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Introduction

In the last decades multilevel modeling became a very popular method for model
estimate where units are nested within groups. Hierarchical structure involves de-
pendence between observations collected within the same group, nevertheless most
statistical methods traditionally assume independence among observations.
Multilevel Models, also called Hierarchical Models, handle these hierarchical data
structures which are frequently encountered in many research areas.
These models (introduced by H. Goldstain in 1987) have historically been used
in educational research where hierarchies occur naturally: students nested within
classrooms, classrooms nested within schools and schools nested within districts.
Recent advances in statistical computing capabilities have made these models eas-
ily available to researchers in several disciplines and application areas: social sci-
ence, epidemiology, longitudinal and survival analysis, educational achievement,
psychometric, biostatistics and econometrics.
The aim of this study is to apply multilevel regression model in context of house-
hold surveys. Hierarchical structure in this type of data is characterized by many
small groups (considering individuals at level 1 and households at level 2) which
leads to some restrictions on type of multilevel models applicable. Istat survey on
”Health Condition and Use of Health Services” is a good candidate for this task,
given a very large sample size and the available territorial levels (geographic hier-
archy levels). This survey has the objective to analyze the health behaviors and
use of health services and place them in relation to the demographic and socio-
economic citizens. Through this information, collected directly from households,
it is possible to construct indicators of health status and quality of life, presence
of disability, risk factors, diseases and prevention. In last years comparative and
multilevel analysis in the field of perceived health have grown in size. In particular
these studies are focalized on the health condition of the elderly, health territorial
differences and the effect of deprived socio-economic context on health (Pirani and
Salvini 2012, Olsen and Dahl 2007; Mackenbach et al. 2008).
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The purpose of this thesis is to develop a multilevel analysis with tree level of
hierarchy for Physical Component Summary outcome to:

- evaluate magnitude of within and between variance at each level (individual,
household and municipality);

- explore which covariates affect on perceived physical health at each level;

- compare model-based and design-based approach in order to establish infor-
mativeness of sampling design;

- estimate a quantile regression for hierarchical data.

The target population are the Italian residents aged 18 years and older.
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Chapter 1

The Istat Survey on Health
Conditions

1.1 Survey description

The Italian survey on population health condition conducted by the Italian Na-
tional Institute of Statistics (Istat) is a part of the ensemble of multi-purpose
household surveys, including several thematic surveys repeated every five years.
The first survey on health conditions was carried out in 1980, while the two most
recent were made in 1999-2000 and in 2004-2005 respectively; the next one is still
in progress. This work will examine latest survey available, the 2004-2005 edition.
The topics involved in this survey are: perception of individual health status,
presence of chronic diseases, disability and invalidity, lifestyle, risk factors such as
smoking, body weight and physical activity, prevention, recourse of health services,
consumption of drugs, and for women questions about pregnancy and lactation.
To avoid seasonal effect, the survey was carried out during a whole year. Four-
monthly interviews were made in December 2004, March 2005, June 2005 and
September 2005. Subjects included in the survey are Italian population resident in
households, excluding residents who live in convents, communities, nursing homes,
prisons and barracks.
Sample was formed by 60,730 households distributed in 1,474 Italian municipalities
with different population size. In this survey sample size was increased significantly
compared to other household surveys (usually of 24,000 households) to allow es-
timates for small territorial areas: sub-regional areas. A particular sub-regional
areas are the so-called “large areas” (AV) formed by aggregation of local health
units.
The sampling design is two-stage (municipalities and households) with stratifica-
tion of the first stage units (municipalities) by size.
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Within each of the 68 Large Area, the municipalities were classified according to
their population size and divided into two subsets: the municipalities with large
population size constitutes a separate stratum and are defined self-representative
(AR), remaining areas are defined not-self-representative (NAR) and are divided,
by dimension, in stratum of equal size; within each NAR stratum a municipality
sample (four within each stratum) is selected with proportional probability to size.
Within each municipality (AR and NAR), households are selected systematically
from the Registry offices.

Survey unit is the ”de facto household” relating to households drawn from
municipality population registers. ”De facto household” is defined as a group of
persons normally resident in the same house who are joined by kinship, affinity,
affective or friendship relationships. For every ”de facto household” all members
were interviewed using two paper questionnaires: one filled in by the interviewer
through a direct interview, one completed by respondents and containing sensitive
questions.

1.2 The micro-data files

Istat provides to users and researchers a micro-data file containing the individual
information collected (128,040 records) and makes it anonymous on about 650
variables. A second micro-data is available, the so called ”simplified” file. This
file contain a restricted number of variable but more territorial detail, therefore it
is chosen as work-file. In order to facilitate analysis, synthetic indexes were con-
structed and inserted in this second file; description will be reported in following.

Main variables and indicators in ”simplified” data-set .

Structural variables and local context

- Demographic variables: five and ten year age groups and some specific age,
gender.

- Geographic variables: geographical area, region, Large area and municipality
of residence respondent.

- Status variables: qualifications, years of study, socio-economic household
condition, housing condition.
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Health status indicators

- On perceived health status: Physical Component Summary, Mental Compo-
nent Summary, Mental Health and Vitality (Well-being) indices.

- Chronic diseases diagnosed: Infarct, Heart disease, Stroke, Arthrosis and
Arthrtis, Osteoporosis, Hepatic cirrhosis, Tumor, Ulcer, Tumor in the past,
Anxiety and Depression, Alzheimer and senile dementia, kidney or liver
or other type of Stones, Thyroid disease, Asthma, Diabetes, Hypertension,
Bronchitis or Emphysema, Chronicity index.

Risk factors

- Smoke: smoker, former smoker, number of smoking years.

- Body-mass index, diets, physical activity, sport.

Prevention control and prophylaxis

- vaccinations, blood tests, blood pressure control, osteoporosis test, controls
for the prevention of female cancers.

Indicators on health services use

- Medications intake, doctor examinations, diagnostic tests, hospitalization,
day hospital, rehabilitation therapies, first aid, consumption of health ser-
vices index, opinions on health services.

Variables on maternity

- Pregnancy, check-up during pregnancy, risk factors and illnesses during preg-
nancy, type of birth, breastfeeding.

Indexes description:

- Housing condition index: calculated on the basis of 6 items of inadequate
housing conditions: 1) no bathroom, 2) absence of heating, 3) a too small
house, 4) presence of humidity stains, 5) bad housing conditions, 6) less than
a room for each household member.
This index takes values from 1 to 7: 1=very bad condition, that is presence
of all six negative situations; 2= presence of 5 out of 6 negative situations,
and so on until to 7= none of the negative situation occurs.
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- Physical Component Summary (PCS) and Mental Component Summary (MCS).
To detect health status perception, this survey includes the SF-12 question-
naire (Short Form Health Survey) already used in many European empirical
studies. Through twelve questions studying eight different aspects of health:
physical activity, limitations due to physical health, emotional state, physical
pain, perception of general health, vitality, social and work activity, mental
health. The summary of the response scores on each question leads to two
indices: one referring to the physical state (PCS) and the other on the psy-
chological state (MCS). Low score indicates the poor health and high score
indicates excellent health status. In this survey PCS range from 11,1 to 68,9
and MCS range from 7.5 to 72.3.

- Vitality (VT) and Mental Health (MH). To construct these indices the ques-
tionnaire SF-36 is used1. The VT index investigates the level of energy and
tiredness through four questions, while for MH index five questions are used
to study four main dimensions of mental health: anxiety, depression, loss of
behavior or emotional control, and psychological well-being.

- Chronicity index. Made on the basis of self-perceived health status reported
by each individual and the presence of various chronic diseases or invalidity.
This index incorporates diseases weight on health of each individual by using
odds ratios of feeling badly or very badly depending on the presence of each
specific chronic disease. This index can take value from 0 to 100. Zero score
indicates the lowest level of health, 100 indicates the highest level of health.

- Disability and Invalidity. A person is defined “disabled” if in presence of
serious difficulty in at least one of these dimensions: confined to bed, a chair
or at home; some difficulty moving or in daily functions, communicating
(sight, hearing, speech). In detecting disability phenomenon, Istat always
referred to questionnaire drawn up in the 80s by a work group from OCSE
on the basis of the OMS classification (ICIDH- International Classification
of Impairment, Disease, Disability and handicap-1980).
Although limits of this instrument are known, up to now no ICF operational-
ization (International Classification of Functioning, Disability and Health),
approved by OMS and shared internationally, is available yet. The two sec-
tions of population (disabled and invalid) are only partially overlapping, as
population showing invalidity can be struck down even partially with corre-
spondent disabilities and vice versa, but not all disabled people have got a
disability recognition. Next to disability phenomenon, the survey points out
some specific types of “invalidity” as well: mobility handicaps; mental insuffi-

1The methodology is reported in http://www.sf-36.org and http://crc.marionegri.it/qdv/
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ciency; blindness; deaf-mutism and deafness, invalidity for mental disease. It
concerns dimensions that are no perfectly overlapping to the correspondent
types of disabilities, and that is for both the different conceptual approach
underlying two phenomena and for the differences in adopted instruments.
Detecting disability means to assess the level of autonomy reduction in car-
rying out the main functions, as a consequence of deficit or disablement due
to the disease; taking into consideration a possible use of aids. “Invalidity”,
instead, is referred to disablement that affects an organ and therefore it is
independent of the overall assessment of self-sufficiency.
The phenomenon is then detected, in contrast to what happens for disabil-
ity, for children up to six years as well. Moreover, instruments adopted for
the survey are not comparable; in fact disability derives from a synthesis of
questions, invalidity is instead measured in terms of presence or absence of
the specific disablement declared by respondents.

Because some variables has been detected only for 14 or 18 years old and over,
the data-set under analysis will be restricted to sub-sample of individuals being 18
or more years old. This choice leads to a loss of about 22,000 individual records
(from 128,040 to 105,844), the number of households remains unchanged, while
the number of member per household will be reduced. The following table shows
the sample size and the average size of the groups at different hierarchical levels.
We note that household average size is small (2.1 members), but average size of
the group at higher levels is satisfactory for the purposes of a multilevel analysis
(e.g. about 34 households by municipality) and especially number of groups at
each level is consistent (except for regional level).

Table 1.1: Number of units and average for each hierarchical level in the sub-sample
of subjects being 18 years or over.

N average size by group
Regions 20 3.40
Large Areas 68 21.54
Municipalities 1465 34.45
households 50474 2.10
Individuals 105844 -
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1.3 Outcome variable

In this survey, large sample size allow analyses on health characteristics at several
sub-national levels, but given small level-2 size (household), is advisable to anal-
yse continuous response variable. Continuous variables available in the data-set
concern perceived health indices.
Over the past years, many studies have been conducted to describe and compare
perceived health status mainly in elderly population (König et al, 2010) different
geographical areas (K. Olsen, 2007) and for health inequality (K. Humphries and
E. van Doorslaer,2000).
Our purpose is to explore perceived health status in overall Italian population,
evaluate homogeneity magnitude of units belonging from the same cluster and
select covariates having greatest impact on self-reported health. Differently from
more common studies we perform a 3 level model, furthermore 2-nd level of anal-
ysis was household rather than a commonly used geographical area (E. Pirani e S.
Salvini 2012, G. Costa at al. 2003).
Initially our interest focused on SF-12 questionnaire indexes: Physical Compo-
nent Summary (PCS) and Mental Component Summary (MCS). Later due the
intention to perform a particular multilevel model including quantile regression,
we restrict analysis to PCS index only.
In this survey PCS range is from 11.12 to 68.70: width interval 57.58. It is char-
acterized by a strong skewness as shown in table 1.2 and in figure 1.1.

Table 1.2: Physical Component Summary (PCS): several descriptive statistics in
sub-sample of 18 aged and over.

Range: 11.12 - 68.70

Mean 49.89 Median 54.32

Std. Dev. 9.67 Interq. Range 10.12

Variance 93.48 Skewness -1.40

Mode ≈ 56.00 Kurtosis 4.12
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Figure 1.1: Physical Component Summary (PCS) histogram.

The six questions involved in determination of this index are:

- How is your general health?

- Are you currently limited because of health status in performing activities
of moderate physical effort (such as moving a table, use a vacuum cleaner,
bowling or take a bike ride, etc.)?

- Are you currently limited in going up several flights of stairs?

- During the last 4 weeks, have you been less efficient than you would like in
working or other regular daily activities as a consequence of your physical
health?

- During the last 4 weeks, have you had to limit some types of work or other
activities as a consequence of your physical health?

- During the last 4 weeks, how much has physical pain hampered your normal
work (both at home and outside)?

9
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Chapter 2

Multilevel models

2.1 Introduction

In classical linear regression analysis, observations are independently and iden-
tically distributed (i.i.d.). This assumption is not realistic in many situations,
such as hierarchical data. We have hierarchical data when observations (level 1 of
hierarchy) are nested in groups (level 2 of hierarchy).
A classic example are pupils (level 1) nested in classes (level 2) and classes nested
in schools (level 3) or, in the case of longitudinal data, units (level 2) observed at
several occasions over time (level 1).
Dependencies between individual observations also occurs in survey researches,
when the sample is not taken at random, but clustered sampling from geographi-
cal areas. In general, respondents from the same group will be more similar to each
other (positively correlated), than respondents from different groups and therefore
assumption of independent observations is violated.
If this assumption does not hold, the estimates of the standard errors are, in gen-
eral, too small and lead to an error rate of the first type higher than the nominal
level α.
For instance, if we consider achievements of pupils in mathematics as a response
variable, dependency of the observations in the same class or school may stem from:
sharing the same environment, if in the same class, sharing the same teachers or
coming from the same neighborhood. In this study individuals belonging to the
same household, the source of similarity on health characteristics may arise from
hereditary factors, living in the same environment, having same habits and diet,
as well similar social background and culture. In epidemiology we would expect
to find more similar disease rates within the same geographical and administrative
areas than across geographical and administrative not bordering areas.
The multilevel models are appropriate to address the dependence issue, but also
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allow us to understand the relationships within and between clusters and to an-
alyze and explain the variability at each level of hierarchy. In fact, we can view
multilevel models as a regression with coefficients (intercept and slopes) that can
vary by group. The terms ”multilevel models” and ”multilevel analysis” are used
mainly in the social science (sociology, education, psychometric, etc.), while in
other research areas are used terms as: hierarchical linear models, mixed models
or random coefficient models.

2.2 Multilevel linear model

Before formalizing multilevel linear models, we consider the classic linear re-
gression model. For example in the simplest case of one response variable and one
explanatory (covariate) variable, model equation is

yi = β0 + β1xi + ei (2.1)

with following assumptions:

a) yi | xi ∼ N(µxi , σ
2), µxi ≡ E(yi | xi) = β0 + β1xi

b) V ar(yi | xi) = V ar(ei | xi) = σ2 , homoskedasticity

c) ei ∼ N(0, σ2) i.i.d.

Proceeding with the above example, this could be a linear regression applied
to a sample of school students where i indexes students, the response y is an
attainment measure and x is a predictor, such as a prior test score. The residuals
ei are assumed to have a normal distribution with variance σ2, and independently
distributed. As pointed out above, this will not be generally true. Two randomly
chosen students in the same school will tend to be more alike in their attainments,
in this case adjusted for the predictor x, than two students chosen at random from
different schools. As a result of the factors mentioned above.
One way accounting dependence between units is to extend model (2.1) as follows

yij = β0 + β1xij + uj + eij (2.2)

with following assumptions:

a) uj ∼ N(0, σ2
u) i.i.d.

b) ei ∼ N(0, σ2
e) i.i.d.

c) eij⊥uj ∀i, j

12



where i indexes students as before and the additional subscript, j, indexes schools
(or classes). We now have an explicit term, the school residual, uj, which allows
each school to contribute an “effect” to the response, i.e. to have a different
intercept for each school crossing the y axis at a different point. The lines are
parallel to each other and allow us to order the groups according to their average
intercept (or random effect); for example we can order the schools according to
average score of their students in mathematical tests (conditioning to x).

The model (2.2) is known as a “random intercept” or “variance components”
model where σ2

u is the “between-school” variance and σ2
e is the “between-student”

variance. In general, we can also assume that the school and student residuals are
independent so that the total variance is given by: σ2

u + σ2
e .

Whereas in equation (2.2) we have chosen to model the school effect as a random
variable depending on a single parameter, the variance σ2

u, an alternative to such
a “random effects” model would be to fit school as a “fixed effect”, using, for ex-
ample, a set of m–1 dummy variables where m is the number of schools. In some
special circumstances this may be preferred, but more usually we would wish to
consider the set of schools (or geographical areas or households) as a randomly
chosen sample from a population of schools (or areas or households) about which
we wish to make inferences.

It is possible to introduce at school level (level 2) predictors into the model,
such as the resources available to the school or the average prior attainment of all
the pupils in the school, to ascertain their effects on the response variable. An
important advantage of the random effects approach is that it allows us to do this
straightforwardly, and also to examine the effects on the between-school variance.
With the fixed effects model we cannot introduce further school level effects at
all, since the available degrees of freedom have been taken up completely by the
dummy variables. In a fixed effects model the coefficients of the dummy variables
will provide direct estimates for the school effects.
From model (2.2) we can show that correlation between two students in the same
school is

ρ =
σ2
u

σ2
u + σ2

e

, (2.3)

which is known as the intraclass correlation coefficient (ICC), and for this particu-
lar model (2-level random intercept), but not more generally, is also the proportion
of the total variance due to schools, and called the variance partition coefficient
(VPC). If we suppose that model (2.2) represents the “true” structure for the data
but instead we fit model (1.2), as already noted, we shall obtain biased inferences.
However, the estimates of the regression coefficients are generally consistent, but
the standard errors are too small so that confidence intervals will be too small
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and significance tests too optimistic, especially for level 2 predictors. Confidence
intervals based on the simple regression estimate will be too short and significance
test will reject the null hypothesis too often.

For many data structures, a single random effect for a higher level unit will
not be adequate. Thus, in the schools example it is commonly found that the
relationship with x will vary from school to school: the lines for each school are no
longer parallel. This gives us a “random coefficient” model that can be written as

yij = β0j + β1jxij + eij ;

β0j = γ00 + u0j

β1j = γ10 + u1j

(2.4)

and the “combined model” becomes

yij = γ00 + γ10xij + u1jxij + u0j + eij ; (2.5)

in which the first 2 addends are called ”fixed effects” or ”fixed part” of the model
and the last three terms are called the ”random efects” or ”random part” of the
model because it contains the random variables. We assume that u is bivariate
normal with variance-covariance matrix(

u0j
u1j

)
∼ N

(
σ2
u0 σu01

σu01 σ2
u1

)
, e⊥u

The only difference from the model (2.2) is that the coefficient of x is assumed
to be random across schools, with mean γ10, variance σ2

u1 and a covariance σu01
with the random intercept term. Having a random coefficient also implies that the
between-school variance, and hence the VPC, are (quadratic) functions of x (not
unique ICC). In fact the variance of y given x is

V ar(yij | xij) = σ2
u0 + 2σu01 + σ2

u1x
2
ij + σ2

e ,

namely we have heteroskedasticity in the conditional distributions.

We can also insert a level 2 covariate, for example years of teacher experience
w, in this way

yij = β0j + β1jxij + eij ;

β0j = γ00 + γ01wj + u0j

β1j = γ10 + γ11wj + u1j

(2.6)

Substantially at level 2, the level 1 coefficients become outcomes. The “combined
model” becomes

yij = γ00 + γ01wj + γ10xij + γ11wjxij + u1jxij + u0j + eij ; (2.7)
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in which the term γ11wjxij in the fixed part is a ”cross-level interaction”.

We can insert several others covariates at level 1 (e.g. gender, age, ethnicity) and
at level 2 (e.g. students per class) and expressing the model in matrix notation it
becomes

Yj = XjΓ + ZjUj + Ej (2.8)

where Yj is a nj × 1 response vector for cluster j, Xj in a nj × p design matrix for
the fixed effects, Γ is a p× 1 vector of unknown fixed parameters, Zj is an nj × r
design matrix for the random effects, Uj is the r × 1 vector of unknown normal
random effects and Ej is the nj × 1 normal residual vector.
Clearly the number of parameters in a multilevel regression can easily become
very large as we can inferred from (2.7 and 2.8). Even with a modest number of
explanatory variables, multilevel regression analysis implies a complicated model.
Generally, we do not estimate the complete model with all cross-level iterations,
first because this is likely to get us into computational problems, but also because
it is very difficult to interpret such a complex model. In general it is preferable to
estimate more limited models that include only those parameters that have proven
their worth in previous research, or are of special interest for the topic question.
Multilevel models can also be defined for three or more levels and the number of
parameters increases further as well as their difficulty of interpretation.

Back to the model (2.4), if a categorical explanatory variable has a random
coefficient then this can be interpreted as each category having a different level 2
variance (a particular instance of where the level 2 variance is a function of a level
1 predictor). This leads on to the idea of more general ways of modeling variation.
Thus, for example, if we have a predictor variable “gender” then not only could we
model different between-school variances for boys and girls, we could also consider
modeling different between-student variances for boys and girls. The between-boy
variance is allowed to be different from the between-girl variance. It turns out
that we can formulate directly quite complex linear and non-linear models for the
variance between units at any level of data hierarchy.

Another extension is to generalized linear models such as a logistic model for
a categorical response. Supposing that we have a binary response, e.g. whether
or not a student passes the math exam. A basic two-level model would have two
components: the first expresses the probability of a positive response as a function
of student and school characteristics in the “fixed part” of the model together with
a level 2 residual:

logit(πij) = β0 + β1x1ij + βjx2j + uj; uj ∼ N(0, σ2
u) (2.9)
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where x1 could be a student characteristic (number of hours of study, gender, ect.)
and x2, say, a level 2 school characteristic (public or not). Our actual response,
y, is (0,1) and we specify the second part of the model where this has a Bernoulli
distribution or binomial distribution with denominator 1 and probability πij.
The model (2.5) can be extended to ordered or unordered multi-category responses
and also specified for other link functions.

2.3 Variance explained

In ordinary multiple regression analysis the squared multiple correlation R2 is
an important statistic interpreted as the proportion of variance modelled by the
explanatory variables. In multilevel regression analysis, the issue of modelled or ex-
plained variance is a complex one. First, there are unexplained variances at several
levels. This itself makes the proportion of explained variance a more complicated
concept than in single-level regression analysis. Second, if there are random slopes,
the model is inherently more complex, and the concept of explained variance has no
unique definition anymore. Among the different approaches proposed to indicate
how well we are predicting the outcomes in a multilevel model, a straightforward
approach is the one that examine the proportion of explained variance in a se-
quence of models.
The ”intercept-only model” or ”null model”

yij = β0 + uj + eij (2.10)

is a baseline model, because it does not introduce any explanatory variables (ex-
cept the constant intercept term) and decomposes the total variance of the outcome
variable into two levels. Obviously, if the level 2 variance in this model is zero, we
can perform a classical linear regression model.

In the case of random intercept model, to calculate a statistic analogous to the
multiple R2, we must express the difference between null model variance at level
1 or 2 and the correspondent variance of the estimated model as a proportion of
the total variance in that level (Raudenbush and Bryk, 2002).
Working separately level by level, for the proportion of variance explained at the
first level we can use

R2
1 =

σ2
e|b − σ2

e|m

σ2
e|b

(2.11)

where σ2
e|b is the lowest-level residual variance for the null model and σ2

e|m is the
lowest-level residual variance for the comparison model.
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Similarly for the proportion of variance explained at the second level we use

R2
2 =

σ2
u|b − σ2

u|m

σ2
u|b

(2.12)

where σ2
u|b is the second-level residual variance for the null model and σ2

u|m is the
second-level residual variance for the comparison model.
We proceed in the same way for the case of a random intercept model with more
than 2 level of hierarchy.
A problem using the formulas above is that it is possible to arrive at the conclusion
that a specific explanatory variable has a negative contribution to the explained
variance, leading to a negative R2, which is an impossible value1.

In the random slope models the residual variances depend on the scale of the
explanatory variables; there is no current solution for computation of a comparable
R2.

2.4 Estimation and hypothesis testing

The most frequent method to estimate the values of the regression coefficients
and the intercept and slope variances is the maximum likelihood method. The
maximum likelihood (ML) method is a general estimation procedure, which pro-
duces estimates for the population parameters that maximize the probability of
observing the data that are actually observed, given the model.
An advantage of the maximum likelihood estimation method is that it is gener-
ally robust, and produces estimates that are asymptotically efficient, normal and
consistent. The asymptotically properties in the case of multilevel models do not
refers to the increasing of the total number of the observations, but is realized
increasing the number of groups at the highest hierarchical level. With large sam-
ples, ML estimates are usually robust against mild violations of the assumptions,
such as having not normal errors. The maximum likelihood estimation proceeds
by maximizing a function called the likelihood function. Two different likelihood
functions are used in multilevel regression modeling. One is ”the full maximum
likelihood” (FML); in this method, both the regression coefficients and the variance
components are included in the likelihood function. The other estimation method
is ”restricted maximum likelihood” (RML); here only the variance components are
included in the likelihood function, and the regression coefficients are estimated in

1Snijders and Bosker, 2012, cap. 7 explain way this result may happen and in which circum-
stances.
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a second estimation step. Both methods produce parameter estimates with asso-
ciated standard errors and an overall model deviance, which is a function of the
likelihood. FML treats the regression coefficients as fixed but unknown quantities
when the variance components are estimated, but does not take into account the
degrees of freedom lost by estimating the fixed effects.
The degrees of freedom (df ) in a multilevel model are calculated with reference
to a number of units for the level 1, and to a number of groups for the level 22 .
RML estimates the variance components after removing the fixed effects from the
model. As a result, FML estimates of the variance components are underestimates
(ignoring degree of freedom) if the number of groups is small. RML should lead to
better estimates, when the number of groups is small. However FML is preferable,
because it has two advantages over RML: the computations are generally easier
and, since the regression coefficients are included in the likelihood function, a like-
lihood ratio test (LR) can be used to compare two models that differ both in the
fixed part (the regression coefficients) than in the random part (the variances and
covariances of random part). With RML, only differences in the random part can
be compared with this test.
Computing the maximum likelihood estimates requires an iterative procedure. At
the start, the computer program generates reasonable starting values for the vari-
ous parameters (in multilevel regression analysis these are usually based on single-
level regression estimates). In the next step, the procedure tries to improve on
the starting values, to produce better estimates. This second step is repeated
(iterated) many times. After each iteration, the program inspects how much the
estimates have actually changed compared to the previous step. If the changes are
very small, the program concludes that the estimation procedure has converged
and that it is finished. There are several iterative algorithms mainly used: Fisher
Scoring (proposed by N. Longford), Expectation-Maximum (EM) algorithm (im-
plemented in Stata), Newton-Raphson algorithm (implemented in SAS).

Reports below, as an example, hierarchical construction in steps of the like-
lihood for the random intercept model like in (2.2). Denoting with θ = (Ψ, σ2

u)
the parameters vector, where σ2

u is the parameter of random effects (variance) and
Ψ = (β0, β1, σ

2
e) are all other parameters (fixed effects and the residual variance

parameter). Than the likelihood function for an observed yij and fixed uj are
Lij(Ψ | uj) (density of a normal N(β0 +β1xij +uj, σ

2
e) for fixed uj evaluated at the

observed yij). Now the observations in the same group are conditional independent

2If we are testing the coefficient of a level 1 variable in which the total number of units is N
and the total number of explanatory variables is r, we have df = N − r− 1. To test a coefficient
of a level 2 variable in which the total number of groups is M and the total number of level 2
explanatory variables is q, we have df = M−q−1. To test a coefficient of a cross-level interaction
between level 1 variable x and level 2 variable w, when the model contains a total of s other level
2 variables also including with this variable x, we have df = M − s− 1.
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given uj and than the j-th cluster conditional likelihood is

Lj(Ψ | uj) =

nj∏
i=1

Lij(Ψ | uj) (2.13)

Note that the equation defining a multilevel model likelihood includes the random
effects, but they are unobservable, so the random effect must be integrated out.
We obtain the marginal likelihood function of cluster j-th in this way

Lj(θ) =

∫
Lj(Ψ | uj) p(uj|σ2

u) duj (2.14)

Now for the independence between clusters the marginal likelihood is obtained by
the product of the marginal cluster likelihoods

L(θ) =
J∏
j=1

Lj(θ)

and then we proceed to the maximization with respect to θ

θ̂ML = argmax
θ

L(θ)

obtaining maximum likelihood estimates.

Bayesian methods are often used even in the cases where ML estimation is
difficult. An empirical Bayes parameter estimate for the j-th group is an optimally
weighted average of the parameter estimates using the j-th group data and the
entire sample data. For example, in the 2 level random intercept model as yij =
γ00 + u0j + eij, the ”Empirical Bayes” (EB) estimate (prediction in reality) of the
intercept β0j = γ00 + u0j and denote with βEB0j , can be expressed as a weighted

linear combination of β̂0j and γ̂00:

βEB0j = λ0jβ̂0j + (1− λ0j)γ̂00 (2.15)

where β̂0j is the level-1 OLS (ordinary least squares) estimate of group mean (ȳ.j)
while γ̂00 is the OLS estimate of the grand (overall) mean (ȳ..), of the outcome
variable; λ0j is the ”reliability” of β̂0j. If all groups had λ0j=1, the multilevel
parameter estimates would be equivalent to those of OLS regression. With a high
reliability of β̂0j the EB estimate βEB0j would be weighted more heavily by the group

mean β̂0j; otherwise, βEB0j would be weighted more by the overall mean γ̂00. When
the group size nj is small, the weight of reliability λ0j in (2.15) would be small,
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and then the contribution of β̂0j to βEB0j would ”shrink” and the multilevel model
parameter estimate would be pulled toward the overall mean. The EB estimator is,
also, called a shrinkage estimator. The degree of shrinkage depend on the precision
of the level-1 OLS estimate or its reliability. The shrinkage estimator approach
is even called a borrowing strength approach; that is, it borrows information from
all the groups to support statistical estimation for the groups with insufficient
observations. In the ”Null model” the reliability can be computed as

λ0j =
σ2
u0

σ2
u0 + (σ

2
e

nj
)

(2.16)

which can also be written as a function of the ICC, ρ:

λ0j =
njρ

1 + (nj − 1)ρ
(2.17)

Note that the reliability is a function of nj and of ICC: for a given nj, a larger ICC
leads to a larger reliability λ0j, and for a given ICC a larger nj lead to a larger
reliability.
The ”posterior means” (so called in Bayesian theory), βEB0j , can be used to see
which groups have an extraordinarily high or low values on the response variable,
given their values on the explanatory variables. They can also be used in a residual
analysis, for checking the assumption of normality for the random effects, and for
detecting outliers. For this purpose we compute the EB residuals as

ûEB0j = β̂EB0j − γ̂00 = λ0j(ȳ.j − ȳ..) (2.18)

where (ȳ.j − ȳ..) is the OLS residual of the level 2 regression multiplied by the
reliability.

Several alternative methods for estimation exist as Iterative Generalized Least
Squares (IGLS) proposed by H. Goldstein, Generalized Estimating Equations
(GEE), Bayesian methods and Bootstrap methods. The Bootstrap methods can
be used to improve the parameter estimates and the standard errors. When group
size is small or the distribution of the outcome variable is not normal, bootstrap
methods can be used for robust multilevel modeling.

Test for random effects : this means to test if the variance and covariance com-
ponents (e.g. σ2

u0, σ
2
u1, σu01) are equal to zero. The LR-test used in general for

comparisons between model with a different number of parameters and therefore
for this purpose inherent a different number of random part parameters. Never-
theless, in the case of variance (which cannot be negative - we have a one tail
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test) the p-value of the Chi-square test must be divided by 2. In alternative a
one-tailed Wald Z test (computed as the ratio of the parameter estimate to its
standard error) can be used. These two test are asymptotically equivalent if the
number of group is huge, so the LR test is to prefer.

Test for fixed-effects : to test a significance of a single coefficient can be used
a Wald Z test; for simultaneously test on several coefficients (as for the dummy
variable coefficients relating to one categorical variable) LR test can be used.
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Chapter 3

Models specification for Physical
Component Summary

3.1 Introduction

In household surveys, hierarchical structure is characterized by a small number
of units nj (subjects) per groups j (households), but in general by a very large
number of groups J . In multilevel models having a large number of groups is
better than having few groups of large size. Table 3.1 shows size and number
of level-2 groups in the sub-sample (without subjects under 18 age, consequently
level-2 group sizes do not coincide with household sizes).

Table 3.1: Level 2 sizes (households) in the sub-sample of 18 aged and over.

Number of subjects Number of groups

Level 2 size Freq. Percent Freq. Percent

1 14,453 13.66 14,453 28.63
2 45,386 42.88 22,693 44.96
3 25,290 23.89 8,430 16.7
4 15,768 14.9 3,942 7.81
5 4,075 3.85 815 1.61
6 696 0.66 116 0.23
7 168 0.16 24 0.05
8 8 0.01 1 0

Total 105,844 100 50,474 100
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For multilevel linear models with normal random effects at each level, having
”small n and large J ” scenario generally creates no problems in statistical infer-
ence of estimating fixed regression coefficient. This result does not extend to the
case of non-linear link functions (for example logistic regression) and non normal
random effects.
While, when we wish to study random coefficients (cluster-specific intercepts or
slopes) or to estimate variance and covariance components at the second level of
the hierarchy, we need that the fit of the model at level 1 is very good in order to
obtain good estimate. In essence, the lack of data at level 1 requires more restric-
tion, namely the slopes do not vary (Roudenbush, 2008).
With small sample sizes at the group level, variance components are more suscep-
tible to bias; the estimate tend to be estimated too small with standard errors
that may be biased downward.
One method for obtaining better tests and confidence intervals is to correct the
asymptotic standard errors, using the so-called Huber/White or sandwich estima-
tors which will be used here because the outcome variable is not-normal and highly
skewed. In effect, sandwich estimators are recommended if the normality and ho-
moscedasticity assumptions of the hierarchical linear model are not satisfied. Also
sandwich estimators require an adequate number of units at the highest level of
hierarchy. The use of these estimators in multilevel models may involve larger
standard errors especially for the parameters of the random part of the model
(Maas and Hox, 2004).

Taking into account the previous methodological remarks, we will proceed to
model a multilevel linear model with only random intercepts. The parameters will
be estimated using the FLM (full maximum likelihood) method and the standard
errors will be calculated using cluster-robust method (i.e. with sandwich estima-
tor). The term cluster here refers to a variable indicating the level for which the
observations are considered independent, that are the highest-level units in a mul-
tilevel data structure. In our case the cluster variable for robust estimator, due to
computational problems, will be the 103 provinces at the time of the survey.
The software used to carry out the analysis was mainly Stata version 12.0; it allows
the inclusion of sampling weights in multilevel model estimate.

3.2 Null models

Null models are progressively constructed for each possible hierarchical level in
order to check if there is correlation between observations and groups belonging
to the same cluster. The null models are constructed according to formulas given
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below in which u identifies household (level 2) random effects, v is the munici-
pality (level 3) random effects and so on until (level 6) random effects referred to
geographical area γ; e are level-1 residuals.

yij = β0 + uj + eij
yijk = β0 + ujk + vk + eijk
. . .

yijksrg = β0 + ujksrg + vksrg + ξsrg + ζrg + γg + eijksrg

Table 3.2: Null models with 2, 3 and 6 levels of hierarchy

MODEL Null-2L Null-3L Null-6L

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Intercept 49.62 0.03 49.57 0.06 49.52 0.22

Random part Parameter S.E. Parameter S.E. Parameter S.E.

6-Geographical area: var(γ) 0.18 0.16
5-Region: var(ζ) 0.07 0.09
4-Large area: var(ξ) 0.25 0.09
3-Municipality: var(v) 2.32 0.17 1.88 0.15
2-Household: var(u) 25.72 0.48 23.69 0.47 23.69 0.47
1-Residuals: var(e) 69.11 0.43 69.11 0.43 69.10 0.43

Table 3.3: Variance Partition Coefficients (VPC)

MODEL Null-2L Null-3L Null-6L

6-Geographical area: var(γ) 0.19
5-Region: var(ζ) 0.07
4-Large area: var(ξ) 0.26
3-Municipality: var(v) 2.44 1.97
2-Household: var(u) 27.12 24.90 24.89
1-Residuals: var(e) 72.88 72.66 72.61
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In the 3 level model we note that: 1) the 3th level variance is quite low; 2) the
correlation between two persons of the same municipality and household is equal to

corr(yijk, yi′jk) = σ2
v+σ

2
u

σ2
v+σ

2
u+σ

2
e
=27.34%

and it is not more greater than the ICC of model with 2 levels (ρ = 27.12%).
Therefore, even if the LRtests are conservative for all these null models with re-
spect to the next smaller in number of level, hereinafter we will use the model
with only 3 levels in consideration of the poor variability at the highest hierarchi-
cal levels. Moreover, the number of groups at levels 5 and 6 of hierarchy is very
small to carry out a multilevel analysis.

3.3 Models selection

Given explanatory variable asymmetry, various attempts were made to normalize
it, also applying following transformations on data: logarithmic, square root, cube
root, reciprocal and Box-Cox. None of the various transformation held satisfac-
tory results. Therefore we proceeded using the variable as it is, but with robust
estimates for coefficients and parameters standard errors (sandwich estimator) as
previously stated.
Looking at PCS histograms by age groups (Fig. 3.1) evident differences appear:
the shape distribution changes from negative skewed in young people ages to pos-
itively skewed in older ages and there is presence of heteroscedasticity.
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Figure 3.1: Physical Component Summary (PCS) histogram by age groups.
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Figure 3.2: Box-plot of Physical Component Summary (PCS) by age groups: hor-
izontal bar in middle of each box represents the median, + represents the mean.

In order to model heteroschedasticity at level 1 we add a dummy variable,
which multiplies level-1 residuals. This variable indexes appropriate combinations
of age groups and gender as homogeneous as possible within, in terms of average
and variance on PCS score.

Other covariates at level 1
Model building strategies can be either top-down or bottom-up. The top-down
approach starts with a model that includes the maximum number of fixed and
random effects that are considered for the model.This procedure is described by
West et al.(2007). The opposite strategy is mostly used, which is bottom-up. This
strategy is described by Hox (J. Hos, 2010).
Given the large number of possible covariates to test we have decided to adopt the
bottom-up approach. We have followed this procedure because initially the very
large sample size involves significance on almost every available variables in the
data set. First socio-demographic variables were considered.

In addition to age and gender, the following explanatory variables were tested:
nationality, marital status, qualification as number of years of study, qualification
as categories, professional status, work experience, employment sector of economy,
occupational position and household context of the respondents. Among these
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two were found to be more explanatory: educational qualification (as categorical)
and employment status. Explanatory power of employed variable is mainly due to
”unable to work” category.
For remaining covariates and indices on health conditions, prevention, chronic
disease etc. it was necessary to reason on diagram showing relationship and con-
nections between PCS and other variables in the data set (Fig.3.3). All these
variables are significant and also associated each other.
Among lifestyle variables, only Body-mass index and sport practice result statis-
tically significant. Question linked to the second of these variables distinguishes
among sedentary, active (persons who make movement such as walking or have a
job that involves physical effort) and people who make sport; only who perform
sportly or agonistic activity has a significant advantage on PCS score.
In the same way, variables of the group regarding medicine consumption, rehabil-
itation therapies etc. are significant, but have been excluded because can be view
like a consequences of affirmative response on other variables detected, such as
chronic diseases, disability and illnesses or accidents.
VariableLimitations in activities is largely overlapping disability and invalidity
and refers to a time period greater than the PCS index (last 6 months instead of
the last 4 weeks), so it was excluded from the analysis. Between disability and
invalidity we decide for disability variable since more accurate in picking the real
physical limitations.
The variable disease is included in the model because it is both a possible ex-
pression of symptoms resulting from having chronic diseases and expression of
disorders and illnesses which derive from other causes (e.g. seasonal illness, ac-
cidents, injuries, other diseases not considered among chronic ones). It provides
three modality that distinguish among having no health problem, illness or acute
disease in the past 4 weeks.
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Figure 3.3: Diagram showing (not exhaustive) connections between groups of co-
variates and the PCS index.
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With regard to chronic diseases synthetic chronicity index has been initially
used, in order to achieve a parsimonious model. This index has high correlation
with PCS (ρ =-0.6,) but it is a consequence of construction methodology, so con-
sidering all the collected chronic diseases was the only way to proceed and it also
allows us to sort each of them by impact on physical health of the respondents.
With the intent of a parsimonious model, number of chronicity has being included
once as continuous and once as categorical divided into classes. Best fitting in
term of likelihood remains the one previously described.
The three indices Mental Component Summary (MCS), Vitality (VT) and Mental
Health (MH) do not have a poor correlation with PCS (ρ =0.26, ρ =0.56, ρ =0.43
respectively), and are very similar to each other in part due to common questions
involved in the indexes. Therefore it will not be possible to enter all of these, but
at most one alone. Clearly being sick influences the psychological/mental status
and vice versa, so each of them were initially excluded from the model performing
the Model 1.

However, by testing their inclusion one at a time and comparing the obtained
models, VT seems to have less noise than MH and MCS index on other coeffi-
cients and in capability to improve likelihood; also the standard errors are reduced
compared with others. Beside a study conducted on SF-36 questionnaire accuracy
found that VT is the sub-domain (with the exception of Social Functioning sud-
domain) that giving minor contribution to PCS summarizing (C. Taft at al.,2001).
Observing questions involved in VT summary, it seems to be an expression of
physical well-being related to effort ability. So, for a more intuitive interpretation
of the results we renamed it ”well-being”. Well-being (VT) have strong impact on
Depression and Alzheimer coefficients. After entering VT in the model, the depres-
sion coefficient changes from negative to positive, then we removed it; Alzheimer
lose significance, but we decided to retain it.
So we obtain a second model: Model 2.

In order to render VT coefficient easier interpretable, it was centered on sample
mean (62.8) and divided by 10.
A similar transformation is applied to Body-mass index (BMI). According to World
Health Organization (WHO) definition, BMI is a simple index of weight-for-height
that is commonly used to classify underweight, overweight and obesity in adults. It
is defined as the weight in kilograms divided by the square of the height in metres
(kg/m2). Cut-off points for these category are: BMI ¡18.5 = underweight, BMI
in 18.5-24.9 =normal-weight, BMI in 25-29.9=overweight and BMI¿30=obese. In
order to reduce the number of model parameters, BMI will be used as continuous
variable. An other motivation related with this choice stems from worsening of
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likelihood in the model having BMI divided by classes.
For the same reasons described for VT covariate, BMI will be mean-centered (24.8)
and divided by 5. In fact the interval scores between BMI average (normal-weight)
and overweight, and between overweight and obese is about 5, so increasing the
transformed BMI of one unit we obtain the effect of transition, for example, from
normal-weight to overweight and so on.
Several interactions could be added, but the only one between Disabled and Dis-
eases was tested.

Covariates at level 2 and over .
The available variables at level 2 are not so many. We tested the significance
of the following: number of household components (both as continuous and as
categorical), dichotomous variable distinguishing one-person household and multi-
component household, household typology, housing condition index, economic re-
sources. Even if the one-person household variable was significant,the more infor-
mative variable ”household composition” (number of household member as cate-
gorical) and ”household typology” ware been inserted. ”Household typology” dis-
tinguishes among the following categories: living alone, couple without children,
couple with children and other typology (single parent with children, household
with added member, two or more unrelated adults, ect).
”Household composition” was inserted both to explore the impact of different
number of household membership on outcome variable and to model heteroscedas-
ticity at level 2 in conditional distribution of PCS. After a careful analysis of level
2 residuals, the benefit in level 2 heteroscedasticity modelling appear not appre-
ciable, moreover computational effort increases, so the intention was discarded.
”Household typology” replace ”Household composition” variable in model 2. This
change was made to allow any comparison with other studies in which it is most
commonly used. As a result an additional model was estimate: Model 3.

The explanatory variable on household economic resources was significant and it
distinguishes between household with good or adequate resources and those with
poor or insufficient resources according to householder statement. Remaining ones
are not significant.
At the 3rd level (municipality) we tested several external variables without suc-
cess: latitude, longitude, altitude, self-representative municipality (AR) as defined
by sampling design, coastal municipality, mountain and urban degree. Only the
latter is significant.
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Urban degree is an index provided by Istat and consists of 3 categories:

- High: densely populated areas, built by aggregation of local units having
contiguous territory, higher density to 500 inhabitants per square kilometre
and total amount of population at least 50,000 inhabitants.

- Intermediate: zones obtained by aggregation of local units territorial not
belonging to the previous group, with a density more than 100 people per
square kilometre and which have one of this added characteristics: total
population over 50,000 inhabitants or neighbouring to areas belonging from
previous group.

- Low : remaining areas that have not been classified in previous groups.

Searching for a possible contextual effect, we have test significance for several ex-
ternal variables:

• variables having regional detail: relative poverty incidence, household ex-
penditure for health care consumption, government expenditure on health;

• variables having provincial detail: average amount of cash at banks by house-
holds, value added per capita;

• variables having municipality detail: average per capita of taxable IRPEF1

income (only for Veneto region);

all these were found not significant.

3.4 Final models

Covariates selection process led to estimate 3 final models. All these models are
carried out using robust estimators.
Final Models are quite large and contain estimation on 58 (model 1 and 2) and
57 (model 3) parameters relative to 29 explanatory variables (including 18 chronic
diseases) plus 14 random part parameters (standard deviation).

Parameter estimates and their associated standard error estimates are pre-
sented in Tables 3.4 (fixed part) and 3.5 (random part) for null model and final
models 1, 2 and 3.

1Personal Income Tax.

33



Table 3.4: Final models: Fixed part

MODEL Model 1 Model 2 Model 3

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Intercept 54.96 0.16 53.59 0.18 53.58 0.17
Age 0.003∗∗∗ 0.005 0.028 0.005 0.028 0.005
Ageˆ 2 −0.001 0.000 −0.001 0.000 −0.001 0.000
Female −0.53 0.04 −0.10∗∗ 0.04 −0.10∗∗ 0.04

Qualification: ref. No Educ. Qualif.
University 1.53 0.13 1.32 0.13 1.32 0.13
Upper Secondary 1.41 0.11 1.18 0.11 1.18 0.11
Lower Secondary 1.07 0.10 0.86 0.10 0.86 0.10
Primary 0.65 0.11 0.52 0.11 0.52 0.11

Employment: ref. Employed
Unemployed −0.01∗∗∗ 0.10 −0.24∗ 0.09 −0.25∗ 0.09
Not working −0.11∗∗ 0.05 −0.33 0.05 −0.32 0.05
Unable to work −5.85 0.29 −5.16 0.27 −5.17 0.27

Body-mass Index −0.38 0.03 −0.38 0.03 −0.37 0.03
Sport 0.79 0.04 0.50 0.04 0.50 0.04
Disabled −10.18 0.31 −8.93 0.28 −8.94 0.28

Disease: ref. No health problem
Ilness −1.85 0.09 −1.41 0.09 −1.41 0.09
Acute disease −6.81 0.11 −6.01 0.10 −6.01 0.10

Interaction: Disabled x Disease
Disabled-Ilness 0.55∗∗∗ 0.36 0.47∗∗∗ 0.32 0.47∗∗∗ 0.32
Disabled-Acute disease 3.14 0.35 3.23 0.31 3.23 0.31

Well-being (VT) 0.98 0.02 0.98 0.02
Infarct −3.14 0.22 −2.75 0.20 −2.74 0.20
Heart disease −2.89 0.14 −2.45 0.13 −2.45 0.13
Stroke −2.75 0.21 −2.18 0.20 −2.18 0.20
Arthrosis,Arthrit. −4.61 0.10 −4.00 0.09 −3.99 0.09
Osteoporosis −2.27 0.13 −2.04 0.12 −2.04 0.12
Hepatic cirrhosis −2.60 0.52 −1.96 0.49 −1.96 0.49
Cancer −4.51 0.32 −3.73 0.29 −3.73 0.29
Parkinson −2.30 0.38 −1.63 0.35 −1.63 0.35

Continued on next page
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– continued from previous page

MODEL Model 1 Model 2 Model 3

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Ulcer −1.11 0.18 −0.76 0.17 −0.76 0.17
Cancer in the past −1.60 0.19 −1.30 0.18 −1.30 0.18
Depression −0.51 0.12
Alzheimer −1.70 0.36 −0.76∗∗ 0.34 −0.77∗∗ 0.34
Stones −1.43 0.16 −1.21 0.14 −1.21 0.14
Thyroid disease −0.92 0.13 −0.68 0.12 −0.68 0.12
Asthma −1.31 0.12 −1.11 0.12 −1.11 0.12
Diabetes −1.62 0.13 −1.35 0.13 −1.35 0.13
Hypertension −0.61 0.08 −0.45 0.07 −0.45 0.07
Bronchitis,Emph. −1.26 0.13 −0.88 0.11 −0.88 0.11

Household composition: ref. 1 component
2 components −0.28 0.07 −0.28 0.07
3 components −0.38 0.07 −0.35 0.06
4 components −0.30 0.07 −0.26 0.07
5 or more comp. −0.26∗∗ 0.11 −0.28∗ 0.10

Household typology: ref. Living alone
Childless couple −0.35 0.07
Couple with child. −0.29 0.06
Other typology −0.22∗∗ 0.09

Insuf. econ. resources −0.54 0.06 −0.21 0.05 −0.21 0.05

Urban degree: ref. Low
Intermediate 0.20∗ 0.07 0.24 0.07 0.24 0.07
High 0.39 0.08 0.37 0.08 0.37 0.08

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”

In the three final models estimated standard errors are small and slightly
higher only for coefficients related to low sample frequencies (such as Hepatic cir-
rhosis, Parkinsonism, Alzheimer, Unable to work) and for interaction coefficients
(Disabled-Illness and Disabled-Acute disease), denoting high precision of the esti-
mates due to large sample size.
Specifically we note that in model 2 and 3 standard errors are smaller or equal
than in model 1 due to entering of well-being (VT) index. Beside insert VT in
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model 2 leads to a reduction on many coefficients related to chronic diseases and
female. Loss of significance on sex covariate after VT entering seems to explain
differences between men and women on PCS score. In our sample both PCS aver-
age (M=51, F=48.9) and well-being (VT) average (M=66.3, F=59.6) show lower
score for women than for men. Gender differences in health are well know and
widely studied. Many researches highlight a lower level of women health mea-
sures after adjusting for several socio-demographic and socio-economic variables
(D. Cherepanov et al., 2010). The different result of model 2 estimates reveals that
a possible gender difference on perceived physical health may be due to women
feeling less full of energy and lively but more tired and worn out than men (see
Appendix B - Well-being (VT) questions).
Such explanation is plausible for the reduction of the chronic disease coefficients:
be affected by chronic disease will generally be feel less lively, full of energy and
more frequently tired than others.
Coefficient estimates on qualification indicate positive association between sub-
jects PCS score and individual level education. Comparable association between
educational qualification and level of health has been shown in many preview stud-
ies (G. Costa et al.,2003). Between Employed and Unemployed status there is not
a significant difference on response variable in each models, while Not Working
becomes significant in models 2 and 3, moreover interpretation of this effect is non
easy because within this category converge different type of subjects: students, re-
tirees, housewives, unoccupied. Strong negative effect on PCS score due to being
unable to work emerge in all three models. The health risk factor role of BMI and
Sport activity is commonly known. In recent years research has been conducted to
estimate the impact of obesity on Quality of Life (QoL): obesity-associated decre-
ments on QoL tend to be most pronounced on physical domains of functioning. It
is interesting to note that these variables have an effect even even in our models.
Transition from normal-weight to overweight and from overweight to obese leads
an average score lower of more than a third of point. We expected a greater im-
pact, that is probably partly caught by chronic diseases covariates.
Naturally, disability is a factor of great negative influence on physical health: the
highest in the models among explanatory variables.
Another strong negative effect on PCS is attributable to been affected by a Acute
disease (appendicitis, pneumonia,etc.) in the last 4 weeks.

If Disability and Acute disease are both present, the average impact on out-
come variable is not the sum of related coefficient, but it is mitigated for about 3
score.

Chronic diseases all have naturally negative (from mild to strong) contribute
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on physical health perceived. The most penalizing are: Arthrosis and Arthritis,
Cancer, Infarct, Heart disease and Stroke.

Level-2 independent variables, ”Household composition” (model 1 and 2) and
”Household typology” (model 3) have as referent category one person household.
These covariates bring out an average PCS score lower against who do not live
alone. Who lives in households with more than one component seems to have a
bit worse physical health than someone who lives alone. The negative magnitude is
similar in all category, with the exception for who lives in other household typology
or in large household (5 or more components). Similar evidence was found by G.
Costa (Costa et al., 2003).

Households declaring scarce economic resources have a negative effect espe-
cially in model 1. The negative relationship between socio-economic status (SES)
and health has been documented in many contest (G. Smith et al. 1990).
Finally is of interest to observe ”urban degree” effect. People living in high urban-
ization areas have a slightly better PCS score. Probably this variable is able to
capture the easier access to medical cure in larger city. Comparable effects have
been highlighted in other studies with similar covariates ( G. Costa et al., 2003;
R. Edwing et al., 2003).

Any differences emerge between random part of the three final models.
Municipality standard deviation of random effects is small but still significant
compare with model without level 3 and tested using an LR- test. At level 2 we
note that household intercept variance does not decrease so much compared to
null model; this is probably due to small number level-2 covariates included in the
models.
Residuals have a standard deviation increasing with age and higher for females
than for males.
Estimate parameters of model 2 and 3 are smaller than model 1. We conclude
that PCS variability is explained mainly by level-1 variables.
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Table 3.5: Final models: Random part

MODEL Model 1 Model 2 Model 3 Null model

Random effects Paramet. S.E. Paramet. S.E. Paramet. S.E. Paramet. S.E.

3-Municipality: sd(v) 0.71 0.03 0.70 0.04 0.70 0.04 0.97 0.05
2-Household: sd(u) 1.82 0.03 1.79 0.03 1.79 0.03 2.42 0.07

1-Residuals: Independent by Sex and Age
F ≤29: sd(e) 4.58 0.09 4.61 0.09 4.61 0.09 5.30 0.09
F 30-49: sd(e) 5.53 0.06 5.39 0.06 5.39 0.06 6.39 0.08
F 50-64: sd(e) 6.87 0.06 6.55 0.06 6.55 0.06 9.65 0.14
F 65-74: sd(e) 7.63 0.08 7.18 0.08 7.18 0.08 13.39 0.21
F 75-84: sd(e) 8.13 0.10 7.58 0.10 7.58 0.10 17.78 0.22
F ≥85: sd(e) 7.87 0.13 7.36 0.12 7.36 0.12 22.38 0.28
M ≤29: sd(e) 4.11 0.10 4.08 0.10 4.08 0.10 5.04 0.10
M 30-49: sd(e) 5.00 0.06 4.87 0.06 4.87 0.06 5.95 0.07
M 50-64: sd(e) 6.02 0.08 5.70 0.07 5.70 0.07 8.00 0.13
M 65-74: sd(e) 7.19 0.09 6.69 0.09 6.69 0.09 11.26 0.21
M 75-84: sd(e) 7.87 0.10 7.26 0.09 7.26 0.09 15.32 0.24
M ≥85: sd(e) 8.09 0.25 7.41 0.26 7.42 0.26 20.19 0.34
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Explained variances are reported in Table 3.5 and performed by the analogous
R2 of classical linear regression as

R2
l =

σ2
null − σ2

estimate

σ2
null

Model 2 and 3 perform better than model 1. The percentage of variance explained
is consistent at all levels. We note that variances explained at level 1 increases
with age for both genders.

Table 3.6: Variance and percentage of explained variance of final models with
respect to null model: (R2

l ).

Variance R2
l

MODEL Null Mod.1 Mod.2 Mod.3 Mod.1 (%) Mod.2 (%) Mod.3 (%)

3-Municipality: sd(v) 0.93 0.50 0.49 0.49 46.82 47.95 47.96
2-Household: sd(u) 5.86 3.30 3.19 3.19 43.64 45.56 45.57

1-Residuals: Independent by Sex and Age
F ≤29: sd(e) 28.07 20.95 21.26 21.25 25.35 24.27 24.28
F 30-49: sd(e) 40.84 30.60 29.04 29.04 25.06 28.88 28.89
F 50-64: sd(e) 93.08 47.20 42.88 42.87 49.29 53.94 53.94
F 65-74: sd(e) 179.27 58.27 51.59 51.59 67.50 71.22 71.22
F 75-84: sd(e) 316.01 66.08 57.41 57.42 79.09 81.83 81.83
F ≥85: sd(e) 500.70 61.92 54.10 54.14 87.63 89.19 89.19
M ≤29: sd(e) 25.40 16.85 16.67 16.66 33.64 34.38 34.39
M 30-49: sd(e) 35.40 25.02 23.73 23.74 29.32 32.95 32.94
M 50-64: sd(e) 64.04 36.26 32.49 32.49 43.38 49.28 49.27
M 65-74: sd(e) 126.85 51.76 44.72 44.73 59.19 64.74 64.73
M 75-84: sd(e) 234.72 61.98 52.71 52.74 73.60 77.54 77.53
M ≥85: sd(e) 407.44 65.40 54.97 54.99 83.95 86.51 86.50

A residual analysis at each level can help to check for assumption of normal
distribution. Following quantile-quantile plot graphics report standardized resid-
uals at level 1 and standardized Empirical Bayes (EB) random effects at level 2
and 3 for final models 1 and 3. Gaussian distribution at level 3 is roughly satis-
fied, while at levels 2 and 1 not hold the hypothesis does not hold (bad fit on the
tails). Scatter-plot of standardized residuals and provided random effects reveal
some heteroscedasticity particularly at level 1.
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Figure 3.4: Quantile-quantile plot of standardized random effects and scatter-plot
of standardized random effects versus fixed part predictions for Model 1 and Model
3.
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Figure 3.5: Quantile-quantile plot of standardized level 1 residuals (top panel) and
scatter-plot versus fixed part prediction (bottom panel) for model 1 and 3.

An analysis of provided municipality random effects will show presence of mu-
nicipality with intercept significantly different from zero. In this aim we display
the so-called Caterpillar graphic for model 3. These graphics show random ef-
fects ranked from smaller to largest and related 95% confidence interval. The high
number of units at level 3 (1465) makes impossible to show all them, therefore
we show only the 35 lowest and the 35 highest random effects. These graphics
can not bring out all municipalities having non-zero random effect. Municipalities
with intercept different from zero are listed in table 3.7.
Municipality having negative intercept are 29, municipalities having negative ran-
dom effects are 30. Note that non-zero municipality random effects is not due to
little group-size and are equally distributed across regions and geographical areas.
That is, estimated model 3 explains territorial differences. It is also evident in the
map (Figure 3.7).
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Figure 3.6: Caterpillar graphics: ranking of smaller (top panel) and greatest (bottom panel) 35 municipality unsta-
nardized EB random effects vk of model 3 and their approximated 95% confidence interval.
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Table 3.7: Municipalities with random effects significantly different from zero in model 3.

Geogr.area Region Province Municipality Urban degree Rank Ran.Eff. Households Subjects.

Islands Sardegna Sassari Calangianus Low 1 - 27 79
South Campania Napoli Volla High 2 - 29 103
Center Toscana Massa Fivizzano Low 3 - 27 60
Center Lazio Roma Civitavecchia High 4 - 38 88
North-East Trentino-Alto Adige Trento Telve Low 5 - 27 67
North-West Piemonte Cuneo Bagnolo Piemonte Low 6 - 25 66
South Calabria Crotone Strongoli Low 7 - 32 74
North-East Veneto Verona Illasi Interm. 8 - 29 84
South Campania Caserta Vairano Patenora Interm. 9 - 27 76
South Campania Avellino Montoro Superiore Interm. 10 - 30 107
South Calabria Reggio di Calabria Bovalino Interm. 11 - 18 52
Islands Sicilia Palermo Partinico Interm. 12 - 20 54
South Abruzzo L’Aquila Bugnara Low 13 - 43 97
South Campania Napoli Sant’Anastasia High 14 - 25 79
South Basilicata Potenza Melfi Low 15 - 36 111
South Abruzzo L’Aquila Sante Marie Low 16 - 42 76
North-East Veneto Padova Ponte San Nicolò High 17 - 25 60
Islands Sicilia Messina Saponara Interm. 18 - 36 101
North-West Lombardia Brescia Castelcovati Interm. 19 - 28 70
Center Toscana Lucca Lucca Interm. 20 - 59 156
South Calabria Reggio di Calabria Siderno Interm. 23 - 27 65
South Abruzzo Chieti Colledimezzo Low 24 - 40 86
South Abruzzo L’Aquila Lucoli Low 26 - 35 78
Islands Sardegna Cagliari Sestu Interm. 27 - 23 72
South Campania Napoli Quarto High 28 - 22 73
South Calabria Reggio di Calabria Reggio di Calabria High 30 - 258 716
North-East Veneto Treviso Zero Branco Interm. 32 - 33 88
Center Marche Pesaro - Urbino Fano Interm. 42 - 64 153
North-West Valle d’Aosta Aosta Aosta Low 131 - 198 424

Continued on next page
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– continued from previous page

Geogr. area Region Province Municipality Urban degree Rank Ran.Eff. Households Subjects

Center Toscana Firenze Firenze High 1270 + 736 1523
North-East Emilia-Romagna Bologna Bologna High 1305 + 565 1181
South Puglia Bari Bari High 1353 + 237 630
North-West Piemonte Alessandria Alessandria Interm. 1413 + 99 199
South Molise Isernia Isernia Low 1425 + 59 176
South Puglia Foggia Mattinata Low 1438 + 39 109
Center Umbria Perugia Perugia Interm. 1439 + 181 456
North-West Piemonte Alessandria Pontestura Low 1441 + 34 86
North-East Emilia-Romagna Reggio nell’Emilia Reggio nell’Emilia High 1443 + 82 195
Center Lazio Latina Aprilia Interm. 1444 + 47 111
North-East Friuli-Venezia Giulia Gorizia Gorizia Interm. 1445 + 74 149
North-West Liguria Imperia Triora Low 1446 + 33 60
Center Umbria Perugia Spoleto Interm. 1448 + 57 140
Center Umbria Perugia Foligno Interm. 1449 + 91 254
North-East Emilia-Romagna Ravenna Cervia Interm. 1450 + 26 71
South Campania Napoli Pozzuoli High 1451 + 48 141
South Campania Napoli Torre Annunziata High 1452 + 25 86
South Puglia Bari Noicattaro High 1453 + 33 99
Center Toscana Firenze Barberino di Mugello Low 1454 + 21 59
South Campania Benevento Campoli del Monte Taburno Interm. 1455 + 23 69
North-East Veneto Rovigo Rovigo Interm. 1456 + 37 92
Center Lazio Roma Segni Interm. 1457 + 23 62
South Campania Napoli Cardito High 1458 + 28 71
South Calabria Vibo Valentia Vibo Valentia Interm. 1459 + 41 131
South Campania Avellino Marzano di Nola Interm. 1460 + 22 67
North-West Lombardia Brescia Lonato Interm. 1461 + 25 71
North-West Liguria La Spezia Carrodano Low 1462 + 35 53
North-West Lombardia Milano Lainate High 1463 + 24 62
North-West Piemonte Torino Caselette Interm. 1464 + 26 67
South Campania Napoli Camposano High 1465 + 22 65
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Figure 3.7: Municipality random effects map (model 3)
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3.5 Are sampling weights informative?

Large surveys generally use stratified sampling designs. As a result, the individu-
als in the population are included in the sample with different probabilities. These
probabilities are known as “sampling probabilities” or “ inclusion probabilities”.
Such diversity of inclusion probabilities must be taken into account in the data
analysis. The reason for using sampling weights in the estimation is to avoid bias.
A sampling design with heterogeneous inclusion probabilities will provide a sam-
ple that is a biased representation of the population. This fact, however, does
not necessarily lead to bias in the estimators for the parameters. If the predictor
variables are represented differently in the sample than their distribution in the
population (which is one type of bias), not necessarily the estimators of the pa-
rameters of the hierarchical model will result to be biased. The parameters are
biased only if the distribution of the residuals is affected by the sampling design.
In this case the survey design is said to be “informative”. If the residuals in the
model are independent from sampling design and from sampling weights, then the
use of weights is superfluous. In multilevel analysis of survey data, if we can be
confident that the model is well specified and the sample design is unrelated to
the residuals, it is better not to take into account of the weights when doing the
analysis and proceed as usual. In fact, a simulation study carried out by Pfeffer-
man (1998) shows that the scaled weighted estimators perform well, but there is
a little disadvantage in terms of bias and precision in using these estimators when
sampling is non-informative. So an analysis design-based is to follow only if there
are reasons against an analysis model-based.

We describe in section 3.3.2, same useful methods too choose between a model-
based and a design-based analysis for a given multilevel data set.

3.5.1 Inclusion probabilities and scaling methods

In a 2-level model, assuming a two-stage sample design, where clusters are selected
independently with some probability and, given that a cluster j has been extract,
a sample of level-one units within this cluster is selected, in general the inclusion
probabilities are defined as follows

πj= inclusion probability for level-2 unit j
πi|j= inclusion probability for level-1 unit i, given the inclusion of cluster j.

The marginal probability of level-1 unit i in cluster j is given by the product
of these 2 probability
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πjπi|j = inclusion probability of level-1 unit i of cluster j.

The design weights or base weights of the sample are the inverse of the inclusion
probabilities:

wj =
1

πj
(3.1)

wi|j =
1

πi|j
(3.2)

To use weights in 2-level models, the separate sets of the weights at level 1 and
level 2 are needed, corresponding to the separate inclusion probabilities at each
level. Using these weights the effective sample sizes can be calculated as follows:

N eff =
(Σjwj)

2

Σjw2
j

(3.3)

neffj =
(Σiwi|j)

2

Σiw2
i|j

(3.4)

The effective sample size is defined such that a weighted sample gives the amount
of information as a simple random sample with sample size equal to the effective
sample size 2.
The ratio of effective sample sizes to actual (real) sample sizes are called the design
effects 3

at level 2 and 1 we have respectively:

2A general definition of the effective sample size, neff , in a complex survey design of size n
(if n/N ≈ 0) is given by the ratio between n and the design effect: neff = n

deff .
If the sampling design is itself cause of estimate fluctuations, the effective sample size obtained is
lower than the actual sample size. Various sampling techniques, being more efficient than sample
random sampling, have an effective sample size greater than the the actual sample size

3Design effect definition: Given an unbiased estimator θ̂ of a parameter θ and a sampling
design, is called ”design effect” the ratio between variance of θ̂ , V (θ̂) and variance Vo(θ̂) of the
same estimator in a simple random sampling, both with the same sample size.

Deff =
V (θ̂)

Vo(θ̂)

.
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deff2 =
N eff

N
, deff1j =

neffj

nj
. (3.5)

The design effects give an indication of the potential loss of statistical efficiency
incurred by following a design-based rather than model-based analysis. In a level-
1 analysis the scales of these weights are irrelevant, while in multilevel designs
scaling the level-2 weights still is irrelevant, but the scale of the level-1 weights is
important.
At present clear guidelines about the best way of scaling do not exist in the lit-
erature. Among the most known methods of scaling we describe two of the most
known and used: Pfeffermann’s methods. Pfeffermann et al. (1998) propose two
methods of scaling to be used in design-based estimation for multilevel models.
The first is the “method 1”, also called “method B” by Asparouhov (2006), and
provides scaled weights summing to effective sample size neffj ,

method 1 : w∗i|j =
neffj

Σiwi|j
wi|j. (3.6)

The second is the “method 2” ”, also called “method A by Asparouhov (2006),
and provides scaled weights summing to actual sample size nj,

method 2 : w◦i|j =
nj

Σiwi|j
wi|j. (3.7)

The estimation of these models is performed by a weighted maximum likelihood:
“pseudo-maximum-likelihood”.

3.5.2 Some procedures to explore the informativeness of
survey weights

As before mentioned, if there is association between sampling design and residuals
in the hierarchical linear model, then the sampling weights are informative and a
model-based approach risks being biased and inconsistent, that is, the parameter
estimates may be a misrepresentation of the true parameters in the hierarchical
linear model even in large samples. T.Snijders and R. Bosker (2012) propose a
variety of methods that can be followed to assess the association of sampling de-
sign with the model of interest. Nevertheless, these methods do not have the aim
to assert, by an affirmative or negative response, about the informativeness of
sampling weights. The proposed methods have rather the purpose to get ideas
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about whether and how the design variables and the survey weights may be asso-
ciated with the model of interest and to guide the researcher in deciding between a
model-based and a design-based analysis. Some of these methods are the following:

1. Take a careful look on variability of the weights in each level and on effective
sample size. When the variability of the weights is high and/or the design
effects is low, it may be a signal that the design is far from a random sample,
which can lead to biases of model-based estimators and to low efficiency of
design-based estimators.

2. Add design variables to model of interest. This is feasible if the variables
that determine the probability of inclusion (the design variables) are known
and are part of the data set to be analyzed. However, especially for large
surveys, it is common that the information about the sampling design and
how the sampling weights is obtained, is only partial. If the design variables
are available, then they may be included in the model; it can be tested
whether they affect the dependent variable and whether the other results
are sensitive to their inclusion. This makes sense especially as additions to
a model that is already rich in explanatory variables. The only objective
in this exploration is to assess whether the design variables have effects in
addition to the variables already in the model of interest.

3. Apply the hierarchical linear model to parts of the data differing with respect
to inclusion probabilities or design variables. The procedure consists to split
the data into parts according to the weights at each level and analyze each
part separately by multilevel model according to model of interest, and assess
the magnitude of the differences in results between the various parts.

4. Add weight variables to the model. Non-informativeness of the design means
that the design variables are independent of the residuals. This can be tested
by using the weights as covariate added to the hierarchical linear model.

5. Compare model-based and design-based estimators.

3.6 Scaled weights computation

In order to compare design-based and model-based estimates we consider two
models that include scaled sample weights respectively by the Pfeffermann method
1 and method 2 and compare them with the unweighted model. For this purpose
will be necessary to derive the conditional weights at each hierarchical level.
This type of analysis, was made indeed in some intermediate steps during the
specification of the models, and gave us a first idea about weighted informativeness.
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In the Istat household surveys inclusion probability of the j-th selected household
in the k-th municipality of the h-th stratum is defined as (PD Falorsi and S. Falorsi,
1995):

πj =
nhPhk
Ph

mhk

Mhk

(3.8)

where as previously:
i denote level-1 unit (subject)
j denore level-2 unit (household)
k denote level-3 unit (municipality)
h denote stratum

and

Ph is the number of residents in stratum h
Phk is the number of residents in the municipality k of stratum h
Mhk is the number of households in the municipality k of stratum h
mhk is the number of drown households in the municipality k of stratum h
nh is the number of drown municipalities in stratum h.

Reciprocal of πj is the so-called base weight.

The available final weights, are not the simple reciprocal of the inclusion prob-
ability and therefore does not correspond directly to the weights 4 .
They are multiplied by factors correcting for non-response and for domains of
interest (i.e. corrected by a factor that allows to satisfy the equality condition
between known population totals and the corresponding sample estimates for each
domain of interest (territorial areas) (see Istat, year)). We write synthetically the
data-set final weights as

w
′

ij = wij · fijD
in which fijD indicates all adjustment factors applied to base weights (D denote
the domain).

Adjustment factors are not available and therefore cannot be removed. For
coherence with level 1 weights, we will derive level-2 conditional probabilities in

4E. L. Korn and B. I. Graubard (2003) suggest that the base weights should be used, be-
cause the adjustments introduced to compensate for non-response and for domain of interest
(post-stratification), lead to a lower efficiency estimators (variance of the estimators increases).
Moreover they proposed another weighting method, requiring knowledge of higher-order inclu-
sion probabilities which often is not available; therefore it is less widely applied. However, in
their simulations their method does appear to perform well.
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way to contain the correction factors at each level. Now, the inclusion probabil-
ities of the individual are equal to the inclusion probability of the corresponding
household because all the household members were interviewed (cluster sampling
of households within municipalities). Therefore we have

πij = πj = πi|j

And so it is not necessary to scale level-1 weights, but only the level-2 ones. For
the reasons mentioned before we will obtain the conditional inclusion probability
at level 2 as follows: rewriting the inclusion probability of household j as

π
′

j = πj · 1/fijD

being the inclusion probability of municipality k belonging to the h-th stratum
given by:

πk|h =
nhPhk
Ph

we will obtain the conditional probability of household j-th given the municipality
k in this way:

π
′

j|kh =
π

′
j

πk|h

instead as mhk/Mhk.

The computational intervention is restricted only to NAR (not self-representing)
municipalities because the AR (self-representing) municipalities form stratum it-
self and enter in the sample with certainty.
By distinguishing the two cases we have:

- if k ∈ AR is πh|k = 1
and than the data-set weights w

′
j remain as they are;

- while if k ∈ NAR the conditional inclusion probability is:

w
′

j|kh =
nhPhk
Ph

w
′

j

At this point it would be sufficient multiply survey weights by the probability
to draw the municipality in the stratum, but in the absence of information on
stratum population (missing information on the list of municipalities by stratum)
for the NAR municipalities we have replaced stratum population, Ph, with Large-
Area population, PA, and number of municipalities extracted in the stratum, nh,
with number of municipalities extracted in Large-Area, nA. We retain that this
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approximation does not involve big changes 5. So replacing:
if k ∈ NAR the conditioned weight is calculated as follows:

w
′

j|kA =
nAPAk
PA

w
′

j

obtaining the conditioned weights to be scaled.

For these computations the resident population at January 1st 2005 has been
used.
To w

′

j|kA obtained we applied Pfefferman scaling method 1 and 2, obtaining the
second level scaled weights to be used for the estimation of corresponding weighed
models.

method 1 : w∗j|kA =
neffkA

Σjw
′
j|kA

w
′

j|kA. (3.9)

method 2 : w◦j|kA =
nkA

Σjw
′
j|kA

w
′

j|kA. (3.10)

.

3.7 Design-based and Model-based analysis

In order to explore the informativeness of survey weights, the procedures 1, 2, 4
and 5 of section 3.3.2 have been applied. In more detail:

1. Computation of sampling weights variance in the survey. It is very high and
equal respectively to 77907.97 for the individual weights and 78008.49 for
the household weights. The design effect is equal to deff2=0.7251 and the
effective sample size is equal to Neff=92837.18 6. These results suggest the
application of at least some of the described methods in order to understand
whether and how much they can have an impact on estimates;

2. Estimation of model having variable that identifies primary sample units
(PSUs) as covariate.

3. Estimation of model containing sampling weights as a covariate;

5NAR municipalities are been extracted with probability proportional to population size
within each stratum; 4 municipalities per stratum were extracted.

6These values refer to the entire sample.
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4. Estimation of two weighed models using level-2 scaled weights according to
Pfeffermann methods.

The comparison of these models will be done with the model 2 which has been re-
performed excluding the heteroscedasticity modeling, without loss of significance
in comparison.

The results of our estimated models are illustrated in Table 3.7 and 3.8.
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Table 3.8: Compare among model 2, model including design variable (D.V.) and
model including sample weights (S.W.) as covariates (PSUs stands for Primary
Sample Units).

MODEL Unweighted with D.V. with S.W.

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Intercept 53.44 0.19 53.55 0.21 53.47 0.19
Age 0.040 0.005 0.039 0.005 0.039 0.005
Ageˆ 2 −0.002 0.000 −0.002 0.000 −0.002 0.000
Female −0.11∗∗ 0.05 −0.11∗∗ 0.05 −0.11∗∗ 0.05

Qualification: ref. No Educ. Qualif.
University 1.29 0.14 1.28 0.14 1.28 0.14
Graduate 1.16 0.12 1.16 0.12 1.16 0.12
Secondary 0.86 0.11 0.86 0.11 0.86 0.11
Elementary 0.52 0.12 0.52 0.12 0.52 0.12

Employment: ref. Employed
Unemployed −0.27∗ 0.09 −0.27∗ 0.09 −0.27∗ 0.09
Not working −0.44 0.05 −0.44 0.05 −0.44 0.05
Unable to work −4.37 0.24 −4.37 0.24 −4.37 0.24

Body-mass index −0.43 0.03 −0.43 0.03 −0.43 0.03
Sport 0.63 0.04 0.63 0.04 0.63 0.04
Disabled −8.88 0.27 −8.88 0.27 −8.88 0.27

Disease: ref. No health problem
Illness −1.47 0.09 −1.47 0.09 −1.47 0.09
Acute disease −6.05 0.11 −6.06 0.11 −6.05 0.11

Interaction: Disabled x Disease
Disabled-Illness 0.77∗ 0.29 0.77∗ 0.29 0.77∗ 0.29
Disabled-Acute disease 3.64 0.29 3.64 0.29 3.64 0.29

Well-being (VT) 1.12 0.02 1.12 0.02 1.12 0.02
Infarct −2.57 0.19 −2.57 0.19 −2.56 0.19
Heart disease −2.31 0.12 −2.31 0.12 −2.31 0.12
Stroke −2.03 0.20 −2.03 0.20 −2.03 0.20
Arthrosis,Arthrit. −3.86 0.08 −3.86 0.08 −3.86 0.08
Osteoporosis −1.89 0.11 −1.89 0.11 −1.88 0.11
Hepatic cirrhosis −1.84 0.46 −1.83 0.46 −1.84 0.46

Continued on next page
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– continued from previous page

MODEL Unweighted with D.V. with S.W.

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Cancer −3.45 0.27 −3.45 0.27 −3.45 0.27
Parkinsonism −1.59 0.34 −1.59 0.34 −1.59 0.34
Ulcer −0.63 0.17 −0.63 0.17 −0.63 0.17
Cancer in the past −1.22 0.19 −1.22 0.19 −1.22 0.19
Alzheimer −0.71∗∗ 0.32 −0.71∗∗ 0.32 −0.71∗∗ 0.32
Stones −1.06 0.13 −1.06 0.13 −1.06 0.13
Thyroid disease −0.55 0.12 −0.55 0.12 −0.55 0.12
Asthma −1.20 0.12 −1.20 0.12 −1.20 0.12
Diabetes −1.28 0.12 −1.28 0.12 −1.28 0.12
Hypertension −0.40 0.07 −0.40 0.07 −0.40 0.07
Bronchitis,Emph. −0.74 0.10 −0.74 0.10 −0.74 0.10

Household composition: ref. 1 component
2 components −0.36 0.07 −0.36 0.07 −0.36 0.07
3 components −0.46 0.07 −0.46 0.07 −0.45 0.07
4 components −0.36 0.07 −0.36 0.07 −0.36 0.07
5 or more comp. −0.41 0.11 −0.41 0.11 −0.41 0.11

Insuf. econ. resour. −0.21 0.06 −0.21 0.06 −0.21 0.06

Urban degree: ref. Low
Intermediate 0.27 0.07 0.27 0.07 0.29 0.07
High 0.39 0.09 0.37 0.10 0.42 0.09

PSU 0.00∗∗∗ 0.00
Sample weight 0.00∗∗∗ 0.00

Random effects Param. S.E. Param. S.E. Param. S.E.
3-Municipality: sd(v) 0.83 0.04 0.82 0.04 0.83 0.04
2-Household: sd(u) 2.12 0.04 2.12 0.04 2.12 0.04
1-Residual: sd(e) 5.70 0.05 5.70 0.05 5.70 0.05

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 3.9: Compare between unweighted model 2 and weighted models including
weights scaled by Pfeffermann’s method 1 and method 2.

MODEL Unweighted Method 1 Method 2

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Intercept 53.44 0.19 53.45 0.22 53.48 0.23
Age 0.040 0.005 0.035 0.005 0.035 0.006
Ageˆ 2 −0.002 0.000 −0.002 0.000 −0.002 0.000
Female −0.11∗∗ 0.05 −0.09∗∗∗ 0.06 −0.08∗∗∗ 0.05

Qualification: ref. No Educ. Qualif.
University 1.29 0.14 1.47 0.15 1.49 0.15
Graduate 1.16 0.12 1.36 0.13 1.37 0.13
Secondary 0.86 0.11 0.98 0.12 1.01 0.13
Elementary 0.52 0.12 0.68 0.14 0.71 0.14

Employment: ref. Employed
Unemployed −0.27∗ 0.09 −0.28∗∗ 0.12 −0.27∗∗ 0.12
Not working −0.44 0.05 −0.46 0.07 −0.47 0.07
Unable to work −4.37 0.24 −4.46 0.27 −4.35 0.29

Body-mass index −0.43 0.03 −0.43 0.03 −0.43 0.04
Sport 0.63 0.04 0.55 0.05 0.53 0.05
Disabled −8.88 0.27 −8.74 0.30 −8.74 0.30

Disease: ref. No health problem
Illness −1.47 0.09 −1.47 0.12 −1.46 0.11
Acute disease −6.05 0.11 −5.95 0.11 −6.00 0.12

Interaction: Disabled x Disease
Disabled-Illness 0.77∗ 0.29 0.85∗∗ 0.34 0.84∗∗ 0.37
Disabled-Acute disease 3.64 0.29 3.73 0.34 3.76 0.34

Well-being (VT) 1.12 0.02 1.12 0.02 1.13 0.02
Infarct −2.57 0.19 −2.51 0.21 −2.52 0.21
Heart disease −2.31 0.12 −2.27 0.15 −2.30 0.15
Stroke −2.03 0.20 −2.09 0.26 −2.14 0.27
Arthrosis,Arthrit. −3.86 0.08 −3.93 0.10 −3.92 0.10
Osteoporosis −1.89 0.11 −1.88 0.14 −1.86 0.14
Hepatic cirrhosis −1.84 0.46 −2.17 0.50 −2.12 0.49
Cancer −3.45 0.27 −3.22 0.32 −3.12 0.32

Continued on next page
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– continued from previous page

MODEL Unweighted Method 1 Method 2

Fixed effects Coef. S.E. Coef. S.E. Coef. S.E.

Parkinsonism −1.59 0.34 −1.49 0.41 −1.47 0.40
Ulcer −0.63 0.17 −0.41∗∗ 0.19 −0.45∗∗ 0.19
Cancer in the past −1.22 0.19 −1.24 0.22 −1.21 0.25
Alzheimer −0.71∗∗ 0.32 −0.77∗∗∗ 0.40 −0.74∗∗ 0.36
Stones −1.06 0.13 −1.06 0.16 −1.11 0.16
Thyroid disease −0.55 0.12 −0.61 0.16 −0.63 0.16
Asthma −1.20 0.12 −1.10 0.12 −1.12 0.12
Diabetes −1.28 0.12 −1.40 0.14 −1.38 0.14
Hypertension −0.40 0.07 −0.39 0.09 −0.40 0.09
Bronchitis,Emph. −0.74 0.10 −0.83 0.14 −0.83 0.14

Household composition: ref. 1 component
2 components −0.36 0.07 −0.46 0.09 −0.49 0.09
3 components −0.46 0.07 −0.52 0.10 −0.56 0.10
4 components −0.36 0.07 −0.41 0.09 −0.45 0.09
5 or more comp. −0.41 0.11 −0.47 0.13 −0.50 0.13

Insuf. econ. resour. −0.21 0.06 −0.21∗ 0.07 −0.20∗ 0.07

Urban degree: ref. Low
Intermediate 0.27 0.07 0.22∗ 0.08 0.22∗ 0.08
High 0.39 0.09 0.32∗ 0.12 0.33∗ 0.12

Random effects Param. S.E. Param. S.E. Param. S.E.
3-Municipality: sd(v) 0.83 0.04 0.82 0.04 0.99 0.04
2-Household: sd(u) 2.12 0.04 2.12 0.05 2.04 0.05
1-Residual: sd(e) 5.70 0.05 5.72 0.05 5.73 0.05

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Models including PSUs and the one including sample weights as covariates, do
not show any effect either on parameter estimates (in both fixed part and random
part) neither on standard errors.

The use of weighted estimators involve small enlargement in some coefficient
standard errors and some changes on coefficients, mainly in coefficient related to
diseases or other category having low frequencies in the sample. However, these
changes do not are generally capable of affecting the validity of the results achieved
with model based estimate.
We conclude that model-based analysis can be performed; sample weights are not
informative for model under analysis.
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Chapter 4

Multilevel linear quantile
regression

4.1 Introduction

Given the pronounced asymmetry of response variable and not normal distribution
of residuals we search for more robust estimation methods. Quantile regression
has appeared a good choice for both robustness properties and possibility of more
extensive analysis of the response variable. The main features of this type of
regression are:

• complete mean regression with a complete picture of distributional effects;

• robustness against outliers and asymmetry;

• be distribution-free;

• naturally handles of heteroscedasticity;

• be equivariant to monotone transformations.

We are induce to search for a quantile regression method applicable in the context
of hierarchical data for the following reasons:

1. the errors distribution is not well approximated by a normal;

2. the response variable is skewed on the left and the mean is not a good
representation of the PCS central tendency;

3. the presence of heteroscedasticity in the covariate conditional distributions.
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In the latest years, the need for extend the capabilities of quantile regression
for independent data to deal with hierarchical data structure has led to distinct
approaches. We focused on the one proposed by Geraci and Bottai (M. Geraci
and M. Bottai 2007, 2011) based on asymmetric Laplace density (ALD).
The aim of this part of the work will be to apply their method using the recent
procedure developed by M. Geraci in R: the lqmm package (version 1.02). Accord-
ingly the results showed in this chapter were performed using software R.
In the following paragraphs we will describe ”Quantile Regression” (QR) synthet-
ically, and then we will illustrate the ”Linear Quantile Mixed Model” (LQMM)
approach developed by Geraci and Bottai.

4.2 Quantile regression

Quantile regression is a way to estimate the conditional quantiles of a response
variable distribution in the linear model that provides a more complete view of
possible relationships between variables. Quantile regression, as introduced by
Koenker and Basset (1978), may be viewed as an extension of least squared es-
timation of conditional mean models to the estimation of an ensemble of models
for several conditional quantile functions. Indeed, in analogy with classical linear
regression methods, based on minimizing sums of squared residuals and intending
to estimate models for conditional mean functions, quantile regression methods are
based on minimizing asymmetrically weighted absolute residuals and intending to
estimate conditional median functions (a special case) and conditional quantile
functions for several others quantiles.
If we consider data in the form (xTi , yi), for i=1,. . . ,N , where yi are independent
observations of a continuous random variable having distribution function F not
known, and xTi are row p-vector of a design matrix X, we can define the τ -th
quantile regression coefficients as any solution β̂τ , β̂τ ∈ <p, of the following mini-
mization problem

β̂τ = minβ∈<p

[ ∑
i∈(i:yi≥xT

i β)

τ |yi − xTi β| +
∑

i∈(i:yi<xT
i β)

(1− τ)|yi − xTi β|
]

(4.1)

where 0 < τ < 1 indicates the quantile.
For τ = 1/2 we obtain the median regression and the above equation simplifies to

β̂0.5 = minβ∈<p

∑
i

|yi − xTi β|

All observations greater than the absolute differences between the observations and
the unknown solution are weighted with τ , all observations below the solution are
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weighted with (1 − τ ). QR requires that the τ -th quantile of the error term be
zero. Note that each quantile estimate is τ dependent. The resulting minimiza-
tion problem is a linear function of the parameters and can be solved by linear
programming methods (simplex algorithm). In general, to obtain the parameter
standard errors the bootstrap method is used. Another common way to write the
above minimization problem is to use the ”check function” ρτ defined as

ρτ (v) = τvI[0,∞)(v)− (1− τ)vI(−∞,0)(v) (4.2)

where I(.) is the indicator function. The check function allows us to reformulate
(4.1) in the following way

β̂τ = minβ∈<p

∑
i

ρτ (yi − xTi β) (4.3)

For each covariate the estimated coefficient may be interpreted as the impact of a
one unit change of the covariate on response variable living unchanged the others.
In their paper Koenker and Basset (1978) also established consistency and asymp-
totic normality of those estimators for fixed xi.

4.3 Linear Quantile Mixed Models

The multilevel linear models, likewise to linear regression, estimate the conditional
expectation of a response variable taking into account the hierarchical data struc-
ture, but they are not used to characterize the entire conditional distribution of
a dependent variable. Quantile regression models allow it but cannot deal hier-
archical data. Geraci and Bottai (M. Geraci and M. Bottai, 2007, 2011) have
introduced a new method for quantile regression with mixed effects, the ”Linear
Quantile Mixed Model” (LQMM) that, in this context, we call ”Multilevel Lin-
ear Quantile Regression” (MLQR). They propose a conditional quantile regression
model for continuous responses where random effects are inserted along with fixed
coefficient predictors to take into account the dependence between units in the
context of multilevel data analysis. The approach is based on the link existing
between the minimization of weighted least absolute deviations of quantile regres-
sion (4.1) and the maximization of a Laplace likelihood. Yu, Lu, and Stander in
a work of 2001 presented alternative definition of quantile regression carried out
by using the Asymmetric Laplace Distribution (ALD) function. This distribution
also appeared in paper by Koenker and Machado (1999) on goodness of fit for
quantile regression.
We say that a random variable Y is distributed as an ALD with parameters µ,
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σ and τ and we write it as Y ∼ ALD(µ, σ, τ), if the corresponding probability
density is given by

f(y|µ, σ, τ) =
τ(1− τ)

σ
exp
{
− ρτ

(y − µ
σ

)}
, (4.4)

where ρτ (v) is the check function (also called loss function) defined in (4.2), 0 <
τ < 1 is the skewness parameter, σ > 0 is the scale parameter, and −∞ < µ < +∞
is the location parameter. The support of the random variable Y is the real line.
Note that the loss function ρ assigns weight τ or 1−τ to the observations greater or,
respectively, less than µ and that P (y ≤ µ) = τ . Therefore, the distribution splits
along the scale parameter into two parts, one with probability τ to the left, and one
with probability 1− τ to the right. Denoting µi = xTi β and y = (y1, . . . , yN), and
assuming that yi ∼ ALD(µi, σ, τ), the likelihood for N independent observations
is, bar a proportionality constant,

L(β, σ; y, τ) ∝ σ−1exp

{
−

N∑
i=1

ρτ

(yi − µi
σ

)}
. (4.5)

If we consider σ a nuisance parameter, then the maximization of the likelihood in
(4.5) with respect to the parameter β is equivalent to the minimization of Koenker
function in (4.3). Therefore, ALD proves a useful link between the likelihood
and the inference for QR estimation. Now the extension to hierarchical case data
involves the inclusion of the random effects.
Currently lqmm package has been developed only for 2-level case, and requires:

• y continuous response variable;

• to fix quantile of interest τ (e.g., τ=0.25);

• y = Xβ + Zu + ε linearity relation between dependent and independent
variables ; u denote random effects;

• ε ∼ ALD(0, σ, τ) so we target the quantile τ ;

• u⊥ε independence between level-1 and level-2 residuals ;

Random effects covariance matrix Ψ can be diagonal or having a symmetric struc-
ture. We assume that yij, conditionally on uj, for i = 1, . . . , nj and j = 1, . . . , J
are independently distributed according to an ALD

f(yij|β, uj, σ) =
τ(1− τ)

σ
exp
{
− ρτ

(yij − µij
σ

)}
(4.6)
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where µij = xTijβ + uj is the linear predictor of the τ -th quantile. The conditional
quantile to be estimated, τ , is fixed and known. The random effects induce a
correlation structure among observations on the same group. Assume that uj
are identically distributed according to the same density fu characterized by a τ -
dependent parameter ψ (i.e. ψ(τ)), and they are mutually independent. Assume
that eij are independent, and uj and eij are independent of one another.

Let yj = (yj1, . . . , yjnj
) and f(yj|β, uj, σ) =

∏nj

i=1 f(yij|β, uj, σ) be the den-
sity for the j-th group conditional on the random intercept uj.The complete-data
density of (yj, uj), per j = 1, . . . , J is given by

f(yj,uj|β, σ, ψ) = f(yj|β, uj, σ)f(uj|ψ) (4.7)

where f(uj|ψ) is the density of uj and β, σ, ψ are the parameters of interest. If we
let y = (y1, . . . ,yJ) and u = (u1, . . . , uJ) the joint density of (y,u) based on J
groups is given by:

f(y,u|β, σ, ψ) =
J∏
j=1

f(yj|β, uj, σ)f(uj|ψ) (4.8)

We obtain the marginal density of y by integrating out the random effects, leading
to f(y|β, σ, ψ) =

∫
RJ f(y,u|β, σ, ψ)du. Thus, the inference about the parameters

β, σ, ψ should be based on the marginal likelihood, L(β, σ, ψ; y) =
∑J

j L(β, σ, ψ; yj).
The latter involves an integral that, in general, does not have a closed form solution.
For estimations lqmm procedure provides numerical integration of the likelihood
Lj(β, σ, ψ | yj) =

∫
f(yj, uj | β, σ, ψ)duj via:

- Gauss-Hermite quadrature if u is assumed normally distributed

- Gauss-Laguerre quadrature if u is assumed ALD distributed

We can denote the marginal log-likelihood with lj(β, σ, ψ | yj) = logLj(β, σ, ψ | yj).
For fixed effects β and covariance matrix Ψ estimation is provided by one of the
two following optimization methods:

- derivative-free optimization (with Nelder-Mead algorithm)

- subgradient optimization (gradient search procedure)

Parameters interpretation is the same as in QR: β̂τ is the estimated coefficient
vector at the τ -th quantile and each element of this vector (coefficient) expresses
the marginal change in the τ -th quantile on the response variable due to a 1 unit
change in the associated covariate, living the others unchanged. If we are in the
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contest of a random intercept model ψ̂2
u will be a measure of the dispersion of the

cluster-specific random intercept at the τ -th quantile. The estimators are asymp-
totically normal, therefore a Wald-test can be used for testing hypothesis. In the
same way that QR, coefficients standard errors are calculated via bootstrap. Vari-
ance components can be tested by LR-tests.
The scale parameter σ of the ALD does not have a straightforward interpretation
since the use of the Laplace distribution for the conditional response responds to
the need for a likelihood approach to quantile regression rather than for the obser-
vation to be effectively Laplacian. Hence for assessing fit of the model, AIC and
log-likelihood values can be examined (provided in the lqmm output). This appli-
cation does not provide standard errors for random effects standard deviations.

4.4 Multilevel linear quantile regression estima-

tions

For an experimental application of the procedure lqmm we will use the final models
2 (having household composition as covariate) and 3 (having household typology
as covariate), but recalculated excluding third hierarchical level and residuals het-
eroscedasticity at level 1. These changes on the final models are necessary because
this recent application is currently developed for models with only two levels, the
second change because it does not involve large differences in the estimated coef-
ficients, therefore, priority was given to exposure and computational motivations.
The choice of estimating a multilevel linear quantile regression for two very simi-
lar models will allow us to assess for stability of estimate procedure even for little
variations.
The application is carried out by assuming random effects normally distributed,
thus the estimates will be calculated by numerical integration using the method
of Gauss-Hermite quadrature, and as optimization algorithm the Nelder-Mead has
chosen (which is set by default in the procedure). The sample size does not allow
high number of bootstrap replications, so the calculation of standard errors have
been performed with 100 bootstrap replications that are considered nevertheless
as sufficient.
Seven quantile estimation are fixed for each model: 0.10, 0.25, 0.33, 0.50, 0.67,
0.75 and 0.90. Quantile 0.33 was added because it corresponds approximately to
the sample average of PCS (τ0.324 = 49.89); quantile 0.67 be chosen for symmetry.
Table 4.1 reports unconditional quantile values of response variable.

66



Table 4.1: Sample quantiles of PCS index for 18 years and older.

Quantile 0.05 0.10 0.25 0.33 0.50 0.67 0.75 0.90 0.95

PCS score 27.92 33.89 46.03 50.10 54.32 55.91 56.15 57.34 58.43

The Tables below report the obtained estimates for the two final models. For
model 3 the standard errors are calculated only for central quantiles. The number
of degrees of freedom are: 45 in model 2 and 44 in model 3.
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Table 4.2: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.10 (standard errors for model 3
not performed).

MODEL Model 2 Model 3
Quantile Quantile 0.10 Quantile 0.10

Fixed effects Coef. S.E. Coef.

Intercept 47.54 0.94 46.37
Age 0.003∗∗∗ 0.018 0.020
Ageˆ 2 −0.001∗ 0.000 −0.001
Female −0.01∗∗∗ 0.08 0.07

Qualification: ref. No Educ. Qualif.
University 2.51 0.56 2.88
Upper Secondary 2.19 0.52 2.48
Lower Secondary 1.96 0.52 2.20
Primary 1.51∗ 0.45 1.68

Employment: ref. Employed
Unemployed −0.54∗ 0.16 −0.48
Not working −0.71 0.13 −0.72
Unable to work −5.45 0.65 −4.90

Body-mass Index −0.29 0.07 −0.33
Sport 0.47 0.09 0.42
Disabled −9.65 0.66 −8.89

Disease: ref. No health problem
Illness −1.95 0.13 −1.76
Acute disease −7.49 0.22 −7.46

Interaction: Disabled x Disease
Disabled-Illness 2.93 0.78 1.77
Disabled-Acute disease 7.10 0.77 6.49

Well-being (VT) 1.47 0.03 1.53
Infarct −2.24 0.41 −1.75
Heart disease −2.26 0.31 −2.01
Stroke −1.12∗∗∗ 0.60 −0.07
Arthrosis,Arthrit. −4.85 0.20 −4.93
Osteoporosis −1.54 0.25 −1.41
Hepatic cirrhosis −2.41∗∗∗ 1.36 −2.72

Continued on next page
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MODEL Model 2 Model 3
Quantile Quantile 0.10 Quantile 0.10

Fixed effects Coef. S.E. Coef.

Cancer −3.83 0.66 −3.57
Parkinsonism −2.22∗∗ 0.86 −1.44
Ulcer −0.15∗∗∗ 0.30 −0.14
Cancer in the past −0.97∗∗ 0.45 −0.65
Alzheimer −0.66∗∗∗ 0.83 1.00
Stones −0.73∗∗ 0.34 −0.69
Thyroid disease −0.62∗ 0.23 −0.64
Asthma −0.96 0.25 −0.38
Diabetes −1.31 0.31 −0.75
Hypertension −0.57 0.14 −0.63
Bronchitis,Emph. −0.29∗∗∗ 0.26 −0.54

Household composition: ref. 1 component
2 components 0.30∗∗∗ 0.32
3 components −0.21∗∗∗ 0.36
4 components −0.03∗∗∗ 0.39
5 or more comp. −0.05∗∗∗ 0.41

Household typology: ref. Living alone
Childless couple 0.09
Couple with child. −0.35
Other typology −0.25

Insuf. econ. resources −0.31∗∗∗ 0.23 0.16

Urban degree: ref. Low
Intermediate 0.29∗∗∗ 0.20 0.59
High 0.57∗∗ 0.21 0.91

Random effects Paramet. S.E. Paramet.

2-Household: sd(u) 5.18 5.29
ALD scale (sd) 0.65(6.50) 0.00 0.65(6.50)

Log-likelihood -355704.8 -355936.9
AIC 711499.5 711961.7

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.3: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.25.

MODEL Model 2 Model 3
Quantile Quantile 0.25 Quantile 0.25

Fixed effects Coef. S.E. Coef. S.E.

Intercept 50.66 0.45 51.44 0.56
Age 0.030∗∗ 0.013 0.025∗∗∗ 0.016
Ageˆ 2 −0.002 0.000 −0.002 0.000
Female −0.09∗∗∗ 0.05 −0.13∗ 0.05

Qualification: ref. No Educ. Qualif.
University 1.68 0.30 1.54 0.33
Upper Secondary 1.49 0.29 1.35 0.33
Lower Secondary 1.24 0.28 1.14 0.31
Primary 0.84∗ 0.25 0.83∗ 0.28

Employment: ref. Employed
Unemployed −0.61 0.11 −0.61 0.12
Not workinging −0.61 0.08 −0.61 0.08
Unable to work −4.84 0.34 −4.87 0.42

Body-mass Index −0.36 0.04 −0.35 0.05
Sport 0.54 0.06 0.47 0.06
Disabled −10.24 0.34 −10.06 0.41

Disease: ref. No health problem
Illness −1.82 0.08 −1.85 0.08
Acute disease −7.70 0.10 −7.70 0.13

Interaction: Disabled x Disease
Disabled-Illness 1.95 0.44 2.02 0.42
Disabled-Acute disease 6.72 0.36 6.56 0.43

Well-being (VT) 1.31 0.02 1.30 0.02
Infarct −2.80 0.19 −2.72 0.22
Heart disease −2.42 0.18 −2.39 0.18
Stroke −1.95 0.34 −2.17 0.32
Arthrosis,Arthrit. −4.71 0.12 −4.71 0.13
Osteoporosis −2.01 0.16 −2.04 0.16
Hepatic cirrhosis −1.79∗ 0.68 −2.00 0.58
Cancer −3.82 0.36 −3.75 0.40

Continued on next page
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MODEL Model 2 Model 3
Quantile Quantile 0.25 Quantile 0.25

Fixed effects Coef. S.E. Coef. S.E.

Parkinsonism −1.51 0.42 −1.35∗ 0.47
Ulcer −0.57∗ 0.18 −0.55∗∗ 0.22
Cancer in the past −1.52 0.28 −1.44 0.30
Alzheimer −0.41∗∗∗ 0.45 −0.43∗∗∗ 0.51
Stones −0.97 0.18 −0.99 0.21
Thyroid disease −0.60 0.16 −0.59∗ 0.18
Asthma −1.22 0.16 −1.19 0.17
Diabetes −1.54 0.14 −1.54 0.16
Hypertension −0.50 0.09 −0.44 0.09
Bronchitis,Emph. −0.63 0.14 −0.66 0.14

Household composition: ref. 1 component
2 components −0.33∗∗ 0.13
3 components −0.46∗ 0.14
4 components −0.24∗∗∗ 0.16
5 or more comp. −0.28∗∗∗ 0.18

Household typology: ref. Living alone
Childless couple −0.52 0.17
Couple with child. −0.57 0.17
Other typology −0.56∗ 0.18

Insuf. econ. resources −0.19∗∗∗ 0.12 −0.36∗∗ 0.14

Urban degree: ref. Low
Intermediate 0.36 0.09 0.30∗ 0.09
High 0.51 0.09 0.46 0.11

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 0.00 0.00
ALD scale (sd) 1.54(6.49) 0.01 1.54(6.49) 0.01

Log-likelihood -347730.8 -347749.9
AIC 695551.7 695587.7

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.4: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.33

MODEL Model 2 Model 3
Quantile Quantile 0.33 Quantile 0.33

Fixed effects Coef. S.E. Coef. S.E.

Intercept 52.44 0.32 52.39 0.37
Age 0.040 0.008 0.045 0.011
Ageˆ 2 −0.002 0.000 −0.002 0.000
Female −0.14∗ 0.04 −0.17 0.04

Qualification: ref. No Educ. Qualif.
University 1.19 0.23 1.16 0.23
Upper Secondary 1.01 0.23 0.96 0.23
Lower Secondary 0.80 0.23 0.74∗ 0.22
Primary 0.40∗∗∗ 0.21 0.32∗∗∗ 0.19

Employment: ref. Employed
Unemployed −0.42 0.08 −0.40 0.08
Not workinging −0.48 0.06 −0.45 0.06
Unable to work −4.67 0.32 −4.62 0.29

Body-mass Index −0.36 0.03 −0.36 0.03
Sport 0.43 0.04 0.44 0.04
Disabled −10.65 0.47 −10.53 0.38

Disease: ref. No health problem
Illness −1.58 0.08 −1.58 0.07
Acute disease −7.76 0.13 −7.78 0.14

Interaction: Disabled x Disease
Disabled-Illness 1.41∗ 0.42 1.33∗ 0.40
Disabled-Acute disease 6.59 0.46 6.52 0.43

Well-being (VT) 1.12 0.02 1.12 0.02
Infarct −2.80 0.27 −2.84 0.24
Heart disease −2.61 0.15 −2.59 0.14
Stroke −2.18 0.29 −2.13 0.24
Arthrosis,Arthrit. −4.72 0.12 −4.74 0.10
Osteoporosis −2.16 0.13 −2.14 0.13
Hepatic cirrhosis −1.58∗∗ 0.61 −1.54∗ 0.56
Cancer −3.87 0.31 −3.83 0.29

Continued on next page
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MODEL Model 2 Model 3
Quantile Quantile 0.33 Quantile 0.33

Fixed effects Coef. S.E. Coef. S.E.

Parkinsonism −1.88 0.42 −1.84 0.41
Ulcer −0.61 0.18 −0.66 0.16
Cancer in the past −1.39 0.28 −1.33 0.29
Alzheimer −0.38∗∗∗ 0.34 −0.40∗∗∗ 0.31
Stones −0.98 0.16 −0.99 0.19
Thyroid disease −0.66 0.14 −0.64 0.13
Asthma −1.32 0.16 −1.27 0.14
Diabetes −1.61 0.15 −1.61 0.13
Hypertension −0.47 0.08 −0.48 0.08
Bronchitis,Emph. −0.93 0.14 −0.95 0.12

Household composition: ref. 1 component
2 components −0.19∗∗∗ 0.10
3 components −0.24∗∗ 0.11
4 components −0.13∗∗∗ 0.11
5 or more comp. −0.13∗∗∗ 0.13

Household typology: ref. Living alone
Childless couple −0.22∗∗ 0.10
Couple with child. −0.21∗∗ 0.10
Other typology −0.20∗∗ 0.10

Insuf. econ. resources −0.20∗∗ 0.10 −0.16∗∗ 0.07

Urban degree: ref. Low
Intermediate 0.14∗∗∗ 0.10 0.20∗ 0.07
High 0.29∗ 0.10 0.33 0.07

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 2.21 2.21
ALD scale (sd) 1.88(6.35) 0.01 1.88(6.35) 0.01

Log-likelihood -342094.6 -342090.9
AIC 684279.1 684269.7

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.5: Multilevel linear regression: model 2 and model 3 without level 3.

MODEL Model 2 Model 3

Fixed effects Coef. S.E. Coef. S.E.

Intercept 53.38 0.20 53.37 0.19
Age 0.039 0.005 0.040 0.005
Ageˆ 2 −0.002 0.000 −0.002 0.000
Female −0.12∗ 0.04 −0.12∗ 0.04

Qualification: ref. No Educ. Qualif.
University 1.33 0.15 1.33 0.15
Upper Secondary 1.18 0.13 1.18 0.13
Lower Secondary 0.88 0.11 0.88 0.11
Primary 0.52 0.12 0.52 0.12

Employment: ref. Employed
Unemployed −0.30∗ 0.09 −0.31∗ 0.09
Not workinging −0.44 0.05 −0.44 0.05
Unable to work −4.42 0.24 −4.42 0.24

Body-mass Index −0.44 0.03 −0.44 0.03
Sport 0.64 0.04 0.64 0.04
Disabled −8.89 0.27 −8.90 0.27

Disease: ref. No health problem
Illness −1.42 0.09 −1.42 0.09
Acute disease −6.01 0.11 −6.00 0.11

Interaction: Disabled x Disease
Disabled-Illness 0.76∗∗ 0.29 0.76∗∗ 0.29
Disabled-Acute disease 3.62 0.29 3.62 0.29

Well-being (VT) 1.11 0.02 1.11 0.02
Infarct −2.57 0.19 −2.56 0.19
Heart disease −2.32 0.12 −2.32 0.12
Stroke −2.03 0.20 −2.03 0.20
Arthrosis,Arthrit. −3.86 0.08 −3.86 0.08
Osteoporosis −1.89 0.11 −1.89 0.11
Hepatic cirrhosis −1.82 0.46 −1.82 0.46
Cancer −3.45 0.27 −3.45 0.27
Parkinsonism −1.61 0.34 −1.61 0.34

Continued on next page
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MODEL Model 2 Model 3

Fixed effects Coef. S.E. Coef. S.E.

Ulcer −0.65 0.17 −0.65 0.17
Cancer in the past −1.18 0.19 −1.18 0.19
Alzheimer −0.68∗∗ 0.32 −0.68∗∗ 0.32
Stones −1.07 0.13 −1.06 0.13
Thyroid disease −0.56 0.12 −0.56 0.12
Asthma −1.19 0.12 −1.19 0.12
Diabetes −1.30 0.12 −1.30 0.12
Hypertension −0.40 0.07 −0.40 0.07
Bronchitis,Emph. −0.76 0.10 −0.75 0.10

Household composition: ref. 1 component
2 components −0.36 0.07
3 components −0.47 0.07
4 components −0.39 0.08
5 or more comp. −0.45 0.10

Household typology: ref. Living alone
Childless couple −0.42 0.08
Couple with child. −0.42 0.07
Other typology −0.34 0.09

Insuf. econ. resources −0.19∗ 0.06 −0.20∗ 0.06

Urban degree: ref. Low
Intermediate 0.32 0.07 0.32 0.07
High 0.46 0.08 0.46 0.08

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 2.25 0.04 2.25 0.04
1-Residuals: sd(e) 5.70 0.05 5.70 0.05

Log-likelihood -341341.3 -341342.6
AIC 682772.7 682773.2

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.6: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.50.

MODEL Model 2 Model 3
Quantile Quantile 0.50 Quantile 0.50

Fixed effects Coef. S.E. Coef. S.E.

Intercept 54.43 0.49 54.23 0.58
Age 0.059 0.009 0.062 0.010
Ageˆ 2 −0.002 0.000 −0.002 0.000
Female −0.20 0.04 −0.20 0.04

Qualification: ref. No Educ. Qualif.
University 0.83∗∗ 0.34 0.94∗∗ 0.36
Upper Secondary 0.70∗∗ 0.30 0.81∗∗ 0.33
Lower Secondary 0.56∗∗∗ 0.30 0.66∗∗ 0.32
Primary 0.25∗∗∗ 0.28 0.36∗∗∗ 0.28

Employment: ref. Employed
Unemployed −0.07∗∗∗ 0.07 −0.08∗∗∗ 0.07
Not working −0.07∗∗∗ 0.05 −0.04∗∗∗ 0.07
Unable to work −4.36 0.37 −4.38 0.37

Body-mass Index −0.23 0.03 −0.23 0.03
Sport 0.32 0.04 0.32 0.05
Disabled −11.03 0.64 −11.17 0.68

Disease: ref. No health problem
Ilness −0.84 0.07 −0.82 0.08
Acute disease −6.64 0.18 −6.64 0.17

Interaction: Disabled x Disease
Disabled-Ilness −0.24∗∗∗ 0.76 −0.12∗∗∗ 0.72
Disabled-Acute disease 4.15 0.79 4.29 0.83

Well-being (VT) 0.63 0.07 0.63 0.08
Infarct −2.64 0.32 −2.72 0.28
Heart disease −2.86 0.19 −2.89 0.22
Stroke −2.32 0.38 −2.36 0.44
Arthrosis,Arthrit. −4.56 0.16 −4.56 0.17
Osteoporosis −2.42 0.14 −2.39 0.18
Hepatic cirrhosis −2.14∗ 0.66 −2.18∗ 0.68
Cancer −3.89 0.40 −3.94 0.49

Continued on next page
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MODEL Model 2 Model 3
Quantile Quantile 0.50 Quantile 0.50

Fixed effects Coef. S.E. Coef. S.E.

Parkinson −2.18 0.44 −2.12 0.46
Ulcer −0.62∗ 0.21 −0.64∗ 0.23
Cancer in the past −1.09 0.31 −1.16∗ 0.35
Alzheimer −1.33∗ 0.43 −1.37∗ 0.52
Stones −1.09 0.24 −1.11 0.22
Thyroid disease −0.54 0.16 −0.53∗ 0.17
Asthma −1.08 0.14 −1.08 0.15
Diabetes −1.71 0.14 −1.70 0.16
Hypertension −0.49 0.07 −0.48 0.08
Bronchitis,Emph. −1.24 0.18 −1.23 0.14

Household composition: ref. 1 component
2 components −0.17∗∗∗ 0.12
3 components −0.20∗∗∗ 0.12
4 components −0.15∗∗∗ 0.13
5 or more comp. −0.15∗∗∗ 0.13

Household typology: ref. Living alone
Childless couple −0.15∗∗∗ 0.13
Couple with child. −0.14∗∗∗ 0.14
Other typology −0.12∗∗∗ 0.13

Insuf. econ. resources −0.14∗∗∗ 0.10 −0.11∗∗∗ 0.12

Urban degree: ref. Low
Intermediate 0.11∗∗ 0.05 0.11∗∗∗ 0.07
High 0.19 0.05 0.19∗ 0.07

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 0.22 0.19
ALD scale (sd) 2.13(6.01) 0.01 2.13(6.01) 0.01

Log-likelihood -332549.2 -332543.7
AIC 665188.3 665175.4

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.7: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.67.

MODEL Model 2 Model 3
Quantile Quantile 0.67 Quantile 0.67

Fixed effects Coef. S.E. Coef. S.E.

Intercept 55.71 0.43 55.48 0.45
Age 0.039 0.011 0.048 0.013
Ageˆ 2 −0.001 0.000 −0.001 0.000
Female −0.24 0.04 −0.20 0.04

Qualification: ref. No Educ. Qualif.
University 0.73∗∗ 0.32 0.88∗ 0.32
Upper Secondary 0.56∗∗∗ 0.32 0.75∗∗ 0.32
Lower Secondary 0.44∗∗∗ 0.30 0.66∗∗ 0.30
Primary 0.28∗∗∗ 0.29 0.47∗∗∗ 0.28

Employment: ref. Employed
Unemployed 0.14∗∗∗ 0.08 0.17∗∗∗ 0.09
Not workinging 0.08∗∗∗ 0.06 0.09∗∗∗ 0.07
Unable to work −3.75 0.35 −3.83 0.32

Body-mass Index −0.19 0.03 −0.18 0.03
Sport 0.23 0.04 0.25 0.03
Disabled −10.03 0.77 −10.06 0.66

Disease: ref. No health problem
Illness −0.44 0.04 −0.42 0.04
Acute disease −4.02 0.15 −4.04 0.15

Interaction: Disabled x Disease
Disabled-Illness −2.09∗ 0.67 −1.97∗ 0.68
Disabled-Acute disease −1.02∗∗∗ 0.67 −0.82∗∗∗ 0.58

Well-being (VT) 0.39 0.02 0.38 0.02
Infarct −2.53 0.27 −2.49 0.28
Heart disease −2.77 0.16 −2.77 0.18
Stroke −2.34 0.33 −2.29 0.30
Arthrosis,Arthrit. −3.31 0.10 −3.29 0.09
Osteoporosis −2.33 0.16 −2.37 0.15
Hepatic cirrhosis −1.38∗∗ 0.54 −1.31∗∗ 0.54

Continued on next page
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MODEL Model 2 Model 3
Quantile Quantile 0.67 Quantile 0.67

Fixed effects Coef. S.E. Coef. S.E.

Cancer −3.38 0.36 −3.42 0.40
Parkinsonism −2.65 0.53 −2.57 0.60
Ulcer −0.63 0.16 −0.62 0.15
Cancer in the past −0.75 0.20 −0.72∗ 0.22
Alzheimer −1.94 0.53 −1.97 0.53
Stones −0.73 0.15 −0.74 0.14
Thyroid disease −0.35 0.10 −0.38 0.09
Asthma −0.84 0.11 −0.84 0.11
Diabetes −1.25 0.12 −1.27 0.14
Hypertension −0.37 0.06 −0.40 0.06
Bronchitis,Emph. −1.36 0.12 −1.30 0.12

Household composition: ref. 1 component
2 components −0.09∗∗∗ 0.12
3 components −0.14∗∗∗ 0.13
4 components −0.13∗∗∗ 0.13
5 or more comp. −0.09∗∗∗ 0.12

Household typology: ref. Living alone
Childless couple −0.20∗ 0.08
Couple with child. −0.24∗ 0.09
Other typology −0.15∗∗∗ 0.08

Insuf. econ. resources −0.10∗∗∗ 0.06 −0.12∗∗ 0.05

Urban degree: ref. Low
Intermediate 0.10∗∗ 0.05 0.15∗ 0.05
High 0.17 0.05 0.22 0.05

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 0.23 0.24
ALD scale (sd) 1.82(6.15) 0.01 1.82(6.15) 0.01

Log-likelihood -329120.4 -329107
AIC 658330.7 658301.9

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”

79



Table 4.8: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.75.

MODEL Model 2 Model 3
Quantile Quantile 0.75 Quantile 0.75

Fixed effects Coef. S.E. Coef. S.E.

Intercept 56.22 0.31 55.88 0.32
Age 0.037 0.010 0.044 0.008
Ageˆ 2 −0.001 0.000 −0.001 0.000
Female −0.16 0.04 −0.16 0.04

Qualification: ref. No Educ. Qualif.
University 0.56∗ 0.18 0.73 0.19
Upper Secondary 0.40∗∗ 0.18 0.63 0.18
Lower Secondary 0.30∗∗∗ 0.17 0.53∗ 0.17
Primary 0.17∗∗∗ 0.16 0.37∗∗ 0.17

Employment: ref. Employed
Unemployed 0.14∗∗∗ 0.07 0.18∗∗ 0.07
Not working 0.06∗∗∗ 0.06 0.09∗∗∗ 0.05
Unable to work −3.80 0.37 −3.75 0.36

Body-mass Index −0.19 0.02 −0.20 0.02
Sport 0.27 0.03 0.28 0.03
Disabled −9.13 0.66 −9.28 0.73

Disease: ref. No health problem
Ilness −0.36 0.04 −0.35 0.04
Acute disease −2.69 0.13 −2.65 0.15

Interaction: Disabled x Disease
Disabled-Ilness −2.96 0.70 −2.77∗ 0.86
Disabled-Acute disease −3.98 0.59 −3.99 0.72

Well-being (VT) 0.31 0.02 0.30 0.02
Infarct −2.34 0.25 −2.38 0.26
Heart disease −2.47 0.13 −2.49 0.16
Stroke −2.17 0.28 −2.19 0.30
Arthrosis,Arthrit. −2.52 0.07 −2.50 0.09
Osteoporosis −2.09 0.15 −2.11 0.13
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MODEL Model 2 Model 3
Quantile Quantile 0.75 Quantile 0.75

Fixed effects Coef. S.E. Coef. S.E.

Hepatic cirrhosis −1.38∗ 0.45 −1.22∗∗ 0.48
Cancer −3.09 0.30 −3.18 0.31
Parkinson −2.73 0.52 −2.80 0.44
Ulcer −0.58 0.15 −0.62 0.18
Cancer in the past −0.74 0.15 −0.76 0.20
Alzheimer −2.24 0.49 −2.17 0.48
Stones −0.76 0.14 −0.78 0.14
Thyroid disease −0.30∗ 0.11 −0.34∗ 0.11
Asthma −0.81 0.10 −0.86 0.11
Diabetes −1.11 0.09 −1.11 0.12
Hypertension −0.36 0.05 −0.36 0.06
Bronchitis,Emph. −1.17 0.12 −1.16 0.10

Household composition: ref. 1 component
2 components −0.05∗∗∗ 0.12
3 components −0.10∗∗∗ 0.13
4 components −0.10∗∗∗ 0.14
5 or more comp. −0.09∗∗∗ 0.14

Household typology: ref. Living alone
Childless couple −0.12∗∗∗ 0.10
Couple with child. −0.16∗∗∗ 0.13
Other typology −0.07∗∗∗ 0.12

Insuf. econ. resources −0.05∗∗∗ 0.06 −0.01∗∗∗ 0.06

Urban degree: ref. Low
Intermediate 0.12∗∗ 0.06 0.12∗∗ 0.05
High 0.17∗ 0.05 0.18 0.05

Random effects Paramet. S.E. Paramet. S.E.

2-Household: sd(u) 0.00 0.00
ALD scale (sd) 1.54(6.49) 0.01 1.54(6.49) 0.01

Log-likelihood -329787.8 -329764.7
AIC 659665.6 659617.3

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Table 4.9: Multilevel linear quantile regression: estimated parameters and stan-
dard errors for model 2 and model 3: quantile 0.90.

MODEL Model 2 Model 3
Quantile Quantile 0.90 Quantile 0.90

Fixed effects Coef. S.E. Coef.

Intercept 57.33 0.47 56.96
Age 0.041∗∗ 0.016 0.051
Ageˆ 2 −0.001 0.000 −0.002
Female −0.17∗ 0.05 −0.20

Qualification: ref. No Educ. Qualif.
University 0.81∗∗ 0.32 0.99
Upper Secondary 0.79∗∗ 0.31 0.95
Lower Secondary 0.57∗∗∗ 0.31 0.73
Primary 0.36∗∗∗ 0.29 0.48

Employment: ref. Employed
Unemployed 0.13∗∗∗ 0.14 0.27
Not workinging 0.06∗∗∗ 0.10 0.17
Unable to work −3.71 0.46 −3.27

Body-mass Index −0.28 0.04 −0.29
Sport 0.39 0.06 0.42
Disabled −6.68 0.57 −5.92

Disease: ref. No health problem
Illness −0.48 0.09 −0.44
Acute disease −2.75 0.17 −2.69

Interaction: Disabled x Disease
Disabled-Illness −2.83 0.70 −2.78
Disabled-Acute disease −4.85 0.75 −5.62

Well-being (VT) 0.37 0.03 0.34
Infarct −1.94 0.31 −1.83
Heart disease −2.28 0.20 −2.13
Stroke −2.06 0.44 −1.77
Arthrosis,Arthrit. −2.31 0.10 −2.28
Osteoporosis −1.91 0.17 −1.75

Continued on next page
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– continued from previous page

MODEL Model 2 Model 3
Quantile Quantile 0.90 Quantile 0.90

Fixed effects Coef. S.E. Coef.

Hepatic cirrhosis −0.73∗∗∗ 0.57 −0.83
Cancer −2.52 0.53 −2.60
Parkinsonism −2.74 0.64 −3.18
Ulcer −0.76∗ 0.24 −0.48
Cancer in the past −0.95∗ 0.36 −0.63
Alzheimer −1.92 0.56 −2.65
Stones −0.72∗ 0.24 −0.56
Thyroid disease −0.32∗∗∗ 0.17 −0.36
Asthma −0.94 0.22 −0.75
Diabetes −0.95 0.17 −0.95
Hypertension −0.38 0.09 −0.37
Bronchitis,Emph. −0.91 0.16 −0.87

Household composition: ref. 1 component
2 components −0.13∗∗∗ 0.13
3 components −0.03∗∗∗ 0.14
4 components −0.04∗∗∗ 0.16
5 or more comp. −0.07∗∗∗ 0.18

Household typology: ref. Living alone
Childless couple −0.07
Couple with child. 0.08
Other typology 0.21

Insuf. econ. resources −0.08∗∗∗ 0.09 −0.11

Urban degree: ref. Low
Intermediate 0.31∗ 0.11 0.33
High 0.39 0.11 0.36

Random effects Paramet. S.E. Paramet.

2-Household: sd(u) 0.00 2.56
ALD scale (sd) 0.63(6.35) 0.01 0.64(6.41)

Log-likelihood -334647.5 -334698.5
AIC 669385.1 669485.1

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”

83



The MLQR analysis reveals more information than the MLM. Describe this
additional information can be cumbersome, in particular when a long sequence
of quantile values are carried-out. A graphical view of MLQR estimates becomes
a necessary step in interpreting of the results. Consequently for each covariate,
arrays of coefficients for a range of quantiles can be used to determine how a one-
unit increase in the covariate affects on the response variable. A typical way to
highlight these effects is to plot covariate coefficients and confidence interval in a
graphic where a predictor variable effect β̂τ is on the y-axis and the quantile value
τ is on the x-axis.

Following figures report for model 2 these graphs to which is superimposed
MLM estimates and confidence intervals. Tow additional graphs on Disabled-
Illness and Disabled-Acute disease interaction coefficients are show summing effects
of related coefficients. Others two similar graphs are added: the one on standard
deviation of household random effects and the other on AIC values.

Figure 4.1: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2.
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Figure 4.2: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2. 85



Figure 4.3: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2. 86



Figure 4.4: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2. 87



Figure 4.5: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2. 88



Figure 4.6: MLQR (blue) and MLM (red) estimates and 95% confidence intervals
for PCS model 2. 89



Figure 4.7: MLQR (blue) and MLM (red): combined effect for Interaction
Disabled-Illness (on the left) and for Interaction Disabled-Acute disease (on the
right) for PCS model 2.

Comparing model 2 and model 3 MLQR estimates appear a substantial overlap
of results for fixed effects; only in quantile 0.10 and quantile 0.90 there are some
differences (Table 4.2 and 4.9). This is not a surprise because, in the QR, study
of the tails of distribution requires a suitable number of observations to ensure
stability of the estimates, that is rare to found. The equivalence of point estimates
between models 2 and 3 appear evident even comparing results of MLM estimates
(Table 4.5) and then we can have confidence on fixed part estimate stability of
this novel procedure.
The same thing can not be said for random part parameters estimate due to large
difference on level 2 variance estimated for quantile 0.90: sd(u)=0 in model 2 and
sd(u)=2.46 in model 3. On the other hand, also the values of intercept standard
deviation by quantile seems a bit dubious. Looking on the left of Figure 4.8 we
see a fluctuating trend of the random effects standard deviation along the quan-
tiles; particularly surprise us the null standard deviation of household intercept at
0.25 quantile neighbouring to quantile 0.33 value of 2.21, and perfectly comparable
with the MLM estimate, 2.25. Nevertheless, the anomalous fluctuations of random
effects parameter can be due to very limited size of the level 2 units.
In Figure 4.9 the quantile-quantile plots of random effects of model 2 reveal per-
sistence of some not normal distribution even in MLQR estimate (maybe assume
random effects ALD distributed could be improve the estimations of random part
of the model).
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Figure 4.8: MLQR (blue) and MLM (red) estimated standard deviation of house-
hold random effects (on the left) and AIC (Akaike’s Information Criterion) values
(on the right) for PCS model 2.

Figure 4.9: Normal quantile-quantile plot of MLQR (quantiles 0.33, 0.50 and 0.67)
and MLM household random effects of model 2.
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In Figure 4.8, AIC values show better fitting for quantiles 0.67 and 0.75 cor-
responding to PCS distribution with higher frequencies. MLQR and MLM AIC
values intersect at quantile 0.33.
For fixed part we will confine our comment to only some of the covariates. Coef-
ficient standard errors performed with 100 bootstrap replication seem be enough.
Observing all covariate panels (Fig. from 4.1 to 4.6) we note for almost all co-
variates, with the exception of Sport, Disabled, Acute disease and Arthrosis, that
MLQL estimates and the MLM estimate intersect at quantile 0.33. This is a sign
that the MLM estimates are pulled towards left tail of the distribution, and their
location are at about a third of the distribution.
The first panel in Figure 4.1 display intercept estimates and may be interpreted as
the estimated conditional quantile function of the PCS score distribution of a male
having 18 years old, without education qualification, employed, normal-weight, do
not practice sport, not disabled, without health problem and chronic disease, liv-
ing alone with sufficient economic resource in a little town. Others panel in this
figure show that the effect of age and gender are similar to MLM estimate along
the distribution.
Education covariates is associated with modest increase of PCS score and the
positive effect tends to decrease towards upper quantiles. The same decreasing
magnitude happens for several other covariate: Unemployed, Not working, Unable
to work, Well-being (VT), Arthrosis, Urban Degree, sometime losing significance.
Infarct, Stroke, Ulcer, Stones, Hypertension and Insufficient econominc resource
are covariate having an impact constant along the conditional distribution, and
then exerting a pure location shift effect. For these variables MLQR results are
quite consistent with MLM results.
Of particular interest are Acute disease, Well-being (VT) and Arthrosis-Arthritis
quantile coefficient estimates. Clearly in these covariates the impact on PCS score
is different across the conditional distribution and MLM estimates result an in-
termediate effect. As evidenced by quantile regression coefficients (Figure 4.3) an
Acute disease involved greater disparity in lower quantile than in upper quantile;
about 52 percent of subjects with acute disease have a negative difference on PCS
score two points higher than the one estimated by MLM (-7.8 and -6 respectively
for quantile 0.33).
Similar evaluation may be done for Arthrosis coefficient (figure 4.4): 55 percent
of subjects affected by this pathology have perceived a negative effect on physical
health higher than the one estimated by MLM.
The MLQR analysis brings out an interesting differential effects of several covari-
ates along conditional distribution of response variable taking into account the
dependence between observations.
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Chapter 5

Conclusions and perspectives

In this chapter we summarize the main results of this work and some possible
analysis to realize in the future.
This thesis aims to perform a Multilevel linear model for data collected by the
Istat survey on Health conditions in 2004-2005. The response variable chosen for
the analysis is the Physical Component Summary (PCS) index based on SF-12
questionnaire. For Multilevel analysis three level of hierarchy are considered: in-
dividual (level 1), household (level 2) and municipality (level 3).
Our study shows a high degree of homogeneity within level 1 units belonging from
the same group, with an intraclass correlation of 27% in a level-2 null model. Con-
sidering a level-3 null model, the largest amount of variance lies at level 1, almost
73%, a percentage of almost 25 is at level 2 and a residual quote is present at level
3, more than 2%.
Considerable heteroscedasticity on age are detected and modelled on level-1 resid-
uals by using a dummy variable that distinguishes for age class and sex. Three
final models were estimated which are distinguished by the presence of Vitality
(well-being) index or for level-2 covariate on household composition rather than
household typology. Almost all variance is explained by level 1 covariates. In
fact, in our model the explanatory variables having more impact on the outcome
are disability, unable to work, age and chronic diseases (18 pathologies), while
socio-economic factors (measured by the adequacy economic resources available
as declared by householder) and contextual variables (such as urban degree and
household typology) have a little effect, although significant.
Others external contextual variables are tested without success. Significant posi-
tive effect in mean scores are detected increasing with education level.
The percentage of variance explained by the final models is considerable: about
48% and 45% at municipality and household level respectively; percentages vary-
ing between 24% and 89% at level 1 and increasing from younger age groups to
older ones were explained.
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Model-based and design based analysis are performed for one of the final models
to assess for informativeness of the survey weights. The results obtained have
confirmed the non-informativeness of the weights.
The not normal distribution of residuals and level-2 random effects as well as the
markedly skewed of the response variable led us to search for more robust esti-
mation methods. Quantile regression have a good property of robustness and is
distribution free. In recent years, with the aim to extend the capability of quantile
regression for independent data to deal with hierarchical data, M. Geraci and M.
Bottai (2007, 2011) propose a new approach that brings together these two regres-
sions: quantile regression and multilevel regression.
An additional analysis on two final models are performed by using the R procedure
lqmm developed by M. Geraci (2012) for a ”Linear Quantile Mixed Model”, here
named ”Multilevel Linear Quantile Regression”, estimate.
This novel procedure of analysis give us the possibility to describe more generally
the conditional distribution of the response through the estimation of its quantiles,
while accounting for the dependence among the observations. This has represented
a great advantage of our models with respect to classic multilevel regression. The
median regression with random effects reveals to be more efficient than the mean
regression in representation of the outcome central tendency. A more detailed
analysis of the conditional distribution of the response on other quantiles high-
lighted a differential effect of some covariate along the distribution.
This model perform well especially in the fixed part estimates showing stability in
the estimated values.
Some anomalous results seem to be present in random part estimates. It is prob-
ably due to particular hierarchical structure of the data characterized by many
small groups: for some quantiles the intercept variance estimate is equal to zero.
In order to perform more appropriate evaluations on capability of this procedure to
capture the variability of level 2 could be interesting re-estimate the model raising
the second hierarchical level (for example from household to municipality or large
area) also allowing the comparison with other studies performed on these data and
using a territorial level less detailed than in this study.
As well as in the simple multilevel analysis, the random effects present not nor-
mal distribution; perform a new analysis assuming random effects not-normal (e.g.
asymmetric Laplace distributed) could improve the results.
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Appendice A

Table 1: Descriptive statistics by covariate included in the models.

VARIABLE N Mean Stand.Dev. Median IQR
Age
18-19 2, 594 55.29 4.83 56.58 1.97
20-24 7, 035 55.08 4.89 56.26 2.04
25-29 7, 995 54.51 5.34 56.02 2.68
30-34 9, 409 53.77 6.08 55.91 3.77
35-39 10, 085 53.36 6.45 55.59 4.46
40-44 10, 085 53.01 6.62 55.50 4.63
45-49 9, 115 52.14 7.29 55.19 5.63
50-54 8, 441 50.89 8.22 54.32 7.78
55-59 8, 768 49.70 8.73 53.26 10.12
60-64 7, 134 48.03 9.54 51.50 12.59
65-69 7, 193 46.13 10.17 49.52 15.75
70-74 6, 474 43.55 10.77 45.71 17.87
75-79 5, 336 40.58 11.24 41.77 19.36
80-84 3, 762 37.68 11.16 37.35 18.89
85-89 1, 484 34.05 10.87 32.05 17.53
¿=90 934 31.46 9.91 28.50 13.96
Gender
Maschi 50, 452 51.01 8.81 55.13 7.76
Femmine 55, 392 48.87 10.28 53.49 12.59
Qualification
University 10, 105 53.22 6.79 55.61 4.41
Upper Secondary 27, 946 53.11 6.97 55.59 4.50
Lower Secondary 37, 246 51.27 8.39 54.97 7.21
Primary 24, 637 44.70 11.14 47.88 18.47
No Educ. Qual. 5, 910 41.88 12.15 43.24 22.57

Continued on next page
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– continued from previous page

VARIABLE N Mean Stand.Dev. Median IQR

Employment status
Employed 50, 198 53.10 6.46 55.50 4.63
Unemployed 5, 963 53.33 7.01 55.91 4.77
Not working 47, 908 46.80 10.85 50.86 16.33
Unable to work 1, 775 30.87 10.14 27.62 11.96
Body-mass Index
IMC 105, 844 49.89 9.67 54.32 10.12
Sport
No 54, 824 48.06 10.85 53.01 14.24
Yes 51, 020 51.86 7.74 55.26 6.73
Disabled
No 100, 036 51.05 8.33 54.83 8.27
Yes 5, 808 29.95 9.40 27.19 11.00
Well-being (VT) Index
VT 105, 844 49.89 9.67 54.32 10.12
Infarct
No 103, 610 50.15 9.46 54.53 9.61
Yes 2, 234 37.82 11.22 36.77 19.66
Heart disease
No 101, 113 50.48 9.17 54.78 8.95
Yes 4, 731 37.26 11.33 35.94 19.19
Stroke
No 104, 382 50.11 9.45 54.39 9.68
Yes 1, 462 34.12 11.74 30.90 18.88
Arthrosis,Arthrit.
No 82, 251 52.66 7.02 55.30 5.20
Yes 23, 593 40.23 11.29 40.78 19.55
Osteoporosis
No 99, 007 50.70 8.99 54.83 8.55
Yes 6, 837 38.12 11.38 37.36 19.70
Hepatic cirrhosis
No 105, 519 49.92 9.64 54.32 10.09
Yes 325 39.29 12.14 38.71 22.34
Parkinson
No 105, 448 49.96 9.60 54.32 10.00
Yes 396 31.43 10.46 28.38 14.13

Continued on next page
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– continued from previous page

VARIABLE N Mean Stand.Dev. Median IQR

Ulcer
No 102, 747 50.13 9.51 54.54 9.62
Yes 3, 097 42.09 11.57 43.60 19.96
Cancer
No 104, 637 50.03 9.55 54.32 9.79
Yes 1, 207 37.67 11.64 36.30 20.73
Cancer in the past
No 104, 271 50.00 9.60 54.32 9.87
Yes 1, 573 42.76 11.45 44.44 19.36
Alzheimer
No 105, 258 50.00 9.55 54.32 9.90
Yes 586 29.34 8.71 26.81 8.62
Stones
No 102, 899 50.11 9.52 54.51 9.67
Yes 2, 945 42.34 11.59 43.71 20.35
Thyroid disease
No 101, 487 50.09 9.56 54.54 9.71
Yes 4, 357 45.35 10.92 48.66 17.93
Asthmatic
No 101, 916 50.18 9.45 54.54 9.54
Yes 3, 928 42.47 12.11 44.08 22.20
Diabetic
No 99, 963 50.43 9.26 54.78 9.05
Yes 5, 881 40.65 11.62 41.56 20.36
Hypertension
No 88, 028 51.29 8.62 55.25 7.26
Yes 17, 816 42.96 11.43 44.95 19.91
Bronchitis,Emphisema
No 100, 011 50.50 9.19 54.78 8.84
Yes 5, 833 39.47 11.56 39.13 20.28
Household composition
1 component 13, 471 46.17 11.48 50.50 18.33
2 components 26, 506 47.29 10.67 51.50 15.04
3 components 26, 765 50.94 8.83 54.84 7.87
4 components 27, 172 52.36 7.61 55.37 5.45
5 or more comp. 11, 930 51.87 8.35 55.42 6.06

Continued on next page
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– continued from previous page

VARIABLE N Mean Stand.Dev. Median IQR

Household typology
Living alone 13, 471 46.17 11.48 50.50 18.33
Childless couple 21, 689 46.86 10.66 50.92 15.60
Couple with child. 57, 303 52.05 7.87 55.26 6.04
Other typology 13, 381 49.30 10.41 54.30 12.00
Economic resources
Insufficient 73, 205 50.72 8.98 54.84 8.16
Good 32, 639 48.02 10.83 52.71 14.84
Urban degree
Low 25, 349 49.23 10.06 53.94 11.63
Intermediate 43, 989 49.97 9.60 54.32 9.93
High 36, 506 50.25 9.44 54.73 9.50
Depression
No 99, 800 50.41 9.26 54.78 8.93
Yes 6, 044 41.25 11.87 40.73 20.91
Disease
No health problem 72, 245 52.39 7.55 55.30 5.38
Illness 18, 694 47.88 9.91 51.28 13.61
Acute disease 14, 905 40.27 11.67 39.94 20.19

Coefficient not significant: *** ”p¿0.05”; ** ”p¿0.01”; * ”p¿0.001”
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Appendix B

SF-36 and SF-12 description

The SF-36 questionnaire is a generic measure instrument of health status and
one of the most widely used. Was constructed to satisfy psychometric standards
necessary for comparisons. Accordingly , this questionnaire has proven useful
in comparing general and specific populations, estimating the relative burden of
different diseases or differentiating the health benefits produced by a wide range
of different treatments. SF-12 was developed as an alternative to the SF-36 for
the purpose of monitoring large samples of general and patient populations and
in response to need for shorter health survey measures. The SF-12 is a subset
of items from the SF-36. Like the SF-36, the SF-12 measures two broad health
status domains: Physical well- being (the Physical Component Summary –PCS)
and psychological well-being (the Mental Component Summary – MCS). The SF-
12 scoring protocol based on a complicated algorithms. Although the short length
of this questionnaire involves limit in sub-domains assess. In fact, the eight health
status sub-domains which compose SF-36, cannot be analyzed separately in SF-12
questionnaire. The eight sub-domains of the SF-36 are:

a) Physical Functioning (PF), Role-Physical (RP), Bodily Pain (BP), General
Helath (GH) which contribute to PCS score;

b) Vitality (VT), Social Functioning (SF), Role-Emotional (RE), Mental Health
(MH) which contribute to MCS score.

Istat survey contains the SF-12 questionnaire, plus questions involved in scoring of
VT and MH indexes. These questions are listed below separately for each index.
Note: questions are not comparable with English version questionnaires being a
free translation of the Italian version questions.
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Questions forming SF-12 questionnaire , Vitality (VT) and Mental
Health (MH) indexes, Disease variable

• Physical Component Summary (PCS) questions:

1. In general, how is your health?

- Very well

- Well

- Fair

- Bad

- Very bad

2. Is now your health limiting you in performing activities of moderate
physical effort (such as moving a table, use a vacuum cleaner, bowling
or take a bike ride, etc.)?

- Yes, its limits a lot

- Yes, its limits a little

- No, it does not limit at all

3. Is now your health limiting you in climbing several flights of stairs?

- Yes, its limits a lot

- Yes, its limits a little

- No, it does not limit at all

4. During the past 4 weeks, have you been less efficient than you would
like in your work or other regular daily activities as a result of your
physical health?

- No

- Yes

5. During the past 4 weeks, have you had to limit some kind of work or
other activities as a result of your physical health?

- No

- Yes
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6. During the past 4 weeks, how much has pain interfered with your normal
work (including both indoor and outdoor)?

- Not at all

- A little bit

- Moderately

- Quite a bit

- A lot

• Mental Component Summary (MCS) questions:

1. During the past 4 weeks, have you been less efficient than you would
like in your work or other regular daily activities as a result of any
emotional problems (such as feeling depressed or anxious)?

- No

- Yes

2. During the past 4 weeks, have you had a loss of concentration on work
or other daily activities as a result of your emotional problems (such as
feeling depressed or anxious)?

- No

- Yes

3. During the past 4 weeks, how often have you felt calm and/or peaceful?1

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

1Question also included in MH index.

101



4. How often during the past 4 weeks did you feel full of energy?2

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

5. How often during the past 4 weeks did you feel downhearted and sad?3

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

• Vitality (VT)(Well-being in this work) questions:

1. How often during the past 4 weeks did you feel full of energy?4

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

2. During the past 4 weeks, how often did you feel lively and brilliant?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

2Question also included in VT index.
3Question also included in MH index.
4Question also included in MCS index.
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3. During the past 4 weeks, how often did you feel worn out?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

4. During the past 4 weeks, how often did you feel tired?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

• Mental Health (MH) questions:

1. During the past 4 weeks, how often have you felt calm and/or peaceful?5

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

2. How often during the past 4 weeks did you feel downhearted and sad?6

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

5Question also included in MCS index.
6Question also included in MCS index
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3. During the past 4 weeks, how often did you feel very restless?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

4. During the past 4 weeks, how often have you felt so down in the dumps
that nothing could cheer you up?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

5. During the past 4 weeks, how often did you feel happy?

- All of the time

- Nearly always

- For a long time

- A little of the time

- Hardly ever

- Never

• Disease variable questions:

1. In the last 4 weeks have you had any illness or health problem?
We are interested in all causes which may have disrupted your health during this

period, both serious (such as pneumonia, appendicitis, . . . ) and less serious (such

as cold, headache, cough, toothache, intestinal disorders, rheumatism, etc.).

Any chronic disease should be considered, even if arising before the four weeks

provided that they have given rise to health problems during these 4 weeks

- No

- Yes, please specify
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2. In addition to what may be stated in response to the previous question,
in the past 4 weeks, your health was compromised by wounds, fractures,
bruises, dislocations, sprains, burns, or other problems due to traumas,
poisoning, suffocation, etc.?

- No

- Yes

3. Diseases or disorders mentioned led to a limitation of your usual activ-
ities (at home, at school, in leisure time, at work, etc ...) during the
last 4 weeks?

- No

- Yes, for how many days?
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