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Summary

Dynamic contrast enhancement techniques using iodinated contrast
media have been employed routinely in computed tomography for many
years and can help the radiologist considerably in narrowing down the
differential diagnosis of tumors by adding functional information to the
anatomically detailed morphological images. One of the many advantages
of magnetic resonance imaging is the possibility to use not one but several
types of contrast media, each with its specific composition and particular
properties.

The functional imaging capabilities of dynamic contrast-enhanced MRI
(DCE-MRI) are for that reason substantially greater than those of dynamic
contrast-enhanced CT. Contrast-enhanced MR is now well established as
a high-performance imaging modality for the diagnosis and management
of patients with solid tumors.

The diagnosis, grading and classification of tumours has benefited
considerably from the development of DCE-MRI which is now essential
to the adequate clinical management of many tumour types [19].

The ability of MRI to demonstrate tumour morphology and the relation-
ships of malignant lesions to neighbouring structures provides essential
clinical information for both clinical management and surgical planning.
Magnetic resonance has innate advantages in these applications enabling
clear delineation of normal anatomical structures and organs and, in
most cases clearly delineating and identifying pathological change. The
ability to acquire multiplanar images or even volume acquisitions is ex-
tremely valuable and provides the clinician with a true three dimensional
appreciation of tumour and tissue morphology. The development of small
molecular weight paramagnetic contrast agents has had a major impact
on the application of magnetic resonance in oncology. Many tumours
exhibit distinctive enhancement patterns which may increase their con-
spicuity and provide useful diagnostic or staging information [10] - [11].

Several strategies have been proposed for DCE-MRI evaluation. Visual
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inspection of contrast agent concentration curves vs time is a very sim-
ple yet operator dependent procedure [64], therefore more objective ap-
proaches have been developed in order to facilitate comparison between
studies. In so called model free approaches, descriptive or heuristic in-
formation extracted from time series raw data have been used for tissue
classification [7, 8]. The main issue concerning these schemes is that
they have not a direct interpretation in terms of physiological properties
of the tissues.

On the other hand, model based investigations typically involve com-
partmental tracer kinetic modelling 5.1 [21, 23, 24, 25, 26, 30, 40, 39, 41,
42] and pixel-by-pixel estimation of kinetic parameters via non-linear re-
gression [74] applied on region of interests (ROIs) opportunely selected by
the physician [75]. This approach has the advantage to provide param-
eters directly related to the pathophysiological properties of the tissue
such as vessel permeability, local regional blood flow, extraction fraction,
concentration gradient between plasma and extravascular-extracellular
space [21]. Anyway, nonlinear modelling is computational demanding
and the accuracy of the estimates can be affected by the signal-to-noise
ratio (SNR) and by the initial solutions [74].

The principal aim of this thesis is investigate the use of semi-quantitative
and quantitative parameters for segmentation and classification of breast
lesion in DCE-MRI. The objectives of works can be subdivided as follow:

1. describe the principal techniques to evaluate the time intensity curve
in DCE-MRI with focus on kinetic model proposed in literature;

2. evaluate the influence in the choice of parametrization for a classic
bi-compartmental kinetic models

3. evaluate the performance of a method for simultaneous tracer ki-
netic modelling and pixel classification in suspicious and not suspi-
cious

4. evaluate the performance of machine learning techniques training
with morphological, textural and dynamic feature for segmentation
and classification of breast lesion

4



Chapter 1

An Introduction to Dynamic
Contrast-Enhanced MRI in
Oncology

The diagnosis, grading and classification of tumours has benefited
considerably from the development of magnetic resonance imaging (MRI)
which is now essential to the adequate clinical management of many tu-
mour types.

The ability of MRI to demonstrate tumour morphology and the relation-
ships of malignant lesions to neighbouring structures provides essential
clinical information for both clinical management and surgical planning.
Magnetic resonance has innate advantages in these applications enabling
clear delineation of normal anatomical structures and organs and, in
most cases clearly delineating and identifying pathological change. The
ability to acquire multiplanar images or even volume acquisitions is ex-
tremely valuable and provides the clinician with a true three dimensional
appreciation of tumour and tissue morphology. The development of small
molecular weight paramagnetic contrast agents has had a major impact
on the application of magnetic resonance in oncology. Many tumours
exhibit distinctive enhancement patterns which may increase their con-
spicuity and provide useful diagnostic or staging information.

Dynamic contrast enhanced MRI (DCE-MRI) is now widely used in the
diagnosis of cancer and is becoming a promising tool for monitoring tu-
mour response to treatment [10, 11, 19, 15, 33, 19, 68].

DCE-MRI is a functional modality which involves the administration
of an adequate contrast agent (typically Gadolinium DTPA) and, subse-
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CHAPTER 1. AN INTRODUCTION TO DYNAMIC
CONTRAST-ENHANCED MRI IN ONCOLOGY

Figure 1.1: After intra venous injection the contrast medium (usually
Gadolinium) travels through the vessels walls toward the extravascular
extracellular fluid and subsequently it returns back to the main blood
flow. MRI signal intensity changes according to contrast medium con-
centration within voxels. The time course of Gadolinium concentration
(tracer kinetics) can be adequately described using opportune models
whose parameters are strictly related to the angiogenic activity.

quently, the assessment of signal intensities changes over time. The sig-
nal intensity on T1-weighted images can be considered proportional to
the concentration of contrast agent (see Fig. 1.1).

Dynamic contrast enhancement patterns can be affected by a wide
range of physiological factors which include vessel density, blood flow,
endothelial permeability and the size of the extravascular extracellular
space in which contrast is distributed [13, 49, 50, 51]

Many different methods for image acquisition and data analysis have
been described for use in DCE-MRI. The analysis models are designed to
derive the optimal biologically relevant components from the dynamic MR
signal changes and to relate these to the underlying pathophysiological
processes taking place in the tissue. In particular dynamic contrast en-
hanced MRI combined with physiological model-based analysis has been
widely used in the study of tumour angiogenesis and in the development
and trial of anti angiogenic drugs. The derivation of physiological data
from dynamic contrast MRI relies on the application of appropriate phar-
macokinetics models to describe the distribution of contrast media fol-
lowing its systemic administration. A range of modelling techniques are

6
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CONTRAST-ENHANCED MRI IN ONCOLOGY

available which will be discussed in details in chapter Chap. 2.
However, these techniques are complex and are not widely available

outside specialist centers [21, 14]. In response to this many quantita-
tive or semi-quantitative approaches for the classification of enhancement
curve shapes have been described and are now in relatively common use
in clinical settings [34]. As we shall see even these simplistic approaches
for data analysis can provide extremely valuable information for clinical
management.

A range of semi-quantitative parameters will be discussed in details in
chapters 2 and 5.

1.1 Pathophysiological Basis of Contrast En-
hancement

Numerous studies using dynamic contrast enhanced MRI have demon-
strated that malignant tumours generally show faster and higher levels
of enhancement than is seen in normal tissue [10, 11, 38].

This enhancement characteristic reflects the features of the tumour
microvasculature which in general will tend to demonstrate increased
proportional vascularity and higher endothelial permeability to the con-
trast molecules than do normal or less aggressive malignant tissues.
Cancer can develop in any tissue of the body that contains cells capa-
ble of division.

The earliest detectable malignant lesions, referred to as cancer in situ,
are often a few millimeters or less in diameter and at an early stage are
commonly avascular. In avascular tumours cellular nutrition depends on
diffusion of nutrients and waste materials and places a severe limitation
on the size that such a tumour can achieve [1].

The maximum diameter of an avascular solid tumour is approximately
150 − 200µm, and is governed effectively by the maximum diffusion dis-
tance of oxygen. Avascular tumours of this nature are not detectable by
MRI [1]. Conversion of a dormant tumour in situ to a more rapidly grow-
ing invasive neoplasm, may take several years and is associated with
vascularization of the tumour.

The development of neovascularization within a tumour results from a
process known as angiogenesis [1].

There are positive and negative regulators of angiogenesis. Release of a
promoter substance stimulates the endothelial cells of the existing vascu-
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Figure 1.2: A summary of the main phases of tumor vasculature devel-
opment (angiogenesis) and the effects that are measurable by means of
DCE-MRI.

lature close to the neoplasia to initiate the formation of solid endothelial
sprouts that grow toward the solid tumour [1].

Vascular endothelial growth factor (VEGF) also known as vascular per-
meability factor (VPF), induces angiogenesis and strongly increases mi-
crovascular permeability to plasma proteins. As vascular growth factors
are released, proteases are also induced to degrade perivascular tissue,
allowing the endothelial cells to proliferate and form primitive, immature,
and, therefore, leaky vessels. Figure 1.2 summarizes the main phases of
tumor vasculature development.

Therefore, the morphology of the neovascular network in tumours can
differ significantly from that seen in normal tissue. Tumour vasculature
is often highly heterogeneous, and the capillaries are extremely coarse,
irregularly constricted or dilated, and distorted with twisting and sharp
bends [1].

The degree of abnormality seen within the tumour or the vascular bed
appears to depend on whether structural maturation can occur at a rate
sufficient to keep in step with the angiogenic process.

The angiogenic cascade, regulated by pro-angiogenic factors such as
vascular endothelial growth factor, involves proliferation, migration, and
differentiation of endothelial cells to form new capillaries.
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In the tumor environment this process is however not well-controlled,
resulting in structural and functional abnormalities; an important one
being high vessel-wall permeability due to incomplete endothelium lining
and an interrupted basement membrane. In addition, the smooth muscle
layer that assures vasoreactivity is often underdeveloped or lacking.

The onset of angiogenesis adds to the malignant potential of the tumor
because it enables (rapid) tumor growth and provides access to the blood
circulation, thereby increasing the risk of metastases. However, the in-
creased vasculature also provides access to the tumor, such that contrast
materials and drugs can be delivered, to, respectively, detect and treat it.
High-grade tumors tend to present higher vascular disorganization and
permeability than low-grade tumors.

Tumor grade is defined as the histological degree of cell abnormality;
the less the cells are differentiated into normal cells, the higher the grade
and the faster the cells grow and spread. Monitoring tumor vasculariza-
tion could therefore potentially help to predict tumor aggressiveness and
to design a tailored treatment [23] .

On the basis of this histopathological evidence it has been suggested
that DCE-MRI may also be able to provide independent indices of angio-
genic activity and therefore act as a prognostic indicator in a broad range
of tumour types. Clearly, if this is substantiated then the non-invasive
technique of magnetic resonance imaging would have significant advan-
tages over other methods which rely on tissue sampling and secondary
histopathology.

While avascular tumours are not detectable by MRI [19], DCE-MRI
can help to characterize vascularized cancers [68]. After intravenous
injection, the contrast agent (CA) pass through the tumor vasculature
and immediately leaks through the vessels walls accumulating in the ex-
travascular extracellular space (EES) because of the concentration gra-
dient (wash-in phase). Hereafter, CA concentration within plasma will
return lower than EES and backflow will occur (wash-out phase). Using
specific T1-weighted pulse sequences the accumulation of CA causes an
increase of signal intensity (enhancement) on images, Malignant tumors
generally show faster and higher levels of enhancement than is seen in
normal tissue. DCE-MRI is currently widely used in the study of tumour
angiogenesis and in the development and trial of anti angiogenic drugs.
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1.2 Breast cancer imaging

In most industrialized countries breast cancer will affect one out of
eight women during her lifetime. Prevalence of male breast cancer is
about 90 times lower. In the USA, after continuously increasing for more
than two decades, incidence rates are slowly decreasing since 2001. Since
1990, death rates from breast cancer have steadily decreased in women,
which is attributed to both earlier detection and improved treatment.
Still, it is second only to lung cancer as a cause of cancer death in women.
In this work we propose an automatic method for segmentation and clas-
sification of breast lesion via quantitative analysis of magnetic resonance
images (MRI).

Screening and diagnosis of breast cancer are generally performed us-
ing X-ray mammography, possibly in conjunction with ultrasonography.
As a screening modality, MRI is only used for women at high risk - among
other reasons - because of its superior sensitivity in young women.

In this work, we will focus on MR imaging of the breast. More specif-
ically, the DCE-MRI part of the protocol will be highlighted, as well as
radiological assessment of DCE-MRI data. The current standard of care
will be reviewed and directions for improvement will be pointed out.

Most breast cancers are diagnosed using (X-ray) mammography, which
is the standard screening modality. Although mammography is the only
screening test proven to reduce breast cancer mortality, there is increased
awareness that mammography alone may not be adequate to screen cer-
tain subpopulations. Those subpopulations consist for instance of women
with a genetic predisposition to develop breast cancer - such as carrying
one of the BRCA mutations - women with a personal history of cancer, or
women who have undergone chest radiation.

As they are at high-risk (aggregate lifetime risk of more than 20%),
these women should start screening at a relatively young age, when breast
tissue is often mammographically dense. A high density arises from a
high calcium concentration causing a high background signal on mam-
mography, possible obscuring microcalcifications that can be a sign of
cancer. Moreover, a high density is also a risk factor in itself. For women
at high risk, the addition of either MRI or ultrasound to mammography re-
sults in a higher detection yield than achieved with mammography alone,
as can be seen in Table 1.3.

Therefore, for these women, additional screening beyond annual mam-
mography has been advised by the American Cancer Society since 2007.
Preferably MRI is used, because the combination of MRI with standard
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Figure 1.3: High risk screening, percentage of cancers found per modality
and per combination of modalities

mammography gives the highest detection rate. For women at normal
risk, MRI can be used in case of a suspicious but inconclusive mam-
mogram. However, ultrasound is more commonly used as a second-look
modality.

If diagnosis calls for treatment, MRI could be used to assess the extent
of disease. However, this use of MRI, as well as the use of MRI for (con-
tralateral) screening, is currently vehemently debated as it may (unnec-
essarily) increase recall and intervention rates. An increase of the false
positive ratio has been reported, although others state that the specificity
of MRI is similar to that of mammography [64]. The reported range in
specificity is therefore large (37-97%). On the part of sensitivity there is
consensus that it is higher for MRI (77-100%) than for mammography
(25-59%). Possibly, improvements in standardization can contribute to a
higher and more uniform specificity. During the treatment phase, MRI
can be used to monitor the response to (neoadjuvant) chemotherapy or
other therapies. For agents acting on the tumor vasculature it can be
crucial to use MRI for therapy assessment, because it can provide infor-
mation about the degree of vascularization and the quality of the vessels.

1.3 Patient Examination

DCE-MRI can be satisfactorily performed on the majority of currently
available clinical scanners.

Because of the requirements for high temporal resolution there will
be restrictions on spatial resolution and spatial coverage dependent on

11
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gradient performance. However, it should be stressed that useful clini-
cal information can be obtained in many applications using even a single
slice of dynamic data. The majority of currently available clinical scan-
ners will comfortably allow multislice acquisitions to be performed with
adequate temporal resolution for most analysis techniques.

Contrast administration is performed through a peripheral vein. A
large antecubital vein is commonly employed and the injections can be
given through a small cannula which should be inserted and secured in
place prior to the investigation. The injection technique is of considerable
importance. Most dynamic imaging methodologies use a bolus injection
of contrast and it is important that this be administered in a consistent
manner.

Most centers now use an automated pressure injection system to en-
sure reproducibility.

Protocols for contrast administration vary depending on the technique
in use. Typically however, a single dose of contrast (0.1 mmol/Kg) of a
standard gadolinium chelate will be administered at a rate in the region of
4 ml/s. Some centers prefer to vary the injection rate so that the overall
period of contrast administration is kept constant rather than having a
constant injection rate of different volumes in different patients. It is
important that the contrast bolus remain coherent in its passage through
the body and in order to achieve this a chaser injection of normal saline
is given immediately after the contrast.

The chaser injection must be given at the same flow rate as the con-
trast and must be of adequate volume to empty the draining veins, typi-
cally 20-30 ml, so that the contrast passes into the systemic circulation
as a coherent bolus.

The venous injection should be placed into the right arm if possible
since variations in venous anatomy can lead to significant jugular reflux
on the left side which can impair the coherence of the contrast bolus [1].

The imaging of the dynamic sequence is usually performed following
initial anatomical and localization scans.

Problems associated with respiratory and other physiological motion
and with the presence of inflow artefact distorting the dynamic contrast
signal in blood vessels must be considered.

If it is intended to use a simple subjective or semi-quantitative analysis
of enhancement curve then the dynamic image series provides adequate
data for this approach. If it is intended to use a pharmacokinetics analy-
sis then it is necessary to calculate contrast concentration in each image
in the dynamic series.
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Unfortunately the relationship between contrast concentration and
signal intensity is non linear (see Chap. 3) and will be affected by the
underlying native T1 of the tissues. For pharmacokinetics analysis it is
therefore necessary to add additional imaging sequences to the investiga-
tion before the dynamic run is performed.

These sequences are designed to allow calculation of quantitative T1
maps to enable subsequent calculation of contrast concentration. The
approaches taken for T1 mapping and the imaging methods employed
are also described in detail in Chap. 3.

The dynamic sequence is performed following preliminary anatomical
imaging and T1 mapping. The choice of image acquisition technique,
injection rate and temporal resolution will be entirely dependent on the
analysis method to be employed.

1.4 Dynamic MR Acquisition Techniques

There are two generic approaches for the acquisition of dynamic con-
trast enhanced MRI data. Relaxivity based methods use T1-weighted ac-
quisitions whilst susceptibility-based techniques use T2 or more com-
monly T2*-based sequences. Both methods have specific advantages and
disadvantages and historically they have tended to be used in different
applications.

Typical modern clinical MR scanners can offer a variety of choices of
pulse sequence which are suitable for dynamic contrast enhanced mag-
netic resonance applications. Despite this the sequence chosen will al-
most always be a compromise between a number of imaging quality fac-
tors including time, spatial resolution, anatomical coverage, sensitivity to
artefact, image signal to noise ratio (SNR) and degree of contrast weight-
ing.

T1-weighted DCE-MRI is most commonly acquired using gradient echo-
based sequences which can be broadly divided into three groups: the
steady state, the transient state and the echo planar-based sequences.
Standard, balanced, gradient echo sequences have high sensitivity to T2
effects which is undesirable as the signal decreases once contrast agent
arrives at the tissue. Many dynamic studies have therefore used spoiled
gradient echo sequences which are more specifically sensitive to T1 ef-
fects and therefore show signal increases.
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1.4.1 Breast DCE-MR Acquisition

In this study the patients underwent imaging with a 1.5 T scanner
(Magnetom Symphony, Siemens Medical System, Erlangen, Germany)
equipped with breast coil.

DCE-MRI was obtained with FLASH or TWIST sequences.
The protocols used un two cases was described in the following.
DCE T1-weighted FLASH 3-D coronal images were acquired with TR/TE:

9.8/4.76 ms; flip angle: 25 degrees; field of view 330x247 mmxmm; ma-
trix: 256x128; thickness: 2 mm; gap: 0; acquisition time: 56 s; 80 slices
spanning entire breast volume. One series was acquired before and 9
series after intra-venous injection of 0.1 mmol/kg of a positive paramag-
netic contrast medium (Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex,
France). Three pre-contrast volumes were acquired with different flip an-
gles (7, 12 and 25 degrees) in order to obtain T10 map in accordance with
the standard methods proposed in literature [25].

DCE T1-weighted TWIST 3-D coronal images were acquired with TR/TE:
3.08/1.18 ms; flip angle: 25 degrees; matrix: 320x290; thickness: 2 mm;
gap: 0 mm; acquisition time: 6.2 s; 64 slices spanning entire breast vol-
ume; 88 temporal series; pA:0.20, pB:0.20. The choice of pA and pB was
based on the results of [54]. Five pre-contrast volumes were acquired
with different flip angles (7, 12, 15, 20 and 25 degrees) in order to obtain
T10 map in accordance with the standard methods proposed in literature
[55].

Automatic injection system was used (Spectris Solaris EP MR, MEDRAD,
Inc.,Indianola, PA) and injection flow rate was set to 2 ml/s followed by a
flush of 10 ml saline solution at the same rate.

1.5 Analysis of Dynamic Data

A large range of techniques have been applied to the analysis of the sig-
nal enhancement curves observed in DCE-MRI which range from simple
visual inspection to complex quantification using applications of pharma-
cokinetics models.

Many analysis techniques are based on measurements taken from
user-defined regions of interest (ROI). This has the advantage of ease
of use but also has the disadvantage in that it produces a wide degree
of variability and potential intraobserver errors into the technique. More
importantly it is incapable of identifying or quantifying significant het-
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erogeneity within the tumour microvascular which may occur within the
region of interest.

Inappropriate selection of the ROI so that it includes both enhancing
and necrotic or non-enhancing components of tumour would give rise
to misleading interpretation. These shortcomings can be addressed by
the production of calculated parametric images which allow pixel by pixel
analysis of the calculated microvascular components. This pixel by pixel
analysis deals specifically with tumour heterogeneity and potentially pro-
vides a far wider range of information concerning tumour behavior than is
available from region of interest analysis. Unfortunately, the use of para-
metric images imposes significant further demands on the acquisition
and analysis techniques. In particular, the use of pixel by pixel analysis
assumes that there is no significant motion at the spatial resolution of the
individual voxel. Since a typical voxel may be below 1 mm in size even
small physiological motions can have significant impact on the calculated
parameters.

For these reason in the chapter 5 was described an approach for
simultaneous pixel by pixel classification (enhancing an not enhancing
pixel) and tracer kinetic modelling in DCE-MRI.

Whatever approach to analysis is selected careful inspection of the
original dynamic contrast series images is important. Visual review of
these images will allow identification of significant patient motion or un-
expected artefact which may have occurred during the dynamic acquisi-
tion and will also allow appreciation of the distribution of enhancement
that has occurred in various tissues. This initial visual inspection is
greatly aided by the use of simple subtraction techniques which can usu-
ally be performed on the scanner console or a standard clinical worksta-
tion.

1.5.1 Visual Inspection

A commonly used analysis of dynamic enhancement patterns is based
upon a subjective evaluation of the time-signal intensity curve, in which
each curve is classified in accordance with an evaluation system Classifi-
cation of signal intensity curves according to the scheme achieved very
good diagnostic performance in differentiating malignant from benign
breast lesions as described by Daniel et. al. [34]. The high numbered
curves are interpreted as representing more aggressive tumour types.
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1.5.2 Enhancement Curve Analysis: model free and model
based

A broad range of approaches have been taken to assess the properties
of enhancement curves in various tumours [64]. Most of these techniques
are designed to deal with baseline variations in signal intensity and with
the inherent differences in signal intensity that would be observed due to
changes in tuning and scaling factors between scanners or even between
sessions on the same scanner.

The analysis models are designed to derive the optimal biologically
relevant components from the dynamic MR signal changes and to re-
late these to the underlying pathophysiological processes taking place in
the tissue. In particular dynamic contrast enhanced MRI combined with
physiological model-based analysis has been widely used in the study
of tumour angiogenesis and in the development and trial of anti angio-
genic drugs. The derivation of physiological data from dynamic contrast
MRI relies on the application of appropriate pharmacokinetics models to
describe the distribution of contrast media following its systemic admin-
istration. A range of modelling techniques are available [21, 23, 25] and
these will described in the chapter 2 and 3. However, these techniques
are complex and are not widely available outside specialist centers [21].

In response to this many quantitative or semi-quantitative approaches
(analysis model free) for the classification of enhancement curve shapes
have been described and are now in relatively common use in clinical
settings [34]. As we shall see even these simplistic approaches for data
analysis can provide extremely valuable information for clinical manage-
ment. Overimaginative curve shape analysis techniques can be extremely
valuable, particularly in clinical applications for the grading or classifica-
tion of tumours. This reflects the fact that differences in tumour vas-
culature between benign and malignant tumours are large and maybe
demonstrated by relatively crude analysis techniques. Despite their clear
clinical utility the shortcomings of these subjective and semi-quantitative
techniques have led many workers to develop more robust quantitative
approaches to analysis. There are several reasons why more quantita-
tive approaches may be beneficial. Firstly, the ability to produce mea-
surements which reflected the physiological anatomical structure of the
tumour microvasculature and which are truly independent of scanner
acquisition and tumour type is highly attractive when compared to the
use of a range of tissue or scanner specific semi-quantitative methods.
Secondly, the development of precise and reproducible quantitative mea-
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Figure 1.4: Semi-quantitative analysis: illustration of the parameters cal-
culated from the TIC. See table 1.5 for definition of terms.

sures is highly desirable for use in longitudinal or multi-center studies.
This is of particular importance in clinical trials of new therapeutic agents
where the ability to test the hypothesis that an agent affects tumour mi-
crovasculature will depend entirely on the accuracy and reproducibility of
the measure used. Thirdly, it must be appreciated that signal enhance-
ment curves are a crude indicator of the contrast distribution mecha-
nisms that are occurring within the voxel. Fourthly, simple analysis of
contrast enhancement curves are unable to compensate for variations in
the contrast delivery to the tumour, which might occur due to poor injec-
tion technique, anatomical variations or abnormal physiological features
in the individual patients such as poor cardiovascular function. Since
these techniques are widely used in cancer patients where venous access
can be difficult and cardiovascular and renal functions are commonly
compromised this can introduce significant variation into the results of
quantitative analysis techniques.

We used semi-quantitative approach to obtain dynamic feature for seg-
mentation and clarification of breast lesion (see chapter 6 and 7).

1.5.3 Semi-quantitative analysis

Semi-quantitative analysis can help the radiologist in classifying the
TIC shape as normal, benign, malignant (see fig. 1.4).
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Figure 1.5: Semi-quantitative analysis: definition of terms in fig. 1.4

Many papers explored the possibility to apply a semi-quantitative ap-
proach to lesion classification. Different TIC features have been used
by the different authors, the aim being to extract as much physiological
information as possible.

The approaches can be roughly subdivided in two classes. In a first
type of approach, the classification of the TIC is performed by means of
several features having, on an intuitive basis, a link with physiological
characteristics 1.4. As an example, Tuncbilek et al. [9] used the maximal
relative enhancement within the first minute (MSD1min), the maximal rel-
ative enhancement of the entire study (MSD), the steepest slope (WISmax).
Similarly, Lavini et al. [7] and Varini et al. [8] used MSD and WISmax.

Another approach is to extract TIC features that are associated to
tracer kinetics theory (see chapter 3). Within this framework de Lus-
sanet et al. [17]; de Vries et al. [32] used, as a first step in quantitative
assessment of tumor perfusion, the steepest slope of the TIC during con-
trast medium uptake (WISmax), and they evaluated the Perfusion Index
(PI) as:

PI =
1

σtumor

[
dCtumor/dt|max

]
(1.1)

=
1

σtumor

[
WISmax

Cp(t)|max

] (1.2)

where σtumor is tissue density. Although PI is an approximated parame-
ter, it combines two important quantities: tissue perfusion and extraction
fraction [43]. When calculated on a pixel-by-pixel basis the above param-
eters can be displayed graphically as pseudo-colored maps superimposed
on the corresponding morphological MR images.
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Figure 1.4 shows the most important parameters that have been used
in several studies. The definitions of the several quantities are not always
in accordance. Therefore we have tried to use a unifying terminology for
semi-quantitative parameters (see tab. 1.5):

TTK time between the beginning of dynamic acquisition and the max-
imum enhancement;

TWI time between the onset of enhancement and the maximum en-
hancement;

TWO time between the maximum enhancement and the end of the ac-
quisition;

MSD the maximum signal level with respect to the baseline;

WIS slope of the wash-in phase (increase in signal intensity between
enhancement onset and maximum enhancement divided by time to peak);

WOS slope of the wash-out phase (decrease in signal intensity between
maximum enhancement and the signal intensity at the end of acquisition
divided by time TWO);

WII intercept of the wash-in straight-line with the y-axis;

WOI intercept of the wash-our straight-line with the y-axis;

AUCWI area under gadolinium curve in the was-in phase;

AUCWO are under gadolinium curve in the wash-out phase.

1.6 Rationale

The aim of this work is to provide an automatic approach to analyze
DCE-MRI data of the breast for segmentation and classification of breast
lesion in DCE-MRI.

In Chapter 2 we will discuss and explain kinetic modeling starting from
the physiological basis. The focus lies on Distributed and Compartmental
Tracer Kinetic Models. In fact in the Chapter 3 we reported the results of
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a comparison between distributed and compartmental kinetic modeling
proposed in literature.

In Chapter 4 we evaluate the influence of parameterizations of a com-
mon compartmental kinetic model.

In Chapter 5 we propose a method to simultaneous segmentation si-
multaneous tracer kinetic modelling and pixel classification of DCE-MRI
studies.

In Chapter 6 and 7 we will discuss and explain the use of machine
learning for automatic segmentation and classification of breast lesion
using semi-quantitative dynamic, textural and morphological features.

In Chapter 8 we report general discussion.
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Chapter 2

Introduction to kinetic modeling

In the present chapter we provide an overview of kinetic models cov-
ering the most applied in the field of oncology. The application of the
discussed models and methods is not limited to the context of dynamic
contrast enhanced magnetic resonance imaging.

2.1 Introduction

Evidence has shown that microcirculatory parameters (eg, perfusion,
blood volume, mean transit time, and vessel permeability) derived from
dynamic contrast-enhanced imaging may be linked to the aggressiveness
or angiogenic potential of the tumor and may be useful for diagnosis and
monitoring of cancer therapy outcome [10, 11, 19, 6].

Pharmacokinetics describes what happens to a substance, e.g. drug
or contrast agent, after it has been administered to a living organism.

This includes the mechanisms of absorption and distribution. The
terms in which these mechanisms are described are physiological and
therefore provide parameters describing the functioning of the organism’s
tissue.

In the field of DCE-MRI, pharmacokinetics is mainly studied by means
of compartment modeling. Compartment is a modeling concept and does
not necessarily describe a singular physical location. A compartment can
be defined as an amount or volume of material. The interconnected com-
partments that are involved in the distribution of the substance define
the system. A compartment by itself is assumed to be kinetically ho-
mogeneous, the kinetic behavior is the same across the compartment.
It is also assumed to be well-mixed: a single concentration is expected
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within the compartment. A physiological process can be modeled at dif-
ferent levels of detail, depending on the necessity to capture the com-
plexness of the specific process. Different model systems, differing in
the number of simplifying model assumptions, can therefore describe
the same physiological process. For T1-weighted DCE-MRI, a variety of
tracer kinetic models have been developed during the last two decades
[21, 23, 24, 25, 26, 30, 40, 39, 41, 42]. In this section we introduce
the general framework for kinetic models and principal compartmental
and distributed models proposed in literature and the associated con-
trast agent input functions which we have considered.

2.2 General framework for pharmacokinetics
modelling

All the models considered here make some basic assumptions related
to concepts in tracer kinetics. These include the following:

• Compartments exist that contain the well-mixed tracer in a uniform
concentration that cannot cross the cell membrane and enter the
cells. It is customary to represent the tissue as comprising three
or four compartments (see figure 2.1). Major compartments are:
the vascular plasma space, the extra-cellular extra-vascular space
(EES), and the intracellular space. A fourth tissue component forms
a catch-all for all the other microscopic tissue components, such
as membranes, fibrous tissues, etc. All clinically utilized MRI con-
trast agents, and most experimental agents, do not pass into the
intracellular space of the tissue, due to their size, inertness, and
non-lipophilicity, making the intra-cellular space un-probable using
DCE-MRI; for this reason, the intra-cellular and other volumes are
usually lumped together as a loosely defined intra-cellular space.

• Linear inter-compartment flux. The flux between compartments
is proportional to the difference of concentrations in two compart-
ments.

• Time invariance. The parameters describing the compartments are
constant during the time that data are acquired.

We will indicate the quantities associated to the EES, plasma and
intra-cellular compartments with the subscripts e, p and i respectively.
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Figure 2.1: Major compartments and functional variables involved in the
distribution of the contrast agent in the tissue.

The quantities associated to the whole tissue will be marked by a sub-
script T. The volume occupied by the different compartments may be ex-
pressed either as an absolute value (Ve,Vi,Vp,VT ) or as fractions (ve,vi,vp) of
VT . They must satisfy the constraint:

ve + vp + vi = 1. (2.1)

Under these assumptions the rate of wash-in and wash-out of the CA
in the EES can be described by a modified general rate equation [1]:

ve
dCe(t)

dt
= Ktrans(Cp(t)− Ce(t)). (2.2)

where Ce and Cp are the CA concentrations [mmol/L] in Ve and Vp

respectively; Ktrans [min−1] is the volume transfer constant between Ve and
Vp (see fig. 2.1) [21]. Ktrans is associated to both the vessel permeability
and blood flow.

There exist a fundamental relationship between Ktrans and ve [14]:

ve =
Ktrans

kep
(2.3)
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where kep is the rate constant and it is linked to the duration of the
wash-out phase. The other two parameters in fig. 2.1 represent the input
function from the injection of gadolinium based contrast (kin) and the
clearance rate (kel) [19].

Both blood plasma flow and blood perfusion (capillary permeability)
contribute to the value of Ktrans. If the flow of CA to the tissue is large,
Ktrans is dominated by the capillary wall permeability (permeability sur-
face area, PS); if the delivery of CA to the tissue is insufficient, blood
perfusion will be the dominant factor, andKtrans will be proportional to
the blood flow F (volume of blood per unit time):

Ktrans = F · E (2.4)

where F is the flux, E is the extraction fraction of the tracer E =
1 − exp(−PS · F ) (PS is the permeability surface area product). The re-
lationships described above form the basis of the models used to describe
contrast agent kinetics by a number of researchers, and the conventions
for the names and symbols used are now generally accepted ([14]).

In normal tissues, the vascular volume is a small fraction vp ≈0 of the
total tissue volume VT (approximately 5% , although it can be considerably
higher in some tissues), and it is sometimes assumed (largely as a matter
of convenience) that the tracer concentration in the tissue as a whole, CT ,
is not influenced to a large degree by the concentration in the vessels (i.e.
CT = vpCp + veCe ≃ veCe).

While this assumption is acceptable in abnormalities with small in-
crease in blood volume, that are located in tissues with a relatively low
normal blood volume, it is not valid in many contexts, especially because
blood volume can largely increase in tumours. Perhaps the most straight-
forward approach is to extend eq. 9 to include the concentration of con-
trast agent in the blood plasma, giving CT = vpCp.

Using this relationship and eq. 2.2 we have the extended Tofts’ model

CT (t) = vpCp(t) +Ktrans

∫ t

0

Cp(τ)exp(−kep(t− τ))dτ (2.5)

More comprehensive models, such as the one proposed by St Lawrence
and Lee can allow direct quantification of flow (F), extraction fraction (E),
ve and mean capillary transit time (MTT). Here, rather than defining a
composite parameter Ktrans, it is possible to separately estimate F and PS
(permeability surface area product). As this model has many parameters,
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successful application requires a high temporal resolution and an accu-
rate measurement of CT, which limits its application in clinical trials. The
tissue concentration is given by the following equation [25]:

CT (t) = F

∫ MTT

0

Cp(t−u)du+E·F
∫ t

MTT

Cp(u)exp(−
E · F
ve

(t−u−MTT ))du (2.6)

In general, the aim of the compartmental analysis is to estimate the
parameters Ktrans,vp and ve from DCE-MRI data. This problem can be seen
either as a system identification problem or as a non linear regression
problem that will described in chapter 4.

2.3 Influence of the arterial input function

From eq. 2.5 it is clear that the CT can be seen as the output of a lin-
ear system whose impulse response is determined by the tracer kinetics
parameters Ktrans and ve and whose input is the AIF. Therefore, errors in
estimation of AIF can seriously affect the parameters estimates.

AIF can be obtained by direct measurement of blood flux [73]. For
example, Larsson et al. [24] utilized an AIF measured from blood samples
drawn from the brachial artery at intervals of 15 s during the DCE-MRI
data acquisition. This method is not suitable for clinical practice and
other approaches have been proposed.

One of the simplest methods was proposed by Brix et al. [23]: they
assumed that AIF followed a mono-exponential model and included it as
a third parameter directly into the TIC model.

Another approach for modelling of arterial flux was based on popula-
tion parameters: the early application proposed by Tofts [21] assumed a
bi-exponential form of the AIF as previously found in normal population
[48]. Also multi-exponential modelling by means of nonlinear fitting of ar-
terial flux measured directly on the images on a patient by patient basis
has been investigated [24] .

Exponential modelling has shown to be only applicable when the sam-
pling rate is relatively slow and there is a negligible plasma fraction.
When the plasma fraction is non-negligible, this approach tends to over-
estimate the volume transfer constant Ktrans. To overcome this problem,
Parker et al. ([57] measured a high temporal resolution population AIF on
a large number of individuals and estimated the parameters of a sophisti-
cated model. Later, Orton et al. [57] proposed a computationally efficient
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version of this model decomposing the input function into a bolus model
and a body transfer function:

Cp(t) = AB · t · exp(−mBt) + AG(exp(−mGt)− exp(−mBt)) (2.7)

with AB = aB − aBaG/(mb − mg) and AG = aBaG(mb − mg)
2; mB, aB and

mG, aG are the transfer rate and the amplitude of two terms respectively.
A similar model for AIF has been previously proposed by Simpson et

al. [30]:

Cp(t) = A · t · exp(−B · t) + C[1− exp(−D · t)](exp(−E · t) (2.8)

where A, B, C, D, E were estimated on an individual basis. Also, other
approaches based on reference tissues have been proposed [18]. The
development of many analysis methods has proceeded in tandem with
specific data acquisition programmes, and the modelling assumptions
frequently reflected limitations imposed by the data. Care must therefore
be taken in applying these methods in settings other than those originally
intended and in comparing apparently compatible results from different
studies using different models and/or data acquisitions.

2.4 Tissue CA Concentration for principal ki-
netic models and corresponding AIF

In this section we described the principal kinetic models used in liter-
ature with correspondent AIF.

2.4.1 Tofts model

In the Tofts model [21] the concentration of CA within plasma (Cp(t))
after the injection of a bolus of Gd (also called Arterial Input Function,
AIF) was assumed to be the one measured in normal control subjects
by Weinmann [48]. This was fitted to a bi-exponential decay, which is
expected from the compartmental theory:

Cp(t) = D(a1exp(−m1t) + a2exp(−m2t)) (2.9)

where D is the dose (mmol/kg). The fitted values were a1 = 3.99 kg/L,
a2 = 4.78 kg/L, m1 = 0.144min−1, m2 = 0.0111min−1. Therefore, the time
course of tissue concentration was modeled as follows:
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CT (t) = KtransCp(t)⊗ exp(−kept) + vpCp(t). (2.10)

2.4.2 Brix model

In the Brix et al. model [23] the signal enhancement was assumed
to be proportional to the concentration of CA in the tissue, the plasma
concentration is fitted with single exponential decay characterized by a
rate constant kel[min−1]. During the infusion of contrast material the CA
concentration Ct is equal to:

CT (t, A, kel, kep) =
A

kel − kep
(
1− exp(−kept)

kep
− 1− exp(−kelt)

kel
) (2.11)

where A[mmolmin−1L−1] is the initial slope of the curve.

2.4.3 Tissue homogeneity model

Unlike the Tofts model, the Tissue homogeneity (TH) model defines the
tracer concentration within the intravascular space (IVS) as a function of
both time and distance along the length of the capillary. Owing to the
small radial dimension of a capillary, radial concentration gradients can
be neglected. Within the EES, the tracer concentration is assumed to be
homogeneous (i.e., well mixed) in its spatial distribution, and therefore,
within this space the TH model is compartmental.

The capillary-tissue unit as defined by the TH model is illustrated in
Fig. 2.2. From conservation of the mass of tracer in both the IVS and the
EVS, the following equations can be derived

Ai
δCi(x, t)

δt
= −F

δCi(x, t)

δx
− PS

L
[Ci(x, t)−

Ce(t)

F/kep
] (2.12)

AeL
δCe(t)

δt
=

PS

L

∫ L

0

[Ci(x, t)−
Ce(t)

F/kep
]dx (2.13)

where Ai is the cross-sectional area of IVS, Ae is the cross-sectional
area of EES and L is the length of capillary along the x-axis.
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Figure 2.2: The capillary-tissue unit as assumed by the tissue homo-
geneity model. The model is comprised of an intravascular space (IVS)
surrounded by an extravascular space (EES). Both spaces are of equal
length, L, measured along the x axis, which is the direction of flow.
The two spaces are separated by the blood-brain barrier, which has a
permeability-surface area product denoted by PS. Both spaces have an
associated cross-sectional area, Ak, volume Vk, and tracer concentration
Ck(t), where k = i or e. The model assumes that only the IVS tracer con-
centration is a function of position. Blood flows into the capillary- tissue
unit by means of the arterial blood at a flow rate F and concentration
Ca(t) and exits by means of the venous blood at the same flow rate and a
concentration Cv(t).
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2.4.4 Adiabatic approximation to the tissue homogene-
ity (ATH) model

The closed-form solution of the TH model exists only in Laplace space.
In this section it is shown that an approximate closed-form solution in
the time domain can be derived using the adiabatic approximation [25].
This approximation is motivated by the fact that the concentration of
labeled water in the EES (Ce(t)) changes slowly relative to that in the IVS
(Ci(t)). Because of the difference in the time scale of these two events, for
a small time interval, the slow event (i.e., the rate of change of (Ce(t))) can
be considered to be at a steady state while the fast event (i.e., the rate
of change of (Ci(t)))is taking place. The mathematical expression of the
adiabatic approximation is to assume that within a small time increment
(∆t), Ce(t) is constant. Using the adiabatic assumption, Ce(t) becomes
discrete and is given formally as

Ce(t) = Σn−1
j=0∆Ce(j∆t)u(t− j∆) (2.14)

where ∆Ce(j∆t) is the discrete jump in the value of Ce(t) at time j∆t,
and u(t) is the unit step function.

The adiabatic solution to the TH model is derived by substituting
Equation 2.14 for Ce(t) in the differential Equations governing mass con-
servation (Equations 2.12, 2.13).

According to the adiabatic approximation to the tissue homogeneity
(ATH) model proposed by [25], the concentration of CA in tissue, Ct(t),
can be considered equal to the convolution of the arterial input function,
Cp(t), and the tissue impulse response function H(t):

H(t) = Ft ≤ Tc (2.15)

H(t) = E · Fexp(−E · F
ve

(t− Tc))t > Tc (2.16)

The ATH is more complex than the Tofts and Brix model. It accounts
for different contributions from the plasma flow rate F [mL100g−1min−1],
extraction fraction through first-passage E, mean capillary transit time Tc

[min]=vi/F , and interstitial volume fraction ve. The relationship with the
above quantities Ktrans and vp can be obtained with following equations:

Ktrans = E · Fvp = Tc · F (2.17)
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Cp(t) can be estimated by means of non-linear fitting of the arterial
flux measured directly on the images using the computationally efficient
model recently proposed by [57].

With the adiabatic solution, H(t) is divided into two phases in the time
domain. For the vascular phase (t < Tc), H(t) is equal to one owing to the
finite time required for the labeled water to traverse the vascular space.
During this phase, a fraction of the labeled water, denoted by E, is ex-
tracted into the EES. At t = Tc, the remaining fraction (1 - E) exits by
means of the outflowing blood, and hence there is a discrete drop in H(t).
For t > Tc, which is the parenchymal tissue phase of H(t), the fraction
of labeled water extracted into the EES diffuses back into the IVS and
is removed by blood flow, leading to clearance from the parenchymal tis-
sue compartment (EES). As a corollary to the adiabatic approximation,
because the time rate of change of the concentration of labeled water in
the IVS owing to blood flow is much faster than that owing to diffusion,
the capillary acts as a sink for the labeled water leaving the EES (by dif-
fusion) during the parenchymal tissue phase. The rate of change of the
tracer concentration in the EES, which for the TH model is considered a
well-stirred compartment, can be expressed as

ve
dCe(t)

dt
= −EFCe(t) (2.18)

2.5 Estimation of Tracer Concentration

In DCE-MRI data analysis in necessary to transform the signal inten-
sity in tissue contrast agent concentration. Using a spoiled gradient echo
acquisition, the signal intensity (St) from a tissue having longitudinal re-
laxation time T1 and transversal relaxation time T2* can be described by
eq. 2.19:

St = M0sin(α)
1− exp(−TR

T1(t)
)

1− cos(α)exp(−TR
T1(t)

)
exp(

−TE

T ∗
2

) (2.19)

where α is the flip angle; TE is the echo time; TR is the repetition time;
M0 describes the scanner gain and proton density. To perform quanti-
tative DCE-MRI data analysis, the time varying longitudinal relaxation
time, T1(t), must be related to the concentration of contrast agent (CA) in
the tissue, Ct(t). Usually, a linear relationship between the two quantities
is assumed [56] eq. 2.20:
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R1(T ) =
1

T1(T )
= r1Ct(t) +R10 (2.20)

where R10 is the R1 value of the tissue before CA administration and
r1 is the relaxivity of the CA. R10 = 1/T10 may be estimated using sev-
eral gradient echo images with different flip angles taken before contrast
injection [55].

However, most studies assume that r1 is constant at a given tempera-
ture and magnetic field and that it is independent on the tissue environ-
ment. The typical value used for r1, estimated in pure saline water, is 4.5
L/mmol/s per kg of water.

If it is assumed that Gd ions have no effect on ρ and that the TE is so
short to neglect the influence of T2 (or, more importantly, changes in T ∗

2

during the series), then the Gd ions can influence the signal intensity only
by means of their effect on T1 (decrease of T1). Under these assumptions,
and as α approaches 90◦. and TR ≪ T1 the relationship between signal
intensity and 1/T1 becomes approximately linear:

S = ρg
TR

T1

(2.21)

this relationship remains approximately valid across a range of val-
ues for TR/T1 and α. Therefore, an estimate of CA concentration can be
obtained using eq. 2.20 and eq. 2.21:

Gd = 1/r1 · (
1

T1

− 1

T1, 0
) ≃ S − S0

r1ρg · TR
(2.22)

where S0, S, T1,0 and T1 are the signal intensities and spin-lattice relax-
ation times before and after administration of contrast agent respectively.
The difference S - S0 is called signal enhancement. The difficulty in com-
paring different studies comes from the nature of g: in fact, the loading of
the coil, the receiver settings at the MR console and image reconstruction
parameters can be different among several studies. Therefore, it could be
more advantageous to normalize with respect to the pre-contrast signal
intensity:

Gd ≃ S − S0

S0

1

r1 · T1,0

(2.23)

The quantity S−S0
S0

is called relative signal enhancement. Consequently,
the concentration of CA is related to both r1 and T1,0 of tissue. As ob-
served before, the relaxivity r1 can be considered fixed for soft tissues. As

31



CHAPTER 2. INTRODUCTION TO KINETIC MODELING

far as the longitudinal relaxation time prior to contrast injection (T1,0) it
can be easily measured before CA administration using opportune pulse
sequences. One common method for T1,0 estimation is to use several
gradient-echo (GRE) images with variable flip angles. In fact, rearranging
equation 2.19 yields:

Y = Xexp(
−TR

T1

)−M0(1− exp(
−TR

T1

))exp(
−TE

T ∗
2

) (2.24)

where Y = Stsin(α) and X = Sttan(α). Hence a plot of Y against X for a
range of flip angles will result in a straight line, and T10 maybe estimated
from the slope.
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Chapter 3

Distributed versus
Compartmental Tracer Kinetic
Models

In this Chapter 3 we reported the principal difference between dis-
tributed versus compartmental kinetic modeling and we reported the re-
sult of a comparison study.

This chapter contains work adapted from:

Sansone M, Fusco R, Aprile F, Petrillo A, Petrillo M, Siani A, Bracale U.
Evaluation of different Tracer Kinetic Models in DCE-MRI of Rectal Can-
cer. Proceedings of 11th World Congress on Medical Physics and Biomed-
ical Engineering, September 7-12, 2009 in Munich, German

Fusco R, Sansone M, Maffei S, Petrillo.A. Dynamic Contrast-Enhanced
MRI in Breast Cancer: A Comparison between Distributed and Compart-
mental Tracer Kinetic Models. Journal of Biomedical Graphics and Com-
puting, Journal of Biomedical Graphics and Computing, vol. 2, no. 2, p.
p23, Aug. 2012.

3.1 Introduction

Tracer kinetic models used for estimating microcirculatory parame-
ters can be broadly categorized as conventional compartmental (CC) or
distributed- parameter (DP) models [21, 23, 25, 39]. While DP models
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seem to be more realistic, CC models (in particular the Tofts and the Brix
models) have been widely used in clinical investigations over the past two
decades.

Many investigations, especially clinical studies, have been published
using CC models: in particular the Tofts [43, 44, 45, 39, 40] and the Brix
models [39, 46, 47]. The former, proposed by Tofts and Kermode [21],
used a population-based AIF with two exponentials, that was drawn from
the literature concerning excretion of Gd-DTPA in the normal population
(Weinmann et al. [48]). On the contrary, the model originally proposed
by Brix et al. [23] used a single exponentially AIF by including one more
parameter in the model. The Tofts and the Brix models (which have been
shown to be both descending from a complete CC model [43]) have been
widely used due to their simplicity [40, 49]. However, these methods are
only applicable when permeability-limited conditions are met [43]. More-
over, although some results in separating benign from malignant lesions
have been obtained [49], their acceptance in the clinical environment is
not yet fully achieved, probably because of the not completely clear in-
terpretation of some parameters (such as Ktrans) which does not allow to
separately consider flow (F) and permeability surface are product (PS).

On the other side, several authors [25, 50, 51] have reported that DP
models could allow a more complete analysis of kinetic parameters: Lar-
son et al [52] stated that CC models do not possess sufficient realism, be-
cause tracer concentration gradients within compartments are assumed
to be zero at all times and consequently the tracer is assumed to dis-
tribute instantaneously on arrival in each compartment.

On the contrary, in DP models the concentration gradients in the vas-
cular compartment are considered as a function of both time and space.
The first DP model for two compartments was proposed by Johnson and
Wilson [41] under the name of tissue homogeneity (TH) model; later, St
Lawrence and Lee [12] proposed a simplified version with an adiabatic
approximation of the tissue homogeneity model (ATH). The ATH model al-
lows direct quantification of flow (F), extraction fraction (E), the clearance
constant (kep) and the mean capillary transit time (Tc). Here, rather than
defining the composite parameter Ktrans, it is possible to separate the flow
from permeability.

To date, studies reporting comparison between CC and DP models in
the DCE-MRI context have been few. Donaldson et al. [50] provided a
comparison among four different models: Tofts model, extended Tofts
model with plasma fraction volume contribution, an uptake model and
a general two-compartment exchange model (2CXM) in the carcinoma of
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cervix. Their results suggested that the assumption of negligible plasma
mean transit time is not appropriate in this context and the 2CXM is bet-
ter suited for its analysis than the Tofts models. This demonstrated the
importance of selecting an appropriate tracer kinetic model in DCE-MRI.
Li et al. [51] compared four different models by applying four statis-
tical measures (chi-square test, Durbin-Watson statistic, Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC)) to as-
sess their capability to describe DCE-MRI data obtained in breast cancer.
They examined the fast exchange limit model with (FXL-vp) and with-
out (FXL) a plasma component, and the fast and slow exchange regime
models (FXR and SXR, respectively). They reported that the FXL-vp and
the FXR models provided the most complete statistical description of dy-
namic contrast-enhanced MRI time courses for the patients selected in
their study.

Therefore, apart from the study by Zwick et al. [39], there is no direct
comparison between Tofts and Brix models on real data; moreover, there
is no direct comparison of CC models and DP models on real data in
breast DCE-MRI.

A first study that has reported this comparison was performed by
Fusco et al. [114].

3.2 A Comparison between ATH models and Com-
partmental Models

Three models were compared: two CC models (the Tofts and the Brix
models) and one DP model (the ATH model). The objective of this study
was two-fold:

• to compare DP (ATH) with CC models (Tofts and Brix) in breast DCE-
MRI,

• to compare the Tofts with the Brix model on real data.

.
It should be pointed out that in this study were considered a few

CC models that have been previously widely used in breast DCE-MRI
(Tofts and Brix). Therefore, many other CC models have not been con-
sidered here (such as for example, the Patlak model [53], which was de-
veloped originally for blood-brain-barrier exchange, or the general two-
compartment exchange model as analyzed by Donaldson [50]). In this
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study were analyzed breast DCE-MRI data from 4 subjects with histo-
logically proven invasive ductal carcinoma; they underwent DCE-MRI ex-
aminations in two different protocols: DCE-MRI with high temporal res-
olution obtained by means of a k-space under-sampling and data shar-
ing method known as Time-resolved angiography With Stochastic Trajec-
tories (TWIST) and DCE-MRI with low temporal resolution obtained by
means of the common Spoiled Gradient-Echo k-space scheme (Spoiled
Gradient Echo knew as Fast Low Angle SHot(FLASH) [54]. This was done
because the ATH model requires a sampling interval lower than the mean
capillary transit time (Tc). FLASH data were used to perform the compar-
ison between Brix and Tofts models in a typical clinical setting. Models
have been compared using different goodness-of-fit metrics (residual sum
of square (RSS), Bayesian Information Criterion (BIC),Akaike Information
Criterion (AIC)). Moreover, a study of reliability of fit parameters estima-
tion was performed.

For two women DCE T1-weighted FLASH 3-D coronal images were ac-
quiredThree pre-contrast volumes were acquired with different flip an-
gles (7, 12 and 25 degrees) in order to obtain T10 map in accordance
with the standard methods proposed in literature [25]. For the other two
women DCE T1-weighted TWIST 3-D coronal images were acquired Five
pre-contrast volumes were acquired with different flip angles (7, 12, 15,
20 and 25 degrees) in order to obtain T10 map in accordance with the
standard methods proposed in literature [55].

3.2.1 Image and data Analysis

T10 maps were calculated using eq. 2.24. However, for all the voxels
within a segmented ROI the T10 median value was used for CA quantifi-
cation. This approach was inspired by Schabel et al. 2010 [49].

For Cp(t) fitting using eq. 2.7 breast arteries have been manually se-
lected. The starting estimates for AB, AG, mB, mG were chosen on basis of
results of [57].

The starting estimates (see Table 3.1) for non linear regression of the
tracer kinetic models were chosen using the kinetic parameters values
found in literature [23, 59, 60].

For the parameters to fall in physiologically meaningful ranges, upper
bounds were imposed on Ktrans, vp, ve, A, kel, Fp, E, and Tc to 1 min−1, 1,
1, 10 mmolmin−1L−1, 10min−1, 100 mL 100g−1 min−1, 1, and 100 s, respec-
tively.
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The data acquired with TWIST protocol were used to compare Tofts,
Brix and ATH models while the data acquired with FLASH protocol were
used to compare Tofts and Brix models.

Data fitting was performed using constrained nonlinear curve fitting
in Matlab (v. 7.0; MathWorks, Natick, MA).

Table 3.1: Starting estimates for nonlinear regression.
Ktrans] kep ] vp A kel Fp E Tc

Tofts 0.5 0.5 0.05
Brix 0.5 0.001 0.144
ATH 0.5 21 0.7 6

3.2.2 Methods: Goodness-of-fit metrics used to compare
kinetic models

In this study we used three different goodness of fit metrics: Residual
Sum of Squares, Akaike Information Criterion and Bayesian Information
Criterion.

A cost function commonly used for quantifying the goodness-of-fit be-
tween models and data is given by the residual sum of squares (RSS):

R2 =
∑
i=1N

(yi − Ct(i))
2 (3.1)

where N denotes the number of observations, yi is the observation at
time i the Ct(i) is the associated fitted value. The higher the R2 value
the higher the discrepancy between the data and the model. However,
this metric is not well suited to compare models with different number of
parameters (as is the case for Brix vs ATH or Tofts vs ATH). To this aim
we used the Bayesian Information Criterion [61] and corrected Akaike
Information Criterion (AICc) [62]. Both AICc and BIC make a balance
between the goodness-of-fit and the model complexity in a similar manner
(they have a common statistical basis in the Kullback-Leibler divergence
[41]); however, the BIC applies a heavier penalty on the model complexity:

BIC = Nlog(R2/N) + plog(N) (3.2)

The AIC is computed via eq. 3.3:
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BIC = Nlog(R2/N) +
2p(p+ 1)

N − p− 1
(3.3)

3.2.3 Methods: Reliability of Fit kinetic parameters

In order to evaluate the reliability of fit parameters a Monte Carlo sim-
ulation was performed. Per each model and per each voxel, the estimated
parameters were used to compute the corresponding tissue concentra-
tion curve by means of eq. 2.10, 2.11, 2.16. After, 100 repetitions of
Gaussian noise were added to each curve (standard deviation calculated
as square of RSS). Per each repetition a new parameter estimate was
obtained. Using the 100 estimates we obtained the standard deviation
per each parameter of a specific model, corresponding to a specific voxel.
Subsequently, the median value of all the standard deviations for a spe-
cific parameter was calculated. This value should represent the confi-
dence interval for the estimate of that specific parameter.

3.2.4 Results

Figure 3.1 shows an example of FLASH data: in particular the T1-w
image, the fat-suppressed image obtained subtracting the basal signal
from 5th post contrast image and the ROI segmented by an expert radi-
ologist.

Similarly, figure 3.2 shows an example of TWIST data.
The selected ROIs included 1276 and 322 voxels for the TWIST and

the FLASH data respectively. Figure 3.3 shows the Cp(t) fitting obtained
using eq. 10 in TWIST data.

Figure 3.4 reports some examples of the fitting obtained for Tofts, Brix
and ATH for TWIST data (a) and the fitting for Tofts and Brix for FLASH
data (b). For the curve in (a) the ATH model resulted in a better fitting in
comparison to both Tofts and Brix (for both BIC and AIC); for the curve in
(b) the Brix model showed a better fitting in comparison to the Tofts one.

The main results of this study are summarized in figures 3.5, 3.6 and
in table 3.2.

Figure 3.5 reports the results of the goodness-of-fit analysis for TWIST
data. With reference to the part (a) the graphs must be interpreted as
follows. Each point represents a whole Ct(t): the value of the x- and
y-coordinates are the values of the AIC for Tofts and ATH model respec-
tively. The red line indicate equal goodness-of-fit (identity). The points
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Figure 3.1: FLASH data: a) T1-w example image; b) Fat-suppressed image
obtained subtracting the basal image from the 5th post contrast image,
c) ROI selected by an expert radiologist.
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Figure 3.2: TWIST data: a) T1-w example image, b) Fat-suppressed image
obtained subtracting the basal image from the 44th post contrast image,
c) ROI selected by an expert radiologist
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Figure 3.3: Manually selected AIF on TWIST data (blue dots) have been
fitted by means of eq. 10 (red line).

Figure 3.4: Example of data fitting. a) TWIST data (blue dots); Tofts model
(red line); Brix model (blue line); ATH model (green line). b) FLASH data
(blue dots); Tofts model (blue line); Brix model (green line).
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Figure 3.5: Goodness-of-fit for TWIST data. First row involves AIC: a) ATH
versus Tofts; b) ATH versus Brix. Second row involves BIC: c) ATH versus
Tofts; d) ATH versus Brix. Red lines indicate equal goodness of fit.

above the identity line denote cases in which the Tofts model gave bet-
ter fit than ATH; points below lines denote cases in which ATH model
gave better fit than Tofts. Similarly, figure 3.6 reports the results of RSS
goodness-of-fit analysis for FLASH data. The interpretation of the figure
is the same as figure 3.5.

Table 3.2 reports, in the case of TWIST data, per each couple of models
and per each metric (RSS, BIC, AIC), the percentage of voxels for which
the metric computed for one model is lower than the same metric com-
puted for the other model. Note that, as regards the comparisons among
ATH, Tofts and Brix models we considered only the metrics BIC and AIC
because the number of model parameters is different; on the contrary,
in the case of Brix vs Tofts comparison we considered only the RSS. In
the case of FLASH data, the comparison between Brix and Tofts models
showed that 77% of voxels had lower RSS for Brix than for Tofts.

In order to evaluate consistency among the parameters estimated with
the different models in table 3.3 and 3.4 we reported the median of each
parameter on TWIST data and on FLASH data respectively. Moreover,
with the aim to evaluate the reliability of the estimates, we reported also
the median value of the standard deviations that have been calculated on
the repetitions of Monte Carlo simulation.
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Figure 3.6: Goodness-of-fit for FLASH data. RSS values of Brix versus
Tofts.
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Table 3.2: Goodness-of-fit measurements on TWIST and FLASH data. Per
each metric the table reports the percentage of voxels showing better fit
of one model versus the other.

ATH vs Tofts [%] ATH vs Brix [%] Brix vs Tofts [%]
R2

1 < R2
2 (TWIST) 60

BIC1 < BIC2 (TWIST) 65 64
AIC1 < AIC2 (TWIST) 59 56

R2
1 < R2

2 (FLASH) 77

Table 3.3: Reliability of fit parameters on TWIST data. Per each model the
table reports the median value of each parameter ± the standard devia-
tion median calculated on 100 repetitions of the Monte Carlo simulation.

Ktrans kep vp A kel
Tofts 0.005±0.000 0.013±0.000 0.097±0.023
Brix 0.031±0.003 0.435±0.015 0.0002±0.000
ATH 0.004±0.000 0.070±0.004 0.591±0.155

3.3 Discussion

In this study we found that on TWIST data ATH obtained better fits than
Tofts (59% of voxels according to AIC and 65% according to BIC) and Brix
(56 % of voxels according to AIC and 64% according to BIC) although the
percentages were not huge. The estimated parameters obtained with the
different models were comparable and fell within a physiological range.

As regards the reliability of the estimates it turned out that no model
was capable of estimating all the parameters with reliability lower than
about 10% and in some cases the reliability was very low. In the analysis
of FLASH data we found that Brix obtained better fit than Tofts in 77% of
voxels. Also in this case the estimated parameters were comparable, how-
ever the reliability of the estimates obtained using Brix was higher than
Tofts.

The better performances of ATH were in part expected considering that
this model is in principle more realistic and that Cp(t) has been derived
from real data. However, the improvement in terms of goodness-of-fit was
not decisive, probably because of several reasons: first, the temporal res-
olution achievable in current clinical settings could be not yet sufficient to
satisfy the requirements on the capillary mean transit time; second, the
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Table 3.4: Reliability of fit parameters on FLASH data. Per each model the
table reports the median value of each parameter ± the standard devia-
tion median calculated on 100 repetitions of the Monte Carlo simulation.

Ktrans kep vp A kel
Tofts 0.007±0.001 0.010±0.000 0.002±0.027
Brix 0.016±0.004 0.678±0.074 0.001±0.000

typical signal-to-noise ratio achievable in current clinical setting could
be not adequate to discriminate finer features of the CA time-course; fi-
nally, a major limitation of this study was the small number of subjects
involved: this fact implies that the range of physiological parameters ex-
plored was limited, although they should be representative of important
types of carcinomas, however it is worth to note that also in previous
studies reporting comparison between models the number of subjects
was small [51].

As regards the comparison between Brix and Tofts it should be noted
that, even if they have the same number of parameters, Brix includes
a mono-exponential Cp(t) within the model itself while Tofts uses a bi-
exponential AIF. This could explain the better performance of Brix with
respect to Tofts on FLASH data: at low temporal resolution the mono-
exponential AIF is sufficient to capture essential features of the data.
On the contrary, on TWIST data Tofts seems to behave better than Brix
although the difference is not huge: at high temporal resolution the
mono-exponential model becomes not adequate and the bi-exponential
approach is required.

As regards the comparison between Tofts and Brix models our results
are in line with recent literature. Zwick et al. [39] reported the only
comparison, to the best of our knowledge, on simulated DCE-MRI data
and they concluded that Brix could be more robust than Tofts because it
seems less affected by AIF variations.

As regards the comparison between DP and CC models conflicting re-
sults can be found in the literature. A theoretical study has been con-
ducted by Muzic and Saidel [45] on PET receptors: they concluded that
CC models outputs yielded good fits to all the DP model outputs and
the values of the corresponding parameters were in close agreement, but
given the temporal resolution typically available with PET, the use of a DP
model had no advantage over a CC model for PET receptor quantification.
Another study by Cheong et al. [51] reported a comparison of DP and
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CC models in DCE-Computerized Tomography (DCE-CT) of Intracranial
Meningioma and concluded that DP models (including ATH) not only pos-
sess more realism theoretically but they were found to consistently give
better fit than the CC models, although linear correlations were found
between the kinetic parameters of the two models. Our results do not
allow to propend towards one model or the other: although DP models
have been argued on physical and physiological grounds, the question
whether they can actually give better fit than CC models in breast DCE-
MRI performed with current clinical settings, has not found yet a conclu-
sive answer.

One important issue in comparing models is the use of an appropriate
criterion. In this study we adopted three commonly used indices having a
common basis (Kullback-Leibler divergence [62]) and are largely accepted
in the statistical community. We found that the results obtained with
different indices were in agreement with each other.
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Chapter 4

Influence of parametrization on
tracer kinetic modelling

Tracer kinetic modelling is commonly performed using Least-Squares
algorithms. The convergence of such algorithms and the repeatability
of the estimates is affected by the curvature of the model. An adequate
choice of the parameterisation can reduce curvature thus improving pa-
rameter estimation. In this chapter we describe the curvature of the
model as measures of non linearity we analyzed the influence of two pa-
rameterisations on the curvature of the widespread Tofts model.

This chapter contains work adapted from:

Fusco R, Sansone M, Petrillo M, Antonella Petrillo. Influence of pa-
rametrization on tracer kinetic modeling in DCE-MRI. Journal of Medi-
cal and Biological Engineering, Uncorrected Proof Available online 7 Sep
2012, doi: 10.5405/jmbe.1097.

4.1 Introduction

Estimation of tracer kinetic parameters of the widespread Tofts model
[21] has been commonly performed using Least Squares (LS) algorithms
[74, 59, 40, 70, 106, 107].

It turns out that the concept of expectation surface of the model is
useful in order to describe some properties of the nonlinear least square
estimate of the parameter. Given the observations y1 ... yN from the
model yk =f(tk, θ1...θp)+ϵk it is possible to define the expectation surface or
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the model manifold as the p-dimensional surface y = η(θ) (parametrised
with θ1 ... θp) embedded in the N-dimensional space of the data. If there
was no noise on the data, the observed measures y should lie on this
surface. However, the presence of noise causes the measures y to stay
outside of this surface.

Bates and Watts have introduced the concept of curvature of the model
manifold in 1980 [105, 5] . It is based on geometrical properties of the
expectation surface of the model. The main idea is that if the expectation
surface is locally planar then its curvature is zero; vice-versa the curva-
ture is different from zero whereas the expectation surface is not planar.
Local planarity is an essential condition for local approximation via Tay-
lor expansion, that is typically used in the development of the nonlinear
algorithms.

Ordinary nonlinear least-squares techniques are typically iterative, in-
volving the update of parameter estimates until convergence criteria are
reached. Nonlinearities (non-zero curvature) of the model in the neighbor-
hood of the final estimate can affect the validity of statistical inferences
(confidence intervals). Such inferences are typically based on linear ap-
proximations of the expectation surface close to the final estimate.

The degree of curvature in proximity of the final estimate is influenced
by the specified expectation function, its parametrization, and the data
to be fitted. Depending on the severity of the curvature of the model,
this may result in inference intervals and regions that are asymmetric
and distorted when compared to the corresponding linear estimation. It
is of interest therefore, to determine the degree of this distortion as part
of the model assessment and validation process. Bates and Watts have
suggested some graphical approaches to address this problem.

The curvature of the model (see Fig. 4.1 )manifold is made of two com-
ponents: the intrinsic curvature, explained by the mathematical form
of the model and the parameters-effect curvature, which is due to the
specific parameters used. While the intrinsic curvature is not modifi-
able, parameters-effect curvature could be reduced if parameters could
be properly chosen (see Fig. 4.1) [105, 5].

In Toft’model, two different parameterisations have been commonly
used: either (Ktrans, Kep) [106, 107] or (Ktrans, ve) [74, 108]. To date, little
guidance exist for optimal choice of parameterisation [5] and no guide-
lines have been proposed in the DCE-MRI scenario [33].

In this we analyzed the influence of this two parameterisations on the
curvature.
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Figure 4.1: Concept of curvature. h is a direction in the parameter space
Ω; θ0 is a reference point; η(θ0) is the corresponding point on the expecta-
tion surface; η̇h(θ0) is the vector tangent to the expectation surface; y are
the measured data; ε is the measurement noise; θ∗ is the true value of the
parameters; θ̂ is the least squares estimate. In θ0 there is high intrinsic
curvature of the model manifold; in θ∗ the intrinsic curvature is lower and
here predominates parameters effect curvature.
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4.2 Parameterisations of Toft’ model

Combining equation (2.10) and equation (2.7) we obtain a parameteri-
sation with (Ktrans, Kep, vp):

CT (t,Ktrans, kep, vp) = vp(ABte
−µBt + AG(e

−µGt − e−µBt)) +

ABKtrans

kep − µB

(
te−µBt − e−µBt − e−kept

kep − µB

)
+

AGKtrans

(
e−µGt − e−kept

kep − µG

− e−µBt − e−kept

kep − µB

)
; (4.1)

a parameterisation with (Ktrans, ve, vp) can be obtained combining equation
(??) and equation (4.1).

4.3 Model Curvature

We briefly recapitulate the main issues of the theory which is exten-
sively dealt with by [5, 105].

Let us consider a model function Ct(t,Θ) with Θ = [θ1, ..., θp] model
parameters; consider also a set of noisy measures yi = Ct(ti,Θ) + ϵi, with
i = 1, ..., N (T = tk+1 − tk is the sampling period), where ϵi is random zero-
mean noise. Let µ(Θ) = [Ct(t1,Θ), ..., Ct(tN ,Θ)], then the measured data
y = µ(Θ) + ϵ (with y = [y1, . . . , yN ] and ϵ = [ϵ1, . . . , ϵN ]) belong to an N-
dimensional space.

The p-dimensional surface Ω Ω = {µ : µ = µ(Θ),Θ ∈ Σ} contains all
possible values of E(y) and is called the expectation surface (Σ is the
space of parameters).

Nonlinearity of the expectation surface in a specific point Θ is com-
monly quantified by means of the maximum intrinsic curvature KN

max and
the maximum parameters-effect curvature KT

max [105]:

KN
max = max

h∈Σ

∥hF̈Nh∥
∥hḞ∥2

(4.2)

KT
max = max

h∈Σ

∥hF̈ Th∥
∥hḞ∥2

(4.3)

where Ḟ is the first derivative matrix, F̈N and F̈ T are the projections of
the second derivatives matrix F̈ onto the planes tangent and orthogonal
to Ω respectively; all the derivatives are evaluated at Θ .
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Typically, the expectation surface can be considered approximately
linear in a neighborhood of Θ if [105]:

max(KT
max, K

N
max) <

1

2σ
√

p · Fα
p,N−p

= th(σ) (4.4)

where σ is the noise standard deviation, Fα
p,N−p is the (100−α)-th percentile

of the Fisher distribution with p and N −p degrees of freedom, th stays for
threshold.

4.4 Comparison of the two commonly used pa-
rameterisations on the Tofts’ model curva-
ture

The aim of this study was to analyze the influence of the two commonly
used parameterisations on the curvature of the Tofts’ model. The influ-
ence of the total acquisition time and of the sampling period has been
also evaluated.

4.4.1 Simulations setup

We calculated both the intrinsic curvature and the parameters-effect
curvature for several points in the parameters space and for several val-
ues of sampling period and total acquisition time. The calculation have
been performed for both the parameterisations examined.

The parameter space was sampled as follows: Ktrans ranged from 0.05
to 2min−1 (step 0.1min−1); ve ranged from 0.05 to 1 (step 0.05). These ranges
should encompass the variety of physiological conditions found in both
normal and diseased tissues [107, 59]. kep has been obtained from equa-
tion 2.3.

As regards vp it is worth to notice that the first and second derivatives
matrices in equations (4.2) and (4.3) do not depend on vp. Accordingly, in
our simulations we considered only Ktrans, kep and ve.

The sampling period T has been made vary from 5 to 20 s with steps of
5 s; The total acquisition time varied from 3 to 12min, with steps of 3min.
Noise level σ varies from 0.01 to 0.1 mML−1 with step 0.01 mML−1. The
noise level on CA concentration actually present on DCE-MRI data de-
pends on the specific pulse sequence utilized. Nonetheless it is desirable
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to have an idea of the noise level on MR images corresponding to the
noise used in these simulations.To convert the noise level in units related
to the image noise we will refer to the formula for the signal intensity of
the commonly used Spoiled Gradient Echo (eq. 2.19).

Using the standard error propagation theory we have that the error on
signal, S, is proportional to the error in CA concentration, C,: σS = θS

θC
σC .

As an example, using the following values: r1 = 4.5mM−1s−1; T10 = 1000
ms (typical range is from 500 to 1500 ms); α = 25◦; TE = 5 ms; TR = 10 ms;
M0 = 6000 (from measurements at our institution), we have that σs ≈ 50
intensity levels for σC = 0.1, while σs ≈ 5 intensity levels for σC = 0.01.

For the AIF described by equation (2.7) the values reported by [109]
were used: AB = 323mML−1min−1, AG = 1.07mML−1, µB = 20.2min−1, µG =
0.172min−1.

All numerical computations were performed in Matlab 2007a (The
MathWorks, Massachusetts, USA) and curvature formulas were obtained
using Mathematica 7.0 (Wolfram Research, Inc., Mathematica, Cham-
paign, IL 2008).

4.4.2 Results

For ease of presentation all the results have been reported on the
(Ktrans, ve) parameter space. Moreover, in order to simplify comparisons
between figures 4.2, 4.3,4.4 and 4.5, the colors used to represent the
curvature under threshold (equation 4.4) are the same. For example, the
curvatures below the threshold th(0.1) (σ = 0.1mML−1) have been repre-
sented using the color at the bottom of the color-bar. Of course, lower
levels of noise correspond to higher thresholds: therefore, if KN

max lays
below th(0.1) it will lay under th(0.09) too, and so on.

Figure 4.2 shows the maximum intrinsic curvature KN
max, in the case

of total acquisition time of 6 min and sampling period of 5, 10, 15, 20 s. It
is worth to notice that KN

max increases up to 60 mM−1L for small values of
both Ktrans and ve. For total acquisition time of 3,9 and 12 min a similar
behavior has been observed.

Figure 4.3 shows that the maximum parameters-effect curvature for
(Ktrans, ve) is lower than the curvature for (Ktrans, kep) in a large area of
the parameter space (total acquisition time: 6min; sampling period: 5,
10, 15, 20 s). However, the size of this area becomes smaller as the
sampling time increases. The curvature for (Ktrans, kep) (KT,kep

max ) is up to 30
times higher than the curvature for (Ktrans, ve) (KT,ve

max). Similar behavior
has been observed for 3, 9 and 12 min total acquisition time.
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Figure 4.2: Maximum intrinsic curvature (KN
max). Total acquisition time: 6

min. Sampling period T : (a) 5 s, (b) 10 s, (c) 15 s, (d) 20 s. The curvature
less than th(σ) is colored according to the colorbar.

Figure 4.4 shows the max(KN
max, K

T
max) for the parameterisation (Ktrans, ve),

in the case of total time 3, 6, 9 and 12 min respectively, T = 5 s. It is worth
to notice that, while a great improvement is obtained from 3 to 6 min, lit-
tle improvements can be seen for total time longer than 6 min. From this
figure it can be inferred that the curvature is always above the threshold
when ve < 0.4: this is because ve mainly affects Ct peak amplitude and
therefore the signal to noise ratio. Similar behavior has been observed for
(Ktrans, kep).

Figure 4.5 shows the max(KN
max, K

T
max) for the parameterisation (Ktrans, ve),

in the case of total time 6 min and T = 10, 20 s. As the sampling period
increases the curvature becomes very large particularly for small values
of ve or Ktrans. Similar behavior has been observed for (Ktrans, kep).
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Figure 4.3: Comparison between the curvature of (Ktrans, ve) and
(Ktrans, kep). On the Z axis (K

T,kep
max − KT,ve

max)/K
T,ve
max is reported. In the red

area the curvature of the parameterisation (Ktrans, ve) is less than the cur-
vature for (Ktrans, kep). Total acquisition time: 6 min. Sampling period T :
(a) 5 s, (b) 10 s, (c) 15 s, (d) 20 s.
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Figure 4.4: Parameters-effect curvature for the parameterisation
(Ktrans, ve). Analysis of the effect of the total acquisition time. Total acqui-
sition time: (a) 3 min, (b) 6 min, (c) 9 min, (d) 12 min. Sampling period
T : 5 s. Curvature values less than th(σ) are colored according to the
colorbar.

Figure 4.5: Parameters-effect curvature for the parameterisation
(Ktrans, ve). Analysis of the effect of the sampling period. Total acquisi-
tion time: 9 min. Sampling period T : (a) 10 s and 20 s (b). Curvature
values less than th(σ) are colored according to the colorbar.
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4.5 Discussion

The results of this study can be summarized in two points. First,
for both parameterisations the parameters-effect curvature is predominant
over the intrinsic curvature and the curvature of the parameterisation (Ktrans, ve)
is lower than that of (Ktrans, Kep) for a large range of parameters (the exten-
sion of this range is little affected by the sampling period).

Second, when considering (Ktrans, ve) only, the range of parameters hav-
ing below-threshold curvature becomes wider as the total acquisition time
increases (although little difference is observed for total acquisition time
longer than 6 min). However, the opposite occurs when the sampling period
increases.

Our analysis is in line with previous studies on the subject. A number
of papers have tackled the issue of repeatability of parameter estimates
for the Tofts’ model in DCE-MRI scenario: [112] used a frequency analysis
approach in order to establish optimal experimental conditions: however,
in their analysis they used a bi-exponential AIF which is a too simpli-
fied model and their results could not be completely adequate for shorter
sampling period; [110] used an error-propagation approach in order to
analyze the influence of several factors comprising the T10 (T1 of the tis-
sue before contrast injection) and the flip angle: however, their analysis
identifies only the ’instrumental’ source of errors, and does not take into
account modelling issues; [111] studied the influence of the sampling
period for breast DCE-MRI, concluding that fast sampling is a strict re-
quirement for accurate parameter estimation: they used the first deriva-
tive matrix Ḟ as a tool of analysis, but they have not extended the analysis
to the curvature of the model; [74] investigated the fitting failures due to
the Levenberg-Marquardt fitting algorithm implemented in IDL (RSI Inc,
Boulder, CO) and proposed a multiple starting points procedure in order
to improve results: however, they used the parameterisation (Ktrans, ve)
and did not investigate the other parameterisation (Ktrans, Kep).

It is worth to notice that our approach is complementary to the previ-
ous ones. In each of mentioned studies one single parameterisation has
been chosen. The curvature properties of both parametrization have not
been considered before. However, the analysis of curvature can shed light
on the intrinsic properties of the Tofts’ model and can suggest an optimal
choice of the parameters.

As known, DCE-MRI guidelines [68] have proposed Ktrans as primary
endpoint because it seems directly related to perfusion of the tissues and
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to permeability of the vessels; ve has been proposed as a secondary end-
point because it may reflect the cellular density. However, the parame-
terisation to be used has not been suggested. On the basis of our analy-
sis, both the parameterisation used and the values of all the parameters
should be reported, because the curvature, and consequently the accu-
racy of the estimates, depends on both parameters.

The importance of considering both parameters simultaneously has
been evidenced also from a clinical point of view in a recent study [107]
showing that for an effective separation between benign and malignant
tumours in breast, Ktrans only is not sufficient and that another parameter
should be used. In fact, as noticed also by [113] tumor aggressiveness
and response to therapy are influenced also by the EES fraction (ve) of
the malignant tissue.

In this regard, it is worth to mention that, often, clinical studies do
not report neither the parameterisation they used, nor the values for all
parameters.

Although the results of the present study apply mainly to LS fitting,
our findings can shed light also on other methods for non-linear regres-
sion, because of the similarities among different approaches: in fact,
Least Squares coincides with Maximum Likelihood method when gaus-
sian noise is hypothesized; further, Bayesian methods coincide with Max-
imum Likelihood estimation when a uniform prior probability is assumed.
Bayesian methods in DCE-MRI have been reported for example by [57].
Moreover, ad hoc reformulations of the Tofts’ model are possible and were
used by [110]. However, it should be noticed that the LS approach is the
most widespread one, also because it is already implemented in most
computational packages.

As the (Ktrans, ve) parameterisation has the lowest curvature in a larger
area of the parameter space in comparison of (Ktrans, kep), it is suggested
that the former parametrisation should be used in order to obtain an
more reliable estimate of kinetic parameters. Moreover, when using (Ktrans, ve),
the range of parameters with under-threshold curvature becomes wider
as the total acquisition time increases and as the sampling period de-
creases. Our study suggests that a total acquisition time greater than 6
min and a sampling period less than 10 seconds should be used.

However, our study indicates that none of the examined parameterisa-
tion can work well in the whole parameter space. This fact could suggest a
new searching strategy to be included in Gauss-Newton based algorithms
for nonlinear regression of the Tofts model in the DCE-MRI scenario: the
evaluation of the local curvature can indicate which parameterisation to
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use in order to obtain best results in terms of repeatability.
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Chapter 5

Quantitative Approaches for
simultaneous pixel classification
and tracer kinetic modelling

In this chapter we propose a method to simultaneous segmentation
simultaneous tracer kinetic modelling and pixel classification (enhancing
and not enhancing pixel) of DCE-MRI studies.

This chapter contains work adapted from:

Sansone M, Fusco R, Petrillo A, Petrillo M, Bracale M. (2011). An
expectation-maximisation approach for simultaneous pixel classification
and tracer kinetic modelling in dynamic contrast enhanced-magnetic res-
onance imaging, Med Biol Eng Comput 49(4): 485-495.

5.1 Introduction

Automatic and objective analysis of DCE-MRI studies can greatly sup-
port the physician to obtain an accurate evaluation of tumour size, ma-
lignancy and perfusion in the surrounding tissues, which is essential in
diagnosis, staging and clinical management of several kind of tumours
and can support the assessment of new drugs.

Nonlinear modelling is computational demanding and the accuracy
of the estimates can be affected by the signal-to noise ratio (SNR) and by
the initial solutions, for this reason simultaneous tracer kinetic modelling
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and pixel classification of DCE-MRI studies can improve the estimation
accuracy by grouping together pixels having similar characteristics.

In the following we briefly discuss a few studies that, as far as the
authors’ knowledge, attempted to use spatial information for improving
parameters estimation.

Schmid et al. [69] proposed a Bayesian approach combined with
adaptive Gaussian Markov Random Fields (GMRF). The use of GMRF re-
duces the observed variability in local tumor regions while preserving
sharp transitions between heterogeneous tissue boundaries. The use of
Bayesian analysis combined with adaptive GMRF can provide improved
convergence behavior and more consistent morphological and functional
statistics but has two limitations: assumption must be made on the un-
derlying distribution of kinetic parameters and computation time can be
very long (about 8 h).

Kelm et al. [70] proposed a block version of the Iterated Conditional
Modes (ICM) in order to reduce the long computational time of GMRF.
Moreover in their approach, fewer assumptions on the underlying dis-
tribution are needed and the accuracy of the estimates is improved by
using neighborhood information. Anyway their algorithm involves a few
‘hyperparameters’ such as the noise variance, the parameter weighting
matrix and a spatial coupling factor whose estimation should be further
investigated.

Xiaohua et al. [71] proposed a scheme for simultaneous segmentation
and registration of breast DCE-MRI based on a Bayesian framework and
MRF spatial priors. In this scheme only descriptive information from
concentration-curves (such as slopes) have been used and tracer kinetic
modeling is not considered.

Gong et al. [65] attempted the simultaneous segmentation and reg-
istration using texture information and spatial priors; anyway, they ne-
glected tracer kinetic modelling.

In this study we propose an Expectation Maximisation (EM) [66] scheme
for simultaneous pixel classification and tracer kinetic modelling of DCE-
MRI studies.

The approach proposed is different from the previous ones. Our pro-
posal is based on the consideration that pixels having similar character-
istics can be identified within a ROI and can be used to calculate average
tracer kinetic parameters, thus increasing the effective signal-to-noise
ratio. To address the problem of non-linear estimation of kinetic param-
eters, we exploited the iterative nature of the EM algorithm and used the
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Taylor expansion of the modelling equation. We developed the theoret-
ical framework for the particular case of two classes and evaluated the
performances of the algorithm by means of simulations. Moreover the re-
sults were compared to the theoretical Cramer-Rao (CR) [5] lower bounds
and to the performances of the Levenberg-Marquardt (LM) algorithm [74],
which is one of the most diffused non-linear-least-squares algorithms.
Preliminary results on real data have been also reported.

5.2 Expectation Maximisation framework

Let us consider a DCE-MRI examination consisting of a single slice
imaged at the time instants t = 1 . . . T . Let us denote by yn(t) the con-
centration of contrast medium in the voxel n at the time t, n = 1 . . . N .
Moreover, let yn = [yn(1) . . . yn(T )]

T .
We assume that each pixel can belong to one of two classes: the class

of pixels whose contrast medium concentration is constant (M1) and the
class of pixels whose concentration is varying according to the tracer ki-
netic model described by eq. (2.2) (M2).

We propose to simultaneously identify the class of each pixel and to
estimate the corresponding parameters Ktrans, Kep using an Expectation-
Maximisation approach [66].

This approach is based on the concept of ‘missing data’ and ‘observ-
able data’. For each pixel we observe yn. The missing data can be defined
as a new variable zn = [z1n, z

2
n] with zn = [1, 0] if pixel nϵM1 and zn = [0, 1] if

pixel nϵM2. In this context the ‘complete data’ are (yn, zn) with n = 1 . . . N
Moreover we assume that the two classes have unknown a priori proba-
bilities π1 and π2. Therefore we can define a vector Θ = [π1, π2, Ktrans, Kep]
of parameters to be estimated.

We suppose there is a random gaussian noise superimposed on the yn

with variance σ2 and zero mean. The probability to observe yn given zn
and a particular set of parameters Θ can be expressed as:

p(yn|zn,Θ) =

{
1

(2πσ2)T/2 exp(−∥yn∥2
2σ2 ), nϵM1

1
(2πσ2)T/2 exp(−∥yn−C(Θ)∥2

2σ2 ), nϵM2

(5.1)

where we have defined C(Θ) = [Ct(1) . . . Ct(T )]
T and ∥ · ∥2 is the Euclidean

norm.
Assuming that pixels are independent from each other the complete

data log-likelihood is given by [66]:
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L(Θ) = log
N∏

n=1

p(yn, zn|Θ) =

= log
N∏

n=1

2∏
k=1

(πk · p(yn|zkn = 1,Θ))z
k
n (5.2)

which can be expressed as:

L(Θ) =
N∑

n=1

2∑
k=1

zkn · [log πk + log p(yn|zkn = 1,Θ)] (5.3)

The EM algorithm is subdivided in two steps [66] : E-step and M-step.
In the E-step the log-likelihood must be averaged on the missing data,
given the observed data:

EΘm [L(Θ)|y] =
=

∑
n,k

τm,k
n [log πk + log p(yn|zkn = 1,Θ)] (5.4)

where Θm = [πm
1 , π

m
2 , K

m
trans, K

m
ep] are the values of the parameters estimated

at the m iteration and τm,k
n = p(zkn = 1|yn,Θ

m) (using Bayes theorem) :

τm,k
n =

πm
k · p(yn|zkn = 1,Θm)∑2

j=1 π
m
j · p(yn|zjn = 1,Θm)

(5.5)

In the M-step the ‘average’ likelihood must be maximized with respect
to the parameters. Performing derivation with respect to the πk param-
eters, and taking into account the condition π1 + π2 = 1, we have (using
Lagrange multipliers ) [66]:

πm+1
k =

∑N
n=1 τ

m,k
n

N
(5.6)

The estimation of Km+1
trans and Km+1

ep is more difficult because they appear
in the expression of Ct(t) in a non-linear manner. Typically, this problem
is addressed via non-linear least-squares optimization. We, instead, use
the iterative nature of EM algorithm and expand the tracer kinetic equa-
tion (2.2) in Taylor series with respect to the parameters obtaining:
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Ct(t,Θ) =

Cm(t) +Am(t) ·∆Ktrans +Bm(t) ·∆Kep (5.7)

where

Am(t) = ∂Ct

∂Ktrans

∣∣∣∣
K̂m

trans,K̂
m
ep

Bm(t) = ∂Ct

∂Kep

∣∣∣∣
K̂m

trans,K̂
m
ep

(5.8)

Cm(t) = Ct(t, K̂
m
trans, K̂

m
ep)

Further, let:

A = [Am(1) . . . Am(T )]T

B = [Bm(1) . . . Bm(T )]T (5.9)
C0 = [Cm(1) . . . Cm(T )]T

so that we can write equation (5.7) as:

C(Θ) = C0 +A ·∆Ktrans +B ·∆Kep (5.10)

Substituting equation (5.10) in the equation (5.1) and taking partial
derivatives of (5.4) with respect to ∆Ktrans and ∆Kep and equating to zero
we have:

∆Ktrans =
1

EC−D2

∑
n τ

m,2
n (AE −BD)T (yn −C0)

∆Kep =
1

EC−D2

∑
n τ

m,2
n (BC −AD)T (yn −C0)

(5.11)

where we have denoted

C =
∑N

n=1 τ
m,2
n ·AT ·A

D =
∑N

n=1 τ
m,2
n ·AT ·B (5.12)

E =
∑N

n=1 τ
m,2
n ·BT ·B

Therefore the estimation of parameters at the m+ 1 iteration is:

K̂m+1
trans = K̂m

trans +∆Ktrans

K̂m+1
ep = K̂m

ep +∆Kep

(5.13)
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The condition for convergence can be specified as ∥Θm+1 − Θm∥2 < δ
where δ is a sufficiently small quantity arbitrarily chosen, or when the
number of iteration exceeds a predefined threshold.

The equation (5.1) represents the probability that a specific pixel be-
longs to a certain class. Therefore we can substitute it by a more robust
measure which enhances the difference between the two classes:

p(yn|zn,Θ) =

{
1

(2πσ2)T/2 exp(− ∥yn∥2
∥yn−C(Θ)∥2 ), nϵM1

1
(2πσ2)T/2 exp(−∥yn−C(Θ)∥2

∥yn∥2 )nϵM2

(5.14)

It is possible to show that this expression does not modify equation
(5.11) and all subsequent results.

5.3 Cramer-Rao Lower Bounds as errors mea-
surement

Data are subjected to measurement errors and consequently the esti-
mated parameters are affected by error Θ̃ = Θ∗ − Θ̂ where Θ∗ is the true
vector of parameters and Θ̂ is the estimated one.

It can be shown that any unbiased estimator Θ̂ of Θ∗ has a covariance
matrix which satisfies the following equation (Cramer-Rao lower bound)
[5]:

Cov(Θ̂) > F−1 (5.15)

where the Fisher Information Matrix F−1 is given by [5]:

F−1 = σ2 · [ST · S]−1 (5.16)

where σ2 denotes the variance of the measurement noise and S is the T×p
sensitivity matrix (where p is the number of parameters to be estimated)
evaluated at Θ∗:

S =
∂Ct

∂Θ

∣∣∣∣∣
Θ∗

(5.17)

The diagonal elements of F−1, represent the minimum variance of the
estimated parameters.
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5.4 Simulation Setup

5.4.1 General characteristics of the simulated data

We examined the behavior of the proposed algorithm by means of sev-
eral simulations. Firstly we assessed the SNR improvement due to pixel
averaging, then we considered the effect of tumour heterogeneity and fi-
nally we analyzed a few alternative approaches.

All our simulations were referred to the characteristics of typical pro-
tocols in use for DCE-MRI examination. The time interval between two
successive slice acquisitions has been set to 35 seconds and a total num-
ber of 11 acquisitions has been considered (the total time is about 6 min),

The bi-exponential AIF 2.9 was used [23, 59].
Moreover, we used Ktrans and Kep ranging in the intervals [0.01, 1] min−1

and [0.025, 10] min−1 respectively. These ranges encompass the variety of
physiological conditions found in both normal and diseased tissues [59].
For each given couple (Ktrans , Kep) we simulated the tracer concentration
curve using eq. (2.10) and lower bounds were calculated using eq. (5.15).
For all simulations SNR ranged from 5dB to 20dB. All calculations were
conducted in Matlab (Mathworks inc.)

5.4.2 Assessment of SNR improvement

In order to have a point of reference for comparison, we evaluated the
accuracy of the LM algorithm on a single-pixel basis. For each fixed value
of (Ktrans , Kep) and SNR, 100 different realizations of random gaussian
noise were added to the same simulated concentration-curves. For each
noisy curve tracer kinetic parameters were estimated using the ‘lsqcurve-
fit’ function in the ‘Matlab Optimisation Toolbox’. For each specific couple
(Ktrans , Kep) the accuracy of LM was evaluated by means of the variance
of the 100 estimates.

Secondly, we evaluated the performances of the EM algorithm. To this
aim we constructed a 50x50 pixel image. Twenty-five pixels in the mid-
dle of the image were assigned to class M2 (enhancement) while all the
others to M1 (no enhancement). For a given couple (Ktrans , Kep) a single
concentration-curve was generated and was assigned to all the pixels of
the ‘enhancing’ class, while the pixels of the ‘not enhancing’ class were
assigned a zero-concentration curve. Moreover, 100 different realizations
of random gaussian noise were added to the simulated data. The EM
algorithm was applied to the noisy images and estimates of the kinetic
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parameters of the M2 class were computed. The variance of the 100 rep-
etitions provided the accuracy of EM for a specific couple (Ktrans , Kep).
Due to pixel averaging we expected an improved SNR and consequently
an EM accuracy higher than the LM one. Moreover, the number of pixels
correctly classified by EM has been evaluated.

In order to avoid the influence of the initial solutions, starting esti-
mates for LM and EM were fixed at 10 % of the true value.

Lastly, we compared the performances of both algorithms to the CR
lower bounds. Because of the specific number of pixels belonging to
class M2, we expected the EM accuracy to be in agreement with CR lower
bounds computed as if the noise variance was 25 times lower. Therefore,
in this simulation, we used an SNR 5 times higher.

5.4.3 Sensitivity to initial estimates

Typically, an iterative algorithm is guaranteed to converge to a good
solution if the initial estimate is close enough to the true value [5]. There-
fore, we evaluated the variability of the final estimate of EM as a function
of the starting estimate. As in the previous simulations we considered
images corresponding to all the couples (Ktrans , Kep). The EM algorithm
was applied to the image of each couple, varying the starting estimate k0 of
both Ktrans , Kep between -100 % to 200 % of the true value ((k0−ktrue)/ktrue).
The median percentage error of all the couples for a fixed percentage was
calculated. The same procedure has been applied on a single-pixel basis
to LM in order to have a point of reference for comparison.

5.4.4 Tumour heterogeneity and alternative descriptive
measures

Tumors are characterized by an heterogeneous distribution of kinetic
parameters [67]. Therefore, in order to have an idea of the behavior of EM
on clinical data, we simulated heterogeneity-resembling data.

We generated a 50x50 pixels DCE-MR image having a tumor ROI of
10x10 pixels in the center. Random kinetic parameters were assigned to
the pixels of the tumor ROI. A Fisher distribution F (a, b) having a = 70 and
b = 700 degrees of freedom was used. The degrees of freedom were chosen
empirically just to resemble published distributions [67].

An interesting question is whether pixel classification and tracer ki-
netic modelling could be achieved using LM alone or by means of alter-
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native approaches such as heuristic descriptors of tracer concentration
curves.

A possible algorithm using LM alone could be the following: a) es-
timate tracer kinetic parameters on a pixel-by-pixel basis via nonlinear
regression (starting estimates can be fixed to the center of the param-
eters space), b) set a threshold on the parameter histogram (by visual
inspection) in order to subdivide the pixels in two classes, c) calculate the
average parameters of the ‘enhancing’ class.

As an example of other descriptors we considered Initial Area Under
Gadolinium Curve (IAUGC) which is a commonly used descriptor which
was demonstrated to be strongly related to Ktrans [18] In this case a pos-
sible algorithm for performing the classification could be the following:
a) calculate IAUGC on a pixel-by-pixel basis, b) set a threshold on the
IAUGC histogram to subdivide the pixels in two classes (by visual inspec-
tion) , c) perform averaging of pixels of the same class and then estimate
parameters of the averaged curve (by means of LM, starting estimates
fixed to the center of the parameters space).

Both alternatives were applied on heterogeneity-resembling data.

5.5 Real data acquisition

In order to give further insight into the behavior of EM on clinical data,
we performed preliminary evaluation on one breast DCE-MRI study. DCE
T1-weighted FLASH 3-D coronal images were acquired.

Two pre-contrast volumes were acquired with different flip angles (12
and 70 degrees) in order to obtain Gd quantification in accordance with
the standard methods proposed in literature [68].

AIF was estimated by bi-exponential modelling of arterial flux with
fixed parameters value from literature [21].

5.6 Results

5.6.1 Assessment of SNR improvement

Fig. 5.1 presents the results obtained with 5db SNR. In the case of
20 dB the results show similar trends with smaller errors. Standard
deviations of kinetic parameters obtained with EM (Fig. 5.1e and 5.1f)
were about 3 times the theoretical ones (CR) (Fig. 5.1a and 5.1b), while
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the ones obtained with LM (Fig. 5.1c and 5.1d) were about 15 times the
CR limit. The ratio between LM and EM accuracy was 5 as expected. All
pixels were always correctly classified by the EM procedure. On average
EM requires 8 iterations to converge.

5.6.2 Sensitivity to initial estimates

Fig. 5.2 reports results on sensitivity analysis. For LM the median
percentage error of both Ktrans and Kep is confined between -2 and 2 %.
When initial solution is below the true value LM has a tendency to un-
derestimate it; the opposite occurs when initial solution is above the true
value. This is in line with the above considerations concerning the initial
solutions of iterative algorithms.

The figures 5.2 c) and d) report the same quantities in the case of
EM. The median percentage error has very little variation around 0 %.
Anyway, when the initial guess is in the range 100-200 % a few peaks
appear. The peaks arise because the first-order approximation can be
slightly inadequate for specific values of the parameters where the intrin-
sic curvature is high [5].

5.6.3 Tumour heterogeneity and alternative approaches

Fig. 5.3a shows the contrast agent concentration curve vs time for
pixels of simulated image and the concentration curve corresponding to
median kinetic parameters superimposed with red circles. Fig. 5.3b
show the concentration curve corresponding to the EM estimated param-
eters, and the median curves obtained with LM and IAUGC. The true
median curve (already drawn in fig 5.3) is also reported. The difference
between true median parameters and the estimates of (Ktrans,Kep) were
(2.9777,6.5621) % for EM, (-3.4403,4.7876) % for LM, (2.9013,1.9709) %
for IAUGC.

5.6.4 Preliminary results on real data

Fig. 5.4 shows the dynamic sequence of scans of a breast slice which
was examined by two expert radiologists. They selected the region of
interest (delimited by a yellow border) on the 6th dynamic scan. Fig.
5.3c shows the contrast agent concentration curves vs time for the pixels
within the selected ROI. Fig. 5.5a shows the selected ROI on the original
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Figure 5.1: Accuracy of the estimation of kinetic parameters on simulated
data: comparison among the theoretical Cramer-Rao (CR) lower bounds
and the performances of Levenberg-Marquardt (LM) and Expectation-
Maximisation (EM) algorithms. The figure reports the square root of vari-
ance [s−1] for Ktrans and Kep in the case of CR (a) and (b), LM (c) and (d),
EM (e) and (f). The ratio between LM and EM is about 5 as expected.
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Figure 5.2: Sensitivity of the estimates to starting values. The median
percentage error of Ktrans and Kep is reported as a function of the percent-
age distance between the initial estimate and the true value (k

0−ktrue

ktrue
· 100).

Figures a) and b) report the results for LM. The median percentage error
remains confined between about -1 and 1 %. When initial solution is be-
low the true value LM has a tendency to underestimate it; the opposite
occurs when initial solution is above the true value. The figures c) and
d) report the same quantities in the case of EM. The median percentage
error has very little variation around 0 %. When the initial guess is almost
double than the true value, a few peaks appear.
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Figure 5.3: a) Effect of tumor heterogeneity: contrast medium concen-
tration curves for pixels of simulated image. The curve corresponding to
median kinetic parameters is reported using circles. b) Alternative ap-
proaches: comparison among the median concentration curve (already
reported in fig. 5.3a) and LM, EM, IAUGC curves.

image; Fig. 5.5b shows EM pixel classification; Fig. 5.5c and 5.5d shows
the map of probability to belong to the ‘not enhancing’ and ‘enhancing’
class respectively. Fig. 5.5e and 5.5f shows the maps of Ktrans and Kep

respectively, calculated using LM.

5.7 Discussion

Aim of this work was to assess, by means of simulations, the perfor-
mances of an Expectation-Maximisation scheme for simultaneous pixel
classification and tracer kinetic modelling of DCE-MRI studies. The pro-
posed EM scheme was expected to provide average kinetic parameters be-
cause pixels having high probability to belong to the same class are used
to estimate the parameters of that class, thus increasing the effective
signal-to-noise ratio with respect to the standard pixel-by-pixel approach
in which pixels are examined separately. This approach is supported,
from a clinical point of view, by recent literature (see for example [75])
reporting that although detailed evaluation of tumour heterogeneity is of
help in tumour management, average measures performed on ROI oppor-
tunely selected are strongly correlated to measurements of heterogeneity,
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Figure 5.4: Real data DCE-MRI: see text for sequence parameters. The
time interval between two successive scan is about 35 s. The yellow bor-
der delimitates the investigated ROI.
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Figure 5.5: Analysis of the ROI shown in Fig. 5.4. a) Original image
acquired at the 6th dynamic scan. b) EM classification: white pixels belong
to the ‘enhancing’ class. c) Probability to belong to the ‘enhancing’ class.
White pixels have higher probability. d) Probability to belong to the ‘not
enhancing’ class. White pixels have higher probability. e) Ktrans map. f)
Kep map. g) Concentration curves for the ROI in Fig. 5.4.
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and can be used as an indicator for characterizing a whole tumour.
Simulation results were compared to the theoretical limits imposed by

Cramer-Rao theorem and to the performances of the Levenberg-Marquardt
algorithm applied on a pixel-by-pixel basis. The comparison indicates
that the EM algorithm can approach the theoretical lower bounds and
that the effective signal-to-noise ratio is increased as expected. Anyway,
we should clarify that our objective was not an exhaustive evaluation of
the Levenberg-Marquardt algorithm which has been widely dealt with in
other studies [74, 5].

From these results it can be deduced that our approach can effectively
increase SNR if it can be assumed that pixels belonging to the ‘enhanc-
ing’ region have similar tracer kinetic parameters. When this hypothesis
is satisfied, our approach can provide a good estimate of ‘average’ kinetic
parameters.

Anyway, when this hypothesis is not fully satisfied because of the in-
trinsic heterogeneity of tumors [67, 75] our method can still provide an over-
all characterization of the angiogenic activity of the whole tumour, as was
suggested by our simulations.

As far as alternative approaches are concerned, our simulations sug-
gest that comparable results can be obtained using EM, LM alone or
IAUGC. Anyway, pixel-by-pixel LM requires as many nonlinear curve fit-
ting as the size of the ROI and in order to yield a reliable estimate at
least 5 estimations for each pixel should be repeated with different initial
guesses [74], thus increasing the computation time without improvement
in the SNR. The IAUGC approach seems to be more appealing than LM
alone because IAUGC is fast to compute and only one final nonlinear re-
gression is required. Anyway, histogram based classification renews the
problem of model-free clustering.

Preliminary results on real data show that EM provides a reason-
able estimate of the ‘average’ parameters. While the EM method is
mainly directed to give overall information, the capability to pro-
vide a probability map (i.e. the distance of a specific concentration
curve from the estimated ‘average’ curve) indicates that information
about heterogeneity is not lost and can be further evaluated. Our fu-
ture studies will be directed to assess this issue from a clinical point
of view.

A few considerations about our hypothesis are in order.
First-order expansion of the model function (expectation surface) is

a common practice in the literature concerning non-linear regression,
where it is referred to as the Gauss-Newton approach [5]. In our case
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this approximation can be further justified by the following two consider-
ations. Firstly, the averaged log-likelihood has the effect to increase the
SNR, thus the actual region of validity of the first-order expansion is en-
larged. Moreover, two successive parameters estimates are expected to be
not very far from each other: in fact, in the E-step of the (m+1) iteration,
pixels closer to the curve obtained with parameters from the (m) iteration
will obtain greater weights. Therefore, in the M-step of (m+1) iteration the
average likelihood will be dominated by pixels that were already close to
the (m) iteration. Anyway, the peaks in Fig. 5.2 are due to the combined
effect of the intrinsic curvature of the non-linear model (see [5]) in spe-
cific regions of the parameter space and the consequently limited validity
of the first-order expansion in those regions: in view of this considera-
tion our future efforts will be directed to include some form of Hessian
analysis.

Pixel independence is not only a convenient assumption for mathe-
matical tractability. Of course, in real studies pixels are not completely
independent from each other, and it is intuitively expected that adjacent
pixels have similar parameters. Anyway, as above mentioned, numerous
studies demonstrate tumour heterogeneity (see for example [67, 75]), sug-
gesting that the hypothesis of independence is not completely unjustified.
Moreover, it should be underlined that even studies using some form of
spatial constraints [69, 70], explicitly observe that spatial priors should
preserve sharp transition just because of tumour heterogeneity.

In this study we developed the EM framework assuming only two
classes. This is a simplifying assumption which is equivalent to subdivide
the tissues in low-enhancing and high-enhancing. The first class can be
associated to regions without a vascular bed and to regions with low an-
giogenic activity. The second class can be associated to the anatomical
regions in which the angiogenic activity is high and to regions with high
vasculature. In the scenario we have in mind, the algorithm should be
used by an expert radiologist for evaluation of suspicious lesions: there-
fore, we expect the radiologist to select an opportune ROI which will be
evaluated by EM in order to supply an overall estimate of kinetic param-
eters. Strongly vascularized structures are expected to be excluded from
the selected ROI, and regions without a vascular bed (not-enhancing at
all), which are not amenable to a tracer kinetic modelling, are considered
as having zero Ktrans.

As far as computational issues are concerned, it should be noted
that more sophisticated approaches require very large computation times
while our scheme is able to converge in few iterations: therefore we think
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it could be used in combination with other methodologies for a quick de-
tection and evaluation of suspicious regions, followed by a more accurate
analysis.
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Chapter 6

Segmentation and classification
using machine learning
approach

In this and in the next chapter we will discuss and explain the use of
machine learning for automatic segmentation and classification of breast
lesion. In this study we used pattern recognition techniques in order
to assess the accuracy of automated methods for the segmentation and
the classification of breast lesions using sevarl features. As a first step,
we evaluated the discriminative power of morphological, textural and dy-
namic semi-quantitative features computed from the time intensity curve.
Subsequently, we evaluated dynamic features extracted from more so-
phisticated models (quantitative analysis), as well as the ability of multi-
classification systems that combine the results of classifiers trained sep-
arately with different features.
This chapter contains work adapted from:

Sansone M, Aprile F, Fusco R, Petrillo A, Petrillo M, Siani A,Bracale U.
Reference based time intensity curves quantification in DCE-MRI moni-
toring of rectal cancer. Proceedings of 11th World Congress on Medical
Physics and Biomedical Engineering, September 7-12, 2009 in Munich,
Germany

R. Fusco et al. Selection of suspicious ROIs in breast dce-mri. Lecture
Notes in Computer Science, 6978:48-57, 2011.
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R. Fusco, M. Sansone, C. Sansone, A. Rotondo, A. Petrillo. Segmen-
tation and classification of breast lesions using dynamic and textural
features in Dynamic Contrast Enhanced-Magnetic Resonance Imaging.
Computer-Based Medical Systems (CBMS), 2012 25th International Sym-
posium on, June 20-22 Rome-Italy, 2012.

6.1 Introduction

Lesion segmentation is the first critical step in breast diagnosis. As
a matter of fact, manual segmentation is tedious, time consuming and
suffers from inter- and intra-operator variability and there exists the pos-
sibility that suspicious regions of enhancement may be overlooked [84].

A number of automatic lesion segmentation approaches [40, 89] have
recently been proposed to address the above mentioned limitations. Very
simple approaches [91] used only pixel intensities for region of interest
(ROI) selection considering only static features without taking advantage
of the whole dynamic information. The combined use of region growing
and some shape-based features have also been investigated [84] together
with lesion segmentation by means of fuzzy c-means using dynamic fea-
tures [77].

As regards the classification of breast lesions, the characterization as
benign or malignant on the basis of MR imaging remains a challenge.
There is still a debate in the literature regarding the interpretation strate-
gies and the relative importance of textural and dynamic features in the
discrimination of benign from malignant lesions. Malignant and benign
lesions behave differently in terms of temporal enhancement: malignant
lesions usually show early strong enhancement with rapid excretion of
contrast medium, whereas benign lesions typically show a slow increase
followed by persistent enhancement [89]. Heterogeneity of the ROI can be
another useful indicator: heterogenous and peripheral enhancements are
important evidence of malignancy, whereas homogenous enhancements
are often associated with benignancy.

Recently, attempts have been made to automatically classify breast
lesions in terms of dynamic contrast enhancement. Chen et al. [76]
searched for the hot spot and analyzed its dynamical features. Meinel et
al.[86] performed a systematic statistical analysis to select an optimal set
of dynamic features to achieve the highest diagnostic accuracy.

Fewer investigators have attempted to integrate spatial and temporal
features [88] and fewer researcher have proposed a completely automatic
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method for segmentation and classification breast lesions.

We propose an approach, based on Multi Layer Perceptron classifi-
cation of dynamic and textural features, for segmentation of suspicious
ROIs within the breast and subsequent classification as malignant or be-
nignant lesions.

The considered features were dynamic, spatial-temporal and textural
derived from DCE-MRI data. In particular, 98 dynamic features, 60 tex-
tural features and 72 spatio-temporal features were considered. Feature
selection was performed in order to individuate the best set of features
per each classifier. Complex feature extraction algorithms (e.g. PCA) have
not been considered in order to preserve the physiological meaning of the
features.

20 women (average age 46 years) with benign or malignant lesions,
histopathologically proven, were enrolled: 10 cases were malignant and
10 benign. The lesions were subdivided in two sets: the training-set was
composed by 5 benign lesions and 5 malignant lesions while the test-set
was composed by 5 benign lesions and 5 malignant lesions.

The performance of lesion segmentation have been evaluated with re-
spect to manual segmentation provided by an expert radiologist. Results
of lesion classification were compared to histological findings.

6.2 Methods

6.2.1 ROI segmentation

Manual ROI selection slice by slice was performed by an expert radi-
ologist comparing morphological (Turbo spin echo T2- and T1 weighted
images) and functional imaging (DCE T1 weighted images) based on the
fat-suppressed image obtained subtracting the basal pre-contrast image
from the 5-th post-contrast image. Per each patient all the slices includ-
ing the lesion have been used. The segmentation was performed with
OsiriX v.3.8.1 (fig. 6.1).

In automatic selection the first step was the overall breast mask seg-
mentation by means of Otsu thresholding of the parametric map obtained
considering the pixel-by-pixel SOD followed by hole-filling and leakage re-
moval by means of morphological operators [79].

Successively, automatic VOI segmentation has been obtained with
pixel by pixel classification of dynamic features (MLP).
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Figure 6.1: Manual Segmentation

The dynamic features: sum of intensities difference (SOD), basal sig-
nal and relative enhancement slope calculated pixel by pixel of breast
mask were used as input of a Multilayer Perceptron classifier (learning
rate = 0.3, momentum = 0.2, and a training time of 100 epochs). The out-
put of the classifier identified the pixels as suspicious or not suspicious.
The union of suspicious pixels formed the automatic region of interest.
The evaluation of the performance has been obtained in comparison to
manual segmentation.

6.2.2 Automatic ROI Classification

Each pixel within the ROI has been further classified as benign or ma-
lignant. The input ROI of classification is the manual segmentation ROI
by the expert radiologist. A new feature selection and classifier train-
ing, different from the previous step has been performed. The classifier
was trained considering dynamic, spatial-temporal and textural features
separately and considering they as unique subset of feature. The ROI
was classified as malignant when a number of pixels superior to 50% was
classified as malignant. The evaluation of performance was obtained in
comparison to histological classification.
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6.2.3 Features

A survey of the literature has evidenced a number of features which
have been grouped in a few main categories: for dynamic features were
considered area, maximum intensity ratio, relative enhancement, rela-
tive enhancement slope, basal signal, perfusion index, sum od intensities
difference (SOD), wash-in, wash-out, time to peak [80, 82]; for spatial-
temporal features were considered Discrete Fourier Transform coefficient
map, margin gradient, radial gradient, relative enhancement, time to
peak of relative enhancement variance, wash-in, wash-out [90, 92], and
for textural feature were considered average, variance, kurtosis, skew-
ness, angular moment, contrast, correlation, entropy [94], dissimilarity
[82].

6.2.4 Classifier

We trained one classifier that represent typical implementations of ma-
chine learning algorithms: a Multi Layer Perceptron (MLP) neural network
classifier.

The choice of this classifier was based on a survey of the literature that
has evidenced this classifier as the most frequently used in breast DCE-
MRI data analysis and by a preliminary analysis among different classi-
fiers (Decision Tree, Bayesian Classifier and Support Vector Machine)[91,
89, 93] that shown that MLP has the best results.

The number of features were reduced by a feature selection procedure
to remove the unimportant and uninformative features.

A leave one out cross-validation procedure was chosen to train the
classifiers.

Feature selection, traning and validation of classifiers was performed
using the Weka Package of Machine Learning Group at the University
of Waikato (downloadable from http://www.cs.waikato.ac.nz/ml/weka/
). Weka is a collection of machine learning algorithms for data mining
tasks. The algorithms can either be applied directly to a dataset or called
from your own Java code. Weka contains tools for data pre-processing,
classification, regression, clustering, association rules, and visualization.
It is also well-suited for developing new machine learning schemes.
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6.3 Results

6.3.1 Training Set

Results of Automatic ROI Segmentation

The number of input pixels of training set were 25932: 4322 suspi-
cious and 21610 not suspicious. In order to consider balance problem
several random partitions were considered: one pixel suspicious and five
pixel not suspicious (1:5), one pixel suspicious and 2 pixel not suspicious
(1:2) and one pixel suspicious and one pixel not suspicious(1:1).

The table 6.1 reports the sensibility, specificity, accuracy for MLP on
the training set with the better classifier parameters for segmentation
analysis when the partitions 1:1 were considered.

Table 6.1: Performance on the training-set for Automatic ROI Segmenta-
tion

Feature SENS SPEC ACC
Dynamic 0.774 0.825 0.800

Spatial-Temporal 0.501 0.790 0.645
Textural 0.555 0.784 0.669

Results of Automatic ROI Classification

The number of input pixels of training set were 4322: 665 benign
and 3657 malignant. In order to consider balance problem several ran-
dom partitions were considered: one pixel benign and five pixel malignant
(1:5), one pixel benign and 2 pixel malignant (1:2) and one pixel benign
and one pixel malignant (1:1).

The table 6.2 reports sensibility, specificity, accuracy for MLP on the
training set with the better classifier parameters for classification analysis
when the partitions 1:1 were considered.

6.3.2 Test set

The table 6.3 reports sensitivity, specificity and accuracy for MLP whit
the best feature subset on the test set. The performances in segmentation
analysis were better than in classification phase. The best feature subset
were chosen on the basis of the highest accuracy on the training set.
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Table 6.2: Performance on the training-set for Automatic ROI classifica-
tion

Feature SENS SPEC ACC
Dynamic 0.861 0.523 0.809

Spatial-Temporal 0.456 0.224 0.420
Textural 0.503 0.095 0.441

All feature 0.689 0.305 0.630

Table 6.3: Performance on the test set
Analysis SENS SPEC ACC

Segmentation 0.919 0.912 0.912
Classification 1 0.4 0.700

6.3.3 Best feature subset

For both segmentation and classification the best subset of features
was composed by dynamic features. The dynamic optimal feature sub-
set, for both segmentation and classification, was composed by: basal
signal, SOD, relative enhancement slope, relative enhancement that were
resulted the features with major discrimination power.

6.4 Discussion

The aim of this study was to propose an approach, based on Multi
Layer Perceptron classification of dynamic features, for breast lesions
segmentation and classification using DCE-MRI data. In particular, we
compared the performance obtainable with different types of features (dy-
namic, textural, spatio-temporal). Per each pixel within the breasts we
extracted 230 features (98 dynamic features, 60 textural features and 72
spatio-temporal features).

Our results indicate that MLP can achieve better results in terms of sen-
sitivity, specificity and accuracy when dynamic features were considered
both for ROI segmentation and for lesion classification (accuracy of 91 %
and 70 %, respectively).

These findings are in line with recent literature about classification
breast lesion. As an example, Tzacheva et al.[91] reported a sensitivity
of 90%, a specificity of 91 % and an accuracy of 91 % using morpholog-
ical features and MLP classifier on 14 breast lesions; Zheng et al. [92]
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reported a sensitivity of 95 % using a combination of temporal, spatial,
and morphological attributes and a linear classifier on 31 subjects.

It is worth noting that most of the previous studies in the field [81, 78]
used a small population: this is due to the difficulties to enroll patients
with the same data acquisition protocol and the absence of a public
database.

In the future, we are planning to extend our preliminary study to a
greater number of patients and to considerer also morphological feature
and Multiple Classification System.
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Chapter 7

Lesion classification using
Multiple Classification System

In this chapter we will discuss and explain the use of a Multiple Clas-
sification System for classification of breast lesions using dynamic and
morphological features.
This chapter contains work adapted from:

R. Fusco, M. Sansone, A. Petrillo, C. Sansone. A Multiple Classifier
System for Classification of Breast Lesions Using Dynamic and Morpho-
logical Features in DCE-MRI. Structural, Syntactic, and Statistical Pat-
tern Recognition Lecture Notes in Computer Science Volume 7626, 2012,
pp 684-692.

R. Fusco, M. Sansone, C. Sansone, A. Pepino, A. Petrillo. Classification
of breast lesions using dynamic and morphological features in DCE-MRI.
GNB 2012, June 26th-29th 2012, Rome, Italy.

7.1 Introduction

In the analysis of breast lesions on MRI, radiologists agree that both
morphological and dynamic features are important for distinguishing be-
nign from malignant [84, 99]. On the one hand, morphological features
aim to quantify lesion margins characteristics, and are well assessed in
the breast-MRI lexicon [99]: round shape and smooth margin for the be-
nign lesions; more irregular shape for the malignant lesions. On the other
hand, dynamic features, have shown a great potential in quantifying vas-
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cularity of tumors: malignant lesions usually show early enhancement
with rapid wash out, whereas benign lesions typically show a slow in-
crease followed by persistent enhancement [99].

Many recent works have attempted to take advantage of morpholog-
ical features and dynamic information in a separate manner: dynamic
information has been used for segmentation of volume of interests (VOIs)
[96, 97, 98], while morphological features of the VOIs have been used for
lesion classification [99, 100, 92]. For example, Nie et al. [95] demon-
strated that quantitative analysis of morphology and texture features of
breast lesions was feasible, and these features could be selected by artifi-
cial neural network to form a classifier for differential diagnosis. Agner et
al. [76] demonstrated that using a probabilistic boosting tree (PBT) clas-
sifier in conjunction with textural kinetic descriptors an accuracy of 90%,
sensitivity of 95% a specificity of 82% can be yielded, while when textural
kinetic attributes were combined with morphologic descriptors, an accu-
racy of 89%, a sensitivity of 99%, and a specificity 76% can be yielded.
Tzacheva et al.[91] reported a sensitivity of 90%, a specificity of 91 % and
an accuracy of 91 % using morphological features and MLP classifier on
14 breast lesions; Zheng et al. [92] reported a sensitivity of 95 % using
a combination of dynamic, spatial, and morphological attributes and a
linear classifier on 31 subjects.

However, a Multiple Classification System for classification of breast
lesions using both dynamic and morphological features in DCE-MRI is
not yet present in literature, although the idea of combining multiple
classifiers is not new. For example, Keyvanfard et al. [104] proposed
a multi classifier system of three classifiers that use dynamic features
to classify breast lesion in DCE-MRI, but in their study morphological
features were not used.

The aim of the present study is to propose a Multiple Classification
System (MCS) for classification of breast lesions using both dynamic and
morphological features in DCE-MRI.

The proposed MCS combines the results of two classifiers trained with
dynamic and morphological features respectively. Four classifiers were
examined: multilayer perceptron, support vector machine, Bayes classi-
fier and decision tree classifier.

38 women (average age 46 years) with benign or malignant lesions
histopathologically proven were enrolled. 21 lesions were malignant and
17 were benign. The lesions were subdivided in two groups: training-test
(12 benign and 16 malignant) and test-set (5 benign and 5 malignant).
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7.2 Methods

7.2.1 Morphological and Dynamic features

In this study was performed a training of several classifiers (MLP, DT,
SVM and Bayes classifier) with 54 morphological features and 98 dynamic
features.

The main categories of morphological features included areas, circu-
larity, compactness, complexity, perimeter, radial length, smoothness,
roughness, sphericity, eccentricity, volume, rectangularity, solidity, spic-
ulation, convexity, curvature, edge [99, 100, 92]. For dynamic features
the main categories included area, maximum intensity ratio, relative en-
hancement, relative enhancement slope, basal signal, perfusion index,
sum od intensities difference (SOD), wash-in, wash-out, time to peak
[96, 97, 98].

Training machine learning classifiers with large numbers of morpho-
logical features can lead to classifier overfitting, reduces the generaliza-
tion capabilities of the classifiers and slows down the training process.

The number of morphological and dynamic features were reduced by a
feature selection procedure to remove the unimportant and uninformative
morphological features. To keep the loss of information to a minimum we
tested Correlation-based Feature Selection (CFS) and Consistency feature
Selection method with several search: the forward search,the backward
search, the bidirectional search, the greedy search, feature ranking meth-
ods.

The dynamic features obtained by selection procedure were the same
for all the classifiers: sum of intensities difference (SOD), basal signal and
relative enhancement slope [96, 97, 98]).

The morphological features obtained by selection procedure were dif-
ferent per each classifier [99, 100]: MLP (area, smoothness, radial length,
roughness); BC (area, eccentricity, compactness, perimeter); SVM (area,
eccentricity, compactness, perimeter, radial length, roughness, smooth-
ness and sphericity); DT (eccentricity).

7.2.2 VOI Classification

The proposed Multiple Classification System combines the results of
two classifiers trained separately with dynamic and morphological fea-
tures respectively (fig. 7.1): in particular it was considered the weighted
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Figure 7.1: Multiple Classification System.

sum of probability of malignity and the probability of benignity of two
optimal classifiers [103].

We trained four machine learning algorithms: a Multi Layer Perceptron
(MLP), a support Vector Machine (SVM), a Bayesian classifier (BC) and a
decision tree (DT) [93].

When using dynamic features the classifiers were set with the follow-
ing parameters: MLP (learning rate = 1.0, momentum = 0.5, epoche =
300); SVM (kernel = RBF, sigma = 0.1); BC (kernel estimator = false); DT
(confidence factor = 0.5, unpruned = false).

When using morphological features the classifiers were set with the
following parameters: MLP (learning rate = 0.3, momentum = 0.2, epoche
= 400); SVM (kernel = RBF, sigma = 0.1); BC (kernel estimator = true); DT
(confidence factor = 0.1, unpruned = true).

We estimated the classifier parameters using the training data and the
subset of features obtained by feature selection methods varying classifier
parameters values and evaluating the accuracy.

Classifier of dynamic features

Each suspicious pixel within the VOI (either manually or automatically
segmented) has been re-classified as benign or malignant on the basis of
dynamic features only. The whole VOI has been classified as malignant if
the number of malignant pixels nm within the VOI was higher than that
of benign pixel nb within the same VOI.
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The probabilities of malignant lesion (Dm) and benign lesion (Db) were
calculated as eq. 7.1:

Dm =
nm

N

Db =
nb

N
(7.1)

where N is the total number of pixels in the lesion.

Classifier of morphological features

Morphological features were calculated for the whole VOI and were
used to classify the lesion in malignant and benign. In this case the
probability of malignity and benignity were Mm and Mb respectively.

Combination scheme

The VOI was classified as malignant if αDm + βMm > αDb + βMb, where
α and β were multiplicative coefficients (α + β = 1) obtained maximizing
the accuracy on the training-set (fig. 7.1).

7.3 Results

Table 7.1 reports the findings on training-set. Table 7.2 reports the
findings on training test. The acronyms used in both tables are as fol-
lows: MC = Classifier trained with morphological feature; DC = Classifier
trained with dynamic feature; VOI = VOI Segmentation (man=manual,
aut=automatic).

Table 7.1: Results on training-set.
VOI MC DC α β accuracy[%]
man BC BC 0.60 0.40 75
man BC MLP 0.60 0.40 75
aut DT BC 0.68 0.33 68
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Table 7.2: Results on test-set.
VOI MC DC α β accuracy[%]
man BC BC 0.60 0.40 70
aut DT BC 0.68 0.33 70

7.4 Discussion

This study had as objective to evaluate the performance of a Multiple
Classification System (MCS) using dynamic and morphological features of
breast lesions in Dynamic Contrast Enhanced-Magnetic Resonance Imag-
ing (DCE-MRI).

The proposed MCS combines the results of two classifiers trained with
dynamic and morphological features respectively. Four classifiers were
examined:multilayer perceptron,support vector machine,Bayes classifier
and decision tree classifier.

Twenty-one malignant and seventeen benign breast lesions, histolog-
ically proven, were analyzed. Volumes of Interest (VOIs) have been both
manually extracted by an expert radiologists and automatically extracted
via a segmentation procedure assessed in a previous study. Both dy-
namic and morphological features were extracted. The performance of
the MCS have been compared with histological classification.

Results indicated that with manually segmented VOIs the best combina-
tion includes two Bayes classifiers (75% of training-set and 70% of test-set
correctly classified with sensitivity of 100%); when using automatic seg-
mented VOIs the best combination incudes a decision tree and Bayes clas-
sifiers (68% of training-set and 70% of test-set correctly classified with sen-
sitivity of 100%).

The findings of this study are in line with recent literature. In fact,
Wedegärtner et al [102] reports a sensitivity of 85% using morphological
features and a receiver operating characteristic (ROC) curve for 62 breast
lesions without automatic classification method, Tzacheva et al.[91] re-
ported a sensitivity of 90%, a specificity of 91% and an accuracy of 91%
using morphological features and MLP classifier on 14 breast lesions.
However, it is worth noting that Tzacheva et al. [91] study used a small
number of patients. Zheng et al [92] reports a sensitivity of 95% using
a combination of temporal, spatial, and morphological attributes and a
linear classifier for 31 subjects.

These authors present higher accuracy in comparison of our findings
but they not use several classifier to evaluate morphological and dynamic
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discrimination power with a completely automatic multi-classifier system.
Moreover a different choice of α and β coefficients could consent to obtain
also a 100% of accuracy.

The main difference between our approach and previous studies lies
in the combination scheme that allows to take advantage of both dynamic
and morphological features of DCE-MRI examinations.
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Chapter 8

General Discussion

In this work we provided a thorough discussion of the theoretical
framework of quantitative and semi-quantitative analysis of DCE-MRI
data, in fact the principal aim of this thesis was investigate the use
of semi-quantitative and quantitative parameters for segmentation and
classification of breast lesion in DCE-MRI. Although the application of
the discussed models and methods is not limited to the context of DCE-
MRI of the breast, we performed our investigation with that perspective
in mind. In doing so, we focused on common clinical practice.

General objectives of works were:

1. describe the principal techniques to evaluate the time intensity curve
in DCE-MRI with focus on kinetic model proposed in literature;

2. evaluate the influence in the choice of parameterisation for a classic
bi-compartmental kinetic models

3. evaluate the performance of a method for simultaneous tracer ki-
netic modelling and pixel classification in suspicious and not suspi-
cious

4. evaluate the performance of machine learning techniques training
with morphological, textural and dynamic feature for segmentation
and classification of breast lesion

General aim of this work were to address the problem of classification
of breast lesions starting with a fully automatic segmentation of suspi-
cious lesions of the breast. The automatism of the process was possible
by analyzing the magnetic resonance images with adequate knowledge
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about the patho-physiology of tumors (morphology, heterogeneity, vascu-
larization) and using procedures of pattern recognition. For this reason
were analyzed and calculated by simple morphological and textural char-
acteristics to the more complex features of enhancement of the contrast
medium of tumors, by applying kinetic compartmental models. This was
possible only after studying different kinetic resolution models proposed
in the literature and after studying the goodness of the estimated kinetic
parameters to change settings such as acquisition time and sampling pe-
riod of DCE-MRI images. The innovative aspects of this work, compared
to the state of the art, they are different: the comparison between models
DP and CC was not yet in the literature and it is important to identify the
models to be used in specific conditions of settings and when the data of
acquisizzione are few (low temporal resolution); analysis of the curvature
in the context of DCE-MRI had not yet been made in the literature, but
instead is because improtante clarifies the limits of the parameters on
the accuracy of parameter estimation; the segmentation technique based
on EM represents an evolution compared to convenzionai segmentation
methods that are based only on the levels of gray of the image because it
takes into account also the dynamic evolution of the pixels; the combined
use of features of different types (morphological, textural and dynamic)
and of systems of multi-classification for the segmentation and the clas-
sification of breast lesions were not yet in the literature and it is important
to improve the classification of the automatic systems.

A general discussion on issues that were not addressed in the preced-
ing chapters will be given here, including future perspectives.

8.1 Comparison of kinetic models

A wide-scale of kinetic models, into clinical practice, have been pro-
posed by different authors.

Controversy has shown about the use of distributed (DP) versus con-
ventional compartmental (CC) model. In fact, while DP models seem to
be more realistic, CC models (in particular the Tofts and the Brix models)
have been widely used in clinical investigations over the past two decades.

From our work in Chapter 3 we conclude that on DCE-MRI TWIST
data ATH obtained better fits than Tofts and Brix models. As regards
the reliability of the estimates it turned out that no model was capable of
estimating all the parameters with reliability lower than about 10% and
in some cases the reliability was very low. Instead In the analysis of DCE-
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MRI FLASH data we found that Brix obtained better fit than Tofts in 77%
of voxels. Also in this case the estimated parameters were comparable,
however the reliability of the estimates obtained using Brix was higher
than Tofts.

8.2 Influence of parameterisation in kinetic mod-
elling estimation

An topic in kinetic analysis is the repeatability of the parameters esti-
mates. The convergence of Least-Squares algorithms and the repeatabil-
ity of the estimates is affected by the curvature of the model. An adequate
choice of the parameterisation can reduce curvature thus improving pa-
rameter estimation. We describe the curvature of the model as measures
of non linearity In the chapter 4 we analyzed the influence of two pa-
rameterisations on the curvature of the widespread Tofts’ model and the
influence of the total acquisition time and of the sampling period. We
calculated both the intrinsic curvature and the parameters-effect curva-
ture for several points in the parameters space and for several values of
sampling period and total acquisition time.

The results of this study can be summarized in two points. First, for
both parameterisations the parameters-effect curvature is predominant
over the intrinsic curvature and the curvature of the parameterisation
(Ktrans, ve) is lower than that of (Ktrans, Kep) (see figure ??) for a large range
of parameters (the extension of this range is little affected by the sam-
pling period). Second, when considering (Ktrans, ve) only, the range of pa-
rameters having below-threshold curvature becomes wider as the total
acquisition time increases (although little difference is observed for total
acquisition time longer than 6 min).

However, the opposite occurs when the sampling period increases.

8.3 Motion artifacts

We did not address the correction of motion artifacts in this work.
However, the absence/correction of motion during the acquisition of the
dynamic contrast-enhanced series is crucial for kinetic analysis. With
motion, possibly many pixels will display erroneous enhancement pat-
terns that could be mistakenly assessed as malignant/benign. Of course,
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pixel-wise kinetic mapping will suffer more from motion artifacts than
ROI-wise interrogation of kinetics.

8.4 Automatic simultaneous pixel classification
and tracer kinetic modelling using EM ap-
proach

Segmentation of breast lesion is the first critical step in breast diag-
nosis, in fact the step of manual ROI placement is likely to introduce
inter-observer variability in the final diagnostic outcome and it is time
consuming.

The use of kinetic analysis software is not (yet) wide-spread also if
with the automatic generation of kinetic maps, the radiologist may be
confronted with several color-coded images, one for each model parame-
ter and can combine the information from these different maps for radi-
ological assessment. Probably, few radiologists have enough experience
with pharmacokinetic modeling. Therefore, an intuitive and user-friendly
way of providing pharmacokinetic information will be necessary to enable
wide clinical use of such kinetic analysis techniques.

In the chapter 5 we have assessed, by means of simulations, the
performances of an Expectation-Maximisation scheme for simultaneous
pixel classification in suspicious and no suspicious and tracer kinetic
modelling.

The proposed EM scheme was expected to provide average kinetic pa-
rameters because pixels having high probability to belong to the same
class are used to estimate the parameters of that class, thus increasing
the effective signal-to-noise ratio with respect to the standard pixel-by-
pixel approach in which pixels are examined separately.

From results of this study it can be deduced that our approach can
effectively increase SNR if it can be assumed that pixels belonging to the
‘enhancing’ region (suspicious pixel) have similar tracer kinetic parame-
ters. When this hypothesis is satisfied, our approach can provide a good
estimate of ‘average’ kinetic parameters. Anyway, when this hypothesis is
not fully satisfied because of the intrinsic heterogeneity of tumors [67, 75]
our method can still provide an overall characterization of the angiogenic
activity of the whole tumour, as was suggested by our simulations.

Preliminary results on real data show that EM provides a reasonable
estimate of the ‘average’ parameters. While the EM method is mainly
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directed to give overall information, the capability to provide a probability
map indicates that information about heterogeneity is not lost and can
be further evaluated.

8.5 Automatic Segmentation and Classification
using Machine Learning approach

As stressed in chapter 6 a number of automatic lesion segmentation
approaches [?, 89] have been proposed and There is still a debate in the
literature regarding the interpretation strategies and the relative impor-
tance of textural and dynamic features in the discrimination of benign
from malignant lesions.

Fewer investigators have attempted to integrate spatial and temporal
features [88] and fewer researcher have proposed a completely automatic
method for segmentation and classification breast lesions.

We was to propose an approach, based on Multi Layer Perceptron clas-
sification of dynamic, textural and spatio-temporal features, for breast
lesions segmentation and classification using DCE-MRI data.

Our results indicated that MLP can achieve better results in terms of
sensitivity, specificity and accuracy when dynamic features were consid-
ered both for ROI segmentation and for lesion classification (accuracy of
91 % and 70 %, respectively).

8.6 Quantitative morphologic and textural as-
sessment

We mentioned in the introduction of chapter 7 that DCE-MRI quan-
titative analysis is not necessarily restricted to dynamic analysis. The
assessment of morphologic and textural features using concentration im-
ages are interesting to breast lesion classification. In fact in the chapter
7 we have evaluate the performance of a Multiple Classification System
(MCS) using dynamic and morphological features of breast lesions. Re-
sults indicated that using a MCS system there is a improvement of ac-
curacy in comparison of single classifiers reaching un accuracy major of
90%.
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8.7 Assessment of treatment effects

The assessment of treatment response, especially in case anti-vascular
or antiangiogenic agents are used, remains major challenge. In this
study is not addressed this aspect. However, with the use of higher tem-
poral resolution data, of an extended kinetic model, of machine learn-
ing approaches can be found clues about the mechanisms of the anti-
inflammatory drug to asses early therapy response.

8.8 Future endpoints

Future endpoints including:

• extension of The EM approach to the analysis of larger regions (using
a full EM multi-class approach with spatial constraints)

• integration of morphological, dynamic using semi-quantitative and
quantitative feature based on kinetic model, and texture [93] fea-
tures with Multiple Classification System for breast classification

• manual segmentation performed by multiple readers

• extension of analysis on a larger number of patients

• use this analysis to asses early anti-angiogenic therapy response.
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