
Alma Mater Studiorum - University of Bologna

PhD in Electronics, Computer Science and Telecommunication

Cycle XXV

Settore concorsuale di afferenza: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore scientifico disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Pervasive Business Intelligence

Elisa Turricchia

Coordinator Advisor

Prof. Alessandro Vanelli Coralli Prof. Matteo Golfarelli

Final Exam 2013

Contents

1 Introduction 1

1.1 Business Intelligence . 1

1.2 Motivations and Contributions . 4

1.2.1 Distributed BI . 5

1.2.2 OLAP Personalization and Similarity 6

1.2.3 Agile Data Warehouse Design . 7

2 Background 9

2.1 Basic Concepts . 9

2.1.1 Data Warehouse . 9

2.1.2 Architectures . 11

2.1.3 ETL . 14

2.1.4 OLAP Analysis . 15

2.2 Life-cycle Design . 16

2.3 Multidimensional Model . 17

3 Distributed BI 21

3.1 Introduction . 21

3.2 Related Works . 24

3.2.1 Warehousing Approaches . 26

3.2.2 Federative Approaches . 26

3.2.3 Peer-to-Peer Approaches . 28

3.3 Formal Background . 29

3.4 Mapping Language . 31

3.4.1 Mapping Predicates . 32

3.4.2 Mapping Accuracy . 34

3.5 A Reformulation Framework . 36

3.5.1 Translating schemata . 37

3.5.2 Translating queries . 38

3.5.3 Translating mappings . 40

3.5.3.1 Exact Mappings . 41

3.5.3.2 Loose/Approximate Mappings 43

3.6 Query Reformulation in a BIN . 44

3.6.1 The Inter-Peer Reformulation Algorithm 45

3.6.1.1 Step 1: Mapping Selection 45

3.6.1.2 Step 2: Query Reformulation 47

3.6.1.3 Step 3: Query Expansion 51

3.6.1.4 Incorporating Selection Predicates 52

3.6.2 Properties of the Inter-Peer Reformulation Algorithm 52

3.7 Implementation . 54

3.8 Conclusions . 56

4 OLAP Personalization 59

4.1 Introduction . 59

4.2 Related Works . 60

4.3 Formal Background . 62

4.4 The myMDX Preference Language . 63

4.5 A Personalization Framework . 64

4.5.1 Log Mining . 65

4.5.2 Rule Selection . 66

4.5.3 Fragment Translation . 69

4.6 Implementation . 69

4.7 Validation . 70

4.8 Conclusions . 71

5 OLAP Similarity 73

5.1 Introduction . 73

5.2 Formal Background . 74

5.3 Requirements for OLAP sessions similarity 75

5.4 Related Works . 77

5.4.1 Sessions . 77

5.4.2 Queries . 79

5.5 Query Similarity . 82

5.6 Session Similarity . 85

5.6.1 Edit-Based Session Similarity . 85

5.6.2 Subsequence-Based Session Similarity 86

5.6.3 Log-Based Session Similarity . 86

5.6.4 Alignment-Based Session Similarity 89

5.7 Validation . 93

5.7.1 User Tests . 93

5.7.2 Objective Tests . 96

5.8 Conclusions . 99

6 Agile Data Warehouse Design 101

6.1 Introduction . 101

6.2 Related Works . 102

6.3 The Motivation for 4WD . 103

6.3.1 From Problems to Goals . 103

6.3.2 From Goals to Principles . 105

6.3.3 From Principles to 4WD . 106

6.4 The 6 Features of 4WD . 108

6.4.1 Incrementality and Risk-Based Iteration 108

6.4.2 Prototyping . 109

6.4.3 User Involvement . 110

6.4.4 Component Reuse . 111

6.4.5 Formal and Light Documentation 112

6.4.6 Automated Schema Transformation 113

6.5 Validation . 114

6.6 Conclusions . 115

7 Project Scheduling Optimization in Agile Data Warehouse Design 117

7.1 Introduction . 117

7.2 Related Works . 119

7.3 Multi-Sprint Planning Problem . 121

7.3.1 Baseline Planning Optimization Model 124

7.3.2 Smooth Replanning Optimization Model 127

7.3.3 Implementation . 129

7.3.4 Validation . 129

7.3.4.1 Effectiveness Tests for Baseline Planning 129

7.3.4.2 Efficiency Tests for Baseline Planning 134

7.3.4.3 Effectiveness Tests for Smooth Replanning 135

7.3.4.4 Efficiency Tests for Smooth Replanning 136

7.4 Efficient Algorithms for the Multi-Sprint Planning Problem 137

7.4.1 Reductions . 137

7.4.1.1 Modifying the Sprint Capacities 137

7.4.1.2 Modifying the Weights of Stories 137

7.4.2 Cover Inequalities . 138

7.4.3 Dominance Inequalities . 138

7.4.3.1 Dominance of Type 1 138

7.4.3.2 Dominance of Type 2 138

7.4.3.3 Dominance of Type 3 139

7.4.4 Greedy and Exchange Heuristics 139

7.4.5 A Lagrangian Heuristic . 144

7.4.6 Validation . 146

7.5 Conclusions . 152

8 Conclusions and Future Works 155

A Theorem Proofs 157

Bibliography 159

Keywords

• Business Intelligence 2.0

• Distributed Data Warehouses

• Query Reformulation

• Lean Development

• OLAP Query Personalization and Recommendation

• Agile Release Scheduling

• Similarity Measures in Multidimensional Contexts

To my family

Acknowledgements

I would like to thank my tutor Prof. Dario Maio for the supervising activity during

my PhD. I would like to express my sincere gratitude to my advisors Prof. Matteo

Golfarelli and Prof. Stefano Rizzi for supporting and motivating me during these three

research years. They gave me the opportunity to take part in several activities that

have contributed to my professional and personal growth.

Moreover, I wish acknowledge Prof. Patrick Marcel and Julien Aligon for their collabo-

ration and support during my research period in France at Université François-Rabelais

Tours.

I would like to thank Prof. Marie-Aude Aufaure and Prof. Patrick Marcel for reviewing

this thesis.

Finally, I wish to thank my family and my friends for believing in me during this

journey, and in particular my friend Silvia who has encouraged me during this research

activity with her motivation and enthusiasm.

Chapter 1

Introduction

1.1 Business Intelligence

Traditionally, we refer to Business intelligence (BI) as the process of transforming

raw data into useful information to support effective and aware business strategies;

capturing the business data and getting the right information to the right people, at

the right time, through the right channel, is a crucial aspect of BI often referred to as

pervasiveness.

In the last few years, a new generation of BI tools called BI 2.0 has emerged to meet

the new and ambitious requirements of business users [Nelson, 2010]. BI 2.0 not only

introduces brand new topics, but in some cases it re-examines past challenges according

to new perspectives depending on the market changes and needs. In this context,

the term pervasive BI has gained increasing interest as an innovative and forward-

looking perspective. Different interpretations have been proposed of this concept,

mainly focused on keywords such as Personalization, Timeliness, and Integration:

• Personalization (BI to ANYONE). In this case the term pervasive is re-

ferred to the capacity of BI tools to customize the result according to the user

who takes advantage of it, facilitating the fruition of BI information by different

type of users (e.g., front-line employees, suppliers, customers, or business part-

ners). In this regard, [Markarian et al., 2007] states that “the goal of pervasive BI

applications is to take the data that produced the back office Return On Invest-

ment (ROI) of more than 400% and deliver it to front-line employees in a form

appropriate to their job functions with similar results”. This work points out two

critical aspects of the decision process: identifying and also presenting the most

relevant information of the company’s trend, depending on the specific recipients.

In this direction, BI information can be exploited by a wider range of people and

1

2 Chapter 1 Introduction

different perspectives of analysis can enrich the business vision as well. Typi-

cally, at the core of BI architectures, a Data Warehouse (DW) stores information

in multidimensional form to facilitate the extraction of relevant business data.

However, DW analysis is still a complex activity due to the huge quantity of data

to take into account. Moreover, users might not undertake the right direction

of analysis. In this scenario, user-centric BI applications could have a strategic

role in driving the business analysis. For instance, the result of a user query

could be personalized according to the user preferences or depending on the user

context. Besides, a BI system can suggest the next query to formulate to the

user, exploiting past analysis of the same user or queries of groups of analysts

with similar characteristics.

• Timeliness (BI ANYTIME). Here the term pervasive is related to the timely

provision of business information for decision-making. Different factors may af-

fect this capacity. First of all, as shown in [The Data Warehousing Institute,

2008], one of the major shortcoming of DW solutions is the long and complex

development process, that also discourages the adoption of BI tools. Typically,

DW design implies heavy Extraction, Transformation, and Loading (ETL) activ-

ities that delay the fruition of useful business information. Besides, the design

complexity (i.e., time and cost) increases for enterprise-wide BI solutions where

heterogeneity problems are more serious. The risk is to yield inadequate results

with respect to needs in continuous evolution. To overcome this issue, deeper

investigations on methodological aspects to make the DW development process

more flexible and faster represent a promising direction. On the other hand, after

the implementation of the DW, a further issue is the need to maintain fresh data

to support well-informed decisions. Moreover, the integration of the DW infor-

mation with structured or semi-structured data coming from additional sources

(e.g., external vendors, Internet) could complete the business view (in the so-

called situational BI). Since this type of information is constantly changing, its

integration on-the-fly represents an added value. In this direction, a new gener-

ation of BI systems providing information on demand with near-0 latency (the

so-called real-time BI) may deal with the market unpredictability and dynamism

[Teradata, 2008].

• Integration (BI ANYWHERE). In this case the term pervasive refers to

the ability of BI tools to allow users to access information anywhere it can be

found, by using the device they prefer. We can distinguish two different inter-

pretations. In the first one, pervasiveness is related to the ability of extracting

relevant information from different BI systems (i.e., BI FROM-ANYWHERE)

mainly dealing with heterogeneity and security issues. This feature is particular

significant in collaborative contexts (collaborative BI) where enterprises collabo-

rate and share information to create new business opportunities but preserving

their autonomy and independence [Lachlan, 2012]. In the second interpretation,

Chapter 1 Introduction 3

pervasiveness is justified by the fact that the information can be analyzed with

different types of devices, depending on the user and on the context of analy-

sis (i.e., BI TO-ANYWHERE). In this direction, the fruition of BI information

from mobile devices represents one of the major trend today, making the data

access easier and faster. As a consequence, new issues on data visualization and

transmission arise.

Each of the aforementioned features impacts on the concept of data trust (or data

quality) which in turn strongly affects the adoption of BI tools. If the user cannot

fully understand data, she cannot perceive the utility of the information provided (BI

to ANYONE). At the same time, if the user cannot access data in a timely manner,

she cannot have a proactive role in the market (BI ANYTIME). Finally, if the user has

not the right vision of the overall business environment, described by both internal and

external factors, she can hardly define effective market strategies (BI ANYWHERE).

We close this vision of BI by describing the additional BI trends for 2012 as emerging

from [Lachlan, 2012] and [Chaudhuri et al., 2011]:

• Location Intelligence (LI): it starts from the assumption that more than 70%

of the data collected by companies have a spatial topic [Yellowfin, 2010]. Enrich-

ing traditional business data with geographical information may lead to effective

geo-targeted marketing, tactical business investments and strategic customer seg-

mentation as well. It may represents the added value to capture significant pat-

terns from the vast amount of data gathered by a company. In this perspective, LI

may yield a competitive advantage in different contexts such as healthcare, gov-

ernance, communications, and banking. For instance, the work in [Weber and

Chapman, 2011] describes an innovative approach to location decision-making

based on a geo-business classification of the London neighbourhood, aimed at

attracting foreign investments to support economy.

• Mobile BI: it is strictly related to the concept of BI TO-ANYWHERE, referring

to the fruition of business results on mobile devices. New metaphors of data

visualization and real-time transmission techniques must be investigated to make

the mobile experience effective. Managers can get business information wherever

they are, by using a tool they are familiar with. Easier and self-service data

source access is favoured. Besides, personalization techniques can reduce query

results to the most significant information, decreasing the transmission time and

facilitating an effective result fruition.

• Cloud BI: cloud BI is tightly related to the term BI ANYWHERE, in both

perspectives. It refers to the ability of using BI platforms as a service (often

called BI as a service) where users can access information from simple web inter-

faces (BI TO-ANYWHERE), while data are placed on multiple remote servers

4 Chapter 1 Introduction

(BI FROM-ANYWHERE). The accent is on the different types of architectures

characterizing the cloud and multiple types of contract for service provision. As

shown in [Baars and Kemper, 2010], different cloud configurations could be ap-

plied to the BI context. A simple vision implies the inclusion of additional func-

tional blocks to the existing traditional BI system in a grid approach. A more

sophisticated model includes a complete mashup of DW components distributed

on the web, making the access to business information easier and faster.

• Big Data: the term refers to the ability of managing increasing amount of

data. As a matter of fact, the number of sources (e.g., social networks, e-mails,

geo-data) storing significant business information increases year by year as the

technology evolves. Besides, the quantity of data logging grows as the business

activity advances. As a consequence, performance and data storage issues arise to

design scalable solutions. In this regard, the MapReduce paradigm is one of the

most appreciated strategies [He et al., 2011], mainly based on efficient structures

for data partitioning and compressing.

• Social BI: it uses Data Mining (DM) techniques to integrate business data with

social information, exploiting unstructured data retrieved from e-mails, forums,

and social networks, to support marketing activities such as brand reputation,

topic discovery, and sentiment analysis. The company can exploit the customer

opinions to have a complete vision of its own business, and also to better under-

stand the market position of direct competitors.

1.2 Motivations and Contributions

According to the Gartner survey [Gartner, 2012] on the major priorities of 2,335 CIOs,

analytics and BI are the top-ranked technologies for 2012. This vision includes the com-

bination of BI tools with different technologies to create new capabilities: standalone

applications give way to integrated solutions supporting the whole supply chain; more-

over, geo-information and social factors can be exploited to study customer behaviour

and market trends.

A deeper investigation on BI topics is justified by the increasing complexity of the

decision-making process. The growth of the information affecting the business process

is faster than the evolution of tools and techniques to manage and analyze it effec-

tively. The unpredictability and dynamism of the market force companies to operate

under constant-pressure conditions, where a proper analysis of both their own business

activity and environmental features can lead to success strategies.

Companies need significant information about the outer world, for instance about

trading partners and related business areas [T.A.D. Hoang, 2009]. According to BI

Chapter 1 Introduction 5

ANYWHERE, cooperation is seen as a key point to improve flexibility and competi-

tiveness. For example, in the health-care area, combining data coming from different

hospitals allows to monitor global phenomena, for instance to prevent epidemics. In

banking and insurance contexts, acquisitions and fusions have become more frequent.

In this case, an exhaustive knowledge of the several factors affecting the group activities

can enforce the decision-making process.

Moreover, the effectiveness of decision-making depends on the quality of information

[Chaudhuri et al., 2011]. The fresher the data, the more relevant the business strate-

gies. To this end, BI ANYTIME focuses on both lean DW design and real-time DW

applications.

Finally, the quality of business analysis is strictly related to the capacity of users to

correctly understand the data. Providing information in the right format to the right

user is the goal of BI to ANYONE.

In this regard, we focus on three different aspects of pervasive BI:

• Distributed BI: we consider the concept of pervasiveness in terms of location of

data to answer an OLAP query (i.e., analysts can retrieve relevant information

from multiple and heterogeneous BI systems);

• OLAP Personalization and Similarity: in this case the term pervasiveness refers

to the utilization of BI tools by many users characterized by different profiles (i.e.,

the result of an OLAP query is personalized according to the characteristics of

the user who has formulated the query, leading to a better and simplified result

interpretation);

• Agile Data Warehouse Design: in this last case, pervasiveness is used in terms

of distribution of BI tools in the market (i.e., the aim is to reduce cost and

duration of DW projects to favour the penetration of BI solutions even in small

and medium firms);

1.2.1 Distributed BI

We envision a Business Intelligence Network (BIN) of heterogeneous DW systems

where users can share business information, preserving their autonomy and indepen-

dence. The model supports the concept of BI FROM-ANYWHERE, in the sense that

we combine information coming from multiple heterogeneous sources, located in dif-

ferent places, offering an innovative solution to company collaboration. The model

includes a peer-to-peer network of BI systems where each node contains a specific DW

with a particular multidimensional schema. The user can query her own system and

receive results from every node storing relevant data for her request, by exploiting se-

mantic mappings between the different schemata. The added value of this framework

6 Chapter 1 Introduction

is the federated structure of the net. Typically, the implementations that integrate BI

systems imply the creation of a global schema for query answering, but this solution is

not feasible in particular contexts where companies want to maintain their autonomy

and share just limited contents. In this context, we give the following contributions:

• We design a model for the distributed DW infrastructure.

• We define a language to link heterogeneous concepts in different multidimensional

schemata.

• We propose a query reformulation algorithm to propagate the user query to the

multiple nodes of the network and we provide its proof of correctness.

• We discuss the main implementation issues to develop a BIN.

These issues will be discussed in Chapter 3.

1.2.2 OLAP Personalization and Similarity

The goal of personalization is to deliver information that is relevant to an individual

or a group of individuals in the most appropriate format and layout. In this sense,

we can use personalization to support the concept of BI to ANYONE. In the On-Line

Analytical Processing (OLAP) area, personalization may be pursued using different

approaches:

• Result ranking: query results are organized in a total or partial order so that the

user visualizes the most relevant data first [Golfarelli et al., 2011b].

• Query contextualization: the query is enhanced by adding preference predicates

that depend on the query context [Jerbi et al., 2008].

• Query recommendation: based on the current query and on the past sessions, the

system suggests further queries to help users navigating the cube [Giacometti

et al., 2009].

• Personalized visualization: users specify a set of constraints that are used to

determine a preferred visualization [Bellatreche et al., 2005].

We investigate the first three points of the list. As to result ranking and query contextu-

alization, we propose a proactive approach that couples a Multidimensional eXpression

MDX-based language ([Microsoft, 2009]) for expressing OLAP preferences to a mining

technique for automatically deriving preferences for the current query. In this regard,

our main contributions are:

Chapter 1 Introduction 7

• We design an algorithm to mine a set of association rules that relate sets of

frequent query fragments, starting from the log of past MDX queries issued by a

user.

• We define a procedure that selects a subset of pertinent and effective association

rules for a particular query; after that, the selected rules are translated into a

preference that is used to annotate the user query.

• We discuss a set of experimental results to prove both effectiveness and efficiency

of our approach.

As to query recommendation, we design different measures to assess the similarity

between the current OLAP analysis and the past ones, to derive significant hints for the

next user query. To this end, we compare OLAP concepts from different perspectives:

queries and sessions. In particular, we give the following contributions:

• We carry out a case study to identify the requirements for OLAP similarity.

• We define different measures of similarity for queries and sessions in the OLAP

context.

• We test the effectiveness of the aforementioned measures.

For a detailed investigation on OLAP personalization see Chapter 4, while for OLAP

similarity refer to Chapter 5.

1.2.3 Agile Data Warehouse Design

This term refers to methodological investigations to make DW design faster and nim-

bler, so as to support the concept of BI ANYTIME. First, we analyze the potential

advantages arising from the application of modern software engineering methodologies

(e.g., agile approaches) to a DW project; then we define an optimization model based

on agile principles to support the analyst during the planning phase. The model is

flexible enough to be applied in different contexts, even in data warehousing. In the

following, the main contribution of this work:

• We identify the problems arising in DW development and we investigate how they

can be solved by working on four qualities of the software development process

(reliability, robustness, productivity, and timeliness); we also extract the main

principles for an effective DW design methodology.

• Starting from the aforementioned principles, we propose an innovative method-

ology, called Four-Wheel-Drive (4WD), for DW development.

8 Chapter 1 Introduction

• We formalize an optimization model for the planning problem, based on the

maximization of the project utility perceived by the user and complying with

different development constraints; the model manages project uncertainty allow-

ing a smooth replanning of new or disrupted software functionalites.

• We design efficient algorithms to solve the model for complex problems.

• We evaluate the effectiveness and efficiency of the approach.

4WD is described in Chapter 6, while the optimization model is presented in Chapter

7.

Chapter 2

Background

This chapter describes the basic concepts of BI. As mentioned in chapter 1, the DW is

at the core of BI technologies. It stores data in a multidimensional structure to favour

the extraction of relevant business information. We explain the basic DW features and

the main activities for the ETL process. We also introduce the main OLAP operators

to explore a DW and the typical phases of the DW life-cycle. Finally, a formalization

of the multidimensional model is provided to be used as a reference in the following

chapters.

2.1 Basic Concepts

Here we focus on DW characteristics and we informally illustrate the multidimensional

model. The three typical DW architectures are described, as well as the main ETL

procedures and OLAP operators.

2.1.1 Data Warehouse

In today’s market, the DW is the main tool to support BI in both industrial and sci-

entific contexts. Informally, a DW is an optimized repository that stores information

for the decision-making process. As a matter of fact, the increasing number of infor-

mation a company has to take into account to find relevant business strategies implies

more sophisticated solutions than operational databases, that store accounting data

deriving from daily management activities. A typical workload on operational data

involves queries asking information on a particular customer, the items included in a

specif order, or the total daily revenue. We typically refer to the process of managing

operational data as Online Transactional Processing (OLTP). On the contrary, OLAP

analyses are based on historical and analytical data. Typical OLAP queries are:

9

10 Chapter 2 Background

��������

��	�

��

������	���������
�
�

�
	
��
��
����
������

�
��
��

��
��
����
����	
��

Figure 2.1: Information value as a function of quantity

• Which products maximize the profit?

• What is the total revenue per product category and state?

• What is the relationship between profits gained by two different products?

• What is the revenue trend in the last three years?

The previous requests can hardly be directly formulated on traditional information

systems. The integration of data from different databases is needed, and historical

data must be explored as well. Figure 2.1 shows how to achieve the real business

knowledge through a progressive selection and aggregation process on the operational

data.

To this end, [Golfarelli and Rizzi, 2009b] proposes a set of principles for the DW

process, to turn operational data into information for decision-making:

• Accessibility to users not familiar with IT and data structures.

• Integration of data based on a standard enterprise model.

• Query flexibility to maximize the advantages obtained from the existing infor-

mation.

• Information conciseness allowing for target-oriented and effective analyses.

• Multidimensional representation to give users an intuitive and manageable view

of information.

• Correctness and completeness of integrated data.

A DW can be defined as a collection of data that supports decision-making processes.

It provides the following features [Inmon, 1996]:

Chapter 2 Background 11

�������

��	�
�����

�
�����

Figure 2.2: The product hierarchy

• It is subject-oriented.

• It is integrated and consistent.

• It shows its evolution over time and it is not volatile.

A DW is subject-oriented because it depends on enterprise-specific concepts, such as

customers, products, sales, and orders. On the contrary, operational databases hinge

on many different enterprise-specific applications. Since the DW takes advantage of

multiple data sources, integration and consistency are significant properties. Moreover,

it stores data covering multiple years to assess the company trend across several years

and to compare data of different periods.

To facilitate OLAP analyses, the DW is typically broken up into different data mart,

each representing a subset or an aggregation of the data stored in the primary DW.

A data mart includes a set of information pieces relevant to a specific business area,

corporate department, or category of users. The data mart is composed by different

facts (e.g., orders and sales) that are the basic concepts of the multidimensional schema.

Each fact is analyzed by different perspectives, called dimensions (e.g., products and

stores). Each instance of a fact is called an event (e.g., a particular order or a specific

sale) and it is described by the values of a set of relevant measures (e.g., the quantity

sold) that provide a quantitative description of the event. Starting from these concepts,

the multidimensional data can be represented by an n-dimensional cube, where n is the

number of dimensions. For example, the sales in a store chain can be represented in a

three-dimensional space whose dimensions are products, stores, and dates as shown in

Figure 2.3. If more than three dimensions exist, the cube is called a hypercube. Each cell

of the cube includes a value for each measure. Each dimension in the cube is associated

to a hierarchy characterized by different levels of aggregation, called attributes. For

instance, if we consider the dimension product (see Figure 2.2), a possible hierarchy

aggregates the products (e.g., belt B) into subcategories (e.g., leather accessories) and

the latter into categories (e.g., accessories).

2.1.2 Architectures

A common classification divides DW architectures in three main classes depending on

the number of levels they involve.

12 Chapter 2 Background

date

st
or

e

���������	

�������
��

Figure 2.3: A three-dimensional cube modelling sales

����������	

����

����	�
���

���������

���	�

����

���	�

������

	����

����

��������

���	����

����������	

����

���	�

Figure 2.4: Single-layer architecture

• Single-layer: as shown in Figure 2.4 the architecture is characterized by a mid-

dleware (i.e., data warehouse layer) representing a virtual multidimensional view

of the operational data. This intermediate level redirects the user query to the

operational sources (i.e., source layer) and forwards the result to the OLAP layer

(i.e., analysis layer), adapting the operational result to the multidimensional

structure of the DW.

• Two-layer: in this architecture the DW layer is materialized. The DW can be

represented by either a unique repository or different data marts. The data

staging layer includes the ETL procedures (see Figure 2.5).

• Three-layer: Figure 2.6 shows that the result of ETL procedures is materialized

in the reconciled layer. The other levels are equivalent to the ones of the two-layer

architecture.

Chapter 2 Background 13

����������	
����

���������
���	
����
���	

���
���	

����
����

�������
�

����

����

���	

���������	
��

�	�	�

	�������

	�	�
���

�	�	���	����

Figure 2.5: Two-layer architecture

����������	�
�

����
����
�	�
�

��������
	���������	�����

���	�����

�
�
	�
�������

�
�
	
�
���

������		�
���

�
�����

�
�
	��

��

���	�����

����������	�
���

�
�
	�
�������

��
���

Figure 2.6: Three-layer architecture

14 Chapter 2 Background

2.1.3 ETL

The ETL process extracts, integrates, and cleans data from operational sources to feed

the DW layer. In the following we report a brief description of the activities involved

in the process, as proposed in [Golfarelli and Rizzi, 2009b]:

• Extraction: includes the extraction of data from the sources. We can distinguish

between static and incremental extraction. We use a static extraction when the

DW needs populating for the first time; on the contrary, an incremental extraction

is used to update the DW regularly depending on the changes occurred in the

operational data. Typically, a timestamp indicates when source data are changed

or added.

• Cleansing: the cleansing procedures aim at improving the data quality. Typically,

they are based on rectification and homogenization of the data to correct mistakes

and inconsistencies:

– Duplicate data: for example, a customer is recorded many times in the

client database due to multiple registrations in different stores.

– Inconsistent values that are logically associated: such as addresses

and ZIP codes.

– Missing data: such as the customer’s income.

– Unexpected use of fields: such as a comment field used improperly to

store the fax number.

– Impossible or wrong values: such as 2/30/2012.

– Inconsistent values for a single entity because different practises

were used: such as University of Bologna rather than Univ. of Bologna.

– Inconsistent values for own individual entity because of typing

mistakes: such as Oxford Steet instead of Oxford Street.

• Transformation: the source data are turned into the DW format. An integration

procedure is required to manage data coming from different sources. To this end,

a matching procedure is used to associates equivalent fields in different sources; a

selection phase can reduce the number of source filed and records; finally, conver-

sion and normalization procedures are applied to make data uniform. Typically,

in the DW context, normalization is replaced by a denormalization phase to

reduce the join operations at the query time.

• Loading: it is the last step of the ETL process. It can be carried out in two

ways, refresh and update: in the first case, the DW is completely rewritten; in

the second one, only those changes applied to source data are added to the DW.

Chapter 2 Background 15

Figure 2.7: Roll-up operator

Figure 2.8: Drill-down operator

2.1.4 OLAP Analysis

OLAP analyses allow users to interactively navigate the DW information. Typically,

the data are analyzed at different levels of aggregation, by applying subsequent OLAP

operators, each yielding one or more different queries. The user can scout the multi-

dimensional model choosing the next operator based on the outcome of the previous

ones. In this way, the user creates a navigation path that corresponds to an analysis

process for facts according to different points and at different detail levels. This is also

informally called an OLAP session. In the following we describe the most common

OLAP operators, referring to the cube of sales of Figure 2.3:

• Roll-up causes an increase in data aggregation and removes a detail level from

a hierarchy (e.g., from product to subcategory), as shown in Figure 2.7.

• Drill-down is the complement to the roll-up operator; it reduces data aggrega-

tion and adds a new detail level to a hierarchy (e.g., from category to subcategory),

as shown in Figure 2.8.

• Slice-and-dice reduces the number of cube dimensions after setting one of the

dimensions to a specific value (e.g., product=’belt B’); the dicing operation re-

duces the set of data being analyzed by a selection criterion (see Figure 2.9).

16 Chapter 2 Background

Figure 2.9: Slice and dice operators

• Pivot implies a change in layouts, aiming at analyzing a group of data from a

different viewpoint.

• Drill-across allows to create a link between concepts in interrelated cubes, to

compare them.

• Drill-through switches from multidimensional aggregate data to operational

data in sources or in the reconciled layer.

2.2 Life-cycle Design

Typically, DW development relies on a bottom-up strategy that incrementally merges

the different data marts the DW is composed of. As proposed in [Golfarelli and Rizzi,

2009b], data mart development is based on seven different phases:

• Analysis and reconciliation of data sources: it includes a detailed investi-

gation of source schemata and a normalization phase to discover possible unex-

pressed relationships; the relevant data for the current data mart are selected,

and its quality is assessed as well; if multiple sources exist, an integration process

is required.

• Requirement analysis: the team collects the user requirements to define the

main facts of the data mart and to design the preliminary workload.

• Conceptual design: it involves the multidimensional definition of the facts

characterizing the data mart; each fact is described in terms of its measures,

dimensions and hierarchies, producing a fact schema; a graphical specification

for the fact schema is the Dimensional Fact Model (DFM).

Chapter 2 Background 17

• Workload refinement, validation of conceptual schemata: the preliminary

workload is refined and the team checks that queries can be solved on the available

conceptual schema, so as to validate it.

• Logical design: the team designs the logical implementation of the conceptual

schema; the most common implementation is based on relational DBMSs and is

called Relational OLAP (ROLAP).

• Data staging design: the design team and the users collaborate to define the

updating process to populate both the reconciled layer and the data marts.

• Physical design: it involves the selection of indexes to optimize the DW per-

formance.

These phases can accommodate both the classical approaches for data mart design:

data-driven and requirement-driven. In the first case, the data mart schema is de-

rived from the schema of source operational databases, while user requirements help

designers choose facts, dimensions, and measures. In the second case, the data mart

is designed starting from user requirements.

2.3 Multidimensional Model

In this section we introduce a basic formal setting to manipulate multidimensional data,

and we introduce a running example based on the CENSUS [Minnesota Population

Center, 2008] schema we will use in many chapters of the thesis.

Definition 2.1 (Multidimensional-Schema). A multidimensional schema (or, briefly,

an md-schema) is a triple M = 〈A,H,M〉 where:

• A = {a1, . . . , ap} is a finite set of attributes, each defined on a categorical domain

Dom(ai);

• H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a subset

Attr(hi) ⊆ A of attributes (such that the Attr(hi)’s for i = 1, . . . , n define a

partition of A); (2) a roll-up total order �hi of Attr(hi) and a family of roll-up

functions including a function RollUp
aj
ak : Dom(ak) → Dom(aj) for each pair of

attributes ak and aj such that ak �hi aj ;

• M = {m1, . . . ,ml} is a finite set of measures, each defined on a numerical domain

Dom(mi) and aggregable through a set of one or more aggregation operators,

Agg(mi).

For each hierarchy hi, the root attribute of the order is called dimension, denoted

by DIMi, and determines the finest aggregation level for the hierarchy. Conversely,

18 Chapter 2 Background

State

Region

AllCities

City Race

RaceGroup

MRN

AllRaces

Year

AllYears

RESIDENCE RACE TIME

Occ

AllOccs

OCCUPATION

Sex

AllSexes

SEX

Figure 2.10: Roll-up orders for the five hierarchies in the CENSUS schema (MRN
stands for MajorRacesNumber)

the bottom level is denoted by ALLi, has a single possible value and determines the

coarsest aggregation level. A pair µ = 〈mi, αj〉 such that mi ∈ M and αj ∈ Agg(mi)

is called a metric of M.

A group-by set includes one attribute for each hierarchy, and defines a possible way to

aggregate data. A coordinate of a group-by set is a point in the n-dimensional space

defined by the attributes in that group-by set.

Definition 2.2 (Group-by Set). Given schema M = 〈A,H, M〉, let Dom(H) =

Attr(h1) × . . . × Attr(hn); each G ∈ Dom(H) is called a group-by set of M. Let

G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1)× . . .×Dom(akn); each g ∈ Dom(G) is

called a coordinate of G.

Example 2.1. The CENSUS schema includes five hierarchies, namely RACE, TIME,

SEX, OCCUPATION, and RESIDENCE, and measures AvgIncome, AvgCostGas, Avg-

CostWtr, and AvgCostElect. It is City �RESIDENCE State (the complete roll-up orders

are shown in Figure 2.10); examples of group-by sets are:

g1 = 〈State,Race,Year,AllSex,Occ〉

g2 = 〈State,RaceGroup,Year,AllSex,Occ〉

g3 = 〈Region,AllRaces,Year, Sex,Occ〉

A schema is populated with facts, each recording a useful information for the decision-

making process. A fact is characterized by a group-by set G that defines its aggregation

level, by a coordinate of G, and by a value for one measure.

Definition 2.3 (Fact). Given schema M = 〈A,H,M〉, a group-by set G ∈ Dom(H),

and a measure m ∈ M , a fact is a couple fG,m = 〈g, v〉, where g ∈ Dom(G) and

v ∈ Dom(m). The space of all facts for M is

FM =
⋃

G∈Dom(H),m∈M

(Dom(G)×Dom(m))

Chapter 2 Background 19

Finally, an instance of a schema (datacube) is a set of facts D ⊆ FM such that no two

facts characterized by the same coordinate exist in D.

Chapter 3

Distributed BI

In this chapter we describe the BIN framework to support the concept of BI FROM-

ANYWHERE. The framework is aimed at manipuliting business information from dif-

ferent DW tools, creating complex networks of companies chasing mutual advanteges

through the sharing of BI information and functionalities. A BIN is a peer-to-peer data

warehousing architecture, where each peer exposes query answering functionalities. To

enhance the decision making process, an OLAP query expressed on a peer needs be

properly reformulated on the local multidimensional schemata of the other nodes. To

this end, we present a language for the definition of mappings between the multidi-

mensional schemata of peers and we introduce a query reformulation framework that

relies on the translation of mappings, queries, and multidimensional schemata onto the

relational level. Then, we formalize a query reformulation algorithm and prove two

properties: correctness and closure, that are essential in a peer-to-peer setting. Finally,

we describe the main implementation issues to develop a BIN.

3.1 Introduction

As mentioned in Chapter 1, one of the key features for BI in 2012 is the ability to ac-

cess information anywhere it can be found, by locating it through a semantic process

and performing integration on the fly. This is particularly relevant in inter-business

collaborative contexts where companies organize and coordinate themselves to share

opportunities, respecting their own autonomy and heterogeneity but pursuing a com-

mon goal. In such a complex and distributed business scenario, traditional BI systems

—that were born to support stand-alone decision-making— are no longer sufficient to

maximize the effectiveness of monitoring and decision making processes. Accessing

local information is no more enough, users need to transparently and uniformly access

information scattered across several heterogeneous BI platforms [Hoang and Nguyen,

2009].

21

22 Chapter 3 Distributed BI

peer i

Multidimensional Engine

peer N

peer 1

Business
Intelligence

Network

data
warehouse

OLAP Adapter

Query Handler Data Handler

User Interface

semantic
mappings

Figure 3.1: Envisioned architecture for a BIN

To fill this gap, we envision BIN ([Golfarelli et al., 2010, 2011a, 2012a,b]), a peer-to-

peer data warehousing architecture sketched in Figure 3.1. A BIN is an architecture for

sharing BI functionalities across a dynamic and collaborative network of heterogeneous

and autonomous peers. Each peer is equipped with an independent DW system, that

relies on a local multidimensional schema to represent the peer’s view of the business

and exposes OLAP query answering functionalities (based for instance on the MDX

language, a de-facto standard for querying multidimensional databases) aimed at shar-

ing business information, in order to enhance the decision making process and create

new knowledge. The main benefits the BIN approach aims at delivering to the cor-

porate world are the possibility of building new inter-organizational relationships and

coordination approaches, and the ability to efficiently manage inter-company processes

and safely sharing management information besides operational information.

The core idea of a BIN is that of enabling users to transparently access business infor-

mation distributed over the network. A typical interaction sequence is the following:

1. A user formulates an OLAP query q by accessing the local multidimensional

schema exposed by her peer, p.

2. Query q is processed locally on the DW of p.

3. At the same time q is forwarded to the network.

4. Each involved peer locally processes the query on its DW and returns its results

to p.

5. The results are integrated and returned to the user.

The local multidimensional schemata of peers are typically heterogeneous; so, before a

query issued on a peer can be forwarded to the network, it must be first reformulated

according to the multidimensional schemata of the destination peers. In line with the

approach adopted in Peer Data Management Systems (PDMSs) [Halevy et al., 2004],

query reformulation in a BIN is based on semantic mappings that mediate between the

Chapter 3 Distributed BI 23

different multidimensional schemata exposed by two peers, i.e., they describe how the

concepts in the multidimensional schema of one peer map onto those of another peer.

Direct mappings cannot be realistically defined for all the possible couples of peers.

So, to enhance information sharing, a query q issued on p is forwarded to the network

by first sending it to the neighborhood of p; then, each peer in this neighborhood

in turn sends q to its neighborhood, and so on. In this way, q undergoes a chain of

reformulations along the peers it reaches, and results are collected from any peer that

is connected to p through a path of semantic mappings.

The approach outlined above is reflected by the internal architecture of each peer,

sketched in the right side of Figure 3.1, whose components are:

1. User Interface. A web-based component that manages bidirectional interaction

with users, who use it to visually formulate OLAP queries on the local multidi-

mensional schema and explore query results.

2. Query Handler. This component receives an OLAP query from either the user

interface or a neighboring peer on the network, sends that query to the OLAP

adapter to have it locally answered, reformulates it onto the neighborhood (using

the available semantic mappings), and transmits it to the peers in that neighbor-

hood.

3. Data Handler. When the peer is processing a query that was locally formulated,

the data handler collects query results from the OLAP adapter and from the

peers, integrates them, and returns them to the user interface. When the peer is

processing a query that was formulated on some other peer p, the data handler

just collects local query results from the OLAP adapter and returns them to p.

4. OLAP Adapter. This component adapts queries received from the query handler

to the querying interface exposed by the local multidimensional engine.

5. Multidimensional Engine. It manages the local DW according to the multidimen-

sional schema representing the peer’s view of the business, and provides MDX-like

query answering functionalities.

Interactions between peers are based on a message-passing protocol.

Query answering in a BIN architecture poses several research challenges, ranging from

languages and models for semantic mediation to query reformulation issues and proper

techniques and data structures for the query processing phase. Much work has been

done on these issues in the context of PDMSs (e.g., [Mandreoli et al., 2006, 2007,

2009]) and relational databases [Penzo, 2005], however those results are not directly

applicable in the OLAP scenario presented by the BIN. A more detailed explanation

of the existing approaches is provided in Section 3.2.

24 Chapter 3 Distributed BI

The rest of the chapter is organized as follows:

• In Section 3.4, we present a language for the definition of semantic mappings

between the schemata of peers, using predicates that are specifically tailored for

the multidimensional model. To overcome possible differences in data formats,

mappings can be associated with transcoding functions. Mappings are classified

according to the accuracy they allow in query reformulation and a set of require-

ments for the query reformulation algorithm is introduced when dealing with

mapping of different accuracies.

• In Section 3.5, we introduce a framework for OLAP query reformulation that re-

lies on the translation of mappings and queries towards the underlying relational

schemata. For simplicity, we will use standard star schemata to this end.

• In Section 3.6, we propose a query reformulation algorithm and show that it is

correct for compatible reformulations, that it satisfies all the requirements, and

that our language for expressing OLAP queries is closed under reformulation.

Remarkably, this means that our reformulation algorithm can be safely used to

implement chains of reformulations as required by the BIN setting. Besides,

Appendix A gives the proofs of the theorems the algorithm is based on.

• In Section 3.7, we discuss the main implementation issues.

3.2 Related Works

In this section we discuss the related works, comparing those specifically placed in the

DW context from those in the OLTP context. We focus on three different architectural

approaches to share information in the two fields: warehousing, federative, and P2P

approaches.

In the OLTP context, the research area sharing most similarities with warehousing

approaches to the concept of BI FROM-ANYWHERE is data exchange. In data ex-

change, data structured under one source schema must be restructured and translated

into an instance of a different target schema, that is materialized [Fagin et al., 2003].

In this scenario, the target schema is often independently created and comes with its

own constraints that have to be satisfied. On the other hand, federative approaches

have their OLTP counterpart in data integration systems. Data from different sources

are combined to give users a unified view [Lenzerini, 2002]; in this way, users are

freed from having to locate individual sources, learn their specific interaction details,

and manually combine the data [Halevy, 2010]. The unified view that reconciles the

sources is represented by a global schema. In this case query processing requires a

reformulation step: a query over the global, target schema has to be reformulated in

terms of a set of queries over the sources. Finally, P2P approaches to support BI

Chapter 3 Distributed BI 25

FROM-ANYWHERE are related to the decentralized sharing of OLTP data between

autonomous sources, that has been deeply studied in the context of PDMSs. PDMSs

were born as an evolution of mediator systems in the data integration field [Halevy

et al., 2004] and generalize data exchange settings [Fuxman et al., 2005]. A PDMS

consists of a set of peers, each with an associated schema representing its domain of

interest; peer mediation is implemented by means of semantic mappings between por-

tions of schemata that are local to a pair or a small set of peers. Every peer can act

freely on its data, and also access data stored by other peers without having to learn

their schema and even without a mediated schema [Tatarinov and Halevy, 2004]. In

a PDMS there is no a priori distinction between source and target, since a peer may

simultaneously act as a distributor of data (thus, a source peer) and a recipient of

data (thus, a target peer). As in the case of data integration systems, in a PDMS

data remain at the sources and queries processing entails query reformulation over the

peer schemata. In all these contexts, modeling the relationships (mappings) between

source and target schemata is a crucial aspect. Research in the data integration area

has provided rich and well-understood schema mediation languages [Lenzerini, 2002]

to this end. The two commonly used formalisms are the global-as-view (GAV) ap-

proach, in which the mediated (global) schema is defined as a set of views over the

data sources, and the local-as-view (LAV) approach, in which the contents of data

sources are described as views over the mediated schema. Depending on the kind of

formalism adopted, GAV or LAV, queries posed to the system are answered differently,

namely by means of query unfolding or query rewriting techniques [Halevy, 2001], re-

spectively. In a data exchange setting, assertions between a source query and a target

query are used to specify what source data should appear in the target and how.

These assertions can be represented neither in the LAV nor in the GAV formalisms,

but rather they can be thought of as global-and-local-as-view GLAV [Fagin et al., 2003].

A structural characterization of schema mapping languages is provided in [ten Cate

and Kolaitis, 2010], together with a list of the basic tasks that all languages ought to

support. In distributed OLTP environments, the schema mapping generation phase

and the preceding schema matching phase pose new issues with reference to simpler

centralized contexts: consistency problems are studied in [Cudré-Mauroux et al., 2006]

and innovative learning techniques are presented in [Madhavan et al., 2005]. Other

studies in the field have focused on integrating the computation of core solutions in

the mapping generation process, aimed at determining redundancy-free mappings in

data exchange settings [Fagin et al., 2005, Mecca et al., 2009]. Declaring useful map-

pings in the OLAP context necessarily requires also the level of instances to be taken

into account. Unfortunately, in the OLTP literature the definition of mappings is

typically done at the schema level, and the problem of managing differences in data

formats has only marginally been considered. A seminal paper regarding this topic is

[Chang and Garcia-Molina, 1999], where constraint queries are translated across het-

erogeneous information sources taking into account differences in operators and data

formats. A related problem is that of reconciliation of results, that takes a primary

26 Chapter 3 Distributed BI

role in federative and P2P approaches. In the OLTP context this issue is referred to as

object fusion [Papakonstantinou et al., 1996]. This involves grouping together infor-

mation (from the same or different sources) about the same real-world entity. In doing

this fusion, the mediator may also refine the information by removing redundancies,

resolving inconsistencies between sources in favor of the most reliable source, and so

on.

3.2.1 Warehousing Approaches

As already mentioned, in this family of approaches the data that result from the process

of integrating a set of component DWs according to a global schema are materialized.

The main drawback of these approaches is that they can hardly support dynamic

scenarios like those of mergers and acquisitions. An approach in this direction is

the one proposed in [Torlone, 2008]. Given two dimensions belonging to different

data marts where a set of mappings between corresponding levels has been manually

declared or automatically inferred, three properties (namely coherence, soundness, and

consistency) that enable a compatibility check between the two dimensions are defined.

A technique that combines the contents of the dimensions to be integrated is then

used to derive a materialized view that includes the component data marts. A hybrid

approach between the warehouse and the federation approach is suggested in [Jiang

et al., 2007] as a way to obtain a more flexible and applicable architecture. The idea is

to aggregate selected data from the component DWs as materialized views and cache

them at a federation server to improve query performance; a set of materialized query

tables are recommended for the benefits of load distribution and easy maintenance

of aggregated data. Another borderline approach is proposed in [Berger and Schrefl,

2008]: while fact data are not physically integrated, a central dimension repository is

used to replicate dimensional data (according to a global schema) from the component

DWs, aimed at increasing querying efficiency. To effectively cope with evolutions in

the schema of the components, a fact algebra and a dimension algebra are used in this

approach for declaring maintainable mappings between the component schemata.

3.2.2 Federative Approaches

A federated DW, sometimes also called distributed DW, is a logical integration of DWs

that provides transparent access to the component DWs across the different functions

of an organization. This is achieved through a global schema that represents the com-

mon business model of the organization [Jindal and Acharya, 2004]. Differently from

warehousing approaches, the integrated data are not physically stored, so queries for-

mulated on the global schema must be rewritten on the component schemata. This

adds complexity to the query management framework, but enables more flexible ar-

chitectures where new component DWs can be dynamically inserted. A distributed

Chapter 3 Distributed BI 27

DW architecture is outlined in [Albrecht and Lehner, 1998], and a prototype named

CubeStar for distributed processing of OLAP queries is introduced. CubeStar includes

a middleware layer in charge of making the details of data distribution transparent

to the front-end layer, by generating optimized distributed execution plans for user

queries. A distributed DW architecture is considered also in [Akinde et al., 2003] as

a solution for contexts where the inherently distributed nature of the data collection

process and the huge amount of data extracted make the adoption of a central reposi-

tory impractical. The Skalla system for distributed query processing is proposed, with

particular emphasis on techniques for optimizing both local processing and commu-

nication costs; however, since it is assumed that all collection points share the same

schema, the approach cannot be used to cope with heterogeneous settings. In the con-

text of a federated architecture, with specific reference to the healthcare domain, the

work in [Banek et al., 2006, 2008] presents an algorithm for matching heterogeneous

multidimensional structures, possibly characterized by different granularities for data.

Mappings between the local schemata of the DWs to be integrated and a given global

schema are discovered in a semi-automated manner, based on a measure of similarity

between complex concepts. A process to build an integrated view of a set of DWs

is outlined in [Schneider, 2006]. This integrated view is defined as the largest com-

mon schema to all the components, and its instances are obtained by merging the

instances of the components. In [Torlone, 2008], the problem of virtual integration

of heterogeneous data marts is faced in a loosely-coupled scenario where there is a

need for identifying the common information (intuitively, the intersection) between

the components while preserving their autonomy. A set of rules to check for dimension

compatibility are declared first, then drill-across queries are used to correlate on-the-fly

the component data marts. A multi DW system is introduced in [Berger and Schrefl,

2006] as one relying on a distributed architecture where users are enabled to directly

access the heterogeneous schemata of the component DWs, which makes the coupling

between the components looser than in federated DWs. A SQL-MDi query language

is proposed to transform a cube in order to make it compatible with a global, virtual

cube and ready for integration. Specific attention is devoted to solving schema and

instance conflicts among the different components. An XML-based framework for sup-

porting interoperability of heterogeneous DWs in a federation scenario is described in

[Mangisengi et al., 2001]. In the proposed architecture, a federated layer allows for

restructuring and merging local data and schemas to provide a global, single view of

the component DWs to the end users. XML is used both to represent the local DW

schemata, the global schema, and the mapping between them. Another XML-based

approach is the one in [Tseng and Chen, 2005], that discusses the possible conflicts

arising when heterogeneous DWs are integrated and proposes solutions to resolve the

semantic discrepancies. Data cubes are transformed into XML documents and queried

under a global view. XML topic maps are used in [Bruckner et al., 2001] to integrate

the information stored in distributed DWs. The schema integration process is based

on merging local topic maps to generate global topic maps, taking different types of

28 Chapter 3 Distributed BI

semantic conflicts into account. A different approach is presented in [Zhou et al., 2000],

that introduces an architecture for hierarchically distributed DWs where component

DWs are organized into a tree and data are progressively summarized level over level.

A local OLAP query can be posed at any node of the tree, it is rewritten on remote

nodes, and the results are merged.

3.2.3 Peer-to-Peer Approaches

Though federative approaches support more flexible and dynamic architectures than

warehousing ones, still they do not fully preserve the autonomy of individual actors.

In complex business scenarios where no leadership can be established among a set of

actors interested in cooperating, to maximize the effectiveness of monitoring and de-

cision making processes there is a need for truly decentralized approaches. This can

be achieved by relying on P2P architectures. In [Abiteboul, 2003, Abiteboul et al.,

2005], the authors introduced the idea of using a P2P architecture for warehousing

XML content. In their view, a P2P warehouse is not different from a centralized one

from the logical point of view, while from the physical point of view information is

distributed over a set of heterogeneous and autonomous peers rather than centralized.

Because of this, query processing necessarily requires distributed computation. Among

the advantages of this approach, we mention ownership (each peer has full control over

its information) and dynamicity (peers can transparently enter and leave the system).

How to map the local schema of each peer onto each other is one of the open problems.

The approach proposed in [Miller et al., 2000] reformulates XML queries over a set of

peers hosting XML databases with heterogeneous (and possibly conflicting) schemata,

in the absence of a global schema. Reformulation is based on mapping rules inferred

from informal schema correspondences. In [Espil and Vaisman, 2004, Vaisman et al.,

2009] the authors present a model for multidimensional data distributed across a P2P

network, together with a mapping-based technique for rewriting OLAP queries over

peers. In presence of conflicting dimension members, an approach based on belief re-

vision is proposed to revise the instance of the source peers dimension and adapt it to

the instance of the target peers dimension. Another work centered on interoperabil-

ity issues among heterogeneous DWs is the one by [Kehlenbeck and Breitner, 2009],

that emphasizes the importance of a semantic layer to enable communication among

different components. This approach supports the exchange of business calculation

definitions and allows for their automatic linking to specific component DWs through

semantic reasoning. Three models are suggested: a business ontology, a DW ontology,

and a mapping ontology between them. As to performance aspects, in [Kalnis et al.,

2002] the authors propose a P2P architecture for supporting OLAP queries focusing

on the definition of a caching model to make the query rewriting process more effi-

cient. They also define adaptive techniques that dynamically reconfigure the network

structure in order to minimize the query cost. Finally, as to the data reconciliation,

Chapter 3 Distributed BI 29

a typical requirement in collaborative BI is the merging of results at different levels

of aggregation. In this direction, the work proposed in [Dubois and Prade, 2004] dis-

cusses a general approach on the use of aggregation operations in information fusion

processes and suggests practical rules to be applied in common scenarios.

3.3 Formal Background

In this section we extend Definition 2.1 of multidimensional schema and Definition 2.2

of group-by set. We also introduce two new concepts, transcoding and BIN query, and

we describe two different multidimensional schemata we adopt as reference points in

this chapter.

As concerns the multidimensional schema, we consider more complex hierarchies char-

acterized by branches. To this purpose, we relax the definition of hierarchy considering

a roll-up partial order �hi of Attr(hi). According to the extended definition of hi-

erarchy, we can consider a group-by set including more than one attribute for each

hierarchy. To this end, we overwrite the definition of group-by set by using the concept

of projection.

Definition 3.1 (Projection). Given a multidimensional schema M = 〈A,H,M〉, a

projection of M is a subset of attributes P ⊆ A. The domain of P is Dom(P) =

×ai∈PDom(ai); each value of Dom(P) is called a coordinate of P .

We clarify the new definition of multidimensional schema and projection with a refer-

ence example:

Example 3.1. A set of local health-care departments participate in a collaborative

network to integrate their data about admissions so as to enable more effective analysis

of epidemics and health-care costs by the Ministry. For simplicity we will focus on two

peers: the first, located in Rome, hosting data on hospitalizations at the most detailed

level; the second, located in Florence, hosting data on admissions grouped by patient

gender, residence city, and birth year. The underlying md-schemata for Rome and

Florence are called HOSPITALIZATION and ADMISSIONS, respectively; their roll-up

orders are shown in Figure 3.2.

Assuming that each hierarchy is named after its finest-level attribute, but capitalized,

relationships DIMPatient = patient and city �Patient region hold. The HOSPITALIZA-

TION md-schema includes measures cost and durationOfStay; ADMISSIONS includes

measures totStayCost, totExamCost, totLength, maxLength, and numAdmissions. The

30 Chapter 3 Distributed BI

date

month

year

week

ward

LHD

patient

citybirthDate segment gender

region

organ disease

date

month

year

ward

unit

patientCity

patientNation

patientBirthYear patientGenderdiagnosis

category

HOSPITALIZATION (@Rome)

ADMISSIONS (@Florence)

Figure 3.2: Roll-up orders for the hierarchies in the HOSPITALIZATION and AD-
MISSIONS multidimensional-schemata (LHD stands for local health department)

aggregation operators exposed by the two md-schemata are as follows:

Agg(cost) = {sum, avg}

Agg(durationOfStay) = {sum, avg, min, max}

Agg(totStayCost) = Agg(totExamCost) = Agg(totLength) = {sum, avg}

Agg(maxLength) = {max}

Agg(numAdmissions) = {sum}

Note that the HOSPITALIZATION md-schema stores data at the maximum detail, so all

its measures can in principle be aggregated using any operator. On the other hand, AD-

MISSIONS stores pre-aggreggated data, so the (additive) measures totStayCost, totEx-

amCost, and totLength can be also averaged thanks to the presence of numAdmissions,

that acts as a support measure for the avg operator.

Examples of projections of HOSPITALIZATION and ADMISSIONS are P = {week, region}
and P ′ = {date, patientCity}, respectively.

Definition 3.2 (Transcoding). Given the multidimensional schema M, let Dom be

a generic domain of values. A transcoding of M is a function f : Dom(P) → Dom,

where P is a projection of M, that maps each coordinate of P onto a value of Dom.

Note that Dom can be a compound domain (e.g., Dom = Dom(week)×Dom(region));

in this case, the transcoding is made of components, each mapping onto a simple

domain.

Example 3.2. A transcoding of ADMISSIONS is f : Dom(P ′) → Dom(P) whose

components are week = weekOf(date), region = regionOf(patientCity), where weekOf()

is a common SQL function and regionOf() is a user-defined function that returns the

region a city belongs to by accessing a CITIES relational table stored at the Florence

peer.

As concerns BIN queries, we will consider a simple form of OLAP queries character-

ized by an aggregation and a selection (GPSJ - Generalized Projection / Selection /

Chapter 3 Distributed BI 31

Join query, [Gupta et al., 1995]), where transcodings can be applied to attributes and

measures can appear within expressions. To avoid getting burdened with the details of

a specific multidimensional query language, we will express queries using an abstract

syntax.

Definition 3.3 (BIN query). A BIN query is a 5-tuple q = 〈M, E, p, expr, T 〉 where:

1. M = 〈A,H,M〉 is the md-schema q is formulated on;

2. E is a generalized query group-by set, and it is a set where each element is either

an attribute of M or a component of a transcoding of M;

3. p is an (optional) selection predicate; it is a conjunction of Boolean predicates,

each involving either an attribute of M or a component of a transcoding of M;

4. expr is the expression computed by q; it is a numerical expression involving

measures in M ;

5. T is a list of metrics of M, one for each measure used in expr, expressing the

operators that will be used for aggregation.

Consistently with the behavior of the MDX language, the semantics we assume for BIN

queries is that aggregation is executed first. This means that q returns an expression

of aggregates (rather than an aggregation of expressions).

Example 3.3. The query

q1 = 〈HOSPITALIZATION,

{region, year}, (gender = ’Female’),

cost, 〈〈cost, sum〉〉〉

computes, at the Rome peer, the total hospitalization cost of female patients for each

region and year. The query

q2 = 〈ADMISSIONS,

{year, regionOf(patientCity)},—,

totLength, 〈〈totLength, avg〉〉〉

computes, at the Florence peer, the yearly average admission length for each patient

region.

3.4 Mapping Language

In this section we describe the language we devised for the definition of semantic

mappings between the md-schemata of peers. As mentioned in Section 3.1, these

32 Chapter 3 Distributed BI

mappings play a key role in a BIN because, as we will show in Section 3.5, they enable

query reformulation. After introducing a set of mapping predicates in Subsection 3.4.1,

in Subsection 3.4.2 we informally discuss how the mapping predicates introduced can

lead to query reformulations at different levels of accurateness, and we derive a set of

requirements for our reformulation algorithm accordingly.

3.4.1 Mapping Predicates

We preliminarily note that, according to the PDMS terminology, data are extracted

from a source peer and are mapped onto the schema of a target peer. Accordingly,

we will name the peer on whose md-schema a BIN query q is originally formulated as

target peer, and the one on whose md-schema q has to be reformulated as source peer.

The language we propose to express how the md-schema Ms of a source peer s maps

onto the md-schema Mt of a target peer t includes five mapping predicates, namely

same, equi-level, roll-up, drill-down, and related that will be discussed in detail

below. In general, a mapping establishes a semantic relationship from one or more

concepts (either measures or attributes) of Ms to one or more concepts of Mt, and

enables a BIN query formulated on Mt to be reformulated on Ms. Optionally, a

mapping involving attributes can be annotated with a transcoding that specifies how

values of the target concepts can be obtained from values of the source concepts. If

this function is available, it is used to increase the reformulation effectiveness.

• same predicate: µt sameexpr,p Ns, where µt = 〈mt, αt〉 is a metric of Mt, Ns is

a subset of measures of Ms, and expr is an expression involving the measures

in Ns. This mapping predicate is used to state that whenever mt is asked in a

query on Mt using αt, it can be rewritten as expr on Ms. The same mapping

predicate can be annotated with a conjunctive Boolean predicate p involving one

or more attributes in Mt, to restrict the validity of the rewriting for metric µt.

• equi-level predicate: Pt equi-levelf Ps, where Pt and Ps are projections

of Mt and Ms, respectively. This predicate is used to state that Pt has the

same semantics and granularity as Ps. Optionally, it can be annotated with an

injective transcoding f : Dom(Ps) → Dom(Pt) that establishes a one-to-one

relation between coordinates of Ps and Pt, and is used to integrate data returned

by the source and target peers.

• roll-up predicate: Pt roll-upf Ps. This predicate states that Pt is a roll-up

of (i.e., it aggregates) Ps. Optionally, it can be annotated with a non-injective

transcoding f : Dom(Ps) → Dom(Pt) that establishes a many-to-one relation

between coordinates of Ps and Pt, and is used to aggregate data returned by the

source peer and integrate them with data returned by the target peer.

Chapter 3 Distributed BI 33

Table 3.1: Mappings from Florence (source peer) to Rome (target peer)

ω1 〈 cost,sum 〉 same { totStayCost, totExamCost }
ω2 〈 cost,avg 〉 same { totStayCost, totExamCost }
ω3 〈 durationOfStay,sum 〉 same { totLength }
ω4 〈 durationOfStay,avg 〉 same { totLength }
ω5 〈 durationOfStay,max 〉 same { maxLength }
ω6 { LHD } roll-up { unit }
ω7 { ward } equi-level { ward }
ω8 { year } equi-level { year }
ω9 { month } equi-level { month }
ω10 { date } equi-level { date }
ω11 { week } roll-up { date }
ω12 { disease,organ } equi-level { diagnosis }
ω13 { disease } drill-down { category }
ω14 { patient } drill-down { patientGender,patientCity,patientBirthYear }
ω15 { gender } equi-level { patientGender }
ω16 { segment } related { patientGender,patientCity,patientBirthYear }
ω17 { birthDate } drill-down { patientBirthYear }
ω18 { city } equi-level { patientCity }
ω19 { region } roll-up { patientCity }

• drill-down predicate: Pt drill-downf Ps. This predicate is used to state that

Pt is a drill-down of (i.e., it disaggregates) Ps. Optionally, it can be annotated

with a non-injective transcoding f : Dom(Pt) → Dom(Ps) that establishes a

one-to-many relation between coordinates of Ps and Pt. The transcoding f can-

not be used to integrate data returned by t and s because this would require

disaggregating data returned by s, which obviously cannot be done univocally;

however, it can be used to reformulate selection predicates expressed at t onto s.

• related predicate: Pt related Ps. This predicate is used to state that Pt

coordinates have a many-to-many relationship with Ps coordinates.

Example 3.4. The complete set of mappings and annotations for our health-care ex-

ample is reported in Tables 3.1 and 3.2. Mappings ω1 and ω2 state that measure cost in

Rome can be derived by summing measures totStayCost and totExamCost in Florence.

Mappings from ω1 to ω5 are also annotated with predicate segment in {’NH’,’EU’},
to state that the Florence peer only stores National Health and European patients. On

the other hand, as shown in Figure 3.3, mapping ω12 states that the diagnosis codes

used in Florence are obtained by concatenating the fixed-length disease and organ codes

used in Rome, and mapping ω11 states that weeks are an aggregation of dates. Finally,

mapping ω15 uses as transcoding a completeGender() function that converts values

’M’ and ’F’ (Florence vocabulary) into ’Male’ and ’Female’ (Rome vocabulary).

34 Chapter 3 Distributed BI

Table 3.2: Annotations to the mappings in Table 3.1

ω1 cost = totStayCost+totExamCost, segment in { ’NH’,’EU’ }
ω2 cost = totStayCost+totExamCost, segment in { ’NH’,’EU’ }
ω3 durationOfStay = totLength, segment in { ’NH’,’EU’ }
ω4 durationOfStay = totLength, segment in { ’NH’,’EU’ }
ω5 durationOfStay = maxLength, segment in { ’NH’,’EU’ }
ω6 LHD = ’LHD39 - Florence’

ω7 ward = ward

ω8 year = year

ω9 month = month

ω10 date = date

ω11 week = weekOf(date)

ω12 disease = substring(diagnosis, 1, 40), organ = substring(diagnosis, 41, 80)

ω13 categoryOf(disease) = category

ω14 —
ω15 gender = completeGender(patientGender)

ω16 —
ω17 yearOf(birthDate) = patientBirthYear

ω18 city = patientCity

ω19 region = regionOf(patientCity)

simple fracture

multiple fracture

arthropathy

hand

arm

hand simple fracture

arm simple fracture

arm arthropathy

t @Rome s @Florence

I-2011

II-2011

III-2010

Jan 1, 2011

Jan 2, 2011

Jan 3, 2011

t @Rome s @Florence

!12: {disease, organ} equi-level {diagnosis}

!11: {week} roll-up {date}

Feb 2, 1990

Mar 5, 1990

Jun 2, 1991

1990

1991

1992

t @Rome s @Florence

!17: {birthDate} drill-down {patientBirthYear}

Figure 3.3: Transcoding examples

3.4.2 Mapping Accuracy

We start this section by classifying mappings according to their accuracy.

Definition 3.4. We say mapping ω is exact iff it is either an equi-level or a roll-up

mapping and it has an associated transcoding, or it is a same mapping. A mapping is

said to be loose when it is either a drill-down or a related mapping. An attribute

mapping is said to be approximate when it has no associated transcoding.

In our example, mappings ω14 and ω16 are approximate and loose; mappings ω13 and

ω17 are loose (but not approximate); all the other mappings are exact.

Chapter 3 Distributed BI 35

Let q be a BIN query formulated at peer t. The accuracy of a reformulation of q on

peer s depends on the accuracy of the mappings involved. In the following, we focus

on this aspect and provide a set of requirements for the query reformulation algorithm

when dealing with mappings of different accuracies.

Intuitively, when (i) for each attribute mentioned in q there is an exact mapping from

Ms, and (ii) for each metric required by q there is a same mapping from Ms, there

exists a compatible reformulation of q on s, i.e., one that fully preserves the semantics of

q. When a compatible reformulation is used, the results returned by s do exactly match

with q so they can be seamlessly integrated with those returned by t. For instance,

query q1 formulated at the Rome peer in Example 3.3 has a compatible reformulation

at the Florence peer: 1

q′1 = 〈ADMISSIONS,

{regionOf(patientCity), year}, (completeGender(patientGender) = ’Female’),

totStayCost + totExamCost, 〈〈totStayCost, sum〉, 〈totExamCost, sum〉〉〉

Of course, when a compatible reformulation exists for a query, it must be correctly

generated by the reformulation algorithm.

In all the other cases, the results returned by s match with q with some approximation.

Three (possibly overlapping) situations can be distinguished:

1. For at least one of the attributes mentioned in q, there is an approximate mapping

from Ms. This is a very common situation in real applications, for instance

when proprietary encoding are used for attributes, because building a reliable

transcoding would require a huge effort. However, the data returned by the

source peer can be understood and useful, so we require that a reformulation

is generated though this will lead to a value mismatch, meaning that the data

returned by s and t will not be integrated. For instance, if mapping ω8 were not

annotated with a transcoding for year, query q1 would still be reformulated at

the Florence peer as q′1, but there would be no guarantee that the year values

returned can be integrated with those returned from the Rome peer.

2. For at least one of the attributes mentioned in q, either there is a loose mapping

from Ms or even there is no mapping at all. Also this situation is common, be-

cause independent md-schemata often have different granularities and hierarchies

have different attributes. We require that a reformulation is generated, knowing

that this will lead to a granularity mismatch, meaning that the data returned

by s and t will have different aggregation levels. Although an integration is not

1As a matter of fact, the reformulation generated for q1 by the algorithm proposed in Section 3.6
includes one more predicate that constrains source data based on mapping ω13. Here we do not report
this predicate for simplicity.

36 Chapter 3 Distributed BI

possible, users can still exploit the results coming from s, for example by com-

paring them with those returned by t at the finest common aggregation level.

For instance, if no mapping were defined for year, q1 would be reformulated as

q′′1 = 〈ADMISSIONS,

{regionOf(patientCity)}, (completeGender(patientGender) = ’Female’),

totStayCost + totExamCost, 〈〈totStayCost, sum〉, 〈totExamCost, sum〉〉〉

which returns data with a different aggregation level than the one required by

q1.

3. For at least one of the metrics mentioned in q, there is no mapping fromMs. In

this case, we believe that no meaningful reformulation can be done.

3.5 A Reformulation Framework

In the BIN architecture, queries are formulated on a peer md-schema and answers can

come from any other peer connected to the queried peer through a chain of semantic

mappings. The key step to this end is reformulating a peer’s query over its immediate

neighbors, then over their immediate neighbors, and so on. More precisely, reformula-

tion takes as input a BIN query on a target md-schema Mt as well as the mappings

Ω between Mt and the schema of one of its neighbors, the source md-schema Ms, to

output a BIN query that refers only to Ms.
2

Our approach takes advantage of the well-established research results in the OLTP

context, with specific reference to distributed semantic data sharing systems [Halevy

et al., 2005]. The reformulation framework we propose is based on a relational setting,

as depicted in Figure 3.4, where md-schemata, BIN queries, and semantic mappings at

the OLAP level are translated to the relational model. As to md-schemata, without loss

of generality we assume that they are stored at the relational level as star schemata. As

to queries, a classic logic-based syntax is adopted to express them at the relational level.

As to mappings, their representation at the relational level uses a logical formalism

typically adopted for schema mapping languages, i.e., source-to-target tuple generating

dependencies (s-t tgd’s) [ten Cate and Kolaitis, 2010]. A BIN query is then reformulated

starting from its relational form on a star schema, using the mappings expressed as s-t

tgd’s.

2Hereinafter, we will safely assume that Ω is consistent. Consistency checking is part of mapping
management, that is out of the scope of the current work. Interested readers can refer to [Kementsi-
etsidis et al., 2003] for an in-depth discussion on this topic.

Chapter 3 Distributed BI 37

Dt

Semantic Mappings

mapping

translation

schema

translation

schema

translation

S-T Tgds

query

translation

Ds

Target Star Schema Source Star Schema

Relational

Query

BIN

Query

Figure 3.4: Reformulation framework

To simplify the query reformulation task, we translate mappings following an approach

founded on the semantics of the transformations data are subjected to along the re-

formulation process. In this way, we are not tied to the syntax of the mapping lan-

guage presented in Section 3.4, which enables users to express their specification needs

through powerful predicates. In particular, the translation of a mapping depends on

the mapping accuracy as follows:

• Exact mappings are translated into s-t tgd’s that reconcile source data values to

target data values according to either the expression or the transcoding specified.

• Loose but not approximate mappings are translated into s-t tgd’s that relate

source data values with target data values using a transcoding. Though this

transcoding is useful for the reformulation of selection predicates expressed at the

target peer, it cannot be used for data reconciliation since it is only applicable

to transform target values into source values.

• Approximate mappings do not describe how source values should be transcoded

to be compatible with the target domains. Thus, the corresponding s-t tgd’s can

only specify syntactic constraints that define how attributes in the source are

related with attributes in the target.

3.5.1 Translating schemata

Let M = 〈A,H,M〉 be an md-schema. We assume that M is stored as a standard

star schema: one dimension table dti(DIMi,ai1 ,. . . ,aiv) for each hierarchy hi, where

{DIMi, ai1 , . . . , aiv} = Attr(hi), and a fact table ft(DIM1,. . . ,DIMn,m1,. . . ,ml) where

each DIMi is a foreign key, thus enforcing inclusion dependencies between the fact ta-

ble and the dimension tables. For example, the star schema corresponding to the

HOSPITALIZATION and ADMISSION md-schemata are shown in Figure 3.5.

It is worth noting that, while at the OLAP level both the mapping and query languages

directly use the attributes and measures names, their counterpart borrowed from the

38 Chapter 3 Distributed BI

HospFT(organ,disease,date,ward,patient,cost,durationOfStay)
OrganDT(organ)
DiseaseDT(disease)
DateDT(date,week,month,year)
WardDT(ward,LHD)
PatientDT(patient,birthDate,city,region,segment,gender)

AdmFT(diagnosis,date,ward,patientCity,patientBirthYear,patientGender,
totStayCost,totExamCost,totLength,maxLength,numAdmissions)

DiagnosisDT(diagnosis,category)
DateDT(date,month,year)
WardDT(ward,unit)
PatientCityDT(patientCity,patientNation)
PatientBirthYearDT(patientBirthYear)
PatientGenderDT(patientGender)

Figure 3.5: Star schemata for the Rome (top) and Florence (bottom) peers

relational model use star schema tables under the unnamed perspective, i.e., the specific

attribute names are ignored, and only the number of attributes of each relation schema

is available. These languages, both stemming from mathematical logic, view a database

schema as a tuple R = (r1, . . . , rn) of relation symbols, each of which has a fixed arity.

Given an md-schemaM and the corresponding star schema, we switch from the named

perspective of the OLAP level to the unnamed one of the relational level through (a) n

dimension table-encoding functions δi : Attr(hi)→ N, each associating every attribute

a ∈ Attr(hi) with the corresponding position in dti, and (b) a fact table-encoding

function ϕ : {DIM1, . . . , DIMn}∪M → N that associates each measure and dimension

with the corresponding position in ft.

3.5.2 Translating queries

In a classical logic-based syntax, a PSJ query on a database schema R is expressed as a

conjunction of relational atoms and Boolean predicates having the following rule-based

form:

q(z)← r1(x1), . . . , rn(xn), p1(y1), . . . , pu(yu)

where each ri is a relation of R, each xi is a tuple of variables and/or constants of

the same arity of ri, each pj is an atomic Boolean predicate involving variables in X

(where X is the union of the variables appearing in the xi’s), and all the variables of

tuple z belong to X. Given tuple x, in the following we will use dot notation x.k to

refer to the k-th component of x.

Chapter 3 Distributed BI 39

A GPSJ query is then represented as a conjunctive query with one or more aggregate

terms in its head:

q(z, α1(w1), . . . , αv(wv))← r1(x1), . . . , rn(xn), p1(y1), . . . , pu(yu)

where each αi is an aggregation operator, no variable in z occurs in w1,. . . , wv, and

all variables in z and w1,. . . , wv belong to X. The answer to a GPSJ query q on a

database instance I, q(I), is a relation obtained in three steps: (1) project the tuples

of I satisfying the body (i.e., the right-hand part) of q on z, w1, . . . , wv; (2) group the

tuples that agree on z; and (3) aggregate the values assigned to w1, . . . , wv within each

group. Interested readers can refer to [Cohen et al., 2006] for a formal definition.

Now, let q = 〈M, E, p, expr, T 〉 be a BIN query, where E = {e1, . . . , eg}, p = p1 ∧ . . .∧
pu, and T = {〈m1, α1〉, . . . , 〈mv, αv〉} and let h1, . . . , hc be the hierarchies involved in

E and p. The translation of q to the relational level relies on a variable-assignment

function ν that associates each measure m in expr with a free variable ν(m) as well as

each attribute a in E and in p with a free variable ν(a). The join between the involved

dimension tables and the fact table requires the introduction of one more free variable

ν(DIMi) for the dimension DIMi of each involved hierarchy hi when DIMi is not

explicitly involved in q.

The translation of q is then a GPSJ query based on the star join between the fact table

ft and the dimension tables dt1, . . . , dtc of the hierarchies h1, . . . , hc. The variable-

assignment function ν is used in the free tuples of the atoms ft(x), dt1(x1), . . . , dtc(xc)

to introduce the variables associated with the measures and the attributes involved in

q. Their positions in ft(x) are determined by ϕ, while the δi’s are used to place the

variables associated with the attributes of q in dt1(x1), . . . , dtc(xc). Formally:

q(ν(e1), . . . , ν(eg), expr(α1(ν(m1)), . . . , αv(ν(mv))))

← ft(x), dt1(x1), . . . , dtc(xc), ν(p1), . . . , ν(pu)

where

• ν(ei) denotes the substitution of each attribute a in ei with the corresponding

variable ν(a);

• the tuple x is such that x.ϕ(DIM1) = ν(DIM1), . . . , x.ϕ(DIMc) = ν(DIMc) and

x.ϕ(m1) = ν(m1), . . . , x.ϕ(mv) = ν(mv). The other variables in x are anonymous

(and denoted with the symbol);

• each tuple xi is such that xi.δi(a) = ν(a) for each attribute a involved from

the i-th hierarchy and xi.δi(DIMi) = ν(DIMi). The other variables in xi are

anonymous;

40 Chapter 3 Distributed BI

• ν(pi) denotes the substitution of each attribute a in pi with the corresponding

variable ν(a).

Example 3.5. The query q1 shown in Example 3.3 translates onto the HOSPITAL-

IZATION star schema to

q1(R, Y, sum(C))←HospFT(, , D, , P, C,),

DateDT(D, , , Y),

PatientDT(P, , , R, ,G), G = ’Female’

while q2 translates onto the ADMISSIONS star schema to:

q2(Y, regionOf(P), avg(T))←AdmFT(, D, , P, , , , , T, ,),

DateDT(D, , Y),

PatientCityDT(P,)

3.5.3 Translating mappings

We represent mappings as s-t tgd’s [ten Cate and Kolaitis, 2010]. Given a source star

schema S and a target star schema T, an s-t tgd has the form

∀x(φ(x)→ ∃y ψ(x, y))

where φ(x) is a conjunction of atomic formulas over S and ψ(x, y) is a conjunction of

atomic formulas over T. Every s-t tgd expresses the containment of one conjunctive

query φ(x) in another conjunctive query ψ(x, y); informally, it asserts that if a pattern

of facts appears in the source, then another pattern of facts must appear in the target.

In spite of their syntactic simplicity, s-t tgd’s can express many data interoperability

tasks arising in applications. They are also known as global-and-local-as-view (GLAV)

dependencies, and can accommodate both GAV and LAV formalisms: in a GAV, the

right-hand side of the implication consists of a single atomic formula

∀x(φ(x)→ U(x′))

where the variables in x′ are among those in x, while in a LAV dependency the left-hand

side of the implication consists of an atomic formula

∀x(r(x)→ ∃y ψ(x, y))

A schema mapping is then a triple Me = 〈S,T,Σ〉 where Σ is a set of s-t tgds. The

semantics ofMe is given in terms of star schema instances: Given an S-instance I and

a T-instance J , we say that J is consistent with I w.r.t Me if (I, J) satisfies every s-t

tgd in Σ.

Chapter 3 Distributed BI 41

In the following subsections, we present the translation of the mapping predicates

proposed in Section 3.4 into s-t tgd’s; in case of ambiguity, we will use prefixes S and

T to distinguish source tables from target ones.

3.5.3.1 Exact Mappings

We start from exact mappings, that is, those assertions that either contain expressions

or transcoding functions to be used for translating source values to the target domains

(sameexpr
3, equi-levelf , and roll-upf). In this case, the proposed s-t tgd’s express

the constraints between tuples induced either by the expression expr that relates mea-

sure values in case of same, or by the transcoding f which relates attribute values in

case of equi-level and roll-up.

Example 3.6. With reference to Example 3.4, we report some examples of mapping

translations:

• The same mapping ω1 translates to

∀S,E,C (AdmFT(, . . . , , S, E, , ,), C = S + E → HospFT(, . . . , , C,))

This translation disregards the involved aggregation function, sum, that will be

dealt with in the query reformulation algorithm.

• The equi-level mapping ω8 translates to

∀D,Y, Y ′ (S.DateDT(D, , Y),AdmFT(, D, , . . . ,), Y ′ = Y

→ ∃D′ (T.DateDT(D′, , , Y ′),HospFT(, , D′, , . . . ,)))

• The roll-up mapping ω11 translates to

∀D,W (S.DateDT(D, ,),AdmFT(, D, , . . . ,),W = weekOf(D)

→ ∃D′ (T.DateDT(D′,W, ,),HospFT(, , D′, , . . . ,)))

Noticeably, two different predicates, equi-level and roll-up, translate to the same

s-t tgd form. Indeed, an equi-level predicate states that two projections have the

same granularity, whereas a roll-up is used to express a one-to-many relationship; this

means that, differently from an equi-level predicate, a roll-up predicate requires to

aggregate source data in order to make them compatible with the target domain. On

the other hand, the proposed translation focuses on the kind of tuple dependencies each

mapping defines, which is solely dependent on the existence of a transcoding that maps

3As to the same predicate, for presentation simplicity, here we assume that it is annotated with no
predicates. The way predicates are dealt with, both in mappings and in queries, will be discussed in
Section 3.6.1.

42 Chapter 3 Distributed BI

Table 3.3: Translation of the exact mapping predicates; superscripts t and s denote
elements of the target and source schemata, respectively

Predicate Translation
〈mt, α〉 sameexpr {ms

1, . . . ,m
s
k} ∀ν(ms

1), . . . , ν(ms
k), ν(mt)

(S.ft(ys), ν(mt) = expr(ν(ms
1), . . . , ν(ms

k))→ T.ft(yt))
{at1, . . . , atj}equi-levelf{as1, . . . , ask} ∀ν(at1), . . . , ν(atj), ν(as1), . . . , ν(ask), ν(DIMs

l′+1), . . . , ν(DIMs
k)

{at1, . . . , atj}roll-upf{as1, . . . , ask} (S.dts1(xs1), . . . ,S.dtsk(xsk),S.ft(xs),
ν(at1) = f(ν(as1), . . . , ν(ask)).1, . . . , ν(atj) = f(ν(as1), . . . , ν(ask)).j

→ ∃ν(DIM t
l+1), . . . , ν(DIM t

j)(T.dtt1(xt1), . . . ,T.dttj(x
t
j),T.ft(x

t)))

each source value into exactly one target value. The specific properties of transcodings

(equi-level transcodings are injective, roll-up transcodings are not) have an impact

on query reformulation but they do not affect the translation of mappings. For instance,

consider mapping ω12, which translates to

∀D,D′, O (DiagnosisDT(D,),AdmFT(D, , . . . ,),

D′ = substring(D, 1, 40), O = substring(D, 41, 80)

→ DiseaseDT(D′),OrganDT(O),HospFT(O,D′, , . . . ,))

When a query requires only disease, the diagnosis values obtained from the source peer

must be grouped by their disease values, because f projected on the first co-domain is

no longer injective. This example also shows that, when a mapping involves no target

attributes other than dimensions, the existential quantifier is not used because the

join between the fact table and dimension tables is already specified by the attributes

involved.

The formal translation of this first class of predicates is shown in Table 3.3. Without

loss of generality, we assume that the first l attributes of {at1, . . . , atj} and l′ attributes

of {as1, . . . , ask} are dimensions, and that dti is the dimension table ai belongs to. Tuples

are then defined as follows (all the unspecified variables are anonymous, and we recall

that ν is a variable assignment function that associates a free variable to each attribute

and measure involved in the mapping assertions):

• the (fact table) tuple ys is such that ys.ϕs(ms
i) = ν(ms

i) for i = 1, . . . , k, i.e., the

only assigned variables are those corresponding to measures;

• the (fact table) tuple yt is such that yt.ϕt(mt) = ν(mt);

• the (fact table) tuple xs is such that xs.ϕs(asi) = ν(asi) for i = 1, . . . , l′ and

xs.ϕs(DIM s
i) = ν(DIM s

i) for i = l′ + 1, . . . , k, i.e., the only assigned variables

are those corresponding to attributes;

• the (fact table) tuple xt is such that xt.ϕt(ati) = ν(ati) for i = 1, . . . , l and

xt.ϕt(DIM t
i) = ν(DIM t

i) for i = l + 1, . . . , j;

• the (dimension table) tuple xsi is such that xsi .δ
s
i (a

s
i) = ν(asi). Moreover, xsi .δ

s
i (DIM

s
i) =

ν(DIM s
i) for i = l′ + 1, . . . , k;

Chapter 3 Distributed BI 43

Table 3.4: Translation of the loose/approximate mapping predicates

Predicate Translation
{at1, . . . , atj}drill-downf{as1, . . . , ask} ∀ν(at1), . . . , ν(atj), ν(as1), . . . , ν(ask), ν(DIMs

l′+1), . . . , ν(DIMs
k)

(S.dts1(xs1), . . . ,S.dtsk(xsk),S.ft(xs),
ν(as1) = f(ν(at1), . . . , ν(atj)).1, . . . , ν(ask) = f(ν(at1), . . . , ν(atj)).k

→ ∃ν(DIM t
l+1), . . . , ν(DIM t

j)(T.dtt1(xt1), . . . ,T.dttj(x
t
j),T.ft(x

t)))

{at1, . . . , atj}equi-level{as1, . . . , ask} ∀ν(as1), . . . , ν(ask), ν(DIMs
l′+1), . . . , ν(DIMs

k)
{at1, . . . , atj}roll-up{as1, . . . , ask} (S.dts1(xs1), . . . ,S.dtsk(xsk),S.ft(xs)
{at1, . . . , atj}drill-down{as1, . . . , ask} → ∃ν(at1), . . . , ν(atj), ν(DIM t

l+1), . . . ν(DIM t
j)

{at1, . . . , atj}related{as1, . . . , ask} (T.dtt1(xt1), . . . ,T.dttj(x
t
j),T.ft(x

t)))

• the (dimension table) tuple xti is such that xti.δ
t
i(a

t
i) = ν(ati). Moreover, xti.δ

t
i(DIM

t
i) =

ν(DIM t
i) for i = l + 1, . . . , j.

Note that each dimension table dti is related to its fact table ft through dimension

DIMi to enforce the inclusion dependency between the two tables.

3.5.3.2 Loose/Approximate Mappings

For a loose but not approximate drill-down mapping, a transcoding function f exists

but, unlike the case of exact mappings, it cannot be used to translate source values to

the target domains (but rather to translate target values to the source domains). The

translation of drill-downf is shown in the upper part of Table 3.4.

The lower part of Table 3.4 shows the translation of approximate mappings. Impor-

tantly, in this case there is no dependency between the source and the target tuples.

Since the resulting assertions do not express any relationship between the right-hand

and the left-hand variables, using s-t tgd’s forces a little abuse of notation.

Example 3.7. The non-approximate drill-down mapping ω17 translates to

∀D,Y (PatientBirthYearDT(Y),AdmFT(, , , , Y, , . . . ,), Y = yearOf(D)

→ ∃P (PatientDT(P,D, , . . . ,),HospFT(, , , , P, , . . . ,)))

while the approximate drill-down mapping ω14 translates to

∀C,G,B (PatientCityDT(C,),PatientGenderDT(G),

PatientBirthYearDT(B),AdmFT(, , , C,B,G, , . . . ,)

→ ∃P (PatientDT(P, , . . . ,),HospFT(, , , , P, , . . . ,)))

44 Chapter 3 Distributed BI

3.6 Query Reformulation in a BIN

Reformulation is the key step for query answering in a BIN as it actually represents a

means to mediate queries among heterogeneous md-schemata. Two important issues

arise:

• The inter-peer reformulation algorithm takes as input a target query and produces

a source query. The fact that the BIN query language introduced in Definition 3.3

is closed under reformulation is an essential property which ensures that chains of

reformulations can take place in a BIN. On the other hand, multidimensional data

are accessible through multidimensional engines using query languages whose

expressive power is typically different from ours (for instance, MDX does not

allow a group-by set to include a transcoding). This means that, to access its

local data, each queried peer may have to carry out an intra-peer reformulation

that translates a source BIN query into a local query. A local query relies on

a view V corresponding to a query that can be directly executed on the local

engine, and contains a declarative description of how to derive the data required

by the BIN query from V .

• As pointed out in Section 3.4, the results returned by a peer may match with

the original query with some approximation. We recall that a non-compatible

reformulation occurs every time the available mappings do not allow the values of

(some of) the target attributes to be derived from the source ones. In this case,

the source query does not fully preserve the semantics of the target query as it

refers to attributes which are merely syntactically related with the target ones,

so the returned values cannot be integrated in the target attribute columns. We

believe that any information about the reasons of a non-compatible reformulation

could considerably help users understand the returned results. To this end, when

a query is formulated on a peer, the answers this peer receives from any other peer

should at least be equipped with the knowledge about which attributes found an

exact mapping and which ones did not.

We are now ready to define the query reformulation problem in a BIN.

Definition 3.5 (Query reformulation problem). Given a BIN query qt on (target)

md-schemaMt, a (source) md-schemaMs, and a set of mappings Ω fromMs toMt:

1. An inter-peer reformulation of qt on Ms is a BIN query qs that refers only to

Ms, together with some information on the mapped attributes.

2. An intra-peer reformulation of qt or qs is a relational query whose body contains

a view V directly computable by the local multidimensional engine.

Chapter 3 Distributed BI 45

In the remainder of this section we focus on inter-peer reformulation, while intra-peer

reformulation will be discussed in Section 3.7 with specific reference to the MDX query

language.

3.6.1 The Inter-Peer Reformulation Algorithm

This section presents an algorithm that, consistently with the framework proposed in

Section 3.5, reformulates a target BIN query qt onto a source peer at the relational

level in three steps:

1. The mappings to be used for reformulation are selected from Ω. In presence of

predicates annotating same mappings, qt is expanded to include those predicates.

2. The relational translation of qt, q, is reformulated into a relational query q′ that

only refers to the source star schema S.

3. q′ is expanded to include all the constraints stated by the transcodings used, then

translated into a (source) BIN query qs.

In the following we show each single step, using as an example the query asking for

the average cost of female patients for each disease and segment:

qt = 〈HOSPITALIZATION,

{disease, segment}, (gender = ’Female’),

cost, 〈〈cost, avg〉〉〉

Finally, we discuss how to deal with selection predicates.

3.6.1.1 Step 1: Mapping Selection

In this step we perform a selection of the mappings in Ω that are relevant for refor-

mulating qt. To this end, we follow a syntactic approach that relies on the distinction

between measure mappings (Ωmeas ⊆ Ω) and attribute mappings (Ωattr ⊆ Ω). De-

pending on the mapping predicates involved, attribute mappings are further distin-

guished into three types: Type(ω) ∈ {τ1, τ2, τ3}, where τ1 = {equi-levelf , roll-upf}
(exact mappings), τ2 = {drill-downf} (loose and non-approximate mappings), and

τ3 = {equi-level, roll-up, drill-down, related-to} (approximate mappings).

The selection procedure is shown in Algorithm 1. It selects and returns a set Ωq of

mappings based on two policies:

• As to metrics (Lines 2-16), we require that a source query can correctly compute

the aggregate values specified in the target query with reference to its md-schema

46 Chapter 3 Distributed BI

Algorithm 1 Mapping Selection

Require: Ω = Ωmeas ∪ Ωattr: mappings, qt = 〈Mt, E, p, expr, T 〉: target query
1: Ωq = ∅
2: for all µ = 〈m,α〉 ∈ T do
3: for all ω ∈ Ωmeas, ω : µt sameexpr,predNs do
4: if µt = µ then
5: add ω to Ωq

6: p = p ∧ pred
7: if p is not satisfiable then
8: Abort reformulation
9: end if

10: Go to Line 2
11: end if
12: end for
13: if µ did not find a mapping then
14: Abort reformulation
15: end if
16: end for
17: for all attributes a appearing in E do
18: for all ω ∈ Ωattr, ω : Pt < mappPred > Ps do
19: if a ∈ Pt then
20: add ω to Ωq

21: end if
22: end for
23: end for
24: for all attributes a appearing in p but not in E do
25: for all ω ∈ Ωattr such that Type(ω) = T1 or Type(ω) = T2 do
26: if a ∈ Pt then
27: add ω to Ωq

28: end if
29: end for
30: end for
31: return Ωq, qt;

Es; therefore, the existence of a mapping for each metric µ ∈ T in qt is mandatory

(Line 14). The conjunctive Boolean predicate that may annotate a same mapping

is added to the query selection predicate p (Line 6); this modification could make

p unsatisfiable, in which case reformulation is aborted as in [Halevy et al., 2005].

• As to attributes, we distinguish those in the generalized group-by set E (Lines

17-23) from those in the selection predicate p (Lines 24-30). This distinction

is necessary because in the first case we match the attributes against all the

mappings in Ω whereas, in the second case, we focus our search only on those

mappings that contain a transcoding (because, in the absence of a transcoding,

translating a selection predicate is not possible).

Chapter 3 Distributed BI 47

Example 3.8. The measure mapping to be used for translating qt is ω2, so initially

Ωq = {ω2}. Since ω2 is annotated with one predicate, at Line 6 qt becomes:

qt = 〈HOSPITALIZATION,

{disease, segment}, (gender = ’Female’) ∧ (segment in {’NH’,’EU’}),

cost, 〈〈cost, avg〉〉〉

Then the other two steps add mappings ω12, ω13, ω15, and ω16 to Ωq. Note that, if the

predicate annotating ω2 were gender=’Male’, reformulation would be aborted.

3.6.1.2 Step 2: Query Reformulation

This step takes place at the relational level, and it reformulates the relational transla-

tion of qt, q, using Σq, i.e., the set of s-t tgd’s that translate the mappings in Ωq onto

the relational level. To this end, each s-t tgd σ ∈ Σq is matched with the body of q.

As already mentioned, the s-t tgd’s translating approximate mappings do not state any

dependency between the left-hand variable and the right-hand one; in other words, none

of the right-hand variables is used in the left-hand of such s-t tgd’s. In these cases, we

keep track of the syntactic relationships between the target variables and the source

ones as derived from the mappings by defining a partial variable-set mapping function

Approx : 2V ar(q) → 2V ar(q
′) that relates sets of head variables in q with sets of variables

in q′. This function will be used to select the head variables of the source query q′ and

will annotate the results returned to the querying peer.

This step includes three phases: first we define the body of q′, then we build Approx,

and finally we define the head of q′. For simplicity, we first consider the case in which

neither the same mappings nor q include Boolean predicates.

The first phase is described by Algorithm 2, where each s-t tgd having the form σ :

∀x(φ(x)→ ∃y ψ(x, y)) is turned into a pair of tgd’s σLAV : ∀x′(V (x′)→ ∃y : ψ(x′, y))

and σGAV : ∀x(φ(x) → V (x′)), where the former is expressed in LAV style, the

latter in GAV style, and x′ is the tuple of variables shared by the two sides of σ.

Essentially, the algorithm builds the body of q′, body, by merging the left sides of the

s-t tgd’s in Σq, and returns the set of views used during this process. More specifically,

for each selected s-t tgd σ, unify(σLAV , q) (Line 5) matches the atomic formulas in

the body of σLAV , fσ, to that of q, fq, by finding a variable mapping η such that

η(fσ) = η(fq), if possible. The result of unifying σLAV with q, η, is then applied to

the σLAV counterpart, σGAV (Line 6). Noticeably, these steps are performed only if

the head of σLAV and that of σGAV share some variables, because only in this case

unification affects σGAV . Moreover, some of the distinguished variables in x′ may

become anonymous in η(σGAV). Finally, the body of σGAV is merged with body.

48 Chapter 3 Distributed BI

Algorithm 2 body Setup

Require: Σq: relevant s-t tgd’s
1: body = ε
2: views = {}
3: for all σ ∈ Σq do
4: if x′ 6= ε then
5: η = unify(σLAV , q)
6: σGAV = η(σGAV)
7: views = views ∪ η(V (x′))
8: end if
9: merge(body,σGAV)

10: end for
11: return body, views

Example 3.9. The query q shown in Example 3.8 translates at the relational level as

follows:

q(D,S, avg(C))←HospFT(, D, , , P, C,),

DiseaseDT(D),

PatientDT(P, , , , S,G), G = ’Female’, S in {’NH’, ’EU’}

The set Σq corresponding to Ωq includes the st-tgd’s listed below:

σ2 : ∀S,E,C(AdmFT(, . . . , , S, E, , ,), C = S + E → HospFT(, . . . , , C,))

σ12 : ∀D,D′, O(DiagnosisDT(D,),AdmFT(D, , . . . ,),

D′ = substring(D, 1, 40), O = substring(D, 41, 80)

→ DiseaseDT(D′),OrganDT(O),HospFT(O,D′, , . . . ,))

σ13 : ∀D,D′, C(DiagnosisDT(D,C),AdmFT(D, , . . . ,), C = categoryOf(D′)

→ DiseaseDT(D′),HospFT(, D′, , . . . ,))

σ15 : ∀G,P (PatientGenderDT(P),AdmFT(, , , , , P, , . . . ,), G = completeGender(P)

→ ∃P ′(PatientDT(P ′, , . . . , , G),HospFT(, , , , P ′, ,)))

σ16 : ∀G,C, Y (PatientCityDT(C,),PatientBirthYearDT(Y),

PatientGenderDT(G),AdmFT(, , , C, Y,G, , . . . ,)

→ ∃P, S(PatientDT(P, , . . . , , S,),HospFT(, , , , P, ,)))

Chapter 3 Distributed BI 49

The output of the body setup phase is

body = (AdmFT(D′, , , T, Y, P, S′, E, , ,), C ′ = S′ + E,DiagnosisDT(D′, C),

D = substring(D′, 1, 40), C = categoryOf(D),PatientGenderDT(P),

PatientCityDT(T,),PatientBirthYearDT(Y), G = completeGender(P))

Let us focus on the s-t tgd σ12, that corresponds to

σLAV : ∀O,D′(V12(O,D′)→ DiseaseDT(D′),OrganDT(O),HospFT(O,D′, , . . . ,))

σGAV : ∀D,D′, O(DiagnosisDT(D,),AdmFT(D, , . . . ,),

D′ = substring(D, 1, 40), O = substring(D, 41, 80)→ V12(O,D′))

The result of unification, unify(σLAV , q), is a variable mapping η that maps O into

an anonymous variable and η(V12(O,D′)) = V12(, D). Therefore, the predicate =

substring(D, 41, 80) is not added to body. Moreover, note that none of the returned

views, V2(C), V12(, D), V13(D), and V15(G), contains the query head variable S as

the mapping of segment has type τ3 and, therefore, the corresponding s-t tgd does not

introduce any relationship between the left-hand variables and the right-hand ones.

The second phase is shown in Algorithm 3, that outputs the partial variable set map-

ping Approx by leveraging on the properties of the selected mappings. If a target

attribute is related to the source schema by means of a non-exact mapping, then its

values cannot be derived from the values of the related source attributes. For this rea-

son, each time we use a mapping ω of type τ2 or τ3, we extend Approx with a mapping

from the set of variables corresponding to the attributes in ω that have not found an

exact mapping yet, i.e., I = (q ∩ Pt) \ Exact, to the set of variables corresponding to

Ps (Line 6). On the contrary, if ω is exact we delete from Approx all the variables cor-

responding to the attributes in ω and add them to the attribute set Exact, to prevent

their inclusion into Approx during a later step (Lines 8-10).

Example 3.10. The partial variable set mapping Approx for the reference example

consists of the pair {S} 7→ {T, Y, P}.

The third phase consists in deriving the head of q′, q′(z′, expr′(α′1(w′1), . . . , α′v′(wv′)),

from the head of q, q(z, expr(α1(w1), . . . , αv(wv)):

• As to the head variables in z′, we first compare the set of variables y in views with

the set of head variables z of q. Indeed, the only head variables of q that found

a reformulation are those contained in at least the head of one view. Therefore,

z′′ ⊆ z′ where z′′ = (y ∩ x) \Dom(Approx). For any head variable in z that is

50 Chapter 3 Distributed BI

Algorithm 3 Approx Setup

Require: Ωq = Ωmeas
q ∪ Ωattr

q : relevant mappings, q: target query, νq: variable-
assignment function for q, body: body of q′, νbody: variable-assignment function
for body

1: Approx = {}
2: Exact = {}
3: for all ω ∈ Ωattr

q , ω : Pt < mappPred > Ps do
4: I = (q ∩ Pt) \ Exact
5: if Type(ω) = τ2 or Type(ω) = τ3 then
6: Add νq(I) 7→ νbody(Ps) to Approx
7: else
8: Add I to Exact
9: Delete from the domain of Approx the variables in νq(I)

10: Delete from Approx each pair V 7→ V ′ such that V = {}
11: end if
12: end for
13: return Approx

not contained in z′′, either it did not find any mapping or it found approximate

or loose mappings only. For the latter case, we exploit the image of the Approx

function since it contains the set of q′ variables that are syntactically related

with the head of q. Such variables are added to z′ in place of the head variables

in z that found approximate and loose mappings only. Therefore z′ = z′′ ∪
Img(Approx).

• As to aggregate terms αi(wi), each wi is necessarily contained in the body of q′

and is involved in a comparison predicate wi = expri(v1, . . . , vn), where v1, . . . , vn

are variables of q′, that states the relationship between one target measure and

the source ones. Therefore, wi is replaced with expri(v1, . . . , vn) in the aggregate

term and the comparison predicate is deleted from body. Then, the aggregate

function αi is distributed inside expri, thus obtaining expri(αi(v1), . . . , αi(vn)).

As to the last point note that, obviously, expri(αi(v1), . . . , αi(vn)) is equal to αi(expri(v1, . . . , vn))

only if αi is distributive over expri. Ensuring that the established mappings are con-

sistent with the semantics of measures and with the operators through which each

measure can be aggregated, is the designer’s responsibility.

Example 3.11. The head of our reference query is q(D,S, avg(C ′)). By following the

steps described above, we have that D ∈ {V12, V13} whereas S /∈ views. Indeed, S found

an approximate mapping only, so ({S} 7→ {T, Y, P}) ∈ Approx. Therefore, D,T, Y, P

are head variables. Moreover, avg(C ′) translates into avg(S′) + avg(E). Summing up,

Chapter 3 Distributed BI 51

the reformulated query q′ is:

q′(D,T, Y, P, avg(S′) + avg(E))←

AdmFT(D′, , , T, Y, P, S′, E, , ,),

DiagnosisDT(D′, C),

D = substring(D′, 1, 40),

C = categoryOf(D),

PatientGenderDT(P),

PatientCityDT(T,),

PatientBirthYearDT(Y),

G = completeGender(P)

3.6.1.3 Step 3: Query Expansion

Once q has been reformulated into q′ according to the s-t tgd’s in Σq, it may be

necessary to expand q′ to include further constraints on the sources variables stated

by the s-t tgd’s in Σ that contain transcodings. This is done by merging the body of

q′ with a set Γ of atomic formulas. Since Γ is independent of q′, it can be computed

off-line as explained below.

Let Ωc ⊆ Ω be the set of mappings of type τ1 and τ2, i.e., that express transcoding

constraints, and let Σc be the corresponding set of s-t tgd’s. First, the s-t tgd’s in Σc

are merged to obtain a single s-t tgd, σc. Then, the closure of the predicates appearing

on the left-hand side of σc is computed. Among the predicates in the closure, only

those involving distinguished variables belonging only to the left-hand part of σc must

be kept. To this end, we denote with ∆ the set of these variables, and we introduce

η as a variable mapping that maps each variable in ∆ into itself, and makes all the

remaining variables anonymous. The set Γ is finally obtained by applying η to the

left-hand side of σc.

Example 3.12. In our reference example, we have

Γ = (AdmFT(D′, , . . . ,),DiagnosisDT(D′, C), C = categoryOf(substring(D′, 1, 40)))

Note that several predicates translating the transcodings in Table 3.1 do not appear here;

for instance, the predicate C = P corresponding to ω18 is discarded because C and P

are not both defined on the left-hand side of σc: the former is defined in the relational

atom PatientDT(, , C, , . . .) of the right-hand side of σc, while the latter is defined in

the relational atom PatientCityDT(P,) of the left-hand side of σc. Obviously, when Γ

and q′ are merged, predicate C = categoryOf(D) is discarded because, if coupled with

D = substring(D′, 1, 40), it is equivalent to C = categoryOf(substring(D′, 1, 40)).

52 Chapter 3 Distributed BI

On the other hand, D = substring(D′, 1, 40) cannot be discarded because D is a head

variable.

3.6.1.4 Incorporating Selection Predicates

Selection predicates provide a very useful mechanism for specifying constraints on

attribute values. The BIN framework supports the specification of selection predicates

in both queries and same mappings, and Step 1 exploits them to prevent inconsistent

reformulations (see Algorithm 1). On the other hand, when Step 1 succeeds, it outputs

a BIN query qt whose predicate p includes both the query predicates and the mapping

ones.

At the beginning of Step 2, such predicates are encoded in the relational query q

and they must reformulated on the source schema. Nevertheless, some of the atomic

predicates in q may not undergo reformulation because of the head variables of q that

did not find any exact mapping. More specifically, to decide which predicates of q can

be incorporated in q′, Step 2 must be modified as follows. At the end of Algorithm 2,

for each atomic predicate c in q we check if the set of variables in c is contained in the

set of variables in views, in which case c is merged with body. Generally speaking, the

presence of predicates could lead to inconsistent reformulation on the source side too.

To this end, each time in Step 2 we include any predicate in body, we also check that

body is still satisfiable.

Example 3.13. Given the query qt shown in Example 3.8, its relational translation q

contains two atomic predicates: G = ’Female’ and S in {’NH’,’EU’}. Since G ∈ V15,

the corresponding predicate is added to the body of q′, whereas S does not belong to

views and thus the corresponding predicate is discarded. The final reformulated query

q′ is:

q′(D,T, Y, P, avg(S′) + avg(E))←AdmFT(D′, , , T, Y, P, S′, E, , ,),

DiagnosisDT(D′, C),

D = substring(D′, 1, 40),

C = categoryOf(substring(D′, 1, 40)),

PatientGenderDT(P),PatientCityDT(T,),

PatientBirthYearDT(Y),

completeGender(P) = ’Female’

3.6.2 Properties of the Inter-Peer Reformulation Algorithm

The query reformulation algorithm shows two properties that are essential for its work-

ing in a distributed setting (the proofs are given in A).

Chapter 3 Distributed BI 53

First, the algorithm outputs a query q′ that finds a corresponding query at the BIN

level. For instance, the BIN query corresponding to our reference query q′ is

qs = 〈ADMISSION,

{substring(diagnosis, 1, 40),

patientCity, patientBirthYear, patientGender},

(completeGender(patientGender) = ’Female’∧

category = categoryOf(substring(diagnosis, 1, 40))),

totStayCost + totExamCost, 〈〈totStayCost, avg〉, 〈totExamCost, avg〉〉〉

In other words, the BIN query language is closed under reformulation. The practical

impact of this is that our query reformulation algorithm can be used by each peer in a

BIN to implement chains of reformulations. In this way, any query formulated over a

peer schema can be safely distributed across the network, and answers can come from

any other peer in the network which is connected to the queried peer through a chain

of semantic mappings.

Theorem 3.6. Let qt be a (target) BIN query and q′ be the output of the query refor-

mulation algorithm when qt is given as input. Then, there exists a (source) BIN query

qs such that q′ is the relational translation of qs.

Secondly, the reformulation algorithm is sound and complete with respect to the se-

mantics of query answering, that in data sharing settings is usually given in terms of

certain answers.

Definition 3.7 (Certain Answers). Let Me = (S,T,Σ) be a schema mapping and q

be a query over the target star schema T. If I is a source instance, then the certain

answers of q on I with respect to Me, denoted certainMe(q)(I), is the set [ten Cate

and Kolaitis, 2010]

certainMe(q)(I) =
⋂
{q(J) : J is a solution for I w.r.t. Me}

The computational complexity of finding all certain answers is well understood for

the data integration context with a two-tiered architecture of a mediator and a set

of data sources [Abiteboul and Duschka, 1998]. The same problem has been deeply

investigated also in data exchange settings [Afrati and Kolaitis, 2008]. In both cases,

computing the certain answers of unions of conjunctive queries has been proved to

be done with polynomial time in the size of the instance I. The number of peers

in the net represents just a multiplication factor of the size of the instance I. The

same computational results have been proved for conjunctive queries in the context of

PDMSs, under specific constraints on mappings [Halevy et al., 2005].

Given a BIN query qt, the following theorem shows that the algorithm we have pro-

posed for reformulating qt into qs is sound and complete, because evaluating qs always

54 Chapter 3 Distributed BI

produces all and only certain answers to qt projected on the compatible part of the

reformulation.

Theorem 3.8. Let qt be a BIN query, qt1 be the output of Step 1 on qt, q(z, aggrExpr)

be the relational translation of qt1, and z′′ be the head variables of q that find a re-

formulation. The reformulation algorithm guarantees to find all certain answers of

q(z′′, aggrExpr).

The proof of the Theorem above (A) states that the main difference between our algo-

rithm and the reference algorithms for query reformulation (e.g., [Halevy et al., 2005])

lies in the selection of mappings. Indeed, differently from the logical approach usually

adopted, we implement a policy for mapping selection that is syntactically driven (Step

1). The reason why we adopt a different approach is that the BIN framework allows

for the specification of approximate mappings (type τ3), i.e., mappings that induce no

dependencies between the source and the target tuples. Such mappings are neglected

by traditional algorithms because the heads of their views are empty. The syntactic

approach we adopt, instead, allows not only the selection of mappings of type τ1 and

τ2, as in traditional algorithms, but justly also those of type τ3 as they state syntactic

transformations that will be exploited in the actual reformulation phase. In this way,

besides being correct, our algorithm also satisfies all the requirements listed in Section

3.4.

3.7 Implementation

To give a complete picture, here we discuss the main implementation issues raised

by reformulation in a BIN, namely: how to bridge the language and expressiveness

gap between the query handler and the local multidimensional engine (i.e., how to deal

with intra-peer reformulation) and how to manage transcodings and share them among

peers.

As to the first problem, we observe that in general a BIN query (either directly for-

mulated by a user or reformulated across the network) cannot be directly executed

on the peer local multidimensional engine. The OLAP adapter is in charge of bridg-

ing this gap by supporting intra-peer reformulation of BIN queries. Assuming that

the de-facto standard MDX is the querying language of the local multidimensional en-

gine, intra-peer reformulation must deal with the presence of transcodings in the query

group-by set, and must properly manage non-distributive aggregation operators. From

the reformulation point of view, this amounts to solving a problem of query rewriting

using views [Halevy, 2001], where the set of views is made of all the possible queries

that the engine supports. In particular, given the relational translation q on a BIN

query, we have to find a local query ql that refers to one view and is equivalent to q.

Differently from classical approaches, in our case the required view V is constructed

Chapter 3 Distributed BI 55

on-the-fly based on the body of q and on the properties of the involved aggregation

operators. To this end we recall that, while for a distributive aggregation operator (like

sum) an aggregation can be correctly computed from pre-aggregates using one aggre-

gation operator, for an algebraic operator (like avg) this requires the computation of

pre-aggregates using a tuple of aggregation operators and a function to combine them

[Gray et al., 1997] 4. More precisely, the group-by set of V is the projection obtained

by “flattening” the group-by set of q (which means eliminating the transcodings), and

the aggregations component of V computes the pre-aggregate values. Besides V , the

body of ql contains the predicates that express transcodings, while its head computes

the final aggregates by properly combining the pre-aggregates.

As to the second problem, we saw that the OLAP adapter of a source peer may have

to apply transcodings (i.e., functions) to the locally retrieved data, in order to express

them in the target peer format and encoding. A trivial solution to make transcodings

available to peers consists in assuming the existence of a shared library of transcodings.

Unfortunately this solution is hardly feasible because the size of such library would be

proportional to the number of mappings, thus decreasing the BIN scalability; further-

more, it does not comply with the security policies of the network since it would entail

the existence of a knowledge shared by all the peers. For this reasons, we assume that

transcoding functions can be classified into public and protected. Public transcodings

are standard database functions (e.g., substring and dateOf) that are shared by all

peers. Protected transcodings (e.g., regionOf) are owned by a peer, that will make

them available to its neighboring peers by attaching them to query messages. If pro-

tected transcodings are expressed as procedures, a shared programming language must

be available in the BIN. Otherwise, transcodings can be expressed as look-up tables

to be applied by a relational engine. In this case, an obvious drawback is the quantity

of information to be transmitted over the network. To reduce such overhead, look-up

tables for protected transcodings of mappings from p1 to p2 should be stored in p2 (i.e.,

the peer playing the role of the target in query reformulation) so that, when multiple

transcodings are nested (e.g. nationOf(regionOf())) due to chain reformulations, the

composition can be solved in p2 and only the resulting look-up table is sent across the

network.

Example 3.14. The query q2 shown in Example 3.3 requires the involved measure to be

averaged by year and regionOf(patientCity). Computing the average of pre-aggregates

4Holistic operators, such as mode and median, are not considered here because there is no way to
correctly compute aggregates from pre-aggregates using these operators, which makes reformulation
impossible in most practical cases.

56 Chapter 3 Distributed BI

requires that both a sum and a count are calculated. Considering that measure numAd-

mission actually stores a count, view V is:

V (Y, P, sum(T), sum(A))←AdmFT(, D, , P, , , , , T, , A),

DateDT(D, , Y),

PatientCityDT(P,)

where the transcoding predicate R = regionOf(P) is not included in V because it

cannot be directly expressed in MDX. The corresponding local query is:

ql(Y,R, sum(sT)/sum(sA))←V (Y, P, sT, sA),

R = regionOf(P)

To complete this example we show the MDX query corresponding to view V :

SELECT {[Measures].[totLength], [Measures].[numAdmissions]} ON COLUMN,

{NonEmptyCrossJoin([Date].[year].Members,[Patient].[patientCity].Members)}
ON ROWS

FROM [Admissions]

and the SQL query corresponding to ql:

SELECT RS.year, LT.region, sum(RS.totLength)/sum(RS.numAdmissions) AS avgLength

FROM ResultSet RS, LookupTable LT

WHERE RS.patientCity=LT.city

GROUP BY RS.year, LT.region;

where ResultSet stores the result of the MDX query, whereas LookupTable corresponds

to the regionOf() transconding.

3.8 Conclusions

In this chapter, we introduced BIN as an architecture to support BI FROM-ANYWHERE

[Golfarelli et al., 2010, 2011a, 2012a,b]. BIN is the first significant step to extend the

P2P paradigm to the BI context, favouring a collaborative experience between compa-

nies in a dynamic and flexible network. We addressed the core task in a BIN framework:

query reformulation. We introduced a mapping language and we demonstrated the lan-

guage is closed under reformulation and the correctness of the reformulation algorithm.

Nevertheless, different topics deserve further investigation to use BIN in a real context.

Managing the huge quantity of data transmitted and then reconciled is still an open

issue. A first solution could be the application of data compression strategies, already

Chapter 3 Distributed BI 57

investigated in the DW context to answer approximate OLAP query [Yu and Wang,

2002], or to compress text attributes in DW dimensions [Vieira et al., 2005]. An

alternative approach could be the application of map-reduce solutions that have gained

increasing interests in both OLTP and OLAP contexts, in recent years. To this purpose,

the work by [T. et al., 2010] proposes a map-reduce data warehouse solution based

on Hadoop (an open-source map-reduce implementation largely used in real contexts

[Wiki, 2012]. This approach is not focused on a particular domain and can be further

investigated to mine significant hints for the BIN framework.

As to the automatic definition of semantic mappings between schemata, a promising

direction could be the adoption of a global ontology. On the one hand, this strategy

implies the definition of an overall ’vocabulary’ that integrates at a global level the

multiple concepts of all peers in the net. This solution may entail a significant effort

mainly due to find a common understanding on the domain concepts among all the

participants. On the other end, the semantic relationships defined in the ontology could

be effectively used to automatically infer links between concepts in different schemata

and provide additional information for the reconciliation phase. To this end, object

fusion techniques can be used to reconcile multidimensional data returned by different

peers.

Finally, the BIN solution can be completed by investigating rooting strategies to select

the most promising neighbouring nodes during the reformulation step and dealing with

security issues depending on the degree of trust between the BIN participants.

Chapter 4

OLAP Personalization

In this chapter we describe an OLAP query personalization approach that supports BI

to ANYONE by coupling an MDX-based language for expressing OLAP preferences to

a mining technique for automatically deriving preferences. First, the log of past MDX

queries issued by that user is mined to extract a set of association rules that relate

sets of frequent query fragments; then, given a specific query, a subset of pertinent

and effective rules is selected; finally, the selected rules are translated into a preference

that is used to annotate the user’s query. A set of experimental results proves the

effectiveness and efficiency of our approach.

4.1 Introduction

As described in Section 1.2 different approaches can be pursued to deliver information

to an individual or a group of individuals in the most appropriate format and layout.

In this chapter, we describe a proactive approach to OLAP personalization to simplify

the fruition of BI information [Aligon et al., 2011]. Indeed, in the OLAP context

personalization is quite beneficial, because queries can be very complex and they may

return huge amounts of data. Aimed at making the user’s experience with OLAP as

plain as possible, we combine MDX-based language for expressing OLAP preferences

to a mining technique for automatically deriving a set of preferences for a user’s query

from the log of past MDX queries issued by that user. This is done in four steps:

1. The user’s query log is mined off-line to extract a set of association rules that

relate sets of frequent query fragments (such as group-by attributes, returned

measures, selection predicates).

2. When the user formulates a query q, among the rules whose antecedent matches

with q, a subset of rules is selected whose cardinality depends on a parameter set

59

60 Chapter 4 OLAP Personalization

by the user to express the desired personalization degree, i.e., the complexity of

the preference that will be formulated.

3. The selected rules are translated into an OLAP preference p concerning the

group-by set for aggregating data, the measures to be returned, and the values

of attributes or measures.

4. Query q is annotated with p and executed. The results returned are ranked

according to p, so that the user can more effectively explore them by focusing on

the most relevant data first.

Remarkably, the overall set of tuples returned by q annotated with p is the same set

of tuples that would be returned by q without annotation, because p expresses a soft

constraint. This guarantees that the user’s intentions are preserved, and makes our

approach non-invasive. The chapter outline is as follows:

• In Section 4.3, we introduce a formal setting to query multidimensional data

based on Definition 2.1 of multidimensional schema.

• In Section 4.4, we describe the main features of the myMDX language we adopt

to express OLAP preferences.

• In Section 4.5, we describe the approach we use to extract and apply preferences

to an OLAP query.

• In Section 4.6, we show an implementation of our approach based on the my-

OLAP tool for evaluating preferences [Biondi et al., 2011].

• In Section 4.7 we report the results of a set of experimental tests to prove effec-

tiveness and efficiency of our technique.

4.2 Related Works

Several approaches to personalization were devised in the OLAP context.

In the field of profile-based personalization, we mention [Bellatreche et al., 2005], that

presents a framework for providing personalized visualization of OLAP results based

on user profiles in form of constraints, and [Jerbi et al., 2008], that achieves OLAP

personalization by dynamically enhancing queries with context-aware user preferences.

Both approaches are proactive and demand low formulation effort, but in both cases

the user profile is given, nothing being said on its construction. A recommendation

framework for OLAP systems is presented in [Jerbi et al., 2009]; new queries are

suggested to users based on the current analysis context and on the user’s profile.

Though the authors mention that the profile could be mined from the user’s previous

Chapter 4 OLAP Personalization 61

behavior, no specific suggestion is given to this end. A non-prescriptive approach is

presented in [Biondi et al., 2011, Golfarelli et al., 2011b], where the myOLAP algebra

[Golfarelli et al., 2011b] for formulating and evaluating OLAP preferences is introduced;

the proposed algebra is very expressive, but at the cost of a substantial formulation

effort.

The term history-based personalization is borrowed from [Stefanidis et al., 2009], and

refers to approaches that suggest a new database query based on the past actions

recorded in a log file. The following approaches fall into this category and do not

rely on a user profile; they are proactive and demand no formulation effort —like

our approach—, but they are prescriptive. The approaches in [Giacometti et al., 2009,

2011] are aimed at suggesting OLAP queries based on a comparison between the current

session and former sessions stored in a query log. Also [Chatzopoulou et al., 2009b]

has a similar goal in the context of SPJ queries; here, recommendations are computed

based on the presence of tuples in sessions. This approach is further improved in

[Akbarnejad et al., 2010] by relying on query fragments instead of tuples. A query log

is exploited in [Khoussainova et al., 2010a] to support users in writing new SQL queries;

the log is transformed into a graph of query fragments, where edges are labelled with

the conditional probability of having one fragment given another fragment. Noticeably,

all these work generally assume that history is taken from a query log shared by all

users.

To the best of our knowledge, our work is the first that proposes to extract preferences

from database query logs. However, the same idea has been used in other contexts.

In the context of information retrieval, [Veloso et al., 2008] presents algorithms to

extract association rules at query time from a set of documents. These rules are used

to associate the documents retrieved by a query to a relevance class and eventually to

rank them. In the context of the web, [Holland et al., 2003] introduces algorithms for

preference extraction from web logs, with a targeted preference language. Extraction

is based on the frequency of the terms appearing in the log, and clustering is used for

identifying preference constructs. A comprehensive overview of the techniques using

data mining for personalization can be found in [Mobasher, 2007].

In the light of the above, we can identify three main gaps in the current literature:

• The user profile is typically given (e.g., as a set of rules) and not automatically

derived, implying an initial effort to design the user characteristics and reducing

the re-usability of the approaches;

• Log-based approaches (i.e., solutions that rely on the automatic derivation of

the user profile) are typically devoted to OLAP recommendation and an overall

solution for OLAP personalization is still missing;

• In the context of web and information retrieval, some preference-based approaches

exist but they must be adapted to the OLAP context.

62 Chapter 4 OLAP Personalization

4.3 Formal Background

In this chapter we completely reuse the definitions of Section 2.3. In addition, we list

the set of MDX statements we will use, and we introduce three new concepts to query

multidimensional data, namely: Query Fragment, Query, and Log.

Some of distinguishing features of MDX are the possibility of returning query results

that contain data with different aggregation attributes and the possibility of specifying

how the results should be visually arranged into a multidimensional representation. We

consider MDX queries that aggregate data at one or more group-by sets, optionally

select them using a predicate in CNF, and return one or more measures. The semantics

of such an MDX query is that of a union of GPSJ queries1 whose group-by sets are the

cross product of n sets of attributes, one for each hierarchy. This semantics corresponds

to the following subset of MDX:

• Clauses SELECT, FROM, WHERE are supported.

• All functions for navigating hierarchies are supported: AllMembers, Ancestor, As-

cendants, Children, etc.

• All functions for manipulating sets of members or tuples are supported (Crossjoin,

Except, Exists, Extract, Filter, Intersect, etc.) except the union.

• All functions for manipulating members/tuples are supported.

To effectively use association rules for modeling frequent portions of queries, we for-

mally split MDX queries into fragments as explained below.

Definition 4.1 (Query Fragment, Query, Log). Given schema M = 〈A,H,M〉 as

defined in Definition 2.1, a query fragment is either an attribute in A, a measure in

M , or a simple Boolean predicate involving an attribute and/or a measure. A qf-set is

a set of query fragments. A multidimensional query (briefly, query) is represented by

a qf-set that includes at least one attribute for each hierarchy in H and at least one

measure in M . A log is a set of multidimensional queries.

Representing an MDX query as a qf-set q means:

1. Including a fragment m in q for each measure m returned by the MDX query.

2. Including a fragment a in q for each attribute a used in the MDX query to

aggregate data.

1A GPSJ query takes form πak1
,...,akn ,T

σp(χ) where, in our context: χ is the star join between the
fact table and the n dimension tables; p is a selection formula in CNF; {ak1 , . . . , akn} is a group-by
set; and T is a list of aggregations of the form Aggj(mj), where mj is a measure and Aggj is an
aggregation operator.

Chapter 4 OLAP Personalization 63

3. Including a fragment (a ∈ V) in q for each simple predicate on a attribute/mea-

sure a used in the MDX query to filter data.

Example 4.1. The MDX query on the CENSUS schema presented in Example 2.1

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.MRN),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

is the union of four GPSJ queries:

πAllCities,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πAllCities,MRN,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,MRN,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

and is represented by the qf-set q = {Region,AllCities,MRN,AllRaces,Occ,Year, AllSexes,

AvgIncome, (Year ∈ 2009)}.

4.4 The myMDX Preference Language

The language we adopt to express OLAP preferences is myMDX [Biondi et al., 2011],

an extension of the MDX language based on the myOLAP algebra. In this section we

summarize its features of interest for our approach.

A (qualitative) preference on a datacube is a strict partial order (i.e., an irreflexive

and transitive binary relation) on the space FM of all facts (see Definition 2.3). In

the myOLAP algebra, preferences are inductively engineered by writing a preference

expression that can be either a base constructor or a composition operator applied to

two preference expressions. The constructors used are2:

• POS(a, V), where V ⊂ Dom(a), that operates on attribute values; facts for which

a takes a value in V are preferred to the others.

• BETWEEN(m, vlow, vhigh), where m is a measure and vlow, vhigh ∈ Dom(m), that

operates on measure values. Facts whose value of m is between vlow and vhigh

are preferred; the other facts are ranked according to their distance from the

[vlow, vhigh] interval.

2The constructors we adopt are actually a generalization of those presented in [Golfarelli et al.,
2011b] from two points of view. Firstly, the CONTAIN constructor is extended to work also on a fake
hierarchy including all measures. Secondly, all constructors except BETWEEN are extended to operate
on sets of values rather than on single values.

64 Chapter 4 OLAP Personalization

• CONTAIN(h, L), where h is a hierarchy and L ⊂ Attr(h), that operates on at-

tributes. Facts whose group-by set includes an attribute in L are preferred to

the others.

• CONTAIN(measures,Meas), where Meas ⊂M , that operates on measures. Facts

whose measure is in Meas are preferred to the others.

Preference composition relies on the Pareto operator (⊗), that gives the same impor-

tance to both the composed preferences. Remarkably, the Pareto operator is closed on

the set of preferences.

The myMDX language allows an MDX query to be annotated with a preference ex-

pression through a PREFERRING clause.

Example 4.2. The MDX query in Example 4.1 can be annotated with preference ex-

pression BETWEEN(AvgIncome,500,1000) ⊗ POS(Occ,’Engineer’) ⊗ CONTAIN (RESI-

DENCE, Region) to state that facts aggregated by region and related to engineers with

average income between 500 and 1000 kiloeuros are equally preferred. The correspond-

ing myMDX query is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.MRN),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000

AND Occ POS ’Engineer’ AND RESIDENCE CONTAIN Region

4.5 A Personalization Framework

As sketched in Section 4.1, our approach relies on four steps:

1. Log mining. For efficiency reasons this step is executed off-line, before the current

query session starts. It consists in running a data mining algorithm on the user’s

query log to extract the set R of association rules whose support and confidence

are above a given threshold.

2. Rule selection. When that user formulates an MDX query q, a subset Rq ⊆ R of

rules is selected. Each rule inRq is pertinent, meaning that its antecedent matches

with q, and effective, meaning that the preference it would be translated into can

actually induce an ordering on the facts returned by q. Then, let a positive

integer personalization degree α be chosen by the user to express the desired

Chapter 4 OLAP Personalization 65

Algorithm 4 Extract rules with support and confidence adjustment

Input: Log: A set of queries; minSup,minConf : Floats
Output: R: A set of association rules
Uses: mine(set, float, float): An association rule extractor
Variables: stop: A Boolean; confidence, support: Floats; Covered: A set of qf-sets

1: stop =false
2: confidence = 1
3: support = 1
4: while !stop do
5: R = mine(Log, support, confidence) {Mine rules above support and confidence}
6: R = R \ {r ∈ R s.t. |r.cons| > 1} {Only keep rules with singleton consequent}
7: Covered = ∅
8: for each rule r ∈ R do
9: Covered = Covered ∪ {q ∈ Log|r.ant ∪ r.cons ⊆ q}

10: end for
11: if Covered = Log then
12: stop = true
13: else
14: confidence = confidence− 0.1
15: if confidence < minConf then
16: support = support− 0.1
17: confidence = 1
18: if support < minSupp then
19: stop = true
20: end if
21: end if
22: end if
23: end while
24: return R

preference complexity. A qf-set Fα is generated from Rq in such a way that α

base constructors are included in the overall preference expression the fragments

of Fα will be translated into.

3. Fragment translation. Each fragment in Fα is translated into a base constructor;

the resulting base constructors are then coalesced and composed using the Pareto

operator into a preference expression p.

4. Querying. Query q is annotated with p, translated into myMDX, and executed.

As shown in [Biondi et al., 2011], the user can effectively explore query results by

visually interacting with a graph-like structure that emphasizes the better-than

relationships induced by p between different sets of facts. Preferred facts are

then displayed in a multidimensional table.

The following subsections explain in detail how steps 1, 2, and 3 are carried out. For

details about step 4, see [Biondi et al., 2011, Golfarelli et al., 2011b].

4.5.1 Log Mining

We now briefly describe the mining step. The input of this step is a set of qf-sets that

represents the user’s query log, while the output is a set R of association rules.

Interestingly, the problem of associating a query with a set of fragments representing

user preferences bears resemblance to the problem of associating objects with a set of

66 Chapter 4 OLAP Personalization

most relevant labels. This problem, named label ranking, is a form of classification.

Both label ranking and classification have been proved to be effectively handled by

association rules (see for instance [Li et al., 2001, Sá et al., 2011]). In this context,

rules have a set of features that should match the object to be classified as antecedent,

and one label as consequent. We adopt a similar approach here, and we search for rules

having exactly one item as consequent, so each rule r ∈ R takes the form ant→ cons,

where ant is a qf-set and cons is a single query fragment. In the following, r.cons (resp.,

r.ant) denotes the consequent (resp., antecedent) of rule r, and conf(r) its confidence.

The mining step is done off-line, and uses any classical association rule extractor that is

parametrized by support and confidence thresholds (e.g., Apriori [Agrawal and Srikant,

1994]). The only issue in this step is to extract rules that faithfully represent the user’s

query log. Since the user is not involved at this step, support and confidence have to

be adjusted automatically [Sá et al., 2011]. Algorithm 4 is used for this purpose, and

it extracts rules until the whole log is covered by the set of rules extracted. More

precisely, the algorithm starts extracting rules with confidence and support equal to 1

(lines 2,3). If the set of rules covers the entire log, then the algorithm stops (line 11,12).

Otherwise, extraction starts again with a lower confidence (line 13), and confidence is

decreased until the log is entirely covered or the confidence is considered too low (line

14). In this case, confidence goes back to 1 and support is decreased (line 16,17), and

extraction is launched again. If both support and confidence are considered too low,

then the algorithm stops.

Algorithm 4 needs two thresholds, minConf and minSupp. Realistic values for these

thresholds can be learned by training the algorithm on query logs, or be derived from

log properties like size and sparseness.

4.5.2 Rule Selection

The output of the mining step, R can be a large set. In this section we present the

algorithm that first selects, among the rules in R, the subset Rq of pertinent and

effective rules for query q, and then returns a qf-set Fα including a subset of the query

fragments that appear as consequents of the rules in Rq. These fragments will be used

for annotating q with a preference.

Following the approach presented in [Veloso et al., 2008], the selection of query frag-

ments is made by associating a score to each group of rules in Rq having the same

fragment ϕ as consequent. This score is the average confidence of the rules in the

group, i.e., score(ϕ) = avgr∈Rϕconf(r) where Rϕ ⊆ Rq is the subset of rules having

ϕ as a consequent. The selected query fragments are those with highest scores, and

are limited by the number α of base preference constructors that the user wants to

annotate her queries with.

Chapter 4 OLAP Personalization 67

Algorithm 5 Select Consequents

Input: R: A set of rules; q: A query represented as a qf-set; α: A user-defined personalization degree
Output: Fα: A qf-set that will be used to annotate q with a preference
Variables: numBC: The current number of base constructs; Rq : The set of pertinent and effective rules; F ,

Fsim: Two qf-sets
1: R = R \ {r ∈ R|r.ant 6⊆ q} {Drop non-pertinent rules}
2: Rq = R \ {r ∈ R|r.cons ∈ A ∪M, r.cons 6∈ q} {Drop non-effective rules}
3: F = {r.cons|r ∈ Rq} {Consequents of the rules in Rq}
4: Fα = ∅
5: numBC = 0
6: while numBC ≤ α and F 6= ∅ do
7: let ϕ = ArgMaxF score(ϕ) {...starting with the fragment having highest score}
8: F = F \ {ϕ}
9: if makesIneffective(ϕ, Fα, q) then

10: Fsim = {ϕ′ ∈ Fα|similar(ϕ,ϕ′)} {...find the similar fragments, if any...}
11: Fα = Fα \ Fsim {...and drop them}
12: if Fsim 6= ∅ then
13: numBC −−
14: end if
15: else
16: if ∃ϕ′ ∈ Fα|similar(ϕ,ϕ′) then
17: Fα = Fα ∪ {ϕ}
18: else
19: if numBC < α then
20: Fα = Fα ∪ {ϕ}
21: end if
22: numBC + +
23: end if
24: end if
25: end while
26: return Fα

Given schema M = 〈A,H,M〉 and a qf-set F , we adopt the following notation:

• F.hier(h) = F ∩Attr(h) is the set of attributes of hierarchy h ∈ H in F ;

• F.meas = F ∩M is the set of measures in F ;

• F.val(a) =
⋃

(a∈Vk)∈F Vk denotes the set of selected values for attribute/measure

a ∈ A ∪M in F .

Function 6 makesIneffective
Input: ϕ: A fragment; Fα: A qf-set; q: a query represented as a qf-set
Output: A Boolean

1: if ∃h ∈ H|ϕ ∈ Attr(h) then
2: if (Fα.hier(h) ∪ {ϕ}) = q.hier(h) then
3: return true
4: end if
5: end if
6: if ϕ ∈M then
7: if (Fα.meas ∪ {ϕ}) = q.meas then
8: return true
9: end if

10: end if
11: if ϕ = (a ∈ V) then
12: if q.val(a) 6= ∅ and !((Fα.val(a) ∪ V) ⊂ q.val(a)) then
13: return true
14: end if
15: end if
16: return false

Algorithm 5 selects, among the set R of association rules mined from the log, the

consequents of rules that will be used to annotate the current query with preferences.

68 Chapter 4 OLAP Personalization

Function 7 similar
Input: ϕ1: A fragment; ϕ2: A fragment
Output: A Boolean

1: if ∃h ∈ H|ϕ1 ∈ Attr(h) and ϕ2 ∈ Attr(h) then
2: return true
3: end if
4: if ϕ1 ∈M and ϕ2 ∈M then
5: return true
6: end if
7: if ϕ1 = (a ∈ V1) and ϕ2 = (a ∈ V2) then
8: return true
9: end if

10: return false

It starts by removing from R all non-pertinent rules (i.e., those whose antecedent does

not match q — line 1), and some non-effective rules (those whose consequent, if it is an

attribute or a measure, does not appear in the list of group-by attributes or returned

measures of q — line 2). The remaining rules are grouped by their consequent and

the score of each group is computed (line 3). Then the top consequents corresponding

to α base constructors are returned (lines 4-21). If a fragment ϕ that is about to be

selected drives the preferences ineffective because it states that all the query results are

preferred (Function 6), it is removed together with the other similar fragments (lines

10-13).

Example 4.3. Consider the qf-set of Example 4.1, q = {Region,AllCities,MRN,AllRaces,

Occ,Year,AllSexes,AvgIncome, (Year ∈ 2009)}. Let the set R of rules extracted from the

log be as follows:

r1: (Region ∈ {’Pacific’,’Atlantic’}) → Year (0.8)

r2: Year → Region (0.80)

r3: Year → AllCities (0.60)

r4: AvgIncome → Region (0.60)

r5: Year → Sex (0.90)

r6: (Year ∈ 2009)→ Region (0.70)

r7: Year → (Year ∈ 2009) (0.50)

r8: Year → (AvgIncome ∈ [500, 1000]) (0.55)

r9: AvgIncome → MRN (0.45)

r10: Occ → Region (0.70)

r11: Occ → Year (0.10)

r12: AvgIncome → Year (0.70)

and let Algorithm 5 be called with α = 2. First, the algorithm removes r1 (non

pertinent) and r5 (non effective). Then the remaining rules are grouped by their

consequents, resulting in the set of fragments F = {Region,AllCities, (AvgIncome ∈
[500, 1000]), (Year ∈ 2009),MRN,Year} (listed by decreasing order of score). The frag-

ments in F are now orderly explored. The first two fragments are not selected since,

together, they drive the preference ineffective (they are exactly the fragments of hier-

archy RESIDENCE included in q). Fragment (AvgIncome ∈ [500, 1000]) is selected.

Chapter 4 OLAP Personalization 69

Fragment (Year ∈ 2009) is not selected since it corresponds precisely to the selec-

tion on Year of q. Then fragment MRN is selected and, finally, Algorithm 5 outputs

Fα = {(AvgIncome ∈ [500, 1000]),MRN}.

4.5.3 Fragment Translation

The output Fα of Algorithm 5 is a qf-set used to annotate the current query q with

a preference. To this end, each query fragment ϕ ∈ Fα is translated into a base

constructor (see Section 4.4); the resulting base constructors are then coalesced and

composed using the Pareto operator.

The rules for translating fragment ϕ are explained below:

• if ϕ is an attribute a ∈ A, it is translated into a constructor CONTAIN(h, a),

where h is the hierarchy a belongs to.

• If ϕ is a measurem ∈M , it is translated into a constructor CONTAIN(measures,m).

• If ϕ is a Boolean predicate on a attribute, (a ∈ V), it is translated into a con-

structor POS(a, V).

• If ϕ is a Boolean predicate on a measure, (m ∈ [vlow, vhigh]), it is translated into

a constructor BETWEEN(m, vlow, vhigh).

The resulting base constructors are coalesced by merging all CONTAIN’s on the same

hierarchy, all POS’s on the same attribute, and all BETWEEN’s on the same measure.

Example 4.4. The preference expression that translates the qf-set Fα in Example

4.3 is p = BETWEEN(AvgIncome,500,1000)⊗ CONTAIN(RACE, MRN). The myMDX

formulation for q annotated with p is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.MRN),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000 AND RACE CONTAIN MRN

4.6 Implementation

The approach was implemented in Java, using the Mondrian API for handling MDX

queries, the Weka implementation of Apriori for rule extraction, and the myOLAP

70 Chapter 4 OLAP Personalization

tool for evaluating preferences. The tests were conducted starting from synthetic MDX

logs generated through Algorithm 8, that uses the Diff operator proposed in [Sarawagi,

1999]. This operator explores the reasons why an aggregate is significantly lower in one

fact compared to another. It takes as parameters two facts f and f ′ and an integer N ,

and looks into the two isomorphic sub-cubes C and C ′ that detail the two facts (i.e.,

that are aggregated to form f and f ′). As a result, it summarizes the differences in

these two sub-cubes by providing the top-N informative pairs of cells. Our generator

simulates OLAP sessions on a datacube by starting from a random query q and then

deriving the subsequent queries in the session using the result of the Diff operator

applied to q. The Java implementation of Diff was obtained from [Sarawagi, 2009]; N

is set to 20 to simulate OLAP sessions including no more than 20 queries.

Algorithm 8 Generate a log

Input: minSize: Minimum log size
Output: Log: A set of queries
Uses: Diff(cell, cell): The Diff operator defined in [Sarawagi, 1999]
Variables: q: A query ; nbGenerated: Integer

1: nbGenerated = 0
2: while nbGenerated < minSize do
3: randomly generate a query q on a sub-cube
4: Log = Log ∪ {q}
5: nbGenerated+ +
6: let f1, f2 be facts that show the maximum difference in the result of q
7: for each pair 〈f ′1, f ′2〉 ∈ Diff(f1, f2) do
8: let q′ be the drill-down of q to the group-by set of f ′1 and f ′2
9: Log = Log ∪ {q′}

10: nbGenerated+ +
11: end for
12: end while
13: return Log

4.7 Validation

We validated our approach to proof both effectiveness and efficiency.

The architecture used for testing is an Intel Core 2 Duo 3 GHz, with 4GB RAM. All

tests were made on the CENSUS schema presented in Example 2.1, corresponding to

about 107 facts stored on Oracle 11g. For our tests, we generated a log of about 1000

queries; the initial query of each session was generated randomly by selecting group-by

sets, measures and selections from a small pool. A small selection pool (3 selections on

different dimensions) is used to simulate the log of a single user querying a sub-cube.

Then, 8 queries to be personalized were extracted randomly from the log and removed

from it. Minimum support and confidence were adjusted with Algorithm 4 to 0.6 and

0.7, respectively, resulting in 20 rules that cover the log and have an average support

and confidence of 0.63 and 0.85, respectively. The confidence ranges from 0.76 to 1,

with a standard deviation of 0.063.

Chapter 4 OLAP Personalization 71

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f
re

tu
rn

ed
 fa

ct
s

Queries

Effectiveness

α=1
α=2
α=3

(a)

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 e

xe
cu

ti
on

 ti
m

e

Queries

Efficiency

α=1
α=2
α=3

(b)

Figure 4.1: Effectiveness and efficiency of our approach

As to effectiveness, Figure 4.1.a reports, for each query in the benchmark, the ratio

between the number of preferred facts returned by the annotated query (i.e., those

included in the best-match only result of the query [Golfarelli et al., 2011b]) and the

one returned by the original query, when the personalization degree ranges between 1

and 3. Our approach is always effective in reducing the number of facts returned to

the user. Though in general the reduction gets stronger as the personalization degree

is increased, two different trends are apparent. In some cases (queries 2, 3, and 4) the

reduction is independent on the personalization degree since only one pertinent and

effective fragment was found. In other cases (queries 1 and 7), as the complexity of

the preference increases, there are no facts that fully satisfy it so a larger set of facts

that partially satisfy the preference are returned.

As to efficiency, we point out that the log mining step was executed in less than 4 secs,

while the time for rule selection and fragment translation never exceeded 5 msecs.

Figure 4.1.b reports the ratio between the time taken to execute each annotated query

and the time to execute the original query. The reduction is always above 40%, and it

is not relevantly affected by the personalization degree. Overall, we can conclude that

our approach to personalization not only puts no overhead on the querying process,

but it significantly reduces query response times.

4.8 Conclusions

In this chapter we described a personalization framework to annotate OLAP queries

with preferences, so as to support the concept of BI to ANYONE [Aligon et al., 2011].

In particular, we improve the user experience with OLAP relying on three different

aspects:

• Formulation effort: typically, personalization criteria for queries may be either

manually specified by users, or transparently inferred from the context and from

72 Chapter 4 OLAP Personalization

the user profile. Our approach is based on log mining and rule selection tech-

niques allowing an automatically extraction of the user preferences.

• Prescriptiveness: personalization criteria may either be used as “hard” con-

straints that are added to queries, or be meant as “soft” constraints. We an-

notate query with preferences preserving the initial user’s intentions (i.e., low

prescriptiveness).

• Proactiveness: in the literature, some approaches propose new queries to the

user based on the query log and on the context, while others change the current

query or post-process its results before returning them to the user. We enhance

proactiveness by transparently changing the current query.

While in this chapter we used preference mining for result ranking, in the next chapter

we will attempt to generalize it to address query recommendation as well. Besides,

we will investigate the feasibility of extending our approach to incrementally manage

OLAP sessions, i.e., to take delta queries into account at runtime without having to

mine the log from scratch.

Chapter 5

OLAP Similarity

In this chapter, we support BI to ANYONE by proposing different similarity measures

oriented to the OLAP recommendation. A recommendation system suggests the most

promising direction of analysis to extract relevant BI information. In this context,

exploiting the similarity between the current OLAP session and those issued in the

past by the same user or by a group of similar users, represents an added value. In this

direction, we devised several similarity measures to compare OLAP sessions from two

perspectives: queries and sessions. We prove the effectiveness of our measures with

both synthetic and real data.

5.1 Introduction

The OLAP paradigm has revolutionized the way users access information in multidi-

mensional databases. This paradigm achieves the ambitious goal of coupling a large

querying expressiveness with a small query formulation effort, by providing a set of

operators (such as drill-down and slice-and-dice) to transform one multidimensional

query into another. As a consequence, OLAP queries are not normally formulated in

isolation, but in the form of sequences (OLAP sessions). During an OLAP session

focused on a phenomenon –such as sales– the user analyzes the results of a query and,

depending on the specific data she sees, interactively chooses to apply one operator

to determine a new query that will give her a better view of that phenomenon. The

extemporary sequences of queries that are created this way are strongly related to the

issuing user, to the analyzed phenomenon, and to the current data. Though some works

are focused on assessing the similarity between OLAP queries [Aouiche et al., 2006,

Golfarelli, 2003, Sapia, 2000], similarity of OLAP sessions has been only marginally

taken into account. The similarity of sessions of SQL queries, disregarding order, is

assessed by [Agrawal et al., 2006]. [Aouiche et al., 2006] proposes a basic measure

for similarity between sets of OLAP queries (again disregarding query order) aimed

73

74 Chapter 5 OLAP Similarity

at clustering a workload. [Giacometti et al., 2009] compares OLAP sessions based on

the order of queries, using edit distance, but at the extensional attribute —which may

create efficiency problems. However, no systematic study exist to compare different

similarity measures for OLAP sessions; in particular, though both [Giacometti et al.,

2009] and [Agrawal et al., 2006] aim at assisting the user, no users were apparently in-

volved in the design of the similarity measures proposed. To fill these gaps, we devised

a two-attribute approach to compare OLAP sessions based on the similarity of their

queries [Aligon et al., 2013]. In particular, we gave the following contributions:

• In Section 5.3, we propose a set of criteria for OLAP sessions similarity derived

from the results of a user study conducted with a set of practitioners and re-

searchers in the OLAP field.

• In Section 5.5, we propose a function for estimating the similarity between OLAP

queries based on three components: the query group-by set, its selection predi-

cate, and the measures required in output.

• In Section 5.6, we study session similarity investigating the feasibility of two-

attribute extensions (i.e., that compare query sequences based on the similarity

between their elements) of four popular methods for measuring similarity, namely

the Levenshtein distance, the Dice coefficient, the tf-idf weight, and the Smith-

Waterman algorithm.

• In Section 5.7, we experimentally compare these four extensions from both points

of view of efficiency and effectiveness. The results clearly show that the Smith-

Waterman extension is the one that best captures the users’ criteria for session

similarity.

5.2 Formal Background

Starting from Definition 2.1 of multdimensional schema and Definition 2.2 of group-by

set, we introduce the concepts of OLAP query and OLAP session.

Definition 5.1 (OLAP Query). A query on schema M = 〈A,H,M〉 is a triple q =

〈g, Pred,Meas〉 where:

1. g ∈ Dom(H) is the query group-by set;

2. Pred = {p1, . . . , pn} is a set of Boolean predicates, one for each hierarchy, whose

conjunction defines the selection predicate for q; conventionally, pi = TRUEi if

no selection on hi is made in q;

3. Meas ⊆M is the measure set whose values are returned by q.

Chapter 5 OLAP Similarity 75

Table 5.1: Queries for Example 5.1

Queries
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Group-by set g1 g2 g2 g2 g2 g3 g3 g2 g1 g1

Measures

AvgCostWatr X X X X X X X X
AvgCostElect X X X X X X
AvgCostGas X X X
AvgIncome X X X

Selection predicates c1 c1 c1 c2 c3 c1 c1 c1 c1 c1

Definition 5.2 (OLAP Session). An OLAP session of length v is a sequence s =

〈q1, . . . , qv〉 of v queries on schema M.

Example 5.1. In the following an example of simple log, based on CENSUS schema:

s =〈q1, q2, q3〉

s′ =〈q4, q5, q6, q7, q8〉

s′′ =〈q9, q10〉

Table 5.1 represents each query in terms of our query model; the involved group-by sets

are those used in Example 2.1 of Chapter 2, while the selection predicates are:

c1 = {TRUERESIDENCE, . . . , (Year = 2005), . . . , TRUESEX}

c2 = {TRUERESIDENCE, (RaceGroup = Chinese), . . . , . . . , TRUESEX}

c3 = {TRUERESIDENCE, (RaceGroup = Chinese), (Year = 2005), . . . , TRUESEX}

2

5.3 Requirements for OLAP sessions similarity

The goal of this section is to list a number of requirements to be used for (i) under-

standing which approaches, among all those proposed in the literature for query and

sequence comparison, are eligible for the OLAP context; and (ii) driving the adapta-

tion and extension of the eligible approaches towards the development of an original

approach to OLAP session comparison.

We start by proposing a first set of requirements, suggested by the specific features of

the OLAP context and by our experience in the field:

]1 Multidimensional databases store huge amounts of data, and OLAP queries may

easily return large volumes of results. Computing similarity at the extensional

76 Chapter 5 OLAP Similarity

attribute, i.e., by comparing the data resulting from queries, would pose serious

efficiency problems in this context, and would discourage the use of the approach for

recommendation and personalization —that require a fast interaction with users.

Indeed, as noted by [Chatzopoulou et al., 2011] in the case of recommendation

of SQL queries, there is a clear trade-off between efficiency and quality, when a

fragment based model or a tuple based model is used. For this reason we compute

similarity at the intensional attribute, i.e., considering only query expressions.

]2 It is unlikely that two OLAP sessions share identical queries; this feature is better

managed by having comparisons of single queries result in a score rather than in a

Boolean.

]3 A typical OLAP query is defined by the fact to be analyzed, one or more measures

to be computed, a set of hierarchy attributes for aggregating measure values, a

predicate for filtering a subset of events, and a presentation. Though the presen-

tation chosen for displaying the results of an OLAP query (e.g., a cross-tab or a

pie-chart) certainly has an influence on how easily users can interpret these results,

it does not affect the actual informative content, so it should not be considered

when comparing queries.

To discover additional requirements for OLAP sessions similarity, we conducted a user

study. We prepared a questionnaire asking to give a qualitative evaluation of the sim-

ilarity between couples of OLAP queries and couples of OLAP sessions over a simple

multidimensional schema (more details will be given in Subsection 5.7.1). The ques-

tionnaire1 was submitted to all the teachers and PhD students of the First European

Business Intelligence Summer School (eBISS 2011)2, as well as to the master students

of two specialistic courses on DW design at the Universities of Bologna (Italy) and

Tours (France). All people involved had some experience as OLAP users, most of

them had some practice of multidimensional design too. Overall, 41 answers were col-

lected. The additional requirements emerging from an analysis of the questionnaire

results can be summarized as follows:

]4 The selection predicate is the most relevant component in determining the similarity

between two OLAP queries, followed by the group-by set. The less important

component is the set of measures to be returned.

]5 The order of queries is relevant in determining the similarity between two sessions,

i.e., two sessions sharing the same queries but in different orders have low similarity.

]6 Recent queries are more relevant than old queries in determining the similarity be-

tween two OLAP sessions. Since the time actually elapsed between two consequent

1Available at http://www.julien.aligon.fr/recherche/similarityform.aspx.
2http://cs.ulb.ac.be/conferences/ebiss2011/

Chapter 5 OLAP Similarity 77

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 U
s
e
rs

measures group-by selection

Low sim.

Fair sim.

Good sim.

High sim.

Queries that differ in...

Low sim.

Fair sim.

Good sim.

High sim.

Low sim.

Fair sim.

Good sim.

High sim.

Figure 5.1: Perceived similarities for OLAP queries only differing in one of their
three main components

queries in a session depends on several unpredictable factors (e.g., the query execu-

tion time, the size and complexity of the data returned, the user’s query formulation

skills), only the order of queries will be considered.

]7 The longest the matching fraction of two sessions, the highest their similarity.

]8 Two sessions that match with one or more gaps (i.e., one or more non-matching

queries are present) are similar, but their similarity is lower than the one of two

sessions that match with no gaps.

In particular, as to point]4, in Figure 5.1 we show the percentages of users that perceive

a given attribute of similarity for couples of queries that only differ in either their

measure sets, or their selection predicates, or their group-bys. Apparently, measures

are the less important component in determining similarity since most users perceive

as highly similar two queries that only differ in their measures. The opposite holds for

the selection predicate component.

5.4 Related Works

This section reviews the literature for similarity functions that could possibly be used

to compare OLAP sessions. Since OLAP sessions are sequences of queries, we first

review the approaches for comparing sequences and then those for comparing database

queries. The requirements expressed in Section 5.3 are used to restrict the set of

approaches that are candidate to be adopted in the OLAP context.

5.4.1 Sessions

Comparing sequences has attracted a lot of attention especially in the context of string

processing, with applications like information retrieval, spell-checkers, bioinformatics,

78 Chapter 5 OLAP Similarity

and record linkage [Moreau et al., 2008]. The existing approaches are inspired by

different principles.

In token-based approaches sequences are treated as bags of elements, and classical set

similarity functions like Jaccard and Hausdorff, and all their variants, can be used or

adapted. Of course, these approaches are not sensible to the order of sequence ele-

ments. When the sequences to be compared are taken from a corpus, the popular term

frequency-inverse document frequency (tf-idf) weight can be adopted, which weights

each element of a sequence using (positively) their frequency in the sequence and (neg-

atively) their frequency in the corpus. A cosine is then used to measure the similarity

between two vectors of weights.

Some approaches compare two sequences by comparing their subsequences. A basic ap-

proach here is to use the size of the longest common subsequence (LCS).3 An approach

often used in statistical natural language processing relies on n-grams, i.e., substrings

of size n of a given sequence [Brown et al., 1992]. A popular similarity function using

n-grams is the Dice coefficient, an extension of the Jaccard index defined as twice the

number of shared n-grams over the total number of n-grams:

SimDice(s, s
′) =

2|ngrams(s) ∩ ngrams(s′)|
|ngrams(s)|+ |ngrams(s′)|

Other approaches compare sequences based on their edit distance, i.e., in terms of the

cost of the atomic operations necessary to transform one sequence into another. Many

edit distances have been proposed that differ on the number, type, and cost of the edit

operations. The most popular are the Levenshtein distance, that allows insert, delete,

and substitute, and the sequence alignment distance, that allows match, replace, delete,

and insert [Navarro, 2001].

Finally, in two-attribute approaches sequences are compared based on the similarity

between their elements. A simple example is the Hausdorff distance between sets, that

relies on the distance between elements of the set. In [Monge and Elkan, 1997] the

similarity between sequences s and s′ is the average of the highest similarities between

pairs of elements of s and s′:

SimM&E(s, s′) =
1

|s|
∑
si∈s

maxs′j∈s′{Simelem(si, s
′
j)}

where Simelem measures the similarity between single elements. In soft tf-idf [Cohen

et al., 2003], the tf-idf weight is extended using the similarity of sequence elements;

more precisely,

Simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (si, s
′) ·maxs′j∈s′{Simelem(si, s

′
j)}

3Note that, while substrings are consecutive parts of a string, subsequences need not be.

Chapter 5 OLAP Similarity 79

where T (si, s) is a normalized form of the tf-idf of element si within sequence s, θ

is a threshold, and Closeθ(s, s
′) is the set of elements si ∈ s such that there is

at least an element s′j ∈ s′ with Simelem(si, s
′
j) > θ. While the two previous two-

attribute approaches do not consider the ordering of elements within sequences, the

Smith-Waterman algorithm relies on element ordering; it can be used to efficiently

find the best alignment between subsequences of two given sequences by ignoring the

non-matching parts of the sequences [Smith and Waterman, 1981]. It is a dynamic pro-

gramming algorithm based on a matrix H whose value in position (i, j) expresses the

score for aligning subsequences of s and s′ that end in elements si and s′j , respectively.

This matrix is recursively defined based on the following formula:

H(i, j) = max


0;

H(i− 1, j − 1) + Simelem(si, s
′
j);

maxk≥1{H(i− k, j)− costk};
maxk≥1{H(i, j − k)− costk}


where costk is the cost of introducing a gap of length k in the matching between s and

s′. Note that, here, the similarity between two elements can be negative, to express

that there is a mismatch between them; intuitively, the algorithm seeks an optimal

trade-off between the cost for introducing a gap in the matching subsequences and the

cost for including a poorly matching pair of elements.

We conclude this overview with a couple of brief observations about the features a

sequence comparison approach should have to be used for OLAP sessions:

• In OLAP sessions, the order of queries is relevant (requirement]5), which dis-

courages from taking token-based approaches.

• Mostly, OLAP sessions do not share the very same queries (requirement]2). This

makes two-attribute approaches, that take advantage of a similarity function for

OLAP queries, more suitable for our purposes.

• Following requirement]8, it is important to be able to determine similar regions

in two globally different sessions, which favors a sequence alignment approach.

5.4.2 Queries

As to query similarity, we can distinguish two main motivations for comparing database

queries. The first one is query optimization, where a query q to be evaluated is com-

pared to another query q′, with the goal of finding a better way of evaluating q. This

motivation attracted a lot of attention, and covers classical problems like view usability

[Garcia-Molina et al., 2008, Gupta and Mumick, 1999], query containment [Abiteboul

et al., 1995], plan selection [Ghosh et al., 2002], view selection [Golfarelli, 2003], and

80 Chapter 5 OLAP Similarity

data prefetching [Sapia, 2000]. The second, more recent, motivation is to suggest

a query to the user without focusing on its evaluation. In this context, a query is

compared to another one with the goal of helping the user exploring or analyzing a

database. This includes query completion [Yang et al., 2009] and query recommenda-

tion [Akbarnejad et al., 2010, Chatzopoulou et al., 2009a, 2011, Drosou and Pitoura,

2011, Giacometti et al., 2009, Stefanidis et al., 2009].

From a technical point of view, the approaches found in the literature can be classified

according to (i) the query model they adopt, i.e., the structure used to compactly

represent queries; (ii) the information source from which the representation of each

query is derived; and (iii) the function used to compute similarity.

Query models range from a string corresponding to the uninterpreted SQL sentence

[Yao et al., 2005] to the set of tuples resulting from the query evaluation [Drosou and

Pitoura, 2011, Stefanidis et al., 2009]. Queries can also be modeled as vectors of features

with either a score or a Boolean for each feature [Agrawal et al., 2006, Akbarnejad

et al., 2010, Aouiche et al., 2006, Ghosh et al., 2002], or as sets of fragments, each

representing a particular part of the query, such as the attributes required in output

(SELECT clause) or the table names in the cross product (FROM clause) [Sapia, 2000].

Finally, queries are sometimes modeled as graphs, following the database schema like

in [Yang et al., 2009].

As to the information source, it can be the query expression, e.g., the uninterpreted

query text [Yao et al., 2005] or the list of query fragments (selection predicates, pro-

jection, etc.) [Garcia-Molina et al., 2008, Yang et al., 2009]. When fragments are used,

only some of them may be taken into account; for instance, only the selection attributes

are used by [Agrawal et al., 2006] and [Yang et al., 2009] whereas all fragments are

used by [Garcia-Molina et al., 2008] and [Gupta and Mumick, 1999]. The information

source can also be related to the database queried; more precisely, it can be:

• The database instance, e.g., the query result or the active domain of the database

attributes [Agrawal et al., 2006, Chatzopoulou et al., 2009a, 2011, Drosou and

Pitoura, 2011, Giacometti et al., 2009, Stefanidis et al., 2009]. In the former

case, the query can be evaluated either fully [Drosou and Pitoura, 2011, Stefanidis

et al., 2009] or partially [Giacometti et al., 2009]. In this category we also include

an approach for measuring similarity between multidimensional cubes [Baikousi

et al., 2011], because obviously an OLAP query returns a multidimensional cube.

• The statistics used by the query optimizer, like table sizes and attribute cardi-

nalities [Ghosh et al., 2002].

• The database schema, e.g., the keys defined or the index used to process a selec-

tion [Ghosh et al., 2002, Golfarelli, 2003].

Chapter 5 OLAP Similarity 81

Table 5.2: Query comparison approaches at a glance

Ref. Motivation Model Source Similarity Function
[Gupta and Mumick, 1999] optimization sets S, P, C fragment tests
[Chatzopoulou et al., 2011] recommend. vector db instance, log cosine
[Akbarnejad et al., 2010] recommend. vector S, P, log cosine
[Agrawal et al., 2006] optimization vector S, db instance cosine
[Aouiche et al., 2006] optimization vector S, P, log Hamming distance
[Ghosh et al., 2002] optimization vector S, C, db statistics Hamming distance
[Stefanidis et al., 2009] (1) recommend. vector log inner product
[Stefanidis et al., 2009] (2) recommend. set db instance Jaccard index
[Giacometti et al., 2009] recommend. set db instance Hausdorff distance
[Sapia, 2000] optimization sets S, P query repres. equality
[Golfarelli, 2003] optimization set P, db schema & statistics group-by lattice
[Yao et al., 2005] recommend. string SQL sentence entropy
[Yang et al., 2009] recommend. graph S, P, C query repres. equality

• The query log, if the query model relies on other queries that have previously

been launched on the same database. For instance, [Chatzopoulou et al., 2009a],

[Chatzopoulou et al., 2011], [Akbarnejad et al., 2010], [Aouiche et al., 2006], and

[Stefanidis et al., 2009] model a query in terms of its links with other queries or

how many times it appears in the log.

Finally, the result of query comparison can be a Boolean or a score, usually normalized

in the [0..1] interval. The first case applies when queries are tested for equivalence

[Abiteboul et al., 1995] or view adaptation [Gupta and Mumick, 1999], or when the

goal is to group queries based on some criteria [Sapia, 2000, Yang et al., 2009]. In this

case, the comparison can be a simple equality test of the query representations [Sapia,

2000, Yang et al., 2009] or it can be based on separate tests of query fragments [Gupta

and Mumick, 1999]. In the second case, the comparison is normally based on classical

functions applied to the query representations. For instance, if the query is modeled

as a vector, cosine [Agrawal et al., 2006, Akbarnejad et al., 2010, Chatzopoulou et al.,

2009a, 2011], inner product [Stefanidis et al., 2009], or Hamming distance [Aouiche

et al., 2006] can be used; if the query is modeled as a set, the Jaccard index [Stefanidis

et al., 2009] or the Hausdorff distance [Giacometti et al., 2009] can be used. Sometimes,

more sophisticated similarity functions are used. For instance, [Yao et al., 2005] uses a

measure based on entropy to cluster queries modelled as strings. In [Golfarelli, 2003],

similarity between OLAP queries is computed based on the relative position of the

query group-by sets within the group-by lattice.

Table 5.2 summarizes the approaches reviewed in this section. Note that [Stefanidis

et al., 2009] proposes two ways of comparing queries: (1) based on the frequency of

the query in the log, and (2) based on the query result. Letters S, P, and C indicate

the fragments used by the approach (S for selection, P for generalized projection —

including the group-by set and the aggregation operator—, and C for cross-product).

We conclude this overview with some brief observations about the features a query

comparison approach should have to be used for OLAP queries:

82 Chapter 5 OLAP Similarity

• Following requirement]1, we solely rely on query expressions to derive query

representations. Then we exclude the approaches based on query evaluation

[Drosou and Pitoura, 2011, Giacometti et al., 2009, Stefanidis et al., 2009], those

depending on database instances [Agrawal et al., 2006, Baikousi et al., 2011,

Chatzopoulou et al., 2009a, 2011], and those using query logs [Akbarnejad et al.,

2010, Aouiche et al., 2006, Stefanidis et al., 2009].

• Our goal is not query optimization, so we drop the approaches aimed at opti-

mization like [Ghosh et al., 2002]. In that particular work, the idea is to reuse

execution plans, that heavily rely on “physical” properties (like statistics and

presence of indexes); thus, query similarity is more related to how queries are

evaluated than to what they mean to users. This means that two queries that

should be very similar for our purposes could be found to be very dissimilar us-

ing that approach if their execution plans are different (for instance, if one has a

WHERE clause and the other does not).

• According to requirement]2, query comparison should result in a score. So,

Boolean approaches like [Gupta and Mumick, 1999] and [Yang et al., 2009] are

less relevant in our context.

• OLAP queries are expressed using a friendly visual interface, and the syntax of

the underlying query language (e.g., MDX) is typically transparent to users. This

discourages the adoption of uninterpreted approaches like [Yao et al., 2005].

• According to requirement]3, the OLAP semantics is carried by a number of dif-

ferent components (e.g., the aggregation attribute), which encourages the adop-

tion of a fragment-based query model like in [Sapia, 2000], also taking into ac-

count the peculiarities of the multidimensional model like in [Golfarelli, 2003].

Among the query similarity functions proposed in the OLAP area, the one that cap-

tures the above requirements at best is [Aouiche et al., 2006]. In that approach,

similarity between queries q and q′ is based on the number of attributes they share

within their SELECT, WHERE, and GROUP-BY clauses; the normalized form we

adopt here for comparison purposes (Section 5.7.1) is

σAJD(q, q′) =
|L ∩ L′|
|L ∪ L′|

where L and L′ are the attributes appearing in q and q′, respectively.

5.5 Query Similarity

In this section we define the similarity function used in our two-attribute approach to

compare OLAP queries. As remarked in the Section 5.3, this function must consider the

Chapter 5 OLAP Similarity 83

peculiarities of the multidimensional model, be computable based on query expressions

only, and result in a score. Consistently with Definition 5.1, the function we propose

is a combination of three components: one related to group-by sets, one to selection

predicates, and one to measure sets.

To define group-by set similarity, we first introduce the notion of distance between

attributes in a hierarchy.

Definition 5.3 (Distance between hierarchy attributes). Let M = 〈A,H,M〉 be a

schema, hi ∈ H be a hierarchy, and l, l′ ∈ Attr(hi) be two attributes. The distance

between l and l′, Distlev(l, l
′), is the difference between the positions of l and l′ within

the roll-up order �hi .

Definition 5.4 (Group-by set similarity). Let q and q′ be two queries, both on schema

M, with group-by sets g and g′, respectively, and let g.hi (g′.hi) denote the attribute

of hi included in g (g′). The group-by set similarity between q and q′ is

σgbs(q, q
′) = 1−

∑n
i=1

Distlev(g.hi,g
′.hi)

|Lev(hi)|−1

n

where n is the number of hierarchies in M.

Our definition of selection similarity takes into account both the attributes and the

constants that form the selection predicates. In particular, for each hierarchy, two

identical clauses are given maximum similarity, and non-identical clauses are given

decreasing similarities according to the distance between the hierarchy attributes they

are expressed on.

Definition 5.5 (Distance between selection clauses). LetM = 〈A,H,M〉 be a schema,

and ci and c′i be two selection clauses over hierarchy hi ∈ H. Let ci.hi ∈ Attr(hi) denote

the attribute of hi involved in ci (conventionally, TRUEi.hi = ALLi). The distance

between ci and c′i is

Distclau(ci, c
′
i) =

0, if ci = c′i;

Distlev(ci.hi, c
′
i.hi) + 1, otherwise

According to this definition, the distance between two selection clauses on hi is 0 if

they are expressed on the same attribute and the same constant, 1 if they are defined

on the same attribute but not on the same constant, greater than 1 if they are defined

on different attributes.

Definition 5.6 (Selection similarity). Let q and q′ be two queries, both on schema

M, with selection predicates P and P ′, respectively, with P = {c1, . . . , cn} and P ′ =

84 Chapter 5 OLAP Similarity

Table 5.3: Query similarities for Example 5.2

q4 q5 q6 q7 q8

q1 0.694 0.927 0.844 0.622 0.866
q2 0.716 0.950 0.866 0.644 0.888
q3 0.661 0.838 0.755 0.616 0.833

{c′1, . . . , c′n}. The selection similarity between q and q′ is

σsel(q, q
′) = 1−

∑n
i=1

Distclau(ci,c
′
i)

|Lev(hi)|

n

Finally, to define the measure similarity, we use the Jaccard index.

Definition 5.7 (Measure similarity). Let q and q′ be two queries, both on schemaM,

with measure sets Meas and Meas′, respectively. The measure similarity between q

and q′ is

σmeas(q, q
′) =

|Meas ∩Meas′|
|Meas ∪Meas′|

We can now define the similarity between two OLAP queries as the weighted average

of the three similarity components defined above.

Definition 5.8 (Similarity of OLAP queries). Let q and q′ be two queries, both on

schema M. The similarity between q and q′ is

σque(q, q
′) = α · σgbs(q, q′) + β · σsel(q, q′) + γ · σmeas(q, q′)

where α, β, and γ are normalized to 1.

Example 5.2. The similarity between queries q1 and q4 of Example 5.1 is computed

as follows:

σgbs(q1, q4) =1− (0/3 + 1/3 + 0/1 + 0/1 + 0/1)

5
= 0.933

σsel(q1, q4) =1− (0/4 + 3/4 + 2/2 + 0/2 + 0/2)

5
= 0.650

σmeas(q1, q4) =
1

2
= 0.500

σque(q1, q4) =0.694

(assuming for simplicity α = β = γ = 0.333). The overall query similarities for

sessions s and s′ are summarized in Table 5.3. 2

Chapter 5 OLAP Similarity 85

5.6 Session Similarity

5.6.1 Edit-Based Session Similarity

The Levenshtein distance compares two strings in terms of the cost of the atomic

operations (typically insertion, deletion, and substitution of a character) necessary to

transform one string into another [Ristad and Yianilos, 1998]. Given two strings s

and s′ of v and v′ characters, respectively, a (v + 1) × (v′ + 1) distance matrix D of

reals is recursively defined in terms of the deletion, insertion, and substitution costs;

the Levenshtein distance between s and s′ is found in the bottom-right cell of D, that

represents the minimum sum of the operation costs to transform s in s′.

In the traditional formulation, an operation is applied in absence of a perfect match

(i.e., of an identity) between the compared characters. In our case this is too restrictive,

because OLAP queries are complex objects whose match is not effectively captured by

identity (see requirement]2). So we consider two queries as matching when their

similarity is above a given threshold θ, and we apply a transformation operation when

the similarity is under θ. Besides, we normalize distances using the length of the longest

of the two sessions involved, so that the cost of a single mismatch is lower for longer

sessions.

Definition 5.9 (Edit-Based Similarity of OLAP Sessions). Let s and s′ be two OLAP

sessions on schemaM, of lengths v and v′ respectively. Given a matching threshold θ,

the distance matrix for s and s′ is a (v + 1) × (v′ + 1) matrix Dθ of reals recursively

defined as follows:

Dθ(i, j) =



0, when i = 0 or j = 0

Dθ(i− 1, j − 1), when i,j > 0 and σque(si, s
′
j) ≥ θ

min


Dθ(i− 1, j) + 1;

Dθ(i, j − 1) + 1;

Dθ(i− 1, j − 1) + 1

 , when i,j > 0 and σque(si, s
′
j) < θ

where si is the i-th query of session s. The edit-based similarity between s and s′ is:

σedit(s, s
′) = 1− Dθ(v, v

′)

max{v, v′}

Note that, like in most applications of the Levenshtein distance, all transformation

costs are set to 1.4 As to complexity of this function, in the general case it is O(v · v′)
where v and v′ are the lengths of the two sessions [Wagner and Fischer, 1974].

4In the formula, the three rows of the min argument deal with deletions, insertions, and substitu-
tions, respectively.

86 Chapter 5 OLAP Similarity

Example 5.3. With reference to Example 5.1 and using θ = 0.7, the minimum cost

to transform s′ to s is obtained by matching queries as follows: 〈q1, q5〉, 〈q2, q6〉, 〈q3, q8〉
and deleting q4 and q7. Thus, it is σedit(s, s

′) = 1− 2
5 = 0.60. 2

5.6.2 Subsequence-Based Session Similarity

An n-gram is a substring of size n of a given string [Brown et al., 1992]. A popular

string similarity function based on n-grams is the Dice coefficient, an extension of the

Jaccard index defined as twice the number of shared n-grams over the total number of

n-grams in the two strings.

In the OLAP context, the concept of “shared” n-grams becomes that of “similar” n-

grams. Two n-grams r and r′ are similar if their queries are pairwise similar, i.e., if

their similarity is above threshold θ. To ensure symmetry while being consistent with

the original definition, in our two-attribute extension similarity is defined as follows.

Definition 5.10 (Subsequence-Based Similarity of OLAP Sessions). Let s and s′ be

two OLAP sessions on schema M, and n ≥ 1. Given a matching threshold θ, the

subsequence-based similarity between s and s′ is

σsub(s, s
′) =

2×min{|SNgramθ(s, s
′)|, |SNgramθ(s

′, s)|}
|Ngram(s)|+ |Ngram(s′)|

where Ngram(s) is the set of n-grams of s and SNgramθ(s, s
′) ⊆ Ngram(s) is the set

of n-grams of s that have a similar n-gram in s′:

SNgramθ(s, s
′) = {r ∈ Ngram(s)|∃r′ ∈ Ngram(s′), σque(ri, r

′
i) ≥ θ ∀i = 1, . . . , n}

The complexity of this function is that of finding the n-grams of the two sessions,

which is O(v) (where v is the length of the longest one), plus that of computing the

sets SNgramθ(s, s
′), which is O((v − n)2).

Example 5.4. Applying the above definition to Example 5.1, with n=1, we obtain

σsub(s, s
′) = 2×min{1,2}

1+2 = 0.67. 2

5.6.3 Log-Based Session Similarity

In the tf-idf approach, the similarity between two sets of tokens (in information retrieval

applications, tokens are lemmas and sets of tokens are documents) depends on both

the frequency of each token in the sets and its frequency in a corpus. In our context,

this approach can be adopted if the OLAP sessions to be compared are taken from a

log, to penalize the non-distinctive queries (i.e., those that are more frequent in the

log) when assessing similarity.

Chapter 5 OLAP Similarity 87

To propose an extension of the tf-idf method we start by applying the definition of soft

tf-idf given by [Moreau et al., 2008]:

Simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (s′ji , s
′) · σque(si, s′ji)

where θ is a threshold,

Closeθ(s, s
′) = {si ∈ s|∃s′j ∈ s′, σque(si, s′j) > θ},

T (si, s) =
tfidf(si, s)√∑
sk
tfidf(sk, s)2

,

tfidf(si, s) = tf(si, s) · idf(si, s) =
nsi,s
|s|
· log |L|
|{s ∈ L|si ∈ s}|

,

s′ji = argmaxs′j∈s′{σque(si, s
′
j)},

nsi,s is the number of times si appears in s, and L is the set of OLAP sessions in the log.

Intuitively, Closeθ(s, s
′) is the set of queries in sessions s that have some similarity to

a query in session s′; tfidf(si, s) is directly proportional to the frequency of query si in

session s and inversely proportional to the frequency of si in the log L (tfidf(si, s) = 0

when all session in L include si); T (si, s) is a normalized form of tfidf(si, s); s
′
ji

is the

query in s′ that is most similar to si.

This definition cannot be immediately used in our case for the following reasons:

1. It uses the “crisp” definition of tf-idf in the definition of T whereas in our case,

given that it is unlikely to find the same query twice in an OLAP log, a “soft”

version (i.e., one based on query similarity) should be used instead.

2. The soft tf-idf is not symmetric, which is not desirable for a similarity function.

3. There may be more than one query s′ji in s′ that maximizes σque with si, which

may not be relevant in the context of named entity matching [Moreau et al.,

2008], but is definitely relevant in the OLAP context.

4. As pointed out by [Moreau et al., 2008], there is a problem with counting that

makes the similarity not normalized.

To cope with the first issue, we inject the similarity σque in the definition of tf-idf. By

replacing equality with similarity, a two-attribute tf-idf can be computed as:

tfidf2(si, s) =
|Closeθ(si, s)|∑

sk∈Q |Closeθ(sk, s)|
· log |L|
|{s ∈ L|Closeθ(si, s) 6= ∅}|

where Q is the set of all queries in L and Closeθ(si, s) is the set of queries of s that

are similar to si.

88 Chapter 5 OLAP Similarity

Symmetry can be achieved by modifying the definition of similarity to work on pairs

of queries, each relating a query in one session with one of its closest queries in the

other session. This set of pairs is defined by:

Rθ(s, s
′) = {〈si, s′k〉|si ∈ s, s′k ∈ Closestθ(si, s′))}∪

{〈sl, s′j〉|s′j ∈ s′, sl ∈ Closestθ(s′j , s)}

where Closestθ(si, s) is the set of queries of s that have maximum similarity with si.

Note that a query in a session appears more than once in Rθ(s, s
′) if there is more than

one query in the other session with maximum similarity. This solves the third issue.

Finally, to cope with the fourth issue, the similarity is computed as the cosine of the

two vectors obtained by taking the tfidf2 of all the first (respectively, second) queries

of the pairs.

Definition 5.11 (Log-Based Similarity of OLAP Sessions). Let s and s′ be two OLAP

sessions on schema M. The log-based similarity between s and s′ is

σlog(s, s
′) =

∑
〈si,s′j〉∈Rθ(s,s′)

T2(si, s, s
′)× T2(s′j , s

′, s)× σque(si, s′j)

where

T2(si, s, s
′) =

tfidf2(si, s)√∑
〈si,s′j〉∈Rθ(s,s′) tfidf2(si, s)2 +

∑
Closestθ(si,s′)=∅ tfidf2(si, s)2

T2(s′j , s
′, s) =

tfidf2(s′j , s
′)√∑

〈si,s′j〉∈Rθ(s,s′) tfidf2(s′j , s
′)2 +

∑
Closestθ(s′j ,s)=∅

tfidf2(s′j , s
′)2

The complexity of this function should obviously be expressed not only in terms of

the sessions to be compared but also in terms of the size of the log; it turns out that

the complexity of computing Rθ(s, s
′) is O(v2), while that for computing all the tfidf2

terms it is O(v × |Q|) where v the length of the longest session in the log.

Note that, as any cosine similarity, σlog can be easily turned into the angle distance

arcos(σlog), which is a metric [Bustos and Skopal, 2011].

Example 5.5. With reference to Example 5.1, we focus on computing the log-based

similarity between s and s′. The set of query pairs used in the computation of σlog(s, s
′)

is R0.7(s, s′) = {〈q1, q5〉, 〈q2, q5〉, 〈q3, q5〉, 〈q2, q4〉, 〈q2, q6〉, 〈q2, q8〉}; the two components

Chapter 5 OLAP Similarity 89

of the tfidf2 weights for each of these queries are as follows:

tf2(q1, s) =0.333 , idf2(q1, s) =0.176

tf2(q2, s) =0.333 , idf2(q2, s) =0.176

tf2(q3, s) =0.333 , idf2(q3, s) =0.000

tf2(q4, s
′) =0.117, idf2(q4, s

′) =0.176

tf2(q5, s
′) =0.235, idf2(q5, s

′) =0.176

tf2(q6, s
′) =0.235, idf2(q6, s

′) =0.176

tf2(q8, s
′) =0.235, idf2(q8, s

′) =0.000

Note that, though q3 and q8 are similar (same group-by set, same selection predicate,

and nearly the same set of measures) and should positively contribute to the similarity

of s and s′, they do not actually enter in the computation of σlog(s, s
′). Indeed, queries

similar to q3 and q8 can be found in each session of the log, making their idf weight 0.

By applying Definition 5.11 we get σlog(s, s
′) = 0.479, while σlog(s, s

′′) = σlog(s
′, s′′) =

0. 2

5.6.4 Alignment-Based Session Similarity

As emerged in Section 5.4, a comparison of OLAP sessions should support subse-

quence alignment, keep query ordering into account, and allow gaps in the matching

subsequences. The Smith-Waterman algorithm mentioned in Section 5.4 has all these

features. It relies on a distinction between matching elements (whose similarity is posi-

tive) and mismatching elements (whose similarity is negative), and is based on a matrix

whose cells show the score for aligning two sequences starting from a specific couple

of elements. Each score is the result of a trade-off between the cost for introducing

a gap in the matching subsequences and the cost for including a mismatching pair of

elements.

Unfortunately, none of the implementations available in the literature can be directly

applied here for different reasons:

• The algorithm was originally aimed at molecular comparison, so sequence ele-

ments were taken from a set that is known a priori (the set of all amino acids).

This allows matching and mismatching pairs to be enumerated and a similarity

score to be assigned in advance to each possible couple of elements. In the OLAP

context matching elements are queries, and the domain of the possible OLAP

queries is huge (requirement]2); besides, the similarity between two queries is

always positive, so separating matching and mismatching queries requires the

adoption of a threshold.

90 Chapter 5 OLAP Similarity

• For the same reason mentioned above, in all previous implementations the cost

for introducing a gap could be assigned in advance to each possible couple of

elements. Conversely, in our case it must be determined at runtime based on the

two specific sessions being compared (requirement]8).

• In all previous implementations all matchings were considered to be equally im-

portant, while in OLAP sessions a matching between recent queries should be

given more relevance (requirement]6).

To address all these issues, we propose an extension of the Smith-Waterman algorithm

that relies on the matrix defined below. The value in position (i, j) of this matrix is

a score that expresses how “well” two sessions s and s′ match when they are aligned

ending in queries si and s′j . Intuitively, each score is recursively calculated by progres-

sively adding the similarities between all pairs of matching queries in the two sessions.

Threshold θ is used to distinguish matches from mismatches; a time-discounting func-

tion ρ(i, j) is used to promote alignments based on recent queries; finally, a gap penalty

δ is used to discourage discontinuous alignments.

Definition 5.12 (OLAP Session Alignment Matrix). Let s and s′ be two OLAP

sessions on schemaM, of lengths v and v′ respectively. Given a matching threshold θ,

the (OLAP session) alignment matrix for s and s′ is a (v + 1) × (v′ + 1) matrix A of

reals recursively defined as follows:

A(i, j) =



0, when i = 0 or j = 0

max



0;

A(i− 1, j − 1) + (σque(si, s
′
j)− θ) · ρ(v − i, v′ − j);

max1≤k<i{A(k, j)− δ · (i− k)};

max1≤k<j{A(i, k)− δ · (j − k)}


, else

where δ is the average similarity between all couples of queries in s and s′ whose

similarity is above θ:

δ = avg(i,j):σque(si,s′j)≥θ{σque(si, s
′
j)} ,

ρ is a two-dimensional logistic sigmoid function:

ρ(i, j) = 1− 1− ρmin
1 + eslope−i−j

,

ρmin is the minimal value assumed by ρ (i.e., the maximum time discount), and slope

rules the position where the slope is steepest (Figure 5.2).

Some observations on the above definition:

Chapter 5 OLAP Similarity 91

Figure 5.2: The time-discounting function ρ(i, j) with ρmin = 0.66 and slope = 4

• The use of the term σque(si, s
′
j) − θ implies that query pairs whose similarity is

above (below) θ are considered as matches (mismatches). Although a “sharp”

threshold is used, the score of a matching pair and the cost of a mismatching

pair turn out to be proportional to the distance of that pair similarity from θ.

• The definition given of the gap penalty δ is such that it guarantees a gap penalty

to be payed if it enables a good match (i.e. a match higher than the average).

Note that a penalty only related to the threshold could lead to underestimating

or overestimating the impact of a gap on the overall similarity.

• The time-discounting function ρ leads match and mismatch scores to decay when

moving backwards along the two sessions; it is maximum and equal to 1 for the

ending queries of the two sessions.

The optimal alignment between s and s′ is determined by the highest value in A, A,

that we call alignment score. The positions i and j such that A(i, j) = A mark the

end of the matching subsequences of s and s′.

The alignment score is not really a similarity value, since it is not limited in the interval

[0..1]. This creates problems when comparing sessions with difference length. Then we

define OLAP session similarity by normalizing the alignment score:

Definition 5.13 (Alignment-Based Similarity of OLAP Sessions). Let s and s′ be two

OLAP sessions on schema M, of lengths v and v′ respectively (with v ≤ v′), and let

A be the alignment score for s and s′. The alignment-based similarity between s and

s′ is

σali(s, s
′) =

A

(1− θ)
∑v

k=1 ρ(k, k)

where the normalizing factor is the alignment score for two identical sessions of length

v.

92 Chapter 5 OLAP Similarity

Table 5.4: Threshold-filtered and discounted query similarities, (σque(si, s
′
j) − θ) ·

ρ(v − i, v′ − j), for Example 5.6

q4 q5 q6 q7 q8
q1 -0.004 0.171 0.120 -0.071 0.160
q2 0.013 0.208 0.151 -0.053 0.186
q3 -0.032 0.126 0.053 -0.082 0.132

Table 5.5: OLAP session alignment matrix for Example 5.6

q4 q5 q6 q7 q8
q1 0.000 0.171 0.120 0.000 0.160
q2 0.013 0.208 0.322 0.191 0.186
q3 0.000 0.139 0.261 0.241 0.323

Like for edit-based similarity, the complexity of this function is known to be O(v · v′)
where v and v′ are the lengths of the two sessions [Li and Durbin, 2010].

Example 5.6. Again we focus on comparing s and s′ of Example 5.1. Table 5.4

reports the results obtained by filtering query similarities with θ = 0.7 and applying the

time-discounting function ρ as shown in Definition 5.12. Note that a negative value

represents a mismatch, and a positive one a match. Table 5.5 shows the OLAP session

alignment matrix for s and s′; the cells in bold denote alignments between two queries

(e.g., q1 is aligned with q5), those in italics refer to gaps. Alignments on recent queries

are favored, so q3 is aligned with q8. Query q4 is not involved in the alignment due to

the low similarity it has with the other queries in s. In q7, a gap penalty is paid to gain

the good match between q3 and q8. The overall similarity between s and s′ is 0.323 (the

highest value in the matrix). After normalization, we obtain σali(s, s
′)=0.387. 2

The properties of the proposed similarity function can be evaluated in terms of the

distance function it induces using the standard transformation σali = 1/(1 +Distali).

As stated by [Bustos and Skopal, 2011] for the original Smith-Waterman approach,

Distali is not a metric because, while it is non-negative and symmetrical, it is not

reflexive and it does not satisfy the triangular inequality as shown in Example 5.7. In

particular, the triangular inequality cannot be satisfied because this approach is based

on a local alignment.

Example 5.7. Let s = 〈q1, q2〉, s′ = 〈q1, q2, q3, q4〉, and s′′ = 〈q3, q4〉 be three sequences,

where σque(qi, qj) = 0 if i 6= j. It is

Distali(s, s
′′) =∞ , Distali(s, s

′) = Distali(s
′, s′′) = 0

which obviously contradicts the triangle inequality axiom. Besides, s′ has zero distance

from both s and s′′ though s 6= s′ 6= s′′. 2

Chapter 5 OLAP Similarity 93

5.7 Validation

This section discusses the outcomes of the tests we run to answer three main questions:

Do the proposed solutions properly capture the idea of similarity as perceived by the

users? Do they adequately express the similarity criteria proposed in Section 5.3?

What are their discriminant capabilities? While the first question will be answered in

Subsection 5.7.1, the remaining two questions will be discussed in Subsection 5.7.2.

5.7.1 User Tests

As stated in Section 5.3, we submitted a questionnaire to 41 persons with different

OLAP skills. The results have been used in the first stages of this work to understand

how OLAP session similarity is perceived by users, and they will be used here to verify

if the proposed methods capture the users’ perception of similarity. To enable a better

interpretation of the results, for each questionnaire test we show the consensus φ, i.e.,

the degree of agreement among raters, defined as the percentage of users who gave the

majority judgement.

The first four tests of the questionnaire were focused on OLAP query comparison. In

each test the users were asked to rate the similarity between a given query qc and three

other queries {q1, q2, q3} in both absolute (using four scores: low, fair, good, and high)

and relative terms (i.e., by ranking queries in order of similarity). All queries were

focused on the complete CENSUS schema (including 5 hierarchies and 6 measures);

they were basic OLAP queries as of Definition 5.1 and were presented in a graphical

way. We used the results obtained in two ways: (i) to compare σque with function

σAJD mentioned in Section 5.5 in terms of compliance with the users’ judgments; and

(ii) to set the weights of the three components of our query similarity function σque.

As to (i), we defined two matching factors as follows:

• The score matching factor SM for σ is the percentage of times the score given by

a user is the same returned by σ. To compute it, we first discretized the values

returned by σ in ranges corresponding to low, fair, good, and high.

• The rank matching factor RM for σ is the percentage of cases in which the

rankings σ provides match with those given by users (e.g., qc was judged to be

more similar to qi than to qj , and σ(qc, qi) > σ(qc, qj)).

As to (ii), we tuned the weights through an optimization process whose goal func-

tion was the maximization of the correspondence with the questionnaire results. To

avoid overfitting we used a ten folds cross-validation approach. The ranges for the

weights were chosen consistently with requirement]4 in Section 5.3: α ∈ [0.2, 0.5],

94 Chapter 5 OLAP Similarity

Table 5.6: Consensus and matching factors for OLAP query comparison user tests

Consensus σAJD σque
φscore φrank SM RM SM RM

Test 1 70% 94% 70% 94% 70% 94%
Test 2 56% 70% 56% 56% 56% 70%
Test 3 41% 64% 34% 57% 41% 64%
Test 4 73% 93% 49% 93% 59% 93%

Figure 5.3: Questionnaire matching for σque as a function of weights α and β

β ∈ [0.35, 0.75], γ ∈ [0.05, 0.45]. The function to be optimized was the average value

of RM for σque in Tests 1 to 4, that measures the percentage of cases in which the

rankings provided by σque match with those given by users. Figure 5.3 shows the av-

erage RM as a function of α and β (γ is set so that they sum up to 1). The optimal

weights turned out to be α = 0.35, β = 0.5, and γ = 0.15 (β > α, consistently with re-

quirement]4); noticeably, RM smoothly decreases for increasing distances from these

optimal values, which proves that the setting is robust.

The comparison results are reported in Table 5.6. For all the tests, σque matches the

users’ judgement at least like σAJD thanks to its fine-grained definition. In particular,

σque returns the same answers given by the majority of the users (i.e. the highest

possible values for SM and RM) in Tests 1, 2, and 3, while σAJD returns the same

answers only in Test 1. Note that σAJD falls short both when there is high user

consensus (Test 4) and when user consensus is low because queries are very similar to

each other (Tests 2 and 3). Overall, these results confirm a strong correlation between

the query similarity computed through σque and the one perceived by users. Since σque

is more sensitive than σAJD and it shows better results, in the remaining tests we will

focus on the former.

The second part of the questionnaire included five more tests focused on OLAP session

comparison. In each test, the users were asked to evaluate the similarity of a given

session sc against three candidate sessions {s1, s2, s3} in absolute and relative terms.

Chapter 5 OLAP Similarity 95

Table 5.7: Consensus and matching factors for OLAP session comparison user tests

Consensus σedit σsub σlog σali
φscore φrank SM RM SM RM SM RM SM RM

Test 1 51% 75% 51% - 29% - 51% 75% 51% 71%
Test 2 43% 70% 33% - 9% - 39% 70% 43% 70%
Test 3 51% 64% 41% - 4% - 51% 46% 51% 46%
Test 4 36% 80% 19% - 26% - 35% 65% 35% 65%
Test 5 38% 78% 33% - 13% - 33% 70% 33% 70%

Sessions were graphically presented to users as sequences of queries, emphasizing the

OLAP operator used to move from one query to the next one. The results are sum-

marized in Table 5.7 for the four functions described in Section 5.6, by applying SM

and RM to sequences rather than to single queries. Note that the edit-based and the

subsequence-based approaches, that do not directly incorporate the σque score in their

definitions, are not sensitive enough to rank the sessions proposed in our tests. In fact,

they return the same similarity for most sessions involved in each test, so their RM

cannot be determined. This also penalizes SM , that is significantly low.

Conversely, both the log-based and the alignment-based approaches perform very well

and the scores returned are, in most cases, those of the majority of users (i.e., SM =

φscore and/or RM = φrank, that is the maximum attainable). The errors always involve

sequences that are quite similar, making the comparison more subjective. Note that

the absolute consensus is always much lower than the relative one; this can be explained

considering that scoring entails a 4-valued choice, while ranking only requires choosing

between two alternatives (sc is either more similar to si than sj or not), thus making

inter-user agreement more likely. Some more detailed comments for single tests of

log-based and alignment-based approaches follow:

• In test 1, candidate sessions differ in the length of the match. s1 and s2 are very

similar to each other and determine a long match with sc, while s3 is quite dif-

ferent from the others. While the log-based approach returns the same results as

the majority of users, the alignment-based approach returns an inverted ranking

between s1 and s2, which is a minor issue due to their strong similarity.

• In test 2, candidate sessions differ in the position of the match. The log-based

approach returns a score that is slightly different from the one of the majority

group since it does not give different relevance to matches of recent and old

queries.

• In test 3, all three candidate sessions are quite similar to each other and to sc,

leading to a difficult ranking operation for both functions.

• In test 4, each candidate session differs from the reference only for one of the

components of its queries (group-by set, predicates, and measures). Both ap-

proaches agree with the users majority in indicating the session that differs in

96 Chapter 5 OLAP Similarity

∧ ∨ + || ��

Figure 5.4: The templates used to generate sessions. Overlapping circles represent
identical queries, near circles represent similar queries. For template ||, the queries

are pairwise separated by one atomic OLAP operation

their selection predicates as the less similar to the reference session. However,

both approaches return an inverted ranking between the sessions that differ in

their group-by sets and in their predicates, respectively. This is probably due to

the weight we use for measure similarity, γ = 0.15, that in this particular case is

not low enough to counterbalance the relevant difference on measure sets.

• In test 5, session s1 is very similar to sc; s2 and s3 are similar to each other

and quite different from sc. Both approaches agree with the users majority in

indicating s1 as the most similar to sc, but they disagree in ranking the other

two sessions. This is actually not surprising in light of the low relative consensus

(φrank(s2, s3) = 61%).

5.7.2 Objective Tests

In this subsection we compare the four functions described in Section 5.6; for subsequence-

based similarity we use 3-grams (empirically tested for best results). All tests were

conducted on a 64-bits Intel Xeon quad-core 3GHz, with 8GB RAM, running Win-

dows 7 pro SP1; the similarity threshold was tuned to θ = 0.8 to achieve the best

results.

Our benchmark includes a set of synthetic sessions over the CENSUS schema, generated

based on Definition 5.2 with our own log generator developed in Java. A session is

generated starting from an initial query and a final query, both obtained by randomly

choosing a group-by set, a selection predicate, and a subset of measures. Intermediate

queries are then generated by applying, one at a time in a random order, the minimal

atomic OLAP operations that transform the initial query into the final one. The

atomic OLAP operations considered are: change attribute along one hierarchy in the

group-by set, add or remove a clause from the selection predicate, change the constant

appearing in a selection clause, and add or remove a measure.

To generate logs we considered the five templates depicted in Figure 5.4, that model

intuitive notions of what similar sessions might look like:

Chapter 5 OLAP Similarity 97

s s's
1

s
2

s
3

Figure 5.5: The seed session s (in black), its mate s′ according to template ∧ (in
dark gray), and three random sessions (in light gray). The first and last queries of

sessions are circled.

• In template ∧, the two sessions have similar starting queries then they diverge

to radically different queries.

• In template ∨, the two sessions have radically different starting queries then they

converge to similar ending queries.

• In template +, the two sessions converge to the same query then they diverge.

• In template ||, the second session is constructed by “shifting” all queries in the

first session by one OLAP operation.

• In template ��, the two sessions have the same queries in reverse order.

In light of the requirements expressed in Section 5.3, some of these templates should

yield higher similarities. In particular, we want template ∨ to yield higher similarities

than ∧ due to requirement]6. For requirement]7, we also expect || to yield higher

similarities than ∨, ∧, and +. As to ��, requirement]5 imposes that it yields low

similarities.

The first test assesses the capabilities of the similarity functions. In this test, for each

template we generated a log as follows (see also Figure 5.5 for an example):

1. Generate a pair of sessions, s and s′, that respect the template.

2. Generate 5 more sessions s1, . . . s5 using s as a seed. The first and the last query

of si are obtained by applying three random atomic OLAP operations to the

first and the last query of s, respectively; then, the intermediate queries of si are

generated as described above.

3. Repeat the two previous steps 5 times.

This means generating overall 5 logs, each including 35 sessions. Then, for each log and

each similarity function, we computed the ratio τ of the average similarity σt between

the two sessions respecting the template and the average similarity σr between each

98 Chapter 5 OLAP Similarity

Table 5.8: Ratio τ for template-based OLAP session comparison objective tests

Log σedit σsub σlog σali
∧ 1.39 1.16 1.39 2.32
∨ 1.46 1.52 1.31 3.21
+ 1.44 1.23 1.32 2.15
|| 1.79 1.57 1.51 5.23
�� 1.08 1.57 1.42 0.78

average 1.40 1.35 1.35 2.51

Table 5.9: Ratio τ for increasing distances in the || template

|| dist σedit σsub σlog σali
1 1.79 1.57 1.51 5.23
2 1.91 1.55 1.51 3.78
3 1.86 1.56 1.45 3.48
4 1.81 1.52 1.42 2.80
5 1.81 1.52 1.55 2.68

seed and the 5 sessions generated from it; the higher τ , the better the function can

distinguish a template from the background. Table 5.8 reports the results. Noticeably,

the alignment-based approach largely outperforms the others; besides yielding an av-

erage τ that is almost twice that of the other approaches, it meets the expectations

as to template similarities. Template || is correctly recognized as the one with highest

similarity; ∨ clearly yields higher similarities than ∧, while �� yields low similarities

since it does not fulfill requirement]5 about query ordering. The only other function

that captures requirement]5 is σedit. Noticeably, though all the other functions return

an average ratio τ higher than 1, they are not sensitive enough to distinguish and rank

the different templates.

The purpose of the second objective test is to discover how sensitive each function is to

the distance between the two sessions that form template ||; to this end, the number of

atomic OLAP operations that separate these two sessions is varied from 1 to 5 (using

the same log-generation algorithm explained for the first test). Even in this test σali

turns out to be more effective than the other functions. Indeed, as shown in Table 5.9,

the ratio τ for σali progressively decreases for increasing distances, while for the other

functions it is almost constant. This is because σali is sensitive to the specific values

of similarity between each couple of queries, while for the other functions each couple

of queries either match or do not match.

The next test measures the time for computing each similarity function. For this test

we generated a log, randomly chose one session s, and compared all prefixes of s with

10 other sessions randomly chosen from the log. Note that, for log-based similarity, we

disregard the time for building the frequency matrix used in the computation of all the

idf’s. We report the results for a minimum prefix of 1 query and a maximum prefix of

Chapter 5 OLAP Similarity 99

13 queries. As expected, the subsequence-based approach is the most efficient (from

0.4 ms to 3.6 ms for a single comparison), followed by the alignment-based approach

(from 1.1 ms to 7.1 ms) and by the edit-based approach (from 1.3 ms to 8.3 ms).

Log-based similarity is the less efficient (from 30.4 to 75.1 ms).

We close this subsection with a final remark related to efficiency. OLAP sessions are

inherently interactive; to understand to what extent our approach can realistically be

adopted to compare sessions at user-time, we made two tests using the same protocol

adopted for the test above:

• We measured how many comparisons can be made for each similarity function

during 100 ms, which is usually considered to be the maximum interactive re-

sponse time [Khoussainova et al., 2010b]. The number of comparisons ranges from

109 for subsequence-based similarity to 3 for log-based similarity, with alignment-

based and edit-based similarity scoring 32 and 31 comparisons, respectively.

• We measured how many comparisons can be made during the average time it

takes to evaluate a query. To this end we randomly chose a session in the log

and computed the average execution time for its queries, expressed in MDX;

we used real data extracted from the IPUMS database [Minnesota Population

Center, 2008], corresponding to about 500,000 facts stored on Oracle 11g. The

average query execution time turned out to be 553.46 ms, which corresponds to

607 comparisons for subsequence-based similarity, 177 and 175 comparisons for

alignment-based and edit-based similarity respectively, and 18 comparisons for

log-based similarity.

5.8 Conclusions

In this chapter we investigated different approaches for defining a similarity function

to compare OLAP sessions, based on the requirements deduced from a user study

conducted with practitioners and researchers [Aligon et al., 2013]. We considered and

compared two functions for OLAP query similarity and four functions for OLAP session

similarity; in particular, the latter were obtained by extending popular approaches

for string comparison. Overall, the experimental results we obtained show that the

alignment-based approach (an extension of the Smith-Waterman algorithm, coupled

with a three-component query similarity function) is the one that best matches the

users’ judgements. It is also the one that clearly gives best results on a synthetic

benchmark in terms of sensitivity and capability of correctly ranking different templates

of session similarity. Finally, from the point of view of efficiency, the time required for

comparing two sessions is perfectly compatible with complex applications. As to future

works, we propose to exploit the result of the similarity comparison between the current

user session and the past ones to recommend the next query to formulate.

Chapter 6

Agile Data Warehouse Design

In this chapter, we support BI ANYTIME by proposing a new methodology, 4WD, that

combines agile principles with DW peculiarities to accelerate the DW development. We

prove the effectiveness of our methodology with a case study on a pay-tvs project.

6.1 Introduction

DW systems are characterized by a long and expensive development process that hardly

meets the ambitious requirements of today’s market. This is one of the main causes

behind the low penetration of DW systems in small-medium firms, and even behind

the failure of whole projects [Ramamurthy et al., 2008].

As a matter of fact, DW projects often leave both customers and developers dissatis-

fied. The main reasons for low customers’ satisfaction are the long delay in deliver-

ing a working system and the large number of missing or inadequate (functional and

non-functional) requirements. As to developers, they complain that —mainly due to

uncertain requirements— it is overly difficult to accurately predict the resources to be

allocated to DW projects, which leads to gross errors in estimating design times and

costs.

In the light of the above, we believe that the methodological issues related to DW

design deserve some further investigation aimed at improving the development process

from different points of view, such as efficiency and predictability.

The available literature on DW design mainly focuses on traditional, linear approaches

such as the waterfall approach, and it appears to be only loosely related to the so-

phisticated design methodologies that have been emerging in the software engineering

community. Though some works about agile data warehousing have appeared [Hughes,

2008], there are also evidences that applying an agile approach tout court to DW design

101

102 Chapter 6 Agile Data Warehouse Design

has several risks, such as that of inappropriately narrowing the DW scope [Beyer and

Richardson, 2010].

In this chapter, we analyze the potential advantages arising from the application of

modern software engineering methodologies to a DW project and we propose 4WD,

a design methodology that aims at coupling the main principles emerging from these

methodologies to the peculiarities of DW projects [Golfarelli et al., 2011c]. The chapter

outline is as follows:

• In Section 6.3, we better explain the motivation of 4WD, starting from the prob-

lems of the existing methodologies to reach the goals of a better and innovative

DW development approach.

• In Section 6.4, we list the main features of 4WD, explaining how these charac-

teristics may address the aforementioned goals.

• In Section 6.5, we propose a case study on a pay-tvs project to validate our

methodology.

6.2 Related Works

DW design has been investigated by the research community since the late nineties. A

classic waterfall approach was first proposed in [Golfarelli and Rizzi, 1998]; a distin-

guishing feature was the inclusion of a conceptual design phase aimed at better formal-

izing the data schema. A sequential approach to design is also followed in [Luján-Mora

and Trujillo, 2003], where an object-oriented method based on UML is proposed to

cover analysis, design, implementation, and testing. Another UML-based method is

presented in [Prat et al., 2006]; here, the use of the Common Warehouse Metamodel

(CWM) is suggested to promote a more standard approach to conceptual design. All

these methodologies follow a linear approach that hardly adapts to changes and is

unsuitable when requirements are uncertain.

To overcome these issues, iterative solutions have been proposed in the literature.

Iterative approaches are typically adopted by methodologies like RAD and Agile. The

work in [Hughes, 2008] breaks with strictly sequential approaches by applying two

Agile development techniques, namely scrum and eXtreme Programming, to the specific

challenges of DW projects. To better meet user needs, the work suggests to adopt a

user stories decomposition step based on a set of architectural categories for the back-

end and front-end portions of a DW. However, it does not deeply discuss how this

decomposition impacts on modeling and design.

A different approach to tackle the DW design complexity is the MDA methodology

proposed in [Mazón and Trujillo, 2009] to better separate the system functionality

Chapter 6 Agile Data Warehouse Design 103

Figure 6.1: Cause-effect relationships in customer and developer dissatisfaction

from its implementation. Strong relevance is given to the development of the DW

repository; the three main perspectives of MDA (CIM, PIM, and PSM) are defined

using extensions of UML and CWM, and the inter-model transformations are described

using the Query/View/Transformation (QVT) language. In practice, strictly applying

this methodology may be hard due to the poor aptitude of users for reading formal

models and investing resources in low-values activities.

A pragmatic comparison between DW design methodologies is offered in [Sen and

Sinha, 2005], where 15 different solutions proposed by BI software vendors are exam-

ined. The authors emphasize the lack of software-independent approaches, and point

out that all the proposed solutions hardly can deal with changes and market evolution,

which creates a robustness problem.

6.3 The Motivation for 4WD

The tern Problems-Goals-Principles represents the ’fil rouge’ of our research method.

First, we carried out a deep investigation on the main reasons of failure of the current

DW methodologies (i.e., problems). Second, we discuss the goals to improve the DW

development process (i.e., goals). Third, we find the principles to pursue the goals

(i.e., principles). Finally, we describe how 4WD encompasses the principles.

6.3.1 From Problems to Goals

Our experience with real projects led us to attempt a classification of the main rea-

sons why customers (meant as both sponsors and users) and developers often end up

with being dissatisfied. Figure 6.1 summarizes the results of this investigation, dis-

tinguishing between problems, complaints, and their human impact, and emphasizing

the existing cause-effect relationships between them. A closer glance at the problems

column reveals that:

104 Chapter 6 Agile Data Warehouse Design

• Requirements for data analyses are often unclear and uncertain, mainly because

decision processes are flexibly structured and poorly shared across large organiza-

tions, but also because of a difficult communication between users and analysts.

Besides, the fast evolution of the business conditions may cause requirements

to drastically change even in the short-term [Giorgini et al., 2008]. Failing to

address these problems dramatically contributes to making users perceive the

system as inadequate from the functional point of view and leads to inflating

the overall project duration and cost by introducing unexpected delays in the

development process.

• DWs are normally built one data mart at a time; each data mart is developed

following a linear approach, which means that the different phases are organized

into a rigid sequence. Releasing a data mart requires 4-6 months, and it is very

difficult to provide intermediate deliveries to be discussed and validated with

users, who may easily feel not sufficiently involved and understood, and loose

interest in the project.

• The intrinsic complexity of DW design depends on several issues. Among the

most influential ones, we mention a couple: DW design leans on data integration,

that in most cases is a hard problem; the huge data volume and the workload

unpredictability make performance optimization hard. Problems related to data

quality and performances have a particularly negative impact on the perceived

system inadequacy.

We argue that these problems can be solved by working on four qualities of the software

development process [Ghezzi et al., 2002], as explained below.

1. The reliability of a development process is the probability that the delivered

system completely and accurately meets user requirements. In our context, in-

creasing the reliability of the design process can contribute to addressing the

“inadequate system” complaint, i.e., to ensuring a high-quality and satisfactory

final system.

2. By robustness we mean the process flexibility, i.e., its capability of quickly and

smoothly reacting to unanticipated changes in the environment. A robust process

can more effectively accommodate both uncertain and changing requirements.

3. The process productivity measures how efficiently it uses the resources assigned to

the project to speed up system delivery. Increasing productivity leads to shorter

and cheaper projects.

4. The timeliness of a process is related to how accurately the times and costs for

development can be predicted and respected. A timely process makes resource

estimates more reliable.

Chapter 6 Agile Data Warehouse Design 105

6.3.2 From Goals to Principles

To understand how the main software engineering methodologies devised in the last

thirty years can help designers achieve our four quality goals, we analyzed the objec-

tives and underlying principles of seven methodologies, namely Waterfall [Royce, 1987],

Rapid Application Development [Martin, 1991], Prototyping-Oriented Software Devel-

opment [Pomberger et al., 1991], Spiral Software Development [Boehm, 1988], Model-

Driven Architecture [Kruchten, 1995], Component-Based Software Engineering [Heine-

man and Councill, 2001], and Agile Software Development [Agile Manifesto, 2010].

Overall, the emerging methodological principles can be condensed as follows:

• Incrementality and risk-based iteration. Developing and releasing the system in

increments leads to a better management of the project risks, thanks to a proper

prioritization of activities aimed at letting the most critical requirement features

drive the design of the skeleton architecture. A stepwise refinement based on

short iterations increases the quality of projects by supporting rapid feedback

and quick deliveries [Boehm, 1988, Martin, 1991].

• Prototyping. Complex projects are conveniently split into smaller units or incre-

ments corresponding to sub-problems that can be more easily solved and released

to users. To facilitate requirement validation and obtain better results, system

development is achieved by refining and expanding an evolutionary prototype

that progressively integrates the implementation of each increment [Pomberger

et al., 1991].

• User involvement. Project specifications are difficult to be understood during

the preliminary life-cycle phases. A user-centered design increases customer sat-

isfaction and promotes a high level of trust between the parties. Indeed, this

feature focuses on constant communication and user participation at every stage

of software development.

• Component reuse. The reuse of predefined and tested components speeds up

product releases and promotes cost reduction as well as software reliability [Heine-

man and Councill, 2001].

• Formal and light documentation. A well-defined documentation is a key feature

to comply with user requirements. Moreover, formal analysis leads to clear and

non-ambiguous specifications, and user involvement enables light and up-to-date

documentation [Agile Manifesto, 2010, Kruchten, 1995, Royce, 1987].

• Automated schema transformation. This feature involves the use of formal and

automated transformations between schemata representing different software per-

spectives (e.g., between conceptual and logical schemata). This accelerates soft-

ware development and promotes standard processes [Kruchten, 1995].

106 Chapter 6 Agile Data Warehouse Design

Table 6.1: Expected impact of methodological principles on process quality goals

Reliability Robustness Productivity Timeliness

Incrementality
and risk-based
iteration

continuous
feedback,
clearer require-
ments

better manage-
ment of change

better manage-
ment of project
resources, rapid
feedback

early detection
of errors

Prototyping
frequent tests,
easier error de-
tection

early deliveries

User involve-
ment

better requir.
validation,
better data
quality

early error de-
tection

Component
reuse

error-free com-
ponents

faster design
predictable de-
velopment

Formal & light
documenta-
tion

clearer require-
ments

easier evolution faster design

Autom.
schema trans-
formation

optimized per-
formances

easier evolution faster design
predictable de-
sign

Table 6.1 summarizes the relationship between these methodological principles and

the four quality goals introduced in Subsection 6.3.1, i.e., it gives an idea of how each

principle can help increase each quality factor with specific reference to a DW project.

More details are given in the following section.

6.3.3 From Principles to 4WD

In this section we propose an innovative design methodology, called 4WD, leaning on

the principles discussed in the previous section. These principles are applied in such

a way as to effectively balance their pros and their cons, as resulting from practical

evidences emerged during the real DW projects 4WD was applied to. Besides the

projects we were directly involved in, our findings are based on an elaboration of the

experiences collected during the last five years by some practitioners we collaborate

with.

As sketched in Figure 6.2, 4WD is based on nested iteration cycles. The external one

is called data mart cycle; it defines and maintains the global plan for the development

of the whole DW and, at each iteration, it incrementally designs and releases one data

mart. After completing the activities related to the data mart planning, the team

proceeds with the data mart design. It is achieved by the fact cycle, that refines the

data mart plan and incrementally designs and releases its facts. Finally, fact design is

based on two cycles (modeling and implementation cycles, respectively), that include

the core of analysis, design, and implementation activities for delivering reports and

Chapter 6 Agile Data Warehouse Design 107

DM Design

D
W

 P
la

n
n

in
g

Data Mart Priorities

Conformity Analysis

Architectural Sketch

DM Cycle

Implementation Cycle

Physical

&

Logical

Design

Application

Development

ETL
Design

Testing

Modeling Cycle

Conceptual

Design

Requirement

Analysis

Source
Analysis

Testing

D
M

 P
la

n
n

in
g

Fact Cycle

Fact Design

Fact Priorities

Source & Fact

Macro-Analysis

DW Schema

Fact

Prototype

Bus Matrix
Fact Schema

Data Mart

Figure 6.2: A sketch of the 4WD methodology

applications concerning a single fact. The activities in a cycle can be carried out in

parallel. The documents produced can be distinguished into releases (that correspond

to project milestones) and deliveries (used for testing and validation). Remarkably,

cycles are nested in a way that enables a reassessment of the decisions made during an

outer iteration based on the evidences emerging from an inner iteration.

The main activities carried out in the data mart cycle are:

• Architectural sketch, during which the overall functional and physical architecture

of the DW is progressively drawn based on a macro-analysis of user requirements

and an exploration of data sources as well as on budget, technological, and orga-

nizational constraints.

• Conformity analysis, aimed at determining which dimension of analysis will be

conformed across different facts and data marts. Conforming hierarchies in terms

of schema and data is a key element to allow cross-fact analysis and obtain

consistent results.

• Data mart prioritization, based on a trade-off between user priorities and tech-

nical constraints.

• Data mart design, which builds and releases the top-priority data mart. After

each data mart has been built, the three phases above are iterated to allow the

DW plan to be refined and updated.

The activities carried out within a fact cycle are:

108 Chapter 6 Agile Data Warehouse Design

• Source and fact macro-analysis, aimed at checking the availability, quality, and

completeness of the data sources and determining the main business facts to be

analyzed by users.

• Fact prioritization that, like for data marts, is the result of a trade-off between

user requirements and technical priorities.

• Fact design, which develops and releases the top-priority fact. After that, the two

phases above are iterated to allow the data mart plan to be refined and updated.

Finally, the activities necessary to release a single fact (or even a small set of strictly

related facts) are grouped into two separate sub-cycles to emphasize that releasing

a conceptual schema of a fact marks a clear separation between a modeling and an

implementation phase for the fact itself. Validating the conceptual schema of a fact

before implementation leads to reducing the number of implementation cycles, i.e., to

faster fact cycles. While modeling should come before implementation, the activities

included in each sub-cycle are not strictly sequential and can be differently prioritized

by each project team. Each sub-cycle can be iterated a number of times before its

results (the conceptual schema in the first case, the analysis applications in the second)

are validated and released.

6.4 The 6 Features of 4WD

4WD is characterized by 6 features complying with the principles described in Subsec-

tion 6.3.2.

6.4.1 Incrementality and Risk-Based Iteration

As suggested by the RAD approach, iteration is at the core of 4WD and is coupled with

incremental development, that aims at slicing the system functionality into increments;

in each increment, a portion of the system is designed, built, and released. Developing

a system through repeated cycles leads to lower risk of misunderstood requirements

(higher reliability and timeliness), to faster software deliveries (higher productivity),

and to more flexible management of evolving requirements and emerging critical issues

(higher robustness) [Martin, 1991].

Though these advantages are largely acknowledged in all modern methodologies, the

type of iterations and their frequencies vary from one another depending on the type

of software to be developed. For example, agile methodologies pushes segmentation to

the limit by centering iteration on the so-called user stories, meant as high-level func-

tional requirements —concisely expressed by users in their business language— that

can be released in a few days. Since functional requirements in DW projects are mainly

Chapter 6 Agile Data Warehouse Design 109

expressed in terms of analysis capabilities, agile DW design often focuses each iteration

on a small set of reporting or OLAP functionalities. While this may sound natural to

business users, it can lead to dramatically increasing the overall design effort, because

it gives little or no relevance to the multidimensional schemata adopted to store infor-

mation. Indeed, as reported by designers who adopt functionality-centered iterations

in DW projects, a common problem is that they fail in recognizing that apparently

different analyses, designed during separate iterations, are actually supported by the

very same multidimensional schema.

In 4WD, the shortest iterations that release a tangible result to users are those for

modeling and implementing a single fact, that are normally completed in 2-4 weeks

overall. This release rate could seem to be not very high, but it is backed by quite

more frequent deliveries. Indeed, the modeling and implementation cycles have a daily

to weekly frequency; the deliveries they produce enable a progressive refinement of the

fact conceptual schema and implementation through a massive test based on active

involvement of users.

Incremental techniques require a driver to define an order for developing increments.

In 4WD this is done when deciding data mart and fact priorities, and in both cases

risk is the driver —as suggested by the Spiral Software Development approach [Boehm,

1988]. The project team should balance the risk of early releasing data marts/facts

that are not highly valuable to users —which would lead users to lose interest in the

project— against the risk of ordering design activities in a non-optimal way —which

would determine higher costs and a longer overall project duration. Some guidelines for

reducing the risk in data mart prioritization are: (a) Give priority to data marts that

include widely shared hierarchies, which makes the overall schema more robust and

ensures that dimensions are fully conformed; (b) Give priority to data marts that are

fed from stable and well-understood data sources; and (c) Postpone data marts based

on unclear requirements, assuming that these requirement will be better understood

as the user’s involvement in the project increases. As to facts: (a) Give priority to

facts that include the main business hierarchies and require the most complex ETL

procedures; (b) Adopt a data-driven approach to design rather than a requirement-

driven one whenever users do not appear to have a deep knowledge of the business

domain; and (c) Plan the length of an iteration in proportion to the complexity of

the fact, since failing a release in the early stage of a project will undermine the team

credibility.

6.4.2 Prototyping

Prototyping has a crucial role in most modern software projects. In a DW project,

an evolutionary (where a robust prototype is continuously refined) and incremental

(where the prototype is gradually enlarged by adding new sub-systems) approach to

110 Chapter 6 Agile Data Warehouse Design

prototyping is generally preferable to a throw-away approach (where the prototype

is used to demonstrate a small set of functions and then is abandoned). In fact,

the effectiveness of prototyping is maximized when the prototype is tested together

with users, and in a DW project this requires the whole data flow —from operational

sources to the front-end through ETL— to be prototyped: a large effort, that should

not be wasted. The main advantages of prototyping, with particular reference to a

DW project, can be summarized as follows:

• Prototypes help designers to validate requirements, because they allow users

to evaluate designers’ proposals by trying them out, rather than interpreting

design documents. This is particularly crucial to enable a better understanding

of hierarchies by users [Sommerville, 2004].

• Prototypes are especially valuable to improve the design of reports and analysis

applications, due to their interactive nature. In general, prototype-based user-

interfaces have higher usability [Gordon and Bieman, 1995].

• Prototypes can be used to advance testing to the early phases of design, thus

reducing the impact of error corrections. For instance, an early loading test can

be effectively coupled with a preliminary functional test of front-end applications

to check for correct data balancing [Golfarelli and Rizzi, 2009a].

• Prototypes can be used to evaluate the feasibility of alternative solutions dur-

ing logical design of multidimensional schemata and during ETL design. This

typically leads to improved performance and maintainability, and to reduced

development costs [Sommerville, 2004].

The above points are basically associated with an increase in reliability and productiv-

ity. More specifically, the impact on reliability is related to both data schemata, data

quality, and performances. First of all, having a working prototype available during

the early project phases enables the designer to keep a strict and constant control over

the data schema to ensure that it fully supports user requirements. Then, data quality

can be improved by closely involving users in testing the prototype using both real

and ad-hoc generated data. Finally, an incremental approach can also be used to take

better care of performance issues by following the modularity principle to separate

correctness from efficiency. This means that a working prototype can be delivered

first; then, performances can be improved during the following iteration to deliver an

increment in the form of a working and efficient prototype.

6.4.3 User Involvement

Recent years have been characterized by a growing awareness that human resources

are one of the keys to a project success. In this direction, some modern software

Chapter 6 Agile Data Warehouse Design 111

design methodologies tend to emphasize organizational factors rather than technical

aspects. For instance, agile approaches pursue the idea of creating responsible and self-

organizing teams to maximize participation of developers and their productivity. They

also focus on user involvement as a means to reduce the risk of expressing ambiguous

requirements and make software validation easier and more effective [Agile Manifesto,

2010].

4WD pays a large attention to user involvement because it has a substantial influence

on process reliability and timeliness. User involvement can be promoted in different

ways:

• All users should preliminary receive a comprehensive training to clarify the

project goals, explain the multidimensional model, and introduce a shared lan-

guage for conceptual design.

• Prototyping is the most effective way to have users participate in the design

process and keep them aware of the project status.

• Due to the complex data transformation that is inherent to DW systems, only

users —who have insight of business data— can easily detect problems and errors.

So, most testing activities should be based on user feedback. User involvement

is specifically crucial for usability tests of reporting and OLAP front-ends, and

for functional tests of ETL procedures.

6.4.4 Component Reuse

Applying a component-based methodology means using predefined elements to support

the software development process [Heineman and Councill, 2001]. This is often done

by DW designers, though mostly in an unstructured way. The components that can

most effectively be reused in a DW project are:

• Conformed hierarchies, that are reused in different facts and data marts. Using

conformed hierarchies not only accelerates conceptual design, but is also the key

for achieving an enterprise view of business in a DW.

• Library hierarchies, that model common hierarchy structures for a given business

domain. For instance, a customer hierarchy in a sales analysis has some basic

features that can be easily reused in different DW projects to reduce the effort

in designing facts.

• Library facts, that define common measure and dimension structures as emerging

from design best practices for a given business domain. Of course, library facts

must be tailored to specific user needs; nevertheless, they may be very useful in

112 Chapter 6 Agile Data Warehouse Design

requirement-driven approaches to give designers and users a starting point for

conceptual design.

• ETL building blocks, meant as predefined extraction, transformation, cleaning,

and loading routines (e.g., a routine for cleaning a geographical attribute against

the list of ISO 3166-2 codes for administrative divisions, or one for loading a

type-3 slowly-changing dimension from an operational data store). Reusing such

routines reduces the ETL design effort and makes ETL more reliable due to the

use of largely-tested algorithms.

• Analysis templates, that define a reference structure for reports and applica-

tions. In particular, sharing an analysis template across a DW project is warmly

suggested to standardize the interface presented to users.

4WD takes advantage of component reuse to accelerate development and increase ro-

bustness. While ETL tools already include some building blocks that can be easily

reused through parameterization, identifying hierarchies and facts to be reused de-

serves more attention. 4WD devotes an ad-hoc phase (conformity analysis) to identi-

fying hierarchies to be conformed using a bus matrix. Besides, conceptual schemata

are a very effective tool to formalize the structure of facts and hierarchies and support

their matching against the available libraries.

6.4.5 Formal and Light Documentation

In waterfall approaches, documentation is extensively used during the whole life-cycle

to support the design process and represent and validate requirements. Other ap-

proaches, like RAD and agile methodologies, tend to discourage the use of documen-

tation (other than the one automatically produced by tools) because it may lead to

prematurely freezing requirements and slowing down iterations, and suggest to replace

it with continuous communication with users [Agile Manifesto, 2010, Martin, 1991].

While we agree that textual documentation should be reduced to the minimum, we

firmly believe that formal documentation is a key factor to promote precise formal-

ization of requirements, clear communication between designers and users, accurate

design, and maintainability. In 4WD, the main role to this end is played by conceptual

schemata. In particular:

• At the DW level, we mostly use a simple but effective schema that summarizes

the data marts, their data sources, and the profiles of the users who access them

[Golfarelli and Rizzi, 2009b]. This high-level schema is first drawn during the

architectural sketch phase, and refined after each data mart cycle. It is essentially

used to share the basic functional architecture with users and to support the

discussion of data mart priorities.

Chapter 6 Agile Data Warehouse Design 113

• At the data mart level, an important role is played by a bus matrix that asso-

ciates each fact with its dimensions, thus pointing out the existence of conformed

hierarchies. This schema is built and progressively refined during the conformity

analysis and fact macro-analysys phases, and is used to test that the designers has

properly captured the existing similarities between different facts and different

data marts, thus ensuring their integrability [Golfarelli and Rizzi, 2009b].

• At the fact level, we force designers to complete and release the conceptual schema

of a fact before proceeding with implementation. Indeed, having users and de-

signers clearly agree on the fact granularity and measures, as well as on the

hierarchy structures and semantics, is the most effective way to avoid misunder-

standings and omissions. Finding this agreement informally, or leaning on the

logical/physical schema of the fact, is obviously hard and error-prone, while a

(graphical) conceptual schema is clearly understood even by non-technical users.

In particular, we adopted the DFM in a number of projects for public admin-

istrations (such as local health authorities, the Ministry of Justice, the State

Accounting Department) and we verified that fact schemata are also understood

by non-IT people such as physicians and jurists.

A major role in this context is also played by metadata, that multidimensional engines

store to describe the structure of a data mart. Metadata can typically be exported

to generate a documentation based on standard languages (such as XML) and models

(such as the CWM); this also encourages interoperability, that is normally seen as a

crucial issue in DW projects.

6.4.6 Automated Schema Transformation

To reduce design complexity, the MDA approach proposes to use formal models for

separately specifying a Platform Independent Model (PIM, it represents system func-

tionalities at a conceptual level) and a Platform Specific Model (PSM, it gives a logical

and platform-dependent representation of system functionalities), and to use auto-

mated transformations to derive a PSM from a PIM. In a DW project, this can be

applied to design both ETL procedures and multidimensional schemata, as shown in

[Mazón and Trujillo, 2009, Simitsis and Vassiliadis, 2008].

In 4WD, automated schema transformations are encouraged, mainly to speed up design

and simplify evolution, as long as they need a reasonable effort from users to under-

stand formal models and they do not require to invest too many resources in activities

that are not directly valuable to users. We propose two metadata-based activities for

automation, possibly supported by CASE tools:

• Supply-driven conceptual design. In supply-driven approaches, a basic concep-

tual schema for a fact can be automatically derived starting from the logical

114 Chapter 6 Agile Data Warehouse Design

schema of operational data sources [Moody and Kortink, 2000]. When applica-

ble, this is a very effective way to cut design costs.

• Logical design. A logical schema can be automatically obtained from a conceptual

schema by applying a set of transformations that express common design rules

and best practices, possibly based on the expected workload [Golfarelli and Rizzi,

2009b].

6.5 Validation

4WD was applied to a project in the area of pay-tvs (PayTV project, in the following).

The project had an overall duration of 8 months and was carried out by an Italian

system integrator specialized in BI applications.

During DW planning two data marts were identified, namely administration and man-

agement control, that were prioritized according to their importance for users: the

administration data mart was given higher priority because its size is definitely larger

(10 vs. 4 facts). During data mart planning we organized the overall project in 10

releases (7 for the first data mart, 3 for the second one), each centered on at most 3

facts and taking from 10 to 26 days. Facts were grouped into a single release when they

either shared several dimensions or had similar ETL processes (e.g., because measures

were extracted from the same data sources and tables), as emerging from conformity

analysis and source and facts macro-analysis. Each release was then assigned a value

from the users point of view, an estimated nominal complexity, and a risk expressed

as a percentage complexity overhead (ranging from 19 to 35%) to determine a worst-

case complexity. The criteria used for establishing release priorities were: (1) advance

the most valuable facts to early releases; (2) uniformly distribute the worst-case com-

plexity; and (3) respect the dependencies in fact implementation. Besides, some fact

were delayed because the development of specific extraction interfaces by external con-

sultants was required for some of their source data; other facts were postponed due

to some uncertainty on the requirements. After each release, its actual duration was

compared to the estimated complexity. In 2 cases it turned out that the estimation

was inaccurate; this was fixed right away by revising the remaining estimates and by

changing the team composition.

One of the benefits of adopting 4WD in this project was the speed-up due to large user

involvement and extensive prototyping. Users were enabled to access a web portal to

signal the errors, and monitor the team’s answers and the project state. This was

particularly effective for improving the structure of reports and the business rules for

detecting source data errors. Noticeably, all errors signalled by users were related to

wrong data: user mainly own empirical knowledge, so it may be hard for them to reason

from an abstract point of view (e.g., to evaluate an ETL flow or a report structure

Chapter 6 Agile Data Warehouse Design 115

with no data loaded). The implementation effort was reduced by partially reusing

existing reports and dimension tables, because those required by administration and

management control users are quite standard. This was not the case for ETL, that

required a strong personalization, so reuse was limited to some basic routines made

available by the adopted ETL suite. Finally, adopting the DFM as a conceptual model

enabled designers to produce a concise but exhaustive documentation, and to use a

CASE tool to automate logical design [Golfarelli and Rizzi, 2001].

6.6 Conclusions

In this chapter, we proposed a new methodology to make DW development nimbler and

faster, so as to support BI ANYTIME [Golfarelli et al., 2011c]. 4WD relies on three

key factors: (a) iteration breaks the linear development process by offering frequent

deliveries and reviewing points; (b) a formal and light documentation provides a clear

picture of the current specifications, facilitating the identification of the units to be

evolved; (c) automating schema transformations reduces the time needed to propagate

changes to the different levels. Our methodology has been successfully applied to a

case study on a real project in the pay-tv area, leading to the following advantages:

(1) reduction of the implementation effort by re-using existing reports and dimension

tables; (2) project speed-up thanks to large user involvement and exhaustive prototyp-

ing; (3) concise and clear documentation by adopting the DFM specification. As to

future works, additional real case studies may help to better refine and improve 4WD.

Chapter 7

Project Scheduling Optimization

in Agile Data Warehouse Design

This chapter closes the two works on BI ANYTIME. In Chapter 6 we described a new

methodology (4WD) to facilitate the DW development; here, we formalize an opti-

mization model for the project scheduling that is compliant with the 4WD principles

and improves the effectiveness of resource allocation. This chapter includes two main

sections: the first is devoted to the model formalization and its extension to deal with

project uncertainty, the second proposes different optimization algorithms to efficiently

solve the planning problem.

7.1 Introduction

In iterative and incremental approaches, such as 4WD, the planning problem has a key

role to ensure the project success [Svahnberg et al., 2010].

We better describe the problem adopting the terminology of Scrum and eXtreme Pro-

gramming (XP), that are the two most common methodologies in agile (thus, iterative)

contexts nowadays [Dyb̊a and Dingsøyr, 2008]. The software is described in terms of

detailed user functionalities (user stories or stories for short) and at each iteration

(sprint in the Scrum terminology), the set of user stories that maximizes the utility

for the users and fulfills a set of development constraints is delivered [Schwaber, 1995].

Typical constraints include limiting the duration of an iteration, respecting correla-

tions among user stories, and containing the non-delivery risk. We can now refer to

the planning problem as the multi-sprint planning problem, emphasizing that we define

a plan spanning multiple sprints.

In this context, user story prioritization and definition of sprint boundaries are obtained

by sharing and averaging the estimates given by the different team members about story

117

118 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

complexity, utility, and precedences. For example, advancing high-valued stories could

lead to an early significant result for users and encourage the team awareness; similarly,

developing affine user stories within the same sprint can increase their perceived value.

Moreover, new requirements may arise during the project, and the plan should be

flexible enough to accommodate them; otherwise, it may be impossible for the project

team to perfectly stick to the baseline plan for various reasons, such as underestimation

of story complexity, unavailability of team members, or changing requirements, which

may lead some sprints to fail, meaning that their results cannot be delivered as expected

[Beck, 1999].

In this direction, a number of approaches have been devised in the literature, but

none of them provides comprehensive coverage of all the features involved in iterative

approaches (see Section 7.2 for a detailed explanation). To fill this gap we analyze the

multi-sprint planning problem from two perspectives:

• Mathematical formulation: in Section 7.3, we propose a mathematical formula-

tion of the multi-sprint planning problem that, given the team estimates and

a set of development constraints, produces a plan that maximizes the business

value perceived by users, thus relieving the team from the difficult task of quickly

producing an optimal plan (see Golfarelli et al. [2012c]). The optimal plan must

be seen as an initial recommendation for the team, and it can be manually ad-

justed. The “best” plan may be one that also considers the personal experiences

of the team members and some additional constraints that could not be formally

modeled. For this reason, our model allows user stories to be explicitly forced

into sprints. Moreover, to cope with the possible failure of a sprint (one or more

user stories could not be delivered as expected), with the emergence of new re-

quirements (one or more user stories are added), and with intrinsic changes in

the development process (the development speed estimated must be adjusted),

our model provides capabilities of smooth replanning, meant as revising and re-

optimizing a baseline plan during project execution without disrupting it. Fi-

nally, the section includes both effectiveness and efficiency tests. As to efficiency,

we just test performance by using a general-purpose Mixed Integer Programming

(MIP) solver, such as IBM Ilog Cplex [IBM, 2011]. More sophisticated solutions

to improve performance will be presented in the next section.

• Performance: in Section 7.4, we propose different strategies to efficient solve the

multi-sprint planning problem. As a matter of fact, our mathematical formu-

lation is a generalized assignment problem [Martello and Toth, 1990] with side

constraints, where the knapsacks are the sprints and the items are the user sto-

ries. The generalized assignment problem is NP-hard [Martello and Toth, 1990],

thus, for difficult instances, the model cannot be solved to optimality by a MIP

solver. For this reason we propose an effective Lagrangian heuristic based on

a relaxation of the proposed model and some greedy and exchange algorithms.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 119

Computational results on both real and synthetic projects show the effectiveness

of the proposed approach.

7.2 Related Works

In recent years, different models for the planning problem have been devised in itera-

tive and incremental contexts. [Denne and Cleland-Huang, 2004] proposes a software

development strategy based on financial factors. An optimal sequence of requirements

to deliver is generated by maximizing along time the net present value, i.e., a combi-

nation of revenues, costs, and risks of each requirement. Two solution strategies are

proposed: a greedy algorithm and a look-ahead approach. The first one selects the

next requirement to deliver by considering the requirements with no unfulfilled pre-

cursors and maximum net present value; the second one extends the greedy approach

by analyzing subsets of profitable precedence sequences.

[Szoke, 2011] describes a conceptual model for release scheduling and provides an opti-

mization model aimed at assigning requirements to the different iterations of a release

by maximizing the overall value delivered and considering precedences and coupling

conditions. Then, it describes a branch-and-bound algorithm to solve the model incor-

porating risk management. Another work situated in the agile context is the one by

[van Valkenhoef et al., 2011], that is mainly focused on managing risk and uncertainty

in XP projects. To this end, the authors estimate the team development speed and

consider multiple sets of user stories with decreasing relevance (“must have”, “should

have”, “could have” sets); the goal is to assign each user story to the most proper set

by maximizing the overall value of the sets and respecting precedences and correlations

between user stories. A branch-and-bound algorithm is used to find the best solution.

The limited number of sets they consider leads to a coarse-grained plan that must

be refined to obtain an operative schedule (e.g., by breaking sets according to budget

bounds and splitting user stories into smaller tasks).

None of the above-mentioned works specifically deals with change management, an ap-

proach in this direction is Evolve [Greer and Ruhe, 2004], that is aimed at iterative and

incremental contexts. A release plan includes different increments; at each stage, a set

of requirements is allocated to the current and the future increments in such a way as

to return the best trade-off between stakeholder priorities and development constraints

(such as increment capacity, precedences, and coupling conditions). The model is for-

malized as a multiple knapsack problem and a genetic algorithm is used to solve it. To

deal with change, Evolve includes a partial strategy for replanning: at each increment,

new requirements and changes in priorities and/or constraints are allowed, and a new

solution is generated from scratch. In the context of scrum planning, [Li et al., 2010]

gives a knapsack formulation of an optimization model for single-iteration planning

that selects the requirements maximizing the profit of the next iteration, coping with

120 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Table 7.1: Features of planning approaches for iterative life-cycles

Approach Scope Hard Constr. Soft Constr. Risk Change Mgmt. Planning

Greer, 2004 multi-iter. preced., coupling no partial partial heuristic
Denne, 2004 multi-iter. preced. no yes no greedy
Saliu, 2007 single-iter. preced., coupling no no yes exact
Li, 2010 single-iter. preced. no no partial exact
Szoke, 2011 multi-iter. preced., coupling no yes no exact
Valkenhoef, 2011 multi-iter. preced. coupling yes no exact
Our approach multi-iter. preced., forced coupling yes yes exact

development requirements. Evolution is managed by allowing changes in parameters

after each iteration and coping with their impact on the model. A new solution for

next iteration is produced from scratch, by incorporating changes and additional sto-

ries. A more sophisticated approach is bi-objective planning [Saliu and Ruhe, 2007],

in which the next iteration is planned considering the impact of new requirements or

changes on the existing system from either the business or the development perspec-

tive. A set of plans is generated, each reflecting a different importance of business and

implementation aspects, then the optimal plan is chosen as the one that best satis-

fies a group of interdependencies (called SD-couplings) between requirements identified

through impact analysis.

We close this section classifying the aforementioned approaches according to the se-

lection of relevant features of planning for iterative life-cycles, proposed by [Saliu and

Ruhe, 2005]; the slightly different set of features we adopt here is aimed at providing

better insight into the planning model. Table 7.1 shows that none of the models pro-

vides comprehensive coverage of the features. Most noticeably, there is partial support

to change management, that has such a crucial role in iterative projects. Managing

change becomes critical in approaches that produce a look-ahead plan covering multi-

ple iterations, because a significant alteration of future iterations may create problems

with resource allocation and frustrate the users’ expectations. The only multi-iteration

approach that gives some support to change is the one by [Greer and Ruhe, 2004]; how-

ever, a new plan is produced from scratch after each iteration without any correlation

with the previously produced plan. To fill this gap, we formalize a multi-sprint planning

problem by taking into account all the features of Table 7.1.

With reference to Table 7.1, the key features of our approach can be summarized as

follows:

Scope Ours is a multi-iteration approach that supports a single co-located and cross-

functional team during a medium- to long-term planning, in a look-ahead per-

spective.

Hard Constraints Precedences, that typically characterize the development process,

are modeled as hard constraints. Besides, a story can be forced to be included

into a given sprint.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 121

utility

complexity

criticalityRisk

uncertaintyRisk

precedenceType

UserStory

maxDuration

developmentSpeed

/capacity

Sprint
1 1..*

precedes

*

*

affinity

CouplingGroup

*

2..*

pre -condition

post -condition

Plan

1

*

{ordered}

1 *

includes

must include

Figure 7.1: The user story model as a UML class diagram (static attributes are
underlined, roles are in italics)

Soft Constraints Consistently with the agile philosophy, couplings are modeled as

soft constraints by increasing the business value perceived by users if two or more

affine stories are developed in the same sprint.

Risk We deal with the risk related to both uncertain and critical stories: an uncertain

story is one whose complexity can hardly be estimated, a critical story is one that

has a strong impact on the quality of the system being developed.

Change Management We called our way of managing plan evolution in multi-iteration

scenarios smooth replanning. The idea is to allow a baseline plan to be revised

and re-optimized, if necessary, during project execution without disrupting it so

as to protect the allocation of resources and preserve the milestones agreed with

users.

Planning We provide exact solutions to small and medium problems and sub-optimal

solutions (less than 1% worse than the optimal one) for more complex problems

(e.g., problems with 100 user stories) in a few seconds.

7.3 Multi-Sprint Planning Problem

Our formulation of the multi-sprint planning problem is based on the static model

shown in Figure 7.1, that takes into account the main variables that affects user stories

prioritization and sprint composition. The concepts represented are:

• Plan: a sequence of sprints.

• Sprint: the time-bound unit of iteration, typically a one- to four-week period,

depending on the project complexity and risk assessment. A sprint includes a

set of user stories. A maximum duration is fixed for each sprint.

122 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

• User story: a relatively small piece of functionality valuable for users [Cohn,

2004]. It represents a light specification that can be later detailed thanks to

a continuous communication with the user; at the same time, it must be suffi-

ciently described to estimate its development complexity. It represents a means

to communicate between users and developers. In some situations the project

team may want, for various reasons, to constrain some user stories (which we will

call forced) to be included in a specific sprint.

• Utility: the business value of a user story as perceived by the user that defines

it. As stressed by [Racheva et al., 2009], a detailed definition of business value

is still missing in agile methodologies; a general and self-evident interpretation is

normally assumed, related to the earned value defined in economics and trans-

formable into dollar value. In practice, users normally express the value of each

story using a single number, though they may implicitly take into account and

combine different utility criteria.1 In some approaches it is only required to define

an ordering for user stories (i.e., user story 1 is more useful than user story 2),

but in general it can be quantified through a positive numerical score typically

ranging between 10 and 100 [Nichols, 2009]. For instance, a story for having a

site map effectively indexed by a research engine could have utility 80, because

it relevantly impacts on the site visibility on the web, while a story for showing

photographs of the staff members on the site could have utility 10 because it

adds small value to the site content.

• Complexity: the development effort for a user story measured in story points.

Team members assign story points to each user story based on their experience

and knowledge of the domain and project specificities. Story points are non-

dimensional and are preferred to time/space measures to avoid subjective and

incomparable estimates. Typical complexities of user stories range between 1 and

10 story points [Nichols, 2009]. For instance, the indexing story mentioned above

could have complexity 7, while the photograph story could have complexity 1.

• Risk: we consider risks related to two different characteristics of user stories. A

critical story is one that may have a strong impact on the quality of the system

delivered, so that taking a wrong solution for it dramatically affects the success

of the project (e.g., a story for defining the deployment architecture that heavily

impacts on performances and security). An uncertain story is one for which it

is somehow hard to estimate the complexity due to unexpected problems that

could arise (e.g., a story for feeding a database from data flows produced by a

third-party company).

1Our model can seamlessly accommodate different types of utility, meant both from the users point
of view (e.g., positive impact of a story on sales and revenues, or effects on customer fidelity) or from
other points of view (e.g., not degrading the overall software architecture) as long as these can be
combined into a formula.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 123

• Coupling: a correlation between two or more affine user stories. Affine stories

have higher utility if they are included in the same sprint, because users better

perceive the overall business value of the functionality delivered. For instance, a

“zoom-out” story may have low utility on its own, but its utility may increase if

delivered together with the complemental “zoom in” story. A user story can be

included in several coupling groups, each characterized by an affinity: the higher

the affinity, the higher the utility in jointly delivering the functionalities.

• Precedence: a hard constraint stating that a user story can be developed only

after one or more other user stories (called pre-conditions) have been completed.

For instance, a database can be created and populated only after its conceptual

schema has been designed and documented. A conjunctive precedence (AND-

type precedence) implies all pre-conditions must be completed, while a disjunctive

precedence (OR-type precedence) implies at least one of the pre-conditions must

be completed.2

• Development speed: the number of story points the team can deliver per day. It

is used to convert the sprint duration into the sprint capacity (i.e., the maximum

number of story points the team can deliver in a sprint).

To make this model applicable, reference values and ranges must be chosen for its

concepts. We estimate both types of risk by associating values in the range [1..2] to

four classes of risk: 1 (no risk), 1.3 (low risk), 1.7 (medium risk), and 2 (high risk).

Besides, the affinity range we adopt is [0, 0.5], meaning that the utility of a story

can be increased at most by 50%. We remark that the validity of our approach does

not depend on the reference values and ranges proposed, that were chosen to fit the

specific features and needs of the teams we worked with. Different teams may take

advantage from using finer or coarser classes and different ranges, depending on the

typical precision of their estimates.

We can now list the goals an optimal baseline plan should pursue:

]1 Customer satisfaction. It can be obtained by early delivering high-valued sprints.

In the agile philosophy, this also increases the user awareness and trust.

]2 Coupling management. Affine stories should be carried out in the same sprint to

increase their utility for users. We argue that the increase in utility comes from the

presence of any affine stories in the same sprint, i.e., users perceive higher utility

even if only some of the stories in a coupling group are delivered together. In light

of this, couplings can be managed by increasing sprint utility proportionally to the

number of affine stories jointly delivered.

2More complex expressions, such an OR of AND’s and the like, could easily be used to model
precedences, with small effects on the overall complexity of the optimization model. However, here
we prefer to adopt a simpler form for precedences because, in our experience, it is largely adequate to
accommodate the expressiveness required in practice by project teams.

124 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

]3 Risk management. It can be achieved by (i) advancing critical user stories to avoid

late side-effects, on the one hand; (ii) distributing uncertain stories in different

sprints to reduce the risk that a sprint delivery is delayed, on the other hand.

Besides, all constraints related to the sprint capacity, forced user stories, and inter-story

precedences must obviously be met.

As anticipated in the previous section, the problem of determining an optimal baseline

plan, i.e., one that achieves these goals, can be converted into a generalized assignment

problem with side constraints, where the knapsacks are the sprints and the items are

the user stories. Story points measure the weight of an item, while utility represents its

value. Knapsack capacity (i.e., sprint capacity) is measured as the story points that the

team can deliver given the sprint duration and the development velocity. The objective

function to be maximized is the cumulative utility of the project (goal 1), where the

utility of each story is increased if some affine stories are included in the same sprint

(goal 2) and/or if that story is critical (goal 3-i). Finally, in the formulation of the

capacity constraint, the story points of user stories are increased by their uncertainty,

which discourages the inclusion of two or more uncertain stories in the same sprint

(goal 3-ii).

7.3.1 Baseline Planning Optimization Model

Let U = {1, . . . , n} be the index set of the n user stories to be assigned to sprints.

Each story j ∈ U is associated with its utility uj , its criticality risk rcrj , its uncertainty

risk runj , and its complexity pj in story points. Let Yj be the set of stories affine to

story j and aj be the increment in utility for each affine story assigned to the same

sprint (if Yj = ∅, we set aj = 0).

Let UOR and UAND be the subsets of stories having precedence type OR and AND,

respectively. For each story j ∈ UOR, let DOR
j be the sets of stories such that at least

one of them must be assigned the same sprint of story j or to a previous one. Similarly,

for each story j ∈ UAND, let DAND
j be the set of stories that must be assigned to the

same sprint of story j or to a previous one. Note that each story can be involved in

both OR and AND precedences.

Let S = {1, . . . ,m} be the index set of the m sprints. Each sprint i ∈ S has a capacity

of pmaxi story points.

Let xij be a binary variable equal to one if the story j ∈ U is included in sprint i ∈ S,

zero otherwise. Let yij be a non-negative variable equal to the number of stories of

Yj , j ∈ U , included in sprint i ∈ S. Let B ⊆ U be the set of forced stories, and bj for

j ∈ B be the sprint forced to include story j; The mixed integer linear programming

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 125

model is the following:

(P) zP = max

m∑
k=1

k∑
i=1

n∑
j=1

uj
(
rcrj xij + ajyij

)
(7.1)

s.t.
n∑
j=1

pjr
un
j xij ≤ pmaxi , i ∈ S (7.2)

m∑
i=1

xij = 1, j ∈ U (7.3)

i∑
k=1

∑
z∈DORj

xkz ≥ xij , i ∈ S, j ∈ UOR (7.4)

i∑
k=1

∑
z∈DANDj

xkz ≥ xij |DAND
j |, i ∈ S, j ∈ UAND (7.5)

yij ≤
∑
k∈Yj

xik, i ∈ S, j ∈ U (7.6)

yij ≤ |Yj |xij , i ∈ S, j ∈ U (7.7)

xij ∈ {0, 1}, i ∈ S, j ∈ U (7.8)

xbjj = 1, j ∈ B (7.9)

yij ≥ 0, i ∈ S, j ∈ U (7.10)

The objective function (7.1) maximizes the cumulative utility function. The utility uj

of story j is increased by its criticality risk rcrj , thus encouraging an early placement of

critical stories, and by the affinity aj for each affine story included in the same sprint.

Given story j, the number of affine stories included in sprint i is yij =
∑

k∈Yj xik, if

xij = 1, and yij = 0 otherwise. Since we deal with a maximization problem, constraints

(7.6) and (7.7) guarantee the correct evaluation of each variable yij , that does not

require an explicit integrality constraint.

Constraints (7.2) ensure that the overall complexity of all the stories assigned to each

sprint does not exceed the sprint capacity, while constraints (7.3) guarantee that each

story is assigned to a sprint.

Precedences are imposed by constraints (7.4) and (7.5). If a story j has an OR prece-

dence, constraints (7.4) enable j to be assigned to sprint i only if at least one story

in set DOR
j is assigned to a sprint i′ ≤ i. Similarly, if j has an AND precedence,

constraints (7.5) enable j to be assigned to sprint i only if all stories in set DAND
j are

assigned to sprints less than or equal to i. Finally (7.9) correctly places forced stories

in their sprints.

IBM Ilog Cplex solves this optimization problem using a branch-and-cut approach

[Caprara and Fischetti, 1997], that is, a method of combinatorial optimization for

126 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Table 7.2: A sample of user stories from the case study

Story Id Story Name Utility St. Points Crit. Risk Uncert. Risk

s1 fee configuration 80 5 low low
s2 cash cost computation 85 2 medium medium
s3 import from IBMS 75 2 medium medium
s4 parameterization logic 30 1 medium medium
s5 amortization mask 60 2 no no
s6 exchange computation 60 2 low low
s7 exchange import from SAP 60 7 low low
s8 management control reporting 85 4 medium medium
s9 operational reporting 100 10 low low
s10 scenario management mask 65 3 low low

solving integer linear programming problems (i.e., linear programming problems where

some or all the unknowns are restricted to integer values —the xij ’s and yij ’s in our

case). The method is an hybrid of branch-and-bound and cutting plane methods

that dramatically improves the performance of classic branch-and-bound methods by

incorporating cutting planes, that is, inequalities that improve the linear programming

relaxation of integer linear programming problems.

Example 7.1. The example we report here is a simplified excerpt from the case study

on the PayTv project presented in the previous Chapter (Section 6.5). The user stories

considered are listed in Table 7.2 together with their estimations, and are allocated into

4 sprints with capacity equal to 20 story points each —except the third sprint that was

given capacity 14 to model the fact that one team member is temporarily unavailable.

Two precedence (from s7 to s6, from s1 to s2) and one coupling constraint (0.3 between

s2 and s10) were introduced. The optimal baseline planning for this example is shown

in Table 7.3; for each sprint we report its complexity (i.e., the total number of story

points for the stories it includes), its uncertainty risk (i.e., the overall additional story

points arising from uncertain stories), and its cumulative utility. The integral zP of

the cumulative utility turns out to be 3474.5. A few remarks:

• The capacity constraint is always respected (for instance, for the first sprint,

14 + 5.2 < 20).

• The uncertainty risk is well distributed over the first three sprints, but advanced

to the first two sprints.

• The stories with higher utilities are advanced to the first sprint, also taking into

account the coupling constraint and respecting the precedence from s1 to s2.

• The precedence from s7 to s6 is solved within the second sprint; these two stories

have low utility and risk so they can be postponed.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 127

Table 7.3: Optimal baseline planning for the stories in Table 7.2

Sprint Stories Complexity Uncertainty Risk Cumulative Utility

]1 s1, s2, s3, s5, s10 14 5.2 565.5
]2 s6, s7, s8 13 5.5 866.0
]3 s9 10 3.0 996.0
]4 s4 1 0.7 1047.0

zP = 3474.5

������
���������������

� �
�������

���������	�
���	 �� �����������	�
�� ���	 ��
Figure 7.2: Sprint composition in function of the utility and complexity of user

stories for the plan in Table 7.3

• Story s9 is placed in the third sprint in spite of its high utility. In fact, if it were

advanced to the first sprint it would take most of it, so it would become impossible

to advance other stories with higher risk and still respect the precedences.

• The fourth sprint is not completely full; leaving some space in the last sprint is

common in real projects because it allows for better managing unexpected events.

The way stories are distributed in sprints according to their utilities and complexities

is illustrated in Figure 7.2.

7.3.2 Smooth Replanning Optimization Model

As mentioned in Section 7.1, the project uncertainties and the inherent flexibility of

iterative approaches often lead to some disruptions from the original baseline plan. We

use the term smooth replanning to emphasize that the new plan delivered should limit

as much as possible the changes made to the baseline plan; smoothness is important to

protect the allocation of resources made to the projects and to preserve the milestones

agreed with users.

Given the current optimal plan R (either the baseline plan or the result of a previous

replanning), let Udone be the subset of the stories that were actually carried out at

the end of sprint i, and Unew be the set of new stories that arose due to additional

requirements. A new plan R′ can be easily obtained by running again the optimization

128 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

model for baseline planning on a new set of stories U ′ = U − Udone ∪ Unew, and by

adjusting the other variables and constraints accordingly; however, most probably, R

and R′ would be substantially different in the assignment of stories to sprints.

To add some smoothness to the replanning process, a proper minimum perturbation

strategy must be adopted. Like done by [Alagoz and Azizoglu, 2003] we pursue a trade-

off between effectiveness and stability, that are respectively measured by the objective

function zP and by the percentage α of stories that were scheduled in corresponding

sprints in R and R′. In particular, we say a new plan R′ is dominant when for each other

possible plan R′′ it is either zPR′′ < zPR′ or αR′′ < αR′ . Picking one dominant plan

means solving a bicriteria optimization problem, which can be done in two ways. The

hierarchical approach minimizes the secondary (i.e., less important) criterion subject

to the constraint that the value of the primary (more important) criterion is kept at

its optimum. The simultaneous approach optimizes a weighted combination of the two

criteria. We adopt a hierarchical approach since we argue that maximizing utility is

definitely more important in the agile context. Furthermore, the use of a complex

objective function would require a parameter-tuning step to achieve the desired trade-

off.

More precisely, we extend the optimization model proposed in the previous subsection

by adding a new constraint on suggested stories, that is, stories whose allocation into

certain sprints is desirable but not mandatory:∑
j∈T

xtjj ≥ α|T | (7.11)

where T ⊆ U is the subset of suggested stories, tj for j ∈ T is the sprint that should

include story j, and α (stability) is the percentage of stories in T whose suggested

allocation is to be respected.

This extended formulation can be used for smooth replanning by setting T to the set

of stories that during the previous planning were scheduled to belong to sprints other

than the current one, i.e., T = U − Udone. Noticeably, constraint (7.11) can also be

used to deal with forced stories in a less prescriptive way; in fact, it can be seen as a

relaxation of constraint (7.9).

Example 7.2. Going on with Example 7.1, we suppose that, at the end of sprint]1,

stories s2 and s10 were not completed and must be rescheduled. Smooth replanning

is carried out with T = {s4, s6, s7, s8, s9}, which means that all the stories that were

previously planned for sprints from]2 to]4 are suggested, while s2 and s10 can be

freely allocated. By setting α = 0.8, the team decides that at most one story in T can

be disrupted (|T | × α = 4 stories out of 5 must be preserved). The new plan is shown

in Table 7.4; sprint]1 is in gray since it is not actually part of the current plan and it

has been reported for clarity. A few remarks:

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 129

Table 7.4: New plan after smooth replanning with α = 0.8

Sprint Stories Complexity Uncertainty Risk Cumulative Utility

]1 s1, s3, s5 9 2.9 291.5

]2 s2, s6, s7, s10 14 5.0 721.5
]3 s9 10 3.0 851.5
]4 s4, s8 5 3.5 1047.0

zP = 2911.5

• No precedence constraint is posed on s2 since s1 has been carried out in sprint

]1.

• s8 has been postponed since s2 and s10 bring a higher utility and they are affine.

• The reason why s8 has been postponed instead of s6 (that has lower utility) is to

leave enough space (i.e., story points) in sprint]2 to contain both s2 and s10.

7.3.3 Implementation

In the market, different solutions for the agile project management are available. For

example, AgileFant [Aalto University, SoberIT, 2011] offers a set of basic functionalities

to monitor the progress of project iterations; Mingle [ThoughtWorks Studios, 2011] and

ScrumWorks [Collabnet, 2011] provide a more complete set of agile parameters to deal

with user story risk, complexity, and business value. However, all these tools lack

in providing an automated solution to the multi-sprint optimization problem. We

developed a stand-alone Java application that provides a graphical interface to collect

the project specifications and automatically defines the optimization model that can

be solved by IBM Ilog Cplex. Figure 7.3 shows the main interface of the software that

allows users to set the different model parameters and manage user story precedence

by using a graph representation.

7.3.4 Validation

7.3.4.1 Effectiveness Tests for Baseline Planning

To verify the effectiveness of our model we carried out a case study. According to the

classification proposed by Runeson and Höst [2009], our case study can be described as

explanatory (it aims at confirming the effectiveness of our optimization model in real

contexts), positivist (it tests the quality of the optimal plan produced by our model),

quantitative and qualitative (it quantitatively measures the quality of the optimal plan

by computing the user story gap, but it also collects a qualitative judgment by the

team manager), and flexible (the model parameters can change during the case study).

130 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Figure 7.3: The graphical interface for planning

A more complete description can be given by answering the basic questions proposed

by Robson [2002]:

• Objective—What to achieve?: the case study aimed at proving the effectiveness

of our approach to multi-sprint planning in the context of agile methods.

• The case—What is studied?: we studied two real projects with different char-

acteristics and in different areas, namely, Web and PayTV; both projects were

carried out by Italian companies that have been successfully adopting agile meth-

ods for several years.

• Theory—Frame of reference: the theoretical framework we adopted is the one

defined by our model of planning and the related linear programming formulation.

• Research questions—What to know?: we studied how the optimal plan differs

from the one manually produced by the project team in terms of sprint compo-

sition, risk distribution, and delivered utility.

• Methods—How to collect data?: for each project we collected data based on the

static model of Figure 7.1 during a couple of meetings (with an overall duration of

three hours) made a posteriori with the team; the estimates and constraints were

collected via the user interface shown in Figure 7.3. There were no interactions

with the team during the projects.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 131

Sprint

C
u
m
u
la
ti
v
e
 u
ti
lit
y

Team

Opt

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

Figure 7.4: Comparison of cumulative utilities for the PayTV case study

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
Sprint

S
to
ry
 p
o
in
ts

Team

Opt

u
n
c
e
rt
a
in
ty
 r
is
k

c
o
m
p
le
x
it
y

Figure 7.5: Comparison of risk distributions for the PayTV case study

• Selection strategy—Where to seek data?: we selected two different projects to

cover all the aspects involved in multi-sprint planning. Web is a typical agile

project on web applications, with a large set of user stories and a small number

of precedences; PayTV has a smaller number of user stories but it includes a

larger set of complex precedences and couplings. PayTV is the one we used for

the 4WD validation.

PayTV includes 44 user stories and 52 precedences (mainly of AND type) and just one

coupling constraint is involved. The development speed we used to run the optimization

model is 2.43 story points per day and is empirically determined relying on historical

data.

Figure 7.4 compares the cumulative utilities of the optimal plan (Opt) and of the plan

defined by the team (Team). The curve of the optimal plan is always higher mainly

due to a better optimization of sprint composition, but also to a better handling of

risk. Indeed, in the teams plan some critical stories with low utility (essentially related

to infrastructural needs) were advanced too much.

Figure 7.5 shows the distribution of story points among the different sprints for the

two plans. Remarkably, the optimal plan achieves a uniform distribution, with a light

advancing of risk to the first sprints.

The third comparison aims at measuring how the two plans differ in terms of sprint

composition. The index we define to measure the difference between the two plans is

the average of the gaps of all user stories, where the gap of a user story expresses the

normalized lag of an optimally scheduled story relative to the team plan:

132 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

Sprint

A
v
e
ra
g
e
 g
a
p

Figure 7.6: Difference in sprint composition between the optimal and the team
plans for the PayTV case study

Definition 7.1 (User Story Gap). Let j be a story. Let iteam and iopt be the sprints

j belongs to in the team plan and in the optimal plan, respectively. The gap of story

j is

gap(j) =
1

N − 1
|iteam − iopt|

where N is the maximum number of sprints in the two plans.

The user story gap ranges from 0 to 1, where 0 means that the story belongs to

the same sprint in both plans. As shown in Figure 7.6, the average gap is always

lower then 0.3, denoting a good correspondence between the two plans. The main

difference arises in sprints 1, 7, 8, and 10. In particular, in sprint 1, the team plan

aimed at anticipating critical stories, thus exceeding the sprint capacity. The strong

difference in the composition of the first sprint necessarily affected the subsequent

sprints. Noticeably, both plans made a good use of couplings.

In order to have a further evaluation of the optimal plan, we discussed it with the team

manager after the project end. Here are the main outcomes:

• The team spent a couple of days in defining their plan, while the optimal plan

was generated in a few seconds.

• The team used to collect user story estimates using standard forms, but the

level of detail required by our framework is slightly higher. This was perceived

as a positive aspect since it leads to more refined estimates, thus producing a

better plan. The graphical interface we provided was considered a valuable tool

to support a deeper project understanding.

• The team manager recognized that his plan failed in properly distributing risks,

which led to some delay in the first sprint.

• The optimal plan was judged to be feasible and realistic, showing that the el-

ements considered in our model are sufficient to provide a good distribution of

user stories.

• Most of the differences in sprint compositions were evaluated as improvements

over the team plan. In particular, the team plan did not take into account the

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 133

side effects of postponing some stories, thus causing the stories depending on

them to be delayed too much.

Web was aimed at developing a complex web site based on a Content Management

System. It is larger than PayTV in terms of number of user stories (105 user stories);

it was organized in 4 sprints of 10 days each, so it had a shorter overall duration (40

days). This difference is due to the lower complexity of the single user stories and

to a higher development speed (6 story points per day). Compared to PayTV, Web

includes a small number of chain precedences (6 overall) and no couplings. The input

data were collected in 4 hours through an assessment with the whole project team, plus

an extra session with the team manager who expressed some extra desiderata that had

not emerged before:

• Web was the first project with a new customer; gaining its loyalty by delivering

all the functionalities on time was a crucial goal of the project. Besides assigning

each critical story an appropriate risk level, the team decided to anticipate some

of them to the first sprint. This strategic decision goes beyond the typical de-

velopment constraints; rather than modeling it by changing the risk parameters

(i.e., the maximum values for rcrj), which could have undesired impacts on overall

risk management, we explicitly forced the most complex user stories to the first

sprint.

• Some of the requested functionalities come for free in the Content Management

Systems, so they have no development complexity. Though they could be de-

livered in the first sprints from a technical point of view, they had better be

postponed since the user cannot perceive their utility until correlated stories are

completed. We modeled these specific constraints using chain precedences.

After running our optimization model we compared our solution with the baseline plan

devised by the project team:

• The cumulative utility of the optimal plan is higher than the one obtained by

the team (see Figure 7.7) and the team manager recognized that our solution is

feasible and it has a better trade-off between utility and complexity.

• The user story gap (see Figure 7.8) is very low (less than 0.22 for each sprint)

and is higher in the first sprint. As discussed with the team manager, two are

the main motivations: (1) due to the lack of constraints and to the similar values

for the utilities and complexity of user stories it was quite hard to manually

define an optimal schedule; (2) the team was biased in its choices by the urge to

completely deliver the first sprint, so it adopted an over-conservative solution.

134 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Sprint

C
u
m
u
la
ti
v
e
 u
ti
lit
y

Team

Opt

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4

Figure 7.7: Comparison of cumulative utilities for the Web project.

Sprint

A
v
e
ra
g
e
 g
a
p

0

0.1

0.2

1 2 3 4

Figure 7.8: Difference in sprint composition between the optimal and the team
plans for the Web project.

Overall, from an analysis of the two case studies it is apparent that not only our model

returns an optimal schedule, but it is also flexible and expressive enough to handle

projects with different characteristics (in terms of sprint features and constraints) and

it can support team-specific desiderata.

7.3.4.2 Efficiency Tests for Baseline Planning

These tests were carried out on an Intel Core 2 Duo platform with 3 Gb of RAM,

running at 3 GHz under Windows XP professional. To test the model behavior on a

broad benchmark we generated a set of 58 synthetic projects; utility and story points

of the user stories were randomized in the intervals [10,100] and [1,10], respectively.

The maximum sprint duration was set to 15 days, while the development speed was

set to 3 story points per day (i.e., sprint capacity was 45 story points). All problems

were solved using IBM Ilog Cplex; performances were measured in seconds.

First of all we evaluate performances in function of the total number of user stories on

projects that do not include precedences. Figure 7.9 reports the average time needed

to compute the exact solution. As expected for a generalized assignment problem,

the computation time grows non-linearly, reflecting an exponential increase in the

search space. In Section 7.4, we will present sophisticated strategies to decrease the

computational time for complex problems.

The presence of precedences makes planning harder for the project team. To study

their impact on our model, two types of precedences were added to our benchmark

projects: (1) chain precedences, where each story depends on at most another story;

and (2) graph precedences, where a story can depend on several stories. In both cases

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 135

266.00

731.00

0.14 18.72

1763.80

0

500

1000

1500

2000

30 40 50 60 75

Number of stories

T
im
e
 (
s
e
c
s
)

Figure 7.9: Time for computing the optimal plan for projects with an increasing
number of stories and no precedences

0

50

100

150

200

250

300

0 10 20 30

Number of precedences

T
im
e
 (
s
e
c
s
)

chain

graph

Figure 7.10: Time for computing the optimal plan for projects with an increasing
number of precedences and 50 stories

precedences were obviously acyclic. Figure 7.10 shows how the computation time

changes in function of the number of precedences. This figure suggests that a small

number of precedences tends to reduce the computation time because precedences

allow a set of unfeasible plans to be pruned, thus reducing the search space. However,

when the number of precedences is high, the computation time increases again because

finding a feasible plan becomes harder for the solver. Noticeably, both chain and graph

precedences show similar trends.

7.3.4.3 Effectiveness Tests for Smooth Replanning

The effectiveness of smooth replanning can be evaluated by analyzing to what extent

the previous plan is disrupted when a sprint partially fails, i.e., when it cannot deliver

its expected results. To this end we considered a 50-story synthetic project and we

measured the model performance when 33% of the user stories where not completed

in one of its sprints. Figure 7.11.a shows how the value obtained for the objective

function z of the new plan varies (as a percentage of the objective function value for

the previous plan) in function of the sprint where the failure took place and of the

stability α. As expected, due to the adoption of a cumulative objective function, the

earlier the failure takes place, the worse its effects on zP . Remarkably, if the failure

takes place after the first sprint, the reduction in effectiveness is always less than 4%

independently of the stability constraint.

136 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

90%

95%

100%

1 2 3 4 5 6 7 8 9

Failed sprint

z
 %

90%

80%

70%

50%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

Failed sprint

S
m
o
o
th
n
e
s
s α

(a) (b)

Figure 7.11: Percentage objective function (a) and smoothness (b) in function of
the sprint where failure took place

95%

100%

-1% -2% -5% -10% -15%-20%

Speed decrease

z
 %

α
80%

70%

60%

50%

Figure 7.12: Percentage objective function in function of speed decrease

Figure 7.11.b illustrates how the actual smoothness (meant as the percentage of stories

that are not disrupted after replanning) changes with α. Noticeably, only when α =

50% there are cases when less stories than the maximum allowed are disrupted; in

all the other cases, the smoothness fluctuations are actually due to the rounding of

the number of suggested stories (e.g., given 29 suggested stories, if α = 90% then 2.9

stories can be disrupted; since user stories are atomic, only 2 of them can be actually

moved to different sprints).

The effectiveness of smooth replanning can be also evaluated when intrinsic changes

in the development process arise. In agile projects, during the review phase at the

end of each sprint the development speed is estimated again, and it may be adjusted

considering the feedback of past sprints and possible changes in the team composition.

Then replanning is necessary to smoothly adapt the old plan to the new project pa-

rameters. An increase in speed implies an increase in the sprint capacities, that may

lead to an earlier placement of useful stories. Conversely, a significant speed reduction

could dramatically reduce sprint capacities, forcing a late delivery of high-valued user

stories. In this case, the lower the stability α, the higher the probability that a good

cumulative utility is preserved at the expense of smoothness. The trade-off between

quality and stability is well illustrated by Figure 7.12, that shows how the objective

function z of the new plan decreases with the development speed for different values

of α (on the same 50-story project used in Figure 7.11).

7.3.4.4 Efficiency Tests for Smooth Replanning

Figure 7.13 shows the average execution time of the smooth replanning model on

our 58-project benchmark. The computation time is always much lower than that of

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 137

0

1

2

3

1 2 3 4 5 6 7 8 9

Failed sprint

T
im
e
 (
s
e
c
s
)

90%

80%

70%

50%

Figure 7.13: Time for replanning in function of the sprint where failure took place

baseline plans, because most of the user stories have already been assigned to sprints

so that the search space is narrower.

7.4 Efficient Algorithms for the Multi-Sprint Planning

Problem

As shown in Subsection 7.3.4, the computing time to solve to optimality medium-

size instances can be very large. Here, we propose different strategies to improve

the performance of our approach, namely reductions, cover inequalities, dominance

inequalities, greedy and exchange heuristics and a Lagrangian heuristic.

7.4.1 Reductions

The reduction procedures try to strengthen the capacity constraints (7.2) of the base-

line problem formulation by modifying either the sprint capacities or the weights

prj = pjr
un
j of the user stories. Similar reductions are used for packing problems

in [Boschetti and Montaletti, 2010, Boschetti and Mingozzi, 2003, Boschetti et al.,

2002].

7.4.1.1 Modifying the Sprint Capacities

If no combination of user stories exactly filling the capacity pmaxi of sprint i ∈ S exists,

then there are useless story points that can be removed from the sprint capacity without

modifying the optimal solution value. The capacity of a sprint i can be updated by

solving the following subset sum problem:

pmaxi = max
{∑

k∈U prkξk :
∑

k∈U prkξk ≤ pmaxi , ξj ∈ {0, 1}, j ∈ U
}

(7.12)

The subset sum problem can be solved using a simple dynamic programming procedure.

7.4.1.2 Modifying the Weights of Stories

It is straightforward to observe that a sprint containing the user story j ∈ U remains

feasible if the weight of j is increased to prj = prj + (pmaxi − p′′ij), where p′′ij is the

138 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

optimal solution cost of the following subset sum problem:

p′′ij = max
{
p =

∑
h∈U prhξh : p ≤ pmaxi , ξj = 1, ξk ∈ {0, 1}, k ∈ U \ {j}

}
(7.13)

Since we would like to maximize the number of updated weights, we heuristically

consider the user stories ordered by non increasing weights, i.e., pr1 ≥ pr2 ≥ . . . ≥ prn.

7.4.2 Cover Inequalities

We have also investigated the classic Lifted Cover Inequalities (LCIs) corresponding to

the capacity constraints (7.2), as done in the literature for the generalized assignment

problem (see [Avella et al., 2010]).

We have tried to separate LCIs at each node of the tree search solving the required

knapsack problems by a simple dynamic programming procedure. LCIs are usually able

to reduce the number of tree search nodes, but, unfortunately, the average computing

time to solve each tree node increases too much (see section 7.4.6).

7.4.3 Dominance Inequalities

Dominance inequalities can be applied to stories without couplings (i.e., for which

Yj = ∅) and only with some combinations of precedences.

Let UD = UOR∪UAND be the set of stories having precedences and letD =
⋃
j∈U (DOR

j ∪
DAND
j) be the set of stories on which other stories depend. We define U ′ = {j ∈ U :

Yj = ∅ and j 6∈ UD} and U ′′ = {j ∈ U : Yj = ∅ and j 6∈ D}. Furthermore, we define

urj = ujr
cr
j .

7.4.3.1 Dominance of Type 1

If there exists a pair of user stories j ∈ U ′ and j1 ∈ U ′′ such that urj > urj1 and

prj = prj1 , then the following inequalities hold:

i−1∑
k=1

xkj1 ≤ 1− xij , for every i ∈ S (7.14)

7.4.3.2 Dominance of Type 2

If there exists a triplet of user stories j ∈ U ′ and j1, j2 ∈ U ′′ such that urj > urj1 +urj2
and prj = prj1 + prj2 , then the following inequalities hold:

xi′j1 + xi′j2 + xij ≤ 2, for every i, i′ ∈ S such that i′ < i (7.15)

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 139

Similarly, if there exists a triplet of user stories j ∈ U ′′ and j1, j2 ∈ U ′ such that

urj < urj1 + urj2 and prj = prj1 + prj2 , then the following inequalities hold:

xi′j1 + xi′j2 + xij ≤ 2, for every i, i′ ∈ S such that i < i′ (7.16)

7.4.3.3 Dominance of Type 3

If there exists a quadruplet of user stories j ∈ U ′ and j1, j2, j3 ∈ U ′′ such that urj >

urj1 + urj2 + urj3 and prj = prj1 + prj2 + prj3 , then the following inequalities hold:

xi′j1 + xi′j2 + xi′j3 + xij ≤ 3, for every i, i′ ∈ S such that i′ < i (7.17)

Similarly, if there exists a quadruplet of user stories j ∈ U ′′ and j1, j2, j3 ∈ U ′ such

that urj < urj1 +urj2 +urj3 and prj = prj1 +prj2 +prj3 , then the following inequalities

hold:

xi′j1 + xi′j2 + xi′j3 + xij ≤ 3, for every i, i′ ∈ S such that i < i′ (7.18)

It is quite obvious that dominance inequalities can be easily generalized with respect

a parameter k ≤ n, if there exists at least a story j such that prj =
∑k

i=1 prji .

However, computational results show that there are no benefits in spite of an increasing

computational complexity.

7.4.4 Greedy and Exchange Heuristics

In this subsection we propose two greedy heuristics and a post-optimization procedure

based on exchanges.

The first heuristc is based on a simple idea. Following a greedy approach, the procedure

starts by optimizing sprint i = 1 and, then, optimizes the remaining sprints in turn,

one at a time, following chronological order. Therefore, at each iteration, the greedy

procedure considers a sprint i ∈ S and assigns to it the stories that maximize the

140 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Algorithm 9 Algorithm GreedyHeuristic

Input: Set F1 = ∅, i = 1.
1: while Fi 6= U and i ≤ m do
2: Compute the optimal solution x∗ of subproblem SPi
3: Set Fi+1 = Fi ∪ {j ∈ U : x∗ij = 1}
4: Set i = i+ 1
5: end while

utility by solving the following subproblem:

(SPi) zSPi = max
n∑
j=1

(m− i+ 1)uj
(
rcrj xij + ajyij

)
(7.19)

s.t.
n∑
j=1

pjr
un
j xij ≤ pmaxi (7.20)

i∑
k=1

∑
z∈DORj

xkz ≥ xij − |Dj ∩ Fi|, j ∈ UOR (7.21)

i∑
k=1

∑
z∈DANDj

xkz ≥ xij |Dj | − |Dj ∩ Fi|, j ∈ UAND (7.22)

yij ≤
∑
k∈Yj

xik, j ∈ U (7.23)

yij ≤ |Yj |xij , j ∈ U (7.24)

xij ∈ {0, 1}, j ∈ U \ Fi (7.25)

xij = 0, j ∈ Fi (7.26)

yij ≥ 0, i ∈ S, j ∈ U (7.27)

where Fi represents the stories already assigned to sprints considered in the previous

iterations (at the beginning, F1 = ∅). Note that the stories Fi cannot be allocated

to sprint i (see constraints (7.26)) and must be considered in precedence constraints

(7.21) and (7.22).

The greedy heuristic, summarized in Algorithm 9, is very fast, as shown in section

7.4.6, but if it must be repeated many times, as in the Lagrangian heuristic described

in section 7.4.5, the overall computing time can become too large. For example, in

Section 7.4.6 we show that for some large instances GreedyHeuristic requires more than

one second, thus if it is repeated for thousands of iterations, thousands of seconds are

wasted just for the greedy. Therefore, we propose a modified greedy heuristic, where

the subproblem SPi is relaxed removing constraints (7.21)-(7.24) and the resulting

subproblem, called SP ′i , is a knapsack problem which can be efficiently solved by

dynamic programming. Unfortunately, the relaxed subproblem has two weaknesses.

First, without the linking constraints (7.23) and (7.24), variables {yij} are independent.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 141

We solve this issue ignoring variables {yij} when the knapsack problem SP ′i is solved

and we post-evaluate them using the variables {xij} corresponding to the solution of

SP ′i (i.e., we set yij =
∑

k∈Yj xik, if xij = 1, or yij = 0 otherwise). Second, without

constraints (7.21) and (7.22), some precedences can be violated. Given the current

sprint i and a user story j having a precedence constraint violated, to recover feasibility

we propose four different strategies:

(i) Forbid the use of user story j in sprint i (i.e., fix xij = 0) and reoptimize the

knapsack problem SP ′i .

(ii) Fix in the solution the user story j′ ∈ DOR
j (or j′ ∈ DAND

j , depending on the

violated constraint), not included in the current SP ′i solution, that maximizes

the ratio
ujr

cr
j

pjrunj
. That is, fix xij′ = 1 and reoptimize the knapsack problem SP ′i .

(iii) Only for the AND precedence constraints, fix in the solution all the user stories

j′ ∈ DAND
j not included in the current SP ′i solution (i.e., fix xij′ = 1) and

reoptimize the knapsack problem SP ′i . For the OR precedence constraints apply

strategy (ii).

(iv) For every user story j define a coefficient κj to increase its profit in every knapsack

problems SP ′i (i.e., the profit is multiplied by κj). For every user story j′ ∈
DOR
j \Fi (or j′ ∈ DAND

j \Fi, depending on the violated constraint) having xij = 0

in the current solution, increase the coefficient κj′ using one of the following rules:

(a) κj′ = ρ×κj′ or (b) κj′ = κj′ ×κj′ . Restart the greedy heuristic from the first

sprint, i.e., set i = 1 and F1 = ∅.

Remarkably, the first strategy guarantees the convergence to a feasible solution, whereas

the second and the third strategies may give rise to unfeasible knapsack instances, in

particular the third one. When a knapsack problem SP ′i has not a feasible solution

we skip to the next greedy heuristic iteration. The fourth strategy could require too

many iterations to reach a feasible solution, therefore a maximum number of iterations

MaxIter must be set.

The modified greedy procedure, called QuickGreedyHeuristic, is summarized in Algo-

rithm 10. In our computational results we set MaxIter = 1000 and the fourth strategy

is applied one time using rule (b) setting κj = 1.025, for every j ∈ U , and two times

using rule (a) setting κj = 1, for every j ∈ U , and ρ = 2 or ρ = 5. The choice of

parameters κj and ρ takes into account the trade-off between the time for obtaining a

feasible solution and its quality. If some profits increase too quickly we obtain a feasible

solution in a few iterations but probably its quality is poor (because we quickly move

the corresponding user stories to the first sprints without taking enough care of their

real utilities), whereas if profits increase too slowly we need too many iterations for

obtaining a feasible solution.

142 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Algorithm 10 Algorithm QuickGreedyHeuristic

Input: Set z∗ = −∞.
1: for all Strategy s=1,2,3,4 do
2: Set z′ = 0, F1 = ∅, i = 1, Iter = 0.
3: while Fi 6= U and i ≤ m do
4: while x′ is not feasible and SP ′i has a feasible solution andIter ≤

MaxIter do
5: Compute the optimal solution x′ of knapsack problem SP ′i .
6: if solution x′ violates some precedence then
7: Apply strategy s.
8: if s = 4 then
9: Set z′ = 0, F1 = ∅, i = 1, Iter = Iter + 1.

10: end if
11: end if
12: end while
13: if SP ′i has not a feasible solution or Iter > MaxIter then
14: Set z′ = −∞ and i = m+ 1.
15: else
16: Set z′ = z′ + zSPi .
17: Set Fi+1 = Fi ∪ {j ∈ U : x′ij = 1}.
18: Set i = i+ 1.
19: end if
20: end while
21: if z∗ < z′ then
22: Set z∗ = z′ and x∗ = x′.
23: end if
24: end for

Both algorithms GreedyHeuristic and QuickGreedyHeuristic may terminate without

finding a feasible solution, because all the sprints are considered (i.e., i > m) but

not all the user stories have been assigned to the available sprints (i.e., Fi 6= U).

Moreover, a feasible solutions provided by QuickGreedyHeuristic can be usually fur-

ther improved, because applying the precedence feasibility recovering strategies can

generate non locally-optimal solution.

To improve a feasible solution, a local search based on exchanges can be applied.

We propose an exchange heuristic, called ExchangeHeuristic, described in Algorithm

11. Procedure ExchangeHeuristic tries to exchange user stories between two sprints.

Namely, the procedure tries the following exchanges:

1-0: move a story j ∈ U from sprint i to sprint i′;

1-1: exchange a story j ∈ U executed in sprint i with a story j′ ∈ U executed in sprint

i′;

2-1: exchange two stories j, j′ ∈ U executed in sprint i with a story j′′ ∈ U executed

in sprint i′.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 143

Algorithm 11 Algorithm ExchangeHeuristic

1: Let x′ be the solution to improve.
2: while no exchange occurs do
3: Apply 1-0 exchanges
4: for all sprint i=1,. . . ,m-1 do
5: for all sprint i’=i+1,. . . ,m do
6: for all j ∈ U such that x′i′j = 1 do
7: if moving j from i′ to i is feasible and profitable then
8: x′i′j = 0 and x′ij = 1
9: end if

10: end for
11: end for
12: end for
13: Apply 1-1 exchanges
14: for all sprint i=1,. . . ,m-1 do
15: for all sprint i’=i+1,. . . ,m do
16: for all j, j′ ∈ U such that x′ij = x′i′j′ = 1 do
17: if exchanging j and j′ is feasible and profitable then
18: x′ij = x′i′j′ = 0 and x′ij′ = x′i′j = 1
19: end if
20: end for
21: end for
22: end for
23: // Apply 2-1 exchanges
24: for all sprint i=1,. . . ,m do
25: for all sprint i’=1,. . . ,m do
26: for all j, j′, j′′ ∈ U such that x′ij = x′ij′ = x′i′j′′ = 1 do
27: if exchanging j with j′ and j′′ is feasible and profitable then
28: x′ij = x′ij′ = x′i′j′′ = 0 and x′i′j = x′i′j′ = x′ij′′ = 1
29: end if
30: end for
31: end for
32: end for
33: end while

An exchange is performed only if it is feasible and profitable. It is feasible if, after

the exchange, the capacity constraints of the corresponding sprints i and i′ are still

satisfied and precedence constraints are not violated. It is profitable if the overall

objective function is increased.

Procedure ExchangeHeuristic could be extended adding other more complex exchanges,

but in spite of the increasing computational complexity the improvements are usually

negligible.

144 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

7.4.5 A Lagrangian Heuristic

The literature is rich with heuristics based on decomposition methods. An excellent

introduction to the whole topic of Lagrangean relaxation, and of related heuristics, can

be found in [Beasley, 1993, Boschetti and Maniezzo, 2009, Boschetti et al., 2009].

The Lagrangian relaxation is obtained from model P, described in section 7.3.1, by

dualizing constraints (7.3), (7.4), (7.5), (7.6), and (7.7) by means of penalties {λj},
{λORij }, {λANDij }, {λY 1

ij }, and {λY 2
ij }, respectively. Lagrangian penalties λj , j ∈ U , are

unconstrained, whereas the remaining penalties are non-positive. The corresponding

Lagrangian problem is the following:

(LR) zLR(λ) = max
m∑
k=1

k∑
i=1

n∑
j=1

(u′ij(λ)xij + u′′ij(λ)yij) +
n∑
j=1

λj (7.28)

s.t.

n∑
j=1

pjr
un
j xij ≤ pmaxi , i ∈ S (7.29)

xij ∈ {0, 1}, i ∈ S, j ∈ U (7.30)

0 ≤ yij ≤ |Yj |, i ∈ S, j ∈ U (7.31)

where the penalized utilities u′ij(λ) and u′′ij(λ) are given by:

u′ij(λ) = ujr
cr
j − λj +

λORij − m∑
k=i

∑
j′∈D̄ORj

λORkj′

+

+

|DAND
j |λANDij −

m∑
k=i

∑
j′∈D̄ANDj

λANDkj′

− λY 1
ij − |Yj |λY 2

ij

u′′ij(λ) = ujaj + λY 1
ij + λY 2

ij

(7.32)

where D̄OR
j = {j′ ∈ U : j ∈ DOR

j′ } and D̄AND
j = {j′ ∈ U : j ∈ DAND

j′ }.

The Lagrangian problem LR can be decomposed into 2m independent subproblems,

two for each sprint i ∈ S, as shown in the following:

(LR1
i) zLR1

i
(λ) = max

n∑
j=1

u′ij(λ)xij (7.33)

s.t.

n∑
j=1

pjr
un
j xij ≤ pmaxi (7.34)

xij ∈ {0, 1}, j ∈ U (7.35)

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 145

and

(LR2
i) zLR2

i
(λ) = max

n∑
j=1

u′′ij(λ)yij (7.36)

s.t. 0 ≤ yij ≤ |Yj |, j ∈ U (7.37)

Subproblem LR1
i is a knapsack problem whereas subproblem LR2

i can be easily solved

by inspection (i.e., if u′′ij > 0, yij = |Yj |, otherwise yij = 0). The overall optimal

solution value of the Lagrangian problem LR is given by:

zLR(λ) =
m∑
i=1

(m− i+ 1)(zLR1
i
(λ) + zLR2

i
(λ)) +

n∑
j=1

λj (7.38)

that is a valid upper bound for the original problem P. In order to find the penalty

vector λ∗ that minimizes the upper bound zLR(λ) we must solve the Lagrangian Dual

zLR(λ∗) = minλ {zLR(λ)}. This can be done heuristically by a subgradient algorithm

[Shor, 1985], i.e., an iterative procedure that, at each iteration k, computes a new

approximation λk+1 of the Lagrangian multipliers in such a way that, for k → +∞,

λk is an optimal or a near-optimal solution to the corresponding Lagrangian Dual.

Let (x,y) be the solution of cost zLR(λ) obtained at a given iteration by solving the

Lagrangian problem LR. The Lagrangian multipliers can be updated as follows:

λj = λj + αgj , j ∈ U

λORij = max{0, λORij + αgORij }, i ∈ S, j ∈ UOR

λANDij = max{0, λANDij + αgANDij }, i ∈ S, j ∈ UAND

λY 1
ij = max{0, λY 1

ij + αgY 1
ij }, i ∈ S, j ∈ U

λY 2
ij = max{0, λY 2

ij + αgY 2
ij }, i ∈ S, j ∈ U

(7.39)

where α is the length of the step along the search direction given by the subgradient

g whose components are:

gj =
m∑
i=1

xij − 1, j ∈ U

gORij =

i∑
k=1

∑
z∈DORj

xkz − xij , i ∈ S, j ∈ UOR

gANDij =
i∑

k=1

∑
z∈DANDj

xkz − xij |DAND
j |, i ∈ S, j ∈ UAND

gY 1
ij =

∑
k∈Yj

xik − yij , i ∈ S, j ∈ U

gY 2
ij = |Yj |xij − yij , i ∈ S, j ∈ U

(7.40)

146 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Algorithm 12 Algorithm ExchangeHeuristic

Input: Set λ = 0, z∗ = −∞
1: while the subgradient end conditions are NOT satisfied do
2: Compute zLR(λ) solving the Lagrangian problem LR
3: Compute a heuristic solution x′ with QuickGreedyHeuristic using

the penalized utilities and improve x′ with ExchangeHeuristic
4: Let z′ be the value of the improved solution x′

5: if γz∗ ≤ z′ then
6: Compute a heuristic solution x′′ with GreedyHeuristic

using the penalized utilities
7: Let z′′ be the value of solution x′′

8: if z∗ < z′′ then
9: z∗ = z′′ and x∗ = x′′

10: end if
11: end if
12: if z∗ < z′ then
13: z∗ = z′ and x∗ = x′

14: end if
15: Update penalties λ
16: end while

In our computational experiment α = β 0.1zLR(λ)
||g||22

, where β is initialized with a value

that is problem-dependent (in our case, β = 3) and, if after a given number of steps (in

our case, 10) the solution value zLR(λ) is not improved, then β is reduced (in our case,

β = 0.85β). The maximum number of iterations is 5000, but if within 50 iterations

zLR(λ) is not improved by at least 0.01%, the subgradient algorithm is stopped in

advance.

The heuristic procedure based on the proposed Lagrangian relaxation is summarized

in Algorithm 12. At each iteration of the sugradient algorithm a heuristic solution x′

is computed with procedure QuickGreedyHeuristic using the penalized utilities com-

puted according to expression (7.32). The heuristic solution x′ is further improved by

procedure ExchangeHeuristic. The solution x′ of value z′ replaces the best solution

found so far x∗ if z′ improves z∗ (i.e., z∗ < z′). Moreover, if γz∗ ≤ z′ a new heuristic

solution x′′ is also computed with the more expensive procedure GreedyHeuristic. If

we choose γ = 1, we execute GreedyHeuristic only if x′ is the best solution found so

far, while if γ < 1, we execute GreedyHeuristic if z′ has a percentage distance from

the best value z∗ within 100 × (1 − γ). The solution x′′ of value z′′ replaces the best

solution found so far x∗ if z′′ improves z∗ (i.e., z∗ < z′′).

7.4.6 Validation

The algorithms presented in this section have been executed on a workstation equipped

with an Intel Xeon X7350 2.94 GHz, 16Gb of RAM and operating system Windows

Server 2003 64bit. IBM Ilog Cplex 12.4 was used as the MIP solver.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 147

We have used datasets coming from both real and synthetic projects. As to real

projects, we used PayTv and Web; as to synthetic project, we implemented a gen-

erator that initially creates user stories by randomly assigning their utility, risk, and

complexity. Then, it randomly adds groups of precedences organized either in chains

or in graphs. Finally, sets of coupling stories are defined. We set the sprint capacity

and the development velocity to 45 story points and 3 story points per day, respectively

(i.e., each sprint takes 15 days).

Table 7.5 summarizes the key features of each project: the number n of stories; the

maximum number m of sprints; the number naff of stories involved in at least one

coupling; the cardinality of UOR and UAND; the maximum length lmax of groups of

precedences; and the maximum number dmax of precedences involving a single user

story. Projects are clustered into five groups: group A contains the real projects, while

the projects in groups B and C show a mix of the previous parameters and vary in

size, types of precedences, and presence of couplings. In Group D, the utility of stories

is strongly correlated to their complexity (the complexity is always twice the utility);

finally, the projects in group E are characterized by stories with high complexity so

that each sprint can include at most 5 stories.

The computational experiments are reported in Tables 7.6, 7.7, 7.8, and 7.9, that

include the following columns:

z : the value of the best feasible solution found by each algorithm;

Gap : the percentage gap between the best feasible solution and the upper bound

associated to the best node remaining provided by IBM Ilog Cplex;

Nodes : the number of tree nodes generated by IBM Ilog Cplex;

Cuts : the number of valid inequalities added, using the IBM ILog Cplex callbacks

(also constraints (7.4) and (7.5) are added in a cutting plane fashion and are

included in this sum);

LGap : the percentage gap between the value zHeu of the best feasible solution found

and the upper bound zLR provided by LagrangianHeuristic, i.e., LGap = 100×
zLR−zHeu
zHeu

;

RGap : the percentage gap between the value zMIP of the best feasible solution found

by IBM Ilog Cplex and the value zHeu found by GreedyHeuristic or Lagrangian-

Heuristic, i.e., RGap = 100× zMIP−zHeu
zMIP

;

Time : the overall computing time in seconds.

In our computational tests we set a time limit of 600 seconds for the results reported in

Tables 7.6 and 7.7, of 60 seconds for Table 7.8, and of 10 seconds for Table 7.9. When

IBM Ilog Cplex does not find a feasible solution for an instance within the given time

limit, we report the character “–” in columns z, Gap, and RGap.

148 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Table 7.5: Problem instances

Group Proj. Name n m naff |UOR| |UAND| lmax dmax

A - Real PayTV 44 12 2 8 27 6 5
Web 104 6 5 0 4 4 1

B - Basic 25Chain-1 25 9 0 0 12 4 1
25Graph-1 25 8 0 10 1 2 2
25Affinity-1 25 9 6 5 5 2 2
50Chain-1 50 12 0 0 20 4 1
50Graph-1 50 11 0 8 10 2 2
50Affinity-1 50 12 6 8 9 2 2
75Chain-1 75 17 0 0 35 5 1
75Graph-1 75 19 0 13 20 2 2
75Affinity-1 75 17 6 17 13 2 3
100Chain-1 100 20 0 0 40 5 1
100Graph-1 100 23 0 20 14 2 3
100Affinity-1 100 22 6 16 14 3 4

C - Basic 25Chain-2 25 8 0 0 12 2 1
25Graph-2 25 8 0 3 8 3 2
25Affinity-2 25 9 6 7 4 3 2
50Chain-2 50 13 0 0 10 5 1
50Graph-2 50 13 0 13 8 4 5
50Affinity-2 50 13 6 13 9 3 3
75Chain-2 75 17 0 0 36 3 1
75Graph-2 75 18 0 14 16 2 2
75Affinity-2 75 18 6 17 13 2 2
100Chain-2 100 22 0 0 30 5 1
100Graph-2 100 22 0 12 15 5 7
100Affinity-2 100 22 6 11 14 3 2

D - Correlated 25Chain-3 25 15 0 0 12 4 1
25Graph-3 25 15 0 5 7 5 4
25Affinity-3 25 13 6 5 4 2 2
50Chain-3 50 22 0 0 20 4 1
50Graph-3 50 22 0 7 9 2 2
50Affinity-3 50 21 6 9 6 2 2
75Chain-3 75 31 0 0 36 6 1
75Graph-3 75 29 0 12 17 2 2
75Affinity-3 75 33 6 20 7 2 2
100Chain-3 100 38 0 0 40 8 1
100Graph-3 100 40 0 16 14 3 3
100Affinity-3 100 43 6 16 13 2 2

B - Few 25Chain-4 25 12 0 5 7 4 1
25Graph-4 25 13 0 5 6 5 4
25Affinity-4 25 14 6 3 7 2 2
50Chain-4 50 21 0 9 11 4 1
50Graph-4 50 21 0 2 13 2 2
50Affinity-4 50 21 6 6 8 2 2
75Chain-4 75 27 0 15 21 6 1
75Graph-4 75 29 0 12 12 2 4
75Affinity-4 75 29 6 10 12 2 2
100Chain-4 100 40 0 24 21 9 1
100Graph-4 100 40 0 8 17 2 2
100Affinity-4 100 39 6 18 10 2 2

C
h
a
p
ter

7
P
ro
ject

S
ch
ed

u
lin

g
O
p
tim

ization
in

A
gile

D
ata

W
areh

ou
se

D
esign

149

Table 7.6: Results obtained solving the basic model with IBM Ilog Cplex and adding valid inequalities

Basic Model Basic Model + DIs Basic Model + DIs + LCIs
Name z Gap Nodes Cuts Time z Gap Nodes Cuts Time z Gap Nodes Cuts Time

PayTV 93330.0 0.00 130908 238 50.21 93330.0 0.00 130908 238 50.71 93330.0 0.00 41573 3384 96.03
Web 32683.6 0.00 0 2 0.30 32683.6 0.00 0 2 0.30 32683.6 0.00 0 3 0.30
25Chain-1 16627.2 0.00 3747 52 0.80 16627.2 0.00 2989 56 0.72 16627.2 0.00 2790 450 1.15
25Graph-1 13515.1 0.00 601 9 0.19 13515.1 0.00 601 9 0.19 13515.1 0.00 528 93 0.20
25Affinity-1 18523.6 0.00 1223 21 0.87 18523.6 0.00 1223 21 0.89 18523.6 0.00 875 136 1.01
50Chain-1 41244.8 0.05 2284200 150 600.26 41206.6 0.22 2180919 291 600.94 41244.8 0.13 129462 7224 600.06
50Graph-1 34686.0 0.00 55654 43 16.41 34686.0 0.00 208673 103 57.63 34686.0 0.00 176231 3920 300.57
50Affinity-1 40545.1 0.00 3486 46 2.50 40545.1 0.00 2993 68 2.33 40545.1 0.00 699 244 1.11
75Chain-1 88713.3 0.91 874300 369 600.22 87879.6 1.96 616962 1202 600.47 88754.5 1.24 43100 11288 600.35
75Graph-1 92959.2 0.23 873145 188 600.27 92911.4 0.32 548418 1517 600.75 92952.8 0.29 42113 13028 600.39
75Affinity-1 76076.2 0.00 165046 80 193.37 76076.2 0.00 162370 359 191.02 76076.2 0.00 88979 8904 508.81
100Chain-1 136240.7 0.96 608866 529 600.42 135965.9 1.40 306300 2758 600.68 136159.3 1.65 34401 13408 600.29
100Graph-1 149517.0 0.23 647382 173 600.40 149453.7 0.28 277600 2600 600.99 149462.2 0.28 50300 12315 600.63
100Affinity-1 136008.3 0.25 281057 138 600.26 135975.9 0.29 307700 2222 600.25 135965.8 0.31 54300 11950 600.20
25Chain-2 13214.8 0.00 212 30 0.17 13214.8 0.00 230 29 0.19 13214.8 0.00 128 68 0.16
25Graph-2 17202.6 0.00 199 19 0.17 17202.6 0.00 223 23 0.17 17202.6 0.00 355 83 0.20
25Affinity-2 13007.4 0.00 199 26 0.22 13007.4 0.00 199 30 0.20 13007.4 0.00 128 94 0.20
50Chain-2 46629.1 0.00 29211 71 10.84 46629.1 0.00 109674 170 33.10 46629.1 0.00 31345 2818 82.32
50Graph-2 37699.9 0.00 375337 103 116.81 37699.9 0.00 373877 238 126.02 37699.9 0.00 14907 2868 36.78
50Affinity-2 46153.1 0.00 34993 112 35.09 46153.1 0.00 78374 230 73.60 46153.1 0.00 25176 2509 46.66
75Chain-2 78754.0 1.62 829001 476 600.42 79260.6 0.97 593600 831 600.38 79175.2 1.48 40277 12123 600.35
75Graph-2 72519.7 0.24 1026580 116 600.34 72569.1 0.23 814000 1069 600.85 72525.0 0.29 50721 13383 600.59
75Affinity-2 84372.4 0.06 314700 133 600.15 84284.1 0.17 342500 461 600.22 84274.4 0.28 51029 13626 600.11
100Chain-2 134485.9 0.26 654377 419 600.40 – – 272000 3873 601.25 133814.5 0.97 34311 13574 600.50
100Graph-2 134975.2 0.31 644156 170 600.46 134866.8 0.41 296500 3038 601.15 135023.3 0.28 49300 12415 600.71
100Affinity-2 136435.5 0.25 301800 144 600.29 136447.8 0.25 329765 4076 600.26 136471.8 0.23 75570 11976 600.21
25Chain-3 2855.2 0.00 26378 122 12.79 2855.2 0.00 48121 128 21.59 2855.2 0.00 3940 467 5.21
25Graph-3 1935.6 0.00 59936 89 13.96 1935.7 0.00 49015 144 11.89 1935.7 0.00 4243 526 3.87
25Affinity-3 2002.3 0.00 4538 45 5.41 2002.3 0.00 3217 49 4.01 2002.3 0.00 2132 275 3.93
50Chain-3 6199.7 2.21 374400 318 600.20 6156.4 3.13 228157 1525 600.48 6192.1 2.51 42696 5807 600.31
50Graph-3 5944.0 1.06 936113 254 600.29 5933.4 1.39 333380 3733 601.12 5944.3 1.13 60300 6905 600.52
50Affinity-3 5224.9 0.81 169000 150 600.28 5229.6 0.73 276128 1440 600.18 5220.4 1.05 64117 6808 600.13
75Chain-3 12206.2 2.71 274600 901 600.35 12056.2 4.08 175200 2308 600.51 12156.2 3.64 21386 10584 600.29
75Graph-3 11376.9 1.05 744845 566 600.60 11365.3 1.18 198676 5382 600.98 11355.6 1.28 31400 9151 600.43
75Affinity-3 14415.6 1.92 91417 280 600.19 14366.6 2.32 88000 3926 600.12 – – 28150 9459 600.09
100Chain-3 – – 188586 1247 600.65 – – 90828 5960 600.70 – – 9591 8884 600.28
100Graph-3 19952.5 0.80 431293 329 600.51 – – 96716 6466 601.03 – – 20170 13436 600.46
100Affinity-3 25412.8 2.96 41960 712 600.31 – – 39039 1620 600.57 – – 16349 6570 600.53
25Chain-4 18240.4 0.00 3230 94 1.37 18240.4 0.00 4984 98 1.79 18240.4 0.00 1381 554 1.69
25Graph-4 20561.7 0.00 21922 79 6.49 20561.7 0.00 17496 78 5.41 20561.7 0.00 4500 556 4.35
25Affinity-4 20308.8 0.00 708 57 1.81 20308.8 0.00 699 57 1.81 20308.8 0.00 1031 171 2.39
50Chain-4 60331.1 1.59 868901 295 600.26 60451.9 1.55 625123 936 600.62 60485.2 1.69 52008 5794 600.40
50Graph-4 66335.3 0.75 936300 179 600.32 66394.0 0.83 781206 594 600.60 66394.0 0.61 97300 4458 600.51
50Affinity-4 60073.0 0.04 218987 59 600.09 60073.0 0.09 200625 236 600.23 60006.5 0.31 94500 4147 600.16
75Chain-4 110688.1 5.86 487300 774 600.67 113571.4 3.35 328700 1247 600.56 111994.3 5.25 26277 11272 600.35
75Graph-4 130342.6 1.26 354591 229 600.32 130590.7 1.12 326200 1501 600.79 130230.8 1.42 41529 8534 600.50
75Affinity-4 124913.5 1.22 91800 230 600.14 124825.3 1.15 112200 918 600.18 124852.5 1.30 40300 9515 600.10
100Chain-4 – – 145225 1346 600.46 – – 133782 1952 600.63 – – 13034 11503 600.28
100Graph-4 246939.9 0.86 221700 278 600.47 246754.3 0.98 158700 2655 600.90 – – 26140 11014 600.45
100Affinity-4 237587.9 0.92 102582 282 600.40 237691.5 0.91 91800 2236 600.25 237406.5 1.08 28851 10859 600.15

1
50

C
h
ap

ter
7
P
ro
ject

S
ch
ed

u
lin

g
O
p
tim

ization
in

A
gile

D
ata

W
areh

ou
se

D
esign

Table 7.7: Comparison among IBM Ilog Cplex, GreedyHeuristic, and LagrangianHeuristic

IBM Ilog Cplex GreedyHeuristic LagrangianHeuristic (γ = 1) LagrangianHeuristic (γ = 0.995)
Name z Gap Time z RGap Time z LGap RGap Time z LGap RGap Time

PayTV 93330.0 0.00 50.21 77994.0 16.43 0.12 92646.0 6.01 0.73 19.85 92646.0 6.01 0.73 25.42
Web 32683.6 0.00 0.30 32572.9 0.34 0.03 32683.6 0.41 0.00 99.57 32683.6 0.41 0.00 99.66
25Chain-1 16627.2 0.00 0.80 16454.7 1.04 0.28 16613.6 1.41 0.08 0.53 16617.1 1.39 0.06 2.79
25Graph-1 13515.1 0.00 0.19 13514.7 0.00 0.05 13515.1 0.95 0.00 0.17 13515.1 0.95 0.00 1.34
25Affinity-1 18523.6 0.00 0.87 18171.0 1.90 0.06 18505.1 1.98 0.10 0.83 18505.1 1.98 0.10 3.90
50Chain-1 41244.8 0.05 600.26 40992.8 0.61 0.14 41103.9 1.79 0.34 4.52 41103.9 1.79 0.34 12.92
50Graph-1 34686.0 0.00 16.41 34686.0 0.00 0.08 34686.0 2.20 0.00 1.70 34686.0 2.20 0.00 3.98
50Affinity-1 40545.1 0.00 2.50 40373.3 0.42 0.08 40545.1 0.19 0.00 6.38 40545.1 0.19 0.00 14.63
75Chain-1 88713.3 0.91 600.22 88470.2 0.28 0.27 88470.2 3.20 0.28 46.97 88522.0 3.14 0.22 49.39
75Graph-1 92959.2 0.23 600.27 92595.2 0.39 0.16 92844.1 1.59 0.12 63.99 92892.8 1.53 0.07 99.26
75Affinity-1 76076.2 0.00 193.37 75757.2 0.42 0.25 75876.8 0.55 0.26 35.63 75897.9 0.52 0.24 62.14
100Chain-1 136240.7 0.96 600.42 135991.8 0.18 0.69 135991.8 3.09 0.18 73.67 135991.8 3.09 0.18 73.82
100Graph-1 149517.0 0.23 600.40 148993.6 0.35 0.28 149452.0 1.46 0.04 123.58 149452.0 1.46 0.04 162.57
100Affinity-1 136008.3 0.25 600.26 135470.9 0.40 0.38 135910.4 1.31 0.07 158.93 135910.4 1.31 0.07 221.44
25Chain-2 13214.8 0.00 0.17 13214.8 0.00 0.05 13214.8 0.43 0.00 0.58 13214.8 0.43 0.00 2.51
25Graph-2 17202.6 0.00 0.17 17202.6 0.00 0.03 17202.6 1.09 0.00 0.34 17202.6 1.09 0.00 2.12
25Affinity-2 13007.4 0.00 0.22 12700.3 2.36 0.05 13007.4 1.86 0.00 0.75 13007.4 1.86 0.00 4.62
50Chain-2 46629.1 0.00 10.84 46500.7 0.28 0.09 46545.8 0.85 0.18 3.00 46545.8 0.85 0.18 7.47
50Graph-2 37699.9 0.00 116.81 37693.0 0.02 0.11 37693.0 3.15 0.02 7.74 37693.0 3.15 0.02 8.11
50Affinity-2 46153.1 0.00 35.09 45766.6 0.84 0.19 45995.6 2.54 0.34 7.54 45995.6 2.54 0.34 10.87
75Chain-2 78754.0 1.62 600.42 78816.4 -0.08 0.62 78816.4 4.50 -0.08 29.38 78816.4 4.50 -0.08 30.55
75Graph-2 72519.7 0.24 600.34 72408.5 0.15 0.16 72408.5 5.54 0.15 39.84 72408.5 5.54 0.15 44.27
75Affinity-2 84372.4 0.06 600.15 83417.6 1.13 0.23 83758.7 4.90 0.73 68.36 83758.7 4.90 0.73 80.67
100Chain-2 134485.9 0.26 600.40 134217.7 0.20 0.86 134217.7 1.25 0.20 49.30 134217.7 1.25 0.20 56.18
100Graph-2 134975.2 0.31 600.46 134871.6 0.08 0.31 134871.6 1.03 0.08 124.69 134871.6 1.03 0.08 181.13
100Affinity-2 136435.5 0.25 600.29 136171.7 0.19 0.47 136329.0 0.76 0.08 106.38 136329.0 0.76 0.08 171.79
25Chain-3 2855.2 0.00 12.79 2821.9 1.17 0.13 2855.2 0.67 0.00 0.72 2855.2 0.67 0.00 4.59
25Graph-3 1935.6 0.00 13.96 1862.2 3.79 0.11 1919.4 5.03 0.84 0.50 1919.4 5.03 0.84 3.09
25Affinity-3 2002.3 0.00 5.41 1976.3 1.30 0.13 1994.9 2.86 0.37 0.89 1994.9 2.86 0.37 1.45
50Chain-3 6199.7 2.21 600.20 6117.0 1.33 0.62 6167.1 4.07 0.53 7.05 6167.1 4.07 0.53 10.36
50Graph-3 5944.0 1.06 600.29 5918.4 0.43 0.75 5918.4 2.53 0.43 4.71 5918.4 2.53 0.43 8.05
50Affinity-3 5224.9 0.81 600.28 5149.2 1.45 0.44 5210.2 3.66 0.28 8.14 5210.2 3.66 0.28 23.76
75Chain-3 12206.2 2.71 600.35 11830.6 3.08 1.39 12125.9 6.32 0.66 47.24 12125.9 6.32 0.66 75.10
75Graph-3 11376.9 1.05 600.60 11305.3 0.63 1.83 11375.4 8.18 0.01 7.30 11375.4 8.18 0.01 46.04
75Affinity-3 14415.6 1.92 600.19 14226.8 1.31 1.17 14436.8 4.00 -0.15 13.00 14436.8 4.00 -0.15 72.61
100Chain-3 – – 600.65 19336.0 – 2.40 19337.9 5.15 – 66.10 19337.9 5.15 – 73.01
100Graph-3 19952.5 0.80 600.51 19859.0 0.47 2.40 19925.1 3.30 0.14 85.24 19925.1 3.30 0.14 280.38
100Affinity-3 25412.8 2.96 600.31 24967.7 1.75 2.61 25371.2 5.60 0.16 53.35 25371.2 5.60 0.16 74.46
25Chain-4 18240.4 0.00 1.37 17500.5 4.06 0.16 18240.4 3.43 0.00 1.97 18240.4 3.43 0.00 2.43
25Graph-4 20561.7 0.00 6.49 20237.9 1.58 0.16 20551.4 5.37 0.05 0.89 20551.4 5.37 0.05 3.28
25Affinity-4 20308.8 0.00 1.81 18820.9 7.33 0.19 20286.8 6.57 0.11 0.52 20286.8 6.57 0.11 3.25
50Chain-4 60331.1 1.59 600.26 59741.3 0.98 0.47 60033.9 4.67 0.49 9.77 60033.9 4.67 0.49 18.91
50Graph-4 66335.3 0.75 600.32 66166.2 0.26 0.83 66166.2 4.11 0.26 7.97 66166.2 4.11 0.26 10.78
50Affinity-4 60073.0 0.04 600.09 59856.4 0.36 0.52 59912.3 5.12 0.27 13.66 59912.3 5.12 0.27 65.02
75Chain-4 110688.1 5.86 600.67 111538.6 -0.77 1.34 112185.6 8.52 -1.35 67.13 112188.4 8.51 -1.35 91.09
75Graph-4 130342.6 1.26 600.32 128400.2 1.49 1.39 129963.0 5.11 0.29 23.82 129963.0 5.11 0.29 57.67
75Affinity-4 124913.5 1.22 600.14 123198.2 1.37 1.29 124196.3 5.54 0.58 31.48 124196.3 5.54 0.58 62.93
100Chain-4 – – 600.46 212681.5 – 2.96 216381.8 9.06 – 202.88 216381.8 9.06 – 231.12
100Graph-4 246939.9 0.86 600.47 246505.4 0.18 1.97 246511.5 4.37 0.17 53.60 246511.5 4.37 0.17 198.41
100Affinity-4 237587.9 0.92 600.40 234254.3 1.40 2.29 236779.7 5.84 0.34 53.02 236779.7 5.84 0.34 131.12

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 151

Table 7.6 shows the computational results obtained solving with IBM Ilog Cplex the

basic model (7.1)–(7.10) proposed in section 7.3.1, and adding to this model first the

Dominance Inequalities (DIs) described in subsection 7.4.3, and then also the Lifted

Cover Inequalities (LCIs) described in subsection 7.4.2. Many instances are not solved

to optimality by IBM Ilog Cplex within the given time limit of 600 seconds (30 out of 50

instances). In particular, for instances “100Chain-3” and “100Chain-4” IBM Ilog Cplex

cannot find a feasible solution. When we add the DIs and LCIs to the basic model,

the results do not improve on average; on the contrary, often IBM Ilog Cplex generates

worse solutions and only for some instances the results are improved. The basic model

with DIs performs better for 15 out of 50 instances (e.g., for instances “75Chain-2”,

“25Affinity-3”, “75Chain-4”, etc.). The basic model with DIs and LCIs performs better

only for 13 out of 50 instances (e.g., for instances “50Graph-2”, “25Chain-3”, etc.).

These results show that DIs and LCIs are usually able to reduce the number of tree

nodes, but the cost for separating the inequalities and solving the increased model are

not repayed. However, sometimes the added inequalities increase the number of tree

nodes, in particular for DIs, probably because they induce an increasing number of

fractional variables. Not reported in our computational results, the contribution of the

reduction procedures is negligible. Probably, as in cutting problems, they are effective

only for those instances where only a few user stories can be executed at each sprint.

Table 7.7 provides a comparison between IBM Ilog Cplex applied to the basic model,

procedure GreedyHeuristic presented in section 7.4.4, and LagrangianHeuristic pre-

sented in section 7.4.5. For LagrangianHeuristic we perform two computational tests

with two different settings of parameter γ. In the first setting it is γ = 1, therefore at

each subgradient iteration the more expensive procedure GreedyHeuristic is performed

only if QuickGreedyHeuristic and ExchangeHeuristic provide the best feasible solution

computed so far. In the second setting it is γ = 0.995, therefore GreedyHeuristic is

performed if QuickGreedyHeuristic and ExchangeHeuristic provide a feasible solution

whose value is at least 99.5% the current best solution value. Procedure GreedyHeuris-

tic can solve each instance very quickly, but sometimes it yields unsatisfactory solutions

whose value is even 16.43% or 7.33% worse than the best solution value found by IBM

Ilog Cplex for instances PayTV and “25Affinity-4”, respectively. LagrangianHeuris-

tic computes solutions of better quality instead; with γ = 0.995 it always generates

solutions whose maximum gap from the best feasible solution is under 1%, and for 5

instances it outperforms IBM Ilog Cplex. LagrangianHeuristic requires a larger com-

puting time when γ = 0.995 with respect to γ = 1, because it executes procedure

GreedyHeuristic a larger number of times.

Tables 7.8 and 7.9 compare LagrangianHeuristic with IBM ILog Cplex setting the time

limit to 60 and 10 seconds, respectively. In these computational tests we set γ = 1.

The results show that LagrangianHeuristic finds very good-quality solutions in a very

short time with respect to IBM ILog Cplex. In fact, Table 7.8 shows that, setting a

152 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

Table 7.8: Comparison between IBM ILog Cplex and LagrangianHeuristic setting
a time limit of 60 secs

IBM Ilog Cplex LagrangianHeuristic
Name z Gap Time z RGap Time

PayTV 93330.0 0.00 51.01 92646.0 0.73 20.34
Web 32683.6 0.00 0.30 32683.6 0.00 60.31
25Chain-1 16627.2 0.00 0.80 16613.6 0.08 0.52
25Graph-1 13515.1 0.00 0.19 13515.1 0.00 0.17
25Affinity-1 18523.6 0.00 0.87 18505.1 0.10 0.86
50Chain-1 41182.3 0.46 60.14 41103.9 0.19 4.49
50Graph-1 34686.0 0.00 16.60 34686.0 0.00 1.72
50Affinity-1 40545.1 0.00 2.48 40545.1 0.00 6.58
75Chain-1 84711.8 6.34 60.08 88470.2 -4.44 47.49
75Graph-1 92844.7 0.39 60.11 92844.1 0.00 60.06
75Affinity-1 76076.2 0.03 60.06 75876.8 0.26 35.85
100Chain-1 – – 60.22 135991.8 – 60.11
100Graph-1 149350.9 0.35 60.20 149452.0 -0.07 60.45
100Affinity-1 135934.8 0.33 60.15 135910.4 0.02 60.40
25Chain-2 13214.8 0.00 0.16 13214.8 0.00 0.59
25Graph-2 17202.6 0.00 0.16 17202.6 0.00 0.34
25Affinity-2 13007.4 0.00 0.20 13007.4 0.00 0.75
50Chain-2 46629.1 0.00 10.70 46545.8 0.18 2.96
50Graph-2 37699.9 0.06 60.15 37693.0 0.02 7.84
50Affinity-2 46153.1 0.00 34.67 45995.6 0.34 7.65
75Chain-2 72821.8 10.75 60.10 78816.4 -8.23 29.25
75Graph-2 72515.2 0.28 60.11 72408.5 0.15 39.86
75Affinity-2 84198.7 0.37 60.08 83758.7 0.52 60.09
100Chain-2 133767.7 0.94 60.17 134217.7 -0.34 49.66
100Graph-2 134900.3 0.37 60.22 134871.6 0.02 60.67
100Affinity-2 136355.8 0.32 60.19 136329.0 0.02 60.45
25Chain-3 2855.2 0.00 12.40 2855.2 0.00 0.73
25Graph-3 1935.6 0.00 13.65 1919.4 0.84 0.48
25Affinity-3 2002.3 0.00 5.20 1994.9 0.37 0.87
50Chain-3 6221.7 2.07 60.06 6167.1 0.88 6.88
50Graph-3 – – 60.08 5918.4 – 4.55
50Affinity-3 5194.6 1.78 60.08 5210.2 -0.30 8.10
75Chain-3 – – 60.06 12125.9 – 46.75
75Graph-3 11316.4 1.62 60.12 11375.4 -0.52 6.46
75Affinity-3 14290.4 2.98 60.09 14436.8 -1.02 12.17
100Chain-3 – – 60.23 19337.9 – 60.23
100Graph-3 19897.1 1.10 60.22 19925.1 -0.14 60.08
100Affinity-3 – – 60.22 25371.2 – 53.01
25Chain-4 18240.4 0.00 1.25 18240.4 0.00 1.89
25Graph-4 20561.7 0.00 6.33 20551.4 0.05 0.83
25Affinity-4 20308.8 0.00 1.73 20286.8 0.11 0.44
50Chain-4 60490.4 1.74 60.08 60033.9 0.76 9.20
50Graph-4 66262.9 1.00 60.09 66166.2 0.15 7.47
50Affinity-4 59890.1 0.63 60.06 59912.3 -0.04 13.01
75Chain-4 111280.0 5.85 60.08 112185.6 -0.81 60.09
75Graph-4 129958.9 1.74 60.09 129963.0 -0.00 23.01
75Affinity-4 124616.6 1.64 60.06 124196.3 0.34 31.17
100Chain-4 – – 60.19 216381.8 – 60.22
100Graph-4 244866.7 1.85 60.15 246511.5 -0.67 52.04
100Affinity-4 236642.0 1.45 60.14 236779.7 -0.06 51.85

time limit of 60 seconds, IBM ILog Cplex generates a worse solution for 19 out of 50

instances and, in particular, it cannot find a feasible solution for 6 out of 50 instances.

Setting a time limit of 10 seconds, the situation worsens further for IBM Ilog Cplex.

Table 7.9 shows that IBM ILog Cplex generates a worse solution for 24 out of 50

instances and it cannot find a feasible solution for 10 out of 50 instances.

7.5 Conclusions

In this chapter, we formalized the multi-sprint planning problem and proposed a gen-

eralized assignment model to solve it (see [Golfarelli et al., 2012c]). Our model was

conceived for an interactive and flexible use by a design team that progressively defines

the best plan or revises it during its execution.

Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design 153

Table 7.9: Comparison between IBM ILog Cplex and LagrangianHeuristic setting
a time limit of 10 secs

IBM Ilog Cplex LagrangianHeuristic
Name z Gap Time z RGap Time

PayTV 92781.0 1.40 10.02 92066.0 0.77 10.08
Web 32683.6 0.00 0.30 32683.6 0.00 10.75
25Chain-1 16627.2 0.00 0.81 16613.6 0.08 0.52
25Graph-1 13515.1 0.00 0.19 13515.1 0.00 0.17
25Affinity-1 18523.6 0.00 0.87 18505.1 0.10 0.83
50Chain-1 41164.9 0.63 10.03 41103.9 0.15 4.48
50Graph-1 34686.0 0.05 10.03 34686.0 0.00 1.73
50Affinity-1 40545.1 0.00 2.45 40545.1 0.00 6.40
75Chain-1 84711.8 6.74 10.06 88470.2 -4.44 10.08
75Graph-1 92753.6 0.58 10.06 92679.3 0.08 10.28
75Affinity-1 75958.6 0.25 10.03 75841.3 0.16 10.30
100Chain-1 – – 10.19 135991.8 – 10.22
100Graph-1 149312.2 0.48 10.17 148993.6 0.21 10.23
100Affinity-1 135727.6 0.49 10.14 135574.6 0.11 10.56
25Chain-2 13214.8 0.00 0.16 13214.8 0.00 0.58
25Graph-2 17202.6 0.00 0.16 17202.6 0.00 0.33
25Affinity-2 13007.4 0.00 0.19 13007.4 0.00 0.78
50Chain-2 46629.1 0.02 10.02 46545.8 0.18 2.96
50Graph-2 37669.9 0.26 10.05 37693.0 -0.06 7.72
50Affinity-2 46143.6 0.28 10.02 45995.6 0.32 7.52
75Chain-2 – – 10.05 78816.4 – 10.08
75Graph-2 72478.0 0.37 10.06 72408.5 0.10 10.20
75Affinity-2 84047.4 0.61 10.06 83741.6 0.36 10.06
100Chain-2 132748.5 1.85 10.12 134217.7 -1.11 10.05
100Graph-2 134632.3 0.58 10.15 134871.6 -0.18 10.02
100Affinity-2 135996.2 0.60 10.14 136171.7 -0.13 10.02
25Chain-3 2855.2 0.44 10.02 2855.2 0.00 0.70
25Graph-3 1934.7 0.26 10.02 1919.4 0.79 0.62
25Affinity-3 2002.3 0.00 5.26 1994.9 0.37 0.84
50Chain-3 6094.3 4.36 10.02 6167.1 -1.19 6.85
50Graph-3 – – 10.06 5918.4 – 4.52
50Affinity-3 5189.1 2.15 10.03 5210.2 -0.41 8.00
75Chain-3 – – 10.11 12048.9 – 10.23
75Graph-3 – – 10.08 11375.4 – 6.47
75Affinity-3 – – 10.16 14436.8 – 10.09
100Chain-3 – – 10.09 19336.0 – 10.39
100Graph-3 19850.9 1.36 10.19 19859.0 -0.04 10.08
100Affinity-3 – – 10.27 25371.2 – 10.39
25Chain-4 18240.4 0.00 1.25 18240.4 0.00 1.84
25Graph-4 20561.7 0.00 6.32 20551.4 0.05 0.84
25Affinity-4 20308.8 0.00 1.81 20286.8 0.11 0.45
50Chain-4 60153.6 2.85 10.03 60033.9 0.20 9.39
50Graph-4 66099.6 1.36 10.05 66166.2 -0.10 7.46
50Affinity-4 59604.8 1.23 10.05 59912.3 -0.51 10.02
75Chain-4 – – 10.05 111538.6 – 10.03
75Graph-4 128261.4 3.26 10.08 129963.0 -1.33 10.14
75Affinity-4 123522.5 2.68 10.05 123763.8 -0.19 10.02
100Chain-4 – – 10.06 215393.1 – 10.26
100Graph-4 241622.6 3.42 10.16 246505.4 -2.02 10.28
100Affinity-4 232747.4 3.43 10.12 236441.2 -1.59 10.16

Our model can be applied whenever the basic assumptions of agile methods hold,

namely, definition of requirements in form of micro-functionalities (i.e., stories), capa-

bility of producing estimates of story utility, complexity, and correlation, and frequent

iterations based on user feedback (which implies allocation of stories to sprints). No-

ticeably, our model is not geared towards a specific type of project: though in bespoke

projects it can benefit from user involvement during story definition and estimation

(mainly for utility assessment), it can also be effectively applied in market-driven

projects where the team experience and the feedbacks received during the beta-test

phase can cope with the absence of key users.

The tests we carried out show that, for medium-sized problems, an exact solution

is found in a time that is fully compatible with the development process (i.e., from

some seconds to a few minutes), while for large problems a heuristic solution that is

less than 1% far from the exact one can be returned in a few seconds. Moreover, we

proposed different algorithms to further improve the model performance for complex

154 Chapter 7 Project Scheduling Optimization in Agile Data Warehouse Design

problems. As to effectiveness, the team managers judged the optimal plans to be

feasible and realistic, and most of the differences in sprint composition were evaluated

as improvements over the team plan. In smooth replanning, the trade-off between the

quality and the stability of the new plan is always very good. For these reasons, we

believe that our optimization module could be a very convenient and powerful add-on

to the existing softwares for agile project management.

Finally, we planned to extend our work from different perspectives: (1) allowing dif-

ferent development speeds for different sprints due to a variable team composition;

(2) modeling different team capabilities (e.g., design, implement, test) so that, in each

sprint, the team will be able to deliver a different number of story points for each

capability; (3) extending the model to support multiple teams working on the same

project, which requires to introduce a concept of chunks of stories like done by Szoke

[2011]; (4) implementing a structured approach to utility definition and measure its

impact on the accuracy of the estimates and consequently on the effectiveness of plans.

Chapter 8

Conclusions and Future Works

In this thesis we described the main contributions we gave on three different aspects of

pervasive business intelligence: Distributed BI, OLAP Personalization and Similarity,

and Agile Data Warehouse Design.

In the context of Distributed BI, the BIN framework represents an innovative approach

to support company collaboration, thus favouring BI ANYWHERE. The distributed

solution we envisioned supports high scalability, dynamism, and peer autonomy as

well. On the other hand, it poses many issues related to routing strategies, especially

when the number of network nodes grows. Our main contribution here was to devise a

query reformulation approach, made necessary by the heterogeneity of peers. Besides,

we proved the correctness of the reformulation algorithm and gave an estimation of the

reformulation quality. We provided a basic implementation solution for the peer infras-

tructure based on the MDX language and the Mondrian suite. Nevertheless, several

aspects deserve further investigations, namely: (1) how to efficiently process queries

across the network by applying routing strategies that select a subset of neighboring

peers for reformulation; (2) how to automatically detect semantic mappings between

concepts in different schemata; (3) how to efficiently transmit huge quantity of data in

the net; (4) how to reconcile multidimensional data returned by different peers through

object fusion techniques; (5) how to rank peer results depending on how compliant they

are with the original local query; (6) how to deal with security depending on the degree

of trust between the BIN participants.

As concerns OLAP Personalization and Similarity, we investigated different perspec-

tives to enhance the OLAP navigation, supporting the concept of BI to ANYONE.

We designed a soft approach that personalizes the current user queries starting from

the log of past queries. This technique allows to automatically mine relevant pref-

erences to annotate each query in order to refine its result. On the other hand, the

user experience can be further improved by directly suggesting the user the next query

to formulate. In this direction, we studied different measures to compare the OLAP

155

156 Chapter 8 Conclusions and Future Works

session a user is currently involved in, with the sessions that were issued in the past

by the same or other users, namely: edit-, subsequence-, log-, and alignment-based

similarity approaches. We extended each measure based on the result of a real case

study we carried out to extract the requirements to compare OLAP sessions. It turned

out that the alignment-based measure is the one that best fit the user requirements.

Starting with this result, our future works will use this measure to design a method for

recommending the next OLAP query to formulate. We will pay particular attention in

mixing intensional and extensional information, as suggested in [Chatzopoulou et al.,

2011], in order to support OLAP exploratory analysis. This will have a major impact

on improving OLAP-based interactions from both points of view of efficiency (by reduc-

ing the query formulation effort) and effectiveness (by suggesting popular/successful

trends of analysis).

Finally, in the field of Agile Data Warehouse Design we contributed to BI ANYTIME

proposing two different solutions. First, we designed 4WD that represents a new

methodology to combine agile principles with traditional DW development approaches.

4WD has been successfully applied to the PayTV case study, allowing a reduction of

the implementation effort and favouring the early detection of errors. Second, we

proposed a multi-sprint planning model, based on 4WD principles, to support the

analyst during the project scheduling. This model produces an automatically optimized

plan that can be used as an initial suggestion for the analyst. Moreover, the model

includes a smooth replanning solution to allow the management of disrupted or new

stories, and to accommodate changes during the project life-cycle. The case study on

PayTV and Web proved the effectiveness of our model in terms of sprint composition,

risk distribution, and delivered utility. As to efficiency, the model performs well on

small-medium projects. For large projects (e.g., more than 100 stories) we proposed

different algorithms to improve the performance, namely reductions, cover inequalities,

dominance inequalities, greedy and exchange heuristics, and a Lagrangian heuristic.

The Lagragian heuristic produces the best result with respect to the one returned

by a general MIP solver such as IBM ILog Cplex. We stressed the algorithms with

both synthetic and real problems, varying the number of stories and correlations, and

the type of precedences. Though we obtained positive feedback from both efficiency

and effectiveness tests, we plan to extend our model to better address real project

issues: allowing different development speeds for different sprints due to a variable

team composition, modeling different team capabilities (e.g., design, implement, test)

so that, in each sprint, the team will be able to deliver a different number of story points

for each capability, and providing a detailed definition of the different components

affecting the utility concept, to have more precise estimations.

Appendix A

Theorem Proofs

Theorem A.1. Let qt be a (target) BIN query and q′ be the output of the query

reformulation algorithm when qt is given as input. Then, there exists a (source) BIN

query qs such that q′ is the relational translation of qs.

Proof. Let us consider q′(z′, expr′(α′1(w′1), . . . , α′v′(w
′
v′)) ← body. Note that the way

attribute mappings have been defined ensures that body follows a star form, i.e., it

contains the star join that is necessary to relate the source fact table with the involved

dimension tables. This implies that a BIN query must exist whose encoding is q′. Then,

without loss of generality, we assume that q′ is equipped with a variable assignment

function ν that can be easily derived from the variable assignment functions of q and

of the involved mappings. With a little abuse of notation we will apply the inverse

of ν, ν−1, also to atomic formulas, meaning that ν−1 is applied to its arguments. We

define qs = 〈Ms, Es, ps, exprs, Ts〉 on the source schema Ms as follows:

Gs : for each head variable v ∈ z′, check whether there is a comparison predicate

v = f(v′) in the body. If it exists, then add f(ν−1(v′) to Es and delete the

predicate from body, otherwise add ν−1(v) to Es.

ps : for each left predicate p in body, add ν−1(p) to ps.

exprs : is the expression expr′(ν−1(w′1), . . . , ν−1(w′v′)).

Ts : is the list 〈〈ν−1(w′1), α′1〉, . . . , 〈ν−1(w′v′), α
′
v′〉〉

Then, it can be easily shown that the relational translation of qs is q′ modulo variable

mappings.

Theorem A.2. Let qt be a BIN query, qt1 be the output of Step 1 on qt, q(z, aggrExpr)

be the relational translation of qt1, and z′′ be the head variables of q that find a re-

formulation. The reformulation algorithm guarantees to find all certain answers of

q(z′′, aggrExpr).

157

158 Appendix A Theorem Proofs

Proof. In the following we show that our algorithm reduces to the algorithm for query

reformulation shown in [Halevy et al., 2005], which is proved to find all and only certain

answers. Our s-t tgd’s are in GLAV-style. As in Halevy et al. [2005], we transform

them in pairs of LAV and GAV s-t tgd’s; Step 2 deals with the set of GAV and LAV

s-t tgd’s by first matching the LAV s-t tgd’s and then the GAV ones. The main

difference lies in the selection of mappings. Indeed, our algorithm performs a syntactic

selection whereas the algorithm in [Halevy et al., 2005] refers to the logical form of the

mappings. Nevertheless, for mappings of types τ1 and τ2 (i.e., those that define z′′) it

can be easily shown that Step 1 follows the same selection principles adopted by usual

approaches for answering queries using views [Halevy, 2001], thus making the mapping

selection phase equivalent. Finally, the computation of Γ at Step 3 has the objective of

determining additional constraints between source variables induced by the mappings

of types τ1 and τ2. Without the merging of Γ with the body of the reformulated query

q′, q′ would return a superset of the answers, also including results that do not satisfy

all the implicit constraints derived in Γ. Thus Step 3 is fundamental for determining

the certain answers.

Bibliography

Aalto University, SoberIT. Agilefant. http://www.agilefant.org/, 2011.

S. Abiteboul. Managing an XML warehouse in a P2P context. In Proc. CAiSE, pages

4–13, Klagenfurt, Austria, 2003.

S. Abiteboul and O. M. Duschka. Complexity of answering queries using materialized

views. In Proc. PODS, pages 254–263, Seattle, Washington, USA, 1998.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

S. Abiteboul, I. Manolescu, and N. Preda. Constructing and querying peer-to-peer

warehouses of xml resources. In ICDE, pages 1122–1123, 2005.

F. N. Afrati and P. G. Kolaitis. Answering aggregate queries in data exchange. In

Proc. PODS, pages 129–138, Vancouver, BC, Canada, 2008.

Agile Manifesto. Manifesto for agile software development. http://agilemanifesto.org/,

2010.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In Proc. VLDB, pages 487–499, Santiago de Chile, Chile, 1994.

R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In Proceedings

ACM SIGMOD International Conference on Management of Data, pages 383–394,

Chicago, IL, 2006.

J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis,

and J. Swarubini Vindhiya Varman. SQL QueRIE recommendations. PVLDB, 3(2):

1597–1600, 2010.

M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S. Lakshmanan, and D. Srivastava.

Efficient OLAP query processing in distributed data warehouses. Inf. Syst., 28(1-2):

111–135, 2003.

O. Alagoz and M. Azizoglu. Rescheduling of identical parallel machines under machine

eligibility constraints. European Journal of Operational Research, 149(3):523–532,

2003.

159

160 BIBLIOGRAPHY

J. Albrecht and W. Lehner. On-line analytical processing in distributed data ware-

houses. In Proc. IDEAS, pages 78–85, Cardiff, Wales, U.K., 1998.

J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Mining preferences

from olap query logs for proactive personalization. In ADBIS, pages 84–97, 2011.

J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Similarity measure for

olap sessions. To appear on KAIS, 2013.

K. Aouiche, P.-E. Jouve, and J. Darmont. Clustering-based materialized view selec-

tion in data warehouses. In Proceedings East European Conference on Advances in

Databases and Information Systems, pages 81–95, Thessaloniki, Greece, 2006.

P. Avella, M. Boccia, and I. Vasilyev. A computational study of exact kanpsack sep-

aration for the generalized assignment problem. Computational Optimization and

Applications, 45:543–555, 2010.

H. Baars and H.-G. Kemper. Business intelligence in the cloud? In PACIS, page 145,

2010.

E. Baikousi, G. Rogkakos, and P. Vassiliadis. Similarity measures for multidimensional

data. In Proc. ICDE, pages 171–182, Hannover, Germany, 2011.

M. Banek, A. Min Tjoa, and N. Stolba. Integrating different grain levels in a medical

data warehouse federation. In DaWaK, pages 185–194, 2006.

M. Banek, B. Vrdoljak, A. Min Tjoa, and Z. Skocir. Automated integration of hetero-

geneous data warehouse schemas. IJDWM, 4(4):1–21, 2008.

J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern heuristic tech-

niques for combinatorial problems, pages 243–303. Blackwell Scientific Publications,

1993.

K. Beck. Embracing change with extreme programming. IEEE Computer, 32(10):

70–77, 1999.

L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent. A personaliza-

tion framework for OLAP queries. In Proc. DOLAP, pages 9–18, Bremen, Germany,

2005.

S. Berger and M. Schrefl. Analysing multi-dimensional data across autonomous data

warehouses. In DaWaK, pages 120–133, 2006.

S. Berger and M. Schrefl. From federated databases to a federated data warehouse

system. In HICSS, page 394, 2008.

M. Beyer and J. Richardson. Agile techniques augment but do not replace business

intelligence and data warehouse best practice. Technical Report G00201031, Gartner

Research, 2010.

BIBLIOGRAPHY 161

P. Biondi, M. Golfarelli, and S. Rizzi. Preference-based datacube analysis with my-

OLAP. In Proc. ICDE, 2011.

B. W. Boehm. A spiral model of software development and enhancement. IEEE

Computer, 21(5):61–72, 1988.

M. A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional strip-

packing problem. Operations Research, 58(6):1774–1791, November 2010. ISSN

0030-364X.

M.A. Boschetti and V. Maniezzo. Benders decomposition, lagrangean relaxation and

metaheuristic design. Journal of Heuristics, 15:283–312, 2009. ISSN 1381-1231.

M.A. Boschetti and A. Mingozzi. The two-dimensional finite bin packing problem.

Part I: New lower bounds for the oriented case. 4OR, 1:27–42, 2003.

M.A. Boschetti, E. Hadjinconstantinou, and A. Mingozzi. New upper bounds for the

finite two-dimensional orthogonal non-guillotine cutting stock problem. IMA Journal

of Management Mathematics, 13:95–119, 2002.

M.A. Boschetti, V. Maniezzo, and M. Roffilli. Decomposition techniques as meta-

heuristic frameworks. In Matheuristics, Hybridizing Metaheuristics and Mathemati-

cal Programming, pages 135 – 158. Springer, NEW YORK, 2009.

P. F. Brown, V. J. Della Pietra, P. V. de Souza, J. C. Lai, and R. L. Mercer. Class-

based n-gram models of natural language. Computational Linguistics, 18(4):467–479,

1992.

R. M. Bruckner, T. Wang Ling, O. Mangisengi, and A. Min Tjoa. A framework for a

multidimensional olap model using topic maps. In WISE (2), pages 109–118, 2001.

B. Bustos and T. Skopal. Non-metric similarity search problems in very large collec-

tions. In ICDE, pages 1362–1365, Hannover, Germany, 2011.

A. Caprara and M. Fischetti. Branch-and-cut algorithms. In M. Dell’Amico and

F. Maffioli, editors, Annotated Bibliographies in Combinatorial Optimization. Wiley

Interscience Series in Discrete Mathematics, 1997.

K. C. Chang and H. Garcia-Molina. Mind your vocabulary: Query mapping across

heterogeneous information sources. In Proc. SIGMOD, pages 335–346, Philadelphia,

Pennsylvania, USA, 1999.

G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommendations for inter-

active database exploration. In Proceedings International Conference on Scientific

and Statistical Database Management, pages 3–18, New Orleans, LA, 2009a.

G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommendations for interac-

tive database exploration. In Proc. SSDBM, pages 3–18, New Orleans, USA, 2009b.

162 BIBLIOGRAPHY

G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, N. Polyzotis, and J. Swarubini Vin-

dhiya Varman. The querie system for personalized query recommendations. IEEE

Data Eng. Bull., 34(2):55–60, 2011.

S. Chaudhuri, U. Dayal, and V.R. Narasayya. An overview of business intelligence

technology. Commun. ACM, 54(8):88–98, 2011.

S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary aggregation func-

tions using views. ACM Transactions on Database Systems, 31(2):672–715, 2006.

W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string distance

metrics for name-matching tasks. In Proceedings IJCAI-03 Workshop on Information

Integration on the Web, pages 73–78, Acapulco, Mexico, 2003.

M. Cohn. User Stories Applied: For Agile Software Development. Addison-Wesley

Professional, 2004.

Collabnet. ScrumWorks. http://www.danube.com/, 2011.

P. Cudré-Mauroux, K. Aberer, and A. Feher. Probabilistic message passing in peer

data management systems. In ICDE, page 41, 2006.

M. Denne and J. Cleland-Huang. Software by Numbers. Prentice Hall, 2004.

M. Drosou and E. Pitoura. ReDRIVE: result-driven database exploration through rec-

ommendations. In Proceedings CIKM, pages 1547–1552, Glasgow, United Kingdom,

2011.

D. Dubois and H. Prade. On the use of aggregation operations in information fusion

processes. Fuzzy Sets and Systems, 142(1):143–161, 2004.

T. Dyb̊a and T. Dingsøyr. Empirical studies of agile software development: A system-

atic review. Information & Software Technology, 50(9-10):833–859, 2008.

M. M. Espil and A. A. Vaisman. Aggregate queries in peer-to-peer OLAP. In DOLAP,

pages 102–111, Washington, DC, USA, 2004.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and

query answering. In Proc. ICDT, pages 207–224, Siena, Italy, 2003.

R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core. ACM Trans.

Database Syst., 30(1):174–210, 2005.

A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan. Peer data exchange. In Proc.

PODS, pages 160–171, Baltimore, Maryland, USA, 2005.

H. Garcia-Molina, J. D. Ullman, and J. D. Widom. Database Systems: The Complete

Book, Second edition. Prentice Hall, 2008.

Gartner. Amplifying the enterprise, 2012.

BIBLIOGRAPHY 163

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering.

Prentice Hall, 2002.

A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa. Plan selection based on query

clustering. In Proceedings International Conference on Very Large Data Bases, pages

179–190, Hong Kong, China, 2002.

A. Giacometti, P. Marcel, and E. Negre. Recommending multidimensional queries. In

Proc. DaWaK, pages 453–466, Linz, Austria, 2009.

A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query recommendations for OLAP

discovery driven analysis. IJDWM, 2011.

P. Giorgini, S. Rizzi, and M. Garzetti. GRAnD: A goal-oriented approach to require-

ment analysis in data warehouses. Decision Support Systems, 45(1):4–21, 2008.

M. Golfarelli. Handling large workloads by profiling and clustering. In Proceedings

International Conference on Data Warehousing and Knowledge Discovery, pages

212–223, Prague, Czech Republic, 2003.

M. Golfarelli and S. Rizzi. A methodological framework for data warehouse design. In

Proc. DOLAP, pages 3–9, 1998.

M. Golfarelli and S. Rizzi. WAND: A CASE tool for data warehouse design. In Proc.

ICDE, pages 7–9, 2001.

M. Golfarelli and S. Rizzi. A comprehensive approach to data warehouse testing. In

Proc. DOLAP, pages 17–24, 2009a.

M. Golfarelli and S. Rizzi. Data warehouse design: Modern principles and methodolo-

gies. McGraw-Hill, 2009b.

M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, and E. Turricchia. Towards olap query

reformulation in peer-to-peer data warehousing. In DOLAP, pages 37–44, 2010.

M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, and E. Turricchia. BIN: Business

intelligence networks. In Business Intelligence Applications and the Web: Models,

Systems and Technologies. IGI Global, 2011a.

M. Golfarelli, S. Rizzi, and P. Biondi. myOLAP: An approach to express and evaluate

OLAP preferences. IEEE TKDE, 2011b.

M. Golfarelli, S. Rizzi, and E. Turricchia. Modern software engineering methodologies

meet data warehouse design: 4wd. In DaWaK, pages 66–79, 2011c.

M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, and E. Turricchia. A query reformu-

lation framework for p2p olap. In SEBD, pages 147–154, 2012a.

164 BIBLIOGRAPHY

M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, and E. Turricchia. Olap query refor-

mulation in peer-to-peer data warehousing. Inf. Syst., 37(5):393–411, 2012b.

M. Golfarelli, S. Rizzi, and E. Turricchia. Sprint planning optimization in agile data

warehouse design. In Proc. Int. Conf. on Data Warehousing and Knowledge Discov-

ery, Vienna, Austria, 2012c.

V. S. Gordon and J. M. Bieman. Rapid prototyping: Lessons learned. IEEE Software,

12(1):85–95, 1995.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-

by, cross-tab, and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

D. Greer and G. Ruhe. Software release planning: an evolutionary and iterative ap-

proach. Information & Software Technology, 46(4):243–253, 2004.

A. Gupta and I. Mumick. Materialized views: techniques, implementations, and appli-

cations. MIT Press, 1999.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-

housing environments. In Proceedings International Conference on Very Large Data

Bases, pages 358–369, Zurich, Switzerland, 1995.

A. Y. Halevy. Technical perspective - schema mappings: rules for mixing data. Com-

mun. ACM, 53(1), 2010.

A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The

Piazza peer data management system. IEEE TKDE, 16(7):787–798, 2004.

A.Y. Halevy. Answering queries using views: A survey. VLDBJ, 10(4):270–294, 2001.

A.Y. Halevy, Z.G. Ives, D. Suciu, and I. Tatarinov. Schema mediation for large-scale

semantic data sharing. VLDBJ, 14(1):68–83, 2005.

Y.g He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. Rcfile: A fast and

space-efficient data placement structure in mapreduce-based warehouse systems. In

ICDE, pages 1199–1208, 2011.

G. T. Heineman and W. T. Councill. Component-based software engineering: Putting

the pieces together. Addison-Wesley, 2001.

T. A. D. Hoang and T. Binh Nguyen. State of the art and emerging rule-driven

perspectives towards service-based business process interoperability. In Proc. Int.

Conf. on Comp. and Comm. Tech., pages 1–4, Danang City, Vietnam, 2009.

S. Holland, M. Ester, and W. Kiessling. Preference mining: A novel approach on

mining user preferences for personalized applications. In Proc. PKDD, pages 204–

216, Cavtat-Dubrovnik, Croatia, 2003.

BIBLIOGRAPHY 165

R. Hughes. Agile Data Warehousing: Delivering world-class business intelligence sys-

tems using Scrum and XP. IUniverse, 2008.

IBM. IBM ILOG CPLEX optimizer. http://www-01.ibm.com/, 2011.

W.H. Inmon. Building the data warehouse. John Wiley & Sons, 1996.

H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh. Management of context-aware preferences

in multidimensional databases. In Proc. ICDIM, pages 669–675, London, UK, 2008.

H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh. Applying recommendation technology

in OLAP systems. In Proc. ICEIS, pages 220–233, Milan, Italy, 2009.

H. Jiang, D. Gao, and W.-S. Li. Exploiting correlation and parallelism of materialized-

view recommendation for distributed data warehouses. In Proc. ICDE, pages 276–

285, Istanbul, Turkey, 2007.

R. Jindal and A. Acharya. Federated data warehouse architecture. http://www.

wipro.com/, 2004.

P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive peer-to-peer

network for distributed caching of OLAP results. In Proc. SIGMOD, pages 25–36,

Madison, Wisconsin, USA, 2002.

M. Kehlenbeck and M. H. Breitner. Ontology-based exchange and immediate appli-

cation of business calculation definitions for online analytical processing. In Proc.

DaWaK, pages 298–311, Linz, Austria, 2009.

A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems:

Semantics and algorithmic issues. In Proc. SIGMOD, pages 325–336, San Diego,

California, USA, 2003.

N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-aware

autocompletion for SQL. PVLDB, 4(1):22–33, 2010a.

N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-aware

autocompletion for SQL. PVLDB, 4(1):22–33, 2010b.

P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, 1995.

J. Lachlan. Top business intelligence predictions for 2012. http://www.yellowfinbi.

com/YFWebsite-Yellowfin-Business-Intelligence-77988, 2012.

M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS, pages

233–246, Madison, Wisconsin, USA, 2002.

C. Li, M. van den Akker, S. Brinkkemper, and G. Diepen. An integrated approach for

requirement selection and scheduling in software release planning. Requir. Eng., 15:

375–396, 2010.

http://www.wipro.com/
http://www.wipro.com/
http://www.yellowfinbi.com/YFWebsite-Yellowfin-Business-Intelligence-77988
http://www.yellowfinbi.com/YFWebsite-Yellowfin-Business-Intelligence-77988

166 BIBLIOGRAPHY

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics, 26(5):589–595, 2010.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on

multiple class-association rules. In Proc. ICDM, pages 369–376, 2001.

S. Luján-Mora and J. Trujillo. A comprehensive method for data warehouse design.

In Proc. DMDW, 2003.

J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-based schema

matching. In ICDE, pages 57–68, 2005.

F. Mandreoli, R. Martoglia, W. Penzo, and S. Sassatelli. SRI: Exploiting semantic

information for effective query routing in a PDMS. In Proc. WIDM, pages 19–26,

Arlington, Virginia, USA, 2006.

F. Mandreoli, R. Martoglia, W. Penzo, S. Sassatelli, and G. Villani. SRI@work: Ef-

ficient and effective routing strategies in a PDMS. In Proc. WISE, pages 285–297,

Nancy, France, 2007.

F. Mandreoli, R. Martoglia, W. Penzo, and S. Sassatelli. Data-sharing P2P networks

with semantic approximation capabilities. IEEE Internet Computing, 13(5):60–70,

2009.

O. Mangisengi, J. Huber, C. Hawel, and W. Essmayr. A framework for supporting

interoperability of data warehouse islands using xml. In DaWaK, pages 328–338,

2001.

J. Markarian, S. Brobst, and J. Bedell. Critical success factor deploying pervasive bi,

2007.

S. Martello and P. Toth. Knapsack Problems: Algorithm and Computer Implementa-

tion. John Wiley and Sons Ltd, 1990.

J. Martin. Rapid application development. MacMillan, 1991.

J.-N. Mazón and J. Trujillo. An MDA approach for the development of data ware-

houses. In Proc. JISBD, pages 208–208, 2009.

G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In Proc. SIGMOD,

pages 655–668, Providence, Rhode Island, USA, 2009.

Microsoft. MDX reference. http://msdn.microsoft.com/en-us/library/ms145506.aspx,

2009.

R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping as query discovery.

In Proc. VLDB, pages 77–88, Cairo, Egypt, 2000.

BIBLIOGRAPHY 167

Minnesota Population Center. Integrated public use microdata series.

http://www.ipums.org, 2008.

B. Mobasher. Data mining for web personalization. In Peter Brusilovsky, Alfred Kobsa,

and Wolfgang Nejdl, editors, The Adaptive Web, pages 90–135. Springer, 2007.

A. E. Monge and C. Elkan. An efficient domain-independent algorithm for detecting

approximately duplicate database records. In Proceedings Workshop on Research

Issues on Data Mining and Knowledge Discovery, 1997.

D. Moody and M. Kortink. From enterprise models to dimensional models: A method-

ology for data warehouse and data mart design. In Proc. DMDW, 2000.

E. Moreau, F. Yvon, and O. Cappé. Robust similarity measures for named entities

matching. In Proceedings International Conference on Computational Linguistics,

pages 593–600, Manchester, UK, 2008.

G. Navarro. A guided tour to approximate string matching. ACM Comput. Surveys,

33(1):31–88, 2001.

G. Nelson. Business intelligence 2.0: Are we there yet? In SAS Global Forum 2010,

Seattle, USA, 2010.

A. Nichols. Agile planning, estimation and tracking. http://www.slideshare.net/

andrewnichols/agile-planning-estimation-and-tracking, 2009.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator

systems. In VLDB, pages 413–424, 1996.

W. Penzo. Rewriting rules to permeate complex similarity and fuzzy queries within a

relational database system. IEEE Trans. Knowl. Data Eng., 17(2):255–270, 2005.

G. Pomberger, W. R. Bischofberger, D. Kolb, W. Pree, and H. Schlemm. Prototyping-

oriented software development — concepts and tools. Structured Programming, 12

(1):43–60, 1991.

N. Prat, J. Akoka, and I. Comyn-Wattiau. A UML-based data warehouse design

method. Decision Support Systems, 42(3):1449–1473, 2006.

Z. Racheva, M. Daneva, and K. Sikkel. Value creation by agile projects: Methodology

or mystery? In Proc. PROFES, pages 141–155, Oulu, Finland, 2009.

K. Ramamurthy, A. Sen, and A. P. Sinha. An empirical investigation of the key

determinants of data warehouse adoption. Decision Support Systems, 44(4):817–

841, 2008.

E.S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Trans. Pattern

Anal. Mach. Intell., 20(5):522–532, 1998.

168 BIBLIOGRAPHY

C. Robson. Real World Research. Blackwell, 2002.

W. W. Royce. Managing the development of large software systems: Concepts and

techniques. In Proc. ICSE, pages 328–339, Monterey, California, USA, 1987.

P. Runeson and M. Höst. Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

C. Sá, C. Soares, A. Jorge, P. Azevedo, and J. Costa. Mining association rules for label

ranking. In Proc. PAKDD, pages 24–27, Shenzhen, China, 2011.

M. Omolade Saliu and G. Ruhe. Supporting software release planning decisions for

evolving systems. In SEW, pages 14–26, 2005.

M.O. Saliu and G. Ruhe. Bi-objective release planning for evolving software systems.

In ESEC/SIGSOFT FSE, pages 105–114, 2007.

C. Sapia. PROMISE: Predicting query behavior to enable predictive caching strategies

for OLAP systems. In Proceedings International Conference on Data Warehousing

and Knowledge Discovery, pages 224–233, London, UK, 2000.

S. Sarawagi. Explaining differences in multidimensional aggregates. In Proc. VLDB,

pages 42–53, Edinburgh, Scotland, 1999.

S. Sarawagi. I3: Intelligent, interactive inspection of cubes.

http://www.cse.iitb.ac.in/ sunita/icube/, 2009.

M. Schneider. Integrated vision of federated data warehouses. In DISWEB, Luxemburg,

2006.

K. Schwaber. SCRUM development process. In Proc. OOPSLA, 1995.

A. Sen and A. P. Sinha. A comparison of data warehousing methodologies. Commun.

ACM, 48(3):79–84, 2005.

N.Z. Shor. Minimization Methods for Non-differentiable Functions. Springer-Verlag,

1985.

A. Simitsis and P. Vassiliadis. A method for the mapping of conceptual designs to

logical blueprints for ETL processes. Decision Support Systems, 45(1):22–40, 2008.

T. Smith and M. Waterman. Identification of common molecular subsequences. Journal

of Molecular Biology, 147:195–197, 1981.

I. Sommerville. Software Engineering. Pearson Education, 2004.

K. Stefanidis, M. Drosou, and E. Pitoura. ”You May Also Like” results in relational

databases. In Proceedings International Workshop on Personalized Access, Profile

Management and Context Awareness: Databases, Lyon, France, 2009.

BIBLIOGRAPHY 169

M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. Bin Saleem, and M. Usman

Shafique. A systematic review on strategic release planning models. Information

& Software Technology, 52(3):237–248, 2010.

A. Szoke. Conceptual scheduling model and optimized release scheduling for agile

environments. Information & Software Technology, 53:574–591, 2011.

Ashish T., Joydeep S. S., Namit J., Zheng S., Prasad C., Ning Z., Suresh A., Hao L.,

and Raghotham M. Hive - a petabyte scale data warehouse using hadoop. In ICDE,

pages 996–1005, 2010.

T.B. Nguyen T.A.D. Hoang. State of the art and emerging rule-driven perspectives

towards service-based business process interoperability. In Int. Conf. on Comp., and

Comm. Tech., pages 1–4, Danang City, Vietnam, 2009.

I. Tatarinov and A. Y. Halevy. Efficient query reformulation in peer-data management

systems. In SIGMOD Conference, pages 539–550, 2004.

B. ten Cate and P.G. Kolaitis. Structural characterizations of schema-mapping lan-

guages. Commun. ACM, 53(1):101–110, 2010.

Teradata. The active data warehouse: Where agile retailers win by capitalizing on

time, 2008.

The Data Warehousing Institute. Pervasive business intelligence techniques and tech-

nologies to deploy bi on an enterprise scale, 2008.

ThoughtWorks Studios. Mingle: Agile project management.

http://www.thoughtworks-studios.com/, 2011.

R. Torlone. Two approaches to the integration of heterogeneous data warehouses.

Distributed and Parallel Databases, 23(1):69–97, 2008.

F. S. C. Tseng and C.-W. Chen. Integrating heterogeneous data warehouses using xml

technologies. J. Information Science, 31(3):209–229, 2005.

A. Vaisman, M. Minuto Espil, and M. Paradela. P2P OLAP: Data model, implemen-

tation and case study. Inf. Syst., 34(2):231–257, 2009.

G. van Valkenhoef, T. Tervonen, B. de Brock, and Douwe Postmus. Quantitative

release planning in extreme programming. Information & Software Technology, 53:

1227–1235, 2011.

A. Veloso, H. Mossri de Almeida, M. André Gonçalves, and W. Meira Jr. Learn-

ing to rank at query-time using association rules. In Proc. SIGIR, pages 267–274,

Singapore, 2008.

J. Vieira, J. Bernardino, and H. Madeira. Efficient compression of text attributes of

data warehouse dimensions. In DaWaK, pages 356–367, 2005.

170 BIBLIOGRAPHY

R. Wagner and M. Fischer. The string-to-string correction problem. Journal ACM, 21

(1):168–173, 1974.

P. Weber and D. Chapman. Location intelligence: An innovative approach to business

location decision-making. T. GIS, 15(3):309–328, 2011.

Hadoop Wiki. Apache hadoop. http://www.yellowfinbi.com/

YFWebsite-Yellowfin-Business-Intelligence-77988, 2012.

X. Yang, C. M. Procopiuc, and D. Srivastava. Recommending join queries via query

log analysis. In Proceedings International Conference on Data Engineering, pages

964–975, Shanghai, China, 2009.

Q. Yao, A. An, and X. Huang. Finding and analyzing database user sessions. In Pro-

ceedings International Conference on Database Systems for Advanced Applications,

pages 851–862, Beijing, China, 2005.

Yellowfin. Location intelligence. http://www.yellowfinbi.com/Document.i4?

DocumentId=102780, 2010.

F. Yu and S. Wang. Compressed data cube for approximate olap query processing. J.

Comput. Sci. Technol., 17(5):625–635, 2002.

S. Zhou, A. Zhou, X. Tao, and Y. Hu. Hierarchically distributed data warehouse. In

HPC, pages 848–853, 2000.

http://www.yellowfinbi.com/YFWebsite-Yellowfin-Business-Intelligence-77988
http://www.yellowfinbi.com/YFWebsite-Yellowfin-Business-Intelligence-77988
http://www.yellowfinbi.com/Document.i4?DocumentId=102780
http://www.yellowfinbi.com/Document.i4?DocumentId=102780

	Introduction
	Business Intelligence
	Motivations and Contributions
	Distributed BI
	OLAP Personalization and Similarity
	Agile Data Warehouse Design

	Background
	Basic Concepts
	Data Warehouse
	Architectures
	ETL
	OLAP Analysis

	Life-cycle Design
	Multidimensional Model

	Distributed BI
	Introduction
	Related Works
	Warehousing Approaches
	Federative Approaches
	Peer-to-Peer Approaches

	Formal Background
	Mapping Language
	Mapping Predicates
	Mapping Accuracy

	A Reformulation Framework
	Translating schemata
	Translating queries
	Translating mappings
	Exact Mappings
	Loose/Approximate Mappings

	Query Reformulation in a BIN
	The Inter-Peer Reformulation Algorithm
	Step 1: Mapping Selection
	Step 2: Query Reformulation
	Step 3: Query Expansion
	Incorporating Selection Predicates

	Properties of the Inter-Peer Reformulation Algorithm

	Implementation
	Conclusions

	OLAP Personalization
	Introduction
	Related Works
	Formal Background
	The myMDX Preference Language
	A Personalization Framework
	Log Mining
	Rule Selection
	Fragment Translation

	Implementation
	Validation
	Conclusions

	OLAP Similarity
	Introduction
	Formal Background
	Requirements for OLAP sessions similarity
	Related Works
	Sessions
	Queries

	Query Similarity
	Session Similarity
	Edit-Based Session Similarity
	Subsequence-Based Session Similarity
	Log-Based Session Similarity
	Alignment-Based Session Similarity

	Validation
	User Tests
	Objective Tests

	Conclusions

	Agile Data Warehouse Design
	Introduction
	Related Works
	The Motivation for 4WD
	From Problems to Goals
	From Goals to Principles
	From Principles to 4WD

	The 6 Features of 4WD
	Incrementality and Risk-Based Iteration
	Prototyping
	User Involvement
	Component Reuse
	Formal and Light Documentation
	Automated Schema Transformation

	Validation
	Conclusions

	Project Scheduling Optimization in Agile Data Warehouse Design
	Introduction
	Related Works
	Multi-Sprint Planning Problem
	Baseline Planning Optimization Model
	Smooth Replanning Optimization Model
	Implementation
	Validation
	Effectiveness Tests for Baseline Planning
	Efficiency Tests for Baseline Planning
	Effectiveness Tests for Smooth Replanning
	Efficiency Tests for Smooth Replanning

	Efficient Algorithms for the Multi-Sprint Planning Problem
	Reductions
	Modifying the Sprint Capacities
	Modifying the Weights of Stories

	Cover Inequalities
	Dominance Inequalities
	Dominance of Type 1
	Dominance of Type 2
	Dominance of Type 3

	Greedy and Exchange Heuristics
	A Lagrangian Heuristic
	Validation

	Conclusions

	Conclusions and Future Works
	Theorem Proofs
	Bibliography

