (e and f) and the complete lack of bioactivity of  

Vitrebond (g and h).  
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Fig. 13 - Viability of Saos-2 cells: evaluation of the health state of cells (metabolic activity and cell integrity). The diagrams  

include the one-way ANOVA results (*significant difference per p < 0.05 within each material group (3 days vs 24 h);   is the  

significant difference per p < 0.05 vs lc-MTA at 24 h;   is the significant difference for p < 0.05 vs lc-MTA at 3 days;   is the  

significant difference per p < 0.05 vs lc-MTA at 7 days). (A) Alamar blue cytotoxicity assay showing the viability (metabolic  

rate and functional capacity of mitochondria) of cells exposed to the materials’ extracts (n = 4). The metabolic activity of cells  

statistically increased over time for all the materials’ extracts. No statistical differences were detected at 24 h in the  
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A decrease in viability and cell number was observed at 7  

days for lc-MTA (Fig. 13B and C). At this time the viability on  

lc-MTA was statistically lower than on wTC-Ba and ProRoot  

MTA but statistically higher than on Vitrebond (Fig. 13C). 
 

4. Discussion 
 
Blood contamination is inevitable through all clinical proce- 

dures in oral and root-end apical surgery and may increase  

the risk for a complete washout of the materials during their 

setting phase. Moreover, the materials can take up more water 

than might be ideal [50,51] and may change their physical  

properties [52] when in moist environment. 

The  setting  time  of  calcium-silicate  MTA  cements  is  

30-70 min [53,54], but is longer when in presence of serum  

and blood [54,55]. The presence of serum proteins increases  

the setting time and modifies the expansion of calcium silicate  

cements [54,55]. So, the use of fast setting light-curable mate- 

rials to fill root-end cavities represents an innovative approach  

to prevent the cement wash-out and to ensure the clinical  

success. 

The present study demonstrated that lc-MTA possesses  

improved chemical-physical properties (fast setting, bioactiv- 

ity) mainly due to the presence of calcium-silicate mineral  

particles and poly-HEMA polychelating amphiphilic material.  

After 120 s of light-curing the surface of the cement was hard  

enough to support both the initial and final Gilmore needles.  

Differently, the setting time of the commercial available con- 

trol cement ProRoot MTA was 170 min, in agreement with  

previous studies [54,56,57]. 

The surface structure of the experimental lc-MTA cement,  

observed by ESEM/EDX, resulted pore-free and more homo- 

geneous than the surface of both wTC-Ba and ProRoot MTA  

cements. 

A complex setting mechanism is proposed for lc-MTA: 
 

(i)  After light-curing the presence of HEMA and TEGDMA  

 monomers creates a polymeric network able to stabilize 

the outer surface of the cement. 

(ii)  Hydrogen bond interactions occur between the OH groups  

 of HEMA and silicate groups of the mineral powder (poly- 

HEMA-Si bond, Fig. 14A).These chemical interactions may 

confer to the cement bulk fast hardness and early consis- 

tency and stability. 

(iii)  Once immersed into aqueous media, the designed resin  

 matrix  is  permeable  enough  to  absorb  water  due  to 

the hydrophilicity of HEMA, and to keep it entrapped  

inside  the  cement.  Consequently,  the  inclusion  of  a 

 

HEMA/TEGDMA-based resin into a calcium-silicate pow- 

der  resulted  in  a  HEMA/TEGDMA-Si  hybrid  showing  

hydrophilic nature, in agreement with previous studies  

[49,58]. 

(iv)  After  the  initial  polymerization  of  the  resin  matrix  

 induced  by  light-curing,  a  second  setting  reaction  is 

triggered by the absorbed free water and involves the  

hydration  and  polymerization  reactions  of  calcium- 

silicate mineral particles (CSH formation).It is possible to 

affirm that despite the external light-cured set coating  

layer, the cement is permeable enough to absorb water  

(confirmed by water uptake tests) due to its hydrophilic- 

ity. The permeability and water sorption of HEMA-based 

systems has been previously proved [49]. 

 

ESEM/EDX, Raman and FTIR analyses demonstrated that  

upon  soaking  in  DPBS,  the  exposed  external  surface  of  

lc-MTA  is  a  reactive  substrate  that  is  rapidly  covered  by  

calcium-phosphate spherulites forming a biocoating mainly  

composed of carbonated apatite. The apatite-forming ability  

of calcium-silicate MTA cements has been recently demon- 

strated [12,15,16]. The study proved that the experimental  

lc-MTA cement is more bioactive than conventional calcium- 

silicate MTA cements; upon aging in DPBS, the lc-MTA cement  

appeared to form the thickest carbonated apatite deposit, sug- 

gesting that the incorporation of poly-HEMA-TEDGMA into  

the cement increased its bioactivity. 

Many  different  chemical  reactions  may  explain  the  

improved bioactivity of lc-MTA. 
 

4.1. Release of calcium ions 
 

Calcium-silicate MTA cements were able to release calcium 

ions. Calcium ions released by calcium-silicate cements favor 

the ability to form apatite deposits [59] and increase the num- 

ber of pores inside the cement [59,60]. 

Calcium-silicate MTA cements are porous media, partially  

or completely saturated with a pore solution. Due to this  

porosity, material-environment mass exchanges occur, in par- 

ticular ion diffusion through the porosity. Calcium release of  

ProRoot MTA was in agreement with previous studies [61,62].  

lc-MTA, although less soluble than ProRoot MTA and wTC- 

Ba, was characterized by calcium release and alkalinizing  

power statistically higher than the others. It can be hypoth- 

esized that the hydrophilicity of lc-MTA allows water mobility  

(inward-outward flux) and penetration into the cement bulk  

through the meshes of the resin molecular net; these pro- 

cesses are responsible for the high calcium release from the  
 

mitochondrial function of cells exposed to the extracts of any calcium-silicate material and controls, while the exposure to  
the extracts of Vitrebond allowed a statistically lower viability of cells. Statistically lower number of cells was detected after  

3 days of exposure to the extracts of lc-MTA compared to wTC-Ba and ProRoot MTA extracts. (B) Alamar blue cytotoxicity  

assay of cells cultured on solid cements (n = 6). The viability increased with time for Saos-2 cultured onto wTC-Ba and  

ProRoot MTA. At 24 h and 3 days the mitochondrial function of cells cultured on the calcium-silicate cements was similar  

while was statistically lower on Vitrebond. A non-significant decrease of metabolic activity was observed at 7 days for  

lc-MTA; at this time the viability on lc-MTA was statistically lower than on wTC-Ba and ProRoot MTA but statistically higher  

than on Vitrebond. (C) Neutral red cytotoxicity assay (cell surface integrity and lysosome viability) of cells grown on solid  

cements (n = 3). The trend of the Neutral red assay was similar to the Alamar blue. A significant decrease of metabolic  

activity was observed at 7 days for lc-MTA.  
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Fig. 14 - (A) Hydrogen bonding interactions between silicate ions and the resin. (B) Ionic interactions between the CSH  

matrix and Ca2+ ions and the subsequent nucleation of an apatite phase. (C) Hydrogen bonding interactions between the  

CSH matrix and HPO42− ions and the subsequent nucleation of an HPO42−-containing apatite phase. (D) Hydrogen bonding 

interactions between the CSH matrix and PO43− ions and the subsequent nucleation of an apatite phase. 

 

 

lc-MTA cement. The water absorption inward the hydrogel  

structure promotes the solubilization of mineral ions (Ca2+)  

and the formation of portlandite and CSH; the water mobility  

favors the calcium release from the cement bulk. Differently,  

the formation of a sheath protective layer [63] on the surface  

of hydraulic calcium-silicate cements (and similarly on wTC- 

Ba and ProRoot MTA) reduces the inward flux of water into  

the cement bulk after the first stages of the hydration reac- 

tion and consequently decreases the material-environment  

mass exchanges and leaching (outward flux of calcium from  

the cement). 

The initial high calcium release detected after 3 h could  

be  explained  by  the  surface  hydration  and  dissolution  of  

calcium-silicate particles due to their high reactivity with  

water. The formation of portlandite (calcium hydroxide) in  

the early hydration stages of lc-MTA (as well as of other MTA  

cements) has been confirmed by both the strong increase in  

pH of soaking water and by Raman and FTIR analyses. Further  

apatite-formation ability is related to calcium ions supplied 

 

 

by both CaCl2 and calcium sulfate present in wTC-Ba formula- 

tion. Calcium chloride has been demonstrated able to increase 

the bioactivity of HEMA-based hybrid materials [64]. 

As expected on the basis of its chemical composition, Vit- 

rebond was absolutely unable to produce calcium hydroxide, 

to release calcium and to increase pH. High calcium release is a 

requisite for a material to be bioactive [59]. 

 

4.2. Mineral component: sorption of Ca 2+  and 
phosphate ions 

 
After hydration of calcium-silicate particles, a solid-liquid  

interface forms on the mineral particles and ion dissolution  

occurs almost immediately. Ca2+  ions are rapidly released  

(calcium hydroxide formation) and migrate into the solu- 

tion. Silicates are attacked by OH
−
 ions (hydrolysis of SiO44−  

groups in alkaline environment) and a CSH phase forms on  

mineral particles. CSH is a porous, fine-grained and highly dis- 

organized hydrated silicate gel layer containing Si-OH silanol  
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groups and negative surface charges. Actually, at alkaline pH, 

the deprotonation of silanol groups should predominate [65] 

with the consequent formation of SiO
−
 negative groups. The 

attraction between CSH particles has been reported as a con- 

sequence of the very high negative charge density of the CSH 

particles and the presence of Ca2+ ions [66]. 

The SiO
−
  negative groups induce heterogeneous nucle- 

ation of apatite by bonding calcium ions from the mineral  

particles on the silica-rich CSH surface (Fig. 14B), according  

to: 
 

Si-O
− + Ca2+ →   Si-O

−· · ·Ca2+ 

 

The   sorption   of   phosphate (PO43−)   and   mono- 

hydrogenphosphate (HPO42−)  ions  may  occur  through  

hydrogen bonding (Fig. 14C and D), according to: 
 

2− 
Si-O

− + HPO42− →   Si-O
−···HPO4 

 
 

3− 
Si-OH + PO43− → Si-OH· · ·PO4 

Alternatively, the HPO42− ions can enter the apatite struc- 

ture through the formation of PO43−· · ·HPO42− hydrogen bond 

interactions. 
 

4.3. Organic phase: oxygen atoms present in the resin 
(hydroxyl, ester and ether groups, see Fig. 1) are able to 
chelate calcium ions 
 
Bioactivity  experiments  showed  that  poly-HEMA,  poly- 

TEGDMA  and  poly-HEMA-TEGDMA  polymers  are  able  to  

induce  apatite  deposition  after  a  4-week  immersion  in  a  

metastable calcifying medium. IR spectroscopy showed that  

the thickness of the deposit decreased along the series: poly- 

HEMA > poly-HEMA-TEGDMA > poly-TEGDMA. In other words,  

the most hydrophilic polymer is also the most bioactive. 

The IR spectra corresponding to poly-HEMA showed that  

upon apatite deposition (Fig. 7A), the bands assignable to OH,  

C O, C-O-C and C-O groups underwent wavenumber shifts  

and intensity changes. This trend can be explained by con- 

sidering that oxygen atoms from hydroxyl and ester groups  

may chelate calcium ions released by mineral particles and  

induce apatite deposition (Fig. 15A). This process occurs on  

poly-TEGDMA thanks to analogous interactions between cal- 

cium ions and oxygen atoms from hydroxyl, ester and ether  

groups (Fig. 15B). Apatite deposition on poly-HEMA-TEGDMA  

can be explained consequently. 

In other words, the hydroxyl, ester and ether chelating  

groups (Fig. 1) of HEMA and TEGDMA exposed on the surface  

of the polymer are the coordination sites for chelating cal- 

cium ions acting as nanotemplates for the growing of apatite  

nanoparticles. So, the calcium ions bonded by both HEMA  

and TEGDMA contribute to the formation of additional apatite  

nucleating sites. 

The formation of a HEMA-calcium chelate complex is in 

agreement with previous in vitro investigations, which demon- 

strated that poly-HEMA-based materials [67-70] and silica  

gel-HEMA hybrid nanocomposites [26,27] possess bioactivity 

and that poly-HEMA increases the reactivity of a calcium phos- 

phate bone cement [28,29]. 

 

So,  calcium  ions  incorporated  into  the  HEMA/TEGDMA 

calcium-silicate cement hybrid bind the SiO
−
 groups to form 

Si-O-Ca bonds, in agreement with a previous study [71]. 

It  has  been  previously  demonstrated  that  negatively  

charged polar groups must be present at the surface for a cat- 

alytic effect on apatite nucleation [72]. In lc-MTA negatively 

charged Si-O
−
 groups from CSH (derived from the hydrolysis 

of silica groups of calcium-silicate particles [70,71]) may exert 

this catalytic action. At the same time, the combination of  

calcium-silicate particles with a HEMA-TEGDMA-based resin 

enhances the bioactivity of the cement. 

Silanol  groups  are  responsible  for  the  apatite  nucle- 

ation in acellular simulated body fluid [73]. The bioactivity  

of  calcium-silicate  cements  and  ProRoot  MTA  has  been  

recently demonstrated [12-16], but conventional MTA cements  

have only CSH groups available for apatite nucleation. This  

study is in agreement with previous investigations which  

demonstrated that hydrated silica gel is crucial for the for- 

mation of bone-like apatite and consequent bone bonding  

[11,19,20,32,74]. 
 

4.4. Environmental alkalinity 
 

The  increase  of  environmental  pH  would  accelerate  the  

apatite nucleation, since apatite solubility decreases at basic  

pH values [75] and OH
−
 may be a component of apatite [59,60]. 

Therefore, when exposed to a phosphate-containing solu- 

tion such as DPBS, the silanol groups of the silica-rich CSH  

surface induce heterogeneous nucleation of apatite through  

the adsorption of calcium from the mineral particles and  

phosphate from the solution (due to local supersaturation);  

an HPO42−-containing apatite precipitates and matures into a  

B-type carbonated apatite phase at increasing storage times. 

The nucleation of apatite is triggered by the catalytic effect 

of SiO
−
/Si-OH groups from mineral particles and oxygen- 

containing groups from HEMA and TEGDMA present on the 

cement surface. This process is accelerated by the high pH and 

the release of calcium ions from the mineral component of the 

cement (calcium-silicate particles, calcium chloride, calcium 

sulfate, portlandite, and CSH) that increase the ionic activity 

with respect to apatite. Among the above mentioned factors, 

the high calcium release of lc-MTA seems the predominant in 

determining the highest bioactivity. 

Interestingly, lc-MTA was statistically less soluble than the 

other MTA cements. lc-MTA showed a low weight loss in  

deionized water at all times (1-28 days) demonstrating a low 

solubility in water. Differently, when immersed in DMEM-FBS, 

lc-MTA samples showed a moderate weight loss only at 1 day, 

but a significant weight increment after 14 and 28 days. This 

trend of weight increase may be explained by the precipita- 

tion of calcite and/or aragonite and Ca-P mineral phases, after 

an initial release of Ca and Si from the cement due to the  

hydration reaction of calcium-silicate mineral particles. The 

formation of this deposit is due to the precipitation reaction  

between calcium ions (released by the cement) and phosphate 

and carbonate ions originating from DMEM. 

Actually, the hydration reaction of calcium-silicate par- 

ticles (involving  the  hydration,  surface  dissolution  and  

decalcification of mineral particles) occurs in depth inside the  

cement matrix (sub-surface areas), as proved by the formation  
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Fig. 15 - (A) Chelation of calcium ions by hydroxyl, ester and ether groups from poly-HEMA and the subsequent nucleation 

of an apatite phase; (B) Chelation of calcium ions by ester and ether groups from poly-TEGDMA and the subsequent 

nucleation of an apatite phase. 
 

 

of portlandite and CSH (typical hydration products of Portland- 

derived cements) demonstrated by Raman and FTIR bands. 

Previous studies demonstrated that calcium-silicate MTA  

cements are good substrates for osteoblast growth [19,20,37]  

and  are  able  to  induce  cell  proliferation  mainly  when  

they  are  freshly  prepared  [21,22].  Their  biological  activity  

is  mainly  related  to  calcium  release,  to  the  presence  of  

silicon ions on their surface and to the formation of bone- 

like apatite [12-16,21,22,37]. Calcium-silicate MTA cements  

proved to be more biocompatible compared to the previous  

root-end filling materials such as SuperEBA, IRM and amal- 

gam  [19,20,37,76-78].  Calcium-silicate  MTA  cements  allow  

osteoblast growth and differentiation [37] despite these mate- 

rials  provoked  a  strong  alkalinization  of  the  surrounding  

medium/fluids (pH 11 or more) due to the formation of cal- 

 

 

cium hydroxide. In the present study both the conventional  

calcium-silicate MTA cements (wTC-Ba and ProRoot MTA) did 

not induce any compromising cytotoxicity on Saos-2 cells,  

according to previous studies [37] and Saos-2 cell viability was 

good mainly at 7 days. 

Unexpectedly, the presence of the HEMA/TEGDMA-based  

resin in lc-MTA cement did not reduced the viability and the  

number of cells with respect to both calcium-silicate cements  

(wTC-Ba and ProRoot), as demonstrated by the in vitro  cyto- 

toxicity tests at 1 and 3 days. The fast formation of a bone-like  

apatite layer probably reduced the expected negative effect  

of the resin. Moreover, polymer-protein interactions (poly- 

HEMA interacts with proteins) [58] and the presence of silica  

gel (CSH) may improve the cell viability and adhesion [21,22].  

As expected [20,39,79,80], Vitrebond showed some cytotoxic  
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effect on exposed cells. Vitrebond, is composed by an alumino- 

fluoro-silicate mineral powder mixed with a HEMA-containing  

light-curable liquid, proved a complete lack of bioactivity upon  

soaking in DPBS, according to its chemical composition; under  

these conditions, no formation of apatite and calcium hydrox- 

ide was observed, due to the lack of calcium in the formulation. 

It has to be underlined that the direct application of cells on 

materials, as reproduced in this study, represents an extreme 

challenge, because of the static conditions and the lack of  

defensive mechanisms able to moderate the injury imposed  

to the cells, such as biological fluids and reactive molecules 

in vivo. Therefore, it is reasonable to believe that the response 

of these cells in this type of experiment overestimates the  

outcome expected in a clinical situation. 

The effect of cement extracts used as culture medium on  

cell viability was carried out to test the presence of cyto- 

toxic chemicals (extractables or leachables) leached out in  

the medium from the material. In the present study an high  

extraction ratio, i.e. surface area of the material/volume of  

extractant medium (higher than that suggested by ISO 10993- 

12 clause 10) was used to attain the maximum amount of  

extractables. Exaggerated extraction is appropriate for haz- 

ard identification (ISO 10993-12 annex C [47]). Actually, many 

authors used extraction ratio [81-83] different from those  

recommended by the ISO 10993-12 [47] to test resin dental  

materials, and obtained reliable and probable results. 

The data of cell viability in presence of lc-MTA extracts  

showed that the leachables released in the medium allow cell 

proliferation, with no differences with respect to wTC-Ba, Pro- 

Root or control TCPS. 

To verify the clinical use of the new material, restorations  

were prepared in root-end cavities and ESEM/EDX was used to  

evaluate marginal adaptation. All cements displayed adequate  

marginal adaptation to dentin, i.e. no gaps and no porosities  

were observed along the margin either in freshly prepared  

restorations or in 24-h aged restorations. However, all lc-MTA  

restorations were coated by a thick layer of Ca-P precipitates  

which demonstrated the high reactivity of the new mate- 

rial. The restorations with the experimental wTC-Ba displayed  

similar adequate marginal adaptation, but thinner Ca-P coat- 

ings. Finally, Vitrebond restorations showed the absence of  

marginal gaps and the presence on the surface of calcium  

and phosphate peaks but not of apatite spherulites. This result  

can be explained by considering that dentin released calcium  

under the acidic conditions (pH of about 3) attained in the early  

stages of cement mixing. 
 
 

5. Conclusion 
 
The  study  demonstrated  that  it  is  possible  to  develop  a  

light-curable  calcium-silicate  MTA  cement  able  to  set  in 

2 min through the combination of a HEMA/TEGDMA-based  

hydrophilic resin and a calcium-silicate powder. This inno- 

vative material displayed high bioactivity, as demonstrated  

by the early formation of an apatite deposit after immersion  

in phosphate-containing solutions. Poly-HEMA-TEGDMA cre- 

ates a polymeric network able to stabilize the outer surface  

of the cement and a hydrophilic matrix permeable enough to  

absorb water. Heterogeneous nucleation of apatite occurs in 

 

nucleating sites (SiO
−
/Si-OH groups from CSH and oxygen- 

containing groups from poly-HEMA-TEGDMA) through the 

sorption of calcium and phosphate ions. The formation of an 

apatite biocoating on the cement surface and the fast setting  

time represent extremely interesting properties for a mate- 

rial specifically designed for the applications in hard tissues 

in dental and maxillofacial surgery (root-end obturations and 

bone defects) and make it an attractive alternative to conven- 

tional calcium-silicate cements. 
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a b s t r a c t 

Introduction.   The  hypothesis  was  that  experimental  ion-leaching  bioactive  composites 

enhance remineralization of apatite-depleted dentin. 

Materials  and  methods.  Calcium-aluminosilicate (wTC-Ba) or fluoride-containing calcium- 

aluminosilicate (FTC-Ba)  Portland-derived  mineral  powders  were  mixed  with  HTP-M 

methacrylate HEMA/TEGDMA/PAA-based resin to prepare experimental composites. Con- 

trols were Vitrebond and Gradia Direct LoFlo. 

Calcium- and fluoride-release, pH of soaking water, solubility and water uptake were  

evaluated in deionized water using material disks (8 mm diameter and 1.6 mm thick). 

The  apatite-formation  ability  (bioactivity)  and  the  ability  to  remineralize  previously 

demineralized dentin were assessed by ESEM-EDX and FTIR after soaking in a phosphate- 

containing solution. 

Human dentin slices (0.8 mm thickness) were demineralized in EDTA 17% for 2 h, placed 

in close contact with the material disks and immersed in a phosphate-containing solu- 

tion (Dulbecco’s Phosphate Buffered Saline, DPBS) to assess the ability of the materials to 

remineralize apatite-depleted dentin. 

Results.  Only the experimental materials released calcium and basified the soaking water 

(released hydroxyl ions). A correlation between calcium release and solubility was observed. 

FTC-Ba composite released more fluoride than Vitrebond and formed calcium fluoride (flu- 

orite) precipitates. Polyacrylate calcium complexes (between COO−  groups of polyacrylate 

and released calcium ions) formed at high pH.  
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The formation of apatite was noticed only on the experimental materials, due to the com- 

bination of calcium ions provided by the materials and phosphate from the DPBS. Apatite  

deposits (spherulites showing Ca and P EDX peaks and IR bands due to phosphate stretch- 

ing and bending) were detected early on the experimental material disks after only 24 h of  

soaking in DPBS.  

Only the experimental composites proved to have the ability to remineralize apatite- 

depleted dentin surfaces. After 7 days in DPBS, only the demineralized dentin treated with  

the experimental materials showed the appearance of carbonated apatite (IR bands at about  

1400, 1020, 600 cm−1 ). EDX compositional depth  pro“le  through the fractured demineralized  

dentin slices showed the reappearance of Ca and P peaks (remineralization of dentin surface)  

to 30-50 m depth. 

Conclusions.   The  ion-leachable  experimental  composites  remineralized  the  human  

apatite-depleted   dentin.   Ion   release   promotes   the   formation   of   a   bone-like  

carbonated-apatite   on   demineralized   dentin   within 7 days   of   immersion   in  

DPBS.  

The use of bioactive “smart” composites containing reactive calcium-silicate Portland- 

derived mineral powder as tailored filler may be an innovative method for the biomimetic  

remineralization of apatite-depleted dentin surfaces and to prevent the demineraliza- 

tion  of  hypomineralized/carious  dentin,  with  potentially  great  advantage  in  clinical  

applications.  
© 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  

 
 
 

In most of these studies dentin was immersed in solutions 
1. Introduction 
 
Dentin is a complex tissue, which contains apatite as mineral 

phase, collagen and other proteins, and water [1,2]. Initial car- 

ious lesions affect the mineral phase of dentin and expose the 

collagen fibers creating the conditions for a fast destruction of 

the entire dentin network [2]. 

An important requirement for operative and preventive  

dentistry is the development of restorative “smart” materi- 

als able to induce the remineralization of hypomineralized  

carious dentin (demineralized/carious dentin). At present no 

restorative materials with proven capability to induce dentin 

remineralization are available on the market. 

The  remineralization  of  demineralized  dentin  (biorem- 

ineralization ) is  the  process  of  restoring  minerals  through  

the   formation   of   inorganic   mineral-like   materials  

[3]. 

Recently,  experimental  remineralizing  resin-based  cal- 

cium phosphate cements (ion-leaching composites) have been  

proposed as restorative materials to induce dentin remineral- 

ization [4-8]. 

Biomimetic   remineralization (bioremineralization)   of  

dentin has been investigated with different methods using  

ion-containing solutions or ion-leaching silicon-containing  

materials (mainly  bioactive  glasses):  solutions  containing  

Ca2+, SiO44−, F
−
 or PO43− ions [9], bioactive glasses placed on  

dentin [10], remineralization solutions supplemented with a  

bioactive glass [11] and remineralizing solutions containing  

the ions leached from ultrafine bioactive glass particles [12],  

glass-ionomer cements containing a bioactive glass in dog  

restorations [13], MTA cement layered on the dentin surface  

[14],  Portland  cement  blocks  (as  a  source  of  calcium  and  

hydroxyl ions) immersed in a biomimetic analog consisting  

of  simulated  body  fluid  added  with  polyacrylic  acid  and  

polyphosphonic acid) [15,16] or poly(vinyl phosphonic acid  

(PVPA) [17]. 

containing ions leached from different silicate-based materi- 

als without dentin-material contact, and consequently long  

times (14 days to 1 month) are required to achieve the rem- 

ineralization of dentin. 

Calcium-silicate  cements  (conventionally termed mineral tri- 

oxide aggregate MTA cements, such as ProRoot MTA, MTA 

Angelus, Tech Biosealer) are Portland-derived cements that  

have been introduced in dentistry as materials for different  

endodontic clinical applications [18,19]. 

Calcium-silicate cements are hydrophylic materials able to  

tolerate moisture (hydraulic materials) and to polymerize and  

harden (setting) also in the presence of biological fluids (blood,  

plasma, saliva, dentinal fluid). They are ion-leaching materials  

able to release calcium and hydroxyl ions (alkalinizing activity)  

into the surrounding fluids, creating the conditions for apatite  

formation [20-23]. In detail, calcium-silicate particles hydrate  

and decalcify after mixing with water following the formation  

of CSH gel (calcium-silicates hydrates) and calcium hydroxide  

[22,24]. 

Calcium-silicate cements possess bioactive behavior i.e.  

stimulate the formation of new apatite-containing tissues,  

since they are biointeractive materials able to develop apatite  

on  their  surface  in  a  short  induction  period  [20-23]  and  

able  to  elicit  a  positive  response  at  the  interface  from  

the biological environment [3,19,25]. They showed excellent  

clinical results [19] possibly related to their biocompatibil- 

ity  and  bioactivity (i.e.  apatite-forming  ability)  properties  

[20-23,26]. 

The aim of this study was to develop bioactive calcium- 

releasing light-curable hydrophilic composites with tailored  

remineralizing properties, to be used as restorative base-liner  

materials in sandwich restorations. Moreover, to test the rem- 

ineralization of dentin by the experimental composites, a  

new experimental set-up was proposed involving the dentin- 

material contact, with the aim to mimic clinical conditions.  
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2. Materials and methods 
 
2.1. Materials 
 
Two experimental composites (named wTC-Ba + HTP-M  and  

FTC-Ba + HTP-M) containing calcium-silicate Portland-derived  

hydrophilic mineral fillers (2-20 m-sized particles) with tai- 

lored  enhanced  reactivity  and  a  light-curable  hydrophylic 

 
 

2.2.2. Solubility 
According to ISO 6876, 2002 [29], the specimens were weighed  

(Initial weight) and placed in sealed cylindrical polystyrene  

holders (3 cm high and 4 cm in diameter) containing 15 mL of  

deionized water, at 37
◦
C. After 1 and 28 days, the samples were  

removed from the solutions and dried to constant weight. 

The solubility (percentage weight variation,   W %) at each 

time t was calculated according to the following equation: 

[ 
resin (1 g mineral powder/0.8 g of resin) were designed and  
prepared [Gandolfi, University of Bologna, Italy]. 

The experimental composite wTC-Ba + HTP-M  was com- 

posed of a reactive calcium-aluminosilicate powder, wTC- 

W% = Dry weight at time  t − Initial weight ]  
 × 100 

Initial weight  

2.2.3.   Water  absorption 
Ba  [containing  tricalcium-silicate  3CaO·SiO2,  dicalcium- 
silicate 2CaO·SiO2,  tricalcium-aluminate 3CaO·Al 2O3,  cal- 
cium  sulfate  and  barium  sulfate],  mixed  with  an  experi- 
mental light-curable hydrophylic resin, HTP-M [containing  
HEMA,  TEGDMA  and  polyacrylic-co-maleic  acid,  EDMAB  
and  camphorquinone].  HEMA,  TEGDMA  and  polyacrylic- 
co-maleic  acid  obtained  from  Sigma-Aldrich,  Steinheim, 

The water uptake at 1, 6 and 24 h was determined gravimet- 
rically, upon aging in 15 mL of deionized water at 37

◦
C. The 

water absorption at each time t was calculated according to  
the following equation: 

 

Water absorption 
[ 

Germany. 

The  experimental  composite  FTC-Ba + HTP-M  was  com- 

posed of a fluoride-containing calcium-aluminosilicate pow- 

= Wet weight at time t − Dry weight at time t ]  
 × 100 

Dry weight at time t 

der, FTC-Ba [i.e. wTC-Ba added to sodium fluoride], mixed with 

the light-curable hydrophylic resin HTP-M. 

Vitrebond  [3 M,  St.  Paul,  MN,  USA;  lot  9NN]  was  used  

as  HEMA-PAA-containing  control  base  material.  Vitrebond  

(resin-reinforced glass-ionomer cement) consisted of a fluoro- 

aluminosilicate  powder [SiO2,  AlF3,  ZnO,  SrO,  Na3AlF6  

(criolite), NH4F, MgO, P2O5] and a light-curable liquid [PAA,  

HEMA, water and photoinitiator] [27]. Vitrebond was prepared  

following manufacturer directions [1 spoon (0.033 g)/1 drop  

(0.05 g)]. 

Gradia  Direct LoFlo A3 [GC, Tokyo, Japan; lot 1001271] was 

used as light-cured flowable control composite/base material. 

Gradia contained a silica prepolymerized filler (0.85 m size) 

and UDMA methacrylate monomers. 

The materials were prepared by mixing the mineral powder  

with the resin on a glass plate to form a homogeneous paste.  

PVC molds (8 mm diameter and 1.6 mm thick) were used to  

prepare material disks. Each disk was light-cured on each side  

using a LED unit (Anthos, Imola, Italy). Light-curing time was 

30 s for the commercial materials and 100 s for the experimen- 

tal composites. 

The    materials    were    characterized    for    their  

chemical-physical   properties  (setting   times,   solubility,  

water absorption, alkalinizing activity, calcium and fluoride  

release) and bio-properties (apatite forming ability, dentin  

remineralization). 
 

2.2. Chemical…physical  properties 
 

2.2.1. Setting times 
Gilmore setting times (initial and final setting times) were  

evaluated by the penetration measurements of specific nee- 

dles (initial setting Gilmore needle weight 113.4 g and diameter 

2.12 mm; final setting Gilmore needle weight 453.6 g diameter 

1.06 mm). Setting times corresponded to the lack of a complete 

circular impression (i.e. no indentation mark) on the specimen 

surface [28,29]. 

2.2.4.   Alkalinizing  activity,  and calcium and  ”uoride  
release 
The alkalinizing activity (pH of soaking deionized water) and  

calcium release in soaking water were measured by potentio- 

metric methods. A multiparameter laboratory meter (inoLab  

750, WTW Weilheim, Germany) connected to specific elec- 

trodes was used. A temperature compensated electrode (Sen  

Tix Sur WTW, Weilheim, Germany) was used to measure the  

pH of soaking water. Selective probes (Calcium or Fluoride ion  

electrodes, Eutech instruments Pte Ldt., Singapore) were used  

for Ca2+  and F
−
  quantization in15 mL of deionized water at  

37
◦
C. 

The Ca2+ and F
−
 ions released in the elapsed time between 

two consecutive analysis times were measured. 
 

2.2.5. Statistical  analysis 
The data (expressed as mean and standard deviation of 10  

samples for each material) were statistically analyzed using  

one-way ANOVA with Tukey’s test (p < 0.05). 
 

2.3. Bio-properties 
 

2.3.1. Apatite  deposition  on the surface  of material  disks 
(apatite-forming  ability test) 
The  apatite-forming  ability  (biointeractivity/bioactivity  [3])  

was investigated by evaluating the apatite formation on the  

material  disks  in  the  presence  of  a  simulated  body  fluid  

[25]. 

Material    disks (8 mm    diameter × 1.6 mm    thick, 

0.3 g    weight,    surface    area = 2(  r2) + 2  rh = 2(3.14 × 16) + 

(2 × 3.14 × 4 × 1.6) = 140.672 mm2)    were prepared    and  

soaked  in 5 mL  of  DPBS  (Dulbecco’s  Phosphate  Buffered  

Saline) phosphate-containing solution in sealed cylindrical  

polystyrene holders (3 cm high and 4 cm in diameter) and  

maintained at 37
◦
C until the pre-determined endpoint times  

(24 h and 7 days). A DPBS/cement ratio of 17 mL/g was used.  

The surface chemistry (surface composition and elemental  
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distribution of phases) and morphology of the disks after  

immersion  in  DPBS  were  studied  in  humid  conditions  

using ESEM-EDX and ATR-FTIR methodologies for chemical 

characterization (ISO 10993-18:2005 clause 7) [30]. 

DPBS is a physiological-like buffered (pH 7.4) Ca- and Mg- 

free solution with the following composition (mM): K+ (4.18), 

Na+ (152.9), Cl
−
 (139.5), PO43− (9.56, sum of H2PO4− 1.5 mM and 

HPO42− 8.06 mM). 

2.3.2. Dentin remineralization   test  (DRT Gandol“  
technique) 
The dentin-remineralization ability (bioremineralization of  

demineralized dentin) has been evaluated as the capability  

to induce the formation of apatite on previously demineral- 

ized human dentin. Human dentin slices (5 ± 2 mm side and 

0.8 ± 0.1 mm thick, surface area 30 mm2 + 24 mm2 = 54 mm2) 

from molar teeth extracted for orthodontic/surgical reasons  

were prepared and demineralized in 15 mL of EDTA 17% for 

2h at room temperature (Fig. 1A). 

Disks of set materials (8 mm diameter and 1.6 mm thick)  

were prepared using PVC rings as molds. An innovative set-up  

(DRT Gandol“  technique,  Fig. 1B) was used for dentin reminer- 

alization: each material disk was maintained in close contact  

with a demineralized dentin slice using a tailored PVC sup- 

port and soaked in 15 mL of DPBS at 37
◦
C for 7 days. After this  

time, the dentin slice was removed from the support, rinsed  

with deionized water and then analyzed in wet conditions by  

ESEM-EDX and ATR-FTIR. 

2.3.3. Environmental  Scanning  Electron Microscopy with  
Energy Dispersive  X-ray analysis (ESEM-EDX) 
Samples  were  examined  with  an  Environmental  Scan- 

ning Electron Microscope (ESEM Zeiss EVO 50, Carl Zeiss,  

Oberkochen,  Germany)  connected  to  a  secondary  elec- 

tron  detector  for  Energy  Dispersive  X-ray  analysis  EDX  

(Oxford INCA 350 EDS, Abingdon, Oxfordshire, UK) computer- 

controlled  software  Inca  Energy  Version 18,  using  an  

accelerating  voltage  of 20-25 kV.  The  elemental  analysis  

(weight % and atomic %) of samples was performed applying  

the ZAF correction method. 

EDX was carried out on the surface of the wet material disks  

and on the surface of the wet dentin slices. The samples were  

placed directly onto the ESEM stub and examined without  

preparation (the samples were not coated for this analysis). 

Moreover,  an  EDX  compositional  depth  profile  analysis  

(depth pro“ling  EDX analysis) was carried out through the cross- 

sectional sample of longitudinally fractured (perpendicular to  

the surface ) dentin disks to scan/monitor the calcium (blue  

scan lines) and phosphorous (red scan lines) through the  

dentin thickness. Both the surfaces of dentin disks (surface  

in contact with the composite and opposite free surface) were  

analyzed. Sudden roughness of scan line profiles is imputable  

to the lack of smoothness of the fractured surface. 

EDX spectra refer to the whole image and the EDX elements 

percentages are an average over the whole image. 
 

2.3.4. ATR-FTIR spectroscopy 
IR spectra were recorded on a Nicolet 5700 FTIR spectrome- 

ter, equipped with a Smart Orbit diamond attenuated total  

reflectance (ATR) accessory and a DTGS detector; the spectral 

 

resolution was 4 cm
−1  and 64 the number of scans for each  

spectrum. The ATR area had a 2 mm diameter. The IR radiation  

penetration was about 2 m. 

To minimize the variability deriving from possible sam- 

ple inhomogeneity, at least five spectra were recorded at five 

different points on the upper surface of each specimen. 
 

3. Results 
 

3.1. Chemical…physical   properties 
 

3.1.1.   Setting  times 
All  the  materials  were  set  after  light-curing:  no  circular  

impression was left by the light or the heavy Gilmore needles  

(Table 1). 
 

3.1.2. Solubility 
Experimental  composites  showed  the  highest  solubility  

(Table 1), which did not show any significant increase over time 

(from 1 day to 28 days). 
 

3.1.3. Water  absorption 
The amount of water absorption tended to increase over soak- 

ing time for all the materials (Table 1). Both the experimental  

composites absorbed statistically more water than the other  

materials. Gradia absorbed the statistically least amount of  

water. 
 

3.1.4.   Alkalinizing  activity  (pH of soaking  water) 
Both the experimental composites possessed significant alka- 

linizing activity throughout the whole soaking period (pH  

raised to 9-11) (Table 2). Gradia and Vitrebond did not cause 

any significant pH variation of the water. 
 

3.1.5. Calcium release 
High Ca2+  release was noticed from both the experimental  

composites, especially from wTC-Ba + HTP-M (Table 2). Gradia 

and Vitrebond did not release calcium. 
 

3.1.6. Fluoride release 
The experimental F-containing composite released statisti- 

cally more fluoride than Vitrebond (Table 2). Gradia did not 

release fluoride. 
 

3.2. Bio-properties 
 

3.2.1. Apatite  deposition  on the surface  of material  disks 
(apatite-forming  ability test) 
• ESEM-EDX analysis 

Freshly prepared  materials  : ESEM-EDX analysis of the materi- 

als surface (Fig. 2) revealed the presence of their respective  

constituent elements. The P peak was detected only on Vit- 

rebond, due to the P2O5  component. The strontium EDX  

peak (Sr L-alpha at 1.8 keV) was not detected due to inter- 

ference from the silicon peak (Si K-alpha at 1.84 keV). 

Materials  soaked for 24 h in DPBS: ESEM/EDX showed the pres- 

ence of calcium phosphate deposits (Ca/P 1.89-2.04) on the  

surface of wTC-Ba + HTP-M and FTC-Ba + HTP-M. On these  

samples, EDX proved the appearance of the P peak (Fig. 2).  
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Fig. 1 - DRT Gandolfi technique: experimental set-up for Dentin remineralization tests (DRT). The innovation of the  

experimental set-up consists in the close contact between the sample disk and the dentin slice obtained by the PVC  

support. The DRT Gandolfi technique allows to the easy separation of the dentin slice from the material disk after soaking in 

DPBS. The debris present in the polystyrene container are precipitates of apatite. 

 

The Vitrebond surface showed the presence of the P peak 

(possibly due to DPBS sorption, according to water absorp- 

tion data), but was free from any Ca peak. 

No  calcium  phosphate  deposits  (and  no  P  peak)  were 

detected on Gradia disks immersed in DPBS. 

Materials  soaked  for  7 days  in  DPBS: After 7 days in DPBS,  

apatite formation was noticed only on calcium-silicate filled  

materials (Fig. 3). WTC-Ba + HTP-M displayed uniform cal- 

cium phosphate deposits and an increase in the P peak  

over soaking time (Ca/P 2.27). FTC-Ba + HTP-M showed dif- 

fuse calcium phosphate deposits and an increase in the P  

peak over time (Ca/P 2.28). Vitrebond proved the absence of 

 

calcium phosphate deposits and an increase in the P peak  

due to further DPBS absorption. Gradia proved the lack of 

calcium phosphate deposits (and in the P peak). 

• FTIR spectroscopic analyses 

Fig. 4 shows the IR spectra recorded on the surface of the  

cement disks after aging for 1 and 7 days in DPBS. Band  

assignments have been given according to the literature  

[23,31-33]. 

FTIR analyses proved: 

(i)  the presence of a carbonated apatite on both the exper- 

 imental composites at both aging times (1 and 7 days), 

(Fig. 4A and B);  
 
 
 

Table 1 - Polymerization time (seconds for side), solubility (percent variation of weight,   W %) and water sorption. 

Polymerization Solubility Water sorption 
time (seconds 
on each side) 

1 day 28 days 1h 6h 24 h 

wTC-Ba + HTP-M 100 −24.70 (0.60)A,b −28.00 (3.00)A,b 10.60 (1.90)A,c 10.70 (1.90)A,c 12.00 (2.00)A,b 

FTC-Ba + HTP-M 100 −23.00 (3.00)A,b −26.00 (3.00)A,b 10.40 (0.70)A,c,d 11.50 (0.60)A,c 14.20 (0.90)B,c 

Vitrebond 30 −9.40 (0.40)A,c −11.30 (0.90)A,c 8.20 (0.50)A,d 9.60 (0.60)A,c 10.80 (0.40)B,b 

Gradia 30 −0.57 (0.08)A,a −5.70 (0.60)B,a 0.96 (0.11)A,b 1.39 (0.13)A,b 2.90 (0.30)A,a 

Samples disks (n = 10 for each material) were used. The data were expressed as mean and standard deviation and statistically analyzed using 

one-way ANOVA with Tukey’s test (p < 0.05). Different CAPITAL superscript letters in the same row or different small  superscript letters in the 

same column, mean statistically significant differences.  
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Fig. 2 - (Continued ) 
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Table 2 - pH of soaking water, calcium and fluoride released in soaking water. 

3h 24 h 7 days 14 days 28 days 

Calcium released (ppm) in soaking  water 

wTC-Ba +HTP-M 500 (30)A,b 207 (1.5)B,b 160 (20)C,b 60 (10)D,b 66 (5)D,b 

FTC-Ba + HTP-M 112 (11)A,d 79 (10)B,c 150 (8)A,d 65 (4)B,b 69 (2)B,b 

Vitrebond 3.0 (2.00)A,e 3.0 (1.20)A,d 0.32 (0.01)A,c 1.21 (0.01)A,c 0.8 (0.60)A,c 

Gradia 2.1 (0.60)A,e 1.0 (0.60)A,d 1.12 (0.01)A,c 0.32 (0.01)A,c 0.36 (0.01)A,c 

Water 2.0 (0.60)A,e 1.1 (0.60)A,d 1.1 (0.60)A,c 1.02 (0.01)A,c 10.4 (0.60)A,c 

Fluoride released (ppm) in soaking  water 

wTC-Ba + HTP-M 1.0 (0.1)A,a 1.7 (0.1)A,a 0.3 (0.5)A,a 0.3 (0.1)A,a 1.1 (0.1)A,a 

FTC-Ba + HTP-M 71 (5.0)A,c 17 (2.0)B,c 12.1 (0.5)C,b 10.4 (0.5)C,b 9.3 (0.5)C, 

Vitrebond 9.7 (1.1)A,d 11 (3.0)A,B,d 18 (6.0)C,c 14.1 (1.5)B,C,d 6.1 (1.0)D,b 

Gradia 1.4 (0.5)A,a 0.1 (0.5)A,a 0.3 (0.5)A,a 1.6 (0.1)A,c 0.3 (0.5)A,a 

Water 1.3 (0.5)A,a 1.2 (0.5)A,a 0.6 (0.5)A,a 0.6 (0.5)A,a 1.2 (0.5)A,a 

pH of soaking  water 

wTC-Ba + HTP-M 8.58 (0.12)A,d 9.44 (0.16)B,C,a 9.65 (0.05)B,b 9.3 (0.20)B,b 8.98 (0.04)A,C,b,c 

FTC-Ba + HTP-M 9.3 (0.30)A,b 10.82 (0.16)B,b 9.8 (1.10)A,b 9.8 (0.60)A,b 9.3 (0.40)A,b,d 

Vitrebond 6.59 (0.03)A,c 7.54 (0.18)B,c 7.36 (0.16)B,c 6.70 (0.16)C,c 7.56 (0.04)B,c 

Gradia 6.80 (0.10)A,c 7.87 (0.15)B,c 6.99 (0.07)A,c 7.3 (0.20)A,B,c 6.7 (0.20)A,c 

Water 6.88 (0.04)A,c 7.00 (0.02)A,c 7.10 (0.11)A,c 6.96 (0.06)A,c 7.2 (0.40)A,c 

Samples disks (n = 10 for each material) were used. The data (expressed as mean and standard deviation) were statistically analyzed using 

one-way ANOVA with Tukey’s test (p < 0.05). Different CAPITAL superscript letters in the same row or different small  superscript letters in the 

same column mean statistically significant differences.  

The Ca2+ and F− release in the elapsed time between two consecutive analysis times was reported (i.e. not a cumulative release). 

 

(ii)  a  more  crystalline  apatite  phase  on  wTC-Ba + HTP- 

 M at both aging times, as primarily revealed by the 

higher resolution of the phosphate bending bands at  

598-556 cm
−1 (Fig. 4A and B); 

(iii)  more prominent carboxylate bands (at about 1560 and  

 1410 cm
−1, due to calcium polyacrylate (PAA-Ca com- 

plexes) on FTC-Ba + HTP-M at both aging times (Fig. 4B); 

(iv)  the absence of apatite (lack of bioactivity) on Vitrebond 

and on Gradia at any aging time (Fig. 4C and D).  

With regards to Vitrebond (Fig. 4C), the strengthening near 

1000 cm
−1  observed upon aging was not ascribable to the 

formation of an apatite deposit, since an analogous spectral 

feature was observed in the interior of the samples (spec- 

tra not shown). Moreover, it is interesting to note that the  

bands due to polyacrylate (PAA) were observed upon aging 

(Fig. 4C); in fact, at pH 6, the ionization degree of polyacrylic 

acid has already been reported to be 0.8 [34]; in other words, 

as confirmed by the IR spectra, most of the carboxyl groups 

of polyacrylic acid were in the COO
−
 form. 

 
 

3.2.2. Dentin remineralization   tests 
• ESEM-EDX analysis 

EDX compositional   depth  pro“le   through  the  fractured   dem- 

ineralized   dentin   slices :  EDX  depth  profile  on  fractured 

demineralized dentin sections proved that the treatment  

used (EDTA 17%, 2 h) completely removed the mineral phase 

of dentin to approx. 50 m depth. Actually, no Ca or P peaks 

 

were observed, suggesting that only the water and colla- 

gen/proteinaceous matrix were left in place (Fig. 5). 

The EDTA-treated dentin immersed for 7 days in DPBS was  

analyzed to check that no dentin remineralization occurs  

when demineralized dentin is soaked in DPBS: indeed EDX  

data showed the lack of Ca and P on the dentin surface to a  

depth of approx. 50 m (Fig. 6). 

Demineralized   dentin  after  contact  with  wTC-Ba + HTP-M  for 

7 days  in DPBS: On the demineralized dentin surface con- 

ditioned by the cement, Ca and P peaks were detected to  

a depth of 30-50 m (Fig. 6), meaning that dentin rem- 

ineralization occurred on the surface in contact with the  

composite. On the other surface, no Ca and P peaks were  

revealed. 

Demineralized   dentin  after  contact  with  FTC-Ba + HTP-M  for 

7 days in DPBS: Traces of Ca and P were detected on the sur- 

face conditioned by the cement and some remineralization  

occurred on the surface in contact with the composite, while  

no Ca and P were displayed by the other surface (Fig. 6). 

Demineralized  dentin  after  contact  with  Gradia  or Vitrebond  for 

7 days  in DPBS in DPBS: No Ca and P were detected on the 

dentin surface to a depth of approx. 50 m meaning that no 

dentin remineralization occurred on the surface in contact 

with these materials (Fig. 6). 

• FTIR analyses 

Demineralized  dentin : According to EDX data, FTIR analyses  

confirmed that the used EDTA treatment was able to remove  

the mineral phase of dentin; in fact, the spectrum recorded  
 
 

Fig. 2 - ESEM-EDX of freshly prepared material disks and of the disks soaked in DPBS for 24 h. EDX spectra refer to the  

whole image and the EDX elements percentages are an average over the whole image. ESEM-EDX analysis of the freshly  
prepared materials revealed the presence of the P peak only for Vitrebond (due to the P2O5 component). After soaking in  

DPBS for 24 h in DPBS, the surface of wTC-Ba + HTP-M and FTC-Ba + HTP-M was covered by calcium phosphate deposits  

(apatite spherulites, Ca/P 1.89-2.04) and EDX proved the appearance of the P peak of calcium-phosphate deposits. Vitrebond 

surface showed P but no Ca peak. No calcium phosphate deposits (and no P peak) were detected on Gradia.  
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Fig. 3 - ESEM-EDX of the material disks soaked in DPBS for 7 days. EDX spectra refer to the whole image and the EDX  

elements percentages are an average over the whole image. Apatite formation was noticed only on calcium-silicate filled  
materials. WTC-Ba + HTP-M displayed a uniform calcium phosphate deposit (Ca/P 2.27) and evident P peak. FTC-Ba + HTP-M 

showed diffuse calcium phosphate deposits (Ca/P 2.28) and P peaks. Vitrebond proved the presence of P peak, the absence of 

calcium peak and of deposits. Gradia proved the lack of Ca and P peaks and of surface precipitates. 

 

 

after the treatment (Fig. 5), showed only the bands due to  

collagen, while the spectral features typical of the apatite  

component were no longer observed. 

Demineralized  dentin  after  contact  with  experimental   compos- 

ites  for 7 days  in DPBS: The demineralized dentin samples  

treated with the experimental cements remineralized to  

different extents. After contact with wTC-Ba + HTP-M, the  

remineralization was more pronounced than after contact  

with FTC-Ba + HTP-M. In the spectrum corresponding to the  

former treatment, a carbonated apatite phase formed, as  

revealed by the appearance of the bands at about 1400,  

1020 and 600 cm
−1  (Fig. 7A); the band at about 1550 cm

−1  

increased in intensity with respect to the 1630 cm
−1 band,  

due to the contribution of the carboxylate group of poly- 

acrylate calcium complexes. This group can contribute also  

to the band at about 1400 cm
−1. 

Analogous  spectral  changes  were  observed  also  on  the 

dentin sample treated with FTC-Ba + HTP-M (Fig. 7B); how- 

ever, the apatite component was detected in a significantly 

lower amount, according to calcium release data. 

It is interesting to note that the apatite phase formed upon  

contact with wTC-Ba + HTP-M was significantly different  

from that typical of sound dentin as well as from the apatite 

 

 

powder isolated from the DPBS storage medium (Fig. 8);  

in fact, the phosphate asymmetric stretching mode in the  

above mentioned samples fell at different wavenumber val- 

ues, i.e. at 1020, 1001 and 1014 cm
−1, respectively. 

Demineralized   dentin  after  contact  with  Vitrebond  or  Gradia : 

Minor or no significant spectral changes were observed after 

treatment with Vitrebond or Gradia, following the same  

trend as calcium release (Fig. 7C and D). 
 
 

4. Discussion 
 

The study demonstrated that the presence of the experi- 

mental  calcium-silicate  based  composites  in  contact  with 

demineralized dentin surfaces induced a significant reminer- 

alization of the demineralized dentin surface. 

The  inclusion  of  a  reactive  calcium-silicate  powder  as  

tailored filler in resin restorative materials enhanced (biocat- 

alyzation) apatite formation. Interestingly, the remineralizing  

test in phosphate-containing solution demonstrated that the  

experimental materials placed in close contact with deminer- 

alized dentin are able to induce the remineralization of the  

phosphorous-depleted demineralized dentin surface down to  
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Fig. 4 - IR spectra recorded on the surface of the material disks before (t = 0) and after aging in DPBS for 1 and 7 days: (A)  

wTC-Ba + HTP-M, (B) FTC-Ba + HTP-M, (C) Vitrebond, and (D) Gradia. The bands prevalently due to calcium silicates (Si),  

barium sulfate (Ba), resin (R), water (w), polyacrylate (PAA), polyacrylate calcium complexes (PAA-Ca) and apatite (Ap) have  

been indicated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 - ESEM-EDX and IR analyses of whole dentin and demineralized dentin. EDX showed the complete disappearance of P 

peaks after demineralization in EDTA 17% for 2 h (phosphorous-depleted demineralized dentin surface). IR spectra recorded on 

the surface of a dentin slice before and after treatment with EDTA 17% for 2 h (apatite-depleted demineralized dentin). The 

bands prevalently due to collagen (Col) and apatite (Ap) mineral phases have been indicated.  
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Fig. 6 - ESEM-EDX of treated and untreated dentin after 7 days in DPBS. EDX compositional depth profile analysis (depth  

pro“ling   EDX analysis) trough the cross-sectional sample of longitudinally fractured dentin disks: calcium (blue scan lines)  

and phosphorous (red scan lines) contents through the dentin thickness are shown. No dentin remineralization occurred in  

demineralized EDTA-treated dentin soaked in DPBS: EDX data showed the lack of Ca and P on dentin surface till a depth of  

approx. 50 m. After contact/treatment of the demineralized dentin with wTC-Ba + HTP-M for 7 days in DPBS, dentin  

remineralization occurred: Ca and P peaks were detected on the dentin surface till a depth of 30-50 m. On the opposite  

untreated surface, no Ca and P peaks were revealed. Some remineralization occurred on the surface in contact with  

FTC-Ba + HTP-M: traces of Ca and P were detected on dentin surface, while no Ca and P were displayed by the untreated  

dentin side. No Ca and P were detected on dentin surface till a depth of approx. 50 m after contact with Gradia or  

Vitrebond, meaning that no dentin remineralization occurred on the surface in contact with each of these materials. (For  

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. 7 - IR spectra recorded on the surface of demineralized dentin after contact with the four different materials for 7 days 

in DPBS: (A) wTC-Ba + HTP-M, (B) FTC-Ba + HTP-M, (C) Vitrebond, (D) Gradia. The bands prevalently due to collagen (Col), 

apatite (Ap) and polyacrylate calcium complexes (PAA-Ca) have been indicated. 
 

a 30-50 mm depth within a period of 7 days, as proved by the  

EDX compositional depth pro“le  and IR analyses. Differently, the  

HTP-M resin did not show any ability to enucleate an apatite  

phase from Ca2+- and PO43−-containing solutions (data not  

shown). 

In this remineralizing process the bioavailability of min- 

eral ions (calcium, fluoride) from restorative materials is the  

basic  requirement  to  enhance  the  apatite  formation  and  

the mineralization of the dentinal tissue in the presence of  

phosphate-containing solutions. The mineral uptake in dem- 

ineralized dentin was allowed by the detected high calcium  

release from the calcium-silicate filler in the experimental  

liners. 

The  concept  of  remineralization  is  based  on  the  rein- 

corporation of mineral (apatite) in dental tissues (dentin or  

enamel). Remineralization of demineralized/carious dentin  

occurs by incorporation of mineral ions (calcium, phosphate,  

fluoride) from the oral fluid or from external sources (specific  

treatments), through the growth of existing apatite crystals  

(belonging to remnant crystallites in the subsurface) [35,36].  

The mineral precipitated may act as a constant site for further  

nucleation of mineral promoting a continuous remineraliza- 

tion over time when in presence of environmental mineral  

ions. 

 

The capability of a material to induce the formation of  

apatite on demineralized dentin (remineralization ability) is  

strictly related to the biointeractivity and bioactivity, i.e. the  

ability to evoke a positive response from the biological envi- 

ronment. 

Various methods have been used for evaluating the effec- 

tiveness of the remineralization procedure in dental tissues.  

Assessment methods can provide quantitative and qualitative  

information. Recent studies have assessed the reincorporation  

of mineral into demineralized dentin using indirect qualitative  

analysis, such as polarized light microscopy [37], semiquanti- 

tative analysis such as transverse microradiography [38,39],  

Transmission   Electron  Microscopy (TEM) [15] and spectroscopic  

analyses, such as Raman and Fourier transform infrared spec- 

troscopy [40-42]. However, some limits are present in each  

method of analysis. 

In polarized light microscopy analyses, the quantitative  

relationship between changes in mineral content and birefrin- 

gence has not been fully established. TEM imaging provides 

information  on  crystal  shape  and  structure;  however,  the 

analyzed tissue volume is very small and may not be repre- 

sentative of the material bulk; moreover, TEM does not allow 

any distinction between the mineral chemically bound to the 

organic matrix and that located close to it.  
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on the powder isolated from the storage medium (Fig. 8). On  

the contrary, the same bands were not observed in the spec- 

trum of the dentin treated with Vitrebond (Fig. 7C). These  

data suggested that polyacrylate interacted with the calcium  

ions  belonging  to  the  apatite  deposits,  while  no  interac- 

tion occurred between polyacrylate and collagen from dentin.  

Actually, under alkaline conditions, both polyacrylic acid and  

collagen are negatively charged and repulsive forces prevent  

complex formation (i.e. no aggregate forms) [34].  

Achieving remineralization of dentin remains one of the  

most  difficult  tasks  in  dentistry.  There  is  a  lack  of  com- 

mercially  available  composites  with  declared  and  proved  

remineralizing activity. Therefore, the development of new  

materials for remineralization of dentin should be encour- 

aged. Remineralizing dental composites must be interactive  

materials able to release mineral ions that may encourage the 
Fig. 8 - IR spectra recorded on the surface of demineralized 
dentin after contact with wTC-Ba + HTP-M for 7 days in 

DPBS. The spectra of the powder isolated from the DPBS  

storage medium and dentin are reported for comparison.  

The bands prevalently due to collagen (Col), apatite (Ap)  

and polyacrylate calcium complexes (PAA-Ca) have been  

indicated. 

 

 

Spectroscopic  analyses  provide  a  lot  of  information  in  

dentin remineralization studies. Vibrational techniques: (i)  

allow the determination of the nature of the mineral, (ii) pro- 

vide quantitative information on the changes in the mineral  

and matrix compositions as mineralization proceeds and also  

(iii) supply separate responses on the mineral and the organic  

structures in the dentin matrix. Unfortunately, spectroscopic  

methods are not able to differentiate between the contribu- 

tions of intra- and extrafibrillar mineral. The IR spectrum gives  

information on mineral content (i.e. collagen/apatite ratio)  

and mineral crystallinity. 

In the present study, IR spectroscopy in the ATR technique 

has been used to non-destructively verify the efficiency of the 

demineralization procedure as well as the extent of the rem- 

ineralization process. The same technique has been used to  

characterize the composition changes, which occurred on the 

surface of the cement disks aged in DPBS. 

Remineralization of dentin can occur either by the simple 

precipitation of mineral into the loose demineralized dentin  

matrix between collagen fibrils (net remineralization) or by  

the chemical tight association of mineral to the dentin matrix 

structure (functional remineralization). The simple precipita- 

tion of mineral generates an increased mineral content, but  

may not necessarily provide an optimal interaction with the  

organic components of the dentin matrix. 

In the present study, the position of the phosphate asym- 

metric stretching IR band at about 1000 cm
−1 (Fig. 8) suggested  

that the newly formed apatite, although not perfectly coinci- 

dent with that of sound dentin, had a different nature with  

respect to that isolated from the DPBS storage medium. 

This result demonstrated that the apatite formed on dentin  

was intimately bound to it, and not simply a phase deposited  

on its surface. Moreover, it is interesting to note that the  

spectra reported in Fig. 7A and B showed the bands due to poly- 

acrylate calcium complexes, as well as the spectrum recorded 

formation of dentin-like apatite. 

Calcium  hydroxide-containing  materials  are  currently  

used as liners. These materials dissolve in tissue fluids, are  

able  to  release  calcium  and  hydroxyl  ions,  and  exert  an  

antibacterial action generally associated with their high pH. 

Glass ionomer cements have been used as liner-base mate- 

rials  for  their  ability  to  release  fluoride [43]  available  for  

the formation of a less soluble fluorapatite [2,44]. Despite  

the  great  mass  of  information  on  the  positive  effects  of  

fluoride on enamel, no data have demonstrated the effec- 

tiveness  of  fluoride  ions  to  induce  new  mineralization  of  

demineralized dentin and no nucleation of new apatite crys- 

tallites within an apatite-free dentin has been identified in the  

demineralized dentin immersed in a calcium-and-phosphate- 

containing  remineralization  media  in  presence  of  a  glass  

ionomer cement [45]. 

Resin-based calcium-phosphate cements have been pro- 

posed  as  potential  restorative  base-liner  materials  for  

their  ability  to  induce  the  remineralization  of  hypo- 

/demineralized/carious (mineral-deficient)  dentin [4-6,46].  

These materials showed the ability to release either calcium or  

phosphate or fluoride, but no apatite formation on the dentin  

surface and into the thickness of demineralized dentin, has  

been evidenced. 

In  the  present  study  designed  reactive  calcium-silicate  

mineral powders have been introduced in the experimen- 

tal formulations to confer to the experimental composites  

the  ability  to  release  calcium  ions  and  to  form  apatite.  

The bioavailability of calcium in the surrounding medium  

demonstrated a significant effect on dentin remineralization:  

the data showed that freshly placed experimental calcium- 

aluminosilicate composites had a significant impact on the  

processes occurring in their vicinity, and the formation of  

apatite deposits on the experimental composites or nearby  

dental tissues may occur in the intra-oral conditions. The pres- 

ence of the experimental composites induced a significant  

remineralization of the hypomineralized adjacent dentin by  

calcium/mineral uptake, as demonstrated by FTIR and EDX  

data. 

According to calcium release data (Table 2), the experimen- 

tal composite containing wTC-Ba showed greater remineral- 

ization ability than that containing the FTC powder. The two  

calcium silicate fillers showed a different behavior also in the  

bioactivity tests: at all aging times, wTC-Ba + HTP-M showed  
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a more crystalline (i.e. more mature) apatite deposit than  

FTC-Ba + HTP-M. Interestingly, the latter composite showed  

more  prominent  bands  than  the  former  due  to  polyacry- 

late calcium complexes (Fig. 4A and B). This result can be  

explained in relation to the higher alkalinizing activity of  

FTC-Ba + HTP-M (Table 2); actually higher pH values favor the  

formation of higher amounts of COO
−
  groups (i.e. polyacry- 

late), able to interact with calcium ions forming polyacrylate  

calcium complexes. The lower calcium release observed for  

FTC-Ba + HTP-M (Table 2) can be partly related to the forma- 

tion of such complexes, and partly to the formation of calcium  

fluoride (fluorite) as precipitate. 

The detection of higher amounts of polyacrylate in FTC- 

Ba + HTP-M may also explain the slower bioactivity and the  

lower remineralization ability observed for this composite.  

Actually,  several  authors  have  reported  that  the  presence  

of even a small quantity of PAA inhibits apatite deposition  

[33,47,48]. As confirmation, wTC-Ba and FTC-Ba cements (i.e.  

with no HTP-M addition) showed higher bioactivity and rem- 

ineralization ability than the composites with HTP-M (data not  

shown). 

In a pilot study [49] the calcium-silicate wTC-Ba and FTC- 

Ba designed powders have been inserted into Gradia Direct  

LoFlo A3 to assess if the ion-leaching experimental powders  

may confer some bioactivity to this commercial composite.  

Actually, calcium-silicate powders in combination with Gra- 

dia triggered calcium release, the alkalinization of the soaking  

solution, the formation of apatite and dentin remineralization,  

although to a lesser extent than in the composites with HTP-M. 

A major drawback of dental composites is polymerization  

shrinkage  with  the  subsequent  negative  effects  on  bond- 

ing integrity and formation of gaps at the composite-dentin  

interface, and increased possibility of restoration failure for  

bacterial microleakage and secondary caries formation. 

In this study the selection of an adequate hydrophylic resin  

to prepare the experimental composites played a critical role  

to confer water absorption ability and bioactivity properties:  

the absorption of small amounts of water triggers the hydra- 

tion reaction of calcium-silicate fillers, allows calcium release  

and apatite formation, and may help to reduce possible gap  

formation. 

Moreover, hydroxyl ions are released during the hydration  

reaction and may create unfavorable conditions for bacterial  

survival and proliferation. Antibacterial properties are pri- 

marily required at the dentin-restoration interfacial region.  

Actually, the presence of residual bacteria within dentin fur- 

ther increases the risk of reinfection and secondary caries, in  

particular when using dental composites lacking any antimi- 

crobial activity. 

After light-curing, the presence of HEMA and TEGDMA  

monomers in the experimental HTP-M resin creates a poly- 

meric network able to stabilize the material. Once immersed in  

aqueous media, the designed HTP-M resin matrix is permeable  

enough to absorb water due to the hydrophilicity of HEMA,  

and to keep it entrapped inside the cement. The hydrophilic  

nature of the experimental HEMA-containing resin allows  

the triggering and progression of the hydration reaction of  

the calcium-silicate powder [50], with following calcium and  

hydroxyl ion release (Tables 4 and 5). The weight reduction  

over time of the experimental composites immersed in water 

 

is correlated to the leaching of high amounts of calcium and 

hydroxyl ions. 
 

5. Conclusions 
 

Demineralized dentin may be remineralized by new composite 

materials with enhanced reactivity. 

The inclusion of reactive calcium-silicate powders as tai- 

lored filler in hydrophylic resin confers to the composites the 

ability to release mineral ions. 

The  bioavailability  of  remineralizing  ions  is  the  basic 

requirement for the apatite formation (biocatalyzation) in  

presence of a phosphate-containing solution. 

Innovative restorative base-liner hybrid composites with  

attractive basic properties have been produced, such as: 

 

(i)  light-curable materials with controlled solubility in water  

 and oral fluids 

(ii)  hydrophylic nature to tolerate moisture during place- 

 ment and to interact with oral fluids and moist tooth 

structures 

(iii)  ions-releasing filler 

(iv)  alkalinizing activity (hydroxyl ion release) to buffer the  

 environmental acids, and antibacterial properties 

(v)  bioavailability of remineralizing ions (calcium and fluo- 

 ride release) 

(vi)  bioactivity (apatite forming ability) 

(vii)  ability to enhance the natural remineralizing capability  

 of dental structures (biocatalyzation) and to remineralize 

dentin (bioremineralization). 
 

A new  generation  of  “smart”  materials  able  to  induce 

apatite formation in demineralized dentin has been obtained 

as promising composites to be tested in clinical trials. 
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Abstract 

Gandolfi MG, Taddei P, Siboni F, Modena E, Ginebra 

MP, Prati C. Fluoride-containing nanoporous calcium-silicate 

MTA cements for endodontics and oral surgery: early fluorapa- 

tite formation in a phosphate-containing solution. International 

Endodontic Journal, 44, 938-949, 2011. 

Aim To  test  the  chemical-physical  properties  and  
apatite-forming ability of experimental fluoride-doped  
calcium  silicate  cements  designed  to  create  novel  
bioactive  materials  for  use  in  endodontics  and oral  
surgery. 
Methodology A thermally treated calcium silicate  
cement (wTC) containing CaCl2 5%wt was modified by  
adding NaF 1%wt (FTC) or 10%wt (F10TC). Cements  
were  analysed  by  environmental  scanning  electron  
microscopy with energy-dispersive X-ray analysis, IR  
and  micro-Raman  spectroscopy  in  wet  conditions  
immediately  after  preparation  or  after  ageing  in  a  
phosphate-containing solution (Dulbecco’s phosphate- 
buffered saline). Calcium and fluoride release and pH of  
the  storage  solution  were  measured.  The  results  
obtained were analysed statistically (Tukey’s HSD test  
and two-way anova). 
Results The  formation  of  calcium  phosphate  pre- 
cipitates (spherulites) was observed on the surface of 
24 h-aged  cements  and  the  formation  of  a  thick  
bone-like B-type carbonated apatite layer (biocoating) 
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on 28 day-aged cements. The rate of apatite forma- 
tion  was  FTC >  F10TC > wTC.  Fluorapatite  was  
detected  on FTC and F10TC  after 1 day of ageing,  
with  a  higher  fluoride  content  on  F10TC.  All  the  
cements released calcium ions. At 5 and 24 h, the  
wTC  had  the  significantly  highest  calcium  release  
(P < 0.001)  that  decreased  significantly  over  the  
storage  time.  At 3-28 days,  FTC  and  F10TC  had  
significantly   higher   calcium   release   than   wTC  
(P < 0.05). The F10TC had the significantly highest  
fluoride release at all times (P < 0.01) that decreased  
significantly over storage time. No significant differ- 
ences were observed between FTC and wTC. All the  
cements  had  a  strong  alkalinizing  activity (OH)  

release) that remained after 28 days of storage. 
Conclusions The addition of sodium fluoride acc- 
elerated apatite formation on calcium silicate cements.  
Fluoride-doped  calcium  silicate  cements  had  higher  
bioactivity and earlier formation of fluorapatite. So- 
dium fluoride may be introduced in the formulation of  
mineral trioxide aggregate cements to enhance their  
biological behaviour. F-doped calcium silicate cements  
are promising bone cements for clinical endodontic use. 

Keywords: apatite,  bioactive  materials,  calcium 
hydroxide, calcium release, calcium-silicate cements, 
endodontic  cements,  fluorapatite,  fluoride  release, 
fluoride-doped MTA, mineral trioxide aggregate. 
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Introduction 

Calcium  silicate  cements,  well  known  as  mineral  
trioxide aggregate (MTA), are novel self-setting bioma- 
terials for oral and endodontic surgery (Parirokh &  
Torabinejad  2010). The  setting  reaction of  calcium  
silicate cements requires water, so that they are able to  
set in a wet environment through the formation of a  
nanoporous calcium silicate hydrate (CSH) gel. 

Calcium  silicate  MTA  cements  are  biointeractive  
bioactive  materials,  i.e.  materials  able  to  exchange  
information  with  a  biological  system (this  encom- 
passes  a  physicochemical  interplay between  the  
material  surface  and  the  biological  environment)  
(biointeractivity)  and  materials  able  to  evoke  a  
positive  response  from  the  host  body (bioactivity)  
(BSI, 2007). A number of investigations have dem- 
onstrated  that  when  calcium  silicate  MTA  cements  
are exposed to simulated extracellular fluids contain- 
ing a phosphate source, they form calcium phosphates  
and  apatite  precipitates  on  their  surface (Gandolfi  
et al. 2009a, 2010a-d, Taddei et al. 2009a, 2009b,  
Torrisi et al. 2010; Taddei et al. 2011). Calcium ions  
released from MTA react with phosphates provided by  
the  simulated  fluid  causing  apatite  formation.  The  
sealing  ability,  biocompatibility  and  dentinogenic  
activity  of  MTA  cements  may  be  improved  and  
favoured  by  their  bioactivity  properties  and  the  
formation of apatite. 

Fluoride-doped calcium silicate MTA cements have  
recently  been  designed  and  studied (Gandolfi  et al.  
2009b, Gandolfi & Prati 2010e, Colin et al. 2010). It  
has  been  reported  that (i)  the  addition  of  sodium  
fluoride 1%wt to calcium silicate powders causes a  
delay  in  the  setting  time  and  increases  expansion  
(Gandolfi et al. 2009b) and long-term apical sealing  
ability in the root canal (Gandolfi & Prati 2010e) and 
(ii) an increase in NaF content (from 0% to 10%wt) 
results  in  an  enhanced  solubility  of  F-doped  MTA 
cements  in  water  or  in  Dulbecco’s  modified  eagle 
medium (DMEM) (Colin et al. 2010). 

This study aimed to evaluate the effect of the sodium  
fluoride content in experimental MTA cements on the  
kinetics  of  apatite  formation  and  ion  release.  The  
bioactivity of experimental fluoride-doped calcium sil- 
icate  cements  was  investigated  by  environmental  
scanning  electron  microscopy  coupled  with  energy- 
dispersive  X-ray  analysis (ESEM-EDX),  micro-Raman  
and  Fourier  transform  infrared  spectroscopy (FTIR)  
analyses, after storage in a simulated extracellular fluid  
solution. 
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Materials and methods 
 

Cement preparation 

The  experimental  thermally  treated  calcium  silicate  
cement (identified  as  wTC)  composed  of  di-  and  
tricalcium silicate, tricalcium aluminate, calcium sul- 
phate, calcium chloride (setting accelerator) and bis- 
muth  oxide (radiopacifying  agent)  was  prepared  
(Gandolfi  et al. 2010d).  Sodium  fluoride 1%  wt  or  
10% wt was added to wTC to produce two experimental  
fluoride-doped cements, identified as FTC and F10TC,  
respectively (Gandolfi,  Laboratory  of  Biomaterials,  
University of Bologna, Bologna, Italy). 

The cements were mixed with Dulbecco’s phosphate- 
buffered saline (Dulbecco’s phosphate-buffered saline  
(DPBS), cat. n.BE17-512; Lonza, Verviers, Belgium) as  
a source of phosphate ions, using a liquid/powder ratio  
of 0.3 to produce a homogeneous paste. After prepa- 
ration, the cement pastes were placed in PVC moulds  
(8 mm diameter and 1.6 mm thick) to prepare stan- 
dard discs. 

 

In vitro apatite-forming ability (bioactivity) 

The ability of the different materials to form apatite on  
their  surface  was  tested  in  vitro  as  an  index  of  
bioactivity (BSI, 2007, Kokubo & Takadama 2006).  
Bioactivity tests were carried out in DPBS (Gandolfi  
et al. 2010a-d, Taddei et al. 2009a, 2009b, Taddei et al.  
2010). DPBS is a physiological-like buffered (pH 7.4)  
Ca- and Mg-free solution with the following composi- 
tion (mmol L)1): K+  (4.18), Na+  (152.9), Cl)  (139.5)  
and PO43)  (9.56, sum of H2PO4)  1.5 mmol L)1  and  
HPO42) 8.06 mmol L)1). 

Each cement disc was placed in a hermetically sealed  
cylindrical polystyrene container (3 cm high and 4 cm  
in diameter) containing 5 mL DPBS (15 mL of medium  
for 1 g of cement paste) and was maintained at 37 C  
until  the  pre-determined  end-point  time (1, 7 and 
28 days). 

The  phosphate  ions  (as  H2PO4)  and  HPO42))  
were continuously supplied by the DPBS solution  
that was renewed after 5 and 24 h and 7, 14 and 
28 days. 

The cements were analysed by ESEM/EDX, micro- 
Raman and FTIR spectroscopy immediately after prep- 
aration (fresh unset samples 10 min old) and after 1  
and 28 days of ageing in DPBS (1 day-aged group and 
28 day-aged group). The constituent cement powders 
(anhydrous powders) were also analysed. 
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Environmental scanning electron microscopy with 
energy-dispersive X-ray analysis 

Samples were examined under an environmental scan- 
ning electron microscope (ESEM Zeiss EVO 50; Carl Zeiss,  
Oberkochen, Germany) connected to a secondary elec- 
tron detector for energy-dispersive X-ray analysis EDX  
(INCA 350 EDS, Oxford Instruments, Abingdon, UK)  
computer controlled software INCA energy version 18  
(Oxford Instruments, Abingdon, UK), using an acceler- 
ating  voltage  of 20-25 kV.  The  elemental  analysis  
(weight % and atomic %) of samples was carried out  
applying the ZAF correction method. At 25 kV acceler- 
ation, the X-ray electron beam penetration of ESEM-EDX  
(inside a material with a density of about 3 g cm)3)  
proved to be 2.98 lm and consequently the volume  
excited and involved in the emission of characteristic  
X-rays from the constituting elements was considered to  
be 10 lm3. Cement discs were placed directly on the  
ESEM stub and examined without preparation (samples  
were not coated for this analysis). 
 

Micro-Raman and ATR/FTIR spectroscopy 

Micro-Raman spectra were obtained using a Jasco NRS- 
2000C  instrument (Jasco  Inc.,  Easton,  MD,  USA)  
connected to a microscope with 20· magnification. In  
these conditions, the laser spot size (i.e. the excitation  
source) was of the order of a few microns. All the  
spectra  were  recorded  in  back-scattering  conditions  
with 5 cm)1 spectral resolutions using the 488-nm line  
(Innova Coherent 70; Coherent Inc., Santa Clara, CA,  
USA)) with a power of 50 mW. A 160 K frozen Charge  
Coupled Device detector from Princeton Instruments  
Inc (Trenton, NJ, USA) was used. 

IR spectra were recorded on a Nicolet 5700 FTIR  
spectrometer (Thermo Electron Scientific Instruments  
Corp., Madison, WI, USA) equipped with a Smart Orbit  
diamond attenuated total reflectance (ATR) accessory  
and a Deuterated Tri-Glycine Sulphate detector; the  
spectral resolution was 4 cm)1, and 64 scans were  
made for each spectrum. The ATR area had a 2 mm  
diameter. The IR radiation penetration was about two  
microns. 

To minimize the variability deriving from possible  
sample  inhomogeneity,  at  least  five  spectra  were  
recorded on five different points on the upper surface  
of each specimen. The Raman spectra were recorded on  
wet cement samples (i.e. when maintained in their  
storage media). 
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pH of storage solution and calcium and fluoride 
release 

Each cement disc was placed in a hermetically sealed  
cylindrical  polystyrene  holder (3 cm  high, 4 cm  
diameter) containing 10 mL water and was maintained  
at 37 C until the pre-determined end-point time (5 h, 
24 h, 3, 7, 14 and 28 days). At each end-point time,  
the  storage  water  was  analysed  for  pH  as  well  as  
calcium and fluoride content and renewed. The pH was  
measured using a (selective) temperature-compensated  
electrode (Sen  Tix  Sur  WTW,  Weilheim,  Germany)  
connected  to  a  multiparameter  laboratory  meter  
(inoLab 750; WTW). 

For  calcium  quantization,  0.100 mL  (2%)  of  ISA 
(4 mol L)1  KCl; WTW) was added to 5 mL of storage 
medium, and the calcium content was evaluated using a 
calcium probe (Calcium ion electrode; Eutech instru- 
ments Pte Ldt, Singapore) connected to a multiparam- 
eter laboratory meter (inoLab 750; WTW). 

For  fluoride  assessment,  5 mL  of  TISAB  (sodium  
chloride 5.8%  w/v,  acetic  acid 5.7%  w/v,  sodium  
hydroxide 3.0% (w/v), CDTA 0.4% (w/v) and water;  
WTW) was added to 5 mL of storage solution, and the  
fluoride content was evaluated using a fluoride probe  
(Fluoride ion electrode; Eutech instruments Pte Ldt)  
connected to a multiparameter laboratory meter (ino- 
Lab  750;  WTW).  The  probes  were  inserted  in  the  
storage  media  at  room  temperature (24 C)  under  
magnetic  stirring.  Each  measurement  was  repeated  
three times. 

The  results  obtained  were  analysed  statistically.  
Tukey’s HSD (honestly significant differences) test was  
used  in  conjunction  with  the  two-way  analysis  of  
variance (two-way anova), to determine the statistical  
significance of the differences among the groups. 

Results 

Environmental scanning electron microscopy with 
energy-dispersive X-ray analysis 

Starting cement powders (unhydrated cement powders)  
(Figs 1a, 2a  and 3a)  showed  the  reflexes  of  Ca  
(calcium), Si (silicon) and Al (aluminium) from the  
cement particles, Bi (bismuth) from the Bi2O3  radiop- 
acifier, Cl (chlorine) from the CaCl2 setting accelerator,  
O (oxygen) from the cement particles and the radiop- 
acifier. In addition, the F-doped powders showed Na  
(sodium) and F (fluorine) from sodium fluoride. 
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(a)  
 
 
 
 
 
 
 
(b)  
 
 
 
 
 
 
 
(c)  
 
 
 
 
 
 
 
(d)  

 
 
 
 
 
 
 

Figure 1 F10TC cement: environmental scanning electron microscopy with energy-dispersive X-ray analyses of unhydrated 
powder (a), freshly prepared (b), 24 h-aged (c) and 28 day-aged (d) samples. 

 

The surface of fresh cements (Figs 1b, 2b and 3b)  
appeared rough/irregular and free from porosities. EDX  
showed prominent peaks because of Ca, Cl and O (from  
the cement particles, the radiopacifier and water), S  
(sulphur), Si (also from the silanol groups of CSH) and Bi. 

The surface of 24 h-aged samples (Figs 1c, 2c and  
3c)  showed  diffuse  deposits  with  different  size  and  
shape, composed of globular precipitates (spherulites, 
0.2-1 micron diameter). The deposit was more evident  
and thicker on F-containing cements (Figs 1c and 2c). 

Energy-dispersive  X-ray  analysis  microanalysis  on 
the area (approximately 3000 l2) displayed prominent 
Ca, P (phosphorous) and O reflexes and traces of Si, Bi 
and  Cl  components.  The  intensity  of  the  typical 
elements of the cement (mainly silicon) decreased over 
storage time because of the formation of the calcium 
phosphate layer (biocoating). 

FTC and F10TC samples displayed higher P peaks  
and lower Ca/P ratio approximately 2.2-2.5) than wTC  
(approximately 3.2):  the  Ca  peak  detected  on  the  
wTC cement originated from the calcium phosphate 
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deposits, the calcium silicate component and the CaCl2 

ingredient. 
Punctual EDX on spherulites showed only Ca and P 

peaks, suggesting the formation of calcium phosphate 
precipitates. 

Environmental scanning electron microscopy obser- 
vations of the surface of 28 day-aged samples (Figs 1d, 
2d and 3d) showed a continuous irregular layer of 
deposits.  No  morphological  differences  were  noted 
among the cements. 

Energy-dispersive X-ray analysis detected prevalent 
Ca and P peaks and traces of typical elements of the 
cement, suggesting the formation of a thick calcium 
phosphate layer that is able to mask the underlying 
components of the cement. FTC and F10TC samples 
displayed lower Ca/P ratio than wTC. 

Punctual EDX registered Ca and P with a Ca/P ratio  
(approximately 2) close to that of bone-like carbonated  
apatites. 

The   Ca/P   ratio   on   the   calcium   phosphate  
layer  decreased  during  immersion  in  DPBS (from 
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(a)  
 
 
 
 
 
 
 
(b)  
 
 
 
 
 
 
 
(c)  
 
 
 
 
 
 
 
(d)  

 
 
 
 
 
 
 

Figure 2 FTC cement: environmental scanning electron microscopy with energy-dispersive X-ray analyses of unhydrated powder  
(a), freshly prepared (b), 24 h-aged (c) and 28 day-aged (d) samples. 
 
 
 

approximately 2.5-3.0 at 24 h to approximately 2 at 
28 days) for all the cements. The presence of CaCl2 may 
have slightly affected the Ca/P ratio detected on the 
samples covered by a calcium phosphate layer thinner 
than the X-ray electron beam penetration, i.e. approx- 
imately 2.98 lm.  The  contribution  of  CaCl2 to  the 
observed  Ca/P ratio  decreased  at  increasing  deposit 
thickness, i.e. at increasing ageing time. 
 

Micro-Raman analyses 

Figure 4 reports the micro-Raman spectra recorded on 
the cements. Bands were assigned according to the 
literature (Taddei et al. 2009a,b, 2011 and references 
cited therein). 

The spectra of the unhydrated powders practically  
coincided and disclosed calcium carbonate (band at  
1087-1088 cm)1), calcium sulphate as both anhydrite  
(band at 1017 cm)1) and gypsum (band at 1002- 
1003 cm)1), alite (band at 845 cm)1), belite (bands at 
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855 and 845 cm)1) and bismuth oxide (bands below 
600 cm)1). 

The freshly prepared samples revealed the appear- 
ance of the marker band of ettringite (i.e. the hydration 
product of the reaction between anhydrite/gypsum and 
tricalcium aluminate) at about 990 cm)1, particularly 
strong on the F10TC cement. 

After  1 day  of  ageing  in  DPBS,  all  the  cements  
showed an apatite + calcite/aragonite deposit. Apatite  
was  revealed  by  the  appearance  of  the  band  at  
960 cm)1,  and  the  bands  at 1000, 1045 and  
1070 cm)1  (typical  of  a  B-type  carbonated  apatite)  
and 607 and 590 cm)1 (FTC) were also detected on the  
F-doped cements. The intensity ratio between the bands  
of apatite and belite (at about 960 and 855 cm)1,  
respectively) was taken as a marker of the thickness of  
the  apatite  deposit.  This  ratio  was  higher  on  the  
F-doped cements than on wTC. The 960 cm)1 apatite  
band was broader on F10TC than on FTC, and an  
analogous trend was observed after 7 days of ageing. 
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(a)  
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Figure 3 wTC cement: environmental scanning electron microscopy with energy-dispersive X-ray analyses of unhydrated powder  
(a), freshly prepared (b), 24 h-aged (c) and 28 day-aged samples (d).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Micro-Raman spectra recorded on the surface of the three cements: freshly prepared (after 10 min) and after 1 and  
28 days of ageing in Dulbecco’s phosphate-buffered saline. The bands owing to calcium carbonate (Carb), calcite (C), aragonite  
(Ar), anhydrite (An), gypsum (G), ettringite (E), belite (B), alite (A), apatite (Ap) and bismuth oxide (Bi) are indicated. The spectra of 
the unhydrated cement powders are reported for comparison.  
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(a) (b) 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (a-c) IR spectra recorded on the surface of the three cements after 1 and 28 days of ageing in Dulbecco’s 
phosphatebuffered saline (DPBS). The bands owing to calcium carbonate (Carb), calcite (C), aragonite (Ar), anhydrite (An), 
gypsum (G), ettringite (E), hydrated calcium silicate gel, slightly polymerized silicates (CxS), belite (B), alite (A) and apatite (Ap) are 
indicated. The spectra of the unhydrated cement powders are reported for comparison. (D) IR spectra recorded on the powders 
isolated from the DPBS storage media after 1, 7 and 28 days of ageing. 

At increasing storage times, the bands of the cement  
progressively weakened, while the bands typical of a  
B-type carbonated apatite progressively strengthened.  
After 7 days of ageing in DPBS, the intensity ratio  
between the bands of apatite and belite had decreased  
along the series: FTC > F10TC > wTC. An analogous  
result was obtained after 28 days of ageing: the bands  
of bismuth oxide were observed with a progressively  
increasing  intensity  going  from  FTC  to  F10TC  and  
wTC. 
 

ATR/FTIR analyses 

Figure 5  reports  the  IR  spectra  recorded  on  the  
cements. Bands were assigned according to the litera- 
ture (Taddei et al. 2009a, 2011 and references cited  
therein). 

The IR spectra of the unhydrated cements coincided  
and  confirmed  the  presence  of  calcium  carbonate  
(bands at 1420 and 1470 cm)1), anhydrite (bands at 
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1150, 1130, 677, 613 and 596 cm)1), gypsum (bands  
at 1150, 1130, 677  and  613 cm)1)  and  slightly  
polymerized  silicate  groups (bands  at 510 and  
450 cm)1) in the alite (marker band at 930 cm)1)  
and belite (marker bands at 873 and 846 cm)1) forms. 

After 1 day of ageing in DPBS, all the cements had a  
B-type carbonated apatite deposit varying in thickness  
on  the  different  samples,  according  to  the  Raman  
results. The spectra recorded on the surface of FTC and  
F10TC surfaces did not show any band of the under- 
lying cement, and the deposit was mainly constituted  
by B-type carbonated apatite (bands at about 1450,  
1410, 1024, 960, 872, 600  and  560 cm)1)  and  
calcite/aragonite  indicating  that  the  deposit  was  
thicker than 2 lm. 

The apatite bands on F10TC were broader than on  
FTC  (in  particular  those  at 1024  and  963 cm)1),  
according  to  the  Raman  findings.  Besides  B-type  
carbonated apatite and calcite/aragonite, the spectrum  
recorded on the surface of wTC showed the components 
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owing  to  the  hydration  of  the  cement  (CSH  and  
ettringite),  suggesting  that  the  deposit  was  thinner  
than 2 lm (i.e. thinner than on the F-doped cements). 

After 7 days of ageing, the cement components also  
became undetectable on wTC, owing to the increased  
thickness  of  the  deposit.  After 7 and  28 days,  the  
apatite bands on F10TC were also broader than on  
FTC.  The  same  trend  was  observed  in  the  spectra  
recorded  on  the  powders  isolated  from  the  ageing  
media (Fig. 5d). These spectra showed a different trend  
for  the  different  cements  also  in  the  range  near  
630 cm)1, where the OH bending mode falls. At all  
the ageing times, the prominent feature observed for  
wTC progressively weakened going to FTC and F10TC.  
According to a previous study (Amberg et al. 1974),  
this trend suggests that the apatite deposit on FTC and  
F10TC contained increasing amounts of fluoride in the  
lattice. 
 

pH of storage water and calcium and fluoride release 

The pH of storage water after immersion of the cements  
is reported in Table 1a. All the cements had a strong  
alkalinizing activity (ability to release hydroxyl ions):  
the pH of the deionized storage water (approximately  
pH 6.8) increased significantly up to pH 12 during the  
first 5 h of immersion and decreased significantly over  
time. 

NaF-doped  cements  caused  a  statistically  higher 
increase of the pH at all end-points, and the pH rise 
(alkalinizing activity) of F10TC was stronger than FTC. 
The addition of fluoride increased the pH mainly at 
short storage times. 

 

The alkalinizing activity of all the cements remained 
after 28 days of storage. 

The  calcium  release  of  cements  when  soaked  in  
deionized water is shown in Table 1b. All the cements  
released calcium ions. The calcium release from wTC  
decreased statistically over the storage time. At 5 and 
24 h, the wTC had the significantly highest calcium  
release (P < 0.001), but at 3-28 days, FTC and F10TC  
had  significantly  higher  calcium  release  than  wTC  
(P < 0.05). 

The  fluoride  release  of  cements  when  soaked  in 
deionized  water  is  shown  in  Table 1c.  The  F10TC 
showed the statistically highest fluoride release at all 
times (P < 0.01).  The  fluoride  release  statistically 
decreased over time. No significant differences were 
proved between FTC and wTC. 

 

Discussion 

Bioactive calcium silicate cements precipitate hydroxy- 
carbonated apatite onto their surface (Gandolfi et al.  
2010a-c, Taddei et al. 2009a, 2009b) on dentine and  
inside the dentinal tubules (Gandolfi et al. 2008a). 

It has been demonstrated that silanol groups form 
from hydrated calcium silicate upon cement powder 
hydration (after mixing with water). Phosphate ions 
from DPBS are absorbed by the silanol groups allowing 
the formation/nucleation of small round-shaped cal- 
cium phosphate precipitates named apatite spherulites 
(Gandolfi et al. 2010c). 

Calcium silicate MTA cements for endodontic sur- 
gery (root-end filling materials and endodontic sealers)  
are  used  directly  in  contact  with  alveolar  bone:  a  

 
 

Table 1  (a) pH of soaking water, (b) calcium and (c) fluoride released (ppm) in soaking water. Samples disks (n = 10 for each 
material) were used. The data (expressed as mean and standard deviation) were statistically analyzed using one-way anova with 
Tukey test (P < 0.05). Different CAPITAL superscript letters in the same row or different small  superscript letters in the same 
column mean statistically significant differences.  

Material 5h 1 day 3 days 7 days 14 days 28 days 

(a)  

F10TC 12.49 ± 0.04A,a 11.80 ± 0.10B,a 9.74 ± 0.22C,a 9.63 ± 0.42C,a 8.81 ± 0.50D,a 8.93 ± 0.34D,a 

FTC 11.82 ± 0.08A,b 11.24 ± 0.16B,b 10.37 ± 0.31c,b 8.96 ± 0.16D,b 8.95 ± 0.07D,ab 8.84 ± 0.12D,a 

wTC 11.73 ± 0.11A,b 11.23 ± 0.12B,b 9.52 ± 0.26c,a 9.26 ± 0.06CD,c 9.05 ± 0.21D,b 8.50 ± 0.11E,b 

(b)  

F10TC 21.13 ± 4.40A,a 6.57 ± 4.70B,a 35.80 ± 5.47C,a 23.10 ± 2.25A,a 11.23 ± 0.93B,a 24.35 ± 1.52A,a 

FTC 21.88 ± 7.65A,a 8.12 ± 1.45B,a 32.30 ± 0.94C,a 29.77 ± 1.19C,b 19.71 ± 1.63A,b 18.40 ± 1.06A,a 

wTC 440.22 ± 17.10A,b 193.92 ± 16.95B,b 25.21 ± 0.96C,b 11.56 ± 1.40D,c 10.14 ± 3.04D,a 12.89 ± 1.72D,b 

(c) 
F10TC 9.33 ± 3.13A,a 3.78 ± 0.66B,a 1.89 ± 0.24C,a 1.71 ± 0.25C,a 1.51 ± 0.16C,a 2.35 ± 0.35C,a 

FTC 1.24 ± 0.19A,b 0.50 ± 0.08B,b 0.35 ± 0.03B,b 0.58 ± 0.10B,b 0.58 ±0.07B,b 0.52 ± 0.08B,b 

wTC 0.48 ± 0.19A,b 0.37 ± 0.4A,b 0.22 ± 0.02A,b 0.26 ± 0.03A,b 0.27 ± 0.08A,b 0.25 ± 0.04A,b 
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root-end filling material is positioned in the root-end 
cavity to seal the resected apex, and an endodontic 
sealer is frequently extruded from the apex in clinical 
practice.  Therefore,  osteoconductive  activity  is  an 
essential property to support an adequate biological 
response and new bone tissue formation. 

It is well known that sodium fluoride possesses good  
biological activity on bone/osteoblast cells and dental  
pulp cells (Lau & Baylink 1998, Nakade et al. 1999,  
Abdullah et al. 2002) and may be introduced in the  
formulation of MTA cements to improve their biological  
behaviour (Gandolfi et al. 2008b). Moreover, fluorapa- 
tite  Ca10(PO4)6OH-F  is  more  active  on  osteoblast  
activity  and  bone  formation  than  hydroxyapatite  
Ca5(PO4)3OH (Qu & Wei 2006). The introduction of  
fluoride  into  apatite  has  been  shown  to  improve  
osteoblast response in terms of adhesion (Qu & Wei  
2006), differentiation (Qu & Wei 2006), proliferation  
(Yoon et al. 2005, Qu et al. 2008) and mineralization  
processes (Zhang et al. 1998) when compared to pure  
hydroxyapatite. The incorporation of fluorapatite into  
implant  coatings  improves  implant  integration  into  
bone (Bhadang et al. 2010). 

Sodium fluoride has been added to bone cements to  
speed up the early formation of bone at the interface  
and thereby improve fixation (Sundfeldt et al. 2002,  
Cartmell 2009).  A  recent  study (Lin  et al. 2009)  
investigated the effects of CaF2  (0, 1, 2 and 3 wt%)  
on the apatite formation ability of tricalcium silicates  
(Ca3SiO5) and the mechanism of apatite formation in  
simulated body fluid. CaF2-doped tricalcium silicates  
showed a better bioactivity than Ca3SiO5 owing to the  
formation  and  stability  of  F-substituted  apatite (Lin  
et al. 2009).  Fluoride-containing  tricalcium  silicates  
(Xu et al. 2008, Lin et al. 2009) or bioactive glasses  
(Brauer et al. 2008, 2010)) doped with CaF2 have been  
studied for their ability to form F-substituted apatite.  
However,  CaF2 has  a  only  limited  solubility (Ksp 

3.9 · 10)11), which decreases in an alkaline environ- 
ment. Therefore, NaF was selected in the present study 
for its greater solubility. 

The results demonstrated that the NaF-doped cal- 
cium silicate cements were able to increase strongly the  
pH of storage water up to pH 12 during the first day of  
immersion. The addition of fluoride enhanced this pH  
rise mainly for short storage times. This result showed  
that  NaF  has  a  significantly  different (i.e.  opposite)  
effect from that exerted by CaF2 (Lin et al. 2009), which  
has  been  reported  to  decrease  cement  hydration  
resulting in a lower alkalinizing activity (i.e. lower pH  
values). 
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F-containing  cements  released  significantly  lower  
amounts of calcium ions into the storage water than  
wTC (Table 1b). This result was not surprising because  
the  F-containing  cements  allow  the  precipitation  of  
calcium fluoride (fluorite) because of the presence of F)  

ions. This phase was detected (data not shown) on the  
surface of the F-doped cements aged in water. 

Raman  and  IR  spectroscopies  have  been  used  to  
investigate the thickness of the deposit as well as its  
chemical  nature.  Both  techniques  revealed  that  in  
DPBS, FTC and F10TC had a more pronounced apatite- 
forming ability than wTC. Because of its low sampling  
depth, ATR/FTIR spectroscopy was able to yield infor- 
mation on the relative thickness of the deposits only at 
1 day of ageing when the bands of the underlying  
cement were observed only for wTC. This behaviour  
suggested that the deposit was thinner on wTC than on  
the F-doped cements. Because of its higher sampling  
depth, Raman spectroscopy was able to discriminate  
among  the  three  cements  at  all  ageing  times.  The  
intensity ratio between the bands of apatite and belite  
differed  significantly  among  the  three  cements  and  
showed  that  bioactivity  decreased  along  the  series:  
FTC > F10TC > wTC. 

Vibrational Raman and IR spectroscopy also yielded  
information  on  the  chemical  composition  of  the  
deposits.  Both  techniques  showed  that  for  all  the  
cements,  the  apatite  lattice  contained  carbonate  in  
B-site (i.e. carbonate substitutes the phosphate ion in  
the lattice), as revealed by the marker bands of B-type  
carbonated  apatites  at  about 1070 cm)1  (Raman),  
1450-1410 and 870 cm)1 (IR). The broadening of the  
phosphate  bands  observed  for  F10TC  in  both  the  
Raman and IR spectra suggested that on this cement,  
the apatite deposit was less crystalline than on the  
other cements. IR spectroscopy appeared more sensi- 
tive than Raman spectroscopy in the analysis of the  
fluoridation degree of the apatite formed on F-doped  
cements.  It  is  well  known  that  the  fluoridation  
mechanism  involves  a  hydroxyl  substitution  and  a  
subsequent  adjacent  hydroxyl  rearrangement.  As  a  
consequence, the intensity of the OH bending mode at  
about 630 cm)1  has been reported to decrease as the  
extent of fluoridation increases (Amberg et al. 1974).  
As shown in Fig. 5d, at all ageing times, the spectral  
feature at about 630 cm)1  appeared with decreasing  
intensity  along  the  series  wTC > FTC > F10TC.  On  
this basis, it can be affirmed that the cements under  
study formed different apatite phases upon ageing in  
DPBS:  a  hydroxy-carbonated  apatite  formed  on  the  
surface of wTC, while from 1 day of ageing, the apatite 

ª 2011 International Endodontic Journal  



 84 

Gandolfi et al.  Fluorapatite formation on fluoride-doped MTA cements 

 

phase  on  FTC  and  F10TC  contained  increasing 
amounts of fluoride ions in the lattice. The incorpora- 
tion of fluoride ions into the lattice can explain the 
higher bioactivity of the F-doped cements in DPBS, 
because F-substituted apatites have a lower Ksp  than 
hydroxy-carbonate apatite. 

The trend of the micro-Raman spectra suggested that  
FTC should have a higher bioactivity than F10TC. In  
other words, the increase in the fluoride content up to  
10%wt did not lead to an improvement in the apatite- 
forming ability. This finding was not surprising in the  
light of a previous study (Lin et al. 2009) who reported  
that among the tricalcium silicate samples doped with  
1, 2 and  3  wt%  of  CaF2,  the  specimen  with  the  
intermediate  fluoride  content (i.e. 2%wt)  had  the  
highest bioactivity. 

The mechanism of apatite formation on NaF-doped 
calcium silicate MTA cements may be proposed in the 
following stages: 
•  Stage I: when the calcium silicate powder reacts  
 with water, CSH gel and Ca(OH)2  are the main 

products; Ca(OH)2  was detected in the IR spectra  
recorded in the interior of the cement discs (not  
shown). As Ca2+ and OH) were rapidly released into  
the storage solution, the pH values increased. In  
addition, NaF-doped cement pastes can release F)  

(Table 1c). 
•  Stage II: before the apatite formation, the surface  
 layer of CSH gel formed in the calcium silicate pastes 

mainly consists of silanol groups Si(OH)4, whose 
presence  can  be  inferred  from  the  IR  band  at 
960 cm)1 (Lin et al. 2009). This band was observed 
in the IR spectra recorded in the interior of the 
cement discs (not shown). 

•  Stage III: the CSH gel layer provides the negatively 
3) 

charged sites for the migration of Ca2+ and PO4  

ions to the paste surface, followed by growth of an  
F-substituted apatite (Fig. 5d) layer by the incorpo- 
ration of soluble F)  because F-substituted apatite  
has a lower Ksp (6.5 · 10)65) than that of hydroxy- 
apatite Ca5(PO4)3OH (Ksp = 7.36 · 10)60). 

•  Stage IV: the F-substituted apatite acts as a new 
nucleation centre promoting the crystallization of 
the CaO-P2O5  layer by the incorporation of Ca2+, 
PO43), CO32) and F) to form an apatite layer. 

The study demonstrated that fluoride-doped calcium 
silicate  cements  are  biointeractive  materials  able  to 
release calcium and hydroxyl ions and form fluorapa- 
tite on their surface. 

The  calcium  released  by  these  cements  affects  
osteoblast  viability,  proliferation  and  differentiation 
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(Maeno et al. 2005, Sun et al. 2009a,b) and may have  
several biologically important functions in many clin- 
ical applications such as pulp capping procedures (Nair  
et al. 2008, Tuna & Olmez 2008) and apexogenesis  
(Holden et al. 2008). Apatite formation represents a  
biological substrate for all clinical applications in bone  
tissue  and  may  have  a  clinical  effect  on  damaged  
tissues where new bone formation is required (Nair  
2006). These data may explain the positive reports on  
the use of calcium silicate cements such as ProRoot  
MTA,  MTA  Angelus  and  Tech  Biosealer  in  clinical  
situations (Saunders 2008, Pace et al. 2008, Parirokh  
& Torabinejad 2010). 

 

Conclusions 

Fluoride-doped calcium silicate cements form fluorapa- 
tite in phosphate-containing solutions. These cements  
are better able to form apatite (bioactivity) and are  
more  reactive  than  conventional  calcium  silicate  
cements. The improved bioactivity can be attributed  
to the formation of F-substituted apatites, which have a  
Ksp  lower than hydroxy-carbonate apatite. F-doped  
calcium silicate cements are promising materials for  
use  in  contact  with  bone  in  endodontics  and  oral  
surgery. 
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Abstract 

Gandolfi MG, Siboni F, Prati C. Chemical-physical proper- 

ties of TheraCal, a novel light-curable MTA-like material for pulp  

capping. International Endodontic Journal, 45, 571-579, 2012. 

Aim To evaluate the chemical-physical properties of 
TheraCal, a new light-curable pulp-capping material 
composed  of  resin  and  calcium  silicate (Portland 
cement), compared with reference pulp-capping mate- 
rials (ProRoot MTA and Dycal). 
Methodology Calcium (Ca) and hydroxyl (OH) ion  
release  over 28 days,  solubility  and  water  uptake  
(weight percentage variation, D%) at 24 h, cure depth  
and radiopacity of TheraCal, ProRoot MTA and Dycal  
were  evaluated.  Statistical  analysis (P < 0.05)  of  
release of ion was carried out by two-way repeated  
measures anova with Tukey, whilst one-way anova  
with Tukey test was used for the other tests. 
Results TheraCal  released  significantly  more  cal- 
cium than ProRoot MTA and Dycal throughout the  
test  period.  TheraCal  was  able  to  alkalinize  the 
 
 
 
 

Introduction 

Direct pulp capping involves the application of a dental  
material to the exposed pulp in an attempt to act as a  
barrier, protect the dental pulp complex and preserve  
its vitality (European Society of Endodontology 2006). 

Calcium  hydroxide  [Ca(OH)2]-based  and  calcium  
oxide (CaO)-based  materials  are  the  most  popular  
agents for direct and indirect pulp capping, given their  
ability to release hydroxyl (OH) and calcium (Ca) ions 
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surrounding fluid initially to pH 10-11 (3 h-3 days)  
and subsequently to pH 8-8.5 (7-14 days). TheraCal  
had  a  cure  depth  of 1.7 mm.  The  solubility  of  
TheraCal (D )1.58%) was low and significantly less  
than that of Dycal (D )4.58%) and ProRoot MTA (D  
)18.34%). The amount of water absorbed by Thera- 
Cal (D +10.42%) was significantly higher than Dycal  
(D +4.87%)  and  significantly  lower  than  ProRoot  
MTA (D +13.96%). 
Conclusions  TheraCal  displayed  higher  calcium- 
releasing  ability  and  lower  solubility  than  either 
ProRoot MTA or Dycal. The capability of TheraCal to 
be cured to a depth of 1.7 mm may avoid the risk of 
untimely  dissolution.  These  properties  offer  major 
advantages in direct pulp-capping treatments. 

Keywords:  calcium  and  hydroxyl  ion  release,  
calcium  hydroxide,  Dycal,  ProRoot  MTA,  pulp  cap- 
ping materials, resin-modified calcium silicate, Ther- 
aCal. 
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upon dissolution (Horsted-Bindslev & Lovshall 2002, 
Desai  &  Chandler 2009,  Mohammadi  &  Dummer 
2011). Unfortunately, these materials are soluble and 
raise local pH with the formation of a necrotic layer at 
the material-pulp interface. 

Dycal  (Dentsply,  Milford,  DE,  USA)  (Dougherty  
1962)  is  a  self-setting (2.5-3.5 min) (Shen  et al.  
2010)  radiopaque calcium hydroxide-based  material  
employed in direct and indirect pulp capping proce- 
dures and as a liner under restorations, cements and  
other  base  materials.  Its  alkaline  pH (pH 9-11)  
stimulates the formation of secondary dentine when  
the material  is in direct  contact  with  the pulp.  Its  
toxicity to pulp cells is well documented (Furey et al.  
2010, Shen et al. 2010). 
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Radiopaque  Portland  cements,  commonly  named  
mineral trioxide aggregate (MTA) cements (such as  
ProRoot  MTA,  MTA-Angelus,  Tech  Biosealer  and  
others),  are  therapeutic,  endodontic  repair  calcium  
silicate materials introduced at first as a grey cement  
(Torabinejad  & White 1995). MTA cements exhibit  
calcified tissue-conductive  activity and facilitate the  
differentiation of human orofacial mesenchymal stem  
cells (Gandolfi  et al. 2011a)  and  the  mineralization  
process in human dental pulp cells; they also have the  
potential to be used as pulp capping materials (Min  
et al. 2009). 

White ProRoot MTA (Dentsply, Johnson City, TN,  
USA) is a bioactive (Gandolfi et al. 2009, 2010a,b,c,  
2011b,c, Taddei et al. 2009), biocompatible (Torabine- 
jad  &  Parirokh 2010)  and  self-setting  hydrophilic  
calcium silicate cement (Gandolfi et al. 2008, Parirokh  
& Torabinejad 2010a) now successfully used for direct  
pulp  capping (Tuna  &  Olmez 2008,  Parirokh  &  
Torabinejad 2010b). MTA is more effective and better  
than  calcium  hydroxide  materials,  as  it  has  an  
enhanced interaction with dental pulp tissue (Takita  
et al. 2006)  with  limited  pulp  tissue  necrosis (less  
caustic effect) shortly after its application and less pulp  
inflammation (Moghaddame-Jafari et al. 2005). MTA  
facilitated  the  proliferation/differentiation  of  human  
dental  pulp  cells (Takita  et al. 2006,  Sawicki  et al.  
2008) and exhibited calcified tissue-conductive activity  
with  the  ability  to  stimulate  more/faster  complete  
dentine bridge formation and new hard tissue forma- 
tion (Moghaddame-Jafari  et al. 2005,  Bogen  et al.  
2008, Okiji & Yoshiba 2009). 

TheraCal (Bisco Inc, Schamburg, IL, USA) is a new  
light-cured resin-modified calcium silicate-filled base/  
liner material designed with direct and indirect pulp  
capping  containing  approximately 45%  wt  mineral  
material (type  III  Portland  cement), 10%  wt  radi- 
opaque  component, 5%  wt  hydrophilic  thickening  
agent (fumed  silica)  and  approximately 45%  resin  
(Suh et al. 2008).  The patent  stated  that  the resin  
consists  of  a  hydrophobic  component (comprising  
hydrophobic monomers) such as urethane dimethac- 
rylate (UDMA),  bisphenol  A-glycidyl  methacrylate  
(BisGMA), triethylene glycol dimethacrylate (TriEDMA  
or TEGDMA) and a hydrophilic component (contain- 
ing  hydrophilic  monomers)  such  as  hydroxyethyl  
methacrylate (HEMA) and polyethylene glycol dimeth- 
acrylate (PEGDMA) (Suh et al. 2008). TheraCal has  
good sealing capabilities (Suh et al. 2008) and was  
well-tolerated   by   immortalized   odontoblast   cells  
(Hebling et al. 2009). 
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The aim of this study was to evaluate calcium and  
hydroxyl  ions  release,  cure  depth,  solubility,  water  
absorption and radiopacity of TheraCal compared with  
reference pulp capping materials (ProRoot MTA and  
Dycal). 

Materials and methods 

Materials 

TheraCal (Bisco Inc, lot. 603-189-A) consists of a single 
paste containing CaO, calcium silicate particles (type III 
Portland  cement),  Sr  glass,  fumed  silica,  barium 
sulphate, barium zirconate and resin containing Bis- 
GMA and PEGDMA (Suh et al. 2008). 

White ProRoot MTA (Dentsply, lot. 09001920) is 
composed of white Portland cement and bismuth oxide 
(Parirokh & Torabinejad 2010a). ProRoot MTA was 
prepared following the manufacturer’s instructions by 
mixing a 3 : 1 powder-to-liquid ratio. 

Dycal (Dentsply, lot. 081007), a two-paste system 
made of a base paste (1,3-butylene glycol disalicylate, 
zinc oxide, calcium phosphate, calcium tungstate, iron 
oxide pigments) and a catalyst paste (calcium hydrox- 
ide,  N-ethyl-o/p-toluene  sulphonamide,  zinc  oxide, 
titanium  oxide,  zinc  stearate,  iron  oxide  pigments) 
(Shen et al. 2010), was prepared following the manu- 
facturer’s  instructions  by  mixing  equal  amounts  of 
catalyst paste and base paste. 

Calcium ions (ppm) and hydroxyl ions (pH) release  
test 

The different cement pastes were compacted to excess  
into  PVC  moulds (8 mm  in  diameter  and  1.6 mm  
thick). 

Each filled mould was placed on the bottom of a  
cylindrical  polystyrene-sealed  container (3 cm  high  
and 4 cm in diameter) in 10 mL of deionized water at 
37  C. The exposed surface area of each sample was 
50.24 ± 0.01 mm2 (upper surface). The storage water 
was collected (for Ca and pH analyses) and replaced 
after 3 and 24 h, and 7, 14, 28 days. 

Calcium ions (ppm) and hydroxyl ions (pH) were  
analysed in deionized water with a magnetic stirrer  
using a multiparameter laboratory meter (inoLab 750  
WTW, Weilheim, Germany) connected to a calcium  
probe (Calcium ion electrode; Eutech instruments Pte  
Ldt, Singapore) or a (selective) temperature-compen- 
sated pH probe/electrode (Sen Tix Sur WTW, Weilheim,  
Germany). 
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For  calcium  quantization,  0.200 mL  (2%)  of 
4 mol L)1  KCl (ISA WTW, Weilheim, Germany) was 
added to 10 mL of deionized water. The results were 
recorded when the data had stabilized to the second 
decimal place 
 

Solubility and water absorption: weight percentage 
variation (D%) after storage in water 

The different cement pastes were compacted to excess  
into  PVC  moulds (8 mm  in  diameter  and  1.6 mm  
thick). ProRoot MTA and Dycal samples were cured (at 
37  C and 98% relative humidity) for a period equal to  
70% of the final setting time, that is, 2 min for Dycal  
and 117 min for ProRoot MTA (a period 50% longer  
than the time stated by the manufacturer, according to  
ISO 6876  clause 7.7.2.  Dental  root  canal  sealing  
materials) (ISO 6876 2002) and then removed from  
the mould. 

TheraCal  specimens  were  light-cured  for  20 s  on 
both surfaces using a 1700-mW cm)2  LED lamp (T- 
LED  elca,  Anthos,  Italy)  through  a  polyester  strip 
(Directa Matrix Strips; Directa AB, Upplands, Vasby, 
Sweden) and removed from the mould. 

Each cylindrical specimen was placed in a cylindrical 
polystyrene-sealed container (3 cm high and 4 cm in 
diameter) in 20 mL of deionized water at 37 C. The 
lower surface of the samples was not in contact with 
the container but inclined, so the entire surface of the 
sample was in contact with the water. The exposed 
surface area of each sample was 140.67 ± 0.01 mm2 

(upper and lower surface 2 (pr2) = 100.48 mm2  and 
lateral surface 2 prh = 40.19 mm2). 

Solubility  and water  absorption were  assessed  by  
gravimetric determination  as the percentage  weight  
variation (D%)  using  an  analytical  balance (Bel  
Engineering  series  M,  Monza,  Italy, 0.001 g  accu- 
racy). Each weight measurement was repeated three  
times. The solubility of the materials was calculated  
using the method described in ISO 6876 (ISO 6876  
2002). 

The  cylindrical  specimens  were  weighed  before  
immersion  in  water (Initial  weight).  After 24 h  of  
soaking, the samples were removed from the deionized  
water and blotted dry at 37 C for 48 h, that is, until  
the  weight  was  stable  and  then  re-weighed (Dry  
weight)  and finally discarded. Solubility (percentage  
weight variation, DW%) was calculated as follows: 

Solubility ¼½ðDry weight at time t   Initial weightÞ 

Initial weight 100 
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The solubility of the set materials should not exceed  
3% mass fraction (ISO 6876 clause 4.3.6.).  For water  
absorption (water  uptake),  the  specimens  were  im- 
mersed in deionized water for 24 h (Wet weight) and  
blotted dry at 37 C for 48 h, that is, until weight  
stabilization (Dry weight). Water absorption was cal- 
culated as follows: 

Water absorbtion ¼ ½ðWet weight at time t  

Dry weight at 24 hÞ= Dry weight at time 24 h  100 
 

Depth of cure 

The depth of cure (DOC) was evaluated following ISO  
4049 (ISO 4049  2000  Dentistry - Polymer-based  
filling,  restorative  and  luting  materials) (ISO 4049  
2000). 

TheraCal samples were placed in a mould (4 mm  
diameter, 9 mm thick) and light-cured for 20 s on the  
upper surface and demoulded. The noncured/uncured  
material at the bottom was removed using a spatula,  
and the thickness of the cured material was measured  
with a digital micrometer (0.01 mm accuracy). The  
measurement was repeated in three different positions  
in each sample, and these data were recorded as mean  
value.  ISO 4049 requirement  suggests  a  DOC  
>1.5 mm. 

 

Radiopacity 

In accordance with ISO 6876 (ISO 6876 clause 7.8 for 
Dental root canal sealing materials) (ISO 6876 2002),  
completely  set  samples  (10 ± 0.1 mm  diameter; 
1.0 ± 0.1 mm  height)  were  radiographed  using  a  
radiographic  unit (Myray  Cefla,  Imola,  Italy)  with  
reference  aluminium  step  wedge (60 mm  long, 
10 mm wide). Operative conditions were as follows: 
3 cm distance, 0.13 s exposure at 70 KVp and 8 mA.  
The film (Kodak dental film, Eastman Kodak Company,  
Carestream  Health  Inc.,  Rochester,  New  York,  NY,  
USA) was processed (automatic developer, 4 min at 
30  C) and scanned. The radiographic density (colour 
intensity) data were converted (software Image J) into 
aluminium step-wedge equivalent thickness (mm Al). A 
radiopacity ‡3 mm Al is suggested by ISO 6976. 

 

Statistical analysis 

The data are reported as mean ± standard deviation.  
The results of the Ca and OH release were analysed  
using two-way repeated measures anova with Tukey. 
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The  data  on  solubility  and  water  absorption  were  
analysed by one-way anova with Tukey test. On the  
table,  different  capital  letters  represent  statistically  
significant  differences (P < 0.05)  in  the  same  line,  
whilst different small letters represent differences in the  
same column. 
 

Results 

TheraCal  released  significantly  more  calcium  than  
either ProRoot MTA or Dycal throughout the tested  
period (Table 1).  The  amount  of  leached  calcium  
decreased  with  the  time  for  all  the  materials.  The  
release of calcium by ProRoot MTA fluctuated during  
the first 3 days. 

TheraCal was able to alkalinize the surrounding fluid  
initially to approximately pH 10-11 (3 h-3 days) and  
subsequently to pH 8-8.5 (7-28 days). The pH of the  
medium conditioned by ProRoot MTA was significantly  
higher than either TheraCal or Dycal up to 7 days.  
Dycal  maintained  the  pH  at  a  constant  value (pH  
approximately 10) throughout the experimental period 

(Table 2), but the pH of Dycal was not stable and 
showed a significant decrease at 7 and 14 days. 

The solubility of TheraCal was significantly lower 
than  Dycal  and  ProRoot  MTA  (Table 3).  TheraCal 
absorbed  significantly  more  water  than  Dycal  and 
significantly less than ProRoot MTA (Table 3). 

After irradiation for 20 s, TheraCal was cured to an  
approximately 1.7 mm thickness (Table 3). The DOC of  
Dycal and ProRoot MTA was not tested as they are not  
light-activated materials (ISO 4049, clause 7.10). 

Dycal and TheraCal were weakly radiopaque (Ta- 
ble 3). ProRoot MTA had a nonhomogeneous radio- 
pacity  inside  the  samples (showing  the  highest  
standard deviation amongst the materials); however,  
only the ProRoot cement had a radiopacity in line with  
ISO 6876. 

Discussion 

Direct pulp capping is the treatment of the exposed  
vital pulp by sealing the pulpal wound with a dental  
material to induce a reparative dentinogenic response  

 

Table 1 Ca ions release test. TheraCal released statistically more calcium than either ProRoot MTA or Dycal throughout the tested 
period. 

Calcium (ppm) leaked soaking water (n = 10) 

Material 3h 1 day 3 days 7 days 14 days 28 days 
ThearCal 74.74 ± 9.20Aa 37.41 ± 4.54Ba 25.18 ± 6.54Ca 24.56 ± 1.96Ca 24.13 ± 1.12Ca 19.63 ± 3.06Ca 

Dyal 34.25 ± 9.74Ab 14.76 ± 5.33Bb 12.50 ± 1.40Bb 12.83 ± 4.27Bb 17.08 ± 0.81Ba,b 12.93 ± 3.93Bb 

ProRoot MTA 32.21 ± 4.52A,Ba 29.82 ± 3.51Aa,b 35.44 ± 2.33Bc 24.51 ± 3.85Aa 14.32 ± 2.73Cb 16.11 ± 2.94Ca,b 

Water 1.66 ± 0.57Ac 1.33 ± 0.57Ac 1.33 ± 0.10Ad 0.33 ± 0.57Bc 0.24 ± 0.34Bc 0.54 ± 0.21Ac 

 

 

Table 2 OH ions release test. The pH of the medium conditioned by ProRoot MTA was statistically higher than either TheraCal or 
Dycal till 7 days. 

pH of soaking water (n = 10) 

Material 3h 1 day 3 days 7 days 14 days 28 days 
ThearCal 10.96 ± 0.03Aa 10.19 ± 0.24Ba 9.28 ± 0.41Ca 8.32 ± 0.06Da 8.63 ± 0.15Ea 8.04 ± 0.18Da 

Dyal 10.83 ± 0.44Aa 10.99 ± 0.51Ab 10.14 ± 0.28A,Bb 9.60 ± 0.38Bb 9.94 ± 0.16Bb 10.25 ± 0.49Ab 

ProRoot MTA 11.52 ± 0.75Ab 10.91 ± 0.13Ab 11.52 ± 0.41Ac 11.25 ± 0.82Ac 7.84 ± 0.13Bc 8.25 ± 0.24Ba 

Water 6.88 ± 0.04Ac 7.00 ± 0.02Ac 7.07 ± 0.09Ad 7.10 ± 0.10Ad 6.96 ± 0.06Ac 7.22 ± 0.12Ac 

 

Table 3 Solubility, water absorption, depth of cure, radiopacity. The solubility of TheraCal was very low, statistically less than that  
of Dycal and much less than ProRoot MTA. TheraCal absorbed statistically more water than Dycal and statistically less than  
ProRoot MTA. Dycal and ProRoot did not polymerize after a light-curing. TheraCal and ProRoot MTA shower less radiopacity than  
ProRoot MTA.  

Water absorption Depth of curve Radiopacity 

Solubility (n = 10) (n = 10) (mm, n = 3) (mm of Al, n = 6) 

ThearCal )1.58 ± 0.35a 10.42 ± 0.34a 1.69 ± 0.04 1.07 ± 0.06a 

Dyal )4.58 ± 1.11b 4.87 ± 0.61b - 2.30 ± 0.10b 

ProRoot MTA )18.34 ± 0.51c 13.96 ± 3.92c - 4.34 ± 0.64c 
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(Horsted-Bindslev & Lovshall 2002, Goldberg & Smith  
2004, Desai & Chandler 2009, Modena et al. 2009)  
and is one of the most important endodontic modal- 
ities for maintaining dental pulp vitality. A liner must  
act as a barrier to protect the dental pulpal complex  
and induce the formation of new dentine bridge or  
dentine-like bridge between the pulp and restorative  
material. 

The bioavailability of calcium (Ca) ions plays a key  
role in the various biological events on cells involved in  
the new formation of mineralized hard tissues. Ca ions  
stimulate  the  expression  of  bone-associated  proteins  
mediated by calcium channels (Jung et al. 2010), and  
large quantities of Ca ions could activate ATP, which  
plays a significant role in the mineralization process  
(Torneck et al. 1983). 

Ca-releasing materials accelerate osteoblast differen- 
tiation: a 2-4 mmol L)1  (80-160 ppm) concentration  
of  calcium  ions had a  stimulatory  effect  on mouse  
primary  osteoblasts,  whilst 6-8 mmol L)1 induced  
differentiation and >10 mmol L)1  showed a cytotoxic  
effect (Maeno et al. 2005), considering normal extra- 
cellular   calcium   concentration   is   approximately 
2 mmol L)1 (80 ppm) (Clapham 1995). 

Ca  ions  are  necessary  for  the  differentiation  and  
mineralization of pulp cells (Schroder 1985), and a Ca- 
rich medium induces both proliferation and differenti- 
ation  into  odontoblast-like  cells (Lopez-Cazaux  et al.  
2006). The eluted Ca ions increase the proliferation of  
human dental pulp cells in a dose-dependent manner  
(Clapham 1995, Takita et al. 2006). In addition, Ca  
ions specifically modulate osteopontin and bone mor- 
phogenetic protein-2 levels during pulp calcification  
(Rashid et al. 2003), and the release of Ca enhances the  
activity of pyrophosphatase, which helps to maintain  
dentine mineralization and the formation of a dentine  
bridge (Estrela & Holland 2003). 

In view of this, the continuous release of Ca ions  
from a pulp capping material is likely the main reason  
for a material-induced proliferation and differentiation  
of  human  dental  pulp  cells.  All  the  pulp  capping  
materials  tested  in  the  present  study  proved  to  be  
calcium-releasing formulations. Unexpectedly, Thera- 
Cal  proved  to  be  an  ion-leaching  material  able  to  
release calcium and hydroxyl ions for a period of at  
least 28 days,  and  it  released  significantly  more  
calcium than either ProRoot MTA or Dycal throughout  
the test period. Some calcium ion release from Dycal  
occurred during the 28-day experimental period, in  
agreement  with  other  studies  (Shubich  et al. 1978,  
Tamburic  et al. 1993),  but  ProRoot  MTA  released 
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significantly more calcium ions than Dycal throughout  
the  experimental  period,  in  accordance  with  other  
studies (Takita et al. 2006). However, it is difficult to  
compare directly the findings of calcium release when  
the  experimental  protocols  are  different.  The  high  
amount of calcium provided by ProRoot MTA was in  
agreement  with  other  studies (Takita  et al. 2006,  
Gandolfi et al. 2011d). 

It has been suggested that the positive effect of MTA 
cements on proliferation of human dental pulp cells is 
enhanced potentially by the continuous and constant 
release of calcium ions: the elution components such as 
calcium ions (approximately 0.3 mmol L)1) from MTA 
increased the proliferation of human dental pulp cell in a 
dose-dependent manner compared with Dycal and the 
control (Takita et al. 2006). 

Interestingly, in the present study, the amount of 
calcium  ions  released  from  TheraCal  was  in  the 
concentration range with potential stimulatory activity 
for bone-forming cells (Maeno et al. 2005), dental pulp 
cell (Takita et al. 2006) and odontoblasts (Rashid et al. 
2003, Lopez-Cazaux et al. 2006). 

The findings  of  this  study suggest  that  the resin  
portion  of  TheraCal (comprising  hydrophobic  and  
hydrophilic monomers) is able to promote/sustain Ca  
and OH ion release within the wet surgical site (on the  
tooth  pulp  and/or  dentine)  and  could  favour  the  
interaction  of  the  formulation  with  the  hydrophilic  
tooth dentine. The results of the water absorption test  
showed that the hydrophilic resin in TheraCal formu- 
lation  allows  some  water  absorption  that  is  likely  
responsible for the initiation of the hydration reaction  
of  the  Portland  cement  particles  with  subsequent  
formation  of  portlandite  or  calcium  hydroxide.  The  
occurrence of similar chemical-physical events in a  
light-curable MTA-based material containing an amphi- 
philic  resin  was  recently  reported (Gandolfi  et al.  
2011d). 

The ability of TheraCal and ProRoot MTA to release  
calcium and alkalinize the surrounding fluids is corre- 
lated to the formation of calcium hydroxide Ca(OH)2  

that separates into calcium and hydroxl ions, resulting  
in  Ca  and  OH  ion  release  and  increased  pH.  The  
alkalinizing power of a pulp capping material repre- 
sents  a  key  property  for  different  alkaline-related  
biological  properties.  The  release  of  hydroxyl  ions  
during  the  hydration  reaction  creates  an  adverse  
environment for bacterial survival and proliferation.  
These antibacterial properties are primarily required at  
the dentine/restoration interface where residual bacte- 
ria could further increase the risk of re-infection and 
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secondary  caries,  in  particular  when  using  dental 
composites lacking any antimicrobial activity. In addi- 
tion, alkaline pH is known to cause an inflammatory 
reaction  with  the  formation  of  reparative  dentine 
(Horsted-Bindslev & Lovshall 2002, Okiji & Yoshiba 
2009) and also favours the formation of hydroxyapa- 
tite (Meyer & Eanes 1978, Lazic 1995). 

The decrease in hydroxyl ion release from TheraCal 
after 7-14 days approaching the physiological pH may 
create a favourable environment for pulp cell viability 
and  metabolic  activity  with  the  formation  of  new/ 
reparative tertiary dentine. 

The present study showed that Ca and OH ion release  
from the pulp capping materials would continue over  
time, and the action of these ions on vital tissue could  
induce  the  deposition  of  hard  tissue  and  have  an  
antibacterial effect. The chemical dissociation occurs in  
the  presence  of  fluids,  and  the  free  calcium  and  
hydroxyl ions dissociated from calcium hydroxide could  
likely  penetrate  the  surrounding  dentine (Tronstad  
et al. 1981, Hosoya et al. 2001). In a clinical situation,  
it is  possible  to  speculate  that  a  wet environment/  
surgical site (presence of exudates and dentinal fluid)  
may maintain the dissociation constant because of the  
presence of fluid in contact with the material. 

One of the major drawbacks of the traditional self- 
cure Ca(OH)2-based and CaO-based materials is high  
solubility and dissolution over time (within 1-2 years  
after  application)  in  tissue  fluids.  This  leads  to  the  
disappearance of the material and the formation of  
tunnel defects/patencies in reparative dentine under- 
neath the capping, thereby failing to provide a perma- 
nent seal against bacterial invasion (Horsted-Bindslev &  
Lovshall 2002, Desai & Chandler 2009). In the present  
study, TheraCal showed low solubility values, whereas  
the high solubility of ProRoot MTA was likely related to  
its long setting time, with consequent disintegration of  
unset material, rather than its real solubility. 

There is a criticism on the ISO definition of solubility 
as  the  test  measures  the  elution  of  water-soluble 
material. The physicochemical definition of solubility 
for a solid involves/implies a situation where a pure 
chemical compound is in thermodynamic equilibrium 
with its solution, but equilibrium is not attained for a 
dental cement (Wilson 1976). 

Moreover, the ISO tests (ISO 6876 clause 7.7.2.) are  
not ideal, as often the methods to perform the test are  
different  from  the  clinical  situation  and  the  results  
obtained are far from the clinical outcomes. In confir- 
mation of this, the high solubility of ProRoot MTA is  
not consistent with its excellent clinical performances. 
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Unfortunately, there is a lack of an international  
standard and test methods for both conventional and  
resin-modified calcium silicate MTA-like cements. This  
deficiency has been also mentioned by others (Nekoofar  
et al. 2007). There is a need for a standard requirement  
for the aforementioned materials in relationship to their  
specific clinical application (root end filling materials,  
endodontic sealers, pulp capping materials, etc.). The  
tests suggested in the available specifications are often  
inappropriate/unfeasible  and  inapplicable  to  MTA  
materials. 

ISO 6876 for dental root canal sealing materials was  
used for the solubility test (ISO 6876 clause 7.7.2.) as it  
is commonly used on MTA materials. However, this  
specification has been conceived and refers to ‘root  
canal sealing materials which set with or without the  
assistance  of  moisture  and  are  used  for  permanent  
obturation  of  the  root  canal … applicable  only  to  
sealers  intended  for  orthograde  use,  i.e.  root  filling  
placed from the coronal aspect of a tooth’ (ISO 6876  
comma 1). It does not concern specifically pulp capping  
materials and does not comply its test to the effective  
clinical conditions such as the setting in the presence of  
biological fluids. 

ISO  4049  Dentistry  - Polymer-based  restorative  
materials  refer/intend  to  materials ‘for  use  in  the  
cementation or fixation of restorations and appliances  
such as inlays, onlays, veneers, crown and bridges’ and  
includes luting materials of class 1 (self-curing), class 2  
(external-energy-activated)  or  class 3 (dual  cure)  
materials. However, some suggested tests are inade- 
quate for MTA-like materials such as water sorption  
and  solubility  testing (clause 7.12.2.1 for  class 1  
materials) that suggest to use specimens after 60 min  
at 37 C, that is, MTA samples completely dried with  
sure alteration of the hydration, setting and hardening  
reactions that require several hours and humidity. 

ISO 9917 Dentistry - Water-based cements concern  
cement ‘for use as a luting agent, a base or liner or as a  
restorative material’ (clause 1), but does not include  
the specifications for many tests such as solubility or  
water sorption. 

ProRoot MTA is a water-based cement, and Dycal is  
a polymer-based cement, although both are class 1  
materials,  that  is, ‘materials  in  which  the  setting  
reaction of the polymerizable component is activated  
chemically following mixing components’ (ISO 9917  
part 2 clause 4.1.). TheraCal is a resin-modified MTA- 
like  material  and a  class 2 material ‘in  which  the  
setting  reaction  of  the  polymerizable  component  is  
light-activated’ (ISO 9917 part 2 clause 4.1.). Unfor- 
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tunately,  appropriate  standard  specifications  for  the  
solubility and water absorption test of calcium hydrox- 
ide-releasing hydrophilic pulp capping materials do not  
exist.  ISO 9917  for  water-based  cements  does  not  
include these tests, and ISO 4049 for polymer-based  
restorative  materials  does  not  consider  hydrophilic  
materials that require water/moisture to set and/or  
need to absorb water to release bioactive ions as occur  
for the studied cements. For this reason, the ISO 6876  
has been partly followed for the solubility and the water  
absorption tests, in agreement with previous studies on  
ProRoot MTA (Danesh et al. 2006, Islam et al. 2006).  
The  solubility  after 24 h  of  soaking  was  tested,  in  
agreement with ISO 6876 and with previous studies on  
ProRoot MTA (Danesh et al. 2006, Islam et al. 2006,  
Gandolfi et al. 2011d) and Dycal (Shen et al. 2010). 

Some  modifications  to  ISO  6876  methodology  
because of the different typology of the test materials  
have  been  introduced.  In  this  study,  the  internal  
diameter of the mould (8 mm, instead of 15 mm) was  
the same diameter as the LED light tip, in order that all  
the sample surface was exposed. Moreover, the weight  
loss of the test samples instead of the disintegrated  
material  recovered  in  the  soaking  containers  was  
considered/recorded, in agreement with previous stud- 
ies (Danesh et al. 2006, Gandolfi et al. 2011d) and with  
ISO 4049. Finally, as in direct pulp-capping, the higher  
risk of dissolution of Dycal and mainly of ProRoot MTA  
is during the first hours, before setting and hardening  
has been completed, and the samples were immersed  
after a few minutes of being prepared. 

Adequate  specifications  to  test  the  radiopacity  of  
hydrophilic  calcium  hydroxide-releasing  MTA-based  
materials do not exist. The radiopacity data mismatch  
the ISO 6876 (Dental root canal sealing materials)  
requirement of a radiopacity ‡3 mm Al; however, the  
data of all the materials complied the ISO 9917 item 
5.6. (Water-based cements - Resin-modified cements)  
for luting and base/lining materials, namely the radio- 
pacity ‘shall be equal to or greater than of the same  
thickness  of  aluminum’.  Previous  studies  used  ISO  
6876 to test the radiopacity of ProRoot MTA (Danesh  
et al. 2006). The radiopacity results of ProRoot MTA  
and Dycal were similar to that reported in previous  
studies (Danesh et al. 2006, Devito et al. 2006, Pekkan  
et al. 2011). No radiopacity values are stated by the  
manufacturer in the data sheet of the products. 

Another serious disadvantage of Ca(OH)2-based and  
CaO-based materials for pulp capping is setting failure  
to set in the presence of blood and other biological fluids  
with related clinical/operative problems. So, the possi- 
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bility to light-cured pulp capping material is a potential  
major advantage for clinicians. TheraCal is set after a  
light curing of 20 s with a DOC of approximately 2 mm,  
to give rapid attainment of its physical properties. 

The ability to release biologically active ions (bioin- 
teractivity)  is  a  prerequisite  for  a  material  to  be  
bioactive and trigger the formation of apatite. Previous  
studies demonstrated the formation of apatite on the  
surface  of  calcium  silicate  MTA  cements  when  im- 
mersed  in  phosphate-containing  solutions (Gandolfi  
et al. 2010a,b,c, 2011a,d).  Apatite  formation  offers  
many advantages such as the exposure of a suitable  
surface for cells (Gandolfi et al. 2010d, 2011a,d), and  
may  induce  odontoblast-like  cells  to  produce  new  
dentine tissue and remineralize the adjacent dentine  
through  the  deposition  of  apatite  crystals (Tay  &  
Pashley 2008,  Gandolfi  et al. 2011e,  Prati  et al.  
2011). Encouraging preliminary evidence on the for- 
mation of apatite on TheraCal as well as ProRoot MTA  
and Dycal has been obtained: the phosphate ions of  
biological fluids (blood, exudate, plasma, dentinal fluid)  
may  react  with  Ca  and  OH  ions  leached  from  the  
materials  and  trigger  the  precipitation  of  apatite  
crystals. 

 
 

Conclusions 

TheraCal is a new light-curable pulp capping material 
able to release calcium ions and create an environ- 
mental pH close to physiological pH after 7 days. Its 
ability to polymerize to a depth of 1.7 mm may avoid 
the risk of untimely dissolution. The ability of TheraCal 
to provide free calcium ions could favour the formation 
of apatite and induce the differentiation of odontoblasts 
with the formation of new dentine. 
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