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Your woraciousness, fellow-critters.  
I don’t blame ye so much for;  

dat is natur, and can’t be helped;  
but to gobern dat wicked natur, dat is de pint.  

You is sharks, sartin;  
but if you gobern de shark in you, why den you be angel;  
for all angel is not’ing more dan de shark well goberned.  

 
Herman Melville, Moby Dick, 1851. 
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CHAPTER 1 

General introduction 
 

 

Proliferation of coastal defence structures 
 

Historically, coastal zones have played a key role for human societies and 

economies. This territory has been always used by human populations for settlement, 

trades and the utilization of natural resources. 

Estuaries, lagoons, rocky shores and beaches have experienced a dramatic transformation 

over the past decades, which is still ongoing, particularly along the European coasts. The 

origin of those transformations are both natural and anthropogenic, and it is largely 

recognized that the global climate change is accelerating those processes. 

The anthropogenic alteration of the coastal environment is caused by multiple factors, 

among which the urbanization. In fact, nowadays many of the larger European cities (e.g. 

Barcelona, Athens, Istanbul, Tripoli) are built along the coast, or (as in the case of London, 

Hamburg, St. Petersburg, and Thessaloniki) on estuaries and lagoons. There are 15 port 

and industrial coastal cities with more than 1 million people within Europe (Nicholls et al., 

2007). Many industrial plants are built near the shore, as well as infrastructures and 

facilities for tourism, fishing, fish farming and agriculture. 

The Mediterranean is a good example of a coastal region where urban development is 

already significant and continues to grow. The population density along Mediterranean 

coast was estimated to be about 6000 people for km of coastline (UNEP/MAP/PAP, 2001). 

In twenty years (1980-2000) the human population living at the coast grew by the 46 % 

exceeding 123 million in the 2000, and it is projected to nearly double between 2000 and 

2025 (UNEP/MAP/PAP, 2001). The Mediterranean coastline is also intensively utilized for 

coastal tourism, accounting for 30 % of the global tourism, that are project to reach 235–

350 million tourists by the 2025 (EEA, 1999). This means that significant amounts of 

recreational infrastructure already exist, or will be built, immediately adjacent to the coast. 

Indeed, two thirds of the Mediterranean coastline is already urbanized (UNEP/MAP/PAP, 

2001) and more than 50 % of the Mediterranean coasts are dominated by concrete with 
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more than 1500 km of artificial coasts (EEA, 1999). Overall coastal zone urbanization is 

projected to increase by 10–20% for most Mediterranean countries (EEA, 2006). 

This situation is common to many other coastal areas in the world (Dugan et al., 2011). In 

the USA armouring covers more than 50 % of the coastline in a number of estuaries and 

bays (Living Shoreline Summit Steering Committee, 2006), and about 21 % of the 759 km 

coastlines of Florida, 12 % of the 1763 km coastline of California and 17 % of the 

coastline of New Jersey have been altered by either armouring or addition of bulkheads, 

revetments or other coastal structures (Florida DEP, 1990; Griggs, 1998; Lathrop & Love, 

2007). Similar examples occur in the Western Pacific, where 27 % of the coastline in Japan 

(Koike, 1996) and more than 50 % of the shores of Sydney Harbour (Chapman & Bulleri, 

2003) have been altered by either coastal infrastructure or armouring. It is expected that 

armoring will further increase as a result of burgeoning coastal populations, expansion of 

coastal cities, and greater threats from climate change, storm surges and sea level rise 

(Inger et al., 2009; Shepard et al., 2011). 

 

Coastal defence structures as novel substrata for biota and implications 
at local and regional scales 
 

Amongst the most abundant artificial structure along the coastlines all over the world are 

hard coastal-defences. Since coastal areas are important for industries, settlements and 

societies, there is a pressing demand to protect the coast from erosion, storm and flooding. 

Consequently, human-made defence structures of different typologies (e.g. breakwaters, 

groynes, seawalls, dykes or other rock armoured structures) have proliferated, becoming a 

common feature of the coastal landscapes in intertidal and shallow subtidal environments 

(National Institute of Coastal and Marine Management of the Netherlands, 2004). The 

primary purposes of defence structures are to prevent or reduce erosion and flooding of 

high value coastlines, to stabilize and retain beaches and reclaimed land, and to increase 

the amenity value of the coast (e.g. beach use, surfing). In Europe more than 7600 km of 

coast are protected or artificially stabilized (EC, 2004). In Italy, along the north-west 

Adriatic coast, artificial defence structures cover over half of the shoreline resulting in 

dramatic changes to coastal landscapes and environments (Airoldi & Beck, 2007). 

Surprisingly relatively little attention has been given to the ecological implications of hard 

coastal-defence structures (see Bulleri & Chapman, 2010 for review). Bulleri & Chapman 

(2010) suggested that insufficient scientific information led to overlook urbanization and 
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artificial structures as major causes of anthropogenic changes in coastal ecosystems, even 

in the highly cited review of human impacts on marine ecosystems by Halpern et al. 

(2008). However, according to the current knowledge, the ecological impacts of artificial 

structures on coastal habitats are varied and severe, e.g.: the introduction of novel habitat 

for sessile and mobile species, with potential changes in the pattern of their distribution at 

local to regional levels (Glasby & Connell, 1999; Connell, 2000; Bacchiocchi & Airoldi, 

2003; Moschella et al., 2005; Bulleri & Chapman, 2010); effects on the adjacent native 

sedimentary habitats, related to changes in water flow, illumination, rates of sedimentation 

detrital patways, with consequent negative impacts on the benthic infauna  (Glasby, 1999; 

Martin et al., 2005; Bertasi et al., 2007); the local loss of species of particular functional 

groups, e.g. large grazers and predators (e.g. Chapman & Bulleri, 2003); low species and 

genetic diversity (Johannesson & Warmoes, 1990; Chapman & Bulleri, 2003; Fauvelot et 

al., 2009); the dominance of flora and fauna that often represent an early stage of 

succession (Bacchiocchi & Airoldi, 2003; Bulleri & Airoldi, 2005; Glasby et al., 2006); 

and the facilitation of the settlement and spread of non-indigenous species (Bulleri & 

Airoldi, 2005; Moschella et al., 2005; Glasby et al., 2006; Vaselli et al., 2008). The effects 

of urban infrastructure and armouring can also scale up, causing  alterations of coastal 

seascapes, create stepping stones or corridors for hard-bottom species and affecting the 

dispersion and connectivity in marine populations at regional scales (Glasby & Connell, 

1999; Dethier et al., 2003; Airoldi et al., 2005). On one side increased connectivity could 

be a cost-effective way to enhance the conservation of threatened species and habitats, for 

example by providing new dispersal routes that facilitate their migrations in response to 

climate changes (Thomas, 2011). On the other, there could be also severe drawbacks, 

including the rapid expansion of “weedy” non native species that are particularly well 

adapted to these environments, as well as the breakage of natural distribution barriers 

among isolated (e.g. by stretches of sandy habitats) and differentially adapted populations 

(Fauvelot et al., 2009). For example, population genetic analysis on the limpet, Patella 

caerulea, from natural and artificial habitats at various sites along the Adriatic coast 

showed that genetic diversity (allelic richness and gene diversity) was significantly higher 

in populations inhabiting natural rocky shores than those on artificial structures (Fauvelot 

et al., 2009). While the causes of these differences are not yet understood and require 

further investigation, they clearly suggest that the expansion of armouring and other 

structures may lead to genetic diversity loss in rocky shore populations at regional scales. 
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Indeed, biotic homogenization is probably one of the major large scale impacts expected 

from increasing urbanization (Sax & Gaines, 2003). 

Despite the impacts that have shown decreases in diversity of associated flora and fauna, at 

a first glance, coastal infrastructure and armouring seems to create suitable habitat for 

many marine organisms which rapidly settle and spread on the new hard substrata. It is 

precisely because of this trend that waste material is often dumped at sea to create artificial 

reefs. Indeed, it has been suggested that these artificial substrata may adequately represent 

natural habitats (e.g. Thompson et al., 2002; Pister, 2009) or may, in fact, compensate for 

loss of habitat elsewhere (e.g. Ianuzzi et al., 1996). Other authors have suggested adding 

more artificial structures to urban coastlines to create additional habitat (e.g. Iverson & 

Bannerot, 1984). This approach to conservation should, however, be treated with a great 

deal of caution without further research into the value of artificial substrata for survival of 

both common and rare species. There have been relatively few studies of the value of such 

reefs for species other than fish (see reviews by Baine, 2001; Svane & Petersen, 2001 and 

recent work by Perkol-Finkel et al., 2006; Miller et al., 2009; Burt et al., 2009). Similarly, 

there have been relatively few studies of the value of armouring and urban infrastructure as 

habitat for marine fauna and flora, although many subtidal epibiota are fouling species 

which rapidly colonize artificial structures (Glasby & Connell, 1999; Chapman & Clynick, 

2006). Some structures, such as floating buoys and pontoons, create novel habitat for 

which there are no natural equivalents (Connell, 2000), whereas other surfaces, e.g. 

subtidal walls, may be closer in morphology to natural cliffs and rocky reefs and have 

similar biotic assemblages (Glasby, 1999). Although many species of fish aggregate around 

coastal infrastructure, such as marinas and wharves, these assemblages can be a reduced or 

different mix of species than occurs on natural reefs, depending on the type of habitat 

created by the artificial structures. 

 

Effectiveness of artificial defence structures in a changing climate 
 

But the concerns about human-made coastal defences are not just confined to the 

ecological issues. Their real efficiency is in question even from a management point of 

view. Indeed, the effectiveness of coastal defences is expected to be strongly reduced as 

consequence of the amplification of extreme weather events linked to climate change 

(Evans et al., 2004). Currently in Europe, large stretches of the coastline are retreating, and 

future scenarios are worsening (Zanuttigh, 2011). In fact, coastal areas are projected to be 
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exposed to increasing risks of erosion and land loss (IPCC, 2007). This phenomenon is 

related to the alteration of the frequencies and intensities of extreme weather events and 

rise in sea level, potentially linked with global climate change, which has mostly adverse 

effects on natural and human systems (IPCC, 2007). In effect, as described by Evans et al. 

(2004), higher sea levels will increase the frequency with which defence structures are 

overtopped by waves or very high tides. This increased overtopping will affect the 

inundation risk leading to failure of the structure itself. Further, storm surge would produce 

greater water depths at the structure and then larger waves exacerbating the overtopping. 

As a domino effect, larger waves would affect the stability of the structure with an increase 

of damage risk. In fact, the size of blocks that constitute the structure is directly 

proportional to the volume of the significant wave height. Therefore, every change in wave 

height at the defence structures can result in an increase in the size of the blocks required 

to achieve the same stability. Further, with larger waves at the structure, there is likely to 

be greater reflection from defence structures and increased scour of the beach at the 

structure’s toe. The result is the increase of the potential for failure of the defence 

structure. Therefore, hard armouring could be cost-ineffective for the purpose of coastal 

protection (Evans et al., 2004). 

The case of the United Kingdom is illustrative. The UK has a particularly long coastline 

that is subjected to erosion by the sea and the effects of the weather (Evans et al, 2004). 

Erosion can undermine flood defences or change the shoreline in ways that increase the 

risk of inland and coastal flooding. The predicted acceleration of rise in sea level under the 

climate scenarios will increase the effectiveness of coastal processes that operate at sea 

level and will have an important impact on erosion rates (Evans et al., 2004). Hence, it has 

been estimated that maintaining the existing defence structures and guaranteeing the actual 

protection standards will demand costs 1.5 to 4 times greater by 2080, depending on the 

emission scenario (Thorne et al., 2007). In other words, at present expenditure levels, 

approximately one-third of existing coastal defences in the UK could not be maintained in 

the future (Defra, 2001). 

 

Alternative options for coastal protection 
 

In some part of north Europe (e.g. United Kingdom, Netherlands), the focus in coastal 

protection management has been shifted to develop alternative options to hard armouring 

(Zanuttigh, 2011). For example, incorporating natural habitat (e.g. salt marsh, wetland 
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vegetation) that may provide a buffer against erosion in sheltered areas. In general the 

approach to coastal management is moving towards less aggressive flood defence and 

coastal protection. This approach favour environmental protection, with a preference for 

flood-management measures that have minimal environmental impact. Specifically, flood-

management agencies in north Europe, are moving away from a perspective of ‘flood 

defence’ towards ‘flood-risk management’. This means that land use planning and 

measures to reduce exposure and vulnerability to flood would be favoured over measures 

to reduce the physical hazard by defence structures. Such measures include managed 

retreat of defence structures (Rupp-Armstrong & Nicholls, 2007; Zanuttigh, 2011). 

Managed retreat or realignment of hard coastal defence structures has been identified as an 

adaptive strategy for alleviating estuarine flood risk or for the re-establishment of 

ecologically valuable intertidal habitats, such as salt marshes and tidal flats (Townend & 

Pethick, 2002; Morris et al., 2004; French, 2008). Cost benefit analyses typically show a 

net advantage of managed realignment over other constructed defence options (Spurgeon, 

1998; Turner et al., 2007). This involves dismantling or breaching shore defences and 

eliminating them or moving them inland, preferably taking advantage of natural 

topographic contours to reduce the cost of engineering to the standards required for 

alleviating flood risks (French, 2008; Townend, 2008). 

Hence, the flood alleviation strategies include the ‘‘no defend’’ approach, that allow some 

areas to be sacrificially flooded. However despite the concerns about predicted increases in 

sea level and in the frequency of storm events, our understanding about the ecological 

impacts of flooding by seawater is relatively sparse. Indeed, with more frequent marine 

inundations, the sea level rises will potentially lead to an increase in salinity across the 

upper estuarine system, with consequent alterations of the transitional conditions (van der 

Wal & Pye, 2004; Wolters et al., 2005). Hence advances the knowledge of the environment 

vulnerability to seawater inundation is essential to proceed with alternative options, such as 

no-defence. 

 

Scopes and organization of the thesis 
 
My doctoral thesis analyses the consequences of different options for coastal protection, 

namely hard engineering ‘artificial defences’ (i.e. impact of human-made structures) and 

‘no-defence’ (i.e. impact of seawater inundation), in different European areas (Fig. 1.1.). 

The thesis is structures around 4 research topics: 
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1) The first step was to map and characterized the artificial structures built 

along the Sicilian coastline (Mediterranean sea). This study took in consideration 

not just the coastal-defence structures, since was focused to the overall 

artificialization of the coastline. The characterization is also aimed to evaluate the 

typology, distribution and extension of artificial structures to respect with the 

surrounding natural substrate. In fact, the role of the surrounding habitat on the 

ecological implication of artificial structures is poorly investigated (see Bulleri, 

2005). This study is aimed to improve the general knowledge on the urbanization of 

the Sicilian coast and offer tools for further research on the effects structures are 

having on the marine environment. 

2) In this direction, was subsequently conducted a study on the fish 

assemblages inhabiting coastal-defence structures placed in different habitats along 

the Sicilian coastline, in order to experimentally test if the differences in 

assemblage composition among breakwaters and natural rocky reef would change 

depending on the nature of the surrounding habitat (sandy rather than rocky) of the 

structure. From one hand the largest body of literature regarding the ecological 

effects of artificial defence structures focused on intertidal and subtidal epibiotic 

assemblages (Bacchiocchi & Airoldi, 2003). So, I stressed the importance of 

investigate some ecological implication of artificial defence structures on the fish 

communities, given the economic and ecological role of coastal fishes (Horn et al., 

1999). From the other hand, the studies about the differences in fish assemblages 

among artificial and natural reef not specifically focused the environmental context 

in which artificial structures are placed. In general the introduction of artificial 

defence structures in a prevalent sandy habitat causes the loss of soft-bottom 

habitats and affects the associated biological communities (Martin et al., 2005). 

Conversely artificial structures and adjacent natural rocky reefs are expected to 

offer similar structural features, and to be populated by benthic communities not 

significantly different (Perkol-Finkel et al., 2006). To explore the potential 

interactions between the artificial habitat and the surround environments in 

affecting the composition and structure of fish assemblages I conducted surveys 

along coastlines where artificial structures are deployed in both sandy and rocky 

context. 

3) A further aspect of the ecological impact of hard coastal-defence structures 

that I investigated, is that relative to the effect of the organic detritus detached from 
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the south-west England, was the potential effect of seawater intrusion on the 

degradation process of marine, salt-marsh and terrestrial detritus, including changes 

on the breakdown rates and the associated macrofauna. 

In Europe, but particularly in the UK, since the Great Flood, of January 1953 that 

hit the east coast of Great Britain, there has been invested a lot on maintaining and 

enhancing sea defences (Nicholls & De La Vega-Leinert, 2008). Nevertheless the 

high cost of maintaining this existing coastal flood-defence system, together with 

an increasingly holistic understanding of coastal processes, has led to the 

development of more sustainable strategies for the management of the coast 

(Zanuttigh, 2011). Integral to these new coastal management strategies is the 

appreciation of salt marshes as a key part of the coastal system (Rupp-Armstrong & 

Nicholls, 2007). Salt marshes are of immense environmental and economic 

importance, particularly for flood defence since their presence reduces the impact 

of waves at the shore line (Wolters et al., 2005). A salt-marsh restoration technique, 

called ‘managed retreat’, involves the tidal inundation of coastal land in front of re-

aligned flood defences (Rupp-Armstrong & Nicholls, 2007). 

Hence, the development of alternative strategies of artificial coastal defences 

includes the understanding of alterations in ecosystem functioning in a flooding 

scenario. Particularly in estuaries seawater incursion can differently affect habitats 

along a gradient from marine to freshwater. In rivers and estuaries the functioning 

of aquatic ecosystems is largely dependent leading by decomposition of 

allochthonous organic matter, enabling the recycling of nutrients and chemical 

elements, sustaining important food chains and primary production (Goñi et al., 

2003). For this reasons, a thorough understanding of the potential changes of the 

detritus decomposition processes is critical. In this direction, I carried out a field 

experiment in which marine, salt-marsh and terrestrial detritus were exposed to 

degradation at three salinity regimes: seawater, brackish and freshwater. 
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CHAPTER 2  

Mapping and characterization of the artificial structures along 
the Sicilian coast 

 
Introduction 
 

Anthropogenic pressure on coastal habitats is increasing worldwide. Changes in 

demography and distribution of human populations have severe impacts on coastal 

landscapes. Today, many of the largest cities in the world are located in coastal zones and it 

is expected that two-third of the human population will live within 100 km of a coast by 

2025 (EEA, 2006). Moreover coastal areas are affected by the addition of infrastructures 

needed to sustain residential, commercial and tourist activities. In the Mediterranean coast 

is predicted that seasonal tourism will reach 350 million people per year by 2025 

(Hinrichsen, 1999).  

Nowadays, in Europe 22000 km2 of the coastal zone are covered in concrete or asphalt, 

and about 50 % of the Mediterranean shorelines bordering Spain, France and Italy are 

dominated by artificial structures (more than 1500 km), of which most are developed for 

harbours and ports (Airoldi & Beck, 2007 and references therein). Moreover, since large 

stretches of European coasts are already retreating and projected scenarios are worsening, 

many artificial structures, such as breakwaters and seawalls, are built as tool against 

coastal erosion (Zanuttigh, 2011). 

Despite artificial structures produce widespread changes that alter the coastal zones by 

causing the loss and fragmentation of natural habitats, the ecological consequences of their 

introduction into shallow coastal waters have received relatively little attention (Southward 

& Orton, 1954; Glasby & Connell, 1999; Hawkins et al., 2002; Chapman, 2003; Bulleri, 

2006; Di Franco et al., 2011).  

The aim of this study is to map and characterize the extent and typology of urban marine 

infrastructures along the coast of Sicily (Italy), in order to improve the general knowledge 

on the urbanization of the Sicilian coast and offer tools for further research on the related 

ecological issues. Mapping the spatial distribution of different types of coastal structures 

categorised according to their physical characteristics is, in fact, a first step towards 

understanding and predicting the effects structures are having on the marine environment. 
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The island of Sicily (Mediterranean sea) is one of the most populated regions in Italy with 

more than 5 million residents. Most of the human population lives in cities located along 

the coast (Palermo, Catania, Messina, Trapani, Siracusa, Agrigento). Hence, large 

commercial ports, industrial facilities and several structures for coastal protection border 

the coast of Sicily. Furthermore in the past decades many houses, railways, roads were 

built near shore. Despite the proliferation of urban marine structures, very few studies have 

focused on the changes introduced by these structures in the coastal environment, and have 

only covered very limited local spatial scales (Anfuso & Martínez del Pozo, 2005). As in 

other regions, there is a lack of comprehensive inventory and monitoring of their 

extension, typologies, and distribution, which would be the first step towards the 

development of an integrated management plan for increasingly urbanised coastal areas. 

In the absence of a scientific definition of "urban marine environment" (Bulleri, 2006), I 

considered as urban those traits of the coast where any anthropogenic structure or activity 

affect the morphology of the coastline preventing its natural evolution. A database was 

constructed using information from Google Earth and structures were categorises based on 

their main physical attributes (typology, linear extension) and prevalent surrounding 

substrata. 

 

Methodology 

 

Study area 

The Sicilian coasts extend for 1152 km, excluding the smaller islands, and have a 

considerable variability of environmental and infrastructure on the three main sides 

(Assessorato Territorio e Ambiente, Regione Sicilia, 2002).  

The North side (Tyrrhenian sea; from “Capo Lilibeo” at west to “Capo Peloro at east) is 

characterized by an alternation of low coasts and flood plains often subject to accelerated 

erosion. 

The East side (Ionian sea; from “Capo Peloro” at north to “Capo Passero” at south) is 

characterized, moving from north to south, by a succession of flood plains and coastal 

terraces. Further south, at the Gulf of Catania, opens a vast alluvial plain. In the most 

southern, alternate different morphotypes, including mountains, narrow beaches, and the 

beaches characterized by marshes and coastlines to high terraces. 

The South side (Strait of Sicily and Strait of Malta, from “Capo Passero” at east to “Capo 

Lilibeo” at west) presents narrow stretches of beaches, bounded on the inside by the hills. 
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This trait of coast has low rocky coast marine terraces set with beaches located at the foot 

of the coastal cliffs, subject to intense erosion. 

 

Mapping procedure 

The study consisted into mapping and classifying every artificial structure built along the 

Sicilian coastline using satellite images and building a database including the main 

information on each structure. All the measurements and structure characteristics were 

derived using images and tools provided by Google Earth. Google Earth has become a 

useful mapping tool and is considered accurate when measuring distances across low-relief 

surfaces such along many Mediterranean coastlines (Nicolas et al., 2010; Harris et al., 

2011; Waltham & Connolly, 2011). The total linear extent was measured using the scale 

ruler function in Google Earth (Waltham & Connolly, 2011).  

As a first step, the location of any artificial structure with respect to the coastal side (North, 

East, South) was recorded. Subsequently, the linear length of the trait of shores interested 

by the urban structure was measured. The extension of the submerged part of the artificial 

structure and infrastructure or, in the case of defence barriers, the trait of shore interested to 

the protection were considered. Finally, the artificial structures were classified into the 

following categories: 

 DS - Defence structures: includes docks, groynes, and seawalls for the defence of 

the roads or railway lines, barriers for the protection of houses next to the coastline, 

breakwaters of ports and harbours. 

 DB - Detached breakwaters: breakwaters for coastal protection against erosion. 

 PI - Ports and industrial plants: includes commercial ports, marinas, and traits of 

coast in front of industrial plants such as petrochemical Priolo, Gela and Milazzo. 

 OS - Other structures: includes all the smaller artificial structures that do not play a 

role in the coastal defence. For example, small jetties, boat ramps, piers for the 

mooring of small boats, beach facilities. 

This information was organized into a database also including information on the 

prevailing surrounding coastal substrate: rocky, sandy, artificial, or, in case of coexistence, 

rocky/sandy, rocky/artificial, sandy/artificial. 

The dates of aerial images used in Google Earth were the most up-to-date available at by 

the period April-July 2011, although there were also examined, older images to overcome 

situations where the details of systems were obscured by cloud cover. 
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The measurements and the characterization of the above parameters were done using 

images and tools provided by Google Earth. 

Google Earth has become a useful mapping tool and is considered accurate when 

measuring distances across low-relief surfaces such along many Mediterranean coastlines 

(Nicolas et al., 2010; Harris et al., 2011; Waltham & Connolly, 2011). 

The total linear extent was measured using the scale ruler function in Google Earth 

(Waltham & Connolly, 2011).  

Unfortunately, the use of  satellite images entail limits. In first instance for the 

identifications on a better details of the types of surrounding environment. It was not 

possible, for example to distinguish among the different nature of rocky or sandy 

substrates, as well as no information are available about the slopes of the coast. Moreover, 

minor structures, often classified under the category “Other structures”, might be 

underestimated. 

Fig. 2.1. GIS map visualizing the distribution of each type of artificial structure along the 
Sicilian coastline. 
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Results 
 

I identified and classified 583 sites, distributed 263 in the North, 136 in the South and 184 

in the East (Fig. 2.1.). Along about 1152 km of coastline, more than 331 km are urbanized 

or artificial stabilized. However it is worth to highlight that for the measurement of the 

urbanized coast I considered the surfaces of the inner perimeter of the ports, including the 

inner and outer sides of the port’s breakwaters. Instead, the calculation of the total extent of 

the Sicilian coastline was made by considering just the profile of the coasts (Assessorato 

Territorio e Ambiente, Regione Sicilia, 2002).  

Overall infrastructures associated to ports and industrial plants account for the 40,15 % of 

the urbanized coast, followed by coastal defence structures (27,70 %) and defence barriers 

(20,68 %). Small structures classified as “Other structures" comprise only 11,45 % of the 

mapped infrastructures (Table 2.1). 
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Fig. 2.4. Histogram showing the % of the substrates surrounding the artificial structures all 
over the Sicilian coastline and at each coastal side. 

 

 

 

 

 

 

Looking at the details of each type of artificial structures along the three coastal regions of 

Sicily, it is clear that the Defence structures are developed mainly in the North coast (46,4 

%), as well as Detached breakwaters (49,6 %) and Other structures (61,1 %). Instead, Ports 
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and industrial plants are developed prevailingly along the East side (Ionian sea) (Fig. 2.2. 

and Fig. 2.3.) where they comprise 41,1 % of the structures present. 

Regarding the substrates surrounding the artificial structures, overall the dominant types 

are sandy (34,3 %) and artificial (33,6 %), whereas rocky accounted for the 17,7 % (Fig. 

2.4.). This trend is quite consistent along North and South sides. While in the East side, 

artificial substrata is the dominant type. This latter result is driven by the big port of 

Augusta and the Petrochemical of Priolo, both located on the East side. 

Within the categories of defence structures and detached breakwaters (Fig. 2.5.), the 

relative percentage of rocky substrata increase, especially in the South and in the East (Fig. 

2.6.). 

 

 

 

The detached breakwaters are located prevailingly along sandy shores (with 74 % of the 

breakwaters built in sedimentary habitats), while the remaining 26 % is distributed 

between rocky (12 %), sandy/artificial (8 %) and rocky/sandy (6 %) (Fig. 2.7).  

Comparing the extension of detached breakwaters on rocky and on sandy coast, is evident 

by the fig. 2.7. that the dominant substrate surrounding the barriers in each of the three 

Fig. 2.5. GIS map visualizing the distribution of detached breakwater and defence structures  
along the Sicilian coastline. 
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sides is the sandy one. The barriers along rocky shore are mainly developed along the 

North and secondly along the South side, whereas on the East they are rare (Fig. 8). 
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Discussion 
 

This study quantified and characterized, for the first time, the urbanization along the coast 

of Sicily. More than 331 km of coasts resulted artificial stabilized, protected or heavy 

urbanized. The greater portion of this coastal urbanization is related to the presence of 

ports and industrial plants, among which petrochemicals. They cover an important portion 

of coastline, in particular along the Ionian side, because the presence of the heavy 

urbanized area of Augusta and Priolo, near the city of Siracusa. The presence of ports in 

Sicily is relevant, if we consider that Sicily hosts the higher number of ports among the 

Italian regions, accounting for 43 ports on a total of 179 distributed along the national 

territory (Geoportale Nazionale, Ministero dell’Ambiente e della Tutela del Territorio e del 

Mare). 

Moreover many breakwaters and seawalls are built to defend the coast from erosion. In 

fact, 33 % of the Sicilian coast (373 km) is actively retreating (Geoportale Nazionale, 

Ministero dell’Ambiente e della Tutela del Territorio e del Mare). The structures for 

coastal defence are abundant and widespread all over the Sicilian coastline, with a major 

presence in the Tyrrhenian side. These anthropogenic structures have become ubiquitous 

globally, causing large scale landscape modifications as well as changes of hydrodynamic 

and physical conditions with consequent impacts on the biological communities in shallow 
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coastal waters (Bulleri & Chapman, 2010). However, these impacts may vary according to 

the nature of the surrounding habitat of artificial infrastructures (Bulleri, 2005).  

In this study I described the distribution of detached breakwaters in relation to the 

surrounding natural habitat. Detached breakwaters resulted to be prevalently displaced on 

sandy bottoms. On the other hand the breakwaters on a rocky habitat are moderately 

extended, specifically along the north and the south sides whereas in the east they are rare. 

The breakwaters are mainly distributed on sandy coasts since they are the most common 

artificial constructions preventing or reducing shoreline erosion along European coasts. 

However those structures built over soft-bottom has multiple ecological implications 

(Bulleri, 2005). There is considerable evidence that by interrupting wave action, defence 

structures modify the nearshore water circulation, leading to changes in bottom 

topography, sediment grain size and organic content (Airoldi et al., 2005; Martin et al., 

2005; Bertasi et al., 2007). Breakwaters also influence species abundance, distribution 

patterns and community structure of fauna from adjacent soft bottoms (Bertasi et al., 2007; 

Colosio et al., 2007). Furthermore in prevalently sandy coastlines, artificial structures offer 

novel hard-surfaces for the settlement of intertidal and subtidal rocky species otherwise 

absent in the area (Airoldi et al., 2005).  

Furthermore, introducing artificial surfaces onto rocky bottoms is sometimes considered 

not to alter the fundamental nature of the habitat, especially when these structures are built 

with natural stones. It has, in fact, been assumed that the structure and functioning of 

assemblages that colonize those surfaces are analogous to those living on adjacent natural 

rocky shores (Thompson et al., 2002). However, some studies found that epibiota living on 

and fish assemblages associated with artificial structures differ from those on natural reefs 

(Glasby & Connell, 1999; Rilov & Benayahu 2000; Perkol-Finkel & Benayahu, 2004; 

Moschella et al. 2005; Clynick et al., 2008). 

Generally the assemblages inhabiting the artificial structures are often characterized by a 

low species diversity compared with natural habitats (Bacchiocchi & Airoldi 2003; 

Chapman, 2003; Martin et al., 2005). The decrease in species diversity weakens the 

community resistance to abiotic and biotic disturbances, favouring the establishment of 

invasive species (Elton, 1958). In fact, artificial structures play a key role for the 

introduction and spread of invasive species (Bulleri & Airoldi, 2005; Glasby et al., 2006; 

Vaselli et al., 2008; Dafforn et al., 2012). 

On a regional scale, artificial structures can function as corridors or stepping stones 

(Glasby & Connell, 1999), connecting otherwise separated populations. This phenomenon 
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promotes the homogenization of biota which is currently considered as a major 

anthropogenic impact (McKinney & Lockwood, 1999). In fact urbanization is today 

known as one of the leading causes of species extinction and biodiversity loss (McKinney, 

2006).  

The implications of the ongoing coastal urbanization require carrying out more ecological 

studies that, by incorporating rigorously designed field experiments, offer knowledge to 

guide future management practices. 

 

 

Table 2.1. Summary of the extension (km) and number of each type of artificial structure along the 

north, south, east sides of Sicily and along the total Sicilian coastline; extension (km) and number 

of artificial structures in relation of the substrate were they are placed, along the main coastal sides 

and the total Sicilian coastline; extension (km) and number of detached breakwaters in relation to 

the substrate were they are placed, along the main coastal sides and along the total Sicilian 

coastline. 

 

  NORTH  SOUTH  EAST   OVERALL 

Distribution of artificial structures km n° km n° km n° km n°

DETACHED BREAKWATERS 34,0 45 20,2 32 14,3 31 68,6 108

DEFENCE STRUCTURES 42,7 80 24,3 61 24,9 63 91,9 204

PORTS AND IND. PLANTS 47,5 28 30,9 21 54,8 36 133,2 85

OTHER STRUCTURES 23,2 110 1,9 22 12,9 54 38,0 186

TOTAL 147,4 263 77,4 136 106,9 184 331,7 583
 
Urbanization and substrates 

ARTIFICIAL 39,1 29  24,8 22  46,1 18   110,1 69

SANDY 60,2 116  28,6 57  23,7 60   112,5 233

ROCKY 27,0 80  12,6 38  18,3 82   57,9 200

ROCKY_ARTIFICIAL 12,0 24  4,8 6  21,3 24   38,1 54

ROCKY_SANDY 1,8 6  6,5 13  0,5 1   8,9 20

SANDY_ARTIFICIAL 7,2 6  0,0 0 0,0 0 7,2 6
 
Detached breakwaters and substrates

DB ON ROCKY 4,6 8 3,1 7 0,3 2 8,0 17

DB ON SANDY 23,9 33 12,7 19,0 14,0 29 50,6 81

DB ON SANDY/ART 5,4 4 0,0 0,0 0,0 0 5,4 4

DB ON ROCKY/SANDY 0,0 0  4,4 6,0  0,0 0   4,4 6
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CHAPTER 3 

Fish assemblages associated to artificial defence structures and 
relationships with the surrounding environmental context 

 
Introduction 
 

Erosion and flooding are common phenomenon along the coastlines worldwide, 

exacerbated by the sea-level rise and the increase of storm frequency potentially related to 

the global climate change (National Institute of Coastal and Marine Management of the 

Netherlands, 2004). In Europe, where more than 15000 km of coast are currently 

retreating, numerous artificial coastal-defence structures (i.e. breakwaters and seawalls) 

have been built over the past decades as measure for coastal protection (Airoldi & Beck, 

2007). 

The introduction of artificial defence structures causes ecological impacts at local and 

regional scale (Airoldi et al., 2005), because they modify both physical and biological 

features of the natural environment. The largest body of literature regarding the ecological 

effects of artificial defence structures focused on intertidal and subtidal epibiotic 

assemblages (Bacchiocchi & Airoldi, 2003). In most instances infrastructure and 

armouring structures are built in areas that would otherwise be sedimentary, thereby 

introducing new intertidal or subtidal hard substrata where that was not previously 

available (Dethier et al., 2003; Airoldi et al., 2005). Despite the impacts that have shown 

decreases in diversity of associated flora and fauna, at a first glance, coastal infrastructure 

and armouring seems to create suitable habitat for many marine organisms. In fact, sessile 

communities associated with hard substrata respond quite clearly to the presence of the 

artificial hard surfaces rapidly settling and spreading. This results in the introduction of 

new species to these areas, with consequent local alteration of species composition, 

abundance and diversity (Airoldi et al., 2005). 

Many species of fish aggregate around coastal infrastructure, such as marinas and wharves. 

These assemblages can be a reduced or different mix of species than occurs on natural 

reefs, depending on the type of habitat created by the artificial structures (e.g. Rilov & 

Benayahu, 1998; Cenci et al., 2011; Pizzolon et al., 2008; Santin & Willis, 2007; Clynick, 

2006; Guidetti et al., 2005; Guidetti, 2004). The interest on how fishes respond to the 

presence of artificial defence structures is not surprising considering that fish communities 
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in the shallow coastal waters are economically and ecologically important (Horn et al., 

1999) but also highly threatened by habitat alteration (Greene & Shenker, 1993; Bussotti et 

al., 2003; Guidetti, 2004; Guidetti et al., 2005). Studies carried out along the Italian coasts 

found strong differences in composition among fish assemblages inhabiting respectively 

artificial defence structures and sandy bottoms (Guidetti, 2004), but not differences were 

detected between breakwaters and nearby rocky reefs (Clynick, 2006). On the contrary, in 

a study conducted in Taiwan, Wen at al. (2010) found different fish assemblages between 

breakwaters and nearby rocky reefs. 

Despite some findings suggest that the habitat surrounding artificial coastal-defence 

structures influences the degree of the their effect on biological assemblages, just few 

studies tackled this issue (Bulleri, 2005). In general the introduction of artificial defence 

structures in a prevalent sandy habitat causes the loss of soft-bottom habitats and affects 

the associated biological communities (Martin et al., 2005). Conversely artificial structures 

and adjacent natural rocky reefs are expected to offer similar structural features, and to be 

populated by benthic communities not significantly different (Perkol-Finkel et al., 2006).  

To explore the potential interactions between the artificial habitat and the surround 

environments in affecting the composition and structure of fish assemblages I conducted 

surveys along coastlines where artificial structures are deployed in both sedimentary and 

rocky context.  

The specific aim of the study is to test: 1) whether the composition and structure of fish 

assemblages differ between artificial structures and natural reefs, and 2) if the composition 

and structure of fish assemblages inhabiting artificial structures differs between structures 

located along sandy vs rocky coastlines. 

 

Materials & methods 

 

Study area 

This study was carried out at two different locations, each extending about 10 to 20 km 

along the coast of Sicily (Fig. 3.1.). Those locations were selected among those traits of 

coast where artificial defence structures are deployed in both sandy and rocky habitat, and 

where natural references reef sites are available. In order to achieve this purpose a 

preliminary census of every artificial structure all over the Sicilian coastline in relation to 

its surrounding environment was a crucial prerequisite (see Chapter 2 of this thesis). 
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Sampling methodology 

Data were collected by non-destructive visual census method along a strip-transect of 25 m 

long and 2 m width. Transect’s width was modified from the one usually adopted in rocky 

habitat (5 m, Harmelin-Vivien et al., 1985) and adapted to the width of the seaward side of 

the artificial structures often not exceeding 4 meters (authors, personal observation). The 

fish counts was performed during the laying of the transect line, in order to limit the 

operator effect on fish behaviour (Kulbicki, 1998; Edgar et al., 2004; Dickens et al., 2011). 

Sampling was carried out in August 2011 within two weeks to minimize temporal 

differences. All counts were performed under good meteorological conditions within a 

depth range of 0-3 m and between 9.00 and 15.00 h to minimize the diurnal variability 

between transects (Willis et al., 2006). Given the shallow depth the survey was carried out 

by snorkeling to evaluate species composition and abundance. 

Eight replicate transects were performed at each site by three divers that were previously 

trained to standardize sampling procedures. To reduce any potential bias in surveying 

difference groups of fish (i.e. pelagic and benthic) two censuses were performed along the 

same transect, one at faster speed (approx. 6m/minute) to census mobile fishes and the 

second at lower speed (approx. 3.5m/minute) to census benthic and crypto benthic species 

(De Girolamo & Mazzoldi, 2001). 

According to Guidetti et al. (2002) and Pais et al. (2007), fish taxa with similar ecological 

features were aggregated into seven ecological categories (EC; in some cases 

corresponding to families), defined on the basis of their feeding habits and spatial 

organization within the water column. (1) BEN: benthic meso-carnivorous fishes (e.g. 

Fig. 3.2. Maps with localization of sampling sites at A) Capo d’Orlando and at B) Sciacca. 
Blue = AR (Artificial structure on rocky habitat); Green = NR (Natural rocky reef); Yellow 
= AS (Artificial structure on sandy habitat). 
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Blenniidae, Gobiidae, Mullus and Tripterygiidae); (2) HER: herbivorous fishes (i.e. the 

sparid Sarpa salpa); (3) LAB: mesocarnivorous nectobenthic fishes belonging to the 

Labridae family; (4) PLA: planktivorous fishes inhabiting the water column, often 

aggregated in schools (e.g. Atherinidae, Pomacentridae and the sparid Oblada melanura); 

(5) POM: particulate organic matter feeders (i.e. Mugilidae); (6) SER: site-attached 

piscivorous fishes belonging to the Serranidae family; (7) SPA: meso and 

macrocarnivorous sparids belonging to the genus Diplodus and Sparus aurata (Table 3.1.). 

 

Data analyses 

The putative differences between the assemblage’s structure and composition were 

analysed using a factorial design. The model included the main effects of Habitat (HA, 

fixed) and Location (LO, random) and Site (SI, random) that were nested in the interaction 

(LO x HA). 

Statistical analyses were carried out on both multivariate and univariate data sets. Whole 

assemblage structures (abundance data) were analysed using a three-way permutational 

multivariate analysis of variance (PERMANOVA; Anderson, 2001; Anderson et al., 2008), 

according to the design reported above. In order to reduce the weighting of abundant 

species (e.g. those forming large schools) and increase that of rare taxa, data were log (x + 

1)-transformed. 

The Similarity Percentages procedure (SIMPER) was used to identify the species mostly 

contributing to the dissimilarity between habitats and only those variables whose 

contribution exceeded an arbitrary chosen threshold value of percentage dissimilarity >5% 

were shown. 

In addition, a univariate PERMANOVA based on Euclidean distance was used to 

investigate patterns of distribution of total abundance of fish and species richness, avoiding 

any assumption about the distribution of the variable. 

Significance was set at p = 0.05, p-values being obtained using 9999 permutations of 

residuals under a reduced model (Anderson, 2001). Non-metric Multidimensional Scaling 

(nMDS) (Clarke, 1993) based on the Bray-Curtis similarity matrix was used to visualize 

the ordination of samples within a two-dimensional space. As there were too many 

observations to view in a single ordination (totally n = 144), there were examined the 

eighteen centroids for the combined factor Habitat-Location. 
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Table 3.1. List of fish taxa (+: present; 0: absent) and ecological categories (see materials and 
methods) recorded at each of the two locations on artificial structures on rocky environment 

(AR), Natural reef (NR) and artificial structures on sandy environment (AS). Ecological 
categories of fishes: HER: herbivorous; PLA: planktivorous; BEN: benthic; LAB: 
labrids; POM: particulate organic matter feeders; SER: serranids; SPA: sparids. 

All the statistical analyses were performed with PRIMER 6 + PERMANOVA software 

package from Plymouth Marine Laboratory, UK (Clarke & Warwick, 2001; Anderson et 

al., 2008). 

 

 

     Capo d'Orlando  Sciacca  
Family  AR  NR  AS AR   NR   AS  
Species EC 1 2 3  1 2 3  1 2 3 1 2 3 4   1 2 3   1 2  
Atherinidae                       

Atherina sp. PLA + + + + + + + + + 0 + 0 0  0 0 +  0 0  
Blenniidae                       

Aidablennius sphynx BEN 0 0 + 0 + + + 0 + 0 0 0 0  0 0 +  0 +  
Parablennius gattoruggine BEN 0 + 0 + 0 0 0 + 0 0 0 0 0  0 + 0  0 +  
Parablennius 

sanguinolentus 
BEN 0 + + 0 + + + + + 0 0 0 0  0 0 +  0 + 

 
Carangidae                       

Trachinutus ovatus  0 0 0 0 + + 0 0 + 0 0 0 0  0 0 0  0 0  
Labridae                       

Coris julis LAB + + + + + + 0 + + + + + +  + + +  + +  
Labrus merula LAB 0 0 0 0 0 0 0 0 0 0 + + +  0 + 0  0 0  
Labrus viridis LAB 0 0 0 0 0 0 0 0 0 + 0 0 0  + + 0  0 0  
Symphodus ocellatus LAB + + 0 + 0 0 0 + 0 + + + +  + + +  + +  
Symphodus roissali LAB + + 0 + 0 0 0 + + + + + +  + + +  + +  
Symphodus tinca LAB + + + + 0 + + + + + + + +  + + +  + +  
Thalassoma pavo LAB + + + + + + + + + + + + +  + + +  + +  

Moronidae                       
Dicentrarchus labrax  0 + 0 0 0 0 + + + 0 0 0 0  0 + 0  + +  
Dicentrarchus puntactus  0 0 0 0 0 0 0 0 0 0 0 0 0  0 + 0  + +  

Mugilidae                       
Mugil sp. POM + + 0 + + + + + + + + + 0  + 0 +  + 0  

Mullidae                       
Mullus surmuletus BEN + + 0 + 0 0 + 0 + + + + +  + + +  + +  

Pomatocentridae                       
Chromis chromis PLA + + + + + + 0 + + + + + +  + + +  + 0  

Serranidae                       
Serranus cabrilla SER + 0 0 0 0 0 0 0 0 + + 0 0  0 0 0  0 0  
Serranus scriba SER + + + + + + 0 + + + 0 + +  + + 0  0 0  

Sparidae                       
Diplodus annularis SPA 0 0 0 0 0 0 + 0 0 0 + + +  0 0 +  + 0  
Diplodus sargus SPA + + + + + + + + + + + + +  + + +  + +  
Diplodus puntazzo SPA + + 0 + 0 0 + + + 0 0 + 0  0 0 0  + 0  
Diplodus vulgaris SPA + + + + + + + + + + + + +  + + +  + +  
Lithognathus mormyrus SPA + 0 0 0 0 0 + + 0 0 0 0 0  0 0 0  0 0  
Oblada melanura PLA + + + + + + + + + + + + +  + + +  + +  
Sarpa salpa HER 0 + + + + + + + + + + + +  + + +  + +  

Tripterygiidae                       
Tripterygion tripteronotus BEN  0 0 0  0 0 0  + 0 0  + + 0 0   + + 0   0 0  
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Results 

 

General description 

Apart from the cases of Atherinidae and Mugilidae for which visual identification was 

possible only at family level, the remaining taxa were identified at genus or species level.  

A total of 28 fish taxa belonging to 11 families were recorded during the surveys. In the 

location ‘CDO’ the number of taxa recorded was 24, in ‘SCI’ was 26, whereas the taxa in 

common to both locations were 22. The whole fish assemblage was dominated by Atherina 

sp., Chromis chromis, Coris julis, Diplodus sargus, Oblada melanura, Mullus surmuletus, 

Sarpa salpa, Symphodus ocellatus, Symphodus roissali and Thalassoma pavo (Fig. 3.3.). 

Overall, 9308 individuals were recorded. Among the ecological categories, PLA represent 

the 32,4 % of the total number of individuals, HER the 23,3 %, LAB the 22,4 % and SPA 

the 11,6 % (Fig. 3.4). 

  

Fish assemblage structure 

The nMDS plot showed segregation among locations and high variability among sites (Fig. 

3.5.). The variability between sites was pronounced for the location ‘CDO’ than ’SCI’ 

where the points in the plot were distributed  quite close each other. By contrast it is not 

evident a clear trend among habitats.  

The multivariate analyses performed on the fish assemblage revealed significant 

differences among the investigated habitats (pseudo-F = 2,697; p = 0,015), locations 

(pseudo-F = 7,513; p = 0,0001) and sites (pseudo-F = 4,096; p = 0,0001) (Table 3.2). 

Pairwise comparisons for the term “Habitat” revealed that fishes inhabiting AS differed 

from fishes populating NR (t = 2,344; p = 0,0129). No differences were detected between 

AS versus AR (t = 1,6049; p = 0,0837) and between AR versus NR (t = 1,2957; p = 

0,2418) (Table 3.2.). 

The SIMPER showed the 7 fish taxa individually contributed more than 5 % to the 

dissimilarities between AS and NR. Sarpa salpa,Oblada melanura, Mullus surmuletus and 

Thalassoma pavo resulted more abundant in AS relative to NR. In contrast, Chromis 

chromis and Atherina sp., were more abundant in NR relative to AS (Table 3.3.). 
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Ecological categories, species richness and total abundance 

The univariate analysis performed on the total abundance for each ecological category 

found significant differences for the factor habitat in BEN (pseudo-F = 15,26; p = 0,02), 

LAB (pseudo-F = 116,58; p = 0,008) and SER (pseudo-F = 5,7096; p = 0,035) (Table 3.4.). 

Pairwise test for the factor habitat revealed different trends for each of those latter EC: 

BEN differs among AS and NR (t = 16,292; p = 0,003), LAB differs among AR and NR (t 

= 25,045; p = 0,026), whereas SER lightly differs among AR and AS (t = 7,6404; p = 

0,048). 

In contrast, there were no detectable differences in species richness among habitats 

(pseudo-F = 2,9817; p = 0,257) on the overall fish assemblage. The analysis on the total 

abundance didn’t detect any general trend (Habitat: pseudo-F = 0,6463; p = 0,681), but 

there were significant differences among habitats in each location separately (Habitat x 

Location pseudo-F = 5,693 p = 0,0139). Pair-wise test revealed that in location ‘CDO’, the 

total abundance was different in the comparison AR versus AS, whereas in the location 

‘SCI’ it differed between NR versus AS (Table 3.4.).  

 
 
 
 
 
 
 
 

Table 3.2. Results of the Permutational multivariate analysis of variance for the structure of 
the fish assemblage based on the Bray-Curtis dissimilarity measure for log(x + 1) transformed 
abundance data. The test was done using 9999 permutations of residuals under a reduced 
model. LO = Location; HA = Habitat; SI = Site; other abbreviations as in Table 3.1. * = P < 
0,05; ** = P < 0,01, ***=P<0,001, ns= not significant.

 
  df     MS Pseudo-F  Pairwise Comparisons 

LO 1 42253 10,452***  AS vs NR * 

HA 2 9196,3 3,2803*  AR vs AS ns 

LOxHA 2 2769,9 0,68516  AR vs NR ns 

SI(HAxLO) 12 4042,8 4,0514***    

Res 126 997,87     

Total 143         
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Table 3.3. Results of SIMPER analysis showing fish species contributing 
most (percentage contribution > 5%) to dissimilarity (Diss) between 
habitats (abbreviations as in Table 3.1.). 

 
 
 

 
 
 
 
 

NR AS

Average diss = 53,56

Sarpa salpa 1,29 3,16 1,49 13,94

Oblada melanura 1,14 1,74 1,25 9,01

Chromis chromis 0,97 0,58 0,83 7,68

Mullus surmuletus 0,27 1,08 0,92 6,78

Aterina sp. 0,86 0,34 0,61 6,66

Thalassoma pavo 1,08 1,34 1,14 6,57

Mugil sp. 0,52 0,95 0,95 6,25

Diplodus sargus 1,41 1,8 1,2 5,69

Coris julis 1,13 0,44 1,16 5,43

Diplodus vulgaris 0,72 1,22 1,09 5,42

AR AS

Average diss = 51,13

Sarpa salpa 1,44 3,16 1,47 14,32

Oblada melanura 1,76 1,74 1,21 8,62

Diplodus sargus 1,29 1,8 1,27 7,26

Mullus surmuletus 0,74 1,08 0,93 6,61

Thalassoma pavo 1,62 1,34 1,29 6,26

Chromis chromis 0,7 0,58 0,78 6,11

Mugil sp. 0,52 0,95 0,88 5,97

Symphodus ocellatus 1,44 0,77 1,07 5,89

Diplodus vulgaris 1,02 1,22 1,21 5,81

Coris julis 1,18 0,44 1,05 4,91

AR NR

Average diss = 52,24

Sarpa salpa 1,44 1,29 1,16 11,39

Oblada melanura 1,76 1,14 1,2 10,2

Chromis chromis 0,7 0,97 0,83 8,49

Symphodus ocellatus 1,44 0,7 1,19 6,88

Thalassoma pavo 1,62 1,08 1,12 6,87

Aterina sp. 0,28 0,86 0,51 6,35

Diplodus sargus 1,29 1,41 1,16 6,29

Diplodus vulgaris 1,02 0,72 1,25 5,96

Coris julis 1,18 1,13 1,22 5,84

Mugil sp. 0,52 0,52 0,78 5,15

Species Mean abundance Diss/SD

% 

contribution 

to diss
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Table 3.4. Results of univariate PERMANOVA testing the effects of location, habitat 
and site (nested in the interaction Ha x Lo) on total abundance, species richness, and 
abundance of ecological categories of fish (abbreviations as in Table 3.1.). Univariate 
PERMANOVA was based on the Euclidean measure for square root abundance data, 
except for species richness where analysis was performed on untransformed data. The 
test was done using 9999 permutations of residuals under a reduced model. * = P < 0,05; 
** = P < 0,01, ***=P<0,001, ns = not significant. 

 

 
 
 

Discussion 
 

Results from multivariate analyses identified significant differences in the composition of 

the fish assemblage among the three habitats considered. Interestingly fish assemblages did 

not differ between artificial substrata in a rocky context and nearby natural reef, while this 

was true for fish assemblages associated to artificial habitats in sandy environments. 

In Italy, most of the studies regarding the ecology and distribution of fish assemblage 

inhabiting artificial substrates in shallow coastal waters were carried out on sandy 

coastlines lacking natural rocky reference conditions (Guidetti, 2004; Cenci et al., 2011). 

However, a study conducted by Clynick (2006) in the north-east Tyrrhenian sea, compared 

fish assemblages among marina’s breakwaters and nearby natural reef founding no 

 df     MS Pseudo-F      MS Pseudo-F     MS Pseudo-F

LO 1 39,295 3,8099 25,01 0,86969 333.05.00 21.511**

HA 2 28,614 0,38711 24,059 3,0008 10.463 0.40751

LOxHA 2 73,918 7,1668* 8,0174 0,27879 25.94 16.731

SI(HAxLO) 12 10,314 2,5254** 28,758 9,3449*** 15.504 2.422**

Res 126 4,0841 3,0774 64.013

Total 143

LO 1 177.65 21.767** 22.403 0.28769 12.952 41.755

HA 2 21.187 116.58** 13.202 14.767* 11.404 31.784*

LOxHA 2 0.17934 0.021975 0.88616 0,790277778 0.035321 0.11387

SI(HAxLO) 12 81.612 10.728*** 7.787 7.7758*** 0.31019 14.677

Res 126 0.76077 10.014 0.21135

Total 143

LO 1 0.87889 0.22347 36.321 26.044 29.54.00 6.0644*

HA 2 10.727 20.617 124.22.00 28.185 38.917 0.78698

LOxHA 2 51.325 1.305 43.237 31.003 49.717 10.207

SI(HAxLO) 12 39.329 5.0744*** 13.946 3.7849*** 4.871 5.2345***

Res 126 0.77505 36.846 0.93055

Total 143

SPA HER POM

TOTAL ABUNDANCE SPECIES RICHNESS PLA

LAB BEN SER
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differences. Those results confirmed previous studies, where reported a similarity in the 

fish assemblages among artificial and natural reefs (Ambrose & Swarbrick, 1989 and 

reference therein). The fundamental implication of artificial structures that support similar 

assemblages to those inhabiting adjacent rocky shore would be a reduction of their impact, 

i.e. loss or fragmentation of natural habitats (Bulleri, 2005). 

On the other hand, resulted that artificial structures deployed on a sandy bottom host fish 

assemblage differing in structure from those inhabiting natural rocky shores. Burt et al. 

(2012) recently conducted a study on the fish community structures comparing 

breakwaters and natural reef, in a tropical area. Although not explicitly specified, the 

breakwater under exam was in a prevalent sandy bottom. Consistently with the results of 

this study, they found that breakwater habitat hosted fish communities clearly distinct from 

that of the natural reef. 

The differences found here are mainly driven by sedentary rather than mobile species, such 

as the benthic taxa that showed clear differences in abundance among artificial structures 

in a sandy habitat and adjacent natural reef. Within those benthic taxa, the blenny species 

and Mullus surmuletus were the most abundant taxa. Low abundance or even absence of 

other families of benthic fishes (Gobiesocidae, Scorpaenidae and Tripterygiidae) associated 

to breakwaters was also reported by Santin & Willis (2007) for the north Adriatic sea. This 

result is common for several studies carried out in Mediterranean rocky reefs and 

breakwaters where the Blenniidae resulted the most diverse and abundant group among the 

cryptic fishes (Illich & Kotrschal, 1990; Macpherson, 1994; Lipej & Richter, 1999; La 

Mesa et al., 2004). Those sedentary benthic and cryptic species, aggregate in those 

artificial environment where they found crevices for shelter and resources (Santin & Willis, 

2007; Pérez-Ruzafa et al., 2006). In particular the blennies species are characterized by 

very low mobility (Harmelin, 1987) and are likely unable to cross the hundreds of meters 

of wide sandy bottom to the next hard surface. Indeed the artificial structures could act as 

fish attractors, hosting individuals previously inhabiting other hard substrata or 

alternatively they act as fish producers, enhancing fish biomass in an area by providing 

new spaces, refuges and habitats (Carr & Hixon, 1997; Cenci et al., 2011).  

Furthermore, the clear separation among fish assemblages inhabiting the two locations was 

not unexpected considering that they were deployed in separate seas (strait of Sicily and 

southern Tyrrhenian sea) with different oceanographic characteristics (Sanfilippo et al., 

2011). In effect, at very large spatial scales (i.e. hundreds to thousands of km), substantial 

differences in abundance of adult reef fish assemblages are expected (García-Charton et 
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al., 2000; García-Charton et al., 2004; La Mesa et al., 2011). This regional variation in fish 

assemblage can be due to several, non-exclusive causes, such as large-scale climatic 

differences, habitat structures - resulting in differential availability of resources such as 

food or shelter, larval dynamics and recruitment variability (García-Charton & Pérez-

Ruzafa, 1999; García-Charton et al., 2000; García-Charton et al., 2004). But even higher 

differences have been found at the lowest spatial scale, i.e. sites (hundreds to thousands of 

meters), as typical of the variability in the Mediterranean fish populations (García-Charton 

et al., 2000). 

In this study the species richness and total abundance among the three habitat types was 

similar at both sampling locations. Some authors stated that species richness and 

abundance may be related to connectivity (Airoldi et al., 2005; Bulleri & Airoldi, 2005; 

Cenci et al., 2011), since higher fish abundances and richness have been found on 

submerged artificial reefs with higher connectivity rather than on more isolated ones (Vega 

Fernández et al., 2008). 

In conclusion, the ecological implications for biodiversity of fish assemblages (at local and 

regional scales) depend on the type of natural habitat mostly affected. Specifically, they 

will vary between the case in which artificial structures are deployed on hard-bottoms or 

soft-bottoms. 

Artificial structures deployed on soft-bottom function as an island that aggregate rocky 

fishes but with a limited connectivity with other artificial structures and rocky shores, 

developing assemblage of fish with peculiar characteristic in terms of structure and 

composition. When coastal defences are built in a rocky setting they might function as 

stepping stones supporting connectivity.  
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CHAPTER 4 

Effects of detrital enrichment from artificial defence structures 
on the adjacent soft–sediment macrofauna 

 
Introduction 
 
Artificial defence structures have been widely used worldwide for protecting coasts from 

erosions and inundations. The greater threats given by climate change, storm surges, and 

sea level rise may lead to an increase of artificial coastal-defences (i.e. breakwaters and 

seawalls) with consequent impacts to coastal habitat and communities (Dugan et al., 2011).  

Marine artificial structures may cause profound changes to the native coastal ecosystems. 

This is particularly relevant for coastal infrastructures built on prevailingly sandy bottoms 

(Dugan et. al, 2011), where they cause the direct fragmentation and loss of the habitats 

through the conversion to artificial hard substrata. They also alter the hydrodynamic and 

depositional environment, therefore introducing uncharacteristic changes in adjacent soft 

bottom habitats (i.e. grain size, content of organic matter, redox conditions, and associated 

native assemblages of animals and plants; Davis et al., 1982; Barros et al., 2001; Airoldi et 

al. 2005; Martin et al.; 2005, Bertasi et al., 2007; Colosio et al., 2007). These direct effects 

are most evident just around the infrastructures, on the seaward-sheltered sides related to 

the increased wave energy and on the landward-exposed sides due to decreased wave 

energy (Santin & Willis, 2007 and references therein). 

The introduction of hard coastal structures can also lead to indirect changes to sedimentary 

environments related to the widespread introduction of hard-bottom species into areas 

where they are naturally scarce. Such an introduction could have important indirect 

consequences for the functioning of these dynamic environments, through the unnatural 

subsidy of detrital material that is sloughed off the artificial structure. Moreover artificial 

structures could entrap drifting algae and other detritus, further contributing to organic 

build up in the sediments. There is growing recognition that the export of detritus to 

adjacent habitats is an important form of connectivity among coastal systems that can 

influence local and regional productivity and the spatial organization of marine ecosystems 

(Polis et al., 1997, Loreau et al., 2003, Marczak et al., 2007; Krumhansl & Scheibling, 

2012). 
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In subtidal soft-sediment habitats detritus represent a primary source of food, attracting 

diverse assemblages of detritivores, predators, microbes, then influencing their distribution 

and secondary production (Krumhansl & Scheibling, 2012 and reference therein). These 

effects depend on the availability, size and resident time of the deposits (Norkko et al., 

2000), but could also vary depending on which benthic components (e.g. animal vs 

vegetal) will prevail on the infrastructures.  

Previous work has explored the ecological factors that can lead to the prevalence of each of 

these two components in the system, identifying the complex interactions between these 

two dominant groups (Bulleri et al., 2006) and revealing that opportunistic macroalgae 

tend to be favoured by the severe human disturbances typical of these environments 

(Airoldi et al., 2005; Bulleri & Airoldi, 2005; Airoldi & Bulleri, 2011). 

I have analysed possible changes in sedimentary environments and associated assemblages 

related to the unnatural introduction of detritus from hard-bottom species colonising 

artificial defence structures along the sedimentary coastline of the north Adriatic sea 

(Italy). In this region, which is naturally devoid of rocky substrata, more than 190 km of 

rock armoured infrastructures (mainly breakwaters, groynes, seawalls and jetties) have 

been built in the past 40 years along about 350 km of coastline (Bondesan et al. 1995), 

introducing about 2 km2 of artificial hard substrata along these shallow, moderately 

exposed sandy bottoms. 

Information on the dominant epibenthos species inhabiting the artificial substrate of the 

defence structures in the study area was available from Bacchiocchi & Airoldi (2003) and 

Santin & Willis (2007). However it was essential for this study to identify the type and 

quantify the amount of detritus originated by the dominant benthos associated to the 

structures, and describe its spatial distribution on sedimentary environments surrounding 

the defence structures. A field manipulative experiment was subsequently carried out in 

order to assess the different effects of detritus from Ulva spp. and Mytilus galloprovincialis 

(the two main producers of detritus on the structures) on soft-bottom associated 

assemblages. I predicted different effects of these two forms of detritus because of the 

nature of the organic material (specific gravity and chemical content) and the provision of 

shell material associated with mussel deposition. Specifically, I analysed whether effects 

related to wrack accumulation differ depending on the species producing the detritus. I 

considered both the responses of the macrofauna inhabiting the sediment as well as 

possible effects related to the attraction of detritus feeding species that are directly 
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Fig. 4.1. Map of the study area where the surveys and the field experiment were carried 
out. 

associated to the detritus; I also tested if any observed effects were consistent over time, by 

repeatedly sampling 3 times over a short temporal scale. 

 

Materials & Methods 

 

Study Area 

The surveys and the manipulative experiment were carried out in June 2009 on the 

artificial defence structures located at Lido di Dante (44°23’10’’N, 12°19’10’’E), Adriatic 

Sea (Fig. 4.1.). The North-Western Adriatic coastline is a sandy flat system, protected for 

more than 190 km by numerous defence structures as a measure against erosion. The beach 

of Lido di Dante (Fig. 4.2.) is located 12 km south of the port of Ravenna (Italy) between 

the mouths of the Fiumi Uniti (0,9 km North) and Bevano rivers (2,6 km South), with a 

tidal amplitude ranging between 0,30 m and 0,85 m, a gentle seabed slope of about 6 

m/km, and bottom sediments ranging from well-sorted fine to medium sand (Bertasi et al., 

2007). 

The artificial defence system of Lido di Dante is comprised of groynes and offshore 

detached breakwaters, built with large blocks of limestone, about 0,5–2 m in diameter. In 

particular, the groynes consisted of about 70-m-long structures, perpendicular to the shore, 

that were built in the early 1980s. The breakwaters consisted of two low-crested structures 

(i.e. crest emerging at low tides) parallel to the shore, about 350 m long and about 150 m 

from the shoreline, that were built in 1996 (Bertasi et al., 2007).  
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A detailed description of the hard-bottom benthos associated with breakwaters and groynes 

along the Ravenna’s shoreline, is reported in Bacchiocchi & Airoldi (2003). Assemblages 

are relatively species poor, with a strong dominance by few taxa. Animals included Mytilus 

galloprovincialis, Ostrea edulis and Crassostrea gigas, Serpulidae, Chthamalus stellatus, 

Balanidae, Ascidiiae and Actinidae. Algae included Ulva intestinalis, Ulva laetevierens 

and filamentous species (among which Cladophora vagabunda and Polysiphonia 

breviarticulata). Encrusting algae are usually rare and included Ralfsia verrucosa. 

Bacchiocchi & Airoldi (2003) reported average coverage by the two dominant groups, 

Mytilus galloprovincialis and Ulva spp., of 74 %, and 29 %, respectively. Moreover 

patches of bare rock are reported to be frequent in the assemblage, comprising on average 

about 4 % of the substratum, but peaking up to 35% at some times of the year. 

 

Fig. 4.2. Aerial view of 
the shoreline and the 
coastal-defence system at 
Lido di Dante (Ravenna, 
Italy). Photo by Giorgio 
Benelli, published with 
permission. 
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Surveys of the nature, amount and distribution of detritus around structures 

The surveys were planned to analyse the composition, the amount and the distribution of 

detritus produced by the dominant benthic species colonizing the artificial defence 

structures at Lido di Dante. 

The first survey was performed in order to describe the distribution of the different detritus 

types over the surface of the sediment adjacent the breakwaters. The description was done 

by scuba diving along 50-m-long transects deployed on the bottom sediments, adjacent and 

parallel to the breakwater. Two transects were sampled at both the landward and seaward 

sides of the breakwaters. The distribution of each of 8 detritus categories (“Dense 

Mytilus”; “Ulva; Mytilus & Sand”; “Mytilus & Shells”; “Shells & Sand”; “Anemonies, 

Mytilus & Sand”; “Oysters & Mytilus”; “Sand”; “Rubble”) was quantified by recording the 

distance at which changes in each detritus category occurred along the transect. The 

distance data were subsequently converted into average percentage cover for each 

category, by dividing the total amount of metres covered by each detritus type for the total 

length of the transect. 

An additional survey was conducted in order to evaluate the extension of the detritus mat 

around the artificial defence structure. The survey was carried out by scuba diving along 

both the landward and seaward sides of two breakwaters. Six 50-m-long transects were 

deployed at the bottom, adjacent and perpendicular to each of the two sides of the 

breakwaters. Each transect was 10 m apart. The extension of the detritus mat was 

quantified by recording the maximum distance from the breakwater at which patches of 

detritus were observed. 

Finally, the mass of detritus per unit surface was estimated by using sediment corers with a 

diameter of 13 cm and a height of 15 cm, that were pushed approximately halfway into the 

sediment. Six replicated corers were collected at each of six patches of either mussel or 

Ulva detritus, selected at random along the transects that was deployed adjacent and 

parallel to the breakwater. 

 

Experimental procedure 

The experiment was set-up in June 2009 because at this time of the year detritus tends to 

accumulate more persistently in shallow habitats due to periods of calm sea conditions 

(Vetter, 1996; Okey, 2003). Specimens of Mytilus galloprovincialis (hereafter Mytilus) and 

Ulva spp. (mainly Ulva latevierens and Ulvaa intestinalis; hereafter Ulva) were collected 

alive from the artificial defence structure in Lido di Dante and transported to the laboratory 



52 
 

Fig. 4.3. Sample of the net bags containing A) Ulva and B) Mytilus detritus used in the 
experiment. 

for the preparation of the nets to be used in the experiment. Once in the laboratory the 

Mytilus was frozen for 24 hours, in order to mimic the natural death, which occurs 

following the detachment from the structure and smothering in the sediments. Conversely, 

Ulva was stored at 4°C for a maximum of 24 hours, to preserve it fresh until the 

deployment of the experiment in the field. The detritus from Mytilus and Ulva were 

disposed into nylon mesh bags (60 x 60 cm, 1 cm mesh size) to be used for the 

manipulative experiment. The experiment comprised three treatments: ‘Ulva’ detritus (0.5 

kg wet weight per bag), ‘Mytilus’ detritus (3 kg wet weight per bag) and un-manipulated 

Controls (Fig. 4.3.). 

 

 

 

 

 

The amount of Mussel detritus in each treatment was chosen based on the measures done 

during the field survey (see Results). The amount of Ulva measured in the survey (see 

Results) was however much smaller than what occurring generally at time of the year (see 

Fig. 4.4.) on the breakwaters. For this reason the amount of detritus from Ulva used in the 

experiment was increased by 5 times compared to the values measured in the present 

study. 

The experiment was deployed in an area 50 m apart from the artificial defence structure. 

The area was located at 4 m in depth and at 200 m off-shore, which are consistent with the 

real conditions of the soft bottom adjacent to the artificial defence structure. For each of 

the three treatments 12 plots were established, for a total of 36 plots randomly distributed. 

The sampling was carried out at three times (specifically, T1 at 2 days after the deployment 

of the net bags, T2 after 7 days and T3 after 21 days) to test whether the responses to 

treatments were persistent over time. At each sampling time, 4 plots for each treatment 

were randomly selected and sampled, except for Ulva at T3 that accounted for plots. In fact 

one plot of Ulva was lost at this time, probably because removed by waves. 
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Variables measured in each plot included the soft-bottom macrofauna (here after SB-

macrofauna) and the macrofauna directly associated to the detritus (here after DE-

macrofauna). 

The SB-macrofauna was sampled by collecting 4 cores (10 cm diameter, 10 cm deep) of 

sediment below the net-bags. In the laboratory, each core was washed in a 500 μm sieve, 

and the material retained was preserved in a 7% formalin solution. The material from each 

sieved core was then carefully sorted under a stereomicroscope and identified to the lowest 

possible taxonomic level. 

The DE-macrofauna was sampled by recovering the net-bags and keeping them into 

hermetic plastic packets. In the laboratory, the macro-invertebrates were extracted from 

bags and detritus, and then preserved, sorted and identified as described previously. 

Furthermore, the mass loss of detritus at each sampling time was evaluated as remaining 

wet weight for both Ulva and Mytilus. 

 

Data analyses 

The weight loss of Ulva detritus across the experiment was calculated as remaining wet 

weight (g) of the initial mass (500 g) at each sampling times. For the Mytilus detritus, the 

organic matter (OM) contained in samples of 200 g (wet weight) of dead Mytilus was 

determined before the start of the experiment (T0) and at the following sampling times. The 

samples of Mytilus were placed in ceramic cups, dried in an oven for 24 h (100°C), 

weighed (Dry Weight, DW), burned to ash in a furnace for 6h (500°C) and re-weighed 

(Ash Dry Weight, ADW). The Ash-Free Dry Weight (AFDW) was calculated as the 

difference ADW-DW. The organic matter content was calculated as (DW/AFDW)*100, 

and expressed as the percentage of the oven dry weight (DW). 

The effects of detritus enrichment from Mytilus vs Ulva on soft-bottom macrofauna were 

tested using both univariate and multivariate analyses. The mixed model used in these 

analyses included the factors ‘treatment’ (fixed, 3 levels: ‘Ulva’, ‘Mytilus’, ‘Control’) and 

‘time’ (random, 3 levels: T1, T2, T3). The effects of different detritus types for detritus 

feeding macrofauna found associated to the detritus were tested following the same 

rationale but including only two ‘treatment’ levels: (‘Ulva’, ‘Mytilus’). Each treatment 

comprised 4 replicates (plots) for each time except for one Ulva treatment at time 3 where 

only 3 replicates were available. 

The effect of the detritus enrichment at different sampling times on the assemblage 

structure of SB- and DE-macrofauna was tested by Permutational analysis of variance 
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(PERMANOVA) (Anderson, 2001) according to the designs described above. Multivariate 

PERMANOVA used Bray-Curtis similarity matrices of square root transformed abundance 

data with 9999 permutations of residuals under a reduced model (Anderson, 2001; Clarke 

& Warwick, 2001). For some terms in the analysis, there were not enough permutable units 

to get a reliable test by permutation, so a p-value was obtained using a Monte Carlo test 

(Anderson & Robinson, 2003). Furthermore, the nMDS ordinations (non-metric 

multidimensional scaling) were produced to visualize possible patterns among treatments. 

Differences in species richness and the total abundance of macroinvertebrates between 

treatments were analysed by permutational ANOVA (using the statistical package 

PERMANOVA+ for PRIMER, Anderson et al., 2008). The analyses were run on a matrix 

of Euclidean distances calculated from the original raw data, and P-values were estimated 

using 9999 random permutations of the appropriate exchangeable units. 

When multivariate analyses detected significant differences among factors, the procedure 

SIMPER (Clarke & Warwick, 2001) was used to identify the taxa which most contributed 

to the percentage dissimilarities among assemblages. Only species that contributed more 

than 5% to the average dissimilarity between treatments were considered as good 

discriminating species. 

PERMANOVA was run using the type III of Sum of Squares (Anderson, 2001). All 

analyses (PERMANOVA, MDS and SIMPER) were performed using PRIMER with 

PERMANOVA+ (v. 6, PRIMER-E Ltd., Plymouth, UK).  
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Fig. 4.4. Mean percentage cover (± S.E. n=8) of Ulvales at Lido di Dante on landward and 
seaward sides of the coastal-defence structure as a function of time, at different seasons 
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Results 

 

Survey 

The composition of the detritus mat is visualized in the fig. 4.5.. In the landward side of the 

breakwaters “Mixed Mytilus & Shells” are the main group with a coverage of 33, 5%. 

Follow “Shells & Sand” and “Dense Mytilus” with a coverage respectively of 23,5 % and 

22 %. Finally “Sand and Mytilus” and “Sand” cover the 11, 3 and 9,7 % respectively. At 

the seaward side of the breakwater “Mixed Mytilus & Shells” comprise 34,1 %  of the 

detritus coverage, followed by the categories “Shells & Sand” and “Sand” with a coverage 

of 31,3 % and 22,8 % respectively. Then “Ulva, Mytilus and Sand” with 5 % coverage. 

Finally “Anemonies, Mytilus & Sand” and “Mytilus & Sand” account respectively for the 4 

% and 2,8 % of the coverage.  

 

 

The detritus mat extended on average 5,4 m ± 1,3 S.E. far from the breakwater at the 

landward side and 3,2 m ± 0,7 S.E. at the seaward side. 

The detritus comprised on average a wet weight of 7,5 kg/m2 ± 3,6 S.E. of mussel shells at 

the landward side and 6,7 kg/m2 ± 3,1 S.E at the seaward side of the breakwater, which 

corresponds approximated to 3 kg for 3600 cm2 (the surface of the experimental plot). 

Accumulation of detritus from Ulva was observed only in the very sheltered conditions 

offered by the presence of groyns in Lido di Dante. Here Ulva presented on average a 

weight of 0,3 kg/m2 ± 0,1 S.E., which corresponds to ~ 0,1 kg for 3600 cm2. However our 

previous observations in the region over many years suggested that 2009 was characterized 

by unusually low coverage of Ulva relative to the average (Fig. 4.4.). Therefore I increased 

the amount of Ulva in the treatments at 0,5 kg to simulate quantities of detritus more 

typical for the study region.  
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Fig. 4.5. Distribution of 
the qualitative features 
that compose the 
detritus mat around the 
breakwaters at Lido di 
Dante. The survey 
included both the 
landward and the 
seaward side. 
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Species richness and total abundance 

The total number of taxa and the total number of organisms were not affected by the 

detritus enrichment both for SB-macrofauna (species richness: pseudo-F = 0,887; p = 0,50; 

total abundance: pseudo-F = 0,183; p = 0,85 ) and DE-macrofauna (species richness: 

pseudo-F = 13,096; p = 0,13; total abundance: pseudo-F = 2,748; p = 0,30). 

Detritus decomposition was very fast for both Ulva (Fig. 4.6) and Mytilus (Fig. 4.7). Two 

days after the start of the experiment (T0) the remaining wet weight (W.W.) of Ulva was 26 

% of the initial wet mass (T1; W.W. = 131,83 g ± 4,63 S.E.). Ulva weight loss continued 

dramatically during the following days, and only 6 % of the initial wet weight remained 

after 7 days (T2; W.W. = 28,95 g ± 14,23 S.E.). Ulva detritus was almost completely 

degraded after 21 days, where only 0,6 % of the initial wet weight remained on average 

(T3; W.W. = 3,9 g ± 2,2). 

Concerning the detritus from Mytilus, the O.M. contained in 200 g of dead specimens at 

the start of the experiment (T0) was estimated to be, as average, the 17,58 % ± 0,52 S.E. of 

the dry weight. After 2 days (T1) of experiment exposition the organic matter became the 

6,89 % ± 0,12 S.E. of the dry weight, that correspond to the 39 % of the initial O.M.. The 

decrease of the mussel’s organic matter continued during the first week (T2; O.M. = 4,03 ± 

0,21 S.E.), when organic content was reduced to 23 % of the initial O.M.. After 21 days the 

organic matter was reduced to 21 % of the initial O.M. (T3; O.M. = 3,8 % ± 0,06 S.E.). 
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Fig. 4.6. Wet weight (g) 
of Ulva contained in the 
experimental mesh bag at 
the start of the experiment 
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Macrofauna associated to the soft-sediment 

Concerning the SB-macrofauna, a total of 5254 individuals belonging to 42 families was 

recorded. Among them Lentidium mediterraneum (family Corbulidae) resulted the 

dominant species, with an average of 80 individuals per sample. 

 

 

The experimental manipulation of detritus initially affected the structure of macro-

invertebrate assemblages, but the effects were not persistent over time (time × treatment 

interaction; pseudo-F = 1.6, p = 0.019; Table 4.1.). The nMDS showed that macrofauna 

differed between treatments at T1 and T2 while group differences were no longer 

noticeable at T3 (Fig. 4.8.). However the post hoc pair-wise test was not enough powerful 

to reveal significant alternatives to the null hypothesis (Table 4.1.). 
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Fig. 4.7. The organic 
matter content in Mytilus, 
at the beginning of the 
experiment (T0) and in the 
following sampling times, 
was calculated as the 
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DW and converted to 
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Fig. 4.8. SB-Macrofauna. 
Two-dimensional nMDS 
ordination for for the 
combined factor Time-
Treatment. Green: Ulva, 
Black: Mytilus; Yellow: 
Control; Triangles: T1; 
Stars: T2; Quadrates: T3. 
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SIMPER (Table 4.2.) revealed that Lentidium mediterraneum, Veneridae and Capitellidae 

were far less abundant in both Ulva and Mytilus detritus treatments compared to Control 

plots at time T1. A comparison between Mytilus and Ulva showed that Lentidium 

mediterraneaum and Capitellidae presented an higher abundance in Mytilus, whereas 

Veneridae in Ulva. 

After 7 days Lentidium mediterraneum became more abundant in both Ulva and Mytilus 

treatments compared to Control plots. Mytilus plots comprised a higher abundance of L. 

mediterraneum with respect to Ulva plots. At this time the amphipods (i.e. Isaeidae, 

Dexaminidae and Gammaridae) as well as the crabs belonging to the family Portunidae 

showed the highest abundance at the Ulva treatment with respect to both Control and 

Mytilus. Capitellidae showed an higher abundance at the Control with respect to both Ulva 

and Mytilus.Veneridae was more numerous in Ulvaand Mytilus with respect to the Control.  

After 21 days the overall abundance of Lentidium mediterraneum reached 89.5 % of total 

abundance of the sampled organisms. Lentidium was slightly more numerous in detritus 

addition treatments, particularly the Mytilus ones, with respect to Control. 

Table 4.1. Results of the PERMANOVA for the structure of the assemblage of macrofauna 
associated to the soft-bottom (SB-Macrofauna). The analysis is based on the Bray-Curtis 
dissimilarity measure for square root transformed abundance data. The test was done using 
9999 permutations of residuals under a reduced model. In the cases of low permutations, P-
values were obtained using the Monte Carlo test. 

df MS Pseudo-F P(perm)

Time 2 6376 7,3747 0,0001

Treatment 2 1515 1,0533 0,4449

Time x Treatment 4 1440 1,665 0,0195

Res 26 864,6                

Total 34                      

     t  P(MC)      t  P(MC)       t  P(MC)

Control vs  Mytilus

Control vs Ulva

Mytilus vs Ulva 1,2933 0,1989 1,4268 0,1202 0,9 0,5234

1,7555 0,0563 1,5876 0,0632 0,7 0,7096

1,4882 0,0972 1,0714 0,3489 0,9 0,4624

PERMANOVA
SB-Macrofauna

Pair-wise tests

Within level T1 Within level T2 Within level T3
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Species Mean Abundance % contribution to diss 

Control Mytilus Ulva 
Control vs 

Mytilus
Control vs 

Ulva  
Mytilus vs 

Ulva  

AFTER 2 DAYS 
(T1) 

Av diss = 
49,00 

Av diss = 
53,15 

Av diss = 
50,31 

L. mediterraneum 53,75 28,5 18 64,44 65,73 56,7 

Veneridae 4,5 0,5 2,5 8,47 7,68 7,4 

Capitellidae 5,75 4,75 0,5 10,78 9,16 14,6 

AFTER 7 DAYS 
(T2) 

Av diss = 
56,23 

Av diss = 
56,54 

Av diss = 
54,13 

L. mediterraneum 41,75 85,75 69,25 58,7 33,8 42,1 
Isaeidae 10,75 1,25 31,5 9,6 19,1 21,4 
Dexaminidae 9 3,75 18,5 8,7 13,7 11,1 
Capitellidae 4,75 0,5 0,5 5,2 3,9 0,6 
Veneridae 4 6,75 8,25 4,4 5,1 5 
Portunidae 0,25 0,5 10 0,6 7,4 7,1 
Gammaridae 1,25 0,75 9,25 1,9 8,6 8,6 

AFTER 21 DAYS 
(T3) 

Av diss = 
35,88 

Av diss = 
41,62 

Av diss = 
31,87 

L. mediterraneum 136,75 180,75 163,33 84,8 89 89,2 

              

 

Macrofauna associated to the detritus 

In the DE-macrofauna samples, a total of 49951 individuals belonging to 40 families was 

recorded. The assemblage was generally dominated by three families of Amphipoda. 

Specifically, the family Dexaminidae showed on average 1086 individuals per bag while 

the families Gammaridae and Isaeidae showed on average 176 individuals per bag. 

The nMDS ordination (Fig. 4.9.) showed an aggregation of the assemblages associated to 

Mytilus and Ulva at T1 and T2. Whereas at T3 the assemblage structures seemed to be 

more dispersed suggesting a separation between the assemblages associated to Mytilus and 

those associated to Ulva. 

 

Table 4.2. Summary of SIMPER analysis for macrofauna associated to the soft-bottom (SB-
macrofauna) showing the species most contributing (percentage contribution > 5%) to the 
dissimilarities (diss) between treatments at different times. 
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The PERMANOVA test for differences in the macrofauna assemblages associated to Ulva 

versus Mytilus revealed significant differences across the sampling times (time × treatment 

interaction; pseudo-F = 2.4, p = 0.006; Table 4.3.). 

The pair-wise test that revealed significant differences only at T3, confirming the pattern 

visualized by the nMDS plot (Fig. 4.9.) 

The SIMPER (Table 4.4.) revealed that detritus experienced a rapid colonization by the 

macrofauna from the surrounding soft-bottom. Gammaridae, Dexaminidae and Isaeidae 

quickly colonized both Mytilus and Ulva just after 2 days. 

After 7 days Ulva revealed on average higher values of abundances of amphipods 

(Gammaridae, Dexaminidae and Isaeidae). 

After 21 days the amphipods Gammaridae and Isaeidae still showed the highest abundance 

in Ulva. The fossorial amphipods Haustoridae, scarcely found during the two previous 

sampling dates, became important in discriminating among treatments and showed the 

highest abundance in Mytilus treatment. Lentidium showed the highest abundance in 

Mytilus bags, where the polychaete Capitellidae was also abundant. 

 

 

Fig. 4.9. DE-
Macrofauna. Two-
dimensional nMDS 
ordination for for the 
combined factor Time-
Treatment. Green: Ulva, 
Black: Mytilus; 
Triangles: T1; Stars: 
T2; Quadrates: T3. 
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Species Mean Abundance 
% contribution to 

diss 

  Mytilus Ulva 

After 2 days (T1)  Av diss = 53,52 

Dexamidae 230,25 2038,67 68,44 
Isaeidae 265 226,67 20,09 

Gammaridae 

260 358,33 

8,7 

After 7 days (T2) Av diss = 67,99 

Dexamidae 759 4414 76,53 
Isaeidae 204 412 8,11 

Gammaridae 251 454 8,03 

After 21 days (T3) Av diss = 81,24 

Isaeidae 47 280 33,3 
Lentidium 139 0 22,97 
Haustoridae 89 16 11,34 
Gammaridae 20 82,67 11,19 
Capitellidae 48 0 8,4 

df     MS Pseudo-F P(perm)  P(MC)

Time 2 8940 5,789 0,0001

Treatment 1 6236 1,4709 0,285

Time x Treatment 2 4246 2,7496 0,0043

Res 16 1544                

Total 21                      

     t  P(MC)      t  P(MC)       t  P(MC)

Mytilus vs Ulva 1,3645 0,1771 1,6413 0,0814 2,0935 0,0222

Pair-wise tests

Within level T1 Within level T2 Within level T3

PERMANOVA
DE-Macrofauna

Table 4.4. Results of SIMPER analysis for macrofauna colonazing (DE-macrofauna) the detritus 
showing the species most contributing (percentage contribution > 5%) to the dissimilarities (diss) 
between treatments at different times. 

Table 4.3. Results of the PERMANOVA for the structure of the assemblage of macrofauna 
associated to the detritus (DE-Macrofauna). The analysis is based on the Bray-Curtis 
dissimilarity measure for square root transformed abundance data. The test was done using 
9999 permutations of residuals under a reduced model. In the cases of low permutations, P-
values were obtained using the Monte Carlo test. 
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Discussion 
 

The present in situ experiment showed a significant and diverse effect of the addiction of 

different types of detritus on infaunal and epifaunal assemblages. 

The detritus loaded at the soft-bottom surface was rapidly degraded and assimilated into 

the benthic foodweb. This is not surprising, given that in sedimentary systems organic 

matter is rapidly decomposed (Vetter, 1996; Rossi, 2006). 

This study provides evidences on the changes in the macrofauna assemblages associated to 

the deposition and degradation of detritus at small spatio-temporal scale. A recent review 

by Krumhansl & Scheibling (2012) described that the dynamics of detritivoures within 

mats of algae and sediments below it are largely dependent on the size and residence time 

of deposits, which in turn are determined by physical processes and the rate of 

consumption by herbivores. In cases of small-size mats and short residence times, diversity 

and abundance of macrofauna are locally enhanced relative to the surrounding sediments 

(Kelhaer & Levinton, 2003; Krumhansl & Scheibling, 2012 and references therein). 

In fact, the detritus attracted a high number of amphipods in a very short term. However 

such attractive effect was confined to the upper part of the detritus and only few 

amphipods were collected in the sediment samples below each bag. 

Lentdium mediterraneum was the dominant species in the soft-bottom assemblage. The 

abundance of Lentidium mediterraneum increased through times independently to the 

presence or types of detritus enrichment. The extreme abundance of this small bivalve, and 

his large spatial and temporal fluctuations, is typical of the benthic communities along the 

North-Western Adriatic shores (Ambrogi et al., 1995). However, as discussed by Bertasi et 

al. (2007) who worked previously in the same sedimentary environments studied here, the 

abundance of L. mediterraneum could not be consistently related to the direct or indirect 

effects of the defence structures. 

The abundance and distribution of Capitellidae in the soft-bottom assemblage seemed to be 

affected by detritus 21 days after the start of the experimental detritus enrichment. The 

effect was detected only in the Mytilus treatment plots, but not in Ulva plots, possibly 

because of the reduced thickness of the Ulva mat at this sampling time. In fact, this 

opportunistic polychaete tolerates low oxygen and high sulphide conditions that can occur 

in high abundance beneath deposits (Levin & Smith, 1984; Thrush, 1986; Vetter, 1996; 

Okey, 2003; Bernardino et al., 2010). 
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In the detritus associated assemblage I found that, just after few days, Mytilus and Ulva 

attracted a huge quantity of amphipods, as well as their predators (i.e crabs belonging to 

Portunidae). 

The abundance of amphipods attracted by both detritus types doubled at the second 

sampling date. Specifically, some of the major changes were related to few families of 

amphipods that showed the highest abundance in Ulva treatments after 7 days from the 

start of the experiment. This pattern seems reasonably related to habitat heterogeneity and 

food availability provided by detritus that could justify high occurrence of organisms from 

surrounding areas. Algal deposits attract assemblages of herbivores, which in some 

locations consume most of the detritus within days (Wernberg et al., 2006). Previous work 

has demonstrated that macroalgae in soft-sediment communities can serve as a refuge from 

predation for mobile epibenthic species (See Everett, 1994 and references therein). 

Furthermore, amphipods use mussel clumps as crevices, in order to found refuge from 

predators (Conlan, 1994). 

After 21 days from the start of the experiment, the abundance of amphipods showed a 

dramatic decrease compared to the previous sampling date. This reduction was mostly 

related to a decrease in the wet weight of Ulva. However even after 21 days Ulva still 

maintain higher abundance of amphipods than Mytilus with the exception of the family 

Haustoridae that showed the highest abundance in Mytilus. Such family was not found 

during the previous sampling dates. Amphipods represent the diet of fish and crabs 

associated to algae beds (Dubiaski-Silva & Masunari, 2008). In particular few studies 

revealed that Dexaminidae were among the most abundant organisms found in the guts of 

both fish and crabs, which in turn may be attracted by high abundances of amphipods  

(Dubiaski-Silva & Masunari, 2008). 

In summary, detritus originated from Ulva and Mytilus had significant and different effects 

on macrofauna. These effects included both changes in the composition and distribution of 

the macrofauna in the soft-bottom and effects related to the colonization of detritus by 

assemblages (particularly amphipods). These effects, however, were variable across the 

three sampling occasions. In the case of macrofauna associated to the soft-sediment, strong 

effects were evident 2 and 7 days after the beginning of the experiment, but weakened by 

21 days. This suggests very rapid breakdown and assimilation of this material into the 

benthic foodweb. In the macrofauna directly associated to the detritus some of the major 

changes were related to few families of amphipods that showed the highest abundance in 

Ulva treatments after 7 days of the start of the experiment. 
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In conclusion the results of the present study suggests that mounds of detritus produced by 

organisms associated to artificial coastal defences can affect the structure of native soft-

bottom assemblages. This phenomenon is particularly worrying if we consider that in the 

North Adriatic Sea, marked eutrophication processes, frequent storm events and high 

temperature could enhance detritus deposition around more than 190 km of coastline 

protected by artificial structures. This effect could become a serious environmental threat if 

scaled up to hundreds of km of structures as typical of many coastal areas in the world. 
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CHAPTER 5 

Effects of flooding in estuaries: an experimental comparison of 
detritus decomposition at different salinity regimes 

 
Introduction 
 

Coastal ecosystems, including estuaries and salt marshes, face threats from various 

environmental stressors potentially associated with global climate change (Thompson et 

al., 2002; Harley et al., 2006; Airoldi & Beck, 2007; Cardoso et al., 2008). Specifically, 

significant rise in sea level increase the likelihood of flooding events that endanger the 

coastal environments (Nicholls, 2004; Woth et al., 2006; De la Vega-Leinert & Nicholls, 

2008). These impacts are particularly concerning given the predicted increase in the 

frequency and severity of extreme weather events (i.e. floods and storms) (IPCC, 2007). 

Given the growing risk and uncertainty generated by climate change, traditional coastal-

defence structures can offer inadequate protection (Zanuttigh, 2011). 

Over the past decades, European countries have invested a lot on maintaining and 

enhancing coastal-defence structures (Zanuttigh, 2011). Nevertheless, the high cost of 

maintenance, together with an increasingly holistic understanding of coastal processes 

(Nicholls, 2004), has led to the development of more sustainable strategies for coastal 

management (Evans et al., 2004). Integral to these new coastal management strategies is 

the appreciation of natural habitats as a key part of the coastal system (Living Shoreline 

Summit Steering Committee, 2006). Transitional habitats, such as salt marshes, are of 

immense environmental and economic importance, particularly for flood defence since 

their presence reduces the impact of waves at the shore line (Wolters et al., 2005). A salt-

marsh restoration technique, called ‘managed retreat’ (or managed realignment), involves 

the tidal inundation of coastal land in front of re-aligned flood defences (Rupp-Armstrong 

& Nicholls, 2007).  

Therefore, the development of alternative strategies of artificial coastal defences (i.e. no 

defence option) includes the understanding of alterations in ecosystem functioning in a 

flooding scenario. In estuaries, the flooding caused by seawater inundation can differently 

affect habitats along a gradient from marine to freshwater.  

In rivers and estuaries the functioning of aquatic ecosystems is largely dependent leading 

by decomposition of allochthonous organic matter, enabling the recycling of nutrients and 
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chemical elements, sustaining important food chains and primary production (Goñi et al., 

2003). Detritus dynamics in estuaries is likely to be complex, given that these systems 

receive inputs of organic detritus from multiple sources, including allochthonous 

terrigenous materials exported from land by rivers, allochthonous marine materials brought 

via tidal action from the open sea and autochthonous materials produced by estuarine 

macrophytes (Goñi et al., 2003). Breakdown rates on these different materials are also 

likely to vary along the length of the salinity gradient in estuaries (Lopes et al., 2011) and 

are likely to be dependent on the source of origin of the material in question. 

Climate-driven alterations to flow regimes and sea levels are likely to alter the functioning 

of detrital pathways in estuaries. Firstly, the deposition patterns of organic material may 

change. Detritus from marine sources could be moved further inland and upstream through 

catchments, whilst estuarine and marine systems could receive increased quantities of 

terrestrial leaf litter. The consequence of such alterations to detritus distribution could be 

that detritus processing is altered because of a mismatch between the salinity regime and 

the detritus present, leading to direct effects of changes in salinity on breakdown rates, or 

indirect effects of changes in the associated detritivore assemblage or a combination of 

both. 

In the present study I explored the breakdown rates of detritus from different sources 

(terrestrial vegetation, saltmarshes or macroalgae) across the freshwater-marine gradient in 

two estuaries located in South-West England. Specifically, I tested the hypothesis that each 

detritus type would decompose at the highest rate in the conditions of its native habitat, i.e. 

terrestrial detritus would decompose the fastest in freshwater conditions, saltmarsh detritus 

in brackish conditions and macroalgal detritus in seawater conditions. I also tested whether 

the macrofauna associated to each of the three detritus types would be affected by changes 

in habitat condition, from freshwater to brackish or seawater and viceversa. 

 

Materials & Methods 
 

Study sites 

The experiment was carried out across the saline transition zone of the rivers Yealm 

(50°18.6'N, 04°4.2'W) and Erme (50°18.3'N, 03°57.0'W), two geomorphologically similar 

estuaries located in South Devon, UK (Fig. 5.1.). Both rivers rise on Dartmoor flowing for 

16 and 20 km respectively before discharging into Wembury and Bigbury bays. Both 

estuaries are around 6 km long with a full salinity range from marine to freshwater. They 
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Fig. 5.1. Map of the study area, with indication of the three habitats where the experiments 
were carried out in each of the Yealm and Erme estuaries. 

have similar catchment area (Yealm = 55 km2, Erme = 43 km2) and mean river flow 

discharge (Yealm = 1,7 m3/s, Erme = 1,9 m3/s) (Attrill et al., 2009; Sheehan et al., 2010). 

Because of the large tidal range (4,7 m) they can be classified as mesotidal (Davies, 1964). 

In both rivers, saltwater ingression into the freshwater zone is strongly limited by the 

presence of artificial weirs. Accepting that salinity is the main ecological factor defining 

estuarine gradients (Telesh & Khlebovich, 2010), I identified three salinity regimes 

(hereafter for simplicity habitats): freshwater (Fw), brackishwater (Br) and seawater (Sw). 

In both estuaries, the freshwater habitats were selected in the areas with predominant 

stream characteristics, located above the normal tidal limit (NTL) with salinity 

approximately zero throughout the tidal cycle. In the Yealm this habitat had a rocky to 

sandy substratum and a riparian community dominated by woodland (Quercus, Alnus etc.). 

The same habitat on the Erme (Fig. 5.2.) had a muddy-sand substratum, and the riparian 

community was dominated by grass pasture and scattered bankside trees (Quercus, Alnus 

etc.). The brackish habitats were located in areas equidistant between the NTL weirs and 
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the open coast. In each of the two rivers, these areas had substratum characteristic similar 

to those found in the respective freshwater habitats. The vegetation in these habitats was 

characterised by the dominance of saltmarsh vegetation and ephemeral macroalgae (Ulva 

spp.). The seawater habitats were located at the mouth of the estuaries, in areas not 

impacted by boat traffic and breaking waves. In these areas, the dominant vegetation was 

fully marine, with the prevalence of complex macroalgae (e.g. Fucus vesiculosus). In the 

Erme the three habitats were located along 2 km stretch of estuary, whilst in the Yealm the 

passage from freshwater to seawater habitat occurred in less than 800 m (Rundle et al., 

1998). 

 

Experimental procedure 

I studied the decomposition of two plants and one algal species characteristic of the three 

habitats: Quercus robur, Fagaceae leaves, typical of the freshwater habitats; Spartina 

anglica, Poaceae, typical of the brackish habitats, and Fucus vesiculosus, Fucaceae, typical 

of the seawater habitats. Leaf material was collected in May 2010 from adjacent woods 

(Quercus), salt marshes (Spartina), and the inter-tidal (Fucus) within the catchment of both 

rivers and oven-dried to constant weight (60°C for 72 hours).  

Since detritus from the three sources has very different dry densities, I prepared litter bags 

(nylon cloth, 100 x 100 mm, 5 mm mesh size) with different weights but similar volumes 

in order to offer comparable surfaces for detritivore colonization. Air dried Quercus leaves 

were assembled in 5 g packs, Spartina leaves were cut into 8 cm long fragments (excluding 

the basal and apical parts) and assembled as 8 g packs, and  Fucus  detritus was assembled 

as 12 g bags.  

Four replicate bags for each of the three litter species were deployed at each of the thre 

habitats (Fw, Br, Sw) at each of the two estuaries (Yealm, Erme). The bags were attached 

to ropes anchored to the river bed by bags of pebbles and steel pegs hammered into the 

sediment (Fig. 5.3.). The detritus was exposed in the field for 38 days based on degradation 

rates estimated from previous studies (Menéndez et al., 2001; Bärlocher, 2005; Sangiorgio 

et al., 2008; Sousa et al., 2008; Quintino et al., 2009). After this time the litter bags were 

retrieved and preserved in plastic bags containing 70% ethanol for subsequent analyses. 

Once in the laboratory, macro-invertebrates were extracted from the litter bags, identified 

at the lowest possible taxonomic level and counted. The detritus was washed to remove 

sediment, dried in an oven at 60°C for 72 hours and reweighed. 
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Data analyses 

Mass loss for each litter type was calculated as percentage according to the following 

equation: % L = (W0-Wt)/W0×100, where W0 is the original dry weight of the litter and Wt 

was the dry weight remaining after 38 days. Differences in relative weight loss between 

litter species, habitats and estuaries were assessed via a three-way Analysis of Variance 

with four replicates for each factor combination. In the factorial design “Detritus” (De, 

three levels: Quercus, Spartina and Fucus) and “Habitat” (Ha, three levels: Fw - 

Freshwater, Br - Brackish,  Sw - Seawater) were considered fixed factors, while Estuary 

(Es, two levels: Y – Yealm, E - Erme) was trated as random factor. ANOVA was carried 

out using SPSS v.18 package. Prior to ANOVA, the data were examined for normality and 

tested for homogeneity of variance using Levene’s test and Arcsin(%) transformed where 

necessary. Tukey’s HSD test was used to perform pairwise comparison for significant 

differences. 

In order to provide comparable data comparable with other studies, the weight loss data 

were also modelled as decay exponential function k = −(1/t)×ln(Wt/W0), (Olson, 1963). 

However, I did not test “k” by ANOVA as these data did not meet the assumption of 

homogeneity of variance.  

The changes in the structure of macrofaunal, detritivore assemblages as a function of 

different detritus types, salinity and estuaries were assessed via a three-way Permutational 

Multivariate Analysis of Variance (PERMANOVA, Anderson et al., 2008) from the 

software PRIMER v6 (Clarke & Gorley, 2006), using the same logic as described 

previously. 

Abundance data were log transformed to preserve information on relative covers of 

species, while reducing differences in scales among variables (Clarke & Warwick, 2001), 

and used to build a matrix of Bray-Curtis similarity coefficients. For the analysis, 9999 

permutations of residuals under a reduced model were used to generate P-values 

(Anderson, 2001). For some terms in the analysis, there were not enough permutable units 

to get a reliable test by permutation, so a p-value was obtained using a Monte Carlo 

random sample from the asymptotic permutation distribution (Anderson & Robinson, 

2003). 

A non-metric multidimensional scaling (nMDS) ordination, calculated on the same Bray-

Curtis similarity matrix, was used to visualize multivariate patterns of distribution of the 

macrofaunal assemblages in the experimental plots for each combinations of detritus type, 

salinity and estuary (Clarke & Warwick, 2001). 
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The similarity percentage routine (SIMPER) was used to highlight which taxa provided the 

largest contribution to dissimilarities between categories (Clarke & Warwick, 2001). 

 
Results 
 

Litter Breakdown 

All litter bags were successfully recovered. Biomass loss through the 38 days of exposure 

varied considerably according to detritus type and position along the salinity gradient. 

Overall, the breakdown of Quercus litter was slowest, with weight loss never exceeding 

42%, whereas Fucus litter decomposed  fastest, up to 95% weight loss over the 38 days 

exposure (Fig. 5.4.). Each detritus type degraded at greatest rates in the habitat 

corresponding to their natural distribution (Fig. 5.4.). In particular, detritus from terrestrial 

vegetation and marine fucoid macroalgae had an opposite trend in breakdown rate along 

the freshwater-seawater gradient (Fig. 5.4. and Fig. 5.5.). Hence, biomass loss of Quercus 

litter significantly declined from freshwater (41,3 % ± 0,03) to brackish (28,4 % ± 0,04) 

and seawater (19,2 % ± 0,02) habitats (Table 5.1.). In contrast, the biomass loss of Fucus 

litter significantly increased from freshwater (80,5 % ± 0,02) to brackish (95,4 % ± 0,01) 

and seawater (95,2 % ± 0,01) habitats (Table 5.1.). Biomass loss for Spartina litter ranged 

from 61,8 % ± 0,03 in freshwater to 50,2 % ± 0,03 in seawater habitats, without consistent 

significant differences between habitats (Table 5.1.). There was also detected a significant  

Source df MS F   
Pairwise  
comparisons 

Quercus Spartina Fucus 

De 2 4.717 63.721*  Fw vs Br ** ns *** 

Ha 2 0.026 0.164  Fw vs Sw *** ** *** 

Es 1 0.174 0.789  Br vs Sw * ns ns 

De x Es  2 0.074 6.788         

Ha x Es 2 0.157 14.384*   Freshwater Brackish Seawater 

De x Ha 4 0.226 20.738**  Erme vs Yealm ns *** ns 

De x Ha x Es 4 0.011 2.094      

Residuals 54 0.005       

 

Table 5.1. ANOVA showing changes in dry weight loss (%) in relation to Detritus type 
(Quercus, Spartina and Fucus, fixed factor), Habitat (Freshwater = Fr, Brackishwater = Br 
and Seawater = Sw, fixed factor), and Estuary (Yealm vs Erme, random factor). * = P < 0.05; 
** = P < 0.01, ***=P<0.001, ns= not significant. 
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Fig. 5.4. Dry weight 
mass loss (% ± S.E., 
n=12, corresponding 
to 4 replicates for 
each detritus type) of 
overall detritus in the 
Yealm and Erme 
estuaries along the 
freshwater, brackish 
and seawater habitats. 
 

Fig. 5.5. Decay rate (k 
± S.E., n=4 of 
Quercus, Spartina and 
Fucus in each of the 
freshwater, brackish 
and seawater habitats 
in each of the two 
study estuaries. 

Fig. 5.6. Dry weight 
mass loss (% ± S.E., 
n=12, corresponding to 
4 replicates for each 
detritus type) of 
overall detritus in the 
Yealm and Erme 
estuaries along the 
freshwater, brackish 
and seawater habitats. 
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Habitat*Estuary interaction (Table 5.1.), indicating that while patterns of degradation in 

freshwater and seawater habitats were consistent between estuaries, degradation in 

brackish habitats was variable, with significantly greater degradation rates measured in the 

Yealm compared to the Erme (Table 5.2.; Fig. 5.6.). 

 

Macro-faunal distribution 

Thirty five species of macro-invertebrates were recorded. Gammarus zaddachi 

(Amphipoda) was the most abundant species (50,4 % of the total abundance) dominating 

all brackish and estuarine habitats. Chironomidae larvae (Diptera) (28, 6 %) were also 

numerous, particularly in freshwater sites. The third most abundant group were hydrobiid 

gastropods (7,3 %). Other common taxa included the juvenile crustaceans Carcinus 

(Decapoda) and Jaera (Isopoda) and the juvenile insects belonging to the families 

Leuctridae (Plecoptera), Ephemerellidae (Ephemeroptera) and Lepidosomatidae 

(Trichoptera). 

Mean species richness of macrofauna associated to detritus decreased from freshwater 

(11,2 ± 1,4) to brackish (3,9 ± 1,4) and seawater (4,0 ± 0,9) habitats. This pattern was 

largely driven by the diversity of families of insects in the freshwater zone and the 

dominance of Gammarus zaddachi in the brackish and seawater habitats. 

 

   Table 5.2. PERMANOVA (35 variables, log-transformed data) showing changes in 
macrofaunal assemblages in relation to Detritus type (Quercus, Spartina and Fucus, fixed 
factor), Habitat (Freshwater = Fr, Brackish = Br and Seawater = Sw, fixed factor), and 
Estuary (Yealm vs Erme, random factor). * = P < 0.05; ** = P < 0.01, ***=P<0.001, ns= not 
significant. 

Source df MS Pseudo-F 
 

Pairwise  
comparisons

Freshwater Brackish Seawater 

Es 1 17652 37,001*** Quercus vs Spartina ns ns ns 

De 2 3237,9 2,088 Quercus vs Fucus ns ns ns 

Ha 2 40553 3,8265 Spartina vs Fucus ns ns ns 

Es x De 2 1550,7 3,2505*** 

Es x Ha 2 10598 22,215*** Erme Yealm   

De x Ha 4 1573,1 2,8695* Fw vs Sw *** *** 

Es x Ha x De 4 548,2 1,1491 Fw vs Br *** *** 

Resisuals 54 477,07   Br vs Sw *** *** 
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There were also detected differences in numbers of individuals and in dominance patterns 

between the two estuaries. In the Yealm there were recorded 11,791 individuals, most of 

which were Gammarus zaddachi (63,1 %) and Chironomidae (21,2 %), whereas in the 

Erme there were collected only 4,358 individuals but with higher and lower representation 

of Chironomidae (48,8 %) and Gammarus zaddachi (16,1 %) respectively.  

The multivariate analyses showed that the structure of macrofaunal assemblages differed 

both between habitats and estuaries (Fig. 5.7. and Table 5.2.).  

Fig. 5.7. nMDS ordinations for A) the combined factor Habitat-Estuary and B) for the factor 

Detritus. 
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Species Mean abundance Diss/SD 
% contribution  

to diss 

 Erme Yealm   

Average diss = 56,54     

Gammarus zaddachi 1,74 3,22 0,8 17,96 

Hydrobiidae 1,56 1,25 1,25 13,1 

Chironomidae (J) 3,14 2,99 1,1 11,97 

Carcinus  sp. 0,93 0 0,91 8,51 

Jaera sp. 0,99 0,12 0,84 8,15 

Carcinus  sp. (J) 0,86 0 0,84 7,3 

Oligochaeta 0,4 0,09 0,5 3,63 

 Freshwater Brackish   

Average diss = 85,85     

Gammarus zaddachi 0 3,91 2,04 14,2 

Chironomidae (J) 4,9 1,57 1,86 12,57 

Hydrobiidae 2,5 1,31 1,62 9,92 

Leuctridae (J) 2,3 0 1,57 8,18 

Ephemerellidae (J) 1,94 0 2,05 6,84 

Lepidostomatidae (J) 1,96 0,07 2,02 6,84 

Gammarus pulex 1,75 0 1,94 6,12 

Elmidae (larvae) 1,61 0,03 1,84 5,7 

 Freshwater Seawater   

Average diss = 81,34     

Gammarus zaddachi 0 3,52 2,04 13 

Hydrobiidae 2,5 0,4 1,43 8,75 

Chironomidae (J) 4,9 2,74 1,73 8,49 

Leuctridae (J) 2,3 0 1,62 8,31 

Lepidostomatida (J) 1,96 0 2,15 7,34 

Ephemerellidae (J) 1,94 0 2,11 7,05 

Gammarus pulex 1,75 0 1,94 6,34 

Elmidae (J) 1,61 0 1,93 5,91 

Carcinus  sp. 0 1,03 0,8 4,04 

Asellus sp. 1,06 0 0,86 3,91 

 Brackish Seawater   

Average diss = 45,23     

Chironomidae (J) 1,57 2,74 1,22 27,77 

Gammarus zaddachi 3,91 3,52 1,19 23,89 

Hydrobiidae 1,31 0,4 0,81 9,79 

Jaera sp. 1,03 0,63 0,88 8,85 
 

Table 5.3. SIMPER  showing the species most contributing to the Dissimilarities (Diss) 
detected in macrofaunal assemblages between different estuaries and habitats. J = 
Juvenile. 
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The nMDS ordination in fig. 5a evidences how the assemblages are grouped on the base of 

the habitats and the estuaries. Furthermore invertebrate assemblage differed between 

habitats for each detritus type (De x Ha, p = 0,0456). The subsequent pair-wise tests 

revealed that in each habitat assemblages do not differ between detritus type. The very 

strong significant differences of the assemblages between detritus type among estuaries 

(De x Es, p = 0,0002) could be mainly attributable to differences between estuaries. Indeed 

“Detritus” as main factor resulted highly not significant (p(MC) = 0,1191). The nMDS in 

fig. 5.5.b shows that assemblages not clearly grouped on the base of different detritus type. 

The SIMPER analysis (Table 5.3.) showed that the freshwater habitats of the two estuaries 

were characterized by a greater presence of Chironomidae compared to both brackish and 

seawater habitats and by the almost exclusive occurrence of Gammarus pulex and of 

juveniles of taxa such as Leuctridae, Lepidostomatida, Ephemerellidae, Elmidae. 

Conversely, brackish and seawater habitats were dominated by Gammarus zaddachi, that 

was particularly abundant in the Yealm.  

 

Discussion 
 

The results of this study support the hypothesis that changes in detritus distribution and 

salinity regimes following flood events could alter normal processes of detritus 

decomposition in estuaries due to both direct effects of changes in salinity on breakdown 

rates, and indirect effects of changes in the associated detritivore assemblage. Indeed, I 

found that each detritus type decomposed at the highest rate in the conditions of salinity 

that were typical of its native habitat, and that the macrofauna associated to the detritus 

would be affected by changes in salinity, irrespective of the source of detritus. 

Litter breakdown rates along the estuarine gradient varied according to their terrestrial or 

marine origin; oak litter decomposed faster in freshwater than seawater habitats whilst 

Fucus litter followed an opposite trend. Lopes et al. (2011) reported a similar pattern of 

decomposition for F. vesiculosus  and the relatively rapid  breakdown of Fucus litter in all 

environments is unsurprising given its low lignin and cellulose content and relatively high 

N-content compared to vascular plants (Tenore & Hanson, 1980).   

The more fibrous leaves of oak have “slow” decomposition rates (Petersen & Cummins, 

1974) and studies on Quercus litter breakdown in temperate freshwater ecosystems often 

report even slower decomposition rates than found here (Abelho, 2008; Castela et al., 

2008; Lopez et al., 2001; Parkyn & Winterbourn, 1997; Molinero et al., 1996). Although 
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differences may be species-specific and linked to intrinsic factors such as nitrogen and 

polyphenolic content, environmental conditions may also play a part (Canhoto & Graça, 

1996). However, there is a surprising paucity of literature detailing the breakdown of 

terrestrial detritus in brackish waters, although the present study with Quercus indicates 

that decomposition rates in brackish and seawater habitats are within the range of values 

observed in some freshwater studies.  

Spartina litter is largely comprised of recalcitrant lignins (Lyons et al., 2010), but despite 

this Spartina spp. have a broad range of decomposition rates, influenced by  position in the 

marsh and hydrological regime. In the present study the results in the Erme brackish site (k 

= 0,013) are similar to those reported by Sousa et al. (2008) for the Pancras saltmarsh in 

the Tagus estuary (Portugal) over a comparable time interval (k = 0,018; 31 days). Other 

studies have yielded faster decomposition rates for Spartina alterniflora in low marsh 

(Bouchard & Lefuevre, 2000 k = 0,028; Marinucci, 1982 k = 0,038), comparable to my 

results in the Yealm brackish habitat. I detected that differences in breakdown rates 

between brackish in the Erme and in the Yealm affected all three detritus types. However 

those differences are particular evident for Spartina which reached the highest value of 

weight loss in the brackish of the Yealm and lowest in the brackish of the Erme. In fact, 

like the others detritus type, Spartina degradead faster in the habitat of his natural 

distribution (i.e. the brackish-water), but this was true with regards of the Yealm estuary. 

This divergence might be related to different environmental conditions, specifically the 

lower oxygen concentration in the finer sediments of the Erme and the consequent 

limitation of degradation activity. Medeiros et al. (2009) reported in a laboratory study that 

hypoxic conditions slow down decomposition by aquatic hyphomycetes and it is also 

known that the hydrological regime plays a key role in the decomposition of plant detritus. 

In fact, water motion can influence decomposition process by its effects on mechanical 

breakdown, microbial colonization and oxygen concentration (Menéndez et al., 2001). 

Changes in decomposition process linked to shift in environmental conditions are better 

visualized if we include the analysis of the associated detritivore community. Although 

several studies have found that different litter types support different invertebrate 

assemblages (Wallace et al., 1982; Cummins et al., 1989; Graça, 2001; Leroy & Marks, 

2006) I failed to detect any similar pattern here, instead finding strong differences in the 

structure and composition of macroinvertebrates assemblages between the freshwater and 

the brackish and seawater habitats. Nevertheless, the high rates of decomposition reported 

in this study for every detritus type, and the high abundance of certain detritivores, i.e. 
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chironomids in freshwater and gammarids in brackish and seawater regimes, may have 

neutralized major food preferences.  

Community diversity, abundance, and dominance of certain taxa can all influence the 

processing rates of organic matter (Dangles & Malmqvist 2004; Cardinale et al. 2006; 

Abelho, 2008). Differences in macroinvertebrate composition, especially the leaf-

shredding invertebrates, appeared thus to play a major role in breakdown rates among leaf 

species. The amphipod Gammarus is a highly opportunistic feeder (considered a 

facultative shredder by Cummins & Klug, 1979), but given the choice between different 

food items exhibits a certain degree of food selectivity (Friberg & Jacobsen, 1994). In the 

case of the present study, in the brackish and seawater habitats Fucus litter is colonized 

earlier and Gammaruszaddachi shift his colonization towards the harder leaves later on 

time. 

The leathery leaves of Quercus robur were degraded faster in the freshwater because the 

ability of the shredders beloning to the families of Leuctridae, Leptoceridae, Limnephilidae 

and Sericostomatidae to successfully hydrolyzed and assimilate the refractory molecules of 

lignin, cellulose and hemicellulose.  

In freshwater juveniles of Chironomidae often are the first invertebrate colonists on 

experimental leaf bags and reach densities far in excess of other taxa (Tank et al., 2010). 

There is a lack of  knowledge on how non shredding taxa affect processing rates, although 

some evidence indicates that scrapers and gatherers facilitate the breakdown of organic 

matter when they are abundant. Canhoto and Graça (1999) showed that chironomids are 

able to mine the tougher leaves, attacking them from the inside and thus contributing to 

mass loss. 

This study provides evidence that seawater inundations could lead to changes on detrital 

pathways in estuarine ecosystems. Specifically in brackish and marine waters 

decomposition of Quercus could be delayed because these habitats lack of a functionally 

diverse assemblage that includes shredders, scrapers, collectors and herbivores. 

Additionally freshwater habitats could receive an unusually high amount of marine derived 

detritus that will accumulate. Furthermore an increase of seawater intrusions could lead to 

a shift in detritivore community composition across salinity regimes, which may have 

consequences for organic material cycling in estuaries. 

The flow of materials and organisms among habitats is often a key feature of population 

dynamics, energetics, and the structure of food webs and communities (Polis & Hurd, 

1996). The predicted increase of seawater inundation into estuarine environments 
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(Nicholls, 2004) could have profound effects upon the natural distribution patterns of 

organic material along the marine - freshwater transition zone, with likely consequences 

for litter breakdown across environments, and the many decomposers that provide this 

essential ecosystem service (Polis et al., 1997; Costantini et al., 2009). The extent and 

nature of this impact depends both on the amount and origin of allochthonous material 

entering the estuary (Polis & Hurd, 1996) and the feeding activity and preferences of the 

decomposer community (Leroux & Loreau, 2008).  
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CHAPTER 6  

Conclusion 
 

 

Urbanization is one of the major threats to biodiversity, because it is a driver for biotic 

homogenization (McKinney, 2006). In coastal areas urbanization is the result of multiple 

factors such as the pressure of human population, and the use of coastal resource and 

habitats for commercial purpose (Rebele, 1994). Moreover, the necessity to protect the 

land and the commercial activities and properties that insist along the coast increase the 

demand for active protection of the coastline from erosion processes and inundations. For 

this reason, the coastline in many areas of the world are armoured by seawalls and 

breakwaters, adding novel artificial substrata to coastal waters and replacing the natural 

substrates. The predicted increase of frequency and severity of storm surge and flooding 

together with the rise of sea level increases the necessity to protect the coast. However the 

evidence of the negative effects on biological communities and habitats urges for 

ecological-based adaptive strategies. These include the options of restoring the natural 

habitats and remove coastal protections to achieve a longer-term,  more sustainable coastal 

management.  

This thesis has analysed some of the ecological implications for coastal habitat and 

associated biological communities related to the choice of different strategies for coastal 

protection. In order to design effective management options, it is crucial to identify the 

criticism in the ecosystem. This thesis addresses some overlooked indirect ecological 

consequences from the use of artificial structures for coastal protection. It also explored 

some of the potential impact that the inundation could have in an estuarine environment in 

the absence of active defences. 

Despite the threats of urbanization for biodiversity are becoming evident at global scales, 

urban ecology has so far focused mainly on terrestrial ecosystems (Shochat et al., 2006), 

while the consequences of urbanization of marine environment are poorly explored 

(Bulleri, 2006). In this context, it was not surprisingly the lack of any comprehensive 

information of the status of urbanization along the coasts of Sicily. The coastline of this 

region is heavily populated and exploited. Located between the western and the eastern 

basin of the Mediterranean sea, Sicily suffers an increasing proliferation of constructions 
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that border the coast. However no scientific information was available regarding the 

ecological implications of artificial structures, especially those regarding the hard coastal-

defence structures. In the Chapter 2 of this thesis, the urbanization of the Sicilian coastline 

was quantified and characterized. Sicilian coastline resulted heavy urbanized as 

consequence of many structures for coastal protection, including the proliferation of 

industries, commercial activities and residential and tourist infrastructures that cover about 

30 % of the overall coastline. In a management perspective, mapping and characterizing 

the state of urbanization of a specific stretch of coast is essential to address future options 

to mitigate the ecological impacts in a context of marine spatial planning. Focusing on the 

hard coastal-defence structures, an effective design and management plan should include 

the knowledge of the environmental and social context in which they are built (Zanuttigh, 

2011). A future evolution of this work should focus on the elaboration of a GIS tool for a 

decision support system in coastal management that integrate information on the 

environmental, social and economic conditions. More effort is also needed to identify and 

quantify the site-specific impacts of coastal defence structures (Airoldi et al., 2005). In the 

Chapter 3 of this thesis I showed how the effects of artificial structures on the distribution 

and composition of biological communities can be related to the environmental context, 

specifically to the prevalent substrata surrounding the structure. In Sicily, fish assemblages 

use artificial structures differently, depending if the structure is located in a prevalent 

sandy area or in front of a rocky coast. Indeed, assemblages that populate natural rock reef 

were similar to those inhabiting artificial structures located in rocky areas, whereas they 

differed from those associated to artificial structure in sandy areas. Those differences were 

mainly driven by species with a benthic habit, probably because they are characterized by 

lower mobility and are likely to be more isolated from the nearby natural reefs. 

This would allow monitoring the changes in the structure and composition of fish 

assemblages associated with artificial defence structures over time. Also expanding the 

work at different latitudes in the Mediterranean, would allow to explore possible 

relationship between the proliferation of coastal defences and the ongoing diffusion of 

thermophile species, including both native species (“meridionalization”) and non-

indigenous species (“tropicalization”) (see Andaloro & Rinaldi, 1998; Azzurro, 2008). 

Another heavy urbanized region along the Mediterranean sea is the North Adriatic 

coastline. In particular the west side of the north Adriatic is one of the most impacted 

coastline all over Europe (Airoldi et al., 2005). In fact the high concentration of human 

activities and proliferation of hard defence and other artificial structures in the sensitive 
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region of the North Adriatic led to interactive effects of coastal defence structures with 

other local impacts, such as regional eutrophication, recreational harvesting, local 

depletion of living resources, high rates of introduction of exotic species (Cencini, 1998; 

Correggiari et al., 1992; Airoldi et al., 2005; Bulleri et al., 2006).  

Coastal defence structures built along prevailingly sedimentary coastlines such as those of 

the North Adriatic sea can affect surrounding soft-bottom environments and associated 

biota in several ways; for example, by habitat disruption, modification of water flow, 

sediment characteristics and detritus pathways, and predation by fish or other mobile 

predators (Airoldi et al., 2005). In the Chapter 4 of this thesis I experimentally manipulated 

the deposition of detritus detaching from breakwaters on the surrounding soft-bottom, and 

described the potential consequent changes in the native sedimentary fauna. Such effects of 

the organic enrichment on the infauna and epifauna occurred in a short time interval and 

could be site specific. More studies carried out in different defence systems are needed to 

generalize the results of the specific case of Lido di Dante presented in this thesis. In fact 

the extent of the modifications to surrounding habitat and biological communities is greatly 

influenced by the design of the structure. Structures allowing greater water flow from the 

seaward to the landward side could mitigate deposition of finer and organically enriched 

sediments, and help maintain similar habitat conditions and sediment characteristics at both 

sides of the structure (Martin et al., 2005). Confinement produced by the use of lateral 

groynes should be avoided to mitigate persistent accumulations of organic materials 

especially in the sheltered side of the structure, which could lead to stagnant water and 

greater biological oxygen demand (Airoldi et al., 2005). 

In addition, could be interesting to explore the role of the organic detritus that accumulate 

around the defence structures in providing nursery area for juvenile fishes. In fact, fish 

abundance has been positively correlated with the presence and volume of detached 

macrophytes (Lenanton et al., 1982; Robertson & Lenanton, 1984; Lenanton & Caputi, 

1989). Wrack accumulation provides food source and protection also for fish fauna 

(Robertson & Lenanton, 1984). In particular studies conducted by Martin et al. (2009) 

found that hard coastal-defence structures seem to provide habitats that appear to be 

suitable for new settlers, juvenile fish and other mobile fauna especially in the presence of 

accumulations of drifting algae. Furthermore since wrack can consist of different types of 

macrophytes (e.g. seagrass and brown algae), which exhibit different plant structure, fish 

may show a preference for wrack with different habitat structure (Crawley et al., 2006). 

Hence a future direction for experimental ecology could include the effect of different type 
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of detritus accumulated around the defence structures on the composition of fish 

assemblages, particularly juveniles. 

Although in the Mediterranean artificial structures are the dominant measure adopted for 

coastal protection, in other parts of Europe alternative options are increasingly taken in 

consideration. In particular, the United Kingdom is at the fore-front in advancing 

knowledge for mitigation approaches and a more sustainable use of the coastal resources 

(Airoldi & Beck, 2007). In this context, coastal floods and erosion are seen as natural 

events, and an acceptable level of risk has to be taken in account (Zanuttigh, 2011). It is, 

therefore, essential to advance the knowledge of the environment vulnerability of those 

habitats at risk for seawater inundation, in order to proceed with no-defend options. The 

Chapter 5 of this thesis explored some potential ecological consequences of flooding in an 

estuarine environment. In the experiment carried out in southwest England, I found that 

estuarine ecosystems could be affected by the changes in the decomposition processes of 

organic material. In fact, if flooding alter the distribution of leaf-litter along an estuarine 

gradient, from near-shore to freshwater habitat, it would lead to a greater amount of algal 

material in the up river system that will accumulate, and an accumulation of terrestrial 

detritus in the estuarine-seawater habitat. Hence, the choice of “no defence” options must 

consider that the massive intrusion of seawater will affect the detrital pathways and cause 

shifts in detritivore assemblages. This study offer information on changes in decomposition 

rate and associated macrofauna in a mid-term time interval, such as that occurring during 

an extensive flooding. However, I suggest developing further research, by using 

manipulative field experiment to simulate short-term salinity shock such as occurring in 

storm surge events.  



92 
 

References 
 

Airoldi, L., Abbiati, M., Beck, M., Hawkins, S., Jonsson, P., Martin, D., Moschella, P., Sundelöf, 

A., Thompson, R., Åberg, P., 2005. An ecological perspective on the deployment and design of 

low-crested and other hard coastal defence structures. Coastal Engineering 52, 1073–1087. 

Airoldi, L., Beck, M.W., 2007. Loss, status and trends for coastal habitats of Europe. 

Oceanography and Marine Biology: An Annual Review 45, 345–405. 

Andaloro, F.,  Rinaldi, A., 1998. Fish biodiversity change in Mediterranean Sea as tropicalisation 

phenomenon indicator. In: Indicators for Assessing Desertification in the Mediterranean (Enne 

G., D’Angelo M. & C. Zanolla, eds), pp. 201-206. ANPA & Osservatorio Nazionale sulla 

Desertificazione. 

Azzurro, E., 2008. The advance of thermophilic fishes in the Mediterranean sea: overview and 

methodological questions. In: Briand F, editor. Climate warming and related changes in 

Mediterranean marine biota. Monaco: CIESM Workshop Monographs 35. pp. 39–46. 

Bulleri, F., 2006. Is it time for urban ecology to include the marine realm? Trends in Ecology & 

Evolution 21, 658-9. 

Bulleri F., Abbiati, M., Airoldi, A., 2006. The colonisation of human-made structures by the 

invasive alga Codium fragile ssp. tomentosoides in the North Adriatic Sea (NE Mediterranean). 

Hydrobiologia 555, 263-269. 

Cencini, C., 1998. Physical processes and human activities in the evolution of the Po delta, Italy. 

Journal of Coastal Research 14, 774–793. 

Correggiari, A., Frascari, F., Miserocchi, S., Fontana, D., 1992. Breakwaters and eutrophication 

along the Emilia–Romagna coast. In: Vollenweider, R.A., Marchetti, R., Viviani, R. (Eds.), 

Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human 

Impact:  Problems and Perspectives for Restoration. Elsevier, Amsterdam, pp. 277– 290. 

Crawley, K.R., Hyndes, G.A., Ayvazian, S.G., 2006. Influence of different volumes and types of 

detached macrophytes on fish community structure in surf zones of sandy beaches. Marine 

Ecology Progress Series 307, 233–246. 

Lenanton, R.C.J., Caputi, N., 1989. The roles of food supply and shelter in the relationship between 

fishes, in particular Cnidoglanis macrocephalus (Valenciennes), and detached macrophytes in 

the surf zone of sandy beaches. Journal of Experimental Marine Biology and Ecology 128, 165–

176. 

Lenanton, R.C.J., Robertson A.I., Hansen J.A., 1982. Nearshore accumulations of detached 

macrophytes as nursery areas for fish. Marine Ecology Progress Series 9, 51–57. 



93 
 

Martin, D., Bertasi, F., Colangelo, M.A., de Vries, M., Frost, M., Hawkins, S.J., Macpherson, E., 

Moschella, P.S., Satta, M.P., Thompson, R.C., Ceccherelli, V.U., 2005. Ecological impact of 

coastal defence structures on sediments and mobile infauna: evaluating and forecasting 

consequences of unavoidable modifications of native habitats. Coastal Engineering 52, 1027–

1051. 

McKinney, M.L., 2006. Urbanization as a major cause of biotic homogenization. Biological 

Conservation 127, 247-260. 

Rebele, F., 1994. Urban ecology and special features of urban ecosystems. Global Ecology and 

Biogeography Letters 4, 173-187. 

Robertson, A.I., Lenanton, R.C.J., 1984. Fish community structure and food chain dynamics in the 

surf-zone of sandy beaches: the role of detached macrophyte detritus. Journal of Experimental 

Marine Biology and Ecology 84, 265–283. 

Shochat, E., Warren, P.S., Faeth , S.H., McIntyre, N.E., Hope, D., 2006. From patterns to emerging 

processes in mechanistic urban ecology. Trends in Ecology & Evolution 21, 186–191. 

Zanuttigh, B., 2011. Coastal flood protection: What perspective in a changing climate? The 

THESEUS approach. Environmental Science & Policy 14 845 – 863. 

  



94 
 

Ringraziamenti 
 

 

La realizzazione di questo lavoro è stata possibile grazie alla collaborazione di molte 

persone. 

Il lavoro di cui ai capitoli 2 e 3 è stato realizzato grazie ad un finanziamento della Regione 

Siciliana (APQ Giovani – Azione 7) ed al supporto dell’ISPRA di Palermo. In particolare 

desidero ringraziare il caro amico Francesco Lillo per il prezioso supporto tecnico nella 

realizzazione delle carte GIS al capitolo 2; Giorgio Lupo e Claudio Zarzana per la 

instancabile partecipazione nei censimenti visivi della fauna ittica di cui al capitolo 3; il 

Prof. Renato Chemello dell’Università di Palermo per il supporto logistico. Un abbraccio 

al mio amico Antonio Di Franco, per gli utilissimi consigli nell’analisi dei dati, e per tanto 

altro. 

Il lavoro di cui al capitolo 4 è stato realizzato grazie alla attiva partecipazione in tutte le 

fasi della ricerca dei dott.ri Filippo Ferrario e Giovanni Fontana, della dott.ssa Shimrit 

Perkol-Finkel, e della Prof.ssa Laura Airoldi del gruppo di ecologia sperimentale 

dell’Università di Bologna.  

Il lavoro di cui al capitolo 5 è stato realizzato nell’ambito del progetto europeo THESEUS 

ed ha visto la partecipazione di ricercatori e tecnici dell’Università di Plymouth, in 

particolare: Prof. Richard Thompson, dott. Dave Bilton, dott. Simon Rundle, dott. Mick 

Hanley nella fase di progettazione e lavoro in campo; Elena Righetti, Chris McCullogh, 

nella fase di lavoro in campo; Cecilia Baggini nel lavoro di laboratorio e nell’analisi dei 

dati. Ringrazio anche tutti gli studenti, professori, ricercatori e personale tecnico del 

Marine Biology and Ecology Research Center dell’Università di Plymouth per il bellissimo 

periodo trascorso con loro. Tra questi, in particolare, Valentina Lauria, compagna di 

avventure, e Mariagrazia Graziano mia carissima amica. 

Ringrazio sentitamente il Prof. Marco Abbiati per la stima che mi ha sempre dimostrato; la 

Prof.ssa Laura Airoldi per avere reso possibile lo svolgimento dello studio e per la sua 

instancabile partecipazione in tutte le fasi del lavoro; il Prof. Richard Thompson che mi ha 

accolto per lunghi mesi nei laboratori dell’Università di Plymouth; la dott.ssa Elizabeth 

Strain per i suoi preziosissimi consigli e per la revisione di parte del lavoro di questa tesi. 

Infine desidero ringraziare la mia meravigliosa famiglia: papà che mi ha trasmesso l’amore 

per il mare e la testardaggine; mamma, l’unica della famiglia che finora è venuta a farmi 

visita a Ravenna; Eva, per la festa che organizzeremo presto. 

Grazie soprattutto ad Alessandra, mia compagna e mia grande forza. 


